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Abstract

The port-Hamiltonian approach for the modelling of multiphysics systems is based on the explicit
representation of all power exchanges between the multi-domain subsystems. Besides, this approach
allows to consider subsystems with complex dynamics, including nonlinear behaviours or spatially
distributed phenomena. It is therefore a potential candidate for the modelling of the plasma
dynamics in nuclear fusion facilities called Tokamaks.

In this work, a port-Hamiltonian model, using various Dirac structures, is derived for the
Thermo-Magneto-HydroDynamics (TMHD) of plasmas in tokamaks. Maxwell field equations as
well as balance and closure equations in the material domain are expressed in their covariant form.
First a kinetic theory point of view is adopted and transport equations are derived from the Boltz-
mann equation. Then material derivatives are introduced to deduce macroscopic balance equations
of the TMHD fluid model from these kinetic transport equations. Finally, the Gibbs-Duhem equa-
tion is used to compute the irreversible entropy source term and to define the interdomain R -
field of the model. All derived interdomain couplings in the material domain are represented using
Stokes-Dirac structures and a resistivity R - field structure. The complete model is summarized in
a Bond Graph.

The following stage is a geometric spatial reduction methodology which aims to preserve,
throughout the reduction, both the symplecticity of the Dirac interconnection structure and the
physical extensive quantities of the original system. It is based on projections which make use of
the symmetries and the preservation of the “natural” power pairing for the considered system. The
method is applied to a system of two coupled parabolic equations describing the poloidal magnetic
flux radial diffusion and the heat radial transport in tokamak reactors. There are two reduction
steps, first to reduce the model from 3D to 1D, and then from 1D to a 0D finite dimensional
approximation. The assumptions of axial symmetry and quasi-static equilibrium of the plasma are
used to perform the reduction from 3D to 1D by using simple integration formulas on toroidal
coordinate surfaces. A Galerkin-type pseudo-spectral spatial reduction method is used to reduce
the 1D model to a 0D one. Both reductions are symplectic with respect to the power-pairings in
the magnetic and thermal domains. Finally, the 0D plasma control model is obtained by reduction
of the multi-domains couplings between the two diffusion PDEs. The obtained model’s accuracy is
suitable for an efficient control design.

An Interconnection and Damping Assignment - Passivity Based Control (IDA-PBC) , the most
general Port-Hamiltonian control, is chosen first to deal with the studied Tokamak system. It is
based on a model made of the two coupled PDEs of resistive diffusion for the magnetic poloidal flux
and of radial thermal diffusion. The used TMHD couplings are the Lorentz forces (with non-uniform
resistivity) and the bootstrap current. The loop voltage at the plasma boundary, the total external
current and the plasma heating power are considered as controller outputs. Due to the actuator
constraints which imply to have a physically feasible current profile deposits, a feedforward control
is used to ensure the compatibility with the actuator physical capability. Then, the IDA-PBC
controllers, both finite-dimensional and infinite-dimensional, are designed to improve the system
stabilization and convergence speed. The proposed works are validated against the simulation data
obtained from the Tore-Supra WEST (CEA /Cadarache, France) test case and from RAPTOR code
for the TCV real-time control system (CRPP/ EPFL, Lausanne, Switzerland).
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Chapter 1

Introduction

I Port-Hamiltonian approach for thermonuclear fusion and
control challenges

Nuclear fusion on the sun supplies an immense green energy source to brighten our life everyday.
Otherwise, in order to maintain and improve our comfort, we’re looking for the energy sources
like fossil fuel or nuclear fission, and now we have to deal with the huge amounts of pollution and
radiation which threatens back our life. So why not an “artificial sun” on earth?

This such idea lead the Soviet physicists Lev Artsimovitch, Andrei Sakharov and Igor Tamm
to invent in the 1950s a fusion reactor called Tokamak (Russian acronym for toroidalnaia kamera
s magnitnymi katushkami, i.e. toroidal chamber with magnetic coils). A Tokamak is a facility
constructed with the shape of a torus (or doughnut) in which a plasma (i.e. ionized fuel atoms)
is magnetically confined and heated in order to produce nuclear fusion reactions (see Fig. 1.2 for
a schematic view and the classical Wesson’s monograph [106] for a large comprehensive reference
textbook on tokamaks).

In thermonuclear fusion at very high temperature, two light atomic nuclei form a heavier one.
For instance, Deuterium 2D (which could be extracted from the sea water) and Tritium $D (which
is obtained from REE- rare earth element), available in very large quantities, could potentially
be used for future fusion reactors. In the fusion reaction, the neutron kinetic energy is converted
into electricity, while the rest of the energy should be used to maintain a high temperature for
the plasma for future reactions. However, to overcome the Coulomb barrier, in order to merge the
two positively charged nuclei, it is required at the same time extremely high temperatures 7" with
sufficiently high density n and large enough confinement time 7. This plasma ignite condition is
usually summarized in the empirical Lawson’s criterion:

nTT >3 x 10 (m*BkeVs)

1D + 3D —3 He (3.5MeV) +4 n (14.1MeV)
Deuterium Helium

c\ . /CJ"

+ / \ Energy
e
Tritium Neutron

Figure I.1: The fusion reaction between Deuterium and Tritium Hydrogen isotopes which produces
Helium, energy and and a high kinetic energy neutron particle



CHAPTER 1. INTRODUCTION 2

Basic control Advanced control Future control
plasma positions,
shape, current,...
or loop voltage!
(of electric coils)

Magnetic control plasma current profile

Burn control

temperature
( coupled with
the magnetic domain)
MHD instability

Kinetic control plasma density

Table I.1: Classification of plasma control problems

In the tokamak strategy, the goal is therefore to optimize the temperature and confinement
time in order to compensate the low plasma density. The ITER (International Thermonuclear
Experimental Reactor, see http://www.iter.org/) project was born to challenge these controlled
fusion problems (cf. [2, 83, 105]). The tokamak feedback control to achieve a stable, well-confined
and highly energetic plasma equilibrium is still a large field of research. The table 1.1 gives an
overview of the possible control problems in the tokamaks from the basic and earlier ones to more
involved and recent ones. They are divided into two main categories: the magnetic control (only
EM (Electromagnetic) states are considered) and kinetic control (plasma temperature and density
are taken into account).

Particularly, in magnetic control the regulation of the 1D profile of the safety factor g®has
become the subject for many control studies. Up to now, the so-called 1D resistive diffusion model
for the poloidal flux (see [10, Chap.6] for the model derivation and details), whose derivation is
also inversely proportional to the safety factor, has been extensively used as a “control model” for
many control designs related to total plasma current or profiles in the Tokamaks. In this model the
plasma is assumed to have reached the hydrodynamic equilibrium profile and displacement currents
are neglected in the Maxwell equations (when compared for instance to the inductive current). The
model then reduces to a 1D diffusion-like parabolic equation for the radial profile of the plasma
poloidal flux (or current density). Readers could refer to [107] for investigations on this model for
control purposes or to [81], [80], [1], [39] for different control strategy of the plasma current profile.
Note also that two-time-scale extensions have already been considered for simultaneous magnetic
and kinetic (temperature) profile control in tokamak [28].

However, it makes very restrictive assumptions on the plasma resistivity (which in fact de-
pends strongly and non-linearly of the temperature) and neglects some nonlinear MHD (Thermal-
Magneto-Hydro-Dynamics) couplings which produce the bootstrap current®. The next objective
for plasma high confinement requires now a better understanding and exploitation (for control
purposes) of the TMHD (Thermal-Magneto-Hydro-Dynamics) interdomain couplings. Moreover,
a study of the complete TMHD model, including mass and entropy balance equations is neces-
sary to consider the burn control problem (i.e. control of the fusion reaction during the burning
phase) which comes next after plasma confinement problems (see for instance preliminary works of
[94, 92, 14, 15]). Our goal is to obtain a model simple enough to design a controller but complex
enough to capture most of the important (for the here-above considerations) physical properties of
the real system. Therefore both kinetic and fluid models will be considered in this work, among
others to some MHD and thermal couplings.

The port-Hamiltonian (port-Hamiltonian) approach (cf. [99, 64]) for the modelling of multi-
physics systems is quite successful in the recent decades. It’s based on the explicit representation
of all power exchanges between the multi-domain subsystems.

On one side, this approach is able to describe the complex dynamics systems including nonlinear
behaviors or spatially distributed phenomena, such as transmission line models [36], beam equations
[55], shallow water equations [42] or models for transport phenomena (adsorption columns [4], fuel

2The safety factor yields the ratio of the number of toroidal and poloidal field line turns. It is inversely proportional
to the plasma current. The readers may refer to chapter 3, section IV.2 or [106, Chap.3, p.111] for more details.

3The boostrap current comes from an magnetohydrodynamical effect which produces an extra current density,
due to part of the charged particles bouncing back and forth along their banana orbit. It has been considered in the
plasma control literature (until now) as a perturbation. However it is now hoped to be the major source of inductive
heating in the ITER project.
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cells [34] or Ionic Polymer-Metal Composites [72]).

On the other side, accompanying to the PH modelling, the so-called symplectic reduction meth-
ods are also investigated to obtain a control model (cf. [86][18][41]). This geometric spatial reduction
may be performed by designing schemes which preserve the geometrical interconnection structure
of the model and result in a structured port-controlled Hamiltonian (PCH) model (see [65] for an
introduction or [101] for an extensive investigation) with the same balance (conservation) equations
and approximated constitutive (closure) equations projected in the reduced spaces.

The discretization methods, reducing the infinite into the finite dimensional control system,
which aims at accurate spectral and structure properties and low order models, are also developed
for the PH systems. The so-called symplectic discretization is successfully applied to the (mixed)
finite elements method [12, 6, 45] or the (mixed) orthogonal collocation with Lagrange polynomials
[70].

For the control synthesis, [77] proposes a class of passivity based controls applicable to the
PH finite systems, and the IDA-PBC (Interconnection and Damping Assignment - Passivity Based
Control) (cf. [76, 78, 88]) can be considered one of the most general methods in this class.

With all the above reasons, we believe that an appropriate (physically meaningful) statement
of the simplified distributed diffusion model, like the PH formulation approach presented here,
could lead to better results for the tokamak control problems. Moreover, due to the modularity
of the port-Hamiltonian formulation, the thermal dispersion model could be refined (if needed) to
the necessary level of description by successive inclusions of constitutive equations and coupling
effects. At least two key issues are related to nonlinear coupling between electromagnetic, entropy,
momentum and material balances: the influence of the temperature on the plasma resistivity and
the so-called “bootstrap current”. The first is a key effect to control equilibrium profiles in the
plasma. The second is a “supplementary source” of plasma current which has to be optimized to
improve the plasma confinement. We believe that the port-Hamiltonian formulation of the model
developed previously (including energy, momentum and material balance equations) could be used
to represent this effect and maybe to handle the related “optimal” control problem.

IT Main contributions of this work

A complete control methodology has been developed for the aforementioned plasma, control prob-
lems. First a 8D plasma port-Hamiltonian model has been derived in covariant form. It includes
the Maxwell field and material balance equations, as well as some TMHD interdomain couplings.
The symplectic reduction methods have been designed to derive both 71D and 0D control models
preserving the geometric structure and some invariants (first integrals) of the original 3D TMHD
model. These models have been validated with the METIS simulator? [3] for the Tore-Supra/
WEST (Tungsten (W) Environment Steady-state Tokamak) configuration and with the RAPTOR
(RApid Plasma Transport simulatOR) code [30, 29] developed for simulation and real-time control
of TCV (Tokamak of Variable Configuration) at EPFL, Lausanne, Switzerland. Then IDA-PBC
based controllers have been developed both in finite and infinite dimension. Both controllers aim
at controlling the security factor radial profile from boundary (loop voltage) or distributed (current
density and heat distribution) control actions. More precisely, the main contributions of the thesis
could be summarized as:

e the development of a complete 3D fluid-like TMHD model with includes energy flows (there-
fore control actions) from the system to the environment through boundary or distributed
controlled port variables, using the port-Hamiltonian extension of Hamiltonian distributed
parameter systems suggested in [99].

e the proposal of a spatial reduction methodology which allows to derive 1D (or 2D) models
from geometric symmetries, still preserving the model structure and invariants and leading
to a 1D (or 2D) infinite dimensional port-Hamiltonian TMHD model. In the considered
plasma application example, axisymmetry and plasma quasi-static equilibrium assumptions

AMETIS is a tokamak simulator developed for plasma scenario design and analysis [3]. It is a complex simulation
code developed at IRFM (Institut de Recherche sur la Fusion par confinement Magnétique) department at CEA-
Cadarache (Commissariat & ’Energie Atomique) France.
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have been used to derive a 1D “radial” model from the 3D model written in toric magnetic
coordinates.

e the proposal of a methodology which aims at transforming classical pseudo-spectral spatial
discretization schemes into symplectic ones with respect to the power pairing used in the port-
Hamiltonian formulation of 1D distributed parameters systems. In the plasma application
case, a symplectic Galerkin scheme has been proposed and the choice of the approximation
basis functions has been discussed. A continuous-time finite dimensional approximation has
been obtained in the form of a classical PCH system. The obtained reduced model has the
same model structure, invariants and accurate spectral properties (both for eigenvalues and
eigenfunctions).

o the design of an IDA-PBC controller for the finite dimensional PCH (Port-Control Hamilto-
nian) approximation of the resistive diffusion and thermal diffusion equations. This design
includes a nonlinear feedforward control action based on full steady state computations to
handle actuator constraints and the non linearity in the control operator. The IDA-PBC
feedback control design includes an optimal strategy for the control parameters selection as
well as a robustness analysis w.r.t. errors on critical parameters and external disturbances.

e a proposal for an IDA-PBC-like control design for infinite-dimensional port-Hamiltonian sys-
tems and its application to the control of the 1D resistive diffusion equation with both finite
rank distributed input (external current source) and a boundary control (through the loop
voltage). The proposed distributed control is derived from the traditional IDA-PBC principle
and is indeed an approximate average solution for some matching equation. The boundary
control compensates this matching error and is computed using a state feedback Volterra
(sometimes referred as backstepping [50]) transformation to prove the stability of the closed-
loop system.

o the validation of the different control models and of the control laws for some configurations of
the Tore-Supra/WEST and TCV. These validations are based on simulations on the METIS
code (Tore-Supra/WEST), on the RAPTOR code (TCV) and on some experimental shocks
(TCV).

IITI Outline

The following of the report is organized as follows.

e Chapter 2 presents the principle of the tokamak device, then details the two tokamaks consid-
ered for this work: the Tore-Supra/WEST in Cadarache (France) and the TCV in Lausanne
(Switzerland). The port-Hamiltonian (PH) modelling method is revisited before being applied
to represent the dynamics of plasmas in tokamaks. A 8D model based on MHD and energy
balance equations is then proposed in covariant form (using the PH formulation). Firstly, PH
framework in the covariant form for the electromagnetic domain is recalled. Then, the same
structures are derived to the material domain. The novel Dirac structures of the multi-domain
couplings are proposed for the magneto-hydro-dynamic couplings (Lorentz force, Joule effect,
and the Eulerian-Lagrangian coordinate transformation) in order to complete the 8D model.

e Chapter 3 suggests a geometric reduction methodology to reduce the model from 8D to
1D for the purpose of control synthesis. This spatial reduction method aims at conserving
the natural power products and the system interconnection’s structures from the original 3D
model. Consequently, the reduced 1D variables definitions are derived directly from the power
conservation relations. The obtained 1D reduced models for the electromagnetic and thermal
domains are proved equivalent respectively to the resistive diffusion equation and thermal
transport equation which are the most commonly used 1D control models for the control of
the security factor profile in tokamaks.

e Chapter 4 adapts an existing symplectic geometric discretization method (see for instance
[70]) to derive a finite dimensional 0D PCH model from the reduced 1D PH model obtained
from in chapter 3. The choice of approximation base functions are discussed. This discussions
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leads to the definition of a symplectic Galerkin scheme specifically adapted to the flux and
heat diffusion problems investigated in this work. The numerical and dynamical properties
of the obtained reduced PCH model are carefully investigated.

e Chapter 5 derives an IDA-PBC control law based on the finite dimensional PCH tokamak
model. The control objective is - at first - to regulate the safety factor profile (or plasma
current profile) with the finite-dimensional model for the EM domain. Secondly, the thermal
diffusion equation is coupled with the resistive diffusion. Another control design is proposed
which includes actuators in the thermal domain and couplings between the thermal and EM
domains (through the resistivity and the bootstrap current). The control laws are tested with
two tokamak simulators METIS and RAPTOR. Results from real-time experimentation on
TCV are also provided.

e Chapter 6 develops some ideas to achieve an IDA-PBC control design for infinite dimensional
PH systems. A backstepping boundary control action is derived to correct the matching error
from the (finite rank) distributed IDA-PBC control. The simple example of the resistive
diffusion equation is investigated as a particular example to illustrate the approach. The
obtained results are also compared with the ones from the finite dimensional IDA-PBC design
in chapter 5.



Chapter 2

3D port-Hamiltonian Tokamak
model

In this chapter, a 3D fluid model - using the port-Hamiltonian extension for distributed parameters
suggested in [99] - was developed for the TMHD of plasma in tokamaks. Magnetohydrodynamic and
energy balance equations are expressed in their co-variant forms, as well as the balance and closure
equations in the material domain. The irreversible entropy (or entropy production) is deduced at
last in order to determine the dissipative constitutive relation in the material domain, we call it
the resistiveR - field of the model. All derived interdomain couplings in the material domain are
sketched using Stokes-Dirac structures and a resistivity R - field structure.

The first section describes the studied system, the Tokamak construction in general, as well as
in detail with two different devices: the Tore Supra WEST and the TCV. Some actual important
issues of this system make title for the presented work, our motivations are thus expressed in section
II. Section IIT presents shortly the co-variant formulation for distributed parameter systems with
boundary energy flows, using differential forms. Exterior and interior (or contraction) products and
Dirac structure definitions are recalled. In section IV, EM domain model for the tokamak system
is derived using this port-Hamiltonian formulation. In subsection V, the transport equations (of
the mass, momentum, and energy balance) derived from the Boltzmann equation (cf. [11]) are
revisited. Then the kinetic theory point of view is adopted in a form which is suitable for the
fluid-like port-Hamiltonian formulation of the plasma dynamics. The irreversible entropy is finally
deduced, that is to define the R- field. Subsection VI then defines all the multi-domain couplings
and the closure equations which are needed to complete the model. A complete 3D model of
Tokamak is then presented in Bond Graph form by integrating all the domains and their couplings
to give a general view of the whole system in subsection VII.

I Tokamak devices

Tokamak thermonuclear fusion reactors exist in different versions all around the world: JET in the
United Kingdom, JT-60U in Japan, DIII-D in the United States, Tore Supra/WEST in France and
TCV in Switzerland are a few examples. They are distinguished by their sizes and their available
actuators, but their general architecture remains quite similar and is illustrated in figure I1.1.

In a tokamak, a plasma is confined in the shape of a torus by a magnetic field (see figure 1.2).
The magnetic field is divided into two main components in the toroidal direction and in the poloidal
one. It is generated by three sets of electric field coils: a transformer coil in the center of the torus
called central solenoid, toroidal and vertical field coils surrounding the plasma and the torus.

The plasma current is generally firstly generated by induction using the central solenoid. It
allows heating up the plasma, which behaves as a resistive conductor. However, when the tem-
perature is over 1 keV, ohmic heating becomes practically useless due to the resistivity decreasing
with the temperature. Therefore ohmic heating alone does not allow to reach the adequate plasma
fusion conditions. Non inductive heating and current drive methods were thus developed to take it
over. Auxiliary heating sources which can be considered are:
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Figure I.1: Tokamak design chosen for the ITER project

Confining Plasma Using Magnetic Fields

Transformer coil

Vertical
field coils

Plasma current Plasma Magnetic field line

Figure 1.2: Schematic view of a tokamak with the electrical solenoids: the magnetic field generated
by the three magnets makes the plasma gas ions following helicoidal trajectories along the torus

e Electron Cyclotron Heating and Current Drive (ECRH/ECCD)

These waves resonate with the electron cyclotron motion around the field lines, heating the
electrons and driving bulk current. Radio frequency (RF) waves of f ~ 100GH:z range
have the advantage that they propagate through vacuum and can therefore be injected from
antennas placed farther from the plasma. Their optical properties (such that steering/focusing
mirrors) can be used to precisely direct the location of absorption and current drive in the
desired location inside the plasma. A disadvantage is their relative inefficiency at driving
current, as well as the fact that the electrons are heated instead of ions (as would be useful
to stimulate fusion reactions — though this is also the case for LHCD in the following)

e Ton Cyclotron Heating and Current Drive (ICRH/ICCD)
They use low-frequency RF waves (f ~ 40M Hz) which are coupled to the ion cyclotron
frequency or a hybrid frequency of a given ion species in the plasma. While the RF sources use
conventional technology, the waves must be driven directly at the plasma/vacuum interface
since they do not propagate in vacuum or low-density plasmas. This can cause problems
related to the plasma/antenna interface. Specially designed antennas have been tested on
tokamaks over the years
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Inductive Non-inductive
current Electromagnetic current (antennas)
— > ~—
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Fixed volume integration domain
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Heat Mass
flow Mechanics # Hydraulics injection
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Thermodynamics

Figure 1.3: Multiphysic Tokamak model with main interdonmain couplings

e Lower Hybrid Heating and Current Drive (LHCD)
It is yet another method for plasma heating, relying on resonant coupling of a RF wave in the
plasma. LHCD is technologically and conceptually simple on the source side (f ~ 5GHz),
and is able to drive significant amounts of current which can be easily controlled. It also
requires antennae placed in proximity to the plasma, providing similar engineering challenges
as ICRH

e Neutral Beam Injection (NBI)
Neutral atoms are injected into a plasma travel in straight lines. They are initially not affected
by the magnetic field until the particles ionize in collisions with plasma particles. Neutral
Beams injecting tens of megawatts have been successfully used and provide the bulk heating of
many tokamaks worldwide. One of their main disadvantages is the large scale and complexity
of the injectors, as well as the difficulty to vary where the heat and current are deposited.
(NBIs also inject momentum, which can have important physical consequences)

A complete review of these heating source’s principles and technologies may be found in [106,
Chap.5, p.243).

In other words, with a simple point of view, a Tokamak system can be described in the figure
13

The value of the total plasma current may be controlled using the central magnetic coil. This
defines a boundary control problem (the controlled variable being either the total plasma current or
the equivalent loop voltage). Contrarily, the magnetic field, defining equivalently the so-called safety
factor profile (chapter 3, section IV.2 or [106, Chap.3, p.111]), necessary to avoid MHD instabilities
and to obtain a satisfying confinement for the plasma, may only be controlled using distributed non
inductive sources. These distributed control actions are usually non-linear, and have specific shapes
(or spatial distributions) being non linearly related to the state (e.g. the total plasma current) and
to some control inputs (e.g. the total non inductive power or the beam deflection angle). Ouly a few
control inputs (also termed as engineering control parameters) are available and strong restrictions
on the admissible shapes are therefore imposed. Moreover modelling and optimizing the bootstrap
current effect ([106, Chap.4, p.172]), as well as a better understanding of all thermal phenomena
in the tokamak (cf. [27, 38]), are the key issues for the success of the ITER project. Both require
an explicit representation of electromagnetic, material, momentum and entropy balance equations
(possibly in 3D models) as well as coupling constitutive equations between these energy domains.

Two Tokamaks are briefly presented hereafter: the Tore-Supra at CEA-IRFM Cadarache, France
and the TCV at CRPP-EPFL Lausanne, Switzerland. Experimental data and detailed knowledge-
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based simulation models of these two tokamaks have been used for the numerical (simulations) and
experimental validations of the control models, numerical methods and control laws presented in
this report. However only TCV has been used for real-time control experiments within the context
of this thesis.

I.1 Tore-Supra

Figure I.4: Tore-Supra Tokamak device in CEA /Cadarache

Built in 1988 in CEA Cadarache France, Tore Supra' is one of the largest tokamaks in the world,
with a diameter of 11.5m and a height of 7.2m, a major radius of 2.25m (from the machine center
to the plasma center) and a minor radius of 0, 70m. Its main feature is the superconducting toroidal
magnets which enable generation of a permanent toroidal magnetic field. Tore Supra is also the
only tokamak with plasma facing components actively cooled. These two features allow the study
of plasma with long duration. Until now, it has produced more than 40 000 plasma discharges,
mastery of long-duration plasmas (a record duration plasma of 6 minutes and 30 seconds was
achieved on 04/12/2003).

In Tore Supra, different auxiliary heating sources by radiowaves are used, such as ECRH/ECCD,
ICRH/ICCD, LHCD and NBI. Improvements on existing systems are being considered so as to
initially raise the injection capacity up to 12MW for 1000 seconds.

Working on this experimental facility are about 250 researchers in the IRFM department from
the CEA. Since 2013, within the WEST project, Tore-Supra is being transformed to test ITER
plasma facing component. The operations on this machine are thus postponed until 2016.

This is the reason why in this thesis there are no experimental results on the Tore-Supra tokamak
but only simulations using data given by METIS, the tokamak simulator developed in [3] for plasma
scenario design and analysis.

1.2 TCV

The TCV? came into operation in November 1992 at the Centre de Recherches en Physique des
Plasmas, Ecole Polytechnique Fédérale de Lausanne (CRPP/EPFL). About 140 specialists are
actually contributing to manifold activities of the CRPP. Since then it has produced plasma currents
above 1M A for pulse lengths longer than a second.

TCV is a medium size Tokamak with 1.44m height, 0.48m width and 0.875m of major radius;
it is not designed to produce a significant number of fusion reactions (nor is Tore Supra).

TCYV possesses an interesting property which makes it unique in the zoo of existing tokamaks in
the world: the plasma cross section can be 3 times higher than wide. This feature opens the door

Lwebsite: www-fusion-magnetique.cea.fr/gb/cea/ts/description/ts_description01.htm
2website: crppwww.epfl.ch/crpp_tev.html
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Figure 1.5: TCV overview in CRPP/EPFL

to studies on plasmas of very different shapes. A series of plasma configurations (cross-sections)
which have been produced in TCV are shown in figure 1.6. The interests of the elongated plasma
are that no part of the plasma touches the inner wall and that the plasma can be bounded by a
seperatrix. It is also called diverted plasma, that creates an X — point, where the poloidal motion of
the field lines is almost eliminated, that improves the plasma confinement (cf.[106, Chap.3, p.115]).
Other tokamaks in the world are generally limited to a more or less fixed shape which is given by
the shape of vacuum vessel. With TCV, fusion research has a versatile tool to study the influence
of the plasma shape on confinement and stability.

(a)!

Limited SN upper SN lower DN Highest I{lghest current
=0, 1,=230 kA 1,=330 kA 1,=335 kA =325 kA SOQUATeness =106 MA
.a._n 5

E101%9 - 000s #36151 - 0.AST:

(2 TS L iy : M i {n} I|.,|iI
Highest fully Pear shape Doublet shape Highest elongation Lowest Snowflake
ECCD driven current [ =360 kA I=115kA k=280 triangularity =230 kA

1,=210 kA 8=077

Figure 1.6: Plasma shapes in TCV

Another important objective of TCV is to study this variety of plasma shapes with microwave
heating, more precisely with Electron Cyclotron Resonance Heating (ECRH). For this purpose up
to 9 strong microwave sources, called gyrotrons, have been installed representing a power of 4.5MW
additional heating for the plasma.

However, the gyrotrons reached the end of their life by 2013. These old gyrotrons have been
disassembled and are being replaced by new ones. At the same time, a NBI heating source is being
implanted. TCV is expected returning with full function in 2016. Fortunately we got the precious
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chance to test our very first (and simple) control laws on TCV in the last campaign on October 2013
before the machine has been stopped. Nevertheless, we’re pleased to try our designed controllers
with RAPTOR developed by [30, 29]. RAPTOR is a Real-time model-based reconstruction and
control of Tokamak, which has been proved the be consistent with the real plant TCV.

IT Related works and motivations

Many model-based control designs are based on the 1D resistive diffusion equation for poloidal
magnetic flux (refered to chapter 5 for the explication and related works). In this model all TMHD
dynamical couplings such as the bootstrap current are neglected as well as the significant variation
of the plasma resistivity with the temperature. Static models (or “scaling laws”) are usually used in
approaches based on the resistive diffusion equation to determine the value of the necessary system
parameters (see [13] or [67]).

On the other hand, the fundamental laws governing charged particle dynamics can be well repre-
sented by both kinetic theory of gases® and Hamiltonian formulation. Nevertheless, the structured
approach Hamiltonian can also stands for a fluid description of the system. Therefore the preser-
vation of the Hamiltonian structure provides some confidence that the truncations that are used
to derive the fluid model have not introduced unphysical phenomena. Hamiltonian formulations
have already been used in the plasma dynamics context, such as in [68] for ideal fluid models, in
[69] for magnetohydrodynamics models or in [26] to represent the Grad-Shafranov equations using
a Lie-Poisson bracket. However some of these earlier works either make use of the “microscopic”
(six dimensional) kinetic theory to represent the plasma dynamics, while all of them (to the best of
our knowledge) considered only closed systems without any explicit input-output variables. There-
fore these previous models, although they bring much more insights into the “geometry” of the
magnetohydrodynamics equations, were not convenient for control or observation purposes.

In this work we aim at developing a complete 8D fluid model which includes thermal phenomena
(energy balance equation) since the plasma profiles control problem should take into account the
strong variation of the plasma resistivity with the temperature and since non linear coupling effects
between the thermal and electromagnetic domains are essential to capture the bootstrap current
effect. Moreover we would like to keep the Hamiltonian structure of the physical model and, more
precisely, we would like in some sense to extend the Lie-Poisson structure (i.e. brackets) for closed
MHD systems to TMHD models with energy flows from the system to the environment through
the boundary and through the distributed (field) controls. These extensions required by mixed
boundary and control actions will be achieved using the port-Hamiltonian extension for distributed
parameter systems suggested in [99]. It will be based on Dirac interconnection structures (including
the previously defined canonical Stokes-Dirac structures [99]) an elementary sub-models rather than
on complex brackets as those defined in [69, 62] for the kinetic model or in [26] for a fluid model.
The reasons of this choice are the following:

e in this structured modelling approach, each elementary interconnection structure is the for-
mulation of a fundamental conservation principle. It is then usually closed with a “natural”
constitutive equation suggested by modelling considerations and which satisfies physical con-
straints and principles (conservation, reciprocity, symmetry, etc.).

e the Stokes-Dirac structures and other Dirac interconnection structures used in the model are
stable under interconnection. The global connected model is still a port-controlled Hamilto-
nian model (partially) defined with a global power preserving Dirac interconnection structure
[82]*.

e the Stokes-Dirac interconnection structures, as well as simple constitutive equations, may
be spatially reduced using geometric reduction algorithms [40, 42, 87] which preserve both
the structural and energetic properties of the infinite dimensional model, including the Dirac
structure, conservativeness and dissipativeness of each sub-models.

3Kinetic theory explains macroscopic properties of gases, such as pressure, temperature, viscosity, thermal con-
ductivity, and volume, by considering their molecular composition and motion.

4The work also derives the conditions for the achievable closed loop Dirac structures, analogous to the finite
dimensional case and then characterize the set of achievable Casimir.
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e the proposed approach for modelling leads trivially to an explicit port-controlled Hamilto-
nian realization which is essential to apply non linear control techniques based on energy
or structural property of the model such as IDA-PBC [77] or mixed PCH interconnection
methodologies [101, Chap.6, p.309]. Such approaches have already been successfully applied
to various examples of distributed parameter systems such as the control of Timoschenko
beam [55], the control of water flows and levels in the shallow water equations [44] or the
control of a passive charge connected through a transmission line [56].

III Background: Port-based modelling for distributed param-
eter systems of conservation laws with boundary energy
flows

In this section, the port-Hamiltonian formulation for systems of conservation laws is recalled. Port-
based modelling techniques and languages have been extensively used these last decades to model,
simulate and control a wide variety of lumped parameters physical systems [49, 97, 95, 51, 101,
Chap.6, p.309]. When dealing with distributed parameter systems, first “series” - like expansion
models were derived from various kind of finite difference, modal or finite element methods. These
already appear in many textbooks such as [49]. More recently, a more intrinsic formulation of
port-based models for distributed parameter systems (i.e described by partial differential state
space equations) with boundary energy flows have been proposed [64, 99]. They are based on
the definition of the state variables as the densities of some thermodynamical extensive variables.
The time derivatives of these variables and their distributed conjugated intensive variables® form
together the pairs of variables which are used to define a power pairing form and a port-Hamiltonian
formulation for systems of conservation laws.

It is known that Stokes-Dirac structures allow to extend the Hamiltonian description of dis-
tributed parameter systems to include wvariable boundary conditions, leading to open distributed-
parameter port-Hamiltonian systems with boundary ports [99]. We shall now briefly recall the
definitions of these Stokes-Dirac structures and port-Hamiltonian extensions for distributed pa-
rameter systems in the 3-dimensional case, with a spatial domain 2. We will make use of the
exterior differential formalism [89, 20] (also called k-forms) both to remain general and to highlight
the fundamental geometric ideas throughout the work.

This modelling approach has been applied successfully to many hyperbolic systems as varied
as transmission line models [40], beam equations [55] or shallow water equations [42, 43]. The
same canonical Stokes-Dirac structure may be used to build port-Hamiltonian formulations of
parabolic models issued from (linear) irreversible thermodynamics such as in the case of heat
and mass transport phenomena in adsorption columns [4, 6] or ionic diffusion in fuel cell [33] or
Ionic Polymer-Metal Composites [37, 72]. A more surprising parabolic plasma resistive diffusion
model in the next section will show the interest of the approach in multi-physics (e.g. Thermo-
MagnetoHydroDynamics) models and more involved geometries (e.g. toroidal).

ITII.1 Co-variant form and exterior calculus notations

Let us first recall some exterior calculus definitions and notations used in the sequel. In vector
analysis, a new algebra, the co-variant form, also called the differential form, introduced by Grass-
mann at the middle of nineteenth century. It’s a generalization of scalar and vector products in
space of any dimension. We shall give a brief reminder on this algebra, [35] [101, chap.4].

I11.1.1 Differential form

Definition ITI.1. On a n-dimensional spatial domain Q 3 &, a k-form (k < n), is the field w? of
k-alternated forms on T¢€), that is k-linear (i.e. linear with respect to each of its arguments) forms

5Such pairs of conjugated variables are, for instance, the entropy density flow and the temperature in the thermal
domain, the momentum density and the velocity in the kinetic domain, the pressure and the volumic flow in the
hydraulic domain, etc. Examples of conjugated pairs of variables are presented hereafter for the transmission line
and resistive diffusion.
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on the tangent vectors: wf : (TgQ)lc — R that satisfy for any permutation 7 in {1,..,k} and for
k
any k-duple (&1,...,&) € (TeQ)":
we (Enr)s - &ny) = 0 (1) WE (&1, -, &)
where o () denotes the signature of the permutation 7. The set of k-forms is denoted by A* (Q) .
Differential k-forms are endowed with a product, called exterior product, denoted by A, which
we use to compute the power and define the passivity properties, and a derivation which is called
exterior derivation, denoted by d. These operators are defined as follows.

