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Résumé : L’objet de cette thèse est l’étude du processus métastatique par la confrontation de
données in vivo chez la souris avec des modèles mathématiques. Plus précisément, des données longi-
tudinales sur la masse métastatique totale combinées à des données IRM fournissant des informations
sur le nombre et la taille des macrométastases ont été confrontées à un modèle décrivant l’évolution de
la distribution en tailles des métastases par une équation aux dérivées partielles de populations struc-
turées. La théorie sous-jacente au modèle, décrivant le processus métastatique par des métastases
initiées par quelques cellules et croissant indépendamment les unes des autres, s’est révélée inca-
pable de décrire les distributions de tailles métastatiques observées à l’IRM, suggérant la présence
de phénomènes non pris en compte dans la théorie “standard” du développement métastatique.
Ces résultats nous ont conduit à proposer des hypothèses expliquant les différences de distributions
métastatiques entre le modèle et les données. Ces hypothèses ont été étudiées expérimentalement par
nos collaborateurs biologistes mais également in silico à l’aide de modèles d’équations aux dérivées
partielles décrivant la croissance de plusieurs métastases pouvant interagir spatialement. Les résultats
obtenus à l’aide de notre approche de modélisation suggèrent des interactions jouant un rôle impor-
tant dans la dynamique métastatique, comme l’agrégation de germes métastatiques ou l’attraction
de cellules métastatiques par des foyers métastatiques déjà existants. Une partie de cette thèse
est également dédiée à l’analyse mathématique et numérique du nouveau modèle spatial introduit
pour l’étude quantitative précédemment évoquée. Ce modèle mécanique décrit notamment l’effet de
la pression sur la prolifération des cellules tumorales. Des résultats de convergence de la méthode
numérique utilisée sont présentés, ainsi qu’une confrontation du modèle à des données de croissance de
métastases pulmonaires. Enfin, une partie traitant des interactions métastases-microenvironnement
est également présentée. Des études récentes ont en effet montré que certaines cellules progénitrices
de la lignée hématopöıétique ou encore certaines cellules immunitaires pourraient jouer un rôle im-
portant dans le développement métastatique. Au cours de cette thèse, ce phénomène appelé niche
prémétastatique a été étudié dans la littérature biologique puis modélisé mathématiquement afin de
mieux comprendre le rôle de cette niche dans la dynamique métastatique.

Abstract: In this thesis, a quantitative study of the metastatic process in the mouse has been
performed thanks to mathematical modeling. Precisely, longitudinal data of the total metastatic
burden and MRI data on the macrometastatic size distribution are confronted to a mathematical
model describing the metastatic process by the independent growths of metastatic foci starting from
one or few cells. This “standard” theory, able to describe the dynamics of the total metastatic burden,
is on the other hand unable to describe the observed metastatic size distributions. Indeed, this model
predicts many small metastases, whereas the observed metastases are much larger and fewer. In order
to explain these differences, we proposed two hypotheses that were not taken into account in the initial
theory. In the first one, metastases that are growing in close vicinity could merge, resulting in one
larger metastasis. In the second one, metastatic foci could attract arriving circulating tumor cells,
resulting also in fewer foci but much larger ones. These hypotheses have been tested experimentally
by our biologists collaborators, and in silico thanks to a spatial model of tumor growth. The results
of this study show that the previously suggested phenomena could have a substantial impact on the
number and the sizes of the metastatic foci during metastatic development. Another part of this thesis
is devoted to the numerical and mathematical analysis of the previous spatial model. This model
takes into account the effect of the pressure on the proliferation of tumor cells. Numerical convergence
of the numerical method that has been used and data assimilation on imaging data of pulmonary
metastases are presented. Finally, a last part deals with the interactions between metastasis and its
supportive stroma. Recent studies shed light on the implication of hematopoietic progenitors in the
formation of a permissive soil in the future metastatic site, a phenomenon so-called premetastatic
niche. In this thesis, a mathematical model describing the premetastatic and metastatic dynamics is
proposed to study quantitative aspects of this phenomenon.
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témoignent ces sessions de travail assaisonnées de blagues vaseuses mais souvent très drôles. Olivier
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par sa présence dans mon jury de thèse.
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Chapter 1

Introduction

Le cancer est la deuxième cause de mortalité au monde derrière les maladies cardiovasculaires [2]. Si
le cancer du sein est le plus fréquent chez la femme et le cancer de la prostate le plus fréquent chez
l’homme, le cancer causant le plus grand nombre de décès est le cancer du poumon [3]. Le premier
stade du cancer consiste en une tumeur localisée dans un organe/tissu. Une tumeur, ou neoplasie
(nouveau tissu) se développe dans un organe lorsque certaines cellules de cet organe échappent aux
régulations de l’organisme et dérèglent leurs mécanismes de régulation intracellulaire pour proliférer
anormalement. Cette prolifération anormale résulte de mutations acquises par les cellules, affectant
des gènes ayant un rôle critique dans le contrôle de la prolifération et du comportement des cellules [4].
Ces cellules se multiplient alors de manière incontrôlée, ayant pour conséquence la formation d’une
masse de cellules appelée tumeur. Fort heureusement, la très grande majorité des tumeurs demeurent
bénignes et se limitent au stade de pseudotumeur. Ces pseudotumeurs restent très localisées au sein
de l’organe et sont rapidement éliminées par le système immunitaire. Cependant, dans de rares cas,
lorsque certaines mutations s’accumulent chez les cellules, elles induisent un comportement malin de
la tumeur. Une tumeur maligne peut devenir invasive, c’est-à-dire envahir les tissus voisins et in
fine relâcher des cellules dans le système vasculaire pouvant former des tumeurs secondaires dans des
organes distants. Ces tumeurs secondaires sont appelées métastases et sont la cause majoritaire (90%
des cas) de décès chez les patients atteints d’un cancer [5].
De nombreux traitements ont vu le jour pour lutter contre le cancer et sont utilisés dans différentes sit-
uations : chirurgie, chimiothérapies, thérapies ciblées, radiothérapie, etc. Certains de ces traitements
ont prouvé leur efficacité (chirurgie pour certaines tumeurs localisées comme la prostate, imatinib
pour la leucémie myeloide chronique, etc) en clinique, permettant aujourd’hui de soigner un cancer
sur deux en France [6]. La compréhension de la biologie du cancer a permis la mise en place de
traitements ciblant par exemple directement les cellules tumorales en prolifération (radiothérapies
et chimiothérapies par exemple) ou encore d’autres thérapies ciblant certains mécanismes (protéines
extracellulaires, mécanismes intracellulaires, expression de certains gènes) biologiques permettant le
phénotype malin des cellules tumorales. Cependant, dans bien des cas, les traitements disponibles
restent insuffisants. En effet, pour certains types de cancer (foie, pancréas, poumon), le taux de survie
à 10 ans reste inférieur à 10% [7]. Une meilleure compréhension de la biologie du cancer est nécessaire
pour améliorer ces traitements. L’intérêt croissant pour les aspects dynamiques de la maladie et les
progrès expérimentaux permettant le développement de données quantitatives font de la modélisation
mathématique un outil potentiellement utile pour la compréhension de la biologie du cancer ou pour
le choix de stratégies thérapeutiques grâce à des prédictions quantitatives dans les cadres précliniques
et cliniques.
Comme nous l’avons mentionné, les métastases, tumeurs secondaires se formant dans des organes dis-
tants de la tumeur primaire, représentent la première cause de mortalité chez les patients. Paradoxale-
ment, jusque dans les années 2000, relativement peu d’efforts de recherche ont été réalisés pour com-
prendre la biologie du processus métastatique, les recherches s’étant focalisées sur la compréhension de
la tumorigénèse [5]. Le développement métastatique est donc un phénomène encore mal compris, bien
qu’il fasse l’objet de recherches de plus en plus nombreuses, dans le but d’une part d’approfondir nos
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8 CHAPTER 1. INTRODUCTION

connaissances de cet aspect du cancer afin d’améliorer le diagnostic et de mieux anticiper l’évolution de
la maladie chez le patient, et d’autre part de développer des thérapies efficaces contre la dissémination
et la croissance des métastases. Lors de la première étape du processus métastatique, des cellules
tumorales parviennent à se détacher de la tumeur primaire, notamment par le biais d’un mécanisme
appelé “epithelial to mesenchymal transition” (EMT). Au cours de l’EMT, les cellules changent de
phénotype, passant du stade de cellules spécialisées et peu mobiles à un stade moins différencié leur
conférant une mobilité accrue et la capacité d’exprimer des facteurs leur permettant d’interagir avec
le microenvironment. Ces cellules moins différenciées sont parfois capables d’intravaser, c’est-à-dire
de pénétrer dans un vaisseau sanguin, et une fois piégées dans les capillaires d’un organe, d’extravaser
et d’établir des tumeurs secondaires dans ce nouvel organe. Pour cela, les cellules doivent s’adapter
à leur nouvel environnement et établir une niche viable afin d’assurer leur survie et leur prolifération
[5]. L’étape comprenant le détachement des cellules de la tumeur primaire, le transport dans le réseau
vasculaire et l’arrivée dans l’organe distant, aussi appelée dissémination métastatique, commence à
être relativement bien comprise, notamment grâce aux travaux de recherches sur l’EMT [8]. En re-
vanche, l’étape d’adaptation des cellules tumorales au nouveau “sol”, à savoir le microenvironnement
de l’organe distant, permettant la survie et la prolifération des cellules et in fine la colonisation
métastatique de l’organe, est encore très mal comprise [9]. L’émergence de théories biologiques trai-
tant des aspects dynamiques du processus (niche prémétastatique [10], self-seeding [11]), ainsi que
les techniques expérimentales (bioluminescence, marquage aux protéines fluorescentes, techniques
d’imagerie) permettant l’obtention de données quantitatives sur la masse métastatique ou encore
le nombre et la taille des lésions rendent intéressante l’utilisation de modèles mathématiques pour
l’analyse de la dynamique du processus métastatique. Plusieurs aspects de ce processus biologique
ont été traités au cours de cet thèse à l’aide de différentes approches et techniques de modélisation.

Le plan de cette thèse est le suivant.

La partie I est consacrée à un état de l’art non exhaustif de la biologie du cancer et de l’usage des
modèles mathématiques dans la recherche contre le cancer. Elle aborde également un certain nombre
de rappels sur l’assimilation de données et l’estimation statistique de paramètres.

La partie II traite de modèles mathématiques pour la croissance tumorale. Dans un premier temps,
nous présentons des modèles dits phénoménologiques et modélisant la croissance tumorale à l’aide
d’équations différentielles ordinaires (EDO) du type:

dV

dt
= g(V ),

où g(V ) désigne la loi de croissance pouvant être linéaire en V (modèle exponentiel), logistique, Gom-
pertz, etc. Ces modèles sont confrontés à des données de croissance de tumeur du rein chez la souris
issues de deux techniques expérimentales différentes, fournissant ainsi des informations différentes, à
savoir le volume tumoral d’une part et le nombre de cellules tumorales (tracées à l’aide d’une protéine
fluorescente) d’autre part. Les résultats semblent indiquer que les dynamiques du volume tumoral
total et du nombre de cellules tumorales sont différentes. Le stroma, tissu de soutien de la tumeur et
composé de cellules non tumorales, pourrait avoir sa propre dynamique, en interaction avec les cellules
tumorales, induisant des différences de dynamique entre cellules tumorales et volume tumoral.
Cette partie aborde ensuite des modèles plus mécanistiques et décrivant l’expansion spatiale d’une
tumeur. Dans ce type de modèle 2D décrivant les tissus comme une mixture fluide, la dynamique
spatio-temporelle des densités de tissu tumoral P et sain S est gouvernée par des équations de conser-
vation, avec une hypothèse de saturation du milieu (densité totale de tissu constante) et une vitesse
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de Darcy (gradient de pression) v = −k∇Π où Π est la pression du milieu:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ(Π)P (t, x),

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0,

∇ · v(t, x) = γ(Π)P (t, x),

v = −k∇Π.

(1.1)

Ce type de modèle, introduit entre autres par Preziosi et Ambrosi [12], a récemment été utilisé pour
prédire la croissance de métastases pulmonaires chez le patient [13]. Afin de décrire la croissance
tumorale de métastases pulmonaires chez la souris, nous avons proposé une loi γ(Π) où la prolifération
des cellules tumorales dépend de la pression de la manière suivante :

γ(Π) = γ0 exp

(
− Π

Πc

)
.

La prolifération des cellules tumorales est ainsi inhibée lorsque la pression exercée sur elles augmente,
une propriété déjà observée dans des études expérimentales [14, 15, 16]. L’introduction de cette loi
permet d’obtenir un modèle minimalement paramétré (deux paramètres), proposant une explication
mécanique au fait qu’une tumeur crôıt de moins en moins vite à mesure que son volume augmente,
et capable de décrire la croissance de lésions métastatiques pulmonaires chez la souris. Cette loi de
prolifération induit dans le modèle une équation elliptique non linéaire sur la pression:

− k∆Π = γ0 exp

(
− Π

Πc

)
P,

Π|∂Ω = 0.

(1.2)

Après une analyse mathématique et numérique, ce modèle est confronté à des données spatiales (à
partir d’imagerie par résonance magnétique) de croissance de métastases pulmonaires afin d’étudier
les capacités descriptives du modèle en terme de dynamique du volume et de la forme des lésions.
Pour ce qui est de l’analyse du modèle, une preuve d’existence et d’unicité de solution à l’équation
(1.2) pour un domaine Ω Lipschitz et un champ de densité tumorale dans L∞(Ω), ainsi qu’une certaine
régularité de cette solution sont présentées. Un algorithme de point fixe est proposé pour la résolution
numérique, et sa convergence géométrique dans H3/2(Ω) est démontrée. Des tests de convergence
numérique du système couplé (1.1) ont également été réalisés, dans un premier temps pour le cas
simple où la loi de prolifération γ est constante, permettant d’exhiber une solution analytique en
géométrie sphérique. Ce cas test a permis de comparer les performances de plusieurs schémas de
transport et de choisir le plus efficace en terme de ratio précision sur temps de calcul. Des tests de
convergence ont ensuite été réalisés dans le cas où le taux de prolifération dépend de la pression. Enfin,
une section présentant une méthodologie et des résultats d’assimilation de données par le modèle est
présentée. Il s’agit de données de croissance de métastases pulmonaires. Une méthodologie permettant
de borner l’espace des paramètres à partir des données est d’abord présentée, suivie de la calibration
du modèle sur les données de dynamique du volume des métastases. Le modèle, capable de décrire la
croissance de ces métastases, a ensuite été utilisé pour simuler l’évolution de la forme de ces métastases
sous les hypothèses du modèle. Si certaines formes étaient correctement prédites, d’autres prédisaient
une forme ne prenant pas en compte les anisotropies visibles dans les données d’imagerie, suggérant
que les caractéristiques du milieu que peuvent fournir certaines techniques d’imagerie s’avèreraient
utiles pour des prédictions spatiales et quantitatives de l’expansion tumorale.

La partie III, articulée en trois chapitres, contient le coeur de la thèse et concerne les aspects dy-
namiques du processus métastatique.

Le premier chapitre de cette partie est une étude quantitative des aspects dynamiques du processus
métastatique à partir de données de cancer du rein chez la souris et à l’aide d’un modèle mathématique
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décrivant le processus métastatique à l’échelle de l’organisme. Disposant à la fois de données lon-
gitudinales en temps sur la masse métastatique totale (marquage des cellules tumorales avec une
protéine fluorescente) dans les poumons et sur la distribution en taille des lésions métastatiques visi-
bles (données d’imagerie par résonance magnétique) dans les poumons, nous avons dans un premier
temps confronté la théorie classique du processus métastatique à ces données. Plus précisément, nous
avons voulu vérifier si une théorie standard basée sur la dissémination de cellules métastatiques par la
tumeur primaire et sur la prolifération de ces cellules donnant naissance à des lésions métastatiques
dans l’organe distant était en accord ou non avec les deux types de données citées précédemment.
Pour ce faire, nous avons utilisé une formalisation mathématique de cette théorie standard qui avait
été effectuée dans un premier temps par Iwata et al. [17]. Ce modèle décrit une distribution continue
de tailles métastatiques à l’aide d’une densité ρ(t, v) de métastases structurée en volume de métastases
v. Chaque métastase crôıt selon une loi de croissance du type:

dv

dt
= g(t, v),

où g(t, v) est une loi de croissance (de type Gompertz par exemple). La densité métastatique, quant
à elle, est décrite par une équation de conservation:

∂tρ(t, v) + ∂v(ρ(t, v)g(t, v)) = 0 t ∈]0,+∞[, v ∈]V0,+∞[,
g(V0)ρ(t, V0) = d(Vp(t)) t ∈]0,+∞[,
ρ(0, v) = 0 v ∈]V0,+∞[,

(1.3)

où V0 est le volume initial de chaque nouvelle métastase, en général une ou quelques cellules, d’après
des observations expérimentales précédentes [18, 19]. Vp(t) est le volume de la tumeur primaire et
d(Vp(t)) est la loi d’émission de nouvelles métastases, dépendant ici du volume de la tumeur primaire.
Ce modèle traduit la théorie classique de la dynamique métastatique, selon laquelle chaque nouvelle
métastase nâıt d’une cellule métastatique survivant dans l’organe distant et où les métastases croissent
indépendamment les unes des autres [20, 21, 22, 23, 24, 5]. Le modèle a été validé dans deux études
récentes pour décrire la dynamique de la masse métastatique totale sur des données de biolominescence
par Hartung et al. [25] sur des données de cancer du sein, et par Benzekry et al. sur des données
de cancer du sein et du rein [26]. Cependant, ce modèle n’avait pas encore été confronté à des
données sur la distribution en taille métastatique (à l’exception d’un patient dans le papier d’Iwata
et al. [17]). Pour ce qui est de nos données (cancer du rein métastatique RENCA), si le modèle s’est
révélé capable de décrire la dynamique de la masse métastatique totale (en accord avec les études
précédemment mentionnées), il s’est en revanche avéré incapable de décrire le nombre et la taille des
lésions métastatiques visibles. En effet, cette théorie standard prédit de trop nombreuses et trop
petites lésions, comparé aux observations. Ceci nous a conduit à suggérer des hypothèses comme la
fusion de foyers métastatiques spatialement proches, ou encore l’attraction de cellules métastatiques
par des foyers existants, deux types d’interactions conduisant à des métastases moins nombreuses et
plus massives et donc permettant possiblement d’obtenir des distributions en tailles métastatiques plus
réalistes. Nous avons alors expérimentalement mis en évidence les deux phénomènes suggérés, qui se
sont révélés être effectivement observés, l’un par IRM, l’autre à l’aide d’un protocole expérimental que
nous avons suggéré à nos collègues biologistes, ce qui tend à montrer que ces phénomènes pourraient
expliquer les nombres et les tailles métastatiques observés.

Nous nous sommes ensuite intéressés de plus près au phénomène de fusion de métastases évoqué
précédemment. Nous nous sommes demandés si les interactions mécaniques entre métastases qui
fusionnent pourraient avoir un effet sur leurs croissances respectives. Pour ce faire, nous avons utilisé
le modèle spatial de croissance tumoral introduit précédemment (équations (1.1)-(1.2)), prenant en
compte l’inhibition de la prolifération par la pression mécanique. Dans un premier temps, nous
avons calibré ce modèle sur des données IRM de croissance de métastases pulmonaires (cancer du
rein, mêmes données que dans le paragraphe précédent) chez la souris afin d’obtenir un espace des
paramètres réaliste pour les simulations qui nous intéressaient. A l’aide de ce modèle calibré, nous
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avons simulé la fusion de métastases et avons étudié la dynamique de croissance résultant de ces
interactions mécaniques entre métastases. Nous avons notamment observé une inhibition importante
de la croissance due à ces interactions.

Le dernier chapitre de cette thèse est dédié à la modélisation d’un phénomène appelé niche prémétastatique.
Des études récentes ont montré que la colonisation d’un organe distant par des cellules métastatiques
pouvait être précédée de la formation d’une niche prémétastatique [10]. La formation de cette niche
consiste en une pré-colonisation de l’organe distant par des cellules non tumorales issues de la moelle
osseuse. Lors de la phase prémétastatique du poumon par exemple, certains facteurs émis par la
tumeur primaire (située dans le sein par exemple) activent d’une part des cellules locales du poumon
comme les fibroblastes et d’autre part des cellules progénitrices de la lignée myélöıde. Ces cellules
progénitrices, originaires pour une part de la moelle osseuse, vont, grâce aux facteurs émis par les
cellules activées du poumon, précoloniser cet organe avant l’arrivée des cellules métastatiques afin
de rendre ce site perméable et favorable à la dissémination et à la colonisation métastatique. Ce
phénomène est résumé par la figure 1.1.
A partir d’une étude de la littérature, nous avons construit un modèle mathématique décrivant la
dynamique de cette niche prémétastatique. Ce modèle décrit la dynamique des différentes espèces
impliquées comme les progéniteurs myélöıdes et les fibroblastes. Un couplage a ensuite été fait entre
ce modèle et le modèle d’Iwata décrivant la dissémination et la croissance métastatique à l’aide des
équation (1.3). Une partie des paramètres du modèle a été calibrée à partir de mesures expérimentales
extraites de la littérature. Les paramètres restant ont été calibrés sur les données de Kaplan et al. (voir
[10]) et le modèle semble capable de reproduire les dynamiques prémétastatiques et métastatiques.
Les perspectives futures en terme de questions quantitatives et cliniquement pertinentes (la précocité
de la formation de la niche prémétastatique chez le patient, les voies moléculaires à cibler, etc) sont
ensuite discutées.
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ABSTRACT

Recent developments in cancer biology shed light on pre-colonization development of the distant site,
a concept referred to as the premetastatic niche [2, 4, 3]. The function of this process is to prepare
the soil in order to welcome tumor cells and sustain future metastases developpement. Mechanisms
driving the formation of the premetastatic niche are still largely unknown. Here we present a mecha-
nistic model of the premetastatic niche coupled with a model of macrometastatic growth. The global
purpose is to highlight the major cellular dynamics involved both at the premalignant and malignant
stages. Simulation results illustrate the critical role of various stromal partners such as fibroblasts or
inflammatory cells during the course of metastatic colonization. Parametric sensivity analysis allows us
to compare the respective importance of two major functions of the premetastatic niche: homing and
transmigration.

BIOLOGY OF THE PREMETASTATIC NICHE

PRIMARY TUMOR
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GROWTH FACTORS
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ATTRACTION OF REMOTE CELLS
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IN VIVO MODEL AND DATA
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High concentration of granulocytes in the lung

first GFP+ tumor cellsin the lung

vascularized macrometastases

Day 0 Day 11 Day 14 Day 18

PURPOSES OF THE MODELING APPROACH

• Formalize a comprehensive theory of metastatic initiation
• Quantitative model to test hypotheses by simulations
• Infer biological insights for the role of the premetastatic niche
• Determine the differential impact of the premetastatic niche on dissemination and colonization
• Establish a descriptive computational tool of the metastatic process
• Suggest the most relevant therapeutic targets to abort the dissemination and colonization processes

THE MATHEMATICAL MODEL

Premetastatic niche modeling

Dynamics of the cellular species :
• Vp: primary tumor volume
• Fb: density of fibroblasts in the lung
• Gr: density of granulocytes in the lung
• N: state of the niche
• M: metastatic mass

dFb

dt
= f (Fb, V p, M) (1)

dGr

dt
= g(Gr, Fb, V p, M) (2)

N = h(Gr) (3)

We consider a 1D-chemotactic transport to model the migration of granulocytes and tumor cells :

π2(g)CL0
Lung

Vascular network
T (tumor cells)

∂T (t, x)

∂t
+ χ2∇.(T (t, x)∇c2) = 0 ∀t, x ∈ [0, tmax] × [0, L] (4)

χ2T (t, 0)
∂c2(t, 0)

∂x
= β(Vp(t)) (5)

Metastatic growth modeling

The model of premetastatic niche is coupled with a metastatic growth model [1] which describes the
transport of a metastatic size distribution ρ :

∂ρ(t, v, k)

∂t
+ div(ρ(t, v, k)G(t, v, k)) = 0 ∀(t, v, k) ∈ ]0, tmax[ × Ω (6)

−G(v0, N(t))ρ(t, v0, N(t)).ν = χ2T (t, L)
∂c2(t, L)

∂x
if N > 10−6 (7)

• G(t, v, k) the growth velocity of the metastases
• v the metastatic volume
• k the carrying capacity
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HOMING VS TRANSMIGRATION
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CONCLUSIONS

• We built a mechanistic model based on the theory of the premetastatic niche that qualitatively repro-
duces the experimental dynamics. As much as possible, the coefficients were fixed to biologically
relevant values based on our understanding of the dynamics

• The sensivity analysis results suggest the transmigration process of larger influence on the global
dynamics, compared to homing.

PERSPECTIVES

• Simplify the model to essentialize the dynamics and be able to determine the parameters from
the data.

• design and simulate theories that would elucidate experimentally observed paradoxical growth of
metastases at initiation . Indeed in our data small lesions go from 1 cell to a macrometastasis in 4
days, a growth that is irreconcilable with physiologically plausible tumor growth

• Use our math model in the analysis of the experimental data (proteomics, cellular partners and
GFP+ tumor cells dynamics) in order to improve our understanding of the premetastatic niche
biology
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Figure 1.1: Schéma représentant les différentes étapes de la formation d’une niche prémétastatique
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Part I

Quantitative biology of cancer
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Chapter 2

A short overview on cancer

2.1 Generalities of clinical oncology

Cancer is the second most deadly disease of the world after cardiovascular diseases, with 14.9 million
new cases and 8.2 million deaths estimated in 2013 [2]. Whereas breast cancer is the most common one
in women and prostate cancer the most common in men, the lung cancer is the most common global
cause of cancer-related death [3]. The first stage of cancer is usually a tumor that is initiated by cells
that proliferate abnormally in an organ. Tumors of epithelial tissues are called carcinomas, whereas
tumor of conjonctive tissues are called sarcomas. One of the first stages of tumor development is the
local stage, which is called, in the case of an epithelial tissue, in situ carcinoma. The vast majority
of tumors remain local and are benign tumors, eliminated by the immune system. However, in rare
occasions, tumors can become invasive, spreading through the neighboring tissues. Ultimately, when
the tumor is malignant enough, tumor cells detach from the primary, enter into the blood stream and
arrest into a distant organ to form secondary tumors, or metastases. Fig 2.1 shows histological slices
of a primary tumor and a metastasis in the lung. Clinically, 90% of the cancer-related deaths are due
to metastases [5].
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Figure 2.1: Left: Histological slice of a lung primary tumor; Right: Histological slice of a lung
metastasis from a thyroid cancer; Images from Institut Bergonié, Bordeaux

Many kinds of treatments have been developed in order to stop the disease: surgery, chemotherapy,
targeted therapies, radiotherapy, etc. These treatments have shown substantial effects on the disease.
Indeed, The 5-year relative survival rate for all cancers diagnosed between 2004 and 2010 is 68%,
up from 49% in 1975 − 1977 [2, page 2], which reflects earlier diagnoses and improvements of the
treatments. However, the survival rate of some cancers remain very low: 7% for the pancreas for
example. Unfortunately, in many cases, the disease ends up escaping to the treatments. When

15
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the cancer is generalized, it is often impossible to perform a surgery to resect all the metastases.
Moreover, chemotherapies usually have side-effects on the patient and they are not enough to control
the generalized disease, especially because the cancer cells develop resistances. Targeted therapies do
not kill tumor cells directly but are directed against specific molecular pathways in order to neutralize
the malignant phenotype of the cells. Animal models are often used in order to test these therapies.
However, cancer is such a complex cellular and molecular system that effects that are observed on
mice are not always observed on patients. The cancer biology has to be better understood, in order
to perform more efficient treatments.

2.2 The hallmarks of tumorigenesis and tumor growth

Fundamentally, cancer cells are cells that managed to escape the control of the organism. In a
physiological/normal state, many different kinds of cells ensure homeostasis of the tissues. One of
the characteristic phenotypes of cancer cells is to proliferate abnormally. But what biological features
characterize a cancer cell? Hanahan and Weinberg [4] put forward the hallmarks of cancer. The
hallmarks characterizing cancer cell proliferation and tumor growth are first presented in this section,
which summarizes the biology that defines a tumor. The hallmarks related to invasion, metastasis
and crosstalk with the microenvironment are exposed in the next section.

2.2.1 Key factors of tumorigenesis

Sustaining proliferative signals

Normal cells are able to ensure tissue homeostasis. They can indeed control and limit other cells
and their own proliferations. There are two principal ways to do that: 1) extracellular pathways
and 2) intracellular pathways. By deregulating these mechanisms, cancer cells can maintain the
cell division cycle activated and in this way survive, proliferate and grow pathologically. Such a
chronic proliferation needs to sustain proliferative signals [4]. It requires to deregulate extracellular
or intracellular pathways by the following ways: 1) secretion of molecules to stimulate other cells or
themselves in a cell surface receptor activation fashion. These activated cells secrete growth factors in
response which stimulate proliferation of cancer cells by activation of cell surface receptor (e.g EGF,
epidermal growth factor) and 2) mutations allow cancer cells to sustain activation of intracellular
proteases to maintain a cascade of proteolysis which is necessary to keep the cell division cycle
activated. Normally, these intracellular signals are down-regulated when the cell proliferates too
much. Mutations of cancer cells allow then to disrupt these regulations [4]. For example, the Ras
gene codes for a protein that stimulates proliferation in presence of other signals. When this gene is
muted, it codes a protein that stimulates proliferation independently of other signals [27].
However, high level of oncoproteins (Myc, Ras, Raf) expression can induce apoptosis or senescence (a
non proliferative stable cellular state) [4]. That is why cancer cells have to develop another capacity:
evading growth suppressor.

Evading growth suppressors

Some genes can regulate negatively the cell growth and proliferation. Cancer cells usually manage to
evade these signals [4]. Here some of these genes are introduced.

Two major proteins
Two major proteins have been identified as important key molecules of growth inhibition. The
first one is RB, or retinoblastoma-associated protein. This protein transduces extracellular growth
inhibitory signals to decide whether or not the cell should continue its cell growth and division cycles.
Cancer cells with defects in RB pathway function can evade some external growth inhibitory signals
[4]. The second one is TP53 protein, which receives inputs from intracellular signals like genome
damages, levels of nucleotide pools, growth-promoting signals, glucose, or oxygenation. If these levels
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are suboptimal, TP53 can stop the cell division cycle and ultimately lead the cell to apoptosis [4].
TP53 gene is the most frequently mutated gene (> 50%) in human cancer [28].

Contact inhibition
Contact inhibition is another growth inhibition mechanism. It involves NF2 gene, responsible for
the production of the cytoplasmic protein Merlin which can lead to coupling cell-surface adhesion
molecules (E-cadherin) to transmembrane receptor tyrosine kinases (EGFR, that is to say EGF re-
ceptor). Merlin can therefore facilitate adhesion of the cells and disrupt their stimulation by growth
factors [4].

Transforming growth factor β (TGF-β)
TGF-β is a protein that has an anti-proliferative effect. It is necessary for cancer cells to evade its ef-
fects in order to follow pathological proliferation. TGF-β also facilitates the epithelial to mesenchymal
transition (EMT), which is necessary for invasion and metastasis [4].

Resisting cell death

There are several ways for a cell to die but the two main ones are programmed cell death (apoptosis)
and necrosis. One hallmark of cancer is the ability of cancer cells to escape from apoptosis [4]. That
is why the most common way for a cancer cell to die is by necrosis. The two processes are illustrated
in Fig 2.2.

Apoptosis
Apoptosis, or programmed cell death, is triggered in response to physiological stresses like oncogenic
signals, DNA damage or hyperproliferation. This is an important research field to design therapies
against cancer. Relatively recent studies revealed that apoptosis is attenuated within malignant tu-
mors [4]. There are two major circuits for triggering apoptosis: 1) the extrinsic program, which
consists in receiving extracellular death-inducing signals and 2) the intrinsic program consisting in
receiving death-inducing signals of intracellular origin. The two types of signals result in activation of
proteases (normally latent) which proceed to initiate a cascade of proteolysis for the execution of the
apoptotic phase. The cell is progressively disassembled and consumed by other cells. The intrinsic
program is more implicated as a barrier to cancer [4]. Balance between pro and anti apoptotic intra-
cellular signals control apoptosis triggering. TP53 induces apoptosis in response to high levels of DNA
breaks and chromosomal abnormalities. The most common strategy to escape apoptosis is the loss
of TP53 tumor suppressor function [27]. Other factors that trigger apoptosis are insufficient survival
factors and hyperactive signaling by oncoproteins (e.g Myc). In order to escape from apoptosis, can-
cer cells can increase expression of antiapoptotic factors, downregulate proapoptotic signals, increase
survival signals and short-circuit extrinsic ligand-induced death pathway [4]. A possible anti-cancer
therapy consists in restoring programmed cell death.

Necrosis
Necrosis is a phenomenon involving cell exploding. It is not a breakdown of tissue structure but a
genetic program. Necrotic cells release proinflammatory cytokines that stimulate inflammatory cells
to clean the place and repair the tissues. However, these inflammatory cells can have an unexpected
effect in promoting proliferation, angiogenesis and invasiveness [29, 30]. Moreover, necrotic cells
release IL-2 which stimulate other cells to proliferate [4].

Enabling replicative immortality

Replicative immortality barriers
Replicative immortality barriers have to be broken for a cell to acquire a cancerous phenotype. It
is commonly accepted that normal cells are not able to undergo an unlimited number of cell cycles
[4]. This limitation can occur in two different ways, which are 1) senescence, an irreversible non
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Figure 2.2: Apoptosis and necrosis processes, picture retrieved from [31]

proliferative but stable state, and 2) crisis state that leads to cell death (apoptosis). It seems that
such limited replicative potential is linked to the degradation of telomeres [4]. A telomere is a region
on a chromosome, which protects the end of the chromosome from deterioration or from fusion with
neighboring chromosomes.
During cell cycle division, telomeres become shorter and progressively loose their ability to protect
the ends of chromosomal DNAs from end-to-end fusions. Such fusions provoke genomic instabilities
[4]. Before this, senescence is triggered in normal cells, but some cells succeed to circumvent this
barrier and continue to replicate with genomic damages, resulting in a state of crisis then cell death.
This degradation of telomeres can also be considered as the main proliferative potential limitation
[4].

The telomerase function
The telomerase, an enzyme that can stimulate telomeres recovering, is not much expressed in normal
cells but more expressed in the vast majority of cancer cell lines. This mechanism allows certain cells
to acquire a replicative immortality [4].

Genome instability and mutation

Genome instability and tumorigenesis
Hallmarks capabilities are mostly acquired by impairing genetic materials of the cancer cells. For
example, mutation or over-expression of the oncogene c-Myc leads to an excessive proliferation and
ultimately tumorigenesis [27]. Another example is the tumor suppressor gene TP53. When it is
mutated or inhibited, it induces inactivation of apoptosis and ultimately tumorigenesis. There are
many other ways than mutations to induce the over/down expression of a gene or of a protein.
Genomic instabilities can accelerate tumorigenesis [4]. The absence of expression of the gene TP53,
previously cited, allows the cells to sustain cell cycle division with eroded telomeres. Such configura-
tions enhance the mutability of the genome, accelerating the acquisition of oncogenes or the inhibition
of tumor-suppressor genes. It seems therefore understandable that combination of both TP53 and
lack of telomerase enhanced tumorigenesis in mice models [4]. On human tumors, for example breast
cancer, analyses highlighted important differences between premalignant and malignant tissues:

• Premalignant tissues: non expression of high levels of telomerase, telomere shortening and
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chromosomal abberations

• Malignant tissues: high levels of telomerase expression, aberrant karyotypes that outcome after
telomeres failure but before telomerase acquisition

It seems that the optimal strategy for tumorigenesis is telomere failure to induce genomic mutations
more easily, and then telomerase acquisition to get an immortal replicative capacity [4]. The first
step requires to evade the main apoptotic signals.

DNA (Deoxyribonucleic acid) replication and transcription
DNA is a molecule with a double helix structure, which is a sequence of nucleotide bases. During
the cell-division cycle, DNA has to be replicated to be transmitted to the daughter cell. During this
process, several enzymes come into play. The replication fork is created by helicases, which break the
hydrogen bonds holding the two DNA strands together. Then, DNA polymerases are responsible of
DNA synthesis from parent DNA matrix (see Fig 2.3). The transcription is the first step of proteins

Figure 2.3: DNA replication, retrieved from [32]

synthesis. During this process, DNA is copied in RNA by the RNA polymerase in an analogous
fashion.

Genetic and epigenetic alterations
Genetic and epigenetic alterations are crucial for tumorigenesis. During the DNA replication, DNA
polymerase can do replication mistakes, which result in genome modifications, for example one nu-
cleotide basis instead another. Some DNA polymerases have the capacity to correct replicative errors.
In highly proliferative cells like cancer cells, the replication mechanisms are highly solicited by the
intracellular signals and the DNA replication has to be fast. It enhances the probabilities of mutations
during DNA replication [4]. Such mutations result in non well coded proteins, which can’t assure their
physiological functions, even acquire pathological functions .
Because of the multitude of enzymes (polymerases) or proteins, like histones, which outcome during
DNA replication and during the transcription phase, there are many other ways than mutations to
impair replication, transcription, as well as genes expression. These are epigenetic alterations [4], see
Fig 2.4.
Enhancing the mutability allows to accelerate tumorigenesis process. Some enzymes and proteins
have a role of maintenance of the genome integrity, resolving DNA defects. That is why in normal
conditions, the rate of spontaneous mutations is usually very low during each cell generation. Thus,
cancer cells manage to enhance their mutability in increasing sensitivity to mutagenic agents or
compromising genomic maintenance system and surveillance system that eliminate defective materials
(TP53 gene) [4].
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Figure 2.4: Epigenetics altertions, picture retrieved from [33]

2.2.2 Inducing angiogenesis

In order to survive and proliferate, cells need oxygen and nutrients that diffuse from blood vessels
[34]. That is why they are generally located at the diffusion distance (between 100 and 200 µm) from
the blood vessels. But for a tumor or an organism to grow beyond few cubic millimeters, they need to
form new blood vessels by vasculogenesis and angiogenesis [35, 34]. In short, angiogenesis consists in
new blood vessels formation and sprouting from existing ones toward the emission source (the tumor
for instance) of angiogenic factors.
Angiogenesis is a physiologic transcient process which takes place normally in wound healing and
woman cycle [4]. But it is also a critical step of the tumor growth. Indeed, tumor growth needs
nutrients and oxygen sustain and evacuation of metaboli wastes which are the functions of blood
vessels. That is why the angiogenic switch is almost always activated during tumor growth, resulting
in continued sprouting of new blood vessels to sustain neoplastic progression [36]. In the most common
paradigm, it is admitted that angiogenesis plays a role in the macroscopic tumor growth only, but
it could be an early event in tumorigenesis and play a role in microscopic premalignant neoplastic
progession [4]. The neovascularization patterns can be diverse among different types of tumors. Some
tumors are hypovascularized with avascular and antiangiogenic zones, whereas other types are densely
vascularized. In some tumors, specific oncogenes induce production of angiogenic factors, whereas in
other cases, these signals are produced by inflammatory cells [4, 29, 30].

Proangiogenic and antiangiogenic factors
Activating the angiogenic switch depends on the balance between proangiogenic and antiangiogenic
factors [37, 38].
One of the main pro-angiogenic factors is the vascular endothelial growth factor (VEGF), which has
three receptors. Physiologically, it plays roles in embryonic (vasculogenesis) and postnatal vascular
development, and homeostatic survival of endothelial cells. It increases the number of capillaries
(sprouting) in a given network. One of its receptors, VEGFR2, activates cascade of signals in the
endothelial cells which induce production of factors that increase vessels permeability [39, 40], en-
dothelial cells proliferation and survival-basic fibroblast growth factor (bFGF)-,migration-vascular
cell adhesion protein (VCAM) and matrix metalloproteinases (MMPs)-and finally differentiation into
mature blood vessels. Another pro-angiogenic factor is the fibroblast growth factor (FGF). FGF-1
stimulates the proliferation and differentiation of all cell types necessary for building an arterial ves-
sel, including endothelial cells and smooth muscle cells. This fact distinguishes FGF-1 from other
pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF), which primarily
drives the formation of new capillaries. FGF is also an important factor in the wound-healing process.
The platelet-derived growth factor (PDGF) is a mitogenic factor for mesenchymal cells, and it plays a
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role in angiogenesis because recruitment of new pericytes/smooth muscle cells is necessary to stabilize
new vessels.
One of the most common antiangiogenic factors is thrombospondin-1 (TSP). It can bind transmem-
brane receptors of endothelial cells to activate suppressive signals that counterbalance proangiogenic
stimuli [4]. Other endogenous antiangiogenic factors are angiostatin, which is derived from proteolytic
cleavage of plasmin [41] and endostatin, which is derived from proteolytic cleavage of 18 collagen [42].
An unbalanced mix of proangiogenic factors leads to aberrant vasculature : excessive vessel branching,
distorted vessels, erratic blood flow, hemorrhages [4]. Many targeted therapies have been designed to
impair tumor angiogenesis by blocking the effect of angiogenic factors or in using effect of antioan-
giogenic factors [43].

Role of the microenvironment in angiogenesis
The tumor microenvironment plays also a critical role in angiogenesis. Pericytes and smooth muscle
cells are cells of mesenchymal origin, located on the surface of blood vessels and play a role in the
blood pressure thus in the blood flow. They have physiological and mechanical roles for the endothelial
cells support. For instance they are in part responsible for maintaining endothelial quiescence [39].
They must be detached from the vessels in order that neovessels can be formed. The role of the
microenvironment for the formation of a stable vessel is summarized in Fig 2.5 retrived from [40]. As
in part mentioned in the legend of the figure, angiogenic factors like VEGF-A destabilize blood vessels
and induce (ang) − 2 expression by endothelial cells, which functions in an autocrine manner and
leads to pericytes dissociation from blood vessels, enhancing the vessels permeability [39]. Destabilized
endothelial cells can then proliferate and migrate in the presence of angiogenic factors like VEGF-A
[39] to form blood sprouts. New endothelial cells do not originate from pre-existing blood vessels only
but are also recruited from the bone marrow as endothelial precursor [43]. Inflammatory cells like
macrophages, neutrophils and bone marrow-derived myeloid progenitors are known to play roles in
initiation and sustaining of angiogenesis [29, 30]. Some of them can facilitate invasion and protect
the vasculature from drugs [4].

2.2.3 Other key factors for ensuring tumor progression

Tumor-promoting inflammation

It is known that tumors are densely infiltrated by imune cells of the innate and adaptative immune
systems [29, 44]. This inflammatory response is initially an antitumor response from the immune
system that tries to eradicate the tumor. However, inflammation has the unexpected effect to pro-
motes tumor progression in helping to acquire hallmarks capabilities [44, 29, 4]. Indeed, inflammation
promote tumor growth by releasing growth factors, survival signals and proangiogenic factors [29]. In-
flammation is also associated with releasing of extracellular matrix-modifying enzymes that facilitate
angiogenesis, invasion, and metastasis, and inductive signals that lead to activation of epithelial-to-
mesenchymal transition (EMT) and other hallmark-facilitating programs [29, 44, 30].

Reprogramming energy metabolism

Metabolism
To proliferate, cancer cells need to transform resources like oxygen into energy, which is contained
in the chemical bonds of ATP (adenosine triphosphate) [4]. The first step is the glycolysis, in which
glucose is transformed by the cell into pyruvate. During this cycle, 2 ATP units are produced, as
explained in Fig 2.6.
During the second step, pyruvate is consumed, as well as oxygen, to produce 32 ATP units, which
allow the cell to divide or to ensure other functions. This step is also illustrated in Fig 2.6.

Reprogramming
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Figure 2.5: Assembly of a stable vessel. Local increases in angiogenic factors such as fibroblast growth
factor (FGF) and vascular endothelial growth factor (VEGF) during new vessel formation destabilize
a portion of an existing vessel (usually a venule). Destabilization is associated with increased angiopoi-
etin (ang)− 2 expression and with pericyte activation, matrix remodeling, and induction of pericyte
and endothelial cell (EC) migration and proliferation. Newly formed vessels may be dependent on
exogenous factors for their survival until they have been remodeled to mature structures. Remodel-
ing involves EC recruitment of pericyte/smooth muscle cell (SMC) precursors via endothelial-derived
platelet-derived growth factor (PDGF). Once the mural cell precursor makes contact with the vessel,
transforming growth factor (TGF)-β is activated, which in turn suppresses the proliferation and mi-
gration and induces the differentiation into SMC/pericytes. In addition to TGF-β, ang-1 produced
by the SMC/pericytes is also involved in the stabilization and maintenance of the stable mature
vessel. aFGF, acidic fibroblast growth factor; bFGF, basic fibroblast growth factor; CEP, circulating
endothelial precursor. Picture and legend are retrieved from [40]

Figure 2.6: Left: Glycolisis: glucose−→pyruvate+2ATP, picture retrieved from [45]; Right: The
second step: pyruvate+oxygen−→32ATP
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However, when some cells lack of oxygen, they can survive with the glycolisis induced energy only.
Some cancer cells, which are permanently hypoxic, become specialized in glycolisis and make this
process very efficient [4]. When they consume the 2 ATP units resulting from glycolisis, they produce
lactate, which make the environment acid and favor the expansion of the tumor cells around [46].
Thus, a tumor is constituted of an heterogeneous population of cells with different metabolisms, which
grow in symbiosis [4].

Evading immune destruction

Experimental evidences show that innate and adaptive immune systems have strong anti tumoral
potential. Indeed, in many experiments, mice with deficiencies in CD8 + cytotoxic T lymphocytes
(CTLs), CD4 + T h 1 helper T cells, or natural killer (NK) cells develop significantly more tumors
than control ones [4]. These immune cells have a surveillance function and a tumor cell killing function
[44]. It means that tumors that managed to progress until macroscopic sizes evaded from the immune
surveillance and managed to limit immunological killing. Moreover, tumor cells that arose in immuno-
depressed mice are less effecient to proliferate and to induce metastases than tumor cells that arose
in immunocompetent hosts [4]. It probably means that immunogenic tumor clones can expand in an
immunodepressed host, whereas they are eliminated in an immunocompetent host, giving the way to
cells that can evade immune destruction. In patients, immune surveillance has been also highlighted
to play an antitumorigenesis role [4]. In particular, lack of both CD8 + cytotoxic T lymphocytes and
NK cells seems to lead to a more permissive environment for tumorigenesis. The main question is how
cancer cells evade immune destruction? For example, cancer cells may paralyze infiltrating CTLs and
NK cells, by secreting TGF-β or other immunosuppressive factors [4]. Cancer cells could also recruit
inflammatory cells that are immunosupressive like regulatory T cells (Tregs) and myeloid-derived
suppressor cells [44, 29]. Both can suppress the actions of cytotoxic lymphocytes.

2.3 Elements of the metastatic process biology

Metastasis development is a multiple step process in which tumor cells detach from a primary tumor
to colonize distant organs [4]. During the last century, many research efforts have been devoted to
understand the main aspects of carcinogenesis and more particularly genetic alterations leading to
neoplasia, but the metastatic process received relatively less attention [5]. However, the biology of
metastasis is more and more studied, especially because secondary tumors generally cause the death
of the patient [5]. The metastatic process is summarized by Fig 2.7, retrieved from [20].

2.3.1 About the state of metastasis research in 2000

Metastasis biology is a still poorly understood field, although active research is conducted, especially
since 2000 [4]. By then, even less was understood. Metastasis is usually thought as the last stage of
cancer progression and is often linked to the phenomenon of local invasion. In [20], Talmadge and
Fidler present a historical perspective of advances that have been made on the biology of metastasis.

