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APPROCHE BAYÉSIENNE DE L’ ESTIMATION DES COMPOSANTES PÉRIODIQUES DES

SIGNAUX EN CHRONOBIOLOGIE

Résumé

La toxicité et l’efficacité de plus de 30 agents anticancéreux présentent de très fortes variations
en fonction du temps de dosage. Par conséquent, les biologistes qui étudient le rythme circadien ont
besoin d’une méthode très précise pour estimer le vecteur decomposantes périodiques (CP) de signaux
chronobiologiques. En outre, dans les développements récents, non seulement la période dominante
ou le vecteur de CP présentent un intérêt crucial, mais aussileurs stabilités ou variabilités. Dans les
expériences effectuées en traitement du cancer, les signaux enregistrés correspondant à différentes
phases de traitement sont courts, de sept jours pour le segment de synchronisation jusqu’à deux ou
trois jours pour le segment après traitement. Lorsqué’on étudie la stabilité de la période dominante
nous devons considérer des signaux très court par rapport à la connaissancea priori de la période
dominante, placée dans le domaine circadien. Les approchesclassiques fonées sur la transformée de
Fourier (TF) sont inefficaces (i.e. manque de précision) compte tenu de la particularité des données
(i.e. la courte longueur). Une autre particularité des signaux qui est prise en considération dans ces
expériences, est le niveau de bruit. Ces signaux étant très bruités, il est difficile de déterminer les
composantes périodiques associées aux phénomènes biologiques et de les distingué de celles qui sont
associées au bruit. Dans cette thèse, nous proposons une nouvelle méthode pour l’estimation du vecteur
de CP des signaux biomédicaux, en utilisant les informations biologiquesa priori et en considérant un
modèle qui représente le bruit.

Les signaux enregistrés dans le cadre d’expériences développées pour le traitement du cancer ont
un nombre limité de périodes. Cette informationa priori peut être traduite comme la parcimonie du
vecteur de CP. La méthode proposée considère l’estimation de vecteur de CP comme un problème in-
verse en utilisant l’inférence bayésienne générale afin de déduire toutes les inconnues de notre modèle,
à savoir le vecteur de CP mais aussi les hyperparamètres (i.e. les variances associées). L’information
a priori de parcimonie est modélisée en utilisant une loia priori renforcent la parcimonie. Dans cette
thèse, nous proposons une distribution de Student, considérée comme la distribution marginale d’une
loi bivariée - la distribution Normale - Inverse Gamma. En fait, lorsque l’égalité entre les paramèters de
forme et d’échelle, de la distribution Inverse Gamma n’est pas imposée, la marginale de la distribution
Normale-Inverse Gamma est une généralisation de la distribution de Student. Nous construisons un mo-
dèle hierarchique où nous attribuons aussi une loia priori pour les hyperparamètres. L’expression de
la loi conjointea posterioridu vecteur de CP et des hyperparamètres est obtenue par la règle de Bayes
et les inconnues sont estimées soit par Maximum A Posteriori(MAP) soit par l’espérancea posteriori
(EAP). Pour le calcul de EAP, l’expression de la loia posterioriest approchée par une loi séparables en
utilisant l’approximation bayésienne variationelle (ABV), via la divergence de Kullback-Leibler (KL).
Deux possibilités sont envisagées : une approximation avecdes lois partiellement séparables ou entiè-
rement séparable. Ces algorithmes sont présentés en détailet sont comparées avec ceux correspondant
au modèle gaussien. Nous examinons la convergence des algorithmes et donnons des résultats de si-
mulation afin de comparer leurs performances. Enfin, nous montrons des résultats de simulation sur
des données synthétiques et réelles dans une application detraitement du cancer. Les données réelles
utilisées dans cette thèse representent des modèles de repos-activité et d’expression des gènes de KI /
KI Per2 : :luc souris luc, âgées de 10 semaines, seules dans leur cages des RT-BIO.

Mots-clefs: Estimation de composantes périodiques, Problèmes inverses, Approches bayésiennes, Mo-
dèle hierarchique, Renforcement de parcimonie, Student-tgénéralisée, chrnobiologie, chronothérapie,
Gènes de l’horologe, Rythme circadien, Traitement du cancer.



Abstract

The toxicity and efficacy of more than 30 anticancer agents presents very high variations, depend-
ing on the dosing time. Therefore the biologists studying the circadian rhythm require a very precise
method for estimating the Periodic Components (PC) vector of chronobiological signals. Moreover,
in recent developments not only the dominant period or the PCvector present a crucial interest, but
also their stability or variability. In cancer treatment experiments the recorded signals corresponding
to different phases of treatment are short, from seven days for the synchronization segment to two or
three days for the after treatment segment. When studying the stability of the dominant period we have
to consider very short length signals relative to the prior knowledge of the dominant period, placed in
the circadian domain. The classical approaches, based on Fourier Transform (FT) methods are ineffi-
cient (i.e. lack of precision) considering the particularities of the data (i.e. the short length). Another
particularity of the signals considered in such experiments is the level of noise: such signals are very
noisy and establishing the periodic components that are associated with the biological phenomena and
distinguish them from the ones associated with the noise is adifficult task. In this thesis we propose
a new method for the estimation of the PC vector of biomedicalsignals, using the biological prior
informations and considering a model that accounts for the noise.

The experiments developed in the cancer treatment context are recording signals expressing a lim-
ited number of periods. This is a prior information that can be translated as the sparsity of the PC
vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using
the general Bayesian inference in order to infer all the unknowns of our model, i.e. the PC vector
but also the hyperparameters. The sparsity prior information is modelled using a sparsity enforcing
prior law. In this thesis we propose a Student-t distribution, viewed as the marginal distribution of
a bivariate Normal - Inverse Gamma distribution. In fact, when the equality between the shape and
scale parameters corresponding to the Inverse Gamma distribution is not imposed, the marginal of the
Normal-Inverse Gamma distribution is a generalization of the Student-t distribution. We build a general
Infinite Gaussian Scale Mixture (IGSM) hierarchical model where we also assign prior distributions for
the hyperparameters. The expression of the joint posteriorlaw of the unknown PC vector and the hy-
perparameters is obtained via the Bayes rule and then the unknowns are estimated via Joint Maximum
A Posteriori (JMAP) or Posterior Mean (PM). For the PM estimator, the expression of the posterior
distribution is approximated by a separable one, via Variational Bayesian Approximation (VBA), us-
ing the Kullback-Leibler (KL) divergence. Two possibilities are considered: an approximation with
partially separable distributions and an approximation with a fully separable one. The algorithms are
presented in detail and are compared with the ones corresponding to the Gaussian model. We examine
the practical convergency of the algorithms and give simulation results to compare their performances.
Finally we show simulation results on synthetic and real data in cancer treatment applications. The
real data considered in this thesis examines the rest-activity patterns and gene expressions of KI/KI
Per2::luc mouse, aged 10 weeks, singly housed in RT-BIO.

Keywords : Periodic Components (PC) vector estimation, Sparsity enforcing, Bayesian parameter
estimation, Variational Bayesian Approximation (VBA), Kullback-Leibler (KL) divergence, Infinite
Gaussian Scale Mixture (IGSM), Normal - Inverse Gamma, Inverse problem, Joint Maximum A Pos-
teriori (JMAP), Posterior Mean (PM), Chronobiology, Circadian rhythm, Cancer treatment..
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1
Résumé

L A toxicité et l’efficacité de plus de 30 agents anticancéreux présentent de très fortes vari-
ations en fonction du temps de dosage. Par conséquent, les biologistes qui étudient

le rythme circadien ont besoin d’une méthode très précise pour estimer le vecteur de com-
posantes périodiques (CP) de signaux chronobiologiques. En outre, dans les développements
récents, non seulement la période dominante ou le vecteur deCP présentent un intérêt crucial,
mais aussi leur stabilités ou variabilités.

Les données réelles utilisées dans cette thèse, montrées dans la figure (1.1), representent
des modèles de repos-activité et d’expression des gènes de KI / KI Per2::luc souris luc, âgées
de 10 semaines, seules dans leur cages des RT-BIO.

Dans les expériences effectuées en traitement du cancer, les signaux enregistrés correspon-
dant à différentes phases de traitement sont courts, de septjours pour le segment de synchro-
nisation jusqu’à deux ou trois jours pour le segment après traitement, figure (1.2) (modèles de
repos-activité) et figure (1.3) (modèles d’expression des gènes).

Lorsqué’on étudie la stabilité de la période dominante nousdevons considérer des signaux
très court par rapport à la connaissancea priori de la période dominante, placée dans le
domaine circadien. Les approches classiques basées sur la transformée de Fourier (TF) sont
inefficaces (i.e. manque de précision) compte tenu de la particularité des données (i.e. la
courte longueur). Une autre particularité des signaux qui est prise en considération dans ces
expériences, est le niveau de bruit. Ces signaux étant très bruités, il est difficle de determiner
les composantes périodiques associées aux phénomènes biologiques et de les distingue de
celle qui sont associées au bruit.

Dans cette thèse, nous proposons une nouvelle méthode pour l’estimation du vecteur de CP
des signaux biomédicaux, en utilisant les informations biologiquesa priori et en considérant
un modèle qui représente le bruit,

g = H1f 1 + H2f 2 + ǫ (1.1)

Les signaux enregistrés dans le cadre d’expériences développées pour le traitement du

13



CHAPTER 1. RÉSUMÉ
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Figure 1.1: Exemple de signaux chronobiologiques obtenus dans des expériences de traite-
ment du cancer: le signal repos-activité (en haut) et le signal l’expression des gènes (absorp-
tion de photons, en bas).
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Figure 1.2: Les données brutes pour un signal representent des modelés de repos-activité en
chronobiologie: avant le traitement (gauche, longueur 3 jours), pendant le traitement (centre,
longueur de 5 jours), après le traitement (droite, longueur2 jours).
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Figure 1.3: Les données brutes pour un signal representent l’expression des génes en chrono-
biologie: avant le traitement (gauche, longueur 3 jours), pendant le traitement (centre,
longueur de 5 jours), après le traitement (droite, longueur2 jours).
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cancer ont un nombre limité de périodes. Cette informationa priori peut être traduit comme
la parcimonie du vecteur de CP. La méthode proposée considère l’estimation de vecteur de
CP comme un problème inverse en utilisant l’inférence bayésienne générale afin de déduire
toutes les inconnues de notre modèle, à savoir le vecteur de CP mais aussi les hyperparamètres
(i.e. les variances associées),

p(f , θ1, θ2|g) ∝ p(g|f , θ1) p(f |θ2) p(θ1) p(θ2) (1.2)

oùθ = (θ1, θ2) représente les hyperparamètres qui apparaissent dans le modèle.

L’information a priori de parcimonie est modélisée en utilisant une loia priori renforcent
la parcimonie. Dans cette thèse, nous proposons une distribution de Student, pour sa propriété
de longue queue, présentée dans la figure (1.4).

St(fkj|ν) =
Γ
(

ν+1
2

)

√
νπΓ

(
ν
2

)
(

1 +
fkj

2

ν

)− ν+1

2

(1.3)
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Figure 1.4: Densité de la loi Normale et densité de la loi de Student.

La distribution de Student est considérée comme la distribution marginale d’une loi bivarié
- la distribution Normale - Inverse Gamma,

fkj|ν ∼
∫

N (fkj|0, vf j
) IG(vf j

|ν
2

,
ν

2
), k ∈ {1, 2} , j ∈ {1, 2, . . . , M} . (1.4)

En fait, lorsque l’égalité entre les paramèters de forme et d’échelle, de la distribution
Inverse Gamma n’est pas imposée, on a

fkj|αf0, βf0 ∼
∫

N (fkj|0, vfj
) IG(vfj

|αf0, βf0), k ∈ {1, 2} , j ∈ {1, 2, . . . , M} . (1.5)

La marginale de la distribution Normale-Inverse Gamma est une généralisation de la distribu-
tion de Student

p(fkj|αf0, βf0) =
Γ(αf0 + 1

2
)√

2βf0π Γ(αf0)

(
1 +

fkj
2

2βf0

)−(αf0+ 1

2)
= Stg(fkj|αfj0, βfj0). (1.6)
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La distribution bivariée Normale - Inverse Gamma, modélisant
(
fkj, vfj

)
et la distribution

marginale modélisantfkj sont présentés dans la figure (1.5).
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Figure 1.5: La distribution bivarié Normale - Inverse Gammamodélisant
(
fkj, vfj

)
et la

distribution marginale modélisantfkj|αf0, βf0.

Nous construisons un modèle hierarchique où nous attribuons aussi une loia priori pour
les hyperparamètres, Equation (1.7).





p(g|f1, f2, vǫ) = N (g|H1f1 + H2f 2, V ǫ)

p(vǫ|αǫ0, βǫ0) =
∏N

i=1 IG(vǫi
|αǫi0, βǫi0)

p(f 1|vf) = N (f1|0, V f )

p(f 2|vf) = N (f2|0, V f )

p(vf |αf0, βf0) =
∏M

j=1 IG(vfj
|αf0, βf0)

(1.7)

La forme analytique du modèle hiérarchique écrite par proportionnalités est le suivant:




p(g|f1, f 2, vǫ) ∝ |V ǫ|−
1

2 exp
{
−1

2
‖V ǫ

− 1

2 (g − H1f1 − H2f 2) ‖2
}

p(vǫ|αǫ0, βǫ0) ∝ ∏N
i=1

βǫ0
αǫ0

Γ(αǫ0)
vǫi

−(αǫ0+1) exp
{
−βǫ0v

−1
ǫi

}

p(f1|vf) ∝ |V f |− 1

2 exp
{

−1
2
‖V

− 1

2

f f 1‖2

}

p(f2|vf) ∝ |V f |− 1

2 exp
{

−1
2
‖V

− 1

2

f f 2‖2

}

p(vf |αf0, βf0
) ∝ ∏M

j=1
βf0

αf0

Γ(αf0)
vf j

−(αf0+1) exp
{
−βf0v−1

fj

}

(1.8)
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L’expression de la loi conjointea posterioridu vecteur de CP et des hyperparamètres est
obtenue par la règle de Bayes:

p(f 1, f 2, vǫ, vf |g) ∝ p(g|f1, f 2, vǫ) p(vǫ|αǫ0, βǫ0) p(f1|vf) p(f2|vf ) p(vf |αf0, βf0).
(1.9)

Les inconnues sont estimées soit par Joint Maximum A Posteriori (JMAP), soit par
l’espérancea posteriori (EAP). L’estimateur du Joint MaximumA Posteriori s’obtient en
calculant le mode de la loia posteriori,

(
f̂1, f̂2, v̂ǫ, v̂f

)
= arg max

(f 1,f 2, vǫ, vf)
p(f 1, f 2, vǫ, vf |g) = arg min

(f 1,f 2, vǫ, vf)
L(f1, f 2, vǫ, vf),

(1.10)
où le critéreL(f 1, f2, vǫ, vf ) est défini comme suit:

L(f1, f 2, vǫ, vf ) = − ln p(f 1, f 2, vǫ, vf |g). (1.11)

L’algorithme JMAP est présenté en détail dans la figure (1.6). Pour le calcul de EAP,
l’expression de la loia posteriorip(f 1, f2, vǫ, vf |g) est approchée par une loi séparables
q(f1, f 2, vǫ, vf |g):

p(f1, f2, vǫ, vf |g) ≈ q(f1, f 2, vǫ, vf |g) = q1(f 1) q2(f2) q3(vǫ) q4(vf) (1.12)

en utilisant l’approximation bayésienne variationelle (ABV), via la divergence de Kullback-
Leibler (KL), défini comme suit:

KL (q(f1, f2, vǫ, vf1
|g) : p(f1, f2, vǫ, vf1

|g)) =

=
∫∫

. . .
∫

q(f1, f2, vǫ, vf |g) ln
q(f 1, f2, vǫ, vf |g)

p(f 1, f2, vǫ, vf |g)
df1 df 2 dvǫ dvf ,

(1.13)

où les notations suivantes sont utilisées:

q3(vǫ) =
N∏

i=1

q3i(vǫi
) ; q4(vf) =

M∏

j=1

q4j(vf j
) ; dvǫ =

N∏

i=1

dvǫi
; dvf =

M∏

j=1

dvfj

(1.14)

La minimisation peut se faire via l’optimisation alternée,résultant les proportionnalités
suivants:





q1(f1) ∝ exp
{
〈ln p(f 1, f2, vǫ, vf |g)〉

q2(f 2) q3(vǫ) q4(vf )

}

q2(f2) ∝ exp
{
〈ln p(f 1, f2, vǫ, vf |g)〉

q1(f 1) q3(vǫ) q4(vf )

}

q3i(vǫi
) ∝ exp

{
〈ln p(f1, f2, vǫ, vf |g)〉

q1(f 1) q2(f 2) q3−i(vǫi) q4(vf )

}
, i ∈ {1, 2 . . . , N}

q4j(vfj
) ∝ exp

{
〈ln p(f 1, f2, vǫ, vf |g)〉

q1(f 1) q2(f 2) q3(vǫ) q4−j(vfj
)

}
, j ∈ {1, 2 . . . , M} ,

(1.15)
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f̂ 1 =
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]−1
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(a) - mise à jour de vectorf1

f̂ 2 =
[
HT

2 V ǫ
−1H2 + V f

−1
]−1

HT
2 V ǫ

−1 (g − H1f 1)

(b) - mise à jour de vectorf2

v̂ǫi
=

βǫi0
+1

2(gi−H2if 1−H2if 2)
2

αǫi0
+3

2

(c) - mise à jour des variances du bruitvǫi

v̂f j
=

βf0+1
2(f2

1j+f2
2j)

αf0+2

(d) - mise à jour des
variances du vectorvfj

V ǫ = diag[v̂ǫ]

(e)

V f = diag
[
v̂f

]

(f)

Figure 1.6: Les equations de mise à jour des paramètres pour l’estimation MAP.

en utilisant les notations:

q3−i(vǫi
) =

N∏

k=1,k 6=i

q3k(vǫk
) ; q4−j(vfj

) =
M∏

k=1,k 6=j

q4k(vfk
) (1.16)

et aussi
〈u(x)〉v(y) =

∫
u(x)v(y) dy. (1.17)

Deux possibilités sont envisagées: une approximation avecdes lois partiellement séparables
ou entièrement séparable. Ces deux algorithmes sont présentés en détail dans la figure (1.7)
(approximation avec des lois partiellement séparables) etdans la figure (1.8) (approximation
avec des lois entièrement séparable).
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T Ṽ ǫ (g − H2f 2P M)

Σ1P M =
(
H1

T Ṽ ǫH1 + Ṽ f

)−1

(a) - mise à jour de vectorf1

f 2P M =
(
H2
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T Ṽ ǫ (g − H1f 1P M)

Σ2P M =
(
H2
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Figure 1.7: Les equations de mise à jour des paramètres pour l’estimation EAP via ABV,
séparabilité partielle.
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Figure 1.8: Les equations de mise à jour des paramètres pour l’estimation EAP via ABV,
séparabilité totale.
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THIS first chapter gives a general presentation of the context of our work. From chrono-
biology and biological rhythms (in particular the circadian rhythms) to cancer treatment

(chronotherapy), gene expressions (along with other circadian indicators, like temperature or
rest-activity), signal processing and the particularities of such signals. The goal of this chap-
ter is to give a short presentation of how the periodic components estimation of (short) time
series arises naturally in the context of chronotherapy andcancer treatment. This chapter is
organized as it follows:
In Section (2.1) we give a brief presentation of the biological context: we introduce the circa-
dian rhythm, discuss its mechanism and its importance relative to cancer treatment.
Section (2.2) presents the experimental protocol for producing chronobiological signals: we
give details of the kind of mice used in those experiments, ofthe clock-genes that are studied,
discuss the protocol of the experiments and give brief details concerning the technology that
allows recording such signals.
Finally, Section (2.3) makes the transition from chronobiology and cancer treatment to sig-
nal processing: we present such signals, we discuss their particularities and define our goal
relative to such signals.
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2.1 Biological context: from chronobiology to
chronotherapy

Several biological processes in living organisms follow oscillations that repeat themselves
about every 24 hours - these oscillations are calledcircadian rhythms. Together with other
periodic phenomena, they are the object of study of chronobiology, [HRM08], [SSL+11] and
[DSA10]. In mammals, circadian rhythms involve all organs, tissues and cells and are su-
pervised by the Circadian Timing System (CTS), a set of molecular clock genes that cross
regulate each other by positive and negative feedback loops, [MGT12], [MS04] and [TH94].
More precisely, the CTS consists of a central pacemaker, theSuprachiasmatic Nuclei (SCN)
in the hypothalamus, which is made sensitive to light by retinal afferents, and which coor-
dinates the molecular clocks in the peripheral organs by releasing/producing diffusible and
neurophysiologic signals, [DSA10].
In mammals, the core of the molecular clock consists of abouta dozen specific clock
genes. The circadian oscillations in the single cells result from transcriptional and post-
transcriptional activation and inhibition regulatory loops. Specifically, a positive branch, in-
cluding the proteins Clock, Npas2 and Bmal1, and a negative branch, including Per (Per1 and
Per2), CRY (Cry1 and Cry2) are interconnected by the nuclearorphan receptor Rev-erbα.
The heterodimer of either Bmal1+Clock or Bmal1+Npas2 activate Per and Cry genes tran-
scription. These hetherodimers action is facilitated by Ezh2 (Polycomb protein), CK2 (casein
kinase 2) and SIRT1. Per and Cry proteins accumulation and activity is also regulated by phos-
phorylation by protein kinases (CKδ , ǫ), by ubiquitination (of Crys), by histone methylation
and demethylation. Dec1 and Dec2 compete with the Bmal1+Clock/Npas2 heterodimers to
bind Per and Cry genes, therefore reducing their activation. An accessory feedback loop sees
the nuclear orphan receptors Rorα, β andγ as activators of Bmal1 circadian transcription,
whereas Rev-erbα andβ inhibit it.
The period of the circadian timing system, which isabout 24 hours, is therefore regularly
calibrated by the succession of day and night (light and dark). It can be influenced by other
environmental factors, such as socio-professional interactions and feeding times, [MS04].
The resulting circadian physiologic fluctuations are observed in sleep-wakefulness and rest-
activity alternation, body temperature, cortisol secretion by the adrenal gland, melatonin se-
cretion by the pineal gland, and they involve as well the sympathetic and the parasympathetic
systems, [TH94].
Former studies have already shown how focusing on/taking chronobiology into account can
improve anticancer treatments efficacy and reduce at the same time their toxicity/increase at
the same time their tolerability, contrary to the previous "the worst the toxicity, the better
the efficacy" paradigm, [LMDD+13], [IGM+11], [IGB+12] and [OTMB+13]. The molecular
clocks are involved in the regulation of important processes such as cell cycle and prolif-
eration, DNA damage sensing and repair, apoptosis, angiogenesis, pharmacodynamics and
pharmacokinetics, therefore they can greatly influence themetabolism, transportation and
detoxification of drugs, [LOD+10].
Tolerability to anticancer treatments has been proven to depend significantly on their timing
in respect to the circadian rhythms, measuring up to 10-foldchanges in the tolerability to drug
administration at different circadian times for 40 anticancer drugs in rodents, and up to 5-fold
in patients, [LOD+10], [LS07]. Notably, chemotherapeutic agents proved to be at their best
efficacy, both administered alone and combined, when they are also at their best tolerability
level, that is to say when they are least toxic to the healthy tissues.
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Experiments description

Furthermore, substantial interpatient variability of circadian rhythms have been observed and
can be due to factors such as gender, age and genetic polymorphisms (amongst others), there-
fore anticancer drugs dosing and timing need to be personalized, at least for subgroups of pa-
tients with similar chronotoxicity (chronobiological) key features. Modulating drugs admin-
istration according to (the patient’s) circadian rhythms is known as/called "chronotherapy",
[F.01], [ML03]. On the other hand, administrating anticancer drugs at their most toxic time
causes the disruption of molecular clocks synchronization, which has been shown to acceler-
ate the cancer evolution, [FKL+02],[FL03],[IFG+09],[MWB+00],[SSKS00] and [FIW+05]
In order to optimize cancer treatment, once proven that a certain drug effects are susceptible
to circadian rhythms, the best administration time must be identified. Furthermore, in case of
interpatient variability in chronotoxicity, we want to personalize the standard chronotherapy
to best fit to the patient’s circadian specifics.

2.2 Experiments description

The experiments considered are focused onirinotecanandeverolimus, two of the most com-
mon drugs used at the moment in cancer treatment. First, for each drug is proved the correla-
tion with on the circadian rhythms in a rodent model, which has been proved to well represent
the human circadian phisiology, [LOD+10]. This is achieved by studying the chronotoxicity
of the drug, inferred by body weight loss and histopathologic lesions, at different circadian
times (CT, or ZT, from Zeitgeber time) using mice. Their circadian clock is synchronized
by exposure to light for 12 hours, followed by 12 hours of dark, repeating this cycle for one
week, and its rhythm is detected by measuring the expressionof one or more of its core genes.
The genes are Bmal1, Per2, Rev-erbα.
Mice with a disrupted clock (clock-defective mice, obtained via the functional knock out of
one of its genes, normally Bmal1, Per2 or Rev-erbα) are used to confirm the relevance of the
molecular clock for the drug toxicity.
At the same time, the main characteristics of the circadian expression of the observed gene(s)
are studied to observe whether the administration of the drug modifies them. Once defined the
CTs or ZTs at which the drug best and worst tolerability is observed, we can look for the (spe-
cific tissutal) molecular mechanisms that influence it. Genes influencing the pharmacokinetics
(absorption, distribution, metabolism and excretion) of the drug are a good starting point, and
we can follow how their expression correlates with the higher or lower drug chronotoxicity.
For instance, the transporter abcc2, involved in the cellular efflux of several drugs, has been
shown to influence irinotecan chronotolerance in ileum, according to the circadian changes in
abcc2 local expression [OPA+11].
Similarly, the experiments that we consider are studying everolimus toxicity in respect to the
circadian expression of intestinal Mdr1a. Everolimus is ananticancer drug also used as im-
munosuppressant after transplants to prevent organ rejection and its pharmacokinetics also
depend on Mdr1a, a P-glycoprotein (P-gp) which functions asa transmembrane drug trans-
porter and is responsible for multidrug resistance in cancer cells that over-express it, [GP93]
and [EIM90].
The circadian clocks of the mice used in such experiments arefirst synchronized to the same
day-night alternation, where 12 hours of light are followedby 12 hours of dark (LD12:12).
After synchronization, the mice are kept in constant darkness (DD), which implies to subtract
the light as Zeitgeber, allowing the circadian clock to dictate their endogenous rhythm? and
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normally the period of the circadian rhythm becomes shorter. After the start of DD, the mice
are split in two groups: to one the drug is administered at theCT of the best chronotolerance,
to the other at the CT of the worst chronotolerance. For each group one mouse is kept as
control, no drug is administered to it. Throughout the experiment, gene expression and rest-
activity pattern are measured to establish how the basic parameters of their circadian rhythms
(period, acrophase, amplitude) vary in respect to the drug treatment.
Both measures are allowed by an innovative monitoring device, the RealTime-Biolumicorder
(RT-BIO), [SLC+13]. The locomotor activity is detected by an infrared sensor,whereas the
gene expression is measured at the post-translational level in mice engineered to express the
gene of interest together with luciferase (fLUC), so that the gene activity and is marked by bio-
luminescence measured by a photomultiplier tube. Common mouse strains used are C57BL/6-
based [LMDD+13], [OPA+11] and 129S1/SvImJ, [LMB+09].
An exact estimation of the Periodic Components (PC) vector of the those chronobiological
signals is needed.

2.3 Chronobiological signals: particularities

The major interest is the study of the periodicity of such chronobiological time series, i.e.
the precise estimation of the PC vector and the stability of the dominant period, requiring
a dominant periodic components variation analysis. The major limitation is given by their
reduced length. Figure (2.1) presents the signals obtained in an experiment developed in
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Figure 2.1: Example of chronobiological signals obtained in cancer treatment experiments:
the rest-activity signal (up) and the gene expression signal (photon absorption, bottom)

the conditions described in Section (2.2). As mentioned, via the RT-BIO monitoring device,
[SLC+13] the gene expression and the rest-activity patterns can be recorded. The experiment
exemplified in Figure (2.1) corresponds to 22 days and both signals are sampled every minute
(rest-activity pattern - up and gene expression - bottom). The gene expression is measured
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by a photomultiplier tube, and the amplitude of the signal represents the photon absorption.
For the rest-activity pattern, the locomotor activity is detected by an infrared sensor. For the
PC vector estimation, four segments are of great interest: the first part, corresponding to the
synchronization part, where 12 hours of light are followed by 12 hours of dark (LD12:12)
and then the second part, in complete darkness (DD), which isdivided in three segments,
corresponding to before, during and after treatment. We note that the length of those segments
vary between two or three days (the segments corresponding to the after treatment and to the
before treatment) and 7 days (the segment corresponding to the synchronization, (LD12:12)).
When studying the stability or the variability of the PC vector, even shorter signal must be
considered. More precisely, for analysing the stability for the segment corresponding to the
during treatment, at least 4 days length signals should be considered. In this context, we note
a first particularity of the signal that are considered for the PC vector estimation. Relative to
the prior knowledge,an about 24 hours periodicity, we deal with very short signals: three
or four days length signals, relative to the an about one day period. Another particularity
of such signals is represented by the noise. Both signals, the one corresponding to the gene
expression and the one corresponding to the rest-activity pattern are (very) noisy signals due
to the measurement errors.
The problem that is considered can be formulated as it follows: precise estimation of the
PC vector of noisy and very short signals relative to our knowledge for the principal period.
Examples of raw data signals for which the corresponding PC vector must be inferred are
presented in Figure (2.2) and Figure (2.3) One fundamental particularity of such signals is
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Figure 2.2: Raw data for a rest-activity pattern signal in chronobiology: before treatment (left,
3 days length), during treatment (center, 5 days length), after treatment (right, 2 days length)
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Figure 2.3: Raw data for a gene expression signal in chronobiology: before treatment (left, 3
days length), during treatment (center, 5 days length), after treatment (center, 2 days length)

given by the biological prior knowledge: the number of periodic components is small, i.e. the
PC vector is sparse. In Chapter (3) we present the drawback of the classical methods, and
in Chapter (4) we present the proposed method for the PC vector estimation, using the prior
information.

25



CHAPTER 2. INTRODUCTION

2.4 Summary description of the following chapters

In Chapter (2) we have established the context of our work. Briefly, the fundamental goal of
our work can be summarized as it follows:
Estimate the sparse PC amplitudes vector corresponding to short duration signals relative
to the (prior) dominant period with a given precision. The number of components is small
(sparse PC amplitudes vector) but unknown.
First, we present some classical methods that can be considered in order to address the above
question. In Chapter (3) we examine the Fourier Transform techniques, the Direct orGeneral-
ized Inversion (DI), Least Squares (LS) and Regularized Least Squares techniques and finally
we consider theL1 regularization and the LASSO method, the nearest state of art method to
account for sparsity throughL1 regularization term. We will show that given the particulari-
ties of the context, i.e. the short duration of the signals relative to the (prior) dominant period,
the high level of noise in the signals, the above methods do not give satisfactory results.
In Chapter (4) we introduce the proposed solution, based on a forward model that accounts the
noise, built in a similar way as the one corresponding to the Fourier transform but using the
elements corresponding to the considered circadian PC amplitudes vector (in terms of limits
and precision). The estimation of the PC amplitudes vector (but also the other hyperparmeters
involved in the model, i.e. the variances corresponding to the PC amplitudes vector and the
noise) corresponds to an ill posed inverse problem, due to the huge condition number of the
matrix in the forward model. The proposed inversion is basedon the general Bayesian in-
ference, based on a generalization of the Student-t distribution used as the sparsity enforcing
prior for the PC amplitudes vector.
In Chapter (5) we test the results corresponding to the proposed algorithm on synthetic data,
for different levels of noise.
In Chapter (6) the proposed algorithm is used for real data. Finally, in Chapter (7) we present
the conclusions.
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THE main objective of this chapter is to show that the classical methods have some limi-
tations when faced with the biological signals we are concerned. To show this, first we

simulate a synthetic signalg(t) very near to the biological data we may have to process (short
signal, i.e. 4 days length, very noisy, i.e. 5dB) and show thelimitations of many well known
methods.

3.1 Basic example and notations

For this purpose, first we consider the following forward model:

g(t) = g0(t) + ǫ(t), (3.1)

where

• g0(t) =
∑M

j=1 f je
−i 2π

pj
t
;

• p = {p1, p2, . . . pM} is the known periods vector, called Periodic Components (PC)
vector during the manuscript;
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CHAPTER 3. CLASSICAL METHODS

• f = {f1, f2, . . . fM} is the corresponding amplitudes vector, called Periodic Compo-
nents (PC) amplitudes vector;

• ǫ(t) represents the errors and noise.