I11.1.2 Exterior product:

Consider a k-form w* € A* (Q) and a I-form w' € A! (Q), their exterior product (also called wedge
product or Grassman product) is the (k + 1)-form w* A w':

A AR Q) x AL(Q) = AFTL(Q)
such that for any (k + I)-tuple of vector fields (&1, ..., &k41):

(Wk A wl) (gla cee 7§k+l) -
Yoree 0 (MW" (Er)r - &) @' (Entra)s - Exinn) € AHH(Q)

where G denotes the sets of shuffle permutation that is the permutation 7 satisfying 7 (1) < ... <
m(k)and m(k+1) <...<mw(k+1).
I11.1.3 Exterior derivation

The exterior derivation (also called co-boundary map) of a k-form w* € A¥ (Q), denoted dw*, is a
derivation of degree 1 which maps A* (Q) into A**! ()

d: AF(Q) — AFML(Q)
and satisfies:
e linearity d(w +n) = dw +dn

anti-derivation d (w* A w') = (—1)* (dw® A wh) + (W A dwt) wk e AR (Q), wh e AL(Q)

o if w0 is a smooth function, dw? is the differential of the function
e dAd=0

e the derivation is local: for any open set U C € , if the restrictions to U of two k-forms
coincide then also the restrictions of their exterior derivatives.

Another operator associated with an inner product on the exterior differential forms is the Hodge
star operator, and the (anti-)derivation is given by the contraction of a k-form with some vector
field. They are defined as follows.

I111.1.4 Hodge star operator

The Hodge star (cf. [20, V.A.,p.295]) is essential in the definition of the Hamiltonian (or energy)
functions of many physical systems which admits “quadratic” energy. Assume that the vector space
AF () of k-forms on € is endowed with an inner product denoted by (, ), then the Hodge star is
a linear map that transforms a k-form w* into a (n — k)-form, also called the dual or the pseudo

(n — k)-form *w":

w: AM(Q) = AMTR(Q)
Thus:
(o, WF) = / a A (*wk) Va € QF (Q)
Q

It relies on both the inner product and the orientation, that means the sign is changed in a reversing
orientation.
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II1.1.5 Contraction

The contraction of a k-form w® € A* (Q) by some vector field v € T¢Q , denoted by i,w", is a
derivation of degree —1 which maps:

iy: AP Q) — AFL(Q)
such that for any (k — 1)-tuple of vector fields (&1,...,&k—1):
Qe (1, &) =W (6 &y 6m)

| Contraction | Exterior product | Vectorial product |

iyl *(vl A xal) v.d
iy —(*(vT A %a?)) U x d
ipa’ * (vl A *a3) a v

Table II1.1: Contraction and equivalent products

Remark 1. In general, the 1-forms are usually identified with the vector fields (cf.[84, 20, V.A.,p.295-
296]). As in [84], the authors clearly distinguish a I-form and its vector field by the additional
notation .#, so-that the velocity vector field should be v* corresponding to the I-form v € A' (Q).
However, for the sake of simplicity, and only for our studied case in R?, we shall use the I-forms
equivalently to the vector fields. Hence, the vector product of a I-form v € A' (Q) and a (n — k)-
form a € A"~ (Q) leads to an alternative expression (equivalent to the more usual vector calculus)
of these relations using the contraction of a k-form by a vector field, using the Hodge star operator:

* (v A a”_k) =% (vA *ak) = ciyaP

where ¢ € {—1,+1}. The contraction of the differential forms of degree 1 to 3 with a vector field
v is summarized in the table III.1. The vector calculus can be found in detail in appendix B.

Finally we shall recall Stokes’ theorem which is fundamental for the definition of the port
variables defined on the boundary and which gave the name to the Dirac structure underlying
systems of conservation laws with energy flux at the boundary.

Theorem II1.2. Consider a spatial domain € R™ being an k-dimensional smooth manifold with
smooth (k — 1)-dimensional boundary Q. Then for any (k — 1)-form w*=1 with compact support

in R™, one has:
/(M—lz/ Wkt (II1.1)
Q a9

Note that from here, the spatial domain € is considered the 3D domain Q € R3. The port-
Hamiltonian formulation is derived hereafter using the Dirac-structure for systems of conservation
laws.

ITI.2 Systems of conservation laws

Consider now systems of two conservation laws in canonical interaction and then we will represent
them using Dirac structures in the open case (i.e. with boundary energy flows).

Definition III.3. Consider the two conserved quantities as being two 2-forms: ¢ € A?(2) and
p € A%(Q). Consider also the system of conservation laws, with flux variables 3, € A'(Q) and
B, € AL(2) for each conserved quantity, defined by the Hamiltonian density function H : A*(Q) x

AY(©) — A*(Q) resulting in the total Hamiltonian H := [, (¢, p) € R. The system of two
canonically interacting conservation laws is then defined by:

0 (a B\ _ B\ (0 1) [
(1)) 0w ()0 3)(E) o

where € € {—1,+1} depends on the fluxes sign convention on the physical domain.
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This system of two conservation laws may be also written as follows:

;(2):5<33><%> (I1L.3)

that is as an infinite-dimensional Hamiltonian system defined with respect to the matriz differential

operator:
0 d
J=c¢ ( d 0 ) (111.4)

and generated by the Hamiltonian function H [73].%

In order to generate a Hamiltonian systems, the matrix differential operator J defined in (II1.4)
should satisfy the properties of a Hamiltonian operator, that is it should be skew-symmetric and
satisfy the Jacobi identities. A short calculus shows that the skew-symmetry holds only for functions
with compact support in the spatial domain Q or satisfying Dirichlet or Neumann homogeneous
boundary conditions.

IT1.3 Stokes-Dirac structures and systems of balance equations

Interested in observation and control problems, one must consider more general (dynamic) boundary
conditions where some energy is exchanged through the boundary of the spatial domain. Therefore
the matrix differential operator J must be extended to a Dirac structure, called Stokes-Dirac
structure [99, 63, 54]. Dirac structures [21, 23] are a geometric perspective to skew-symmetric
tensors, actually corresponding to their graph, which generalize the tensors associated with Poisson
brackets or pre-symplectic forms. They have been introduced in classical mechanics to represent
systems with constraints. Then they have been used to include input-output port variables in finite
dimensional port-Hamiltonian models [98]. Finally an infinite dimensional extension, called Stokes-
Dirac structures, has been defined to represent distributed parameter systems of conservation laws
with boundary energy flows [99].

Proposition II1.4. Consider the product spaces of k-forms:

F= A(Q)x A2(Q) x A 09Q) > (fp for f5)

) ) X (I11.5)
E= AN(Q)xA(Q)x A (0) > (ep,eq.ep)
Consider the linear subspace 9 of the bond space B =F x &:
9 = {(fpquafbaepaeqaeb)E}—XS‘
il 0 d ep
fo 7 d o] e ] (IIL6)

ol _1e O €p|oQ

€y 0 -1 €400
where ¢ € {—1,+1} and |sq denotes restriction to the boundary OQ = [0,L]. Then P is a Dirac
structure with respect to the non degenerated bilinear form between F and E:

((epseqsen) | (fps far fb)) = /Q [ep A fp +eqg A fol + {ebs fo)oq (I11.7)

As a consequence of proposition I11.4 one may define a Hamiltonian system with respect to this
Stokes-Dirac structure as follows.

Definition ITII.5. The boundary port-Hamiltonian system of two conservation laws with state
space A%2(Q) x A%(Q2) > (q, p) and boundary port variables spaces A1(9Q) x AL(OQ) > (fp, ep), is

6In the coordinates z, the Hamiltonian system (I11.4) may be written using functions as:

2(a) = (& (D)



CHAPTER 2. 3D PORT-HAMILTONIAN TOKAMAK MODEL 16

the Hamiltonian system defined with respect to the Stokes-Dirac structure & given in proposition
II1.4 and generated by the Hamiltonian functional H (g, p), as follows:

(o5 2)-((5 ) ) 2

The choice of boundary conditions has obviously to be added to the definition of a boundary
port-Hamiltonian system in order to define a Cauchy problem. In fact, in the linear case, a boundary
port-Hamiltonian system defines a class of well-posed systems. For any solution, the isotropy
condition of the Dirac structure implies the balance equation on the Hamiltonian:

% — (en, o) (TTT.8)

I11.4 Examples of boundary port-Hamiltonian systems

The examples of the ideal transmission line (cf. [99]) in 1 dimensional space, and the canonical
diffusion equation (cf. [5]) in the domain of 3 dimensions, as the simple case, are useful to illustrate,
the relation between the classical formulation of Hamiltonian systems in mechanics and the pro-
posed port-based modelling approach (using Stokes-Dirac structures) of macroscopic multiphysics
systems described by sets of balance and closure equations (following the classical thermodynamics
approach).

II1.4.1 1D ideal transmission line

Consider an ideal lossless transmission line defined on the interval @ = [0, L]. The state variables are
the charge density 1-form q = q(t, z)dz € A}(Q2), and the flux density 1-form p = p(t,z)dz € A}(Q)
where £ > 0 denotes the time variable. The total energy stored at time ¢ in the transmission line is
given as:

L
1
H(q, p) = /o §<*ﬁq/\q+*ulm)p/\p> dz (I11.9)

[ (%) e

where C(z), L(#) are respectively the distributed capacitance and inductance of the line. Its vari-
ational derivatives with respect to the state variables are:

‘% = *oq = V(t,z) (voltage)
(I11.10)
% = xp = I(t,z) (current)

The dynamics of the transmission line equation may be expressed as the Hamiltonian system, with
the derivative operator d is equivalent to the spatial derivative 9,:

7 (5)=(a0)( %
= = 29 (IIL.11)
ot \ p d 0 S

augmented, according to (I11.3), with the boundary variables:

fBE) = V(o). fi() = V(L)

ety = —I(t,0), e(t) = —I(tL)

(I11.12)

which are simply the voltage and the currents at both boundary points of the spatial domain. The
resulting energy-balance is:

dH

- (ev, fo)y =— (L(t, L)V (t,L) — I(t,0)V(¢,0)) (I11.13)
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I11.4.2 3D Diffusion

We denote hereafter Q the 3D spatial domain and 952 its closed boundary. The 3-form ¢ € A3 (Q) is
the molar density (concentration), the 2-form J € A% (Q) is the molar flux. The mass conservation
states:

d

0
— [ c = —/ J = —/ dJ or in local vectorial form g _ -V.J

Although there is only one energy state space variable ¢(z,t), the mass conservation may be com-
pleted with the phenomenological diffusion relation:

J = J(F)

and F = —d(p) or in vectorial form F = —Vpu

with the internal energy (here the Gibbs free energy density) u(c) € A3 (), the driving force
F € A'(Q), and J a phenomenological relation between the flux and the driving force. The
chemical potential g € A° (Q) is usually defined from the energy H (u, ¢) as the Langmuir chemical
potential:

ple) = o.M

Hence, the canonical model for the diffusion equation, including boundary condition can be ex-
pressed in Hamiltonian formulation as:

BN RN

where p|s and J|s denotes respectively the chemical potential and the molar flux at the boundary
0. One can easily derive from the previous structure the traditional diffusion equation:

Oc
5 = V- (Y (ule))

Finally, the power balance reads:

@ = eg N\ fo = / unNJ
dt 09 99

This example demonstrates that the proposed Stokes-Dirac structure may be used as well for
parabolic problem (here fundamentally a diffusion type problem) which may seem quite unusual for
a Hamiltonian approach. In the next subsection, we derive a boundary port-Hamiltonian formula-
tion for the resistive diffusion equation which describes the diffusion of the poloidal magnetic flux
in the tokamaks. Then it illustrates the powerfulness of the geometric approach and the co-variant
formulation of the state equations in the case with a more complex (toroidal) geometry.

IV Co-variant formulation for the dynamics in the electro-
magnetic domain

We recall hereafter the port-Hamiltonian co-variant formulation of electrodynamics in the differ-
ential forms which allow a compact, independent coordinate formulation [99] [101, chap.4]. The
model presented is a slight adaptation from the model presented in [99] and [71] which includes ad-
ditional Lorentz forces. The main equations of electromagnetism are summarized in vector calculus
notation in the Table IV.1 below.

Let denote by € the smooth connected and bounded spatial domain of the system and by 0f2
its smooth boundary, then the electric and magnetic field intensities are naturally identified in [99]
with the I-forms: E, H € A*(Q); the magnetic, electric flux and free current densities are identified
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with the 2-forms: B, D,J € A%(Q); and the charge density is written as a §-form: p. € A3(Q).
Finally we shall identify the velocity of the plasma with a 1-form, v € A*(f), obtained classically
using the Riemannian structure of the spatial domain (stemming for instance from the Euclidean
metric of R?) and keep both identifications throughout this work. The same choice is found in [84]
and note that as stated in the remark 1, this I-form will be considered as the velocity vector field
in the contraction calculus.

’ Name \ Vector calculus formulation \ Co-variant formulation ‘
Gauss’s law V.D = p, dD = p.

Gauss’s law for magnetism V.B=0 dB=0
Maxwell- Faraday VxE=-98 dE =-98
Maxwell- Ampere VxH=J+ %—? dH = J + %—’?

o . D=¢FE D =x%UF
Constitutive equations B = uH B =, H

Table IV.1: The vector notation form and the co-variant formulation of the characteristic equations

of electrodynamics.
where *.,x, denote the Hodge star products associated with the permittivity and permeability
tensors respectively.

The electrodynamic equations may be formulated, using the co-variant formulation [89], as
a port-Hamiltonian system [99] hereafter. The Hamiltonian functional is defined as the total
electromagnetic energy H (D, B) in the domain  which is the integration of the energy density
H=31[EAND+ HAB]I:

1
H (D, B):/Q/H:§/Q[*%DAD+*iB/\B] (Iv.1)

The electric field intensity and magnetic field intensity are therefore intensive variables defined as
variational derivatives of H (D, B), that is respectively the two I-forms: E, H € A}(Q) :

il =FE(t,x)

0D (IV.2)
M _ H (t,x)

5B ’

From the power continuity and Stokes theorem, one may derive the following Stokes-Dirac structure
(see [99] for the definition and details) on the space of flows F =A%(Q) x A2(Q2) x A%2(Q) x AL(9Q)
and efforts £ = A1(Q) x AY(Q) x A%(Q) x A1 (9Q):

Dem =
(felafmgafd>faﬂveelaemgaed7€89> e Fx€& |

(7 )=(a o) (e )+ (o) m avs)
(o) (g Jama () = ()

where w1| o denotes the restriction of the I-forms at the boundary of the domain. Then the
electromagnetic field equations may be implicitly defined as a port-Hamiltonian systems:

(%?, —aa—f, fa, foa, E, H, ed,eag> € Dpm (IV.4)
with boundary port variables:
Joa = Elaa
{609 = Hlopq

whose wedge product forms the Poynting vector at the boundary of the spatial domain 0€2. The
distributed port variables in the domain 2 are:

fa =J
€q =F
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where J = Jg + J,; is the total current density including the Ohmic and the external non-inductive
current (created by the RF waves). This distributed port is terminated with the Ohm’s resistive
*pJo (with x, the Hodge star related to the plasma resistivity) and connected to the material
domain via the Lorentz force equation. The Lorentz force Ej, is usually written using the Hodge
star product and the exterior product, as:

Er =*(vAxB) (IV.5)

with v € A1(Q2) the plasma velocity field then according to the remark 1 in the previous subsection
(see appendix B for the calculus detail), we can use the equivalent contraction E; = —i,B and
derive the relation:

E =x,Jq—1,B (IV.6)

The implicit formulation (IV.4) reveals to be extremely useful for the systems and control theory
[101]. Among others, it satisfies following energy balance equation:

dH

dt
In other words, with the appropriate choice of input-output variables, the system passivity is hold,
that means the energy evolution is governed by the external energy through the boundary and its
own dissipation.

A common Tokamak control model is so-called the 1D resistive diffusion equation, which can
be reduced from the previous 3D model in the next chapter. However, it should be noticed that
the influence of material balance equation on certain parameters in the electromagnetic domain,
like the resistivity n and the bootstrapcurrent J,; (which is considered as a non-inductive current
source), is ignored in this resistive diffusion control model. We expect, in the sequel, to determine
the coupling between electromagnetic and the material domains which affects the resistivity n via
irreversible entropy source term. The bootstrap current source still remains unmodelled source
term in this work but it will be our prospect.

— [oa 00 N foa — [gea N fa

V Balance equations in the material domain

In this section, the material balance equations for mass, momentum, energy and entropy are derived
from the Boltzmann equation, the kinetic theory. These balance equations are computed for a
moving material domain. The connection between the classical macroscopic transport equation
and the port-based formulation is made by using the material derivative in co-variant form and
the Gibbs-Duhem relation for the internal energy (cf. [101, Chap. 3, p. 154]). The result is a
port-based fluid-like model expressed in terms of pairs of power conjugated variables. The couple
with the volumic balance equation in the EM domain will also be investigated in the next section.

V.1 Kinetic theory and macroscopic transport equations

Using a kinetic description for the plasma dynamics, the material balance equations (mass, mo-
mentum, and energy balances) may be obtained from the integrals of the Boltzmann equation [16,
p. 205]. The operators are written here in vectorial form (V,Vx,V.). This step is a preamble for
the fluid approach coming later.

V.1.1 Boltzmann equation

The Boltzmann equation is a state equation which describes the time evolution of the distribution
functions f, (t,z,v) for particles with position x and velocity v in the coordinate S:

of. 0 9 (Faﬁ

o T 025 (vafa) + aus

a

fa> =Co (V.1)

Here the subscript a stands for the different considered species, such as electrons a = e, ions a = i,
or neutral particles a = n in our case. The external force:

F, = e E + %“ [vB] (V.2)
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is caused by electric and magnetic fields, respectively F and B. The collision term is usually of
the form C, = >", Cus (fa, fo) where Cyyp, denotes the rate of change for the distribution function of
particles a due to elastic and /or inelastic collisions with b”. Averaging momenta of the distribution
function over all possible velocities, the average or macroscopic classical (fluid-like) quantities may

be derived:
ng (t,7) = ffa (t,r,v)dv

Taltr) = - [of (bre)de= (o),
“ (V.3)
T, (t,r) = ni %(v—@a)Qf(t,r,v)dv

- o)

which are the a-particles density, average velocity and temperature. The third equation is obtained
by considering the thermal equilibrium (when T, = 0) m (v?) /2 = 3T/2. In this work, there is no
fusion reaction considered. Hence balance equations for one species in the plasma may be usually
derived from those for the other species (although there are some neglected interaction terms).
Macroscopic variables related to only one representative species will be considered in this work.
There will be no more use of the species subscripts a for electrons, ions, and neutral particles.
In other words, T, P,v, ... will be representative average temperature, pressure, velocity, ... for all
species.

V.1.2 Transport equations (balance equations)

Three macroscopic balance equations may be derived by multiplying the Boltzmann equation (V.1)
2

with 1, mv, and respectively, and integrating these three resulting products over the domain

of possible velocities (calculation detail from cf. [16, p.208] are detailed in the appendix C). Let’s
denote the usual material derivative: 9

d _

we obtain with the calculations described hereover:
e the equation of continuity (particle transport):

dn

— =-—nV.o V.5
o (V.5)
which is obtained assuming the density conservation (no external source term), and the as-
sumption that the third term in (V.1) vanishes rapidly as v — oc.

e the equation of motion (momentum transport):

1
nfl—j =-VP-Vx71—en (E—i— p [vB]) (V.6)

where P denotes the scalar pressure, 7 the stress tensor, and electron charge e = 1.6 10~ 1°C.
e the (total) energy transport equation:

de

i —V.[nTv+ 70+ q] + en (ED) (V.7

where q is defined as the “heat” flux density, T is the average temperature and the total

energy is defined as:
3
€= %52 + 50T (V.8)

"This collision term is neglected in this work. It is a quite usual assumption since the plasma gas in tokomak is
low density and usually considered as a perfect gas (cf. [16, p.206] or [10, Chap.6]).
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The internal energy (or heat balance) equation may be obtained when the total energy (V.8) is
replaced in equation (V.7), using the continuity and momentum equations:
3 dT
-n— =—-PV35-V.q—7(V x7) (V.9)
2 dt
Defining the entropy in the perfect gas case as s = In (T%/?/n) = In (P*/?/n®/?), the heat balance
equation may be written:

d
Tnd—j =-V.q—7(V x7) (V.10)
The balance equations (V.5), (V.6) , (V.9) and (V.10) ) will now be written in co-variant form

for a representation in the port-Hamiltonian formulation.

V.2 Co-variant formulation of the transport equations

The properties and dynamics of the plasma considered as a fluid will be described in this section.
The mass, momentum, energy and entropy balance equations will be derived in the co-variant
form. We shall follow closely the general frame presented in [101, Chap.3, p.154] and drive to the
corresponding results expressing in terms of differential forms.

The material properties are defined by the total material energy Hj; which is the integral over
the material domain M of total energy density e. It consists the sum of the kinetic and internal
energy of the system which depends on the specific quantity (per unit mass) of the momentum
density p € A*(M)?, the entropy s € A>(M) and the volume v € A3(M).

This subsection gives a definition of the material derivative in terms of differential form which
will be used in the following to write the balance equations on a moving material domain. Some
features are simplified in our studied case, thanks to the assumptions no chemical reaction, and
homogeneous mono-particle fluid®. In other words, T, P, v, ... represent the average temperature,
pressure,velocity... of all species.

V.2.1 Time derivative “following the motion”

The material properties must be described for a fixed amount of mass which, due to some velocity
field, is described on a time-dependent spatial domain which is called a moving material domain.
We denote ¢; the flow associated with the velocity field v (i.e. v = d/dt (¢:z)). Then any moving
material domain with a fixed mass may be defined by V (t) = ¢; () where  denotes the same
material domain at time ¢ = 0. Then the variation of some conserved material quantity o (a
k-form, on some time dependent spatial domain V' (¢) of dimension n satisfies [35, Chap.1, sec.4])

becomes: p 9
«
— o= — + £« V.11

where £, denotes the Lie derivative of the k-form «. Using Cartan’s formula:

Ly, =i,0d+doi, (V.12)
one may define the material derivative % in term of the variation of some conserved quantity «
such that: D p

za_ 9 / o (V.13)
Therefore: D 5
! o .
ot = B + ipyda + d(i,) (V.14)
For a volume form o™ in an n-dimensional spatial domain (da™ = 0) and (V.14) becomes:
D e’
—a=— +di, 1
%= B + diya (V.15)

which is equivalent to the usual 9; + v - V vectorial form.

8Momentum density is actually equal to the velocity p = v [101, section 3.4]
9That means the average value of all parameters will be used instead of distinguishing different species a (electron,
ions, neutral particles) like in kinetic theory.



CHAPTER 2. 3D PORT-HAMILTONIAN TOKAMAK MODEL 22

V.2.2 Conservation law equations and closure equation

A balance equation for the material quantity « in a fixed frame generally takes form:

da
where f, defines the flux of «, and o, represents the external « source (by unit mass, as « is a

density). Therefore, when considering a moving material domain, the balance equation becomes
(using (V.15) and (V.16)):

D

¢ =—d fyo, (V.17)
R . . D . ..

where f;' = fo — iy« is now the relative flux of o and — the material derivative. We can now

express in co-variant form all the balance equations obtained from the kinetic theory in a moving
material domain.

Mass balance The mass balance (continuity) equation may be written (fluid-like description)
as:

Ip
P afyta, (V.18)
or using (V.5) and (V.17):
D R
D = —df, +o, (V.19)

with the mass density p = mn, the relative particle flux dff“ =d(f, —iyp) = pAd(+v), and the
material source term o, per unit volume.

Remark 2. If v :=1/p denotes the specific massic volume and oy as the massic source term, then
from equation (V.19) we have another corresponding volume balance equation, with the relative
volume flux dff = —vd (xv) = d (—i,v):

D

BV =d(iwv) + oy (V.20)

Momentum conservation The material derivative may be used as well to write the momentum
balance equation in a moving material domain:

1 Dp

T —dfft+op (V.21)

where p is the momentum per unit mass (that is p = v) and op is the source term caused by
external body force per unit mass, considered in this work to be the electromagnetic pressure:

op = —* (xJ AxB) (V.22)
It may immediately be seen that these two relations are power continuous as:

*wAop = *xA(—*(xJAxB))

*U A (k (xB AxJ))

* (v A (x*BAxJ)) (V.23)
*(EL/\*J)

= (*EL/\J)

Note that one could also use a more usual identification of both the velocity v and the current
J would be identified with vector fields (see remark 1 and appendix B), leading to an alternative
expression of these relations using the contraction of a 2-form by a vector field. The electromagnetic
pressure is then expressed as:

op = _i(*J)B (V.24)
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Energy balance The classical approach of the first principle of thermodynamic states that the
total energy of the system is considered as a conserved quantity. Then the energy balance can also
be written in material derivative as:

De R
— 2
i dfe + o (V.25)

where the source term o, represents the inductive (ohmic) heat source term which is v (E A J) =
V (e A J).
V.3 Closure equations and entropy production

In this subsection, we consider the closure equations for the momentum and energy balance equa-
tions. Then, since the entropy is not a conserved quantity, the irreversible entropy production term
must be computed (from the previous balance and closure equations using to the Gibbs-Duhem
relation) and from the entropy production deduced by identifying the total energy in (V.25) with
internal energy.

V.3.1 Momentum

We first consider the momentum closure equation. According to (V.6), the tensor flfc, representing
the momentum flux per unit of surface area, is the sum of a pressure P and viscous force 7 terms:

fE=(P1+7) (V.26)

Considering that P is a scalar (in an isotropic domain), while 7 € A! is the non-diagonal part of
stress tensor, or the so-called shear stress tensor, we have:

dfft =dP + «dr (V.27)

V.3.2 Internal energy

The total energy density (per unit mass) is:

A
with u is the internal energy, then its time variation is defined according to
De _ ,,nDp, Du
Dt Dt Dt
(V.29)
L ivA 1 Dp n Du
- "VAS D T Dt
where the material derivative of internal energy u is applied from (V.17):
D
D= —aff o (V.30)
Thanks to equations (V.21) and (V.30), the total energy transfer in (V.29) is thus:
De |
Df = WV A (—df}fz +0p) + (—dff + ou)
(V.31)
=—d (ivv/\ff-l-ff”) —i-ff/\d(ivv) +i,VAOp+ 0y
with
FE = i AT
Ou = 0c— fg Ad (iyV) — i,V A op (V.32)

=V (e ANJ) — (P Ad(iyV) + 7 A vdo)
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V.3.3 Entropy
The internal energy is also determined by the Gibbs-Duhem equation:

du=TAds—PAdv (V.33)

which will allow us to compute the irreversible entropy production source term o, (without nuclear
fusion reaction in the studied case). We can deduce the entropy production rate:

Ds 1 /Du Dv
(=4 pa =2 .34
Dt T(Dt+ /\Dt> (V:34)
Applying the material derivative formula for s, v and v in (V.34), we get:
D 1 (Du L PA Dv
Dt° T\ Dt Dt
1
G —dffftos =g (~df +out PAd(iv))
(V.35)
fq _1 ,
< —d T —i—aS—T (—=dfy — (P Ad(iyv) + 7 Avde)) +
1
+ T (Vv (g AJ) + P Ad(iyV))
where the heat flux f; is related to the entropy and internal energy fluxes:
fE=f
ST (V.36)
fs = ffq

Thus the irreversible entropy source term oy is obtained with the help of the internal energy source
term in equation (V.32):

os =d <J;j) +%(fdfq77/\vdv+g/\ff)

(V.37)

1 1
- —ﬁfq/\dT—Tr/\dv—&—%*nJ/\J

1
This irreversible entropy source term contains the heat conduction T2 fq A dT, the viscous

1
dissipation 7T A dv and the Joule (ohmic) terms %*nJ A J. The three of them define the

constitutive relations for the R - field (see next section) which is needed to “close” the heat balance
equation.

VI Multidomain couplings and resistivity field (R - field)

In this section, all power conservative multi-domain couplings are detailed as well as a dissipative
R - field multi-domain coupling element. It’s worthwhile noting that all conservative multi-domain
couplings may be represented using Dirac structures (cf. [99]).

VI.1 Magneto-hydrodynamic coupling (MHD coupling)

MHD coupling is one of the important multi-domain couplings in tokamak system. It concludes
a magnetomotive Dirac structure (which couples the two domains: EM and material one) and an
Eulerian-Lagrangian coordinate transformation to link the volumetric and massic domains together.
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VI.1.1 Magnetomotive coupling

Proposition VI.1. Let us now prove that the two relations (IV.5) and (V.22) may be associ-
ated with a Dirac structure. Therefore, using the identification (fr,e;) = (J, Er) and (fy,e,) =
(op, *v), we shall define the space of flow variable Fy = A%(Q) x AL (Q) > (fs, f,) and the space
of effort variables & = AY(Q) x A2(Q) > (es,e,). For a fized magnetic induction B , the two
equations (V.24) and (IV.6) define two anti-adjoint maps:

A%2(Q) — AYQ)
fi = fo=—%(xf; AxB)
and
AL Q) — A2
ey, > *(xe, AxB)
The linear subspace Dy (B) with B € A*(Q), defines a Dirac structure in the bond space in F1xE1:

(f5, foreq,e0) € FixEr |
D1 (B) = f’u = — % (*f{] A *B) (VIl)
ej = % (xey A %B)

Proof. Let us precise that the Dirac structure is defined with respect to the symmetrized pairing
of the pairing on F; x&1 defined by:

(). (V)= [eonse-erns

Firstly let us show that D; (B) C Dy (B)l which is equivalent to show that:

<<€€v),<§‘j >>:0’ V(fJafmeLev)E]—'lxgl

and this follows by using the calculation (V.23).
Secondly let us prove that D, (B)J‘ C Dy (B). Assume that (fy, fy,eg,€,) € F1xE1 satisfies:

(DA wsapenon

This is equivalent to:

<( *(*eig\*B) )( a >>+<( “ )( 7*(*;%*3) )> —0, V() e AXQ)xAN(Q)

or

/ (€4 A fo =% (key, AxB) A fr)=(es A fy —eo Ax(xf5 A%B)) =0,  Y(f},e,) € A*(Q)xAN Q)
Q

(VL.2)
Using the fact fQ *a N\ 3= fQ a A xf that x x @ = a one calculates:

Jox ey AXxB)A fr = [o*x€, AxB Axf;
=— Jo*€, Nxfr AxB
—— Joe Ax(xfs AxB)

and choosing f’ = 0, the preceding equation becomes:
[ eonthestass nxBl) =0, v, € 4@
Q

hence f, = — x (xf; A *B).
In a similar way, choosing e/, = 0, (VI.2) becomes:

/(GJAf3+6UA*(*f3A*B)):O, Vi e A%(Q)
Q
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or with similar calculus:

Joeo Ax(xfy AxB) = — [, ey Ax(xB A*f))
= — Joxey AX¥BAxf}
= —Jo (key AxB) Axf}
= — [o*(kes AXB) A [

/ () —x(xeo A*BYA PN A S =0, YF, € AX(Q)
Q

yielding e; = % (xe, AxB). Hence (f;, fv, €7, €y) € D1 (B)which completes the proof. O

VI.1.2 Eulerian-Lagrangian transformation

We shall define hereafter a Dirac structure associated with the change from Eulerian to Lagrangian
coordinates (that is from integration on a fixed domain 2 to a moving domain M = ¢; (Q)).
Therefore let us write the power product between the effort and the flow variables in the two
coordinates and look for the following equality:

/M_W) ex A fo = /Q 6" (ea A fa) = /Q 6 (e2) A i (VL3)

with ¢* (e2) = 1/%veg 0 1, where v is the specific massic volume of the plasma. This defines the
following vector subspace :

(fi,e1; fa,e2) € AT (Q) x A% (Q)
xAY (M) x A? (M)
fo=froo ™t er = ¢* (e2) 0 ¢;
fre A (Q), e2 € A (6())

D(v) = (VL.4)

Subspaces D; and D (v), as well as their interconnection, may be proved to be Dirac structures
using the power products in the material domain suggested in (VI.3) and following arguments
similar to those in [99]. In the Tokamak model the pairs of flow and effort variables are identified
as follows: (f1,e1; f2,e2); = (s B,*v; —i,7B,i,Vv) and (f1,e1; fa,e2)y = (J, snd; J,wnJV).
VI.2 Interdomain couplings in different material domains

The material domains includes the mechanical, hydraulic and thermal domains, interconnected
together via canonical Stokes-Dirac structures (subsection III.3) of the form:

(fps fqs fions, €p, eq, €ionm) € Fy X & |

d ep

0 ( e ) i = {2,3,4) (VL5)
; . 1 €p

(Lo )= (3 0 ) (% )

e The Dirac structure D, is the hydrodynamical coupling between mechanical and hydraulic
domains:

>
Il

=
oo

s
Q
S
= O

(—dP,d (»v), fagn, v, —P, eagnr) = (fp, fo» f2om,€p, €q, €2001) € Fo X E9

hore [ F2 = ANM) X A3(M) x A% (M)
v £2 = A2(M) x A°(M) x A2 (M)

e The Dirac structure D3 is the mechanical-thermal coupling, with:
(*dT7 Vdv? f38Ma ’iq,V, T, 638M) = (f]h f(J7 f38M7 €p,€Eq, 638M) S .73 X 53

L Fz=A(M) x A2 (M) x At (M)
WEIE Y & = AL(M) x AY(M) x AT (M)
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e The thermodynamic coupling D, represents the irreversible heat flows in the thermal domain:

(d (?j) 7dT7 f43M7T7 (?j) 7643M> = (fpafqaf?&@Mﬂepaeq?eBaM) € f4 X 54
Fu= A3(M) x V(M) x A% (M)
where {54 — AO(M) x A2(M) x A® (M)

VI.3 Resistive field (R - field)

According to the expression for the irreversible entropy source term in (V.37), the entropy creation
is contributed by different resistivity sources: the heat conduction, the ohmic diffusion and the

1
viscosity, with dissipation terms identified to <—qu ANAT, v (e ANJ), =T A vdv) respectively,

and notice that the nuclear reaction which has been neglected in this thesis. This leads to define a
3-port resistivity field, R- field.
However, let us remind to the entropy production, derived from (V.35) as:

Ds 1 1

E:—f/\dfq—T/\vdv—FT(V(*nJ/\J)) (VL.6)
According to [74] and [11] or [38], this entropy production is composed by the power product of
efforts and fluxes and there is a transport matrix I' which yields the “linear” relation between efforts
and fluxes:

f=Tde (VL7)

Onsager’s theory [74] implies that transport matrix T' is symmetric, if one makes a special choice
for the fluxes and their conjugated efforts.