First discoveries

It has been early observed that certain types of tumors metastasize in particular organs, which
has been explained by both mechanical and molecular factors [20]. Steven Paget’s “seed and soil”
hypothesis, which defends biological compatibility between tumor cells (seed) and the specific organ
(soil) is discussed further in this manuscript in chapter 8. It has been early observed that tumor cells
can colonize lymphatic nodes by lymphatic channels before to disseminate by hematogenous way,
and a distinction between lymphatic and hematogenous metastases has been early made [20]. The
importance of adhesion and motility and the role of proteolytic enzymes for tumor cells invasion and
metastasis have also been raised before 2000 [20]. Talmadge and Fidler also mentioned discoveries
on the critical roles of immune cells like macrophages and NK cells in metastasis and the fact that
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multiplication within organ parenchyma (Fig. 3). These
successful metastatic cells (“seed”) have been likened to a
decathlon champion who must be proficient in 10 events,
rather than just a few (64). However, some steps in this pro-

cess incorporate stochastic elements. Overall, metastasis fa-
vors the survival and growth of a few subpopulations of
cells that preexist within the parent neoplasm. The current
data, especially studies focused on isolated tumor cells,

Table 1. Steps in the metastatic process

Step Description

1 After the initial transforming event, the growth of neoplastic cells is progressive and frequently slow;
2 Vascularization is required for a tumor mass to exceed a 1- to 2-mm diameter (200, 201), and the synthesis and secretion

of angiogenesis factors has a critical role in establishing a vascular network within the surrounding host tissue (201);
3 Local invasion of the host stroma by tumor cells can occur by multiple mechanisms, including, but not limited to,

thin-walled venules and lymphatic channels, both of which offer little resistance to tumor cell invasion (202);
4 Detachment and embolization of tumor cell aggregates, which may be increased in size via interaction with

hematopoietic cells within the circulation;
5 Circulation of these emboli within the vascular; both hematologic and lymphatic;
6 Survival of tumor cells that trafficked through the circulation and arrest in a capillary bed;
7 Extravasation of the tumor embolus, by mechanisms similar to those involved in the initial tissue invasion;
8 Proliferation of the tumor cells within the organ parenchyma resulting in a metastatic focus;
9 Establish vascularization, and defenses against host immune responses; and
10 Reinitiate these processes for the development of metastases from metastases.

Figure 3. The process of cancer metastasis consists of sequential, interlinked, and selective steps with some stochastic elements. The outcome of
each step is influenced by the interaction of metastatic cellular subpopulations with homeostatic factors. Each step of the metastatic cascade is potentially
rate limiting such that failure of a tumor cell to complete any step effectively impedes that portion of the process. Therefore, the formation of clinically
relevant metastases represents the survival and growth of selected subpopulations of cells that preexist in primary tumors.

Talmadge and Fidler
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Figure 2.7: Metastatic cascade, steps of the metastatic process, picture retrieved from [20]

metastases are clonal and originate from one surviving cell [22, 20]. Another observation has been
made about the link between angiogenesis and metastasis: new blood vessels due to angiogenesis can
provide a channel for circulating tumor cells from the primary tumor to the distant site [47].

Cadherins

One of the most characterized feature was loss of E-cadherin, a transmembrane protein involved in cell-
cell adhesion [4]. Conversely, other adhesion proteins such as N-cadherin are involved in cell migration
(for instance during embryogenesis or inflammation). These are upregulated in many cancers [4].

2.3.2 New discoveries

Epithelial to mesenchymal transition (EMT)

Transformed epithelial cells can undergo a transition to a mesenchymal state that offers them abil-
ities to invade, survive and disseminate. In this, cancer development shares common features with
embryogenesis and wound healing. EMT is regulated by transcriptional factors, can be transient or
stable and is associated with: change in morphology from polygonal to spindly (like fibroblasts), ex-
pression of matrix-degrading enzymes such as matrix metalloproteinases (MMPs), increased motility,
heightened resistance to apoptosis [4].
Cells that underwent EMT are often located at the periphery of the tumor, suggesting different
microenvironmental stimuli depending on location [4].
It is thought - although not proven - that transcriptional factors regulating EMT are responsible for
most of the aggressive features of invasive carcinoma cells.
Involvement of the microenvironment suggests that passage through the multiple steps of the metastatic
cascade could happen without further clonogenic modifications of the cancer cells than required in
the initial stages of cancer progression. This remain to be tested [4].

Interactions with stromal microenvironment (at primary site)

There is a crosstalk between the cancer cells and surrounding environment. Macrophages and other
stromal cells are involved as they can supply matrix-degrading enzymes in order to help invasion and
they can also facilitate intravasation [30, 44].
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Mesenchymal to epithelial transition (MET)

If EMT is driven by environmental factors, then the reverse transition could occur when the colonizing
cell(s) arrive at the distant site. Additionally, it could be simplistic to think in terms of epithelial or
mesenchymal as a continuum could exist between both states [4].

Other forms of invasion

• Collective invasion is a - possibly different from EMT - process that often leads to invasion
without distant metastasis [30, 4].

• Other possibility is amoeboid (morphological plasticity) invasion, in which cells do not clear a
path for themselves by degrading the matrix but rather deform their shape to go through the
obstacles. It is still open to determine whether this last form has common biological mechanisms
with EMT or not [4].

• Yet another possibility is recruitment of inflammatory cells that produce MMPs, avoiding the
need of EMT to produce them [30, 44].

Colonization

The metastatic process consists in two major phases: dissemination and colonization, the latter hap-
pening at the distant site [4]. The former could mostly result from EMT while transition of micro to
macro metastasis could be differently driven. Colonization is not strictly coupled with dissemination,
as proven by the numerous data of large number of micro (and possibly occult) metastatic lesions in
patients, without further cancer development [4].

Dormancy
Colonization can be marked by a (possibly long) dormancy phase, during which tumors remain small
and non-expanding. Dormancy can be due to intrinsic lack of angiogenesis-stimulating capacity from
the metastatic tumor [5]. Nutrient starvation, anti-growth signals and immune pressure are other
possibilities [4]. Escape from this dormant state can happen a very long time after dissemination.
This dormancy can be provoked by distant action of the primary tumor, for instance through systemic
inhibition of angiogenesis [4, 48]. The question of metastasis dormancy is clinically very important
because dormant metastases are generally not visible on a patient and the possibility of blowing up
of the metastases has to be anticipated by the physician [47].

Metastatic microenvironment
Importance of extracellular matrix components like fibronectin or expression of chemokines for metas-
tasis development [44]. Moreover, the distant site has possibly been a priori prepared to form a
hospitable soil, possibly by signals emitted from the primary site, a process involving bone marrow
derived cells (BMDCs) that are recruited to form a premetastatic niche [10].

Time of dissemination
For a lot of cancers, metastasis is the last step of the multistep process of cancer progression. This
is proven by genetic studies showing clonal evolution from ductal adenocarcinoma to metastasis (in
prostate) [4]. On the other hand, it has been evidenced in preclinical studies that cells can disseminate
pretty early, although clinical relevance of early dissemination remains to be assessed [4]. About this
topic, Groom and Chambers mentioned that it is often the case that many patients have already
disseminated cells or invisible metastases when diagnosed [47]. It highlights the clinical importance
of the early dissemination. The theory of early dissemination and parallel growth of metastases,
opposed to the theory of linear progression where lymph nodes are invaded first and tumor cells
ultimately disseminate by the hematogenous way, is defended by Klein on the basis of quantitative
considerations on clinical data [24]. It remains open to know whether capability to develop macro
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metastases is acquired at the primary or secondary site, the latter resulting from selective pressure
at the distant (possibly hostile) site [4].

Self-seeding
Metastatic cells can disseminate further from the distant site, in particular back to the primary tumor
[49, 50]. Indeed, Kim et al. showed evidences of cells exchange between two tumors implanted in a
same mouse [11]. This could give an alternative explanation to the observed cells with metastatic
capability at the primary site. Moreover, based on the kinetics argument that tumor doubling times
increase with the size of the tumor, Norton notices that multiple seeds grow faster than one large
tumor and he proposes that malignant tumors that seed a lot grow fast because of the self-seeding
[50].

Genes that mediate metastatic development
In 2000, six genes have been identified, regulating survival and growth of metastatic cells in the
secondary sites [47]. Many efforts are currently devoted to find genes that characterize the metastatic
program [51].



Chapter 3

Mathematical models in cancer biology

As we could see in the previous chapter, cancer, from tumorigenesis to metastatic colonization, is a
very complex biological process. Understanding this complexity is motivated by designing new drugs
and finding new treatment schedules. Studies have been so far focused rather on qualitative aspects
of the cancer biology. However, measurement techniques progress, genetics development, and growing
interest on dynamical aspects of the biological processes are leading researchers to focus more and
more on the quantitative aspects. In this context, mathematical models could be powerful tools for
data analysis and quantitative predictions.

27
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3.1 A crosstalk between experiments, theoretical biology and math-
ematical models

3.1.1 Mathematical models applications

Models in sciences

In physics and biology, observing a natural phenomenon on the real system studied is not always
possible and use of a miniature model is required for understanding it. These models are not only
built for complexity reasons but also for material reasons: in fluid mechanics for example, it is
sometimes technically impossible to study the real flow in the conditions that we are interested in. A
solution is to study the flow on a miniature model with a reduced scale. In biology, for ethical and
health reasons, there are few ways to study the biology of a disease on patients. That is why studying
the disease on animals like mice or rats is necessary to understand the biology and to test treatments.
In order to understand natural phenomena, we need to build conceptual models that capture the
essential elements of a phenomenon. For example, the idea of the rotation of the earth around the
sun, viewed as a fix center, is a model. Indeed, because of the inertia of the sun which is much
more massive than the earth, we neglect the fact that the sun is also attracted by the earth that
exerts on the sun the same force exerted by the sun on the earth. To understand natural phenomena,
as explained in [52] by Wheldon, it is often not necessary to take into account all the phenomena
that theoretically could have a causal effect on what we are interested in. Due to the limitations
of our brain to understand the interactions of all the elements of the universe, such a simplification
is necessary to essentialize the phenomenon. A model consists in picking out the main elements of
the phenomenon that have a causal influence on what we perceive and observe. In sciences, theories
or conceptual models are proposed to explain natural phenomena. When the theory is rejected by
observations, another theory has to be proposed, including new elements that were not taken into
account in the former one.

Mathematical models

In physics, mathematics have proven to be useful and even necessary. Mathematical models for
physics have been used to make the knowledge progress in confronting theories with experiments.
When a theory does not match with the experimental results, it has to be rejected. When the theory
matches, it can be considered as valid until another theory is able to explain observations better. For
example, circular trajectories of the planets around the suns could relatively well explain the planets
trajectories until Kepler proposed elliptic trajectories.
Mathematical models of physical phenomena are also used for their predictive power in industrial
fields like aeronautics, aerospace, and many other fields or for scientific fields like astronomy to
predict planet trajectories.
Whereas the role of mathematics is essential in physics, it is less obvious in biology. In physics,
lots of phenomena can be explained in a quantitative way and lots of theories can be expressed in
a quantitative way. A theory explains a phenomenon by the separate effects of few essential ele-
ments. In physics, it is often relevant to express the objects of interest (mass, magnetic field, etc)
in a quantitative way. Theories where the different effects on a same phenomenon can be expressed
quantitatively are adapted to be formalized in mathematical language. A mathematical model, which
is the mathematical formalization of a precise quantitative theory, is a relevant tool to deduce impli-
cations of theories dealing with quantitative objects. In physics, these models are often formulated
in time-dependent differential equations, leading to a solution that describes the time course of an
observable quantity. In biology, phenomena are most of the time understood in a qualitative way,
which limits the relevance of using mathematical models. However, the same approach as in physics
could be made in biology fields where quantitative aspects would be of biological interest. The grow-
ing interest in dynamical aspects [53] of the cancer disease and the amount of quantitative data seem
to make cancer research a fertile field for mathematical models applications.
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A mathematical model for what purpose?

The two principal uses of mathematical models are devoted to: 1) clinical purposes and 2) biological
purposes.

Clinical purposes
A first goal of the mathematical models for cancer consists in predicting the evolution of the disease
for a patient in order to help the physician in his therapeutic decisions. For example, from three
CT-scan images, we could try to predict the fourth six months after to help the doctor to anticipate
the evolution of the disease. Another purpose of mathematics can be to simulate the effect of a
therapeutic protocol in order to perform scheduling optimization.

Biological purposes
Another goal of the mathematical models for cancer is to improve our understanding of the cancer
biology. As mentioned before, cancer biology is very complex and not well understood yet. Under-
standing it better would help to design new drugs or therapeutic protocols in order to improve the
way of how patients are treated. In one hand, a mathematical model can be used to infer insights that
are not obvious in the untreated experimental data. A mathematical model formalizes a biological
theory that could explain a phenomenon. The goal of the modeling approach is to validate or reject
theories in confronting models with observations.

In this thesis, the purpose was of the second type: cancer biology understanding and more particularly
the biology of metastasis. We had to keep in mind that the modeling approach can differ in the two
previous cases. In a clinical context, a model has to be predictive, in order to infer useful information
to the physician. Such a model does not need to be based on a solid and realistic biological framework.
A totally phenomenological model that does not describe any biology can be relevant in this context
if it is predictive. For biological purposes, it is different because the goal of the model is often to
infer reliable biological informations from the parameters or the simulation results. It does not mean
that such a model has to contain all the biology of the studied phenomenon. First because it is not
possible, as we are always far from understanding the complete biology of the phenomenon, second
because the number of parameters that we can identify is limited by the amount of available data,
and third because the power of a model is exactly to be able to essentialize the phenomenon in few
major components.

3.1.2 Using mathematical models for theoretical cancer biology

Rejecting and validating theories

In the first chapter of his book “Mathematical models in cancer research” [52], Wheldon mentioned,
based on Karl Popper’s work: “a theory cannot be proved correct experimentally but only refuted if it
makes incorrect predictions about some natural phenomena”. He also mentions that the predictions
of a theory are not always simple to know and that mathematical models are sometimes needed to
know these predictions. A theory that makes valid predictions only gains in plausibility but is never
validated as the truth, the absolute theory that reflect the reality. Indeed, whenever another theory
shows predictions valid as well, it is not possible to discriminate one or the other theory. Although
of lesser importance than in physics, mathematical models could play a similar role in theoretical
biology thanks to a similar approach where observations and data are continuously confronted.

Data-driven modeling

The previous approach calls for a continuous crosstalk between models and experiments. A theory
is systematically built on what is perceived and understood of first observations (e.g. the idea of
the gravitational force from the observations of falling objects). When a quantitative theory is non-
ambiguously formulated, it can be formalized into a mathematical model. The predictions of this
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model can then be compared to observations. If these predictions are not in accordance with data,
the theory has to be changed or enriched.
Biology is an experimental science that has known improvements without the help of mathematical
models. A theory can be formulated as a question like: “Does this molecule have a pro or an anti-
tumoral effect?” As in physics, such a question is highlighted by previous observations and new
experiments have to be made in order to answer to this question or reject/validate some theory. The
role of mathematics in biology could be to highlight new questions that focus more on quantitative
aspects than in the classical view of the biology.
For instance, a quantitative question could be: “Is the doubling time of a tumor constant during
the growth?”. Such a question could be answered using a mathematical model, and this is precisely
the purpose of the next paragraph. Moreover, as we just mentioned, mathematical models could
help in giving rise to new questions, in the sense of suggesting new hypotheses that could be tested
experimentally. The scheme of Fig 3.1 summarizes the data-driven modeling approach for theoretical
biology.

Observations

New

experiments

Theory

rejected

Theory
not rejected

Questions and
theories suggested

to explain the
data

Model
calibration on data

to test
the theory

Mathematical
model to test the
theory or answer
to the question

Model
simulations to
answer to the
questions and

suggest testable
hypotheses

Figure 3.1: Data-driven modeling in cancer theoretical biology

Naturally, this modeling approach is not the only one possible. In this thesis (except in the last
chapter), we essentially used this approach. However, other approaches, more theoretical, are possible
and sometimes very useful as they can provide general insights on the studied biological process [54].

How complex a mathematical model has to be

As previously mentioned, a mathematical model formalizes a quantitative theory of what are the
causal effects of the biological entities of the system on each other. The description depth of a
phenomenon can be limited to the macroscopic level like the tissue scale, but can also reach much
smaller scales like the cell scale. The level of biological description in the model can be very flexible



3.2. EXAMPLE OF A TOP-DOWN MODELING APPROACH 31

to describe a same global phenomenon. For example, to describe tumor growth dynamics, a scalar,
the tumor volume, and an ordinary differential equation describing the increase of this volume can
be sufficient to assess useful quantitative predictions for a patient. However, it would be possible to
include in the model a variable representing the vascular density within the tumor and to model its
effect on the tumor growth and the reciprocal effect of the tumor on vascular density by angiogenesis.
It could also be possible to include the effect of the immune system into the model. Such refined
models can be useful as they provide predictions on not necessarily observable biological quantities
such as the vascular density or immune infiltration. A good example of such a contribution is the
modeling work of Michor et al. on chronic myeloid leukemia, which allowed to infer information on
the dynamics of subtypes of cells that have different states of differentiation (whereas only the total
number of cells was measurable) [55]. Their analysis generated informative clues on the particular
cells that were resistant to treatment (the stem cells compartment). An other use of adding biological
aspect into a model is to simulate effects of specific inputs. For example, including angiogenesis into a
model of tumor growth can be useful to quantify the effect of an anti-angiogenic therapy [56]. Starting
from these observations, it could be tempting to include all the biological aspects that seem important
in the studied process: angiogenesis, immune system, key genes, extracellular matrix, growth factors
for example, in order for the model to be as realistic as possible. However, as very well explained by
Wheldon in [52], biological entities like cells or tissues can hardly be defined as having fundamental
and invariant properties because the properties of a cell, for example, are strongly mediated by the
other cells present and surrounding factors. In physics, depending on the scale, an object can be
defined as having a set of fundamental properties like its mass for example. This is why, according
to Wheldon, mathematical biology has for now to deal with relatively simple problems likely to
benefit from mathematical models as a quantitative tool. Finding relevant quantitative problems for
which progress can be made thanks to mathematical modeling remains one of the main difficulties.
However, there are several possible approaches of cancer modeling. The mechanistic approach consists
in describing phenomena at a fine scale like the cell scale. It introduces lots of biological elements in
the theory, in order to deduce information at a more macroscopic scale and can be called a bottom-up
approach. The second approach, more phenomenological, consists in essentializing the phenomenon
in few main elements to exhibit general laws/theories that can be confronted to data in order to
deduce biological informations. This kind of approach can be called top-down approach.

Simulations and mathematical analysis

Solving the mathematical models is not always simple, depending on the complexity of the model.
For some ordinary differential equations-based models, it is possible to exhibit an analytical solution.
In these cases, the solving part is not a big deal. However, some ordinary differential equations (ODE)
systems are not as simple to solve and a numerical approach is required. Mathematical analysis of
the models allows sometimes to exhibit qualitative properties of the solutions and to understand the
behavior of the model. For complex systems like some partial differential equations, mathematical
analysis is also necessary to show the well-posedness of the problem.

3.2 Example of a top-down modeling approach

The next paragraph presents a simple example of top-down approach that illustrates the modeling
philosophy of this thesis. We consider here a simple situation where mathematical models can be
used to test theories against data and to infer information that are not obvious in the data. In this
example, the goal is to provide the most parsimonious growth laws that could explain data of tumor
growth in different situations.
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3.2.1 First situation: in vitro cell proliferation

Here we deal with kinetics of renal cell carcinoma (RENCA) tumor cells that are growing in vitro.
RENCA is a murine cell line of kidney cancer. Fig 3.2 shows the data of cell kinetics obtained from
[57].
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Figure 3.2: In vitro proliferation assay of RENCA cells retrived from [57]. The points of the curve
represent the number of cells time course. Mean values ± standard deviation.

We look for a model able to describe these data that would be in accordance with the biological
knowledge, with parameters as reliable as possible with experiments, and as simple as possible, ac-
cording to the parsimony principle. A simple theory of growth that could explain these data would
be that a constant fraction of the cancer cells proliferate with a constant doubling time. How to
mathematically formalize this theory? The exponential law is the mathematical law that describes
such dynamics. The in vitro assay being in 2D, we define S the surface occupied by the cells and
write the exponential law followed by this surface:

dS

dt
= aS,

S(t = 0) = S0,

where a is the growth rate of the cell line. This parameter is equal to log(2) multiplied by the ratio
between the cell fraction in cycle and cell cycle duration. Can this theory explain the data? To answer
this question, we calibrated the parameter of the model to fit the data. To do so, we minimized the
following weighted least square criterion:

LS(a) =

n∑
i=1

(S(ti, a)− yi)2

Σ2
i

,

where n is the number of data points, (y1, .., yn) are the observations at times (t1, ..., tn), and Σ1, ...,Σn

are the standard deviations of the observations at times (t1, ..., tn), represented by the error bars on
Fig 3.2 and retrieved from [57].
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We observed that this theory was able to describe the data, as shows Fig 3.3. Indeed, except in one
point, the normalized residuals S(ti,a)−yi

Σi
were all lesser than 1, meaning that the error of the model

is lesser than the variability of the data. Moreover, a statistical test did not reject the null hypothesis
of a standard normal distribution of the normalized residuals (p = by the z−test). Particularly, it
implies that the residuals are distributed around 0, a result expected from a good model.
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Figure 3.3: In vitro number of RENCA cells time course. The points represent the data and the curve
the fitted exponential model.

What have we learned?

The theory “a constant fraction of the cancer cells proliferate at a constant doubling time” is able
to describe in vitro growth of RENCA cells. It does not mean that this theory describes exactly
the reality. We could not discriminate other theories that would fit equally well. We also inferred a
biological from the data: the calibrated value of the parameter a provides us the in vitro doubling
time of the RENCA cell line.

3.2.2 Second situation: in vivo tumor growth

The previous model is able to describe in vitro tumor growth but what about in vivo tumor growth?
This time, the model is written:

dV

dt
= aV,

V (t = 0) = V0,

where V is the total volume of tumor cells. We consider data of the same cell line (RENCA) but
injected in the renal subcapsule of a mouse. Fig 3.4 presents this data. These data are the same as
used in section 5.1.2 of the chapter 5 to study tumor cells kinetics in the kidney. In this experiment,
tumor cells are tagged with green fluorescent protein (GFP) and each data point corresponds to one
distinct animal. A statistical model of the interindividual error is further presented in 5.1.2, resulting
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Figure 3.4: In vivo proliferation of RENCA cells in the kidney. The points of the curve represent the
number of cells time course. Mean values ± standard deviation.

in error bars presented in Fig 3.4 and in the use of the following weighted least square criterion to
minimize for the model calibration:

LS(a) =

n∑
i=1

(V (ti, a)− yi)2

Σ2
i

,

where Σi represents the model of standard deviation that has been established in 5.1.2.
When we tried to fit the exponential model to this in vivo data, we observed that this theory can
not describe the data, as shown in Fig 3.5. Indeed, two normalized residuals only are lesser than 1.
Moreover, a normal distribution of the residuals is rejected by the z−test (p < 0.01). These results
show that the residuals are biased and not randomly distributed around 0. Indeed, in Fig 3.5, we can
see that the model curve is under all the points except the last one.
This means that in vivo growth can not be explained by a constant growth rate, which is maybe a
too simple theory to describe in vivo growth. Indeed, it is often accepted that in vivo growth exhibits
increasing doubling times [58, 59, 60]. To take this phenomenon into account, we propose a slightly
more complex model:

dV

dt
= αV − βV log(V ),

V (t = 0) = V0.

This model is called “Gompertz model” because it was introduced by Benjamin Gompertz in 1825
(but not to describe tumor growth). This model describes a growth with a relative growth rate that
decreases exponentially. In trying to fit it on the in vivo data presented in Fig 3.4, we concluded that
this model was able to describe RENCA in vivo growth in the kidney, as shown in Fig 3.6. Indeed,
9 normalized residuals on 10 are lesser than 1 and the z−test does not reject the null hypothesis of a
standard normal distribution of the normalized residuals (p = 0.2).
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Figure 3.5: In vivo number of RENCA cells time course in the kidney. The points represent the data
and the curve the fitted exponential model.
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Figure 3.6: In vivo number of RENCA cells time course in the kidney. The points represent the data
and the curve the fitted Gompertz model.

What have we learned?

The theory “a constant fraction of the cancer cells proliferate at a constant doubling time” is not
able to describe in vivo growth of RENCA cells. Paradoxically, the fact that this model was not
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able to fit the data is precious because it shows that this theory has to be rejected and allows to
infer a biological insight: the in vivo doubling times are not constant. We then observed that the
Gompertz was able to describe these data, which means that a growth theory where the growth rate
decreases is able to describe in vivo growth of a RENCA tumor. But another theory fitting equally
well would be as well as valuable. We have to keep in mind that theoretical biology approaches
using mathematical model allow to infer biological insights when rejecting theories. It then leads to
suggest other or supplementary hypotheses that are tested experimentally. In this thesis, we used a
data-driven modeling approach in order to challenge standard theories and suggest other ones that
could be tested experimentally.

3.3 A review of mathematical models for cancer research

3.3.1 Mathematical models for tumor growth

As explained by Araujo and McElwain in a review (2004) [61], one of the first uses of mathematics to
understand tumor growth had started in 1932 by Mayneord [62]. The author first observed a linear
tumor growth of rat sarcoma submitted to X-radiations. He second observed that proliferation after
radiation was limited to a thin rim at the tumor surface. Using a mathematical model of tumor
growth, he then observed that exponential growth is obtained when a constant fraction of the all
cells of the tumor are proliferating. He then deduced that a linear growth could be explained by a
proliferating rim becoming more and more thin at the tumor periphery. Another substantial review
has been published by Byrne, where a time line of mathematical models for tumor growth is presented
[63]. The purpose of the following short review is not to be exhaustive, but to present some of the main
mathematical models of tumor growth. The review is divided into different classes of mathematical
models of tumor growth. Some examples of modeling studies are presented for each class.

Tumor volume and tumor cell population kinetics models

Ordinary differential equations based models like Gompertz model have known some success to predict
tumor volume dynamics in mouse data [64, 65]. Concerning the clinics, Norton used the Gompertz
model to describe breast cancer dynamics, with good results showing a potential of this kind of model
to be used to forecast clinical tumor growth [58]. Michor et al. also illustrated the potential of math-
ematical models for clinical purposes in proposing a model of the chronic myeloid leukemia dynamics,
describing the dynamics of several populations of cells: stem cells, progenitor cells, differentiated cells
and terminally differentiated cells [55]. After calibration of the model on clinical data, simulations
suggested that resistance of the treatments (imatinib) are exhibited by the stem cells subpopulation,
illustrating how potentially powerful mathematical models could be in inferring information that is
not contained in the data.

Mechanical models of tumor spatial expansion

In the other hand, partial derivative equations have been used to describe spatial expansion of tumors
like gliomas for instance [66]. One of these models, developed by Swanson et al., has been used to
assess predictions on glioma spatial invasion in the brain [67]. This model, based on a diffusion
equation with a renewal term, summarizes glioma spatial expansion in two major phenomena that
are proliferation of cells and migration of cells. It allows to take in account heterogeneities of the brain
media (white matter and grey matter) resulting in heterogeneous migration of the spatial expansion.
In another work, Preziosi and Ambrosi proposed a mathematical model of tumor spatial expansion
where tissues are considered as multiphasic fluids. In this model, the expansion is not based on cell
diffusion but described by a Darcy velocity, that is a gradient of pressure, the pressure resulting
from the proliferation of cells [12]. Similar modeling asumptions (conservation laws, Darcy velocity)
have been used by Jouganous et al. to assess predictions on clinical pulmonary metastatic lesions
[13]. Bresch, Colin et al. used a similar framework to model avascular tumor growth, incorporating
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a viscoelastic behavior of the tumor tissue [68]. In another recent work, Perthame et al. studied,
thanks to an asymptotic analysis, the passage to the stiff limit in the pressure law of state from a
model describing tumor cell number density dynamics thanks to a conservation law (Darcy velocity)
and a growth term. In this model, the proliferation of tumor cells depends on the medium pressure
[69].

Avascular tumor growth models

In the avascular stage, a tumor grows thanks to nutrients diffusion from blood vessels and this kind
of growth ends to a dormant steady state where the tumor is not growing anymore due to balance
between death rate and growth rate within the tumor cell population [70, 71]. One of the first modeling
attempt for describing the mechanisms of growth by diffusion has been introduced by Greespan (1972)
[70]. In this theoretical study, simple mathematical models are used to investigate if dormant state
in avascular tumor growth is due to metabolic wastes or necrotic core disintegration.
Spatial models of avascular growth have also been developed to describe tumor spheroid growth. Con-
tinuous and discrete approaches both demonstrated descriptive ability for tumor spheroid dynamics
data [63]. Indeed, the results obtained by the continuous model from [72] and those obtained by the
discrete model described in [73] both exhibited a good ability to describe the exponential then linear
growth dynamics observed on multicellular spheroids.
For a much more complete review of tumor avascular growth mathematical models, the reader is
referred to read the review from Roose, Chapman and Maini [74, 75].

Vascular tumor gowth, angiogenesis modeling

Angiogenesis being a critical step in tumor progression, many mathematical models have been devel-
oped to describe biological mechanisms of angiogenesis and vascular tumor growth. In 1996, an early
spatial model of vascular tumor growth has been proposed by Chaplain [76]. In this paper, Chaplain
introduce models of different cancer stage: avascular tumor growth, angiogenesis and vascular tumor
growth, invasion and metastasis. In the model of angiogenesis, angiogenic factors-mediated chemo-
taxis and proliferation of endothelial cells are modeled, leading to simulation results in accordance
with experimental data. In 1998, Anderson and Chaplain proposed two spatial models of vascular
tumor growth [77]. The first is a continuous model where endothelial cells, stimulated by tumor an-
giogenic factors, migrate toward chemotactic gradients and also interact with the ECM (fibronectin).
After calibrating parameter values on experimental data, simulation results are compared with in
vivo experiments. A discrete version of this model is also proposed, allowing to perform simulation of
vessel sprouting. These in silico neovascular networks are compared with in vivo vacular networks.
More recently, Billy et al. proposed a spatial model of vascular tumor growth including the matura-
tion state of endothelial cells in blood vessels, in order to assess efficiency of therapies targeting the
microenvironment [78].
Other studies focusing more on the effect of endogenous factors of angiogenesis inhibition have been
performed by Hahnfeldt et al. using a more phenomenological modeling approach [56]. Results of the
studies shed light on promising perspectives of antiangiogenic therapies and of quantitative modeling
approaches to analyze systemic dynamics in cancer.

Tumor microenvironment

Some modeling studies focused more on the effects of particular elements of the microenvironment
like extracellular matrix (ECM) or nutrients concentration. Anderson et al. investigated the effect
of differental microenvironmental conditions (heterogeneity of the ECM, hypoxia, etc) on phenotype
of cancer cells using a hybrid agent-based model. [79]. The study revealed that harsh microenviron-
mental conditions exert a strong selective pressure on the cancer cells, resulting in a more invasive
tumor phenotype.
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3.3.2 Mathematical models of the metastatic process

Whereas many mathematical models have been built to describe tumor growth dynamics for preclini-
cal and clinical purposes, relatively few efforts have been devoted to metastatic development modeling,
although metastases are responsible of 90% of cancer related deaths. Because the metastatic cascade
is a very complex process, mathematical models for metastasis often focus on a precise step of the cas-
cade (acquiring an invasive phenotype, growth of established metastases, etc), as mentioned by Scott
et al. in a recent review [80]. The goal of this short review is not at all to be exhaustive, but rather to
present some of the main models focusing on different steps of the metastatic cascade and that have
been used to infer different kinds of biological or clinical insights. Because, the dynamical aspect is
very important in the metastatic disease, deterministic models principally based ODE systems have
been built to describe the metastatic development. But on the other hand, because of the stochastic
nature of cell scale events like mutation development or cell intravasation, several stochastic models
have also been used to study the metastatic process.

Modeling the metastatic dissemination to predict the number of metastatic foci

In one of the first modeling works for describing the metastatic cascade, Saidel, Liotta and Kleinerman
modeled the main steps of the process: primary tumor growth, angiogenesis and dynamics of the
vascular surface of the primary, intravasation, circulating tumor cells flow, extravasation and formation
of new metastatic colonies [81]. This model does not describe the growth of metastatic foci but only
the birth time of each macrometastasis. In this work, experiments of mouse fibrosarcoma-induced
pulmonary metastases allowed to calibrate the model and to assess the descriptive power of the
model for each step of the metastasis cascade. The model, able to describe observations in the
unperturbed system, was also able to reproduce experimental observations when perturbations like
tumor trauma and tumor amputation occur. Predictions of the model are also studied in the case of
other perturbations like lung vessel damages and inhibition of vascularization.
Liotta et al. also proposed a stochastic model of metastasis formation based on Markov chains [82].
In this model, metastatic foci do not only birth from single tumor cells but also from circulating cell
clumps that arrest in capillary beds. In this work, the authors assessed good agreement between
model and data in terms of number of metastasis and the time evolution of the probability to have
no metastasis. The study goes further beyond with simulation of surgical removal of the tumor in
the cases where a treatment is applied or not. The treatment consists in dislocating the tumor cell
clumps. The results suggest that dislocating tumor cell clumps into single cells does not substantially
improve the cure but reduce significantly the number of metastatic foci.

Modeling the metastatic dissemination as an evolution process

Other stochastic models have been built to study the metastatic process. One of them has been
developed by Michor et al. in [54] to simulate Darwinian competition between tumor cells that
acquired metastatic potential or not, thanks to a stochastic process called Moran process [83]. In this
work, it is assumed that one mutation is responsible for acquiring the metastatic potential and that
this mutation can confer to the tumor cells either advantageous or disadvantageous feature within the
tumor. In this study, Michor et al. were wondering if metastatic potential is the property of cells of
the main tumor or of a small subset of cells. One of their findings was that under their assumptions
(one mutation responsible for the metastatic potential, constant number of cells in the tumor), cells
that acquired metastatic potential are likely to have advantageous features within the tumor (high
proliferation rate, low death rate), leading ultimately to tumors essentially composed of malignant
cells.
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Models that describe the metastatic size distribution

Other kinds of models describe the complete metastasis size distribution dynamics. The output of
these models can be represented by an histogram of the type of the one presented in Fig 3.7 As
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Figure 3.7: Histogram of a metastatic size distribution

explained by Scott et al. in [80], when a patient exhibits a visible metastatic lesion, it is difficult
to know if other metastatic lesions are present under the visibility threshold of the used imagery
technique.
In 2000, Iwata et al. built a continuous model describing a density of metastatic tumors distributed
with respect to the metastatic sizes [17]. The output is hence a histogram of the same type as in Fig
3.7. In this model, the density of metastases follows a conservation law describing the transport of
the density by a velocity field which is the growth law of the metastatic foci. This model has been
used on a patient data to estimate the invisible metastatic burden from the visible metastatic lesions
in the liver. This model has been recently validated to describe total metastatic burden dynamics
from bioluminescence data of xenograft mouse breast cancer [25, 26] and syngeneic kidney cancer
mouse model [26]. Similar studies have been performed using stochastic models by Bartoszyinski et
al. [84] and Hanin et al. [85], where the authors validated their models against a single patient’s
data. Stochastic modeling techniques have also been used by Michor and Haeno to predict survival of
patients with metastatic pancreatic cancer [86]. This model exhibited excellent abilities to predict the
survival of a cohort of patients and has been used to assess treatment strategies. The study suggested
a better efficiency of chemotherapy alone as compared to surgery of the primary alone.

Modeling the metastasis dormancy

Other studies have also been devoted to modeling the metastatic dormancy, more precisely the
surgery-mediated dormancy interruption [87, 88] or systemic inhibition of angiogenesis causing a
global metastatic dormancy [48]. In the last mentioned study, the Hahnfeldt model [56] is used for
the growth of the metastases and the primary to model angiogenesis inhibition that a tumor exerts
on all other ones. It illustrates that metastatic dynamics could result from these interactions and
that latent stages of the disease could result from such global dormancies.

Modeling the blood network to assess the likelihood of organs as target sites

Other studies taking into account anatomical parameters of the patient have been performed. In
[89, 90], Scott et al. proposed a model of the vascular network, where circulating tumor cells cross
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the different organs that have respective filtration capacities. For a specific patient, if the different
filtration capacities could be measured, the model could be parametrized and assess the likelihood of
future metastasis development in each organ.

Modeling tumor self-seeding

In another study [91], Scott et al. used a similar approach combined with simple growth laws to
challenge the theory of Larry Norton where primary tumor growth is accelerated by reseeding of
circulating tumor cells that leave and go back to the primary in crossing all the blood network or by
emission from the metastatic tumors to the primary [50]. In their study, Scott et al. showed that
secondary reseeding (from metastatic tumors) is more likely to accelerate primary tumor growth than
primary reseeding (from the primary and back to the primary through the blood flow).

Modeling the metastatic microenvironment

Other studies have been focused on the role of the microenvironment for metastasis establishment.
In [92], Araujo et al. studied the role of osteoblasts and osteclasts in the development of prostate
cancer bone metastases. The model, able to reproduce the physiological stage where homeostasis in
the osteoblastic and osteoclastic activities allow bone remodeling, has also been used to simulate the
effect of a prostate tumor cell on this ecosystem. Simulations, in accordance with experimental data,
showed how one tumor cell can deregulate this homeostasis and lead to a vicious cycle where tumor
cells stimulate osteogenesis.

3.4 Conclusions

In this part, we discussed about the purpose of using mathematical models in cancer research, and
more particularly how data can drive mathematical modeling, which in turn drive new experiments.
As it can be noticed, a huge number of mathematical models for cancer have already been proposed
and confronted with different kinds of data for different purposes like biology, tumor growth forecasting
for patients or simulations of treatments scheduling. In this thesis, we adopted a data-driven modeling
approach in order to infer biological insights on the biology of metastasis. Given that many kinds of
data can be provided by experimentalists, a methodology to treat these data is needed. This is the
purpose of the next chapter.



Chapter 4

Data assimilation in cancer modeling

Many different kinds of experimental techniques can be used to follow tumor dynamics in living
systems. It gives rise to different kinds of data that require different kinds of statistical treatments
to be analyzed. In this chapter, we will first deal with the different measurement techniques to follow
tumor growth dynamics and second with the data assimilation techniques that are adapted for these
different types of data.

41
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4.1 Different types of data

4.1.1 Different biological systems to study the cancer biology

Tumor growth can be studied in different contexts: in vitro, in vivo and in patients. Each system
has its advantages and drawbacks. Fig 4.1 illustrates the advantages and drawbacks of the different
experimental systems:

Clinical relevance

Quantity and accuracy of data

Clinical data

In vivo data

In vitro data

Figure 4.1: Advantages and drawbacks of the different kinds of data

In vitro systems

In vitro systems like 2D monolayers and 3D spheroids allow to get large amounts of observable
quantities with a good accuracy. For instance, it is possible to observe the individual proliferating
cells and quiescent cells. Moreover, in vitro experiments are useful to study the individual effect of
a particular factor on a system. However, in vitro systems are far from in vivo situations because
many factors are lacking, especially the interactions with the microenvironment such as other cells,
extracellular matrix or endocrine factors. Such factors could have a critical influence on the system
and in some cases totally change the output of the experiment. That is why in vitro experiments are
useful but in vivo experiments are needed to study complete biological phenomena.

In vivo animal models

In vivo animal models are very useful because they allow to observe many variables in biological
systems relatively close to a human system. However, observing variables in vivo is more difficult
that in vitro and sophisticate protocols (imaging, GFP tracking, etc) are needed, inducing more error
measurements. Furthermore, even if in vivo systems allow to study cancer that approach clinical
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cancers much better than in vitro ones, many differences are observed between mice and patients,
limiting sometimes the relevance of animal models.

Clinical data

Clinical data are the most relevant data to confront to mathematical models. However, the amount
of clinical data for a given patient is often limited, due to the limited number of examinations for a
patient. Indeed, examinations are sometimes irradiant (CT scan, PET scan, etc), invasive (biopsies),
painful for the patients, or expensive and can not be performed frequently enough to provide data
that can be exploited by a model. Moreover, clinical data are often provided for treated patients. It
is relevant when the goal is to simulate the effect of the treatment and propose therapeutic strategies
but not to study the biology of the growth process, which requires to observe the tumor development
without the bias introduced by the treatment.

4.1.2 Different experimental techniques to observe tumor growth dynamics

Several experimental systems can be used to follow the growth of a tumor. Some of the main systems
are presented here:

Caliper

This method is often used to measure the volume of subcutaneous tumors in animal models. The
diameters of the tumor are measured with a caliper. The volume is then approximated, considering
the tumor as an ellipsoide.

Advantages
One of the main advantages of this technique is be quick and easy, allowing multiple measurements
and then estimation of a measurement error. Moreover, this technique is not as expensive as can be
more sophisticated techniques.

Drawbacks
However, measurements by caliper are not very accurate and are only feasible for subcutaneous or
easily accessible macroscopic tumors.

Green fluorescent protein (GFP) tracking

GFP tracking consists in manipulating cells to make them express a green fluorescent protein. In order
to measure the GFP expression in a tissue sample, which is in theory proportional to the number
of GFP-expressing cells in the sample, a quantification of GFP expression by quantitative real-time
polymerase chain reaction is performed.

Advantages
This technique has many advantages as it can be performed in many organs for many kinds of cancers,
at a small scale (few cells) with a good accuracy. Moreover, it gives information on the tracked cells
only. For instance, for a tumor, it can give information on the tumor cells only, which can be
biologically more relevant than the volume of the tumor.

Drawbacks
Unfortunately, because the tissue or the organ has to be extracted for the quantitative real-time
polymerase chain reaction, it is impossible to have longitudinal data on a same individual with such
a technique. In GFP-tracking longitudinal data, one point corresponds to one individual. Another
drawback is that the GFP signal does not give direct informations on the volume of the tumor but
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on the tumor cells. Moreover, such a signal can be relative and is sometimes difficult to rely to a
number of cells.

Bioluminescence tracking

The bioluminescence technique consists in manipulating cells so that they express luciferin to make
them emit photons, in order to measure a signal that is in theory proportional to the number of
luciferin-expressing cells.

Advantages
Like GFP tracking, bioluminescence can be used to track tumors in many organs for many kinds of
cancers and gives information on the tracked cells only, possibly at a small scale. Moreover, unlike
GFP tracking, bioluminescence allows to follow the time course of tumor cells on a same individual,
and the signal is more easily reliable to a number of cells.

Drawbacks
The prize to pay for these advantages is principally large measurement errors. Furthermore, to track
a metastatic burden thanks to bioluminescence, one has sometimes to remove the primary tumor
because its emission eclipses the metastatic signal. Moreover, like GFP tracking, the measured signal
does not give direct informations on the volume of the tumor but on the tumor cells.

Imaging

There are many kinds of imaging techniques (MRI, CT scan, PET-scan, etc). We present here only
magnetic resonance imaging (MRI) and Computed tomography scan (CT scan) data. MRI consists in
submitting tissues to a magnetic field in order to get a contrast due to the different relaxation times
of the diverse molecules. CT scan consists in submitting the tissues to X-rays in order to measure
differences in tissue density. Although these two techniques are different in many aspects, they both
allow to generate 3D images, informing on the spatial distribution of the lesions.

Advantages
Imaging techniques have the advantage to give information on distinct lesions. For instance, it
is possible to count the metastatic foci and obtain their individual sizes, resulting in much more
information than the total metastatic burden only obtained by GFP-tracking or bioluminescence.
Moreover, it gives spatial information like the shape of the lesion and its anatomical location. All
these information can be monitored during the time on a same individual (patient, mouse, etc).

Drawbacks
The accuracy and detection threshold are limited to the device resolution (' 1 mm3/voxel for clinical
images, ' 0.01 mm3/voxel in experimental images). Moreover, it takes a long time to delineate the
images. That is why automatic segmentation tools are needed.

4.2 A statistical framework for data analysis

Statistics is the science that deals with data. When data is obtained from experiments, we need to
know what tendencies are brought out from the data, in short what the data “say” to go further
beyond. That is why preliminary analysis has often to be performed before the modeling work and
then confront these models to the data. Moreover, statistical methods have also to be used to compare
simulation results with data, especially when simulations have to be confronted to data of a population
of patients or animals.
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4.2.1 Testing if a sample comes from a theoretical distribution

Let a sample of N data points (x1, .., xN ) that are realisations of N random variables (X1, .., XN )
assumed to be independent and identically distributed. We a priori do not know the distribution
of (X1, .., XN ) but we want to test if the sample (x1, .., xN ) is likely to come from a theoretical
distribution with a mean value µ and a standard deviation σ. If it is true, considering the random
variable µ̂ = 1

N

∑N
i=1Xi, we know, thanks to the central limit theorem, that

√
N(µ̂− µ) converges in

distribution to a standard normally distributed variable as N tends to infinity:

√
Nµ̂

d−→ N
(
µ, σ2

)
,

where N (µ, σ2) is the normal distribution of mean value µ and standard deviation σ. If the sample
is large enough (if N is high enough) we then have:

µ̂ ∼ N
(
µ,
σ2

N

)
,

and then:

z =
µ̂− µ
( σ√

N
)
∼ N (0, 1).

To test if the sample (x1, .., xN ) is likely to come from the theoretical distribution with the mean value
µ and the standard deviation σ, we first compute z and then the cumulative distribution function of
a standard normal distribution in the value |z| that we called normcdf(|z|), as in Matlab, and defined
by:

normcdf(x) =

∫ x

−∞

1√
2π
e−

s2

2 ds ∀x ∈ R,

which is the probability that a random variable from a standard normal distribution takes a value
less than x.
The value p = 2(1 − normcdf(|z|) is called p−value for the null hypothesis that z comes from a
standard normal distribution, and then for the null hypothesis that the sample (y1, .., yN ) has been
generated by a distribution with mean µ and standard deviation σ. The null hypothesis is generally
rejected if p ≤ 0.05.

Remark 4.2.1. In the reality, it is very rare to know the theoretical variance σ and it is replaced by

its estimator σ̂ =
√

1
N−1

∑N
i=1(Xi − σ̂X)2. Thanks to the Slutsky theorem, the convergence of µ̂ to

the normal distribution is still true.

Remark 4.2.2. The previous test is only based on comparisons (between the sample and the theoretical
distribution) of mean values. Other tests allow to test theoretical cumulative distributions or theoretical
probability distributions against the data. The one-sample Kolmogorov-Smirnov test [93] for instance,
challenges the null hypothesis that the population cumulative distribution function of the data is equal
to the cumulative distribution function of a specific distribution (normal distribution, exponential
distribution, etc). The χ2 goodness of fit test [94] allows to test if the sample comes from a theoretical
probability distribution (normal distribution, exponential distribution, etc) in comparing the empirical
and the theoretical probability distributions.

4.2.2 Testing if two samples come from the same distribution

It is often necessary to test if two samples come from the same statistical distribution. For example,
to test if a number of cancer cells is higher in the case where mice are treated than in the case where
they are not, a statistical test is necessary. The output of this kind of test is a result for the null
hypothesis that the two samples come from the same distributions. Many different tests exist and
are adapted for different kinds of situations (sample sizes and hypotheses on the distributions) but
we just present here a particular example based on the parametric z-test.
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Let two data samples (x1, .., xK) and (y1, .., yN ) that are realisations from respectively K and N
random variables (X1, .., XK) and (Y1, .., YN ) assumed to be independent and identically distributed,
with respective standard deviations σX and σY and mean values µX and µY . We want to test if the
sample (yi)i and (xi)i are likely to have been generated by the same distribution. We introduce the
random variable D = X̂ − Ŷ . The variance of D is equal to:

V AR(D) = V AR(X̂) + V AR(Ŷ ) + 2COV (X,Y ), (4.1)

V AR(D) = V AR(X̂) + V AR(Ŷ ), (4.2)

because X and Y are assumed to be independent. If the two samples are large enough, then we have,
thanks to the central limit theorem:

X̂ ∼ N (µX ,
σ2
X

K
)

Ŷ ∼ N (µY ,
σ2
Y

N
),

and then, thanks to (4.2):

D ∼ N (µX − µY ,
σ2
X

K
+
σ2
Y

N
).

Known variances

If σX and σY are known, then we define:

z =
D√

V AR(D)
∼ N (µX − µY , 1).

If the samples come from distributions of equal mean values, then:

z ∼ N (0, 1).

To test if the samples (y1, .., yN ) and (x1, .., xK) are likely to come from the same distribution, we
compute z and the cumulative distribution function of a standard normal distribution in |z|. The
value p = 2(1 − normcdf(|z|) gives then the p−value for the the null hypothesis that z comes from
a standard normal distribution, and then for the null hypothesis that the samples (y1, .., yN ) and
(x1, .., xK) have been generated by distributions of same mean values.