We are assuming that a few componentsp∗ of p have non-zero amplitudesf∗. In order to
analyse the effects of the noise, we will apply the methods not only on the original signal
g0(t), i.e. the signal without noise, but also on the noisy signalg(t). As we are using sampled
signalg(t) for t = 0, . . . , (N − 1)∆t, with ∆t = 1h. In the following we can writeg0 = Hf

andg = g0 + ǫ whereg = {g0, g1, . . . , gN−1}, ǫ = {ǫ0, ǫ1, . . . , ǫN−1}, andHnm = e−i 2π
pm

tn .
To summarize:

• f - original Periodic Component (PC) amplitudes vector;

• f ∗ - the non-zero elements off ;

• g0 - original signalg0 = Hf

• g - noisy signalg = Hf + ǫ;

• f̂0 - estimatedf by any method, corresponding to the original signal,g0

• f̂ - estimatedf by any method, corresponding to a noisy input,g

• δf 1 - L1 relative estimation errorδf 1 = ‖f−f̂ ‖1

‖f ‖1

• δf 2 - L2 relative estimation errorδf 2 =
‖f−f̂ ‖2

2

‖f ‖2
2

• ĝ - reconstructed signal (estimated data)ĝ = Hf̂

• δg1 - L1 relative estimation errorδg1 = ‖g−ĝ‖1

‖g‖1

• δg2 - L2 relative estimation errorδg2 =
‖g−ĝ‖2

2

‖g‖2
2

Some classical methods are presented in this chapter. Section (3.2) presents the results cor-
responding to the Fourier Transform. Section (3.3) presents the results corresponding to the
zero padding technique. In Section (3.4) we discuss the Direct Inversion (DI). Section (3.5)
deals with the results corresponding to the Least Squares and Regularized Least Squares tech-
niques. In Section (3.6) we consider the LASSO technique and present the corresponding
results.
We consider a synthetic sparse PC amplitudes vector, definedfor the circadian domain and for
the potential relevant harmonics,[8 : 32], with non zero values corresponding to 11h, 15h and
23h. The corresponding amplitudes are 0.7, 0.5 and 1. The PC amplitudes vector, the forward
operator, the corresponding signal and noisy signal (SNR=5dB) are presented in Figure (3.1).
We apply the methods mentioned above both for the signal without noise (Figure (3.1c)) and
for the noisy signal, 5dB (Figure (3.1d)). For each PC amplitudes vector estimation, we
present the comparison with the theoretical PC amplitudes vector, Figure (3.1a) and also the
comparison between the reconstructed signal and the signalwithout noise. For certain meth-
ods (LASSO) we will also consider the variability of theL1 andL2 PC amplitudes vector error
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Fourier Transform

estimation for different noise realisation, in order to establish if the method is stable. We also
present results corresponding to the behaviour of theL1 andL2 PC amplitudes vector error
estimation depending on the level of noise (SNR).
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Figure 3.1: Synthetic data: sparse theoretical PC amplitudes vectorf with 3 non-zero peaks
corresponding to 11h, 15h and 23h (3.1a); forward operatorH (3.1b); original signalg0 =
Hf (3.1c); noisy signalg = g0 + ǫ (SNR=05dB) (3.1d)

3.2 Fourier Transform

The spectral analysis for time series is a well known subjectin literature for a very long time.
Some of the most used methods are the Fast Fourier Transform based methods, which are
widely used for many applications in the signal processing community, having obvious ad-
vantages: the FFT based methods are well known, well understood and fast. Nevertheless, the
particularities of the biomedical signals considered in chronobiology experiments show that
the classical methods presents certain limitations. In particular, for short time series relative to
the searched (via prior knowledge) periodic components (inthe experiment considered in this
article, a 96h recorded signal relative to a 24h periodic component, linked with the circadian
clock) the precision given by the FFT methods is by far insufficient for determining the exact
periodic components. This is a consequence of the fact that via the FFT based methods, even
if the frequencies are linear, the periods are not equidistant. In particular, for a four day (96h)
recorded biomedical signal, beside the 24h corresponding periodic components, the nearest
amplitudes in the periodic components vector correspond tothe 32h, respectively 19h periodic
components. More general, if the prior knowledge sets the principal period around a value
P , it is easy to see that in order to obtain a period vector that contains the periodP and also
the periodsP − 1 andP + 1, the signal must be observed for(P − 1)(P + 1) periods, i.e.
(P − 1)P (P + 1). For the chronobiology applications, where the circadian period is around
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24h, this is translated as the need to record a signal for 575 days in order to obtain a periodic
component vector that contains the 23, 24 and 25 periods. Evidently, the signal should be
observed for an exponential bigger interval of time in orderto obtain a periodic component
vector that contains all the periods from the circadian domain is searched.
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Figure 3.2: Estimated PC amplitudes vectorsf̂0 (3.2c) andf̂ (3.2d) for the original signalg
(3.2a) and the noisy signalg0 (3.2b) corresponding to the theoretical sparse PC amplitudes
vector, (3.1a)

As an example, Figure (3.2) presents the FFT PC amplitudes vectorsf̂0 (Figure (3.2c))
and f̂ (Figure (3.2d)) corresponding to the original signalg0 and the noisy signalg. The
signals presented in Figure (3.2a) and Figure (3.2b) correspond to the sparse PC vector, Fig-
ure (3.1a), via the forward operator, Figure (3.1b).
The corresponding PC amplitudes vectors obtained via FFT are presented for the interval be-
tween 8h and 32 h, the circadian domain. In the synthetic PC vector the non-zero periods are
set for 11h, 15h and 23h (dominant peak). The FFT estimates the dominant peak at 24h, due
to the fact that the time series observation period is limited to 96h, for both cases, original
and noisy signal. In such conditions, it offers no information for the correct positions, 11h,
15h, 23h. It also offers no informations for the periods in the interval[20 : 31], except the
estimation for 24h. A better image of the intervals with no information from the PC ampli-
tudes vectors estimations is presented in Figure (3.3), where the periods of the PC amplitudes
vector are not scaled.

For similar signals, corresponding to PC vectors having theprincipal peak around 24h,
the FFT will estimate the principal peak at 24h. Another example is presented in Figure (3.4).
A four days length signal recorded in an experiment in chronobiology is presented in Fig-
ure (3.4a). Figure (3.4b) presents its corresponding FFT PC amplitude vector, with the same
drawbacks presented in the synthetic example, Figure (3.2). The FFT PC vector presents
peaks corresponding only to 8h, 8.72h, 9.6h, 10.66h, 12h, 13.71h, 16h, 19.2h, 24h and 32h
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Figure 3.3: Estimated PC amplitudes vectorsf̂0 (3.3a) andf̂ (3.3b). Periods are not scaled
in the plot.

inside the considered interval[8 : 32]. The periods corresponding to 24h, 12h and 8h can
be associated with the presence of the circadian rhythm, expressed by the principal peak and
the corresponding harmonics. But the presence of the other peaks can be more difficult to
be interpreted by the biologists. Another drawback of FFT isthe difficulty of selecting the
peaks corresponding to the presence of a biological phenomena and peaks that are explained
by error measures and uncertainties.

Figure (3.4c) presents the PC amplitudes vector estimated via the proposed method, pre-
sented in Chapter (4).

3.3 Zero Padding

One possible approach to artificially increase the precision of the FFT estimation is the zero
padding technique, which consists of appending zeros to thesignal. In the simulations pre-
sented in this Section (3.2), we have considered a four days length signal, and analysedthe
FFT PC amplitudes vector estimation, Figure (3.2). Between 8h and 32h, via FFT, we obtained
informations corresponding only for 10 periods. Considering the zero padding technique, the
number of the periods in the PC amplitudes vector can be increased.

First, we consider the signal from Figure (3.1c) and the noisy signal from Figure (3.1d),
both padded with zero values for four days, and the corresponding FFT PC amplitudes vectors,
Figure (3.5):

Padding the signal with 4 additional days with zero values, the results do not improve:
there are still no informations for certain periods inside the studied domain: compared with
the FFT PC amplitudes vector estimated using just the available signal, with zero padding the
interval [20 : 31] has only two additional periods, corresponding to 21.3 and 27.4. A better
image of the segments with no information for the periods is showed in Figure (3.6).However,
the sparsity rate is increased (the PC amplitudes vector is less sparse), and selecting the peaks
corresponding to the biological phenomena is difficult.

We consider the same approach, padding the signal with 12 days of zero values, Fig-
ure (3.7):

Also in this case there are still no informations for certainperiods inside the studied do-
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Figure 3.4: Real data: A 4 days length signal recorded in cancer treatment experiments (3.4a),
the PC amplitudes vector corresponding to FFT (3.4b) and corresponding to the proposed
method (3.4a).

main, Figure (3.8). Evidently, increasing the length of the zero vector, we can obtain infor-
mations corresponding to the all periods from the circadiandomain considered. However, the
estimation is not a sparse vector, and therefore the selection of the periods corresponding to
the biological phenomena is very difficult.

3.4 Direct or Generalized Inversion

In this section, we consider another classical method: the Direct Inversion (DI). Wheng =
Hf andH is a square and invertible matrix, we havef̂ = H−1g. In fact, the case where
H is the FFT matrix,H−1 is the IFFT matrix. But in our case, the forward operatorH is
not necessarily a square matrix, but the pseudoinverse (or the generalized inverse) can still be
used. The relation between the original signalg0 and the corresponding PC amplitudes vector
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Figure 3.5: Estimated PC amplitudes vectorsf̂0 (3.5c) andf̂ (3.5d) for the zero padded origi-
nal signalg (3.5a) and the zero padded noisy signalg0 (3.5b) corresponding to the theoretical
sparse PC amplitudes vector, (3.1a)
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Figure 3.6: Estimated PC amplitudes vectorsf̂0 (3.6a) andf̂ (3.6b), corresponding to zero
padded signals. Periods are not scaled in the plot.

f is given in Equation (3.2).

g0 = Hf (3.2)
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Figure 3.7: Estimated PC amplitudes vectorsf̂0 (3.7c) andf̂ (3.7d) for the zero padded origi-
nal signalg (3.7a) and the zero padded noisy signalg0 (3.7b) corresponding to the theoretical
sparse PC amplitudes vector, (3.1a)
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Figure 3.8: Zero padded signal (a) and the corresponding FFTPC amplitudes vector.

DefiningH+ = HT
(
HHT

)−1
it is easy to verify thatH+ is satisfying all of the following

four criteria:

HH+H = H (3.3a)

H+HH+ = H+ (3.3b)
(
HH+

)T
= HH+ (3.3c)

(
H+H

)T
= H+H (3.3d)

so H+ is the pseudoinverse ofH. First, we apply the method considering the signal with-
out noise, Figure (3.9a). The estimated PC vector via DI is presented in Figure (3.9b).
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The comparison between the estimated PC amplitudes vector via DI and the theoretical
PC amplitudes vector is presented in Figure (3.9c). The L1 PC amplitude vector estima-
tion error isδf1 = 0.86 × 10−6 ≃ 0 and theL2 PC amplitude vector estimation error is
δf2 = 0.56 × 10−6 ≃ 0. The comparison between the reconstructed signal the original signal
is presented in Figure (3.9d), with theL1 signal reconstruction error isδg1 = 0.42×10−15 ≃ 0
and theL2 signal reconstruction error error isδg2 = 0.44 × 10−15 ≃ 0. In this case, the DI
method gives very good result.
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Figure 3.9: Direct Inversion: Signal without noise

However, for the forward operator, we note that the condition number of the matrix is very
high. In particular, in this case we have

cond(H) = 5.6799 × 1010, (3.4)

where H denotes the forward operator, Figure (3.1b). Due to this high value of the condition
number of the matrix, the problem is ill-posed. We consider in the following the results
corresponding to the DI, but applied on the noised signal. First, we consider the case SNR=
50dB, Figure (3.10).

We note that for a very small SNR, even though the signal is well reconstructed, Fig-
ure (3.10d), with the L1 signal reconstruction errorδg1 = 1.6 × 10−3 and theL2 signal
reconstruction error error isδg2 = 1.6 × 10−3, the PC estimation via DI, Figure (3.10c) has a
huge error: theL1 PC amplitude vector estimation error isδf1 = 4.87 × 106 and theL2 PC
amplitude vector estimation error isδf 2 = 3.24 × 106. Further, we consider the SNR= 20dB
(Figure (3.11)) and SNR= 05dB (Figure (3.12)) cases:

In both cases, the signal reconstruction is fairly accurate. For 20dB, theL1 signal recon-
struction errorδg1 = 3 × 10−2 and theL2 signal reconstruction error error isδg2 = 4 × 10−2,
Figure (3.11d) and for05dB, theL1 signal reconstruction errorδg1 = 2.3 × 10−1 and theL2
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Figure 3.10: Direct Inversion: Signal with noise, 50dB
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Figure 3.11: Direct Inversion: Signal with noise, 20dB

signal reconstruction error error isδg2 = 2.4 × 10−1, Figure (3.12d). In both cases, the PC
amplitude vector error estimation is huge. For20dB theL1 PC amplitude vector estimation
error isδf 1 = 2.5 × 109 and theL2 PC amplitude vector estimation error isδf2 = 1.5 × 109,
Figure (3.11c) and for05dB theL1 PC amplitude vector estimation error isδf 1 = 2.7 × 1010
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Figure 3.12: Direct Inversion: Signal with noise, 05dB

and theL2 PC amplitude vector estimation error isδf 2 = 1.7 × 1010, Figure (3.12c). The
behaviour of the DIL1 andL2 PC amplitudes vector estimation errorδf 1 andδf 2 andL1

andL2 signal reconstruction errorδg1 andδg2, depending on the level of noise is presented
in Figure (3.13).

The PC estimation error via Direct Inversion is huge even forsmall values corresponding
to the SNR, Figure (3.13a). Therefore, the Direct Inversion approach can not be used for a
precise PC amplitudes vector estimation, due to the fact that the for the real data, the level of
noise is very important.

3.5 Least Squares and regularized LS

In this section, we consider another classical method: the Least Squares and its extension,
regularized Least Squares. For the LS, the solution is givenby:

f̂ = arg min
f

‖g − Hf‖2
2, (3.5)

which leads to
f̂ = (HT H)−1HT f (3.6)

For the regularized LS, the solution is given by:

f̂ = arg min
f

J(f ), (3.7)

where the criterionJ(f ) is defined as:

J(f ) = ‖g − Hf‖2
2 + λ‖f‖2

2. (3.8)
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Figure 3.13: Direct InversionL1 andL2 errors: PC estimation errors and signal reconstruction
errors

First, we consider the Least Squares, applied on the signal without noise, Figure (3.14).
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Figure 3.14: Least Squares: Signal without noise

We note that the reconstruction of the signal is accurate, with theL1 signal reconstruction
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errorδg1 = 5.4×10−7 ≃ 0 and theL2 signal reconstruction error error isδg2 = 5.94×10−7 ≃
0, Figure (3.14d).

The LS PC amplitude vector estimation, Figure (3.14c) has a significant error: theL1 PC
amplitude vector estimation error isδf 1 = 0.69 and theL2 PC amplitude vector estimation
error isδf2 = 0.45. We note that different from the DI approach, presented in Section (3.4),
for which the PC amplitude vector estimation error is huge when the considered signal is
noisy, but the PC amplitude vector estimation error is very small for the case when the input
has no noise, for the LS approach, the PC amplitude vector estimation error is significant even
in this case.

We consider the cases where the signal is noised, SNR= 15dB, Figure (3.15), SNR=
10dB, Figure (3.16) and SNR= 05dB, Figure (3.17)
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Figure 3.15: Least Squares: Signal with noise, 15dB

The results corresponding to the LS method, considering theinput signal with SNR=
15dB noise is presented in Figure (3.15). The input signal, with SNR= 15dB is presented
in Figure (3.15a). The estimated PC vector via LS is presented in Figure (3.15b). The com-
parison between the estimated PC amplitudes vector via LS and the theoretical PC ampli-
tudes vector is presented in Figure (3.15c). TheL1 PC amplitude vector estimation error is
δf1 = 4.44 × 102 and theL2 PC amplitude vector estimation error isδf2 = 1.95 × 102.
The comparison between the reconstructed signal and the original signal is presented in Fig-
ure (3.15c), with theL1 signal reconstruction errorδg1 = 0.08 and theL2 signal reconstruc-
tion errorδg2 = 0.08.

The results corresponding to the LS method, considering theinput signal with SNR=
10dB noise is presented in Figure (3.16). The input signal, with SNR= 10dB is presented
in Figure (3.16a). The estimated PC vector via LS is presented in Figure (3.16b). The com-
parison between the estimated PC amplitudes vector via LS and the theoretical PC ampli-
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Figure 3.16: Least Squares: Signal with noise, 10dB

tudes vector is presented in Figure (3.16c). TheL1 PC amplitude vector estimation error is
δf 1 = 6.31 × 102 and theL2 PC amplitude vector estimation error isδf 2 = 2.77 × 102.
The comparison between the reconstructed signal and the original signal is presented in Fig-
ure (3.16c), with theL1 signal reconstruction errorδg1 = 0.13 and theL2 signal reconstruc-
tion errorδg2 = 0.12.

The results corresponding to the LS method, considering theinput signal with SNR=
05dB noise is presented in Figure (3.17). The input signal, with SNR= 05dB is presented
in Figure (3.17a). The estimated PC vector via LS is presented in Figure (3.17b). The com-
parison between the estimated PC amplitudes vector via LS and the theoretical PC ampli-
tudes vector is presented in Figure (3.17c). TheL1 PC amplitude vector estimation error is
δf 1 = 7.16 × 102 and theL2 PC amplitude vector estimation error isδf 2 = 3.17 × 102.
The comparison between the reconstructed signal and the original signal is presented in Fig-
ure (3.17c), with theL1 signal reconstruction errorδg1 = 0.26 and theL2 signal reconstruc-
tion errorδg2 = 0.25.

For all three levels of noise considered, the signal reconstruction errors are fairly accurate.
For the PC amplitudes vector estimation errors are very important. The behaviour of the LSL1

andL2 PC amplitudes vector estimation errorδf 1 andδf2 andL1 andL2 signal reconstruction
errorδg1 andδg2, depending on the level of noise is presented in Figure (3.18).

An extension of the LS approach is the regularized LS. We consider, different values for
the regularization termλ and apply the RLS both on the signal without noise and with noise,
SNR= 5dB. Figure (3.19) presents the simulations corresponding toλ = 0.1, considering the
signal without noise.

The signal is well reconstructed, Figure (3.19d). L1 and L2 reconstruction errors are
0.0018 and0.002. However, for the PC amplitudes vector estimation, bothL1 andL2 errors
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Figure 3.17: Least Squares: Signal with noise, 05dB
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Figure 3.18: Least SquaresL1 andL2 errors: PC estimation errors and signal reconstruction
errors

are high, Figure (3.19c): 0.89 and0.57.

Figure (3.20) presents the simulations corresponding to the same regularization parame-
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Figure 3.19: Regularized Least Squares,λ = 0.1: Signal without noise

ters, but considering the noisy signal, SNR= 5dB.
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Figure 3.20: Regularized Least Squares,λ = 0.1: Signal with noise, 5dB

The signal is not well reconstructed, Figure (3.20d), L1 andL2 reconstruction errors are
0.20 and0.20, nor the PC amplitudes vector estimation is acurate, bothL1 andL2 errors are
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high, Figure (3.20c): 1.44 and0.64.

The behaviour of theL1 andL2 PC amplitudes vector estimation errors and signal recon-
struction are presented in Figure (3.21)
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Figure 3.21: Regularized Least SquareL1 andL2 errors: PC estimation and signal reconstruc-
tion

Figure (3.22) presents the behaviour of the L1 (Figure (3.22a)) and L2 (Figure (3.22b))
signal reconstruction error depending on the level of noise, for different values ofλ (λ =
{0.01, 0.1, 0.5, 1, 10}):

Figure (3.23) presents the behaviour of the L1 (Figure (3.23a)) and L2 (Figure (3.23b))
PC estimation error depending on the level of noise, for different values ofλ (λ =
{0.01, 0.1, 0.5, 1, 10}):

3.6 L1 regularization and LASSO

In Section (3.5), we have considered the LS method, and also the quadratic regularized ver-
sion of this method. Another regularized version of LS is theLeast Absolute Shrinkage and
Selection Operator (LASSO) method which uses the constraint that the L1-norm of the PC
amplitudes vector is no greater than a given value. We note that in the Bayesian approach, the
LASSO method is equivalent to the use of a zero-mean Laplace prior distribution on the PC
amplitudes vector. The optimization problem may be solved using quadratic programming
or more general convex optimization methods, as well as by specific algorithms such as the
LASSO algorithm. The L1-regularized formulation is usefulin the context of a sparse PC
amplitudes vector, due to its tendency to prefer solutions with a small number of non-zero
parameter values.
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Figure 3.22: Regularized Least Squareδg1 andδg2 signal reconstruction errors for different
values ofλ
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For LASSO, the solution is given by:

f̂ = arg min
f

J(f), (3.9)
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where the criterionJ(f ) is defined as:

J(f ) = ‖g − Hf‖2
2 + λ‖f‖1. (3.10)

Figure (3.24) presents the simulations corresponding to LASSO method, considering the
signal without noise:
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Figure 3.24: LASSO: Signal without noise

In this case, for the signal without noise, the PC amplitudesestimation (and, consequently,
the signal reconstruction) is very accurate. Via the LASSO method, the estimation is a sparse
vector, and for all the non-zero values, the estimated amplitudes are very close to the real
ones, Figure (3.24c). TheL1 error norm is0.031 and theL2 error norm is0.030. The com-
parison between the reconstructed signal and the original signal is presented in (3.24d). We
consider now the case when the input signal is noisy. Figure (3.25) presents the simulations
corresponding to LASSO method, but considering the noisy signal, SNR= 10dB.

We note that for a SNR= 10dB, via the LASSO method the estimation of the PC am-
plitudes vector is still accurate, Figure (3.25c). The estimation is sparse, and except the am-
plitudes corresponding to 8h and 10h, which are negligible,the periods corresponding to
non-zero amplitudes are correctly detected. TheL1 error norm is0.22 and theL2 error norm
is 0.13. We consider the case when the SNR= 5dB. Figure (3.26) presents the simulations
corresponding to LASSO method, but considering the noisy signal with SNR= 5dB.

Figure (3.26c) shows the comparison between the estimated PC amplitudes vector and the
theoretical PC amplitudes vector. TheL1 error norm is0.17 and theL2 error norm is0.19. The
PC amplitudes vector is sparse and the periods corresponding to non-zero amplitudes are cor-
rectly detected, and the amplitudes are fairly accurate. However, LASSO method can provide
very inaccurate estimations. Figure (3.27) presents the results corresponding to a simulation
done in the same conditions as the one from Figure (3.26): a noisy signal with SNR= 5dB
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Figure 3.25: LASSO: Signal with noise, 10dB
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Figure 3.26: LASSO: Signal with noise, 5dB - Accurate estimation

used as the input using the same LASSO method, but for a different noise realisation. How-
ever, in this case the solution is not sparse, and the estimation of the amplitude corresponding
to the 23h period is far from being accurate, Figure (3.27c). In this case, theL1 error norm is
3.07 and theL2 error norm is1.5.
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Figure 3.27: LASSO: Signal with noise, 5dB - Inaccurate estimation

LASSO method can provide good results for the PC amplitudes vector, even for SNR=
5dB. But in certain cases, for high signal to noise ratios, themethod is not stable. Figure (3.28)
presents the variations of the LASSOL1 andL2 error norms corresponding to the PC ampli-
tudes vector estimation (Figure (3.28a)) and to the signal reconstruction (Figure (3.28b)) using
as an input a noisy signal with SNR= 10dB, for 50 different noise realisations. For the sig-
nal reconstruction, the variation is not very important, i.e. the LASSO method provides an
estimation of the PC amplitudes vector that can accurately reconstruct the signal. However,
for the estimation of the PC amplitudes vector, the variation of the error is important, and
in certain cases, the error value is high. In this experiment, we note that for the 50th noise
realisation, via the LASSO method the PC amplitudes vector error estimation is superior to
2.5 for L1 norm and superior to1.5 for L2 norm.

The instability of the LASSO method is more obvious when considering the variability of
theL1 andL2 error norms for 50 different noise realisations with the input the noisy signal,
with SNR= 5dB, Figure (3.29) and Figure (3.30).

For the signal reconstruction, in both examples, Figure (3.29b) and Figure (3.30b) the
variation is not very important, i.e. the LASSO method provides an estimation of the PC
amplitudes vector that can accurately reconstruct the signal. For the estimations of the PC
amplitudes vector, the variation of the error is important,and in certain cases, the error value
is high. In these experiments, we note that for the 45th noiserealisation in the first experiment
(Figure (3.29b)) and for the 9th noise realisation in the second experiment(Figure (3.30b)),
via the LASSO method the PC amplitudes vector error estimation is superior to2.5 for L1

norm for the first experiment and superior to7 for L1 norm for the second experiment.

The behaviour of the LASSOL1 andL2 error norms corresponding to the PC amplitudes
vector estimation and to the signal reconstruction is presented in Figure (3.31).
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3.7 Conclusion and why go to Bayesian

The classical methods presented in this chapter do not give satisfactory results. The FFT ap-
proach fails to give the one hour precision for the PC vector,and while via the zero padding
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the precision can be improved, the sparse structure of the PCvector is not achieved. The
Direct and Generalized Inversion is extremely sensitive tothe level of noise: the estimation
of the PC amplitudes vector is very precise in the particularcase when the considered signal
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has no noise, but fails to correctly estimate the PC amplitudes vector when even very small
level of noise is considered, although the reconstruction of the signal is very accurate. Also
the Least Squares and the regularized LS fails to correctly estimate the PC amplitudes vector
when the input is noisy. Setting the regularization parameter is also critical. Finally while the
L1 regularization can give satisfactory results, even for high levels of noise, this approach has
two fundamental drawbacks: the stability of the solution and the determination of the regu-
larization parameter. For the choice of the regularizationparameter, there are many methods.
We can mention theL−curve and the cross validation. We used the cross-validation method
proposed in theMATLAB program for optimal value of the regularization parameter,even if
this step has high computational cost. The stability of the solution is a more important draw-
back: depending on the realization of the noise, the method may not be able to find the right
solution, as showed in Figure (3.29) (a). Final point related to all the deterministic regulariza-
tion methods is that they do not give naturally the possibility of quantifying the uncertainties.

Regardless of their drawbacks in terms of precision or the stability of the solution, the
methods presented in this chapter don’t allow the estimation of the variances associated with
the PC amplitudes vector.

A Bayesian approach allows accounting for the prior information, in our case the sparse
structure of the PC amplitude vector, by selecting a sparsity enforcing prior and also allows
the estimation of the variances associated with the PC amplitudes vector, by considering the
variances in our model as unknowns.
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THIS chapter is dedicated to the detailed presentation of the proposed method and the re-
sulting algorithms. First, we present the proposed linear (sinusoidal) model. Other ap-

proaches for modelling this problem are mentioned and discussed. Then, the general Bayesian
inference is discussed. After that, we give a detailed presentation of the hierarchical model
that is build: the probability density functions considered for the likelihood, for the priors and
for the hyperparameter priors. The unknowns of the model areestimated from the posterior
distribution derived from the hierarchical model, via the Bayes rule, considering Joint Max-
imum A Posterior and Posterior Mean. For each estimator the computational methods are
presented in detail, along with their corresponding algorithm.
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4.1 Forward model and inverse problem approach

The proposed method for improving the precision in PC vectorestimation consists, in the first
step, in formulating the problem as a linear forward model. This can be done starting from the
inverse Fourier transform, which establishes a linear relation between the known signalg(t)
and its PC amplitudes vector. Evidently, in this case, the PCamplitudes vector is the one that
is set by default by the FFT method. Considering a matrix thatis built in the same way as the
one corresponding to the inverse Fourier transform, but using the elements that corresponds
to the imposed PC vector, the linear relation between a chronobiological time series and the
corresponding PC vector can be described by the following equation:

g(ti) ≃
M∑

j=1

f1(pj) sin(2π
ti

pj

) +
M∑

j=1

f 2(pj) cos(2π
ti

pj

), i ∈ {1, . . . , N} , j ∈ {1, . . . , M}

(4.1)
In Equation (4.1), the following notations are used:

• ti, i ∈ {1, 2, . . . , N} represents the sampling points of the observed signal; in partic-
ular, both for synthetic and real data simulations, we have considered the observed
signal sampled every hour. During the real data simulationswe had to consider differ-
ent lengths, depending on the segment that was studied, i.e.2 days length signals for
the segments corresponding to the after treatment segment (N = 48), 3 days length
signals for the segments corresponding to the before treatment (N = 72), 5 days length
signals for the segments corresponding to the during treatment (N = 120). For the seg-
ments that allowed the study of the stability or variabilityof the PC amplitudes vector,
the length of the windows was 4 days. In particular, for the synthetic simulations, the
length of the observed signals was considered also 4 days (N = 96).

• g(ti) represents the amplitudes of the observed signal, corresponding to the sampling
point ti

• pj , j ∈ {1, 2, . . . , M} represents the periods contained by the PC vector; during the
simulations, we consider a precision of one hour, in the circadian domain, between 19h
and 32h. In order to analyse the behaviour of the potential harmonics corresponding to
the periodic components inside the circadian domain, we will also include the periodic
components superior to 7h. So, the PC vector considered in the simulations will be
[8h, 9h, . . . , 32h], M = 25.

• f 1(pj) andf 2(pj) represents the amplitudes of PC vectors, corresponding to the period
pj .

Introducing the notations:

g(ti) = gi, i ∈ {1, ..., N} ; fk(pj) = fkj , k ∈ {1, 2} , j ∈ {1, ..., M} , (4.2)

equation (4.1) becomes:

gi ≃
M∑

j=1

f 1j sin(2π
ti

pj
) +

M∑

j=1

f 2j cos(2π
ti

pj
) −→ g ≃ H1f1 + H2f 2 (4.3)
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The potential modelling and measurement errors should be accounted. This is critical in
our model, since the chronobiological signals are noisy. Wewant to be able to distinguish
between the periodic components corresponding to the biological phenomena and the period
components that are due to the noise and uncertainties. The linear model (4.3) is completed
by introducing the error vectorǫ, leading to the forward linear model:

g = H1f 1 + H2f 2 + ǫ (4.4)

where the following notations are used:

• g represents the observed data i.e. the chronobiological time series: g =[
g1, g2 . . . gN

]T ∈ MN×1 , a N-dimensional vector, where the notationg(ti) = gi

introduced in (4.2) is used;

• H1 andH2 represent the sine and cosine matrices,[H1]ij = (sin(2π ti

pj
))ij, [H2]ij =

(cos(2π ti

pj
))ij ∈ MN×M corresponding to the considered period component vector

[
p1, p2, . . . , pM

]T
;

• f1 and f2 represent the unknowns of the forward linear model (4.4), i.e. the peri-
odic components vector amplitudes, corresponding to the sine matrixH1 and cosine

matrix H2: f 1 =
[
f11, f 12, . . . , f 1M

]T
, f2 =

[
f 21, f 22, . . . , f 2M

]T
, ∈ MM×1,

M-dimensional vectors, where the notationsf 1(pj) = f 1j andf 2(pj) = f2j introduced
in (4.2) are used;

• ǫ represents the errors:ǫ =
[
ǫ1, ǫ2, . . . , ǫN

]T ∈ MN×1, is aN-dimensional vector;
together with the two PC vectors amplitudes,f 1 andf 2 the error vectorǫ represents
the unknowns of the model (4.4).

The main goal is to estimate the unknowns of the linear model (4.4), i.e. the PC
amplitude vectorsf̂ 1 and f̂ 2 and the error vector̂ǫ. In our approach, the strat-
egy used is based on general Bayesian inference: building a hierarchical model, by
assigning probability density functions for the likelihood, for the priors, and in or-
der to estimate the hyperparameters that appear in the hierarchical model (namely the
variances associated with the unknowns of the linear model (4.4), i.e. f̂1, f̂ 2 and
ǫ̂) for the hyperparameters priors and then estimating the unknowns from the poste-
rior probability density function, obtained via Bayes rule, using the available datag:

g ✲ Inversion ✲ f̂ 1, f̂ 2
✲ H1, H2

✲ ĝ

Once an inversion method is considered and the corresponding estimations are obtained, the
estimation accuracy can be verified by comparing the estimates f̂1 and f̂ 2 with f1 andf 2.
Evidently, such a comparison is possible just in the synthetic case. From the estimateŝf 1 and
f̂2, via the linear model (4.4) the reconstructed signalĝ = H1f̂ 1 + H2f̂ 2 is computed and
then compared with the availableg. This comparison is possible in both the synthetic simula-
tions and the real simulations case. The comparison can be done computing the Normalized
Mean Squared Error (NMSE,p = 2) or Normalized Mean Absolute Error (NMAE,p = 1)
via the following relations:

δpf =
‖f − f̂‖p

p

‖f‖p
p

; δpg =
‖g − ĝ‖p

p

‖g‖p
p

, p = 1, 2. (4.5)
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Remark on the linear model
The linear model considered in Equation (4.4) can be expressed in a different form. Introduc-
ing the notations

H = [H1, H2] ; f =

[
f 1

f 2

]
(4.6)

the linear model can be expressed by the following equation:

g = Hf + ǫ (4.7)

In particular, Equation (4.7) is expressing an forward model that corresponds to many
other application such as signal deconvolution, image restoration, Computed Tomography
(CT) image reconstruction, Fourier Synthesis (FS) inversion, microwave imaging [NMD94]
and [FDMD07], ultrasound echography, seismic imaging, radio astronomy [KTB04] fluores-
cence imaging, inverse scattering [CMD97], [FDMD05], [AMD10] and [GHBMD13], Eddy
current non destructive testing [NMD96] or SAR imaging [AKZ06]. In all these examples,
including the PC amplitude vector estimation, the common inverse problem is to estimatef
from the observations ofg. In general, the inverse problems are ill-posed [Had01], since the
conditioning number of the matrixH is very high. This means that, in practice, the datag

alone is not sufficient to define an unique and satisfactory solution.