In other words, it is more complicated to explicit the entropy irreversible term in our studied case
than the one stated in the R- field, since we made an assumption, as well as in [11], to diagonalize
our transport matrix I':

fq ky XX T
T | = X kg X d v (VL8)
J XX xy, Vioop

where the diagonal terms *,, *,, *1/, represent respectively the thermal diffusion coefficient, viscos-
ity, and electrical resistivity, Vioop is the loop voltage so ohmic electrical intensity is Fq = dV. This
constitutive relation completes our model with the dissipation power in the R- field is determined
in (VL.6).

Remark 3. The non-diagonal terms “x” in (VI.8) may play significant roles in the multidomain
couplings. Nevertheless, their calculus formulations are not yet well defined . Our multiphysics
modular model could help in this work.

VII Integration of the complete model with port-based ap-
proach

In this section, we describe the tokamak system in a graphical way by using Bondgraph (see [101,
Chap.2]). It models the power exchange between elements in a systems, and between the system
and its environment. The power exchanges are represented by arrows. The direction of the arrow is
the “relative” direction of power flow. Each arrow is labeled by one pair of effort and flow variables,
whose product defines the power of energy exchange between two elements: P (t) =e A f.

There are three basic types of elements: energy storage element C, energy dissipative element R,
and interconnection element (Dirac structure, junctions, transformers and gyrators). The principle
of energy conservation provides a fundamental basis for characterizing such elements, especially the
interconnections ([101, Chap.2]).
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e ITf4 , g ”'j%

€3 0 1 ? € ] ey -
e > = b
S Ji S Ja

Figure VIL.1: Simple Bondgraph

A very simple example in the figure VII.1 can help to clarify the Bondgraph utility. This example
represents many common physical systems such as electric RLC circuit, or mechanic mass-spring
system.

The energy storage element C and dissipative element R simply “receive

elements:
P (C) = €3 A f3
P (R) =eq A fa

710 energy from other

The Stokes-Dirac structure D defined in subsection IIL.3 is a conserving energy element, which
holds:

(erse2.e0) | (fu, fon o)) = / [ex A fu + ea A fo] + (eor fo)po =0

Then two types of junctions are used to connect the different elements together. They neither store
or dissipate power. A 0 — junction is a point where flows are distributed:

€1 — €3 — €4
it fs+fa=0

while a 1-junction is where efforts are distributed:

es+eq=0
2= fa
But in both case, we have energy conservation:

Zei/\fi:()

g

Remark 4. In this simple example, we even can introduce the input-output control variables. The
external energy source, can directly modify the system states via the junction 0 by the power ey A fy
or affect the system through the boundary as eg A fs.

In figure VII.2, we present the complete Tokamak 3D model including all the domains and
subdomains, as well as their inter-domain and multi-domain couplings: electromagnetic, magneto-
hydrodynamic, thermal-mechanic and hydrodynamic multi-domain couplings (using Stokes-Dirac
and interconnection structures).

The blue part describes the electromagnetic domain. The Dirac structure Dgjy in (IV.3) couples
the electric and magnetic domains, which are based on Maxwell’s equations (0-junctions), and
Ohm’s law (I-junction). The electromagnetic energy is accumulated in energy storage elements
C : H(D) and C :: H(B). It is dissipated by Joule effect via the R-field element (section VI.3).
Moreover, this Bondgraph also indicates two possible control ports which are the boundary input-
output control (Vigep, Ip) and distributed control non-inductive current drive(Jp;, wpJni). The
system actuators will be mentioned in the next chapters.

The red, green, and black parts of the Bondgraph respectively sketch the thermal, mechanical
and hydraulic subdomains of the material domain. There is a common storage source in this domain

denotedC::H:fM*p/\p

+u. All the transport equations developed in section V are implied at

10Note that, unlike the reversible element C, which can receive as well as supply energy to the system, R is an
irreversible element, that means one cannot inverse the energy exchange flow via this element.



CHAPTER 2. 3D PORT-HAMILTONIAN TOKAMAK MODEL 29

0-junctions in each subdomain. I-junctions link the subdomains to the dissipative R-field, which
transfers all its energy as the irreversible entropy source term to the thermal domain. In each
material subdomain, there is a Stokes-Dirac structure (VI.5) (section VI.2) such as the structure
D5 for the hydraulic domain, D3 for the mechanic domain, and D4 for the thermal one. At each
Stokes-Dirac structure, the boundary control signals are determined, however, we don’t use them
all in actual control of tokamak. Two other important control actions in the material domain is the
distributed heating source Speq¢ in thermal domain, and material injection source o in hydraulic
domain.

The electromagnetic volumetric balance equations in the blue part are related to the material
domain through the Dirac structure D (v) defined in (VI.4) and the transformer 7.F :: B = D; as
in (VL.1).

The Bondgraph sketches out the complete tokamak system in the manner of modular multi-
physics. On one hand, we can separately study an (some) interesting subdomain(s) with the
appropriate assumptions, that will be illustrated in the next chapter 3. On the other hand, it’s also
convenient to couple the subdomains together which guarantees the system passivity conservation
of the ensemble.

I,=H|ag uEbQ =Voop

c:H(D) <= ( L~ % == o 2% C::H(B)
dD —dH dFE 9B
0t gl 4
/o send AT VA R-field
1= 10 = 2, 7 R(D)+RE0)+R(M,J)
\
dT

1
T
AR LT
> (D <
4
\\ Sheat dff T‘QM
iwv || dr T Ds
ivv || —iys(B) Dt
ivv ivV p «D A
0 S = 0 Dp C::H:/ AP pﬁ-u(s,v)
dfy Y or Ju o 2
-P || v
il,V _p Dt _p
Y ~— 0
— d(iyVv) Ov
*V|aon UP|QA4

Figure VIL.2: Bondgraph of thermodynamic tokamak system including electromagnetic domain
(blue), mechanic domain (green), thermal domain (red) and hydraulic domain (black)
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VIII Conclusion

In this section we developed the balance and constitutive equations for the material domain, a part
of the plasma fluid model for tokamaks. These equations are derived from the Boltzmann equation,
using the classical kinetic theory approach. They have been written in a port-Hamiltonian form
with the help of material derivatives (balance equations for a moving material domain).

The entropy balance and the Gibbs-Duhem equations allowed us to compute the irreversible
entropy production (source) term. We obtain finally a modular structured model which is split
into different parts. This result allows us to be able to gradually complete the resistive diffusion
equation control model, which corresponds only to the electromagnetic balance equations. The first
step will be to include a simple thermal model with the heat production from the Joule effect (ohmic
resistivity), a simple heat transport diffusion (dispersion) model and the variation of the resistivity
with the temperature. This model will allow us to consider the important effect of temperature
variations on the resistivity and also to use the non inductive actuators for the heating of the
plasma. The second step will be to consider the magneto-hydrodynamic and hydrodynamic part
to obtain a control model which includes the bootstrap current effect. Finally, the third step will
be the inclusion of the mass balance equation and the supplementary terms and equations related
to the fusion reaction.

The next chapter will propose a geometric reduction method for our 3D Hamiltonian system in
order to derive an ideal control model which includes all these supplementary physical phenomena.



Chapter 3

(Geometric reduction

I Introduction

For the purpose of system analysis, simulation or control synthesis, a reduced model well-reflecting
the original one - in some desired aspects - may be looked for. The term “geometric reduction”
for Hamiltonian system appeared in the 1980s in the works of J.E. Marsden ([60, 61, 48, 59]).
Dedicated to the reduction of finite dimensional mechanics, it made use of system symmetries and
invariant variables to reduce the phase space. For instance the method called momentum reductions
(cf. [100, 59]) for Lagrangian or Hamiltonian systems was based on tangent and cotangent maps.
The work of Blankenstein in [9] presented the reduction of Dirac Structure including application to
the reduction of implicit Hamiltonian systems. The projection map was applied on symmetry Lie
group. However, in these previous works, the Hamiltonian was also projected in the reduced space
and the system invariants, which can play a central role of control action, sometimes disappeared
in the reduction.

On the other hand, during the 1990s, related to the discretization of PDEs, the idea of geometric
structure conservation was studied for the so-called multi-symplectic systems'. For many PDEs,
the multi-symplectic formulation has revealed important features for stability analysis. The series
of papers ([17] [86]) endowed the system geometric structure to understand the interaction and
stability of nonlinear waves (the nonlinear Schrédinger equation and the water-wave problem)
as Hamiltonian systems. [47] showed that multi-symplectic systems of PDEs may be derived from
Hamilton’s principle without higher-order derivatives?. The multi-symplectic structure preservation
in numerical simulation of Hamiltonian dynamics (i.e. multi-symplectic integrators) was for instance
investigated in [18], and detailed in [41, Chap. 6,7].

The geometric reduction method presented in this thesis aims only at the spatial reduction and
spatial discretization of a system which reduces the dimension of the spatial domain: from a three
dimensional model to a finite dimensional one. Quite surprisingly this symplectic semi-discretization
problem has not been studied extensively in the literature. However, this is understood by the fact
that our main motivation in the derivation of continuous time spatial approximation is the further
design of non linear control laws based on the model structure. In the port-Hamiltonian approach,
a model is determined by a specific interconnection structure (Dirac structure) and its Hamiltonian
function (normally derived from the energy function). The proposed reduction aims also at the
preservation of the main dynamical properties (as for instance the spectrum qualitative properties
and quantitative values) and the main energetic properties (conservativeness, dissipativeness, and
symplecticity, etc) of the considered system. The corresponding reduced variables are defined
in order to preserve the “natural” power pairing. The proposed method applies mostly to port-

I'Roughly speaking, multi-symplectic (or multi-Hamiltonian) systems may be written in the form Kz: + Lz, =
VeS(z) where K and L are skew-symmetric matrices and V.S denotes the gradient of some smooth scalar function
S. This is a a way of generalizing Hamiltonian systems of ODEs of the form Jz; = VH(z). Such systems have a
structural conservation law from which scalar conservation laws may be derived such as energy and or momentum
conservation (cf. [47]). In this context, multi-symplectic integrators are numerical integration methods that exactly
preserve some discrete analogue of the multi-symplectic conservation law (a symplectic structure in both space and
time).

2This can be achieved by introducing auxiliary variables to eliminate the derivatives.

31
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Hamiltonian models for open systems of balance equations and will be applied to the 8D fluid-like
model of the fusion tokamak reactor developed in chapter 2. The obtained 1D and 0D models will
be used later in the thesis to apply successfully passivity or energy based control approaches (such
as IDA-PBC control [77]).

The main idea of the spatial reduction method - i.e. preserving the natural power product which
is used to define the Dirac interconnection structures - is applied twice: first to reduce the model
from 8D to 1D, the key feature of this chapter, then from 1D to 0D discrete system in the next
chapter. Both reductions are symplectic with respect to the power-pairings in the magnetic and
thermal domains. In section II the assumptions of axial symmetry and quasi-static equilibrium of
the plasma are used to perform the reduction from 3D to 1D by using simple integration formulas
on toroidal coordinate surfaces. The geometric reduction methodology is then deduced in section
III. Two application examples, representing all the possible cases in a 3D model, are derived: for
the resistive diffusion equation in section IV and for the thermal diffusion equation in section V.
Once the projections have been defined to preserve the power pairing forms, the coupling structures
and closure equations will be reduced - using the same projections - in section VI to complete the
1D model. Some discussions are carried out in the last section in order to explicit the dependencies
of the coupling parameters on the system states in different domains.

I Reduction assumptions: axis-symmetry and quasi-static
equilibrium

A 3D TMHD tokamak model has been developed in chapter 2 for the dynamics of a plasma gas
in a toroidal chamber. It is based on the mass, entropy, momentum and electromagnetic balance
equations. With the help of Dirac and Stokes-Dirac interconnection structures, balance and closure
(constitutive) equations are organized in a structured port-Hamiltonian model.

In this chapter we derive a 1D model more suitable for control issues than the full 8D TMHD
one. There are two main reduction assumptions: axial symmetry with respect to the main torus
axis (see figure II.1) and quasi-static equilibrium for the plasma. With these two assumptions, it
may be proved that the magnetic flux surfaces form a set of nested toroids which are simultaneously
isobaric, isothermal and iso-poloidal flux® (cf. [106, sec. 3.2] and [10, chap. 1]). After a continuous
mapping, these surfaces may be matched into nested regular toroidal surfaces with circular cross-
sections and a set of magnetic toric coordinates (p, 0, ¢) (see figure I1.1) may be defined such that p
denotes the index of the considered magnetic surface (the new “radial” coordinate; subsection II1.3
will explain how to determine this p index) and such that all the system variables are independent
of § and ¢. Therefore the model may be projected onto the 1D domain IT = [0, a] 3 p, a = pmaas-

Figure II.1: Magnetic toric coordinates. 6 denotes the polar angle and ¢ the azimuth angle. By and By
are the two magnetic field coordinates (B, = 0). Ro denotes the tokamak major radius and I, the total
plasma current.

3The poloidal flux ¥(R, Z) is defined as the flux through a circular horizontal disk S determined by the radius R
from the torus axis and the height Z in cylindrical coordinate in the figure I1.2.
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Figure I1.2: The poloidal flux ¢ (R, Z) is the magnetic flux traversing the horizontal disk S

Although the “symmetry” assumptions are specific to the tokamak D TMHD model, the pro-
posed methodology could be applied to other examples with other symmetries. Roughly speaking,
this methodology simply consists in using spatial symmetries in the 3D model in order to (spatially)
reduce the power pairing to an “equivalent” 2D or 1D power pairing (with the same value).

II.1 Axisymmetry assumption

The symmetric position of all the electric coils allows to carry out an axisymmetric magnetic field
around the principle axis of the torus. This means that all the variables in the equilibrium states
may be considered as independent of the toroidal angle ¢. Using this assumption we get a 2D model
with all variables depending only on the p and € spatial coordinates. Note that, because there is
only a finite number of non-continued external coils, a dissymmetric effect (named magnetic ripple)
should be added. It may be treated as a perturbation acting on the 2D model obtained with the
axisymmetric equilibrium assumption.

I1.2 Quasi-static equilibrium assumption

Following [10, Chap.6], we consider that the Alfvén time constant 74* is much smaller than the
one for plasma diffusion 7,°. The time constant 74 is in the order of a microsecond while 7, is in
the order of a millisecond. Therefore the plasma may be assumed to have reached a “mechanical”
stationary profile at every instant ¢ considered for the heat or magnetic flux diffusion phenomena.
Otherwise stated, since the pressure and material transport is established much faster than the cur-
rent transport process, we consider a quasi static plasma in Tokamak which neglects the dynamics

P . . . .
—— in momentum conservation. In this case the magnetic force balances the pressure forces and

ot
—i,7B = dPor in vectorial form J x B =VP (I1.1)

where J, B, P are the plasma current, magnetic field and plasma pressure respectively. Besides,
in the resistive diffusion equation which will be considered as a particular example hereafter, the

: . . : . Dv .
other “material” dynamics are also ignored such as no material source is added — = 0. Hence, in

the resistive diffusion equation which is sometimes used as a 1D control model for the poloidal flux
profile regulation, the internal energy accumulation is neglected.

I1.3 Magnetic surfaces and magnetic toric coordinate

The magnetic surfaces made with constant field lines of B (where also lies the plasma current
density J), thanks to the quasi-static assumption (II.1), are also surfaces of constant pressure P.

a
4the Alfvén time is an important timescale for wave phenomena. It is related to the Alfvén velocity by: 74 = —,
vA
where a denotes the minor radius of the torus

57p is in fact defined as the smallest among the diffusion time constants of the particle density 7 (millisecond), of
the electron and ion heat diffusion 7¢,7; (millisecond), and the one of the diffusion of current density and magnetic
field 7 (second).
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Furthermore, it’s proved in [106, sec 3.2, p.108] and [10, Chap.1], that these surfaces are iso-thermal
and iso-poloidal flux as well. Therefore, we define a new variable - the p index® which determines

Figure I1.3: Constant level curves of the poloidal flux function for a plasma equilibrium in the toric
geometric coordinate (r, 6, ¢). These curves become the nested toroids in magnetic toric coordinate

(p,0, ).
p =1/ % (I1.2)

where By denotes the toroidal magnetic field amplitude at the center of plasma flux (p = 0)
(considered as a constant) and ® is the toroidal magnetic flux (the flux through a vertical section of
the plasma). The p index admits the unit of a spatial variable and the choice of the new coordinates
system (p, 6, ¢) deforms the set of magnetic surfaces into a set of nested tori as represented in the
figure II.1. Moreover, in many recent Tokamaks, the toroidal field ® varies much less than the
poloidal flux . This ® is almost invariant during the plasma discharge and so is the “mean radius”
p of each magnetic surface defined from ®. In the sequel, we will adopt this new coordinates system
(p,0,¢) - named magnetic toric coordinates” to derive the 1D model from the 3D one with the
spatial reduction method that we propose.

the magnetic surfaces:

IIT1 3D-1D Geometric reduction method

The 8D TMHD model in chapter 2 is stated in covariant form, that is the state and port variables
are not defined as vector fields but rather as differential k-forms corresponding to the integral
calculus (cf. [35]). It is assumed in this approach that the total energy in 3D spatial domain
may be written H = [, #* where the energy density H* € A®(2) is the external product of two
k-forms, either H? = o' A B2 or H3 = a® A B3. The idea is then to partially integrate H on 2D
coordinate surfaces such that the total energy reads:

H:/Q#‘:/Hao/\ﬁl (IIL.1)

leading to the definition of the 1D reduced variables a° and Bl and their external product (power

pairing) @’ A Bl in the 1D domain II = [0,a]; @ = pmas. We discuss hereafter how to determine

6Notice that in the toric geometric coordinate (r, 6, ¢), the equilibrium equation for the axis-symmetric system
can be written as a differential equation for the poloidal flux ¢. This differential equation is usually called Grad-
Shafranov equation ([106, sec 3.3] and [10, Chap.1]), which also helps to determine the profiles of the plasma pressure
P and plasma current J. This choice is made by [46] and used by [10, Chap.6], since it’s was the simplest idea to
take 1) as the independent variable in the flux and transport diffusion equations in tokamak systems. However, in
conventional tokamaks, v varies with plasma current as well as loop voltage in the primary loop.

"note that this is not a purely geometric fixed coordinates system since it is closely related to the plasma magnetic
surfaces
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] k-form \ Examples ‘

a? T,P

al E . Hvp
a? D,B,J
a? s,v,u,o

Table III.1: The variables in the 3D model are k-forms o* of order 0, 1, 2 or 3

these variables.

Let g,, 99, 94, and g = g,g09s denote the transformation coefficients between geometric toric
coordinates (r,0,$) and magnetic toric coordinates (p, 6, ) (see appendix D for a detailed com-
putation of this coordinates transformation and the expression of volume forms and differential
operators in toric coordinates), and the volume element is dV = ,/gdpdfd¢. For instance, the
integration in (II1.1) in magnetic toric coordinate reads in toric coordinates:

/QH?’Z/VaﬁdV (I11.2)

Therefore , the corresponding reduced variables o and S may be obtained by grouping the variables
into two parts and performing integration on suitable integration domains: a curve coordinate for
1-forms and 2-forms and a surface coordinate for 3-forms. These integrations are summarized in
table III.2. Note that most of the variables “lie” on the magnetic surfaces, since the component in
the radial direction p vanishes with the quasi-static equilibrium assumption.

We will detail the concept in (III.1) via an example hereafter. First of all, let’s remind all the
3D variables in our system in the table III.1. Since the equivalent variables in the 1D model are
deduced via the power conservation (I11.1), we now look at the dissipation due to the Joule effect
in EM domain as a first example of reduced variables definitions. The dissipated power is defined
as the power product of the electric field intensity £ € A' (Q) and the plasma current J € A? (Q):

Proute = / E'ANJ? = / EJdv (T11.3)
Q \%4

The I-form E is integrable over a contour C'. We denote E; = Ey + E; the tangential component
of the vector field F and dl the length element along the contour C'. Then the loop voltage on C
reads:

Vo = / Eydl (I11.4)
c
with dl = dlg + dly = /g9df + \/ged¢ (see appendix D). Then:
2m 27
Vo = fO Eﬁ@d@ + fO Eﬂ’ /g¢,d¢ (IH.5)

The result proves that E' € A'(©) becomes a function in our 1D model: A°(II) 3 Vo = E° =
By + B, with

- 27
E¢ :fo E¢'\/%d¢

Remark 5. In the tokamaks, one of the simple measurements is the loop voltage called Vioep (cf.
[106, Chap.10, p.502]). It is defined as the voltage of the external toroidal loop (the contour on the
magnetic surface of paz), that is Vieop = Eg (Pmaz)- It’s one of the important control variables
which determines the Joule heating of plasma [25, 2, 107].

{Eg S N

From (II1.3) we may determine that the reduced form of the conjugated variable J € A? (Q) is
a 1-form in the 1D spatial domain: J € A! (IT). We focus again on the dissipated power in (IIL.3)
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] k-form \ new variables \ corresponding values ‘
0-form a? f
Iform | @ = (A5, 4,) (Jo™ vaadodo, " \/g5A0d0)
2-form | @' = (A, A5) dp | (1)" V3954040, [} /5534049 dp
3-form a' = Adp ( o \/§Ad0d¢) dp

Table II1.2: Reduced variables definitions in the 1D domain IT obtained from the integrations of
corresponding variables in the 8D domain (written in toric coordinates)

to determine the corresponding value of 7' in the IT domain:
Proute = [y (EoJy + EgJg + EyJg) \/gdp N d A de
= o I IS [(Bov/mo) (Joy/g,35) 8 + (Es/55) (T/3,80) dbds] dp
= Jo [(Eo) (Jo) + (Eo) (J5)] dp

- LB AT

(I11.6)

Note that J, = 0 as the plasma currents lie on the magnetic surfaces (subsection II.2) and that

the 1D corresponding variables (like E’ in (IT1.5)) are independent from the 6, ¢ coordinates. The
reduced variable of J is thus: L B
AN (ID) 5 T = Todp + Tdp (II1.7)

with B )
Jo =f02 Jo\/Gp9pdd
Jo = Jo Jo\/T:960

We may get the corresponding 1D variables for others k-forms in 8D domain (namely the 0-forms
and 3-forms) thanks to the similar calculus (see section V hereafter for the detailed computations
on the temperature/entropy density product example). The result are summarized in the table
T11.2.

Remark 6. A relation may be established between these definitions of the reduced variables in the
1D domain IT and the spatial averaging process used in [10, Chap.6, p.242] to perform the 3D-1D
reduction. In this latter work average quantities (A) are defined over the magnetic surfaces in the
form:

(A) = % /V AdV (IIL.8)

The average values of a function A and a vector field W in his proposition VI.1 ([10, Chap.6, p.242])
is defined as:

1 AdS
A = — [ ——
< > \ fS |Vp|
(I11.9)
vy = = yrwvp)
. = Vo .Vp
where S is the surface of the horizontal disk in the figure 11.2. In fact, his term V’ = %—‘; is equivalent

ov
to our volume element of each unit of p: En = ,/gd0d¢. Thus this idea can be summarized by our

calculus for each k-form, such as:

e for the 1-form A' € A', an average value around the toric boundary line:

2
(A1) = w (ITT.10)
Jo" V906
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e for the 2-form A% € A2, an average value on the vertical section of plasma flux <A2> is defined

as.
fop dr f027r A\ /9,G0d0 = fop dr <2A2>f027r,/gpggd9
™A 9 .
S (42) _ fo% \/9r96 (IIL.11)
Jo" /3,900

e for the 3-form A® € A3, an average value in an element volume:

f027r d¢ fop dr fo% Ay/gdd = fo% d¢>f0p2d7' <A3> fo% V/9d0
L (49 _ I %Aﬁda (I11.12)
77 vads

It’s easy to note that our average value of a 3-form stands for the case of function A in (II1.9),
while those of the 1-form and 2-form correspond to the case of vector field W in (IIL.9).

However, there’s a different point between our 1D wvariable definitions. As reminded previously,
the proposition in II1.9 used the average values as reduced variables, while ours count on the
total integral value of each variable (in other words, our 1D corresponding variables are defined by
integrating them over their domain as in table III.2.

The definitions of reduced variables based on the conservation of the power pairings for con-
jugated pairs of variables is applied hereafter to derive the reduced 1D models for two examples.
Firstly the Stokes-Dirac structure for Maxwell’s equations in the electromagnetic domain is reduced.
Since the electromagnetic energy density is defined as a product

Hey = o' A B (IT1.13)

the corresponding 1D variables for the 1-forms and the 2-forms are derived. This case is similar
to the previous example of the dissipative element Pj,uie.

Secondly, the 1D model for the thermal diffusion equation will be obtained by deducing the
corresponding 1D variables of the 0-forms and the 3-forms, since the thermal energy power product
is:

Hr =a’ N33 (I11.14)

IV  The resistive diffusion equation example

The EM model of tokamak plasma (chapter 2, equation (IV.3)) is used as an example to illustrate the
proposed reduction method. The EM Stokes-Dirac structure as well as the constitutive relations are
all projected in the reduced coordinate. The result is also validated by comparing to the existence
models.

IV.1 EM Stokes-Dirac structure

The plasma electromagnetic 3D model was figured out in port-Hamiltonian form in the previous
chapter in (IV.3). It is defined in the following covariant formulation for the Maxwell’s equations
with the help of the effort-flow variable notations:

fel _ 0 —d €el 1
( fme ) =L 0 emg 1 0 fa (Iv.1)
or using explicitly the electromagnetic variable notations:
—oyD _ 0 —d E 1
(s) = (@ 3)() (o) w2

Here d denotes the external spatial derivative of the 1-forms which corresponds to the curl operator
in the vectorial notation. The electromagnetic energy is:

1
Hew = 5 / [E' AD? + H' A B (IV.3)
Q
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Let us now apply the geometric reduction described previously only to the magnetic domain to
determine the corresponding 1D variables:

1
H(B) = 5 Ja H' A B?
1
= 5 fQ (HPBP + HQBQ + H¢B¢) \/gdpd9d¢

o L () 0 27 (555 4 -
+ I (VHe) do Jy" (/3790B5) do)

1 S — S —
= 5o de[(He) (Bo) + (Hs) (By)]
1 . —0 —1
= 3 JuH AB
The same reduction is applied to the electric domain with the energy density H(D) = %fﬂ E' A

D? and leads to the definition of the reduced variables E', D' which are derived similarly. The
Maxwell’s equations (or EM Dirac structure) in IT domain are then simply written:

0 —=1
- ZD —=0
P} | 0 —dn E 1 |-=1
_égl {dn 0 } = o |7 (IV.5)
ot
— 0
Hence the exterior derivator d becomes dyp = < (1) 01 ) P in the 1D reduced spatial domain II.
I

The Stokes-Dirac structure of the EM domain must be completed with the choice of a pair of
reduced variables for the boundary energy flow. In case of an exterior product of two 1-forms in 8D
model, the right result is slightly different from the product of two reduced 0-forms in 1D model.
We explain hereafter the reason and propose some definitions to ensure the conservation property

in the reduction.

Let us examine in some details the energy flux [ s H LA B! which goes through the boundary.
The considered boundary in our system is the magnetic surface at the plasma external radius
Pmaz = @ . Since E, = H, = 0 on the magnetic surfaces, we get:

fag H'AE' = ,fag (HpyE9 — HoE)) \/Gpdp N \/god0 + (HyE, — HyEg) \/Gpded N \/Gpdp
+ (HoEg — HyEg) \/Gppd0 N \/ggdd

. f27r de f27-r dG\/W(HQL% _ H¢E9) ‘8 (IV.G)
(2 VaaBads) (12" deer 1§ — (o7 y/7aHods) (5™ d0v/g3 o) I

HQE(p — quEF)

fa " AE°

Then on the space of reduced flows (augmented with the boundary flow) F = A(IT) x AL(I) x
AL(IT) x A°(9I) and reduced efforts (augmented with the boundary efforts) & = A°(IT) x A°(TI) x
AO(IT) x A%(9I), one may define the reduced 1D model with the help of a reduced Stokes-Dirac
structure which is basically the same as before (except for the fact that it is written explicitly for
the 6 and ¢ components of the reduced variables):

5E‘M - L
(felafmgafdvaHveelaemg7ed766H € Fx g

(7 )=Can ") (o )+ (o >fd» v
_ 4 €Ce f €e|
eca=(1 0) eﬂjg)and(g?ﬁ) <em28§1>

Thus the 8D model (IV.2) transforms into a 1D model with a similar power pairing product.
In fact, this 7D EM model can be split into two decoupled submodels: the poloidal submodel
(describing the dynamics of By, Hy, Eg, J) and the toroidal one (describing the relations between
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By, Hy, Eg Jp). In order to prove the equivalence between our approach and the existing resistive
diffusion equation, we will focus on the poloidal submodel which may be written:

0 0
feld> _ _% < Celg > < 1 >
( fmgo ) 9, empo ) L0 )00 (IV.8)
dp

where fo = —0; (ﬁ¢), fmgo = —0 (Eg), ety = By, emgo = Hg and fqy = J4. In the following
subsection, we aim to derive the resistive diffusion equation from our reduced system (IV.8) with
the help of the constitutive relations in 1D domain.

IV.2 Reduced constitutive relations in EM domain

We consider here the 8D constitutive relations for the induction field and Ohm’s law. These two
constitutive equations may be written in coordinates:

B?= , H! By = uH,
El _ MJQ = Ee _ e (Ivg)
= s =n(Jp— Jni)

We define the non inductive current J,; as the sum of the bootstrap current J,; and external
current source J.;; which is controlled through external heating sources. The above constitutive
equations may be written equivalently:

1 Ve
K \/9p9¢
19590 (Jo — Jni) =

(vVI96Bs) = (\/96He)

(IV..10)
j;—ja (VIoEs)

Integrating the left and right hand sides of IV.10 over the domain 6 € [0, 2] and ¢ € [0, 27], using
the previous definitions of the 1D reduced variables, we get the new constitutive equations in the

II domain: )
|: 90d0:| Eg = [LF@
0 V9p9¢

Aq —=1 —0
B = . H
= {0 " (IV.11)
27 ==
0 (To—Toi) %inwﬂ
0

where the .J,,; term added in the second constitutive equation of (IV.10) is in fact the jmd,component.

Until then the derived model is a classical system of two conservation laws which would result in
a hyperbolic system, very similar for instance to the classical transmission line example. However, in
the resistive diffusion model, the displacement current f.;4 is considered negligible when compared
to the inductive current. This assumption® will result in a system of only one conservation law
(related to the magnetic field intensity storage) which can be written as an algebro-differential®
system using the same 1D structure (IV.8).

With this assumption, (IV.8) becomes:

8B, 9 —

ot a?ﬂﬁ
_ 9 (1 (To— T (IV.12)
- ap 77A2 1) ni .

0 ( 10 (1, = o1 , -
= = (- (~ABo) ) — 5o (17
Op \"A20p \ 1u 3PA2( )
8The same assumption is made in the Maxwell-Ampére law in [10, Chap.6] and [106, sec 3.3], to find the flux
diffusion equation

9n this context, “algebro-differential” is an improper term since the dissipation equation also makes use of an
exterior derivative. It only means that the dissipation equation contains no time derivative
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Using the definition of the poloidal plasma flux v, Faraday theory gives:

K
oo

. __ot _ 9By _ 0By (IV.13)
35) ap ot
%Y _ B

= 5p ]

(5) 2 (2 (La2)) 2L,

ot T T op \ A0\ op

(IV.14)
o 10 (1A aw) R

c aw T 2500 \ " 0p

Remark 7. The safety factor ¢ spatial profile is really important for MHD-stability. Recent works

on advanced tokamak control are based on the control of this safety factor profile [1, 39]. In first
approximation, the g-profile is given by the expression [10, Chap.6]:

1 00

“2m 5% (IV.15)

q =
where ® is the toroidal magnetic flux, which is considered static in comparing with the evolution
of the poloidal flux ¢ in (IV.14). In the simplest point of view, the condition to prevent MHD
instabilities in the plasma is ¢ > 1. However, in some cases of interest, such as in the case of a
saw-teeth profile for the plasma current, it may happen that the g-profile crosses the critical value
qg=1.

The chosen boundary conditions may be written equivalently in term of the poloidal flux:

12}
Frngolp=0 ~ F2lp=0 =0
(Iv.16)
)
eel¢|p=a = _ailf‘p=a = _‘/loop
The first one expresses the smoothness and symmetry with respect to the central circular axis
(magnetic axis) of the Tokamak torus. The second one defines the boundary control action.

Remark 8. There is an equivalence between (A;, Az) and the coefficients (Cy, C3) first used in
[10, Chap.6] or later in [107] for the resistive diffusion equation. Firstly remind that the volume
element may be written in the magnetic coordinates system dV = r\.dp.df.d¢ (appendix D). Hence

V= é;—‘; = 472 (rA). From equation (1.7) r = ,/g,gs, and Z—; =\/9p = 0ps /9o = A = Ro +rcosb.
Thus we have:
T T r
Ay = [T —db A, = <>
0 262 ! 02
N - (IV.17)
2n T r
Ay = [y" o Ay :<X>
The coefficients (Cs, C3) are defined as:
ooy 1Yo , [ 71V )
2= A2 CQ = A4r b\ = A4r Al
& (IV.18)
1 r
— 1l — 2/ — 2
Cy = V<)\2> Ch 1 (3) 4m? Ay
ap 1
where Pl g Vp
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As a partial conclusion we see that assuming the classical axial symmetry and quasi-static
equilibrium assumptions, neglecting the displacement current and considering the same constitutive
relations as in the classical approach, the port-Hamiltonian model provides the resistive diffusion
equation as a by-product (basically equivalent to the poloidal submodel) with a direct computational
definition of the coefficients A; and As corresponding to the magnetic toric geometry.

The plasma resistive diffusion model (IV.8) and (IV.16) may thus be represented in the port-
Hamiltonian formalism using a Stokes-Dirac skew-symmetric structure. This seemingly unusual
feature is in fact a characteristic of all diffusion-like models relies on a fundamental assumption
from thermodynamics: flows are generated by generalized forces which may be written as gradients
of generalized potentials. Once this assumption holds, then a similar transformation into port-
Hamiltonian model may be successfully operated with the two formally adjoint operator div (used
for the conservation law) and grad (used for the flux law). This approach has already been applied
for the modelling of transport phenomena [5] and leads to very nice properties of reduction schemes
for parabolic equations using spatially symplectic reduction schemes [7]. This idea for the port-
Hamiltonian formulation of diffusion like parabolic equations is again applied in the next section
for the thermal diffusion equation.