Unknown variances

If σX and σY are unknown and the two samples are large enough, we replace σX and σY by σ̂X =√
1

N−1

∑N
i=1(Xi − σ̂X)2 and σ̂Y =

√
1

N−1

∑N
i=1(Yi − σ̂Y )2, which are good estimators of σX and σY

if the samples are large. In replacing σX and σY by the estimators, the parameter z defined above
does not follow a a normal distribution but Student distribution. That is why a Student’s t-test can
be used in this case. If the sample is small, X and Y have to be normally distributed but this is often
difficult to verify. That is why non parametric tests such as the two-sample Kolmogorov-Smirnov test
are used more often in this case.

Remark 4.2.3. The previous test challenges the null hypothesis that the two samples come from the
same distributions only on the basis of their mean values. Other tests like two-sample Kolmogorov-
Smirnov test [95] compute the difference between the cumulative distribution functions of the distri-
butions of the two sample data.

Remark 4.2.4. This kind of test is not only used to compare two data samples. It could also be used
to compare a distribution coming from model simulations in order to compare outputs of a model with
data samples.

Remark 4.2.5. There are also tests that are adapted for small sample but specific for normal distri-
butions. These tests are not based on a test of normality but on a Student’s t-test.



4.3. DATA ASSIMILATION TECHNIQUES AND MODEL PARAMETER ESTIMATION 47

4.3 Data assimilation techniques and model parameter estimation

4.3.1 Calibration of a mathematical model

Calibrating the parameters of a model consists in finding the parameters that make the model best
fit with the data. It can be seen as an optimization problem where the functional to minimize is a
function of the parameters θ ∈ Rp of the model and is expressed as an error between the data and
the output of the model.

An optimization problem

Let (y1, .., yN ) be a sample of N data points that are measured at different time points (t1, .., tN ). For
all i, the data yi is measured at the time ti. Let f the function defined in RN ×Rp such that f(ti, θ)
is the output of a model at the time ti that we want to compare with the data yi, p is the number
of parameters that have to be calibrated and the parameter space is not necessarily the entire space
Rp but can be a subset Ω of Rp. We now have to define an error criterion to minimize between the
model and the data. A classical criterion is the least squares criterion:

J(θ) =

N∑
i=1

(yi − f(ti, θ))
2,

which is often used to fit a model on data. It can be written as the L2 norm of the difference between
the vectors Y = (yi)1≤i≤N and F = (f(ti, θ))1≤i≤N :

J(θ) = ||Y − F ||2L2 .

This function has to be minimized with respect to θ in order to minimize the error between the model
and the data. The optimization problem can be written as follows: we search for a parameter set θopt
such that:

θopt = argmin{J(θ); θ ∈ Ω}.

Examples of optimization algorithms

Such a function has most of the time no explicit expression depending on the parameters θ, which does
not make easy to find a minimum. To solve this, many optimization algorithms have been developed,
with two classes of algorithms: deterministic ones and stochastic ones. The first ones are generally
fast to find a minimum but can be trapped in local minima. Stochastic models allow to search for a
global minimum on the parameter space, but they are generally slower to converge. We present here
an example of each kind of algorithm.

Monte Carlo algorithms
The Monte Carlo algorithm consists in random samples in the parameter space and to chose the
parameter set that minimizes the criterion. It requires to define the parameter space Ω, a maximal
iterations number Maxiter, and an accuracy criterion ε. One can also define an initial condition θ0

for the parameter set. The algorithm can then be written as follows:

• Initializing: n = 1 θopt = θ0 ∈ Ω

• While (n < Maxiter and J(θopt) > ε) do

– θ =RandomSample(Ω)

– If (J(θ) < J(θopt) then θopt = θ.

– End if

– n = n+ 1
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• End while

This kind of algorithm is slow to converge but it allows to cross the entire space to search for a
global minimum. Moreover, it is very easy to implement and parallelize. More elaborated stochastic
algorithms exist but they will not be presented here.

Gradient descent algorithms
There are several gradient methods. One of them is the method of steepest descent. It allows, from
an initial point of the parameter space, to converge to a local minimum and needs the function J
to be differentiable on the parameter space. It consists in moving by steps that go into the opposite
direction of the gradient of J at each step. At each step, from a point θk, the next point θk+1 is
defined as follows:

θk+1 = θk − ρ∇J(θk+1)

Where ρ is a positive step. The algorithm can therefore be written as follows:

• Initializing: n = 1, choosing θ ∈ Ω, initialize D > ε

• While (n < Maxiter and D > ε) do

– Compute ∇J(θ)

– Jold = J(θ)

– θ = θ − ρ∇J(θ)

– D = |J(θ)− Jold|
– n = n+ 1

• End while

It is often not possible to have an explicit expression of J with respect to the parameters and then
it is often not possible to compute the gradient of J explicitly. In this case, partial derivatives of J
can be computed by finite differences. More elaborated deterministic methods exist. In the previous
method, the step ρ is not necessarily fixed. At each step, the criterion J can be derived with respect
to the step, which leads to the optimal step gradient descent.

Remark 4.3.1. Gauss-Newton method is another differential method that converges faster than the
gradient descents when the initial condition is not far from the optimum. This method is specific for
least squares minimization problems and requires that the number of parameters p is smaller than the
number of data N . The Levenberg-Marquardt algorithm is an hybrid method between Gauss-Newton
algorithm and gradient steepest descent [96, 97].

4.3.2 Statistical framework for data assimilation

Individual data

Observations
Let (ti, yi)1≤i≤N be N couples of time and observations of a quantity on a same individual or patient.
yi is the observation at time ti. Typically, the observations can represent the time-course of the tumor
volume in a mouse, or a number of metastases for instance.

Structural model
The structural model is a function that takes a time t ∈ R and a vector of parameter θ ∈ Rp as input
and gives an output that can be confronted to the data, a tumor volume in our case.
In theory, we want a structural model that describes the reality. However, a model never describes the
reality but rather tries to essentialize it in a theory in order to approach this reality. Moreover, the
data are not the reality because they contain measurements error due to the observation techniques
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and to the experimentalist. These measurement errors are generally assumed to result from random
events [98]. The observations can therefore be considered as random variables related to the structural
model that defines a theory that could explain the data:

Yi = f(ti, θ
∗) + εi ∀i = 1..N, (4.3)

where θ∗ is the parameter set that we are looking for and εi is the error term, comprising the mea-
surement errors [98, 99]. The errors (εi)i are assumed to be independent and identically distributed.
These measurements error, due to random events, are often assumed to be normally distributed:
εi ∼ N (0, σ2

i ) [98, 99].
A possible error model could be to consider the standard deviation σi to be constant: σi = σ. We
can then define a probability density p(Y |θ∗), with Y = (Y1, . . . , YN ) the random observations. If we
consider this probability density as a function of θ with y a fixed sample which is a realization of Y ,
we define the likelihood L(θ) = p(y|θ). The goal is to estimate θ∗, the parameter set that maximizes
the likelihood of the data y under the theory f .
The random variables (Yi)i being independent, we can write [98]:

L(θ) = p(y|θ) =

N∏
i=1

p(yi|θ).

Therefore, in the we have:

L(θ) = p(y|θ) =
N∏
i=1

1

σ
√

2π
e−

(f(ti,θ)−yi)
2

2σ2 =
1

σ
√

2π
e−
∑N
i=0

(f(ti,θ)−yi)
2

2σ2 .

We see that maximizing the likelihood L(θ) is equivalent to minimize the classical least squares
criterion:

N∑
i=0

(f(ti, θ)− yi)2.

Note that in the more general case of a non constant variance error model (heteroscedasticity), such
as for instance a proportional model σi = σf(ti, θ

∗), the likelihood writes:

L(θ) = p(y|θ) =
N∏
i=1

1

σi
√

2π
e
− (f(ti,θ)−yi)

2

2σ2
i =

1∏N
i=1 σi

√
2π
e
−
∑N
i=0

(f(ti,θ)−yi)
2

2σ2
i .

Therefore, two possible criteria to minimize are:

LS(yi, θ) =

N∑
i=0

(f(ti, θ)− yi)2

2σ2
i

,

LM(yi, θ) =
N∑
i=0

(f(ti, θ)− yi)2

2σ2
i

+

N∑
i=1

log
(
f(ti, θ)

√
2π
)
.

Practically, when the goal is to treat individual data, an estimation of the error measurement distri-
bution has to be made if possible. In order to establish a statistical model of this error, a law for
the variance can be proposed to be tested on the data. For instance, if we want to test a constant
variance model, we have to test statistically (using a χ2 goodness-of-fit test [94] for instance) if the
measurement errors (εi)i are normally distributed. If we want to test a model of variance that is
proportional to the measured data, we have to test if the normalized residuals ( εi

f(ti,θ)
)i are normally

distributed. In the case of tumor volume measurement for example, the first model would mean that
the error measurement does not depend on the volume of the tumor, whereas in the second model,
errors would be proportional to the volume. More elaborated statistical models have been used in
[65] to study descriptive and predictive power of classical models of tumor growth.
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Parameters identifiability and confidence interval
We consider θ̂ the random variable such that:

θ̂ = argmaxL(θ) = argmax p(Y |θ),

where Y is seen as a random variable. θ̂ is called the likelihood maximization estimator. Its variance
gives information on the identifiability of the model [98]. This variance depends on the sparsity of
the data and the sensitivity of f to the parameters. Knowing this variance allows to compute a
95% confidence interval representing a set in which a parameter value is likely to be. Sparse data or
poorly sensitivity of a model to a parameter lead to large confidence interval, which means a strong
uncertainty on the estimated value of the parameter. In theoretical biology, it is often well-suited to
use a model endowed with a good identifiability because the goal can be to derive insights from the
parameters estimated values. Identifiability can also be important in dynamics prediction of biological
phenomena in order to provide a confidence interval [100, 101, 65].

If no measurement error statistical estimation is possible
Unfortunately, it not always possible to have informations on the measurement error. In this case,
classical approaches can be to use a constant error model or a proportional error model. In the first
case, the criterion to minimize is the following one:

J(θ) =
N∑
i=0

(f(ti, θ)− yi)2

σ2
,

where σ is constant. We can see that the minimization of J is independent of σ, which leads to a
classical least squares minimization. Not knowing the value of σ penalizes us only for the goodness
of fit estimation. Indeed, when in the cases where the variance of the error is known, the values of

the normalized residual (f(ti,θ)−yi)2

σ2 allows to compare the error of the model with the measurement
error, which is a relevant way to evaluate the descriptive power of a model.
In the second case where we consider the error proportional to the data, the criterion to minimize is
the following one:

J(θ) =
N∑
i=0

(f(ti, θ)− yi)2

σ2f(ti, θ)2
. (4.4)

This minimization is also independent of the value of σ and corresponds to a minimization of weighted
least squares.

Population data

Observations
Again, we follow the time-course of a quantity but this time, each data point corresponds to one
distinct individual. It is the case for example for GFP-tracking data when each mouse has to be
sacrificed in order to perform the GFP analysis in specific organs. In this case, the time points are
also denoted (ti)1≤i≤N where N is the number of time points, and the measure at the time point i

on the individual j is noted yji . For exampe, if individual are mice and that three mice are sacrificed
per time point, we would have, for the time i, three measures y1

i , y
2
i , y

3
i .

In a modeling perspective, this kind of data is not simple to treat because modeling the tumor kinetics
of an individual makes sense but modeling the growth of data of several individuals is not as simple to
define. Indeed, even if they give informations on tumor kinetics, these data do not reflect the growth
of one tumor. Therefore it is necessary to define well the framework of data assimilation in order to
calibrate a model and test theories.

Fitting on the mean values
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A first approach can be to fit the model on mean values (with respect to the time points) of the data.
We first write the mean value yi at the time ti:

yi =
1

Ni

Ni∑
j=1

yji ,

where Ni is the number of individuals at the time ti. The function Jmean to minimize is then defined
by:

Jmean(θ) =

N∑
i=1

(f(ti, θ)− yi)2

σ2
i

,

where σi is the standard deviation of the error f(ti, θ)− yi following a model that has to be defined.

Fitting on all the points
A second approach can be to fit on all the data points in defining the following objective function:

Jall(θ) =
N∑
i=1

Ni∑
j=1

(f(ti, θ)− yji )2

σ2
ij

.

This time, σij represents the standard deviation of the error f(ti, θ)−yji following a model that has to
be defined. However, we can see that if σij depends on the individual j considered, the data of a same
time point won’t have the same weight during the fit. For instance, if the error model is proportional
to the data, such that: σij = σyji , the small values of a same time point will have a heavier weight
than the large values.

Proposition 4.3.1. If the error model is constant and the individual number is the same for all time
points, fitting on the mean values and fitting on all the points are equivalent.

Proof. Let us denote Nind the total number of individuals and σ the constant standard deviation of
the error (f(ti, θ)− yji ). The objective function used to fit on all the points can be written:

Jall(θ) =
1

σ2

N∑
i=1

Nind∑
j=1

(f(ti, θ)− yji )2,

Jall(θ) =
1

σ2

N∑
i=1

Nind∑
j=1

f(ti, θ)
2 − 2f(ti, θ)y

j
i + yji

2
,

Jall(θ) =
Nind

σ2

N∑
i=1

f(ti, θ)
2 − 2f(ti, θ)yi +

1

σ2

N∑
i=0

Nind∑
j=1

yji
2
,

so that the term that depends on the parameters θ, in other words the term which is minimized, is
the following:

Nind

σ2

N∑
i=1

f(ti, θ)
2 − 2f(ti, θ)yi.

In a similar fashion, computing the objective function used to fit on the mean values leads to:

Jmean(θ) =
1

σ2

N∑
i=1

(f(ti, θ)− yi)2,

Jmean(θ) =
1

σ2

N∑
i=1

f(ti, θ)
2 − 2f(ti, θ)yi + yi

2,
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so that the term that depends on the parameters θ, in other words the term which is minimized, is
the following:

1

σ2

N∑
i=1

f(ti, θ)
2 − 2f(ti, θ)yi,

which is the same term divided by the factor Nind as the one for the fit on all the points.

The population approach and nonlinear mixed-effects models
The population approach is similar to the individual approach but instead to calibrate one parameter
set to describe the data of one individual, it consists in calibrating a parameter distribution reflecting
the variabilities observed among the population of individuals.
Let a population of N individuals on which we observe longitudinal data. For each individual j, we
consider Nj observations and we denote by yji the observation on the individual j at time tji .
As in (4.3), the observations are considered as random variables, but this time the parameter sets θj

of the individual j also is a random variables:

Y j
i = f(tji , θ

j) + εji ∀j = 1..N, ∀i = 1..Nj ,

where εji is the error term, comprising the measurement errors. The random variables (θj)j are
assumed to be independent and identically distributed. This distribution is often assumed to be
log-normal:

θj ∼ LN (θµ, θω) ∀j = 1..N,

where θµ ∈ Rp is the expectation of the distribution of θµ ∈ Rp × Rp is the covariance matrix of the

distribution. (εji )i,j are still assumed to be independent and normally distributed:

εji ∼ N (0, σ2
ij) ∀j = 1..N, ∀i = 1..Nj .

For instance, if we consider a model of standard deviation proportional to the observation we have:

σij = σf(tji , θ
j∗) ∀j = 1..N, ∀i = 1..Nj .

For a sample y = (y1
1, y

1
2..y

1
N1
, y2

1, ..y
N
NN

), we can then define a probability density p(y|LN (θµ, θω)) of
the population data assuming the parameter distribution LN (θµ, θω). If we consider this probability
density as a function of θµ and θω with y constant, we define the likelihood L(θµ, θω) = p(y|θµ, θω).
The goal is to estimate θµ and θω, the expectation and the covariance matrix of the parameter
distribution set that maximize the likelihood of the data y under the theory f . This non linear
mixed-effect framework is explained in more details in [102]. Practically, a numerical algorithm has
to be used in order to maximize the likelihood that we defined previously. A relatively fast algorithm
is well-suited because of the number of model running in order to evaluate the likelihood. The
stochastic approximation of expectation maximization algorithm (SAEM) is an algorithm that allows
to approach the likelihood and that maximize it using a stochastic algorithm [103].

Goodness of fit

Let (ti, yi)1≤i≤N be N couples of time and observations of a quantity during the time. Again the
output of the model at the time ti for the parameter set θ is noted f(ti, θ). Once the model is calibrated
on the data, it is important to evaluate how good the model describes the data. To do so, one can
simply observe how a model curve fits the data curve. However, in order to compare descriptive
abilities of different models, a quantitative criterion that is a good indicator of the goodness of fit is
sometimes required.

Least squares criterion
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As we minimize the weighted least squares criterion J defined by the equation (4.4) in order to
calibrate the model, a natural goodness of fit criterion is the value of J . However, differences of J to
compare the descriptive capabilities of different models are not easy to interpret.

Coefficient of determination
The coefficient of determination, denoted R2 is a measure of goodness of fit and is defined as follows:

R2 = 1−
∑N

i=1(yi − f(ti, θ))
2∑N

i=0(yi − ȳ)2
(4.5)

This criterion quantifies how much better the model describes the data than the mean value of the
data. If R2 = 1, it means that the model fits perfectly well, whereas if R2 ≤ 0 it means that the mean
value of the data better describes them than the model does. This criterion is often used to evaluate
the goodness of fit of a regression in statistics. It can be seen as the fraction of unexplained variance,
as the second term is the ratio between the variance of the error of the model and the total variance
of the data.

Distribution of the residuals
Let us recall that the calibration of the model is performed by minimizing the following criterion

J(θ) =
N∑
i=0

(f(ti, θ)− yi)2

σ2
i

,

where σi represents the standard deviation of the error, often modeled by a normal distribution.
Once the model is calibrated on the data, the distribution of the normalized residuals yi−f(ti,θ)

Σi
can be

examined and a statistical test of normality can be made for this distribution. A normal distribution
of the residuals is a good indicator for the goodness of fit. Indeed such a test eliminates models that
exhibit biases like “the model output is always higher/lesser than the data points”. Moreover, if the
normalized errors shows a standard normal distribution, it means that the residuals yi − f(ti, θ) are
comprised in the observation errors and that a better fit can not be obtained

Remark 4.3.2. Other goodness of fit criteria like the Akaike information criterion take into account
the number of parameters of the model but we won’t introduce them in this thesis.

4.4 Conclusion

In order to calibrate a mathematical model on specific data, a statistical framework has to be defined
for the estimation of the model parameters in order to know what does the calibrated parameter value
mean, what confidence can be expected from this value and what confidence can be expected from
the predictions. The framework can also depend on what is expected from the model: prediction
on one patient, comparison of parameter distribution between two groups, etc. In this chapter, we
presented the frameworks that have been used in this thesis to treat the different kinds of data we
obtained from different experimental techniques (imaging and GFP-tracking).



54 CHAPTER 4. DATA ASSIMILATION IN CANCER MODELING



Part II

Mathematical modeling of tumor
growth
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Chapter 5

A pressure-mediated spatial tumor
growth model: mathematical analysis,
numerical validation and data
assimilation
To be submitted

This chapter deals with tumor growth modeling. We first shortly introduce some classical phenomeno-
logical models of tumor growth based on ordinary differential equations. These models, adapted to
treat longitudinal data of tumor growth, are confronted to different types of data of kidney tumor
growth. We then introduce a spatial model of tumor growth describing the spatial expansion of the
tumor tissue thanks to conservation equations. The general model is first analyzed in a simple case
which allows to compare the precision of different numerical schemes used to integrate the partial
differential equations of the model. We then focus on a pressure-mediated proliferation law incor-
porated in this model, leading to a minimally parameterized model, able to describe the growth of
individual metastatic lesions. Indeed, in a recent study, this model has been confronted to mouse
data of metastatic tumors from a renal primary disease with encouraging results [1]. A part of this
chapter is devoted to the mathematical and numerical analyses of the model. This new proliferation
law induces a nonlinear elliptic equation on the pressure. A proof of existence and uniqueness of a
weak solution of the nonlinear elliptic equation is presented here. A fixed point method has been used
for the resolution, and the theoretical convergence has also been studied, as well as the numerical
convergence of the complete system. Finally, the model is confronted to growth data of lung metas-
tases in an animal kidney cancer and exhibits good descriptive power of the volume dynamics and
gives some clues on the potential of spatial modeling to well describe the shape time-evolution of in
vivo tumors.
The imaging data that have been used in this part were provided by Emeline Ribot and Sylvain
Miraux from the center of magnetic resonance of biological systems (Bordeaux), that perfomed the
MRI sequence used to visualize the mouse lesions. In this work, my contribution was first to propose a
novel spatial mathematical model of tumor growth, describing the pressure-mediated inhibition of the
tumor cells proliferation. I then performed a short benchmark of the transport solvers implemented in
the C++ Cadmos library by Olivier Saut, in order to compare the efficiency of the different schemes
in term of ratio accuracy/time computing in a simple case where an analytical solution can be found.
I then implemented a numerical method for the resolution of the equations describing the tumor
spatial equations, proved the theoretical convergence of the method, and confronted the model to the
MRI data of metastatic lesions.

57
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5.1 Longitudinal data of tumor volume: ODE models

In this section, we introduce some phenomenological mathematical models of tumor growth. They
are phenomenological in the sense that they focus on simple general laws to describe tumor growth.
For instance these models do not care about describing the tumor heterogeneity, cell cycle, molecular
pathways, effects of immune system on tumor growth, necrosis, etc. This part deals first with ordinary
differential equations-based (ODE) models that allow to simulate tumor volume kinetics. We first
introduce the models and the different theories that they formalize and then we present some abilities
of these models to describe tumor volume dynamics in the kidney.
Studying the tumor growth kinetics often implies to study the tumor volume kinetics. As we saw
previously, many experimental protocols allow to follow the time-course of the tumor volume. GFP-
tracking, caliper-using measurements and bioluminescence are part of these techniques. In this con-
text, we need mathematical models adapted to be confronted to longitudinal data of tumor volume.
Ordinary differential equations-based models are well adapted to describe this kind of data. In this
section, we present some of the classical ODE-based models of tumor growth and their respective
abilities to describe tumor growth dynamics. All of these models describe the dynamics of the tumor
volume V starting from an intial volume V0.

5.1.1 Some classical ODE models of tumor growth

The exponential model or Malthusian growth

Theory
An exponential growth expresses the fact that a constant fraction of cells proliferate at a constant
growth rate. This kind of growth has been observed in vitro for 2D monolayers cell cultures [57], but
also for pulmonary metastases [104, 105], although other studies shown different patterns of growth
for pulmonary metastases [13]. This simple model of tumor growth is due to Malthus (1766-1834)
and assumes that in a given population (in our case a cell population) the number of newborns and
the number of deaths are proportional to the number of individuals in the population.

Model and parameters
Under an exponential growth, the dynamics of the volume V is governed by the following ordinary
differential equation:

dV

dt
= aV,

V (t = 0) = V0.

The two parameters of the model are the initial volume V0 and a, the effective growth rate. Indeed,
from a population dynamics point of view, the Malthus model assumes that the rate of newborns and
the death rate are proportional to the population size, which leads to:

dV

dt
= bV − dV,

V (t = 0) = V0,

where b is the number of newborns per individual per unit time and d the proportion of the total
population of dying individuals per unit of time. The effective growth rate is a = b − d, which is
positive in a growing population. The doubling time T of the cells is directly related to the parameter
a: T = log(2)

a . The second parameter V0 can be fixed when the number of injected cells in a mouse
is known, although a fraction of the injected cells often die or do not proliferate. In a patient on
the other hand, this parameter corresponds to the first examination. Generally, we do not know
when the tumor was initiated, and the initial number of cells of a tumor is still debated. Indeed,
monoclonal origin of tumors is generally accepted [106], but some studies tends to show that it is
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not always the case [107]. As reported in [65], this model has a limited descriptive power in vivo
(breast and lung cell lines). Taking the parameter V0 free for the calibration makes the descriptive
power much improved but the predictive power still remains limited. In the other models that are
presented further, the growth exhibits an increasing doubling time, which means that the growth
decelerates. As said previously, the doubling times observed on in vivo systems are often increasing
(see [58, 108, 60] for clinical evidences).

The logistic model

Theory
Nutrients supply is necessary for the proliferation of cells. In an in vivo system, nutrients resources
are not unlimited and the larger the tumor is, the more cells are needing nutrients, and the more these
nutrients are consumed and limited. To describe that limited resources limit the growth, Verhulst
proposed in 1938 a model where birth rate and death rate are respectively decreasing and increasing
affine functions of the population size, the tumor volume in our case [109].

Model and parameters
The model formalizing the previous assumption is the following one:

dV

dt
= aV

(
1− V

K

)
,

V (t = 0) = V0,

where the parameter K is a carrying capacity traducing the maximal capacity of the environment. The
first term aV corresponds to the growth term, whereas the second one aV

2

K expresses that some cells
of the population compete with each other for nutrients or living space. The dynamics is essentially
exponential for small volumes and exhibits a growth saturation when V tends to K. Analysis of the
model shows the existence of an unstable equilibrium point in V = 0 and a stable one in V = K. For
a positive solution, the analytical solution of this nonlinear differential equation is given by:

V (t) = K
1

1 + (KV0
− 1)e−at

.

This model is often used in ecology, to describe the dynamics of bacteria population for instance,
but has also been employed to describe tumor growth [65]. However, this model exhibits limited
descriptive and predictive powers for in vivo tumor growth, espacially in comparison with other
growth laws [65].

The power law model

Theory
In vivo tumors need angiogenesis to grow beyond a diameter of 2-3 millimeters [35]. This process
allows them to form their own vasculature ensuring nutrients supplying. Within the tumor, the
vascular network is of fractal dimension [110, 111]. If we assume that the proliferating cells inside a
tumor are the cells that are in close vicinity of the vasculature, it means that the subset of proliferating
cells is of the same fractal dimension as the vasculature.

Model and parameters
A minimal model expressing this asumption was introduced by Dethlefsen et al in [112] and describes
the tumor volume dynamics with the following power law:

dV

dt
= aV b,

V (t = 0) = V0.
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This model traduces the fact that the subset of cycling tumor cells is proportional to a power b of the
volume, having therefore a smaller dimension than the tumor itself. If b = 2

3 for instance, the tumor
exhibits a proliferative rim at its surface, whereas if b = 1, the growth is exponential and the number
of proliferative cells is proportional to the tumor volume. If V is expressed in number of cells, a
represents the growth rate at one cell. This model has many advantages. First it gives a mechanistic
description of the vascular growth in remaining simple (2 parameters). Moreover, it exhibited good
descriptive and predictive abilities in a study made on in vivo data [65].

The Gompertz model

Theory
The Gompertz model was initially introduced by Benjamin Gompertz in 1825 to describe the proba-
bility of death, or human mortality rate, in respect with the age. Used to describe the tumor growth,
the model assumes that the volume of a tumor grows with a growth rate that decreases exponentially
[113].

Model and parameters
The Gompertz model is written as follows:

dV

dt
= a log

(
K

V

)
V,

V (t = 0) = V0.

(5.1)

K is the maximal size that the tumor can reach, in short the carrying capacity. As the logistic model,
the Gompertz model exhibits a saturation of the growth. Indeed, during the growth, the doubling
time is continuously increasing and the volume asymptotically tends to K. Integrating this equation
leads to the following solution:

V (t) = Ke
log
(
V0
K

)
e−at

.

It can then be noticed that the equation (5.1) can also be written:

dV (t)

dt
= α exp(−δt)V (t),

V (t = 0) = V0,
(5.2)

with α = aK log
(
K
V0

)
and δ = a. The formulation (5.2) formalizes the hypothesis of a growth rate

that decreases exponentially. This model has been proven able to describe in vivo tumor growth in
numerous animal experimental systems [113, 65, 114] as well as human data [58]. In [65], the model
demonstrated also good predictive abilities. This model can also be written in the following form:

dV (t)

dt
= αV (t)− βV (t) log(V (t))

V (t = 0) = V0,
(5.3)

where β = a and α = a log(K). A linear correlation has been shown between α and β in [115]
on murine B16 melanoma and rat mammary carcinoma the correlation coefficient depending on the
considered specie. The same correlation has been shown by Brunton and Wheldon for human IgG
multiple myeloma [116] many different species (mouse, rat, hamster, man) [117].

5.1.2 Tumor dynamics description

This part briefly illustrates the descriptive power of the previous models for data kidney tumor growth
on mice. The goal is not to highlight a best model for tumor growth, nor to evaluate the predictive
abilities of these models. This would require more data and tumor types. The purpose is rather
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to illustrate how the growth theories we introduced previously can or can not explain two kinds of
growths: tumor volume dynamics or tumor cells dynamics.
These data come from a mouse model of kidney tumor growth. RENCA cells are injected in the
renal subcapsule. Two ways to follow the tumor dynamics are used here: GFP-tracking and MRI
monitoring (see materials and methods in the appendices for experimental details). The first one gives
information on the tumor cells only after quantifying the level of GFP expression in the kidney. The
second one gives information on the tumor volume. In the two kinds, the experimental conditions are
the same: tumor cell line (renal cell carcinoma), number of tumor cells injected, mouse type. Only
the monitoring techniques are different, giving two distinct kinds of information. It is then interesting
to know if tumor volume and tumor cells follow similar growth dynamics.

Data of renal tumor cells dynamics

GFP-tracking is used here to follow tumor dynamics in the kidney. It gives information on the tumor
cells only after quantifying the level of GFP expression in the kidney.

Data
The data is presented Fig 5.1. Each data point corresponds to a distinct animal (n = 31 animals in
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Figure 5.1: GFP data of RENCA tumor growth in the kidney. The GFP signal is proportional to the
number of tumor cells

total). We assume here that these data points result from a same phenomenon that is impaired by
random events traducing the variability between different animals. Therefore we consider the tumor
burden as a random variable which depends on time as follows :

Yi = f(ti) + σiεi εi ∼ N (0, 1)

E[Yi] = f(ti),

where f(ti), the structural model, represents the theoretical output of the biological phenomenon
without any random perturbation and σi is the standard deviation of Yi due to random events.

Error variance model
For each time point, since we have several mice per time point we approach f(ti) by the empirical
mean value on the time point yi = 1

n

∑n
j=1 y

j
i where yji is the data of the individual j at time ti.

For instance, if three data points (three mice) y1
i , y

2
i and y3

i are available for a time point i, three

errors are computed, which are the difference of each data with the mean value: Eij = yi − yji . The
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Figure 5.2: Distribution of the interindividual error against the mean (on the individuals) data

distribution of this error against the measurements (the mean values on each time point) is plotted
in Fig 5.2.
Random effects are often modeled by normally distributed random variables. Under this assumption,
the differences observed between mice at each time point would be normally distributed. Therefore,
we tested the null hypothesis of a gaussian distribution for the error sample that are realizations of the
random variability Yi − f(ti). Under this asumption, the standard deviations σi would be constant:
σi = σ. The χ2 and the one-sample Kolmogorov-Smirnov tests rejects the gaussian distribution
hypothesis (respectively p = 0.001 and p = 0.04). Therefore the hypothesis of a constant standard
deviation may not be reasonable. In Fig 5.2, the variability seems to increase with the value of the
mean. Thus, we tested the hypothesis of gaussian distribution with a mean dependant standard
deviation σi :

Yi = f(ti) + σiεi εi ∼ N (0, 1)

σi = σf(ti)

E[Yi] = f(ti)

(5.4)

The χ2 and the one-sample Kolmogorov-Smirnov tests did not reject the hypothesis (respectively
p = 0.15 and p = 0.45). We consequently used the previous model for the variance of the error
between the model and the observations.

Fitting criterion
As shown in part 4, maximizing the likelihood of the data under the model f is equivalent to minimize
the least square criterion weighted with the variances:

LS(θ) =

n∑
i=1

(f(ti, θ)− yi)2

(σf(ti, θ))2
,

where yi is the mean data at day ti and θ is the parameter vector of the model. Hence, we define the
normalized residuals as following : NEi = (f(ti,θ)−yi)

σf(ti,θ)
. We can then also write :

LS(θ) =
n∑
i=1

NE2
i .

Fitting results
Several theories have been tested against these data:
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• The exponential model

• The logistic model

• The power law model

• The Gompertz model

Fig 5.3 shows the curves of the four fitted models. In taking a look at the curves, we can see that
the exponential model does not seem able to describe these data. The logistic model, although better
than the exponential model, has a lower descriptive power than the Gompertz and the power law
models.
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Power Law Model

Figure 5.3: Renal tumor cells dynamics in the kidney: fitting results of the different models. Mean
values ± std

Table 5.1 shows the fitting results with the value on the criteria LS, R2, the number of normalized
residuals that are higher than 1, which means that the error between data and model is higher than
the standard deviation of the error model, and the result of a statistical test for the null hypothe-
sis that the normalized residuals come from a standard normal distribution. The p−value for the
z−test is precised, but the same results have been obtained using other statistical tests (one-sample
Kolmogorov-Smirnov test, χ2 goodness of fit test, t−test).
The results of the table seem to confirm the tendencies of the curves. The exponential model and
the logistic model exhibit repsectively only 2 and 5 errors on 10 less than interanimal standard
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LS R2 Number of normalized residuals ≤ 1 Normal distribution of normalized residuals

Exponential model 18.14 0.21 2 No (p < 0.01)

Logistic model 9.93 0.76 5 Yes (p = 0.09)

Gompertz model 6.80 0.85 9 Yes (p = 0.2)

Power law model 4.16 0.82 9 Yes (p = 0.5)

Table 5.1: Fitting results of the four models for RENCA tumor cells growth data

deviation. Moreover the value of R2 is much smaller for the exponential model than for the other
ones. The Gompertz model exhibits the best R2 value but the power law model shows a lower weigthed
least squares criterion. These two models are those showing the best abilities to describe the data.
Moreover, the exponential model is the only one to fail in the test of normal residuals, although the
logistic model exhibits a poorly significant p−value (0.09). Taking a look at the parameter values is
also interesting. In particular, for the power law model, we observe that the optimal value for the
power parameter b is 0, which means that the proliferative part of the cancer cells is of null fractal
dimension, which leads to a linear growth. Indeed, if we consider the growth of the tumor volume as is
done in the next paragraph, it makes sense to consider that the proliferating cells have the same fractal
dimension than the vasculature. But here, we consider the kinetics of the tumor cells only without
taking into account the other cell types like stromal cells for instance. It could be possible that the
proportion of tumor cells in respect with the tumor volume is not constant during the growth. In this
case it would not make sense to consider that the vasculature is of fractal dimension with respect to
the set of tumor cells.

Remark 5.1.1. Due to the nature of the data, a mixed-effect statistical framework could be used to
perform a population fit. This could be done in a future work to reinforce these results and tendencies.

Conclusions
A theory where tumor cells are proliferating with a constant doubling time is not in accordance with
dynamics of RENCA cells proliferating in the kidney. The power law theory of growth is able to
describe the dynamics of tumor cells with a linear pattern of growth. It means that the proliferative
subset of tumor cells is neither a constant proportion of them, neither a constant power of the set of
tumor cells like the surface (proliferative rim), but rather a constant number of tumor cells. It could
make sense with the theory of cancer stem cells suggesting that only a small subset of cancer cells
have the infinite replication ability [118, 119, 120].
It should be interesting to test on the same animal model (RENCA cells injected in the renal subcap-
sule of mice) if the tumor volume follows the same growth pattern as the tumor cells. It would give
information on the dynamics of the tumor stroma, which is the non tumor part of the total tumor
volume and probably plays an essential role in the tumor development. This is the object of the
following paragraph.

Data on kidney tumor volume dynamics

The same experimental protocol was used here. These kidney tumors were followed by MRI in the
kidney, as illustrated by Fig 5.4. We delineated two kidney tumors in several time points in order
to analyze their dynamics and compare them to the dynamics of GFP+ tumor cells of the previous
experiment. This time, we can therefore follow the tumor time course in a same mouse. Because the
segmentation was difficult and took a long time to perform, we could not do several segmentations
of a same lesion to estimate a statistical model of error. We hence chose a very arbitrary error bar
of 10% of the tumor volume on each data points, which is considered rather to give a relative idea
of the precision of the models, not to strictly evaluate the precision of the models with respect to a
precise error measurement. The fitting results are presented for the two tumors in the figure 5.5.
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Figure 5.4: Two successive MRI images of the same RENCA tumor in the kidney. Left: day 10 after
injection. Right: day 17 after injection
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Figure 5.5: Renal tumor volume dynamics in the kidney observed by MRI: fitting results of the
different models. Top: first mouse. Bottom: second mouse. From left to right: exponential model,
logistic model, Gompertz model, power law model.

Table 5.2 presents the scores of the four models. This time, no statistical test has been made for the
distribution of normalized residuals. Indeed, such a test would not make sense as only three points
were available per mouse. Globally the exponential model is less efficient to describe in vivo tumor
growth in the kidney. This model is nevertheless better for data on the tumor volume than it was for
tumor cells dynamics. The three other models, the logistic growth law, the Gompertz growth and the
power growth law are equivalent to describe this dynamics. Interestingly, the two values of the power
parameter b are respectively equal to 0.68 and 0.70. These two values are very different from the
null value estimated for tumor cells dynamics data. It means that the tumor volume did not follow
a linear dynamics as did the tumor cells only.

Conclusions
Although describing the tumor volume dynamics better than the turmor cell dynamics, the exponen-
tial model seems to have a limited descriptive power of kidney tumor growth. The three other tested
models, describing the growth with a doubling time that increases with the size of the tumor, are
more able to describe kidney tumor growth, although the logistic model has less ability to describe
tumor cells dynamics (GFP data) than the Gompertz and the power law models. Of course, we did
not use enough data in this short study to properly establish the descriptive abilities of these models
for kidney tumor growth. More mice would be necessary.
In the context of biology understanding, which is a different problematic than predictive purposes,
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First mouse Second mouse
LS R2 Number of normalized errors ≤ 1 LS R2 Number of normalized errors ≤ 1

Exponential model 7.18 0.91 1 5.70 0.66 2
Logistic model 3.31 0.97 1 2.73 0.92 1

Gompertz model 5.56 0.93 2 4.72 0.72 2
Power law model 3.79 0.98 1 3.43 0.86 2

Table 5.2: Fitting results of the four models for kidney tumor volume growth data

models with biologically reliable parameters like the power law model are very useful. In our data,
this model revealed that growth of tumor cells and growth of tumor volume are governed by different
dynamics. Indeed, the calibrated value of the parameter b was equal to 0 for the tumor cells dynamics,
leading to a linear growth, and equal to 0.68 and 0.70 for the two tumor volumes. Several remarks
can be made on these values. First, the two values obtained with the tumor volumes are very close,
indicating that this parameter possibly characterize the RENCA growth in the kidney, although it
has to be confirmed by more data. Second, these values are comprised between 2

3 and 1, meaning that
the proliferative part of the tumor is neither the surface nor the entire tumor but a an infiltrating
subset of tumor cells not limited at the surface but also not consisting in an entire core within the
tumor. It makes sense with results obtained for the value of this parameter with data of in vivo
lung and breast cancer [65]. Third, and more importantly for our point, we can therefore observe
that values of b to obtain tumor volume growth are much different from those obtained to describe
tumor cells dynamics for the same cell line (RENCA) and the same experimental protocol. It means
that dynamics of tumor volume and tumor cells are quite different. The tumor volume growth is
governed by the fractal dimension of its vasculature whereas the tumor cells dynamics seems linear.
The tumor volume is constituted of the tumor cells and the tumor stroma. These results show first
that RENCA tumor in the kidney can not be considered as a mass of tumor cells, as the stroma
probably constitute a substantial part of the tumor. Moreover, as tumor cells and tumor volume
dynamics are quite different, the stroma has probably its own dynamics and it would be interesting
to investigate on this dynamics that could be dependant on the tumor cells dynamics. Further work
could be devoted to study this, combining at the same time data on the tumor volume and the tumor
cells dynamics.

5.2 Spatial data of tumor expansion: spatial PDE models

This section is devoted to models of spatial tumor growth based on partial differential equations.
We first present a general model structure based on conservation equations to describe tumor spatial
expansion. We secondly different growth laws that can be introduced in the model. It is sometimes
useful to study spatial aspects of tumor dynamics. Indeed, in cancer biology, some phenomena are
spatial by nature (tumor heterogeneity, migration of cells, spatial interactions between metastases,
etc.). Studying this kind of phenomena requires data giving spatial information like image-based
data. Moreover, studying these spatial phenomena with a mathematical modeling approach leads to
incorporate a spatial dimension in the model. For example, a spatial problematic in tumor growth
could be to simulate not the volume kinetics only but also the shape evolution of the tumor.

5.2.1 A spatial tumor growth mathematical model based on conservation equa-
tions

We are interested here in the spatial dynamics of tumor growth at the tissue scale. One of the main
assumptions here is to consider that at this scale, the medium can be seen as a continuous porous
medium. The 2D model we used for the spatial growth describes a saturated flow in a porous medium
with two species: the tumor tissue and the healthy tissue, denoted respectively by P and S. The third
variable of our problem is a pressure field Π. The model describes, on a domain Ω, the passive motion
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of the tissues due to growth of volume caused by proliferation. Under the mass-balance assumption,
it gives the following equations:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ(t, x, P, S,Π)P (t, x), (5.5)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0, (5.6)

where γ is the growth rate of the proliferating cells. We also make the assumption of a saturated
flow, that is P + S = 1 at each point of the domain. This hypothesis leads to the following condition
on the velocity of the flow :

∇ · v = γP. (5.7)

As we are going to show in the next part, this saturation assumption means that the tumor volume
changes are due to proliferation.
We consider the lungs as a porous medium with a porosity k(t, x) and that the velocity v is due to
pressure gradients within the tumor. This velocity field is hence modeled with a Darcy law, as in [12]:

v = −k∇Π, (5.8)

where Π is the pressure field. Therefore, the velocity v is the passive motion velocity, due to the
pressure exerted by the proliferative tissue on the surrounding tissues. These tissues are in this way
”pushed out” and move from the high pressure areas to the low pressure ones, as illustrated by Fig
5.6.
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the equation describing the evolution of living tumour cells. An important role is
played by the relation between nutrient supply and capillary density just outside
the tumour surface and by the diffusion of angiogenesis factors produced by the
tumour outside it.
In more detail, the paper develops as follows. Section 2 explains the biological

background obtained by phenomenological observation which is taken as the stand-
ing block of the modelling procedure. Section 3 considers the general modelling
frameworks, and more precisely lattice schemes in Sec. 3.1 and continuum mecha-
nics approach in Sec. 3.2. In Sec. 4, after introducing the specific assumptions, the
model is deduced. Section 5 deals with the formulation of the free boundary pro-
blem while Sec. 6 provides the description of some qualitative behaviours of the
model. Finally, the last section draws some conclusions and suggests some possible
developments of the model.
A description of the conceivable scenarios and their dependence on the para-

meters is given in Ref. 17. The simulations therein show the qualitative behaviors
which are described in Sec. 2 and an agreement on the qualitative characteristics
deduced in Sec. 6.

2. Phenomenological Observation of the Biological System

Three overlapping phases of growth are usually identified in the stage of growth
of tumour cells condensed into a compact form: avascular, angiogenic and vascular
phase.
In the avascular phase, tumour cells are aggregated in the form of multicell

spheroids and feed on oxygen and nutrients present in the environment. These
nutrients filtrate through the surface of the spheroid and diffuse in the intracellular
space. Consumption of nutrients and cell proliferation are characterised by strong
nonuniformities. After the early stages of growth, the spheroids give an inner zone
of dead necrotic cells for lack of nutrients and a thin outer zone of living cells.
This last zone can be further divided into a layer with prevalence of quiescent cells

(a) (b) (c)

Fig. 1. Movement of tumour cells. (a) Configuration before a mitosis, (b) mitosis and pressure
exerted on neighbouring cells, (c) cell movement and propagation of the force field generated by
mitosis.

Figure 5.6: Scheme of cells in cycle that are pushing each other when they proliferate, picture from
[121]

Considering metastatic growth in the lungs, the size of the computational domain Ω is fixed at the
same order as mouse lungs (' 1 cm3). Assuming that no mechanical interactions occur with the organ
boundaries (for instance, the possible deformations of the organ due to the growth are neglected here),
we suppose that the domain Ω is large enough to consider the pressure on the boundaries as equal to
the homeostatic pressure of the body. We model this setup by a Dirichlet boundary condition on the
pressure:

Π = Πeq on ∂Ω.

Collecting (5.7) and (5.8), and considering the porosity k constant, we obtain that Π satisfies a
Poisson’s equation with Dirichlet boundary conditions:{

− k∆Π = γP,

Π|∂Ω = Πeq.
(5.9)

Similar models using more cellular species were used by Bresch, Colin and colleagues in [122] to de-
scribe avascular tumor growth, by Billy and colleagues in [78] to describe angiogenic tumor growth,
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and by Saut, Lagaert and colleagues in [123] to assess the effect of antiangiogenic drugs on glioblas-
toma. Here the goal is not to study hypoxia, angiogenesis nor effect of drugs on the growth, but
more to find a simple way to model tumor spatial expansion allowing to capture essential mechanisms
of macroscopic growth. That is why we consider here one species only, P , which is the density of
tumor cells, with a proliferation rate γ, which is distributed in space, reflecting the heterogeneity of
proliferation in the tumor.

Qualitative study: the characteristics

We introduce the characteristic curves X(t, y) associated to velocity field v, that is the solution to:

∂X(t, y)

∂t
= v(t,X(t, y)),

X(0, y) = y.

If we switch to Lagrangian coordinates, that is writing P̃ (t, y) = P (t, x(t, y)), one gets the following
equation on P̃ :

∂tP̃ (t, y) = ∂tP (t,X(t)) + ∂tX(t, y) · ∇P (t,X(t, y)), (5.10)

∂tP̃ (t, y) = −∇ · (vP )(t,X(t, y)) + (γP )(t,X(t, y)) + v(t,X(t, y)) · ∇P (t,X(t, y)), (5.11)

∂tP̃ (t, y) = −∇ · v(t,X(t, y))P̃ (t, y) + (γP̃ )(t, y), (5.12)

∂tP̃ (t, y) = −γP̃ 2(t, y) + γP̃ (t, y), (5.13)

∂tP̃ (t, y) = γP̃ (1− P̃ )(t, y). (5.14)

It therefore follows that P̃ satisfies a logistic growth along the characteristics. This is due to the
saturation hypothesis (∇ · v = γP ). As a consequence, a discontinuous initial condition for P , for
example the density 1 inside the tumor and 0 outside, is conserved during the growth.
One of the important things we are interested in is the kinetics law on the global tumor burden that
derives from this spatial model.

Burden and volume dynamics

Integrating (5.5) on the whole domain gives rise the following equations on the tumor burden
∫

Ω Pdx
: ∫

Ω

∂P

∂t
dx+

∫
Ω
∇ · (vP )dx =

∫
Ω
γPdx,

d

dt

∫
Ω
Pdx+

∫
∂Ω
Pv · nσdσ =

∫
Ω
γPdx,

where σ = ∂Ω and nσ is the outgoing normal on σ. Considering that the tumor does not reach the
boundaries of the domain, the term

∫
∂Ω Pv.nσdσ is vanishing. So the burden equation can be written

as follows:
d

dt

∫
Ω
Pdx =

∫
Ω
γPdx (5.15)

At the initial time one has P (0, x) ≥ 0 within an open set Ω0 ⊂ Ω and P (0, x) = 0 for all x ∈ Ω \Ω0.
Then for all time t > 0, P (t, x) ≥ 0 within an open set Ωt ⊂ Ω and P (0, x) = 0 for x ∈ Ω \ Ωt.
Therefore, using the characteristics X(t, x) associated to v, one has Ωt = X(t,Ω0). Introducing the
Jacobian transformation J(t, y) = det(DyX(t, y), one has ∂tJ(t, y) = ∇ · v(t,X(t, y))J(t, y) [124].
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Therefore the derivative of the tumor volume with respect to time can then be written as:

d

dt

∫
Ωt

dx =
d

dt

∫
Ω0

J(t, y)dy

=

∫
Ω0

∂J(t, y)

∂t
dy

=

∫
Ω0

∇ · v(t,X(t, y))J(t, y)dy

=

∫
Ωt

∇ · v(t, x)dx

=

∫
Ωt

γPdx

Because P (t, x) ≥ 0 ∀x ∈ Ωt and P (t, x) = 0 for x ∈ Ω \ Ωt we have
∫

Ωt
γPdx =

∫
Ω γPdx and then∫

Ωt
γPdx = d

dt

∫
Ω Pdx due to (5.15).

As d
dt

∫
Ω Pdx = d

dt

∫
Ωt
Pdx, we finally have:

d

dt

∫
Ωt

dx =
d

dt

∫
Ωt

Pdx (5.16)

We denote by VT the volume of the tumor, which embraces both non tumoral and tumoral cells inside
the tumor, and by VP the volume occupied by the tumor cells only (we called it the tumor burden
previously). Equation (5.16) can be written

dVT
dt

=
dVP
dt

.