One particular case of the linear model, Equation (4.7) is when the error vector is neglected
(ǫ = 0). For this particular case, the linear model is given by the equation

g = Hf . (4.8)

If the matrix H was invertible and orthogonal, i.e.HT H = I (this is the case of the Fast
Fourier Transform for the particular case whenM = N), the solution is given by

f̂ = HT g. (4.9)

If the matrix is just invertible but not orthogonal we could write

f̂ = H−1g. (4.10)

If the matrix is not invertible we can still define generalized inverse or pseudo-inverse solu-
tions. The Minimum Norm Solution (MNS) and the Least Square Solution (LSS) are two
examples:

MNS : f̂MN =
(
HHT

)−1
HT g, M < N (4.11)

LSS : f̂LS = HT
(
HHT

)−1
g, M > N (4.12)

However, neither solutions Equation (4.10), Equation (4.11) and Equation (4.12) are helpful
in practice, since they don’t account for the noise. These inverse solutions are in general too
sensitive to the errors due to the ill-conditioning of the matrix H in Equation (4.10), HT H

in Equation (4.11) andHHT in Equation (4.12).

Among the techniques that have been successfully used for solving Equation (4.7) are
regularization theory and the Bayesian inversion. Quadratic and Tikhonov regularization
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is developed in [DR85], [Hol92], [PL99] and [YLZF12]. Total Variation (TV) is devel-
oped in [CW98], [ZL11] and [YFZ12], different entropy based regularization are devel-
oped in [Wig77], [Dee81], [Don81] and [MDD88], Lp and sparsity enforcing in [YBW85]
and [WHmPw08], blind deconvolution and applications in [NPQ00], [JSM+02], [Fio04]
and [MSSM11]. Cross Validation (CV) and generalized CV methods for determining the
regularization parameter are developed in [Wah82] and [LN11], Bernouilli-Gaussian mod-
els in [GDI90] and [CGI96], the Compress Sensing (CS) approach in [RMW12], document
image restoration in [PB13] and [LB13], joint restoration and segmentation in [AMD09].

Considering the model (4.4) or equivalent (4.7) we focus on an inversion based
on General Bayesian Inference, building an hierarchical model, based on the general-
ized Student-t prior distribution modelling the PC amplitude vectors in order to enforce
the sparsity. Accounting for sparsity has been considered in many ways. One way is
via regularization techniques, by usingL0 or L1 norms. This approach was developed
in [DDM04], [Tro06], [TGS06], [CWB08] and [PS10]. One of these methods which has
become now the standard is LASSO [Tip01]. Therefore, during the simulations chapter,
we will consider LASSO for comparisons with the proposed algorithm. One other way
is via Bayesian inference using strict sparsity or sparsityenforcing priors. For the strict
sparsity requirement, very often Bernouilli distributionis used. For example, Bernouilli-
Gaussian [GDI90], [CGI96] and [GILC08], Bernouilli-Laplace [DB08] or Bernouilli-Gamma,
while for the sparsity enforcing, mainly three categories of priors have been considered and
used very often: Generalized Gaussian (GG), Mixture modelsand heavy tailed probability
laws such as Student-t. A review of these priors is discussedin [Tip01] and [MD12] and their
references.

Furthermore, the hierarchical model developed in this chapter will account for the non sta-
tionarity of the noise. For this, in literature zero mean Gaussian model with unknown varying
variance has been considered in [CGHM14] and a Cauchy-Gaussian model in [CKS15]. Like
the prior distribution modelling the PC amplitude vectors,the Student-t distribution is used
for modelling the non-stationarity.

4.2 General Bayesian inference

In Section (4.1) we have described the strategy adopted for doing the inversion in Equa-
tion (4.4) or equivalent (4.7): building an hierarchical model enforcing the sparsity for the
PC amplitudes vectors and talking into account the non stationarity of the noise, based on
general Bayesian inference. Considering the linear inverse problem of Equation (4.7), the
Bayesian inference starts by the fundamental relation given by the Bayes rule:

p(f |g, θ1, θ2) =
p(g|f , θ1) p(f |θ2)

p(g|θ1, θ2)
, θ = (θ1, θ2) (4.13)

whereθ represents the hyperparameters that appear in the model, namely the variances as-
sociated with the unknowns of our model, i.e the PC amplitudes vector and the noise vector
ǫ.

The Bayes rule can be interpreted as a proportionality relation between the posterior law
and the product of the prior law (the sparsity information) and the likelihood:

p(f |g, θ1, θ2) ∝ p(g|f , θ1) p(f |θ2) (4.14)
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The probabilistic model that assigns particular distributions for the prior and likelihood laws
represents the hierarchical model. An extension of Equation (4.14) is the general Bayesian
Inference, where the hyperparameters involved in the BayesRule,θ = (θ1, θ2) are considered
unknowns and are also estimated from the posterior law:

p(f , θ1, θ2|g) ∝ p(g|f , θ1) p(f |θ2) p(θ1) p(θ2) (4.15)

4.3 Sparsity enforcing priors

In the Bayesian framework, distributions must be assigned for the likelihood (derived from
the prior distribution assigned for modelling the errors ofthe forward model), for the prior
(in our case one that allows enforcing the sparsity) and alsofor the hyperparameters of the
model (i.e. the variances associated with the PC amplitudesvector and with the errors). In
literature, [Tip01] and [MD12] and their references certain classes of distribution (heavy-
tailed, mixture models) are well known as good sparsity enforcing priors. The overview is
presented in the following scheme:
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Prior models that can be considered are:a) Generalized Gaussian (GG) with Gaussian (G)
and Laplace;b) Weibull (W) with Symmetric Rayleigh (SR) or Double Exponential (DE) as
particular cases;c) Student-t (St) with Cauchy (C) as particular case;d) Elastic net;e)Gener-
alized Hyperbolic model;f) Dirichlet and with Symmetric Dirichlet (SD) as particular case;g)
Mixture of Gaussians, with(i) Mixture of two centred Gaussians (MoG2), one with very small
and one with a large variance, with Bernoulli-Gauss (BG) (also called Spike and slab) as a
particular case,(ii) Mixture of three Gaussians (MoG3), one centred with very small variance
and two symmetrically centred on positive and negative axesand large variances;(iii) Mix-
ture of one Gaussian and one or two Gammas (MoG-Gammas), andh) Bernoulli-Multinomial
(BMult) or mixture of Dirichlet (MoD).

Mainly, the prior models are classified in three categories:Generalized Gaussian, heavy
tailed distributions and Mixture Models, which result to hierarchical models.
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4.4.1 - Generalized Student-t hierarchical prior model

4.4 Generalized Student-t hierarchical model

This section presents the assignment of the probability laws corresponding to the likelihood,
the prior and the prior corresponding to the hyperparameters, i.e. the variances associated
with the PC amplitude vectors and the error vector. The goal is to build a hierarchical model
that accounts for the prior informations, i.e. the sparsityof the PC amplitude vectors and
the non-stationary noise. To account for both of these two prior informations, we model
the noiseǫ as a zero mean non stationary Gaussian with unknown variances on which we
assign Inverse Gamma priors, and to enforce the sparsity, weuse the generalized Student-
t distribution as the prior modelling the PC amplitude vectors f 1 andf 2, expressed as the
marginal of the bivariate Normal - Inverse Gamma distribution. The main advantage of the
Student-t distribution is that, thanks to its Infinite Gaussian Scaled Mixture (IGSM) prop-
erty, it can be used in a hierarchical Gaussian - Gamma or Gaussian - Inverse Gamma model.
In this way, in fact both for the non stationarity of the noiseand for sparsity enforcing we
have the same prior model structure: Gaussian with unknown variances on which we as-
sign Inverse Gamma priors. The Bayesian framework with different priors both on the noise
and on the solution is a very well known approach in the literature, and it goes back to
1950, using the Normal distribution [HW83] or the Poisson distribution [MSC99] for the
noise and the Normal distribution for the solution. More specific priors and in particular the
Markovian model [GG84] and [IG90], non Gaussian priors [NMD94], the hierarchical mod-
els [GLRI93] are more recent. The main difficulties in those methods havebeen more on
the computational aspects. Beside the classical Gaussian approximation [RMC09] and the
MCMC methods [GRS96],[DDJ09],[GILC08], we may mention the more recent ones: the
Approximate Bayesian Computation (ABC) [BCMR09],[Blu10],[BF10],[MPRR11], Varia-
tional Bayesian Approximation (VBA) [KMS+12b],[KMS+12a] and Message Passing (MP)
[Bea03],[WBJ05],[PCS11],[SR12] methods.

In general, a hierarchical model represents the set of probability laws assigned for the
probabilities involved in (4.15), namely the assignment of the likelihoodp(g|f , θ1), the prior
p(f |θ2) and the hyperparameters priorsp(θ1) andp(θ2). The equations corresponding to
each probability density function assigned in the model arepresented and discussed in detail
in Subsection (4.4.1). The unknowns of the hierarchical prior model are estimated from the
expression of the posterior distribution, via the Bayes rule, Equation (4.15) using two different
estimation techniques: Joint Maximum A Posteriori (JMAP) and PM (Posterior Mean), via
Variational Bayesian Approximation (VBA). The computations corresponding to those esti-
mations and the resulting algorithm are detailed in Subsection (4.4.2) and Subsection (4.4.3).

4.4.1 Generalized Student-t hierarchical prior model

In the first step, the error vectorǫ of the linear model (4.4) is modelled. We propose to use a
non-stationary Gaussian model for the conditional probability p(ǫi|vǫi

), i.e. every point in the
error vector conditioned by the corresponding variance,ǫi|vǫi

is considered as a zero mean
normal distribution with the corresponding variance:

p(ǫi|vǫi
) = N (ǫi|0, vǫi

), i ∈ {1, 2, . . . , N} , (4.16)
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where the corresponding variancesvǫi
are considered to be unknowns. For having the possi-

bility to estimate them we model them as Inverse Gamma distributions:

p(vǫi
|αǫ0, βǫ0) = IG(vǫi

|αǫ0, βǫ0), i ∈ {1, 2, . . . , N} , (4.17)

whereαǫ0 and βǫ0 represent the shape and scale parameters corresponding to the Inverse
Gamma distribution associated with the corresponding variance of every point in the error
vector,vǫi

, i ∈ {1, 2, . . . , N}. Doing this, the joint probability of the error vector points and
their corresponding variances(ǫi, vǫi

), i ∈ {1, 2, . . . , N} are modelled as a bivariate Normal -
Inverse Gamma distribution:

p(ǫi, vǫi
|αǫ0, βǫ0) = N (ǫi|0, vǫi

)IG(vǫi
|αǫ0, βǫ0) , i ∈ {1, 2, . . . , N} , (4.18)

and the probability of each error vector pointǫi is modelled by its marginal, i.e. a generalized
Student-t distribution:

p(ǫi|αǫ0, βǫ0) =
∫

N (ǫi|0, vǫi
)IG(vǫi

|αǫ0, βǫ0) dvǫi
, i ∈ {1, 2, . . . , N} , (4.19)

More general, the equations introduced in (4.16) and (4.17), can be used to write:
{

p(ǫ|vǫ) = N (ǫ|0, V ǫ)
p(vǫ|αǫ0, βǫ0) =

∏N
i=1 IG(vǫi

|αǫ0, βǫ0)
(4.20)

where we introduced the variance error vectorvǫ and the corresponding diagonal matrixV ǫ:

vǫ =
[
vǫ1

. . . vǫi
. . . vǫN

]T
; V ǫ = diag[vǫ] (4.21)

The likelihoodp(g|f , vǫ) is obtained considering the linear model, Equation (4.4) and the
assigned distribution for the error vectorǫ conditioned by the variancevǫ, p(ǫ|vǫ), Equa-
tion (4.20). The distribution modelling the likelihood is also a multivariate Normal distribu-
tion, having the same covariance matrixV ǫ and the meanH1f1 + H2f2, derived from the
linear model Equation (4.4):

p(g|f1, f 2, vǫ) = N (g|H1f 1 + H2f 2, V ǫ) (4.22)

The likelihood and the prior distribution corresponding tothe noise variancevǫ represents the
first part of the hierarchical model:





p(g|f1, f 2, vǫ) = N (g|H1f 1 + H2f2, V ǫ)

p(vǫ|αǫ0, βǫ0) =
∏N

i=1 IG(vǫi
|αǫi0, βǫi0)

(4.23)

The proposed prior distribution is a generalized Student-tdistributionStg, in order to en-
force the sparsity, obtained via a Normal - Inverse Gamma distribution. A generalization of
the Student-t distribution is obtained from the Normal - Inverse Gamma distribution by not
introducing any supplementary conditions for the shape andscale parameters corresponding
to the Inverse Gamma. This generalization is discussed in detail in Subsection (4.4.4). The
probability density function of the standard Student-t distribution is given in Equation (4.24):

St(x|ν) =
Γ
(

ν+1
2

)

√
νπΓ

(
ν
2

)
(

1 +
x2

ν

)− ν+1

2

(4.24)
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Figure 4.1: Normal and Student-t distribution

The Student-t distribution with one degree of freedom (ν = 1) (Cauchy distribution) and
the standard Normal distribution are presented in Figure (4.1). The Student-t distribution is
a good sparsity enforcing prior due to the heavy tailed structure: the tail of the distribution
is above the tail of the Normal distribution, allowing certain cases of high values i.e. the
non zero values in the periodic component vector amplitudes, corresponding to the biolog-
ical periods expressed in the chronobiological signal. A comparison between the standard
Normal distribution and the Student-t distribution(ν = 1) is presented in Figure (4.2). A
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Figure 4.2: Normal vs. Student-t distribution

direct assignment of Student-t distributions for the priorlawsp(f 1) andp(f 2) leads to a non-
quadratic criterion when estimatingf 1, f2. The Student-t distributions corresponding to the
prior distributions modelling the PC amplitudes vectorsf1 andf2 can be assigned via Nor-
mal - Inverse Gamma, jointly modelling the periodic component vectors amplitudes and their
corresponding variances. For the variances off1 andf2 we assume general models. Also,
the considered model will assign the same variances forf 1 andf 2, linking the two periodic
component vectors:

vf =
[
vf1

. . . vfj
. . . vfM

]T
; V f = diag[vf ] (4.25)

Therefore, for sparsity enforcing for the PC amplitudes vectors, the joint distributions corre-
sponding to the PC amplitudes vectors elements and their corresponding variances are mod-
elled via the bivariate Normal - Inverse Gamma distribution, imposing equal values for the
shape and scale parameter of the Inverse Gamma distribution, αf0 = βf0 =

νf

2
:

(
fkj , vfj

)
∼ N (fkj|0, vfj

) IG(vfj
|νf

2
,
νf

2
), k ∈ {1, 2} , j ∈ {1, 2, . . . , M} (4.26)
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Generalized Student-t hierarchical model

Doing so, the marginal of the joint distribution, modellingthe PC amplitudes vectors elements
is a Student-t distribution, Equation (4.24):

p(fkj|νf) =
∫

N (fkj|0, vfj
) IG(vfj

|νf

2
,
νf

2
) dvfj

= St(f kj|νf) (4.27)

This approach can be extended by considering a Normal - Inverse Gamma distribution for the
joint distribution

(
fkj, vfj

)
, without imposing the equalityαf0 = βf0 =

νf

2
in the expression

of the Inverse Gamma distribution. Consideringαfj0, βfj0 as the parameters of the Inverse

Gamma distribution in the Normal - Inverse Gamma, the joint probability of
(
fkj, vfj

)
is

modelled as:
(
fkj, vfj

)
∼ N (fkj|0, vfj

) IG(vfj
|αf0, βf0), k ∈ {1, 2} , j ∈ {1, 2, . . . , M} (4.28)

The marginal modelling the elements of the PC amplitudes vectors is:

p(fkj|αf0, βf0) =
Γ(αf0 + 1

2
)√

2βf0π Γ(αf0)

(
1 +

fkj
2

2βf0

)−(αf0+ 1

2 )
= Stg(fkj|αfj0, βfj0) (4.29)

The Normal - Inverse Gamma distribution, modelling
(
fkj, vfj

)
and the marginal modelling

fkj are presented in Figure (A.1). The two parametersαf0, βf0 introduced for defining the
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Figure 4.3: Normal - Inverse Gamma distribution
(
fkj , vfj

)
and the corresponding marginal

fkj|αf0, βf0

Normal - Inverse Gamma joint distribution are directly modelling the variancesvf j
via the In-

verse Gamma prior distributionIG(vfj
|αf0, βf0) and also modellingfkj via equation (A.25).

In order to enforce the sparsity, the two parameters must be chosen such that the Normal
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4.4.1 - Generalized Student-t hierarchical prior model

- Inverse Gamma marginal is a heavy tailed distribution and such that the behaviour of the
variance is in accordance with the sparse structure of thefkj.

In fact, in such an approach, the mechanism of sparsity is based not only on the heavy
tailed property of the prior distribution, but also on a particular behaviour of the vari-
ances. In such an approach a bivariate prior is set for the unknown of the model that needs
to be estimated (the PC amplitudes vectors in our case) and for the corresponding vari-
ance. The algorithm that results is an iterative one, updating at every iteration both the
unknowns of the model (PC amplitudes vectorsf1 and f 2) and the corresponding vari-
ance. In order to obtain a sparse solution for the unknowns, the structure of the vari-
ance must be sparse itself. In particular the variances associated with the zero or close
to zero points from the unknown of the model must be small, andthe variances associ-
ated with the non-zero elements of the sparse unknowns of themodel must be significant.

generalized Student-t

❄

f1 and f 2 sparse
✲

✛ vf sparse

✻

Inverse Gamma

Therefore, the shape and scale parameters of the Inverse Gamma distribution must be chosen
such that the variance vectorvf is sparse, i.e. the expected value of the elementsvfj

is close

to zero, EIG
[
vfj

]
ց 0. Furthermore, in a Bayesian approach, we may have a prior knowledge

for the numerical value associated with the variance of the Inverse Gamma modellingvfj
, i.e.

VarIG
[
vf j

]
= w, wherew is the numerical value obtained via prior knowledge. Evidently, de-

pending on the shape and scale parameters corresponding to the Inverse Gamma distribution,
the behaviour of the marginal corresponding to the Normal - Inverse Gamma bivariate distri-
bution, i.e. the generalized Student-t distribution, Equation (A.25) is different. Figure (4.4)
presents a comparison between the standard Normal distribution and the generalized Student-t
distribution for different values of the two parameters. Wenote that in order to select a prior
model that enforces sparsity, the two parametersαfj0 andβfj0 must be chosen such that the
generalized Student-t distribution modelling the PC amplitudes vectors is concentrated around
zero, i.e. it’s variance is very small, VarStg [fkj] ց 0.

For modelling the priors corresponding tofkj, k ∈ {1, 2}, j ∈ {1, 2, . . . , M} as in (A.25),
we assign Normal - Inverse Gamma distributions for the jointpriors(f 1j , vf j

) and(f 2j , vfj
).

Therefore,f 1j|vfj
andf 2j|vfj

are modelled as zero mean Normal distributions, and the vari-
ancesvfj

are modelled as Inverse Gamma distributions, forj ∈ {1, 2, . . . , M}. In this way,
the vectorf 1 conditioned by the variance vectorvf is modelled by a zero mean multivari-
ate Normal distribution, with the covariance matrix definedin (4.25), the variance vectorvf

is modelled as a product of Inverse Gamma distributions and the vectorf 2 conditioned by
the variance vectorvf is modelled by a zero mean multivariate Normal distribution, with the
covariance matrix defined in (4.25):





p(f 1|vf ) = N (f1|0, V f)

p(f 2|vf ) = N (f2|0, V f)

p(vf |αf0, βf0) =
∏M

j=1 IG(vfj
|αf0, βf0)

(4.30)
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Figure 4.4: Normal vs. Normal - Inverse Gamma marginal distributions

The likelihood and the error variance prior (4.23) and the prior (4.30) represents the IGSM Hi-
erarchical Model. The analytical form of the Hierarchical Model written via proportionalities
is the following:





p(g|f1, f 2, vǫ) ∝ |V ǫ|−
1

2 exp
{
−1

2
‖V ǫ

− 1

2 (g − H1f1 − H2f 2) ‖2
}

p(vǫ|αǫ0, βǫ0) ∝ ∏N
i=1

βǫ0
αǫ0

Γ(αǫ0)
vǫi

−(αǫ0+1) exp
{
−βǫ0v

−1
ǫi

}

p(f1|vf) ∝ |V f |− 1

2 exp
{

−1
2
‖V

− 1

2

f f 1‖2

}

p(f2|vf) ∝ |V f |− 1

2 exp
{

−1
2
‖V

− 1

2

f f 2‖2

}

p(vf |αf0, βf0
) ∝ ∏M

j=1
βf0

αf0

Γ(αf0)
vf j

−(αf0+1) exp
{
−βf0v−1

fj

}

(4.31)

From the Hierarchical Model the posterior distribution canbe obtained via the proportionality
relation considered in (4.15):

p(f1, f2, vǫ, vf |g) ∝ p(g|f1, f2, vǫ) p(vǫ|αǫ0, βǫ0) p(f1|vf ) p(f 2|vf) p(vf |αf0, βf0)
(4.32)

4.4.2 Joint MAP Estimation

This section presents the results obtained by the estimation of the unknowns from the posterior
distribution, Equation (4.32), via Joint Maximum A Posteriori (JMAP), a point estimator of
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4.4.2 - Joint MAP Estimation

the unobserved quantitiesf 1, f2, vǫ, vf on the basis of the available datag. JMAP estimator
is defined as:

(
f̂ 1, f̂ 2, v̂ǫ, v̂f

)
= arg max

(f 1,f 2, vǫ, vf)
p(f 1, f2, vǫ, vf |g) = arg min

(f 1,f 2, vǫ, vf)
L(f 1, f2, vǫ, vf ),

(4.33)
where for the second equality the criterionL(f1, f2, vǫ, vf) is defined as:

L(f1, f 2, vǫ, vf) = − ln p(f1, f 2, vǫ, vf |g) (4.34)

The MAP estimator is the solution minimizing the criterionL(f1, f2, vǫ, vf). One of the
simplest optimisation algorithm that we can use is an alternate optimization with respect to
the each unknown:

• With respect tof1:

∂L(f 1, f2, vǫ, vf)

∂f 1
= 0 ⇔ ∂

∂f 1

(
‖V ǫ

− 1

2 (g − H1f1 − H2f 2) ‖2 + ‖V f
− 1

2 f1‖2
)

= 0

⇔ −HT
1 V ǫ

−1 (g − H1f 1 − H2f2) + V f
−1f1 = 0

⇔
[
HT

1 V ǫ
−1H1 + V f

−1
]

f1 = HT
1 V ǫ

−1 (g − H2f2)

⇒ f̂ 1 =
[
HT

1 V ǫ
−1H1 + V f

−1
]−1

HT
1 V ǫ

−1 (g − H2f2)

• With respect tof2:

∂L(f 1, f2, vǫ, vf)

∂f 2
= 0 ⇔ ∂

∂f 2

(
‖V ǫ

− 1

2 (g − H1f1 − H2f 2) ‖2 + ‖V f
− 1

2 f2‖2
)

= 0

⇔ −HT
2 V ǫ

−1 (g − H1f 1 − H2f2) + V f
−1f2 = 0

⇔
[
HT

2 V ǫ
−1H2 + V f

−1
]

f2 = HT
2 V ǫ

−1 (g − H1f1)

⇒ f̂ 2 =
[
HT

2 V ǫ
−1H2 + V f

−1
]−1

HT
2 V ǫ

−1 (g − H1f1)

• With respect tovǫi
, i ∈ {1, 2, . . . , N}:

∂L(f 1, f2, vǫ, vf)

∂vǫi

= 0 ⇔ ∂

∂vǫi

[(
αǫi0 +

3

2

)
ln vǫi

+

+
(

βǫi0 +
1

2
(gi − H2if1 − H2if 2)

2
)

v−1
ǫi

]
= 0

⇔
(

αǫi0 +
3

2

)
vǫi

−
(

βǫi0 +
1

2
(gi − H2if 1 − H2if2)2

)
= 0

⇒ v̂ǫi
=

βǫi0 + 1
2

(gi − H2if 1 − H2if 2)
2

αǫi0 + 3
2
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• With respect tovf , j ∈ {1, 2, . . . , M}:

∂L(f 1, f2, vǫ, vf)

∂vfj

= 0 ⇔ ∂

∂vfj

(
[αf0 + 2] ln vfj

+
[
βf0 +

1

2

(
f 2

1j + f 2
2j

)]
v−1

fj

)
= 0

⇔ (αf0 + 2) vfj
−
(

βf0 +
1

2

(
f2

1j + f 2
2j

))
= 0

⇒ v̂fj
=

βf0 + 1
2

(
f 2

1j + f 2
2j

)

αf0 + 2

The scheme of the iterative algorithm obtained via JMAP estimation is presented Figure (4.5):

f̂1 =
[
HT

1 V ǫ
−1H1 + V f

−1
]−1

HT
1 V ǫ

−1 (g − H2f 2)

(a) - update PC amplitudes vectorf 1

f̂2 =
[
HT

2 V ǫ
−1H2 + V f

−1
]−1

HT
2 V ǫ

−1 (g − H1f 1)

(b) - update PC amplitudes vectorf 2

v̂ǫi
=

βǫi0
+1

2(gi−H2if 1−H2if 2)
2

αǫi0
+3

2

(c) - update noise variancesvǫi

v̂f j
=

βf0+1
2(f2

1j+f2
2j)

αf0+2

(d) - update PC variancesvfj

V ǫ = diag[v̂ǫ]

(e)

V f = diag
[
v̂f

]

(f)

Figure 4.5: Updating scheme: JMAP estimation for generalized Student-t prior model

This algorithm is compared to the algorithm corresponding to Posterior Mean estimation
in the simulations section.

4.4.3 Posterior Mean (via VBA, partial separability)

The JMAP computes the mod of the posterior distribution. ThePosterior Mean computes the
mean of the posterior distribution. One of the advantages ofthis estimator is that it minimizes
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4.4.3 - Posterior Mean (via VBA, partial separability)

the Mean Square Error (MSE). Computing the posterior means of any unknown needs great
dimensional integration. For example,

Ep {f 1} =
∫∫∫∫

f 1 p(f1, f2, vǫ, vf |g) df 1 df 2 dvǫ dvf . (4.35)

In general, these computations are not easy. One way to obtain approximate esti-
mates is to approximatep(f 1, f 2, vǫ, vf |g) by a separable oneq(f1, f2, vǫ, vf |g) =
q1(f 1) q2(f 2) q3(vǫ) q4(vf |g), then computing

Eq {f 1} =
∫

f 1 df1 (4.36)

If we can do this approximation intelligently, i.e. in such away thatEq {f 1} is the same as
Ep {f1} we gain great amount of computational cost. In particular, for the proposed hierar-
chical model, Equation (4.31), the posterior distribution, Equation (4.32), is not a separable
distribution, making the analytical computation of PM verydifficult. One way the compute
the PM in this case is to first approximate the posterior lawp(f1, f2, vǫ, vf |g) with a separa-
ble lawq(f 1, f2, vǫ, vf |g):

p(f1, f 2, vǫ, vf |g) ≈ q(f 1, f2, vǫ, vf |g) = q1(f 1) q2(f 2) q3(vǫ) q4(vf) (4.37)

by minimizing of the Kullback-Leibler divergence, defined as:

KL (q(f 1, f2, vǫ, vf1
|g) : p(f 1, f2, vǫ, vf1

|g)) =

=
∫∫

. . .
∫

q(f1, f2, vǫ, vf |g) ln
q(f1, f 2, vǫ, vf |g)

p(f 1, f 2, vǫ, vf |g)
df 1 df 2 dvǫ dvf

(4.38)

where the following notations are used:

q3(vǫ) =
N∏

i=1

q3i(vǫi
) ; q4(vf) =

M∏

j=1

q4j(vfj
) ; dvǫ =

N∏

i=1

dvǫi
; dvf =

M∏

j=1

dvfj

(4.39)
The minimization can be done via alternate optimization resulting the following proportion-
alities:




q1(f 1) ∝ exp
{

〈ln p(f1, f2, vǫ, vf |g)〉
q2(f 2) q3(vǫ) q4(vf )

}

q2(f 2) ∝ exp
{

〈ln p(f1, f2, vǫ, vf |g)〉
q1(f 1) q3(vǫ) q4(vf )

}

q3i(vǫi
) ∝ exp

{
〈ln p(f 1, f 2, vǫ, vf |g)〉

q1(f 1) q2(f 2) q3−i(vǫi
) q4(vf )

}
, i ∈ {1, 2 . . . , N}

q4j(vf j
) ∝ exp

{
〈ln p(f1, f2, vǫ, vf |g)〉

q1(f 1) q2(f 2) q3(vǫ) q4−j(vfj
)

}
, j ∈ {1, 2 . . . , M} ,

(4.40)

using the notations:

q3−i(vǫi
) =

N∏

k=1,k 6=i

q3k(vǫk
) ; q4−j(vfj

) =
M∏

k=1,k 6=j

q4k(vfk
) (4.41)

and also
〈u(x)〉v(y) =

∫
u(x)v(y) dy. (4.42)
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From Equation (4.32), the analytical expression of the logarithm is obtained:

ln p(f 1, f2, vǫ, vf1
, vf2

|g) = C − 1

2
ln det(V ǫ) − 1

2
‖V ǫ

− 1

2 (g − H1f 1 − H2f 2) ‖2

−
N∑

i=1

(αǫi0 + 1) ln vǫi
−

N∑

i=1

βǫi0v
−1
ǫi

− ln det(V f)

− 1

2
‖V

− 1

2

f f 1‖2 −
M∑

j=1

(
αfj0 + 1

)
ln vfj

−
M∑

j=1

βfj0v−1
fj

− 1

2
‖V

− 1

2

f f 2‖2

(4.43)

• Expression ofq1(f1) and q2(f2):

The proportionality relation corresponding toq1(f1) established in equation (4.40) refers to
f1, so in the expression ofln p(f1, f2, vǫ, vf |g) all the terms free off1 can be regarded as
constants:

〈ln p(f 1, f2, vǫ, vf |g)〉
q2(f 2) q3(vǫ) q4(vf )

= C

−
〈

1

2
‖V ǫ

− 1

2 (g − H1f 1 − H2f 2) ‖2
〉

q2(f 2) q3(vǫ)

−
〈

1

2
‖V

− 1

2

f f1‖2
〉

q4(vf )

Introducing the notations:

ṽǫi
=
〈
v−1

ǫi

〉
q3i(vǫi)

; ṽǫ =
[
ṽǫ1

. . . ṽǫi
. . . ṽǫN

]T
; Ṽ ǫ = diag[ṽǫ]

ṽfj
=
〈
v−1

fj

〉
q4j(vfj )

; ṽf =
[
ṽf1

. . . ṽf j
. . . ṽfM

]T
; Ṽ f = diag[ṽf ]

(4.44)

we can write:

〈ln p(f 1, f 2, vǫ, vf |g)〉
q2(f 2) q3(vǫ) q4(vf )

= C − 1

2

〈
‖Ṽ ǫ

1

2 (g − H1f1 − H2f2) ‖2
〉

q2(f 2)

− 1

2
‖Ṽ f

1

2 f 1‖2

Developing the norm‖Ṽ ǫ
1

2 (g − H1f 1 − H2f 2) ‖2, introducing the notation

f2P M = 〈f 2〉q2(f 2) (4.45)

and then excluding thef1 free terms, we obtain:
〈
‖Ṽ ǫ

1

2 (g − H1f1 − H2f2) ‖2
〉

q2(f 2)
= −2gT Ṽ ǫH1f 1 + f1

T H1
T Ṽ ǫH1f 1

+ 2fT
2P MH2

T Ṽ ǫH1f1

(4.46)

so the proportionality forq1(f 1) can be expressed as:

q1(f1) ∝ exp
{

−1

2

(
f1

T
(
H1

T Ṽ ǫH1 + Ṽ f

)
f1 − 2

(
g − H2f̃2

)T
Ṽ ǫH1f 1

)}
(4.47)

