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Résumé : Ce travail de thèse de doctorat est 

dédié à l'étude d'un problème de placement de 

tâches dans le domaine de la compilation 

d'applications pour des architectures 

massivement parallèles. Ce problème de 

placement doit être résolu dans le respect de 

trois critères: les algorithmes doivent être 

capables de traiter des applications de tailles 

variables, ils doivent répondre aux contraintes 

de capacités des processeurs et prendre en 

compte la topologie des architectures cibles. 

Dans cette thèse, les tâches sont organisées en 

réseaux de communication, modélisés sous 

forme de graphes. Pour évaluer la qualité des 

solutions produites par les algorithmes, les 

placements obtenus sont comparés avec un 

placement aléatoire. 

Cette comparaison sert de métrique d'évaluation 

des placements des différentes méthodes 

proposées. Afin de résoudre à ce problème, trois 

algorithmes de placement ont été développés. 

Task-wise Placement et Subgraph-wise 

Placement s'appliquent dans des cas où les poids 

des tâches et des arêtes sont unitaires. 

Regret-based Approach est une heuristique de 

construction progressive basée sur la théorie des 

jeux qui s’applique sur des graphes dans 

lesquels les poids des tâches et des arêtes sont 

variables similairement aux valeurs qu'on peut 

retrouver dans des cas industriels. 

Afin de vérifier la robustesse de l'algorithme, 

différents types de graphes de tâches de tailles 

variables ont été générés. 

 
 

 

Title : Mapping of  large task networks on manycore architecture 

Keywords : Tasks mapping, Operational Research, manycore architecture 

Abstract: This Ph.D thesis is devoted to the 

study of the mapping problem related to 

massively parallel embedded architectures. 

This problem has to be solved considering 

three criteria: heuristics should be able to deal 

with applications with various sizes, they must 

meet the constraints of capacities of processors 

and they have to take into account the target 

architecture topologies. In this thesis, tasks are 

organized in communication networks, 

modeled as graphs. In order to determine a way 

of evaluating the efficiency of the developed 

heuristics, mappings, obtained by the 

heuristics, are compared to a random mapping. 

This comparison is used as an evaluation 

metric throughout this thesis. The existence of 

this metric is motivated by the fact that no 

comparative heuristics can be found in the 

literature at the time of writing of this thesis.  

In order to address this problem, three 

heuristics are proposed. They are able to solve 

a dataflow process network mapping problem, 

where a network of communicating tasks is 

placed into a set of processors with limited 

resource capacities, while minimizing the 

overall communication bandwidth between 

processors. Task-wise Placement and 

Subgraph-wise Placement are applied on task 

graphs where weights of tasks and edges are 

unitary set.  Then, in a will to address problems 

that can be found in industrial cases, 

application cases are widen to tasks graphs 

with tasks and edges weights values similar to 

those that can be found in the industry. A 

progressive construction heuristic named 

Regret Based Approach, based on game theory, 

is proposed In order to check the strength of the 

algorithm; many types of task graphs with 

various sizes are generated.  
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He who loves practice without theory
is like the sailor who boards ship
without a rudder and compass and
never knows where he may cast.

Leonardo de Vinci
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Lassence, Emmanuelle Brun, Marc Rivault, Cécile Bouton and Julie Loffi.

I also wish to thank Sophie Grousset, Bénédicte Leclec’h, Ejona Kishta, Anne Vajou,
Margot Didier and Hayfa Alaya who provided me with the help I needed in dire times.

A great thank you to Mathilde Adorno for the domino illustration she made foor my
paper.

A thank you goes to Julie Loffi who helped me in my thesis defense preparation by
inviting me in Japan and for having, with Aziz Dziri, prepared the last details of it. And
for enduring me while I was getting nervous a couple of hours before the defense.

Another thank you goes to Hélène and Stefan Berger, Soukaina Bel-Hadj and Julie
Loffi which were my syntax error trackers for the last version of this manuscript.

I wish also to thank more long-term friends for having supported and encouraged me
throughout all these years: Rafael Perez, Soukaina Bel-Hadj Soulami, Amine Amokrane,
Fodhil Babaali, Amaury Vannier-Moreau, Laurent Bourasseau (who kicked my ass many
times during my Master time), Nadjet Beghoul and of course the Valdès-Forain Family
and the Dargouge Family.

Before ending my acknowledgment, I would like to make a special dedication to one
of my dearest friend: Kristina Guseva. We met under very strange circumstances and
we quickly became very good friends. She provided me with very pertinent advice and
has always been there when I needed someone. She always made fun of me in a way that
always made me smile. Unfortunately, Kristina passed away too early at the age of 27
after a difficult battle against cancer. Kristina, I miss you.

Last but not least, I have to thank my family for everything. First to my parents
Hélène and Stefan Berger that I truly love. My first student years were chaotic but they
helped me to stay focused on studies and thanks to their help, I was able to write this
thesis. One never says enough to his parents how much one loves them and is grateful
for what they did. To mein little Bruder Maximilien Berger. To my French grand-
parents: Mireille and Martial Labouise, my grand-aunts Jeanne Clermon and Huguette
Chaumereux. Also to my German grand-parents: Ingeborg and Gunter Berger. I deeply
regret that I could’nt finish my Ph.D before the death of meine Oma. Last, I also wish
to thank Ina, Maria, Adrien and Axel Berger and other Berger relatives for everything.

The last thanks I wish to provide concern a living creature who just doesn’t give a
damn about the fact I did a Ph.D or anything else in my life and has a very special way
of loving me by ignoring me: my cat Isis.



4 Acknowledgement



Publications

• K.E. Berger et F.Galea. “An efficient parallelization strategy of Dynamic program-
ming on GPU”

– PCO’13,IPDPSW’13,Boston,2013

• K-E. Berger , B. Le Cun, F. Galea and R. Sirdey. “Placement de graphes de flots
de données de grande taille”

– Roadef’14, Bordeaux,2014

• K-E. Berger , B. Le Cun, F. Galea and R. Sirdey. “ Fast Generation Of Large Task
Network Mappings”

– PCO’14,IPDPSW’14, Phoenix,2014

– Electronique et RO , GT OSI, UPMC, Paris, 2014

• K-E. Berger , B. Le Cun, F. Galea and R. Sirdey. “Un modèle de regret pour le
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Résumé

Ce travail de thèse de doctorat est dédié à l’étude de problèmes de placement de tâches
dans le domaine de la compilation d’applications pour des architectures massivement
parallèles. Ce problème vient en réponse à certains besoins industriels tels que l’économie
d’énergie et la demande de performances pour les applications de type flots de données
synchrones. Ce problème de placement doit être résolu dans le respect de trois critères :
les algorithmes doivent être capables de traiter des applications de tailles variables, ils
doivent répondre aux contraintes de capacités des processeurs et prendre en compte la
topologie des architectures cibles. Dans cette thèse, les tâches sont organisées en réseaux
de communication, modélisés sous forme de graphes.

Pour évaluer la qualité des solutions produites par les algorithmes, les placements
obtenus sont comparés avec un placement aléatoire. Cette comparaison sert de métrique
d’évaluation des placements des différentes méthodes proposées. La création de cette
métrique est due au fait de l’absence d’heuristiques dans la littérature avec lesquelles
nous pouvons nous comparer au moment de la rédaction de ce manuscrit.

Afin de résoudre ce problème, deux algorithmes de placement de réseaux de tâches
de grande taille sur des architectures clusterisées de processeurs de type many-coeurs
ont été développés. Ils s’appliquent dans des cas où les poids des tâches et des arêtes
sont unitaires. Le premier algorithme, nommé Task-wise Placement, place les tâches
une par une en se servant d’une notion d’affinité entre les tâches. Le second, intitulé
Subgraph-wise Placement, rassemble les tâches en groupes puis place les groupes de
tâches sur les processeurs en se servant d’une relation d’affinité entre les groupes et les
tâches déjà affectées. Ces algorithmes ont été testés sur des graphes, représentant des
applications possédant des topologies de types grilles ou de réseaux de portes logiques.
Les résultats des placements sont comparés avec un algorithme de placement, présent
dans la littérature, qui place des graphes de tailles modérées et ce à l’aide de la métrique
définie précédemment.

Les cas d’application des algorithmes de placement sont ensuite orientés vers des
graphes dans lesquels les poids des tâches et des arêtes sont variables, similairement aux
valeurs qu’on peut retrouver dans des cas industriels. Une heuristique de construction
progressive basée sur la théorie des jeux a été développée. Cet algorithme, nommé Regret
Based Approach, place les tâches une par une. Le coût de placement de chaque tâche
en fonction des autres tâches déjà placées est calculé. La phase de sélection de la tâche
se base sur une notion de regret présente dans la théorie des jeux. La tâche qu’on
regrettera le plus de ne pas avoir placée est déterminée et placée en priorité. Afin de
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vérifier la robustesse de l’algorithme, différents types de graphes de tâches (grilles, logic
gate networks, series-parallèles, aléatoires, matrices creuses) de tailles variables ont été
générés. Les poids des tâches et des arêtes ont été générés aléatoirement en utilisant
une loi bimodale paramétrée de manière à obtenir des valeurs similaires à celles des
applications industrielles. Les résultats de l’algorithme ont également été comparés avec
l’algorithme Task-Wise Placement, qui a été spécialement adapté pour les valeurs non
unitaires. Les résultats sont également évalués en utilisant la métrique de placement
aléatoire.



Abstract

This Ph.D thesis is devoted to the study of the mapping problem related to massively
parallel embedded architectures. This problem arises from industrial needs like energy
savings, performance demands for synchronous dataflow applications. This problem has
to be solved considering three criteria: heuristics should be able to deal with applications
with various sizes, they must meet the constraints of capacities of processors and they
have to take into account the target architecture topologies. In this thesis, tasks are
organized in communication networks, modeled as graphs.

In order to determine a way of evaluating the efficiency of the developed heuristics,
mappings, obtained by the heuristics, are compared to a random mapping. This compar-
ison is used as an evaluation metric throughout this thesis. The existence of this metric
is motivated by the fact that no comparative heuristics can be found in the literature at
the time of writing of this thesis.

In order to address this problem, two heuristics are proposed. They are able to solve
a dataflow process network mapping problem, where a network of communicating tasks
is placed into a set of processors with limited resource capacities, while minimizing the
overall communication bandwidth between processors. They are applied to task graphs
where weights of tasks and edges are unitary set. The first heuristic, denoted as Task-
wise Placement, places tasks one after another using a notion of task affinities. The
second algorithm, named Subgraph-wise Placement, gathers tasks in small groups then
place the different groups on processors using a notion of affinities between groups and
processors. These algorithms are tested on tasks graphs with grid or logic gates network
topologies. Obtained results are then compared to an algorithm present in the literature.
This algorithm maps task graphs with moderated size on massively parallel architectures.
In addition, the random based mapping metric is used in order to evaluate results of both
heuristics.

Then, in a will to address problems that can be found in industrial cases, application
cases are widen to tasks graphs with tasks and edges weights values similar to those that
can be found in the industry. A progressive construction heuristic named Regret Based
Approach, based on game theory, is proposed. This heuristic maps tasks one after an-
other. The costs of mapping tasks according to already mapped tasks are computed. The
process of task selection is based on a notion of regret, present in game theory. The task
with the highest value of regret for not placing it, is pointed out and is placed in priority.
In order to check the strength of the algorithm, many types of task graphs (grids, logic
gates networks, series-parallel, random, sparse matrices) with various size are generated.
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Tasks and edges weights are randomly chosen using a bimodal law parameterized in order
to have similar values than industrial applications. Obtained results are compared to the
Task Wise placement, especially adapted for non-unitary values. Moreover, results are
evaluated using the metric defined above.



Résumé Français

Contexte et modélisation

Il existe actuellement un grand nombre d’applications parallèles développées pour répondre
aux problèmatiques des domaines à la fois du traitement de signal et du multimédia.
Ces applications ont différentes propriétés et nous n’en citerons que deux: d’une part,
les niveaux de parallélisme mis en place pour exploiter au mieux les architectures sur
lesquelles elles doivent s’executer et d’autre part l’espace mémoire nécéssaire à leur
exécution.

Les travaux qui ont mené à cette thèse portent sur l’exécution de ces applications
sur un type d’architecture bien spécifique: les architectures embarquées massivement
multicœurs. Ce type d’architectures peuvent se définir comme un ensemble de processeurs
pour chacun desquels est associé un cache. Les processeurs sont connectés à une mémoire
partagée. Cet ensemble formant un nœud de calcul. L’architecture est donc composée de
plusieurs nœuds de calcul reliés soit sous forme de réseau tore, soit sous forme de grille.
Plusieurs autres topologies existent, mais cette thèse ne traitera que de l’architecture en
tore. On peut citer, comme exemple de cette dernière, la puce MPPA de Kalray qui
contient 16 cœurs. Chacun de ces cœurs regroupent 16 processeurs et sont regroupés
entre eux par un réseau tore.

Ce type d’architecture massivement manycœurs est spécifique à la programmation
parallèle. Leur exploitation est difficile, malgré toutes les potentialités qu’elles offrent.
En effet, il est nécessaire d’optimiser la communication inter-nœuds, de garantir l’absence
d’inter-blocages et de gérer efficacement les accès concurrents pour en garantir une
meilleure utilisation. En outre, l’aspect embarqué de ces architectures rajoute de la com-
plexité à leur pratique : les ressources sont limitées par la mémoire et la bande passante
de l’architecture cible.

Une solution proposée par le CEA-LIST est l’élaboration d’un langage de program-
mation ΣC avec une châıne de compilation associée. Son modèle est celui de la program-
mation dataflow cyclo-statique. Dans la programmation data-flow, une application est
composée de plusieurs ensembles de tâches parallèles communiquant entre elles par des
canaux de communication de données de type FIFO. La synchronisation est effectuée
par les données. Dans la programmation dataflow cyclo-statique, le graphe de tâches
est défini au moment de la compilation de l’application et demeure inchangé pendant
son exécution. La quantité de données produites et consommées est connue et chaque
tâche peut, de manière cyclique, s’exécuter avec suffisamment de données sur ses ports
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d’entrées et produire des données sur ses ports de sorties.

Dans la châıne de compilation associée se retrouvent quatre grandes parties : la
génération du code, l’instanciation du parallélisme, l’allocation des ressources et la génération
de l’exécutable. L’attention de ces travaux se porte sur l’allocation des ressources et plus
précisément sur le partitionnement et le placement du graphe de tâches sur l’architecture
cible. Les applications actuelles présentent des niveaux de parallélisme de plus en plus
importants. Elles sont modélisées par des graphes de tâches statiques de grande taille,
sont exécutées sur des architectures massivement parallèles et elles doivent tenir compte
des contraintes de capacité des processeurs. Quant au problème du placement, au mo-
ment de l’écriture de cette thèse, l’heuristique de placement utilisée dans ΣC ne parvient
pas à trouver une solution dans un temps acceptable lorsque le nombre de tâches dépasse
2000. L’objectif de cette thèse est de développer une heuristique capable de surmonter
cette limite, de placer les graphes sur des architectures de taille supérieure à 256 nœuds,
tout en respectant les contraintes de capacités.