It describes that the total volume of the tumor and the volume occupied by the tumor cells only are
increasing at the same speed. This modeling asumption comes from the saturation hypothesis. In this
paradigm of tumor growth, tumor cells burden and tumor volume have the same growth dynamics.
In the context of in vivo model of tumor growth, such an asumption would be right if GFP+ (green
fluorescent protein) or Luc+ (luciferase) tumor cells had the same dynamics than the tumor volume.
This is not true for in vivo RENCA tumor growth in the kidney, as we showed in section 5.1.The
validity of such an assumption probably depends on the cell line, the location (organ) and the nature
of the lesion (primary tumor, metastasis).

5.2.2 Some phenomenological growth laws to model the proliferation of tumor
cells

Exponential growth

If we consider a constant growth rate, γ = γ0 is taken constant. In such a case, the equation (5.15)
on the tumor burden becomes :

d

dt

∫
Ω
Pdx = γ0

∫
Ω
Pdx.

In such a case, the tumor burden follows an exponential growth with the growth rate γ0. If we consider

the growth all along the characteristics, the equation (5.23) becomes ∂P̃ (t,y)
∂t = γP̃ (t, y)(1 − P̃ (t, y))

and can be exactly solved :

P̃ (t, y) =
1

1 + ( 1
P̃ (0,y)

− 1) exp(−γ0t)
.

In this way, a continuous initial condition asymptotically tends to a discontinuous one, the density
being 1 inside the tumor and 0 outside.
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However, as previously mentioned, the in vivo doubling time can rarely be considered as constant.
That is why we are interested to use a model with a doubling that is evolving with the environment
conditions (nutrient supply, competition for nutrients, pressure conditions, etc.).

Logistic growth law

To formalize the doubling time increasing during in vivo tumor growth, we first assume a simple
model of growth rate, which depends explicitly on the tumoral density, for example a logistic growth
law : γ(P ) = γ(1 − P ). Such a growth rate depicts the competition between tumor cells for the
nutrients. Under such a growth assumption, the model writes:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ(1− P )P (t, x),

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0.

Or:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γS(t, x)P (t, x), (5.17)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0. (5.18)

The growth rate is written here as γS, which expresses that nutrients and vasculature are contained
in the healthy tissue or that the growth needs a supportive stroma that is composed of healthy cells.
However, under such a model, the growth is strongly dependent on the initial distribution. For
instance, if the distribution is 1 inside the tumor and 0 outside, which could corresponds to a compact
metastasis, there is no growth. That is why we need to enrich the model and add some biology in the
proliferation process, considering for example pressure or vasculature aspects.

Gompertz-like growth

As we previously mentioned, the Gompertz model has a good ability to describe in vivo tumor growth
for many cancer types. That is why we seek a spatial model that exhibits a Gompertz growth when
integrated. In order to perform this, we introduce a resource variable M which contains nutrients,
growth factors and all other factors needed for the growth. The resources are considered as spatially
homogeneous and follow the following decreasing dynamics:

dM

dt
= −δM,

M(0) = M0,

so that M(t) = M0 exp(−δt). Taken as simple as possible, the growth law is considered as a linear
function of the resources:

γ(M) = γ0M.

The complete system is written as follows:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ0MP (t, x), (5.19)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0, (5.20)

dM(t)

dt
= −δM(t). (5.21)



5.2. SPATIAL DATA OF TUMOR EXPANSION: SPATIAL PDE MODELS 71

When integrating the equation verified by the tumor density P and assuming that the tumor never
reaches the domain boundary, we get:

d

dt

∫
Ω
P (t, x)dx = γ0M0 exp(−δt)

∫
Ω
P (t, x)dx.

We can see that the tumor burden B(t) =
∫

Ω P (t, x)dx follows the Gompertz growth law because the
growth rate is is decreasing exponentially, as in (5.2).

Hypoxia-mediated proliferation

It is commonly accepted that lack of nutrients is one of the limiting factors for tumor growth. That is
why we introduce here a vasculature variable M which represents the nutrients concentration on the
domain, and varies between 0 and 1. The growth rate is considered depending on this concentration
in a linear fashion: γ(M) = γ0M . Furthermore, the nutrients are consumed by the tumor cells in the
following fashion: ∂

∂tM = −δPM

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γM(t, x)P (t, x),

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0,

∂

∂t
M(t, x) = −δP (t, x)M(t, x).

This model principally contains three parameters that are γ, the maximal proliferation rate, M(0)
the initial vasculature (if we consider that the vasculature is homogeneous initially) and δ, the con-
sumption rate of nutrients by the tumor cells.

Pressure-mediated proliferation

Hanahan and Weinberg put forward contact inhibition between cells in [4] to ensure tissue home-
ostasis. They highlight the capacity of cancer cells to ignore these inhibition signals as a hallmark of
cancer. In [15], Stylianopoulos et al showed that tumor cells, in proliferating uncontrollably, induce
mechanical stresses in surrounding microenvironnement of murine and human tumors. Furthermore,
Stylianopoulos showed in [16] that exerted pressure impairs the proliferation in two ways: the direct
effect of the pressure on the cancer cells growth and the collapsing effect of the pressure on the blood
vessels, resulting in a lack of nutrients for the cancer cells. Based on these considerations, it seems
relevant to model a proliferation law depending on the pressure.
In the previously presented model, the tissues motion is directed along the pressure gradients. It
means that cancer cells proliferate and that the exerted pressure pushes out the neighboring tissues.
This pressure is not solely due to mechanical constraints (solid stresses, interstitial fluid pressure,
etc.) exerted by the neighbouring cells on each other, but also represents a more phenomenological
pressure, that reflects the basic assumption of our modelling strategy for the tumour tissue being
constituted by a fluid mixture in a porous medium. Other studies based on numerical simulation also
have been performed to investigate the effect of the pressure on proliferation. In [125], Montel et al
discussed the fact that cells proliferate faster on the surface than in the bulk of a tumor spheroid.
A classical reason is that nutrients do not penetrate deeply in the spheroid. But Montel suggests
a mechanical effect due to the necessity for a cell to deform its environment in order to proliferate.
Drasdo and Höhme have performed a study on 2D monolayers and 3D spheroids tending to show that
pressure conditions have a higher impact on doubling time than nutrients lacking [126]. Based on this
framework, a reasonable assumption is to consider that the doubling time of the tumor cells increases
with the pressure. Moreover, in [125], Montel et al performed experiments where tumour cells were
submitted to different pressure constraints and observed a decrease in proliferation when pressure
was applied. In their study, simulation results that were compared to experimental ones showed an
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exponential decreasing of proliferation with pressure. However, the bulk and surface division rate were
not affected equally by stresses. In our model, we use a pressure-mediated proliferation law expressing
direct effects of mechanical stresses on proliferation as well as indirect effects of proliferation on the
micro environment (collapsing of blood vessels leading to lack of nutrients):

γ(Π) = γ0 exp

(
− Π

Πc

)
, (5.22)

where Π represents the pressure field, γ0 the maximal proliferation rate, and Πc a characteristic
pressure of proliferation inhibition.
Under these modeling assumptions, high pressures imply proliferation decreasing, but not apoptosis,
consistently with Montel et al. [125].

5.2.3 Confronting spatial tumor growth models with tumor growth data

As ODE-based models, PDE-based spatial models allow to simulate tumor volume kinetics but they
also make it possible to simulate the spatial expansion, including the time evolution of the tumor
shape, which is not possible with ODE-based models. However, the prize to pay in terms of computing
cost and mathematical complexity are sometimes very high. Before performing any data assimilation,
such a model has to be analyzed mathematically to be sure of the well-posedness of the equations,
and numerical methods, sometimes very sophisticated, have to be developed in order to simulate the
model. Moreover, optimization algorithms need sometimes a lot of model runs to find an optimum
and the computational costs of such PDE-based models limits sometimes dramatically the possibility
to fit the model on data.

5.3 A simple case for numerical validation: constant growth rate

The goal of this section is to chose the most adapted numerical scheme to solve the equations (5.5)-
(5.9). To do so, we considered a simple case for which an analytical solution can be exhibited, allowing
to evaluate the accuracy of the numerical schemes. The ratio of accuracy over computing time of
different transport schemes have been compared. It appeared that the WENO5 scheme was the more
efficient. Convergence tests have also been made but the goal was only to test the convergence of the
schemes and not to reach high orders of convergence. Indeed, reaching a second order of convergence
would require to recompute the velocity field v at each step of the splitting scheme (5.24), requiring to
solve a Laplacian on the domain at each step. It would be possible but very costly in computing time,
whereas we do not need here to capture local phenomena like shocks requiring high-order-accurate-
in-space schemes. This is why we decided to stay at a first order of convergence.

We first consider a constant growth rate, that is γ is taken as a constant: γ = γ0. The equation (5.15)
on the tumor burden becomes :

d

dt

∫
Ω
Pdx = γ0

∫
Ω
Pdx.

In such a case, the tumor burden follows an exponential growth with the growth rate γ0. If we consider

the growth all along the characteristics, the equation (5.23) becomes ∂P̃ (t,y)
∂t = γP̃ (t, y)(1 − P̃ (t, y))

and can be exactly solved :

P̃ (t, y) =
1

1 +
(

1
P̃ (0,y)

− 1
)

exp(−γt)
. (5.23)

Therefore a non zero continuous initial condition tends to the constant solution equal to 1 in every
point of Ω. Moreover, as said previously, a discontinuous solution with a density equal to 1 inside the
tumor and 0 outside is transported during the growth: The final density is still equal to 1 inside the
tumor and 0 outside.
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5.3.1 Numerical scheme

A well adapted numerical scheme has to be chosen to solve the system (5.5)-(5.8). We consider a
square domain and we define a cartesian spatial grid on this domain. A time discretization is also
defined: tn = n∆tn where ∆t is the discretization time step. We define the sequences (Pn)n, (vn)n
and (Πn)n by:

Pn(x) = P (tn, x) ∀n,
Πn(x) = Π(tn, x) ∀n,
vn(x) = v(tn, x) ∀n.

Global scheme

At a time tn, for a given distribution Pn, we can compute the remaining variables of the model: first
we determine Πn, then vn and finally Pn+1 with an explicit method in time.
The first step consists in discretizing the Laplacian operator on the spatial grid in order to solve the
problem (5.9).
It provides us a second-order in space approximation of Πn. From vn = ∇ · Πn, an approximation
of the velocity field vn is then computed at the second order too with a centered finite differences
method. Now that the velocity field is determined, the equation on P can be solved. We first write
it as:

∂P (t, x)

∂t
+ v(t, x) · ∇P (t, x) = γ0P (t, x)−∇.v(t, x)P (t, x),

∂P (t, x)

∂t
+ v(t, x) · ∇P (t, x) = γ0P (t, x)(1− P (t, x)).

This equation is solved by a splitting method, as it has been done in similar models [127, 122]. As in
[127], a Strang spitting is chosen here, which writes, from the Pn at the time tn:{

∂P̃ (t,x)
∂t = γ0P̃ (t, x)(1− P̃ (t, x)) on ]0; ∆t

2 [,

P̃ (0, x) = Pn,{
∂P ∗(t,x)

∂t + v(t, x).∇P ∗(t, x) = 0 on ]0; ∆t[,

P ∗(0, x) = P̃
(

∆t
2 , x

)
,

(5.24)

{
∂P (t,x)
∂t = γ0P (t, x)(1− P (t, x)) on ]0; ∆t

2 [,
P (0, x) = P ∗(∆t, x).

The first and third logistic equations can be solved exactly. Indeed, these equations have respectively
for solutions P̃ (t, x) = Pn(x)

Pn(x)+(1−Pn) exp(−γ0t)
and P (t, x) = P ∗(∆t,x)

P ∗(∆t,x)+(1−P ∗(∆t,x)) exp(−γ0t)
.

Transport solver

We have now to chose a transport scheme for the second step of the splitting. We tested five schemes
of transport with different spatial orders of accuracy:

• A first order upwind scheme

• A second order semi lagrangian scheme [128, 129]

• A second order TVD Lax Wendroff scheme

• A fifth order WENO scheme (with a forward Euler time scheme) [130, 131]

• A fifth order WENO scheme (with a TVD third-order Runge-Kutta scheme) [132]



74 CHAPTER 5. MATHEMATICAL/NUMERICAL ANALYSIS AND DATA ASSIMILATION

5.3.2 Test cases: numerical results

Convergence

We tested the convergence of the scheme for a smooth initial condition (gaussian bell) and for non
regular one (square pulse). First order of convergence was obtained at every point of the domain for
the smooth initial condition and with respect to the L1 norm for the non smooth initial condition.

A smooth initial condition
Fig 5.7 shows the evolution of the errors in repect with mesh size for the smooth initial condition,
which is a gaussian bell. The table 5.3 shows the convergence orders of each scheme.
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Figure 5.7: L1, L2 and L∞ errors evolution in log-log scale for a Gaussian Bell initial condition and
for γ = γ0 = 0.2 day−1
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Transport scheme L1 order L2 order L∞ order

First order upwinding scheme 1.11 1.09 1.03

Second order semi Lagrangian scheme 1.05 1.08 1.08

Second order TVD Lax Wendroff scheme 0.97 0.97 0.91

Fifth order WENO scheme 1.19 1.20 1.22

Fifth order TVD WENO scheme 1.25 1.25 1.28

Table 5.3: L1, L2 and L∞ orders of convergence of the five transport schemes for a Gaussian Bell
initial condition and for γ = γ0 = 0.2 day−1

The Strang splitting ensures a second order of convergence in time if each method in the different
steps of the splitting are second order methods. As expected, upwind scheme shows first order of
convergence. The WENO scheme shown also first order of convergence because the time scheme is at
the first order (forward Euler). For the TVD Lax Wendroff and WENO schemes, we do not obtain
better order than first one because using Runge Kutta methods require to evaluate the derivative of
the equation (5.24) at multiple time points and then to evaluate the velocity field at these points. Here
we only used the velocity field at the previous time step. The issue is similar for the semi-Lagrangian
scheme, which requires to compute the velocity field at two time steps.

A non smooth initial condition
Fig 5.8 shows the evolution of the errors in respect with mesh size for the non smooth initial condition,
which is a square pulse.
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Figure 5.8: L1, L2 and L∞ errors evolution in log-log scale for a Square Pulse initial condition and
for γ = γ0 = 0.2 day−1

The table 5.4 shows the convergence orders of each scheme.
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Transport scheme L1 order L2 order

First order upwinding scheme 0.86 0.68

Second order semi Lagrangian scheme 0.79 0.61

Second order TVD Lax Wendroff scheme 0.70 0.55

Fifht order WENO scheme 0.94 0.55

Fifht order TVD WENO scheme 0.99 0.65

Table 5.4: L1, L2 and L∞ convergence orders of the five transport schemes for a Square Pulse initial
condition and for γ = γ0 = 0.2 day−1

Here we have almost a first order of convergence in L1 norm but not in L2 norm. It is because
the scheme computes approached derivatives assuming the solution as smooth enough whereas the
solution is not continuous at the tumor boundary. For this reason, there is no convergence in L∞

error.

Accuracy

We tested the convergence of different numerical schemes. Now we want to chose the “best” scheme,
in other words the more accurate relatively to the computing time. In order to do this, we first
examine a case where it is possible to obtain the exact solution.

Spherical geometry
We consider the system (5.17) in 3D with a spherical geometry, in other words a spherical tumor
(radius RT , center r = 0) and spherical boundaries (radius RB, center r = 0). We consider now a
Heaviside function for the initial tumor distribution: (P = 1 inside the tumor, 0 outside). In 1D, all
along a radius with coordinates θ and ϕ being fixed, the tumor distribution is illustrated in Fig 5.9.

r = 0 r = RT r = RB

P = 1 P = 0

Figure 5.9: Spherical geometry in radial coordinates: a square pusle initial condition on the tumor
density

With respect to the growth equation along the characteristics (5.23), a piece of tissue with a density
equal to 1 (respectively 0) is transported along the characteristic and keeps its density equal to 1
(respectively equal to 0). Hence, the Heaviside function extends at the velocity field (at the interface
between tumor and healthy tissue) speed, as it is shown in Fig 5.10.

v(R)

Figure 5.10: Spherical geometry in radial coordinates: transport of a tumor square pusle

This result can be extended in two and three dimensions. In 2D, we have a circular domain Ω and
the initial condition is a tumor disk, as illustrated in Fig 5.11
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P = 1 P = 0 ∂Ω

Figure 5.11: Spherical geometry in polar coordinates: the initial condition on the tumor density is a
disk.

This problem is invariant by rotation and the velocity field, which is a gradient of pressure can be
written:

v(t, r, θ) =
1

r

∂Π(t, r, θ)

∂θ
eθ +

∂Π(t, r, θ)

∂r
er,

where er and eθ are the vectors of the polar basis. Because of the invariance by rotation, v is then
purely radial: v(t, r, θ) = v(t, r)er. Consequently, for two points X1 = (r, θ1) and X2 = (r, θ2) with
the same radius r considered at the time t > 0, we have:

X1 = X(t, y1),

X2 = X(t, y2),

with X following the characteristic equation:

∂X(t, y)

∂t
= v(t, r)er,

X(0, y) = y.

Because the velocity is purely radial and does not depend on θ, we have y1 = (r0, θ1) and y2 = (r0, θ2).
The angles θ1 and θ2 are conserved along the characteristics. Furthermore, if the initial tumor shape
is circular, we have : P (0, y1) = P (0, y2) = P (0, r0) and then P (t,X1) = P (t,X2) = P (t, r). Finally,
we observe that an initial circular shape is conserved during time, as illustrated by Fig 5.12.

v

∂Ω

Figure 5.12: Spherical geometry in polar coordinates: transport of a tumor disk

We prove in the next part that while the tumor does not reach the boundaries, the domain size has
no impact on the solution. Therefore, assuming that the tumor does not reach the boundaries, the
solution with any domain size is the solution with an infinite domain.
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Computing the velocity field in spherical geometry
Let us recall the Poisson equation giving the pressure field:{

− k∆Π = γP

Π|∂Ω = 0

If the geometry is spherical, assuming the porosity k as constant with k = 1, the equation in radial
coordinates becomes: 

− ∂2Π

∂r2
− 2

r

∂Π

∂r
= γP

Π(RB) = 0

∂Π

∂r
(0) = 0

(5.25)

We consider a Heaviside function for the tumor distribution: P = 1 for 0 ≤ r ≤ RT and P = 0 for
RT ≤ r ≤ RB. As we previously saw, the Heaviside function is transported and for all time t, the
tumor distribution at the time t is an Heaviside function too.
Integrating the equation (5.25) leads to the following solution: Π(r) = γ0

6 (R2
T − r2) +

γ0R3
T

3

(
1
RT
− 1

RB

)
if r ∈ [0;RT ]

Π(r) =
γ0R3

T
3

(
1
r − 1

RB

)
if r ∈ [RT ;RB]

As we can see, Π depends on the domain size RB. However, assuming the porosity k equal to 1, the
velocity field has the following expression:{

v(r) = γ0r
3 if r ∈ [0;RT ]

v(r) =
γ0R3

T
3r2 if r ∈ [RT ;RB]

A first remark can be made on the velocity of the tumor interface v(t, RT ), which is the tumor
expansion speed. We can see that under an exponential growth, this speed is increasing linearly with
the radius of the tumor. This means that the larger the tumor is, the faster it expands, which makes
sense with the idea of exponential dynamics. More importantly for our purpose, the velocity field
does not depend on the domain size. Therefore the solution P does not depend on the domain size.
This domain can be therefore extended to [0; +∞[ without changing the solution. These results can
be extended in two and three dimensions. In two dimensions also, the solution does not depend on
the domain size and the domain can be extended to R2 without change the solution.

Analytical solution
We previously observed that in the simple case of γ constant considered here, the tumor mass follows
an exponential growth. Therefore, for a given initial tumoral distribution with an initial mass M(0),
we exactly know the mass at t: M(t) = M(0) exp(γ0t). We also know that an initial spherical
distribution gives a spherical distribution. In order to determine an analytical solution, we have thus
to determine the radius RT of this distribution, such that:∫ R

0
P (t, r)2πrdr =

∫ R

0
2πrdr = M(t).

We finally have RT =

√
M(t)
π . The expression of the analytical solution is now known:

P (t, r) = 1 if r <

√
M(0) exp(γ0t)

π

P (t, r) = 0 else
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It allows us to test the consistance and the accuracy of the numerical method we will use to solve the
equations in more compicated cases where we do not know an analytical solution.

Numerical results
As we saw before, for a circular geometry, we know the analytical solution. However, we need a scheme
that can treat more general types of geometry on a cartesian grid. That is why we consider a square
domain, which is more appropriate for cartesian grids. The problem is that the solution with circular
boundaries is different than the one on a square domain. We know the exact solution on a circular
domain but not on a square one. To practically simulate the circular case in a square domain, we used
a penalization method. More precisely, we considered a square domain with particular conditions on
the porosity in the area that is in the square but not in the included circle. This area is colored in
red in Fig 5.13.

k = 1

k = 1000

∂Ω

Figure 5.13: Imposing a 1000-fold greater porosity between the boundary and the tumor front than
within the tumor allows to simulate the circular geometry.

We imposed a 1000 times higher porosity in the red area than within the circle, keeping a Dirichlet
boundary condition on the square. It models a case of circular boundaries with Dirichlet conditions.
Indeed, Fig 5.14 shows a comparison between two simulations where the porosity is either constant
(equal to 1) on the whole domain or equal to 1 within the included circle and equal to 1000 in the
red area, for the same value of γ. It gives the same final burden but two different shapes, the second
case giving a circular tumor, whereas in the other case the squared domain changes the shape, as we
can see in Fig 5.14.
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Figure 5.14: Simulation results for the tumor final distribution: final time T = 1day, γ0 = 0.67day−1,
Mesh size 200× 200. Left: k = 1, Right: k = 1 in the included circle, k = 1000 outside.

We considered a circular initial tumor with a given surface and simulated the model with a given
parameter γ0 and a given final time ensuring that the tumor at the final time is “far enough” from the
boundaries. Knowing the analytical solution for this geometry, we wanted to compare the accuracy
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of each scheme relatively to a reasonable computing time (40s). The required mesh sizes for this
computing time and the errors relatively to the analytical solution are presented for each scheme in
the table 5.5.

Transport scheme Required mesh size L1 relative error L2 relative error

First order upwind scheme 350 14.11% 21.10%

Second order semi Lagrangian scheme 290 14.46% 23.07%

Second order TVD Lax Wendroff scheme 320 12.22% 18.94%

Fifht order WENO scheme 300 8.41% 20.44%

Fifht order TVD WENO scheme 245 10.48% 23.10%

Table 5.5: L1 error and L2 error for fixed computing time

We see that the WENO scheme has better L1 and L2 accuracies than all other schemes except the
Lax Wendroff scheme for the L2 accuracy. We also compared the computing times of the schemes for
a given reasonable precision. To perform it, we simulated the growth for each scheme with a mesh
refined enough to obtain a L1 relative error of 10% and compared the computing time of the schemes.
The table 5.6 summarizes these results. The simulations with each scheme are presented in the figure
A.1 of the appendices.

Transport scheme Required mesh size Computing time(s)

First order upwind scheme 750 406

Second order semi Lagrangian scheme 750 715

Second order TVD Lax Wendroff scheme 530 173

Fifth order WENO scheme 250 23

Fifth order TVD WENO scheme 250 45

Table 5.6: Computing times of the five schemes with a fixed relative L1 error of 10%

We notice that the WENO scheme required the shortest computing time. The results presented here
have been obtained with the value γ0 = 0.67 day−1 (a fast growing tumor) for the proliferation rate
but we got similar results with γ0 = 0.2 day−1.
Taking γ constant allowed us to test and compare the accuracy of several schemes. However, in
vivo tumor growth rarely shows constant growth rates. That is why we are interested in a spatial
model ensuring that the doubling time of the mass is increasing with time. Such a property can
be obtained with the spatial model presented previously in considering a proliferation that depends
on the environment conditions (nutrient supplying, competition of the cells for nutrients, pressure
conditions, etc.). In this study, we consider a simple model where proliferation rate depends on the
environmental pressure Π. This model has already been used and confronted with in vivo metastatic
growth in mice in [1]. This pressure-mediated growth law induces a nonlinear elliptic equation on the
pressure Π. In the next part, we prove the existence of solutions for this nonlinear equation, propose
a fixed-point method for the resolution, and prove the theoretical convergence of this algorithm. We
then test the numerical convergence of the complete system and finally confront the model to growth
data of lung metastasis in mice in order to study the capacity of the model to reproduce the shape
evolution of a metastasis during the growth. For these simulations, we chose the WENO transport
scheme, which exhibited good accuracy/computational time ratio in the previous test case.
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5.4 Pressure-mediated proliferation: mathematical and numerical
analysis

We consider the pressure-mediated growth law presented in the equation (5.22) of the section 5.2.2:

γ(Π) = γ0 exp

(
− Π

Πc

)
The major difference between this model and the previous one (with γ constant) is the resolution of
the equation for the pressure Π. Let us recall that the domain Ω is Lipschitz (square domain). For a
given distribution P of tumor density, the equation on Π is now the following nonlinear equation:{

−k∆Π = γ0 exp
(
− Π

Πc

)
P

Π|∂Ω = 0
(5.26)

In this section, we suppose that Ω is a Lipschitz domain and P ∈ L∞(Ω) and non negative. We prove
here the existence and uniqueness for the problem (5.26) and propose a fixed-point algorithm for the
resolution. Moreover, a result of regularity of the solution is also presented.

5.4.1 Existence, uniqueness and regularity of solution

We first prove uniqueness and existence of a solution of (5.26) in H1
0 (Ω). In this section, without loss

of generality, we fix γ0 = 1, k = 1 and Πc = 1. Moreover, we assume that P ∈ L∞(Ω).

Proposition 5.4.1. Let P ∈ L∞(Ω) and non negative. The system (5.26) has a unique solution in
H1

0 (Ω) and this solution is non negative.

Proof. The variational form of the previous equation is written as follows:∫
Ω
∇Π · ∇ϕ−

∫
Ω

exp (−Π)Pϕ = 0 (5.27)

for all ϕ ∈ H1
0 (Ω).

Uniqueness

Assuming that a weak solution exists, let us prove that such a solution is unique. Let g ∈ H1
0 (Ω) and

h ∈ H1
0 (Ω) such that, for all ϕ ∈ H1

0 (Ω):∫
Ω
∇g · ∇ϕ−

∫
Ω

exp (−g)Pϕ = 0∫
Ω
∇h · ∇ϕ−

∫
Ω

exp (−h)Pϕ = 0.

Writing the difference between the two equations and taking ϕ = g − h, it comes:∫
Ω
|∇(g − h)|2 =

∫
Ω

(exp (−g)− exp (−h))(g − h)P.

For all x ∈ Ω, (exp (−g(x))− exp (−h(x)))(g(x)− h(x)) ≤ 0. We can then deduce that g = h, which
proves the uniqueness of the solution.
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Positivity

Assuming that a weak solution exists, let us prove that such a solution is non negative. Let Π be a
weak solution and Π− the negative part of Π defined as:

Π− = Π if Π < 0
Π− = 0 otherwise.

Given that Π ∈ H1(Ω), Π− ∈ H1(Ω) [133, chap.II, Cor.2.1.8]. In choosing ϕ = Π−, (5.27) can be
written: ∫

Ω
∇Π · ∇Π− −

∫
Ω

exp(−Π)PΠ− = 0.

Based on the result from [133] showing that ∇Π− = ∇Π if Π < 0 and ∇Π− = 0 otherwise, the
previous equation can be written: ∫

Ω
|∇Π−|2 =

∫
Ω

exp(−Π)PΠ−.

We can conclude that Π− = 0 because |∇Π−|2 ≥ 0 and exp(−Π)PΠ− ≤ 0. The solution Π is then
non negative.

Existence

We define :

G(x) =

∫ x

0
exp(−s)ds

and f : H1
0 (Ω) −→ R ∪ +∞ such that f : u 7−→

∫
ΩG(u(x))P (x)dx. We define now a functional

J : H1
0 (Ω) −→ R such that:

J(u) =
1

2

∫
Ω
|∇u|2 − f(u).

To prove that J is well-defined, we need to show that if u ∈ H1
0 (Ω), then exp(−u) ∈ L1(Ω). This

follows from the Trudinger inequality, asserting that whenever O is a bounded Lipschitz subset of
RN , then ∫

O
exp

(
|u| N

N−1

)
<∞, ∀u ∈W 1,N (O), (5.28)

see [134, chap.VIII, rem.17]. The assumption there is that O is C1-smooth but generalizing to
Lipschitz domains is straightforward using the extension theorem [135, chap.VI, thm.5]. In our case,
(5.28) becomes: ∫

Ω
exp

(
|u|2
)
<∞ ∀u ∈ H1(Ω).

Moreover, ∀a, b ∈ R, we have 2ab ≤ a2 + b2. Thus, ∀u ∈ H1(Ω), we have that u ≤ u2+1
2 . Hence

0 ≤ exp(u) ≤ exp

(
u2 + 1

2

)
∈ L1(Ω)

by (5.28). We then conclude that exp (u) ∈ L1(Ω) for all u ∈ H1(Ω). Therefore, the functional J is
well-defined. Next, let us prove that J is differentiable and express its differential. This amounts to
show that f is differentiable. If this is the case, then

DJ(u) · ϕ =

∫
Ω
∇u · ∇ϕ−Df(u).ϕ ∀ϕ ∈ H1

0 (Ω).
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The differential of f at u ∈ H1
0 (Ω) applied to ϕ ∈ H1

0 (Ω) can be computed as follows:

f(u+ ϕ)− f(u) =

∫
Ω

(G((u+ ϕ)(x))−G(u(x)))P (x)dx

f(u+ ϕ)− f(u) =

∫
Ω

∫ (u+ϕ)(x)

u(x)
exp(−s)dsP (x)dx

f(u+ ϕ)− f(u) =

∫
Ω

(− exp(−(u+ ϕ)(x)) + exp(−u(x)))P (x)dx.

According to the Lagrange form of Taylor’s theorem applied to this right hand side, there exists
ξ(x) ∈ [u(x), (u+ ϕ)(x)] such that:

f(u+ ϕ)− f(u) =

∫
Ω

(ϕ(x) exp(−u(x))− 1

2
exp(−ξ(x))ϕ(x)2)P (x)dx,

therefore we arrive at the following inequality:∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ 1

2

∫
Ω

exp (|u(x)|+ |(ϕ)(x)|)ϕ2(x)P (x)dx. (5.29)

We now prove that there is a real constant C such that∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ C‖ϕ‖2H1
0

when ‖ϕ‖H1
0
−→ 0. (5.30)

It has been proved in [136] that there exist 2 real constants c1 and c2 depending only on Ω such that
∀ 1 ≤ p <∞ and ∀u ∈ H1(Ω),

‖ exp(|u|)‖Lp ≤ c1 exp
(
c2p‖u‖2H1

)
. (5.31)

Let p1, p2 > 1 such that 1
p1

+ 1
p2

= 1
2 . Thanks to Hölder’s inequality, (5.29) implies:∣∣∣∣f(u+ ϕ)− f(u)−

∫
Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ 1

2
‖ exp(|u|)‖Lp1‖ exp(|ϕ|)‖Lp2

∥∥ϕ2
∥∥
L2 ‖P‖L∞ .

Using (5.31), we can write∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ 1

2
c2

1 exp
(
c2p1‖u‖2H1

)
exp

(
c2p2‖ϕ‖2H1

) ∥∥ϕ2
∥∥
L2 ‖P‖L∞ .

In order to prove (5.30), we can assume that ‖ϕ‖H1 ≤ 1. Then∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ 1

2
c2

1 exp
(
c2p1‖u‖2H1

)
exp (c2p2)

∥∥ϕ2
∥∥
L2 ‖P‖L∞ .

Thus, there exists a constant C = C(u) such that:∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ C ‖ ϕ2 ‖L2 , ‖ϕ‖H1 ≤ 1.

Moreover,
∥∥ϕ2

∥∥
L2 = ‖ϕ‖2L4 , hence:∣∣∣∣f(u+ ϕ)− f(u)−

∫
Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ C‖ϕ‖2L4 , ‖ϕ‖H1 ≤ 1.
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The injection of H1(Ω) into L4(Ω) is continuous, then there exists a constant K such that:∣∣∣∣f(u+ ϕ)− f(u)−
∫

Ω
ϕ(x) exp(−u(x))P (x)dx

∣∣∣∣ ≤ K‖ϕ‖2H1
0

where K is a real constant. Therefore, f is differentiable and so is J . Its differential can be written
as follows:

DJ(u) · ϕ =

∫
Ω
∇Π · ∇ϕ−

∫
Ω

exp(−u)Pϕ

which corresponds to the variational form (5.27). Using the Riesz representation theorem, we write
〈J ′(u), ϕ〉H1

0
= DJ(u) · ϕ. It comes then:

〈J ′(u)− J ′(v), u− v〉H1
0

=

∫
Ω

(∇u−∇v)2 −
∫

Ω
(exp(−u)− exp(−v))(u− v)P,

and as exp(−x) is decreasing, we have that
∫

Ω(exp(−u)− exp(−v))(u− v)P ≤ 0 and then:

〈J ′(u)− J ′(v), u− v〉H1
0
≥ ‖u− v‖2H1

0
.

Therefore J is α-convex with α = 1. J being differentiable and hence continuous, J has a unique
minimum on H1

0 (Ω) [137, chap.IX, Th.9.2.6]. Let Π be the unique function of H1
0 (Ω) that minimizes

J , it verifies: 〈J ′(Π), ϕ〉 = 0 and therefore∫
Ω
∇Π · ∇ϕ−

∫
Ω

exp(−Π)Pϕ = 0.

Π is then a weak solution of the problem.

5.4.2 A semi implicit iterative algorithm to solve the problem

In this section, we don’t assume γ0 = 1, k = 1 and Πc = 1 anymore. In order to solve the problem
(5.26), we define an iterative algorithm. To do so, let us define the following sequence (Πn)n of H1

0 (Ω):

Πn+1 = Πn + ρk∆Πn+1 + ργ0 exp

(
−Πn

Πc

)
P, (5.32)

with Π0 ∈ H1
0 (Ω), k, γ0, ρ > 0 and P ∈ L∞(Ω). This algorithm corresponds to an implicit time

discretization of the heat equation with an explicit nonlinear source term. We prove in this section
that for well chosen values of the step ρ, the sequence (Πn)n defined by the algorithm (5.32) converges
geometrically in H3/2(Ω) to the solution of (5.26). It allows to conclude that this solution is in H3/2(Ω)
and thus has a better regularity that initially proved in the previous paragraph.

Proposition 5.4.2. Let P ∈ L∞(Ω), P non negative, and Π0 ∈ H1
0 (Ω). The algorithm defined,

∀n ≥ 0, by: {
Πn+1 = Πn + ρk∆Πn+1 + ργ0 exp

(
−Πn

Πc

)
P,

Πn+1|∂Ω
= 0

(5.33)

is well-posed in H1
0 (Ω).

Proof. Let Πn ∈ H1
0 (Ω), the variational form of the algorithm is written as follows:∫

Ω
Πn+1ϕ =

∫
Ω

Πnϕ− ρk
∫

Ω
∇Πn+1 · ∇ϕ+ ργ0

∫
Ω

exp

(
−Πn

Πc

)
Pϕ,

for all ϕ ∈ H1
0 (Ω). We consider the bilinear form a of H1

0 defined as follows:

a(u, v) =

∫
Ω
uv + ρk

∫
Ω
∇u · ∇v.
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This bilinear form is continuous. Indeed, using Cauchy-Schwartz inequality, we have:

|a(u, v)| ≤ ‖u‖L2‖v‖L2 + ρk‖u‖H1
0
‖v‖H1

0
.

The Poincaré inequality gives then:

|a(u, v)| ≤ (C2 + ρk)‖u‖H1
0
‖v‖H1

0
.

Clearly, a is also coercive. Indeed, we can write:

a(u, u) = ‖u‖2L2 + ρk‖u‖2H1
0
,

and then we have:
a(u, u) ≥ ρk‖u‖2H1

0
. (5.34)

Moreover, the following linear form L:

L(v) =

∫
Ω

Πnv − ργ0

∫
Ω

exp

(
−Πn

Πc

)
Pv

is well defined because Πn ∈ L2(Ω) and exp
(
−Πn

Πc

)
∈ L2(Ω) by (5.31). Moreover L is continuous.

The Lax-Milgram theorem allows to conclude that there is a unique solution of (5.33) in H1
0 .

Proposition 5.4.3. Let P ∈ L∞(Ω) and non negative. For all n ≥ 0, if Πn ≥ 0, then Πn+1 ≥ 0
where Πn+1 is defined by (5.33).

Proof. Assuming that Πn ≥ 0, let us take the L2 scalar product of (5.32) with Π−n+1 = min(0,Πn+1):∫
Ω
|Π−n+1|2 =

∫
Ω

ΠnΠ−n+1 − ρk
∫

Ω
|∇Π−n+1|2 + ργ0

∫
Ω

exp

(
−Πn

Πc

)
PΠ−n+1 = 0.

Πn being non negative, the right hand side of the equation is negative. Consequently,
∥∥Π−n+1

∥∥
L2 ≤ 0,

which means that Π−n+1 = 0 and then Πn+1 ≥ 0. Therefore ∀n ∈ N, if Πn ≥ 0, then Πn+1 ≥ 0.

Convergence of the algorithm and regularity of the solution

Let ρ > 0, k > 0, and A be the linear operator from L2(Ω) into H1
0 (Ω) such that A(ϕ) = u with u

the unique solution of the following system:{
u = ρk∆u+ ϕ
u|∂Ω = 0

(5.35)

Note that u uniquely exists by using the Lax-Milgram theorem, using an argument similar to that in
(5.34). Note also that this argument shows that A is continuous from L2 to H1

0 .

Proposition 5.4.4. The operator A is continuous from L2(Ω) to H3/2(Ω): There exists a constant
CA such that

‖A(ϕ)‖H3/2 ≤ CA‖ϕ‖L2 .

Proof. Let f ∈ L2(Ω) and let us define the following problem:

k∆u = f (5.36)

u|∂Ω = 0. (5.37)

The domain Ω being Lipschitz, it has been proved in [138] that the problem (5.37) has a unique solution
in H3/2(Ω) and that the operator R : f 7→ u is continuous from L2 to H3/2. For all ϕ ∈ L2(Ω) and
u ∈ H1

0 (Ω) such that A(ϕ) = u, u verifies the equation (5.37) with f = u
ρ −

ϕ
ρ . Such a function f is
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L2(Ω), therefore thanks to [138], we know that the solution of the problem (5.35) is in H3/2(Ω) and
that the operator A is continuous from L2(Ω) into H3/2(Ω). So there exists a positive constant CA
such that:

‖A(ϕ)‖H3/2 ≤ CA‖ϕ‖L2 ,

which achieves the proof.

Proposition 5.4.5. Let γ0,Πc > 0, P ∈ L∞(Ω), P non negative and Π0 ∈ H1
0 (Ω). For a step ρ such

that 0 ≤ ρ ≤ Πc
γ0‖P‖L∞

, then the sequence (Πn)n defined by (5.33) converges geometrically in L2(Ω).

Proof. We now consider the L2 scalar product of (5.35) with u:

‖u‖2L2 = −ρk‖u‖2H1
0

+

∫
Ω
ϕu.

The Cauchy-Schwartz inequality allows to write:

‖u‖2L2 ≤ −ρk‖u‖2H1
0

+ ‖u‖L2‖ϕ‖L2 .

Moreover, Poincaré inequality leads to:

‖u‖2L2 ≤ −
ρk

C
‖u‖2L2 + ‖ϕ‖L2‖u‖L2 ,

which can be written:

‖u‖L2 ≤ 1

1 + ρk
C

‖ϕ‖L2 .

A is therefore L2-contracting: there exists a positive constant KA < 1 such that ∀ϕ ∈ L2(Ω),
‖A(ϕ)‖L2 ≤ KA‖ϕ‖L2 . Moreover, ∀ϕ ∈ L2(Ω) such that ϕ ≥ 0, then A(ϕ) ≥ 0 (Same proof as in
proposition 5.4.3). We can deduce that

A(|ϕ|) = |A(ϕ)| ∀ϕ ∈ L2(Ω), (5.38)

and also that:

A(ϕ2) ≥ A(ϕ1) ∀ϕ1, ϕ2 ∈ L2(Ω), ϕ2 ≥ ϕ1. (5.39)

Let us now consider two consecutive iterations of the algorithm (5.33):

Πn = A(Πn−1 + ργ0 exp

(−Πn−1

Πc

)
P ) (5.40)

Πn+1 = A(Πn + ργ0 exp

(−Πn

Πc

)
P ). (5.41)

Writing (5.41)-(5.40) leads to:

Πn+1 −Πn = A

((
1− ργ0P

Πc

)
(Πn −Πn−1) + ργ0P

(
F

(
Πn

Πc

)
− F

(
Πn−1

Πc

)))
,

where F (Πn) = F ◦Πn, F (Πn−1) = F ◦Πn−1, and F is the function from R+ into R+ defined by

F (x) = exp(−x)− 1 + x.

Using (5.38), we can write:

|Πn+1 −Πn| = A

(∣∣∣∣(1− ργ0P

Πc

)
(Πn −Πn−1) + ργ0P

(
F

(
Πn

Πc

)
− F

(
Πn−1

Πc

))∣∣∣∣) . (5.42)
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Taking the L2 norm of (5.42) gives:

‖Πn+1 −Πn‖L2 =

∥∥∥∥A(∣∣∣∣(1− ργ0P

Πc

)
(Πn −Πn−1) + ργ0P

(
F

(
Πn

Πc

)
− F

(
Πn−1

Πc

))∣∣∣∣)∥∥∥∥
L2

.

Using (5.39) allows then to write:

‖Πn+1 −Πn‖L2 ≤
∥∥∥∥A(∣∣∣∣(1− ργ0P

Πc

)
(Πn −Πn−1)

∣∣∣∣+

∣∣∣∣ργ0P

(
F

(
Πn

Πc

)
− F

(
Πn−1

Πc

))∣∣∣∣)∥∥∥∥
L2

.

We now assume that 0 ≤ ρ ≤ Πc
γ0‖P‖L∞

. It implies that
∣∣∣1− ργ0P

Πc

∣∣∣ =
(

1− ργ0P
Πc

)
, allowing to write:

‖Πn+1 −Πn‖L2 ≤
∥∥∥∥A((1− ργ0P

Πc

)
|Πn −Πn−1|+ ργ0P

∣∣∣∣F (Πn

Πc

)
− F

(
Πn−1

Πc

)∣∣∣∣)∥∥∥∥
L2

.

Moreover, F is 1-Lipschitz because its derivative on R+ is:

dF

dx
(x) = − exp(−x) + 1,

which implies that 0 ≤ dF
dx ≤ 1 on R+. This allows us to write:

‖Πn+1 −Πn‖L2 ≤ ‖A
((

1− ργ0P

Πc

)
|Πn −Πn−1|+ ργ0P

∣∣∣∣Πn

Πc
− Πn−1

Πc

∣∣∣∣) ‖L2

and then:
‖Πn+1 −Πn‖L2 ≤ ‖A(|(Πn −Πn−1)|)‖L2 .

A being KA-contracting, we can write:

‖Πn+1 −Πn‖L2 ≤ KA‖Πn −Πn−1‖L2 ≤ Kn
A‖Π1 −Π0‖L2

It implies a geometrical convergence of (Πn)n in L2(Ω).

Proposition 5.4.6. Let γ0,Πc > 0, P ∈ L∞(Ω), P non negative and Π0 ∈ H1
0 (Ω). For a step ρ such

that 0 ≤ ρ ≤ Πc
γ0‖P‖L∞

, then the sequence (Πn)n defined in (5.33) converges geometrically in H3/2(Ω)

and then the solution of (5.26) is in H3/2(Ω).

Proof. The convergence of (Πn)n in L2(Ω) norm implies the L2 geometrical convergence of the se-

quence (ργ0 exp
(
−Πn
Πc

)
P )n. Indeed, the exponential function being 1-Lipschitz on R−, we can write,

∀n ∈ N: ∥∥∥∥ργ0 exp

(−Πn

Πc

)
P − ργ0 exp

(−Πn−1

Πc

)
P

∥∥∥∥
L2

≤ ργ0‖P‖L∞‖Πn −Πn−1‖L2∥∥∥∥ργ0 exp

(−Πn

Πc

)
P − ργ0 exp

(−Πn−1

Πc

)
P

∥∥∥∥
L2

≤ ργ0‖P‖L∞Kn−1
A ‖Π1 −Π0‖L2 .

It implies that the sequence (Πn + ργ0 exp
(
−Πn
Πc

)
P )n also converges geometrically in L2 norm. The

proposition 5.4.4 allows then to conclude that ∀n ≥ 0:

‖Πn+1 −Πn‖H3/2 =

∥∥∥∥A(Πn −Πn−1 + ργ0(exp

(−Πn

Πc

)
− exp

(−Πn−1

Πc

)
)P )

∥∥∥∥
H3/2

‖Πn+1 −Πn‖H3/2 ≤ CA
∥∥∥∥Πn −Πn−1 + ργ0(exp

(−Πn

Πc

)
− exp

(−Πn−1

Πc

)
)P

∥∥∥∥
L2

Because the sequence
(

Πn + ργ0 exp
(
−Πn
Πc

)
P
)
n

also converges geometrically in L2 norm, it therefore

exists a constant 0 ≤ K ≤ 1 such that:

‖Πn+1 −Πn‖H3/2 ≤ CAKn−1

∥∥∥∥Π1 −Π0 + ργ0(exp

(−Π1

Πc

)
− exp

(−Π0

Πc

)
)P

∥∥∥∥
L2

.

Therefore (Πn) converge geometrically in H3/2 norm, and the solution of (5.26) is in H3/2.
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Transport scheme L1 order L2 order

First order upwinding scheme 0.9043 0.7196

Second order semi Lagrangian scheme 0.8770 0.7051

Second order TVD Lax Wendroff scheme 0.8480 0.7060

Fifht order WENO scheme 1.1213 0.7725

Fifht order TVD WENO scheme 1.1259 0.7870

Table 5.7: L1 and L2 convergence orders of the five transport schemes for a Square Pulse initial
condition and using the pressure mediated proliferation law. Parameter values: γ0 = 0.78 day−1;
Πc = 0.0026 Pa

5.4.3 Implementation and numerical results

Implementation

For the simulations, we chose the implicit algorithm because it was faster than the explicit one. To
implement this algorithm, we fixed a tolerance threshold ε ≥ 0 for the relative error ‖Πn+1−Πn‖∞

‖Πn+1‖∞ and
maximal number of iteration called maxiter. We then implement the algorithm:

• Initializing: Πc = 0, n = 0

• While (‖Πn+1−Πn‖∞
‖Πn+1‖∞ ≥ ε and n ≤ maxiter) solve Πn+1 = Πn + ρ∆Πn+1 + ρ exp (−Πn)P and

n = n+ 1

• Π = Πn+1

Numerical test of convergence

We tested the convergence of the scheme for non smooth initial condition (square pulse) because in
further simulations and data assimilations, tumors are modelled like this. First order of convergence
was obtained with respect to the L1 norm. Fig 5.15 shows the evolution of the errors with respect to
mesh size and simulations of the test.
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Figure 5.15: L1 and L2 errors evolution in log-log scale for a Square Pulse initial condition with the
pressure-mediated proliferation model. γ0 = 0.78 day−1; Πc = 0.0026 r·i (ri: relative unit)

The table 5.7 shows the convergence orders of each scheme.
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5.5 Pressure-mediated proliferation: data assimilation and tumor
shape dynamics

The fist goal of this part is to check if the pressure-mediated growth model is able to describe in
vivo tumor growth. The second one is to investigate how a real tumor shape evolves under such a
pressure-mediated growth law and if this predicted shape is in accordance with the observed final
shape.

5.5.1 Calibration method

Assuming each metastasis as spherical, we fitted the model on volume dynamics data in minimizing
the least squares objective function

LS(γ0,Πc) =

n∑
i=1

(f(ti, γ0,Πc)− Vi)2

f(ti, γ0,Πc)
,

where n is the number of time points, f(ti, γ0,Πc) is the volume computed by the model at the time
ti and Vi is the volume data at the time ti. In order to recover the parameters γ0 and Πc to fit the
data, we used a Monte-Carlo method, which was easy to implement and parallelize. Parameters were
randomly chosen in the set obtained below and the couple realizing the minimum of the objective
function was selected as the best-fit. Boundaries of the parameter space have been established by an
analysis of the model and biological considerations for the parameters values.