The plasma resistivity 7, and the bootstrap current .J,, are significantly varying with the plasma
temperature T (cf. [10, p.172]). However, in most existing control designs (for the poloidal flux
control) these TMHD couplings have been neglected and the temperature T has been considered
as an external parameter. Therefore n := 1(z,t) and Jys := Jps (2,t) have been considered as
time and space dependent parameters. In the next section, we will consider therefore an explicit
port-Hamiltonian formulation for a simplified heat transport equation in the Tokamak. This 1D
“thermal diffusion equation” will allow in the sequel to consider (for control purposes) explicitly the
dependance of the plasma resistivity and bootstrap current with the new state variable 7.

V  The thermal diffusion equation example

In chapter 2, the material domain balance equations for mass, momentum, energy and entropy were
derived from the Boltzmann equation. The connection between the classical macroscopic transport
equation and the port-based formulation has been made by using the material derivative definition
written in covariant form. We then derived the irreversible entropy source terms (from the Gibbs-
Duhem relation, following the “port-based” approach in [101, Chap.3] or [24]) which contains the
heat conduction term, the viscous dissipation term, the Joule (ohmic) term and the external heating
source. All of these terms are necessary to define the constitutive relations for the heat balance
equation or “thermal diffusion equation”.

Let 05 € A% (M) denote the entropy source term, s € A3 (M) the entropy density and T €
A% (M) the temperature!. These variables are all defined in the material domain (the moving
massic frame M). The entropy balance equation reads (see chapter 2, section V.3.3):

10Note that the above considered variables are in fact average values since the real plasma consists of different
species of ions and electrons. Each species has its own temperature and entropy/energy balance equations should
also consider interactions between species (see [10, Chap.6]). However it will only become necessary to separate these
species transport equations once the fusion reaction will be considered and separate material balance equations will
be required to account for the species transformations. This is the reason why coupled models of ionic and electronic
energy transport equations are usually used in the burn control problem (see [93, 94]). However, in our case (no
reaction), some average variables may be used and only one energy balance equation may be considered for the
sake of simplicity and without loss of generality. Following [107], we will consider that the electronic temperature
Te may be deduced from the average temperature 7' thanks to the assumptions of the linear dependencies between
electronic-ionic temperatures Te, T; and their densities ne, n; :

E = aTiTe
Ni = QiNe
T_ nele + niT5 _ 1+ asar, T
Ne + Ny 1+ a;

where «; and ar; are the ratios defined in [107].
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ds
) ) () (%)

= + V.1
< th > ( —d 0 f q 0 ( )
with the heat flux f, € A? (M) and the thermal force F' € A' (M). The entropy balance equation
(V.1) is written for a moving material domain M (chapter 2, section V). Therefore, a transformation
from Lagrangian to Eulerian coordinates (whose details are given in section VI) will be necessary
to connect this balance equation to the EM balance equations written in the fixed volumic domain

Q.
Applying the proposed $D-1D reduction in subsection III, using as well magnetic toric coor-

dinates for the thermal domain, the 1D reduced port-conjugated variables in the thermal domain
may be defined in the following way:

H(T) = Sy T Nod = [ T° Ano

= fQ Tnos\/gdpdfdeo

foa dp [T f027r 0277 (nv/gos) de(b}

= Jo Tasdp = [ 7’ ATy

Therefore the 8D thermal model in (V.1) may be transformed into the 1D port-Hamiltonian

model: ) !
(2):(%,) _op)<;;)+<%s) (V.3)

where f1, fa, €1, ez are the flows and efforts which are respectively defined by nT (Dys), nfy, T
and F' (where the factor n is the average particle density). One of the associated closure relation
is the Fourier’s law in 3D and its corresponding 1D reduction reads:

V9094 ¢
2
V3Ip

where y is the diffusion coefficient. The ideal gas law is used as the second constitutive equation,

qu =x Fl= f, =ny (V.4)

dn
relating e; and f;, by considering no particle source injection - 0:

(T3/2) ds 9sdT 31dT
s=1In = — =

" & oTd 2T dr (V-5)

One can notice that our port-Hamiltonian model for heat transport derived from (V.3) is formally
equivalent to the usual thermal diffusion equation (c.f [29]) (see remark 9):

§8nT _5 /39099
Y2700 ~ "\ g,
Furthermore, the continuity condition at z = 0 gives:
f1(0)=ex(0)=0 (V.7

The boundary conditions will be chosen as:

f2 (0) ~ aa%|z:0 =0

(nxapT)> + 7 (V.6)

(V.8)
et =T|.=1 =T

The smoothness and symmetry of the tokamak torus are also respected thanks to the first boundary
condition. The second boundary condition defines a boundary control action 7;. In practice, it’s
impossible to regulate the plasma temperature at the boundary, it is usually fixed at 773 = 0. This
control signal is thus not used in the sequel. Otherwise, a distributed control is represented by the
source term S, including possible ohmic heating or non-inductive heating sources.
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Remark 9. The electronic heat transport equation in [29] states:
V'or (neTe) = 9, (G1V'nex.0,T.) + V'P. (V.9)

where the terms V', G; = <Vp)2, and P, are equivalent respectively to our parameters /g, gp_l,
and nos which are the magnetic toric coordinate coefficients and the source terms in (V.6).

All possible cases for the reduction of the power pairing from 3D to 1D spatial domains have
been studied through two previous examples with the transformations in equations (IV.4,V.2, and
IV.6). Other interconnection structure equations or element constitutive equations in the system
(expressed in terms of relations between 0, 1, 2 and 8-forms) can be reduced using the same
reduction principle summarized in the table III1.2. However, for the sake of clarity and completeness,
we will now carry out the reduction of MHD coupling in the flowing section.

VI Thermo-Hydro-Dynamic couplings

In this section we will apply first the reduction methodology to the magneto-hydrodynamic cou-
plings, that is to the magnetomotive coupling and the pull-back transformation between the Eu-
lerian and Lagrangian coordinates. Then, we will also explicit some relations actually used in
the recent works on tokamaks in order to parametrize the resistivity 7, the bootstrap current Jys
and the thermal diffusion coefficient x. These estimated parameters play an important role in the
control synthesis in the next chapters.

VI.1 Magnetomotive coupling

The Dirac structure (VI.1) is used to represent the (Lorentz) magnetomotive transducer. The power
conservation in this transducer reads:

/ev/\fu—ej/\sz() (VL.1)
Q

with (fy,es) = (J, Er) and (fy,e,) = (op, *v). The reduction of this Dirac structure is therefore
straightforward since it is directly expressed as a power pairing. We make use of the correspondence
between 3D and 1D variables in table II1.2 to obtain these power products reduced in the form:

JoINEL = [g INEL (VL.2)
fQO'p/\*U ZIHEP/\%

Therefore the 1D power conservation for the 1D transducer reads:
/Ep/\ﬁ—jAELzo (VL3)
n
and the Dirac structure (VI.1) keeps the same form with the new reduced variables.

VI.2 Eulerian-Lagrangian transformation

Remind that, to reverse the relation described in Magneto-Hydrodynamic coupling D (v) (chapter
2, subsection VI.1.2), the transformation from the fix volumic frame 2 into the moving massic one

Mis defined:
/ ezAf2:/¢* <e2Af2):/¢* (e2) A fi (VL4)
M=¢:(2) Q Q

1 1
with ¢* (e2) = ~e2° ¢!, and note that n = ~ the particle density (considered constant by the

quasi-static assumption 9;v = 0).
The thermal inter-structure in (V.1) is written in 1D magnetic toric coordinates, when one
considers dyg = 0 as follows:

VonT (Dis) = —08, (n\/Gegats) + \/Gn0s (VL5)
VI F, = —0,T .
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VI.3 Parameter identification issues

We discuss here the dependence with the electronic temperature and induction field of the resistivity
n(T), the bootstrap current Jys (T, 9.T) and the thermal diffusion coefficient x (T, By) which
appear in the resistive and thermal diffusion submodels and play a central role in the coupling of
these two submodels.

e The analytic expression for n given in [90] is:
n(T) = Cy (By) T (VL6)

where C,, is the specific coeflicient varying with the magnetic field By, but the evolution of
n by By (whose value is about unity ~ 1) may be neglected in comparison with the strong
impact of the plasma temperature T (~ 105KeV).

e The bootstrap current is also determined via experimental data. Its estimated value is given
by the simplified expression below [29, 90, 107]:

Jos = q (51T + (20.T) (VL7)

where 81 and [ are the constants determined in [107] in the case of a steady state particle
density n.

e Thermal diffusion coefficient, whose analytic expression given in [107], is:
x (0.T, Bg) = C\ (By) 0,T (VL8)
where () is the specific coefficient of x which also depends on the magnetic field By.

However, the diffusion processes in plasma systems may be subdivided into different time scales as
mentioned in the subsection II.2. As it will be shown in the next chapter, the spectral properties
(eigenvalues) of the two diffusion port-Hamiltonian control models still exhibit this time scale
separation property.

As a result, the plasma temperature T profile in the thermal diffusion PDE (V.6) is established
thousands times faster than the magnetic field profile in the resistive diffusion PDE (IV.8). This
“separation” assumption allows to decouple the two-PDE-solvers. The coupling elements 7 (T)
and Jps (T, 0.T¢) in the resistive diffusion model may be computed statically from some analytic
expressions (see e.g.[107]) once T, the electronic temperature, is determined. The coupling via
the thermal diffusion coefficient x (T, By) may also be determined by an analytic expression which
depends on T and the state of resistive model By, which is considered invariant.

VII Conclusion

A 38D-1D symplectic geometric reduction methodology has been proposed in this chapter. The
resistive and thermal diffusion equations were used as illustrations of the approach because they
cover all of the possible cases in a 3D-1D reduction.

At this stage, the 1D tokamak control models are established. On one side, they are compatible
with the “traditional” widely used resistive diffusion equation and heat transport equation. On the
other side, they admit Dirac interconnection structures analogous to the ones in the original 3D
port-Hamiltonian models and preserve the power-pairing for each pairs of port-conjugated variables
(hence also preserve energetic properties of the 8D model such as conservativeness, dissipativeness,
passivity, etc.). The control synthesis, based on the obtained 1D model, will be split into two
approaches. For the first approach (indirect approach), a symplectic discretization method will be
developed in chapter 4 in order to obtain the finite dimensional PCH systems. Then, the obtained
finite dimensional PCH model will be used to derive IDA-PBC control laws in chapter 5. In the
second approach (direct approach), we will deduce an infinite dimensional IDA-PBC-like control
law in chapter 6 which can be applied directly on the 1D reduced models developed in this chapter.

A more detailed 1D model, including separated ionic and electronic thermal transport phenom-
ena as well as nuclear reactions (featuring the burn-control problem) are among the prospects of
this work.



Chapter 4

Symplectic discretization

I Introduction

In this chapter, a method to derive geometric discretization schemes from existing solution ap-
proximation methods (for PDEs) is presented. It is then applied to the pseudo-spectral spatial
discretization of the 1D plasma control model derived in the previous chapter.

In the spatial reduction of distributed parameter systems, i.e. dynamical systems described
by state partial differential equations, pseudo-spectral methods are often chosen because they lead
to low order approximated models, with accurate spectral properties (in the linear case, see for
instance [32]). These objectives are obviously the key features for the design, supervision and
control engineering problems although they are sometimes not sufficient: a finite-dimensional ap-
proximated model has also to share some (most) of the other qualitative dynamical properties with
the actual infinite-dimensional model. To achieve such a goal could be viewed as performing a
geometric reduction scheme in the spatial domain, in a sense very similar to geometric numerical
time integration for systems of ordinary differential equations [41].

In the case of port-Hamiltonian models, this geometric spatial reduction may result a struc-
tured finite-dimensional port-controlled Hamiltonian (PCH) model (see [65] for an introduction or
[101] for an extensive investigation). The discrete schemes is expected to preserve the geometrical
interconnection structure of the model and with the same balance (conservation) equations and
approximated constitutive (closure) equations projected in the chosen approximation spaces. To
achive this goal, one may simply require that the power pairing (symplectic) form defining the
port-Hamiltonian system is preserved when effort and flow variables are projected into the cho-
sen approximation spaces (we will then speak about a symplectic spatial reduction scheme). To
guarantee this symplecticity, one has to consider different approximation spaces for the dynamical
variables according to their “physical nature”, that is the kinds of differential forms used to repre-
sent them. It should be noticed that using different approximation spaces according to the nature
of differential forms to be approximated is not a new idea. It may be found in the literature for
some specific approximation methods such as the (mixed) finite elements method [12, 40, 45, 6]
or the (mixed) orthogonal collocation with Lagrange polynomials [70]. In this chapter we define
how it may be applied to build systematically a symplectic spatial reduction scheme from any
given classical pseudo-spectral method (see for instance [31] for a general presentation of classical
pseudo-spectral methods).

Besides this generalization, this work provides a theoretical interpretation of implicit choices
made in these earlier works. Except that the chosen approximation spaces (usually different for
effort and flow variables) have to be compatible to guarantee the preservation of the symplectic
power pairing form (they are then conjugated in some sense), they could theoretically be chosen
quite freely. Classical choices for the approximation spaces are those spanned by Fourier, wavelets or
polynomial bases. Not much has been written however about how to choose practically a couple of
approximation spaces among these ones, in the general case. In this work, a symplectic collocation
scheme using Lagrange polynomials is first derived and investigated. Although the scheme is indeed
symplectic, numerical results show unwanted oscillations in the transient response in the case of
non-homogeneous boundary conditions or sharp distributed control actions.

45
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Therefore, we generate a method suggesting that a natural way to do so for the symplectic
reduction of port-Hamiltonian models could be to choose - as one of the compatible approximation
space - the space generated by eigenfunctions of a simplified (canonical) model for which the
eigenfunctions may be exactly computed (from the skew-symmetry of the canonical interconnection
structure). Then the other (conjugated) approximation space may be computed using an exact
spatial differentiation condition which ensures the conservation of the power pairing. These two
approximation spaces may still be used with the unsimplified model. Doing so then results in a
symplectic Galerkin scheme. Besides nice spectral properties, this scheme leads to (by construction)
the accurate approximation of eigenfunctions which can solves the numerical oscillation problem
encountered with distributed action and arbitrary initial conditions.

In the considered example (the resistive and thermal diffusion equations from chapter 3) eigen-
functions are Bessel functions which could be used easily to build the two desired approximation
spaces. It is then shown how this Bessel-Galerkin choice reduces numerical oscillations in the pres-
ence of non homogeneous initial conditions or sharp distributed control actions. Simulation results
are obtained with the proposed symplectic reduction scheme and besides are validated against
experimental data from the tokamak Tore Supra.

The chapter is organized as follows. In the section II we present the proposed methodology to
transform a pseudo-spectral method for the approximation of the PDE solution into a symplectic
one. The compatibility condition between the approximation bases which guarantees exact spatial
differentiation is presented, as well as the finite dimensional version of the Stokes theorem and
the resulting symplecticity of the corresponding spatial reduction scheme. The generic explicit
Port-Controlled Hamiltonian (PCH) formulation for the finite-dimensional model approximation
is proposed, independently from the chosen approximation bases. In section III we investigate a
first symplectic method which is developed from the classical collocation scheme, following ideas
in [70]. The method is adapted to fit to the case of a toroidal symmetric geometry and to the
resulting non-canonical Stokes-Dirac interconnection structure (or bilinear product). Besides the
expected nice spectral properties for the eigenvalues, we show that the eigenfunctions are poorly
approximated. This results in unwanted numerical oscillations in the magnetic field profile in the
case of non homogeneous initial conditions or sharp distributed non inductive current profiles. To
solve this problem a Galerkin scheme with Bessel’s approximation bases is specifically designed.
We show that (as expected) the symplecticity is preserved (still resulting in accurate approximate
eigenvalues) while the unwanted numerical oscillations are canceled. We show briefly, in section IV,
that the obtained discrete model may be validated against experimental data with scenarios where
non uniform resistivity and distributed non inductive current occur. In this case, Bessel’s functions
are no more the eigenfunctions for the considered problems but still accurate and satisfying results
are obtained. In section V, the same methodology is then applied to the thermal diffusion equation.
At the end, the whole discrete scheme of the thermal domain is obtained. Our discrete model is
ready for the next step, control synthesis in chapter 5

IT Discretization methodology

In order to get a finite-dimensional approximation for the original distributed parameter system
written in port-Hamiltonian form, we will define different specific approximation spaces for the
flow and effort variables. In the 1D case, these approximation spaces will be respectively spaces of
differential forms of order 0 and 1.

This allows to guarantee that the reduced (finite dimensional approximation) variables also
satisfy the Stokes-Dirac interconnection relations by performing exact spatial differentiation in the
conjugated approximation spaces.

Therefore, the original (spectral, Galerkin, collocation or any other pseudo-spectral) approxima-
tion scheme will be transformed into a symplectic one in the sense that the bilinear power pairing
form used to define the Stokes-Dirac structure is preserved. Symplecticity with respect to this form
ensures that balance equations (and thus conservativeness, dissipativeness and qualitative proper-
ties of the spectrum, in the linear case) are satisfied by the finite dimensional approximation even
in the case of systems with boundary energy flow! which is not the case with classical symplecticity

IThis case is fundamental for control engineering systems where interactions with the environment through
measurements and actuation are necessary
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(used for instance for closed Hamiltonian systems).

Further in this section the methodology will be applied on the resistive diffusion example (chap-
ter 3, equation (IV.8)) to illustrate how the closure relations may be projected into the approxi-
mation bases once they have been chosen (in order to preserve to power bilinear form). Although
presented for the tokamak resistive diffusion model, results in this the section are generic and the
symplectic discretization methodology may be applied to many examples which have been written
in the port-Hamiltonian form and for many approximation bases.

II.1 Approximation bases for flows and efforts

The flows (fer, fing, fa) and efforts (ee, €mg, €4) are approximated in the 1D II domain using a
classical expansion:

f(t2) o (E ), vl (2)

e(t:z) = XLi(e®)uf ()
in which f(t) € RN~1 e(t) € RY are respectively the flow and the effort time dependent coeffi-

cients while w,’: (z) and w¢(z) are the approximation base generating functions satisfying the exact

differentiation condition:

(IL.1)

£ = span (w§(z))
F = span (w,{(z)) (I1.2)
d(€) =F

where d denotes the spatial exterior derivative for the corresponding differential form (here, in the
1D case, it is simply the usual derivative with respect to the reduced spatial coordinate z and
applies to effort variables which are 0-forms or functions). From (II.1) and (I1.2), we may project
the relation f(¢,z) = d(e(t,z)) in the finite dimensional approximation bases as:

N-—1 N
> wl(2)f (1) =D 0. (w(2)) e (1) (IL3)
k=1 1=1

Since the approximation bases have been chosen to satisfy the exact differentiation condition, the
quantities 9, w§ (z) may be expanded in the flow space. This results in a finite-dimensional derivative
operator represented by the differentiation matrix D € RWW—D*N gych that:

f(t) = De (t) (IL.4)

I1.2 Bilinear power product and finite dimensional Stokes’ theorem

On the 1D domain IT with boundary JII, canonical Stokes-Dirac structure may be defined as self-
orthogonal subspace Z of the bond space B = F x £ with respect to the inner product defined
by symmetrization of the non degenerated bilinear form (or power pairing, see proposition I11.4 in
chapter 2):

() : Fx& — R

(f.e) — (elf) L3)
with

) = (e (G furt) = [ legnfyregns= [ Pnf? 1o
This inner product is then the symmetric positive definite bilinear form:

() BxB N R
((f1,e1), (f2,e2)) = (((f1,e1),(f2,2))) = (e1lfz) + (e2]f1)

It has been noted previously that every pairs (f, €) belonging to the Stokes-Dirac structure (thus
satisfying the balance equations) also satisfy (e|f) = 0. As a consequence, balance equations (and
conservations laws) will be satisfied also in the finite dimensional approximation spaces if the bilinear
form (IL.6) is preserved by the discretization. If this happens, we will call the reduction scheme

(IL7)
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symplectic with respect to the power pairing by analogy with symplecticity of time integrators for
Hamiltonian (finite dimensional) systems. The relation (e|f) = 0 (and the resulting symplecticity)
will be satisfied for pairs of approximated flow and effort variables defined in the previous section
provided that the boundary variables (e?, f) are correctly defined. We will obtain this result for
the considered schemes because they perform exact spatial derivation in the chosen compatible
conjugated approximation spaces.

In our example of Tokamak electromagnetic system, we can identify:

(e7f) = ((epveqaea) ) (fpa fqa fa)) = ((eelaenLgae?l) ) (f€l7f’rrbg7e7ang)) (IIS)

Note that each of the efforts and flows have both poloidal § and toroidal ¢ components.
To perform an exact integration of the power pairing integral (and thus preservation of the inner
product in the Bond space) we define the (integral) matrix M € RVN*(N=1) gych as:

My, = /H wé (z)w] (2)dz (IL.9)

and the (trace) matrices Tj, € RV*V as:
(Tk)ij = w; (2 = k) wj (z = k) where k € {0,1} (IL.10)

We may replace the effort and flow variables by their approximation (II.1) in the chosen conju-
gated approximation spaces and force the reduced variables to satisfy the Stokes-Dirac equations
(using exact spatial differentiation in the approximation spaces). We may still apply the Stokes
theorem (on the power pairing integral) to prove that the bilinear power product computed with the
reduced variables coordinates is again zero. Therefore, one gets for every pairs of reduced variables
(e1, f1), (e2, f2) in the Stokes-Dirac structure:

olT 0 MD +DTMT — Ty + Ty o2
P —-D™MT —MD+T, —Ty 0 4
(IL.11)
T 0 MD+D™M" ~Ti+ Ty \ > _
q -DTMT —MD+T, — Ty 0 P

where e, = (epp, €p4) and e, = (eq9, €44) are any real vector values in the toric coordinates of the
effort variables in the finite dimensional approximation spaces. Therefore we can deduce a “finite
dimensional” version of the Stokes theorem in the selected conjugated approximation spaces for
reduced efforts and flows:

MD+DTMT — T, + T, =0 (11.12)

We will call hereafter this result the discrete Stokes theorem. It simply states in coordinates the
power conservation in the interconnection structure resulting from the projection of the Stokes-
Dirac structure equations in the approximation spaces selected for the reduced efforts and flows.

Remark 10. Note that for homogeneous boundary conditions, the efforts are zero at the boundary
and therefore the trace matrices may be selected as 73 = Ty = 0. In this case, there’s no energy
exchange through the boundary and the discrete Stokes theorem reduces to M D + DT MT = 0. In
this case the matrix M D is skew-symmetric and defines a Poisson tensor. The condition (II1.12)
may thus be viewed as the extension of a skew-symmetry property characterizing finite dimensional
reduced Dirac structures.

Remark 11. The proposed “mixed” pseudo-spectral scheme may be viewed as a classical scheme
if we consider that only one approximation basis is chosen: the approximation basis used for the
effort variables. In this case, the port-Hamiltonian formulation for the resistive diffusion equation
(as an example) and the definition of an auxiliary approximation basis for the flows may be viewed
as a “trick” to obtain a symplectic Galerkin scheme for the second order diffusion equation. On one
hand, the discrete Stokes theorem (II.12) ensures the symplecticity with respect to the “natural”
power pairing of the considered system. On the other hand, the exact integration formula and the
resulting discrete Stokes theorem also ensure that the residual is zero in the approximation space
(spanned by “effort” base functions). Therefore, the proposed mixed pseudo-spectral methods may
be also viewed as a family of symplectic Galerkin-type methods realizing the projection of the actual
dynamics in the approximation space spanned by the effort basis.
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I1.3 Canonical discrete Dirac structure for the resistive diffusion equa-
tion

In the case of the resistive diffusion? model (IV.8) in chapter 3, it is possible to study only the
poloidal subsystem describing the dynamics of the variables

((ep,eq,ea) ) (fpqua fa)) = ((eel@emg(’vefw) ) (felfﬁvfmg@ve?ng@))

Indeed the poloidal and toroidal subsystems are totally decoupled and the finite dimensional ap-
proximation of the poloidal subsystem may be written independently from the toroidal variables in

the form:
f. 0 -D e 1
Lo = Cel¢ —+ fd¢
fngo —D 0 €mgh 0
| ——

Interconnection matrix

fio wi(l) 0 (11.13)
foo | w0 ( ecs )

e1o 0 we(1) €mgo

€00 0 we(O)

Boundary variables

Therefore, for the sake of simplicity, we will consider throughout the rest of this work only the
poloidal subsystem (I1.13). Since the flow variables are obtained from the effort variables through
a spatial derivation, the two approximation spaces do not have the same dimension and system
(I1.13) is not in minimal form. This minimal form is of prime importance because it is required
to provide a “causality free” reduced Dirac structure and finite dimensional model, that is a model
which may be connected to any other compatible port-controlled Hamiltonian system where any
of the flow or effort variables may be freely chosen as an input. To obtain such a minimal form for
the system (I1.13) - corresponding to an invertible representation of the reduced Dirac structure
- it will be necessary figure out a projection which cancels the kernel of the exterior derivative
(in the space of reduced effort coordinates) but without affecting the power pairing value and the
resulting symplecticity of the reduction scheme. Such a projector is built hereafter based on the
exact integration of the power product, which can pull the system back to a square invertible one.

Using the {w¢, w,f } bases integration matrix M defined in (I1.9), the power balance equation for
the poloidal electromagnetic energy may be exactly evaluated (in the chosen approximation spaces)
with the expression:

OHl,01

ot

= / €elgpy N felqﬁ + emgo N\ fmgG
1T

= ez;(beel(b + ez;lgermge

(IL.14)

where Hl,,; stands for the total “poloidal” Hamiltonian, that is the part of the electromagnetic
energy stored in the poloidal subsystem. As mentioned above, the bilinear power product in (IL.14)
is degenerated and admits the kernel ker (M T). Therefore a projection:

e§=M"e (I11.15)

allows to obtain an invertible system in the new Bond space of reduced effort and flow variables
RN=1 x RN¥~1 5 (g,f). The degenerated bilinear product (IL.14) becomes non degenerated in this

new Bond space and the power balance becomes:
OH
— = [ enf=e"Mf=8"f (I1.16)

ot o

The symmetrization of this power pairing results in a bilinear form in the Bond space which is
symmetric positive definite, that is defines an inner product. It may be observed that the reduced

2Remind that the resistive diffusion equation is obtained by neglecting the displacement current f, = feip =
0. The parabolic resistive diffusion model results from the magnetic balance equation and the closure (diffusion)
constitutive equation relating the diffusive flow —d (e g0) and the magnetic field intensity e,,q0.
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(invertible) Dirac structure corresponding to this inner product may be written using its image
representation, in the form

ferg 0 -D €elg MT 0
fogo| | =D 0O el Emgo | | O MT €elp
fo | T e o () md e [T 00wt ) | \emso (IL.17)
f56 w(0) 0 €90 0 w(0)
—_——
ET FT

The discrete Stokes theorem (I1.12) allows to prove that [E : F) is full rank and that EFT + FET =
0. These are “classical” necessary and sufficient conditions for (II.17) defining a well-posed Dirac
structure (see e.g. [23]). The relations (I1.17) defining the Dirac structure may also be written in
explicit (“input-output”) form:

ED ] 1y G [(EY]

frngo 7CD ) ( MmT )71 0 &mgo
—w®(0) w® (1) <%y
J

where J is a skew matrix as J + J7 = 0 thanks to (I1.12).

- 18e

IT.4 Storage and dissipation constitutive relations

Relations between effort and flow variables coming from the balance equations and realized with the
Dirac interconnection structure have to be completed with closure relations. These come from the
constitutive equations considered in each specific example. Usually they are storage and dissipation
phenomenological laws. They may be projected in the finite-dimensional approximation spaces
which have been previously chosen to guarantee symplecticity of the spatial reduction scheme.
This means that the energy stored and dissipated in the actual dynamics will evolve in the reduced
dynamics although the values of these energies will only be approximated ones. Energy storage and
dissipation reductions are illustrated hereafter on the plasma model example.

11.4.1 Energy storage element
From (I1.14), the poloidal magnetic power may be written:

dH (By)
dt

= f]‘[ €mgo A fmgG = é?n,gefmga (1119)

On the other hand, the quadratic form for the magnetic energy results in a linear constitutive
equation with the magnetic effort variable defined as: e,,g9 = %Bg. Hence the poloidal magnetic
power may be projected in the chosen flow basis according to:

dH (By) 0By
Y = f emgO/\fmgeff BO/\i
dt " . ot (IL.20)
~ bTGfmgg
with
& T
7 (2)dz, G=G" >0 (I1.21)
and By (t,2) = fcvz_ll (b(t)), w (z) This results in the finite dimensional magnetic constitutive
equation:

&mgo = Gb (11.22)
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11.4.2 Energy dissipation element
The dissipated poloidal power is defined as:

Pag = Jyeas N fao = &lyfas (11.23)

using for instance Ohm'’s law for the electrical diffusion

Ui n
=g, = — T 11.24
cas = g0 = g Jas ) (IL.24)
this poloidal dissipation may be approximated in the same flow basis:
Pay = [peas A fas = [ & (fao — Jni) A fag
(I1.25)
~ (fdd) — Jni)T Rfd¢

with the dissipation matrix R is defined as

Ry = [ Zwl @l )z R=R >0 (11.26)
n Cs
Hence the dissipative constitutive equation may be written:

€c1p = R (f35 — Jni) (I1.27)

I1.5 Boundary conditions

When dealing with boundary control systems, two kinds of boundary conditions have to be distin-
guished: homogeneous and time varying boundary conditions. Most often homogeneous boundary
conditions are used for symmetry considerations or permanent physical interconnections (contact
condition, isolated systems, etc.). On the contrary, time varying boundary conditions are used to
represent external control actions of the system. These boundary control actions correspond to the
boundary energy flows and are realized by forcing time varying efforts and/or flows values at the
system boundary.

In our approach, the homogeneous boundary conditions (no power exchange with the environ-
ment) will be integrated in the approximation bases choice: all homogeneous boundary conditions
on the effort or flow values (and their spatial derivatives) will be satisfied by all functions in the
corresponding approximation bases. This common choice very often allows to get better results
in terms of accuracy, minimizing of the boundary effects introduced by the boundary conditions.
Besides, it leads to some symplectic reduction schemes for homogeneous problems as it may be seen
from the results in the next section or in [70].

Otherwise, non homogeneous boundary conditions - precisely since they describe “action-reaction”
like interactions - have to be considered as relations between additional boundary port variables
in the finite dimensional state space model. Otherwise, once substituted in the state space model,
these non homogeneous boundary conditions break the model symmetries and lead to a lack of
symplecticity in the considered spatial reduction scheme [70]. In our approach these boundary con-
ditions are time varying values either for the effort or flow boundary values. The proposed family
of schemes remain symplectic because symplecticity is defined with respect to a bilinear form which
“embed” the boundary variables (this is precisely the aim of the extension from the Poisson to the
Dirac structure).

These ideas are illustrated hereafter on the plasma example, both for homogeneous boundary
conditions and for boundary control actions.

I1.5.1 Homogeneous boundary conditions

We consider that there is no flow source inside the domain at z = 0 (the central magnetic axis
inside the toroidal plasma chamber). Therefore the following symmetry boundary conditions apply
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0 0
since fy¢ = azJy and fpg0 = 0By = —6ta—7f with a—f|zzo = 0. On the other hand, the constitutive

C
relation e,,q0 = 7239, C5 (0) = 0 leads to:
€00 = €mgo (0) =0 (H.Zg)

I1.5.2 Non-homogeneous boundary conditions

The loop voltage will be considered as the controlled boundary input. Therefore we will consider
non homogeneous boundary conditions at the boundary z = 1:

fio = eag(l) = =01 = —Vioop(t) (11.30)

Taking into account the quasi-static assumption fe4 = 0, the interconnection equations (II.18),
together with the energy storage constitutive equation (I1.22), the energy dissipation constitutive
equation (I1.27) and the boundary conditions here above, we may the complete reduced state space

in the following PCH form:
( —fag ) ( R (fag — Inio) )
e1p - 7 ~Vioop (11.31)

(%)) (%)

where the derivative operator is represented by the skew symmetric interconnection matrix:

0 B Ty
.% () ()
I

The finite-dimensional approximated PCH model (11.31) will be analyzed in the sequel for different
bases function choices. Each of these chosen approximation bases lead to a symplectic scheme
(i.e. preserving the power pairing form or the Dirac interconnection structure) although they have
very different properties, for instance related with the approximation accuracy of the spectrum and
eigenfunctions.

IIT Choice of effort and flow approximation spaces

In this section we investigate the selection of conjugated effort-flow approximation bases. This
problem of choosing the approximation space is common to any pseudo-spectral method (whatever
it is symplectic or not). Its solution is usually dependent both of the the properties of the actual
system and the expected properties for the reduced one. We will first employ a choice of collocation
bases spanned by Lagrange interpolation polynomials. This choice corresponds to a definition of the
state space variables which are simply the values of the infinite dimensional state space variables at
the collocation points. The corresponding symplectic collocation scheme which is derived with the
method proposed in section II will then produce a finite dimensional PCH model easy to manage
for subsequent control problems since it is low order, its state space variables have an immediate
intuitive interpretation and its spectral properties should be close to the actual ones (in fact, this is
a common feature for most of the pseudo-spectral schemes). However, as it will be shown hereafter,
this choice does not allow - in the considered plasma control problem - to handle the distributed
control action (non-inductive current deposit). This will be explained by a poor approximation
of the eigenfunctions of the considered operators although the approximation of its eigenvalues is
indeed quite accurate (provided that the homogeneous boundary conditions are integrated in the
Lagrange’s polynomials basis functions choice).

Therefore we will choose another approximation basis for the efforts and flows. It is suggested
by the observation that, with an uniform resistivity » and homogeneous boundary conditions, the
eigenvalues problem for the plasma resistive diffusion equation gives rise to a Bessel equation.
Hence eigenfunctions for this problem are Bessel functions and the eigenvalues can be explicitly
evaluated from the zeros of Bessel functions (details of these computations are in appendix E). We
will thus select a basis as Bessel functions and its power-conjugated basis (compatible with the
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exact derivation condition) to propose a new spectral symplectic reduction scheme. This choice
will of course result in an accurate approximation of the homogeneous problem eigenfunctions. It
will also improve the approximation accuracy for the solution in this case of non uniform resistivity
and distributed control actions where Bessel’s functions are no more eigenfunctions of the problem,
as it will be shown in section III.3.

ITI.1 Symplectic orthogonal collocation

In this section we generate the flow approximation basis with Lagrange polynomials and then a
corresponding symplectic collocation scheme with the proposed method. We analyze the accuracy
of the resulting spectrum approximation and also observe numerical oscillations in the non homo-
geneous case. This problem will be solved in the next sections by considering other conjugated
approximation bases.