Le problème du placement associé se modélise de la manière suivante :
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∑

n∈N

xtn = 1 ∀t ∈ T, (1)

∑

t∈T

wtrxtn ≤ Cr ∀n ∈ N, r ∈ R, (2)

xtn ∈ {0, 1} ∀t ∈ T, n ∈ N.

avec comme paramètres Cnr la capacité d’un nœud n ∈ N pour une ressource r ∈ R,
wtr la quantité de ressource r requis par une tâche t ∈ T . Comme variable de décision,
xtn = 1 si la tâche t est placée sur le nœud n.

Etat de l’art

L’état de l’art peut se résumer part le tableau 1. Les solveurs parallèles SCOTCH et
Métis sont capables de placer des graphes de tâches allant jusqu’à un milliard de sommets.
Cependant, seul SCOTCH tient compte de la topologie cible, et aucun des deux n’est
capable de résoudre le problème du placement en respectant les contraintes de capacité.

D’autres approches développées par le CEA-List pour la châıne de compilation ΣC
prennent en compte les contraintes de capacité et la topologie de l’architecture cible mais
ne sont pas capables de passer à l’échelle au delà de 2 000 tâches.

Cette étude montre qu’il existe un besoin de méthodes de placement qui prennent
en compte la topologie et les contraintes de capacité de l’architecture cible et qui sont
capables de placer des graphes de tâches dont le nombre varie entre quelques centaines
et quelques milliers de sommets.
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Nom Contraintes # de tâches Topologie

(PT-)SCOTCH - Pellegrini et al. Load Balancing > 109 Yes
(Par)Metis - Karypis, Kumar et al. Load Balancing > 109 No

ΣC toolchain Capacité < 2000 Yes
Partitioning & Placing (GRASP + SA)
Sirdey et al.
ΣC toolchain Capacité < 2000 Yes
Parallel Simulated Annealing
Galea et al.

Table 1: Etat de l’art résumé. Les données en vert correspondent aux caractérisques
nécessaires pour la résolution du problème

Les contributions de la thèse

Les contributions de la thèse se résument en trois aspects: la mise en place d’une métrique
d’évaluation du placement des graphes de tâches de grande taille, des méthodes de place-
ment de graphes de tâches unitaires (les poids des tâches et des arêtes sont fixés à 1) de
grande taille et des méthodes de placement de graphes de tâches non-unitaires de grande
taille.

Une métrique d’évaluation de placement

En recherche opérationnelle, afin d’évaluer la qualité d’une solution obtenue à l’aide
d’une heuristique, on compare généralement cette solution à l’optimal ou à une borne
inférieure (s’il s’agit d’un problème de minimisation). Dans le cadre de cette thèse, la
borne de comparaison est la valeur minimale de placement. Toutefois, au vu de la taille
importante des instances, cette valeur ne peut être connue et le problème de trouver des
bornes de qualité suffisante et supportant l’échelle du nombre de tâches reste ouvert.

Afin de définir une métrique permettant d’évaluer la qualité du placement, on s’est
inspiré de l’approche différentielle de Demange et Paschos [41]. Ces auteurs tiennent
compte à la fois de l’optimal et de la pire solution pour définir un rapport d’approximation,
et tentent de s’éloigner le plus possible de la pire solution. La considération de ces deux
extrema permet de normaliser l’évaluation de la qualité du problème de RO associé.
Néanmoins, pour les problèmes de grande taille, la définition de ces deux extrema est
impossible pour le moment.

Des alternatives ont été considérées, alternatives pouvant être appliquées sur des in-
stances de grande taille et qui permettent de garantir l’objectivité de la mesure de qualité.
L’idée a ensuite émergé d’utiliser une statistique sur les placements aléatoires. Les tâches
sont placées au hasard sans biais algorithmique et le calcul d’une moyenne sur plusieurs
tirages permet d’obtenir une référence stable qui ne représente ni l’optimum ni le pire
des cas mais représente en quelque sorte un investissement nul en matière d’intelligence
algorithmique.
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Cette référence a permis de définir une métrique d’évaluation de la qualité des place-
ments effectués par les heuristiques développées dans ces travaux. Cette évaluation
dépend donc de l’importance de la distance de la solution par rapport à la valeur donnée
par la statistique obtenue.

Placement de graphe de tâches unitaires de grande

taille

Une première approche gloutonne nommée Task-Wise Placement (TWP) a été développée.
Cette méthode utilise une notion d’affinité de distance afin de déterminer à la fois la tâche
à placer en priorité et le nœud sur lequel cette tâche doit être affectée. Les tâches non en-
core affectées sont stockées dans un espace d’attente. Ce processus est répété de manière
itérative jusqu’à épuisement du stock de tâches. L’affinité de distance mesure l’intérêt
de placer la tache t sur un nœud n vis à vis des tâches déjà placées. Lorsqu’un nœud
est saturé, une autre méthode de placement est utilisée : les nœuds non saturés dans le
voisinage direct du nœud sont sélectionnés. Un parcours en largeur commençant avec la
première tâche sélectionnée par l’algorithme permet de déterminer un ordre de sélection
des tâches. Ainsi, seules les tâches non affectées sont considérées et un nombre équivalent
au nombre de nœuds non saturés est sélectionné. Les tâches sont ensuite placées sur les
nœuds leur correspondant.

Une deuxième approche gloutonne intitulée Subgraph-Wise Placement (SWP) est une
méthode de placement à deux phases. Un sous-graphe est déterminé à partir du sommet
qui a le moins de voisins puis est construit grâce à un algorithme de parcours en largeur.
Sa taille dépend de la capacité maximale restante sur les nœuds multipliée par un facteur
1
2
. Un calcul d’affinités entre le sous-graphe et les nœuds contenant des tâches est alors

effectué et permet de placer le sous-ensemble de tâches sur le nœud avec lequel il a le
plus d’affinités.

Les instances utilisées sont des modélisations de grilles ou de réseaux de portes
logiques. Les architectures cibles sur lesquelles les instances doivent être utilisées sont
des tores carrés de longueur de lien égale à 1. La taille des instances varie de quelques
centaines à plusieurs centaines de milliers de sommets.

Les deux approches sont ensuite comparées à l’approche utilisée dans la châıne de
compilation ΣC. Les approches développées dans la thèse sont capables de placer des
grilles sur des architectures assez facilement et avec des temps d’exécution globalement
plus rapides que ceux de ΣC. Sur des réseaux de porte logique, TWP est jusqu’à soixante
fois plus rapide que ΣC avec une solution de meilleure qualité. En revanche, malgré le
fait que SWP ne soit pas capable de fournir un placement de meilleure qualité que ΣC,
cette approche est plus rapide que l’algorithme de comparaison à une échelle de 10i, i
variant en fonction de la taille de l’instance.
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Placement de graphe de tâches non-unitaires de grande

taille

Les heuristiques développées précédemment ne sont pas aussi performantes sur des cas
non-unitaires, c’est à dire des instances dont les poids des tâches et des arêtes diffèrent
de 1. Une nouvelle approche gloutonne a donc été mise au point. Il s’agit d’un placement
à une phase qui adapte une notion de regret inspirée de la théorie des jeux et l’applique
lors de l’étape de la sélection de la tâche à placer. Au lieu de calculer les affinités des
tâches entre elles, le calcul sera effectué en déterminant le coût du placement de la tâche
t par rapport à tous les nœuds disponibles. Ensuite, pour chaque tâche présente dans
l’espace d’attente, les coûts sont triés par ordre croissant. On calcule ensuite la différence
de coût de placement sur les nœuds pour chaque tâche et de manière itérative en utilisant
l’approche de Kilby[104]. Ce calcul de différence correspond au regret. La tâche ayant le
regret le plus fort sera ensuite placée prioritairement sur le nœud de coût le plus faible.

Pour vérifier la robustesse de ces travaux, un panel plus complet d’instances a été
constitué. Les grilles et les réseaux de portes logiques, ainsi que des instances issues
du Matric Market de Walshaw, des graphes aléatoires et des graphes de séries parallèles
seront utilisés. Ces derniers sont très proches des graphes de type dataflow mais s’en
différencient par la présence de liens entre des nœuds non consécutifs. Pour chaque
type d’instance, 30 graphes de poids de tâches distincts sont générés. La moyenne de
la valeur du placement sur ces 30 graphes distincts est ensuite calculée afin d’éviter les
cas particuliers. Le nombre de nœuds varie de 16 à 1024, et leur capacité totale dans
le système est fixée à 105% de la somme totale du poids des tâches. Trois ordres de
grandeur sont utilisés pour les instances : 10 000, 200 000 et 1 000 000 de sommets.
L’heuristique fournit les meilleurs résultats pour des instances de type séries-parallèles,
indépendamment du nombre de sommets. Les capacités de l’heuristique ont ensuite été
comparées à une version non-unitaire de TWP avec un ordre de grandeur de 10 000
sommets et un nombre de nœuds variables. Il en résulte que l’approche par le regret
produit une qualité de placement jusqu’à 5 fois meilleure que celle de TWP et jusqu’à 10
fois plus rapide.

Pour exploiter la variabilité dans l’espace des solutions possibles, une heuristique
semi-gloutonne proposée par Hart et Shogan [78] a été utilisée. Cette méthode a généré
plusieurs solutions issues d’une procédure aléatoire. La construction de ces solutions
peut s’effectuer en parallèle en modifiant les caractéristiques de l’aléatoire. Ce principe
a été appliqué à l’heuristique développée dans ces travaux, et un choix aléatoire est
effectué pour sélectionner les tâches à placer lorsqu’il existe plusieurs valeurs de regret
égales. 30 solutions sont construites en parallèle, desquels on tire la meilleure valeur de
placement ainsi que le pire temps d’exécution. Les résultats de cette approche indiquent
que, dans la quasi-totalité des cas, il est possible d’améliorer la qualité de la solution
au détriment des temps d’exécution qui demeurent acceptables. Il est aussi apparu qu’il
existe une corrélation entre la qualité de la solution et son temps d’exécution, dans le
sens où moins l’heuristique met de temps à générer la solution, meilleure celle-ci est. Une
table de probabilité cumulée d’obtention de la meilleure solution parmi les 10 premiers
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lancements a été construite, table qui montre qu’en fonction du taux de dégradation de
qualité accepté diminue aussi le nombre de solution requis.

Conclusion et perspectives

Cette thèse présente plusieurs méthodes de placement adaptées pour les architectures
massivement multicœurs, ainsi qu’une métrique d’évaluation de la qualité de placement
pour les instances de grande taille.

Il est possible de généraliser les méthodes de placement proposées ici sur des architec-
tures hétérogènes ou, dans un autre contexte, de les paralléliser pour placer des graphes
de plus grande taille dans des temps humainement acceptables.

De plus, l’élaboration d’une méthode de raffinement pourrait améliorer la qualité de la
production et également permettre d’utiliser l’heuristique semi-gloutonne dans un cadre
d’optimisation plus poussée des solutions.

Enfin, la métrique d’évaluation pourrait être généralisée sur d’autres variantes du
problème de placement, ou sur des problématiques dont les instances ont le même ordre
de grandeur que ceux traités dans les travaux ici présentés.



Introduction

Computers have become more and more powerful through the last decades and this
trend is not likely to stop in the near future. Despite of all these advances, researchers
are still looking for solutions to combinatorial problems. The word “combinatorial” is
often synonym with computational difficulty. Combinatorics corresponds to the study
of several approaches able to determine and manipulate many configurations of discrete-
state events that constitute a combinatorial object. The configuration depends on the
combinatorial problem to solve. Combinatorial algorithms can be defined as techniques
for the manipulation of combinatorial objects such as permutations, arrangements or
combinations. The goal of such algorithms is to find patterns which provide acceptable
solutions depending on multiple constraints.

As an example of combinatorial complexity, we will use Terquem’s dominoes problem:
dominoes is a Chinese game played with 28 rectangular tiles with a line dividing its face
into two square ends. Each end is marked with a number of spots or pips which varies
from 0 to 6. Each tile corresponds to one unique double combination of tile numbers.
The traditional basic game variant is the blocking game. In this variant, all 28 tiles are
shuffled face down. Each player picks up 7 tiles amongst the 28. One player starts the
game by placing one tile down. The placed tile will serves as starting domino. If the
second player possesses a tile with the same end value, he places this tile at this end. The
game ends when one of the players has no more tiles. The most common dominoes game
variant consists in the double-n form where n = 6 whereas several domino games exist
with a maximum tile end value n ∈ {6, 9, 12, 15, 18}. The higher the number, the more
the game becomes complicated. In 1847, Orly Terquem stated the following problem: for
any general value of n, is it possible to take the complete set of dominoes and finish the
game without any dominoes left on the table? In order to solve this problem, dominoes
are modeled by a graph. Vertices are labeled from 0 to n. Each domino corresponds to
an edge. A tile with i pipes on one end and j pipes on the other end will be represented
by edge (i, j). Moreover, some of the tiles have the same number of pipes. So all vertices

i have a loop (i, i). The number of edges including loops is (n+1)(n+2)
2

, making the graph
complete. In order to solve the problem, a Eulerian cycle must be found. Terquem then
stated a new problem which appeared to be combinatorial: how many different cycles
exist when n = 6? A solution has been proposed by a work of M. Reiss in Nouvelles
Annales Mathématiques(1971) confirmed by another approach, much simpler, proposed
by G. Tarry in 1886: the number of possible configurations is 129, 976, 320. However,
these approaches do not take into account tiles with the same end values. Adding these
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Figure 1: Domino circle with double 4 form.

tiles adds some complexity because it exists 37 ways to insert the seven missing doubles
into a cycle of 2-combination. This means, it exists 284, 258, 211, 840 possible ways to
use the complete set of 28 dominoes and finish the game with no tile left! Starting
from a problem dealing with a small number of elements, it occurs that the possible
solution space contains several billions of elements. This example illustrates the fact that
combinatorial problems are often associated with large numbers. Now that we described
the nature of combinatorics, we will go back to the 2010’s.