5.5.2 Bounding the parameter space

We consider data of tumor growth and we assume that we have n time points of data. Let {Vi}0≤i≤n−1

be the volumes of the tumor at the times {ti}0≤i≤n−1. Vn−1 is hence the final volume of the tumor.
Without loss of generality, we assume here that Vi−1 ≤ Vi, ∀1 ≤ i ≤ n − 1. We also assume the
tumor as spherical.
Here we assume the tumor distribution as a Heaviside function: P = 1 within the tumor, P = 0
outside. We consider now the equation of the mass dynamics (5.15) derived from the equation on the
proliferative cells (5.5):

d

dt

∫
Ω
Pdx =

∫
Ω
γPdx

Here, γ = γ0 exp
(
− Π

Πc

)
and we have naturally γ0 exp

(
− Π

Πc

)
≤ γ0. We have hence:

d

dt

∫
Ω
Pdx ≤ γ0

∫
Ω
Pdx

Thus we can write:
Vn−1 ≤ V0 exp (γ0tn−1)

Finally, we have:

γ0 ≥
1

tn−1
log

(
Vn−1

V0

)
Moreover, γ0 represents the maximal proliferation rate of the cancer cells, in other words the prolifera-
tion rate in optimal conditions of proliferation. In [104], it is established that mammalian cancer cells
can not proliferate with a shorter doubling time than 10 hours, which corresponds to a proliferation
rate of γ0,max = 1.67 day−1. We found hence boundaries for the parameter γ0:

1.67 ≥ γ0 ≥
1

tn−1
log

(
Vn−1

V0

)
(5.43)
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Now we have to establish boundaries for the second parameter. We write:

γ = γ0 exp

(
− Π

Πc

)
,

which implies:

γ ≥ γ0 exp

(
−max(Π)

Πc

)
, (5.44)

where max(Π) is the maximal value of the pressure Π during all the growth (from the time t0 to
tn−1). We have now to estimate a value of max(Π). We consider Pn−1 the final tumor distribution
and define Π and Π̃ the solutions of the following sytems: − k∆Π = γ0 exp

(
− Π

Πc

)
Pn−1

Π|∂Ω = 0

(5.45)

{
− k∆Π̃ = γ0P

n−1

Π̃|∂Ω = 0
(5.46)

Let ϕ ∈ H1
0 (Ω), we write (5.45)-(5.46) in variational form:∫

Ω
∇(Π− Π̃) · ∇ϕ−

∫
Ω

(
γ0 exp

(
− Π

Πc

)
Pn−1 − γ0P

n−1

)
ϕ = 0

Taking ϕ = (Π− Π̃)+, we obtain:∫
Ω
|(∇(Π− Π̃))+|2 −

∫
Ω

(γ0 exp

(
− Π

Πc

)
Pn−1 − γ0P

n−1)(Π− Π̃)+ = 0

We have γ0 exp
(
− Π

Πc

)
Pn−1 − γ0P

n−1 ≤ 0 and (Π− Π̃)+ ≥ 0 so we can conclude that (Π− Π̃)+ = 0

and then Π ≤ Π̃.
The tumor being spherical, we make also the assumption of a circular domain, which is reasonable if
the domain is far enough from the tumor. Such a circular geometry allows us to consider the radial
problem (5.25). Let us recall the analytical solution Π̃ of this system:{

Π̃(r) = γ0

6 (R2
T − r2) +

γ0R3
T

3 ( 1
RT
− 1

RB
) if r ∈ [0;RT ]

Π̃(r) =
γ0R3

T
3 (1

r − 1
RB

) if r ∈ [RT ;RB]

Where RT is the radius of the final tumor (time tn−1). We see that the maximal value of Π̃ is

Π̃(0) =
γ0R2

T
6 +

γ0R3
T

3 ( 1
RT
− 1

RB
).

As Π ≤ Π̃, we can conclude that max(Π) ≤ Π̃(0). Based on (5.44), we hence have:

γ ≥ γ0 exp

(
−Π̃(0)

Πc

)

Again, we consider the equation of the mass dynamics (5.15) derived from the equation on the
proliferative cells (5.5):

d

dt

∫
Ω
Pdx =

∫
Ω
γPdx ≥ γ0 exp

(
−Π̃(0)

Πc

)∫
Ω
Pdx
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We can then write:

Vn−1 ≥ V0 exp

(
γ0 exp

(
−Π̃(0)

Πc

)
tn−1

)
log
(
Vn−1

V0

)
tn−1

≥ γ0 exp

(
−Π̃(0)

Πc

)

log

 log
(
Vn−1

V0

)
tn−1γ0

 ≥ −Π̃(0)

Πc

Π̃(0)

Πc
≥ log

 log
(
Vn−1

V0

)
tn−1γ0



We finally obtain:

Πc ≤
Π̃(0)

log

(
tn−1γ0

log
(
Vn−1
V0

)
)

And then we have boundaries on the parameter Πc:

0 ≤ Πc ≤
γ0R2

T
6 +

γ0R3
T

3 ( 1
RT
− 1

RB
)

log

(
tn−1γ0

log
(
Vn−1
V0

)
)

Boundaries on γ0 and Πc allow to do Monte-Carlo random sampling in a restricted space, which leads
to a shorter computational time and a better identifiability of the parameters.

5.5.3 Results

We consider here data on mice that were injected with RENCA cells in the renal subcapsular space.
It leads to the formation of a kidney tumor and then metastases in the lungs. Four metastases have
been segmented at several days, providing data points on the dynamics of the volume. We fitted
these four dynamics with the pressure-mediated growth model thanks to the Monte-Carlo method,
assuming each metastasis as spherical. As we can see in Fig 5.16, the model fits well to the data on
volume.
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Figure 5.16: Four individual metastatic growths fitted with the spatial model.

With the calibrated model, we then simulated the growth of the four metastases starting from the
observed shape and observed how the shape evolved under the model and compared the predicted
final shape to the observed one. Fig 5.17 presents one of the predicted shapes incorporated into the
dicom image.
The final shape predicted by the model is quite close to the observed one in the case shown in Fig
5.17. The three other metastatic shapes are presented in Fig 5.18.
One of the three other shapes is acceptable, but the two others are not well predicted. Indeed, in the
model, the spatial expansion seems isotropic whereas the observed tumors seem to favor particular
directions for tumor stretching. Such anisotropies could be induced by the tissue structure and
environmental factors, which are not taken into account in the model. Furthermore, if the initial
shape was already stretched, anisotropies were probably impacting the early growth. However, the
shape dynamics could possibly depend on the proliferation distribution only. Although a deeper
study would be necessary to answer to this question, we briefly investigated it on the basis of the four
previous metastases. We compared the mass dynamics in the cases of the real shape and a spherical
shape with the parameters calibrated on the mass dynamics in each case. The results are presented
in Fig 5.19.
Among the four metastases, we obtained 0.6%, 2.7%, 1.1% and 2.9% differences of final burden
between the spherical case and the real shape. It suggests that the shape has only a minimal if not
negligible impact on the burden dynamics.

5.6 Conclusions

In this chapter, we first introduced some classical phenomenological ODE-based models of tumor
growth and challenged their descriptive abilities on renal tumor growth data. Interestingly, we ob-
served that tumor volume and tumor cells in the kidney do not exhibit the same growth dynamics.
We then introduced a model of tumor spatial expansion at the tissue scale, based on conservation
equations and a pressure-mediated proliferation law. This model was able to fit the growth of several
lung metastatic nodules and simply explains the growth rate decay by a phenomenological pressure
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Figure 5.17: Top: Coronal MRI data of the lungs at days 19 and 26. Bottom: simulated growth by
the model using the fitted parameters and starting from the real shape of the observed metastasis at
day 19 on the coronal MRI slice.

due to proliferation. The model exhibited a good descriptive power for the tumor volume dynamics
and the shape time-evolution has been investigated on the four metastatic lesions. To perform the
simulations, we chose the fifth order WENO scheme for the transport part, which exhibited the best
accuracy/computing cost ratio on test cases with a constant growth rate. The pressure-mediated
proliferation law induced a nonlinear elliptic equation on the pressure. We proved existence and
uniqueness of a H3/2 solution for a given tumor distribution and Lipschitz domain. At each time
step, we solved this equation thanks to a fixed-point method. We proved that the algorithm con-
verges geometrically in H3/2 norm and tested the numerical convergence of the complete system. A
methodology to obtain boundaries for the parameter space depending on the fitted data was also
presented. This parameter space restriction allowed to highly reduce the number of iterations in the
Monte-Carlo algorithm and to better identify the parameters.
Several perspectives come out from this study. The model could be confronted to more data. Identi-
fiability and predictive power of the model could be studied in a further work. On the numerical side,
comparisons have been made between finite differences Eulerian schemes but it could be possible to
compare these methods with the level-set method that has been used in [139] for the same conserva-
tion equations. On the mathematical side, a proof of existence of the tumor density P in the problem
of the conservation laws coupled with the nonlinear equation on the pressure, could be investigated.
On the light of this perspective, we tried to obtain the maximal possible regularity on the pressure
Π in order to have a regular enough velocity v. Indeed, the velocity being the pressure gradient, a
Hs regularity on Π ensures a Hs−1 regularity on v. We would like to have a velocity field in W 1,∞,
allowing to define a flow for the conservative transport equations (5.5)-(5.6). Such a regularity on the
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Figure 5.18: Top: final shapes of the three other metastases resulting from the simulated growth by
the model calibrated on the volume dynamics of the metastasis. Bottom: The real final shapes of the
three metastases, delineated from coronal MRI slices.
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Figure 5.19: Spherical and non-spherical shapes. Volume dynamics of the two simulations using the
four parameters sets retrieved from the calibrations. The final relative differences are 0.6%, 2.7%,
1.1% and 2.9%.
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velocity field would require a pressure field in W 2,∞, which is much more regular than the results we
obtained here. Indeed, the square domain Ω being Lipschitz but not C1, it limits the regularity of
the solution of the elliptic equation (5.26). In order to obtain a more regular pressure field, a smooth
domain should be considered. If it allows to obtain a regular enough pressure field, existence and
uniqueness of the coupled problem between (5.5)-(5.7) and (5.26) could be investigated thanks to
techniques used by Michel et al. in [140].
The next part, the main of this thesis, is devoted to modeling the metastatic process. Different kind
of mathematical models will be used in these quantitative studies, including the model we previously
analyzed.
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Part III

Quantitative modeling of the
metastatic process

97





99

Cette partie, dédiée à la modélisation du processus métastatique, est le coeur principal de cette thèse
et est constituée de trois chapitres. Les deux premiers sont fortement connectés puisque une majeur
partie de ces deux chapitres a été publiée dans un même article [1]. Dans le premier, on s’intéresse
à la dynamique métastatique dans les poumons de souris atteintes de tumeur du rein. On confronte
une théorie classique du processus métastatique, basée sur la formation de métastases monoclonales
(à partir d’une cellule survivante) croissant indépendamment les unes des autres, à des données
longitudinales de la masse métastatique dans le poumon. Cette théorie, formalisée mathématiquement
par Iwata en 2000 [17], semble capable de décrire la dynamique de la masse métastatique totale, mais
s’avère en revanche incapable de décrire les distributions en taille des métastases observées à l’IRM.
En effet, la théorie classique prédit la formation de métastases petites et nombreuses, alors que les
métastases observées à l’IRM sont moins nombreuses et plus massives. Ceci indique que certains
phénomènes ne sont probablement pas pris en compte dans la théorie classique. Nous avons alors
suggéré deux phénomènes pouvant expliquer les distribution en taille observées : la fusion de foyers
métastatiques croissant à proximité les uns des autres et l’attraction de cellules tumorales circulantes
par des foyers ou des niches métastatiques déjà établis dans le poumon. Le premier phénomène,
la fusion de foyers métastatiques, est observé sur nos données IRM. Un modèle basé sur la théorie
classique mais incluant également l’espace limité de l’organe et la possibilité pour les métastatses
voisines de fusionner (cette partie n’a en revanche pas encore été publiée.) a alors été proposé pour
savoir si ce phénomène de fusion pouvait expliquer les distributions en taille métastatique observées
à l’IRM. Malgré une faible amélioration des prédictions par rapport à la théorie classique, cette
théorie de la fusion ne semble pas suffisante pour expliquer les données. La seconde hypothèse, à
savoir l’attraction de cellules tumorales circulantes par des foyers métastatiques existants, a donc été
étudiée. Pour ce faire, un protocole expérimental a été proposé à nos collaborateurs biologistes pour
mettre en évidence ce phénomène.
Dans le deuxième chapitre de cette partie, nous nous intéressons aux interactions mécaniques en-
tre métastases qui fusionnent. Pour ce faire nous modélisons la croissance spatiale de métastases et
simulons à l’aide de ce modèle la croissance de foyers métastatiques proches les uns des autres, afin
de quantifier l’impact de ces interactions mécaniques sur la dynamique globale. Le modèle utilisé
est le modèle spatial présenté dans la partie précédente, décrivant l’expansion spatiale d’une tumeur
par un gradient de pression et prenant en compte l’effet inhibiteur de la pression sur la prolifération
des cellules cancéreuses. Les simulations effectuées semblent indiquer que l’impact des interactions
mécaniques entre deux métastases sur leurs croissances respectives est potentiellement très impor-
tant. En effet, à partir du modèle calibré sur la croissance de lésions métastatiques aux poumons,
nous observons une réduction d’environ 30% de la masse métastatique totale due aux interactions
mécaniques lorsque deux métastases fusionnent. Ces résultats pourraient avoir des implications en
terme de dynamique métastatique globale.
Le troisième et dernier chapitre présente une étude de modélisation de la dynamique du microen-
vironnement métastatique. Plus précisément, le phénomène de niche prémétastatique est étudié et
modélisé. Des études expérimentales récentes ont mis en évidence le rôle de cellules myélöıdes issues
de la moelle osseuse dans la formation d’un environnement permissif au sein du futur site métastatique
pour la formation et le développement des métastases [10, 141, 142]. Cette niche prémétastatique
pourrait être cruciale pour le recrutement et la survie des cellules métastatiques au sein d’un organe
a priori hostile, puisqu’empêcher la formation de cette niche empêche également la formation des
métastases dans les études expérimentales citées précédemment. Après avoir étudié la littérature bi-
ologique de ce phénomène, nous avons construit un modèle mathématique basé sur cette littérature.
Les valeurs des paramètres de ce modèle ont pour une part été fixées à partir de mesures expérimentales
tirées de la littérature, tandis que les autres paramètres ont été calibrés sur les données de l’article
de Kaplan et al. [10]. Le modèle semble capable de reproduire les dynamiques des cellules myelöıdes
ainsi que de la masse métastatique. Les perspectives futures sont ensuite discutées, notamment les
questions quantitatives pouvant être traitées par le modèle, comme l’histoire naturelle de la formation
de cette niche prémétastatique ou encore les voies moléculaires et cellulaires pertinentes à cibler pour
limiter au maximum le développement métastatique chez un patient.
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This part is devoted to modeling the metastatic process. The first two chapters are strongly connected
because both studies have been driven by the same data on metastasis dynamics in murine renal cell
carcinoma. Parts of these two chapters have been recently accepted for publication in a same paper
[1]. These two chapters deal with describing metastatic development and dynamics. The first one
focuses on dynamics at the organism scale and the metastatic size distribution, whereas the second
one is devoted to spatial interactions between metastatic foci.
The third chapter deals with the impact of the microenvironment on the metastasis development.
More precisely, the dynamical aspects of the premetastatic niche formation are studied with a mech-
anistic model describing the cellular dynamics in the premetastatic and metastatic phases.

Except for the data from Kaplan et al [10], all the experimental data were provided by Andreas
Bikfalvi, Lin Cooley, Wilfried Souleyreau and Raphael Pineau for the GFP analysis part, and Emeline
Ribot and Sylvain Miraux for the imaging part.
Concerning the GFP analysis, the experiments were designed by Andreas Bikfalvi, Lin Cooley and
Wilfried Souleyreau and were performed by Lin Cooley, Wilfried Souleyreau and Raphael Pineau.
My contribution was first to analyse these data in using the modeling framework of Iwata et al. and
Benzekry et al., and in using the computing library coded by Sébastien Benzekry in Matlab for the
simulations of the metastatic distributions. Then, discussions with our biologist colleagues and a
study of the literature led me to propose biological hypotheses and an experimental protocol with
red-tagged and green-tagged cells to test them. Preliminary experiments were then performed by the
biologist collaborators.
As in the previous part, the imaging data that have been used in this part were provided by Emeline
Ribot and Sylvain Miraux from the center of magnetic resonance of biological systems (Bordeaux),
that perfomed the MRI sequence used to visualize the mouse lesions. To simulate tumor-tumor
mechanical interactions, I then used the spatial model I implemented (see the previous part).
Concerning the premetastatic niche, I first studied the biological literature and discussed with our
biologist colleagues to better understand the phenomenon. Then I tried to find relevant quantitative
questions to address, proposed a mathematical model describing the phenomenon, implemented it in
C++, and confronted it to the data of Kaplan et al [10].



Chapter 6

Challenging the standard theory of
metastatic colonization using a
data-driven modeling approach
Published in Plos Computational Biology [1]

The biology of the metastatic colonization process remains a poorly understood phenomenon. To im-
prove our knowledge of its dynamics, we conducted a modeling study based on multi-modal data from
an orthotopic murine experimental system of metastatic renal cell carcinoma. The standard theory
of metastatic colonization usually assumes that secondary tumors, once established at a distant site,
grow independently from each other and from the primary tumor. Using a mathematical model that
translates this assumption into equations, we challenged this theory against our data that included:
1) dynamics of primary tumor cells in the kidney and metastatic cells in the lungs, retrieved by green
fluorescent protein tracking, and 2) magnetic resonance images (MRI) informing on the number and
size of macroscopic lesions. Critically, when calibrated on the growth of the primary tumor and total
metastatic burden, the predicted size distributions were not in agreement with the MRI observations.
Moreover, tumor expansion only based on proliferation was not able to explain the volume increase
of the metastatic lesions. These findings strongly suggested rejection of the standard theory, demon-
strating that the time development of the size distribution of metastases could not be explained by
independent growth of metastatic foci. The model predicted an increase in the number of lesions, but
of smaller size when compared to the data. This led us to revise the standard theory and to propose
two hypotheses in order to explain the observations: 1) small metastatic foci merge into larger ones
and/or 2) circulating tumor cells may join already established tumors.
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Introduction

Metastasis, the spread of cancer cells from a primary tumor to secondary location(s) in the body, is
the ultimate cause of death for the majority of cancer patients [118, 5]. Although studied for more
than 180 years [20], increasing efforts in recent years contributed to a better understanding of this
aspect of tumor development [5, 4] with exciting new discoveries [41, 10, 11, 143] that potentially have
important clinical implications. The metastatic process can be coarsely divided into two major phases:
1) dissemination of detaching cells from the primary tumor to a secondary site and 2) colonization
of this distant organ [118, 47]. While the former has been relatively well elucidated, in particular
due to recent advances about the epithelial-to-mesenchymal transition [21] and advances on our
understanding of molecular and genetic determinants [8], the latter remains not fully understood,
especially during the colonization phase [118, 9]. This is due, in part, to experimental limitations
that hinder our ability to observe colonization of organs by tumor cells and the development of tumor
lesions.
In this context, mathematical models provide powerful tools to potentiate data analysis, infer hidden
information, test biological hypotheses against the empirical data and simulate a range of conditions
that may be confronted to the biological reality. In recent years, several models for tumor growth
have been developed (see [63, 61] for historical reviews), based on multiple modeling techniques
from non-spatial models based on ordinary differential equations (see [65] for a benchmark of these
against experimental in vivo data) to discrete agent-based models [126, 79, 144] and continuous
partial differential equations based on tissue mechanics laws [12, 145]. However, despite a large body
of literature for modeling tumor growth, relatively little effort has been devoted to the development
and validation of mathematical models describing the biology of the metastatic process (see [82, 81]
for an early and notable exception, [86, 91] for more recent studies and [80] for a recent review). In
2000, Iwata and colleagues proposed a simple mathematical model for the growth of a population
of metastatic colonies [17], which was recently shown able to fit experimental data describing the
increase in total metastatic burden [25, 26]. In this mathematical description, each metastasis grows
independently from the others and from the primary tumor. We report herein a theoretical study to
test this hypothesis using in vivo data derived from a metastatic renal carcinoma model in mice. We
first show that the standard theory of metastatic initiation in which distinct foci grow independently
from each other (as assumed in [82]) predicted an unrealistically large number of metastases, while
the tumors sizes were too small.
In a space-limited organ (such as the lungs), where two neighbouring metastatic foci are growing in
close vicinity, they might enter in contact and interactions occur, ultimately leading to the merging of
the metastatic foci. This phenomenon is not taken into account in a classical description of metastasis
development, although it can lead to important differences in the number and sizes of the colonies.
Moreover, mechanical interactions could occur during metastases merging, possibly impacting the
global dynamics. Therefore, we next conducted a simulation study to quantify the effect of mechanical
interactions between two neighbouring tumors. Based on mechanical laws for tissue growth, we derived
a minimally parameterized model (2 parameters). This second spatial model, based on a pressure-
mediated growth law, once fitted to magnetic resonance imaging data of individual metastatic tumor
growths, offered an adapted framework to perform simulations of spatially interacting tumors. These
revealed significant impact of the interactions on the global growth and allowed to test if merging by
passive motion could explain the data that are not in accordance with the classical model. To our
knowledge, this is the first time that data on size distribution of metastasis at this resolution (with
such a small visibility threshold, of the order of 0.05 mm3) is reported and analysed in lights of a
theoretical model.
As an initial step, we studied the growth rates of individual metastatic tumors. Then, we calibrated
a more elaborated mathematical model of tumor growth and metastatic dissemination using quanti-
tative data derived from green fluorescent protein (GFP)-tracking of primary and metastatic tumors
(see Fig 6.2, n = 31 mice). Finally, we used the model to investigate predictions of the standard the-
ory with regard to number and sizes of metastatic lesions and compared them to Magnetic Resonance



6.1. GROWTH RATES OF INDIVIDUAL METASTATIC TUMORS 103

Imaging (MRI) data (see Fig 6.4, n = 6 mice).

6.1 Growth rates of individual metastatic tumors

RENCA cells were injected orthotopically in the sub-capsular space of the kidney of Balb/c mice.
The first metastatic cells were observed in the lungs at day 14 and the first macro-metastases at days
18-19, as shown on (Fig 6.1). No metastasis was observed in other organs.

RENCA cells

orthotopic injection

first GFP+ tumor cells in the lung

Day 14

Day 18

vascularized macrometastases

Figure 6.1: At day 14 after GFP+ RENCA cells injection, the first tumor cells were observed in the
lungs. At days 18-19, the first macro-metastases were observed by MRI.

Assuming in a theoretical model that each metastasis originates from one surviving cell would imply
that some metastases grow from the volume of one cell (10−6 mm3, according to the well-established
conversion rule 1 mm3 ' 106 cells [146]), to a volume of few mm3 (between 0.022 and 12 mm3) in five
days at most. This would give tumor doubling times comprised between 5 and 8 hours, which represent
less than one third of the doubling time observed in vitro (24.5 hours [57]). Even if considering that
the metastases arose from few cells (2-50) instead of one [18, 19], this would imply doubling times
between 5.5 and 13.5 hours. These doubling times would also have to remain constant during 5 days.
Such a fast growth is highly improbable since no mammalian cell has a cell cycle length smaller than
10 hours [104]. Moreover, the doubling time has been reported to be non-constant and to increase
during in vivo growth [65]. Hence, growth at initiation would have to be even faster, in order to fit
the data. Therefore, the theory consisting in describing each metastasis with a tumor expansion only
based on cell proliferation seems unlikely.

6.2 Primary kidney tumor and the dynamics of lung metastasis:

The standard theory of metastatic development assumes that secondary tumors are seeded from the
primary tumor and that, once established at the distant sites (the lungs in our case), they grow
independently from each other and from the rest of the organism [20, 21, 22, 23, 24, 5], as distinct
foci initiated by single or few cells. We tested this theory against the following data: a) dynamics
of the increase of GFP+ tumor cells in the kidney, b) longitudinal quantification of GFP+ tumor
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cells in the lungs and c) MRI images of lung metastasis. To this aim, we formalized the standard
theory into a mathematical model. The model was then fitted to the data a) and b) and predictions
were compared to the data c). For data a) and b) (Fig 6.2), quantification of GFP expression by
quantitative real-time polymerase chain reaction (see Materials and methods in Appendices) required
sacrifice of the animals. Therefore, each data point corresponds to a distinct animal (n = 31 animals
in total). Since tumor cells were not detected in the lungs before day 14, measured GFP signals
in the lungs in the first days were considered as noise. Including very early time points for the fit
would therefore result in a strong bias because the model would be fitted on GFP values that do not
reflect the presence of tumor cells. Thus, we considered the data points only starting from day 10 for
the initial point for comparison and ignored the previous data points. At day 25, the GFP signal in
the lungs of the two mice was within the noise level. Considering as highly unlikely the event of no
metastases at such an advanced time, particularly when observing that imaged mice at day 24 either
exhibited lots of metastases in the lungs or were dead due to metastatic disease, we concluded to a
technical issue and removed these two data points from the analysis.
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Figure 6.2: (A) Fits of the primary tumor and metastatic burden dynamics, under a mathematical
model assuming independent growth of each secondary tumor and using mixed-effects modeling for
statistical representation of the population distribution of the parameters and measurement error.
(B) Fit on the metastatic burden. In panels (A) and (B), each data point corresponds to one distinct
mouse (n=31 animals in total). Simulations were obtained using equation (6.1) for the primary tumor
growth and equation (6.3) for the metastatic burden, endowed with a lognormal distribution of the
parameters with the following values (median ± standard deviation): α = 0.417 ± 171 day−1, β =
0.106 ± 0.0478 day−1 and µ = 9.72 × 10−6 ± 0.428 × 10−6 cell day−1. PT= Primary tumor. Met =
Metastatic burden. Prct=10% and 90% percentiles

6.2.1 Mathematical model:

The standard theory as described above has been mathematically formalized by Iwata et al. [17].
This model was reported to provide a valid description of the dynamics of total metastatic burden in
two animal models, including ours (human breast carcinoma xenograft [25, 26] and syngeneic renal
cell carcinoma [26]).
The model was adapted here as follows. We assumed that the GFP signal was proportional to the
number of cancer cells, itself proportional to the tumor volume observed by MRI. The primary tumor
volume at time t was denoted Vp(t) and its growth rate gp(Vp). The primary tumor disseminates
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metastatic cells into the lungs according to a volume-dependent dissemination law d(Vp(t). The
metastatic colonies then grow into the lungs according to the same growth law as the primary tumor.
The model describes the size distribution of the metastatic lesions at the distant site by means of a
size-dependent density ρ(t, v) of metastatic colonies of size v at time t, i.e ρ(v, t)dv is the number of
metastatic colonies with a size comprised between v and v + dv. Secondary emission of metastases
(i.e., metastases from metastases) was neglected here.
Tumor growth was modeled by means of the Gomp-Exp model [52], which is characterized by two
phases: first an exponential phase (with a growth rate given by the in vitro proliferation rate), then
a Gompertz phase (i.e., exponentially decreasing growth rate). For the primary tumor growth, the
model writes 

dVp(t)

dt
= g(Vp(t)),

Vp(0) = Vinj ,

gp(Vp) = min (λVp, (α− β ln(Vp))Vp) ,

(6.1)

where λ is the in vitro proliferation rate of RENCA cells (retrieved from [57]), α corresponds to
the specific growth rate at the size of one relative unit of GFP signal, β is the rate of exponential
decrease of the specific growth rate and Vinj is the amount of injected cells. The Gompertz model
has been proven able to describe in vivo tumor growth in numerous animal experimental systems
[65, 113, 64] as well as human data [58]. Adjunction of the initial exponential phase was considered
here because the Gompertz model exhibits an infinite relative growth rate for arbitrary small cell
numbers, a feature that was not considered relevant, especially for the metastases that start from
one cell. At this point we needed to retrieve the GFP signal associated to one cell. To achieve this,
we performed a preliminary fit of the primary tumor GFP signals with the parameter Vinj subject
to optimization, using population mixed-effects statistical modeling (see Fig A.1). We then assumed
proportionality between the number of cells injected (100 000) and the estimated signal at day 0. The
GFP signal associated to one cell was then derived and is denoted by V0. We found V0 = 7.96.10−6

relative units of GFP signal.
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Par. Unit Median value NSE (%)

α [day−1] 0.384 (20.07) 25.4
β [day−1] 0.1 (14.36) 39.1
V0 [GFP(r.u)] 0.796 (695.8) 81.6

Figure 6.3: Population fit of the primary tumor dynamics. The initial volume is calibrated during
the fit. Right panel: the points represent the data, the curve represents the median dynamics, and
the dashed curves the percentiles. Left panel: values of the parameters resulting from the population
fit of the primary tumor dynamics. NSE: normalized standard error.

Growth of secondary tumors was assumed to follow the same law (Gomp-Exp) and parameter values.
More complex modeling including different growth parameters for the primary tumor and metastasis
were tested but did not substantially improve the fits, while increasing the uncertainty in parameter
estimation due to increased number of degrees of freedom. At present time, there is no detailed
study on the shape that the function d should have. However, it is often assumed to follow the law
[17, 25, 26]:

d(Vp) = µV γ
p ,
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where parameter µ is related to an intrinsic (genetic) probability of the metastatic potential of the
tumor cells, combined to the probability of successfully passing all the steps required for establishment
of a metastasis (detachment from the primary tumor, intravasation into the blood circulation, survival
in transit, arrest and extravasation at the distant site, establishment of a new colony [20, 9]). Precise
identification of the value of parameter γ was not possible on our data set, and in the following
analysis, we arbitrarily fixed γ = 1, corresponding to the simplest assumption (emission proportional
to the tumor volume). Overall, the model writes as a transport equation on ρ, endowed with suitable
boundary and initial conditions [17]:

∂tρ(t, v) + ∂v(ρ(t, v)g(v)) = 0 t ∈]0,+∞[, v ∈]V0,+∞[,
g(V0)ρ(t, V0) = d(Vp(t)) t ∈]0,+∞[,
ρ(0, v) = 0 v ∈]V0,+∞[.

(6.2)

From the solution of this problem, the main quantity of interest for our purpose was the total
metastatic burden, defined by

M(t) =

∫ +∞

V0

vρ(t, v)dv. (6.3)

The model output was fitted to the GFP expression data from the lungs (Fig 6.2).

6.2.2 Results

Due to the large inter-animal variability, we used a nonlinear mixed-effects statistical framework for
fitting the model to the data and resulting estimation of the parameters [102] (see also [25, 26])
for applications to bioluminescence data of metastatic burden), which is particularly well suited for
sparse longitudinal data in an animal population. Briefly, this framework considers estimation of a
(parametric) distribution of the parameters within the population. This allows pooling all the data
points together, thus leading to an increase of the robustness of the estimation and of the descriptive
power for inter-animal variability. For the maximization of likelihood associated to nonlinear mixed-
effects modeling, we used a version of a stochastic expectation maximization algorithm implemented
in the Matlab function nlmefitsa [147]. To simulate the model, a well-adapted method using an
integral formulation for M(t) and the fast Fourier transform algorithm was employed [148]. This
ensured reduction of the computational cost of simulations, which was necessary due to the very high
number of runs required by nlmefitsa. Data from the primary tumor and the metastatic burden were
fitted together, and the model demonstrated satisfactorily descriptive power for the total metastatic
burden 6.2, in accordance with other studies [25, 26].
The calibrated model was further used to predict the distribution of macro-metastases visible in the
MRI images, and to confront this prediction to the observations. Among the MRI data, images of
only one mouse (over 6) were eligible for reliable assessment of the complete size distribution of macro-
metastases, which was performed by manual segmentation of metastatic lesions in each of the 142
coronal slices of the MRI (resolution 156 µm × 155 µm × 155 µm), for each time point. In the other
mice, the images had no sufficiently defined contours to properly establish a complete size distribution
of the metastases (see Fig A). However, segmentation of the largest metastasis for each mouse at day
19 could be performed. In the mouse where number and size of the lesions could properly be assessed,
the smallest detectable metastasis had a volume of 0.05 mm3, which was taken as the minimal visibility
threshold. We defined a macro-metastasis as a metastasis having a size larger than this value. Results
of the model simulation for the metastatic size distribution are reported in Fig 6.4A, together with
the experimental data. Inter-animal variability was simulated using population distribution of the
parameters (lognormal distribution and coefficients of variation reported in Table 7.1), retrieved from
the population mixed-effects fit. The maximal volumes predicted by the model/standard theory were
considerably smaller than those observed by MRI. For example, at T = 19 days, while the total
metastatic burden was similar in the data and in the model (Fig 6.2), the macro-metastatic burden
was three-fold larger in the data than in the model’s average prediction (6.4B), and the largest
metastasis five-fold larger. At T = 26 days, although macro-metastatic burdens were similar in the
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Par. Unit Median value (CV %) 95% CI

α day−1 0.417 (41) (0.329–0.557)
β day−1 0.106 (45.1) (0.0372–0.145)
µ cell−1 · day−1 9.721 × 10−6 (21.7) (1.81–52.21) × 10−6

Table 6.1: CI = confidence interval. CV = Coefficient of Variation, in per cent = std
est× 100, with

est and std respectively the median value and standard deviation of the estimated lognormal popu-
lation distribution of the parameters resulting from the nonlinear mixed-effects statistical estimation
procedure.

data and in the model, the standard theory predicted that the largest tumor would have a volume of
only 1.14 mm3 in average (std = 0.755 mm3), while the largest observed metastasis had a volume more
than 10 fold larger (13.6 mm3). This was compensated by a considerably larger number of metastatic
lesions in the model (95.4 ± 47 versus 11 in the data). For each of these quantities, the p−value
(probability to obtain the data value – or larger – under the null hypothesis that the data would have
been generated by the model, evaluated numerically) was statistically significant (p < 10−5).
These conclusions are limited by the fact that the entire time course of metastatic size distribution
of only one mouse was available for reliable comparison with the model. However, in all the 6 mice,
the size of the largest metastasis at day 19 could be measured and ranged (0.45–12) mm3, which was
significantly larger than the model predictions (6.4C, p < 10−5 by the z-test). To give an idea, the
largest metastases predicted by the model ranged (9.5×10−4–0.3) mm3. This strongly suggested that
the standard theory was not able to describe the volumes of individual foci. Moreover, even without
statistical comparison of the model’s predictions to the empirical data, the numbers predicted by the
model (in particular the number of macro-metastatic lesions at day 26) seem highly unrealistic. To
assess the robustness of our results regarding several assumptions of the model, we investigated varying
several parameters. First, metastases might initiate from a size larger than from one cell [18, 19].
We therefore performed the entire analysis for different values of V0 (see discussion and Fig A.3),
and found similar inconsistencies with the data in terms of largest metastases. Data-consistent and
biologically plausible results in terms of number of metastases would require initial sizes larger than
100 cells, which is biologically unrealistic in view of the size of capillaries and experimental works that
demonstrated that tumor cell clumps comprise less than 10 cells [18]. Similar results demonstrating
inconsistency of the standard theory were also obtained when re-performing the analysis for variable
values of the parameter γ (Fig A.4).
These results strongly indicate that the standard theory of metastatic progression as described by
the model employed here (i.e., dissemination and independent growth), when calibrated to data of
total metastatic burden, was in contradiction with the experimental observations with regard to the
number of metastatic foci and their size distributions. It is beyond the scope of the present work
to elaborate (and validate against the data) a unified model able to recapitulate the behaviour of
metastatic tumors during the colonization process. However, as a first step toward this objective, we
put forward two assumptions to correct the inconsistency of the standard theory:

• non-trivial interactions between metastases

• interactions between the metastatic foci and the circulating tumor cells (cells attraction and
aggregation)

6.3 The two hypotheses: merging and attraction

6.3.1 Merging

We indeed observed merging of two metastases in our data (between days 21 and 24, see Fig 6.5) and
therefore decided to investigate this further.
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Figure 6.4: (A) Top row: Simulation of the mathematical formalism of the standard theory (i.e.
dissemination and independent growth of the resulting tumor foci), using the parameter values inferred
from the data of the total metastatic burden (total GFP signal in the lungs). Only tumors larger than
the visible threshold at MRI (0.05 mm3) are plotted. Simulations were obtained using equations (6.1)-
(6.2) for the time evolution of the density of secondary tumors, endowed with a lognormal distribution
of the parameters for inter-animal variability, with the following values (retrieved from the population
mixed-effects fit, median ± standard deviation): α = 0.417± 0.171 day−1, β = 0.106± 0.0478 day−1

and µ = 9.72×10−6±0.428×10−6 cell−1 · day−1. Shown are the results of 1000 simulations, mean ±
standard deviation. Bottom row: Observations of macro-metastases numbers and sizes in one mouse
on MRI data. (B) Comparison of several metrics derived from the metastatic size distributions. For
the model, numbers are represented as mean value and standard deviation in parenthesis. The data
corresponds to the mouse presented in the upper histogram. (C) Comparison of the largest metastatic
size at day 19 between model (n = 1000 simulated animals) and observations (n = 6 animals), log
scale. The observed largest metastases are significantly larger than simulated ones (p < 10−5 by the
z-test).



6.3. THE TWO HYPOTHESES: MERGING AND ATTRACTION 109

Day 19 Day 21 Day 24 Day 26

Figure 6.5: From left to right: Sagittal slide of the lungs from Day 19 to Day 26 of the same mouse:
Two tumors are growing close to each other and they merge between Day 21 and 24

If metastases confined in a limited space can merge when by passive motion due to proliferation
when they are growing in close vicinity, it could result in a different metastatic distribution, with
less but larger metastases than described in the standard theory. Would it be sufficient to obtain
such different distributions as in the data? To answer this question, we proposed a little extension
of the standard theory described by Iwata’s model. It consists in the same model describing birth
of metastases growing following a given parametrized growth law (Gomp-exp in our case), but this
time, metastases appear in a space limited organ, the lungs in our case. They appear randomly in
the lungs with an equal probability for each point of the lungs. This assumption is wrong because it
is known that metastatic cells arrive in particular sites of the organ like bronchioles and distal alveoli
[10], but it makes the model simpler. To make the metastatic cells appear randomly into the lungs,
we meshed mice 3D lungs segmented from mouse MRI data, as shown in Fig 6.6.

Figure 6.6: 3D mesh of mice lungs retrieved from MRI segmentation

Each metastasis, starting from one cell, was considered as spherical and was located by the coordinates
of its center. For each couple of metastases, they were considered to have merged if the sum of their
radii (recovered from scalar simulation of the volume using the growth law) was greater than the
distance between their centers. A new distribution of metastases can be computed in gathering all
the aggregates of merging metastatic tumors. An other hypothesis is that metastases that enter in
contact do not impair their respective growth, which is probably also a little simplistic. Contact
interactions between merging metastases are considered in the next chapter. In this new model,
the total burden is the same as in the former model, but because the location of each metastasis is
random, the size distribution is stochastic as well. In order to test if this simple model of merging
was able to better describe the observed metastatic size distributions at days 19, 21, 24 and 26, we
performed 10 simulation (not more because computing time of the algorithm was long) of this new
model with random locations of the metastatic seeds. The parameters α, β and µ have been fixed to
the median value retrieved from the population fit (see the table 7.1). The results of these simulations,
that is mean and standard deviation (on the 10 simulations) of the number of macrometastases, the
macro-burden and the size of the largest met are presented in the table 6.3.1.
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T 19 21

Data Standard theory Merging theory Data Standard theory Merging theory

Number 4 5 5 (0.309) 5 23 23 (0.707)

Macro-burden (mm3) 1.580 0.520 0.528 (0.0212) 3.550 2.538 2.539 (0.00250)

Largest met (mm3) 0.780 0.146 0.146 (1.15×10−4) 2.190 0.308 0.344 (0.0973)

T 24 26

Data Standard theory Merging theory Data Standard theory Merging theory

Number 9 55 51 (2.345) 11 102 95 (3)

Macro-burden (mm3) 11.5 10.420 10.511 (0.0487) 21.2 23.366 23.594 (0.0786)

Largest met (mm3) 8.17 0.693 0.797 (0.0866) 13.6 1.0606 1.386 (0.179)

Table 6.2: Results of the model including merging of metastases are compared to the observations
and to the results of the standard theory. Results of the merging theory, represented as mean value
and standard deviation in parenthesis, were retrieved from 10 simulations with random locations of
the metastatic foci in the lungs. The parameters for standard and merging theories are the following
ones: α = 0.417 day−1, β = 0.106 day−1 and µ = 9.72 × 10−6 cell−1 · day−1.

As we can see, despite slight increases of the largest metastases and the macrometastatic burden, as
well as a reduced number of macrometastases, the merging theory was far to recover the observations,
which suggests that other phenomena may occur. We remark that substantial differences between the
standard theory and the merging theory in metastasis number, macro-burden and metastatic size,
occured rather late, that is at days 24-26.

6.3.2 Attraction

Evidences of cells detaching from metastasis and then attracted to the primary site have been ex-
perimentally shown, a phenomenon called self-seeding [11]. Chemokine-mediated attraction of tumor
cells to premetastatic sites are mentioned in [10]. Joyce and Pollard also mentioned that chemokines
mediate tissue tropism by tumor cells attraction to specific sites [44]. The attraction of tumor cells
to specific metastatic sites could result in a different metastatic size distribution than described by
the standard theory. Indeed, a tumor cell entering into the lungs could join an existing metastatic
niche instead of forming a new metastasis, resulting potentially in less but larger metastases.
In order to assess if such a phenomenon could occur, two experimental protocols have been proposed.
In the first one, red-tagged and green-tagged RENCA cells are injected with equal proportions into
the renal subcapsular space of mice. The goal is to observe if mixed-color metastases are present in
the lungs, which would show that metastases are not only clonal from a single surviving cell (standard
theory). Such an experimental protocol has already been used in [19] for breast cancer cell lines. In
this study, such mixed-color metastases are due to circulating tumor cell clusters establishing new
metastases. However, in order to show evidences of metastatic cells attraction, we proposed a second
experiment. In this one, a first injection of red-tagged RENCA cells into the renal subcapsular was
performed, followed by intravenous injection of green-tagged RENCA cells in the tail vein a few days
after. The cells injected into the tail vein going directly into the lungs, we could observe if the cells
injected into the tail vein join existing red-tagged metastatic foci or establish independent foci. Some
of the first results are presented in Fig 6.7.
In these first results, we could observe mixed-color metastatic foci into the lungs in the two experi-
mental protocols. Moreover, in these lung slices some metastatic foci were constituted of a one-colored
(red in Fig 6.7) core surrounded by cells of the other color, which could be explained by a recruitment
of intravenously injected green cells by the established red metastatic foci.
These preliminary results have to be confirmed and validated by further experiment to properly
establish that established metastatic foci can attract or recruit new arriving metastatic cells.
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Figure 6.7: Top: lung slice in the case of renal subcapsular injection of green-tagged RENCA cells
followed by intravenous injection of green-tagged RENCA cells into the tail vein. Bottom: lung slice
where red-tagged and green-tagged RENCA cells are injected with equal proportions into the renal
subcapsular space.
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6.4 Discussion and perspectives

6.4.1 Discussion

Using a combined approach between experimental data and mathematical models, we demonstrated
that the standard theory of metastasis formation and growth, where metastases grow independently
from the rest of the system, was biologically unlikely. To explain our findings, we proposed several
hypotheses, including the possibility of metastatic foci merging by passive motion and metastatic cells
attraction. First experiments confirmed that such phenomena are likely to occur during metastasis
development. We also proposed an extension of Iwata’s model (the discrete version) including space
limiting of metastatic growth and possible merging of metastatic foci by passive motion due to prolif-
eration. This model, despite slight improvements, was not able to describe the visible metastatic size
distributions, which could mean that other phenomena like metastatic cells attraction and aggregation
are in part responsible of such metastatic patterns.
Based on the rationale that lung capillaries have a diameter of the order of one tumor cell (20µm)
and that metastatic cells have lost expressions of cell-cell adhesion proteins such as cadherins [5],
we assumed in our simulations, that metastases originated from one cell. This might be arguable
and metastasis could start from tumor cell clumps [82, 19]. To resolve this further and assess the
robustness of our results, we performed the entire data analysis (fit of the total metastatic burden
and resulting prediction of the metastatic size distribution) for values of the initial number of cells
of 1, 10, 100 and 500 (Fig A.3 of the appendices). Initial numbers of 10, 100 and 500 cells could
be in agreement with the data at day 19. However, with V0 = 10 cells, the predicted number of
macro-metastases at day 26 was 3−fold higher than in the data. For V0 = 100 cells and V0 = 500
cells, the predicted macro-burden was 2−fold smaller than the observed one. Moreover the largest
metastasis at day 26 was still predicted much smaller in the model than in the data (3.11 mm3 for
V0 = 10 cells, 3.58 mm3 for V0 = 100 cells, 3.8 mm3 for V0 = 500 cells, against 13.6 mm3 in the
data). Furthermore, in animal experiments the vast majority of detaching tumor cell clumps has
been shown to comprise less than 10 cells [82] with a range of 2−50 cancer cells [19], which makes the
theories V0 = 100 cells and V0 = 500 cells unlikely. This suggests that, if the metastases started from
a substantial amount of cells, the grouping of these cells probably occurred at the distant site, after
extravasation from the blood circulation. Similarly, we did not consider any cell loss at the moment
of initial sub-capsular injection. We could make theoretical assumptions of cell loss (of 10%, 20%,
etc...), which would simply consist in multiplying by the relevant factor. For instance, considering
a 90% loss (i.e. that only 10% of the cells remain viable) would be equivalent to multiplying by 10.
As demonstrated in supplementary Fig A.3 of the “Apendices” section, it is necessary to assume an
initial size of at least 100V0 to recover plausible values for the number of metastases at time days.
Combining the two (cell loss of 10% and initial metastatic size of 10 cells) thus gives a hypothesis
that we are not able to infirm given the data we dispose.
To explain the inconsistencies of the standard theory with observations, we proposed a first hypothesis,
which consisted in merging of metastases. This phenomenon has been experimentally validated by
MRI data 6.5. A mathematical model consisting in a simple spatial extension of the standard theory
has been proposed, allowing metastases that are growing in close vicinity to merge, giving rise to
one only metastases whose the volume is the sum of the merging metastases. Including this spatial
aspect to the standard model made the metastatic distribution go to the “good way”, that is less but
larger metastases. However, these improvements are too slight to recover the observed distributions.
Indeed, we remarked that substantial changes between standard theory and merging theory are visible
from day 24. It means that passive motion by proliferation alone is not efficient enough to make the
metastatic foci aggregate fast enough. An other phenomenon is likely to occur, like cells attraction.
In the future, we also could test the merging theory for initial metastatic volumes larger than one
cell.
In the model including merging, when two metastases merge, it does not impact their respective
growths and the global dynamics is the same. It alters the metastatic size distribution only. However,
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when two metastases enter in contact, mechanical interactions may occur, altering their respective
growths. The next chapter of this thesis is focused on these quantitative aspects.
The inability of the merging theory to explain the metastatic size distribution may indicate that
besides merging by passive motion due to proliferation, other mechanisms such as chemokine-mediated
cells attraction occur [10, 141]. Circulating tumor cells may be attracted by some established niches
and explain the abnormally fast volume expansions that we observed. Indeed, such chemokine-
mediated attractions are presumed to play an important role for the pre-metastatic and metastatic
niches establishment, in mediating myeloid and tumor cells attraction [10, 141, 142]. Moreover,
chemo-attractants may play a role in tissue tropism of metastatic cells [44]. Chemotactic gradients
can attract metastatic cells that express the chemokine receptor to specific locations. In the future,
additional phenomena such as aggregation and recruitment of cells during the metastatic process from
the circulation should be integrated in the standard mathematical model. Another phenomenon that
could possibly explain the observed volumes would be the presence of circulating tumor cell clusters
that would give rise to metastases [19]. Indeed, Aceto et al. recently showed in a breast cancer animal
model that metastases do not originate from single cells only but also from tumor cells clusters that
have a higher metastatic potential than single cells. However, they did not show evidence of this
phenomenon for kidney cancer and in their experiments, clusters were formed by at most 50 cells. As
indicated above, this order of magnitude of the initial cell numbers that colonizes the lung is not able
to describe the dynamics of metastasis formation in our model and experimental data.
In order to assess if such attraction of metastatic cells was possible we proposed experimental protocols
implying injections of RENCA cells with multiple color-tagging. Similar experimental protocols have
been already performed in [19, 11]. The first experimental results suggested that such recruitment of
metastatic cells by established metastatic foci is possible, as we observed red-tagged core of RENCA
cells surrounded by green-tagged RENCA cells. For now, these results need to be confirmed with
more experiments. Transcriptomic analyses could be then made to identify factors that would be
responsible of metastatic cells recruitment/attraction. Whether this phenomenon could explain the
observed metastatic size distribution is a quantitative question that requires further work. This
question could be possibly treated with a modeling approach. It could have clinical implications as
factors mediating cells attraction could be targeted.
Taken together, our results suggest that observed metastatic volumes in the lungs (and possibly in
other organs) do not result from proliferation only but also from interactions between metastases
and interactions between metastatic foci and circulating tumor cells. Our methodology and results
illustrate, furthermore, how a combined approach using multimodal biological data on one hand, and
multimodal modeling analysis on the other, provides powerful insights into tumor biology and, in
particular, into the metastatic process.