67
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i.e. the probability density functionq1(f1) is proportional to a exponential having a quadratic
criterion, leading to the conclusion thatq1(f 1) is a multivariate Normal distribution,q1(f1) =
N (f 1|f 1P M , Σ1P M). Evidently, for determining the mean of the Normal distribution it is
sufficient to minimize the quadratic criterion of the exponential. The covariance matrix is
then obtained by identification, leading to:

q1(f 1) = N (f 1|f1P M , Σ1P M) ,





f 1P M =
(
H1

T Ṽ ǫH1 + Ṽ f

)−1
H1

T Ṽ ǫ (g − H2f 2P M)

Σ1P M =
(
H1

T Ṽ ǫH1 + Ṽ f

)−1

(4.48)
with Ṽ ǫ, Ṽ f andf 2P M introduced in (4.44) and (4.45). For the expressionq2(f 2) all the
computations are the same and following the same developments, we conclude thatq2(f2) is
a multivariate Normal distribution:

q2(f 2) = N (f 2|f2P M , Σ2P M) ,





f 2P M =
(
H2

T Ṽ ǫH2 + Ṽ f

)−1
H2

T Ṽ ǫ (g − H1f 1P M)

Σ2P M =
(
H2

T Ṽ ǫH2 + Ṽ f

)−1

(4.49)
• Expression ofq3i(vǫi

):

Considering the terms free ofvǫi
as constants, we have:

〈ln p(f 1, f2, vǫ, vf |g)〉
q1(f 1) q2(f 2) q3−i(vǫi) q4(vf )

= C − 1

2
ln vǫi

− (αǫ0 + 1) ln vǫi

− 1

2

〈
‖V ǫ

− 1

2 (g − H1f1 − H2f 2) ‖2
〉

q1(f 1) q2(f 2) q3−i(vǫi
)
− βǫ0v

−1
ǫi

(4.50)

For
〈
‖V ǫ

− 1

2 (g − H1f 1 − H2f 2) ‖2
〉

q1(f 1) q2(f 2) q3−i(vǫi)
we have the following develop-

ment:
〈
‖V ǫ

− 1

2 (g − H1f 1 − H2f2) ‖2
〉

q1(f 1) q2(f 2) q3−i(vǫi )
= C

+ v−1
ǫi

(
gi − H i

1f 1P M − H i
2f 2P M

)2

+ v−1
ǫi

(
H i

1Σ1P MH iT
1

)

+ v−1
ǫi

(
H i

2Σ2P MH iT
2

)

(4.51)

so the proportionality relation corresponding toq3i(vǫi
), Equation (4.40) becomes:

q3i(vǫi
) ∝ v

−(αǫi +1)
ǫi exp

{
−βǫi

v−1
ǫi

}
(4.52)

Soq3i(vǫi
) is an Inverse Gamma distribution with the following parameters:

q3i(vǫi
) = IG (vǫi

|αǫi
, βǫi

) ,





αǫi
= αǫ0 + 1

2

βǫi
= βǫ0 + 1

2

[
(gi − H i

1f1P M − H i
2f 2P M)

2
+

(
H i

1Σ1P MH iT
1 + H i

2Σ2P MH iT
2

)]
(4.53)

• Expression ofq4j(vf j
):
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Considering the terms free ofvfj
as constants, we have:

〈ln p(f1, f2, vǫ, vf |g)〉
q1(f 1) q2(f 2) q3(vǫ) q4−j(vfj

)
= − ln vfj

− (αf0 + 1) ln vfj

−1

2

〈
‖V

− 1

2

f f1‖2
〉

q1(f 1) q4−j(vfj
)
− 1

2

〈
‖V

− 1

2

f f 2‖2
〉

q2(f 2) q4−j(vfj
)
− βf0v−1

f j

(4.54)

For
〈

‖V
− 1

2

f f 1‖2

〉

q1(f 1) q4−j(vfj
)
and

〈
‖V

− 1

2

f f2‖2

〉

q2(f 2) q4−j(vfj
)
we have the following rela-

tions:





〈
‖V

− 1

2

f f1‖2

〉

q1(f 1) q4−j(vfj
)

= C + v−1
fj

(
f 2

1jP M + Σ1jjP M

)

〈
‖V

− 1

2

f f2‖2

〉

q2(f 2) q4−j(vfj
)

= C + v−1
fj

(
f 2

2jP M + Σ2jjP M

) (4.55)

so the proportionality relation corresponding toq4j(vf j
) established in equation (4.40) be-

comes:

q4j(vfj
) ∝ v

−(αfj
+1)

f j
exp

{
−βfj

v−1
fj

}
(4.56)

We conclude thatq4j(vfj
) is an Inverse Gamma distribution with the following parameters:

q4j(vfj
) = IG

(
vf j

|αfj
, βfj

)
,





αfj
= αf0 + 1

βfj
= βf0 + 1

2

[
f 2

1jP M + Σ1jjP M + f 2
2jP M + Σ2jjP M

]

(4.57)
The expressions of the parameters corresponding to the two multivariate Normal distributions
q1(f 1) andq2(f 2) depend oñV ǫ andṼ f , introduced in (4.44). Sinceq3i(vǫi

) andq4j(vf j
)

are Inverse Gamma distributions it is easy to express the twomatrices with the corresponding
Inverse Gamma parameters:

ṽǫi
=
〈
v−1

ǫi

〉
IG(vǫi |αǫi ,βǫi)

=
αǫi

βǫi

⇒ Ṽ ǫ = diag

[
αǫi

βǫi

]

ṽfj
=
〈
v−1

f j

〉
IG(vfj

|αfj
,βfj )

=
αfj

βfj

⇒ Ṽ f = diag

[
αfj

βfj

] (4.58)

• Algorithm:

Equations (4.48), (4.49), (4.53), (4.57), representing the distribution families of separable laws
q and their corresponding parameters are leading to an iterative algorithm estimating all the
parameters involved. The shape parameters corresponding to the Inverse Gamma distributions
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4.4.3 - Posterior Mean (via VBA, partial separability)

rest constants during the iterations. All the other parameters are updated, changing the value.




f1P M =
(

H1
T diag

[
αǫi

βǫi

]
H1 + diag

[
αfj

βfj

])−1

H1
T diag

[
αǫi

βǫi

]
(g − H2f2P M)

Σ1P M =
(

H1
T diag

[
αǫi

βǫi

]
H1 + diag

[
αfj

βfj

])−1

(4.59a)




f2P M =
(

H2
T diag

[
αǫi

βǫi

]
H2 + diag

[
αfj

βfj

])−1

H2
T diag

[
αǫi

βǫi

]
(g − H1f1P M)

Σ2P M =
(

H2
T diag

[
αǫi

βǫi

]
H2 + diag

[
αfj

βfj

])−1

(4.59b)




αǫi
= αǫ0 + 1

2

βǫi
= βǫ0 + 1

2

[
(gi − H i

1f 1P M − H i
2f2P M)

2
+
(
H i

1Σ1P MH iT
1 + H i

2Σ2P MH iT
2

)]

(4.59c)




αfj
= αf0 + 1

βfj
= βf0 + 1

2

[
f2

1jP M + Σ1jjP M + f 2
2jP M + Σ2jjP M

] (4.59d)

Equation (4.59a) establish the dependency of the parameters correspondingto the Multivari-
ate Normal Distributionq1(f 1) and the others hyperparameters involved in the Hierarchical

Model: the meanf 1P M and the covariance matrixΣ1P M depend on diag
[

αǫi

βǫi

]
and diag

[
αfj

βfj

]
:

{βǫi
} ,
{
βfj

}
✲ f 1P M , Σ1P M (4.60)

Equation (4.59b) establish the dependency of the parameters correspondingto the Multivari-
ate Normal Distributionq2(f 2) and the others hyperparameters involved in the Hierarchical

Model: the meanf 2P M and the covariance matrixΣ2P M depend on diag
[

αǫi

βǫi

]
and diag

[
αfj

βfj

]
:

{βǫi
} ,
{
βfj

}
✲ f 2P M , Σ2P M (4.61)

Equation (4.59c) leads to the following dependency scheme:

f 1P M , Σ1P M , f2P M , Σ2P M
✲ {βǫi

} (4.62)

Equation (4.59d) leads to the following dependency schemes:

f 1P M , Σ1P M , f2P M , Σ2P M
✲

{
βfj

}
(4.63)

The scheme of the iterative algorithm is presented in Figure(4.6):

An important part of the algorithm is represented by the initialization part. We have to
choose the parameters that will be used for the initialization part and assign them numerical
values. We also have to assign numerical values for the shapeand scale parameters corre-
sponding to the two Inverse Gamma prior distributions involved in the hierarchical model. In
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f 1P M =
(
H1

T Ṽ ǫH1 + Ṽ f

)−1
H1

T Ṽ ǫ (g − H2f 2P M)

Σ1P M =
(
H1

T Ṽ ǫH1 + Ṽ f

)−1

(a) - update PC amplitudes vectorf1

f 2P M =
(
H2

T Ṽ ǫH2 + Ṽ f

)−1
H2

T Ṽ ǫ (g − H1f 1P M)

Σ2P M =
(
H2

T Ṽ ǫH2 + Ṽ f

)−1

(b) - update PC amplitudes vectorf2

αǫi
= αǫ0 + 1

2

βǫi
= βǫi0 +

1
2

[
(gi − H i

1f1P M − H i
2f 2P M)

2
+
(
H i

1Σ1P MH iT
1 + H i

2Σ2P MH iT
2

)]

(c) - update noise variance hyeperparameters

αfj
= αfj0 + 1

βfj
= βfj0 + 1

2

[
f 2

1jP M + Σ1jjP M + f2
2jP M + Σ2jjP M

]

(d) - update PC variance hyeperparameters

V̂ −1
ǫ = diag

[
αǫi

βǫi

]

V̂ −1

f
= diag

[
αfi

βfi

]

Initialization

Figure 4.6: Updating scheme: PM estimation via VBA (partialseparability) for generalized
Student-t prior model

order to select the values corresponding toαf0, βf0, αǫ0, βǫ0 we have to account for the fact
that those hyperparameters have a crucial role in the selection of the model. The marginal
of the Normal-Inverse Gamma distribution, i.e. the generalized Student-t modelling the two
PC amplitudes vectorsf 1 andf 2 depends onαf0, βf0, Equation (A.25). Furthermore, for
the mechanism sparsity,αf0, βf0 must be chosen such as they impose a sparse structure for
the variance vectorvf via the Inverse Gamma distribution.αǫ0, βǫ0 must be chosen such that
the proposed algorithm can distinguish between the peaks from the PC amplitudes vectors
corresponding to the biological phenomena and the peaks corresponding to the noise.
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4.4.4 Prior Inverse Gamma parameters setting forvf j

The proposed hierarchical model (4.31) is modelling the variances corresponding tof1 and
f 2, namelyvfj

as Inverse Gamma distributions.
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Figure 4.7: Inverse Gamma distributions for differentα, β parameters

Figure (4.7) presents the behaviour of the Inverse Gamma distribution,depending on the
two parameters. The fundamental goal of the proposed hierarchical model was to search a
sparse solution forf 1 andf2. The mechanism of the sparsity enforcing is linked with the

f1 and f2 sparse

✲

✲

high number of
pointsf 1j andf 2j are
zero or close to zero

✲
high number of
pointsvfj are zero or
close to zero ❄

small number of
points f 1j and f 2j

have high values
✲

small number of
points vfj have high
values

✻

vf sparse

Figure 4.8: Sparsity mechanism: the sparsity is imposed (also) via the corresponding variance

corresponding variancesvf j
: the points of the vector with zero or almost zero values are

associated with small variances, meaning that once the algorithm is setting those values close
to zero then they will rest close to zero, not having high variations. For the non-zero values,
we want to allow certain variations of the amplitude. In thiscase, the variances associated
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Generalized Student-t hierarchical model

must have significant values. The link between the PC amplitudes vectorsf 1 andf2 and the
variances vectorvf is presented in Figure (4.8). Therefore, we search the Inverse Gamma
distributions parameters such that the expected value is close to zero and the variance is close
to a certain valuew set in accordance with the data.

The expected value of an Inverse Gamma distribution,IG(x|α, β) is defined forα > 1,
EIG [x] = β

α−1
, and the variance is defined forα > 2, V arIG [x] = β2

(α−1)2(α−2)
. The shape

and scale parameters for the Inverse Gamma distribution must be set such that:

β

α − 1
= ǫ ≃ 0 ;

β2

(α − 1)2(α − 2)
= w (4.64)

One way to assure an Inverse Gamma distribution that presents a small expected valuesǫ ≃ 0
and a certainw variation is to adopt the following model for the parameters:

α = 2 + ǫ2
0 ; β =

√
wǫ0(1 + ǫ2

0) , ǫ0 =
ǫ√
w

(4.65)
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Figure 4.9:x ∼ IG(x|α, β); E [x] = 0.1; Var [x] = 1, 0.1, 0.01 and 0.001
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Figure 4.10:x ∼ IG(x|α, β); E [x] = 0.01; Var [x] = 1, 0.1, 0.01 and 0.001

Figure (4.9) shows four Inverse Gamma distributions for which the mean is the same,
E [x] = 0.1, but with the variances Var[x] = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equation (4.65). The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the two parametersα andβ, imposing
the mean and variances mentioned above are presented in Figures (4.12), (4.13)
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Figure 4.11:x ∼ IG(x|α, β); E [x] = 0.001; Var [x] = 1, 0.1, 0.01 and 0.001

ǫ w VarStg = EIG VarIG Figure
0.1 0.1 0.1 0.1 Figures (4.9), (4.12),(4.13)
0.1 0.01 0.1 0.01 Figures (4.9),(4.12),(4.13)
0.1 0.001 0.1 0.001 Figures (4.9),(4.12),(4.13)
0.01 0.1 0.01 0.1 Figure (4.10),(4.14),(4.15)
0.01 0.01 0.01 0.01 Figure (4.10),(4.14),(4.15)
0.01 0.001 0.01 0.001 Figure (4.10),(4.14),(4.15)
0.001 0.1 0.001 0.1 Figure (4.11),(4.16),(4.17)
0.001 0.01 0.001 0.01 Figure (4.11),(4.16),(4.17)
0.001 0.001 0.001 0.001 Figure (4.11),(4.16),(4.17)

Table 4.1: Mean and variance forStg via ǫ andw

Figure (4.10) shows four Inverse Gamma distributions for which the mean is the same,
E [x] = 0.01, but with the variances Var[x] = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equation (4.65). The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the two parametersα andβ, imposing
the mean and variances mentioned above are presented in Figures (4.14), (4.15)

Figure (4.11) shows four Inverse Gamma distributions for which the mean is the same,
E [x] = 0.001, but with the variances Var[x] = 1, 0.1, 0.01 and 0.001, for which the param-
eters are computed using Equation (4.65). The generalized Student-t distributions, i.e. the
marginals of the IGSM distributions corresponding to the two parametersα andβ, imposing
the mean and variances mentioned above are presented in Figures (4.16), (4.17)
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Figure 4.12: Different Generalized Student-t distributions for which the means EStg = 0 and
the variances VarStg = 0.1 are the same
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Figure 4.13: Generalized Student-t: VarStg = 0.1; VarIG = 0.1, 0.01, 0.001;
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Figure 4.14: Different Generalized Student-t distributions for which the means EStg = 0 and
the variances VarStg = 0.01 are the same
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Figure 4.15: Generalized Student-t: VarStg = 0.01; VarIG = 0.1, 0.01, 0.001;
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Figure 4.16: Different Generalized Student-t distributions for which the means EStg = 0 and
the variances VarStg = 0.001 are the same

4.4.5 Prior Inverse Gamma parameters setting forvǫi

The variance corresponding to the noise,vǫi
, i ∈ 1, 2, . . . , N are also modelled as Inverse

Gamma distributions, for the same conjugacy reasons as in the case ofvfj
. However, while
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4.4.5 - Prior Inverse Gamma parameters setting for vǫi
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Figure 4.17: Generalized Student-t: VarStg = 0.001; VarIG = 0.1, 0.01, 0.001;

the behaviour ofvfj
variances is linked with the sparsity enforcing off 1 and f2, so the

parameters of the prior Inverse Gamma distributionsIG(vfj
|αf0, βf0) and can be fixed such

that the mean and the variance are in accordance with the sparsity enforcing strategy, it is not
the case for the noise variance. Therefore, in order to fix theparameters of the prior Inverse
Gamma distributions corresponding to the noise variance, another strategy is needed. We
propose two possible approaches.

Non-Informative Prior law for vǫi

As mentioned above, for fixing the parameters of Inverse Gamma distributions forvfj
the

prior knowledge was used. In the case of the noise variance, no (direct) prior information is
available. Therefore, we can consider that the most proper way to model the noise variance is
a non-informative prior law. So, in this case, the Inverse Gamma distribution parameters must
be set such that the distribution becomes non-informative,i.e. uniform. The Inverse Gamma
distribution becomes uniform for the parameters equal to zero:

αǫ0 = 0 ; βǫ0 = 0 (4.66)

Data deriving for vǫi

The second approach for fixing the Inverse Gamma distribution parameters corresponding to
vǫi

such that the mean and the variance correspond to numerical values derived from data. In
a pure Bayesian inference, such approach could be criticized, since doing this, the available
data, namely the known chronobiological signalg, is used twice for inference: first when
deriving the numerical values corresponding to the mean andvariance of the prior Inverse
Gamma distribution modelling the noise variance and secondly during the proposed algo-
rithm. However, for the application addressed in this thesis the main limitations is the lack of
prior information. Therefore, this we consider also this approach. The mean and the variance
of vǫi

are expressed via the two Inverse Gamma parameters,αǫ0
andβǫ0

:

E [vǫi
] =

βǫi0

αǫi0 − 1
, for αǫi0 > 1 , Var [vǫi

] =
β2

ǫi0

(αǫi0 − 1)2 (αǫi0 − 2)
, for αǫi0 > 2

(4.67)
Both values, E[vǫi

] and Var[vǫi
] correspond to the noise variance (the mean of the noise

variance and the variance of the noise variance), an unknownof our model. The known input
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Generalized Student-t hierarchical model

g contains the error vector. This information can be exploited to obtain numerical values for
the Inverse Gamma distribution mean and variance. Considering the mean of the known data
E[g], the mean of the noise variance E[vǫ] can be defined as the squared norm of the difference
between the data and its mean, while the variance of the noisevariance Var[vǫ] can be defined
in the same manner: E[vǫ] = ‖g − E [g] ‖2 , Var [vǫ] = ‖ (g − E [g]) − E [g − E [g]] ‖2.
Equations (4.67) links the parametersαǫ0

andβǫ0
with numerical values that are derived from

the known data:

αǫ0
=

E [vǫ]

Var [vǫ]
+ 2 ; βǫ0

= E [vǫ]

(
E [vǫ]

Var [vǫ]
+ 1

)
(4.68)

In particular, such an approach, is consistent to a non-supervised algorithm.

4.4.6 Posterior Mean (via VBA, full separability)

In Subsection (4.4.3) the Student-t model is considered and the PM estimator is used. The
posterior law is approximated by a separable one, Equation (4.37), where the notations for
q3(vǫ) andq4(vf ), introduced in Equation (4.39), represent a full separability relative tovǫ

andvf . But the prior lawp(f 1, f 2, vǫ, vf |g) is not approximated by a fully separable one
since forq1(f1) andq2(f2) we consider a multivariate law modelling the vectorf 1 andf2. In
this subsection we investigate the development of the proposed model and same PM estimator,
but the posterior law is approximated by a fully separable law relative to all the unknowns, i.e.
also forf . The interest of such development concerns the applications where the precision
required is high, making the numerical computations very costly. In this case, the posterior law
from the Hierarchical Modelp(f , vǫ, vf |g) is approximated by a fully separable probability
density function:

p(f1, f2, vǫ, vf |g) ≈ q(f1, f 2, vǫ, vf |g) = q1(f 1) q2(f2) q3(vǫ) q4(vf) (4.69)

where the notations forq3(vǫ) andq4(vf) are defined in Equation (4.39) and :

q1(f1) =
M∏

j=1

q1j(f 1j) ; q2(f2) =
M∏

j=1

q2j(f 2j) ; df 1 =
M∏

j=1

df 1j ; df 2 =
M∏

j=1

df 2j

(4.70)
and

q1−j(f1j) =
M∏

k=1,k 6=j

q1k(f 1k) ; q2−j(f 2j) =
M∏

k=1,k 6=j

q2k(f2k) (4.71)

Like in Subsection (4.4.3), the law q(f 1, f2, vǫ, vf |g) is obtained by minimizing the
Kullback-Leibler divergence, Equation (4.38), via alternate optimization, obtaining an iter-
ative algorithm. The scheme of the iterative algorithm is presented in Figure (4.18):
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4.4.6 - Posterior Mean (via VBA, full separability)
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Figure 4.18: Updating scheme: PM estimation via VBA (full separability) for generalized
Student-t prior model

78



5
Simulations: Synthetic data

Contents
5.1 Simulations 05dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Synthetic data 05dB. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Data 05dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.3 JMAP IGSM 05dB. . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.4 PM (via VBA, partial separability) IGSM 05dB. . . . . . . . . . . 84

5.1.5 PM (via VBA, full separability) IGSM 05dB. . . . . . . . . . . . 85

5.1.6 Methods comparison 05dB. . . . . . . . . . . . . . . . . . . . . . 86

5.1.7 Error comparison 05dB. . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Synthetic data 10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Data 10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 JMAP IGSM 10dB. . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 PM (via VBA, partial separability) IGSM 10dB. . . . . . . . . . . 93

5.2.4 PM (via VBA, full separability) IGSM 10dB. . . . . . . . . . . . 95

5.2.5 Methods comparison 10dB. . . . . . . . . . . . . . . . . . . . . . 96

5.2.6 Error comparison 10dB. . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Synthetic data 15dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Data 15dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 JMAP IGSM 15dB. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 PM (via VBA, partial separability) IGSM 15dB. . . . . . . . . . . 102

5.3.4 PM (via VBA, full separability) IGSM 15dB. . . . . . . . . . . . 104

5.3.5 Methods comparison 15dB. . . . . . . . . . . . . . . . . . . . . . 105

5.3.6 Error comparison 15dB. . . . . . . . . . . . . . . . . . . . . . . . 106

79



5.1.1 - Synthetic data 05dB

5.4 Student-t PM via VBA vs. LASSO 05dB. . . . . . . . . . . . . . . . . . 109

5.5 Student-t PM via VBA vs. LASSO 10dB. . . . . . . . . . . . . . . . . . 114

THIS chapter is dedicated to the simulations results corresponding to the synthetic data,
for the iterative algorithms presented in Chapter (4). First, we present in detail the

results for three levels of noise, 05dB, Section (5.1), 10dB, Section (5.2) and 15dB, Sec-
tion (5.3), for comparing the Gaussian model (i.e the Gaussian prior)with the proposed
Student-t model. For each prior, we compare the algorithms corresponding to the JMAP
and PM estimation. For all three sections, we present comparisons between the theoreti-
cal PC amplitude vectorf and the estimated PC amplitude vectorf̂ . We show the con-
vergency of the PC vectors during the iterations and show theevolutions of the estimation
errors for different realisation of the noise. Then, in Section (5.4) and Section (5.5) and
we present the comparison between the Proposed Method and LASSO method, showing in
detail the results corresponding to SNR=05dB and SNR=10dB and finally showing the be-
haviour of theL1 andL2 error norms corresponding to the Proposed Method and LASSO for
SNR={50dB,40dB,30dB,25dB,20dB,15dB,10dB,05dB}.

For Sections (5.1), (5.2) and (5.3), five algorithms corresponding the Bayesian approach
are compared: Joint MAP with Gaussian prior, Posterior Meanwith Gaussian prior, Joint
MAP with Student-t prior, Posterior Mean (via VBA) with Student-t prior (partial separability)
and Posterior Mean (via VBA) with Student-t prior (full separability).

For each iterative algorithm, we present a comparison between the algorithm’s estimation
and the synthetic data, i.e. a comparison betweenf̂Method andf , between̂gMethod andg and
between̂gMethod andg0 theoretical signal (g without noise). For every algorithm considered,
we present the convergency analysis of the parameters and hyperparameters involved. Then,
we present a comparison between the estimations of proposedalgorithms and the classical
FFT method. Finally, the proposed algorithms are tested 10 times over the same data, but
different noise realisation, in order to obtain theL2 error vector (the normalized difference
between data and estimated data, considered forf , g and theoretical signalg0) and compare
the performances of each algorithm. The comparisons between error vectors corresponding
to each algorithm are presented at the end of the subsections.

We consider the following protocol: we consider a theoretical PC vectorf and the cor-
responding theoretical signalHf ; we consider the corresponding signalg = Hf + ǫ, by
adding noise over the theoretical signal. The considered signal represents a four day signal,
sampled every hour. The matrixH considered in this set of simulations is a cosine plus sine
matrix.

5.1 Simulations 05dB

This section presents the simulations corresponding to thesynthetic case, for 05dB.

5.1.1 Synthetic data 05dB

For testing we have considered a four days signal, corresponding to a sparse PC vector, having
non-zero values for 11h, 15h, and 23h. We consider this particular structure for the following
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Simulations 05dB

reasons: we want to verify if the proposed method can precisely distinguish the peaks inside
the circadian domain. As we have mentioned, for such signals, via the FFT we obtain an
important peak corresponding to 24h and the corresponding harmonics, but this method offers
no information for certain values in the circadian domain. We have showed in Chapter (3),
Figure (3.2) that a dominant period, corresponding to 23h is wrongly estimated at 24h via FFT
method and offers no other informations for the interval [20-31].

5.1.2 Data 05dB

The PC vectorf , theoretical signalg0 and the signalg are presented in the Figure (5.1):
Figure (5.1a) shows the theoretical PC, having the non-zero periods corresponding to 11h,
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Figure 5.1:f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model (5dB)

15h and 23h. All the other values in the PC vector are zero. Figure (5.1b) presents the signal
corresponding to the linear model considered in Equation (4.4), neglecting the errors,g0 =
Hf . We note that the conditioning number of the matrixH is cond(H) = 56798792591.

81



5.1.3 - JMAP IGSM 05dB

All the simulations are done using as the input the noisy signal g corresponding to the linear
model, Equation (4.4), presented in Figure (5.1c). We compare the estimated PC vector with
the theoretical one, Figure (5.1a) and the corresponding reconstructed signal withg0 andg.
The comparison with the theoretical signalg0 is important in order to verify if the propose
algorithm can distinguish the peaks corresponding to biological phenomena from the ones
corresponding to the noise.

5.1.3 JMAP IGSM 05dB

A comparison between the synthetic data and the JMAP estimation, corresponding to the
IGSM prior hierarchical model is presented in Figure (5.2). We compare the theoretical PC
vectorf and the JMAP estimation̂fJMAP . We also present the comparison between the es-
timatedĝJMAP andg and the comparison between the estimatedĝJMAP and the theoretical
signal (without noise)g0: The proposed method is searching for a sparse solution correspond-
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Figure 5.2: JMAP IGSM Estimation (5dB)
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Simulations 05dB

ing to the linear model, Equation (4.4). The comparison between the theoretical signalg0 and
ĝJMAP , Figure (5.2b) shows that the proposed algorithm is converging to a solution that leads

to a fairly accurate reconstruction, having theL2 norm errorδg0 =
‖g0−ĝJMAP ‖2

2

‖g0‖2
2

= 0.0524.

For the PC vector, the reconstruction error isδf =
‖f−f̂ JMAP ‖2

2

‖f ‖2
2

= 0.0726. For the JMAP

estimation, the condition imposed for the searched solution, i.e. the sparsity is not respected,
Figure (5.2a). In fact, the alternate optimization algorithm considered for searching the JMAP
solution is converging to a local minimum and the estimationerrors corresponding to the
JMAP estimation might be far from the example presented. Figure (5.3a) presents the vari-
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Figure 5.3: JMAP IGSML2 error measured for 10 different noise realisations (5dB)

ation of L2 PC vector error reconstruction for 10 different noise realisation. As mentioned,
the JMAP solution given by the alternate optimization algorithm is converging to a local min-
imum and the estimation may be very inaccurate. We note that the figure presents a variation
of L2 PC vector error reconstruction from0.0524 to 4.2841. Important variations correspond-
ing to theL2 error reconstruction for the theoretical signalg0, and signalg, are presented in
Figure (5.3b) and Figure (5.3c).
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5.1.4 - PM (via VBA, partial separability) IGSM 05dB

5.1.4 PM (via VBA, partial separability) IGSM 05dB

A comparison between the synthetic data and the PM (via VBA, partial separability) IGSM
estimation is presented in Figure (5.4). We compare the theoretical PC vectorf with the
PM (via VBA, partial separability) IGSM estimation̂fP M , Figure (5.4a) and the corre-
sponding reconstructed signalĝP M both with the theoretical signalg0, Figure (5.4b) and
the input signalg, Figure (5.4c). In the case of the Posterior Mean estimation via VBA,
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Figure 5.4: PM (via VBA, partial separability) IGSM Estimation (5dB)

both the PC estimation and theoretical signalg0 reconstruction are very accurate, Figure
(5.4a) and Figure (5.4b). For the reconstruction of the theoretical signalg0, the L2 er-

ror norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.0275. For the PC vector, the reconstruction error is

δf =
‖f−f̂P M ‖2

2

‖f ‖2
2

= 0.0283. The algorithm is converging to a sparse solution where all the

non zero peaks are detected. The residual error computed betweeng and the reconstructed
signal is consistent with the error considered in the model,5dB, Figure (5.4c) . During the
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algorithm both Inverse Gammas shape parameters are constant, Equation (4.59c) and Equa-
tion (4.59d). We present the convergence of the scale parametersβǫ andβf , Figure (5.5d) and
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Figure 5.5: PM (via VBA, partial separability) IGSM hyperparameters andf convergency

Figure (5.5b), the convergence ofΣ covariance matrix diagonal, Figure (5.5c) and the conver-
gence of algorithm’s solutionf . For a better visualisation of the PC convergencef is plotted
as a vector, Figure (5.5a). The colour scale corresponding to each figure represents the itera-
tions, showing a very fast convergence both for the parameters and hyperparameters involved
in the model. All the estimations of the parameters and hyperparameters are superposed after
the first ten iterations. In the previous paragraph we have showed that the JMAP estimation
for the proposed model is presenting high variations in terms of the error estimation and re-
construction. We show that for the PM estimation, the error variation is very small. Figure
(5.6a) presents the variation ofL2 PC vector error reconstruction for 10 different noise realisa-
tion. The figure presents a very small variation ofL2 PC vector error reconstruction, between
0.02215 and0.0621. Very small variations corresponding to theL2 error reconstruction for
the theoretical signalg0, and signalg, are presented in Figure (5.6b) and Figure (5.6c).

5.1.5 PM (via VBA, full separability) IGSM 05dB

The estimations for the full separability case are also accurate: Numerically, for the recon-

struction of the theoretical signalg0, theL2 error norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.0247. For

the PC vector, the reconstruction error isδf =
‖f−f̂P M ‖2

2

‖f‖2
2

= 0.0234. Figure (5.8a) presents

the variation ofL2 PC vector error reconstruction for 10 different noise realisation. The figure
presents a very small variation ofL2 PC vector error reconstruction, between0.02 and0.067.
Very small variations corresponding to theL2 error reconstruction for the theoretical signal
g0, and signalg, are presented in Figure (5.8b) and Figure (5.8c).
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5.1.6 - Methods comparison 05dB
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Figure 5.6: PM (via VBA, partial separability) IGSML2 error measured for 10 different noise
realisations (5dB)

5.1.6 Methods comparison 05dB

A comparison between the estimations corresponding to the IGSM proposed model is pre-
sented in Figure (5.9c) (JMAP estimator), Figure (5.9d) (PM via VBA, partial separability
estimator) and Figure (5.9e) (PM via VBA, full separability estimator). As mentioned inSec-
tion (4.1), during this article we adopted a Bayesian approach. However, other approaches
are possible, via regularization. For this reason we include a comparison with the Gaussian
case (i.e. Gaussian prior), via the two estimators discussed, Figure (5.9a) (Gaussian Model,
JMAP estimator) and Figure (5.9b) (PM via VBA estimator). A comparison with the FFT
is presented in Figure (5.9f). TheL2 estimation error for the PC vector is very high for the
two Gaussian models. Also, the estimations are not sparse. For the IGSM models, the JMAP
estimator is providing a good estimation, but it is unstable. PM via VBA estimation, both
partial and fully separable provides very accurate stable estimations.
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Figure 5.7: PM (via VBA, full separability) IGSM Estimation(5dB)

5.1.7 Error comparison 05dB

TheL2 error measurement corresponding to the PC estimation, theoretical signal estimation
and the signal estimation, for 10 different noise realisation is presented in the following figure:
TheL2 error corresponding to the PM via VBA IGSM Model corresponding to the PC vector
estimation, Figure (5.10a) shows the performances of the proposed algorithm comparedto the
Gaussian Model and the JMAP estimation for IGSM Model.
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5.1.7 - Error comparison 05dB
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Figure 5.8: PM (via VBA, full separability) IGSML2 error measured for 10 different noise
realisations (5dB)
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Figure 5.9: Methods Comparison (5dB)
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5.1.7 - Error comparison 05dB
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Figure 5.10:L2 Errors estimation (5dB)
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Synthetic data 10dB

5.2 Synthetic data 10dB

In this subsection we present the synthetic data case corresponding to the 10 dB SNR.