II1.1.1 Polynomial approximation’s functions choice

Let’s & (j = 1..N — 1) be the N —1 chosen collocation points for the flows and ¢; (i = 1..N) the N
collocation points for the efforts. In the sequel to improve the order of the interpolation formulas
and minimize the oscillations of the interpolation errors, zeros of respectively (N — 1)!* and N'"
orders Chebyshev polynomials will be carried out. Both notations f € RV~! and e € RV will
be used to denote respectively the coordinates’ vectors of the approximated flows and efforts in
the corresponding approximation spaces. In particular, with the chosen orthogonal collocation
method, the approximation basis for the flows is made with Lagrange interpolation polynomials at
the collocation points &; (j = 1..N — 1) which satisfy the interpolation conditions

wl (&) = {1 =k (II1.1)

0 else

Therefore the exact spatial derivation equation (I1.4) (compatibility condition between the flow and
effort conjugated approximation bases) becomes:

f(t)=D(z)e(t) (I11.2)

where D is a (N — 1) x N derivation matrix with elements Dj; := 9. (wf) ¢, .

Embedding the homogeneous boundary conditions in the approximation bases defini-
tions

Most often, it is necessary to include boundary conditions in the approximation bases definitions
to get satisfying results for the spectrum approximation. In the plasma resistive diffusion example,
the boundary condition at & = 0 states that there is no flows source term at the center of the
tokamak. The efforts at © = 0 however may be non zero (but in fact usually is). Therefore we will
consider the following additional conditions on the flow and effort bases:

(I11.3)

These conditions may be fulfilled with the choice of effort and flow approximations bases presented
hereafter. Let llN ~! denotes the (n — 1)t" order Lagrange interpolation polynomial defined with:

IN1(z) = ﬁ —G (I11.4)
l PR

Conditions (ITL.3) on the effort values at the boundary z = 0 are satisfied by the functions

w§(z) =1 - 22¢HN ! (IT1.5)

?
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which may be used to generate the effort approximation space. The components of derivation
matrix in the exact derivation formula (II1.2) are then:

0

D= m )l = (2262 =22 057 ), ()

Using this derivation matrix, a basis function for the flows which satisfies the exact derivation
condition in (II.2) is:

0
w! (z) = ((%we (z)> Dt (I11.7)
where DV is the pseudo-inverse of D.
Projections of the constitutive equations
As w® (z) and wf (2) are both polynomial bases, the integral matrix M:

1
My, :/ wf(z)w}:(z)dz (II1.8)

0

may be easily exactly evaluated. Therefore, the projections of the storage and dissipation relations
which result in the matrices G and R whose elements are:

1 02

Gi; = |, —wf(z)wf(z)dz
s (I11.9)
17
Ri; = [, C—Swlf(z)w]f(z)dz

and may be as well explicitly computed. The complete input-output model (I1.31) has been derived
for the case with uniform resistivity  and homogeneous boundary conditions (both at z = 0 and
z = 1). Then, eigenvalues of this model have been computed and compared with the theoretical ones
(eigenvalues of the resistive diffusion operator with homogeneous boundary conditions, see appendix
E) and with the ones obtained by a finite difference formula (see appendix G). Results are shown
respectively on tables II1.2 and III.1 hereafter. The symplectic orthogonal collocation method is,
from this spectrum approximation point of view, clearly more accurate, as it was expected. Besides,
in the case of non homogeneous boundary conditions (in our case at z = 1) and with the distributed
term source, the finite difference approximation scheme introduces imaginary (oscillation) parts in
the approximated eigenvalues and even numerically unstable modes. This is not the case with
the symplectic orthogonal collocation, precisely because it is symplectic with respect to the Dirac
structure and the corresponding inner product derived from the natural power product which
embeds the boundary values of efforts and flows.

Table III.1: Eigenvalues using a finite difference scheme and Chebyshev discretization points and a resistivity

n=>5.10""

Theoretical Numerical eigenvalues
eigenvalues N=5 N=8 N=10
-2.301056852 | -3,965414997 -3,885480574 -3,860185392
-12.12413006 | -19,18940482 -18,95845463 -19,00658467
-29.79659326 | -40,14692865 -38,34709614 -39,98776146

-55.32237139
-88.70194524
-129.9354296
-179.0228628
-235.9642604
-300.7596298

-53,82013956

-58,53622826
-85,81642985
-120,7439326
-127,9196240

-61,19522543
-82,15362798
-112,9192769
-155,4380422
-180,4468519
-215,9294060



CHAPTER 4. SYMPLECTIC DISCRETIZATION 95

Theoretical Numerical eigenvalues

eigenvalues N=5 N=8 N=10
-2.301056852 | -2.350753323 -2.310110425 -2.304769649
-12.12413006 | -12.63581394 -12.22630390 -12.23545753
-29.79659326 | -33.62142541 -30.15754539 -30.39891094
-55.32237139 | -227.3150319 -56.03293217 -56.51610868

-88.70194524 -92.85175835 -88.81543981
-129.9354296 -159.9060543 -127.9699944
-179.0228628 -1170.918746 -176.7315844
-235.9642604 -317.0613604
-300.7596298 -2547.963503

Table II1.2: Eigenvalues using the symplectic orthogonal collocation scheme with Lagrangian polynomials as bases
functions, Chebyshev collocation points and a uniform resistivity n = 5.10~7

II1.1.2 Numerical oscillations in the magnetic field profile

We are now considering a controlled scenario where stationary values are chosen for the loop
voltage Vjoop control action and the distributed source term J,;. The obtained radial profiles of
the magnetic field component By are illustrated on figure ITII.1 (on the left, the simulation case is
without distributed source term J,; = 0 and on the right with J,; # 0 the distributed source term
whose profile takes the Gaussian form as in [107]) and compared with the profiles supplied by the
finite different method.

Magnetic profile Magnetic profile

Collocation
Finite difference

Collocation
-0.02 Finite difference

Figure II1.1: By profile with constant uniform resistivity n = 5.10~7 controlled using a nonzero
boundary condition Vj,ep, # 0 ; without distributed source term j,,; = 0 (left) and with distributed
source term jp; # 0 (right)

It may be observed that the magnetic profile By presents an oscillation profile (figure IIL.1,
right) in the case of a non zero distributed control action, when using the symplectic collocation
scheme. In fact, this is also the case - for the first time steps - with some certain initial profiles
are chosen for the state variables. These numerical oscillations are not found in higher order FD
schemes and are of course undesired numerical oscillations.

Asg it is shown in appendix F, these numerical oscillations come from a poor approximation
of the eigenfunctions in the chosen Lagrange’s polynomials basis. These eigenfunction approxi-
mations themselves exhibit large oscillations (see figure I1.1, appendix F). These large oscillations
arise mainly from the boundary conditions imposed to the polynomial approximation bases. They
disappear when classical Lagrange’s polynomials are used rather than those in (II1.5) which satisfy
the problem boundary conditions. Obviously, in this case, part of the boundary conditions are
not satisfied by the approximation (in fact they are not satisfied by the reference finite difference
solution as well).

ITI.2 Symplectic spectral method

To solve the eigenfunction approximation problem, instead of seeking better - but unknown -
basis functions, we will use the theoretical eigenfunctions of the resistive diffusion operator with
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homogeneous boundary conditions, computed for the uniform case (i.e. with a spatially uniform
resistivity 7). This will result in a symplectic spectral scheme since the approximation will be
spanned in the basis of Bessel functions, which are then exact eigenfunctions of the (simplified)
problem. In this section, we show how to derive this symplectic spectral scheme and how it solves
the numerical oscillations problem.

Choice of the conjugated bases of eigenfunctions

Computing the eigenfunctions of the operator appearing in the right hand side of the resistive
diffusion equation (IV.14), chapter 3 - in the constant and uniform resistivity case - is equivalent
to solve a Bessel equation (see appendix E for details). Eigenvalues \;, may be computed from the
zeros sg, k = 1...N — 1 of the first kind Bessel functions of order 0, Jy and eigenfunctions w,{ may

be written in terms of first kind Bessel functions of order 1, Jp, as:

wl (2) = Jy (\ez), with A =, /skg (I11.10)

Therefore we will choose for the effort approximation basis functions:

1 -
~ZJo(Nz), i=T.N -1
we (2) = 4 T E)s (IL.11)

1 1=N

in such a way that the exact differentiation (compatibility) condition is satisfied. Indeed, with the
previous choices:

{azwz () =wl(z),Vk=T.N-1 (II.12)

dwy () =0

Hence the derivation matrix D in equation f = De here reduces to [Ixy_1]|0] € RN=DXN where
Ix_1 is the identity matrix of order N — 1. Indeed

f = 0,e
= Yol wl(fe = SN 0wi(2)](e), =N wl(2)(e), (II1.13)
= f = [HN_1|O]€'

Projections of the constitutive equations

The integration matrix, used in the power pairing (I1.9) and needed to get the finite-dimensional
representation of the Dirac interconnection structure, has to be computed. Elements in the diagonal
and in the last row in this integration matrix may be computed exactly using Bessel’s function
properties:

1
My, = fol w,{(z)dx = we () |3 -+
(I11.14)
! 1 201 1 1 2
My, = [, wi(2)0,wf (2)dz = 5 (we (2)% 5 = -5 ()\k>

For the other elements (when j # i, hereafter) the Gauss quadrature formula with Chebyshev
points will be used:

1

S F()d-22)

Mij = [ fij (2) da 5

(II1.15)
RV /BTN

where
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2(m—1)
2
Unlike in the polynomial case, it is not possible here to perform exact integration for a product of
Bessel functions of different orders. Chebyshev quadrature points have been chosen to get a finite
dimensional PCH model which may be easily compared to the previous ones (obtained from FD
or symplectic collocation at the very same points). The quadrature formula (IT1.15) is also used to
determine the matrices G and R used in the finite dimensional storage and dissipation constitutive
equations (II1.9).

This previous choice of conjugated base functions obviously guarantees accurate eigenfunction
approximation for the problem with homogeneous boundary conditions and uniform resistivity
since the approximation functions are the eigenfunctions. As it may be expected, it gives also still
more accurate results for the eigenvalue approximations as illustrated in table III.3 for the case
n=510"".

1— (2k—1)7
£ () = we(2)wl(2) and 2 — — ( ) , (IT1.16)

Theoretical Numerical eigenvalues

eigenvalues

N=5

N=8

N=10

-2.301056852
-12.12413006
-29.79659326
-95.32237139
-88.70194524
-129.9354296
-179.0228628
-235.9642604
-300.7596298

-2.305253100
-12.25659915
-30.92406956
-81.24868031

-2.301848126
-12.14481967
-29.93017370
-95.84563052
-90.35712887
-135.0263099
-297.6242993

-2.301466232
-12.13359575
-29.85455494
-55.53473267
-89.30413565
-131.4267729
-182.5230680
-244.5957644
-530.5090590

Table II1.3: Eigenvalues with Bessel basis approximation functions for the case n = 5.10~7

ITI.3 Symplectic Galerkin scheme

In the previous simulations, we neglected the dependence of the electrical resistivity n with the time
t and the spatial radial coordinate z. More precisely this resistivity is a function of the plasma state
(noticeably of the plasma electronic temperature T,(z,t) and density n.(z,t), see [107] for details).
Rather than including a multi-physics plasma model including the energy and mass material balance
equations we will make use of an analytic expression for 7 (z,t) (from [90]).

In this case, the chosen Bessel basis functions are no longer the eigenfunctions of the system,
since the eigenfunctions are no more analytically solvable. The discretization method will be then
called a symplectic Galerkin scheme since both the projection of the resistive diffusion equation
and the cancellation of the corresponding residual are performed in the same approximation space
generated by the chosen Bessel functions. The dissipation matrix R now has to be computed
online due to the time variations of the resistivity 7 (z,t). In fact, the resistivity values supplied
from the experimental data may be used to set the values of 7, (t) of the resistivity at the discrete
quadrature points zj used in the finite dimensional model. The dissipation R matrix is till (now
online) computed by the Gauss quadrature formula (III1.15) according to:

R t) = I %Z)wzf (2)w] (2)dz
(ITL.17)
— % k=1 ﬂ%?f’ﬂ)wf(zk)w]f(zk) 1- (22— 1)°

The eigenvalues of the corresponding finite dimensional PCH model obtained with the proposed
symplectic Galerkin method may now only be computed numerically. In fact, with a time varying
resistivity, the meaning of the expression “theoretical eigenvalues” for the infinite dimensional resis-
tive diffusion equation is far from clear. However one may check that the finite dimensional model
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still has purely dissipative eigenvalues (as expected from a diffusion equation) and that these ones
converge when N increased. The results are in table III.4. where the eigenvalues are computed at
time ¢ = 11s for the Tore Supra discharge TS#47673.

Numerical eigenvalues
N=5 N=8 N=10 N=20

-0.316349428 -0.315983205 -0.315877522 -0.315856805
-2.673789607 -2.372985846 -2.372985846 -2.371577391
-14.74424065 -6.357688599 -6.278320313 -6.267211833
-359.7443273 -14.08116991 -12.01718458 -11.87022206
-36.20739521  -21.66293021 -19.46289366

-129.9270811 -43.38740206 -30.44782740
-1724.357267 -102.0884225 -50.82178655
-309.9311502 -84.68730014

-3355.769434  -138.8389938

Table II1.4: Eigenvalues with Bessel base-functions and experimentally provided time varying and non uniform
resistivity 1 (z,t = 11s) € [2.1078,2.1076], discharge T'S#47673

IV Comparison against experimental data

Accuracy of the time response for the selected scenario (Tore Supra discharge TS#47673) may not
be evaluated only by simulation since experimental values have been used for the plasma resistivity.
Therefore, in this section, we wish to present a validation of the global port-Hamiltonian modelling
and symplectic reduction approach, for the plasma resistive diffusion problem, by comparing the
simulation results with experimental data.

IV.1 Test case definition

In order to validate the presented model, it is compared to experimental data from Tore Supra
discharge TS#47673 where plasma current steps are performed. The effort base functions size is
chosen equal to N = 5, m = 10 Chebyshev points are used in the Gauss quadrature formula (III.15).
The system input is the boundary condition Vj,, and the output is the total plasma current Ip,.

In the test case, the non-inductive current source J,; is only the bootstrap current .J,s (external
non-inductive sources are set to zero). This current source and the plasma resistivity are computed
using experimental data and expressions based on the work [90].

Furthermore, in a tokamak, the loop voltage V., can’t be set directly but is generated using the
central solenoid coil voltage. Thus on Tore Supra, a simple proportional controller is implemented
between the plasma current and the coil voltage. On the proposed model, this controller is replaced
by a proportional controller between I, and Vj,.p. The gain of the controller is tuned to get the
same steady state error as on the real plant (see cf. figures IV.1.a and IV.1.c).

IV.2 Results

The figure IV.1 shows the simulation results compared with experimental data. The coherence
between our model and the experimental facility leads to the comparability in the result of input-
output signals. The simulated loop voltage Vi, is very closed to the real one, except on the begin
of the pulse during the ramp-up phase when the shape of the plasma is not stable and so the minor
and major radius of the plasma are time-dependent. This dependance is not taken into account
in the port-Hamiltonian model and leads to the small observed difference in figure IV.1.b before
t < 3s. A zoom of the plasma current I, and loop voltage V., presents the step response of the
system in figure IV.1.c. A small delay appears between the experimental plasma current and the
simulated one. This delay is coming from the actuator simplification assumed on the model. The
central solenoid controller dynamic is not modelled. This explains why the step response of the
model is faster than the one of the real plant.
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~ — — Vioop TS#47673
Vioop simulation

== Ipreference
- = = Ip TS#47673
—— Ip simulation

Vioop [V]

2 4 6 8 10 12 14 16 18 20

a. t[sec] b .

== Ip reference. = = = Vioop TS#47673
= = - IpTS#47673
—— Ip simulation

Vioop simulation

1.05

Ip[A]
Vioop [V]

Figure IV.1: In-Output comparison
a. Plasma current I,,; b. Loop voltage Vigop;
c. (Ip, Vieop) zoom at t € [7.4s,8.2s]

The safety factor g-profile (see section I1.3) is given for several time shots in figure IV.2. The
presented model safety factor is closed to the one provided by METIS despite the large difference
of complexity between these two models. Since METIS is based on a finite difference discretization
scheme of the resistive diffusion equation with some modifications to deal with the singularity in
x = 0. These modifications in the model - using complex empirical expressions - at the edge and
the center “boundaries” of the plasma explain the difference between the two g—profiles at the
boundaries. Besides, due to the difficulty to obtain signification measurements of the g-profile in
real plant and consequently to tune accurately the reconstruction code, the g-profile obtained with
METIS could be only used as an indicator of the actual g-profile shape.

= = = q Metis
~ q Simulation

=4.8s)

qt

0 0.2 0.4 0.6 0.8 1

=18s)

q(t

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure IV.2: Safety factor ¢ comparison
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V  Symplectic discretization applied to thermal diffusion equa-
tion

Following the same idea, the theoretical eigenfunctions of the thermal diffusion equation (in the
simple case of uniform homogeneous thermal diffusion coefficient x) are used to span the approxima-
tion bases hereafter. The discretization procedure does not differ from the previous case, although
the obtained finite dimensional model for the thermal diffusion is given in implicit form only since
there’s just one conservation law for the entropy evolution. The constitutive relation of Fourier’s
law in equation (V.4) (chapter 3) is thus chosen to form a PCH system (see section V, chapter 3).
Consequently, the control model derived from this system admits a singular value 0 in the state
evolution . The Bessel functions of order 0 and 1 are still employed as the spaces of efforts and flows
in this scheme. Nevertheless, the eigenvalues are not the same as those in the previous example
due to the different boundary condition in this case (see section II in appendix E for the detail).

V.1 Thermal PCH discrete model

The thermal diffusion equation in (V.3), chapter 3 in the case of a uniform and constant diffusivity
X is also a Bessel equation (see section IT appendix E for the derivation of this equation and further
details on eigenvalues and eigenfunctions of the thermal diffusion operator). Therefore we may use
as well Bessel functions for the approximation basis. The first kind Bessel functions of order 0,
Jpo, and order 1, Jpi, will be used again to generate approximation bases for efforts and flows.
The eigenvalues sp for the thermal diffusion operator with uniform constant diffusivity xy may be
as well derived from the zeros & of Jpq as:

2 N,
STk = ﬁg,ﬁ, F=T.N -1 (V.1)

Remark 12. In the general case, one may choose two different sets of approximation bases w? ()
and w® (z) for the coupled resistive and thermal diffusion equations. In this case, the port variables
approximations between the two submodels have to be converted from one approximation space
to the other through a fictitious numerical coupling. However, since we are considering here two
diffusion systems, with Bessel functions as generating functions for the approximation bases in both
cases and since we have no specific accuracy requirements for each of the two subsystems, we will
use the same approximation spaces for both of them in order to simplify the calculus (and to avoid
eventual undesired supplementary numerical effects).

Therefore, like the resistive diffusion equation (IV.8) (chapter 3), the 0D discrete scheme for

the thermal diffusion equation (V.3) (chapter 3) is written using the input-output representation
of the Dirac interconnection structure:
) } v

[ (( f:al; )) } 0 (et ) (o )71 )

(ot )20 °

with the same derivative matrix D = [[y_1|0] € RIN=D*N " the same integration matrix M €
RN*(N=1) " The closure equations will be given by the projections of the constitutive relations
in the same approximation bases and will be written as relations between the reduced variables

coouy

(&1, f1) and (62, f'g)

V.2 Constitutive relations

The constitutive relations are here also obtained from to the projection of the power product (e, f)
and the energy storage and dissipation relations in the previously chosen approximation bases.

Energy storage elements

Let us define e, the extended effort variable such as:

_ 3 3
F 3D eex = 5n\/§T= Zaen
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then d 3 dT d

Cex ° al j _

@ WV Tty =4
in the considered case of time invariant particle density n, (see V.5). Considering both the power
balance equation:

dHr

B fpes = @ (V.3)
and the projection of the storage constitutive relation :
dH 3 !
B = hweh =l (3nva) e el (V1)
with )
3 _
@)y = Ii (3nva) WGl 6r =G (v.5)
we deduce:
é1 = G’Teex (VG)
with eI, = kN;ll (eL, (t))k w,{ (2)-

Energy dissipative element

Using the chosen port variable notations, the dissipated power in thermal domain reads:
]P)Td = fH €2 f2 = egfg (V?)

\V909¢
Vi

From the Fourier’s law in (V.4): fo = ny €2, one gets:

d . goge
P = Jucafo= Jyeanx¥ =er = el Rres (V.8)
where )
Rrij = / Y2 1 (2)w!(2); Rr = RT > 0 (V.9)
0 vV 39p

denotes the dissipation matrix. Therefore we will use the projected constitutive equation:

fo = Rres (V.10)
Control model for thermal diffusion

The model in (V.2) including the constitutive relation (V.10) becomes:

()0 ) () () o

The matrices Jr1, Jrg with Jpp = quTﬂ2 represent the spatial derivation operator 0, and its formal
adjoint in the finite dimensional approximation spaces. Jpy4 is related to the boundary coefficient,
while 77 is the value of the average temperature at the boundary z = 1.

Remark 13. Since the thermal model (V.3) is not written in canonical PCH form, an implicit
representation for discrete thermal scheme may be easily given using, for instance, the image rep-
resentation of a Dirac structure given in (V.12).

fi 0 -D ( S ) & MT 0
€2 _ — 0 el 0 fg _ 0 MT el
€1 - ’Ll)e(l) 0 (fg) + 0 and fc’)l N 0 we(l) f2 (V'12)
€00 w* 0 0 fao 0 we(0)
—_—
ET FT

The table V.1 here below compares the eigenvalues of the proposed discretization scheme with
the theoretical ones, and the ones from a finite difference scheme. The symplectic scheme not only
gets more accurate result but also avoids the creation of unstable modes (positive eigenvalue) or
oscillating modes as it may be observed with the finite different scheme. The eigenvalues for the
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Theoretical Numerical eigenvalues

eigenvalues N=5 N=8 N=10 FD with N=50
7.234097

-120.483040 -120.702770 -120,524486 -120,504490 -118.141417

-634.817965 -641.754030 -635,901271 -635,313587 -748.190997

-1560.145974
-2896.672592
-4644.422992
-6803.403186
-9373.615177
-12355.059784
-15747.737391

-1619.180495
-4254.170952

-1567,140230
-2924,070376
-4731,088204
-7069,961051
-15583,5718679

-1563,180841
-2907,791802
-4675,9536082
-6881,489738
-9556,885491
-12807,004273
-27777,389374

-1827.815893
-3355,212061
-5323,638574
-7724,736935
-10548,547081
-13783,474351
-17416,282235
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Table V.1: Eigenvalues with symplectic and finite different discretization scheme, with n = 2.1029[m~3], x = 5[m?2/s]

energy transport in table V.1 are hundred of times larger than the ones obtained for the magnetic
flux transport in table ITI.3. The hypothesis of two very different time scales in the plasma transport
phenomena, mentioned in subsection II.2, is here correctly represented by the obtained 0D (finite
dimension) control models in PCH form for the two diffusion equations.

The figure V.1 shows the temperature profile comparison between the simulation results (right)
and the experimental data from the tokamak Tore Supra (CEA Cadarache) ohmic shock TS #47673
(left) using experimental data. The different colors from green (under) to blue (upper) stand for the
temperature profile from the center to the plasma edge. In this test, the pseudo-symplectic discrete
scheme is employed with the non-uniform diffusion coefficient x adapted to the test case. There is
a difference between the two profiles at the center which is probably due to a poor estimation of
the diffusivity coefficient y estimated with the empirical formula proposed in [27]. The mismatch
of temperature profiles are well-exposed in the figure V.2 at four different moments.

Te data from 47673 Simulated Te
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Figure V.1: Electronic temperature profiles - time evolution comparison

VI Conclusion

In this chapter we have suggested how classical pseudo-spectral methods for the spatial discretiza-
tion of 1D distributed parameter systems could be adapted in order to preserve the geometric
structure of a class of Hamiltonian systems representing open physical systems, i.e. with energy
flow through the boundary of their spatial domain. The resulting spatial discretization schemes
preserve this structure after the reduction by projection on the chosen approximation spaces which
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Figure V.2: Electronic temperature profiles - space evolution comparison

are differently chosen according to the degree of the differential forms that they approximate. Do-
ing this, both the exterior derivative and the boundary operator may be exactly discretized and
consequently the “mixed” schemes developed with the proposed methodology are symplectic (or
geometric) while the methods used to generate these mixed schemes are not.

Another point of interest is the discussion about the selection of the approximation bases. This is
a general problem for pseudo-spectral models. However in the case of “mixed” schemes, where several
compatible approximation bases have to be selected, it was not obvious that interesting choices
could happen. We claim that choosing, for one of the conjugated approximation bases, the set of
eigenfunctions of a simplified problem may be an interesting choice. To illustrate the approximation
base choice methodology, we selected the Galerkin scheme among the possible pseudo-spectral
methods. Then we showed that the skew-symmetry of the Stokes-Dirac structure gives rise to a
set of eigenfunctions (Bessel functions in our example) for which a conjugated compatible base can
easily be found. Finally, in the resistive diffusion equation example, we showed that this approach
may reduce numerical oscillations in the presence of non homogeneous initial conditions or sharp
distributed control.

Our “geometric” discretization approach, based on the port-Hamiltonian formulation for open
distributed parameter systems, has been used to generate a finite-dimensional approximation for
a 1D control model for plasma dynamics in tokamaks. This confirmed the effectiveness of the
approach in preserving some desired physical properties of the actual 7D model, namely spectral
(eigenvalues and eigenfunctions) and energetic (conservativeness and passivity) properties. More-
over, although large simplification assumptions are made on the plasma geometry and properties
to obtain the resistive diffusion equation, simulation results show good agreement with the exper-
imental data and exhibit accuracy and qualitative behavior similar to the ones obtained from the
“more complex” reference code (METIS) for such plasma simulations. Consequently, we may hope
to derive from our discretized finite dimensional model, IDA-PBC (Interconnection and Damping
Assignment, cf. [78]) controllers with a “reasonable” chance of success. This will be the topic of
the next chapter 5.



Chapter 5

IDA-PBC Controller design

I Introduction

The Tokamak plasma control problems aim at many different objectives [83, 105, 2]. One of
them consists in handling the MHD instabilities while maintaining some current, temperature and
pressure density profiles. A suitable control model for these plasma dynamics is then a success key
in the fusion research. One of the challenges is the control of the 1D plasma safety factor profile
which is an important parameter for both plasma stability and performance. The goal here is to
reach some specific non-uniform radial profiles in order to avoid MHD instabilities and to improve
the plasma confinement. Many investigations including some related to the ITER project - are
currently dedicated to this issue[1], [39], [81]. In this context the 1D resistive diffusion equation for
the magnetic flux in the plasma ([10, Chap.6]) is a commonly used control model.

Readers could refer to [107] for investigations on this model for control purposes or to [81] for
application to model-based predictive control. A similar model has been used to solve the current
profile optimal tracking problem [80] or to design robust controller for the poloidal magnetic flux
profile in [79]. Feedback control using Lyapunov approach in [1], or sliding mode in [39] are also
proposed. Note also that two-time scale extensions have already been considered for simultaneous
magnetic and kinetic (temperature) profile control in tokamak [28].

From the beginning of this thesis until now, our approach is to define a model which not only
represents consistently the main physical properties and dynamical behaviours of the plasma but
which is also simple enough to synthesize a model-based control for the internal profiles of the
plasma. The presented model is based on a port-Hamiltonian formulation of the plasma TMHD in
tokamaks developed in chapter 2 (section IV-VI). This model implies to modify the safety factor
control problem into an equivalent magnetic field profile control problem. Spatial reduction and
discretization methods, inspired from [70] and developed in chapter 3 and chapter 4, allow to
reduce this 3D TMHD model to a finite dimensional PCH model. These symplectic reduction and
discretization methods preserve the qualitative spectrum properties (see chapter 4, table I11.3-V.1).
Another consequence is that the finite-dimensional PCH model derived in chapter 4 has the same
invariants (for instance the total energy density) and model structure as the infinite-dimensional
ones. Stored and dissipated energies in the finite dimensional model are simply approximation of
the actual ones in the original distributed parameter model. Therefore, this finite-dimensional PCH
model seems to be the ideal one for the design of a high performance IDA-PBC controller [78].

Here, the proposed IDA-PBC controller allows stabilizing 1D profiles of the magnetic field -
hence also the safety factor g-profile at the desired references directly by two actuators: the voltage
at the boundary of the plasma (the loop voltage Vioop) and the distributed non inductive current-
drive heating source J.,;. Besides, a third actuator, the external heating source Spcq:, will be
used as a supplementary actuator which modifies the plasma temperature, hence indirectly some
physical parameters such as the resistivity 7 profile or the bootstrap current.

Challenges in this control problem not only arise from the time variation of some parameters
usually badly estimated (such as the resistivity or diffusivity for instance), but also from the tech-
nological constraints and non-linearities in the actuator models. In the considered facilities - Tore
Supra WEST and TCYV - the distributed controls J.,; and Speq: have specific spatial profiles, pos-
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sibly depending from the control variable values themselves. In fact, the controllable inputs are
rather the total external current power P,.,; and the total external heating power Pjq:. The con-
sequence is that the system is a finite rank input-output control system with both boundary and
distributed control actions. The finite dimensional coupled control model may thus be considered
as an under-actuated system in the sense that the number of actuators is less than the number of
system states (more details on under-actuated PCH systems could be found in [76]).

Hence, only a limited (finite dimensional) set of safety factor profiles are reachable. In this
work, the available control signals are used to regulate the g-profile at a finite number of points.
On one side, the corresponding g¢-profile on the whole spatial domain for the radial coordinate,
as well as the corresponding feedforward control are both computed in order to guarantee their
compatibilities with the systems constraints. On the other side, the designed IDA-PBC feedback
control aims at improving the system stabilization and convergence rate as well as at attenuating
the approximation errors. Nevertheless, an integrator is still necessary to cancel the static error on
the safety factor profile.

Two scenario are figured out in the sequel. In the first one the PCH model equivalent to the
resistive diffusion equation (chapter 4, section I) is used with two control signals Vio,, and Py
to regulate the ¢ radial profile at two positions. In the second one, the magneto-hydro-dynamic
couplings and the thermal-electromagnetic model are investigated (see chapter 4, section V.1)). A
third control signal Pj.4: is used in order to reach a given reference value for theq radial profile at
a third point.

The control approach is validated first in simulations for the Tore Supra WEST facility. These
simulations are based on the model, parameters values and empirical laws presented in [107]. Then,
other simulation results will be presented, they are based on the RAPTOR code for the TCV
tokamak real-time control system. It is a 1D transport code specially designed for a fast execution
compatible with the needs for real-time control or for nonlinear optimization schemes [30, 29].

Besides, based on these previous simulation tests, the IDA-PBC controller has also been imple-
mented and tested on the real TCV experimental facility. The first result obtained (before TCV has
been stopped for a long period for maintenance and upgrade) is shown at the end of the chapter.

This chapter is organized as follows. In section II, the IDA-PBC design methodology is revisited
and adapted to the specific studied case. The resistive diffusion model (from chapter 4 section II)
is firstly used as a control model in section III. A non-linear feedforward control takes into account
the system constraints in the WEST Tokamak case and a simple “linear” IDA-PBC feedback control
is discussed with the help of some practical considerations. A criterion is derived which allows to
give a variational (optimality) interpretation to the IDA-PBC parameters tuning. Some simulation
and experimental (from Tokamak TCV shocks) results are then showed. In section IV, the coupled
TMHD system is then used as a control model for the IDA-PBC controller design. An optimal IDA-
PBC design is also proposed and tested with simulations. Later in chapter 6 we will make use of
these early results to suggest an IDA-PBC-like controller designed with the 1D infinite dimensional
port-Hamiltonian model.

II IDA-PBC closed loop control

The IDA-PBC control design may be considered as the the most general one among passivity based
control (PBC) designs for PCH systems. Readers may refer to [77] for an overview and connections
between IDA-PBC controls and more particular types of PBC, such as energy shaping, power
shaping, or control by interconnection. A brief reminder of the IDA-PBC design methodology
(inspired from [78]) is given hereafter.

I1.1 Methodology overview
Given a standard PCH system:

OH (z)
ox

i = [J@)-R@) +9(@)u (IL.1)

The main idea of the IDA-PBC method is to choose an appropriate feedback control law u (x) so
that the original system (II.1) is pulled back to a reference system with a set of desired properties.
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Let us design a closed loop reference system:

. OH
& = [Ja(x) — Ra(x)] == (x) (1L.2)
T
with Jy = —JF , Ra = RY > 0 and a strict local minimum 4 for the closed loop Hamiltonian

Hy. This minimum x4 is a locally stable equilibrium since:
Hy = — (0,Hy)" Rq (8,Hg) <0 (I1.3)

The static state feedback is then chosen such that the closed-loop system matches this reference PCH
system by using the “tuning parameters” 7, (z), R, (x), H, (z) such that J4 (z) = J (z) + Ta (2),
Ra(z) =R (z) +Rq (x) and such that Hy (x) = H (x) + H, («) has the minimum at z4. This leads
to a matching equation for the equivalence of (II.1) and (II.2) which reads:

OH OHy
—R)— = — — 114
(7~ R) I 4 gu=(Ja—Ra) (11.4)
and leads to the feedback:
TNl oT OHg4 OH
_ _ a7 gy L.
u={(9"9) g {(jd Ra) 5 — (T =R) 5 (IL5)
Besides, the following conditions are required for the solution:
i) (Integrability)
0%H, °H, 1"
922 (z) = {8372 (@} (IL.6)
ii) (Equilibrium assignment)
OHy
zd = 1.
L (a) =0 (1L7)
iii) (Lyapunov stability)
0°Ha (z4) >0 (IL8)
o2 ¢ '

The first condition implies the existence of the scalar energy function Hy, while the two others
ensure respectively the existence of the minimum of Hy at the desired equilibrium value x4 and its
stability. This general design methodology preserves many degrees of freedom since the controller
is set only once J,, R, and H, have been chosen. We propose a particular design methodology for
our system in the next subsections.

I1.2 Integrator extension

An integral action may be added to the IDA-PBC control action in order to eliminate the static
error due to the approximations or disturbances, while always conserving the PCH structure of the
whole closed-loop system (a simple design for this integral action is proposed in [75, sec.6]). In this
work, we have adapted this integrator into our system.

Proposition II.1. Consider the system of equation (I.1) in closed-loop with v = 8 (z) + v:

[ ;’;I ] _ [ Jd(x)_;(;%d(x) fgf ] [ aafjg/v ] (IL9)

where 7 € R* are the extended integral variables and K; € R™™* the corresponding integral gains.
The extended Hamiltonian

W (z,xy) 2 Hy (z) + Hy (z1) (I1.10)

qualifies as a new Lyapunov function, in which Hj is considered as the energy function associated
with the integral effect. It may be designed as the usual quadratic form:

1
H; = ix?QImI QOr = QT e RE** (IL.11)
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The integral contribution in the control action is then derived:
v=—(9"9) QTKIQI/ K] 0,Hq (I1.12)
0

Stability properties of xq remain preserved since the augmented system (I1.9) keeps the canonical
PCH form.