6.4.2 Biological perspectives

The phenomenon of tumor cells attraction by metastatic foci and niches has to be confirmed with
further experiments. The two protocols that have been tested (injection of a mixed-color RENCA
tumor in the renal sucapsule and injection of red-tagged RENCA cells in the renal subcapsule followed
by intravenous injection of green-tagged RENCA cells) have to be performed on more animals. In
the first experiment, it would be interesting to compare the sizes of monocolor (so monoclonal)
foci with multicolor foci in order to know if phenomena of cells aggregation can be responsible for
the spectacular increases in size. In the second experiment, it would be interesting to quantify the
proportions of intravenously injected RENCA cells that respectively form independent foci or join
existing ones. These quantitative questions could help to know if the phenomenon of cells attraction is
a major one during the metastatic development. Another experiment, more clinically realistic, could
consist in injecting red-tagged RENCA cells intravenously first, and then (few days latter) to inject
green-tagged RENCA cells into the renal subcapsule. It would indicate if “real” circulating tumor
cells coming from a primary tumor are attracted by existing metastatic foci. In vitro experiments
could also be performed with cocultures of metastatic cells extracted from the lungs with RENCA
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cells extracted from the primary tumor in order to observe if metastatic cells attract tumor cells.
Finally, if these experiment confirm the phenomenon, a transcriptomic analysis should be performed
in order to identify the factors responsible for this attraction, opening possible clinical perspectives.

6.4.3 Future modeling perspectives

This study highlighted limitations of the standard theory of metastasis development to describe in vivo
metastatic size distributions. Further modeling efforts could be devoted to incorporate components of
cells attraction and aggregation, including tumor self-seeding, in Iwata’s model. Such a model could
be useful if predictions on metastatic dynamics have to be made on the basis of imaging data giving
information on the visible metastatic size distribution.
Another modeling clue would be to develop a “spatial version” of the discrete derivation of Iwata’s
model. Indeed, if a simple growth law as the Gompertz one is used to describe the growth of each
metastasis, a spatial derivation could be possible in using the spatial version of the Gompertz model
based on the equation (5.21) of the chapter 5. the tissue density of each metastasis would follow a
conservation law as (5.21), and each metastasis would birth from one cell appearing randomly in a
3D organ. Metastases could then merge but deformations of the tissue due to the pressure would be
taken in account. In order to assess if chemokine-mediated attraction of cells could explain observed
metastatic size distributions, a chemotaxis component could be incorporated into the conservation
laws, without altering the total mass dynamics.



Chapter 7

Modeling metastasis merging and
tumor-tumor mechanical interactions
Published in Plos Computational Biology [1]

Inconsistencies of the standard theory of metastatic development highlighted in the previous chapter
led us to consider the hypothesis that metastatic tumors could merge and give rise to larger metas-
tases. In our MRI data, the phenomenon of metastases merging has indeed been observed (Fig 6.5).
This led us to investigate the effect of spatial interactions between merging metastatic tumors on the
dynamics of the global metastatic burden. In order to study possible mechanical interactions between
merging tumors, we derived a mathematical model of spatial tumor growth, confronted it with exper-
imental data of single metastatic tumor growth, and used it to provide insights on the dynamics of
multiple tumors growing in close vicinity. The spatial model we derived was then used to explore the
quantitative implications of tumors merging on global tumor growth and to estimate the numbers of
required merging metastatic foci in order to obtain the observed metastatic volumes mentioned in the
previous chapter, which are unlikely to result from proliferation only. More specifically, we wanted
to address the following questions: do spatial interactions have an impact on the dynamics of the
total metastatic burden? To what extent could these interactions correct the theoretical predictions
of the unlikely fast growth rates observed in section 6.1 of the chapter 6? Answers to these questions
have implications on future theoretical models of metastatic development. The possibility of merging
for two neighboring metastases introduces a spatial aspect of metastatic colonization and, therefore,
required a spatial modeling approach. We derived such a model which had to full-fill the following
requirements: 1) it should be based on biological knowledge of macroscopic tumor growth (retrieved
from the literature), 2) it should remain as parsimonious as possible (minimal number of parameters)
and 3) it should be able to fit our spatial growth data.
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7.1 Modeling metastasis merging

7.1.1 Without spatial aspect: metastatic burden fractionation

We first made the simplest assumption: merging of tumors results in addition of their volumes.
We made a second assumption: each metastasis follows an exponential growth law: V (t) = V0e

λt . In
this case, due to the linearity of the model as a function of V0 , a tumor starting from size 2V0 has
the same size as two independent tumors starting from size V0. (Fig 7.1).
However, in vivo tumor growth exhibits increasing doubling times when increasing in size [58, 108, 60].
If we consider the volume dynamics and model this fact using the Gompertz law, then, due to the
nonlinearity of the model, merging two tumor lesions into one (in summing their volumes) leads to
a slower growth and ultimately smaller volume compared to two tumors that are growing separately
(Fig 7.1). The same result can be observed for more than two tumors. It means that the more
fractionated the total burden is, the more fast is the growth. Larry Norton makes the same remark
to emphasize his hypothesis that thanks to self-seeding, a tumor is fractionated in multiple seeds and
then grows faster [50].
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Figure 7.1: Top: two tumors growing under an exponential law lead to the same final total volume
than one tumor with the same initial total volume; Bottom: two tumors growing under a Gompertz
law lead to a larger final volume than one tumor with the same initial total volume

Yet, under the Gompertz law, spatial interactions are not taken into account, while they are probably
of great importance. This motivated us to study the global impact of spatial interactions and to
propose a spatial model of tumor growth.

7.1.2 Advection-type modeling of proliferation-mediated movement and pressure-
mediated inhibition of tumor growth

The two-dimensional model we used for the spatial growth has already been presented in the chapter
5. It describes the tumor expansion thanks to a conservation equation on the tumor density P . The
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medium is considered as a porous medium and the tumor expansion is described by a velocity field
representing the passive motion due to proliferation. Let us recall the equations of the model:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ(t, x, P, S,Π)P (t, x) (7.1)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0 (7.2)

− k∆Π = γP (7.3)

v = −k∇Π (7.4)

(7.5)

Again, we consider a porosity constant porosity k and assumed the domain Ω large enough to consider
the pressure on the boundaries as equal to the homeostatic pressure of the body, leading to a Dirichlet
condition on the pressure:

Π = Πeq on ∂Ω,

where Πeq is the homeostatic pressure of the body, which corresponds, as mentioned by Perthame et
al. [69], to the conditions where pressure-mediated proliferation inhibition is minimal. The size of the
computational domain Ω was once again fixed to the order of magnitude of mouse lungs (' 1cm3).
In this model, taking γ constant leads to exponential growth of the tumor burden. However, in
vivo growth can depend on environmental conditions, leading to increased doubling time when the
conditions are not optimal. Similar models using more cellular species were used by Ribba, Colin
and Schnell in [149] to predict efficacy of radiotherapy, and by Colin, Saut and colleagues in [122] to
describe avascular tumor growth. In the latter work, lack of nutrients and hypoxia were considered as
essential limiting factors for growth and hence included in the model, thus introducing a supplemen-
tary variable (nutrients concentration or the vasculature density). However, in our study, because we
wanted to keep the model as parsimonious as possible, we focused on a more phenomenological way
to describe the fact that the tumor doubling time increases with the tumor size. The natural environ-
mental variable being the pressure, a simple way to formalize this was to model the proliferation rate
as a decreasing function of the pressure. This yielded to a simple model that captured the essential
features of tumor expansion and was able to describe in vivo tumor growth.
As in the chapter 5, and following the work of Montel et al. [125] and Stylianopoulos et al. [15, 16],
we considered that the growth rate of the tumor tissue decreases with the pressure exerted on the
tissue. Therefore, we modelled the growth rate with a decreasing exponential law [125]:

γ(Π) = γ0 exp

(
− Π

Πc

)
, (7.6)

where Π represents the pressure field, γ0 the maximal proliferation rate, and Πc a characteristic
pressure. Under the assumption of a constant porosity, the value of k has no impact. Indeed, as long
as the product kΠc remains constant, the solution remains unchanged. That is why we fixed the value
of k to 1. Moreover, the boundary condition is taken homogeneous: Πeq = 0, which means that the
homeostatic pressure of the body is the optimal pressure of proliferation.
Under such a model, high pressure provokes decreased proliferation, but not apoptosis. Montel et al.
suggested that mechanical stresses have a poor effect on apoptosis, but also indicated that this could
depend on the cell line and the experimental protocol [125].

7.1.3 Merging or pushing?

What kind of interactions take place when two tumors enter in contact? The corresponding literature
is not so abundant. We tried therefore to base our study on reasonable physical considerations. What
is the behavior of two tumors in contact? Does the pressure at the interface become high, resulting in
tumors pushing each other? Or is it quite the opposite, the tumors attracting each other when they
are close? It seems to be reasonable to think that it depends on the nature of the tumors (the organ
tissue, primary or metastatic tumor, dense or diffuse).
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Pushing

Let us study the behavior of the model based on the equations (7.1)-(7.4) when the initial condition
is two tumors that are in close vicinity, as in the Fig 7.2. Let us recall the equations:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x)) = γ(t, x, P, S,Π)P (t, x)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x)) = 0,

The goal is to study the possibility for both tumors to merge. In other words, going from the
configuration of two disconnected domains Ω1 and Ω2 that represent the two tumors, to one connected
domain Ω that represents the tumor resulting from merging of the both initial tumors, as illustrated
by Fig 7.2.

Ω1 Ω2

Ω

Figure 7.2: Scheme representing two tumors that are merging by passive motion due to proliferation

In order to simplify the study, we make the assumption of a tumor density equal to 1 inside the tumor
and equal to 0 outside the tumor. Let us recall the characteristics equation:

∂X(t, y)

∂t
= v(t,X(t, y))

X(0, y) = y

Along these trajectories, the tumor density is governed by the following dynamics:

∂P̃ (t, y)

∂t
= γ̃(t, y)P̃ (t, y)(1− P̃ (t, y))

According to the Cauchy-Lipschitz theorem, if the velocity v is locally Lipschitz with respect to x,
two characteristics with two different initial positions y1 and y2 can not cross each other.
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If the both tumors merge, it implies that at a particular instant t, the two interfaces enter in contact
in at least one point, as illustrated in Fig 7.3.

Ω1(t) Ω2(t)

Figure 7.3: Contact in one point between two growing tumors

At this point, two characteristics X(t, y1) and X(t, y2) cross each other, with y1 ∈ Ω1 and y2 ∈ Ω2.
Hence if the velocity field is regular enough, tumors can not merge under this spatial model. This is
illustrated by a simulation performed with equations (7.1)-(7.6) and a bifocal initial condition (Fig
7.4).

0.25

0.5

0.75

Tumoral density

0

1

Figure 7.4: Illustration of tumors pushing each other. Simulations were obtained using Eqs (7.1)-(7.4)
with the following parameter values: γ0 = 0.78 day−1; Πc = 0.0026 Pa; time of simulation: T = 7
days

Here the two tumors push each other by the pressure exerted on the tissue between them, but do not
merge.

Merging

Adding an invasive component in the model (7.1) allows tumors merging. We made a supplementary
modeling assumption: in addition to the macroscopic passive motion due to proliferation, cells have
their own motility. The active motion of each cell can be modeled by a random (brownian) motion
[126]. So then, at the macroscopic scale, this active motion results in a diffusion component where
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the diffusion constant represents a macroscopic parameter reflecting the motility of the cells. The
model now writes:

∂P (t, x)

∂t
+∇ · (v(t, x)P (t, x))−∇ · (D∇P ) = γ(t, x, P, S,Π)P (t, x) (7.7)

∂S(t, x)

∂t
+∇ · (v(t, x)S(t, x))−∇ · (D∇S) = 0 (7.8)

P|∂Ω = 0 (7.9)

S|∂Ω = 1 (7.10)

This time, boundary conditions on P and S are necessary. The assumption of saturated flow P+S = 1
is made again, and the relation on the velocity and the pressure are the same as the model without
diffusion:

∇ · v = γP

v = −k∇Π

This model contains now two phenotypic features of tumor cells: proliferation and invasion. The term
∇ · (v(t, x)P (t, x)) reflects the passive motion due to proliferation, whereas −∇ · (D∇P ) reflects the
active motion due to cells motility. The model contains therefore a supplementary parameter, which
is D, the cell diffusion constant. Such an invasive component allows tumor to merge, as illustrated in
Fig 7.5.

0.25
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0.75

Tumoral density

0

1

Figure 7.5: Illustration of tumors pushing each other. Simulations were obtained using Eqs (7.1)-(7.4)
with the following parameter values: γ0 = 0.78 day−1; Πc = 0.0026 Pa; time of simulation: T = 7
days

Integrating the equation (7.7) on the domain gives the equation on the tumor burden
∫

Ω Pdx :∫
Ω

∂P

∂t
dx+

∫
Ω
∇ · (vP )dx−

∫
Ω
∇ · (D∇P )dx =

∫
Ω
γPdx,

d

dt

∫
Ω
Pdx+

∫
∂Ω
Pv · nσdσ −

∫
∂Ω
D∇P · nσdσ =

∫
Ω
γPdx,

where nσ is the outgoing normal on ∂Ω. Thanks to the Dirichlet condition, we know that the tumor
does not reach the boundaries of the domain, which implies that the term

∫
∂Ω Pv · nσ∂σ is equal
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to zero. However, the term
∫
∂ΩD∇P · nσdσ is not necessary equal to zero and the equation on the

burden d
dt

∫
Ω Pdx−

∫
∂ΩD∇P · nσdσ =

∫
Ω γPdx is different than in the case without diffusion.

If D is large enough, the term
∫
∂ΩD∇P · nσdσ cannot be negligible, representing the mass loss by

diffusion across the boundaries. In this case, the burden dynamics is impacted by this outflow. In
contrast, if the size of the domain is large enough over D, the term

∫
∂ΩD∇P · nσdσ is negligible and

the burden dynamics is driven by the proliferative distribution only. The situation we want to model
is the second one. The domain size being fixed to the order of magnitude of mouse lungs (' 1 cm3),
we fixed the diffusion constant at a value retrieved from the literature. A range of values for this
parameter based on measurements for embryonic cells is available in [126] : 2 × 10−12 − 6.5× 10−11

cm2 · s−1. The parameter D has been taken in this range: D = 10−11 cm2 · s−1. Considering the
proliferation rate γ as a constant and fixing its value at the in vitro growth rate for the RENCA
cell line (γ = 0.67 day−1), we compared the outputs of the two models (with and without diffusion)
with different initial sizes of tumor (1 mm2 and 10 mm2) to check if the dynamics were similar. The
simulation are presented in Fig 7.6.

Figure 7.6: Comparison of between the model with and without cellular diffusion (invasion). Final
tumor density distribution for an initial tumor surface of 10 mm2; left: with diffusion; right: without
diffusion. The proliferation rate γ is constant equal to 0.67 day−1. The simulation time is T = 1 day.

The dynamics of the mass is presented Fig 7.7.
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Figure 7.7: Comparison of between the model with and without cellular diffusion (invasion). Burden
dynamics for two initial tumor surface; left: 1 mm2; right: 10 mm2; The proliferation rate γ is
constant equal to 0.67 day−1. The simulation time is T = 1 day.
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The dynamics of both models are quite similar and exhibit an exponential dynamics, as expected (the
growth rate being constant). Indeed, differences in the final burden were 1% for the small burden
(1 mm2) and 0.1% for the large burden (10 mm2). We observe a larger difference for the smaller
tumor, which makes sense as cellular diffusion is a small scale phenomenon having little impact on a
growth at the tissue scale. The outflow due to diffusive component of the model is therefore negligible.
Neglecting the motility of the cells seems therefore a reasonable assumption at the tissue scale.
In the case where the growth rate γ depends on time and space, the burden dynamics writes:
d
dt

∫
Ω Pdx +

∫
∂Ω Pv · nσdσ −

∫
∂ΩD∇P · nσdσ =

∫
Ω γPdx. Even if the outflow

∫
∂Ω Pv · nσdσ is

negligible, the proliferative distribution γP can be different in the both cases with or without cellular
diffusion. Therefore, the burden dynamics are theoretically different too. This time, we performed
simulations with the pressure-mediated growth model based the growth law (7.6). The parameters
were extracted from the fits on MRI data presented in Fig 5.16 of the section 5.5 of the chapter 5.
The two models with and without diffusion are compared again with the diffusion constant value
extracted from the literature: D = 10−11 cm2s−1. As illustrated by Fig 7.8, the differences are very
small, with respectively 0.6%, 2.7%, 1.1% and 2.9% for the four parameter sets.
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Figure 7.8: Comparison between the model with and without cellular diffusion (invasion) using the
pressure mediated proliferation law (7.6). The parameters were retrieved from the fits on MRI data
presented in Fig 5.16.

Although cells are known to exhibit a random (brownian) motion when left alone [126], cellular
diffusion did not alter our results, so we neglected this diffusion in the study for computational cost
reasons. Therefore, in our simulations, merging of tumors do not result from a physical diffusion but
rather from the numerical diffusion, which is not a problem because we know that results would be
quite similar in both cases.
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γ0(day−1) Πc(Pa)

Mouse 1 0.78 0.0026

Mouse 2 1.01 0.00079

Mouse 3 0.67 0.00067

Mouse 4 0.8 0.00052

Table 7.1: Values of the parameters resulting from the fit of each metastatic dynamics. The value of
γ0 corresponds to the minimal doubling time in optimal conditions of pressure.The values of Πc are
not reliable to real pressure values because they depend on the porosity, which is not a parameter.

7.2 Quantitative study of spatial interactions between merging metas-
tases

7.2.1 Model calibration

To perform the study, we first wanted to fix the parameters of the model to realistic values. We
calibrated the model according to the growth of four metastases observed by MRI. These four tumors
were selected because they were detectable on a sufficient number of time points (four for three of
them and three for one of them) and were manually segmented. Fig 5.17 of the chapter 5 shows the
MR images, the numerical simulation starting from the initial shape with the parameters fitted to the
volume for one of the four metastases, and the dynamics of the simulated volume changes of the four
metastases. A movie of the simulation on the MR image can be found at http://journals.plos.

org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026 and spatial distributions
of pressure (Π) and proliferation rate (γ) are presented in Fig A.5 of appendices. The model was able
to describe the increase of the tumor volume for the four metastatic lesions with excellent goodness-
of-fit. Table 7.1 presents the values of the two parameters for the four fitted growth curves. The fits
were performed on the volume only, considering the metastases as spherical, which is a reasonable
assumption because only slight differences on the mass are observed between the spherical and non-
spherical cases (Fig A.6 of appendices and Fig 5.19 of the chapter 5).
These fitted parameters provided a range to perform the tumor-tumor contact interactions study:
(γ0,Πc) ∈ [0.67; 1.01]× [0.00052; 0.0026].

7.2.2 Quantitative impact of pressure-mediated growth interactions

We next aimed at studying the quantitative impact of the pressure that two neighbouring metastases
exert on each other when they grow, and whether the merging hypothesis could explain the fast
metastatic growth we observed in experiments on metastatic renal cell carcinoma (see chapter 6).

One tumor versus two tumors

Under classical non-spatial tumor growth laws (such as the Gompertz, power law, etc), two indepen-
dently growing tumors lead to a larger final burden than one single tumor having double initial size.
However, these models do not provide any mechanistic explanation. Our spatial model reproduced
this fact while additionally providing a possible mechanistic explanation (Fig 7.9A): in a larger tumor,
there are more cells that proliferate, resulting in higher mechanical constraints than in a smaller one.
The pressure is therefore higher in the larger tumor, resulting in faster saturation of tumor growth
over time.
Moreover, a simulation of two interacting tumors was performed by choosing a bi-focal initial condition
to equations (7.1)-(7.4) and using the parameters of Meta1 (γ0 = 0.78, Πc = 0.0026, see a movie in
the supplementary at http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.

pcbi.1004626#sec026). When comparing the total growth (sum of the surfaces of the two tumors)

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
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to the growth of only tumor seeded with the same initial surface as the two tumors together, we
observed a slower growth in the single tumor (Fig 7.9).
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Figure 7.9: tumor-tumor spatial interactions. (A) Three different configurations with a same initial
burden: only one tumor, two close tumors, two far tumors. The dynamics in the three configurations
are compared with the parameter set inferred from the fit on one metastatic growth (0.78, 0.0026)
day−1 × Pa. (B) The final burden are compared in two configurations: two close tumors and two
independent tumors. The mean burdens over a set of 64 parameters (resulting from an 8 × 8 uniform
discretization of the relevant parameter space given by the individual tumor fits, (0.67, 1.01) × (5.2 ·
10−4, 2.6 · 10−3) are plotted with the standard deviations (difference of 31%± 1.5% between the two
distributions). (C) From left to right: time course of two interacting tumors growing and pushing
each other. The parameters were fixed from one of the fitted MRI metastases: γ0 = 0.78 day−1;
Πc = 0.0026 Pa; time of simulation: T = 7 days; initial distance between the two metastases: 0.2
mm; initial surface for each metastasis: 0.46 mm2. (D) The curve represents the time evolution of
the final burden with respect to the initial distance between the two interacting tumors. The initial
total burden and the parameters were taken to be the same as one of the four fitted metastases (same
as C).



7.2. QUANTITATIVE STUDY OF SPATIAL INTERACTIONS BETWEEN MERGING METASTASES125

Two interacting tumors versus two independent tumors

To quantify the impact of the mechanical interactions, we then compared the two following situations:
(1) two metastases that grow independently (the final burden consists in summing-up the two burden)
and (2) two metastases that are close to each other (the exerted pressure of one metastasis impacts the
growth of the other). The two configurations were studied and compared with 64 sets of parameters
chosen in the parameter space established by the calibration. The results highlight the possibility for
two metastases to mutually impair their growth by mechanical interactions. Indeed, by proliferating,
the neighboring tumors exert pressure on each other, which leads to a decrease in proliferation in
comparison to distant growing tumor foci. More precisely, under the assumption of increasing doubling
time with respect to the pressure, the calibrated model revealed substantial differences in tumor
burden, as shown in Fig 7.9B. Among all the parameter sets, when two tumor foci interact, at the
final time (T = 7 days, which corresponds to the time scale of the four metastatic growths) the loss
of mass was 31± 1.5% (mean ± standard deviation) in comparison to distant growing tumor lesions.
As an example, Fig 7.9C presents a simulation of two interacting tumors at four time points.

Impact of the merging time

We observed in our data neighboring metastases growing close to each other until merging (Fig 6.5).
To simulate merging of two metastases, we did not introduce any merging effect in the model. It
occurred naturally in the model when the tumor density field consists of two tumor foci growing
in close vicinity. Mechanical interactions occurred at the time of merging, resulting in a slow-down
of tumor growth. In terms of global dynamics, two different merging times generated two different
dynamics. This merging time is equivalent to the initial distance between the two metastatic foci. We
therefore studied the impact of the initial distance. Under our modeling assumptions, the interactions
between two metastases decrease with the initial distance between them (Fig 7.9D). This means that
the later the metastases merge, the larger the final burden is. When the initial distance between the
tumors went to 0, the burden corresponded to the burden of only one tumor. When the distance
tended to infinity, the burden was equivalent to the burden of two independent tumors.

Combined effects of mass fractionation and interactions between tumors

We studied the effect of the fractionation of a same burden for independent metastases and for
interacting metastases with a distance of 0.2 mm between metastases. Fig 7.10 depicts the evolution
of the burden as a function of the number of tumors in the case of independently growing tumors or
tumors that mechanically interact. As shown, the difference between both situations increases with
the number of metastases. For instance, for 18 metastases growing close to each other, the loss of
mass from the independent case to the interactions case is 76.3% (to be compared to the 31% for two
tumors).
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Figure 5: Top: Evolution of the final burden with respect to the number of interacting metastases.
Bottom: results of the simulation (Day 7) with di↵erent numbers of metastases: 4, 12 and 22

3

Figure 7.10: Evolution of the final burden with respect to the number of interacting metastases.
Results of the simulation (Day 7) with different numbers of metastases: 4, 12 and 22. The parameters
values are chosen among the sets of fitted parameters on individual metastatic growths. Simulations
were obtained using Eqs (7.1)-(7.4) using the following parameter values: γ0 = 0.78 day−1; Πc =
0.0026 Pa; time of simulation: T = 7 days

7.2.3 The merging hypothesis

We investigated whether the merging of metastatic foci could have generated the formation of macro-
metastases visible by MRI at day 19 (see Fig 6.1) in the required time frame, with biologically
realistic growth rates. We investigated the two situations: without spatial interactions (i.e., assuming
the volume resulting from the merging as equal to the sum of the metastatic foci volumes), and
with spatial interactions. To do so, we performed four simulations with the four fitted parameter
sets, starting from one cell, to estimate the number of merging metastatic foci required to obtain the
respective observed volumes (of 0.022, 0.046, 0.085 and 0.67 mm3) seven days after initiation (day
nineteen). Indeed, we chose day twelve and not day fourteen (which was the time at which the first
metastatic cells were observed by direct examination of lung tissues) as the starting day because the
GFP signal started to rise at day twelve (Fig 6.2). The required numbers are presented in Table
7.2, with and without spatial interactions between the tumors. For the spatial interactions case,
simulations were performed as follows. Each focus was assumed to start from one cell and the foci
were randomly distributed within the computational domain. To avoid metastatic foci too close from
the domain boundaries and to allow the foci to merge together, the initial distance between the foci was
constrained to 0.03 mm. Fig 7.11 depicts the simulations results (see a movie at http://journals.

plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026). The number of
required metastases reported in Table 7.2 has been estimated by dichotomy (the final burden increases
with the number). Because the initial distance between the foci was small, the mechanical interactions
were maximal here. The estimated number is therefore probably overestimated. Consequently, the
two estimated numbers (with and without spatial interactions) give an approximate range for the
exact required number.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004626#sec026
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meta index required number of metastases

Without spatial interactions With spatial interactions

meta 1 1337 2127

meta 2 20 65

meta 3 301 375

meta 4 40 70

Table 7.2: There it is the number of required merging foci to obtain the metastatic sizes measured
on the MR images for each followed metastasis. Two cases are considered: with and without spatial
interactions.
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Figure 7.11: Simulation of multiple metastatic foci merging (with spatial interactions). From left
to right: time course of merging metastatic germs. Each germ starts from one cell. The germs are
randomly located at a distance of 0.03 mm from each other. Simulations were obtained using Eqs
(7.1)-(7.4) and the following parameter values: γ0 = 0.78 day−1; Πc = 0.0026 Pa; time of simulation:
T = 7 days; number of germs = 200 in 2D. The corresponding number of cells in 3D is computed
under a spherical symmetry assumption and is 2127.

As can be seen in Table 7.2, since spatial interactions reduce the growth velocity, the number of
metastases was higher when interactions were taken into account. Because of potential variability
(error measurements during the segmentation, differences between the MRI signal and the real le-
sion, especially for the small metastases, modeling assumptions), the estimated numbers of required
metastatic foci may give only a rough estimate. For two of the metastases (termed Meta 2 and Meta
4 in Table 7.2), the estimated numbers appear to be reasonable. On the other hand, for the two
other ones, the required number ranged respectively between301 and 375 and between 1300 and 2100,
which are probably too large to be biologically realistic.
Besides spatial interactions, another possible phenomenon involved could be the attraction and ag-
gregation of circulating tumor cells. This hypothesis has been discussed in chapter 6.

7.3 Discussion and perspectives

7.3.1 Discussion

In this study, we modeled tumor merging and mechanical interactions between tumors growing in
close vicinity. It first allowed us to quantify the impact of such interactions on the global growth.
Indeed, when they are in contact, tumors exert pressure on each other in growing, hence impairing
their mutual growth. Second, we used this model to assess the required number of merging metastases
to form foci as large as those observed by MRI in 6.
To investigate whether tumor merging would have quantitatively non-negligible impact on the kinetics
of the total metastatic burden (thus requiring more intricate modeling for the model describing the
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size distribution at the scale of the organ), we introduced a parsimonious spatial model of tumor
growth.
The spatial model for tumor growth that we introduced is based on a pressure-induced decrease of the
growth rate. Contact inhibition between cells is a mechanism for maintaining tissue homeostasis [4].
The ability of cancer cells to ignore these inhibition signals is a hallmark of cancer. In a recent study,
Stylianopoulos et al. showed that the uncontrolled proliferation of tumor cells results in mechanical
stresses in the surrounding microenvironment of transplanted and human tumors [15]. Furthermore,
they also showed that such an exerted pressure impairs in vivo proliferation via two mechanisms: re-
duced cancer cell proliferation in direct response to increased pressure, as well as a pressure-induced
collapse of blood vessels within the tumor, leading to nutrient deficiency for tumor cells [16]. Based
on these considerations, it seems relevant to consider that tumor expansion depends on the pressure.
In our spatial growth model, the tissues motion is mediated by pressure gradients. It means that
cells within a tumor tissue proliferate and that the exerted pressure pushes the neighbouring tissues.
This pressure is not solely due to mechanical constraints (solid stresses, interstitial fluid pressure,. . . )
exerted by the neighbouring cells on each other, but represents a more phenomenological pressure,
that reflects the basic assumption of our modeling strategy for the tumor tissue being constituted by
a fluid mixture in a porous medium. The effect of the pressure on proliferation has also been studied
using numerical simulations. In [125], Montel et al. discussed the fact that cells proliferate faster on
the surface than in the bulk of a tumor spheroid. A classical reason is that nutrients do not penetrate
deeply in the spheroid. However, Montel et al. suggested a mechanical effect due to the necessity for
a cell to deform its environment in order to proliferate. In a in silico study on two-dimensional mono-
layers and three-dimensional spheroids, based on experimentally determined biophysical parameters,
Drasdo and Höhme suggested that pressure conditions have a higher impact on doubling time than
lack of nutrients [126]. Moreover, in [125], Montel et al. performed experiments where tumor cells
were submitted to different pressure constraints and observed a decrease in proliferation when pres-
sure was applied. In their study, simulation results that were compared to experimental ones showed
an exponential decreasing of proliferation with pressure, consistently with the modeling adopted here.
However, the bulk and surface division rate were not affected equally by stresses. In our model, we
used a similar pressure-mediated proliferation law translating direct effects of mechanical stresses on
proliferation as well as indirect effects of proliferation on the micro environment (collapsing of blood
vessels leading to lack of nutrients).
Interestingly, our pressure-mediated growth model gives a mechanical explanation for the fact that
small tumors grow faster than large tumors. Indeed, most of the classical ODE models (Gompertz,
logistic, etc) of tumor growth provide a phenomenological way to describe that the doubling time
is increasing when the tumor volume is increasing, without any explanation on the phenomenon
underlying it. In the spatial model we introduced, as the accumulated pressure results from the
contribution of all proliferating cells, the pressure exerted in a small tumor is lower than in a large
tumor, resulting in a lower inhibition of the growth in the small tumor and then in a shorter doubling
time of the small tumor.
After calibrating this new spatial model to the growth of single metastases, we found (in simulations)
that spatial interactions between tumors result in a significant reduction of tumor growth (31± 1.5%
of mass reduction) in comparison to distant growing tumor lesions. Our results indicate that spatial
interactions may have a large impact on growth and should be considered in future efforts for the
development of a general quantitative theory of metastatic colonization. Our proposed hypotheses
should be further experimentally reinforced, by, for example, in vivo investigations by observing two
(or more) growing tumours in close vicinity that would enter mechanical interactions and then assess
with a Ki-67 staining if the proliferation is impaired in the contact area, would further reinforce our
contentions.
Together, our results have implications for theories of the metastatic process and suggest that global
dynamics of metastasis development is dependent on spatial interactions between metastatic lesions.
However, it is unlikely that they alone control metastasis expansion. Indeed, when trying to assess
whether this concept alone explains the fast growth of various metastases from the beginning of organ
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colonization (from the first cell at days 12 − 14 to (0.022 − 0.67) mm3 at day 19, according to the
delay observed on the data in Fig 6.1), unrealistic numbers were found for two of the tumors. The
inability of the merging theory based on our spatial modeling approach to explain all of the observed
volumes reinforces the results of the previous chapter suggesting that merging alone could not explain
the observed metastatic size distributions. In the present study, we tried this time to obtain single
metastatic volumes observed at MRI with a spatial model describing the spatial expansion of merging
metastases and mechanical interactions occuring during this phenomenon. Thus, other mechanisms
are probably also involved such as recruitment of additional cells from the blood stream, an hypothesis
discussed in the previous chapter, and microenvironmental cues such as nutrient depletion or responses
to environmental stress.

7.3.2 Future modeling perspectives

A first perspective is to extend the pressure model in 3D. Indeed, we can imagine that the evacuation
of the pressure is easier in 3D and that the behavior of the modele could be different than the 2D
one.
Moreover, a drawback of this model is the impact of the size of the computational domain. Indeed,
the smaller the domain is, the faster the pressure decreases from the center to the boundaries of
the domain. Anyway, if the domain represents the organ the tumor is located in, square boundaries
are not realistic. An idea could be to consider the real organ shape (the lung for example) for the
boundaries and moving boundaries (following the velocity field at the boundaries), keeping Dirichlet
conditions on the pressure. In this case, the pressure at the boundaries would be still the homeostatic
pressure of the organ, but deformations of the organ caused by the tumor growth would be taken
into account. Of course, such a model would be still unrealistic because organs are probably elastic
and tumor growth probably does not cause direct deformation, but rather compress the organ. it
comes from our saturation hypothesis, which is probably a little simplistic. Moreover, the lungs
are principally composed of alveoli full of air. When a tumor is growing inside, these alveoli are
compressed, inducing no particular external deformation of the organ. Furthermore, in the lungs as
in other organs, the vision of a tumor only pushing the surrounding tissue is probably very simplistic
also, as invasive tumor cells and cells of the microenvironment at the tumor interface secrete proteases
to degrade extracellular matrix like basal membranes. Therefore tumor expansion is associated with
tissue deformation but also tissue degradation.
Finally, another modeling clue, overlapping perspectives highlighted in the previous chapter, could
be to include spatial interactions between metastases in a model describing systemic metastatic de-
velopment as the model used in the previous chapter.
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Chapter 8

Quantitative modeling of the
premetastatic niche
In preparation

In this chapter, we focus on the metastatic microenvironment, and more particularly a phenomenon
called premetastatic niche. It consists in a precolonization of the distant organ by bone marrow derived
cells (BMDCs) before the arrival of metastatic cells in the site. Experimental evidences showed that
these BMDCs seem to prepare the organ to home metastatic cells, making this a priori inhospitable
organ more permissive to support metastatic cells attraction, survival and proliferation. We propose
here a mechanistic model of the premetastatic niche formation. This model has been coupled with
Iwata’s model of metastatic growth (6.2) in order to study the impact of the microenvironment on the
metastatic output. The complete model has been fitted on the data of Kaplan et al. [10] and showed
a good ability to reproduce the observed dynamics. The future perspectives in terms of clinically
relevant quantitative questions are discussed further.
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8.1 Elements of the metastatic microenvironment

8.1.1 Cells of the tumor and metastatic microenvironment biology

A tumor is not a mass only constituted of overproliferative mutant cells. It contains multiple kinds
of cells, which are in part not malignant [44, 29].

Cancer stem cells (CSCs)

Cancer stem cells are defined as cells that are able to generate a new tumor [4]. This definition
can be complemented by expression of markers of stem cells of the tissue of origin. Indeed, CSCs
often share transcriptional profiles similar to classical tissues stem cells [150]. It should be noted
that the definition of CSCs differs from definition of normal stem cells in that it is stronger than just
self-renewal capability (which, combined to pluripotency, forms the definition of a normal stem cell)
[4, 151]. Note also that self-renewal capability (= infinite replicative potential) is a cancer hallmark
supposedly shared by all the cancer cells [4]. CSCs were first discovered in the late 1990’s early 2000
in hematopoietic malignancies. Later on for solid tumors (for breast for instance in 2003).
Their origin during cancer progression is still unclear. They could come from normal tissue stem cells
or from progenitor cells that are already more differentiated and would de-differentiate [4]. It could
also happen that there is heterogeneity in “stemness” within the tumor.
Recent research has shown connections between epithelial to mesenchymal transition (EMT) and
stem cells. Cells that underwent EMT were found to exhibit classical stem cells features, such as the
self-renewal capability that could thus help then in seeding a new tumor at a distant site [4]. EMT
being triggered by heterotypic signals (from inflammatory cells for instance), it raises the hypotheses
that these stromal cells play a role in the presence of CSCs [4].
Indeed, it has been shown in a recent study that cancer cells are necessary for metastasis formation
in the MMTV-PyMT mouse breast cancer model and that colonization of the distant organ by CSCs
is mediated by POSTN (an extracellular matrix component) expression in the distant organ [150].
This POSTN expression is mediated by fibroblasts stimulated by tumor factors like TGF-β.
It is still open to determine whether CSCs are really a (rare) subpopulation of cancer cells. In
particular, evidence of this fact is made difficult by the possibility of bidirectional transitions between
CSCs and non-CSCs [4]. Malanchi et al. observed that CSCs represent 3±2.1% of all tumor cells in
the primary tumor and the metastases [150]. However, this proportion increases until 20% during the
metastatic colonization phase.
CSCs have two important clinical implications: 1) they were shown to be more resistant to chemother-
apy and radiation, thus possibly yielding an explanation of the inevitable recurrence of the disease
after such treatments and 2) they could help to understand long dormancy periods followed by re-
generation of a tumor [4].
CSCs could have a role in the development of the tumor-associated stroma since they were shown to
be able to differentiate into supportive cells such as fibroblasts or endothelial cells, thus generating a
stroma based only on cancerous material (without recruitment of normal host cells) [4].
CSCs have same genome as other cancer cells, but different phenotypic behavior and degree of differ-
entiation (plasticity) [4].

The cellular helpers

During tumor growth, the supportive tissue or stroma is necessary for the tumor development [44, 29].
Different kinds of cells constitute this stroma. We present here the cellular helpers of tumor and
metastatic development. For each cell type, we present first its physiological function, that is in
normal conditions, and then its pathological function in cancer.

Endothelial cells
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Endothelial cells constitute the epithelial wall of the blood vessels, as illustrated in Fig 8.1. During
the “angiogenic switch”, quiescent endothelial cells are activated and enter into the vasculogenesis
program. It is interesting to notice that tumor-associated endothelial cells express different genes
in comparison with normal endothelial cells [4]. It could be valuable to exploit these differences to
develop novel therapy strategies to target the tumor vasculature.
The role of the lymphatic endothelial cells that constitute lymphatic vessels is poorly understood.
Notably, intratumoral lymphatic vessels are often collapsed, but an important lymphangiogenesis
takes place at the periphery of the tumor stroma [4]. These vessels are invested by cancer cells when
the tumor becomes invasive, resulting in roads for cancer cells to metastasize in lymph nodes.

Pericytes
Pericytes are mesenchymal cells that wrap around certain types of blood vessels (capillaries, veins,
etc...), as illustrated in Fig 8.1. They are analogous to smooth muscle cells [4], which are present
around other types of blood vessels (arteria, etc...). As illustrated in Fig 8.2, pericytes communicate
with endothelial cells and notably secrete factors like angiopoietin-1 that are received by the Tie2
receptors expressed by endothelial cells, resulting in stabilizating antiproliferative signals [4]. To
ensure vascular homeostasis, some pericytes can secrete low levels of VEGF [4]. Pericytes also have
an important role in basement membrane synthetizing. This membrane allows the endothelial cells
and pericytes anchorage and vessels to support the hydrostatic pressure flow [4].

Figure 8.1: Two pictures of blood vessel at the cell scale. Cells constituting the endothelium and cells
supporting the vessel are represented. Left: picture retireved from [152]. Right: picture retireved
from [153]

Because their important functions in vasculature stability, pericytes may constitute an interesting
therapeutic target. Targeting Platelet derived growth factor (PDGF) receptor that is expressed by
tumor pericytes and bone marrow derived pericytes progenitors results in destabilized and unfunc-
tional tumor vasculature [30]. However, such destabilized vessels would be more permeable and could
favor metastatic dissemination [44, 30].

Immune cells
One can divide the immune system into two parts: 1) the innate immune system, associated with
wound healing and clearing dead cells and cellular debris as well as support adaptive immune response
and 2) the adaptive immune system that detects infectious agents and eliminate it.
The innate immune system includes granulocytes (neutrophils, eosinophils, basophils), macrophages,
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Figure 8.2: Two pictures of the crosstalk between endothial cells and pericytes. Some of the main
pathways of this crosstalk (PDGF, Ang-1, Ang-2) are represented. Left: picture retrieved from [154].
Right: picture retrieved from [155]

dentritic cells and NK cells. The adaptive immune system is completely constituted by the lymphoid
cell line comprising B cells, memory B cells and T cells (cytotoxic, helper, regulatory, etc...).
We can distinguish two types of inflammation: 1) immune inflammation fighting infections, which
is transient and 2) pathological inflammation (fibrosis, aberrant angiogenesis, neoplasia), which is
chronic [4].
There are two types of immune cells that are largely observed in all neoplasia :

• Tumor-antagonizing cells like cytotoxic T lymphocytes or NK cells

• Cells that functionally enhance hallmarks capabilities by chronic inflammation [44, 29, 4, 30].
As mentioned in [4, 156], tumors can be seen as “wounds that never heal”.

The tumor-promoting immune cells are typically macrophages subtypes, mast cells, neutrophils, T
(not all subtypes) and B lymphocytes and CD11b myeloid derived suppressor cells [44, 29, 4, 30]. They
secrete many different factors like tumor growth factors (e.g EGF) [4, 44], proangiogenic growth factors
(e.g VEGF, FGF2) [30, 4, 29], chemokines and cytokines that amplify the inflammatory state [44, 29],
proangiogenic and proinvasive MMPs [29, 44, 30]. They have multiple roles in tumor progression,
like cancer cells proliferation, angiogenesis stimulation, tissue invasion, metastatic dissemination and
colonization [44, 29, 4, 30].
To explain the existence of two paradoxical roles of the immune system, one can notice that physio-
logically, the immune system has two distinct roles that are:

• Detecting and targeting infectious agents

• Wound healing and clearing dead cells and cellular debris (activated macrophages, neutrophils,
and myeloid progenitors)

The second class of immune cells is thought to support neoplasia progression. This progression is
controlled by the balance between presence of conventional or activated immune cells.

Fibroblasts
Fibroblasts are the most common cells of the conjonctive tissue. Fibroblasts are cells from the mes-
enchymal cell line, as shown in Fig 8.3 They can principally secrete and remodel the extracellular
matrix (collagens, glycosaminoglycans, reticular and elastic fibers, glycoproteins) and play a role in
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Figure 8.3: The mesenchymal cell line, picture retrieved from [157]

wound healing. They are motile and can become epithelial cells by the mesenchymal to epithelial tran-
sition. Conversely, epithelial cells can become fibroblasts by epithelial to the mesenchymal transition.

Cancer associated fibroblasts (CAFs) are the most common cell type in tumor stroma. It embraces
two subtypes of cells, that are 1) tissue-derived fibroblasts and 2) myofibroblast, a differentiated state
between fibroblast and smooth muscle cells (liver, pancreas, etc.).
Recruited myofibroblasts and reprogrammed variants of normal tissue-derived fibroblastic cells have
been showed to enhance tumor phenotypes such as cancer cells and progenitors migration and motility
by SDF-1/CXCR4 [30], cancer cells proliferation [4], angiogenesis [44], invasion (EMT by HGF, FGF,
TGF-β, MMPs) [30] and metastasis (premetastatic niche, [10]).
Cancer associated fibroblasts are immortalized. They are more competent than healthy fibroblasts
to support tumor growth. Furthermore, they can induce tumorigenesis in immunocompromised mice
([158]). Their matrix remodeling capacities make them responsible of demoplastic (desmoplasia is the
growth of fibrous or connective tissue) stroma that characterizes many advanced carcinomas.

Stem and progenitor cells of the tumor stroma
Progenitor and stem cells are immature cells that have two principal functions: 1) differentitation
into mature and functional cells, for example immune cells and 2) self-renewal to maintain a constant
number of cells in the body. All the cells of the hematopoietic cell line comprising immune cells, red
blood cells and platelets, originate from hematopoietic stem cells, as illustrated in Fig 8.4. A high
number of stem and progenitor cells come from the bone marrow.
Most of the tumor stromal cells are recruited from the adjacent tissue but some of them are recruited
from the marrow. These stem and progenitors cells exhibit functions that their more differentiated
progeny don’t have. Bone marrow derived progenitor cells have many cell lines types: 1) hematopoi-
etic progenitor cells having roles in angiogenesis and premetastatic niche ([10, 30]) 2) progenitors
of pericytes and of various subtypes of cancer-associated fibroblasts originated from the bone mar-
row 3) endothelial progenitor cells that play a role in angiogenesis. Tumor-associated stromal cells
can originate from bone marrow or from differentiating stem and progenitor cells originating in the
neighboring normal tissue.
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Figure 8.4: The hematopoietic cell line. Picture retrieved from [159]

8.1.2 The premetastatic and metastatic niches

As we mentioned previously, crosstalking between tumor cells and cells of the microenvironment is a
critical step for tumor progression. Such cells can also be found in the metastatic microenvironment
and are likely to play a critical role for metastatic progression too. The following review deals with the
premetastatic and metastatic microenvironments inducing premetastatic and a metastatic niches to
help survival and proliferation of metastatic cells. Moreover, the premetastatic niche, in other words
the precolonization of the future metastatic site by non tumor cells to induce a viable environment
for metastatic development, could explain the organ-specific nature of metastatic disease.

The organ-specific nature of metastatic dissemination

Clinically, it has been observed that metastases are more frequent in particular organs than in others
and that such preferential distant sites depend on the type of cancer [47]. For example, breast
cancer often metastasizes to the liver, lungs, bones and brain, whereas colorectal cancer preferentially
metastasizes to the liver. In 1889, Steven Paget investigated the location of metastasis on 900 autopsies
of patients with breast cancer and shed light on the non randomness of metastasis location [160].
Indeed, much more cases of liver metastases than spleen metastases were reported, although the
arteries of the liver and the spleen have comparable sizes, allowing equal chances of metastatic seeds
in theory. Moreover, he observed that bone metastases were found in particular bones and not in
others, a tendency that could not be explained by a ‘theory of embolism alone”, according to Paget’s
words. These observations led Paget to make the hypothesis that formation of metastases does not
depend on the seed (tumor cell) only but rather on the compatibility between the seed and the soil
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(the secondary tissue). This “seed and soil” hypothesis has been challenged in 1929 by James Ewing,
which proposed that metastatic dissemination depends on circulatory patterns between the primary
tumor and secondary organs [161]. In breast cancer for instance, cancer cells detaching from the
primary and going through the blood circulation are first trapped into the lung capillaries, whereas
in colorectal cancer, they are first trapped in the liver capillaries [47]. As mentioned by Fidler in [21],
Coman et al. performed experiments in 1951, showing evidences that blood flow mechanics govern
the metastasis location [162]. In [47], Chambers and Groom mention a study of Leonard Weiss
that observed in patients with 16 tumor types cancers that metastasis location was well explained
by circulatory patterns in only 66% of the primary-secondary organs pairs. This would support that
organ-specific nature of metastasis depends on both mechanical factors and seed and soil compatibility.
Moreover, Chambers and Groom mentioned that seeding of tumor cells in an organ mainly depends
on mechanical factors, whereas the growth of the seeds could depend on the compatibility between the
seed and the soil, an that this compatibility depends on the cancer cell line [47]. In his revisited “seed
and soil” hypothesis, Isaiah J. Fidler defends Paget’s hypothesis and emphasizes that such a tropism
of the metastatic cells for particular organs is strongly mediated by the cells of the microenvironment
like fibroblasts, endothelial cells and infiltrating leukocytes [21].