5.2.1 Data 10dB

The periodic component vectorf , theoretical signalg0 and the signalg are presented in the
following figure: Figure (5.11a) shows the theoretical PC, set for 11h, 15h and 23h. All
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Figure 5.11:f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model
(10dB)

the other values in the PC vector are zero. Figure (5.11b) presents the signal corresponding
to the linear model considered in Equation (3), neglecting the errors,g0 = Hf . All the
simulations are done using as the input the noisy signalg, (5.11c) corresponding to the linear
model,Equation (3).
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5.2.2 - JMAP IGSM 10dB

5.2.2 JMAP IGSM 10dB

A comparison between the synthetic data and the JMAP IGSM estimation is presented in the
Figure (5.12). The theoretical periodic component vectorf and the JMAP IGSM estimation

f̂JMAP are compared in Figure (5.12a). The reconstruction error isδf =
‖f−f̂ JMAP ‖2

2

‖f ‖2
2

=

0.0259. The comparison between the estimatedĝJMAP and the theoretical signal (without

noise)g0 is presented in in Figure (5.12b). The reconstruction error isδg0 =
‖g0−ĝJMAP ‖2

2

‖g0‖2
2

=

0.0225. The comparison between the estimatedĝJMAP and the signalg is presented in in
Figure (5.12c). Figure (5.13a) presents the variation ofL2 PC vector error reconstruction for
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Figure 5.12: JMAP IGSM Estimation (10dB)

10 different noise realisation, showing high variations. Important variations corresponding to
theL2 error reconstruction for the theoretical signalg0, and signalg, are presented in Figure
(5.13b) and Figure (5.13c).
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Synthetic data 10dB
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Figure 5.13: JMAP IGSML2 error measured for 10 different noise realisations (10dB)

5.2.3 PM (via VBA, partial separability) IGSM 10dB

For the Posterior Mean estimation via VBA, both the PC estimation and theoretical signalg0

reconstruction are very accurate, Figure (5.14a) and Figure (5.14b). For the reconstruction

of the theoretical signalg0, the L2 error norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.011. For the PC

vector, the reconstruction error isδf =
‖f−f̂P M ‖2

2

‖f ‖2
2

= 0.0144. The algorithm is converging

to a sparse solution where all the non zero clocks are detected. The residual error computed
betweeng and the reconstructed signal is consistent with the error considered in the model,
10dB, Figure (5.14c). The convergency ofΣ covariance matrix diagonal, Figure (5.15a) and
the convergency of algorithm’s solutionf , Figure (5.15b) is showing a very fast convergency.
All the estimates are superposed after the first ten iterations. We show that for the PM estima-
tion, the error variation is very small. Figure (5.16a) presents the variation ofL2 PC vector
error reconstruction for 10 different noise realisation. The figure presents a very small vari-
ation of L2 PC vector error reconstruction, between0.008 and0.02. Very small variations
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5.2.3 - PM (via VBA, partial separability) IGSM 10dB
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Figure 5.14: PM (via VBA, partial separability) IGSM Estimation (10dB)

Periods
8 11 14 17 20 23 26 29 32

Am
pli

tud
e

0

0.02

0.04

0.06

0.08

0.1

Cov Diag Convergency  (VBA1 St-t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) diag(̂Σ) convergency

Periods
8 11 14 17 20 23 26 29 32

Am
pli

tud
e

-0.2

0

0.2

0.4

0.6

0.8

1

PC Convergency  (VBA1 St-t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) f convergency

Figure 5.15: PM (via VBA, partial separability) IGSM hyperparameters andf convergency

corresponding to theL2 error reconstruction for the theoretical signalg0, and signalg, are
presented in Figure (5.16b) and Figure (5.16c).
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Synthetic data 10dB
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Figure 5.16: PM (via VBA, partial separability) IGSML2 error measured for 10 different
noise realisations (10dB)

5.2.4 PM (via VBA, full separability) IGSM 10dB

The estimations for the full separability case are also accurate: For the reconstruction of the

theoretical signalg0, theL2 error norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.0095. For the PC vector,

the reconstruction error isδf =
‖f−f̂P M ‖2

2

‖f ‖2
2

= 0.0103. Figure (5.18a) presents the variation

of L2 PC vector error reconstruction for 10 different noise realisation. The figure presents a
very small variation ofL2 PC vector error reconstruction, between0.0046 and0.0168. Very
small variations corresponding to theL2 error reconstruction for the theoretical signalg0, and
signalg, are presented in Figure (5.18b) and Figure (5.18c).
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5.2.5 - Methods comparison 10dB
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Figure 5.17: PM (via VBA, full separability) IGSM Estimation (10dB)

5.2.5 Methods comparison 10dB

The comparison between the estimations corresponding to the proposed IGSM models is pre-
sented in Figure (5.19c) (JMAP estimator), Figure (5.19d) (PM via VBA, partial separability
estimator) and Figure (5.19e) (PM via VBA, full separability estimator). The comparisonwith
the Gaussian case (i.e. Gaussian prior), via the two estimators discussed, is presented in Fig-
ure (5.19a) (Gaussian Model, JMAP estimator) and Figure (5.19b) (PM via VBA estimator).
A comparison with the FFT is presented in Figure (5.19f).

TheL2 estimation error for the PC vector is very high for the two Gaussian models. Also,
the estimations are not sparse. For the IGSM models, the JMAPestimator is providing a
good estimation, but it is unstable. VBA estimator, both partial separable and fully separable
provides very accurate stable estimations.
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Synthetic data 10dB
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Figure 5.18: PM (via VBA, full separability) IGSML2 error measured for 10 different noise
realisations (10dB)

5.2.6 Error comparison 10dB

TheL2 error measurement corresponding to the PC estimation, theoretical signal estimation
and the signal estimation, for 10 different noise realisation is presented in the following figure:
The L2 error corresponding to the PM via VBA IGSM Model shows the performances of
proposed via algorithm compared to the Gaussian Model and the JMAP estimation for IGSM
Model.
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5.2.6 - Error comparison 10dB
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Figure 5.19: Methods Comparison (10dB)
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Synthetic data 10dB
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Figure 5.20:L2 Errors estimation (10dB)
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5.3.1 - Data 15dB

5.3 Synthetic data 15dB

In this subsection we present the synthetic data case corresponding to the 15 dB SNR.

5.3.1 Data 15dB

The periodic component vectorf , theoretical signalg0 and the signalg are presented in the
following figure: Figure (5.21a) shows the theoretical PC, set for 11h, 15h and 23h. All
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Figure 5.21:f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model
(15dB)

the other values in the PC vector are zero. Figure (5.21b) presents the signal corresponding
to the linear model considered in Equation (3), neglecting the errors,g0 = Hf . All the
simulations are done using as the input the noisy signalg, (5.21c) corresponding to the linear
model,Equation (3).
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Synthetic data 15dB

5.3.2 JMAP IGSM 15dB

A comparison between the synthetic data and the JMAP IGSM estimation is presented in the
Figure (5.22). The theoretical periodic component vectorf and the JMAP IGSM estimation

f̂JMAP are compared in Figure (5.22a). The reconstruction error isδf =
‖f−f̂ JMAP ‖2

2

‖f ‖2
2

=

0.0069. The comparison between the estimatedĝJMAP and the theoretical signal (without

noise)g0 is presented in in Figure (5.22b). The reconstruction error isδg0 =
‖g0−ĝJMAP ‖2

2

‖g0‖2
2

=

0.00692. The comparison between the estimatedĝJMAP and the signalg is presented in in
Figure (5.22c). Figure (5.23a) presents the variation ofL2 PC vector error reconstruction for
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Figure 5.22: JMAP IGSM Estimation (15dB)

10 different noise realisation, showing high variations. Important variations corresponding to
theL2 error reconstruction for the theoretical signalg0, and signalg, are presented in Figure
(5.23b) and Figure (5.23c).
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5.3.3 - PM (via VBA, partial separability) IGSM 15dB
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Figure 5.23: JMAP IGSML2 error measured for 10 different noise realisations (15dB)

5.3.3 PM (via VBA, partial separability) IGSM 15dB

For the Posterior Mean estimation via VBA, both the PC estimation and theoretical signalg0

reconstruction are very accurate, Figure (5.24a) and Figure (5.24b). For the reconstruction

of the theoretical signalg0, theL2 error norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.00513. For the PC

vector, the reconstruction error isδf =
‖f−f̂ P M ‖2

2

‖f ‖2
2

= 0.00437. The algorithm is converging

to a sparse solution where all the non zero clocks are detected. The residual error computed
betweeng and the reconstructed signal is consistent with the error considered in the model,
15dB, Figure (5.24c). The convergency ofΣ covariance matrix diagonal, Figure (5.25a) and
the convergency of algorithm’s solutionf , Figure (5.25b) is showing a very fast convergency.
All the estimates are superposed after the first ten iterations. We show that for the PM estima-
tion, the error variation is very small. Figure (5.26a) presents the variation ofL2 PC vector
error reconstruction for 10 different noise realisation. The figure presents a very small vari-
ation of L2 PC vector error reconstruction, between0.003 and0.01. Very small variations
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Synthetic data 15dB
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Figure 5.24: PM (via VBA, partial separability) IGSM Estimation (15dB)
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Figure 5.25: PM (via VBA, partial separability) IGSM hyperparameters andf convergency

corresponding to theL2 error reconstruction for the theoretical signalg0, and signalg, are
presented in Figure (5.26b) and Figure (5.26c).
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5.3.4 - PM (via VBA, full separability) IGSM 15dB

Number Of Simulations
1 6

Am
plitu

de

×10-3

3

4

5

6

7

8

9

10

11

12
L2 Error PC (VBA1 St)

(a) L2 Error: f vs. f̂P M

Number Of Simulations
1 6

Am
plitu

de

×10-3

2

3

4

5

6

7

8

9

10

L2 Error Signal Theoretical (VBA1 St)

(b) L2 Error: g0 vs. ĝP M
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Figure 5.26: PM (via VBA, partial separability) IGSML2 error measured for 10 different
noise realisations (15dB)

5.3.4 PM (via VBA, full separability) IGSM 15dB

The estimations for the full separability case are also accurate: For the reconstruction of the

theoretical signalg0, theL2 error norm isδg0 =
‖g0−ĝP M ‖2

2

‖g0‖2
2

= 0.00398. For the PC vector,

the reconstruction error isδf =
‖f−f̂ P M ‖2

2

‖f ‖2
2

= 0.00374. Figure (5.28a) presents the variation

of L2 PC vector error reconstruction for 10 different noise realisation. The figure presents a
very small variation ofL2 PC vector error reconstruction, between0.0037 and0.027. Very
small variations corresponding to theL2 error reconstruction for the theoretical signalg0, and
signalg, are presented in Figure (5.28b) and Figure (5.28c).
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Synthetic data 15dB
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Figure 5.27: PM (via VBA, full separability) IGSM Estimation (15dB)

5.3.5 Methods comparison 15dB

The comparison between the estimations corresponding to the proposed IGSM models is pre-
sented in Figure (5.29c) (JMAP estimator), Figure (5.29d) (PM via VBA, partial separability
estimator) and Figure (5.29e) (PM via VBA, full separability estimator). The comparisonwith
the Gaussian case (i.e. Gaussian prior), via the two estimators discussed, is presented in Fig-
ure (5.29a) (Gaussian Model, JMAP estimator) and Figure (5.29b) (PM via VBA estimator).
A comparison with the FFT is presented in Figure (5.29f). TheL2 estimation error for the PC
vector is very high for the two Gaussian models. Also, the estimations are not sparse. For the
IGSM models, the JMAP estimator is providing a good estimation, but it is unstable. VBA
estimator, both partial separable and fully separable provides very accurate stable estimations.

105



5.3.6 - Error comparison 15dB
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Figure 5.28: PM (via VBA, full separability) IGSML2 error measured for 10 different noise
realisations (15dB)

5.3.6 Error comparison 15dB

TheL2 error measurement corresponding to the PC estimation, theoretical signal estimation
and the signal estimation, for 10 different noise realisation is presented in the following figure:
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Synthetic data 15dB
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Figure 5.29: Methods Comparison (15dB)
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5.3.6 - Error comparison 15dB
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Figure 5.30:L2 Errors estimation (15dB)
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Student-t PM via VBA vs. LASSO 05dB

5.4 Student-t PM via VBA vs. LASSO 05dB

In this section we compare the performances of the Proposed Method and LASSO, for
SNR=05dB. We consider the theoretical PC amplitude vectorsf 1, f 2 and f , defined as
=

√
f 1

2 + f2
2, the corresponding theoretical (original) signalg0 = H2f1 + H2f2 and

the corresponding (noisy) signalg = g0 + ǫ, by adding noise over the theoretical signal.
The considered signal represents a four day signal, sampledevery hour. The matrixH1 is
a sine matrix and the matrixH2 is a sine matrix. The data is presented in Figure (5.31):
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Figure 5.31: Synthetic simulation data (05dB): sine PC amplitudes vectorf 1, (5.31a), cosine
PC amplitudes vectorf2, (5.31b), PC amplitudes vectorf , (5.31c); corresponding original
signalg0 = H1f 1 + H2f 2, (5.31d), noisy signalg, (5.31e) and the added noise (05dB)ǫ

(5.31f)

the PC amplitude vectorf1, corresponding to sine, is presented in Figure (5.31a) and the PC
amplitude vectorf2, corresponding to cosine, is presented in Figure (5.31b). We have consid-
ered sparse vectors, with three periods with non-zero corresponding amplitudes: 11 hours, 15
hours and 23 hours. We have considered for both PC amplitudesvectorsf 1 andf 2 the same
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5.3.6 - Error comparison 15dB

periods with non-zero corresponding amplitudes, but different values for the amplitudes. The
PC amplitude vectorf is presented in Figure (5.31c), the corresponding original signalg0 in
Figure (5.31d) and the corresponding noisy signalg in Figure (5.31e). The added noiseǫ,
corresponding to SNR=05dB, is presented in Figure (5.31f). The estimation corresponding
to the Student-t model, with PM estimation, is presented in Figure (5.32). The comparison
between the estimated̂f1 andf 1 is presented in Figure (5.32a) and the comparison between
the estimated̂f 2 andf2 is presented in Figure (5.32b). Both estimated PC amplitudes vectors
f̂ 1 and f̂2 are sparse and the non-zero amplitudes are correctly estimated. TheL1 andL2

estimation error norms corresponding tof 1 areδf11 = 0.34 andδf12 = 0.05; the L1 and
L2 estimation error norms corresponding tof2 are δf21 = 0.16 and δf 22 = 0.004. The
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Figure 5.32: Synthetic simulation (05dB): comparison between the Proposed Method estima-
tions and the synthetic data

comparison betweenf andf̂ is presented in Figure (5.32c): theL1 estimation error norm is
δf 1 = 0.247 and theL2 estimation error norm isδf 2 = 0.015. The comparison between
the reconstructed signalĝ andg is presented in Figure (5.32d): the reconstruction is fairly
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Student-t PM via VBA vs. LASSO 05dB

accurate: theL1 reconstruction error norm isδg1 = 0.159 and theL2 reconstruction error
norm isδg2 = 0.024. The estimation corresponding to LASSO is presented in Figure (5.33).
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Figure 5.33: Synthetic simulation (05dB): comparison between the LASSO estimations and
the synthetic data

The comparison between the estimatedf̂ 1 andf 1 is presented in Figure (5.33a) and the com-
parison between the estimated̂f 2 andf 2 is presented in Figure (5.33b). Both estimations
have amissing value(i.e. the non-zero amplitude corresponding to 23h hours is estimated as
zero) and both estimations have one ore twofalse detections: for f̂ 1, LASSO is associating
a non-zero amplitude corresponding to 22 hours and forf̂ 2 two non-zero amplitudes corre-
sponding to 24 and 25 hours. TheL1 andL2 estimation error norms corresponding tof 1

areδf 11 = 0.87 andδf 12 = 0.82 and theL1 andL2 estimation error norms corresponding
to f 2 are δf 11 = 0.49 andδf 12 = 0.99. The comparison betweenf and f̂ is presented
in Figure (5.33c): the L2 estimation error norm isδf 2 = 0.65 and theL1 estimation error
norm isδf1 = 1.05. The comparison between the reconstructed signalĝ andg is presented
in Figure (5.33d): the reconstruction is fairly accurate: theL1 reconstruction error norm is
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5.3.6 - Error comparison 15dB

δg1 = 0.2 and theL2 reconstruction error norm isδg2 = 0.04. To analyse the stability of
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Figure 5.34: Stability: L1 and L2 reconstruction errors (05dB): δg1 and δg2: Proposed
Method vs. LASSO

the Proposed Method and LASSO, we compute theL1 andL2 estimation and reconstruction
errors corresponding to the Proposed Method and LASSO, for 30 noise realisations, in the
same conditions as in Figure (5.31). Figure (5.34) presents the behaviour of theL1 andL2

reconstruction errors corresponding to the original signal g0: Figure (5.34a) compares the
behaviour ofL1 reconstruction error corresponding to the original signal, δg1, correspond-
ing to the Proposed Method and LASSO and Figure (5.34b) compares the behaviour ofL2

reconstruction error corresponding to the original signal, δg2, corresponding to the Proposed
Method and LASSO. Both methods provide small reconstruction errors, and both methods
are stable. Figure (5.35) presents the behaviour of theL1 andL2 estimation errors forf 1,
f 2 andf : Figure (5.35a) compares the behaviour ofL1 estimation error forf 1, δf11, cor-
responding to the Proposed Method and LASSO and Figure (5.35b) compares the behaviour
of L2 estimation error forf2, δf 12, corresponding to the Proposed Method and LASSO. The
comparison corresponding tof 2 is presented in Figure (5.35c) (L1) and Figure (5.35d) (L2)
and corresponding tof is presented in Figure (5.35e) (L1) and Figure (5.35f) (L2).

The Proposed Method has better performances compared to LASSO in terms ofL1 andL2

estimation errors for the PC amplitudes vector: the associated errors are always smaller than
the ones corresponding to LASSO. Also, in this case, for SNR=05dB the LASSO is unstable.
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(c) δf 21: Proposed Method vs. LASSO
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Figure 5.35: Stability: L1 and L2 estimation errors (05dB):δf1 andδf2: Proposed Method
vs. LASSO
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5.5 Student-t PM via VBA vs. LASSO 10dB

In this section we compare the performances of the Proposed Method and LASSO, for
SNR=10dB. We consider the theoretical PC amplitude vectorsf 1, f 2 and f , defined as
=

√
f 1

2 + f2
2, the corresponding theoretical (original) signalg0 = H2f 1 + H2f 2 and

the corresponding (noisy) signalg = g0 + ǫ, by adding noise over the theoretical signal.
The considered signal represents a four day signal, sampledevery hour. The matrixH1 is
a sine matrix and the matrixH2 is a sine matrix. The data is presented in Figure (5.36):
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Figure 5.36: Synthetic simulation data (10dB): sine PC amplitudes vectorf1, (5.36a), cosine
PC amplitudes vectorf 2, (5.36b), PC amplitudes vectorf , (5.36c); corresponding original
signalg0 = H1f1 + H2f 2, (5.36d), noisy signalg, (5.36e) and the added noise (05dB)ǫ

(5.36f)

the PC amplitude vectorf 1, corresponding to sine, is presented in Figure (5.36a) and the PC
amplitude vectorf 2, corresponding to cosine, is presented in Figure (5.36b). We have consid-
ered sparse vectors, with three periods with non-zero corresponding amplitudes: 11 hours, 15
hours and 23 hours. We have considered for both PC amplitudesvectorsf1 andf 2 the same
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periods with non-zero corresponding amplitudes, but different values for the amplitudes. The
PC amplitude vectorf is presented in Figure (5.36c), the corresponding original signalg0 in
Figure (5.36d) and the corresponding noisy signalg in Figure (5.36e). The added noiseǫ,
corresponding to SNR=10dB, is presented in Figure (5.36f). The estimation corresponding
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Figure 5.37: Synthetic simulation (10dB): comparison between the Proposed Method estima-
tions and the synthetic data

to the Student-t model, with PM estimation, is presented in Figure (5.37). The comparison
between the estimated̂f 1 andf1 is presented in Figure (5.37a) and the comparison between
the estimated̂f2 andf2 is presented in Figure (5.37b). Both estimated PC amplitudes vectors
f̂1 and f̂ 2 are sparse and the non-zero amplitudes are correctly estimated. TheL1 andL2

estimation error norms corresponding tof1 areδf11 = 0.15 andδf12 = 0.008; theL1 and
L2 estimation error norms corresponding tof 2 areδf21 = 0.16 andδf 22 = 0.017.

The comparison betweenf andf̂ is presented in Figure (5.37c): theL1 estimation error
norm isδf1 = 0.158 and theL2 estimation error norm isδf2 = 0.012. The comparison
between the reconstructed signalĝ andg is presented in Figure (5.37d): the reconstruction is
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fairly accurate: theL1 reconstruction error norm isδg1 = 0.102 and theL2 reconstruction er-
ror norm isδg2 = 0.01. The estimation corresponding to LASSO is presented in Figure (5.38).

Periods
8 11 14 17 20 23 26 29 32

Am
pli

tu
de

0

0.5

1

1.5

2

2.5

3

L
2
 norm: 0.26

L
1
 norm: 0.649

Theoretical & Estimated PC sin (Lasso)

Theoretical

Estimated

(a) LASSOf̂1 vs. f1

Periods
8 11 14 17 20 23 26 29 32

Am
pli

tu
de

0

0.5

1

1.5

2

2.5

3

L
2
 norm: 0.483

L
1
 norm: 0.785

Theoretical & Estimated PC cos (Lasso)

Theoretical

Estimated

(b) LASSOf̂1 vs. f1

Periods
8 11 14 17 20 23 26 29 32

Am
plitu

de

0

0.5

1

1.5

2

2.5

3

3.5

L
2
 norm: 0.305

L
1
 norm: 0.749

Theoretical & Estimated PC (Lasso)

Theoretical

Estimated

(c) LASSOf̂ vs. f

Time(h)
0 24 48 72

Am
pli

tu
de

-10

-8

-6

-4

-2

0

2

4

6

8

L
2
 norm: 0.012

L
1
 norm: 0.114

Theoretical & Reconstructed Signal (Lasso)

Theoretical

Estimated

Rezidual Error

(d) LASSOĝ vs. g
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Figure 5.38: Synthetic simulation (10dB): comparison between the LASSO estimations and
the synthetic data

The comparison between the estimatedf̂1 andf1 is presented in Figure (5.38a) and the com-
parison between the estimated̂f 2 andf2 is presented in Figure (5.38b). Both estimations
have amissing value(i.e. the non-zero amplitude corresponding to 23h hours is estimated as
zero) and both estimations have one ore twofalse detections: for f̂ 1, LASSO is associating
a non-zero amplitude corresponding to 22 hours and forf̂2 two non-zero amplitudes corre-
sponding to 24 and 25 hours. TheL1 andL2 estimation error norms corresponding tof 1

areδf 11 = 0.649 andδf12 = 0.26 and theL1 andL2 estimation error norms corresponding
to f 2 are δf11 = 0.78 andδf12 = 0.48. The comparison betweenf and f̂ is presented
in Figure (5.38c): the L2 estimation error norm isδf2 = 0.305 and theL1 estimation error
norm isδf 1 = 0.749. The comparison between the reconstructed signalĝ andg is presented
in Figure (5.38d): the reconstruction is fairly accurate: theL1 reconstruction error norm is
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δg1 = 0.012 and theL2 reconstruction error norm isδg2 = 0.11. To analyse the stability
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Figure 5.39: Stability: L1 and L2 reconstruction errors (10dB): δg1 and δg2: Proposed
Method vs. LASSO

of the Proposed Method and LASSO, we compute theL1 andL2 estimation and reconstruc-
tion errors corresponding to the Proposed Method and LASSO,for 30 noise realisations, in
the same conditions as in Figure (5.36). Figure (5.39) presents the behaviour of theL1 and
L2 reconstruction errors corresponding to the original signal g0: Figure (5.39a) compares the
behaviour ofL1 reconstruction error corresponding to the original signal, δg1, correspond-
ing to the Proposed Method and LASSO and Figure (5.39b) compares the behaviour ofL2

reconstruction error corresponding to the original signal, δg2, corresponding to the Proposed
Method and LASSO. Both methods provide small reconstruction errors, and both methods
are stable. Figure (5.40) presents the behaviour of theL1 andL2 estimation errors forf 1,
f2 andf : Figure (5.40a) compares the behaviour ofL1 estimation error forf 1, δf11, cor-
responding to the Proposed Method and LASSO and Figure (5.40b) compares the behaviour
of L2 estimation error forf 2, δf12, corresponding to the Proposed Method and LASSO. The
comparison corresponding tof2 is presented in Figure (5.40c) (L1) and Figure (5.40d) (L2)
and corresponding tof is presented in Figure (5.40e) (L1) and Figure (5.40f) (L2)

The Proposed Method has better performances compared to LASSO in terms ofL1 and
L2 estimation errors for the PC amplitudes vector: the associated errors are always smaller
than the ones corresponding to LASSO.

Finally, we present a comparison between the Proposed Method and LASSO for
different values for the SNR. Figure (5.41a) presents the comparison between theL1

reconstruction norm forg0 corresponding to the Proposed Method and LASSO for
SNR={5dB, 10dB, 15dB, 20dB, 25dB, 30dB, 40dB, 50dB}. The comparison between theL2

reconstruction norm forg0 for the two methods is presented in Figure (5.41b). Figure (5.41c)
and Figure (5.41d) present the comparison between theL1 andL2 reconstruction norm forg
for the two methods.

Figure (5.42a) presents the comparison between theL1 estimation norm forf 1 corre-
sponding to the Proposed Method and LASSO for
SNR={5dB, 10dB, 15dB, 20dB, 25dB, 30dB, 40dB, 50dB}. The comparison between theL2

reconstruction norm forf 1 for the two methods is presented in Figure (5.42b). Figure (5.42c)
and Figure (5.42d) present the comparison between theL1 andL2 estimation error norm for
f2 for the two methods and Figure (5.42e) and Figure (5.42f) present the comparison between
theL1 andL2 estimation error norm forf for the two methods.
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Figure 5.40: Stability: L1 and L2 estimation errors (10dB):δf 1 andδf 2: Proposed Method
vs. LASSO
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Figure 5.41: L1 and L2 estimation errors:δg1 andδg2: Proposed Method vs. LASSO
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Figure 5.42: L1 and L2 estimation errors:δf1 andδf 2: Proposed Method vs. LASSO
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Simulations: Real data
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CHAPTER 6. SIMULATIONS: REAL DATA

6.6.3 Conclusions: Dominant Period evolution. . . . . . . . . . . . . . 177

IN this chapter we present the simulations corresponding to the real data. The considered
signals are obtained in an experiment performed in 6 male KI/KI Per2::luc mice, aged 10

weeks. Mice were singly housed in RT-BIO and synchronized with LD12:12 for 10 days of
adaptation. D-luciferin ([1.5 mg/mL] was loaded in drink water. Animals were then kept in
DD for 3 days. Vehicle or everolimus (5 mg/kg/d) was daily administered at ZT1 or ZT13
(Zeitgeber time) for 6 days, and then animals were kept in DD for another 4 days. Liver
bioluminescence and mouse rest-activity were monitored every minute during LD12:12 and/or
DD with the RT-BIO photomultiplier tube and infrared sensorrespectively. For each mouse,
CT 502 A1 presented in Section (6.1), CT 502 A2 presented in Section (6.2), CT 502 A3
presented in Section (6.3), CT 502 B1 presented in Section (6.4), CT 502 B2 presented in
Section (6.5), CT 502 B3 presented in Section (6.6), every segment of interest, i.e. the LD
segment and the three segments corresponding to the DD, before, during and after treatment,
the PC amplitude vector is obtained using the proposed method and compared with the FFT
estimation, the standard method used today in chronobiology.

6.1 CT 502 A1: Photon Absorption and Activity

In the following we present the results of the proposed method compared with the standard
method used today for analysing the chronobiological signals, the FFT method, on real data,
obtained in experiments performed in male KI/KI Per2::luc mice, aged 10 weeks. This section
is dedicated to the complete study, i.e the study of the physiology, corresponding to the seg-
ment LD (light-dark, 12h-12h), where the mouse was synchronized and DD (total darkness),
the segment corresponding to thebefore treatment and the study of the behaviourduring and
after treatment. For the study, two signals were recorded: theActivity Signal measuring the
activity (movement) of the mouse and thePhoton Absorption Signal, measuring the number
of photons absorbed.
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Figure 6.1:CT 502, A1 Mouse: Activity (a) and Photon Absorption (b) raw data

Figure (6.1) presents the raw data corresponding to the Activity signaland Photon Absorp-
tion signal. The signals were recorded for 22 days, sampled every minute. For each signal,
we consider 4 segments:LD Period, corresponding to the synchronization part, then three
parts corresponding to theDD period: before, during and after treatment. We are interested
in the periodic component (PC) vector corresponding to eachsignal and in the corresponding
acrophase. The stability of the period is verified using the moving window strategy, where the
available data allows.
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CT 502 A1: Photon Absorption and Activity

6.1.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to the Activity. We consider zero-mean
signals, normalized between [-10:10] and sampled every hour.
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Figure 6.2: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT: Via the FFT method, the principal period
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Figure 6.3: Considered signal (a) and the corresponding PC via VBA (b) and FFT (c)

is estimated at 24 hours. Evidently, beside the incertitudeassociated with the FFT estimated
PC, the existence of other rhythms can’t be established, being difficult to interpret all the
picks present in the estimated PC. Via the Proposed Method, the principal period is estimated
at 23 hours.The amplitude corresponding to the 23h period via the Proposed Method is much
higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method. Via the Proposed Method,
three windows present a 23 hours periodicity and for one window, a 24 hours periodicity
is detected. Via FFT method the principal period seems stable, every window presenting a
dominant period of 24 hours. This result is consistent with the PC estimation via Proposed
method, when all the signal was considered.

The stability or variability of the PC amplitudes vector forthe LD part of the Activity
signal is presented in Figure (6.5):
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6.1.1 - Dominant Period evolution: Activity
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Figure 6.4: PC Stability: PC estimation via FFT and VBA for 4-days length signals

Figure 6.5: PC Stability: Proposed Method (a) vs. FFT (b)
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CT 502 A1: Photon Absorption and Activity

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin the Figure (6.6):

Figure 6.6: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
Method, (6.7): Via the FFT, the highest pick is set at 24 hours and the next three highest
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Figure 6.7: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

picks are set at 8, 36 and 6 hours. Of course, given the short length of the signal, 3 days,
and the limitations of the FFT method all the values inside the interval (18,36) except 24 are
not present in the estimated vector, so the result presents avery important uncertainty. This
means that for this particular case, even the classificationof the rhythm (circadian or infradian)
is uncertain via FFT. Via the Proposed method the dominant period is set at 22 hours and the
other pick present in the PC vector correspond to 8 hours.

We consider theduring treatment part of the data, for which five days are available,Fig-
ure (6.8). Via the proposed method, the estimated PC vector is a sparse vector, in accordance
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Figure 6.8: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

with the model and the dominant period is estimated at 25 hours. For the FFT estimated PC
vector, the dominant period is estimated at 24 hours, but theestimation is not sparse. In this
case, the next two important picks correspond to 8 and 12 hours, harmonics of 24 hours. We
consider now 4-days length signals (windows) from the available signal, with a shift of one
day and compute the PC via FFT and the Proposed method. In thiscase, analysing theduring
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6.1.1 - Dominant Period evolution: Activity
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Figure 6.9: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity
DD, during

segment using the moving window we note that via the ProposedMethod a variability of the
dominant period is detected, while via FFT the dominant period seems stable. This can be
viewed in Figure (6.10). An image of dominant period stability or variability, regardless the

Figure 6.10: PC Stability: Proposed Method (a) vs. FFT (b)

numerical value of the amplitude associated with the dominant period forduring segment is
presented in Figure (6.11):

Figure 6.11: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

For theafter treatment part of the data 2 days are available. Via the FFT estimation, the
dominant period is 24 hours, while via the proposed method the dominant period is 25 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.1).
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CT 502 A1: Photon Absorption and Activity
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Figure 6.12: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502 - A1 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 23 24

LD win 1 23 24

LD win 2 23 24

LD win 3 24 24

LD win 4 23 24

DD before 22 24

DD during 25 24

DD during win 1 25 24

DD during win 2 24 24

DD after 25 24

Table 6.1: CT 502 A1: Activity Dominant Period Stability: Proposed Method vs. FFT

6.1.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence
but the light inside cage corresponding to the 12 hours of light.