Nowadays, many applications in the industrial world imply combinatorial subprob-
lems. The resource allocation, the traveling salesman or the knapsack problems are
classical combinatorial problems that can be found in many applications. In “the Art of
Computer Programming” [108], Knuth proposed a methodology which allows to identify
possible solutions to these new combinatorial problems. It consists in five basic types of
questions which arise when combinatorial problems are studied:

1. Existence: Is there any arrangement X that conforms to the pattern?

2. Construction: If so, can such an X be found quickly?

3. Enumeration: How many different arrangements X exist?

4. Generation: Can all arrangements X1, X2, .... be visited systematically?
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Figure 2: A dataflow process network graph example of a motion detection application.

5. Optimization: Which arrangements maximize or minimize f(X), given an objective
function f .

The limits for combinatorial problems are either the required computational time
which is not humanly acceptable or overflowing memory size that cannot been dealt by
hardware. This is why, despite of the fact that heuristics do not lead to the optimal
solution, the obtained values might be the best we can get within those limits. The
main question is: how can we obtain an optimal solution within acceptable time or/and
without overflowing the memory size for this kind of problems? By the time of writing
this dissertation, no one is able to provide an answer.

Limits are often set by hardware. Until the 2000 decade, Moore’s Law was a good in-
dicator in the prediction of the performance of new microprocessors. For each new genera-
tion of hardware, new optimization challenges also appear for performance enhancement.
With the end of the frequency version of Moore’s law, new clusterized embedded parallel
microprocessor architectures, known as manycores, are currently emerging. New chal-
lenges consist in applying combinatorial optimization techniques to problems in software
compilation of applications, like in signal processing, image processing or multimedia,
on these massively parallel architectures. Such applications can be represented under
the static dataflow parallel programming model, in which one expresses computation-
intensive applications as networks of concurrent processes (also called agents or actors)
interacting through (and only through) unidirectional FIFO channels. They provide
strong guarantee of determinism, absence of deadlocks and execution in bounded memory.
The main difficulty in the development of this kind of applications for those architectures
consists in handling resource limitations, a high exploitation difficulty of massive paral-
lelism and global efficiency. On top of more traditional compilation aspects, compiling
a dataflow program in order to achieve a high level of dependability and performance
on such complex processor architectures involves solving a number of difficult, large-size
discrete optimization problems among which graph partitioning, quadratic assignment
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Figure 3: Clusterized parallel microprocessor architecture.

and (constrained) multi-flow problems are worth mentioning.

Our applicative work focuses on the problem of mapping a dataflow process network
(DPN), illustrated by Figure 2, on a clusterized parallel microprocessor architecture com-
posed of a number of nodes, each of these node being a small symmetric multiprocessor
system (SMP), interconnected by an asynchronous packet network, as shown in Figure 3.
A DPN is modeled by a graph where the vertices are the tasks to be placed, and the
edges represent communication channels between tasks. Vertices are weighted with one
or more quantities which correspond to processor resources consumption and the edges
are weighted with an inter-task communication outflow value. The aim of our problem is
to maximize inter-task communication inside SMPs while minimizing inter-node commu-
nication under capacity constraints to be respected in terms of task resource occupation
on the SMPs.

In this dissertation, the mapping is processed under assignment and capacity con-
straints. A task cannot be placed on several processors and the total amount of all tasks
weights must not exceed the capacity of the node. In addition, heuristics able to solve
this problem must meet prerequisites. They must be scalable and take into account the
target topology. A variety of exact methods, heuristics and parallel heuristics exist to
map any type of task graphs on various architectures, but at the time of writing of this
thesis, there is no known approach which fits in the constraints and the requirements we
settled. For this reason we established the following greedy heuristics: Subgraph-Wise
Placement (SWP), Task-Wise Placement (TWP) and Regret Based Approach (RBA)
which are the main contributions of this thesis.

These heuristics are based on progressive construction. Subgraph-Wise Placement
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is a two phase mapping algorithm. In a first phase, a subgraph is generated using the
breadth-first traversal (BFT) algorithm. In order to generate this subgraph, there is a
need of a starting task. Size of subgraphs are computed before running BFT. Once the
sum of weights of all tasks part of the subgraph has reached this size, BFT is stopped.
This task corresponds to the one with the lowest number of neighbors. In the second
phase, the generated subgraph is mapped onto the adequate node using an affinity of set
property present in the literature.

Task-Wise Placement is a greedy, one-phase mapping algorithm. A starting task with
the highest sum of edge weights is determined. It is placed on an arbitrary chosen node.
All neighbors are pushed into a waiting set. For each task of the waiting set, a distance
affinity value, detailed in this work, is computed. The task with the highest affinity
value is selected and mapped onto the adequate node. The two cited algorithms provide
results on unitary weighted instances. However, they are not easy to adapt to non-unitary
weighted instances. During the task selection step, even if the metric employed improves
locally the mapping, no certitude about the global mapping quality can be made. The
task selection phase is in the uncertainty. In order to manage this uncertainty, Task-Wize
Placement is redesigned by using an approach from game theory. This adaption leads to
the design of Regret Based Approach. The initialization phase remains the same. The
major differences are in the task selection process. Rather than computing affinity values
for tasks in the waiting set, costs values, also defined in this work, are computed. In
addition, properties of the regret theory are used in the task selection process. It might
happen that mapping a task which seems to be interesting now can lead to a disastrous
configuration of the mapping afterwards. In order to mitigate this phenomenon, a regret-
based metric is defined. The task with the highest regret value is selected and mapped
onto the corresponding processor.

Independently of the algorithms, a new metric for the evaluation of heuristic quality is
presented. The contribution of this metric consists in the ability of evaluating mappings
quality of large task graphs depending of a random mapping modeled by Erdös-Rényi
random graph model.

We compare SWP and TWP to an heuristic denoted as Partitioning And Placing
(P&P) present in the literature, developed by CEA-List in previous research. Experi-
ments were made on various task graph topologies generated from the theoretical prop-
erty graphs (grids, random series parallel), or real world graphs (Logic Gate Networks,
or LGN). On grids, our heuristics provide better solution quality than P&P in less time
when the number of tasks is greater than 2000. On LGN, TWP provides better solution
quality when the number of tasks is higher than 20, 000. Concerning SWP, its run times
are several orders of magnitude faster than the P&P approach, while providing solutions
whose quality tends to get comparatively similar or better on the largest instances.

The Regret Based Approach heuristic is applied to tasks graphs with random task
weights. Indeed, it is currently very difficult to get large sized task graphs from the
current dataflow programming development environments, as today’s dataflow applica-
tions do not show a sufficient level of parallelism yet. Therefore, our methodology was to
generate graphs with strong similarities with the topology of typical dataflow programs.
In addition, in order to show that our method works better on typical dataflow program
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topologies, we compared our results with those obtained using different graph topologies
like grids, LGN, series-parallel, random graphs, sparse matrices from the Matrix Mar-
ket collection. RBA provides the best results on task graphs architectures which shows
the most degree of similarity to DPN. Moreover, it provides lower run times and better
solution quality than an adapted version of TWP on heterogeneous instances.

This manuscript is organized as follows:

Chapter 1 introduces the context of this work. A brief history of Moore’s law and
its limitation is made. These limits will lead to the emergence of parallel embedded
systems which will be introduced. We will focus on the particular features of massively
parallel embedded systems and its associated optimization challenges. The main hard-
ware components of a manycore architecture as well as the difficulties in the development
of applications will be detailed. In order to deal with these difficulties, the dataflow
programming model will be presented and also the ΣC language designed by CEA-List.
This language uses a dedicated compilation toolchain. The mapping process is part of
this compilation process. The mapping problem we want to solve is also introduced and
the different requirements that heuristics have to fulfill are presented. Another important
contribution of this chapter consists in the establishment of a new quality metric based
on random mapping. This metric is able to evaluate the quality of a mapping of very
large graphs. A reference metric was necessary because at the time of writing of this
dissertation, we did not find any comparative algorithm in the literature which met the
same requirements than our mapping problem.

Chapter 2 is dedicated to the state of the art of the mapping problem. It starts
by detailing the importance of having a good mapping on target architectures. The
mapping approach can be divided in three part: the partitioning problem, which consists
in splitting the task graph in partitions corresponding to the set of nodes. The assignment
problem consists in determining the best way to place subsets of tasks on nodes. Finally
the mapping problem which can be split in two types of mapping: first, a two phase
approach consisting in partitioning and assigning the task graphs. second, a one-phase
approach which directly places tasks one after another. In addition, solvers able to deal
with the partitioning and mapping problems can also be found. These solvers are able to
provide good solutions and are mostly scalable depending on the size of instances. The
focus is laid on some of the most famous among these solvers. A summary in which all
elements of the literature, which are cited in this state of the art, is then made. All articles
are considered in terms of scalability, topology awareness of the target architecture and
constraints that are enforced in it. This summary allows us to locate our work in the
global mapping literature.

Chapter 3 presents two scalable capacity constrained mapping heuristic methods able
to map unitary weighted tasks graphs on specific target architectures. Before that, a
brief review of graph theory elements, which are used in this chapter, is made. Then, the
two phase mapping algorithm is presented. Firstly the breadth-first traversal algorithm
is used in order to generate a limited-size subgraph. A subgraph to node affinity value is
computed and a node to node affinity value too. Both values are compared. If the node
to node affinity is lower, than corresponding nodes are merged, otherwise the subgraph is
mapped onto the suitable node. The second heuristic is a one-phase process. Each task
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is placed one after another. A relation of affinity, which will be explained in the chapter,
is used in order to compute the current affinity of each visible unassigned task towards
the already mapped tasks. The task with the highest affinity is mapped. Experiments
are performed on grids and logic gates network and results are compared to Partitioning
And Placing method and the random mapping obtained by the metric defined at the end
of chapter 1.

Chapter 4 shows a scalable capacity constrained mapping heuristic able to map non-
unitary weighted tasks graphs on specific target architectures. First, the backgrounds of
game theory are introduced. The interest is especially laid on behavioral game and deci-
sion theory for game theory. Then, regret theory is presented. Different types of regrets
are described and the use of this theory in combinatorial problems like scheduling or QAPs
are detailed. Once the description is performed, the heuristic is explained. It is strongly
inspired by the one-phase heuristic proposed in the previous chapter. Regret values are
computed during the task selection process using a notion of costs instead of affinities
then, tasks with the highest value of regret are iteratively selected and mapped. Once the
RBA heuristic has been established, a Greedy Randomized Adaptive Search Procedure
(GRASP) is applied. The aim is to run the algorithm in parallel and to determine how
many solution generations are required in order to get a good solution. Experiments are
performed on different graph topologies and the metric defined in chapter 1 is used in or-
der to evaluate the performance of the heuristic. In addition to this metric, a comparison
is performed with an adapted TWP version which provides comparative results. For the
GRASP procedure, we noticed that the number of solutions which have to be generated
and the time required to obtain the solutions depends on solution quality, that is to say,
it increases with solution quality.

The conclusion summarizes the thesis and presents several perspectives leading to
new improvements allowing to handle larger task graphs. It also shows applications of
the aforementioned heuristics on other type of architectures.
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Chapter 1

Context and Presentation of the
Mapping Model
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1.1 Introduction

Nowadays, Embedded Systems (ES) invade increasingly our daily technologies, taking
a larger part in our everyday lives. They can be found in critical applications like au-
tomotive, aviation, medical life support systems. The environment, in which they are
embedded, is constantly evolving, mostly with the emergence of new architectures, new
types of processors, that is to say new technologies. As a consequence, ES have to be
adapted to these environmental changes and have to be constantly verified because of
their critical nature that can be expressed by a loss of properties or damages that may
occur to ES on people’s lives! Moreover, there is an increasing need for computing power
and the guarantee of a high level of reliability. This rapid evolution of the whole system,
where ES are integrated, also complicates lifetime of efficient solutions, making them
quickly obsolete. This precarious aspect forces both research and industries to improve
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and to evolve in order to be able to address these problems. One of the latest proposed
solution able to gain performance consists in the massive use of parallelism in embedded
systems. This solution will last as long as limits of parallel architecture has not been
reached. The last decade have seen the emergence of many tools which facilitates paral-
lel programming in terms of parallel models or programing languages which are able to
exploit hardware parallelism.

In this chapter, the context which surrounds this work is first detailed. Then, the
dataflow programming model, on which this dissertation is based, is introduced. The
intention is to establish the necessary background and terminology for the following
chapters. It begins with a brief history of Moore’s law and with the emergence of em-
bedded systems. Parallel architectures are also introduced as well as a discussion about
programming models that can be used for an efficient exploitation of the characteristics
of applications. Then, a parallel programming language and its associated compilation
process, developed by CEA-List, based on one of the aforementioned explained program-
ing models is presented. A focus will be set on one step of the compilation process. This
step consists in the mapping of the generated tasks graph during compilation towards
the target architecture where the application will eventually be executed. Then, the as-
sociated dataflow mapping problem, which is the core of this thesis, is detailed. Last, in
order to compare the solution quality of all developed heuristics in this thesis, a metric is
introduced. The establishment of this metric is inspired by Demange and Paschos, who
provided a differential approximation indicating how far the value of a solution is from
the worst possible value. However, instead of using the worst possible value, results of the
heuristics will be compared to average value furnished by a random mapping. This is the
only approach which provides comparable results on unitary and non-unitary weighted
task graphs. At the end of this chapter, several elements of graph theory, used for the
design of the heuristics developed in this thesis, are defined.

1.2 Moore’s law

The remarkable evolution of semiconductor technology from single transistor to multi-
billion-transistor microprocessors and memory chips is an amazing story. The invention
of the first planar transistor in 1959 led to the development of integrated circuits (IC).
1964 saw the apparition of ICs with 32 components composed of transistors, resistors
and capacitors. The year after, ICs contained 64 components. Gordon E. Moore pointed
out and provided an interesting definition of this phenomenon. Starting from a simple
observation, Moore made an extrapolation, illustrated by Figure 1.1, later denoted as
Moore’s law, which is still approximatively valid today:

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over the long term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will
not remain constant for at least 10 years. ”
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Figure 1.1: Moore’s 1965 prediction of the doubling of the number of minimum cost
component on chip each year, extrapolated to 1975.

This extrapolation has been made for the Electronics magazine issue of April 1965 [136].
As a matter of fact, ten years later, Intel produced an IC with 65, 000 components, making
Moore’s assumption true.

For half a century, the exponential growth asserted by this law proved to be true.
Several studies tried to provide some explanations to justify this curious phenomenon
[165], [125]. It is interesting to see how transistors became lighter, faster, able to consume
less power and more reliable. Moreover, transistor costs also decreased, making them very
attractive to be used in many electronic systems and for various applications.

The first challenging limit for Moore’s law comes from miniaturization during the last
decade. To put things differently, transistors are expected to be smaller, faster and less
power consuming. From the hardware perspective, those characteristics strongly relied on
voltage scaling, which is strongly correlated to the size of transistors. However, a physical
limit appeared: thermal voltage fluctuations do not scale. In other words, voltage scaling
reached this limit and heat dissipation started to physically damage the processor and
other devices next to it. The loss of the ability to reduce voltage scaling led to a dilemma:
either processor consumption must be reduced or processor frequency must be increased.
Actually, none of these alternatives can be achieved anymore and the clock frequency
cannot be more cost-effectively increased.