Metastasis development: an inefficient process

As mentioned in [47], metastasis development is a very inefficient process. Indeed, during all the steps
of the metastatic process, tumor cells may encounter many obstacles: adhesion signals loss, blood
flow pressure, immune surveillance, or lack of survival signals [5]. In [21], it is mentioned that about
0.1% of the circulating tumor cells survive within 24 hours after entry into the circulation and reach
the distant organ and that only 0.01% of them manage to form a new metastasis. Experiments using
in vivo video microscopy and intravenous injections of tumor cell lines have shown the inefficiency of
the metastatic process in the lungs, the liver and the brain [163, 164, 165]. Groom and Chambers
mentioned also that first steps of the metastatic process are relatively efficient and that inefficiency is
mainly due to the difficulties for cancer cells to grow at the secondary sites [47]. As mentioned before,
some tumor cell lines are adapted to seed in particular organ whereas other cell lines are adapted
to seed in other organs. In 2005, Kaplan, Lyden et al. have shown experimental evidences of the
formation of a premetastatic niche before the arrival of the metastatic cells [10]. Such a premetastatic
niche can make a secondary organ more permissive for arrival, survival and proliferation of metastatic
cells. As mentioned by Chambers and Groom, the success of metastasis development could be imputed
both to the intrinsic metastatic abilities of the tumor cell line (seed) and how permissive the secondary
organ (soil) is.

The premetastatic niche: first experimental evidences

In 2005, Kaplan et al. showed first evidences of a premetastatic niche on two mouse cell lines (Lewis
lung carcinoma and B16 melanoma) [10]. The goal of this paragraph is to summarize their work.
In this study, the authors first presumed that bone marrow derived cells (BMDCs) play a role in
metastasis formation. Two main types of BMDCs are considered: cells expressing VEGFR1 (vascular
endothelial growth factor receptor 1), regrouping essentially hematopoietic progenitor cells (HPCs),
and cells expressing VEGFR2, regrouping endothelial progenitor cells (EPCs). HPCs and EPCs were
already known to contribute to tumor angiogenesis [10]. HPCs are progenitor cells, a transitional
state of differentiation between stem cells and fully differentiated cells, which can differentiate into
many blood cells like erythrocytes, macrophages, or granulocytes [159]. The goal of the study was
first to highlight the formation a premetastatic niche by BMDCs, and then to shed light on the
particular BMDCs that are implied in the process. Finally, other experiments allowed to determine
what modelucar and genetic pathways are implied during the premetastatic niche formation.

First experiment: subcutaneous injection of LLC and B16 tumor cells and GFP/β-gal tracking of
BMDCs
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In this experiment, β-galactosidase-positive (β-gal+) or GFP+ BMDCs were transplanted in mice.
It was not known a priori where these cells would go (staying in the blood, going back to the bone
marrow, etc...). Four weeks after, a subcutaneous implantation of DsRed-tagged LLC or B16 tumor
cells performed. These two cell lines are known to have different metasatic potential: LLC tumors
metastasize into the lungs and sometimes the liver, whereas B16 disseminate into the lungs, the liver,
the testis, the spleen and the kidney. The experimental protocol is summarized in Fig 8.5.

GFP+ (or Beta-gal+) BMDCs

DsRed-tagged B16 melanoma (or LLC)
Tumor cells subcutaneous implantation

Lungs

Mouse

Figure 8.5: First experiment of [10]: transplantation of β-gal+ (GFP+) BMDCs followed by subcu-
taneous transplantation of B16 (LLC) tumor cells

At each time point, observations of lung slices were made. Before tumor implantation, the lungs do
not exhibit any anomaly. Fourteen days after tumor implantation, no tumor cells were observed yet
into the lungs. However, clusters of β-gal+ (GFP+) BMDCs were observed into the lungs, forming
premetastatic lesions. At day 18 after tumor implantation, the first DsRed-tagged tumor cells were
observed into the lungs. It was observed that the location of 95% of tumor cells coincide with the
location of BMDCs clusters. The findings are summarized by the timeline in Fig 8.6

Dayst = 0
Subcutaneous

implantation of B16 (LLC)

D12
First BMDCs

D14
BMDCs clusters

D18
First tumor cells

D23
Micrometastases

Figure 8.6: Timeline of the first experiment of [10]

Moreover, flow cytometry showed that BMDCs clusters were only formed in the future metastatic
distant site depending on the tumor type: lungs and liver for LLC, lungs, liver, testis, spleen and
kidney for B16.
These experiments highlighted the formation of premetastatic BMDCs clusters before the arrival of
first tumor cells in the future metastatic sites.

Second experiment: injection of tumor conditioned media followed by intraveinous injection of tumor
cells
The goal of this second experiment was to show that cytokines released by the primary tumor were
responsible for the mobilization of BMDCs to the premetastatic site. In order to prove it, melanoma
cells were maintained in culture during 18 hours and the serum called melanoma conditioned media
(MCM) was extracted. Mice transplanted with β-gal+ (GFP+) BMDCs were considered with MCM
four weeks after the transplantation and control mice were given serum-free media. MCM and serum
free media were then injected every day and B16 (or LLC) tumor cells were injected intravenously
seven days after the first MCM injection. The schemes of Fig 8.7 summarize the experimental protocol.
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B16 tumor cells

MCM: melanoma conditionned media

GFP+ BMDCs

MCM

Intravenous
injection of

B16 tumor cells

Lungs

Mouse

GFP+ BMDCs

Serum-free
media

Intravenous
injection of

B16 tumor cells

Lungs

Mouse

Figure 8.7: Second experiment of [10]: Melanoma conditioned media injection followed by intravenous
injection of B16 (LLC) tumor cells

Few days after media injection, whereas no increase of BMDCs is observed into the lung for control
mice, a significant increase of BMDCs is observed into the lungs and other potential metastatic sites.
Four days after tumor cells injection, micrometastases located on the BMDCs clusters are observed
in MCM mice, but not or very few tumor cells are observed in control mice. The scheme in Fig 8.8
summarizes the timeline of the protocol.

Days

BMDCs

t = 0 4 Weeks

Dayly MCM injection

4 Weeks + 7 Days

B16 tumor cells intravenous injection

Lung nodules

4 Weeks + 10 Days

Figure 8.8: Timeline of the second experiment of [10]

This experiment showed that cytokines released by the tumor cells induced the mobilization of the
BMDCs to form the premetasatic niche. Moreover, the experimental results shown these BMDCs
were likely to support survival and growth of tumor in the niche.
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Third step: identify the cells of the premetastatic niche
The samples of the first experiment (subcutaneous injection of tumor cells) were conserved with OCT
(at a very low temperature) to be further analyzed. Clusters of differentiation (CD) allowed to identify
more or less precisely the type or subset of cells, as shown in Fig 8.4. The analyses first revealed that
VEGFR1+ cells appeared into the secondary sites (lungs, liver, etc...) at day 14, before the VEGFR2+
cells. Moreover, the expression of CD34 and C-kit (CD117) markers revealed the presence of myeloid
progenitors (not much differentiated cells) among the VEGFR1+ cells. The marker CD11b was also
present, showing that some more differentiated cells (moconytes, granulocytes) were also present.
It was therefore difficult to identify precisely which cells establish the premetastatic niche but the
analysis results seemed show that these cells are of the myeloid lineage with a relatively heterogeneous
degree of differentiation. VEGFR2+ cells seemed to arrive shortly before the tumor cells. They are
presumed to complete the HPC clusters to further support the growth of metastases, and especially
to play a role during the angiogenic switch.
Fig 8.9 presents the updated timeline of the successive events of the premetastatic phase.

Dayst = 0
Subcutaneous

implantation of B16 (LLC)

D14
HPC clusters

VEGFR1+ BMDCs

D18
First tumor cells
VEGFR2+ EPCs

D23
Micrometastases

Figure 8.9: Timeline of the premetastatic phase

These experiments have shown that VEGFR1+ BMDCs form the premetastatic niche before the
arrival of tumor cells for these two animal models (subcutaneous injection of LLC and B16 tu-
mor cells). In [10], Kaplan et al also confirmed the formation of VEGFR1+ cells clusters during
the premetastatic phase in a spontaneous model (c-Myc transgenic mouse) of tumor. Moreover,
VEGFR1+ premetastatic lesions have also been detected on patients in organs that are often tar-
geted by metastatic dissemination.

Targeting VEGFR1 expression or VEGFR1+ cells prevent the formation of a premetastatic niche
In an other experiment of [10], three sets of mice with purified bone marrow depleted from VEGFR1+
cells, purified bone marrow with VEGFR1+ cells only, or natural bone marrow (control) were em-
ployed.
In the case where VEGFR1+ cells were not present, no BMDC clusters and no metastases were
observed. When only VEGFR1+ were present, BMDC clusters were observed, as well as micrometas-
tases but with aberrant vasculature, whereas in the case of natural bone marrow (control), BMDC
clusters and further macrometastases were observed.
Other experiments have shown that VEGFR1 antibody treatment prevents the formation of the
premetasatic niche and metastases. VEGFR2 antibody treatment does not prevent the formation of
a premetastatic niche and leads to micrometastases with aberrant vasculature.

Interactions between HPCs and the premetastatic microenvironment mediate the formation of the
premetasatic niche
Further analyses showed an overproduction of fibronectin by the fibroblasts of the premetastatic
niche before the arrival of HPCs. VEGFR1+ HPCs seem to express VLA-4 (an integrin), which is a
fibronectin ligand. Binding of VLA-4 to fibronectin allows the adhesion of HPCs to the premetastatic
niche. This binding leads to matrix matelloproteinase-9 (MMP-9) production by HPCs. Indeed, high
expression of MMP-9 was observed in premetastatic clusters, which can degrade basement membranes,
thus alterating the microenvironment by releasing Kit-ligand (or stem cell factor) and VEGF-A,
supporting the arrival of new HPCs.
The Id-3 (inhibitor of differentiation 3) gene is also overexpressed in premetastatic clusters. This gene
seems to be important for VEGFR1+ mobilization to the premetastatic niche.
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Experiments with VLA-4, Id-3 or MMP-9 knock-out mice resulted in preventing premetastatic niche
and metastasis formation.
Once the premetastatic niche is complete (HPCs, fibroblast, fibronectin), high expression of SDF-1
(stromal derived factor 1) are detected in the premetastatic clusters. CXCR4, the SDF-1 receptor, is
highly expressed on some tumor cells, allowing their attraction to the premetastatic niche.
Fig 8.10, 8.11, 8.12 and 8.13 summarize the different steps of the premetastatic niche formation.

Fibroblasts

Tumor
factors

Mouse lungs

Fibroblasts

Fibronectin

Mouse lungs

Figure 8.10: First step of the premetasatic niche formation: cytokines released by the primary tumor
reach the lungs by the blood stream, stimulate the proliferation of local fibroblasts and the production
of fibronectin. In parallel, tumor factors mobilize hematopoietic progenitor cells from the bone marrow
to the blood.

HPCs

Fibroblasts
Fibronectin

Mouse lungs Mouse lungs

Figure 8.11: Second step of the premetasatic niche formation: HPCs adhere to the premetastatic
niche thanks to fibronectin expression.
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Mouse lungs Mouse lungs

Figure 8.12: Third step of the premetasatic niche formation: Increased expression of MMP-9 in the
premetastatic niche alters the microenvironment by releasing factors like c-kit and VEGF supporting
the arrival of new HPCs.

Mouse lungs Mouse lungs

Figure 8.13: Last step of the premetastatic niche formation: High expression of SDF-1 chemokine
induces CXCR4 expressing tumor cells attraction to the premetastatic niche.

Primary tumor cytokines govern the metastatic potential
The two cancer cell lines used in this study, Lewis lung carcinoma (LLC) and B16 Melanoma, have
different metastatic potentials. Indeed, B16 is a more aggressive cell line that metastasizes in more
different organs. In order to understand these different aggressivenesses, Kaplan et al. performed
a last experiment where LLC tumor is implanted after injection of MCM (melanoma conditioned
media) in the mice. Fig 8.14 summarizes the protocol.
The result of this experiment is that LLC, in the presence of MCM (melanoma conditioned media),
metastasized in the lungs and the liver but also in organs that are common metasatic sites for the
B16 melanoma cell line (spleen, intestine, oviduct). Usually, LLC does not metastasizes in these
organs. It means that metastatic potential is in part governed by the tumor factors and not only
for mechanical reasons. Moreover, an analysis has been made to identify the factors secreted by the
tumors and responsible of the metasatic potential. It demonstrated that vascular endothelial growth
factor is overexpressed by both LLC and B16 melanoma. However, high concentrations of placental
growth factor (Plgf) have been detected for B16 melanoma but not for LLC. Plgf could be in part
responsible of the premetastatic niche formation in the organs where B16 metastasizes but LLC does
not, in stimulating fibroblasts proliferation and fibronectin expression in these organs, whereas VEGF
stimulates fibroblasts proliferation and production of fibronectin in the lungs only.

Conclusions
The article [10], shed light on the different steps of the premetastatic niche formation. Although not
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B16 melanoma cells

MCM: melanoma conditionned media

GFP+ BMDCs

MCM
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GFP+ BMDCs

Serum-free
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Lungs
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Figure 8.14: In vitro Culture of B16 melanoma cells to obtain the MCM and then MCM injection
and serum-free media injection for the control group, followed by subcutaneous implantation of LLC
cells

precisely identified, VEGFR1+ BMDCs or HPCs seem to actively participate to the formation of
this niche, especially for the attraction and survival of tumor cells. These HPCs, under stimulation
by tumor factors, migrate from the bone marrow to the premetastatic site. Moreover fibrolasts of
the premetastatic sites, also stimulated by tumor factors, proliferate and express fibronectin, allowing
HPCs adhesion and MMP-9 production by binding with VLA-4 expressed by HPCs. Then high
expression of SDF-1 in the premetastatic niche mediates attraction of CXCR4 expressing tumor
cells. The differentiation state of the HPCs was unclear in these experiments but they may need to
maintain to an undifferentiated state, perhaps to keep a proliferation potential in the premetastatic
niche. Other cells like endothelial progenitor cells could further support the growth of tumor cells in
the metastatic niche.

The premetastatic and metastatic niches

Metastatic dissemination and colonization depend on multiple key factors. The invasive behavior of a
tumor is in part due to genetic mutations allowing tumor cells to acquire an aggressive phenotype (loss
of cadherins for cell-cell junctions, changes in cellular signals, cytoskeleton structure) [5, 30]. However,
metastatic potential is also dependent on microenvironmental changes in the primary and distant
sites [30]. Indeed, before the arrival of tumor cells in the distant sites, microenvironmental changes
like matrix metalloproteinases (MMP) expression, inflammatory responses, stromal cells recruitment,
extracellular matrix alterations (ECM) and oncogenic molecules expression are observed [30].
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Further studies of the premetastatic niche have been performed after [10], focusing on other cell
lines and organs. A short review of this literature body has been made here. The perspectives of
quantitative studies using mathematical modeling are discussed further.
In [166], Kaplan et al. mention that HPCs proliferate and circulate into the blood stream in response
to tumor chemokines before to adhere to areas of increased fibronectin in the premetastatic niche.
Then high expression of SDF-1 in the premetastatic niche promote tumor cells attraction, attachment,
survival and growth of tumor cells. Endothelial progenitor cells (EPCs) then appear in the metastatic
niche to promote vasculogenesis and complete the metastatic lesions. Indeed, in [167], Lyden et al.
suggest that the metastatic angiogenic switch depends on the arrival of the EPCs in the metastatic
niche. VEGFR1 seems to play a role for activation of the HPCs but also for migration and proliferation
of EPCs and VEGFR1+ tumor cells by activation of src-family kinase [166]. Moreover it has been
shown in vitro that HPCs promote binding and proliferation of tumor cells [166]. Kaplan et al.
suggested therefore that the absence of HPCs in the metastatic niche can induce metastatic dormancy
and that this dormancy can be stopped in the presence of HPCs [166].
Another study highlighted the role of inflammatory chemokines S100A8 and S100A9 in the premetasatic
niche formation [141] for LLC and B16 melanoma. These chemokines are expressed by premetastatic
lung endothelium and lung CD11b+ myeloid cells stimulated by tumor factors (VEGF-A, TGF-β and
TNF-α). Chemokines S100A8 an S100A9 then promote attraction of new CD11b+ myeloid cells and
of tumor cells along chemotactic gradients [141]. Using monoclonal antibodies against S100-A8 and
S100-A9 critically reduced metasatic colonization in the lungs. In [168], Rafii and Lyden emphasize
particular points of [141] and make some links with the first study of the premetastaic niche [10].
First, CD11b+ cells could be the same or regroup common cells with VEGFR1+ HPCs mentioned
in [10] and that form the premetastatic niche. According to Rafii and Lyden, these CD11b+ myeloid
cells and VEGFR1+ HPCs attract the tumor cells and alter the premetastatic microenvironment in
forming “docks” to receive the tumor cells [168]. In [141], Hiratsuka et al. showed also that S100A8
and S100A9 are overexpressed in the lungs but not in other organs like the liver and kidney, making
inefficient the monoclonal antibodies against S100-A8 and S100-A9 against metastatic colonization
in the liver and kidney. Rafii and Lyden suggest that organ-specific upregulation of premetastatic
factors characterizes the organ-specific nature of metastatic colonization. They also mention inter-
esting clinical perspectives as premetastatic markers like the presence of Mac1+ or VEGFR1+ cells,
more easy to detect than micrometastases, in tumor-bearing patient, could suggest using adjuvant or
neo-adjuvant chemotherapies, or even new therapies targeting specific pathways of the premetastatic
niche formation [168].
An other paper is focused on the premetastatic niche formation in breast cancer [169]. In this study,
Psaila et al. mention that breast cancer cells express CXCR4 and can be attracted by specialized
breast carcinoma-associated fibroblasts, but not by normal fibroblasts, illustrating the importance of
the “soil” in the metastatic process. The authors also mention evidences of premetastatic VEGFR1+
cell clusters in the lymph nodes of all patients with metastatic breast cancer and not in patients
without metastasis. Interestingly, HPCs were more numerous in premetastatic lymph nodes than
in metastatic lymph nodes, showing that the main role of these cells is to prime the soil [169].
Again clinical perpectives are highlighted, suggesting that prognosis of breast tumor bearing patients
could be improve in checking the presence of VEGFR1+ HPCs clusters in lymph nodes. Moreover,
in this paper, similarities were made between the premetastatic niche and the bone marrow niche
where hematopoietic stem cells (HSCs) homeostasis is ensured by interactions with the bone marrow
microenvironment. Within the premetastatic niche, HPCs exhibit markers like CD34, CD11b, c-
Kit and Sca-1, characterizing their immature state, a common feature with the bone marrow niche.
Moreover, HSCs dynamics in the bone marrow is transient, with proliferation phases and quiescence
or dormancy phases, which can be compared to metastatic patterns of proliferation and dormancy
[169]. Another important point is that VEGFR1+ has been shown to be expressed by breast cancer
cells, promoting tumor growth. Targeting this pathway offers promising perspectives as it would
inhibit both primary tumor growth and HPCs recruitment for the premetastatic niche formation.
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Controversies: the premetastatic niche and the paradoxical role of immune cells

Other studies have been performed on mouse with breast cancer cell lines to study the premetasatic
dynamics. In [170], Kowanetz et al. observed the formation of a premetastatic niche into the lungs,
but this time, not by progenitor cells but by more differentiated Ly6G+ granulocytes. These cells
overexpress Bv8 in the premetastatic lungs, promoting tumor cells attraction. However, in an other
study with similar experimental conditions, Granot et al. showed that neutrophils, which are partic-
ular granulocytes, inhibit metastatic seeding in the lungs [171]. These paradoxical results make sense
with the ambiguous role of the immune system in cancer, which comprises two types of cells, the first
being anticancer, the second being cancer promoting [4].

8.2 A mechanistic model of the premetastatic niche

8.2.1 A model for what purpose?

As we previously saw, the premetastatic niche formation is a complex multistep process, which il-
lustrates the dynamical aspect of the metastatic process. Indeed, as illustrated in Fig 8.10, 8.11,
8.12 and 8.13, we can divide the global phenomenon in three successive steps: 1)initiation of the
premetastatic niche (proliferation of local fibroblasts and fibronectin expression) and mobilization of
BMDCs/inflammatory cells in the blood, 2)Attraction and homing of BMDCs/inflammatory cells to
the premetastatic niche and interactions with the local cells (fibroblasts, endothelial cells) to alter the
microenvironment of the premetastatic niche to form a hospitable place for future metastatic cells,
3)Attraction and homing of metastatic cells by factors secreted in the premetastatic niche, metastatic
cells survival and proliferation supporting by BMDCs/inflamatory cells.
Many biological and clinical questions remain open about the premetastatic niche. Is this niche
already formed when a patient is diagnosed with a particular tumor, known to have a metastatic
potential? With respect to the stage of the disease (premetastatic, metastatic), targeting the seed
(tumor cells) is more or less efficient than targeting the soil (BMDCs/Immune cells, fibroblasts)?
With respect to the stage of the disease (premetastatic, metastatic), which molecular pathway is
suitable to target? The growing amount of quantitative data makes mathematical modeling a good
candidate to solve these quantitative issues relied to cancer dynamical aspects.
In this section, we propose a mechanistic model describing the premetastatic niche formation, and
more precisely the premetastatic cellular and molecular dynamics. This model formalizes the biolog-
ical framework presented in the previous section. Some biological aspects have been simplified but
we tried to synthesize and formalize the essential ones. We present the model step by step in men-
tioning how it is parameterized, and then we present fitting results on the data of Kaplan et al.[10].
Finally, perspectives for future work are suggested, notably the clinical issues and scenarii that can
be tested from the calibrated model and that could suggest therapeutic strategies. In our modeling
approach, we tried as much as possible to 1) build a model highly consistent with the biology of the
premetastatic niche 2) build a model with parameters that have a biological meaning and that could
be measured or found in the literature 3) only describe the essential biological aspects and those that
are relevant to describe to answer to relevant clinical issues.

8.2.2 Model

Before to talk about the model in more details, let us draw our conceptual model of the metastatic
process divided into steps comprising the premetastatic and metastatic niches formation. The scheme
in Fig 8.15 summarizes this conceptual model.

Main assumptions of the model

Evidences of the premetastatic niche formation have been described for several cell lines (B16 melanoma,
LLC, human breast cancer, 4T1, MDA, etc). We model here the system with the B16 melanoma cell
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Figure 8.15: Scheme of the different parts of the model. Each part is represented by a box with
an input and an output. g(t) represents a concentration of growth factors emitted by the primary
tumor (typically VEGF), Vp(t) represents the primary tumor volume, c2(t) describes a concentration
of chemokines attracting the tumor cells to the premetastatic niche, N(t) is a quantitative variable
called the state of the niche, which represents the capacity of the tumor cells, with respect to the soil,
to survive and proliferate, T (t) is the concentration of circulating tumor cells in the blood, and M(t)
the total metastatic burden.

line, based on the biological framework and the data of Kaplan et al. and Hiratsuka et al. [10, 141].
In the different papers dealing with the premetastatic niche formation, many different cellular and
molecular species are involved during these premetastatic and metastatic phases [142] but we consid-
ered only those present in the two papers of Kaplan et al. [10] and Hiratsuka et al. [141]. In these
papers, the differentiation state of the accomplice cells (VEGFR1+ HPCs in [10] and CD11b+ myeloid
cells in [10, 141]) is not clear. Kaplan et al. observed undifferentiated progenitor (CD34) and more
differentiated cells of the myeloid lineage (CD11b+ as Hiratsuka et al. did). In [10], Kaplan et al.
emit a hypothesis (among other ones) that the function of undifferentiated progenitors in this niche is
to provide a cell reserve thanks to their proliferative abilities. In our model, VEGFR1+ hematopoietic
progenitor cells (HPCs) can essentially proliferate and differentiate into CD11b+ myeloid cells, which
then ensure the premetastatic niche functions, like SDF-1 emission, MMP-9 production, and tumor
cells survival/proliferation sustaining. For the sake of simplicity, we did not model the dynamics and
the effect of VEGFR2+ endothelial progenitor cells (EPCs) on the system. Furthermore, in [10],
SDF-1 is suggested to mediate chemoattraction of cancer cells to the premetastatic niche, whereas in
[141], chemokines S100A8 and S100A9 are suggested to mediate both chemoattractions of CD11b+
myeloid cells and tumor cells to the premetastatic niche. To keep it simple, we considered in our
model that S100 chemokines attract VEGFR1+HPCs and CD11b+ myeloid cells and that SDF-1
attract tumor cells. Moreover we also assumed that the chemotaxis velocity of VEGFR1+HPCs and
CD1b+ myeloid cells for S100 chemokines is equal to the chemotaxis velocity of tumor cells for the
axis SDF-1/CXCR4. A last major hypothesis of our approach was that metastatic cells need support
of CD11b+ myeloid cells for survival and growth in the early stages and become autonomous once
the metastasis has activated the angiogenic switch.

First step: the primary tumor growth

We first modeled the growth of the primary tumor by a Gompertz growth law:
dVp(t)

dt
= g(Vp(t)),

Vp(0) = Vinj ,

gp(Vp) = (α− β ln(Vp))Vp.

(8.1)
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The parameters β and α of the Gompertz have been calibrated on B16 melanoma subcutaneous
growth data [172]. The result of the fit is presented in Fig 8.16 and the values of parameters α and
β are presented in the parameter table 8.1.
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Figure 8.16: Fitting of the Gompertz model on subcutaneous B16 melanoma growth data from [172].

The premetastatic niche

We then focus on the premetastatic phase, as indicated in Fig 8.17.
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Figure 8.17: The premetastatic phase

Cellular species
Let us introduce the different cellular and molecular species:

• Fb lung fibroblasts

• Hblood circulating hematopoietic progenitor cells

• Hlungs hematopoietic progenitor cells in the lungs

• Myblood circulating myeloid cells
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• Mylungs Myeloid cells in the lungs

• E extracellular matrix density

• N niche state

• Tblood circulating tumor cells in the blood

• B metastatic burden

The molecular species

• gblood concentration of growth factors (VEGF) emitted by the tumor cells within the blood

• glungs concentration of growth factors (VEGF) emitted by the tumor cells within the lungs

• f fibronectin expression within the lungs

• c1 Myeloid cell’s chemoattractants (S100 chemokines) flux

• M matrix degrading metalloproteinases

• c2 Tumor cell’s chemoattractants (SDF1) flux

Initiation of the premetastatic niche and mobilization of BMDCs into the blood
The growth factors are produced by the primary tumor into the blood and the lungs. We assume
that the production of growth factors by the B16 primary tumor is proportional to the tumor volume.
Indeed, it seems reasonable to think that these growth factors are emitted from the vasculature of
the primary. Formally, it would rather result in a power law for the emission of growth factors, that
is an emission of the form ΠgV

α
p with α a coefficient comprised between 0 and 1 traducing the fractal

dimension of the vasculature. We tried to determine a parameter α characterizing the B16 cell line
growth. To perform it, we calibrated a power law model (see section 5.1 of the chapter 5) of growth
on B16 melanoma subcutaneous growth data from [172]. The result of the fit is presented in Fig 8.18
and the estimated value of α was 0.98, resulting in a quasi-exponential growth. We therefore made
the assumption that the emission of growth factors is proportional to the volume of the tumor.
A part of the growth factors produced in the lungs originates also from degradation of the extracellular
matrix by MMP-9, releasing soluble factors such as c-kit ligand or VEGF that can stimulate homing
survival and proliferation of HPCs. These growth factors are consumed by cells when biding to cell
surface receptors. Growth factors activate mobilization and proliferation of HPCs into the blood and
the lungs. Moreover, HPCs differentiate naturally into myeloid cells. The dynamics of the growth
factors, HPCs, and myeloid cells concentration within the blood and the lungs are described as follows:

dgblood

dt
= ΠgVp − κgHbloodgblood − δgblood

g,

dglungs

dt
= ΠgVp +R× E ×M − κgHlungsglungs − κgFbg − δglungs

g,

dHblood

dt
= γHλ(g, gthreshold1)Hblood

(
1− Hblood

Hmax

)
− δH(Hblood −Hbasal),

dMyblood

dt
= dHHblood − δMy(Myblood −Mybasal).

The parameter Πg represents the production of growth factor concentration per tumor cubic mil-
limeter per unit of time. The parameter κg represents the consumption of growth factors by the
different cellular species and δg represents the growth factors clearance. The parameter R represents
a release of sequestrated growth factors from the extracellular matrix when the matrix is degraded
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Figure 8.18: Fitting of the power law model on subcutaneous B16 melanoma growth data from [172].

[10] by MMPs. The parameter γH is the growth rate of the hematopoietic progenitor cells, λ(g) is
a function ensuring that proliferation is activated when g is greater than a threshold gthreshold and
not activated when lower than this threshold. Indeed, mobilization of HPCs is stimulated by tumor
growth factors, but the precise mechanism is not clear in [10]. We make here the assumption that
HPCs mobilization (and the other premetastatic events like fibroblasts proliferation or chemokines
emission by the lung endothelium) is governed by a threshold-mediated activation. The function λ(g)
is therefore a regularization of the heaviside function:

λ(g, gthreshold) =
1 + tanh(S(g − gthreshold))

2
, (8.2)

where S is a coefficient. Parameter dH represents the differentiation rate of HPCs into myeloid cells.
Although it is known that progenitor cells, unlike stem cells, have a limited self-renewal ability [151],
we assumed here, for the sake of simplicity, an unlimited self-renewal capacity and modeled the self-
renewal and differentiation of hematopoietic progenitor cells into myeloid cells as Michor et al. did for
hematopoietic stem cells in [55]. The logistic term 1− Hblood

Hmax
leads to a saturation of the proliferation

when the cell density becomes close to the maximal cell density parameter Hmax. The value of this
parameter has been fixed to 106 cells · mm−3, according to the well-established conversion rule 1 mm3

' 106 cells [146]). The term −δH(Hblood−Hbasal) contains a death term −δHHblood and source term
δHHbasal ensuring homeostasis of the cell population when the density is lower than the basal value.
The parameters δH and δMy are respectively the death rates of the hematopoietic progenitor cells
and the myeloid cells.
In parallel, tumor growth factors also stimulate proliferation of lung fibroblasts and fibronectin expres-
sion by fibroblasts within the lungs. Fibroblasts dynamics and fibronectin production by fibroblasts
are modeled as follows:

dFb

dt
= γFbλ(g, gthreshold2)Fb− δFb(Fb− Fbbasal)− κBFbB,

df

dt
= Πfλ(g, gthreshold2)Fb

(
1− f

fmax

)
,

where γFb is the proliferation rate of the fibroblasts and δFb is the death rate of the fibroblasts. The
term −κBFbB traduces that the metastatic burden (B) destroys the lung tissue in growing with a
consumption rate κ. The parameter Πf is the production rate of fibronectin by the fibroblasts.
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Recruitment of bone derived cellular helpers by the premetastatic lung
For the sake of simplicity, transmigration of HPCs and myeloid cells from the blood to the premetastatic
niche, including extravasation through endothelium and migration toward chemotactic gradients
within the lung parenchyma, are modeled by chemotactic transport in 1D channels. The charac-
teristic length of these channels, denoted L, has been fixed to 1 mm considering the dimensions of
the lungs and the capillary beds. S100 chemokines concentration in a channel is denoted c1. The
vascular network is located in x = 0 and the premetastatic niche in x = L. The space-depending
densities of circulating HPCs and myeloid cells in the channels are respectively denoted by Hc(t, x)
and Myc(t, x).

L0

Lung

Vascular network

Hc and Myc (circulating HPCs and myeloid cell)

Figure 8.19: Chemoattraction of HPCs/myeloid cells from the capillary beds to the premetastatic
niche

Endothelial cells are known to play an important role in cells extravasation [47] but we focus here on
an other function of the endothelium. Inflammatory chemokines S100A8 and S100A9 are produced
by pulmonary endothelial cells during the premetastatic phase of B16 melanoma [141] and attract
HPCs/Myeloid cells toward chemotactic gradients. Once established into the premetastatic lung,
myeloid cells also produce S100A8 and S100A9 chemokines [141]. For the sake of simplicity, we do
not consider both S100A8 and S100A9 chemokines but chemokine S100A8 only because it is more
potent chemoattractant than S100A9 in [141]. The concentration of S100A8 chemokine between the
premetastatic niche and the endothelium is denoted by c1 and its dynamics is governed by the 1D
diffusion equation:

∂c1(t, x)

∂t
−D1

∂2c1(t, x)

∂x2
= 0 ∀t, x ∈ [0, T ]× [0, L] ,

∂c1(t, L)

∂x
= Πc1λ(g(t), gthreshold3)(Endo+Mylungs(t)),

c1(t, 0) = 0,

c1(0, x) = 0,

where D1 represents the diffusivity of S100 chemokines. The parameter Πc1 is the S100A8 gradient
produced per activated endothelial cell. The parameter Endo represents the density of endothelial
cells producing S100A8 within the premetastatic niche. The function λ is the same as presented
in (8.2) because cells of the lung endothelium produce S100A8 chemokine in response to the tumor
factors. The boundary condition c1(t, 0) = 0 means that we assume the concentration of S100A8
chemokine within the blood equal to 0. We make here the assumption that the diffusion of the
chemokine is much faster than its production by the cells. This assumption results in a stationary
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state of the diffusion equation:

D1
∂2c1(t, x)

∂x2
= 0 ∀t, x ∈ [0, T ]× [0, L]

∂c1(t, L)

∂x
= Πc1λ(g(t), gthreshold3)(Endo+Mylungs(t))

c1(t, 0) = 0

c1(0, x) = 0

The solution writes c1(t, x) = a(t)x + b(t). The boundary condition in x = L leads to a(t) =
Π1λ(g(t))(Endo+Mylungs(t)). The boundary condition in x = 0 leads to b = 0.
Chemokine gradients attract HPCs and CD11b+ myeloid cells that join the niche by chemotaxis.
Chemotaxis is an active motion of the cells, unrelated to the blood flow transport. We make the
asumption that HPCs and CD11b+ myeloid cells have the same chemotaxis velocity χ. Denoting by
Hc(t, x) and Myc(t, x) the respective densities of circulating HPCs and myeloid cells in a 1D channel
from the blood stream to the premetastatic niche, this chemotaxis transport on Hc(t, x) is written as
follows:

∂Hc(t, x)

∂t
+ χ

∂

∂x
(Hc(t, x)

∂

∂x
c1(t, x)) = −δHHc(t, x) ∀t, x ∈ [0, tmax]× [0, L]

Hc(t, 0) = Hblood(t)
(8.3)

As we can see, as the velocity χ ∂
∂xc1 is always positive, one needs only a boundary condition in x = 0,

which is Hc(t, 0) = Hblood(t), so that the cell density at the entrance of the channel is equal to the
cell density in the blood. During the transmigration, we assume that cells have a life span equal to
their life span in the blood and the lung. Let us recall that δH and δMy are the death rates of the
HPCs and myeloid cells. The equation on the circulating myeloid cells density is similar:

∂Myc(t, x)

∂t
+ χ

∂

∂x
(Myc(t, x)

∂

∂x
c1(t, x)) = −δMyMyc(t, x) ∀t, x ∈ [0, tmax]× [0, L]

Myc(t, 0) = Myblood(t)
(8.4)

The gradient of c1 is known and does not depend on the space so we can exactly solve (8.3) and (8.4)
thanks to the characteristics. The characteristic curve X(t, τ,Xτ ) associated to velocity field χ ∂

∂xc1,
is the solution of:

∂X(t, τ,Xτ )

∂t
= χ∇c1(t)

X(τ, τ,Xτ ) = Xτ

(8.5)

Let us define the following change of variable

H̃c(t, τ,Xτ ) = Hc(t,X(t, τ,Xτ ))

M̃yc(t, τ,Xτ ) = Myc(t,X(t, τ,Xτ ))

It allows to write that ∂H̃c(t,τ,Xτ )
∂t = −δHH̃c(t, τ,Xτ ) and ∂M̃yc(t,τ,Xτ )

∂t = −δMyM̃yc(t, τ,Xτ ).
Integrating the characteristic equation (8.5) between τ and t leads to:

X(t, τ,Xτ )−X(τ, τ,Xτ ) =

∫ t

τ
χ
∂

∂x
c1(t)

Now, we are interested by the values in x = L because we want to compute the number of cells
entering into the premetastatic niche. Therefore, for all t, we can deduce the value Hc(t, L) in
writting L = X(t, τ,Xτ ) and X(τ, τ,Xτ ) = 0. We have then to determine the time τ such that:∫ t

τ
χ
∂

∂x
c1(t) = L,
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which means that the cells have traveled a distance L during a time t− τ . For all time t, we finally
have:

Hc(t, L) = H̃c(t, τ, 0) = exp(−δH(t− τ))H̃c(τ, τ, 0) = exp(−δH(t− τ))Hblood(τ)

The decreasing cell density along the characteristic is due to the cell death term −δHHc. The number
of new cells entering into the lungs per unit of time at the time t is given by:

Nbcells(t) = Hc(t, L)χ
∂

∂x
c1(t)Sextravasation,

where Nbcells(t) is the number of new entering cells per unit of time and Sextravasation is the total
vascular surface crossed by the cells. We define this surface as follows:

Sextravasation = ScapillariesPerm,

Therefore, increase of HPCs density in the lungs by arriving of new cells is obtained by Nbcells(t)
divided by the lungs total volume (Vlungs = 700 mm3). Scapillaries is the total surface of the capillary
wall and Perm a permeability parameter comprised between 0 and 1. More precisely, the surface
that circulating cells can cross is a fraction of the capillary wall surface. The dynamics of HPCs and
myeloid cells in the lungs is then given by the following equations:

dHlungs(t)

dt
=
Hc(t, L)χ ∂

∂xc1(t)Sextravasation

Vlungs
+ γHλ(g, gthreshold1)Hlungs

(
1− Hlungs

Hmax

)
− δH(Hlungs

−Hbasal)− κBB(t)Hlungs

dMylungs(t)

dt
=
Myc(t, L)χ ∂

∂xc1(t)Sextravasation

Vlungs
+ dHHblood − δMy(Mylungs −Mybasal)− κBB(t)Mylungs

The state of the niche N(t) is then defined as follows:

N(t) = νMylungs

We further explain in more detail what does represent this sate of the niche. As in the blood, the
HPCs proliferate in the lungs with a growth rate γH and die with a death rate δH , and the myeloid
cells are formed by differentiation of the HPCs and die with a death rate δMy. As the fibroblasts,
HPCs and myeloid cells are consumed by the metastatic burden with a consumption rate κB.
Myeloid progenitors expressing VLA4, a fibronectin ligand, produce MMP-9 that degrade the extracel-
lular matrix. Sequestrated factors like VEGF are then released from the matrix and basal membranes
are degraded by MMPs, enhancing invasion of circulating HPC/myeloid cells and circulating tumor
cells. The dynamics of MMP-9 (the expression is called M in the equations) is governed by emission
from myeloid cells and by an elimination of MMP-9 with a clearance noted δM . Indeed, experimental
evidences of MMPs natural decay have been shown [173, 174]. We did not find measured values of
this parameter in the litterature, therefore we calibrated it on the data. In our model, dynamics of
MMP-9 and ECM are governed by the following equations:

dM

dt
= ΠM (f − fmin)Mylungs − δMM,

dE

dt
= −κEEM.

ΠM is the production of MMP-9 per cell per day and δM is the clearance of MMP-9 in the lungs. The
term κEEM models the consumption of ECM by MMP-9. The parameter κE is the consumption
of ECM per unit of MMP9 expression per unit of ECM expression per day. f is the fibronectin
expression in the lungs, and fmin is the minimal or basal expression of fibronectin in the lungs. We
then define the permability Perm as follows:

Perm =
Emax − E
Emax

,

where Emax is a parameter of ECM maximal density. Consistently with the biological theory and our
modeling assumptions, the more the extracellular matrix and the basal membranes of the lungs are
degraded, the more cells (cellular helpers or tumor cells) can invade the lungs.
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Attraction of tumor cells to the premetastatic niche

We now focus on the formation of a metastatic niche, as illustrated in Fig 8.20. Once the premetastatic
niche has been formed, factors emitted from this niche like SDF-1 (CXCL12) allow homing and
attraction of tumor cells to the premetastatic niche. The tumor cells transmigrate from the blood to
the premetastatic niche that ensures their engraftment to the lung tissue to finally form a metastatic
niche. The space-depending density of circulating tumor cells in the 1D channels between capillary
beds and premetastatic niche is noted Tc(t, x).
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Figure 8.20: The metastatic niche formation

We consider a continuous emission of circulating tumor cells (CTCs) in the blood from the primary.
Similarly to the emission of growth factors, we assume the emission rate of CTCs proportional to
the volume of the tumor. This size-dependence assumption might be debatable because it is known
that tumor cells invasion, extravasation and colonization abilities are in part governed by acquisition
of an aggressive phenotype by tumor cells thanks to particular mutations and interactions with the
microenvironment [5, 30]. However, in our case, we consider the B16 cell line, which consists in cells
that have been designed to be aggressive and metastatic, so we assume that the cells have already
the potential to metastasize. We therefore write the dynamics of CTCs in the blood as follows:

dTblood

dt
= µVp − δTTblood,

where Tblood is the tumor cell density in the blood, µ is the number of tumor cells emitted in the blood
per tumor volume unit per day, and δT is the death rate of tumor cells. It has been shown in [10, 141]
that tumor cells are attracted by factors emitted in the premetastatic niche. SDF-1 chemokine is
implied in homing and attraction of B16 CXCR4+ tumor cells in [10], whereas S100A8 and S100A9
are suggested to play a similar role in [141]. For the sake of simplicity, we consider here only one
chemoattractant specie for the transmigration and attraction of tumor cells.
The diffusion of SDF-1 from the premetastatic niche to the blood and the chemoattraction of CXCR4+
tumor cells are treated similarly to the diffusion of S100A8 and chemoattraction of HPCs/myeloid
cells, as shown in Fig 8.21.
In [10], high expression of SDF-1 is observed in the premetastatic lungs before the arrival of CTCs,
but the mechanisms by which myeloid cells produce SDF-1 is not clear. We therefore assume that once
myeloid cells adhere to the premetastatic niche, they continuously produce SDF-1, keeping implicit
interactions between myeloid cells and lung microenvironment mediating SDF-1 production. Under
the same modeling asumptions as for S100A8 chemokine, SDF-1 diffusion is modeled by the following
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Figure 8.21: Chemoattraction of circulating tumor cells from the capillary beds to the premetastatic
niche

stationary 1D-diffusion equation:

D2
∂2c2(t, x)

∂x2
= 0 ∀t, x ∈ [0, tmax]× [0, L]

∂c2(t, L)

∂x
= Πc2Mylungs(t)

c2(t, 0) = 0

c2(0, x) = 0.

The parameter Πc2 represents the chemokine flux generated per myeloid cell in the lungs. The
chemottraction of circulating tumor cells is written:

∂Tc(t, x)

∂t
+ χ

∂

∂x
(Tc(t, x)

∂

∂x
c2) = −δTTc(t, x) ∀t, x ∈ [0, tmax]× [0, L]

Tc(t, 0) = Tblood(t)

From Tc(t, L), we can deduce the number of tumor cells entering in the metastatic niche per unit of
time β(t):

β(t) = Tc(t, L)χ
∂

∂x
c2(t)Sextravasation

Metastatic growth: coupling of the premetastatic niche model with a model of metastatic
growth

The output of the previous model is the number of metastatic entering in the metastatic niche per
unit of time. Now we have to model the growth of the metastases formed by these metastatic cells
(see Fig 8.22.

Metastatic dissemination and colonization modeling
The model we used to describe the growth of metastatic lesions is the same as in the chapter 6. This
model, introduced by Iwata et al. [17] and validated on in vivo mouse data for the metastatic burden
dynamics [25, 26], describes the size distribution of the metastatic lesions at the distant site by means
of a size-dependent density ρ(t, v) of metastatic colonies of size v at time t, i.e ρ(v, t)dv is the number
of metastatic colonies with a size comprised between v and v+ dv. Secondary emission of metastases
are still neglected. This time, metastatic colonies grow into the lungs according to a growth law that
depends both on the volume of the considered metastasis and of the state of the niche N(t).
Each metastasis is assumed to start from one metastatic cell, as in [17, 25, 26]. In our study we
also assumed that metastatic cell that manage to join the premetastatic/metastatic niche form a new
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Figure 8.22: Metastatic colonization and growth

metastasis. Overall, the model writes as a transport equation on ρ, endowed with suitable boundary
and initial conditions [17]:

∂tρ(t, v) + ∂v(ρ(t, v)g(v,N(t))) = 0 t ∈]0,+∞[, v ∈]V0,+∞[
g(V0, N(t))ρ(t, V0) = β(t) t ∈]0,+∞[
ρ(0, v) = 0 v ∈]V0,+∞[

(8.6)

where β(t) is defined as follows:

β(t) = Tc(t, L)χ
∂

∂x
c2(t)Sextravasation

From the solution of this problem, one of the macroscopic quantities that we fitted on the data of
Kaplan et al. [10] for our purpose was the total metastatic burden, defined by:

B(t) =

∫ +∞

V0

vρ(t, v)dv (8.7)

We now have to define the growth g(v,N(t)) of the metastases.

The early and late stages of metastatic growth
In [10], Kaplan et al. showed that HPCs/myeloid cells promote attraction and growth of LLC/B16
tumor cells in vitro. Whereas the mechanism of attraction seems relatively well understood (chemoat-
traction by SDF-1/CXCR4 axis), the role of HPCs/myeloid cells in the survival and proliferation of
tumor cells is not so clear. It could be mediated by growth factors emission from HPCs/myeloid
cells but up to our knowledge, no evidences of such a phenomenon has been made. It has just been
shown that premetastatic clusters of HPCs/myeloid cells are required for survival of tumor cells and
establishment of metastatic foci. However, it has also been shown that HPCs/myeloid cells only
are not enough to promote macrometastatic lesions. VEGFR2+ endothelial progenitor cells (EPCs)
are required to trigger the angiogenic switch leading to growth until formation of visible metastases
[167, 10]. We did not model the dynamics of EPCs but we included two stages of growth for the
metastases, one stage for small metastatic volumes (until 3 mm3), where presence of HPCs/myeloid
cells is required for survival and proliferation of metastatic cells and a second stage, where the tumor
is autonomous in the sense that it mediates by itself its microenvironment, stimulating its carrying
capacity by angiogenesis. We chose a volume of 3 mm3 for the angiogenic switch volume, according
to the studies of Folkman [35]. For the early stage, we modeled the proliferation of metastatic cells
with a simple exponential growth but with a growth rate equal to state of the niche:

dv(t)

dt
= N(t)v(t),



156 CHAPTER 8. METASTASIS-STROMA INTERACTIONS

where N(t) = νMylungs(t). The growth rate is hence proportional to the number of cellular helpers.
For the autonomous macroscopic growth, we chose the Gompertz growth law, which has been proven
able to describe in vivo tumor growth in numerous animal experimental systems. So we have:{

g(v,N(t)) = N(t)v if v ≤ 3
g(v,N(t)) = (N(T )− βm log

(
v
3

)
)v else,

(8.8)

where T is the time of the angiogenic switch, that is the moment when the metastasis reaches a size of
3 mm3. βm represents the parameter of growth rate decreasing during the autonomous (angiogenic)
growth. This growth law traduces the fact that a micrometastasis needs cellular helpers of the
metastatic niche to sustain its growth and become able to stimulate its carrying capacity by its own
during the macrometastatic phase, and that the starting growth rate of the vascular growth, that is
N(T ) depends on the resources provided by the premetastatic niche.
Whereas the parameter ν was calibrated on data of the metastatic burden (see Fig 8.23), the param-
eter βm of the Gompertz was fixed at the same value as the calibrated one for the primary tumor,
characterizing that metastases and primary tumor are tumors from the same cell line. Under our
modeling assumptions, the initial growth rate of the Gompertz law represents the growth poten-
tial provided by the microenvironment (nutrients availability, vasculature, cellular helpers, immune
system, etc), whereas the parameter βm of growth rate decrease characterizes the tumor cell line.