I1.3 Optimal control

How to choose the IDA-PBC design parameters is still largely an open issue (see the discussion in
[78]). In our earlier work only an empirical proposal is made for the sake of simplicity and based on
a prior qualitative knowledge of our process (the plasma dynamics). There is no guarantee for any
optimal criteria to be satisfied for the closed loop system. Besides, the chosen added dissipation R,
doesn’t (in general) satisfy the real actuator constraints neither specific MHD stability conditions
for the plasma. To fix all these issues, we developed an optimal IDA-PBC design methodology in
which the IDA-PBC parameters are chosen to minimize the error for the safety factor profile while
the constraints on the inputs are still satisfied.

We will first reveal the equivalence between an optimal control law, uep:, and the IDA-PBC
one, uypa, by establishing in the same time the optimal criterion (cost function). In fact, from a
pre-defined optimal criterion, the IDA-PBC parameters may be determined via the u,,; obtained
from the well-known Riccati equation associated to the corresponding quadratic cost function.

The traditional optimal control principle (cf. [66]) is briefly revisited in the sequel. We consider
the simple case, where the PCH system (II.1) can be regarded as a general linear system of the
form:

& = Az (t) + Bu(t) (1L.13)

and also consider the standard quadratic cost function:
trin
I= / 7Oz 4+ u” Du (IL.14)
0

where C = CT € R and D = DT € R"*™ are respectively the weight matrices for the regulation
error and input values. The optimal feedback control law that minimizes the cost function I is

written:
Uopt = —D ' BT Px (I1.15)

where P = PT ¢ R*™ is the solution of Riccati equation:
PA+ATP—-PBD 'BP+C =0 (11.16)

Hence, by replacing the optimal control ey given in (IL.15) in the matching equation (IL.4), one
obtains another kind of “matching” condition written in terms of IDA-PBC designed parameter
values. On the other hand, if both the system, H, and desired, H;, Hamiltonian functions take the
quadratic form:

1
H = §xT Ox
(I1.17)
1
H; = ixTde
then by inserting A = (J — R) Q, the matching equation (I1.4) can be simplified:
Ax + Bu = (jd —Ry) Qur (I1.18)

Substituting the optimal control law w,y; from (II.15) into this previous equation, we conclude that
the control design parameters (Jy, Rq, Qq) must satisfy:

(Ja—R4)Qi=A—-BD'BTP vz (I1.19)
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together with the integrability, equilibrium and stability conditions (IL.6-I1.8). Assume that the
desired total energy Q4 = QdT > 0 of the closed loop system is set, then the other parameters
(J4, Rq) may be computed by separating the symmetric and skew-symmetric parts of the matrix:

S =(Ja—Ra) = (A- BD'BTP) Q;" (I1.20)
Indeed we may choose then:
1
Ja= 5(5-57)
(I1.21)
1
Ra = _5 (S-‘r ST)

Remark 14. Note that the choice Q4 = aQ with the scalar o > 0 appears as an easy solution for
equation (II.19). Besides, without energy shaping (i.e. Q4 = Q) the proposed method qualifies as
an “Interconnection and Damping assignment” control since only interconnection 7; and damping
R4 matrices are modified.

Remark 15. The advantages of the proposed optimal design method when compared to the “tradi-
tional” empirical IDA-PBC design are the following:

e Saturation (constraints) on the actuators and the error convergence may be handled by tuning
explicitly the weight matrices D and C.

e Diagonal matrices C and D are always easier to design than a probably full matrices (74, R4, Qa)-

e There’s no need to find a solution for matching partial differential equation (I1.4) to define
the IDA-PBC control parameters.

I1.4 Control strategy

Besides the issue of the controller parameter choice, the non-linearities and actuator constraints
still complicate the control synthesis. Regarding the distributed controls, the real action signals are
the total powers P.,;(t) and Pheqt(t) of the external current drive Je,:(z,t) and the external heating
source Sheqt(z,t) respectively (z denotes the spatial coordinate). The control deposit profiles are
approximated as:

{Jewt = Lext (t) fea:t (Z’ t) (1122)

Sheat = Pheat (t) fheat (Zy t)

where fe.: (2,t) and freat (2,t) are the specific spatial deposit shapes of these “distributed” controls
(typically gaussian shapes in WEST and TCV). Notice also that in the Tore Supra WEST case,
the gaussian shapes also depend on the source total powers; hence fey: = feut (2,t, Peyt) and
Jheat = fheat (Z7 t, Pheat)-

Consequently a feedforward control will be designed first which leads to a reachable steady
state, then the closed-loop stabilization and the convergence rate will be improved via an IDA-
PBC feedback control. This (usual) control strategy as summarized in the figure II.1.

For the design of the IDA-PBC feedback control, we will make use of the linearization of g (z, u)
around the equilibrium profile (x4, ugq) (where uy denotes the feedforward part of the control action
which is designed with the non linear PCH model). This will help us to completely distinguish the
feedforward and feedback effects, as well as allows us to apply the “traditional” IDA-PBC feedback
design discussed in the previous subsection.
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Figure I1.1: The proposed control strategy: a nonlinear feedforward control and a feedback control
designed with the help of the linearized model

Proposition II.2. Assuming a good accuracy of the model, the feedback effect contribution is
considered widely weaker than the feedforward one into the total control law g(x,u)u. Thus the
feedforward part of the controller is computed using non-linear expression of the system and a
linearization around the equilibrium point can be done for the computation of the feedback part:

gz, uw)u = g(xg,uq + ou) (ug + du)

11.23
~ gatq + gadu ( )

where gq = g (24, uq).

I1.5 Robustness analysis

In this subsection, the robustness of the controller against two kinds of uncertainties is studied. The
first one is on the system dissipation R coming from a bad estimation of the system parameters,
such as the plasma resistivity 7 and the thermal diffusion coefficient x. The second one concerns
the uncertainty on the actuator profiles Je.¢, Sheqar as well as a bad knowledge of the bootstrap
current Jps. It can also include the approximation error during the linearization in (11.23):

g (xz,u)u = gqug + gadu + dg (ug + ou) (I1.24)
—_———
¢

We remind in the following lemma (see [8]) a condition of disturbance rejection for Port-Hamiltonian
systems:

Lemma II.3. Consider a Disturbed-port-Hamiltonian (DPCH) system with the bounded disturbance
C:
& = [Ja—Ra]O:Ha+¢ (11.25)

Denote Apin [Ra) the smallest eigenvalue of Ry > 0, then the two following results hold:

o If( = A(x)0,Hy then if (Rq— A) > 0, the perturbed system is still globally stable with the
equilibrium x4

o If|¢| < k|0:Hy| where k < Apin [Ra] then H, < 0, and thus the system is still globally stable

The disturbance defined via the uncertainty on the resistivity dn and on the thermal diffusion
coefficient §y leads to an uncertainty 0R = 6R” applied on R. The disturbed system can be
defined as:

This kind of disturbance corresponds to the first type defined in the previous lemma. Hence, the
system is still stable as long as the total dissipation is positive, i.e. [Rq + dR] > 0.

The second kind of uncertainty on the control action spatial distribution and on the (bootstrap)
current profile may be modelled as disturbances of the second type in lemma II.3. Nevertheless, it
remains difficult to explicit quantitatively the bounding condition of these disturbances as well as
to choose a non-linear Hamiltonian Hy that satisfies the condition in lemma II.3.
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III First case study: the PCH resistive diffusion model

The proposed IDA-PBC controller allows to stabilize the safety factor profile at the desired reference
using two controlled (scalar) variables: the loop voltage Vieep(t) and the external current power
source P, (t). The feedforward control is designed by choosing the (reachable) desired steady state.
In this example, a simple controller tuning for the IDA-PBC parameters is proposed. This tuning
is equivalent to damping assignment and energy shaping. The simulations chosen to illustrate the
approach are based on both the Tore Supra WEST and TCV facilities.

ITI.1 The resistive diffusion model

One obtains in chapter 4, section II the following time-dependent dissipative Port-Controlled Hamil-
tonian model equivalent to the resistive diffusion equation once discretized using our symplectic
Galerkin scheme:

() = 100 ) - D
b RCE 0 0 OpHEg (I11.1)
_ < Jbs + Jext )
*J4‘/loop

The variables d, b, Jys and J.,; are the time-varying coefficients of the expansions in the chosen
approximation bases of respectively the electric field, the magnetic field, the bootstrap current
density and the external current source density. Note that the boundary control Vi,e,(t) is now
embedded in the finite dimension state equation. The matrices Ji, Jo with J; = —J2T are obtained
from the discretization (and reduction) of the spatial derivation 9, in the effort approximation basis
while Jy is related to the boundary coefficient of this approximation. The dissipation matrix R is

determined by using the resistivity approximation in the same approximation bases 1 (z,t). The
total (approximate) energy function Hpg,s is defined as:

1 1
Hpn = 5 (d"Gad +b" Gygb) = Sa' Qu

where the matrices G¢; and Gy, 4 are diagonal and reduced to, respectively, the electric and magnetic

. 1 Cy . . . . . .

permeability, - and —2, in the simple anisotropic case.. The coefficients C5, C3 are the toric
€0C3 0

coordinate coefficients defined by the plasma quasistatic equilibrium (chapter 4, subsection IV.2).

The external current source is assumed equal t0 Jeyt = fext (2) Pext where feuy (2) is the external
current source spatial distribution. Using these assumptions, the PCH model here above becomes:

(3)-105 ) - O 6, ) ()

O Hp M
IV (II1.2)
+ fezt Peot 0 P
0 J4 ext
Woop
g(2) ——

u(t)
This reduced system is thus defined directly in the usual the explicit linear PCH form (IL.1),

except for the under-actuated non-linear mapping ¢ (z). A reachable equilibrium as well as the
corresponding feedforward will be determined in the following subsection.

II1.2 Reference state generation for the resistive diffusion model

The setting of the equilibrium point is restricted because of the actuator limitations previously dis-
cussed. To provide to the controller a reachable equilibrium profile, from two points of the reference
gres used by the physicist, the steady state z4 = (dg, bd)T is computed (with by deduced from
the inverse of the safety factor), and the corresponding feedforward control ug = (Peyt.d, Vioop.d) 18
derived. The plasma resistivity is supposed to be known as well as other system parameters. The
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equilibrium profiles x4 will be adapted online to take into account the variations of the actuators
parameters feq:.q and the reference g,.y. We will make use of the relation between the g-profile and
the magnetic field By in [107] and of equation IV.15 in chapter 3 . Using the geometric reduction
in chapter 3, and the symplectic discretization method in chapter 4, this relation becomes in the
chosen approximation spaces:

By (2i,t) = w/ (2) ba () = 2rBgoa® (IL.3)

K2

where g; denotes the values of ¢ at the position z;,Bgo the toroidal magnetic field intensity at z = 0

and w/ (z;) = ( wi (z) o wh_ (2) ) the N — 1 Bessel approximation functions defined in

chapter 4, section 2. On the other hand, at the equilibrium #; = 0 and the equilibrium profiles
must satisfy:

J1Gmgba + R 'Gada + Jeat.d + Jos.a =0
—JoGada + J4Vioop.d =0

‘/loop.d

da= (0 (J2Ger) ™" Ja) < Pest.d ) (II1.4)
by = — (Jleg)_l ( fewt.d R(t)fl.]z_l.h ) Ug — (Jleg)_l Jbs.d

=

c(®)

From (IIL.3) and (III.4), the feedforward control is therefore:

Peyia _ w! (21) - 2 zl/‘ll
( Vi ) = (( w/(22) >C(t)) x 21 (Byoa®) ( 2/ ) (IIL.5)
Remark 16. In practice, for the Tore Supra WEST case where the shape fe.: (z,u) depends on
control signal P.,;, an iterative loop is used at each time step to solve equation (IIL.5). This “loop”
allows (also in the presence of disturbances and/or model deviations) to build reachable references
and actuators requesting in steady state. However, there is no guarantee that the actuator requests
based on the computation of both the feedforward and the feedback parts of the control law will be

compatible with the system limitations during the transient phase (references tracking) or in case
of disturbance.

ITI.3 Controller tuning

In the sequel, a non-linear “proportional” feedback control is proposed. The desired energy Hy; =
H + H, is assumed to be the usual a quadratic form:

Hy = %XTQdX = %XT (Q+ Qu) X (111.6)
with X = 2 — x4 the state error and Q4 = QF > 0 (in such a way that Hy satisfies the integrability,
equilibrium and stability conditions (I1.6-I1.8)). Two controller proposals are carried out in the
sequel. The first one corresponds to a choice as simple as possible for the static damping assign-
ment R, (time-invariant) and the energy shaping Q,, derived from the matching equation (II1.7).
Nevertheless, this approach admits a large uncertainty on the designed R, and do not handle the
actuator saturation nor some MHD instability condition for the system itself. Hence, in the second
proposal, an optimal criterion defined on the safety factor error and which handle the actuator
capacity is figured out in order to deduce a smarter choice for the IDA-PBC parameters.

I11.3.1 IDA-PBC simple choice: energy shaping and damping assignment

In the following, we choose J, = 0 since the interconnection structure J; doesn’t modify the
convergence speed of the system total energy Hy in equation (I1.3). The matrix Q, shapes the

lwhen the toroidal magnetic flux ® is assumed approximately constant, it takes the average value: ® =
—1/2Bgpa?z? (cf. [107] or [10, p.255])
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total energy storage function Hy of the closed loop system, while R, plays the role of adding
dissipation.

Since the initial system has dissipation R only on the electric field domain (linked to the first
variable d), it’s possible to add dissipation on the other field (linked to the second magnetic domain
whose state is described by the variable b), via the matrix R, by using the form R, = RL =
{ 8 ]ga } , 0 < R, € R"™™ where R, is chosen to be a diagonal matrix (damping on the whole
system state) or eventually only has some non zero diagonal values corresponding to the two
reference positions z; and zy. The higher the value of R, is, the faster the system will converge.
However, the input power limitation on the loop voltage V.., doesn’t allow to set a huge value for
Ra.

The choice of Q, is more complicated. The only condition to be satisfied is Q4 = Q + Q, > 0.
One can refer to section 3 in [78] for a detailed discussion about how to choose Q, so-that the
matching equation could be (fully or partially) satisfied. An arbitrary choice of Q, will anyway
give an equivalent control signal by applying (II.5). However, the control law in this case doesn’t
fulfill the matching equation (/7.4). This also means that the static feedback transforms the original
system (II.1) into the desired one (I1.2) with an unknown error coming from the matching equation
error. Thus , nothing guarantees the existence of a control law agreeing with a particular choice of
IDA-PBC parameters.

One of the approximating solutions proposed in [78] is to pre-multiply the matching equation
(IIL.7) with the left annihilation g of g4 (i.e. such that g7 g4 = 0), and to choose Q, as the solution
of the “linear” equation:

0= gigadu = ¢ ([J—(R+Rau)]QuX — RaQX) (I1.7)

One should remark that Q, defined in this way is time-dependent due to its dependence with
R (z,t).

ITI.4 Simulation results

In the simulations, the presented IDA-PBC controller is tested first with a simple model of the Tore
Supra WEST tokamak (from the CEA/Cadarache, see [107]) and then with the RAPTOR code
developed for the TCV tokamak (cf. [30, 29]). The electronic temperature profile of the plasma is
computed using a static 0D model (with an analytic spatial distribution expression) in the Tore
Supra WEST simulation and a thermal diffusion model in the RAPTOR/TCV case. The plasma
resistivity mainly depends on this temperature whereas the bootstrap current is a function of its
gradient.

Remark 17. The output signals are defined differently according to each system. They depends on
the available measures of each Tokamak. In the WEST Tore Supra tokamak, both the safety factor
g-profile and the plasma current at the boundary I, (~ 1/¢(-=1)) are considered. In TCV, all the
measures are based on the g-profile.

Different simulation scenarios - related to the “experimental reality”- are set up for the two
tokamaks.

II1.4.1 Results for the Tore Supra WEST configuration

The current-drive heating source is provided by Low-Hybrid (LH) launchers following non-linear
scaling laws (given in [107]) and the plasma resistivity is computed using a non-linear model (also
from [107]). The other plasma parameters can be found in appendix A or in [19].

Two reference values for the g-profile at the two extremities are considered as control objectives:
¢1 at z; = 0.001 and I, (which equivalently force the value of ¢2) at zo = 1. Two separated step
references of I, at t = 7s and ¢; at ¢ = 13s are used to illustrate the behaviour of this control law.
The simulation results associated with the choices of R, et Q, discussed in the previous section
are figured out.

First of all, since the system is naturally dissipative, we have the convergence of the open-loop
system with the feedforward control (see figure III.1). The desired reference is reached at the
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steady state. The response time is decreased by the feedback control action via non zero R, and
Q, matrices (see figure I11.2).

However, with the step references for I, and ¢, the closed loop system with a large damping R,
over-responds to the sudden changes and produces impulses of P,y and Ve, (figure II1.2). A low-
pass filter is therefore necessary and will be applied on the references to avoid this phenomenon. The
different response times between I, and g illustrate the timescale effects of the different actuators.
The boundary control action can immediately have an effect on the conjugated boundary output,
whereas the distributed action needs, more time to affect the system state at the center. The
integrator is not employed in this example since the small static error is neglected (it is indeed in
this case negligible when compared to the uncertainty in the g-profile measurement).

Controlled outputs
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Figure III.1: Open loop system with only the feedforward part of the controller

II1.4.2 Results for the TCV configuration

Two ECCD/ECRH clusters? (see chapter 2, section 1 for more details) are used to generate both
the non-inductive current and the external heating source. The first one is used as a co-current
source (to increase the total plasma current) and the second one as a counter-current source (to
decrease the total plasma current). Both clusters are also used as external heating sources and are
configured with their own profile shapes. Therefore distributed control actions have the forms:

Je;vt = fea:tPea:t = .fewt (PA - PB)
(I11.8)
Sheat fheatPheat = fheat (PA + PB)
The total heating source Pjeq: is kept unchanged during the plasma discharge in this section. We

also consider that all the states are measurable or computable from measurements. Unlike in the
case of the tokamak Tore Supra WEST, one can “correctly” estimate the whole profile of ¢ in TCV.

2The details for the TCV actuators may also be found in the website https://crppwww.epfl.ch/crpp _tcv.html
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Figure II1.2: Closed loop system with the full finite dimensional controller (feedforward and feedback
parts)

From MHD stability and confinement considerations, it is desirable to keep the g-profile near the
center as flat as possible. Therefore, two reference values for the safety factor ¢ are defined at the
radial relative coordinates z; = 0.1, and zo = 0.4 which are in the interesting zone. The feedforward
calculus gives uy as well as the reference profile g4 (corresponding to the two reference values and
taking into account actuator limits). The IDA-PBC control determines the feedback signal du from
(I1.23) to correct the error X.

Remark 18. In the TCV case, the output ¢-profile determined by RAPTOR is based on a finite
element discretization method of the resistive diffusion model, while the one in our model comes
from a symplectic geometric method (see chapter 4). This explains the non-perfect match of two
g-profiles showed in the results figures. In other words, even in the best case there’s still a ¢-
profile error between the two profiles computed with the two different models. The controller
objective is however only to regulate ¢ at the two chosen positions (and only give the best possible
approximation of the g-profile elsewhere).

In the figure II1.3, the reference ¢ profile is set with the values at the two points z = 0.1, 0.4
as q, = (0.85, 1.25). The heating power is switched on at ¢ = 0.2s, the feedback control starts at
t = 0.45s. Then at t = 1.2s, the reference is changed to the new desired profile ¢, = (1, 1.25). We
denote error 1, 2 the gaps between ¢ and ¢,y profiles at two considered positions.

Since the system is naturally dissipative, the feedforward in figure III.3.a shows the convergence
of the opened-loop system. Thanks to the re-computation of the equilibrium profile as in (II1.4)
at each step time, the g-profile reaches a steady state which is quite closed to the reference values.
In figure I11.4 and IIL.5, the response time is decreased by the feedback effect via the R, damping
and the Q, energy shaping.

It’s important to note that, in general the feedback effect does not significantly acts on the con-
sidered particular positions. It does ameliorate the whole g- profile when more damping assignment
is added (see figure II1.4 and IIL.5), although the control strategy is only based on two reference
points of ¢- profile.
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Figure III.4: The response of the closed loop system with an IDA-PBC controller and a small
damping R,

Since there are always static errors caused by the approximations in the linearization (see sub-
section II.4) of the actuator distribution profile and in the state estimation in (III.8), an integrator
is added to the studied scenario and results are shown in figure II1.6.

Remark 19. The errors on the g-profile at the two considered positions are totally eliminated after
0.5s. However, it is “expensive” in term of controller energy to compensate the gap on the two values
of the g-profile below 0.05. Furthermore, P4 can’t be technically set under the power of 150 KW
and consequently the absolute convergence seen in figure II1.6 is unreachable in the reality. On the
other hand, a small error on ¢-profile doesn’t lead to a significant change in the behavior of the
whole system.

In the figure I11.7, two disturbances are added. An error of 0.57n is added on the measured
resistivity at ¢ = 0.65s and an error of 0.5 f.,: is added on the estimated actuator profile at ¢ = 0.9s.
These perturbations are effectively rejected. As expected, the loop voltage Vioop predominantly
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Figure II1.5: The response of the closed loop system with an IDA-PBC controller and a larger
damping R,

corrects the perturbation on resistivity while the external current source is used to compensate the
distributed error on the current profile.
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Figure II1.6: Closed loop system with IDA-PBC controller with integrator effect

ITI.5 Experimental result

The IDA-PBC control with the simple damping and energy shaping in subsection II1.3.1 was im-
plemented on TCV Tokamak. The real experimental data are compared to the simulation one in
the figure II1.8. The test scenario is set as the same as our previous simulation in the subsection
111.4.2.

The controller reacted as predicted in the first period around 0.5s. The average control values are
consistent with the simulation result for all P4, Pp and Vj,,p. Unfortunately one of the cluster (the



CHAPTER 5. IDA-PBC CONTROLLER DESIGN 7

W A~ OO
T T
\r
T TV _T
g o7
- 0O O
(SRR

= T - - --310%

loop il

Control signals
)

e

0.05

-0.051 I I I I I I I ]
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
£ T T T f T T >l
8 —4q
6 ---q o= :
519‘ Gorofe 1 1=1:9958 =
o4 == = Y%ror -
ol i
3¢ PPN
T T e e e mm-m-—-—-=-—" ~
OF = === o memmmmmmmmmmmmmmmmmmm—m—m = ~o 4
I I [ I I I I I I ~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure II1.7: Closed loop system with IDA-PBC controller (with the integrator) with perturbations
on the resistivity and on the actuator spatial distribution

co-current source, cluster A) stopped working at ¢ = 0.8s. From then we lost the control efficiency
as the controller wasn’t informed about this accident. However, the closed loop control at least acts
in the “good direction” (using cluster B only) when g,y profile reference changed until the end. We
can remark at ¢ = 0.8s, when P4 was cut off, the simulation realized the variation of ¢-profile, then
reacted on Pg gm, whilst in practice, it seemed that the controller didn’t figure out the change. It
maintained Pp until the reference moved to the new profile. One of the unexplained observation
is that the real controller Pp responded more slowly than in simulation, even in comparing to the
beginning of the feedback at t = 0.45s. It may come from the actuator performance itself.

The ¢- profile at two considered positions are also showed in the figure II11.8. The feedback
control is re-simulated based on the experimental average plasma density 7 from the shock 49514.
Due to the fact that the control signals are equivalent in two cases, the g-profiles shows no differences
but the measure noise between them. Furthermore, the measured values do match quite well the
simulation ones.
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Figure II1.8: TCV shock 49514

IV . TMHD Coupled system

Actually, the resistive diffusion model used in the previous section is equivalent to the resistive
diffusion equation which is widely used as a control model for the plasma (when one tries to
regulate the security factor profile, for instance). However, as explained in chapter 2, section IV,
the influence of the temperature T on certain parameters in electromagnetic domain, such as the
resistivity 7 (T') and the bootstrap non-inductive current Jy; (9,T), is not negligible. The MHD
couplings between the electromagnetic and thermal domains are presented in chapter 2 in the
irreversible entropy source term and in the bootstrap current source.

Therefore, a coupled control model made with the resistive diffusion submodel and the thermal
diffusion submodel, is investigated hereafter. This finite dimensional control model is obtained
with the coupling of the two finite dimensional approximations from the two diffusion models,
using two geometric reduction schemes. Again, a feedforward control will be used to guarantee the
compatibility of the designed control with the actuator constraints. Then, an IDA-PBC feedback
law will be synthesized using the the linearized error system.
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As the result of adding the thermal diffusion submodel, a third actuator, the external heating
power source Ppeq:, will be involved. Then, due to the under-actuation of the studied system,
only the values of the safety factors at three reference points z1, zo and 23, denoted respectively
q1, g2 and g3 will be assigned with the help of the three available control variables Vigop, Pezt and
Pheqt- However, the corresponding full radial profile reference for g-profile (hence for the state
variables of our model) is required in order to define our IDA-PBC state feedback. This profile will
be computed by taking into account at the same time the actuation constraints and the TMHD
couplings. This procedure leads to an achievable steady state for the feedback design and, on the
other hand, transforms the feedback design into a linearized IDA-PBC feedback control problem.
The obtained numerical results are validated with the RAPTOR code.

IV.1 TMHD control system

The first resistive diffusion submodel is recalled in equation (III.1) in the previous section. The
second submodel is the discrete thermal model derived from the 1D port-Hamiltonian thermal
diffusion model (V.3) (in chapter 4, section V), using the same discretization methodology as for
the resistive diffusion submodel. This finite-dimensional approximation reads:

Co5 )= 10 )= (o w075 ) G )

1
HT = iezz QTeem

(IV.1)

where e, f, € RV*1 are respectively the time dependent coefficients of TD;s and of the heat flux

fq- The matrices Jr1, Jr2 € RVN*N with Jpy = —J%Q are obtained from the reduction of the spatial
derivation operator 9, in the chosen finite dimensional spatial approximation bases. Qr € RNV*¥
is the positive definite matrix obtained from the discretization of the constitutive relation for the
energy (i.e. between e., and T) and Ry € RV*¥ is the thermal resistivity approximation which
depends on the thermal diffusion coefficient x. This thermal diffusivity coefficient (in our model) is
used to write the dissipative constitutive relation between the thermal force F' and the heat flux f;,.
Jry € RV*1is related to the boundary coefficient, T} is the fixed value of the average temperature
at the boundary and Hy is the thermal energy.

Note that the PCH model for the thermal diffusion (IV.1) is given in implicit form only, since
there’s only one balance equation for the entropy. The second equation (used to close the constitu-
tive equation with the skew-adjoint operator to form the Dirac structure) is the dissipative relation

giving the thermal force.
The aggregation of the resistive diffusion and the heat transport submodels results in the finite
dimensional TMHD model:

0¢d _( 0 i ) o ( R 0 ) 0
a:b _ J» 0 0 0

( dtec )_ 0 0 Jm - 0 0 0 x
0 Jr2 0 0 R;l

Geld _fea:tPe:ct, — Jbs
o[ Gmeb |, J1Vioop

av.2)

Gree, S

£y JraTy

which is written in the (implicit) PCH-like form:

(2)=1we-re (%)@ (v

q

where 7 = —-J T isa skew-symmetric interconnection matrix defining a corresponding Dirac struc-
ture while R = RT > 01is a symmetric positive semi-definite dissipation matrix which is nonlinearly
depending on the state variables. The total energy function or Hamiltonian is simply the sum of
electromagnetic and thermal energy: H = Hgy, + Hy. As a consequence of this port-Hamiltonian
representation for the TMHD model, the IDA-PBC approach for nonlinear control may be applied
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to the whole interconnected model as it was already the case for the electromagnetic part of it
(equivalent to the resistive diffusion model).

The control of the interconnected system (resistive diffusion and thermal diffusion equations) is
expected to take advantage of the explicit state space representation of the TMHD coupling analysis
to improve the control performance through a better parameter estimations for the resistivity R
(via a good approximation of n (T,) and of the bootstrap current Jys (Te, 0,T¢)), as well as for the
thermal resistivity Ry (via the diffusion coefficient x (0,T, B)).

Besides, the control actions are assumed to satisfy specific shapes (radial distribution) via the
functions fey: and freq: (namely Gaussian distributions in the studied case). Therefore control
variables are the scalar total external current power P,.,; and heating power Ppeq.;. As discussed
in subsection II.4, this implies that only a limited set of equilibrium states x4 = (dg4, by, em)T
are reachable. Thus a feedforward control will be designed first which leads to a reachable steady
state for which the closed loop convergence of the feedback diffusion system may be obtained via an
IDA-PBC controller. Previously, a feedforward control (Pey, Vloop)g has been proposed to achieve
the regulation for two reference points of the safety factor profile: at the center and at the boundary.
Here, using the interconnected TMHD model will allows us to add a third reference point of ¢ by
the use of the new control action Ppeq:.

IV.2 Steady state generation for coupled TMHD model
The steady state x4 of (IV.2) satisfies:

Jlegbd + R_lGeldd + fewtpewt +Jps =0

J— d pu—

JQGel ci+ J4‘/loop.d 0 (IV4)
Jrifya + S =0
JraGree, — Ry fyq + JraTy =0

The following points could be noticed :
e The input signal T} is assumed constant in these equilibrium equations (77 = 0for instant)

e The source term S includes the Joule effect Syouie = 1Jt0t (Jiot — Jni) (Where Jyos is the total
current density) and the external heating source Speq: which is controlled by the heating
power Preq:.

e The TMHD couplings - including the terms Jys (Bg, T, 0,T), n(T), and x (0,1, By) - are
estimated by empirical analytic expressions given in chapter 3, section 4. With the assumption
that the thermal steady state for 7" and 0,7 are quickly established and also assuming a
constant particle density n, we can deduce from these expressions the following values for:

— the resistivity coefficient :
n(T) = Cy (b) T2

— the thermal diffusion coefficient:
x (0:T, Bg) = Cy (b) 0.T

— the discrete bootstrap current:
_ 1
b

1

=5 (51 (Jr2Gr) ™' + 52) (JriRr)™ 'S (IV.5)

= % (51 (Jr2Gr) ™ + 52) (Jr1Rr) " (Ssoute + Sheat)

Jbs (Bleew +62R;1fq)

The Joule effect Sy, may be considered as a measurable output assuming that the
total current and the external non-inductive current are known. It’s also one of the MHD
couplings but in practice, it is negligible when compared to the external heating source.
Sheat 18 given by the analytic expression fhreqtPheat Where freqt is a chosen (known)
Gaussian function of z which is a characteristic of the used actuator.
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Due to the different orders of magnitude between T and b and to the fact that only small variations
of the magnetic field are considered, the dependence of the bootstrap current, the plasma resistivity
and the thermal diffusion coefficient with the magnetic field may be neglected. This allows a
linearization for the feedforward computation, using, for the computation of these quantities, the
measurement, of the magnetic field instead of the foreseen reference bg. It has to be noticed however
that doing so, the stabilization with the state feedback control will be obtained only locally, when
the requested references will be close enough from the system initial state values.

Remark 20. One can remark that only the influence from the thermal domain to the electromagnetic
one is represented and not the opposite sense. This choice however is justified by the assumption
in chapter 3, section II.2 that the diffusion time-scales of each domain are separated by several
orders of magnitude. The temperature establishes thousand times faster than the magnetic field
does. In consequence, the magnetic field can be considered as “static” in the computation of the
MHD couplings.

Finally, the feedforward is deduced from the steady state equation (IV.4) using the relation
between the safety factor ¢ and the magnetic state b in equation (II1.3). The obtained feedforward
Uug is:

-1

Pext wf (21)
(Pheat)3/2 Woop = wf(ZQ) C
Pheat d wf(z3)
n oz o2\ I
27 (Byoa?) (1, Z 3) (IV.6)
q1d q2d 93d
x w’ (21)
+ wf(ZQ) (Jleg)_l C'bs.dSJoule
w! (z3)

where C = — (J1Gmg) ™' ( feut CrJy'Js  Chsfnear ); Cr = R/ (Pheat)g/Q, while z1, z9, 23 are the
three positions of the three references q14, g24, q3q for the safety factor.

The feedforward control is thus derived from the steady state for the system obtained by the
linearization at each time step of the non-linear parameters R, Ry, G and J,s. The feedback
control is then required not only to increase the convergence speed but also to overcome the errors
caused by the linearization assumptions.

IV.3 Controller tuning

The interconnected system naturally converge to its equilibrium thanks to the two dissipations
represented by the dissipation matrices R and Rp. We decide to preserve the interconnection
structure 7 of the original system, hence not modifying the internal dynamical couplings (7, = 0).
Our control design consists in setting R, constant such that Ry = RY > 0 (the desired dissipation
rate) and then to determine the shaped Hamiltonian H; and the feedback signal du with the help of
the matching equation (III.7) and the integrability, equilibrium and stability conditions (I1.6-11.8).

The robustness of the controller with respect to two kinds of uncertainties is studied. The first
kind of uncertainties are those on the system dissipation R resulting from poor estimations of the
plasma resistivity n and the thermal diffusion coefficient y. The second kind of uncertainties are
related to the linearization assumptions made in the derivation the feedforward control and in the
approximation of the bootstrap current J,.

Briefly, with a choice of supplementary dissipation R, such that R4 is sufficiently large, we
can handle these uncertainties (see subsection II.5). Of course, the actuator power saturation will
prevent us to compensate very large perturbations. Besides, the designed controller being basically
a proportional controller, the choice of large values for the proportional gain may create undesired
oscillations and instability for the closed loop system.

IV.4 Simulation

Three reference values for the safety factor ¢ are defined respectively at the radial relative coordi-
nates z = 0.1, 0.3, and 0.4. The feedforward calculus gives w4, the whole reference profile g4 and
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the average temperature profile Ty, corresponding to these three references and taking into account
the actuators constraints. The IDA-PBC control determines the feedback signal du from matching
equation (IT.4) to correct the error X. The IDA-PBC parameters are designed as discussed in the
previous subsection, with the choice of 7, = 0 and R, such as:

( 0 0 ) 0
R,=| \ 0 fla (IV.7)

a2

0 R 0

0 0
where the positive diagonal matrix R,; and R,2 account for the dampings added in electromagnetic
domain and thermal domain respectively. As a particular case one can set only three diagonal values
for the matrices R,1 and R,2 which correspond to three chosen reference positions.

The proposed IDA-PBC controller is tested on the RAPTOR code with the TCV configuration.
The simulation results are showed as below.
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Figure IV.2: Feedback control of coupled system
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Figure IV.3: Feedback control of coupled system with a supplementary integrator
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Figure IV.4: T profiles at ¢t = 0.7s (a) and ¢t = 1.5s (b)

Figures IV.1 and IV.2 show respectively the results obtained with the feedforward and the feed-
back controls. The heating actuator starts at ¢ = 0.2s with the initial values (Peat, Vicops Pheat) ;0=
(40kW, —0.6V, 300kW), whereas at z = (0.1, 0.3, 0.7) the reference g-profile is set as ¢, = (0.85, 1.1, 2.4).
Then at t = 0.8s, the reference is changed to ¢, = (1, 1.4, 3).