Since the year 2000, the number of transistors in a CPU reached several tens of
millions. Nowadays, this order of magnitude reached the billion and is still increasing.
Moore’s law has evolved. It is not only focusing on the number of transistors per square
millimeter, but also on additional features including maximum frequency, power con-
sumption reduction and energy dissipation per mm2, as shown in figure 1.2. However,
while the number of cores increases, making the density of transistor higher, frequency
remains the same as well as voltage. Consequently, power density increases for every
semiconductor device starting from year 2010. Therefore, a new limit is reached: by
having too many transistor on a chip, it is not possible to use all of then simultaneously
or the device will either burn or melt. This phenomenon is known as dark silicon [39].

Since the maximum clock frequency has been reached for processors, manufacturers
had to find a way to increase processor performance. They designed chips with a higher
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Figure 1.2: Evolution during the last 35 years of the number of transistors, single thread
performance, frequency, typical power and number of cores. Image from C. Moore (orig-
inal data by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C.
Batten).

number of cores, denoted as multi/many cores, with lower clock frequency.

1.3 Embedded systems

Embedded systems are at the heart of many modern products. Every device that uses a
digital interface, like watches or phones, is an embedded system. They can be found in
many electronic devices or systems: vehicles, machine tools, cameras, consumer electron-
ics, office appliances, cellphones, GPS navigation, medical equipment, routers, aircraft
control systems.

In this section, embedded systems are first defined and then features of parallel em-
bedded systems are presented

1.3.1 What is an embedded system?

An embedded system (ES) is a dedicated computer system composed by a combination
of computer circuitry and software. It is a part of a complete device system.

Due to their low cost, ESs are massively produced. They share functionalities with
a large range of applications and are often required to provide real-time response in an
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order of magnitude of milliseconds or even microseconds. They are designed for several
functions like control, monitoring or communication, among other features. In order to
compute properly all those features, ESs require powerful general purpose processors.
They may be composed of single or multiple processing cores including micro-controllers,
field programmable gate arrays (FPGA), application specific integrated circuits (ASIC)
or gate arrays. In addition, other components that handle electric interfacing are also
integrated.

General-purpose computers aim at managing a large range of processing tasks given
by external devices such as keyboards, monitors, hard disk drives. In contrast, embedded
systems only perform a small number of well defined tasks. One of the consequences
consists in the increase of system robustness. One of the difficulties is that there is a
need to minimize costs, power consumption and of course maximizing performance. The
complexity of these optimization needs differs, depending on the number of processing
chips.

For example, computers have to handle peripheral devices and tasks are much com-
plex to compute. Due to the fact that ESs are designed to perform a tight range of tasks,
resource consumption is lower than with general-purpose computers. Embedded systems
generally integrate a micro-controller, for reasons of self-sufficiency and cost reduction.
Moreover, computing kernels and system tasks are stored in memory without using an op-
erating system (OS). A micro-controller is most of the time composed by slow processors,
small memories and interfaces for simple applications which contribute to lower power
consumption. This is the reason why the majority of produced microprocessors are used
in embedded systems instead of central processing units (CPUs) to control computers.

Despite of the fact that the entire application can be implemented as a single program,
some embedded systems include an operating system. The particularity of the integrated
OS is that it has been specially developed to be used with embedded systems. They
have limited storage, are designed to work in much less memory than desktop operating
systems and also work in real-time. They may be able to run an application which
contains its own I/O function and do not require a separate OS. VxWorks [166] is the
most widely used operating system for embedded systems, developed in the U.S and
Europe.

The performance demand of modern complex embedded applications has increased
substantially, such that it cannot be satisfied by simply increasing the frequency of a
single-core processor. Hence the need for multiple processors that can communicate and
provide increased parallelism.

1.3.2 Massively parallel embedded systems

Many embedded systems are designed to run on Systems-on-Chips (SoC). A SoC is an
integrated circuit which includes several components like a micro-controller or micropro-
cessor, memory blocks, peripherals, external interfaces, power management, among other
devices. All of these components are connected by an on-chip bus.

IC manufacturers want to answer the performance demands of their consumers. Rather
than increasing clock frequencies like in the last decades, one way to gain performance
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consists in increasing the number of transistors on a chip. Moreover, they started to put
multiple and independent processor cores on a single processor in 2005. These improve-
ment ideas led to the creation of multicore processors.

Each core of a multicore processor has a separate flow of control. They access to
the same memory. The fact of sharing the same memory adds some difficulty in core
exploitation because memory accesses of cores have to be synchronized and coordinated.
In order to deal with these new aspects, programmers need parallel libraries, compilers,
performance analyzers which help them to efficiently exploit this new multiprocessor
architecture. This is the reason why parallel programming methods and tools developed
for high-performance computing (HPC) such as multi-threading or OpenMP have been
adapted to multiprocessor architectures.

1.4 Manycore architectures

Konrad Zuse and later John Von Neumann developed the first architectures of a computer
where the processor is separated from the memory and only executes tasks sequentially
[153] [188]. One major drawback of this architecture is that program memory and data
memory cannot be accessed at the same time. As the speed of the processor increases,
the throughput of the bus between program memory and data memory became smaller
than the rate at which the CPU works. This leads to the von Neumann bottleneck,
highlighted by John Backus [10].

Programmers have to take into account this bottleneck, however, while new many-
core architectures are emerging, the bottleneck issue is reduced. In addition, these new
architectures introduce some new abilities to consider. One of these abilities consists
in dealing with several instructions and several data in parallel. Before analyzing these
architectures, we perform a historical look in order to understand how these architectures
appeared.

In the 70’s, NASA launched into orbit imaging sensors that generated data at rates
up to 1013 bits a day. The aim was to extract useful information by using a variety
of image processing tasks like geometric correction, image registration, correlation, etc.
So there was a need for a tool able to perform between 109 and 1010 operations per
second. In the 80’s, NASA Goddard Space Flight Center constructed the first massively
parallel computer. This system had to be able to compute thousands of tasks operating
simultaneously in order to process image at ultra high-speed by exploiting pixels of the
image at the same time. One of the first parallel architecture was born [13], [63] 1.

1.4.1 Parallel architectures

Parallel computers have been used for many years and many different architectures have
been proposed. In general, a parallel computer can be characterized as a collection of

1In fact, the first parallel architecture was Colossus Mark 2 [35]. This computer, designed during
WWII for decryption purposes, was unconventionally modern. It is a single instruction, multiple data
(SIMD) machine [196].
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processing elements than can communicate and cooperate to solve large problems faster.
These computers have several important characteristics to deal with. Some example are
the number and complexity of processing elements, the structure of the interconnection
network between processing elements, and also the work coordination among them. In
order to classify those important characteristics, Flynn proposed a taxonomy [56] which
characterizes parallel computers according to the global control and the resulting data
and control flows.

Flynn’s taxonomy

Flynn’s taxonomy splits all characteristics into two fields: Instructions and Data. For
each field, a distinction is performed depending whether instructions or data are single
or if they are processed in a multiple number of occurrences.

1. Single Instruction, Single Data (SISD) There is one processing element which
accesses a single program and data storage. At each step, it executes the instruction
with its associated data and stores the results back in the data storage unit. The
execution is totally sequential and correspond to the von Neumann definition of a
sequential computer.

2. Multiple Instruction, Single Data (MISD) There are multiple processing ele-
ments each of which has a dedicated memory. However, there is only one common
access to a single global data memory. Each processing element gets the same data
element and loads the instruction from their dedicated memory. Each instruction,
which might not be the same, are computed in parallel. Nowadays, it is hard to
find any working devices which runs using this architecture.

3. Single Instruction, Multiple Data (SIMD) There are several processing ele-
ments, each of which has an access to either shared or distributed data memory.
In contrast to MISD, the same instruction is synchronously computed in parallel
by all processing elements to different data elements. The best example is modern
graphic processing units (GPU).

4. Multiple Instruction, Multiple Data (MIMD) There are multiple process-
ing elements, each of which has a separate instruction and data access to a either
shared or distributed program and data memory. At each step, each processing
element loads a separate instruction and data from memory, applies the instruc-
tion and stores the result back in data memory. The processing elements work
asynchronously. One example is the Intel Xeon Phi processor.

These characteristics are summarized in table 1.1.

Parallel programming systems

Many parallel programming systems exist. The major differences consists in memory
policies and processor management. These spectrum of memory and processor structures
can be split into three parts as follows:
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Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data MISD MIMD

Table 1.1: Summary of Flynn’s taxonomy

Shared Memory Machine (SMM) Computation resources are shared physically by
all processors [85]. Memory is organized as a central resource for all processors. A node
is a large set of processors which materially share the same memory. In shared memory
systems, communication between cores is performed using shared variables in memory.
Each process reads and writes on the same memory address. It is simpler and faster,
but concurrent accesses of different processes can lead to unpredictable results. When
the number of processes is high and the same variable is accessed intensively, synchro-
nization operations can slow down the runtime and the risk of congestion increases. In
modern architectures, there is a limit in the number of processors which is related to
technology. Beyond this limit, no performance gain can be expected. However , Non
Uniform Memory Access (NUMA) architectures allows physically distributed processors
to be used following the principle of SMM. The maximum number of processors that can
be used may be increased without any risks of deterioration of performance.

Distributed Memory Machine (DMM) The processing elements are interconnected
by a bus. The memory is physically distributed on processors. A processor is strictly
encapsulated and accesses only its own code and local memory. In order to retrieve
resources from other processor’s local memory, it performs a message passing operation
through the bus channel which interconnect all processors [36]. Getting data from its
local memory is faster than using the message-passing architecture. One drawback of
this architecture is that performance is bounded by the communication channel when
resources which are not located in local memory are massively requested.

Hybrid Memory Machine (HMM) It is a system which exploits both types of mem-
ories for performance gain. In order to reduce risks of congestion, modern architectures
have to deal with a hardware limit on the number of processors. Data flows on com-
munication channel is DMM has to be reduced for performance gain. The idea is to
merge these two architectures and to propose a compromise between different drawbacks
of these machines. MIMD machines are running with this memory configuration [152]
because each processor runs its own program flow. It makes it harder to program but
increases flexibility.

1.4.2 Massively Parallel Processor Architectures (MPPA)

A manycore architecture is a hybrid memory machine which can be simply defined as
an integrated circuit composed of a massively parallel array of hundreds or thousands
processing cores like CPUs and RAM memories interconnected by a static network. A
node represents a cluster of processors which corresponds to a SMM. Each processor has
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Figure 1.3: Undirected 2-dimensional cyclic mesh. Each vertices correspond to a cluster
and each edge to a communication channel.

its own cache and is connected to a cluster-shared memory. The clusters are connected
to each other using the DMM logic through an interconnection network. This network
corresponds to a network on chip (NoC). In addition to this system, the NoC is also
connected to an external memory.

The strengths of such an architecture are based on several concepts. Data manipula-
tions by processors in the same clusters are efficient and fast due to the shared memory
features. The number of processors remains small but the size of available memory
is higher. For example, the network of clusters can be represented as an undirected 2-
dimensional torus as illustrated by Figure 1.3. In this thesis, we choose to select the mesh
topology because it is often used in DMM and it facilitates massive parallel computation
of matrices.

In this architecture, during the execution of the application, the ideal is to uniformly
distribute data across processors. This is why data location has to be carefully chosen
by the programmer. For applications which exhibit a large level of data parallelism like
image processing, images are decomposed into blocks of pixels. Neighboring pixels are
placed in adjacent blocks. These operations are easy to perform. Unfortunately, many
real world applications are not as simple as image processing operations. An efficient
distribution of data is required in order to optimize the performance of this architecture.
Most of the time, determining such an efficient distribution is difficult and, in addition to
data mapping techniques, routing techniques also have to be applied. Some advantages of
this architecture consist, depending on the application to run, in energy saving, latency
reduction or throughput increase. However, when the application is not well programmed,
it leads to a misuse of the number of cores, the memory or the bus system, provoking a
drastically important increase of the risk of bottlenecks. As a consequence, performance
might be deteriorated. One way to avoid this consists in having an efficient routing
algorithm able to manage inter-cluster communications. Communication in a NoC is
packet-based and routing algorithms are used in order to determine a path in the network
from each cluster to the others. The goal of the routing consists in determining the
shortest possible route in order to avoid congestions. In the path determination, network
contention and network congestions are important and well-known issues.
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Nowadays, manycores are used in high-performance embedded systems. As example
of massively parallel applications that can exploit this architecture, we can cite network
processing, medical imaging, image processing, video compression, streaming media ap-
plications among many others can be cited.

The Kalray MPPA-256 manycore is one example of existing massive parallel processor
architecture. It is a single chip manycore processor which integrates 16 SMP clusters with
16 cores and 4 I/O subsystems including a SMP quad-core which contains an on-chip
memory and a DDR controller and a network on chip. The technology behind this chip
has permitted control and flexibility on the voltage. This feature allows to process on the
chip, applications with low energy per operations and time predictability requirements.

1.5 SDF and CSDF dataflow programming models

Efficient computation on manycore architectures in an embedded system is a great chal-
lenge. Being able to program efficiently in parallel an application which runs on a mas-
sively parallel architecture is difficult. Attention must be payed to several features like
architecture or resource allocation. The hard part of the work of the programmer consists
in synchronizing efficiently all tasks in order to avoid delays or deadlocks. In order to
simplify this part, there is a need to find a way to model the application which allows
the developer to avoid all problems related to coordinating data. One accurate way to
model an application consists in using graph theory. That is to say, any program can be
split in several elements modeled by graphs.

Basically, a graph is a representation of a finite set of objects interconnected by links.
Objects are denoted as vertices (or tasks) and links as edges. A graph can be employed
as an abstract representation of a parallel program. A program can be split into two
activities: computation and communication. Computation can be defined as a program
which takes data as input and produces data as output. Tasks are usually executed in
sequential order. Communication corresponds to the relation and/or data dependence
between two tasks and is represented by the edges. The transformation of a program
into a graph is difficult and must obey to several set of rules. We will not present all
these rules but more details can be found in [134] or [50]. Focus will be set on how
program costs in terms of computation and communication are represented. Most of
the time, costs in programs refers to time measurement, that is to say, the duration
a computation or a communication takes during the execution of a program on specific
target architectures. This time cannot be negative and respectively corresponds to vertex
and edge weights. Time is not the only cost. Memory occupation, processor occupation,
energy cost, bandwidth among other types of resources can also be represented as program
costs. In the literature, a large number of graph theoretic models for parallel computation
can be found [134], [107] or [90].