8.2.3 Results

Some parameters of the model have been fixed to values retrieved from the literature. The other ones
have been calibrated on the data of Kaplan et al. [10]. These data consist of:

• VEGF kinetics in the blood

• Fibronectin expression in the lungs

• HPCs/myeloid cells dynamics in the lungs

• Metastatic burden dynamics in the lungs

Because automating the data assimilation has not been yet performed, the fit was obtained in cali-
brating the parameters manually, which means that a better fit would be possible. All the parameter
values are presented in the table 8.1. The results of the fit are presented in Fig 8.23.
As we can observe, the simulated dynamics of the four observable variables are in accordance with
the observations. Except for a few points, the global dynamics are consistent between simulations
and data. More importantly, the dynamics of HPCs/myeloid cells and the dynamics of the metastatic
burden are well described by the model. First HPCs/myeloid cells are detected at day 12 in the lungs,
increasing until days 24-46 to finally decrease until day 30. For days 18, 26 and 30, the simulated
curve is not in the error bar. However, the calibration of the parameters being manual, a better fit
would be possible. For the metastatic burden, we can see that the simulated curve is in the error
bars, with first tumor cells observed in the lungs at day 18 [10], and the first significant amount of
tumor cells detected at day 23. The delay of arrival of these tumor cells is due to the prerequired
premetastatic niche. Concerning the fibronectin, we can see that the curve crosses the error bars,
with a peak at day 5. In the data, we can observe that after the peak, the fibronectin expression
drops, which is not the case on the simulations. Indeed, in the model, no mechanisms of consumption
or elimination of the fibronectin were incorporated, only a saturation of the production. Finally, the
VEGF dynamics is globally respected by the model, but due to the consumption by cellular species
and to the clearance in the blood, VEGF concentration strongly decreases at the very beginning,
which is not the case in the data. A source term ensuring maintaining of VEGF concentration at the
homeostatic level should perhaps be incorporated in the model.
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Figure 8.23: Fitting results of the model on the data on VEGF concentration in the blood (top
left), fibronectin expression in the lungs (top right), BMDCs dynamics in the lungs (bottom left),
metastatic burden dynamics in the lungs (bottom right).

8.2.4 The next step: testing clinical scenarii

Now that the model is calibrated, we can use it to assess quantitative predictions on specific situations
that have not been tested or can not be tested experimentally. Many clinically relevant questions can
be addressed. We propose here some of these that will be tested thanks to the model.

For a given metastatic cancer, are the premetastatic/metastatic niches already formed when the tumor
is detected on a patient?
When a tumor is detected in a patient, a critical question is to know if the tumor has also disseminated
cells in distant organs and if eventual metastases will blow up after tumor resection or treatment. If
metastasis development is dependent on the formation of a permissive niche, as suggested by the work
of Kaplan, Lyden, Hiratsuka, Rafii et al. [10, 141, 168], it could be determinant, if no metastasis is
visible yet, to know if the soil was permissive to metastatic seeding or not at the time of resection. If it
is the case, it would mean that premetastatic niche formation is an early event in cancer development
and although representing a relevant therapeutic clue, remains hard to target because the diagnosed
patient would already have developed a premetastatic niche and probably a metastatic niche also. In
this case, targeting directly the cancer cells, for example with a neo-adjuvant chemotherapy, could
be more relevant than targeting the soil. Quite the opposite, if the niche is not ready yet when
the patient is diagnosed, targeting the soil could be relevant to prevent metastatic development.
Simulations could be performed to test if the premetastatic niche is an early event or not. From the
calibrated model, we could run a simulation with a tumor starting from one or few cells so that we
simulate a carcinogenesis on a patient. Then we could observe if at detectable tumor sizes, the soil is
yet ready or not to support metastatic development.
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Param Meaning Unit Value Retrieved from
Πg Production of VEGF by the primary tumor pg · mL−1 · mm−3 · day−1 2.6 calibrated
κg Consumption of VEGF by HPCs and fibroblasts cell−1 · mm3 · day−1 0.016 calibrated

δgblood Clearance of VEGF in the blood day−1 3.35 [175]
δglungs Clearance of VEGF in the lungs day−1 3.35·e-3 calibrated

R Release of VEGF by the degraded matrix pg · mL−1 · NE−1 · day−1 100 calibrated
γH Proliferation rate of HPCs day−1 0.35 [55]

gthreshold1 Threshold for HPCs activation pg · ml−1 110 calibrated
S Coefficient of the hyperbolic tangent N.A 100 calibrated
δH Death rate of HPCs day−1 0.02 [55]
dH Differentiation rate of HPCs into myeloid cells cell · cell−1 · day−1 5 [55]
δMy Death rate of the myeloid cells day−1 0.05 [55]
γFb Proliferation rate of the fibroblasts day−1 0.92 [176]

gthreshold2 Threshold for fibroblasts activation pg · ml−1 65 calibrated
δFb Death rate of the fibroblasts day−1 0.05 [177]
Πf Production of fibronectin by fibroblasts NE · cell−1 mm3 · day−1 60 calibrated
Endo endothelial cell density cell mm−3 1·e6 [178, 179, 180]
Πc1 S100A9 flux generated by lung cells pg · mL−1 · mm−1 · cell−1 · mm3 3.55·e-6 calibrated

gthreshold3 Threshold for endothelial and myeloid cells activation pg · mL−1 56 calibrated
L characteristic length of cell transmigration mm 1 fixed
χ Chemotaxis velocity mm · day−1 · pg · mL−1 · mm−1 0.0012 [181]

Scapillaries Surface of the lung capillary walls mm2 4.9·e5 [179, 180]
Vlungs Lungs volume mm3 700 measured
ΠM Production of MMP-9 by myeloid cells NE · NE−1 · cell−1 1·e-4 calibrated
δM Clearance of MMP-9 day−1 14 calibrated
κE Consumption of ECM by MMPs NE−1 · day−1 1 calibrated
Emax Maximal ECM density NA 1·e4 calibrated
µ Emission of CTCs by the primary tumor cell · mm−3 · day−1 2·e3 calibrated

Πc2 SDF-1 flux generated by myeloid cells pg · mL−1 · mm−1 · cell−1 · mm3 1.8·e-5 calibrated
δT Death rate of B16 cells day−1 0.055 [165]
ν Proliferation rate provided by myeloid cells day−1 · cell−1 · mm3 1.5·e-6 calibrated
β First parameter of the Gompertz day−1 0.06 calibrated on [172]
α Second parameter of the Gompertz day−1 0.80·e5 calibrated on [172]
κB consumption of stromal cells by the Metastases day−1 · mm−3 0.0018 calibrated

Table 8.1: Parameter values used for the simulation. NE = Normalized expression

Depending on the patient stage (premetastatic, metastatic), is it more efficient to target the seed or
the soil to prevent metastatic development and maximize the patient survival?
Such an issue could be addressed thanks to the model in simulating proliferation inhibition of either
tumor cells or HPCs or fibroblast for example, at different stages of the disease.

Which molecular targets are suited to prevent metastatic development?
It should be interesting to simulate different pathways short-circuits among VEGF, MMPs, S100A8,
SDF-1, VLA-4 at different times/stages to suggest revelant pathways to target.

All these issues will be addressed in future work.

Model improvements: chemokines diffusion

In the previous model, we modeled the dynamic over space and time of the concentration of chemokines
S100A8 and SDF-1 by a 1-D diffusion equation with an influx which corresponds with the secretion
by the cells. This influx is modeled by Neuman boundary conditions. We made the assumption
that the diffusion of S100A8 and SDF-1 chemokines is much faster than their production by the
cells and modeled this diffusion by stationary diffusion equations. However, It could be tested if this
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assumption is reasonable. Indeed, let us recall the 1D diffusion equation that was used in the model.

∂c(t, x)

∂t
−D∂

2c(t, x)

∂x2
= 0 ∀t, x ∈ ]0, T ]× ]0, L] ,

∂c1(t, L)

∂x
= f(t),

c(t, 0) = 0,

c(0, x) = 0,

where c is the concentration of chemokines, D is the diffusion constant, L the size of the domain. The
exact solution of this system can be written:

C(t, x) = −D
√

2

π

∫ t

0

f(s)√
2D(t− s)

exp

(
− x2

4D(t− s)

)
ds

The proof of this result is given in Materials and methods in Appendices.
For the time scale we are interested in and a relevant diffusion constant (see [182] for measured
diffusion constant of SDF-1), this solution has to be compared to the stationary one. This will be
done in a future work. If the stationary assumption is not reasonable, the non stationary solution
should be included in the global model.

8.3 Conclusions and perspectives

In this part, we studied the biological literature of the premetastatic niche and from our understanding,
we built a mathematical model describing the dynamics of the formation of this niche. We then
coupled this model with a model of metastatic growth and after parameter calibration, assessed good
agreement of the simulations with experimental data from [10]. The next step will be to use these
coupled models to assess quantitative predictions on the impact of soil targeting on the metastatic
outcome. Several quantitative questions have to be addressed with the model about the natural
history of the premetastatic niche on a patient or the potentially relevant cellular and molecular
targets.
Other modeling clues more generally concern the metastatic microenvironment. Indeed, in the litera-
ture, the role of the immune system remains unclear and seems even ambivalent. According to Dvorak
et al., cancer is a wound that never heals [156] and immune cells can sustain an inflammatory state
that promote cancer progression [29, 44]. Moreover, works on the premetastatic niche showed that
bone marrow derived cells like hematopoietic progenitor and immune cells of the myeloid lineage like
granulocytes promote metastasis in preparing the soil in the distant organ [10, 141]. However, in other
studies, immune cells like granulocytes (neutrophils) have been shown to inhibit metastatic develop-
ment [171]. The biological mechanisms by which immune cells either promote or inhibit metastatic
seeding and growth are not yet elucidated. Why in some cases (cell line, host), a premetastatic niche
is formed, promoting metastatic development, and in other ones immune reactions impair metastatic
development? The premetastatic niche hypothesis suggests that the role of HPCs/myeloid cells is
to attract and promote growth of tumor cells in the premetastatic niche. However, it has also been
hypothesized that CD11b+ myeloid cells or myeloid derived suppressor cells could inhibit immune
activity of CD8+ cytotoxic T cells and natural killers in forming an immune sanctuary [142]. In this
case the role of the premetastatic niche would be more immunosuppressive rather than metastatic-
promoting.
In our project, experiments have been performed to highlight the role of granulocytes in metastatic
development of murine renal cell carcinoma (RENCA). The experiments consisted in a control exper-
iment where RENCA cells were orthotopically injected in the renal subcapsule and another one where
a depletion of granulocytes was performed on mice before the injection of RENCA cells. It appears
that neither primary tumor nor metastatic burden changed significantly between control and treated
mice, as presented in Fig 8.24.
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Figure 8.25: Experimental results of an animal model of RENCA metastatic development with de-
pletion of granulocytes. Left: kidney tumor weight at the final day (Mean±std). Right: tumor cells
GFP expression in the lungs at the final day (Mean±std). Control: N = 19. Treated: N = 20

However, in the depletion experiment, a positive correlation between tumor size and metastatic burden
was observed, whereas no correlation was observed in the presence of granulocytes, as shown in Fig
8.26. These results could suggest an effect of granulocytes on the metastatic burden. Indeed, in
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Figure 8.26: Experimental results of an animal model of RENCA metastatic development with de-
pletion of granulocytes; Correlation between primary tumor and metastatic burden. Left: control.
Right: granulocytes depletion.

absence of granulocytes, the positive correlation between tumor and metastatic burden seemed to
indicate that the larger the tumor is, the more metastases are disseminated. In contrast, in the
presence of granulocytes, large tumors could induce high immune reactions, resulting in metastasis
inhibition. The two pro-metastatic effect of the tumor-mediated dissemination and anti-metastatic
effect of granulocytes could balance and result in an absence of correlation. It is of course a hypothesis
and further experiments have to be made to confirm this tendency.
In this context, it is difficult to define a general framework of the role of immune cells during
premetastatic and metastatic development. In their paper showing the antimetastatic role of neu-
trophils, Granot et al. provide very rich data on the immune primary and metastatic dynamics [171].
Indeed, data on the metastatic size distribution are presented in this work, opening quantitative mod-
eling perspectives. Using Iwata’s model, a possible quantitative question addressable by the model
could to assess whether granulocytes inhibit metastatic seeding or metastatic growth or both. As we
previously saw, a mechanistic model for this kind of phenomenon is very hard to calibrate. That is
why we should use a phenomenological way to model the dynamics and the effects of the immune
system. An other modeling clue could be to build a model replacing immune system in a general
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framework where both antimetastatic and prometastatic roles of the immune system would be pos-
sible, mediated by one or several parameters. Data from different experiments and papers could be
used to assess quantitative insights. The contribution of mathematical modeling could be useful, as
it allows to infer insights from the dynamics that statistical analysis alone can not.
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Chapter 9

Conclusions et perspectives

Le but de cette thèse était d’étudier divers aspects quantitatifs du processus métastatique à l’aide de
modèles mathématiques. Pour cela, nous avons fait appel à différents types de modèles répondant
à différentes problématiques : modèles EDP de populations structurées pour décrire la distribution
en taille métastatique, modèles EDP spatiaux pour décrire les interactions spatiales entre tumeurs,
systèmes d’EDO pour décrire les dynamiques cellulaires du microenvironment métastatique. Notre
démarche a été de construire des modèles permettant d’inférer de l’information biologique qui n’était
pas triviale dans les données.

9.1 Analyse mathématique et numérique d’un modèle spatial de
croissance tumorale

9.1.1 Conclusions

Un modèle spatial de croissance tumorale a été introduit et étudié au cours de cette thèse. Il décrit
l’expansion spatiale d’une tumeur à l’aide d’équations de conservations, ainsi que l’effet inhibiteur
de la pression sur la prolifération des cellules. La dépendance non linéaire de la prolifération en la
pression induit une équation elliptique non linéaire sur la pression. Une partie des travaux de cette
thèse a été l’étude mathématique et numérique de cette équation. Nous avons montré l’existence
d’une unique solution pour cette équation, ainsi qu’une certaine régularité de cette solution pour un
domaine Lipschitz. Un algorithme de résolution a été proposé, étudié théoriquement et implémenté.
Une convergence géométrique H3/2 de cet algorithme a notamment été prouvée.
Par ailleurs, des tests numériques pour le système complet, à savoir l’équation elliptique précédente
couplée avec le système d’équations de conservation sur la densité tumorale, ont été effectués. Au cours
de cette étude numérique, on s’est d’abord placé dans un cas simple (taux de proliferation constant
et géométrie sphérique) permettant d’exhiber une solution analytique et de tester la précision de
différents schémas. Ainsi, le ratio précision sur temps de calcul a été comparé pour différents solveurs
de transport. Après avoir choisi le solveur le plus performant, nous avons effectué des tests de
convergence dans le cas où le taux de prolifération dépend de la pression via l’équation elliptique non
linéaire citée plus haut.
Après s’être assuré de la convergence de nos schémas, nous avons présenté une méthode pour borner
les paramètres du modèle basée sur une analyse du modèle et des considérations biologiques sur les
paramètres. Une fois l’espace des paramètres borné, nous avons procédé a une assimilation de données
de croissance métastatique pulmonaire chez la souris issues de l’imagerie. Le modèle semble capable
de décrire les dynamiques volumiques des différentes métastases que nous avions segmentées. Une
courte étude de l’évolution de la forme des métastases sous le modèle a montré que certaines formes
étaient correctement prédites par le modèle mais que dans certains cas, les anisotropies de croissance
observées n’étaient pas prises en compte par le modèle, menant à de grosses différences entre les
formes prédites et observées. De plus, une comparaison de l’évolution de la masse entre une forme
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circulaire et la forme segmentée a révélé que la forme semble avoir peu d’influence sur la dynamique
de la masse, en tout cas sur les quelques cas étudiés.

9.1.2 Perspectives

Plusieurs perspectives peuvent être évoquées sur cette partie. Pour ce qui est de l’analyse mathématique
du modèle, l’existence de solutions au problème couplé entre l’équation elliptique linéaire sur la pres-
sion et les équations de conservations pourrait être étudiée dans des travaux futurs en s’inspirant
des travaux de Michel et al. [140]. Pour ce qui est du modèle, les capacités descriptives du modèle
doivent être testées sur davantage de données. Une étude des capacités prédictives du modèles pour-
rait également être menée. Enfin l’effet de la forme de la lésion sur la dynamique de la masse doit
être appronfondie sur davantage de cas.

9.2 Modélisation du processus métastatique et biologie quantitative

9.2.1 Conclusions

Lors de notre collaboration avec l’équipe de biologistes, nous nous sommes intéressés au développement
métastatique du cancer du rein chez la souris. Notre approche de modélisation était de tester des
théories quantitatives contre les données via la modélisation mathématique.
Nous avons confronté la théorie classique du processus métastatique à des données longitudinales en
temps de la masse métastatique mais également à des données d’imagerie. Si cette théorie standard,
acceptée dans de nombreuses références [20, 21, 22, 23, 24, 5], était capable de décrire la dynamique de
la masse métastatique globale, elle s’avérait incapable de décrire le nombre et la taille des métastases,
les métastases prédites étant trop petites et trop nombreuses.
Le motif métastatique observé, à savoir des métastases moins nombreuses mais plus massives, nous
a incité à proposer plusieurs hypothèses biologiques pour expliquer les données. La première suggère
que des métastases voisines pourraient, par expansion spatiale due à la prolifération, se rejoindre
et fusionner, donnant naissance à une seule métastase plus massive. Un tel phénomène va dans le
sens des distributions métastatiques observées, comme l’a illustré le modèle que nous avons proposé,
basé sur la théorie standard mais incluant l’aspect spatial puisque les métastases croissent dans un
organe limité en taille. Ce modèle permet notamment la fusion de métastases par mouvement passif,
sans pour autant que ces métastases interagissent et perturbent leurs croissances mutuelles. Malgré
une petite amélioration et la confirmation expérimentale que le phénomène de fusions de métastases
survient au cours du développement métastatique (voir figure 6.5), l’hypothèse de fusion ne semble
pas en mesure de décrire les distributions en tailles métastatiques observées.
Une deuxième hypothèse a été proposée pour expliquer le petit nombre et les tailles massives des
métastases observées. Lorsqu’elles parviennent dans le parenchyme pulmonaire, les cellules tumorales
pourraient être attirées, potentiellement par des facteurs chimioattractants vers des zones spécifiques
et s’aggréger, formant des foyers dont la croissance serait gouvernée à la fois par la prolifération
et par l’arrivée de nouvelles cellules. Afin de vérifier la validitité de cette hypothèse, un protocole
expérimental a été proposé, où des injections de cellules tumorales marquées de différentes couleurs
sont effectuées. Les premiers résultats de ces expériences montrent que des foyers métastatiques pour-
raient effectivement attirer ou recruter d’autres cellules tumorales. Ces résultats, qui doivent être
renforcés par des expériences futures, font echo à d’autres travaux déjà menés sur le développement
métastatique. Le self-seeding, décrit dans [11], est un phénomène au cours duquel les cellules métastatiques
se détachent des métastases et retournent sur le site primaire pour s’y développer. Ce phénomène et
celui que nous décrivons semblent analogues puisqu’il s’agit de recrutement ou d’attraction de cellules
vers une tumeur déjà existante. Les mécanismes biologiques gouvernant le self-seeding ou l’attraction
de cellules métastatique que suggèrent nos premières expériences restent très largement à définir mais
il serait intéressant de voir si les mêmes mécanismes englobent les deux phénomènes. Par ailleurs,
une étude menée par Aceto et al. a montré que les métastases ne se formaient pas toujours à partir
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de cellules isolées mais parfois à partir de groupes de cellules tumorales [19]. Ils ont notamment
montré que ces “clusters” de cellules tumorales ont un potentiel métastatique bien plus important
que des cellules isolées. Le phénomène que nous proposons est un peu différent puisque les cellules se
regrouperaient dans le parenchyme pulmonaire, alors que dans le phénomène décrit par Aceto et al.,
les cellules circulent déjà regroupées dans le sang. Cependant, les implications biologiques en termes
de développement métastatique pourraient être similaires.
Ce travail illustre donc tout d’abord qu’une étude de biologie théorique peut être menée en confrontant
des théories quantitatives à des données, en rejetant certaines théories et en en proposant d’autres qui
soient testables expérimentalement ou quantitativement à l’aide de modèles mathématiques. De plus,
les données quantitatives étant de plus en plus riches, une analyse de la dynamique des phénomènes
biologiques devient possible à l’aide des modèles mathématiques, permettant ainsi d’inférer de nou-
velles informations sur ces phénomènes. L’originalité de cette étude vient notamment de l’utilisation
croisée de données longitudinales GFP, fournissant des informations sur toute la masse métastatique
y compris la masse non visible, de données IRM, et d’un modèle mathématique décrivant la distri-
bution en taille métastatique. Les résultats et les perspectives futures nous montrent que l’analyse
de la dynamique métastatique peut permettre de mieux comprendre la biologie du développement
métastatique. Les premiers résultats de cette étude, qui nécessitent l’appui de nouvelles expériences,
offrent plusieurs perspectives biologiques et de modélisation.

9.2.2 Perspectives biologiques

Afin de confirmer le phénomène d’attraction de cellules tumorales par les foyers métastatiques, de
nouvelles expériences doivent être menées. Tout d’abord, les deux protocoles proposés et déjà testés
doivent être expérimentés sur plus de souris. Nous rappelons que ces deux protocoles consistent d’une
part à l’injection orthotopique de cellules RENCA marquées en rouge et en vert dans des proportions
égales, et d’autre part l’injection de cellules RENCA marquées en rouge suivie de l’injection en
intraveineuse (veine de la queue) de cellules RENCA marquées en vert. Dans la première expérience,
il serait intéressant de vérifier quantitativement si les plus grands foyers métastatiques sont les foyers
attracteurs, c’est-à-dire multicolores avec un noyau d’une couleur et des cellules de l’autre couleur
autour du noyau. Dans la deuxième expérience, il serait intéressant de pouvoir quantifier la proportion
de cellules injectées par la veine de la queue qui forment des foyers indépendants par rapport à celles
qui rejoignent des foyers déjà existants. En effet, ces quantifications permettraient de comprendre
si l’attraction cellulaire est un phénomène majeur dans le développement métastatique et si elle
contribue significativement aux lésions massives observées à l’IRM. Un autre protocole pourrait être
testé afin de comprendre si les cellules tumorales circulantes sont réellement attirées par les foyers
métastatiques. Une injection intraveineuse (veine de la queue) de cellules marquées en rouge pourrait
d’abord être réalisée, suivie quelques jours plus tard d’une injection orthotopique (dans le rein) de
cellules marquées en vert. Cela permettrait de mettre en évidence une véritable situation où les cellules
tumorales circulantes sont émises par la tumeur primaire puis attirées par des foyers métastatiques.
Des expériences in vitro pourraient également être menées pour confirmer le phénomène. En effet, des
cellules métastatiques pourraient être extraites des métastases pulmonaires pour être mises en culture
avec des cellules RENCA parentales ou issues de la tumeur primaire pour observer si ces cellules sont
attirées par les cellules métastatiques. Si ce phénomène se confirme, des analyses plus spécifiques
comme celle du transcriptome des poumons métastatiques devraient être effectuées pour identifier
les facteurs responsables de cette attraction, offrant alors des perspectives cliniques potentielles en
ciblant ce mécanisme d’action.

9.2.3 Perspectives de modélisation

Les phénomènes de fusions de métastases et d’attraction/aggrégation induisent potentiellement des
différences dans le nombre et la taille des métastases, en comparaison avec la théorie standard où la
distribution en tailles est uniquement gouvernée par la prolifération et le temps d’arrivée de chaque
métastase. Ainsi, dans une perspective clinique où le but serait d’estimer, pour un patient donné, la
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masse métastatique occulte à partir des lésions visibles, la masse occulte pourrait être potentiellement
très différente si de tels phénomènes d’aggrégation survenaient. C’est pourquoi une perspective de
modélisation pourrait être d’incorporer les phénomènes d’aggrégation cellulaire et de métastases dans
le modèle d’Iwata afin de prédire des distributions en taille métastatique plus réalistes. Dans un tel
modèle, le phénomène de self-seeding pourrait naturellement être pris en compte puisque toutes les
tumeurs (tumeur primaire et métastases) émettraient des cellules circulantes. Ces cellules pourraient
alors former un nouveau foyer ou en rejoindre un existant.
Une autre piste consisterait à étendre ce modèle de dissémination métastatique à une description
spatiale. Ceci s’avèrerait possible en utilisant des modèles basés sur des équations de conservation du
type de ceux utilisés au cours ce cette thèse. En effet, on a mentionné précédemment dans ce manuscrit
qu’il est possible d’obtenir un modèle spatial décrivant une dynamique Gompertz ou exponentielle
lorsque les équations sont intégrées sur l’espace. Un modèle de dynamique métastatique spatiale
consisterait donc à “faire apparâıtre” les métastases dans un organe segmenté en 3D (les poumons
par exemple) avec un taux de dissémination égal au paramètre de dissémination calibré sur la masse
métastatique, l’expansion spatiale de ces métastases étant ensuite gouvernée par les équations de
conservation que l’on a mentionnées.

9.3 Modélisation des interactions spatiales entre métastases

9.3.1 Conclusions

L’intérêt que nous avons porté au phénomène de fusion de métastases ainsi que l’observation à l’IRM
de métastases fusionnant effectivement nous ont poussé à étudier les interactions spatiales survenant
lorsque deux foyers métastastiques sont en train de fusionner. Pour ce faire, nous avons introduit
un nouveau modèle spatial de croissance tumorale décrivant l’expansion spatiale par des équations
de conservation du type de celles utilisées dans [122, 78, 123] couplées avec une loi de prolifération
dépendant de la pression environnementale. Cette loi, basée sur des études expérimentales mon-
trant l’effet inhibiteur de la pression sur la prolifération des cellules tumorales, consiste en un taux
de prolifération décroissant avec la pression. Après avoir calibré ce modèle sur des croissances de
lésions métastatiques visibles à l’IRM, nous avons, à l’aide du modèle calibré, étudié quantitative-
ment l’effet d’interactions de contact entre métastases sur leurs croissances respectives. Il s’avère,
sous les hypothèses du modèle, que ces interactions inhibent de façon importante la prolifération de
deux métastases en train de fusionner. En effet, on a estimé une perte de masse finale d’environ 30%
par rapport à une situation où les métastases croissent indépendamment. De plus, cette différence
s’accentue avec le nombre de métastases considérées. Ces résultats indiquent que les interactions
spatiales entre métastases fusionnant ont un effet quantitatif important et un impact potentiellement
non négligeable sur la dynamique métastatique globale, pour peu que quelques métastases se ren-
contrent pour fusionner. Enfin, des simulations ont été effectuées pour estimer le nombre de foyers
métastatiques devant fusionner pour obtenir des métastases de la taille de celles observées à l’IRM
dans le poumon de souris implantées avec une tumeur RENCA. Les simulations ont révélé que si
certaines métastases semblaient pouvoir avoir été générées par la fusion de quelques foyers, d’autres
nécessitaient un nombre de foyers trop important pour que cela soit réaliste. Cela appuie les résultats
évoqués précédemment, rejetant l’hypothèse que la fusion de métastases par mouvement passif (dû à
la prolifération) ait pu générer seule les distributions en tailles métastatiques observées à l’IRM.

9.3.2 Perspectives

L’effet inhibiteur des interactions de contact entre métastases doit encore être confirmé expérimentalement,
par exemple en utilisant des marqueurs de prolifération (ki-67) pour observer si la prolifération de
métastases fusionnant in vivo est moins importante dans la zone de contact entre les métastases.
Un mouvement actif (attraction de cellules) est probablement impliqué dans le processus. Par
la suite, le comportement 3D du modèle spatial introduit dans cette étude pourrait être étudié,
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puisque l’évacuation de la pression pourrait être différente, induisant potentiellement un comporte-
ment différent du modèle. De plus, les interactions spatiales entre métastases pourraient être prises
en compte dans une description globale du processus métastatique.

9.4 Modélisation de la niche prémétastatique

Conclusions

Une dernière partie a été consacrée à la modélisation de la niche prémétastatique. Dans cette
étude, après un état de l’art sur la littérature biologique de la niche prémétastatique, un modèle
mathématique a été proposé pour décrire ce phénomène. Ce modèle mécanistique décrit la dy-
namique des principaux facteurs moléculaires et des principaux partenaires cellulaires participant à
la formation de cette niche. Ce modèle a été couplé avec le modèle d’Iwata décrivant la dissémination
et la colonisation métastatique, permettant d’étudier l’effet de changements dans le microenviron-
nement sur les métastases. Alors que certains paramètres ont été fixés à partir de valeurs tirées de
la littérature, les autres paramètres ont été calibré sur les données de Kaplan et al. [10]. Le modèle
est globalement capable de décrire les dynamiques observées et peut maintenant être utilisé pour
répondre à des questions quantitatives cliniquement intéressantes.

Perspectives

Le modèle précédemment évoqué va maintenant pouvoir être utilisé pour étudier des questions quanti-
tatives concernant l’effet du microenvironnement sur les métastases. La première de ces questions est
la suivante : est-ce que la niche prémétastatique est un évènement précoce dans le cancer? Autrement
dit, chez un patient pour lequel la présence d’une tumeur cancéreuse est diagnostiquée, est-ce que
la niche prémétastatique est déjà prête à accueillir des métastases? Des questions sur la stratégie
thérapeutique à adopter peuvent également être étudiées à l’aide du modèle. On peut se demander
s’il est plus pertinent de cibler les cellules tumorales (seed) ou les cellules supportant leur attraction,
leur survie, et leur prolifération au sein des niches prémétastatique et métastatique. Enfin, la question
de la meilleure voie moléculaire à cibler peut également être étudier quantitativement.
Malgré tout, ce modèle mécanistique possède un grand nombre de paramètres à calibrer pour espérer
des prédictions fiables. Même si l’identifiabilité du modèle n’a pas été étudiée, une approche plus
phénoménologique est peut-être souhaitée pour étudier la dynamique. Un cadre général de biologie
pourrait être modélisé, prenant en compte à la fois les effets pro et anti métastatiques du système
immunitaire et du microenvironnement métastatique. Une première piste serait d’étudier les données
de Granot et al. [171] consistant en des distributions en taille métastatique en présence ou absence
de neutrophiles.
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Appendix A

Supplementary figures

Figure A.1: Simulations from a spherical initial conditions with different transport schemes. Top:
from left to right, the exact solution (on he mesh), First order Upwind scheme, second order semi
Lagrangian scheme. Bottom: from left to right, scond order TVD Lax Wendroff scheme, fifth order
WENO scheme, fifht order TVD WENO scheme. Simulations were obtained using Eqs (5.5)-(5.8)
with a constant growth rate is constant: γ0 = 0.67 day−1, and the porosity k is equal to 1 in the
included (in the square domain) circle, and equal to 1000 outside. The final time is T = 1 day.
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Figure A.2: Representative MR images where size distribution of metastases could not be satisfactorily
assessed. Coronal slices of three mice. Top: Day 19; Middle and bottom: Day 21. The metastatic
foci could not be clearly segmented because the metastatic burden was very diffuse.
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Figure A.3: Time course of the macro-metastases size distribution for different initial metastatic sizes
Top to down: simulation of the mathematical formalism of the standard theory (i.e. dissemination
and independent growth of the resulting tumor foci), using the parameter values inferred from the
total metastatic burden data (total GFP signal in the lungs) using four different initial numbers of
initiating metastatic cells. The results are compared to observations of macro-metastases numbers
and sizes in one mouse on MRI data.



174 APPENDIX A. SUPPLEMENTARY FIGURES

γ = 0.1

Model

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 19 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 21 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 24 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 26 days

Data

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 19 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 21 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 24 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 26 days

T 19 21 24 26
Data Model Data Model Data Model Data Model

Number 4 4 5 9 9 24 11 36
Macro-burden (mm3) 1.58 1.13 3.55 3 11.5 10.5 21.2 20.8

Size of largest met (mm3) 0.78 0.526 2.19 1.05 8.17 2.19 13.6 3.11

γ = 2
3

Model

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 19 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 21 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 24 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 26 days

Data

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 19 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 21 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 24 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 26 days

T 19 21 24 26
Data Model Data Model Data Model Data Model

Number 4 3 5 5 9 9 11 14
Macro-burden (mm3) 1.58 1.37 3.55 2.88 11.5 7.01 21.2 11.7

Size of largest met (mm3) 0.78 0.758 2.19 1.38 8.17 2.64 13.6 3.58

γ = 1

Model

Size (mm3)
0.05 1 100

N
um

be
r

100

101

T  =  19 days

Size (mm3)
0.05 1 100

N
um

be
r

100

101

T  =  21 days

Size (mm3)
0.05 1 100

N
um

be
r

100

101

T  =  24 days

Size (mm3)
0.05 1 100

N
um

be
r

100

101

T  =  26 days

Data

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 19 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 21 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 24 days

Size (mm3)
0.05 0.1 1 10 100

N
um

be
r

100

101

T = 26 days

T 19 21 24 26
Data Model Data Model Data Model Data Model

Number 4 3 5 5 9 9 11 14
Macro-burden (mm3) 1.58 1.37 3.55 2.88 11.5 7.01 21.2 11.7

Size of largest met (mm3) 0.78 0.758 2.19 1.38 8.17 2.64 13.6 3.58

Figure A.4: Time course of the macro-metastases size distribution for different values of
γ. The fit analysis of the GFP data was re-performed for values of γ ranging from 0.1 to 1, generating
each time new distributions of the parameters α, β and µ, and simulations equivalent to Fig 6.4 were
re-performed for the median values of parameters (inter-animal variability not shown here). Results
only for γ = 0.1, 2

3 and 1 are shown here. Qualitatively similar results are observed concerning the
size distribution metrics (in particular, number of metastases and size of the largest lesion).
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Figure A.5: The simulated growth by the model using the fitted parameters and starting from the
real shape of the observed metastasis at day 19 on the coronal MRI slice. Time course of the tumor
density (up), pressure (middle), and proliferation rate fields. From left to right: day 0, day 3 and
day 7. Simulations were obtained using Eqs (7.1)-(7.4) and the following parameter values: γ0 = 0.78
day−1; Πc = 0.0026 Pa; time of simulation: T = 7 days.

A
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Figure A.6: Spherical and non-spherical shapes. (A) Simulation from the segmented shape. Sim-
ulations were obtained using Eqs (7.1)-(7.4) and the following parameter values: γ0 = 0.78 day−1;
Πc = 0.0026 Pa; time of simulation: T = 7 days. (B) Simulation with the same parameters and same
initial burden from a spherical shape. (C) Volume dynamics of the two simulations. The final relative
difference is 2.5%.
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Appendix B

Materials and methods

Ethics statement

Ethical approval for all animal studies was obtained from the Institutional Animal Care and Use
Committee of the INSERM Institute in accordance with the National Advisory Committee for Lab-
oratory Animal Research Guidelines licensed by the French Authority. Animal facility: Animalerie
mutualisée de Bordeaux 1, authorisation number: B33-522, Date: February 8th,2012. Investigator:
Andreas Bikfalvi (authorisation number: R-45GRETA-F1-10)

Cell line and mouse experiments

These experiments were designed by Andreas Bikfalvi, Lindsay S. Cooley and Wilfried Souleyreau
and were performed by Lindsay S. Cooley, Raphäel Pineau and Wilfried Souleyreau.

RENCA-GFP cells

The mouse renal adenocarcinoma cell line RENCA was cultured in RPMI media (Gibco) supplemented
with 10% foetal calf serum, 1mM sodium pyruvate, 2mM glutamine, 100U/ml de penicillin and
100µg/ml streptomycin, at 37oC/5% CO2. RENCA-GFP cells were produced via infection of RENCA
cells with a GFP lentivirus, a gift of Dr. C. Grosset (u889 Bordeaux).

Orthotopic implantation of RENCA-GFP cells

RENCA-GFP were cultured in exponen- tial growth phase, and harvested by trypsinisation (Gibco).
After washing in basal RPMI media, the cells were counted and concentration adjusted to 100000
cells per 25µl in basal media. 25µ of cell suspension was then injected underneath the renal capsule
of the left kidney of female Balb/c mice aged 6 weeks.

Tissue harvest

Mice were sacrificed at the specified intervals and the left kidney (bearing the primary tumour) and
lungs were dissected and snap frozen in liquid nitrogen. RNA was extracted using TRIzol Reagent
(Life Technologies) as per the manufacturer’s protocol.

Reverse transcription and Q-RT-PCR

RNA samples were quantified using a nanodrop ND-1000 spectrophotometer (Nanodrop Technolo-
gies). 1µg of total RNA was reverse transcribed to cDNA using High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems). Real-Time PCR was carried out using the Step One Plus Real-
Time PCR system. Reactions were carried out in a total volume of 20µl containing 2ng of cDNA,
Power SYBR Green PCR Matsermix (Applied Biosystems), and 200nM of each of the forward and
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reverse primers. The reaction conditions were as follows: 10 mins at 95oC followed by 40 cycles of
15 secs at 95oC and 1 min at 60oC. Data were analysed using Step One Software v2.3. The house-
keeping gene PPIA was used as an endogenous control to nomalize for differences in the amount of
total RNA in each sample. Expression of GFP is thus presented as an N-fold difference relative to
the total RNA per sample. The sequences of the primer used was as follows: eGFP: Forward primer
5’-CGACCACTACCAGCAGAACA-3’ Reverse primer: 5’GAACTCCAGCAGGACCATGT-3’.

Mouse model of lung metastasis from kidney primary tumor

In the first set of experiments, GFP+ RENCA cells orthotopic injection (into the kidney) was per-
formed to observe metastatic GFP+ cells in the lungs. Metastases were observed in the lungs only,
not in the liver.
The first GFP+ metastatic cells were observed at day 14, and the first macrometastases at day
18. Another sample of mice has been injected in the same conditions and a GFP analysis has been
performed on it, to follow primary tumor and metastatic dynamics. Three mice have been sacrificed
at each time point to mesure the gfp signal in the kidney and in the lungs. Moreover, a last sample
of mice has been injected in the same conditions to be imaged with MRI scheduling. First metastases
were observed at day 18 with sizes comprised between 0.05 and 12 cubic millimeters at day 19.

MR materials and methods

The imaging process was performed by Emeline Ribot.

MR materials

The experiments were carried out on a horizontal 7T magnet (Bruker Biospec 70/20, Germany),
equipped with a 12 cm gradient insert capable of 660 mT/m maximum strength and 110 µs rise time.
Lung imaging was performed using a quadrature emission/reception birdcage coil (inner diameter:
2.5 cm, 5 cm length).
Mice were anesthetized with 1.5% isoflurane in air during the imaging session. Mouse respiration
was monitored during the entire experiment by using an air balloon placed on the abdomen (SA
Instruments).

MR sequence

A 3D water-selective balanced Steady State Free Precession sequence was used [183]. This sequence
induces a T2-like contrast, allowing to detect metastases with hyper-intense signals without inject-
ing contrast agents [184]. The main parameters of the sequence were as follow: FOV=30×22×22;
matrix=192×142×142; TE/TR=3.1/6.2ms; flip angle = 20 deg; reception bandwidth= 178kHz; num-
ber of excitation=1; acquisition time=2min3s. In order to suppress banding artifacts inherent to
this sequence, the sum-of-square method was performed [185]. Thus, the total acquisition time was
8min12s.

Numerical methods

Scientific computing library

The numerical solvers used to solve the conservation equations (5.5)-(5.9) were coded in the C++
librairy Cadmos, which is the is the library used by the INRIA team Monc to solve partial derivative
equations. The library, coded by Olivier Saut, is object oriented and contains also routines to read
parameters in file, deal with parameter maps, cartesian grids and convert dicom into VTK files. The
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numerical solvers are finite differences based and deal with cartesian grids. The library used to solve
linear systems is eigen.

Numerical methods to simulate the partial derivative equations model of spatial
tumor growth

The system of partial derivative equations that models the spatial metastatic growth was solved with
the following numerical methods:

• a Strang splitting method for the time scheme, as described in 5.3.1.

• a fifth order Weno finite differences scheme for the spatial resolution in the chapter 7.

• a fixed point method to solve the nonlinear equation on the pressure (5.26). At each step of the
fixed-point algorithm, the equation (5.33) was numerically solved thanks to a finite differences
method leading to a linear system that was solved thanks to eigen library.

Numerical methods for the ordinary differential equations model of tumor growth

In order to fit the models of the section 5.1 to tumor growth data, a Monte-Carlo method followed by
a gradient descent were performed, in order to search first for a global optimum and then to converge
toward the local optimum.

Numerical methods for the premetastatic niche model

The ODE system describing the dynamics of cellular and molecular species was solved thanks to a
forward Euler method.
In order to solve partial derivative equation (8.6) of Iwata’s model, the Lagrangian approach, based
on the method of characteristics, that was proposed by Benzekry has been adopted [186, 124].

Solution of the 1D stationary diffusion equation

Searching for a solution

Let us define the following problem :

∂C(x, t)

∂t
−D∂

2C(x, t)

∂x2
= 0 ∀(x, t) ∈ R+∗ × R+∗ (B.1)

∂C(0, t)

∂x
= f(t) ∀t ∈ R+∗ (B.2)

C(x, 0) = 0 ∀x ∈ R+ (B.3)

f(0) = 0 (B.4)

We are searching for a regular solution in R+. To achieve it, we assume that such a solution C exists
and we define the following function:

v(t, x) = C(t, x) + f(t) exp(−x).

This function is solution of the following problem :

∂v(t, x)

∂t
−D∂

2v(t, x)

∂x2
=

(
df(t)

dt
−Df(t)

)
exp(−x) ∀(x, t) ∈ R+∗ × R+∗

∂v(t, 0)

∂x
= 0 ∀t ∈ R+∗

v(0, x) = 0 ∀x ∈ R+

f(0) = 0

http://eigen.tuxfamily.org/index.php?title=Main_Page
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We define now :

w(t, x) =

{
v(t, x) if x ≥ 0
v(t,−x) if x ≤ 0

Such a function is a solution of the following problem :

∂w(t, x)

∂t
−D∂

2w(t, x)

∂x2
=

(
df(t)

dt
−Df(t)

)
exp(−|x|) ∀(x, t) ∈ R× R+∗

w(0, x) = 0 ∀x ∈ R
f(0) = 0

(B.5)

We have now a problem which is posed on all R. The goal is to apply the Fourier Transform at this
partial differential equation.
We define the Fourier Transform on L2(R) as follows:

û(ξ) =
1√
2π

∫ +∞

−∞
u(x) exp (−ixξ) dx

To define the Fourier transform of ∂2w
∂x2 , we need to have ∂2w

∂x2 being in L2(R) over x. Thus, w must

be H2(R) over x. Moreover, to define the Fourier transform of ∂w
∂t , it is necessary and sufficient that

there exists g ∈ L2(R) such that ∂w
∂t ≤ g, where g does not depend on t. The function exp(−|x|) is

L2(R) and its Fourier Transform is
√

2
π

1
1+ξ2 .

The problem (B.5) becomes, after Fourier Transform, an ordinary differential equation :

∂ŵ(t, ξ)

∂t
+Dξ2ŵ(t, ξ) =

√
2

π

(
df(t)

dt −Df(t)

1 + ξ2

)
ŵ(0, ξ) = 0

We are searching for a solution of the following form:

ŵ(t, ξ) = k(t) exp(−Dξ2t)

By injecting this solution in the equation, we find :

dk

dt
exp(−Dξ2t) =

√
2

π

(
df(t)

dt −Df(t)

1 + ξ2

)

To respect the initial condition, k has to verify k(0) = 0. Thus we have :

k(t) =

√
2

π

∫ t

0

df(t)
dt −Df(t)

1 + ξ2
exp(Dξ2s)ds

Therefore, it comes the following expression for ŵ :

ŵ(t, ξ) =

√
2

π

∫ t

0

df(t)
dt −Df(t)

1 + ξ2
exp(Dξ2(s− t))ds

After having integrated it by parts, we finally obtain the following expression:

ŵ(t, ξ) =

√
2

π

(
f(t)

1 + ξ2
−D

∫ t

0
f(s) exp(−Dξ2(t− s))ds

)
(B.6)

The Fourier transform of a Gaussian function is known as:

1√
2π

∫ +∞

−∞
exp (−ixξ)) exp

(
−αx2

)
dx =

√
1

2α
exp

(
− ξ

2

4α

)
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In our case, 1
4α = D(t− s). One can thus apply the inverse Fourier transform to the expression (B.6)

so as to obtain :

w(t, x) = f(t) exp(−|x|)−D
√

2

π

∫ t

0

f(s)√
2D(t− s)

exp

(
− x2

4D(t− s)

)
ds (B.7)

We can deduce the expression of v defined on R+ × R+ :

v(t, x) = f(t) exp(−x)−D
√

2

π

∫ t

0

f(s)√
2D(t− s)

exp

(
− x2

4D(t− s)

)
ds

Then C is determined as follows : C(t, x) = v(t, x)− f(t) exp(−x). We finally get:

C(t, x) = −D
√

2

π

∫ t

0

f(s)√
2D(t− s)

exp

(
− x2

4D(t− s)

)
ds

Checking that the solution is satisfied together with the boundary condition

Computations show that this function verifies the diffusion equation (B.2). But does it verify the
Neuman boundary condition? A priori, we cannot differentiate the expression with respect to x at 0
under the integral sign.
We propose an heuristic proof to show that the Neuman boundary condition is met in the case where
f is a constant. Let remember the expression of the function :

C(t, x) = −D
√

2

π

∫ t

0

f(s)√
2D(t− s)

exp

(
− x2

4D(t− s)

)
ds

We pose the change of variable τ = t− s and then we have:

C(t, x) = −D
√

2

π

∫ t

0

f(τ)√
2Dτ

exp

(
− x2

4Dτ

)
dτ

The function g : (τ, x) 7→ f(τ)√
2Dτ

exp
(
− x2

4Dτ

)
defined on R+∗ × R+ is uniformly dominated by the

function t 7→ f(τ)√
2Dτ

which is summable on ]0; t[. The derivative exists and is defined as follows:

∂C(t, x)

∂x
= −D

√
2

π

∫ t

0

∂g(τ, x)

∂x
dτ,

which gives, for all (t, x) ∈ R+ × R+:

∂C(t, x)

∂x
= D

√
2

π

∫ t

0

2xf(τ)

4Dτ
√

2Dτ
exp

(
− x2

4Dτ

)
dτ

Let us define the change of variable y = x2

τ . The previous integral becomes :

∂C(t, x)

∂x
=

f

2D
√
π

∫ t

0

x2

τ2

√
τ

x
exp

(
− x2

4Dτ

)
dτ

=
f

2D
√
π

∫ +∞

x2

t

exp
(
− y

4D

)
√
y

dτ

Another change of variable s =
√
y gives :

∂C(t, x)

∂x
=

f

D
√
π

∫ +∞

x
t

exp

(
− y2

4D

)
ds
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The limit of this function when tends to 0 is a Gauss integral, which has the known value:

∂C(t, 0)

∂x
=

f

D
√
π

∫ +∞

0
exp

(
− y2

4D

)
ds

=
f

D
√
π

√
4Dπ

2

= f



183



184 APPENDIX B. MATERIALS AND METHODS



Bibliography
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specific colonization. Nat Rev Cancer, 9(4):274–284, April 2009.

[9] Scott Valastyan and Robert A Weinberg. Tumor metastasis: molecular insights and evolving
paradigms. Cell, 147(2):275–92, October 2011.

[10] Rosandra N Kaplan, Rebecca D Riba, Stergios Zacharoulis, Anna H Bramley, Löıc Vincent,
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[25] Niklas Hartung, Séverine Mollard, Dominique Barbolosi, Assia Benabdallah, Guillemette Cha-
puisat, Gérard Henry, Sarah Giacometti, Athanassios Iliadis, Joseph Ciccolini, Christian Faivre,
and Florence Hubert. Mathematical modeling of tumor growth and metastatic spreading: val-
idation in tumor-bearing mice. Cancer Res, 74(22):6397–6407, November 2014.
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[130] Frédéric Couderc. Développement d’un code de calcul pour la simulation d’écoulements de fluides
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[137] Grégoire Allaire. Analyse numérique et optimisation: Une introduction à la modélisation
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