The complete Photon absorption signal and the four segmentsof interest are presented in
Figure (6.13).

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT: Via the FFT method, the principal period
is estimated at 24 hours. In particular, in this case, the FFTmethod estimates a sparse PC
amplitudes vector, and along with the 24 hours, a non-zero peak is detected corresponding to
8 hours. Very similar results are obtained in this case via the Proposed Method: the principal
period is also estimated at 24 hours, together with the harmonic of 8 hours. However, the
amplitude corresponding to the Proposed Method is much higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.15). For all
the windows, a 24 hours periodicity is confirmed, via the two methods, with a harmonic
corresponding to 8 hours, Figure (6.16). Once again, for this segment, there is no biological
interpretation.
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6.1.2 - Dominant Period evolution: Photon
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Figure 6.13: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled
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Figure 6.14: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)
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Figure 6.15: PC Stability: PC estimation via FFT and VBA for 4-days length signals
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CT 502 A1: Photon Absorption and Activity

Figure 6.16: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.17):

Figure 6.17: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

We consider now the DD period. First, we consider thebefore treatment segment. How-
ever, in this case the signal is corrupted, Figure (6.18):
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Figure 6.18: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

We consider theduring treatment part of the data. Five days are available, Figure (6.19).
Via FFT method, the dominant period is estimated at 24 hours,with important peaks corre-
sponding to 17, 10 and 30 hours. Via the Proposed Method, the PC amplitudes vector detects
three peaks: the dominant period is set at 26 hours and non-zero peaks are also detected for
17 and 23 hours.

The analysis of theduring segment using the moving window is presented in Fig-
ure (6.20).

The visual representation of the variability of the PC amplitude vector via the two methods
is presented in Figure (6.21).

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.22).

We consider theafter treatment part of the data, two days length signal, Figure (6.23). In
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6.1.2 - Dominant Period evolution: Photon
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Figure 6.19: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.20: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon
DD, during

Figure 6.21: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.22: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.23: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)
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CT 502 A1: Photon Absorption and Activity

CT 502 - A1 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before - -

DD during - -

DD during win 1 - -

DD during win 2 24 24

DD after 24 24

Table 6.2: CT 502 A1: Photon Absorption Dominant Period Stability: Proposed Method vs.
FFT

this case, the dominant period is estimated at 24 hours both via FFT and the Proposed Method.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon absorption signal, for each segment of interest and for four-days length
signals for the segments that allowed this analysis is presented in Table (6.2).

6.1.3 Conclusions: Dominant Period evolution

We have compared the FFT and Proposed Method PC amplitude vector evolution during the
four segments of interest for mouse CT 503 A1, considering the gene expression (Photon
Absorption signal) and the rest-activity patters (Activity signal), Figure (6.1). For both data,
we have considered four segments of interest, i.e. the LD part of the signal, corresponding to
the synchronization and the DD part of the signal, corresponding to the complete darkness,
for which we have considered the segments corresponding to the before, during andafter
treatment phase, Figure (6.2) (rest-activity patterns) and Figure (6.13).

In particular, for the first segment of interest, i.e. the LD part of data and for thedur-
ing treatment part, we have considered four days length signalsto analyse the stability or
variability of the dominant period for the considered segment itself.

For the gene expression (photon absorption signal), we havepresented the results corre-
sponding to each segment, but we haven’t considered the DDbefore andduring treatment
parts of the data, since the corresponding signals are corrupted. The dominant period evolu-
tion, corresponding to the Proposed Method and FFT, is presented in Table (6.2). In this case,
via both methods, the dominant period is 24 hours and is stable during the signal. We note
that while the FFT approach do not give a sufficient precision, the results are in accordance,
in the sense that generally, the peaks that appear in the PC amplitude vector estimated via
the Proposed Method, have corresponding important peaks inthe FFT PC amplitude vector.
For the gene expression data, for the LD part, we note that both methods detect the dominant
period at 24 hours and the 8 hours harmonic.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
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6.2.1 - Dominant Period evolution: Activity

rest-activity patterns (Activity) signal is presented in Table (6.1). In this case, via FFT method
the dominant period is 24 hours for each segment and the evolution of the dominant period
seems to be stable. However, via the Proposed Method, the dominant period has certain
variation around 24 hours.

In particular, via the Proposed Method, for the rest-activity patterns, the dominant period
for the LD segment was estimated at 23 hours, Figure (6.3) (for three windows corresponding
to LD part of the signal, the dominant period is estimated at 23 hours and for one window
is estimated at 24 hours, Figure (6.5)). Furthermore, for the first three days of complete
darkness, corresponding to thebefore treatment part of the signal, via the Proposed Method
the circadian rhythm seems to be perturbed: the dominant period is estimated at 22 hours,
Figure (6.7) and then, for theduring and after treatment parts of the data, the dominant
period becomes 25 hours, Figure (6.8) and Figure (6.12).

6.2 CT 502 A2: Photon Absorption and Activity

This section presents the comparison between the Proposed Method and the FFT method, for
another experiment, performed in the same conditions as theone presented in Section (6.1).

For the study, two signals are recorded: theActivity signal measuring the rest-patterns
(movement) of the mouse and thePhoton absorptionsignal, measuring the number of pho-
tons absorbed, i.e. the gene expression. Figure (6.24) presents the raw data corresponding
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Figure 6.24:CT 502, A2 Mouse: Activity (a) and Photon Absorption (b) raw data

to the Activity signal and Photon Absorption signal. The signals were recorded for 22 days,
sampled every minute. Like in Section (6.1), for each signal, we consider the same 4 seg-
ments:LD Period, corresponding to the synchronization part, then three parts corresponding
to theDD period: before, during and after treatment. We are interested in the periodic com-
ponent (PC) vector corresponding to each signal. The stability of the period is verified using
the moving window strategy, where the available data allows.

6.2.1 Dominant Period evolution: Activity

We present the analysis with the signal corresponding to theActivity. We will consider mean-
zero signals, normalized between [-10:10] and sampled every hour, Figure (6.25).

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.26): Via the FFT method, two
principal periods are detected: 24 and 21 hours. Via the Proposed method, the two principal
periods detected are 23 and 21 hours.

132



CT 502 A2: Photon Absorption and Activity

Number of days
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ampli
tude

0

10

20

30

40

50

60 LD Period Before DD During DD After DD

A2 Activity All - CT 502 

A2 Activity All - CT 502

Number of days
0 1 2 3 4 5 6

A
m

p
lit

u
d

e

-2

0

2

4

6

8

10
A2 Activity LD - R2 Norm - CT 502 

A2 Activity LD - R2 Norm - CT 502

Number of days
0 1 2

A
m

p
lit

u
d

e

-2

0

2

4

6

8

10
A2 Activity Before - DD - R2Norm - CT 502 

A2 Activity Before - DD - R2Norm - CT 502

Number of days
0 1 2 3 4

A
m

p
lit

u
d

e

-1

0

1

2

3

4

5

6

7

8

9

10
A2 Activity During - DD - R2Norm - CT 502 

A2 Activity During - DD - R2Norm - CT 502

Number of days
0 1

A
m

p
lit

u
d

e

-4

-2

0

2

4

6

8

10
A2 Activity After - DD - R2Norm - CT 502 

A2 Activity After - DD - R2Norm - CT 502

Figure 6.25: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled
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Figure 6.26: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)

We consider four days length signals (windows) from the available LD signal, with a
shift of one day and compute the PC via FFT and the Proposed method, Figure (6.27). Via
FFT method, the dominant period is 24 hours for all windows, therefore stable. Via the
Proposed Method, the dominant period is different for each window: 21, 22, 23 and 25 hours,
Figure (6.28). An image of dominant period stability or variability, regardless the numerical
value of the amplitude associated with the dominant period is presented in Figure (6.29): For
the DD period, we consider first thebefore treatment segment. Only 3 days are available
for this segment. We compute the PC vector, using FFT and Proposed Method, Figure (6.30):
The estimation corresponding to the FFT method, the dominant peak corresponds to 24 hours,
and the next important peak corresponds to 14 hours. For the estimation corresponding to the
Proposed Method, the PC amplitude vector is sparse, with twonon-zero peaks, corresponding
to 24 and 14 hours.

For theduring treatment part of the data, five days are available. The comparison between
the Proposed Method and FFT is presented in Figure (6.31). The estimation corresponding
to the FFT method sets the dominant period at 12 hours, with important peaks corresponding
to 30, 24 and 12 hours. Via the Proposed Method, the dominant period is set at 32 hours,
and the other non-zero amplitudes in the PC amplitudes vector corresponds to 25 and 12
hours. We note that in this case, a certain consistency between the two results is shown: both
methods detect an important peak at 12 hours, an important peak around 24 hours (25 hours
for the Proposed Method) and the dominant period in the infradian domain (i.e. superior to
30 hours).

The analysis of theduring segment using the moving window is presented in Fig-
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Figure 6.27: PC Stability: PC estimation via FFT and VBA for 4-days length signals

Figure 6.28: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.29: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

Number of days
0 1 2

Am
pl

itu
de

-2

0

2

4

6

8

10
CT 502 A2 Activity DDBef Signal

CT 502 A2 Activity DDBef Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
pl

itu
de

0

0.5

1

1.5

2

2.5

CT 502 A2 Activity DDBef VBA

Periods
6    6.54 7.2  8    9    10.28 12   14.4 18   24   36   

Am
pl

itu
de

0

0.5

1

1.5

2

2.5

f̂FFT

CT 502 A2 Activity DDBef FFT

Figure 6.30: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.31: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

ure (6.32). For the first window, via the two methods, the dominant period is 32 hours, placing
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Figure 6.32: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity
DD, during

the rhythm in the ultradian domain. For the second window, both methods are placing the
rhythm in the circadian domain: via the FFT, the domaint period is detected at 24 hours, and
via the Proposed Method at 23 hours, Figure (6.33).

Figure 6.33: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.34):

We consider theafter treatment part of the data, for which two days are available,Fig-
ure (6.35).

Via the Proposed Method, the dominant period is estimated at23 hours, while via the FFT,
the dominant period is estimated at 24 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.3).
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6.2.1 - Dominant Period evolution: Activity

Figure 6.34: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.35: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502 - A2 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 23 21

LD win 1 21 24

LD win 2 22 24

LD win 3 23 24

LD win 4 25 24

DD before 24 24

DD during 32 12

DD during win 1 32 32

DD during win 2 23 24

DD after 23 24

Table 6.3: CT 502 A2: Activity Dominant Period Stability: Proposed Method vs. FFT
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CT 502 A2: Photon Absorption and Activity

6.2.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of light.The complete Photon absorption
signal and the four segments of interest are presented in Figure (6.36).
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Figure 6.36: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 8 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.37): Via the FFT method, the
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Figure 6.37: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)

principal period is estimated at 24 hours. Via the Proposed Method, the principal period is
also estimated at 24 hours, together with the harmonic of 8 hours. However, the amplitude
corresponding to the Proposed Method is much higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.38).

For all the windows, a 24 hours periodicity is confirmed, via the two methods, Fig-
ure (6.39).

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.40):
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Figure 6.38: PC Stability: PC estimation via FFT and VBA for 4-days length signals

Figure 6.39: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.40: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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CT 502 A2: Photon Absorption and Activity

For the DD period, first we consider thebefore treatment segment. Only 3 days are
available for this segment. We compute the PC vector, using FFT and Proposed Method,
Figure (6.41):
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Figure 6.41: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

Via the FFT, the highest pick is set at 24. Of course, given theshort length of the signal, 3
days, and the limitations of the FFT method all the values inside the interval (18,36) except 24
are not present in the estimated vector, so the values are uncertain. Via the Proposed method
the dominant period is set at 25 hours.

We now consider theduring treatment part of the data, a 5-days length signal, Fig-
ure (6.42).
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Figure 6.42: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

Both methods are confirming the 24 hours periodicity. We noteagain the difference be-
tween the amplitudes corresponding to the two methods and the sparse PC vector returned by
the Proposed Method.
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Figure 6.43: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon
DD, during

Analysing theduring segment using the moving window, the 24 hour periodicity is
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6.2.3 - Conclusions: Dominant Period evolution

confirmed by both methods, and also the stability of this periodicity for this segment, Fig-
ure (6.44).

Figure 6.44: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.45):

Figure 6.45: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

For theafter treatment part of the data, a 2-days length signal is available. In this case, the

Number of days
0 1

Am
pl

itu
de

-5

0

5

10
CT 502 A2 Photon DDAft Signal

CT 502 A2 Photon DDAft Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
pl

itu
de

0

1

2

3

4

5

CT 502 A2 Photon DDAft VBA

Periods
6   6.85 8   9.6 12  16  24  48  

Am
pl

itu
de

0

1

2

3

4

5 f̂FFT

CT 502 A2 Photon DDAft FFT

Figure 6.46: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

dominant period is estimated at 24 hours via FFT. This value is uncertain, for this particular
case (a 2-days length signal) the interval (16:48) having only one value that is appearing the
FFT PC vector, i.e. 24 hours. Via the Proposed Method, the dominant period is set at 23
hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon absorption signal, for each segment of interest and for four-days length
signals for the segments that allowed this analysis is presented in Table (6.4).

6.2.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude vector evolution during the four
segments of interest for mouse CT 503 A2, considering the gene expression (Photon Absorp-
tion signal) and the rest-activity patters (Activity signal), Figure (6.24). For both data, we

140



CT 502 A2: Photon Absorption and Activity

CT 502 - A2 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before 25 24

DD during 24 24

DD during win 1 24 24

DD during win 2 24 24

DD after 23 24

Table 6.4: CT 502 A2: Photon Absorption Dominant Period Stability: Proposed Method vs.
FFT

have considered four segments of interest, i.e. the LD part of the signal, corresponding to
the synchronization and the DD part of the signal, corresponding to the complete darkness,
for which we have considered the segments corresponding to the before, during andafter
treatment phase, Figure (6.25) (rest-activity patterns) and Figure (6.36).

In particular, for the first segment of interest, i.e. the LD part of data and for thedur-
ing treatment part, we have considered four days length signalsto analyse the stability or
variability of the dominant period for the considered segment itself.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
gene expression data (photon absorption signal), is presented in Table (6.4). For this experi-
ment, via FFT, the dominant period is 24 hours for each segment, and seems stable. Via the
Proposed Method, slight variations are detected during theexperiment: a 23 hour periodicity
corresponding to thebefore treatment part of data and a 25 hour periodicity corresponding to
theafter treatment part of data.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
rest-activity patterns (Activity) signal is presented in Table (6.3). In this case, the drawbacks
of the FFT method are very clear. For the LD segment of the Activity signal, seven days
were available. The dominant period of this segment is 21 hours via FFT, the FFT PC ampli-
tude vector estimating two important peaks, correspondingto 21 and 24 hours, both of them
having almost equal amplitudes, with the amplitude corresponding to the 21 hours slightly
higher, Figure (6.26). However, for the evolution of the dominant period for thissegment,
Figure (6.27), the dominant period is estimated at 24 hours for each windows, therefore sta-
ble. Via the Proposed Method, for the entire LD segment, the most important two peaks
corresponds to 23 and 21 hours, and the evolution of the dominant period during this seg-
ment is 21 hours for the first window, 22 hours for the second window, 23 hours for the third
window and 25 hours for the fourth window.

Also, for theduring treatment segment, the FFT PC amplitude vector has important peaks
corresponding to 12 hours, 30 hours and 24 hours. Considering the dominant period, which
is 12 hours, via FFT estimation, the rhythm for theduring treatment is placed in the ultradian
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6.3.1 - Dominant Period evolution: Activity

domain, Figure (6.31). However, studying the evolution of the PC amplitude vector for this
segment, via FFT, the dominant period corresponding to the first window is 32 hours, so
infradian rhythm, and corresponding to the second window is24 hours, so circadian rhythm.

Via the Proposed Method, for theduring treatment segment, very similar peaks are esti-
mated in the PC amplitude vector: 32 hours, 24 hours and 12 hours, but the dominant period
is 32 hours, therefore the rhythm is infradian.

6.3 CT 502 A3: Photon Absorption and Activity

In the following we consider the experimentCT 502, Mouse A3. This section is dedicated to
the complete study, i.e the study of the physiology, corresponding to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DD (total darkness), the segment
corresponding to thebefore treatment and the study of the behaviourduring andafter treat-
ment. For the study, two signals were recorded: theActivity Signal measuring the activity
(movement) of the mouse and thePhoton Absorption Signal, measuring the number of pho-
tons absorbed, Figure (6.47).
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Figure 6.47:CT 502, A3 Mouse: Activity (a) and Photon Absorption (b) raw data

Figure (6.47) presents the raw data corresponding to the Activity signaland Photon Ab-
sorption signal. The signals were recorded for 22 days, sampled every minute. For each
signal, we consider 4 segments:LD Period, corresponding to the synchronization part, then
three parts corresponding to theDD period: before, during and after treatment. We are in-
terested in the periodic component (PC) vector corresponding to each signal and in the corre-
sponding acrophase. The stability of the period is verified using the moving window strategy,
where the available data allows.

6.3.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to the Activity. We will consider mean-
zero signals, normalized between [-10:10] and sampled every hour. The Activity signal and
the four segments of interest are presented in Figure (6.48).

For the LD part, we have 8 days available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.49). Via the FFT method, the
principal period is estimated at 24 hours. The next highest pick in the PC vector is corre-
sponding to 21 hours. Via the Proposed Method, the principalperiod is estimated at 22 hours,
and the next highest pick in the PC vector corresponds to 20 hours
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CT 502 A3: Photon Absorption and Activity
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Figure 6.48: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled
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Figure 6.49: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.50).

Via FFT, the dominant period seems stable, for each window the dominant period being
estimated at 24 hours. Via the Proposed Method, the dominantperiod shifts from 22 hours,
for the first window to 23 hours for the second window to 24 hours for the last two windows,
Figure (6.51).

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedFigure (6.52).:

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
Method,Figure (6.53). Via the FFT, the highest pick is set at 24 hours and the next two highest
picks are set at 7.2 and 8 hours. Of course, given the short length of the signal, 3 days, and
the limitations of the FFT method all the values inside the interval (18,36) except 24 are not
present in the estimated vector, so the values are uncertain. Via the Proposed method, the PC
amplitude vector is sparse, with only one non-zero amplitude, corresponding to 24 hours.

For theduring treatment part of the data, 5 days are available. We compute the PC
corresponding to theduring treatment part of the data using the Proposed Method and also
using the FFT, Figure (6.54). Via the Proposed Method, the estimated PC amplitude vector is a
sparse vector and the dominant period is estimated at 24 hours. The other non-zero amplitudes
in the PC amplitudes vector corresponds to 8, 25 and 12 hours.In the FFT estimation, the
dominant period corresponds to 24 hours, and the next two highest peaks in the PC amplitude
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6.3.1 - Dominant Period evolution: Activity

Number of days
0 1 2 3

Am
plit

ud
e

-4

-2

0

2

4

6

8

CT 502 A3 Activity Win1 Signal

CT 502 A3 Activity Win1 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

CT 502 A3 Activity Win1 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

f̂FFT

CT 502 A3 Activity Win1 FFT

Number of days
1 2 3 4

Am
plit

ud
e

-2

0

2

4

6

8

CT 502 A3 Activity Win2 Signal

CT 502 A3 Activity Win2 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CT 502 A3 Activity Win2 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f̂FFT

CT 502 A3 Activity Win2 FFT

Number of days
2 3 4 5

Am
plit

ud
e

-2

0

2

4

6

8

10
CT 502 A3 Activity Win3 Signal

CT 502 A3 Activity Win3 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

CT 502 A3 Activity Win3 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

f̂FFT

CT 502 A3 Activity Win3 FFT

Number of days
3 4 5 6

Am
plit

ud
e

-2

0

2

4

6

8

CT 502 A3 Activity Win4 Signal

CT 502 A3 Activity Win4 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

CT 502 A3 Activity Win4 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

f̂FFT

CT 502 A3 Activity Win4 FFT

Figure 6.50: PC Stability: PC estimation via FFT and VBA for 4-days length signals

Figure 6.51: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.52: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.53: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.54: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

vector estimation corresponds to 8 and 12 hours.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.55).
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Figure 6.55: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity
DD, during

We note that via the FFT, both windows are estimated with a dominant period of 24 hours,
with harmonics corresponding to 8 and 12 hours. Via the Proposed Method, we find the
dominant period corresponding to the first window at 25 hours(and important picks for 8
and 12 hours) and the dominant period corresponding to the second window at 25 hours (and
important picks for 8 and 12 hours), Figure (6.56).

Figure 6.56: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin the following figure:

We now consider theafter treatment part of the data. Two days are available. For the FFT,
the dominant period corresponds to 24 hours. Via the Proposed Method, the dominant period
is estimated at 27 hours.
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6.3.2 - Dominant Period evolution: Photon

Figure 6.57: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.58: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.5).

6.3.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of light.The complete Photon absorption
signal and the four segments of interest are presented in Figure (6.59)
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Figure 6.59: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled
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CT 502 A3: Photon Absorption and Activity

CT 502 - A3 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 22 24

LD win 1 22 24

LD win 2 23 24

LD win 3 24 24

LD win 4 24 24

DD before 24 24

DD during 24 24

DD during win 1 25 24

DD during win 2 24 24

DD after 27 24

Table 6.5: CT 502 A3: Activity Dominant Period Stability: Proposed Method vs. FFT

For the LD part, 8 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.60): Via the FFT method, the
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Figure 6.60: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)

principal period is estimated at 24 hours and the only other non-zero peak in the PC amplitude
vector corresponds to 8 hours. The dominant period of 24 hours and the corresponding 8 hours
harmonic are also the only non-zero amplitudes in the PC amplitude vector corresponding to
the Proposed Method.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.61).

For all the windows, a 24 hours periodicity is confirmed, via the two methods, Fig-
ure (6.62).

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.63):

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
Method, Figure (6.64): Via the FFT, the highest pick is set at 24. Of course, given the short
length of the signal, 3 days, and the limitations of the FFT method all the values inside the
interval (18,36) except 24 are not present in the estimated vector, so the values are uncertain.
Via the Proposed method the dominant period is set at 23 hours.

For theduring treatment part of the data, five days are available. We compute the PC
corresponding to the signal using the Proposed Method and also using the FFT, Figure (6.65):
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Figure 6.61: PC Stability: PC estimation via FFT and VBA for 4-days length signals

Figure 6.62: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.63: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.64: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)
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CT 502 A3: Photon Absorption and Activity

Via FFT, we obtain a 24 hours periodicity, while via the Proposed Method, the dominant peak
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Figure 6.65: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

corresponds to 25. The only other non-zero amplitude in the PC amplitude vector, corresponds
to 18 hour, which is consistent with the next highest peak in the FFT estimation, 17.14 hours.
We note again the difference between the amplitudes corresponding to the two methods and
the sparse PC vector returned by the Proposed Method.

We consider now 4-days length signals (windows) from the available during treatment
part of the data, with a shift of one day and compute the PC via FFT and the Proposed method,
Figure (6.66).
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Figure 6.66: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon
DD, during

Analysing theduring segment using the moving window, a 24 hour periodicity is found
for both windows, via FFT. However, via the Proposed Method,the periodicity, also stable, is
estimated at 25 hours, Figure (6.67)

Figure 6.67: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.67):
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6.3.3 - Conclusions: Dominant Period evolution

Figure 6.68: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.69: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

We now consider theafter treatment part of the data. We have a 2-days length signal. In
this case, the dominant period is estimated at 24 hours via FFT. This value is very uncertain,
for this particular case (a 2-days length signal) all the interval (16:48) having only one value
that is appearing the FFT PC vector, i.e. 24 hours. Via the Proposed Method, the dominant
period is set at 23 hours, with also an important periodicityfor 24 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon signal, for each segment of interest andfor four-days length signals for
the segments that allowed this analysis is presented in Table (6.6).

6.3.3 Conclusions: Dominant Period evolution

In this subsection we compared the FFT and Proposed Method PCamplitude vector evolution
during the four segments of interest for mouse CT 503 A3, considering the gene expression
(Photon Absorption signal) and the rest-activity patters (Activity signal), Figure (6.47). Like
before, for both signals, four segments of interest were considered, i.e. the LD part of the sig-
nal, corresponding to the synchronization and the DD part ofthe signal, corresponding to the
complete darkness, for which we have considered the segments corresponding to thebefore,
during andafter treatment phase, Figure (6.48) (rest-activity patterns) and Figure (6.59).

Like before, for the first segment of interest, i.e. the LD part of data and for thedur-
ing treatment part, we have considered four days length signalsto analyse the stability or
variability of the dominant period for the considered segment itself.

The dominant period evolution, corresponding to the Proposed Method and FFT, for the
gene expression data, is presented in Table (6.6). For this experiment, via FFT, the domi-
nant period is 24 hours for each segment and seems stable. Viathe Proposed Method, small
variations are detected during the experiment: a 23 hour periodicity corresponding to thebe-
fore andafter treatment part of data and a 25 hour periodicity corresponding to theduring
treatment part of data.
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CT 502 B1: Photon Absorption and Activity

CT 502 - A3 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before 23 24

DD during 25 24

DD during win 1 25 24

DD during win 2 25 24

DD after 23 24

Table 6.6: CT 502 A3: Photon Dominant Period Stability: Proposed Method vs. FFT

The dominant period evolution, corresponding to the Proposed Method and FFT for the
rest-activity patterns (Activity) signal is presented in Table (6.5). In this case, the result are
similar, in the sense that both methods detect a circadian rhythm, but via the Proposed Method,
variations of the dominant period can be detected, while viaFFT the evolution of the dominant
period seems stable.

6.4 CT 502 B1: Photon Absorption and Activity

In the following we consider the experimentCT 502, Mouse B1. This section is dedicated to
the complete study, i.e the study of the physiology, corresponding to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DD (total darkness), the segment
corresponding to thebefore treatment and the study of the behaviourduring andafter treat-
ment. For the study, two signals were recorded: theActivity Signal measuring the activity
(movement) of the mouse and thePhoton Absorption Signal, measuring the number of pho-
tons absorbed, Figure (6.70).
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Figure 6.70:CT 502, B1 Mouse: Activity (a) and Photon Absorption (b) raw data

Figure (6.70) presents the raw data corresponding to the Activity signaland Photon Ab-
sorption signal. The signals were recorded for 22 days, sampled every minute. For each
signal, we consider 4 segments:LD Period, corresponding to the synchronization part, then
three parts corresponding to theDD period: before, during and after treatment. We are in-
terested in the periodic component (PC) vector corresponding to each signal and in the corre-
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6.4.1 - Dominant Period evolution: Activity

sponding acrophase. The stability of the period is verified using the moving window strategy,
where the available data allows.

6.4.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to the Activity. We consider zero-mean
signals, normalized between [-10:10] and sampled every hour.
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Figure 6.71: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT: Via the FFT method, the principal period
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Figure 6.72: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)

is estimated at 24 hours. Evidently, beside the incertitudeassociated with the FFT estimated
PC, the existence of other rhythms can’t be established, being difficult to interpret all the
picks present in the estimated PC. Via the Proposed Method, the principal period is estimated
at 24 hours.The amplitude corresponding to the 24h period via the Proposed Method is much
higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method. Via the Proposed Method,
the first windows presents a 25 hours dominant period, the second windows presents a 24
hours dominant period and for the last two windows, the dominant period is estimated at
23 hours. Via FFT method the principal period seems stable, every window presenting a
dominant period of 24 hours.
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CT 502 B1: Photon Absorption and Activity
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Figure 6.73: PC Stability: PC estimation via FFT and VBA for 4-days length signals

The stability or variability of the PC amplitudes vector forthe LD part of the Activity
signal is presented in Figure (6.74):

Figure 6.74: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin the Figure (6.75):

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
Method, (6.76): Via the FFT, the highest pick is set at 24 hours and the next three highest
picks are set at 8, 6 and 36 hours. Of course, given the short length of the signal, 3 days,
and the limitations of the FFT method all the values inside the interval (18,36) except 24 are
not present in the estimated vector, so the result presents avery important uncertainty. This
means that for this particular case, even the classificationof the rhythm (circadian or infradian)
is uncertain via FFT. Via the Proposed method the dominant period is set at 23 hours.

We consider theduring treatment part of the data, for which five days are available,Fig-
ure (6.77). Via the proposed method, the estimated PC vector is a sparse vector, in accordance
with the model and the dominant period is estimated at 25 hours. For the FFT estimated PC
vector, the dominant period is estimated at 24 hours, but theestimation is not sparse. In this
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6.4.1 - Dominant Period evolution: Activity

Figure 6.75: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.76: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.77: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)
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CT 502 B1: Photon Absorption and Activity

case, the next important pick corresponds to 12 hours, harmonics of 24 hours, and this values
is also found in the estimation obtained by the Proposed Method.

We consider 4-days length signals (windows) from thebefore treatment segment, with
a shift of one day and compute the PC via FFT and the Proposed method. In this case,
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Figure 6.78: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity
DD, during

analysing theduring segment using the moving window we note that via the ProposedMethod
a variability of the dominant period is detected, 25 hours for the first window and 26 hours
for the second. Via FFT the dominant period seems stable, 24 hours, but for the first window,
the dominant period is 12 hours. This can be viewed in Figure (6.79). An image of dominant

Figure 6.79: PC Stability: Proposed Method (a) vs. FFT (b)

period stability or variability, regardless the numericalvalue of the amplitude associated with
the dominant period forduring segment is presented in Figure (6.80):

Figure 6.80: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

For theafter treatment part of the data 2 days are available. Via the FFT estimation, the
dominant period is 24 hours, while via the Proposed Method the dominant period is 26 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.7).
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6.4.2 - Dominant Period evolution: Photon
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Figure 6.81: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502 - B1 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 25 24

LD win 2 24 24

LD win 3 23 24

LD win 4 23 24

DD before 23 24

DD during 25 24

DD during win 1 25 12

DD during win 2 26 24

DD after 26 24

Table 6.7: CT 502 B1: Activity Dominant Period Stability: Proposed Method vs. FFT

6.4.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence
but the light inside cage corresponding to the 12 hours of light.

The complete Photon absorption signal and the four segmentsof interest are presented in
Figure (6.82).

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT: Via the FFT method, the principal period
is estimated at 24 hours. In particular, in this case, the FFTmethod estimates a sparse PC
amplitudes vector, and along with the 24 hours, a non-zero peak is detected corresponding to
8 hours. Very similar results are obtained in this case via the Proposed Method: the principal
period is also estimated at 24 hours, together with the harmonic of 8 hours. However, the
amplitude corresponding to the Proposed Method is much higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.84). For all
the windows, a 24 hours periodicity is confirmed, via the two methods, with a harmonic
corresponding to 8 hours, Figure (6.85). Once again, for this segment, there is no biological
interpretation.
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CT 502 B1: Photon Absorption and Activity
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Figure 6.82: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled
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Figure 6.83: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)
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Figure 6.84: PC Stability: PC estimation via FFT and VBA for 4-days length signals
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6.4.2 - Dominant Period evolution: Photon

Figure 6.85: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.86):

Figure 6.86: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

We consider now the DD period. First, we consider thebefore treatment segment, Fig-
ure (6.87): The dominant period corresponding to the FFT, is 24 hours,and via the Proposed
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Figure 6.87: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)

Method the estimated periodicity is 25 hours.

We consider theduring treatment part of the data. Five days are available, Figure (6.88).
Via FFT method, the dominant period is estimated at 24 hours,with important peaks corre-
sponding to 20, 8 and 30 hours. Via the Proposed Method, the PCamplitudes vector detects
three peaks: the dominant period is set at 25 hours and non-zero peaks are also detected for
19 and 20 hours.

The analysis of theduring segment using the moving window is presented in Fig-
ure (6.89). For the FFT method, the dominant period corresponding to the first window is
estimated at 24 hours, and for the second one is estimated at 19.2 hours. However in both
cases, both peaks are almost equal. Via the Proposed Method,the dominant period corre-
sponding to the first window is 25 hours and corresponding to the second window is 26 hours.
For both windows, an important peak is estimated at 19 hours,consistent with the FFT esti-
mation.
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CT 502 B1: Photon Absorption and Activity
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Figure 6.88: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.89: PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon
DD, during

The visual representation of the variability of the PC amplitude vector via the two methods
is presented in Figure (6.90).

Figure 6.90: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.91).

We consider theafter treatment part of the data, two days length signal and compute the
PC corresponding to theafter treatment part of the data using the Proposed Method and also
using the FFT, Figure (6.92). In this case, the dominant period is estimated at 24 hours both
via FFT and 23 hours corresponding to the Proposed Method.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon absorption signal, for each segment of interest and for four-days length
signals for the segments that allowed this analysis is presented in Table (6.8).
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6.4.2 - Dominant Period evolution: Photon

Figure 6.91: PC Stability: Proposed Method (a) vs. FFT (b), normalized results
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Figure 6.92: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

CT 502 - B1 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before 25 24

DD during 25 24

DD during win 1 25 24

DD during win 2 26 19

DD after 23 24

Table 6.8: CT 502 B1: Photon Absorption Dominant Period Stability: Proposed Method vs.
FFT
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CT 502 B1: Photon Absorption and Activity

6.4.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude vector evolution during the four
segments of interest for mouse CT 503 B1, considering the gene expression (Photon Absorp-
tion signal) and the rest-activity patters (Activity signal), Figure (6.70). For both data, we
have considered four segments of interest, i.e. the LD part of the signal, corresponding to
the synchronization and the DD part of the signal, corresponding to the complete darkness,
for which we have considered the segments corresponding to the before, during andafter
treatment phase, Figure (6.71) (rest-activity patterns) and Figure (6.82).