Sinnen and Sousa’s taxonomy [173] provides an exhaustive recursive classification. It
is based on three main criteria: computation type, parallel architecture and algorithm.
In this classification, all models can be shared in three classes: dependency graphs, flow
graphs and task graphs. Of course, these types can be subdivided into more parts.
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In this work, the focus is laid on flow graphs. Among the flow graph, tasks correspond
to a sequential computation. The particularity of this type of graph lies in communication.
Time information is represented but also communication distance are employed. In flow
graph, one model presents features we are interested in: the Data-Driven Execution
Model (DDEM).

In DDEM, an edge corresponds to a communication between two nodes via an in-
termediate queue. Communication data are written by the source node of the edge and
are put into the queue from where they are read by the destination node. All data in
the queue are processed using a First-in First-out policy (FIFO). A node is enabled to
“fire” the execution if each input edge or channel contains data (or tokens) and each
output edges or channel has one space in the queue. One main characteristics of DDEM
consists in the fact that the flow of the data invokes the run of a node without need
for synchronization. In addition to that, communication between nodes are performed
asynchronously. DDEM provides a view of the data flow in space and time for hardware-
oriented parallelization. A derivative of this model turns out to be the Dataflow Process
Network.

Dataflow Process Networks (DPN) [113] are mostly used as an execution model of
many applications of the multimedia or signal processing family. They correspond to a
special case of Kahn Process Networks (KPN) [69]. A KPN is a deterministic general
purpose model for parallel programming. Each process only sees a sequence of data
values coming in the queue. The process has no visibility on other data which are in
the waiting queue. In a KPN, each process consists in repeating “firings” of a dataflow
“actor”. “Actors” of our DPN correspond to non-trivial computation like filtering, FFT,
join-fork operations. Those operations can be represented by tasks to perform and are
weighted with one or more quantities which correspond to their resource consumptions.
Directed edges are used to model data rates communicated between tasks. When an
actor is fired, a certain amount of data tokens are consumed on its input channel and a
number of result tokens are produced on the output channel.

This operation induces a form of synchronization. Several nodes can fire at the same
time if all of their requirements are met, making the model able to handle concurrency.
Many variants of dataflow models exist. Two majors dataflow models are the following:
Synchronous Dataflow (SDF) and Cyclo-Static Dataflow (CSDF).

SDF results of a work of Lee and Messerschmitt [114]. It is a restriction of KPN to
allow compile time scheduling and is illustrated by figure 1.4. The basic ideas are each
process reads and write a predefined number of tokens each time an actor fires. The
quantity of produced and consumed data on input and output channels remains constant
between two consecutive actor firings. SDF has no initialization phase and starts with
tokens which are already allocated in its associated buffers, generating delays which result
to avoid bottlenecks.

In the same way, CSDF has been created by Bilsen, Engles, Laiwereins and Peper-
straete [17]. It is an extension of SDF dataflow model able to describe applications with a
behavior that cyclically changes. For this model, it is assumed that the number of tokens
produced and consumed by an actor is known at compile time but c hanges periodically.
Figure 1.5 illustrates this behavior. In a more technical aspect, let n be the number of
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Figure 1.4: Synchronous Dataflow illustration.

Figure 1.5: Cyclo-Static Dataflow illustration.

times a task t1 is fired. x and y correspond to a fixed amount of tokens. Let P e
t1

be the
number of tokens sent on an edge e by task t1 and Qe

t2
the number of tokens received on

an edge e by a task t2. For an edge e, a task t1 produces xe
t1

(i), i ∈ [1;P e
t1

] tokens every
(n×P e

t1
+ i)th time it is called. The consumption behavior of task t2 is: yet2(i), i ∈ [1;Qe

t2
]

tokens every (n×Qe
t2

+ i)th time it is called.
In the following, the ΣC programming model and language, able to work on dataflow

programming model is presented. This language is based on process networks with process
behavior specifications.

1.6 ΣC programming language and compilation

The ΣC programming language has been designed by CEA-LIST [71]. This language is
based on the CSDF model. The main characteristics of this language consist in a large
expression ability able to deal with a huge scope of applications in data processing and
multimedia, a component based approach which will provide a way of representing of
complex applications, a natural massive parallelism expression, a smart use of resources
during compilation and a syntax as close as possible to that of the C language, in order
to facilitate programmers work.

The general philosophy consists in exploiting the dataflow parallelism and express it
easily so it could be adapted to the target system resources. Figure 1.6 is an example of
a ΣC motion detection application.

1.6.1 ΣC programming language

ΣC is a dataflow programming language designed for parallel programming of high perfor-
mance embedded manycore processors and computing grids. It is a process network-based
language which is able to express SDF and CSDF. Moreover, it is adapted for a large
spectrum of applications and is able to verify features like the absence of deadlocks or
memory bounded executions. It is related to StreamIt [183] and is designed as an exten-
sion of the C language. In this extension, tasks in the stream model, which correspond
to actors, are denoted as agents. In addition, a set of keywords have to be defined by the
programmer, as well as each production and consumption of tasks.
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Figure 1.6: A dataflow process network of a motion detection application to map on a
torus node architecture target.

An application is described as a static instantiation graph of interconnected tasks.
For each cycle, the amount of data which are produced and consumed by tasks remains
constant. Tasks are instances of agents and have a cyclic behavior with a variable amount
of data due to CSDF properties. For data distribution and synchronization, several
dedicated pre-defined agents are provided: Split, Join, Dup, Select, Merge and Sink.
More details about this language can be found in [6].

We present in Figure 1.6, an example of application which is the Laplacian computa-
tion of an image.

1.6.2 An Example ΣC Application: Laplacian of an Image

The Laplacian is a 2-dimensional isotropic measure of the second spatial derivative if
an image. In this image processing operation, input arrays consist in graylevel images.
The output array consists in another graylevel image. Laplacian computation highlights
zones of rapidly changing intensities of the processed pictures. This feature makes this
operation being mostly used for edge detection. The operation consists first in applying an
image a Gaussian smoothing filter in order to reduce imperfections. This filter computes
a 2D convolution operator in order to blur the image. Convolution is one of the image
processing basis operation.

The Laplacian operation simply consists in processing two unidimensional convolu-
tions on each row of an input image, resulting in two separate images, which are then
processed column-wise using a similar convolution on each image. The two resulting
images are summed together and this sum is the Laplacian of the input image. All
convolution operations on image lines are independent from each other, as well as the
subsequent operations on columns, enabling a high degree of parallelism.

In a more accurate way, the operation first compute the convolution operations on
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Figure 1.7: Dataflow process network for the Laplacian computation of an image.

lines:

L
(1)
i,j =

11
∑

k=1

Ii,j+k−1g
(1)
11−k+1 (1.1)

and

L
(2)
i,j =

11
∑

k=1

Ii,j+k−1g
(2)
11−k+1, (1.2)

where variable Ii,j denote the pixels of the input image, g(1) and g(2) are convolution
vectors of size 11. Then, the final image is processed by convolution operations on
columns of the two obtained intermediate images:

Ci,j =
11
∑

k=1

L
(1)
i+k−1,jg

(2)
11−k+1 +

11
∑

k=1

L
(2)
i+k−1,jg

(1)
11−k+1 . (1.3)

Figure 1.7 illustrates the associated dataflow process network of the Laplacian func-
tion. The following description of the figure starts from the left side to the right side of
the illustration.

Task R represents the task which deals with the input image. Its role consists in read-
ing the input image. Task S, next to R, is a split operation which calls the Split(W,H)

operator. This function splits the set of data obtained by task R into subsets of data of
size W (i.e, the number of lines in the image) and sends each subset on each H output
channels of S using a round-robin policy. On the next level, one can observe five L tasks,
which can be computed in parallel. The aim of these tasks is to perform the first mono-
dimensional convolution phase which applies both masks and generates two images using
equations 1.1 and 1.2. This is the reason for the presence of one input channel and two
output channels. The next phase consists in the use of 2 join(W,H) operations. Subsets
of data of size W received by the input channels are inserted, using again a round-robin
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policy to reconstruct full images. This leads to the creation of two intermediate images.
Next, the Split(1,W) operator are applied to both images resulting in the splitting of
the pictures into columns. The split operator sends on its W output channels the data
to be processed by the C tasks. These tasks will perform the convolution operation and
the summation on rows using equation 1.3. Task join(1,W) gets the data computed by
C and the resulting image is send to task W which will write down the new image.

This example illustrates how the programming language implement dataflow process
networks. However, additional features have to be taken into account. For instance, for a
640× 480 image provided by a surveillance camera, the Laplacian operation is processed
on 640 tasks for the first operation and 480 for the second. Computing these operations
in parallel should be possible even if the camera produces around 30 images per second.

After having presented the ΣC language, we now present the compilation toolchain
associated with this language.

1.6.3 The compilation process

This section presents a brief overview of the ΣC compilation toolchain. The aim is to link
an application written in this language to the execution model, in order to build a binary
executable. The following lists all steps necessary to produce the binary executable is
built from the execution model.

The first compilation phase of any traditional compiler is a preprocessing phase fol-
lowed by lexical, syntactic and semantic analysis. ΣC sources are transformed in C codes.
Once these codes are generated, it is impossible to alter them unless doing some code
substitution. Two types of codes can be listed:

• Instantiation codes of the dataflow process network from the compilation of the
ΣC keywords and functions which will be mapped off-line onto the target architec-
ture;

• Processing codes which come from the agent processing functions compilation.

The next phase processes instantiation codes. Adapted API are called in order to find
a transformation into an appropriate C code. Once this code is written, it is compiled
into a data structure which represents the process network. It is also compiled in order to
obtained data specific to agents. During this compilation phase, parallelism is reduced,
for instance by minimizing the number of split’s output channels or by merging tasks.
This reduction allows to better meet the system resources, to provide access scheme to
data processed by split, join, ... agents. Another action which occurs during this
compilation phase consists in hierarchical consistency checks, verification of the absence
of deadlocks and pre-dimensioning measures on the channels associated buffers. At the
end of the phase, it is possible to proceed to a first execution.

The third phase is resource assignment. First, communication buffers are dimensioned
using tasks temporal characteristics and throughput objectives of the application. It
allows the attenuation of the variance effects of the runtime on the average throughput in
order to put them below to the critical threshold computed using the constraints of the
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Figure 1.8: A task graph for a fictitious program. Vertices are numbered, vertex and
edges weights are noted besides them.

application. Second, in order to link the execution model, a partial unbounded order is
constructed on task occurrences [64]. It is processed in order to facilitate the scheduling
of tasks on the chip, and to guarantee its execution in bounded memory on the FIFO
communication channels. The third phase consists in a mapping and routing phase. The
work of this dissertation takes places in this phase. Its aim is to gather, under cluster
capacity constraints of the target architecture, tasks which mostly communicate together
on the same clusters, while taking into account the distance between pairs of clusters.
This step requires solving some difficult discrete optimization problems. Application are
represented using a task graph. The vertices represent the tasks of the program and
the edges, the communication channels between the tasks. Vertex weights are associated
to computational costs and edge weights are associated to communication tasks [172].
Figure 1.8 provides an example of such a weighted task graph. The last phase consists
in, on the one hand, the generation of the parameterization data of the system [44] and,
on the other hand, building, using a C compiler back-end, a binary executable that can
be loaded on the target system [175].

Now that the compilation process has been explained, we will focus on the task map-
ping problem. The main attention of this thesis has been focused on the mapping of a
task graphs onto a clusterized parallel architecture, as illustrated in Figure 1.9.
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Figure 1.9: Mapping of a DPN on a parallel architecture. The grid on the upper left
corner represents a task graph, the torus on the lowest left corner represents the target
architecture. The graph on the right size represent the tasks graphs and colors indicates
on which node the task is mapped. Each color corresponds to one node.

1.7 Formalization of the DPN mapping problem

Let us consider Figure 1.9. It corresponds to the mapping of a grid on a torus architecture.
We want to know if this mapping allows the application, represented by the task graph,
to achieve good run performance. This raises several questions: what is a good mapping?
What is a bad mapping? How can we evaluate the mapping? Can the mapping be
modeled while respecting the constraints?

This section will try to provide as many answers as possible. First, the mathematical
mapping model able to evaluate the mapping is introduced.

Let T denote the set of tasks in the DPN and N the set of nodes or clusters. Let
R denote the set of resources offered by the nodes, e.g., memory capacity, processing
capability. Also, let wtr denote the consumption of tasks t in resource r, qtt′ denote
the bandwidth between tasks t 6= t′ and dnn′ denote the routing distance between nodes
n 6= n′. Also, for the sake of simplicity and with a slight loss of generality, we assume
that all nodes are identical and we denote by Cr the capacity of any of the nodes for
resource r.

Given the variables

xtn =

{

1 iff task t is assigned to node n,

0 otherwise,

our DPN placing problem can then be expressed as the following mathematical program:
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∑

t∈T

∑

t′ 6=t

∑

n∈N

∑

n 6=n′

xtnxt′n′qtt′dnn′ ,

s. t.
∑

n∈N

xtn = 1 ∀t ∈ T, (1.4)

∑

t∈T

wtrxtn ≤ Cr ∀n ∈ N, r ∈ R, (1.5)

xtn ∈ {0, 1} ∀t ∈ T, n ∈ N.

Constraints of type (1.4) simply express that each task must be assigned to one and
only one node and constraints of type (1.5) require that the node capacity is not exceeded.

This generalized quadratic assignment problem (GQAP) is straightforwardly NP -hard
in the strong sense, notably by restriction to the Node Capacitated Graph Partitioning
Problem [51] (arbitrary network topology and bandwidths as well as equidistant nodes),
to the Quadratic Assignment Problem (in the case where the capacity constraints allow
to assign one and only one task per node and where the inter-node distance is arbitrary)
as well as to the bin-packing problem. In the present thesis, we restrict the study to only
one resource.

In terms of instance size, in our application context, we want to be able to map
networks of over hundred thousands of tasks onto architectures having several hundreds
of nodes. Such an order of magnitude rules out exact resolutions methods: the best known
methods for the node capacitated graph partitioning problems are limited to graphs with
a few hundreds of vertices, and the best known algorithms for the QAP are limited to
instances of size around 128 [55]. Therefore, in our specific context, heuristic approaches
are required to provide results for our problem on large graphs in reasonable time.

In this dissertation, the focus is set on the problem of mapping a dataflow process
network onto a clusterized parallel microprocessor architecture composed of a number of
nodes interconnected by an asynchronous packet network.

Target architectures are composed of SMPs with associated resources (CPU, mem-
ories, I/O). Each of the SMPs present in the architecture may have strictly identical
characteristics. In that case, they are denoted as homogeneous. The architecture may
also be made of different types of SMPs or different types of processors like accelerators.
In that case, these architectures are denoted as heterogeneous.