The feedforward does bring the ¢ profile close to the reference values but the actuator values
as well as the ¢ profile oscillate around the equilibrium due to the parameter linearization and
approximation. The feedback however makes effort to improve the result by continuing to react
significantly on Ppeq:. However, it doesn’t succeed in stabilizing the middle reference value for the
g-profile. It is mainly regulated by Pjeq¢, which continues to increase till the end. An integrator
is implanted for the simulation presented in figure IV.3. A signification improvement is obtained
for the first and the third points, which are directly affected by P+ and Vjsp, while Ppeq+ makes
impact indirectly to the second point via the TMHD couplings Jps. The figure IV.4 shows the
temperature profile vs the reference defined by the feedforward control at t = 0.7s and ¢t = 1.5s.
Although these two profiles are built by two different discretization methods, they still match quite
well to each other. On the other hand, these results lead to a discussion about the reference choice:
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should we take two reference points for the g-profile and one for the T profile, the latter being
directly affected by the heating source Speq:. The temperature profile control should be a major
challenge in the burn control problem which is among the prospects of this work.

V  Conclusion

In this chapter, a IDA-PBC feedback law is presented for the resistive diffusion of the magnetic
flux and then for the coupled TMHD model - a set of two interconnected models for the resistive
and thermal diffusions inside the tokamak plasma. The control methodology is based on IDA-PBC
and the control law is derived from a PCH control model obtained from the geometric/ symplectic
discretization of the corresponding coupled PDEs. An integrator is also successfully used in order
to eliminate the static errors. The actuator constraints and limitations are taken into account in
the equilibrium computation for the feedforward control action. The temperature profile and its
influence on the resistivity coefficients are integrated into the control law via the Magneto-Hydro-
Dynammics couplings. The controllers have been tested in simulations with the simple model of
Tore Supra WEST and with the RAPTOR code, and compared against the experimental data. A
convergence has been observed with the computed feedforward and feedback controls. Moreover, in
the general case, one can consider the different profiles of the co-current drive and counter-current
drive. This fact just leads to a supplement linear calculus to distinguish the actuator P4 and Pp
afterward.



Chapter 6

IDA-PBC-like controller for
infinite-dimensional PHS

I Introduction

Infinite dimensional port-Hamiltonian systems have recently become more and more popular either
in the system theory community as a class of naturally well-posed (linear) systems (cf. [22, 108]) or
suitable for control designs based on Casimir Functionals in [91], Control by Interconnection (CbI)
in [58] or energy shaping in [53]. On the other hand, IDA-PBC methods have been successful in the
control of nonlinear (and linear) finite dimensional Port-Controlled Hamiltonian systems in [78, 88].
It has also been used extensively in the control of finite dimensional PCH systems obtained via
geometric spatial reduction of port-Hamiltonian systems, such as in the works on plasma current
control for tokamaks developed previously in Chapter 5. Roughly speaking, it makes use of the
feedback control to match the original system with a desired system written in the form of a closed
loop asymptotically stable Hamiltonian systems.

In this chapter we propose in the first time an extension of this idea to infinite dimensional open
port-Hamiltonian systems. More precisely, while keeping the geometrical interconnection structure
(namely the Dirac structure) unchanged, we propose energy shaping and damping assignment to
match a restricted class of closed loop port-Hamiltonian systems. In order to achieve this result,
we need to use the finite rank distributed control in the state equation and the boundary control
simultaneously.

In a second time, an IDA-PBC-like controller, similar to the one developed for the finite di-
mensional case, will be investigated. On one hand, in the infinite dimensional case there are many
constraints on the choice of the design “parameters” (more precisely on the closed loop Hamiltonian
functional, damping rate and interconnection structure). It’s hard to find a general solution to the
matching equation which also satisfies these constraints. On the other hand, if the proposed con-
troller does not satisfy exactly the matching equation and the constraints, there is no guaranteed
stability for the desired closed loop equilibrium. Therefore we propose hereafter an approximated
solution to the matching equation such that the error (with respect to some “exact solution”) may
be compensated by another boundary control via a “propagation function” (or backstepping con-
trol) to be determined. A similar approach is carried out in [50], but in a different context since it
is applied to “simple” diffusion or wave equations. In this latter work, the propagation function is
referred to as the “k-kernel” used in the Volterra (or “backstepping” in [50]) transformation.

In our application case, the control is used to set the radial profile of the poloidal magnetic
flux at some desired closed-loop non-uniform steady-state profile. Both the boundary (magnetic
coils) and distributed (antennas) actuators are used. The non-inductive current injection plays the
role of the distributed control while the loop voltage creates the boundary action. The distributed
control is finite rank since only the total incoming power and the angle for the injected waves are
controlled while the radial distribution (shape) of the control action is fixed for a given actuator.
Unlike in the “traditional” boundary control methods where the boundary action is homogenized
to appear in the system state evolution equation, the feedback distributed control is here used to
match a system with an homogeneous state equation (no control term) and a new boundary control

85



CHAPTER 6. IDA-PBC-LIKE CONTROLLER FOR INFINITE-DIMENSIONAL PHS 86

action which includes both the original control and the propagation of the distributed control.

This chapter is organized as follows. In section 2 we define the class of controlled port-
Hamiltonian systems, the class of target systems and the resulting matching equation for the
control design. In section 3 we apply this idea to the example of the resistive diffusion equation for
the poloidal flux in tokamaks. Both distributed non inductive current and boundary loop voltage
are used as control variables. Damping assignment is performed in order to achieve some prescribed
dissipation and the resulting asymptotic stability. In section 4, the boundary control steps into the
IDA-PBC matching equation via the Volterra transformation. Some propositions are discussed to
determine the designed parameters. Finally the feasibility of this control is discussed through some
simulation examples.

II IDA-PBC control for infinite-dimensional port-Hamiltonian
systems

The studied class of infinite dimensional port-Hamiltonian systems is presented in this section. The
principle of IDA-PBC control is also adapted for the considered case. In the first time, we propose
a simple control design, namely energy shaping and damping assignment for the subclass of linear
port-Hamiltonian systems. The stability of the closed-loop system in the sense of Lyapunov is also
demonstrated.

IT.1 The class of considered original and target port-Hamiltonian sys-
tems

We will investigate the control problem for a class of distributed parameters port-Hamiltonian
systems with both boundary and distributed finite rank controls defined as:

T (. 8) ~ R (@) 22 4 g () (1)

v ox

< " ) . (1L.1)
Yy

where the “distributed” control w; is just a time dependent scalar signal u; (¢). The control map
g (x) represents the spatial distribution of this control action. J = —J* is a formally skew-
symmetric differential operator (cf. [57] Corollary 3.2). For the sake of simplicity we will consider
only a restricted class of spatial operators of the form J = P9, + Py, where P; € M, (R) is a
non-singular symmetric matrix and Py = —P] € M, (R) is a skew-symmetric one, although this
class may be generalized to higher order spatial derivatives such as in [52, 102]. Denoting Z = [0; 1],
the spatial domain, the state space or space of configurations is chosen as z > X = L?([0, +00) x Z).
The dissipation is defined using the non negative self-adjoint operator R > 0, and the total energy
stored in the system using the hamiltonian smooth function H : X — R with

H = /Z HAV (11.2)

where H is the energy density. B is a differential operator induced on the boundary 0Z = {0; 1}
by the differential operator J in the sense of the following lemma [57].

Lemma I1.1. Consider a matriz differential operator L and denote by L* its formal adjoint ([57]
definition 3.2). Denote by U, V two sets of smooth functions from Z to R. Then, for every functions
u € U and v € V, there exists a differential operator By, defined on the boundary 0Z such that:

/ (v"Lu —u"L*v) dV = By, (u,v) dA (11.3)
z o0z

We say that By, is the differential operator induced on the boundary 0Z by the differential operator
L.
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For example, if we consider the first order spatial derivative L = 9, on the domain Z = [a; ],
forall u,v € Z, then we get:

[z (0WTo.u+uT0.0)dz = [, (0. (vu)dz = wvul} (I1.4)

Therefore the boundary operator By, induced by L = 0, is here simply the evaluation of the inner
product (u,v) = wv on the boundary 0Z = {a;b}. Such induced boundary operators may be
constructed for a larger class of higher-order skew symmetric differential operators. The resulting
class of systems of the form (II.1) together with the class of input-output variables which are
admissible in order to define a well-posed linear problem and generate a contraction semigroup are
defined in [108, 52, 102]. It must be noticed that the class of systems of the form (II.1) includes most
classical hyperbolic examples such as wave, membrane, plates and beams equations, shallow water
equation, Boussinesq, Korteg de Vries and Navier-Stokes flow equations, Maxwell field equations,
etc. but also some parabolic examples as it will be shown hereafter with the plasma poloidal flux
resistive diffusion equation.

The purpose of the designed feedback control is to match a target (or “desired”) canonical passive
port-Hamiltonian system of the form:

. OH
i = [Jalet) - Ra(nt)] 7
x
iy (I1.5)
- = Bd(t
Y
where Jg3 = —J; , Rq = Rg > 0 are respectively the desired system interconnection and damping
operators. The desired closed-loop Hamiltonian H satisfies:
i) (Equilibrium assignment)
OHta (zq) =0 (11.6)
oz
ii) (Lyapunov stability)
0°Hy
s (@) >0 (1L7)

B4 denotes a desired boundary operator which ensures that the couple (g, @2) is a passive input-
output pair for the target system with respect to the storage functional Hy. Again the definition and
parametrization of all admissible passive input-output pairs which lead to a well-posed boundary
control system may be found in [53] or [103, 104]. Note that the passivity with the so-called
impedance-passive input-output pairs of variables simply results from the energy balance equation
which reads (due to the skew-adjoint differential operator Jy (cf. [57] Corollary 3.2 or lemma II.1
):
dHy OHy " |
T

dt ox
(IL8)

oH,T  oH
= iy — =2 Ry=2 < iTay
ox ox

Remark 21. Unlike the “traditional” approach which consists in homogenizing the boundary control
to embed it in the system state equation and then handling it as a distributed control, the method
presented in this work reverses the idea. In other words, the distributed control is used to transform
the original system (II.1) into the target canonical port-Hamiltonian system (I1.5) with a boundary
control (usually not the same as the one in the original system).

Remark 22. A dissipative target port-Hamiltonian system, that is with R4 > 0, is asymptotically
stable even with an homogenous boundary condition @y = 0. Otherwise, when R4 > 0 is only

positive semidefinite, a simple “boundary damping” injection of the form iy = —K,92, K, > 0
ensures the stabilization. The matching equation:
OH OH
gur = 17 (2,6) = Ra (2,0)] 54 = T (@.) = R (2,6)] 5 (1L.9)

then determines the “distributed” control gu;.
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I1.2 Energy shaping and damping assignment for a subclass of linear
port-Hamiltonian systems

We will now focus on a particular subclass of linear port-Hamiltonian systems, assuming that the
energy function of the original system has the quadratic form H = %xT Qz (i.e. the system dynamic
is linear) and that the canonical choice (ug, y2) = (0,H) |gz of boundary input-output impedance-
passive variables has been selected [102]. It may happen that the interconnection operator [J has a
suitable form which should remain unchanged in the target system. In fact, this is the most common
case and the geometric interconnection structure of the actual model should not be changed in the
target system unless some specific purposes are given since it affects the structural invariants and
intrinsic dynamical behavior of the system. For instance, in the resistive diffusion equation example
hereafter, the interconnection operator 7 is defined using the derivation operator

0 1
Ja=J = (1 0 )32 (IL.10)

together with some given boundary conditions (see section 3) and should be preserved since it
implies (with a dissipative closure equation) a purely dissipative input-output operator with a
spectrum entirely lying on the negative real half-axis in the complex plane. In such cases where
the interconnection structure of the actual system must remain unchanged, the target system is
obtained by using only “energy shaping” and/or “damping injection”:

e Hy= [, 327 Quz = [, 127 (Q+ Qu)z =H+ Hy; Q4 >0
¢ Ra=R+Ry>0with Ry = RT #0

The new “passive” boundary input (and the corresponding conjugated output) of the target system
is determined via the chosen Hamiltonian H; and thus may be related with the original system

boundary control us:
U fo
~ = 0. H
(3/2) <66> (Octila) oz

(0:H + 0,H,) |oz (I1.11)

U
O, H,
( Yo )+ loz

This new boundary input 4o is thus modified only by the energy shaping Q, and not influenced
by the damping injection R,. Furthermore, in the considered linear case exponential stability will
be achieved without any supplementary boundary control @y. The stability of the target system
may be proved via the first and second Arnold’s stability theorems (see for instance [96]) by using
a suitable norm. In our case, the norm associated with the energy stored in the target system
results in very simple calculations to prove the asymptotic (exponential) stability with respect to
this norm. Indeed, assume that the energy function of the target system is the quadratic form
Hy = 1 [,27Qqz = Hx||29d, then 9,Hy (z*) = H(2*) = 0 at the equilibrium profile * = 0.
Considering no boundary control @z = 0 in the system (II.5), the energy balance reads:

d - OHy " OHy4
@t = o gy
= — [z 2T QaR4Qax
= — [,27Qu(R)" (Q0)™"" Qu(Qa)™"* (Ra)"” Qux (IL12)

- H(Qd)_l/2 (Ra)"? QdfCH;

IA
\
—
8
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where I' = min ((Qd)_1/2 (Ra)"? Qd> > 0, the minimum positive value of ((Qd)_l/2 (Ra)"? Qd)

since Q4 > 0, Rq > 0. Then:
d 2
%Hd < -T'lz|g, = —THq (I1.13)
which proves exponential stability in the sense of Lyapunov with respect to the energy norm |.| o .
The resistive diffusion of plasma poloidal flux in Tokamaks will be used in the next part as an

example for the proposed energy shaping and damping assignment control design.

ITT Damping assignment design for the resistive diffusion equa-
tion

We consider in this section a very simple solution of the matching equation for the IDA-PBC control
design for the resistive diffusion equation (see chapter 3, section IV). In this problem both the state
equation (through the non inductive current source) and the boundary condition (through the loop
voltage generated by external coils) are controlled. In the first step, if both the interconnection
structure of the model and its Hamiltonian are kept unchanged in the target system, it becomes
possible to solve explicitly the matching equation to design the damping assignment through the
finite rank distributed control in the state equation.

ITI.1 Infinite-dimensional PCH formulation for the resistive diffusion
equation

Let us recall the port-Hamiltonian formulation of the resistive diffusion equation (refer to chapter
3, section IV) in magnetic toric coordinates. This formulation reads:

_ c L _ _ _
6t 9¢ 1 82 _ 73 0 eC3 g Bdﬁ + _Jext - Jbs
By 0 0 0 0o = By 0
" (T11.1)
O, H

—_———
T J R 2

B@H) = < fz >|z1 - ( V}“l’p )
P

where the flow variables here are 9, (—Edj), Oy (—E@) and (jext —l—jbs) which correspond to the
reduced 1D variables for the electric intensity flow, the magnetic density flow and the total current
density, the latter including the bootstrap current J,, and the external current source J.,;. The
plasma resistivity 7 is normally a parameter varying significantly with the plasma temperature.
However, since the Thermo-MagnetoHydroDynamic couplings are not considered in this chapter,
the plasma resistivity is assumed to be a given spatially non uniform time varying parameter 7 (z, t).
e and p are respectively considered to be the void permittivity and void permeability (the tokamaks
are operating at very low densities). The boundary variables correspond to the total plasma current
at the edge I,; and the loop voltage Vjo0p produced by the external electric coils. Note that there’s
no energy source at the center, hence fses|.—o = 0. The total electromagnetic energy density is
assumed to be a quadratic form:

Il
S
=)

H= %:cTQx (I11.2)

With these assumptions, the PCH model for the resistive diffusion may be turned into the usual

PCH form:
) ( . ) —[JR]Q< o ) +guy
2 2 (IIL3)
) oz
Y2 T2

D
where ( il ) and ( Zl ) denote the system errors 5( =
2 2

5 and feedback control § ( Peat )Of

Vloop

7femt

the resistive diffusion system in (II1.1), and g = 0

) is the control mapping.
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Remark 23. This port-Hamiltonian model (II1.3) states the error evolution of the origin system
(II1.1). The bootstrap current J4s, not a control signal, is thus taken into account in the feedforward
computation.

Remark 24. e The control gu; is not a “fully distributed” action in the sense that it is regulated
only by the scalar power u;(t). Generally speaking (and in the particular case of the Tore
Supra actuators, g (z,t) is a function of the system state and time. A feedforward computation
is necessary to determine the accessible steady state with respect to the actuator constraint g.
The system error (II1.3) is then defined using the linearization around the desired equilibrium
as in the finite dimensional case.

e The original system (II1.3) without the distributed control u; has the “usual” form with a
Stoke-Dirac interconnection structure. Hence it which satisfies the passivity property (or
power balance equation):

—H < uly, (I11.4)

e The system dissipation R > 0 is not strictly positive definite but this may be modified by
using the distributed control gu; (which also allows to improve the convergence speed).

Consequently, if one can prove that there exists a solution u; of the matching equation (11.9)
which can bring the system to the stable target form (I1.5), then the convergence speed can be
further improved with the boundary control #s. In other words, one determines a feedback con-
trol w; (t) without expliciting the choice of the control parameters [J;, Rq, and H4, but one only
guarantees their existence.

I11.2 Controller tuning

We will consider first a simple damping assignment for the error system (I11.3), using only the
distributed control to modify the system dissipation while preserving the stored energy (i.e. or
Q. = 0, no energy shaping). We thus want to perform the matching:

at<““> —[JR]Q<x1>+gul
X2 €2
() ez
&(2) ﬂj—m]Q(Z)
S )

(I11.5)

Let us denote now by Ry = ( :1 T;}Z ) > 0, the desired strictly positive definite damping
12 T2
operator with:
1 >0
T2 >0 (I11.6)

7‘17”2*7"52 >0

1

- 0

and define R; = %3; Q= < %1 6(2)2 ) = ( 683 s > In this simplest case, the matching of
m

the distributed controller term gu; which ensures the desired dissipation R4 reads:
OH

gur = (R—Ra) 5 = (R = Ra) Q (I1L7)

Therefore, one only has to prove the point-wise existence of this scalar control u;(t) for all x value.
Meanwhile, the boundary control uy will be designed to accelerate the convergence of the solution.
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The matching equation (IIL.7) leads to:

()= (00 8)-( (S a)(2) o

—femtur = (Ry — 1)) Qi1 — 112Qa
— (IIL9)
0 - ri2Q1x1 + 12Q222

One can easily derive from (III1.6) and (II1.9) the solution:

_fe:vt Q2x2 2
= R —
Q171 " ( ! 7“1)—|—r2 Q17
(I11.10)
Qax2\”
0
1 > To <Q1$1 >
with the constraints or “bounds” on wuy:
_fe:rt
Ri—ri < u < Ry (11111)
171

Once the value of u; is determined from the previous inequality for all x, one can ensure the
existence of a positive definite damping R4 > 0 (in the case r; > R , a trivial solution is u; = 0).
The original system thus becomes the target system with the energy balance (I1.8). Therefore a
supplementary boundary damping injection @y = —K g2, K, > 0 will accelerate the convergence
of the closed loop system to the equilibrium 0 (that is the convergence of the real system to the
desired state used to design the feedforward control).

IT1.3 Simulation result

The above IDA-PBC control law is applied to the resistive diffusion model for the plasma. However,
this model doesn’t stand alone, since it requires the time-variant profiles of resistivity and bootstrap
current. The plasma resistivity mainly depends on the temperature whereas the bootstrap current
is mainly function of its gradient. For the Tore-Supra WEST configuration and for the considered
simulation conditions, these plasma parameters may be found in [19].

Two separated step references of I, at ¢ = 7s and ¢o (the plasma current at the center z = 0)
at t = 11s are used just like in chapter 5, section II1.4.1 to illustrate the behavior of this control
law. Comparing to the feedforward in figure II1.1, chapter 5, the feedback control u;, computed
from the chosen 7 and ry does indeed decreases the response time (see figure III.1). In fact, it
doesn’t allow to tune freely u; since it should strictly respect the condition (III.11). Nevertheless,
the complete feedback control with (uq, ug) is showed up in figure III1.2. The boundary plasma I,
quickly reach the reference as the boundary control V.., affects directly the conjugated variable
I,. The boundary effect needs more time to propagate to the center, in order to converge go.
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Figure III.1: Feedback with the distributed control w4
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Figure II1.2: Feedback with the distributed control u; and the boundary control s

92

In term of robustness, the same properties as those already observed for the finite dimensional

IDA-PBC may be found here.
Remark 25.

Similarly, a “strong” enough boundary damping s = —kgz, k > 0 will help to
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compensate the disturbance effect ¢ on the new conjugated boundary variable couples ( g o ) .
9 /a

IV IDA-PBC boundary control

In the previous section, the very first and simple damping assignment is figured out as a solution
of the IDA-PBC matching equation. When augmenting the solution to interconnection and energy
shaping, the solution is far from trivial, among others due to the specific conditions that each
“control parameter” (Jy, R4, Hy) must satisfy. On one hand, one can easily obtain an average
solution of matching equation, although it doesn’t guarantee the stability of the closed-loop system.
On the other hand, the matching equation deduces only the distributed control law, the boundary
control being thus still “free” to choose. This leads us to develop the IDA-PBC boundary control
framework presented hereafter.

The action of the boundary control may spread into the whole domain and a propagation
function will be used in order to stand for this effect. Although this influence is not as rapid and
direct as the one from the “real” distributed control, it can somehow correct the error done in
the matching equation. In fact, thanks to the Volterra transformation (or backstepping boundary
control, according to the terminology in [50]), the system stabilization will be recovered despite of
the error in the matching equation with the distributed control action. A relaxation in matching
equation solution is thus proposed by using simultaneously the distributed and boundary controls.

IV.1 Average matching equation solutions

How to solve the matching equation (I1.9) and how to parametrize the solutions are major concerns
in the IDA-PBC literature even for the control design for finite dimensional systems [78]. Since in
our case the distributed control is only finite rank, there is no solution in general for the matching
equation in the infinite dimensional case. We present hereafter two approaches to “solve” this
problem in some approximate senses.

e A first case occurs when there exists an adjoint function g of g so-that their inner product
<gJ-,g> = 0, and when two among the three control parameters 74, R4, and H, are set a
priory. Then the third target parameter is the solution of the linear equation:

1
0= ul/ gtgdz
0
o

1 1
- / 0" 170 (@, 0) - R (2. ) B g —/ T @) - R 2 v

0 Ox 0 ox
Note that the parameters set or computed in this way should respect the structural constraints
Jo =T}, Ra =RY > 0. and Hq = HL > 0. It is not always feasible to guarantee the
existence of a solution with these properties. However, it exists for the resistive diffusion
equation in the case of some damping assignment control as it is carried out in section III.
The idea there is to restrict sufficiently the class of admissible target systems.

e A second approach consists in solving the matching equation only in an average sense. Indeed
the scalar value of u(t), not depending on the spatial coordinate z, may be isolated from
the control spatial distribution g (z,t) in the matching equation when computing moments
for this distribution. For instance for the average value, we get:

fol gz, t)uy (t)dz = fol [Ta (z,t) — Ra (z,t)] %dz — fol [T (z,t) — R (x,t)] %dz
& w®)fyazt)d: = [} [Ja(zt) = Ra(z,t)] ?ﬂid dz — [5 [T (2,1) = R (2, 1)] g%ﬂdz 1v.2)

Jo [ (2.1) = Ra (2 1)] %dz — [MT (@, t) = R (2, 1)] %dz
fol g(z,t)dz

Therefore the obtained control u; is the one which cancels the average value (on the whole
spatial domain [0, 1]) of the residual for the matching equation. The idea could be extended
to higher moments of the matching error residual in the case where several control variables
are available.

A Uy (t)
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Remark 26. The previous proposed solution for the matching equation only solve it in an average
sense. Therefore, one can not transform the original system into the target one, which is stable,
with this control. The discussion then consists in knowing whether or not the boundary control o
can be used to stabilize this “matching error”. The proposition in the next section will exploit this
idea.

IV.2 IDA-PBC extension: matching equation relaxation

We suggest in the next proposition an extended version of IDA-PBC for infinite dimensional port-
Hamiltonian systems, using both finite rank distributed control and boundary backstepping control
actions.

Proposition IV.1. We consider the closed loop system obtained with the average finite rank dis-
tributed control defined in the previous section

i =[J —R]Qx+ gu1 = [Ja — Ra] Qax + F (2) (IV.3)

where F (x) is the error from the matching equation (I1.9). We define the Volterra (or backstepping)
state space transformation transformation:

w:x—/ozk(z,y)x(y,t) dy (IV.4)

where k (z,y) is the Volterra kernel. The boundary control ug in (II.1) becomes:

U2

Br =B (w+ /0 k() (0, 1) dy> (IV.5)
ﬁg—I—B(/OZk(z,y)x(y,t) dy>

The original system turns into a new system which is stable, if there exists a corresponding kernel
k(z,y) satisfying:

F,2) =[5 k(o) F(oy) dy— 5 (29) [Ta— Ra Qa () x (y) dy (1V.6)
+[Ja—Ral Qa [y k (2, y) x (y,t) dy =0 '
Proof.
Combining the two previous equations (IV.3-IV.6), one gets:
= [Ji — Ra| Qaw v.7)

The system (IV.7), without boundary control (Bw = 0), is asymptotically stable with R4 > 0,
according to the balance equation in (II.8). O

Remark 27. In equation (IV.5), the Volterra transformation kernel k (z,y) describes the way the
boundary control us propagates inside the system domain Z, how it allows to compensate the
matching error F () and to stabilize the closed-loop system when the condition in (IV.6) is satisfied.
Furthermore, it’s permitted to add a boundary damping via tis = Bw defined as @i = — K2 in
order to improve the stabilization of the system (IV.7), as well as the one of our original system
(IL.1).

Remark 28. The case where F (z,z) = 0 is the classical IDA-PBC design. However, when the
kernel k (z,y) is not zero, it helps to choose appropriate controller parameters (74, Rq, Hy) such

that:
—Jo K (2,9)[Ja—Ra] Qa (y) x (y) dy Ve
+[Ja = Ra] Qa (2) [5 k(2,9)x (y,t) dy =0 '
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The presented methodology may be summarized in the following way:

z =[J — R] Qz + guy
(0%
Original system Yo = Bz (Iv.9)
1
H = ixTQx
(IV.10)
T = [Ja — R4) Quz + F (2)
U/Q
uy IDA A Bz (IV.11)
Hd = 1:L'Tle'
2
w = [Ja — Ra] Qaw
z Uo
w=x— / k(z,y)z(y,t)dy s = Bw (Iv.12)
0
H g = %wTde

We will now derive the new matching equations to determine the system controls u; and wus
together with the appropriate choice of the kernel k (z,y) for the Volterra transformation and the
IDA-PBC parameters (J4, Rq, Hy).

IV.3 Solving new matching equation

In this subsection, we try to solve the matching equation (IV.6) analytically, step by step.

We will make use of the notation J; = J = (1) (1) 0, = 10,, for compactness. We may
transform the last element of equation (IV.6) in the following way:
(Ja—Ra] Qa [y k(zp)z(y,t)dy = JaQa [y k (y) dy
—RaQu fo z (y) dy
= 0.5 Qd k(z,y)z (y)dy
—Jo Ralz Qd( )k (2,y) x (y) dy (IV.13)

iQ4(2) k(z,2) z (2)
+f i0; Qd()k(zay))w()dy
—fo Ra(2) Qa(2) k(z,y) z (y) dy

since from Leibniz theorem 9. [ f(z,y)dy = f(z,2) + foz 0.f (z,y)dy . The third element of
(IV.6) becomes:

— ok (zy) [Ta—Ral Qa(y) z (y)dy = k(z y)iay(Qd y) = (y))dy

+f 2,9) Ra (y) Qa (y) = (y) dy
(integrate by part) = —k(2,2)iQ4(2)z (2) + k (2,0)iQ4 (0) z (0) (IV.14)

+fo 3 k(z,9)iQa (y)z (y) dy
+ [y k(2,9) Ra (y) Qa (y) z (y) dy
We get:
—Jo K (z,y)dy +k (2,0)iQ4 (0) z (0)

(y)dy (IV.15)

+f08kzy>sz<) ())dy +f0 zde<)Qdy)

+ [y 10:(Qa (2) k (z,9) x (y) dy+  — [, Ra(2) Qa(2)k (z,y)z (y)dy =0
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which can be reformulated as:
+0yk (2,9)i1Qa (y) @ (y) +1iQa (2) 0:k (2,9) @ (y) (IV.16)
+k (2,y) (—F (z,y) +10.Qq (2) x (y) + Ra (v) Qa (y) x (y) — Ra (2) Qa () z (y)) =0

because, for all function f (z,t) absolutely continuous in Z:

Fet)= [ 0,f )y + £ (0.0 (v.17)
0
Note that the following boundary condition holds:
F(xz(0)+k(2,0)iQq(0)z(0)=0 (IV.18)

IV.3.1 k(z,y) determination

The problem stated in (IV.16) admits an analytical solution by using the variable separation method
only in the case where 9, F (r,y) = 0. Otherwise, the solution is not trivial. In the particular
case where k (z,y) = k (y), the boundary condition (IV.18) is satisfied, and the equation (IV.16)
becomes:

Oy F (x,y) + Oyk (2,y) iQa (y) = (y)

+k(y) (—F (z,y) + Ra(y) Qa(y)) z(y) =0 (IV.19)

iaz Qd (Z) - Rd (Z) Qd (Z) =0

The second condition in (IV.19) leads to an appropriate choice of IDA-PBC parameters, which will
be studied in the next subsection. The spatial derivative equation of k (y) (the first one of (IV.19))
will define the k (y) kernel from the chosen R4, Qq (which have to be solution of the second equation
n (IV.19)):

A(y) Oyk (y) +D(y) k(y) +C(y) =0 (Iv.20)
Thus k (y) may be computed explicitly:

k(y) =e oW ( / B(y)e *Wdy + H) (IV.21)
with o (y) = [ Zgzgdy, (y) = —% and where & is a constant of integration depending on the

initial condltlon

IvV.3.2 Find (Rd, Qd)

The control parameters (Rq, Qq) must be computed together with the kernel & (y). Let us denote

Raq = ( T2 >0 and Q4 = @1 di2 ) > 0 (note that the case where g;2 = 0 is not
T2 T2 q12 Q42

possible with our differential operator J = i0,).

We will consider the simple case where 71,75 > 0; 712 = 0 and q1g2 —q35 > 0. Then the condition
for (Rq, Qq) in (IV.19) holds if:

0.q12 =riq1 =T2q2
0-q1 =212 (Iv.22)
0.q2 =T14912

Once rq, 7o are fixed, these conditions result in:

o0 _q1 _ T2
0:q2 g2 ™

Assume now that g2 = 5 (z) and 9,5 (z) # 0. From (IV.23), we get:

{q1 (2)  =a)B(2)

= a(z) = aconstant (Iv.24)
8zq1 (Z) =
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with the additional condition —/ar; <0 < % < y/ary guaranteeing Qg > 0. Hence we get
¢ (2) = Celo (Vari—c)dz (IV.25)

where C' and € = /ar; — 8;1“ > 0 are tuning constants.

IV.4 Simulation

The RAPTOR code is employed this time on the example system (I11.1). For the sake of simplicity,
the control signals are two scalars: the heating power u; = P, (t) (= Pa — Pp) of the non-inductive
current J.;; and the loop voltage us = Vigop (1)

Using the same scenario test as in subsection II1.4.2, chapter 5. Two reference values for safety
factor ¢ are defined at z = 0.1, and 0.4. The feedforward calculus gives ug4 and the equilibrium pro-
file g4, corresponding to the references and taking into account actuators limits and non-linearities.
The boundary IDA-PBC control presented in the previous section defines the feedback signals with
the choice of desired dissipation:

Ry = ( 7;)1 ;)2 ) >0

where | = % and the ratio o > 0 is fixed (we choose o = 107 since one can only add a very
small damping into the magnetic domain via ro > 0). Then the other IDA-PBC parameters (ry
and Q) are determined based on the conditions in subsection IV.3, equations (IV.22-IV.25). The
“distributed” control u; is computed from equation (IV.2), as well as the matching error F' (z, z)
in (IV.3). Finally, the Volterra kernel k (y) is figured out as in (IV.21), that leads to the boundary

control value us from (IV.5) when a boundary damping ws = —K,g2, K, > 0 is also taken on.
x10*
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Figure IV.1: Simulation result of boundary

diffusion equation in Tokamaks

IDA-PBC control for infinite dimensional resistive
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Figure IV.2: Error comparison between the presented method, the infinite IDA without boundary
control, the (traditional) finite IDA-PBC and the feedforward control

The figures IV.1 shows the results obtained with the proposed control laws. The controller
starts at ¢t = 0.45s with the initial values (Pext, Vioop),,;; = (0, —0.65V"), whereas at z = (0.1, 0.4)
the reference ¢ profile is set as (¢4, g2q) = (0.85, 1.25). Then at ¢t = 1.2s, the reference is changed
to (q1p, q2p) = (0.95, 1.25).

In figure IV.2, the system errors are examined. The feedforward brings the ¢ profile near to the
reference values, but there are still significant static error coming from the linearization and the
errors on the system parameter measurements. Three feedback controllers are compared in this
work. They are our boundary IDA-PBC control with both (u;,us)”, the only average distributed
IDA-PBC control u;, the finite dimensional IDA-PBC control developed in chapter 5. All the
considered feedback controls improve the precision of the closed-loop. Using only u; obviously
leads to a better result in comparing to the feedforward control but it can’t optimize the system
errors. The boundary IDA-PBC control (ul,ug)T has nearly the same precision with the finite
IDA-PBC control at the center z = 0.1 and it gives the best results at the second point near the
edge z = 0.4 thanks to the possibility of adding boundary damping wy = —K,%s.
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Figure IV.3: Simulation result of boundary IDA-PBC control with integrator

Furthermore, one can also use an integrator (which is similar to the case in II.2 chapter 5) to
eliminate the static errors as in the figure IV.3. The equilibrium is quickly reached in the first stage
when ¢t < 1.2s, and step by step approached in the second stage t > 1.2s. Nevertheless, it’s much
more expensive on actuator cost only to get rid of a small static error. Besides, the required control
value P,y = —4.10° MW at t = 2s is out of the actuator operating range. However, in practice,
a small gap on ¢- profile is still acceptable since it doesn’t change much the physical properties of
the system.

V  Conclusion

In this chapter, a boundary IDA-PBC control for infinite dimensional port-Hamiltonian system
is investigated. The distributed control is determined by the “traditional” IDA-PBC principle,
while the boundary control is employed to compensate the error from the matching equation. The
Volterra transformation is used to prove the stability of the target system.