For the first segment of interest, i.e. the LD part of data and for theduring treatment
part, we have considered four days length signals to analysethe stability or variability of the
dominant period for the considered segment itself.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
gene expression data (photon absorption signal), is presented in Table (6.8). For this experi-
ment, via FFT, the dominant period is 24 hours for all segments, except the second window of
theduring treatment segment and seems stable. Via the Proposed Method, slight variations
are detected during the experiment: a 25 hour periodicity corresponding to thebefore and
during treatment part of data and a 23 hour periodicity corresponding to theafter treatment
part of data.

In the study of the stability of the dominant period for theduring treatment segment,
Figure (6.78), for both windows, via both methods, important peaks are estimated for 19 and
24 hours (25 for the second one, via Proposed Method). Via FFT, for the second window, the
dominant period corresponds to 19 hours. Via Proposed Method, for the second window, the
dominant period corresponds to 25 hours.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
rest-activity patterns (Activity) signal is presented in Table (6.7). Via FFT, the dominant
period is 24 hours for all segments, except the first window oftheduring treatment segment
and seems stable. Via the Proposed Method, slight variations around 24 hours are detected
during the experiment: a 23 hour periodicity correspondingto thebefore treatment part of
data, a 25 hour periodicity corresponding to theduring treatment part of data and a 26 hour
periodicity corresponding to theafter treatment part of data.

In the study of the stability of the dominant period for theduring treatment segment,
Figure (6.89), for both windows, via FFT, important peaks are estimated for 12 and 24 hours.
For the first window, the dominant period corresponds to 12 hours. However, in this case, a
circadian rhythm can be associated.

6.5 CT 502 B2: Photon Absorption and Activity

This section presents the comparison between the Proposed Method and the FFT method, for
another experiment, performed in the same conditions as theone presented in Section (6.1).

For the study, two signals are recorded: theActivity Signal measuring the activity (move-
ment) of the mouse and thePhoton Absorption Signal, measuring the number of photon
absorbed. Figure (6.93) presents the raw data corresponding to the Activity signaland Pho-
ton Absorption signal. The signals were recorded for 22 days, sampled every minute. Like in
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6.5.1 - Dominant Period evolution: Activity
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Figure 6.93:CT 502, B2 Mouse: Activity (a) and Photon Absorption (b) raw data

Section (6.1), for each signal, we consider the same 4 segments:LD Period, corresponding
to the synchronization part, then three parts corresponding to theDD period: before, during
and after treatment. We are interested in the periodic component (PC) vector corresponding
to each signal. The stability of the period is verified using the moving window strategy, where
the available data allows.

6.5.1 Dominant Period evolution: Activity

We present the analysis with the signal corresponding to theActivity. We will consider mean-
zero signals, normalized between [-10:10] and sampled every hour, Figure (6.94).
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Figure 6.94: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.95): Via the FFT method, the
principal period is estimated at 24 hours and the next highest peak in the PC amplitude vector
corresponds to 12 hours. Via the Proposed Method, the principal period is estimated at 25
hours, together with the harmonic of 12 hours. However, the amplitude corresponding to the
Proposed Method is much higher.

We consider four days length signals (windows) from the available LD signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.96).

Via FFT method, the dominant period is 24 hours for all windows, therefore stable. Via
the Proposed Method, the dominant period is not stable, corresponding to 25 hours for the first
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CT 502 B2: Photon Absorption and Activity
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Figure 6.95: Considered signal (a) and the corresponding PCvia VBA (b) and FFT (c)
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Figure 6.96: PC Stability: PC estimation via FFT and VBA for 4-days length signals
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6.5.2 - Dominant Period evolution: Photon

window, 24 hours for the next two windows and 25 hours for the last window, Figure (6.97).

Figure 6.97: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.98):

Figure 6.98: PC Stability: Proposed Method (a) vs. FFT (b), normalized results

For the DD period, we consider first thebefore treatment segment. Only 3 days are avail-
able for this segment. We compute the PC vector, using FFT andProposed Method, Fig-
ure (6.99): The estimation corresponding to the FFT method, the dominant peak corresponds
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Figure 6.99: DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c)

to 24 hours. For the estimation corresponding to the Proposed Method, the PC amplitude
vector is sparse, with only one non-zero peak, corresponding to 24.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.9).

6.5.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
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CT 502 B2: Photon Absorption and Activity

CT 502 - B2 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 23 24

LD win 1 21 24

LD win 2 22 24

LD win 3 23 24

LD win 4 25 24

DD before 24 24

DD during - -

DD during win 1 - -

DD during win 2 - -

DD after - -

Table 6.9: CT 502 B2: Activity Dominant Period Stability: Proposed Method vs. FFT

sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of light.The complete Photon absorption
signal and the four segments of interest are presented in Figure (6.100).
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Figure 6.100: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 8 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.101): Via the FFT method, the
principal period is estimated at 24 hours and the next highest peak in the PC amplitude vector
corresponds to 12 hours. Via the Proposed Method, the principal period is estimated at 25
hours, together with the harmonic of 12 hours. However, the amplitude corresponding to the
Proposed Method is much higher.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.102).

For all the windows, a 24 hours periodicity is confirmed, via the two methods, Fig-
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6.5.2 - Dominant Period evolution: Photon
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Figure 6.101: Considered signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.102: PC Stability: PC estimation via FFT and VBA for4-days length signals
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CT 502 B2: Photon Absorption and Activity

ure (6.103).

Figure 6.103: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.104):

Figure 6.104: PC Stability: Proposed Method (a) vs. FFT (b),normalized results

For the DD period, first we consider thebefore treatment segment. Only 3 days are
available for this segment. We compute the PC vector, using FFT and Proposed Method,
Figure (6.105):
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Figure 6.105: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

Via the FFT, the highest pick is set at 24. Of course, given theshort length of the signal, 3
days, and the limitations of the FFT method all the values inside the interval (18,36) except 24
are not present in the estimated vector, so the values are uncertain. Via the Proposed method
the dominant period is set at 25 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon absorption signal, for each segment of interest and for four-days length
signals for the segments that allowed this analysis is presented in Table (6.10).
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6.5.2 - Dominant Period evolution: Photon

CT 502 - B2 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before 25 24

DD during 24 24

DD during win 1 24 24

DD during win 2 24 24

DD after 23 24

Table 6.10: CT 502 B2: Photon Absorption Dominant Period Stability: Proposed Method vs.
FFT

6.6 CT 502 B3: Photon Absorption and Activity

In the following we consider the experimentCT 502, Mouse B3. This section is dedicated to
the complete study, i.e the study of the physiology, corresponding to the segment LD (light-
dark, 12h-12h), where the mouse was synchronized and DD (total darkness), the segment
corresponding to thebefore treatment and the study of the behaviourduring andafter treat-
ment. For the study, two signals were recorded: theActivity Signal measuring the activity
(movement) of the mouse and thePhoton Absorption Signal, measuring the number of pho-
ton absorbed, Figure (6.106).
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Figure 6.106:CT 502, B3 Mouse: Activity (a) and Photon Absorption (b) raw data

Figure (6.106) presents the raw data corresponding to the Activity signaland Photon
Absorption signal. The signals were recorded for 22 days, sampled every minute. For each
signal, we consider 4 segments:LD Period, corresponding to the synchronization part, then
three parts corresponding to theDD period: before, during and after treatment. We are
interested in the periodic component (PC) vector corresponding to each signal and in the
corresponding acrophase. The stability of the period is verified using the moving window
strategy, where the available data allows.
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CT 502 B3: Photon Absorption and Activity

6.6.1 Dominant Period evolution: Activity

We start the analysis with the signal corresponding to the Activity. We will consider mean-
zero signals, normalized between [-10:10] and sampled every hour. The Activity signal and
the four segments of interest are presented in Figure (6.107).
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Figure 6.107: Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and
one-hour sampled

For the LD part, we have 8 days available. We compute the PC corresponding to the sig-
nal using the Proposed Method and also using the FFT, Figure (6.108). Via the FFT method,
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Figure 6.108: Considered signal (a) and the corresponding PC via VBA (b) and FFT (c)

the principal period is estimated at 24 hours. The next highest pick in the PC vector is cor-
responding to 12 hours. Via the Proposed Method, the principal period is estimated at 25
hours.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.109).

Via FFT, the dominant period seems stable, for each window the dominant period being
estimated at 24 hours. Via the Proposed Method, the dominantperiod shifts from 25 hours,
for the first window to 24 hours for the second window and thirdwindow to 25 hours for the
last window, Figure (6.110).

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedFigure (6.111).:

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
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6.6.1 - Dominant Period evolution: Activity

Number of days
0 1 2 3

Am
plit

ud
e

-4

-2

0

2

4

6

8

CT 502 B3 Activity Win1 Signal

CT 502 B3 Activity Win1 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

CT 502 B3 Activity Win1 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

f̂FFT

CT 502 B3 Activity Win1 FFT

Number of days
1 2 3 4

Am
plit

ud
e

-2

0

2

4

6

8

10
CT 502 B3 Activity Win2 Signal

CT 502 B3 Activity Win2 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

CT 502 B3 Activity Win2 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

2.5

f̂FFT

CT 502 B3 Activity Win2 FFT

Number of days
2 3 4 5

Am
plit

ud
e

-2

0

2

4

6

8

10

CT 502 B3 Activity Win3 Signal

CT 502 B3 Activity Win3 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

CT 502 B3 Activity Win3 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2

f̂FFT

CT 502 B3 Activity Win3 FFT

Number of days
3 4 5 6

Am
plit

ud
e

-2

0

2

4

6

8

10

CT 502 B3 Activity Win4 Signal

CT 502 B3 Activity Win4 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

2

CT 502 B3 Activity Win4 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

2 f̂FFT

CT 502 B3 Activity Win4 FFT

Figure 6.109: PC Stability: PC estimation via FFT and VBA for4-days length signals

Figure 6.110: PC Stability: Proposed Method (a) vs. FFT (b)

Figure 6.111: PC Stability: Proposed Method (a) vs. FFT (b),normalized results
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CT 502 B3: Photon Absorption and Activity

Method,Figure (6.112). Via the FFT, the highest pick is set at 24 hours and the next highest
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Figure 6.112: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

pick is set at 8 hours. Via the Proposed method, the PC amplitude vector is sparse, with only
one non-zero amplitude, corresponding to 24 hours.

For theduring treatment part of the data, 5 days are available. We compute the PC corre-
sponding to theduring treatment part of the data using the Proposed Method and alsousing
the FFT, Figure (6.113). Via the Proposed Method, the estimated PC amplitude vector is a
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Figure 6.113: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

sparse vector and the dominant period is estimated at 24 hours. The other non-zero amplitudes
in the PC amplitudes vector corresponds to 8, 12 and 15 hours.In the FFT estimation, the
dominant period corresponds to 24 hours, and the next two highest peaks in the PC amplitude
vector estimation corresponds to 8 and 12 hours.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.114).
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Figure 6.114: PC Stability: PC estimation via FFT and VBA for4-days length signals, Activ-
ity DD, during

We note that via the FFT, both windows are estimated with a dominant period of 24 hours,
with harmonics corresponding to 8 and 12 hours. Via the Proposed Method, we find the
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6.6.2 - Dominant Period evolution: Photon

dominant period corresponding to the first window at 24 hours(and important picks for 8
and 13 hours) and the dominant period corresponding to the second window at 23 hours (and
important picks for 8 and 13 hours), Figure (6.115).

Figure 6.115: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin the following figure:

Figure 6.116: PC Stability: Proposed Method (a) vs. FFT (b),normalized results

We now consider theafter treatment part of the data. Two days are available. For the FFT,
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Figure 6.117: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

the dominant period corresponds to 12 hours. Via the Proposed Method, the dominant period
is also estimated at 12 hours.

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Activity signal, for each segment of interest and for four-days length signals for
the segments that allowed this analysis is presented in Table (6.11).

6.6.2 Dominant Period evolution: Photon

In this section we analyse the signal corresponding to the photon absorption, i.e. the gene
expression. Like before, we consider mean-zero signals, normalized between [-10:10] and
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CT 502 B3: Photon Absorption and Activity

CT 502 - B3 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 25 24

LD win 1 25 24

LD win 2 24 24

LD win 3 24 24

LD win 4 25 24

DD before 24 24

DD during 24 24

DD during win 1 24 24

DD during win 2 23 24

DD after 12 12

Table 6.11: CT 502 B3: Activity Dominant Period Stability: Proposed Method vs. FFT

sampled every hour. In this case, the analysis corresponding to the LD part has no biological
interest, since the RT-BIO photomultiplier will not recordthe mouse liver bioluminescence but
the light inside cage corresponding to the 12 hours of light.The complete Photon absorption
signal and the four segments of interest are presented in Figure (6.118)
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Figure 6.118: Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-
hour sampled

For the LD part, 7 days are available. We compute the PC corresponding to the signal
using the Proposed Method and also using the FFT, Figure (6.119): Via the FFT method, the
principal period is estimated at 24 hours and the only other non-zero peak in the PC amplitude
vector corresponds to 8 hours. The dominant period of 24 hours and the corresponding 8 hours
harmonic are also the only non-zero amplitudes in the PC amplitude vector corresponding to
the Proposed Method.

We consider now 4-days length signals (windows) from the available signal, with a shift
of one day and compute the PC via FFT and the Proposed method, Figure (6.120).

For all the windows, a 24 hours periodicity is confirmed, via the two methods, Fig-
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Figure 6.119: Considered signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Figure 6.120: PC Stability: PC estimation via FFT and VBA for4-days length signals
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CT 502 B3: Photon Absorption and Activity

ure (6.121).

Figure 6.121: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.122):

Figure 6.122: PC Stability: Proposed Method (a) vs. FFT (b),normalized results

We consider now the DD period. First, we consider thebefore treatment segment. Only
3 days are available for this segment. We compute the PC vector, using FFT and Proposed
Method, Figure (6.123): Via the FFT, the highest pick is set at 24. Other important peaks
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Figure 6.123: DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c)

correspond to 18, 36 and 12 hours. Of course, given the short length of the signal, 3 days,
and the limitations of the FFT method all the values inside the interval (18,36) except 24 are
not present in the estimated vector, so the values are uncertain. Via the Proposed method the
dominant period is set at 23 hours and the other non-zero peakin the PC amplitude vector
corresponds to 22 hours.

For theduring treatment part of the data, five days are available. We compute the PC
corresponding to the signal using the Proposed Method and also using the FFT, Figure (6.124):
Via FFT, we obtain a 24 hours periodicity, while via the Proposed Method, the dominant peak
corresponds to 23. The only other non-zero amplitude in the PC amplitude vector, corresponds
to 30 hour, which is consistent with the next highest peak in the FFT estimation, also 30 hours.
We note again the difference between the amplitudes corresponding to the two methods and
the sparse PC vector returned by the Proposed Method.

175



6.6.2 - Dominant Period evolution: Photon

Number of days
0 1 2 3 4

Am
pl

itu
de

-2

0

2

4

6

8

10
CT 502 B3 Photon DDDur Signal

CT 502 B3 Photon DDDur Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
pl

itu
de

0

0.5

1

1.5

CT 502 B3 Photon DDDurWin1 VBA

Periods
8    8.57 9.23 10   10.9 12   13.33 15   17.14 20   24   30   

Am
pl

itu
de

0

0.2

0.4

0.6

0.8

1

1.2

f̂FFT

CT 502 B3 Photon DDDur FFT

Figure 6.124: DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c)

We consider now 4-days length signals (windows) from the available during treatment
part of the data, with a shift of one day and compute the PC via FFT and the Proposed method,
Figure (6.125).

Number of days
0 1 2 3

Am
plit

ud
e

-2

0

2

4

6

8

CT 502 B3 Photon DDDurWin1 Signal

CT 502 B3 Photon DDDurWin1 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.5

1

1.5

CT 502 B3 Photon DDDurWin1 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.5

1

1.5

f̂FFT

CT 502 B3 Photon DDDurWin1 FFT

Number of days
1 2 3 4

Am
plit

ud
e

-3

-2

-1

0

1

2

3

4

5

6

CT 502 B3 Photon DDDurWin2 Signal

CT 502 B3 Photon DDDurWin2 Signal

Periods
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Am
plit

ud
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CT 502 B3 Photon DDDurWin2 VBA

Periods
8    8.72 9.6  10.66 12   13.71 16   19.2 24   32   

Am
plit

ud
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f̂FFT

CT 502 B3 Photon DDDurWin2 FFT

Figure 6.125: PC Stability: PC estimation via FFT and VBA for4-days length signals, Photon
DD, during

Analysing theduring segment using the moving window, a 24 hour periodicity is found
for both windows, via FFT. However, via the Proposed Method,the periodicity, also stable, is
estimated at 23 hours, Figure (6.126)

Figure 6.126: PC Stability: Proposed Method (a) vs. FFT (b)

An image of dominant period stability or variability, regardless the numerical value of the
amplitude associated with the dominant period is presentedin Figure (6.126):

We now consider theafter treatment part of the data. We have a 2-days length signal. In
this case, the dominant period is estimated at 24 hours via FFT. This value is very uncertain,
for this particular case (a 2-days length signal) all the interval (16:48) having only one value
that is appearing the FFT PC vector, i.e. 24 hours. Via the Proposed Method, the dominant
period is set at 22 hours.
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CT 502 B3: Photon Absorption and Activity

Figure 6.127: PC Stability: Proposed Method (a) vs. FFT (b),normalized results
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Figure 6.128: DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c)

The evolution of the dominant period, estimated via the Proposed Method and FFT, during
the complete Photon signal, for each segment of interest andfor four-days length signals for
the segments that allowed this analysis is presented in Table (6.12).

6.6.3 Conclusions: Dominant Period evolution

We compared the FFT and Proposed Method PC amplitude vector evolution during the four
segments of interest for mouse CT 503 B3, considering the gene expression (Photon Absorp-
tion signal) and the rest-activity patters (Activity signal), Figure (6.106). For both data, we
have considered four segments of interest, i.e. the LD part of the signal, corresponding to
the synchronization and the DD part of the signal, corresponding to the complete darkness,
for which we have considered the segments corresponding to the before, during andafter
treatment phase, Figure (6.107) (rest-activity patterns) and Figure (6.118).

In particular, for the first segment of interest, i.e. the LD part of data and for thedur-
ing treatment part, we have considered four days length signalsto analyse the stability or
variability of the dominant period for the considered segment itself.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
rest-activity patterns (Activity) signal is presented in Table (6.11). Via FFT, the dominant
period seems stable, at 24 hours, during the experiment, except theafter treatment part of the
data, for which the dominant period is estimated at 12 hours.Via the Proposed Method, the
period corresponding to theafter treatment part is also estimated at 12 hours, in accordance
with the FFT result. For the other part of the data, the dominant period is also estimated
around 24 hours, but with small variations between 23 and 25 hours.

The dominant period evolution, corresponding to the Proposed Method and FFT for the
gene expression data (photon absorption signal), is presented in Table (6.12). For this exper-
iment, via FFT, the dominant period is 24 hours for each segment, and seems stable. Via the
Proposed Method, slight variations are detected during theexperiment: a 23 hour periodic-
ity corresponding to thebefore andduring treatment part of data and a 22 hour periodicity
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6.6.3 - Conclusions: Dominant Period evolution

CT 502 - B3 Dominant Period - Proposed MethodDominant Period - FFT

LD complete 24 24

LD win 1 24 24

LD win 2 24 24

LD win 3 24 24

LD win 4 24 24

DD before 23 24

DD during 23 24

DD during win 1 23 24

DD during win 2 23 24

DD after 22 24

Table 6.12: CT 502 B3: Photon Dominant Period Stability: Proposed Method vs. FFT

corresponding to theafter treatment part of data.
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7.1 Conclusions

THE fundamental objective of this thesis was the study of the periodic components (PC)
amplitudes vector corresponding to chronobiological signals. The context of our work

was chronobiological signal recorded in cancer treatment experiments, and the domain of
interest was the circadian domain. A very important prior information offered by the biologists
concerns the PC amplitudes vector: the number of periods modulating the recorded signals
is small. Also, the experiments impose two fundamental limitations: the short duration of
the signals (relative to the prior dominant period) and the high level of noise. Moreover, for
studying the stability or variability of the PC amplitudes vector, even shorter signals have to
be considered.

In this context, the objective was to develop a method that can offer a good PC ampli-
tudes vector estimation with a certain precision. During this thesis, one hour precision was
considered.

Translating the biological prior information of the small numbers of non zero elements in
PC amplitudes vector as sparsity, the problem considered inthis thesis has been formulated
as it follows:
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CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

Estimate the sparse PC amplitudes vector corresponding to very short duration signals rela-
tive to the (prior) dominant period with a given precision. The number of components is small
(sparse PC amplitudes vector) but unknown.

First, we have examined the classical methods and identifiedtheir drawbacks in the con-
text of our subject. The Fourier Transform methods are successfully used if the duration of
the considered signals are long enough. In our case, due to the short duration of the signals,
the precision is far from being satisfactory. In Chapter (3), Section (3.2), we have showed that
for a four days length signal, in the interval of interest, i.e. the circadian domain[8h : 32h],
we obtain informations corresponding only to 10 periods. Zero padding technique was con-
sidered in Section (3.3), but in this case, the estimation is not sparse, and selecting periods
is difficult. Direct and generalized Inversion was considered in Section (3.4), and we have
showed that except the case where the considered signal is not noisy, the method fails to offer
a good estimation of the PC amplitudes vector, even though the reconstruction of the signal is
accurate for all levels of noise. In Section (3.5) we have considered the Least Squares and the
regularized Least Squares, showing that both approaches fail to correctly estimate the PC am-
plitude vector. In Section (3.6) we considered theL1 regularization and the LASSO method.
This method is the nearest state of art method to account for sparsity throughL1 regularization
term. However, we showed that even if very often the results are good, it happens also that for
different noise realizations the algorithm does not give satisfactory results.

In the approach proposed in the this thesis, we have considered a forward model, built
in the same way as the one corresponding to the Fourier transform, but using the elements
that correspond to the considered circadian PC vector, Equation (4.4) and Equation (4.7).
Estimating the PC amplitudes vector from the linear model corresponds to an ill-posed inverse
problem. More precisely, in the context of this forward model, the duration of the observed
signal (96h in synthetic simulations) the limits and the precision of the periods to explore
[8h : 32h], the matrix of the forward model has a huge condition number.We have proposed
an inversion based on general Bayesian Inference, buildingan hierarchical model based on
the generalized Student-t prior distribution modelling the PC amplitudes vector.

The Student-t distribution was considered as a sparsity enforcing prior due to its IGSM
property, i.e. the standard Student-t distributionSt(x|ν) can be expressed as the marginal
of a bivariate Normal-Inverse Gamma distribution, when considering equal parameters of the
Inverse Gamma distributionα = β = ν

2
. In this thesis, we have used a generalized form

of the Student-t distribution, introduced via the IGSM property but not imposing the equality
between the shape and scale parameters corresponding to theInverse Gamma distribution. The
advantage was given by the fact that for the generalized Student-t distribution, the variance
can take any positive value, (different from the standard Student-t distribution for which the
variance is greater than 1). Some details about this generalized Student-t distribution and its
properties are presented in Appendix (A) and in a paper submitted to IEEE Signal Processing
Letters.

The Bayesian approach allowed us to estimate also the variances associated with the PC
amplitude vector. The model that was developed in this thesis considered a non-stationary
Gaussian model for the errors (noise).

In Chapter (5) we have presented the results corresponding to the proposed model, show-
ing that the PM estimation corresponding to the proposed Student-t hierarchical model gives
accurate results which are stable.
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In Chapter (6) the developed algorithm was applied on real data issued from cancer treat-
ment experiments. In this chapter, the results corresponding to the proposed method are com-
pared to the FFT results, which is the standard method for PC estimation in chronobiology
today. We have showed that the proposed method is able to detect variances that are not de-
tected by the FFT method. Some details of this approach and its application on simulated and
real data are published in the following papers:

• Mircea Dumitru, Ali Mohammad-Djafari, Simona Baghai Sain(2015).Precise periodic
components estimation for chronobiological signals through Bayesian Inference with
sparsity enforcing prior.EURASIP Journal on Bioinformatics and Systems Biology,
special issue on Bayesian Methods for Computational Systems Biology, 2015

• Ali Mohammad-Djafari, Mircea Dumitru (2015).Bayesian sparse solutions to linear
inverse problems with non-stationary noise with Student-tpriors, Digital Signal Pro-
cessing, 2015, doi:10.1016/j.dsp.2015.08.005

7.2 Perspectives

In this subsection we discuss some possible perspectives ofour work.

7.2.1 Multicomponent case: PC amplitudes vectors for multiple inputs

We discussed during this thesis, in Chapter (4), the fact the two equivalent direct models can
be considered: the one expressed in Equation (4.4) and the one expressed in Equation (4.7),
equivalent with Equation (4.4) via (4.6). The same hierarchical model, with a generalized
Student-t distribution as a sparsity enforcing prior for the PC amplitude vector and a non-
stationary Gaussian model for the errors can be applied for both forward models. However, in
the case of the linear model Equation (4.4), the link between the two PC amplitudes vectors
(i.e. f1 andf2, corresponding to the sine and cosine) is done by imposing the same variance
vf . This idea can be applied when the developed algorithm is used not for the case of one
signal recorded in the experiment, but for two or more signals. For the same experiment,
the gene expression signal and the activity signal are available. For the same experiment
other signal associated with the circadian clock can be recorded, (like temperature). The
developed algorithm can be extended to the multicomponent case. Given a set of available
signals, recorded for the same experiment, the algorithm will estimate the PC amplitudes
vectors containing the most common periodic components corresponding to the set of signals.
This can be done via the same technique used in the case of one available signal, imposing
the same variance for every PC amplitude vector corresponding to the available signals.

In the following, for the sake of simplicity we will consideras a reference, the linear
model expressed in Equation (4.7). However, the same development can be done using Equa-
tion (4.4). If the number of available signals isK, and for each available signal we use the
notationgk, k ∈ {1, 2, ...K}, for the corresponding PC amplitudes vector we use the notation
fk, k ∈ {1, 2, ...K} and for the corresponding error vectorǫk, k ∈ {1, 2, ...K} the developed
method can be used in order to estimate eachfk, for k ∈ {1, 2, ...K}, considering as the
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7.2.2 - Sparsity Rate: initialisation and week dependencies

direct modelgk = Hfk + ǫk, for k ∈ {1, 2, ...K} and the corresponding hierarchical model.
However, doing this, the advantage of multiple signals available is not exploited, since for
estimationf k it is used only the corresponding signalgk.

In order to use all the available data, we can link all the PC amplitudes vectors estimations
f k, for k ∈ {1, 2, ...K} by imposing the same variance:

vfk
= vf , ∀k ∈ {1, 2, ...K}; (7.1)

The advantage of such an approach is given directly by the sparsity mechanism, explained
in Section (4.1): during the iterations the algorithm will impose zero value amplitudes for
the periods in the PC amplitude vector corresponding to small variances. Therefore, the final
estimation for each PC amplitudes vector will contain non-zero values only for the periods that
correspond to the most signals and will exclude the ones corresponding to a small number of
signals from the available data.

Formally, this can be done using as the forward model:

gk = Hfk + ǫk, k ∈ {1, 2, ...K}; (7.2)

or
G = HF + Ψ (7.3)

whereG = [g1, g2, . . . , gK ], F = [f1, f2, . . . , fK ] andΨ = [ǫ1, ǫ2, . . . , ǫK ].

7.2.2 Sparsity Rate: initialisation and week dependencies

Another perspective of the our work related with the generalized Student-t distribution. The
Stg distribution was used as the prior distribution in our hierarchical model in order to enforce
sparsity. The distribution is presented in detail in Appendices (A).

Briefly, we have noted that for the standard Student-t distributionSt(x|ν) its variance is
defined as ν

ν−2
for ν > 2 and∞ for 1 < ν ≤ 2, so the variance of the standard Student-t

distribution is always superior to 1. We have also noted thatfor the generalized Student-
t distributionStg(x|α, β), presented in Equation (A.25), its variance is defined asβ

α−1
for

α > 1 and∞ for 1/2 < α ≤ 1, (and in particular has the same expression as the mean
of the Inverse Gamma distribution corresponding to the Normal-Inverse Gamma distribution
that is marginalized for obtaining the generalized Student-t distribution) so once the shape
parametersα is set greater than 1, the variance ofStg(x|α, β) can be set at any wanted positive
value. In particular, in the context of a distribution that is used as a sparsity enforcing prior
this is of great interest.

For the developed algorithm, a crucial interest is represented by the initialization part,
where the prior parameters are set. Via the generalized Student-t distribution one way to con-
sider the initialization is to set the two parameters via themean and the variance of the Inverse
Gamma. Noting that the mean of the Inverse Gamma distribution has the same expression as
the variance of the Student-t distribution:

EIG [v] =
β

α − 1
= V arStg [x] = ǫ, for α > 1 (7.4)

and the expression of the Inverse Gamma variance is

V arIG [v] =
β2

(α − 1)2(α − 2)
= w, for α > 2, (7.5)
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the choice of the prior parameters can be done in accordance with data, initializing the algo-
rithm via the associatedStg variance of the unknown vector, i.e. the PC amplitudes vector f

and theIG variance of the corresponding variance,vf .

In our work, the two prior parameters corresponding to the generalized Student-t distri-
bution are set viaǫ, which denotes the Student-t variance andw, which denotes the Inverse
Gamma variance. We have used Equation (4.65), in such way thatα > 2, so that both the
variances are well defined and the Student-t variance is small (in order to assure the sparsity,
Figure (A.3), Appendices (A)). One possible extension is to use Equation (4.65) with variance
valuesǫ andw statistically derived from data.

Expressing the two parameters of the distribution using themean and the variance of the
corresponding Inverse Gamma distribution, we have showed that the Sparsity Rate (SR) de-
pends onǫ, the mean of the Inverse Gamma and the variance of the generalized Student-t dis-
tribution (Figure (A.3), Appendices (A)). But Figure (A.3) shows another interesting result,
a weak dependence of the SR with respect tow, the variance of the Inverse Gamma distribu-
tion. This result should be deepened, formalized and analytically explained by considering
the expression SR= p(|x| > t).
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THIS Appendix is dedicated to the generalized Student-t distribution. During this thesis,
we have used the notationStg(x|α, β) for the generalized Student-t, which was obtained

from the bivariate Normal-Inverse Gamma distribution. Theinterest for this generalization
is the possibility to set any positive value for the variance, so therefore imposing the wanted
sparsity rate. In this Appendix, first we discuss the contextwhere this distribution can be
used, then we discuss the origins of the Student-t distribution, then we present the computa-
tions for obtaining the analytical expression of the generalized Student-t distribution and the
computations corresponding to the expressions of the mean and variance.

A.1 Context

During this thesis we have noted that beside the regularization techniques, the other approach
that has been successfully tested to account for sparsity isthe Bayesian one. We have also
mentioned that for Bayesian inference generally two strategies are used:(a) the strict spar-
sity requirement, via Bernouilli distribution: Bernouilli-Gaussian [GDI90, CGI96, GILC08],
Bernouilli-Laplace [DB08], Bernouilli-Gamma and(b) the sparsity enforcing, where mainly
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APPENDIX A. GENERALIZED STUDENT-T

three categories of priors have been considered and used: Generalized Gaussian (GG), Mix-
ture models and heavy tailed probability laws such as Student-t. A review of those priors can
be found in [Tip01, MD12].

The context of the generalized Student-t is placed relativeto this second strategy, where
the searched solution is not strictly sparse, but sparse in the sense that the a high number
of elements are sufficiently small. We note that in this case we, the threshold is particular
important, in order to control the interval of small values that are associated with the zero
values.

Also, depending on the application considered, the inputf may have different sparsity
rates, depending on the application, therefore the prior information concerning the Sparsity
Rate (SR) have to be accounted.