In this thesis, the focus will be set on homogeneous architectures because it causes a
small loss of generality. Step by step, starting with tasks graphs having the following fea-
tures: tasks and edges are unitary weighted, two heuristics have been developed for these
type of instances. Then, the research has been deepen in order to determine heuristics
which presents more realistic applicative cases with non-unitary task and edge weights.

As of 2015, the biggest manycore architectures reached 1024 cores. Applications
consist in ever growing sizes of data sets to tackle. During our research, we wanted a
heuristic able to overcome this limit and which is able to produce results in a reasonable
amount of time. This is why the focus has been set on the mapping of large task graphs
(up to 2, 000, 000 tasks) onto massively parallel architectures (up to 1024 SMPs).
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1.8 A metric to evaluate the quality of solutions

For the evaluation of the quality of heuristics, exact methods or tight bounds are com-
monly used as a baseline. However, there is no exact method able to provide solutions for
instances with hundreds of thousands of vertices and the design of tight enough bounds
scaling at that level is still an open problem. The usual way is to compare solution values
generated by heuristics on small instances to those of exact methods (like the one used
for QAP). However, due to the large difference in orders of magnitude, there is no way to
know whether the extrapolation to large instances will provide comparable results. This
makes impossible to carry out comparisons with an exact method.

1.8.1 Approximation measure of Demange and Paschos

Demange and Paschos (D&P) provides an approximation scheme which allows to locate
the quality of any solutions in an interval bounded by the best and the worst possible
solution [41]. They introduced a notion of equivalence among optimization problems like
maximal independent set problems and minimum size vertex cover problem. A vertex
cover is the complement of an independent set. From an optimization point of view,
these problems are very similar: once a value of the vertex cover problem is obtained,
a simple subtraction allows one to obtain the solution of the independent set problem.
However, the traditional approximation measure, which consists in computing the ratio of
the value obtained of the traditional approximation algorithm A and the optimal value
OPT , provides very different results and cannot be compared. D&P proved that, for
any comparable optimization problems, the A

OPT
ratio is not precise enough and does not

respect equivalence principle between optimization problems.
They propose a metric able to solve the compatibility problem between qualitative

measurements used in the estimation of performance of algorithms and to enforce the
equivalence principle between optimization problems. For that, they introduced another
variable. It represents the worst result obtained for the problem, denoted as Ω. Deter-
mining the configuration resulting to the worst result is not obvious then!

ρ(A , I) =
A (I)− Ω(I)

OPT (I)− Ω(I)
, ρ(Π,A ) = inf

I∈I (Π)
ρ(A , I) (1.6)

where:

• Π is an optimization problem,

• I (Π) is the set of instance of Π,

• I is one instance of I (Π), and

• ρ(A , I) and ρ(Π,A ) are differential approximation ratios.

If A (I) = OPT (I), then ρ(A , I) = 1. If A (I) = Ω(I), then ρ(A , I) = 0 and if
Ω = OPT (I), then the ratio is undefined. This ratio allows one to compare solution
quality of an algorithm on two optimization problems. In [41], D&P show the effectiveness
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of this differential approximative ratio on many NP-hard problems. Moreover, the use
of the best and the worst values leads to locate the value of the solution in a bounded
interval.

We want a metric able to evaluate the solutions of the heuristics we developed. More-
over, we do not have the optimal value and thus cannot approximate the optimal; this is
why we cannot apply the D&P differential approximation ratio. Moreover, the idea is not
to compare the effectiveness of our heuristic on many instances of several optimization
problems but only one: the mapping problem. However, the fact of using the worst value
in order to get comparative results depending of any type of optimization problems, gives
us the basis for the design of a new approach. In this case, the worst possible value
consists in determining the maximal value of the objective function defined in 1.7, by
analogy, we chose to compare ourselves to objective function values obtained by means of
random mappings. The main feature of this “worst” mapping remains in the fact that no
characteristics, which are required in order to orient the mapping, are considered. This
is why this approach can be considered as the “worst” in this case. On the contrary of
the approach of D&P, this approach uses only two variables: the random value obtained
by the mapping described in the next section and the results of the algorithm. However,
the logic of evaluating how far the solution values of the evaluated algorithm are from
random values is the basis logic used in the establishment of our random based metric.

1.8.2 Random-based approximation metric

We propose a comparison environment inspired by the differential approximation theory
of Demange and Paschos. In this context, we compare solution values with those arising
from a random mapping, which does neither take into account the task network archi-
tecture nor the target topology. The random mapping algorithm consists in sequentially
placing each task on a uniformly randomly chosen node. Whenever there is not enough
space in the selected node, another node is randomly chosen.

This random process is repeated several times. The average of all generated solution
values is used as a comparison point with the heuristic solution value. The quality of
a solution obtained from a heuristic can be expressed in terms of the ratio between the
average of random solution values and the heuristic solution value.

Theorem 1. The average cost value of all possible mappings is:

v =
1

|N |2
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n∈N

∑
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Using this theorem, it is possible to directly compute the average cost value instead
of generating random mappings.

1.9 Graph Theory Background

In this section, basis notions and terminologies of graph theory are defined. Moreover,
the breadth-first search algorithm is also introduced because it is used in both heuristics
developed in chapter 3. Moreover, a way to evaluate on which node a task should be
mapped is also presented.

1.9.1 Some Definitions

A graph is denoted G = (V,E) where V corresponds to the set of vertices (or tasks)
of the graph, also denoted as V (G), and E corresponds to the set of edges (which are
the abstraction of communication channels of the task graph) of the same graph G also
denoted as E(G). |V | and |E| are respectively the number of tasks and edges in the
graph.

A subgraph is denoted G′ = (V ′, E ′). It consists of a subset V ′ ∈ V of vertices and a
subset E ′ ∈ E of edges constituted of all edges of E whose ends are in V ′.

An edge eij ∈ E(G) is incident to vertex i and vertex j which are the vertices at each
end of the link (i, j). i and j are then considered adjacent.

A weight is an integer value which is attributed to either a vertex or an edge.

An oriented graph consists in a graph whose edges which have a direction. Oriented
edges are commonly denoted as arcs. eij is the arc which starts from vertex i and goes
to vertex j and is distinct from arc eji. The maximal number of arcs is defined as:

|E| ≤ |V | × (|V | − 1) (1.8)

A non-oriented graph is a graph whose edges have no directions. This means eij =
eji. The maximal number of edges is

|E| ≤ |V | × (|V | − 1)

2
(1.9)

In this dissertation, all task graphs are non-oriented.
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A path p in a graph G = (V,E), starting from a task v0 ∈ V (G), is defined as a
sequence of vertices (v0, v1, v2, ..., vk) connected to each other by a sequence of edges
(e0, e1, ...ek−1). A path is defined as simple if all vertices in the sequence are distinct.
The length (or distance) of a path corresponds to the number of edges between v0 and
vk if the graph is unweighted, or the sum of weights of the traversal edges if the graph is
weighted.

A cycle is formed by a path p = (v0, v1, v2, ..., vk) where v0 = vk. A simple cycle is a
cycle where all vertices v0, v1, .., vk−1 in the cycle are distinct.

A simple graph is a graph which has no cycles. It can be also denoted as a tree. All
tasks graphs in this dissertation are simple graphs.

A connected graph contains at least one path between all distinct pairs (vi, vj) ∈ V 2.

The diameter corresponds to the shortest weighted simple path determined among all
distinct pairs of tasks of the graph.

The eccentricity of a vertex v ∈ V (G)corresponds to the longest distance determined
between v and all other vertices in V (G).

The degree of a vertex v ∈ V (G) is a measure denoted as δ(v) which corresponds
to the number of edges (e ∈ E(G)) which are connected to v. The minimum degree
δ(G) consists in the lowest degree value for each vertices and the maximum degree (often
denoted by ∆(G)) corresponds to the maximal degree value of all vertices.

The adjacency matrix of a graph G = (V,E) corresponds to a |V | × |V | matrix
M . For each pair of vertices (i, j) ∈ V 2, the mij coefficient value, at row i and column
j in M is the weight of edge or arc eij ∈ E and 0 otherwise. If G is unweighted, all
edge/arc weights are set to one. As an example, Figure 1.10 shows a simple graph and
its associated adjacency matrix.

The neighborhood of vertex v corresponds to all adjacent vertices of v. It is often
denoted as NG(v).

Now that the required terminology of graph theory has been defined, the next step
consists in describing the breadth-first search (or traversal) algorithm that we use. It is
a graph traversal algorithm which is able to provide help in manipulating the locality of
vertices of the graph. This is why it is the core of both mapping heuristics.
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Figure 1.10: A non-oriented simple fictitious graph with its associated adjacency matrix.

1.9.2 Breadth-First Traversal (BFT) algorithm

The two main graph traversal algorithm are Depth-first search and Breadth-first traver-
sal (or search) (BFT). Only the Breadth-first traversal algorithm is detailed because it
explores all neighbors of a starting vertex first, then the neighbors of the neighbors and
so on. This approach allows to determine and to gather all unassigned vertices with the
lowest distance from the starting task.

The French mathematician named Charles Tremaux was the first to create and to use
this algorithm in order to solve maze problems [47],[182] in the 19th century.

The algorithm uses a FIFO queue which is initialized with a single vertex v0 which is
the starting vertex. As long as the queue is non-empty, a vertex is pulled from the queue
and all its neighbors that have not been explored yet are pushed into the queue. Since,
for each explored vertex, all of its neighbors are tested for exploration, the complexity of
BFT is O(E).

Now that all required graph theory notions are introduced, the first mapping heuristic
is presented in the next session. This heuristic is the two phase mapping approach which
computes an adapted version of the BFT in order to build connected subgraphs.

1.9.3 Notion of affinity

A problem to solve is how to evaluate to which node the subset of tasks has to be mapped,
such that the local cost is minimized. This local cost should reflect how much the subset
is worth when it is mapped on one particular node. For this purpose David et al. [37]
introduced a valuation based on affinity for a polynomial method for splitting a graph
into weakly interconnected subgraphs. It has been later used in many works from Stan
[176] and Sirdey [174]. This valuation is used for the evaluation of a partitioning during
a progressive construction approach.

The affinity computation consists in evaluating the affinity between two subsets. A
subset consists in either a task, a group of tasks (like a subgraph) or a node. Let T1, T2

be two subsets of task set T from the DPN. The affinity computation αT1T2 between T1
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and T2 is characterized by equation 1.10.

αT1T2 =
∑

t1∈T1

∑

t2∈T2

qt1t2 . (1.10)

This valuation will serve as a source of inspiration and be adapted to the mapping prob-
lem.

1.10 Conclusion

In this introductory chapter, the context that surrounds our work has been presented.
The emergence of new massively parallel embedded architectures and new applications
which are able to be computed in parallel led to the necessity of developing new methods
able to use those new platforms in the most effective way.

The introduction of a new programing language able to manage high parallelism
allowed the setting of a new compilation process in which the mapping of a task graph
generated by the compiler, with dependencies and resource occupation on parallel target
architectures has an important position. This drove us to our research motivation because
we wanted to map large parallel application onto these architectures.

The optimization problem related to the mapping problem is presented and the chal-
lenge raised by this problem has been detailed. In order to evaluate the quality of the
heuristics which are presented in this thesis, we got inspired by a differential approxi-
mation ratio introduced by Demange and Paschos and developed a new metric based on
random mappings.

In the next chapter, we will look deeper in the literature in order to enumerate all
works that have already been cancel out on the mapping problem. The state of the art
is split in two parts and, depending on the requirements presented in this chapter, is
organized in order to locate the interest of this work in the current literature.
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2.1 Introduction

The mapping problem has been formulated by Bokhari in 1981. He linked the mapping
problem to graph isomorphism, bandwidth reduction and quadratic assignment problems.
He also introduced the first mapping heuristic based on pairwise interchange [21] and
made the suggestion that research in this “new” field should focus in the development
of heuristics able to provide good solutions. This has been the starting point of the
elaboration of many mapping heuristics.

In this chapter, the importance of having a good mapping method in order to place
applications on target architectures is highlighted. A large number of mapping approaches
for many types of constraints can be found. This makes an exhaustive listing difficult.
This is the reason why it is necessary to find a classification which allows us to deal
with the literature which surrounds the problem expressed in Subsection 1.7. Many
classifications of heuristics can be found in the literature. The classification of one-
phase mapping heuristics is based using [171]. Other classifications make a distinction

49
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between iterative algorithms and greedy algorithms [5], [137]. Mapping is often performed
by first partitioning a task graphs into partitions and then assigning partitions to the
corresponding node. This is the reason why the state of the art of the partitioning
problem and the quadratic assignment problem are explored. Then, the state of the
art of the whole mapping process (partitioning and assignment) is explored in order to
determine which problems are considered. Solvers can also be found in the literature.
They are able to solve the partitioning and the mapping problems for large task graphs.
For all cited articles, a short description of the mapping strategies are made. Once all
articles are explained, a discussion about the state of the art is carried out. In addition,
a more precise explanation of how massive parallel solvers perform mapping is done.
All articles are summarized in a table which points out the size of task graphs of each
application, the optimization problem constraints and also whether a target architecture
is considered or not.

2.2 The Importance of Mapping Applications on Ho-

mogeneous Systems

In this dissertation, the interest will be raised on the SMP model. In this model, threads
can be assigned or re-assigned to different processors depending on the needs and op-
timization constraints required by the application. Among several risks, are clashes of
priority, deadlocks, data inconsistency, data starvation. MPSoC are designed to reduce
these risks and the data flow model explained in Section 1.5 also helps to avoid them.
However, the design of MPSoC able to process large and complex applications is a difficult
research field [131] but we are not going to focus on it [132].

In order to optimize the use of these systems, an application should be mapped wisely
onto them. The difficulty of this wise placement lies in how to get the best suitable
mapping. This implies to identify the associated algorithmic problems and to solve them.
In other words, the resource allocation problem is one of the biggest issue: how many
cores should be used by the application and how to map tasks wisely in order to maximize
system performance? Another problem is the quadratic assignment problem, which is
identified as the general problem of mapping applications onto several cores. Moreover,
it is a NP -hard problem [66].