An energy shaping and damping assignment control has been designed for the resistive diffusion
model of the poloidal magnetic flux in tokamak reactors, using the distributed finite rank control
uy and the boundary control us. The actuator spatial distribution has been included in the control
design and the matching of the resulting controlled system with the asymptotically stable target
system is guaranteed. This is not the case when we use some average matching method for the
infinite dimensional system or any finite dimensional IDA-PBC controller.

The proposed controller has been tested on RAPTOR simulation tool developed for the TCV
configuration. Numerical experiments show that indeed asymptotic convergence is reached with
this feedback control.



Chapter 7

Conclusion and perspectives

In this thesis, a complete methodology has been proposed for the modelling, reduction and con-
trol design for finite and infinite dimensional port-Hamiltonian systems. The plasma dynamics in
tokamaks has been selected as the particular demonstrating example throughout the thesis.

The port-Hamiltonian framework has been used to build a 8D model for each subdomain in the
tokamak system, including the electromagnetic field volume domain and the moving material do-
main (for the mass, entropy and momentum balance equations). A complete 8D port-Hamiltonian
model has been built by adding several multidomain MHD couplings. A graphical representation
of this model has been proposed using Bondgraph notations which clarify the structure of power
exchanges throughout the system, as well as some interdomain couplings of some phenomena such
as the bootstrap current or the irreversible entropy in resistive R- field.

A spatial geometric symplectic reduction has been proposed to reduce 3D port-Hamiltonian
models into 1D control models by using symmetries in the system geometry (i.e. coordinates). The
method is based on the power product conservation. The “new” 1D variables are defined in such
a way that simultaneously all power products and interconnection structures are preserved (i.e.
transformed into “analogous” 1D interconnection structures). These ideas has been applied on the
tokamak example to get 1D control models both for the poloidal magnetic flux radial diffusion and
for the head radial diffusion.

Based on these control models, the direct and indirect approaches have been investigated for
the control design. Therefore both finite and infinite-dimensional IDA-PBC control designs have
been proposed.

For the indirect approach, a symplectic discretization method has been developed to get a
0D continuous PCH control system. Using similar ideas as for the 3D-1D reduction, the 1D-0D
transformation aims at keeping unchanged the physical properties (energy, spectrum and system
structure) of the original system. A symplectic Galerkin scheme has been proposed with different
choices for the effort and flow approximation spaces. The method has been validated with Bessel’s
approximation functions for the resistive diffusion equation and for the heat equation separately
and coupled together. Numerical results exhibits excellent spectral properties, the expected dy-
namical behaviours and qualitative dynamical properties as well as a good agreement with the
“experimental” data from the METIS open-loop simulations for real shocks.

Two feedback IDA-PBC control laws have been developed from the obtained finite dimensional
PCH tokamak models, respectively for the the resistive diffusion equation of the magnetic flux
first and for the coupled TMHD model next. The control objective was the safety factor g-profile
regulation. The used feedforward control also handle the actuators saturations and non-linearities.
A supplementary integrator eliminates the static errors. The developed control laws have been
experimented on the TCV machine and gave quite good results in the single experimental section.

For the direct control approach, a boundary IDA-PBC-like control design has been proposed
from the 1D infinite dimensional port-Hamiltonian model for the resistive diffusion equation. Si-
multaneous distributed and boundary control actions have been considered. An approximate IDA-
PBC matching equation has been used to determine the finite rank distributed control law. The
corresponding matching error is then compensated by the backstepping boundary control. The
boundary control effect propagating into the whole system domain is settled by the kernel of a
Volterra transformation. The proposed method was proved to be asymptotically stable in the sense
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of Lyapunov. A simple test on the resistive diffusion equation demonstrates the effectiveness of this
infinite boundary IDA-PBC control.

Many perspectives of this work have been outlined, on theoretical as well as on practical aspects.
The tokamak modelling should be improved in the material domain in order to take into account
the material injection and the fusion reaction phenomena. The idea of system state observer and
parameter estimator (i.e. the resistivity, diffusivity, bootstrap current,...) in real time using the
PCH framework can be also considered as a possible issue for the next modelling stage since the
precision of the mesure obviously plays an important role to facilitate the control synthesis. In other
words, a more general tuning methodology for the IDA-PBC parameters could be proposed, as an
extension of the optimal design proposed in this thesis. The developed controllers are expected
to be experimented on the new configurations of WEST and TCV. The raise of the burn control
problem in the port-Hamiltonian formulation is also an important objective for the future works.



Appendix A

Tokamak plasma parameters

Most of the relevant parameters of tokamak plasma which are fixed in the tests are given in the
following table.

’ notation \ name \ value of WEST \ value of TCV \ unit ‘

a small radius of the torus 0.4 0.28 m

z normalized radius [0,1] [0,1] m
Ry big torus radius 2.5 0.88 m
By toroidal magnetic field at z =0 3.8 1.45 T

n homogenous plasma resistivity 5x 1077 10~° Qm

n average plasma density 4 % 10" 2 x 101° m=3

€ permittivity 8.854 x 1012 Fm™T
1 permeability 4 x 1077 Hm™!

Table .1: Fixed parameters of tokamak plasma

The table .2 summarizes all the significant varying parameters used as system states or system
varying parameters in this thesis.
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] notation \ name \ unit ‘
By poloidal magnetic field T
D electric field NC—!
E electric field intensity Vm™ T
H magnetic field intensity Am~1
J total plasma current density Am~2
Ja Ohmic current density Am=2
Jni non-inductive current density Am™2
H total energy of domain J
H energy density Jm=3
P poloidal magnetic flux Wb
) toroidal magnetic flux Wb
1, plasma current A
v average plasma velocity ms !
T average plasma temperature eV
P average plasma pressure Pa
X average thermal diffusion coefficient | m?s~!

Cs, Cs toric coordinate coefficients

Table .2: Varying parameters of tokamak plasma
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Appendix B

Covariant form

This appendix supplements the recall of the co-variant form in subsection I11.1 with the examples
and the calculus detail in the 3D domain © € R3.

I Differential forms

Differential forms whose definition is in (III.1) are an approach to multi-variable calculus that is
independent of coordinates. Differential forms provide a unified approach to defining integrands
over curves, surfaces, volumes, and higher-dimensional manifolds in the mathematical fields of
differential geometry and tensor calculus. It has many applications, especially in geometry, topology
and physics.

Differential k-forms are endowed with a product which we use to compute the power and define
the passivity properties, i.e expression of a k-form in a space whose has the base (dz!,dz?, ..., dz"):

w = E aHdzhl...dzh*’, ay constants

we also write it in form:
w= E ag(zt, .., 2")dz = E apgdz™

It is antisymmetric in each pair of entries.

a(...,dz’,...,dz7,..) = —a(...,d??,...,dz",...)

I.1 Exterior product

Note that the notation A is used in differential forms as exterior multiplication. In the other words,
it is applied just on the basis dz*, for examples in a 3D space (dz, dy,dz):

e a (O-form is a function on

e a I-form is a vector field
wh = wide + wody + wsdz

e a 2-form is a flux
w? = widy N dz + wadz A dx + wsdx A dy

e a 3-form is a density
w3 = wide Ady A dz

For computation, the usual rules of arithmetic are used except the antisymmetry, in particular
de Ndy = —dy Ndx and de ANdz =0

The exterior product is simply the wedge product with the particular rules in differential forms.
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A AP () x AT(Q) — APTI(Q)
Thus if w € A () and n € A% (Q):
wh = widr + wady + wadz
and
n* = mdyNdz+edz Ada + nzde A dy

So their exterior product will be:

w' An? = (Wi + wana +wsns)dz A dy A dz € A® (Q)

1.2 Exterior Derivative

The d operator named exterior derivative turn each k-form w into a (k+1)-form dw.

d: A*(Q) — AFL(Q)
In Q = R? it will be:

af af of
0 _

df’ = 8xdaﬂ—i- 8ydy-i— 8zdz
Then for a 1-form:

ow ow ow ow Oow Oow
1 1 1 1 2 2 2
dw™ = (895 dx + By dy + r dz) ANdx + (8;1: dx + —ay dy + e dz) A dy

8w3 8w3 8w3
+ ( 9 dx + By dy + 9% dz> ANdz

_ %_% dy Adz + %—% dz Ndx + %—% dx A dy
dy 0z 0z Oz x Y

At last ,when w is a 2-form:

(90.)1 8&)1 8&)1 8w2 8w2 an
dw? = [ ==d —d —d dyNd —d —d —d dz N\d
w <8m T+ Y Y+ 92 z)/\ Yy N Z+<8x x + ay Y+ Ey z>/\ z N\ dx
8w3 aUJ3 awg
—d —d —d dz AN d
+<8x T+ y Y + a2 z | Ndx Ndy

8w1 8w2 8&)3
=—w—+—F—+—F—)drAdyNnd
(83: + dy + 87;) Ay naz

Roughly speaking, the d operator in 8 dimension is considered as the ordinary gradient V, curl
(VX) and divergence (V.).

II Hodge star operator

Let’s take Q™ a n-dimensional space, the Hodge Star Operator applying to a k-form:

*x: AP Q)= AMTR(Q)

In Q" with the orthogonal basis daz' A ... A da™, take I = (iy,...i,) and the complementary J =
(J1, -y Jn—k), thus we have

*(dz!) = +dx’
The sign + depends on the computation rules of differential forms.

For examples in Q3:
*xf0 = fdr Ndy Adz € A*(Q)

*xwl = widy A dz + wadz A dz + wsdz A dy = w? € A2 Q)
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III Interior product and Contraction

Definition IIL.1. If v is a vector and « is a k-form, the interior product is defined:

iv: AP Q) = AFL(Q)

this interior product of v and « has the same principle of their like vectorial product which has
components v/ a;, . ;, and its contraction v’ a;,.. ;, defining a covariant tensor. They call it a special
machinery for contracting vectors and forms.

The explicit way to write this product:
= Z Zvjaji2<__,<ikdxi2 A ... Adzt
i2<.. i J
The interior product satisfies the following properties:
® i4ip = ig + 2 and i,y = ci, With ¢ constant
e i, is an anti-derivation, like exterior product:

in(a? A BT) = (iyaP) A BT + (—1)PaP A (inB7) (IIL.1)

In the following part, we develop explicitly this kind of product applied to different form of «.
First, we can denote that:

Tyt = E Vjig;
J

Note that i,a° = 0 with every a € A° and not like exterior product, this one gets the same
orthogonal basis of v and « like this way:

ip,da’ =1
ip,da? =0
But pay attention, from III.1 we have:
15, (dmj A dxi) =1p, (—dxi A dxj) = —da?

Therefore, it does reduce the degree of a k-form to a (k-1)-form.

III.1 Contraction and corresponding

Let’s take some simple examples of contraction calculus. Our goal is to find out the relationship
between the exterior, interior and vectorial product (concluding dot product and cross product).
Define hereafter the vector field v as a 1-form and o k-form (k = W) in R3:

ol = v dx + vody + v3dz

al = adz + aody + azdz

a? = ardy A dz 4+ asdz A dx + asdx A dy

o = apdz Ady A dz = xa°

Note that xa® = a2, and xa' = a?. Before all the product calculations, it’s so important to

identify a vector associated to an k-form o in the coordinate of three orthogonal basis (dz, dy, dz).
In particular, the 0-form and 3-form of o are considered as a scalar function o, whereas the 1-form
and 2-form correspond vector d=a dx + asdy+ azdz. Hence, the interior product can be written

for ol as:

3 3
ipal = Z v;lo, (al) = Z vitg, (andx + asdy + asdz) = viaq + vae + v3ag
i=1

i=1
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So we can see that : i,a' = x(v A xa') in exterior product term, and i,a' = 7. @ in vectorial

term. In the same manner, we have:

iya? = Zle Vi, (042)

3 wida, (ardy A dz + aadz A da + asdz A dy)
(vsag — veaz)dx + (V31 — viag)dy + (v — Via)dz
= —(x(vt Axa?))

and:

iyad = Z?zl vig, (a?)
= Z?:1 vito, (apdx A dy A dz)
= ag(vidy Adz + vadz A dx + vzdzx A dy)
= * (vl A *a?’)
The correspondence of these products is summarized in the table ITI.1, chapter 3. This equivalence
was also studied in [20, V.A.,p.295-296] for two I-forms o' and B! in R3: o = Z?zl a;dz’ and
8=, Bida .

Remark 29. In this work, the product x (o A 8) may be identified component-wise with the vector

aq b1
product | as | A| B2 |. Thereby we can express the magneto-hydrodynamic coupling relations
as B3

using this expression. In the first instance we write the Lorentz force (IV.6) using the Hodge star
product and the exterior product Fr = i,B and the electromagnetic pressure (V.21) as op =
—i(xJ)B-



Appendix C

Microscopic model (Transport
equations)

Based on Boltzmann equation (V.1) (chapter 3), we integrate the products of that equation with
2

mu N
1, mv, and 5 respectively over the velocity domain, in order to deduce the mass, momentum,

and energy balances (cf. [16]).

I Equation of continuity (particle transport equation)

When integrating equation (V.1) (chapter 3) over velocity, we get the particle transport equation:

of, 0 & [ Fag B
[ (5 3z o+ 5 () ) o

(L.1)

ong 0 _
a. aVa =0
S T B2 (naTq)
Thus it holds:
8”@ _
ot +V.(ngv,) =0 (1.2)

where a = eor i. It’s reduced thanks to the “mass conservation” without external source, and the
assumption that the third term of (V.1) (chapter 3) vanishes rapidly as v — co. With:

— = =47V (1.3)
then:
dn, ong
a ot
—V. (nqTa) + UaV.0q (1.4)
—NngV.U, —1,Vn, +v,V.n,
= —n,V.7,

as given in equation (V.5) (chapter 3).

IT Equation of motion (momentum transport)

Take Boltzmann equation (V.1)xmuv, then integrate over velocity:
afa 0 a Faﬂ
o a o] |dv =0
[ (5 s 0o+ () )

0 (mnv,)

ot

(IL.1)

+ V. (mn (vavg)) — en (Ea + % [UaB]a> =0
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Note that e, takes the value of e, = —e. Now denote v = T + v/, with the mean velocity 7 and a
random velocity v" whose (v') = 0, then:
(vavp) = Talp + (v,v) (I1.2)

and the second term of (1.2) is:

V. (mn (vavg)) = V. (mn,0s) + V. (mn (v,v3))

11.3
= mnugV.(v,) + mv,V. (nvg) + (IL.3)
+V. (mn (v,vp))
and the pressure tensor is determined:
P.s = /mv;vlﬁfdv =mn (V,vh) = Pdap + Tap (I1.4)
where P denotes the scalar pressure and 7 the stress tensor, whereas:
P =am{?)/3=nT
< / >,/ /2 (I1.5)
Tag = mM <vav5 — (v /3) 5a/3>

On the other hand, thanks to the continuity equation in (I.2), the first term of equation (IL.1) is
derived:

0 (mn,) 07, o on
— = mn MUy ——
ot ot “ ot
(I1.6)
o
= mn% — m,, [V. (ntg)]
Then from (II1.3-11.6), and (I.3) the momentum transport can be rewritten as:
dv, 1 _
nm—_- = —VP -V xT1+en|E,+ p [vB], (I1.7)
IIT Energy transport
mu?
Take equation (V.1)x 5 then integrate over velocity:
mv? [ 0f, 0 0 (Fup
5 a_ a Y a d =0
/ 2 (8t +8x5 (U’Bf)+8vg (maf>) Y
(I11.1)
0 /mn , 4 mn , o _
In first term, the total energy € includes the kinetic and potential energy due to equation (IL.5):
mn , 5 mn_o, Mn , .
=5 ()= TS
(I11.2)
mn_o 3
= — -nT
Ut
The second term corresponds to the divergence of energy flux:
— 2 [—
(vvg) = <(v + ) (”B + vég)>
= P04+ (027 + 20 (v ) + (@) v} ) (IIL.3)

(3nT) Ug N 2(r+nT)v N 2q

2
= vUg+
nm nm nm
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hence thanks to the definition of pressure P and stress tensor 7 in (I1.5), with the heat flux density:

2
q:/glv’2vfdv:mn<021)>

The energy balance equation in (III.1) is then equivalent to:
0 (mn_, 3 mn_, 5 _ _
ot <2v + 2nT> + V. { (211 + 2nT> vg + TV + q} (I1.4)
—en(ET) =0
The formula of derivative in (I1.3) is used again as:

de Oe _
% - aﬁ'v.(ﬂ)g)

= —V.[(e+nT)Tg+ 70+ q]+en(ED) + V. (€Up) (IIL5)

= —V.[nTv3+ 70+ q] + en (E7)

IV Equation of internal energy (heat balance equation) and
entropy equation

The so-called heat balance equation (or internal energy balance) is derived by means of equation
of continuity and motion, the kinetic energy is eliminated in equation (II1.4). We first remind the

kinetic rate term:
i<mﬁﬁ) _ (7 ii—vwrnm@—d—(@)
dt \ 2 N 2 ) dt dt

- (vaz) Vot (IV.1)

+0 | -VP -V x71+en E+1[EB]
( )

= —gnTV.E +T(=VP =V x 7+ enE)

due to (I.4) and (I1.7), and the fact that 7 [vB] = 0 . Then (IIL.5) becomes:

d (@@2) + 4 <3nT): — V.[PU+ 70+ q] + en (ED)

dt \ 2 dt \ 2

@fénTV.iJri 3T =—PVy—1V.0—V.q (Iv.2)
2 dt \ 2

3 d

“nT — _PV3—-7V.7- V.

(:)Qndt Vu—-1Vo—-V.q

Finally, the internal energy equation is deduces:

3 d _ _
§n£T =—-PV0—-7V.05—-V.q (IV.3)



Appendix D

Magnetic toric coordinate

The toric coordinate (r,0,¢) as we mentioned in chapter 3, subsection I1.3 is not convenient to
modelize the Tokamak system in 1D model. Instead, we use the magnetic toric coordinate (p, 0, ¢)

which is considered the deformed toric coordinate, then r = r(p,0) and dr = a—;dp + a—gd@. We

develop hereafter the derivative operators in this coordinate.

I From Cartesian to magnetic toric coordinate transforma-
tion

We remind here after the relation between Cartesian coordinate (x,y,z) and magnetic toric coor-
dinate (r, 0, ¢) (figure I.1) . A point at (z,y, ) is equivalent at (r,0, ¢) in the new coordinate:

x = (Ro + rcosf) cosg

y = (Ro + rcosb) sing (I.1)
z =1 sinf
Z

—~E&__

>0

Figure 1. Schematic view of a tokamak.

Figure I.1: Geometric toric coordinate

or

or
-, and 59 = 20

dp

a line element in coordinate (z,y, 2):

Let’s note A = Rg 4 rcos0, 6, = to simplify the calculation. We compute now

dl = dr.l, +dy.l, +dz.1,
(0,cosbcosp dp + (dgcosbcosp — rsinfeosd) db — Asing dep) 1,+
+ (8,cos0sing dp + (0pcosfsing — rsinfsing) df + Acos¢ dep) 1,4+
+ (8,stn0 dp + (dgsind + rcosd) df) 1,

(1.2)
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Equivalently, we have the new coordinate base (p, 8, ¢):

e, = dp (cosfcosg.1, + cosbsing.1, + sindl,)
eog = (0gcosbcosp — rsinfcosp) 1, + (dgcosbsing — rsinfsing) 1, + (dgsinb + rcosd) 1.
ey = A (—singl, + cosdly)
(1.3)
Thus the conversion coefficients g can be obtained as:
9o = (ep)2 = (§p)2
— o= (o)’ =03 +1?
9o = (es)” =2
= 9= 99096 = (0,)" (0% +12) N (L4)
Then a volume element is written:
av = V9 dpdodo (L5)
= 0,dp/(67 + r?)d0.\d¢ '
On the other hand, we have a common formula to calculate the volume element in the new coor-
dinate: ( )
T, Y,z
dV = det dpdfd
(p.0,0) 10 10 (16)
= rAdpdf d¢

(z,y,2)

(p. 0, 0)
to (p, 0, ¢) coordinate. As the result, they prove that:

whereas det is called the determinant of the Jacobian of the transformation from (z,y, z)

V9pgo =00/ (03 +12) =71 (1.7)

IT Derivative operators in magnetic toric coordinate

The following part will develop the expression of del operators. Applying on a function f and a
vector A = A,1,+ Agly 4+ Ayly in the magnetic toric coordinate:

e Computation of V f

1 of 1 af 1 of
vi = — Yy Y~ 9,y
d N RN T N T
1oy, L o vor (IL1)
=1, b e lg+ T 7 1y
15,] p G 40200 " X0

e Computation of V x A

VIl V99le Vsle
] 0

VxA= (I1.2)

Nz dp o0 ¢
(Vo) (Vaodo) (V3540)
Remind that we used the notation 3 x 3 matrix I1.2 to simplify the rotation expression, that
means the equivalent result is calculated as the determinant of that matrix.

e Computation of V. A

_ 1 9 (\/MAP) 9 (\/ 9p9¢A9) 9 (vgpg9A¢)
VA = " 50t et g (I11.3)




Appendix E

Theoretical eigenvalues for the
diffusion operator

In this appendix we present the calculations needed to obtain eigenvalues and eigenfunctions of the
simplified resistive diffusion equation (with homogeneous boundary condition and uniform resistiv-
ity). These eigenvalues are compared, in chapter 3, with the numerical ones in order to prove the
symplecticity of the proposed discretization schemes and their “spectral” accuracy. The correspond-
ing eigenfunctions are used to generate conjugate compatible bases for the developed symplectic
Galerkin method.

I Theoretical eigenvalues for the resistive diffusion equation

From the reduced sub-system in (IV.8), chapter 3, the diffusion model is figured out as:
0

0 -
()-(5 B) )@
_87,0 0

where f,q50 = —0: (RoBy) = fatég. For the considered case fo4 = 0, jn; = 0, using the constitu-
tive relation (IV.11), chapter 3, we get:

R

0 0 0
ng¢~ _ 0 67/) ( €Celg ) _ 0 67p ?77 0 ( fff(ﬁ ) (1.2)
— By 0 o |\ emg o o 1o |\ B

dp dp w Ro

The eigenvalues —s of the resistive diffusion equation are those complex values such that the second
order equation:

o~ab
2 N T R P
a % ; Oz = ﬁB() where x := a (13)

~ 1
—8B0:—2

has a non trivial solution (see the boundary conditions hereafter). In the case of constant coefficients
(uniform permittivity and resistivity), the differential operator £ is the classical Laplace operator
in toric coordinates:
o—x.
10
i e (L4)

a20r | = ox

In this case, one can prove using Green formula (on a disc coordinate cross section of the tokamak)
that —s is real and negative. These eigenvalues are calculated hereafter. For the case n and p

113



APPENDIX E. THEORETICAL EIGENVALUES FOR THE DIFFUSION OPERATOR 114

constant, equation (I.3) becomes:

0? - 0 - ~ (us
2 2
—B —Byg+By| —x"—1)| = 1.
¥ a2 9+xax ot O(UI ) 0 (1:5)
Let 22 = %mQ (where s > 0). Then the equation has the standard form of a Bessel equation:
226—2ﬂ+225+5(22—1):0 (L.6)
022 0z '
whose general solution is:
apJ1(2) + a1Y1 (2) (I.7)

where Ji(z) and Y (2) are 1%¢ order Bessel functions of the first and second kind. In particular,
J1 () can be written:

1 .
J1(z) = - Jo cos (T — zsinT)dr

1 ) P
_ % f_ﬂ e—?,(T—ZSL?’LT)d,T (I.S)

_ 00 (_1)m 2m+1

= Lm=o 22m+1Im! (m + 1)!2
The boundary conditions help us to determine the coefficient a¢ and a;. The condition at z = 0
forces a1 = 0 as Yi(z) is unbounded when z — 0. The other boundary condition 8, (z8) |1 = 0
implies:

0d(zJ1(z
1), Ol =0 19)
n n
Since Bessel functions satisfy:
0 (zJ
((92’1) = ZJ(] (I].O)

the eigenvalues may be calculated explicitly from the roots of the Bessel function Jy(z). These
zeros are represented on figure 1.1 hereafter.

5 10
n_ | 1 [ 2 [ 3 [ 4 [ 5 ]
z [ 2.40482555769577 | 5.52007811028631 [ 8.65372791291101 [ 11.7915344390142 [ 14.9309177084877 |

-0.5

0

l
l

Figure I.1: The Bessel function Jy (2) and its first zeros values

II Theoretical eigenvalues for the thermal diffusion equation

The actual infinite 1D model for thermal diffusion states in equation (V.6), chapter 3:

3onT V969¢
95— =0p
2 Ot \/>

(nxapT)) + 75 (I1.1)
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Let assume in the uniform torus coordinate:

g ~1
g0~ p? (I1.2)

where Ry is the nominal toroidal radius (at = 0) of the torus, and suppose also that the density
profile n is time invariant. Then the PDE for effort variable 7' can be written as:

3

So(=s1)T =0, (px (8,1)) = LT (IL3)
where (—s7) denotes the eigenvalues of the previous diffusion operator £ by Laplace transformation.
Remark that the equation (II.3) can also be written:

3 p%s
p (O2T) + p (9,T) + 5 =

T=0 (I1.4)

2
with 0. Let \2 = 3psr where s, x > 0, p > 0). Then the equation has the standard form of
P 2 X P

a Bessel equation:
)\28—26+>\£6+ﬁ()\2—0)—0 (I1.5)
N2 oA B '
Thus temperature T obviously takes the Bessel function Jpgq, the solution of the previous order 0
Bessel equation®.
Like the previous case, the eigenvalues sy are derived from the zeros of Bessel function order 0
Jpo showed on figure I.1.

I'Note that the general solution of equation (I11.5) is agJpo(\) + a1YBo (A), and the condition A\ = 0 forces a; = 0
as Yp1(A) is unbounded when A — 0



Appendix F

Error analysis of Symplectic
Collocation method

I Influence of collocation point choice

It is obvious that the different collocation points get different precisions. We try then to recalculate
the eigenvalues with the uniform, Legendre and Chebyshev collocation points. Thanks to the com-
parison table 1.1, the Chebyshev points exhibits more precision then the two others. Furthermore,
another remark is that the choice of effort collocation points seem to be more important than those
of flux, as all the calculus are based on the effort base functions w§ (z), (i = 1..N).

Theoretical
eigenvalues

Uniform points

Numerical eigenvalues
Legendre points

Chebyshev points

-2.301056852
-12.12413006
-29.79659326
-55.32237139
-88.70194524
-129.9354296
-179.0228628
-235.9642604
-300.7596298

-2,4122190
-18,6087633
-44,4229304
-92,0432864

-160,4467269
-323,5578853
354,1681743
-627,2508525
-2863,2871125

-2,3034030
-11,8201217
-27,9562188
-52,8780494
-86,8450446

-131,0484170
-208,9253302
-330,3620033
-2453,3789667

-2.304769649
-12.23545753
-30.39891094
-56.51610868
-88.81543981
-127.9699944
-176.7315844
-317.0613604
-2547.963503

Table I.1: Comparison the precision of the different collocation point choice among the points
uniform, Legendre, Chebyshev = 5.10—7

Otherwise, although the variance due to the collocation point choices do affect the precision
but it is not really the principle reason of the oscillation in our model. We investigate the second
possibility hereafter concerning to the base function choice.

II Influence of eigenfunction, base function choice

We try now to investigate the approximation precision in eigenfunctions aspect. The error compu-
tation is refered to [85]. The theoretical eigenfunctions are calculated from the Bessel function of
order 1 Jy just like in equation (IIL.10), chapter 4:

i (z) = J1 (M) (I1.1)

where )\, = skﬁ, k =1,..N — 1. The approximating functions are indicated by the Lagrange
V

method:
N-1

e (@) =)y (&) w! (@)

Jj=1

(I1.2)
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with &, j = 1...N — 1 are the flux collocation points, w? (z) are the flux base functions. Approxi-
mating errors are:

Ey (z) = yr (z) — 9r () (11.3)
Then Ej, (¢;) = 0, Vj if w’ are orthogonal functions:
1 ifj=k
(&) = / 1.4
wl (&) {0 o (1.4)

IT.1 Symplectic collocation with boundary constraints

The base functions chosen in this case are presented in subsection II1.1.1, chapter 4.

N 2—
w§ =1-aCli, 1 = J L5
H G =G (IL5)
J=1#i
where (;, i = 1..N are the collocation points for efforts, then deg (w®) = N + 1.
The flux base functions are indicated from the effort ones as:
w! = (0,w®) DT (I1.6)

with pseudo inverse D™ = D'(DD’)~!, then deg (§) = deg (w/) = N, and remind to the orthogo-
nality of flux base functions w;-c (0) =0, V5 .

Let’s take IV degree polynomials p (z) = x H;Vz_ll (x — &) , so p(x) vanishes at 0 and N —1 flux
collocation points &;: p(0,¢;) = 0. Then define a function F(z) which is:

3

(2)
B (IL.7)

We have {0,¢;} and x are N + 1 roots of F'(z). It’s possible thus to apply N times the Rolle’s
theorem on F' (z) , we get:

F(z) =y (2) =k (2) — [yr (x) — Gk (2)]

3

FENM =y @™ =5~y @) -9 @) s (IL8)
then there’s at least a ¢ € [0,&y_1] satisfies F' (¢) = 0. In orders words:
() =y(@) - @) = [y O™ —5(™] 12 (119)

However, as deg (§) = N, so the constant (y (C)(N) — y(C)(N)) also has an important effect on

E (z). The figure II.1 shows the very significant error in eigenfunction approximation, this polyno-
mial base function choice just sticks at the collocation points, such as with the first and the fifth
eigenvalues, but not elsewhere.

I1.2 Symplectic collocation without boundary constraints

Once realizing that the constant error left in the previous base function choice, consider now the
case without integrating boundary conditions, we simply take effort base function equal to the
Lagrange polynomials of degree N — 1, deg (w®) = N — 1:

N
wf:li, li: H x_(:l

J (11.10)
st ST
Similar to the previous case, flux base functions w/ has the degree of N — 2:
deg (§) = deg (wf) =N-2 (I1.11)

This time the polynomials p (x) is taken as:
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Eigenfunction for the 1st eigenvalue Eigenfunction for the 5th eigenvalue

0 0.2 0.4 06 0.8 1 ) 0.2 0.4 0.6 0.8 1

Figure IL.1: The first and fifth calculated eigenfunctions with boundary conditions w¢ = 1 — 22¢?l;
vs theoretical Bessel eigenfunctions

Eigenfunction for the 1st eigenvalue Eigenfunction for the 5th eigenvalue
07 06

06
~ !

05 S ' !
0.4 / 02y

/ ' '
03 P / ' \

/
02 / 0.1
/

/
o1 / + !

Figure I1.2: Simulation for the case of we; = le; with constant n = 5.10~7, without boundary
conditions

N—-1

p@) =[] - (IL12)

=1

<.

where deg (p) = N — 1 and of course p (§;) = 0.
With the same function F'(z) as before:

F(z) =y (2) — & () — [ (2) — Gk () Ifgi (IL13)

We have now N roots (§ and x ) of F'(z), then N — 1 times the Rolle’s theorem is applied:

—1)!

PR =y (@YY (@) [y () - g ] S (IL14)

p(x)

then there’s at least a ¢ € [£1,&ny—1] satisfies F' ({) = 0. In orders words:
. - . _ x

E(@) =y (@) — i @) = [y Q" = (O™ ] 2 (IL15)

(N —1)!
In this case gj(z)(N_l) = Osince deg (§) = N — 2, the approximation error is thus of order of

y V) = Jl(N), and it has the order of 107° with N = 10. In the figure IL.2, the eigenfunction
is better approached with the first eigenvalue, and has the same magnitude order with the fifth
eigenvalue. But of course, the boundary condition can’t be satisfied.

In conclusion, symplectic collocation method used to achieve in many PCH discretization model,
with this example of parabolic plasma resistive diffusion, it even gives a very good eigenvalue
approximation. However, the bad eigenfunction approximation, caused by the boundary condition
integrating in the base function choice, leads strange numerical oscillation in the simulation.



Appendix G

Finite difference approximation
scheme

In section III, chapter 4, a finite-difference scheme is used for the spatial discretization of the
resistive diffusion equation written in the port-Hamiltonian form. The accuracy of the spectrum
approximation obtained with this scheme is then compared with the one derived from the symplectic
collocation and Galerkin schemes. To achieve a fair comparison, a very special case has to be
considered. First, the grid points for the finite difference scheme are zeros of Chebyshev polynomials.
Besides, the spectrum accuracy is maximal with Chebyshev points. Then, homogeneous boundary
conditions have to be considered. Indeed, whatever the choice of discretization points is, the finite
difference scheme is not symplectic at all (with respect to the bilinear power product used to defined
the Stokes-Dirac structure) for open systems (with non autonomous boundary conditions). This
will result in unstable and oscillating modes (and meaningless values for the spectrum) in the
finite difference approximated model while the resistive diffusion model itself is of course purely
dissipative. The finite difference scheme used to solve the resistive diffusion equation (for the
unknown function By = RyBy) with these assumptions is presented hereafter. We start from the
simplified resistive diffusion equation:

0By B n 0 (10 ~ 9 .

ot N pna? Ox <x Ox (ng)> TogIm (1)
(L (i) 25, 4.9 5 9. '
- pa? <x2B€ * (ac * 1) 8x39 +x8x239 P

By denoting b;, (i = 1..N) the approximated values of By at the discretization points z; (zeros of
the (N — 2)*" order Chebyshev polynomial, completed with the two boundary values, in our case),

one gets:
Ob; 1 1 b;11 —b;_
b= 2bi 1+ b SRR (:2)
+2n 2 JJQ ) yi=2. (N~ 1)
i+1 T 0
where

0 = Ti— T

{ dit1 = Tip1 — T4

The boundary conditions give the missing values for b; and by:

Bla,—o =0 = b= 0

0, (xB) buet =0 = by=
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Written in matrix form (convenient for instance for eigenvalues computations) the diffusion equation
becomes: -~
Pz 72 0

1
0 an—1 | Bn-1+ o N1
—IN-1 J

A
with b := (ba,...,bx_1)T and where:

1
— 41 N
X, %
o, = — + 2
dit1 +6; 02, + 07

Bi = <—x12 - W) Vi=2.(N—-1) (.5)
1
— 41 o

Vi = i +25—

Oiyr+0i 07 + 07

As it has been noticed, this finite difference scheme with over N = 200 points has spectral properties
(see table I11.1), chapter 4 which are comparable to those obtained with the collocation method
with about N = 10 discretization points (see table II1.2), chapter 4. Basically, the eigenvalues
calculated from the characteristic matrix A in the equation .4 (which is however a tri-diagonal

1
matrix) converge to the theoretical values as N while those obtained with the collocation method

1
(and its full matrix) as el
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