In this Appendices, we present the generalization of the Student-t distribution that allows
accounting for the SR. The standard Student-t pdf is given bythe expression:

St(x|ν) =
Γ
(

ν+1
2

)

√
νπ Γ

(
ν
2

)
(

1 +
x2

ν

)− ν+1

2

, ν > 0, (A.1)

whereν is the number of degrees of freedom andΓ is the Gamma function. It is generalized
by introducing a location parameterµ and a scale parameterσ:

St(x|ν, µ, σ) =
Γ( ν+1

2 )
√

νπ σ Γ( ν
2 )

(
1 + 1

ν

(
x−µ

σ

)2
)− ν+1

2

,

ν > 0, σ > 0, µ ∈ R
(A.2)

The Student-t distribution can also be expressed via the IGSM:

St(x|ν) =
∫ ∞

0
N (x|0,

1

z
) G(z|ν

2
,
ν

2
) dz (A.3)

whereN (x|m, v) = (2πv)− 1

2 exp{− 1
2v

(x − m)2} is the Normal distribution andG(x|α, β) =
βα

Γ(α)
xα−1 exp{−βx} is the Gamma distribution. The IGSM name comes from the fact that

when a bivariate pdf composed of the product of a zero mean Normal distributionN (x|0, 1
z
)

with variancev = 1
z

and a Gamma pdf for the inverse of the variance (precision)z = 1
v
,

having equal scale and shape parametersα = β = ν
2

p(x, z|ν) = N (x|0,
1

z
) G(z|ν

2
,
ν

2
). (A.4)

Now, marginalizingz or v = 1
z

results to Student-t pdf as is given in Equation (A.3).
There are many works on the origins, properties and many other relations and generaliza-
tions of this
distribution. Some of them can be seen in [Fis25],[Li57],[Zel76],[Fer99],[KBJ00],[AH06].
Those works can mainly be classified in three categories: Probability and information theory,
Classical statistics and Bayesian inference. In probability theory Student-t pdf is defined as
the pdf of the ratio of two variables:z with a Normal pdf andv with a chi-squared pdf. In clas-
sical statistics, its origins goes back to the Maximum Likelihood (ML) estimate of the mean
and variance of a Normal distribution. In Bayesian inference framework, the origin goes back
to the same context of ML parameter estimation but with a Jeffreys prior. In this paper, we
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focus on the Bayesian inference of the mean and the variance of a Normal distribution when a
Normal-Inverse Gamma prior is assigned to them. By doing this, we obtain an expression for
the marginal posterior pdf of the mean which extends the classical definition of the Student-t.
In this way, we obtain a two parameters Student-t that we called generalized Student-tStg.
The rest of Appendices (A) is organized as follows: in Section (A.2), we give a brief presen-
tation of the origins of the distribution considered. Then,in Section (A.3) we present the new
generalized Student-t and some of its properties, in particular the computation of the expected
value and the variance. We will show that the variance can take any positive values. We
also present the link between the variance corresponding tothe Stg and the expected value
corresponding to theIG, modeling the prior variance. Section (A.4) presents how using this
property of the variance can be linked with the SR and presents the relation between those
two values. The conclusions are presented in Section (A.5).

A.2 Student-t: Origins

Student-t distribution was first derived as a Bayesian posterior distribution in 1876 by Helmert
[Hel75, Hel76b, Hel76a] and Lüroth.[L7̈6]. It takes its name from William Sealy Gosset’s
1908 paper in Biometrika under the pseudonym "Student" [Gos08, Mor08]. In Probability
theory, Student’s t-distribution withν degrees of freedom is defined as the distribution of a
random variableX defined as the ratio of two independent random variables:

X =
Z√
V/ν

= Z

√
ν

V
, (A.5)

whereZ has a standard normal distribution with expected value0 and variance1; V has a
chi-squared distribution withν degrees of freedom [SR94]. Student’s t-distribution has also
been defined as the Maximum Entropy probability distribution for a variableX for which
E{ln(ν + X2)} is fixed [Haz01, VR02, GCSR03, WMMY02]. Also, it has been shown that
the T-distribution pdf is a solution to the following differential equation [HMC02]:





(ν + x2) f ′(x) + (ν + 1)xf(x) = 0,

f(1) = νν/2(ν+1)−

ν
2

−

1
2

B( ν
2

, 1

2 )
(A.6)

In this paper, we consider two main origins of this distribution: the classical Maximum Like-
lihood (ML) parameter estimation of a Normal distribution and the Bayesian approach of this
problem via the Jeffreys prior. We introduce these two approaches briefly.

A.2.1 ML parameter estimation

If x1, ...,xN are i.i.d samples from a Normal distribution with unknown meanµ and variance
v,

xi ∼ N (xi|µ, v), i ∈ {1, 2, . . . , N} , (A.7)

the maximum likelihood estimate of(µ̂, v̂) is defined as

(µ̂, v̂)ML = arg max
(µ,v)

{p(x|µ1, vI)} = arg min
(µ,v)

{L(µ, v)} (A.8)
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whereL(µ, v) = − ln p(x|µ1, vI) = −∑N
i=1 ln(p(xi|µ, v)). It is easy to show that the ex-

pression ofL(µ, v) depends only on the two following sufficient statistics:

x̄ =
1

N

N∑

i=1

xi and s2 =
1

N − 1

N∑

i=1

(xi − x̄)2 (A.9)

and are given by: {
µ̂ = x̄
v̂ = s2 (A.10)

It can also be easily shown that
{

x̄ ∼ N (x̄|µ, v
N

)
s2 ∼ χ2(s2|N − 1),

(A.11)

whereχ2 represents the Chi-squared distribution which is a particular case of the Gamma
distribution, and that the random variable defined byT = x̄−µ

s/
√

N
, called pivot variable, follows

a Student-t distribution withN − 1 degrees of freedom:

T =
x̄ − µ

s/
√

N
∼ St(t|N − 1). (A.12)

A.2.2 Bayesian parameter estimation

The Bayesian way to estimate(µ, v) needs the expression of the likelihood as before:

p(x|µ, v) =
N∏

i=1

N (xi|µ, v) = N (x|µ1, vI), (A.13)

but also assigning a prior to(µ, v). When choosing the Jeffreys priorsp(µ, v) ∝ 1
v
, which

is a particular case of a Normal-Inverse Gamma pdf:p(µ, v) = N (µ|µ0, v)IG(v|α, β) with
µ0 = α = β = 0, corresponding to a zero mean Normal distribution and a degenerate case of
the Inverse Gamma distribution, i.e.

{
p(µ|v) = N (µ|0, v)
p(v) = IG(v|0, 0)

(A.14)

we obtain the expression of the posterior law:

p(µ, v|x) ∝ v− N
2

−1 exp

{
− 1

2v

N∑

i=1

(xi − µ)2

}
(A.15)

from which we can deduce: {
p(µ|x, v) = N (µ|x̄, v

N
)

p(v|x) = χ2(v|N)
(A.16)

Now, looking for the marginal:

p(µ|x) =
∫ ∞

0
p(µ, v|x) dv ∝

∫ ∞

0
N (x|µ1, vI)

1

v
dv

= St(µ|x̄,
√

Ns2, N).
(A.17)

The standard Student-t appears via the pivot variable,T :

T =
x̄ − µ√
s2/

√
N

∼ St(t|N − 1). (A.18)
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A.3 Generalization from the Bayesian point of view

In the previews Bayesian estimation, a more general informative prior for (µ, v) in the form

p(µ, v) = p(µ|v)p(v) (A.19)

with {
p(µ|v) = N (µ|0, v)
p(v|α, β) = IG(v|α, β)

(A.20)

leads to the joint posterior distribution:

p(µ, v|x) ∝
N∏

i=1

N (xi|µ, v)N (µ|0, v)IG(v|α, β)

∝ N (µ|µ̂, v̂)IG(v|α̂, β̂)

(A.21)

with {
µ̂ = N

N+1
x̄

v̂ = 1
N+1

v
;

{
α̂ = α + N

2

β̂ = β + 1
2

(
− N2

N+1
x̄2 +

∑N
i=1 x2

i

) (A.22)

From this joint posterior distribution the expression of the conditional posteriorp(µ|x, v) and
posteriorp(v|x, α, β) are easily derived:

{
p(µ|x, v) = N (µ|µ̂, v̂)

p(v|x, α, β) = IG(v|α̂, β̂)
(A.23)

The marginal posterior distributionp(v|x, α, β) is an Inverse Gamma distribution and is de-
scribed by the two parametersα̂ andβ̂ of Equation (A.22). For obtaining the marginal poste-
rior distribution corresponding toµ, we need to compute:

p(µ|x) =
∫ ∞

0
N (µ|µ̂, v̂)IG(v|α̂, β̂) dv (A.24)

This is how a generalization of the Student-t appears naturally. In the following we consider
Equation (A.24) for which we show the analytical expression and some of its properties. For
the sake of simplicity we develop the case corresponding toµ̂ = 0 corresponding to the zero
mean Normal distribution.

Theorem: For two random variables following a bivariate Normal-Inverse Gamma distri-
bution, (X, V ) ∼ N (x|0, v) IG(v|α, β), the marginal distribution corresponding toX is a
Student-t like distribution, generalizing the classical form, denotedStg, depending on the two
parametersα andβ corresponding to the Inverse-Gamma distribution having the following
pdf:

Stg(x|α, β) =
∫ ∞

0
N (x|0, v)IG(v|α, β) dv

=
Γ(α + 1

2
)√

2βπ Γ(α)

(
1 +

x2

2β

)−(α+ 1

2 )
, α > 0, β > 0.

(A.25)
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A.2.2 - Bayesian parameter estimation

Proof: The expression of the distribution is obtained directly:

Stg(x|α, β) =

=
∫ ∞

0

1√
2πv

exp
{

− 1

2v
x2
}

βα

Γ(α)
v−(α+1) exp

{
−β

v

}
dv

=
βαΓ(α + 1

2
)

√
2πΓ(α)

(
β + x2

2

)(α+ 1

2
)

∫ ∞

0
IG

(
v|α +

1

2
, β +

x2

2

)
dv

=
Γ(α + 1

2
)√

2βπ Γ(α)

(
1 +

x2

2β

)−(α+ 1

2)
.

(A.26)

Remark 1: Forα = β = ν
2
, we obtain the standard case:Stg(x|ν

2
, ν

2
) = St(x|ν).

Remark 2: The expected value of theStg(x|α, β) is zero forα > 1
2

and is undefined other-
wise:

E{(x|α, β)} =

{
0 for α > 1

2
,

undefined for0 < α 6
1
2
.

(A.27)

Proof: The proof follows the same steps as the one corresponding tothe standard case, also
using the fact thatStg(x|α, β) is an even function. One difference appears for the interval
of theα parameter for which the mean is defined. In this case, during the computations the

integral
∫∞

0 x
(
1 + x2

2β

)−(α+ 1

2)
dx is considered. The integral is finite only forα > 1

2
.

Remark 3: The variance of theStg(x|α, β) is β
α−1

for α > 1, is ∞ for 1
2

< α 6 1 and is
undefined otherwise:

Var{(x|α, β)} =





β
α−1

for α > 1,

∞ for 1
2

< α 6 1,
undefined for0 < α 6

1
2
.

(A.28)

Proof: The proof follows the same steps as the one corresponding tothe standard case and is
using the Euler integral of the first kind.
Remark 4: We note that forα > 1, the mean of theIG distribution appearing in the ex-
pression of the bivariate Normal-Inverse Gamma distribution is well defined and has the same
value as the variance ofStg:

VarStg{(x|α, β)} = EIG{(v|α, β)} =
β

α − 1
(A.29)

This property is particularly interesting in the sparsity context. It is showing how the sparsity
mechanism is strongly related with the associated prior variances of the model. The bivariate
Normal-Inverse Gamma distribution and the corresponding marginal, i.e. the generalized
Student-t distribution are presented in Figure (A.1).

A.4 Sparsity Rate and Generalized Student-t

The Student-t distribution represents a good prior distribution for enforcing the sparsity,
thanks to its heavy tailed form. Among many other distributions having a heavy tailed form,
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Sparsity Rate and Generalized Student-t

a) Normal-Inverse Gamma modelling(x, v)
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b) Stg modellingx: VarStg{(x|α, β)} = ǫ = 0.1

Figure A.1: Normal-Inverse Gamma distribution (a) and the corresponding marginalStg (b).
Illustrated forǫ = 0.1 andk = 1, Eq. (A.30a) and Eq. (A.30b)

such as Double Exponential (DE) or Generalized Gaussian (GG), the Student-t distribution is
particularly interesting thanks to its IGSM expression andthe conjugacy property of the Nor-
mal and Gamma (or Inverse Gamma) distributions. Therefore,in many Bayesian approaches
searching for sparse solutions, this distribution is of great interest. However, the mechanism
of the Bayesian algorithms where a sparse solution is searched is using at one hand the heavy-
tailed form of the prior distribution and at the other hand the small value of the variance. The
use of the standard Student-t distribution imposes a limitation: the variance is always greater
than 1. In this context, considering the generalization of the Student-t distribution and notably
the relation from Equation (A.28), we see the importance of this generalization for which the
variance may be set at any required value. Furthermore, Equation (A.29) sets the link between
the sparsity of a quantityx and the associated variancesv. ForStg varianceǫ andIG variance
k, we have:

VarStg {(x|α, β)} = EIG{(v|α, β)} =
β

α − 1
= ǫ; (A.30a)

VarIG{(v|α, β)} =
β2

(α − 1)2(α − 2)
= k; (A.30b)

A solution for setting the scale and shape parametersα andβ depending on the variance of
the generalized Student-t distributionǫ and the variance of the Inverse Gamma distributionk
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is given in Equation (A.31).

{
α = 2 + ǫ2

0

β =
√

kǫ0(1 + ǫ2
0)

, ǫ0 =
ǫ√
k

; (A.31)

We note that via Equation (A.31), α > 2 andβ > 0: for both theStg andIG distributions,
the corresponding expected values and variances are well defined. The Sparsity Rate (SR) is
defined in Equation (A.32).

SR=
#non-zero points

#points
(A.32)

To show the link between the SR and the variance of the generalized Student-t distribution,ǫ,
we consider the sparse structurex and the corresponding variancev as it follows: (i) we con-
sider 10000 samples for the variance,IG distributed, Figure (A.2) (a); (ii) we consider 10000
samples for x,N distributed, with zero mean and the variance selected from (a), Figure (A.2)
(b); (iii) we set a threshold for x, (|x| < 0.1), obtaining a sparse structure, Figure (A.2) (c);
We consider different sparse structuresx, corresponding to different valuesǫ andk, Equa-
tion (A.31), and compute the associated SR value, Equation (A.32). Figure (A.3) presents the
behaviour of the SR depending on theStg varianceǫ, for different values considered for the
variance of theIG, k. We note that regardless the considered valuesk, the SR is decreasing
with ǫ.

A.5 Conclusion

Based on Bayesian inference of the meanµ of a Gaussian pdfN (x|µ, v) with unknown vari-
ancev on which an a priori Inverse Gamma pdfIG(v|α, β) is assigned, we considered the
generalized Student-t pdfStg(x|α, β) which becomes the standard Student t-distribution when
α = β = ν/2. We showed that the variance of this distribution can take any positive values,
and how it is linked with the SR. We showed how the two parameters of the generalized
Student-t can be set such that the value of the variance is imposed. Depending on applica-
tions, the SR can have different values, and the proposed distribution is offering a solution for
selecting a prior which is in accordance with data in terms ofSR.
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a) IG distributed samplesv ∼ IG(v|α, β)
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b) Stg distributed samplesx ∼ Stg(x|α, β)
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c) Sparse signal obtained by thresholding|x| < 0.1

Figure A.2: Sparse signal, distributed following the generalized Student-t distribution after
thresholding
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a) Sparsity rate as a function ofǫ, Eq. (A.30a)
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Figure A.3: Behaviour of the Sparsity Rate as a function ofǫ for different values of k
Eq. (A.30a)
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3.5 Estimated PC amplitudes vectorŝf0 (3.5c) andf̂ (3.5d) for the zero padded original signalg (3.5a
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3.7 Estimated PC amplitudes vectorŝf0 (3.7c) andf̂ (3.7d) for the zero padded original signalg (3.7a

3.8 Zero padded signal (a) and the corresponding FFT PC amplitudes vector.. . . 34

3.9 Direct Inversion: Signal without noise. . . . . . . . . . . . . . . . . . . . . 35

3.10 Direct Inversion: Signal with noise, 50dB. . . . . . . . . . . . . . . . . . . 36

3.11 Direct Inversion: Signal with noise, 20dB. . . . . . . . . . . . . . . . . . . 36

3.12 Direct Inversion: Signal with noise, 05dB. . . . . . . . . . . . . . . . . . . 37

3.13 Direct InversionL1 andL2 errors: PC estimation errors and signal reconstruction errors 38

205



LIST OF FIGURES

3.14 Least Squares: Signal without noise. . . . . . . . . . . . . . . . . . . . . . 38

3.15 Least Squares: Signal with noise, 15dB. . . . . . . . . . . . . . . . . . . . 39

3.16 Least Squares: Signal with noise, 10dB. . . . . . . . . . . . . . . . . . . . 40

3.17 Least Squares: Signal with noise, 05dB. . . . . . . . . . . . . . . . . . . . 41

3.18 Least SquaresL1 andL2 errors: PC estimation errors and signal reconstruction errors 41

3.19 Regularized Least Squares,λ = 0.1: Signal without noise. . . . . . . . . . . 42

3.20 Regularized Least Squares,λ = 0.1: Signal with noise, 5dB . . . . . . . . . 42

3.21 Regularized Least SquareL1 andL2 errors: PC estimation and signal reconstruction43

3.22 Regularized Least Squareδg1 andδg2 signal reconstruction errors for different values ofλ 44

3.23 Regularized Least Squareδf1 andδf2 PC estimation errors for different values ofλ 44

3.24 LASSO: Signal without noise. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.25 LASSO: Signal with noise, 10dB. . . . . . . . . . . . . . . . . . . . . . . . 46

3.26 LASSO: Signal with noise, 5dB - Accurate estimation. . . . . . . . . . . . . 46

3.27 LASSO: Signal with noise, 5dB - Inaccurate estimation. . . . . . . . . . . . 47

3.28 LASSOL1 andL2 errors stability: PC estimation and signal reconstruction- 10dB 48

3.29 LASSOL1 andL2 errors stability: PC estimation and signal reconstruction- 5dB 48

3.30 LASSOL1 andL2 errors stability: PC estimation and signal reconstruction- 5dB 49

3.31 LASSOL1 andL2 errors: PC estimation and signal reconstruction. . . . . . 49

4.1 Normal and Student-t distribution. . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Normal vs. Student-t distribution. . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Normal - Inverse Gamma distribution
(
fkj, vf j

)
and the corresponding marginalfkj|αf0, βf0 61

4.4 Normal vs. Normal - Inverse Gamma marginal distributions . . . . . . . . . 63

4.5 Updating scheme: JMAP estimation for generalized Student-t prior model . . 65

4.6 Updating scheme: PM estimation via VBA (partial separability) for generalized Student-t prior model

4.7 Inverse Gamma distributions for differentα, β parameters . . . . . . . . . . 72

4.8 Sparsity mechanism: the sparsity is imposed (also) via the corresponding variance72

4.9 x ∼ IG(x|α, β); E [x] = 0.1; Var [x] = 1, 0.1, 0.01 and 0.001. . . . . . . . . 73

4.10 x ∼ IG(x|α, β); E [x] = 0.01; Var [x] = 1, 0.1, 0.01 and 0.001. . . . . . . . 73

4.11 x ∼ IG(x|α, β); E [x] = 0.001; Var [x] = 1, 0.1, 0.01 and 0.001. . . . . . . . 74

4.12 Different Generalized Student-t distributions for which the means EStg = 0 and the variances VarStg =

4.13 Generalized Student-t: VarStg = 0.1; VarIG = 0.1, 0.01, 0.001; . . . . . . . . 75

4.14 Different Generalized Student-t distributions for which the means EStg = 0 and the variances VarStg =

206



LIST OF FIGURES

4.15 Generalized Student-t: VarStg = 0.01; VarIG = 0.1, 0.01, 0.001; . . . . . . . 75

4.16 Different Generalized Student-t distributions for which the means EStg = 0 and the variances VarS

4.17 Generalized Student-t: VarStg = 0.001; VarIG = 0.1, 0.01, 0.001; . . . . . . 76

4.18 Updating scheme: PM estimation via VBA (full separability) for generalized Student-t prior model

5.1 f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model (5dB)81

5.2 JMAP IGSM Estimation (5dB). . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 JMAP IGSML2 error measured for 10 different noise realisations (5dB). . . 83

5.4 PM (via VBA, partial separability) IGSM Estimation (5dB) . . . . . . . . . . 84

5.5 PM (via VBA, partial separability) IGSM hyperparameters andf convergency 85

5.6 PM (via VBA, partial separability) IGSML2 error measured for 10 different noise realisations (5dB)

5.7 PM (via VBA, full separability) IGSM Estimation (5dB). . . . . . . . . . . 87

5.8 PM (via VBA, full separability) IGSML2 error measured for 10 different noise realisations (5dB)

5.9 Methods Comparison (5dB). . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 L2 Errors estimation (5dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.11 f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model (10dB)91

5.12 JMAP IGSM Estimation (10dB). . . . . . . . . . . . . . . . . . . . . . . . 92

5.13 JMAP IGSML2 error measured for 10 different noise realisations (10dB). . 93

5.14 PM (via VBA, partial separability) IGSM Estimation (10dB) . . . . . . . . . 94

5.15 PM (via VBA, partial separability) IGSM hyperparameters andf convergency 94

5.16 PM (via VBA, partial separability) IGSML2 error measured for 10 different noise realisations (10dB)

5.17 PM (via VBA, full separability) IGSM Estimation (10dB). . . . . . . . . . . 96

5.18 PM (via VBA, full separability) IGSML2 error measured for 10 different noise realisations (10dB)

5.19 Methods Comparison (10dB). . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.20 L2 Errors estimation (10dB). . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.21 f PC vector, theoretical signalg0 and input signalg = g0 + ǫ of the model (15dB)100

5.22 JMAP IGSM Estimation (15dB). . . . . . . . . . . . . . . . . . . . . . . . 101

5.23 JMAP IGSML2 error measured for 10 different noise realisations (15dB). . 102

5.24 PM (via VBA, partial separability) IGSM Estimation (15dB) . . . . . . . . . 103

5.25 PM (via VBA, partial separability) IGSM hyperparameters andf convergency103

5.26 PM (via VBA, partial separability) IGSML2 error measured for 10 different noise realisations (15dB)

5.27 PM (via VBA, full separability) IGSM Estimation (15dB). . . . . . . . . . . 105

5.28 PM (via VBA, full separability) IGSML2 error measured for 10 different noise realisations (15dB)

207



LIST OF FIGURES

5.29 Methods Comparison (15dB). . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.30 L2 Errors estimation (15dB). . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.31 Synthetic simulation data (05dB): sine PC amplitudes vectorf 1, (5.31a), cosine PC amplitudes vector

5.32 Synthetic simulation (05dB): comparison between the Proposed Method estimations and the synthetic

5.33 Synthetic simulation (05dB): comparison between the LASSO estimations and the synthetic data111

5.34 Stability: L1 and L2 reconstruction errors (05dB):δg1 andδg2: Proposed Method vs. LASSO112

5.35 Stability: L1 and L2 estimation errors (05dB):δf 1 andδf2: Proposed Method vs. LASSO113

5.36 Synthetic simulation data (10dB): sine PC amplitudes vectorf 1, (5.36a), cosine PC amplitudes vector

5.37 Synthetic simulation (10dB): comparison between the Proposed Method estimations and the synthetic

5.38 Synthetic simulation (10dB): comparison between the LASSO estimations and the synthetic data116

5.39 Stability: L1 and L2 reconstruction errors (10dB):δg1 andδg2: Proposed Method vs. LASSO117

5.40 Stability: L1 and L2 estimation errors (10dB):δf 1 andδf2: Proposed Method vs. LASSO118

5.41 L1 and L2 estimation errors:δg1 andδg2: Proposed Method vs. LASSO. . . 119

5.42 L1 and L2 estimation errors:δf1 andδf 2: Proposed Method vs. LASSO. . 120

6.1 CT 502, A1 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . 122

6.2 Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled123

6.3 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 123

6.4 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 124

6.5 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 124

6.6 PC Stability: Proposed Method (a) vs. FFT (b), normalized results . . . . . . 125

6.7 DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 125

6.8 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 125

6.9 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity DD, during126

6.10 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 126

6.11 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 126

6.12 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 127

6.13 Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled128

6.14 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 128

6.15 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 128

6.16 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 129

6.17 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 129

6.18 DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 129

208



LIST OF FIGURES

6.19 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 130

6.20 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon DD, during130

6.21 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 130

6.22 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 130

6.23 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 130

6.24 CT 502, A2 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . 132

6.25 Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled133

6.26 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 133

6.27 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 134

6.28 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 134

6.29 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 134

6.30 DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 134

6.31 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 135

6.32 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity DD, during135

6.33 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 135

6.34 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 136

6.35 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 136

6.36 Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled137

6.37 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 137

6.38 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 138

6.39 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 138

6.40 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 138

6.41 DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 139

6.42 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 139

6.43 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon DD, during139

6.44 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 140

6.45 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 140

6.46 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 140

6.47 CT 502, A3 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . 142

6.48 Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled143

6.49 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 143

6.50 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 144

209



LIST OF FIGURES

6.51 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 144

6.52 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 144

6.53 DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 144

6.54 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 145

6.55 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity DD, during145

6.56 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 145

6.57 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 146

6.58 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 146

6.59 Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled146

6.60 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 147

6.61 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 148

6.62 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 148

6.63 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 148

6.64 DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 148

6.65 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 149

6.66 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon DD, during149

6.67 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 149

6.68 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 150

6.69 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 150

6.70 CT 502, B1 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . . 151

6.71 Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled152

6.72 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 152

6.73 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 153

6.74 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 153

6.75 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 154

6.76 DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 154

6.77 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 154

6.78 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity DD, during155

6.79 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 155

6.80 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 155

6.81 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 156

6.82 Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled157

210



LIST OF FIGURES

6.83 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 157

6.84 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 157

6.85 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 158

6.86 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 158

6.87 DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 158

6.88 DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 159

6.89 PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon DD, during159

6.90 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 159

6.91 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 160

6.92 DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 160

6.93 CT 502, B2 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . . 162

6.94 Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled162

6.95 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) . . 163

6.96 PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 163

6.97 PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 164

6.98 PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 164

6.99 DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 164

6.100Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled165

6.101Considered signal (a) and the corresponding PC via VBA(b) and FFT (c) . . 166

6.102PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 166

6.103PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 167

6.104PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 167

6.105DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 167

6.106CT 502, B3 Mouse: Activity (a) and Photon Absorption (b) raw data. . . . . 168

6.107Activity raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled169

6.108Considered signal (a) and the corresponding PC via VBA(b) and FFT (c) . . 169

6.109PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 170

6.110PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 170

6.111PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 170

6.112DDbefore signal (a) and the corresponding PC via VBA (b) and FFT (c). . 171

6.113DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 171

6.114PC Stability: PC estimation via FFT and VBA for 4-days length signals, Activity DD, during171

211



LIST OF FIGURES

6.115PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 172

6.116PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 172

6.117DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 172

6.118Photon raw data (a) and the corresponding parts,(b),(c),(d),normalized and one-hour sampled173

6.119Considered signal (a) and the corresponding PC via VBA(b) and FFT (c) . . 174

6.120PC Stability: PC estimation via FFT and VBA for 4-days length signals . . . 174

6.121PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 175

6.122PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 175

6.123DDbeforesignal (a) and the corresponding PC via VBA (b) and FFT (c). . 175

6.124DDduring signal (a) and the corresponding PC via VBA (b) and FFT (c). . 176

6.125PC Stability: PC estimation via FFT and VBA for 4-days length signals, Photon DD, during176

6.126PC Stability: Proposed Method (a) vs. FFT (b). . . . . . . . . . . . . . . . 176

6.127PC Stability: Proposed Method (a) vs. FFT (b), normalized results. . . . . . 177

6.128DDafter signal (a) and the corresponding PC via VBA (b) and FFT (c). . . 177

A.1 Normal-Inverse Gamma distribution (a) and the corresponding marginalStg (b). Illustrated forǫ = 0.1

A.2 Sparse signal, distributed following the generalized Student-t distribution after thresholding193

A.3 Behaviour of the Sparsity Rate as a function ofǫ for different values of k Eq. (A.30a)194

212



List of Tables

4.1 Mean and variance forStg via ǫ andw . . . . . . . . . . . . . . . . . . . . . 74

6.1 CT 502 A1: Activity Dominant Period Stability: ProposedMethod vs. FFT . 127

6.2 CT 502 A1: Photon Absorption Dominant Period Stability:Proposed Method vs. FFT131

6.3 CT 502 A2: Activity Dominant Period Stability: ProposedMethod vs. FFT . 136

6.4 CT 502 A2: Photon Absorption Dominant Period Stability:Proposed Method vs. FFT141

6.5 CT 502 A3: Activity Dominant Period Stability: ProposedMethod vs. FFT . 147

6.6 CT 502 A3: Photon Dominant Period Stability: Proposed Method vs. FFT. . 151

6.7 CT 502 B1: Activity Dominant Period Stability: ProposedMethod vs. FFT . 156

6.8 CT 502 B1: Photon Absorption Dominant Period Stability:Proposed Method vs. FFT160

6.9 CT 502 B2: Activity Dominant Period Stability: ProposedMethod vs. FFT . 165

6.10 CT 502 B2: Photon Absorption Dominant Period Stability: Proposed Method vs. FFT168

6.11 CT 502 B3: Activity Dominant Period Stability: Proposed Method vs. FFT . 173

6.12 CT 502 B3: Photon Dominant Period Stability: Proposed Method vs. FFT. . 178

213



Titre : Approche bayésienne de l’estimation des composantes périodiques des signaux en 
chronobiologie

Mots clés : Estimation de composantes périodiques, Problèmes inverses, Approches bayésiennes, 
Modèle hierarchique, Renforcement de parcimonie, Chronobiologie

Résumé : La toxicité et l’efficacité de plus de
30 agents anticancéreux présentent de très fortes
variations en fonction du temps de dosage. Par
conséquent,  les  biologistes  qui  étudient  le
rythme circadien ont besoin d’une méthode très
précise pour estimer le vecteur de composantes
périodiques (CP) de signaux chronobiologiques.
En outre, dans les développements récents, non
seulement la période dominante ou le vecteur de
CP présentent un intérêt crucial, mais aussi leurs
stabilités  ou variabilités.  Dans  les  expériences
effectuées en traitement du cancer, les signaux
enregistrés  correspondant  à  différentes  phases
de traitement sont courts, de sept jours pour le
segment  de  synchronisation  jusqu’à  deux  ou
trois  jours  pour  le  segment  après  traitement.
Lorsqué’on  étudie  la  stabilité  de  la  période
dominante nous devons considérer des signaux
très court par rapport à la connaissance a priori
de la période dominante, placée dans le 

domaine  circadien.  Les  approches  classiques
fonées sur la transformée de Fourier (TF) sont
inefficaces  (i.e.  manque  de  précision)  compte
tenu  de  la  particularité  des  données  (i.e.  la
courte  longueur).  Dans  cette  thèse,  nous
proposons  une  nouvelle  méthode  pour
l’estimation  du  vecteur  de  CP  des  signaux
biomédicaux,  en  utilisant  les  informations
biologiques a priori et en considérant un modèle
qui représente le bruit. Les signaux enregistrés
dans le cadre d’expériences développées pour le
traitement  du cancer  ont  un nombre limité  de
périodes.  Cette  information  a  priori  peut  être
traduite comme la parcimonie du vecteur de CP.
La méthode proposée considère l’estimation de
vecteur de CP comme un problème inverse en
utilisant l’inférence bayésienne générale afin de
déduire toutes les inconnues de notre modèle, à
savoir  le  vecteur  de  CP  mais  aussi  les
hyperparamètres (i.e. les variances associées). 

Title : A Bayesian approach for periodic components estimation for chronobiological signals
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Abstract : The toxicity and efficacy of more
than  30  anticancer  agents  presents  very  high
variations,  depending  on  the  dosing  time.
Therefore the biologists studying the circadian
rhythm  require  a  very  precise  method  for
estimating  the  Periodic  Components  (PC)
vector  of  chronobiological  signals.  Moreover,
in recent developments not only the dominant
period  or  the  PC  vector  present  a  crucial
interest, but also their stability or variability. In
cancer  treatment  experiments  the  recorded
signals  corresponding  to  different  phases  of
treatment  are  short,  from seven  days  for  the
synchronization segment to two or three days
for the after treatment segment. When studying
the stability of the dominant period we have to
consider  very  short  length  signals  relative  to
the prior knowledge of the dominant period,  

placed in  the  circadian domain.  The classical
approaches,  based on Fourier  Transform (FT)
methods are inefficient (i.e. lack of precision)
considering the particularities of the data (i.e.
the  short  length).  In this  thesis  we propose a
new method for the estimation of the PC vector
of biomedical signals, using the biological prior
informations  and  considering  a  model  that
accounts  for  the  noise.  The  experiments
developed in the cancer treatment context are
recording signals expressing a lim ited number
of periods. This is a prior information that can
be translated as the sparsity of the PC vector.
The proposed method considers the PC vector
estimation as an Inverse Problem (IP) using the
general Bayesian inference in order to infer all
the unknowns of our model, i.e. the PC vector
but also the hyperparameters. 
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