For mapping applications, one existing approach consists in partitioning it into many
processing tasks. The transformation of an application into a task graph is done using
the transformation process cited in Section 1.5. Powerful partitioning solvers like Metis
[95] or Scotch [145] (or their parallel versions Parmetis [100] or PT-Scotch [142]) are able
to partition any task graph onto a target architecture. Task mapping is a process of as-
signing and ordering the tasks and their communications on cores depending on available
resources and rules of optimization and constraints. In our case, we are dealing with
capacity constraints on each core. User demands in performance for each application
have to be fulfilled. This means applications should be mapped in a way that no bet-
ter mapping which can provide better response to the demand can be found. We can
define a model which suits the most to the user demands knowing that it consists of an
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interpretation. Mathematical optimality of models of a solution may not be a necessary
condition for the satisfaction of user demands. These demand can be satisfied in terms
of quality of solution compare to resolution time. In order to map small applications
(up to 120 tasks), exact methods can directly be used in order to obtain an optimal
mapping. In configurations where the number of tasks is more important, heuristics or
parallel approaches provide a mapping which takes the objective function into account.
In addition to the quality requirement, heuristics must also exhibit flexibility, robustness
and experimentally provide seemingly good solutions for any type of applications. As can
be expected, when the application is big, the mapping phase is hard to be well performed.

The mapping problem which is raised by answering to optimization’s constraints on
modern embedded systems has become critical. Due to the existence of several opti-
mization constraints, nowadays, no global mapping method is able to provide an optimal
mapping regardless of any constraints [133]. This aspect led to the development of a large
number of heuristics, exact methods or parallel approaches, in order to provide efficient
response depending on the considered constraints. In this state of the art, we propose a
classification of the most recent and efficient mapping methods.

2.3 Partitioning problems

The partitioning problem consists in splitting a set of vertices of a graph into smaller
subsets of vertices while minimizing the sum of the costs on all egdes cut. Kernighan and
Lin were among the firsts to address this problem [103]. They showed that the number
of possible partitions is
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where:

• n is the number of vertices,

• k is the number of subsets of size p, where kp = n.

making an exhaustive search for the solution impossible when the number of vertices starts
becomes large. Moreover, many form of partitioning rules can be applied, like partitioning
graphs into triangular configurations, perfect matching [163], isomorphic subgraphs [105],
Hamiltonian subgraphs [185], forests [66] or cliques [91]. All these partitioning problems
are NP-Hard [66]. In this dissertation, the aim of the partitioning consists in minimizing
communication costs by taking into account the bandwidth between tasks, times the
distance between partitions or nodes.

The first partitioning approach which leads to local optimal values is that of recursive
bipartitioning algorithms. In addition, they are also used in another form of partitioning
also detailed below: the multilevel approach. Last, partitioning solvers able to deal with
several millions of tasks are detailed.
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2.3.1 Bipartitioning algorithms

Kernighan-Lin (KL) This algorithm [103] is one of the most effective approach able
to determine locally optimal partitions if it starts with a good initial partition. The
KL algorithm incrementally swaps vertices among parts of a bisection in an attempt to
find two disjoint subsets of equal size with the lowest edge-cut of the partitioning. It is
performed until a local minimum is found. In the case of multilevel recursive bisection
algorithms, KL refinement becomes very efficient as the initial partitioning available at
each successive uncoarsening level is already a good partition.

Fidduccia-Mattheyses (FM) This algorithm [52] is a “linear time heuristic for im-
proving network partitions”. It includes additional features to KL like a reduction of
net-cut costs, it takes into consideration vertices weights and is able to handle unbal-
anced partitions.

These algorithms are mostly used for load balancing problems and are used in many
multilevel approaches. They can be used for recursive bisection heuristics.

2.3.2 Multilevel approaches

As explained just above, finding the best partition in order to solve the mapping problem
leads to solve another NP -hard problem. One class of graph partitioning algorithm
consists in first collapsing vertices and edges in order to build a smaller graph (coarsening
phase), then to partition the smaller graph (partitioning or mapping) and last to spread
it to construct a partition for the original graph [12], [84]:

1. Coarsening phase: during this phase, a sequence of smaller graphs is constructed
from the original graph. For each sequence level, a set of vertices V ′ is combined
together in order to form a new vertex. The weight of this vertex corresponds to
the sum of all weights of vertices of V ′. In order to preserve the graph connectivity,
edges whose ends are in V ′ are merged. Most of the time, an Heavy Edge matching
algorithm is used in order to perform this operation [15] [32] [96].

2. Initial partitioning or mapping: This phase is a simple assignment of the groups
to the processors. Many partitioning or mapping heuristics present in the literature
can be used for this phase depending on problem constraints.

3. Uncoarsening or refinement phase: During this phase, the partition built in
the previous phase is projected back to the original graph by going through the
sequence of graphs built during the coarsening phase. At each level of the sequence,
local refinement heuristics are performed in order to improve quality of partitions.
Aforementioned heuristics Kernighan-Lin [103] or Fidduccia-Mattheyses [52] are
mostly used for this phase.

The main difficulty consists in finding efficient ways to coarse “and uncoarse” the task
graphs. It has been subject to many works whose results can be found in [32], [96], [99],
[60].
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The multilevel approach is the core of many partitioning solvers which are detailed
below.

2.4 Quadratic Assignment Problems (QAP)

The assignment problem is introduced by Koopmans and Beckmann in 1957 in order
to locate indivisible economical activities [109]. The assignment problem terminology is
applied to our problem. Consider the problem of assigning n tasks to n nodes. The
task (fij) and node (dϕ(i)ϕ(j)) matrices are symmetric, nonnegative and have zeros in the
diagonal. The cost assignment matrix (biϕ(i)) is nonnegative. The mathematical model
of Koopmans and Beckmann is represented by the following equation:

min
ϕ∈Sn

n
∑

i=1

n
∑

j=1

fijdϕ(i)ϕ(j) +
n

∑

i=1

biϕ(i) , (2.2)

where

• fij is the flow between two tasks,

• dkl is the distance between two nodes,

• n the number of tasks and nodes,

• bik is the cost of placing task i on node k,

• fijdϕ(i)ϕ(j) is the cost of assigning task i to node ϕ(i) and task j to node ϕ(j), and

• ϕ ∈ Sn corresponds to the set of all permutations ϕ : N → N .

Many combinatorial optimization problems can be formulated using Equation 2.2 by
adapting the coefficient matrix [27]. The focus is set on the linear arrangement problem
which is proven as NP-Hard by Garey and Johnson [66]. For linear assignment problems,
the following equation models the problem to solve:

min
n

∑

i,j=1

n
∑

k,l=1

fijdk,lxikxjp , (2.3)

where:

• fij is the flow between two tasks,

• dkl is the distance between two nodes, and

• n the number of tasks and nodes.
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Equation 2.3 is very similar to the model presented in Section 1.7.
Loiola also proposes a survey which covers many heuristics able to solve QAP problems

[118]. Moreover, Hahn was able to find lower bounds for this problem using the Hungarian
method [74] and the branch and bound method in order to find optimal assignments [75],
[160].

Many problems are derived from the QAP. The most similar problem to our mapping
model is the Generalized Quadratic Assignment Problem (GQAP). Hahn et. al. propose
many exact methods or heuristics able to solve or approximate it [75]. However, these
approaches are limited by sizes of instances up to several hundreds of tasks.

Sirdey used a partitioning based on an affinity-based GRASP in order to generate as
many partitions as the number of processors. Then, a simulated annealing heuristic is
used in order to solve the associated QAP problem [174].

Heuristics developed for the resolution of the partitioning problems focus on mini-
mizing edge cut or on enforcing load balance constraints. However, generated partitions
do not take into account a notion of distance between partitions. The application of
partitioning heuristics on the mapping problem leads to mappings which are suboptimal.

The assignment problem focuses on assigning a number of subsets of tasks on an
equivalent number of nodes. Despite of the fact that the mathematical model is similar,
we want to map n tasks onto m processors. Heuristics able to solve the GQAP problems
are able to deal with small instances but they are not scalable. This is the reason why,
for instances larger than several hundreds of tasks, a partitioning phase is required in
order to reduce the number of subsets of tasks to map.

2.5 Mapping problems

Two static mapping approaches are presented in this section. First, a two-phasess map-
ping approach which consists in partitioning the tasks graph before placing partitions
on SMP nodes. This process is performed sequentially. Second, a one-phase mapping
approach which directly assign tasks to nodes.

The two types of mappings are illustrated by Figure 2.1.

2.5.1 Two-phases mapping heuristics

Alternatively, in two phases mapping, task graphs are first partitioned into smaller graphs
according to various sets of rules and algorithms. This first problem is a partitioning prob-
lem. Once partitions are determined, they are mapped onto the corresponding processing
elements (or processors). The partitioning approaches are split into four categories: par-
titioning strategies, multilevel algorithms, clustering algorithms and spectral approaches.
In this thesis, despite of the fact that partitioning and clustering are the same problem,
a distinction is performed: partitioning splits a graph into several subgraph. It is a
top-down approach. In contrast, clustering gathers tasks together. This is a bottom-up
approach. The principle of partitioning and multilevel are detailed in Section 2.3. In
clustering algorithms, all tasks are gathered into several clusters using a well defined and
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Figure 2.1: The state of the art has been filtered using the above personal criteria. Placing
heuristics are not exhaustive, only those which appeared frequently are cited



56 CHAPTER 2. STATE OF THE ART OF THE MAPPING PROBLEM

adapted set of clustering rules. Once the clusters are formed, each cluster is mapped
onto the corresponding processing elements. In the spectral approaches, the Lagrangian
matrix (which has no relation with the Lagrangian operation cited in Section 1.6.2) is
computed and analyzed. Depending on mathematical rules which are set up for this pur-
pose and directly applied to the matrix, tasks are gathered into sub-matrices and mapped
More details about spectral approaches functioning are provided later in this dissertation.

Partitioning

A k-way graph partition corresponds to a way to divide a graph G = (V,E) into k smaller
sets of vertices using specific properties, as explained in Section 2.3. This means finding
the best partition which satisfies several criteria is difficult for most graphs. The reason
why, is that the exploration of all possible and feasible partitions of G can not be done
in reasonable time.

Several solvers are able to provide good partitions for large task graphs under load
balancing constraints, as explained in Section 2.6. Despite the efficiency of these solvers,
many other approaches provide comparable or, depending on the problem to solve, better
results than the solvers, which are more generalistic. Kernighan-Lin [103] and Fidduccia-
Mattheyses [52] are some of the most famous bi-partitioning heuristics, as explained
in Subsection 2.3. Battiti for instance did many works in clustering, partitioning and
the multilevel partitioning fields like randomized greedy approach for the partitioning
problem [14]. Kirkpatrick [106], on his side, was able to establish a partitioning heuristic
based on simulated annealing. In the field of evolutionary algorithms, genetic algorithms
also lead to interesting results [26]. But these methods are only the first part of the
mapping. Once the partitioning is determined, either the obtained partition can directly
be mapped onto a node or a greedy heuristic is processed in order to find the best way
to assign partitions to nodes.

The mapping approach illustrated by [158] uses a two-step procedure. The first gener-
ates an initial “nearest-neighbor” mapping which is commonly used in many two-phases
mappings. In the initial mapping, the vertices of the finite element graph are grouped
into nodes and mapped onto processors. Two vertices that share an edge are assigned
either to the same processor or to neighboring processors. The second step uses a bound-
ary refinement procedure which tries to equalize the computational loads on processors
by refining the boundaries obtained by the initial mapping.

Another approach, which is used in networked Clouds [116], partitions the user re-
quests using iterated local search by a random walk in the space of local optima. Once
the requests are partitioned, the networked cloud mapping is performed. It is done in
two phases: node mapping and link mapping. The node mapping is transformed into
a flow allocation problem solved by linear programming and the link mapping is solved
using the shortest path algorithm.

In Agarwal’s approach [2], the partitioning is first performed by the Metis [95] solver.
Once the task graph have been split into sets of p tasks, where p the number of processors,
the more heavily communicating tasks are mapped onto nearby processors. Sometimes,
it may happen that the allocation of a task to any processor does not affect the global
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mapping cost. A notion of critical task is defined by approximating the fact that if a task
is not placed at the current cycle, it may be mapped onto a random processor later.

However, one must not forget that the graph partitioning problem is as difficult as
the task mapping problem. This means that a direct partitioning of a large task graph
may present the same difficulties than directly finding a mapping method. Clearly if
the number of tasks is too important with respect to the heuristic complexity, finding a
satisfactory partition in a reasonable amount of time might become impossible. This is
why, a new partitioning approach, called multilevel partitioning, has been introduced in
order to avoid the aforementioned problem.

Clustering algorithms

Clustering-based approaches have a similar logic as partitioning approaches. That is to
say, task graph are split into clusters, then clusters are mapped on processors. If the
system resources allow it, clusters can also be merged into new clusters [174]. Clustering
algorithms are massively used in the domain of big data, machine learning and problems
like the traveling salesman problem. Clustering algorithms are particularly efficient in
dividing sets of data into a defined number of clusters.

Xu et al. write a very complete and diversified survey about clustering algorithms
[197]. In his survey, many fields of research are detailed. Many types of clustering can
be found and have their corresponding denotation, like linkage clustering, which is a
clustering problem which is very similar to the mapping problem. Jain et al. assume
that linkage clustering can be related to the search of maximal connected subgraphs
[89]. Moreover, Karypis and Kumar also developed an approach based on hierarchical
clustering for the partitioning and mapping domain [93] in which the notion of k-nearest
neighbor mapping [62], [138], [155] is introduced. At the first step, the connected graph
is divided into a set of clusters using a minimal edge cut algorithm. Another work from
Karypis and Kumar introduced the Chameleon algorithm able to find several clusters
among a data set [93]. It is applied on sparse-graph representations which allows this
algorithm to scale on large data sets. Using communication between task graph and
distance of the clusters, Chameleon merges all small clusters until a final solution is
obtained. A similar approach has also been developed by Sadayappan et al. [157] for
planar graphs. Chen and Lo [31] later used a two-phases heuristic which leads to the
same results as Chameleon.

Clustering approaches are different approaches than partitioning approaches but are
able to be used in the mapping problem and to solve problems of up to thousands of
tasks.

Another method is based on progressive construction for the multi-resource Node
Capacitated Graph Partitioning Problem [174]. The method consists of two phases: a
partitioning phase and a mapping phase. The partitioning phase is a GRASP approach
[48]. It is an affinity-based randomized iterative process which creates a partition of
the tasks graph. The second part of the algorithm consists in a simulated-annealing-
based quadratic assignment problem (QAP) heuristic, which assigns one partition of
the task graph to each of the SMPs. This first method is fast and is suitable to the
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early development cycle, where the programmer needs fast feedback from the compilation
toolchain and does not focus on the quality of the mapping.

Spectral bisection approaches

Spectral bisection uses matrix operations in order to decide how the graph is partitioned.
The second lowest eigenvectors λ1 of the Laplacian matrix of the graph is computed in
order to divide the task graph in two parts. Given a graph G = (V,E), the Laplacian
matrix Ln×n is computed using the degree matrix (D):

Li,j =

{

deg(vi) if i = j

−1 if i 6= j
(2.4)

of all vertices and the adjacency matrix (A) as shown in the following equation:

L = D − A . (2.5)

Because of the semi definite positiveness of L, eigenvectors are increasingly ordered: λ0 ≤
λ1 ≤ λ2 ≤ ... ≤ λn. Usually, the first eigenvector has a zero value which is why the second
eigenvalue is selected. This approach has been highlighted by Fiedler [53], [54]. Moreover,
Fiedler’s theorem guaranties the connectivity of the two generated task graphs. Using the
same logic, a notion of quadrisection has been introduced, allowing to divide the graph
into 4 subsets at once. This operation is performed using the second and third lowest
eigenvectors of the Laplacian matrix. These mathematical operations make it simpler to
divide the task graph into several dimensional partitions [83].

Bui, otherwise, introduced an approach able to find the optimal (minimal) bisection
for all d (d ≥ 3) regular simple graphs with 2n nodes [25]. A d regular graph is a graph
where each vertex has the same number d of neighbors. Unfortunately, even if the number
of tasks reaches thousands of tasks, it does not scale to higher orders of magnitude.

Spectral bisection is able to find very good partitions. In some cases, it is able to find
the optimal value but this ability cannot be generalized. Moreover, the mathematical
computation lasts too much and when the number of tasks starts to be consequent, it
appears not to be able to find any solution. Once the partitions are defined, they are
assigned on the corresponding processors without taking into account the target topology.

Multilevel approaches

We have already defined multilevel approaches in Subsection 2.3.2. Several multilevel
approaches which are used for the mapping problem are listed below.

In an approach by Barnard and Simon [12], a mix of recursive spectral bisection and
multilevel implementation is used in the mapping of unstructured meshes of task graphs
on processors. The aim is to minimize communication while preserving load balance in
the system.

Battiti, on his side, uses a greedy heuristic in the coarsening phase and the tabu
search adapted to Kernighan-Lin [15] which allows to find a partition with the minimum
possible cut that the heuristic can compute.
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2.5.2 One-phase mapping heuristics

In the one-phase mapping, the task graph is directly mapped onto the target architecture.
Two types of mappings can be found: dynamic and static mappings. In the dynamic
mapping context, depending the data set given as input in the application, tasks are
created at the execution of the application and they are processed once. There is no
global vision of all tasks in the system. This mapping is denoted as on-line mapping. An
advantage of this mapping is the ability to manage in real time the resources of the system
and to avoid any defective part of the MPSoC. Methods like adaptive work stealing or
on-line scheduling are massively used. In contrast static mapping is an off-line mapping.
Tasks are defined by the program and created during the compilation phase as explained
in Subsection 1.6.3. The execution is periodic and can be performed as many times as
possible. Hence, it has a global view of the system. This facilitates the use of system
resources. This mapping is performed in the compilation phase.

Many mapping methodologies in the literature fall under static mapping. While
analyzing the whole mapping state of the art, it appears that mapping techniques are
used in order to map applications on either heterogeneous or homogeneous MPSoCs. The
focus is set on mapping methods for homogeneous MPSoC.

Many elements in the literature focus on energy consumption, reliability, temperature
and performance (execution time, delay, latency, throughput, etc.) [171]. The challenge
which is faced in this thesis consists in finding an approach or method which runs fast
on large instances and able to provide good mapping quality, that is to say a mapping
value as close as the minimal mapping value as defined in Subsection 1.7. This led us
to consider only article which are dealing with performance. Figure 2.2 illustrates the
decision tree which summarizes how we sorted the state of the art of one-phase mapping
methods. It allows us to filter the state of the art which includes numerous works and
to focus only on performance-oriented mapping method, in terms of computational time
and solution quality.

Exact methods

Exact methods are able to reach optimal values for any small-sized algorithmic problems
(depending on the problem, this size is often around 120 tasks) in a reasonable amount
of time. This is due to the fact for small-sized instances, the complexity of the algorithm
remains quite high. However, if slightly increasing problem size may induce a substantial
increase of the complexity of the problem, under these circumstances, it takes a higher
amount of time for determining the optimal solution. For the mapping problem, the opti-
mal search consists in finding the mapping which has the lowest cost. Cost computation
varies depending on the problem to solve. Some exact methods use branch and bound
algorithms [168], [170] or dynamic programming [77], [154].

Depending on the number of processing elements, the problem can be reduced to a
polynomial approach, especially if the number of processors is 2. Some partitioning or
assignment exact method can be used as a mapping approach. Stone showed a way to
find a near-optimal mapping based on assignment algorithm on a 2-processor system in a
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Figure 2.2: Decision tree which shows how the state of the art of one-phase mapping
is organized. The focus is set on the performance of static mapping heuristics which
are developed for homogeneous target architectures. This classification is inspired by a
survey of Singh et al. [171].

polynomial time [179]. Later, Lo [117] managed to find a way to generalize it on several
processors systems but the approach lacks of robustness.

Evolutionary algorithms

The domain of stochastic optimization algorithms includes evolutionary algorithms. For
instance, simulated annealing (SA) [106] (which has been applied to many mapping and
scheduling problems) or genetic algorithms [164] belong to this class of algorithms. These
algorithms are considered as meta-heuristics [140] and are widely used for hard optimiza-
tion problems. The main difficulty consists in finding adequate parameters making these
heuristics able to adapt to the current mapping problem [23].

Hu and Marculescu [87] developed a deadlock-free deterministic mapping and routing
method based on simulated annealing (SA) and branch and bound approaches. 3000
random mappings are generated. In order to determine the best mapping, SA is performed
on these mappings. This mapping minimizes the energy consumption under specified
performance constraints.

Galea et al.’s approach [65] consists in a parallel simulated annealing method. This
is a single-phase heuristic which directly assigns tasks to the SMPs. It provides results
which are better but takes considerably more time than Sirdey et.al. [174] even though
parallelism allows to drastically reduce execution time.

Erbas et al. proposed a genetic algorithm-based approach [45] which is used in their
Sesame software framework. In order to solve large instances of the mapping problem,
multiobjective evolutionary algorithms (MOEAs) are applied. Optimization criteria in-
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clude minimum processing time, minimization of power consumption and minimization
of the total cost of the solution.

Orsila et al. proposed a method based on simultaneous optimization of execution time
and memory consumption [139]. Applications are mapped using simulated annealing. In
addition, one major strength of their approach is the establishment of an automated
parameter selection able to optimize the selection of parameters used for mapping sets of
tasks.

Marcon et al. compared several algorithms [130] to the SA-based approach they
developed in earlier works [128], [129]. Many of the presented algorithms focus on low
energy consumption but their SA approach, as well as Kreutz et al. [111] tabu search
also focuses on computation time. Marcon et al. also introduced two greedy heuristics:
largest communication first (LCF), which produces mappings using priority rules. The
most communicating modules are processed before the least communicating modules.
Another approach denoted as greedy incremental (GI) starts with an initial mapping. A
position in the NoC is selected as “pivot” of evaluation. This “pivot” is used as a starting
point for a local search procedure in order to find its best interchangeable element. The
complexity of this algorithm is O(n2), where n corresponds to the number of n-tile NoC.
A tile contains a router and a module of a NoC placed inside a limited region on an IC. In
this work, it appears that LCF provides good execution time while sacrificing energy gain
or energy saving. A good compromise between energy and execution time is performed
by GI and HSM. A mixed approach which combines LCF and SA also provides results
comparable to those of GI and HSM.

General mapping heuristics

In an approach by Manolache et al. [127], a solution space S is built where each point of
this space represents a special configuration which fulfills the problem constraints. Once
it is formed, a tabu search-based exploration strategy is performed in order to find the
best result.

Ruggiero et al. have a more simpler approach: an integer programming method
combined with constraint programming allows to speed up the execution [156].

Bonfietti et al. explore an approach which deals with allocating and scheduling SDF
subject to minimum throughput constraints [22]. The heuristic uses constraints pro-
gramming in order to solve the allocation problem. Moreover, it also apply optimization
techniques like minimizing throughput bound tightness in order to reduce the number of
feasible solutions.

Most mapping strategies are using simulated annealing or, more generally speaking
evolutionary algorithms and are able to find a solution value which is assumed to be
close to the optimal values. Other more general approaches use strategies which allow to
explore the solution space efficiently. However, the problems which are solved are neither
the same than the one addressed by this work nor are able to be applied to large task
graphs.

Of course, more mapping methods can be cited but their corresponding features start
to be very different to ours. The previously cited approaches are very close to our re-
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quirements.

2.6 Solvers

In this section, several solvers able to perform partitioning or mapping operations are
introduced.

2.6.1 Metis, Parmetis, hMetis, kMetis

Metis has been developed by Karypis and Kumar. The first version has been introduced
by [95] in 1995. It is more a partitioning approach which can be generalized to a mapping
approach. The tool has been improved from 1995 until 1999 with the following researches:
[94] deepens the multilevel strategy, [99] applies Metis to irregular graphs, [98] adapts
Metis to multi-constraint partitioning. In 2003, Karypis alone adapted Metis for multi-
constraint mesh partitioning [92]. Metis then has been added a low power feature [1] and
the last improvement of kMetis appears in 2013 from a joint work of LaSalle and Karypis
where some heuristics in the approach were adapted for parallelism [112]. Metis has two
extended versions denoted as parMetis, which is the parallel version of Metis [100] and
hMetis, which is specialized for hypergraphs [97].

Metis is able to partition several tens of million tasks on 256 partitions depending on
load balancing constraints. Depending on how the task graph and the constraints are
organized, the obtained partitions may be mapped onto processors using a greedy or an
iterative heuristic. It has not been designed for mapping purpose, which is why it does
not take into account a target topology during the partitioning phase.

2.6.2 Scotch and PT-Scotch

Another solver which presents equivalent performance than Metis is named Scotch. On
the contrary of Metis which focuses on partitioning problems, Scotch focuses on the
mapping problem. Scotch is based on the thesis of Pellegrini [143] and has been released
by him in 1994 [145]. Sparse matrix ordering has then been added [146] in 1997 and
completed with hybrid nested dissection [147]. Many features has been added like native
mesh ordering and the use of a genetic algorithm for scalable parallel partitioning. A
joint work of Chevalier and Pellegrini [32] gave birth to PT-Scotch which is the parallel
version of Scotch [142]. One additional aspect to consider consists in its ability to map
large task graphs overs hundreds of millions of tasks,

The Scotch project is split in two parts: the first part focuses on the static mapping.
The second focus on the ordering of sparse matrices. This dissertation is about the
mapping problem and the interest will only be laid on this aspect. Scotch solves the
mapping problem using a dual recursive bi-partitioning algorithm [145], [141]. Several
graph bi-partitioning heuristics have also been studied and can be found as black boxes in
this solver. In order to solve the mapping problem, Pellegrini et al. defined a cost function
using following requirements: minimization of communication cost under the constraints
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of maintaining the load balance within an acceptable tolerance. It is expressed by the
following equation:

fC(τS,R, ρS,T )
def
=

∑

eS∈E(S)

wS(eS)|ρS,T (eS)| . (2.6)

fC represents the communication cost function. It consists in the sum of all edge’s
dilatation |ρS,T (eS)| times their corresponding weights wS(eS). S corresponds to the
application to map and T corresponds to the target architecture. A communication
channel in T can be composed by several communication channels of S. ρS,T (eS) =
{e1T , e1T , e2T , .., enT} indicates if edge eS is routed on link e1T or e2T or enT . wS(vS) or wS(eS)
[142].

The load balancing can be defined by µmap which is the average load per computational
power unit represented by:

µmap
def
=

∑

vS∈V (S)

wS(vS)vT ∈ V (T )

wT (vT )
. (2.7)

The µmap value is used to define an imbalance ratio to which the user provides an upper
limit which must be enforced during the solution process.

Scotch, like Chaco [82] or Metis [95] also uses multilevel strategies/ One major differ-
ence between Scotch and other solvers is brought by a bi-partitioning heuristic denoted as
Dual Recursive Bi-partitioning algorithm (DRBA). In this approach, for each level of the
recursive algorithm, the set of processors is split in two and the set of tasks is also split in
two. Once the size of the processor set is 1, the corresponding subset of tasks is mapped
to it. During the bi-partitioning phase, one important aspect consists in maintaining
the load balancing property. This leads to a partial communication cost function. Once
the mapping is done, it is important to maintain the mapping quality or to improve it
while the different subsets of tasks are merged. Scotch proposes several heuristics used as
black boxes which allows to reduce mapping deterioration. Several heuristic are available
like Band [33], Diffusion [144], Fidduccia-Mattheyses [52], Gibbs-Poole-Stockmeyer [68],
Grasp (proposed by Karypis and Kumar in Metis), or more classical multilevel approaches
expressed in Subsection 2.3.2.

2.6.3 Jostle: Parallel Multi-Level Graph Partitioning Software

Jostle is a multi-level graph partitioning software package which is dealing with graph
partitioning problem under load balancing constraints [193]. The first version was devel-
oped in 1998 [190] by Walshaw and Cross and was later improve in order to solve several
partitioning problems like heterogeneous communication networks [192] or optimization
of domain shape [194].

This solver is able to map millions of tasks on hundreds of processors in several
hundreds of seconds. In order to gain these performance, the solver is using parallel
multilevel partitioning methods. First, the multilevel framework is parallelized, then
several parallel approaches are used for the refinement phase [191].
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They compared their results to Metis in terms of cut-edge weight and execution time.
Jostle got equivalent results on cut-edge weights. However, on 16 processor, it runs 1.08
to 2.42 times faster than Metis but, when the number of processor is 128, it runs 0.54 to
1.11 faster than Metis.

Jostle can also be used for mapping purposes [192]. The aim of the mapping consists
in minimizing the cut-weight costs while balancing the load or vertex weight in each
nodes and taking into account the target topology. In this method, Walshaw and Cross
are able to map millions of tasks on several tens of processors. Quality metrics which are
used in order to evaluate the mapping are cut-weights, network costs, average dilation
and average path length/unweighted dilation.

2.6.4 Other solvers

Zoltan: Parallel Partitioning, Load Balancing and Data-Management Services
Zoltan is a toolkit of parallel combinatorial algorithms which are dealing with load bal-
ancing partitioning, ordering and coloring problems [42] and also data migrations. This
toolkit includes parallel solvers like ParMetis, PaToH and PT-Scotch. However, this
solver does not deal with mapping or capacity constraints assignment problems.

PaToH: Partitioning Tool for Hypergraph This solver is used for partitioning
hypergraph using load balancing constraints [29]. It uses the recursive bipartition and
the multilevel principle in order to get the required number of partitions. However, this
solver only focus on the computation of partitions and is not mapping oriented. The
quality of the partitions are equivalent of that of Metis. Moreover, it is purely sequential
and is one of the fastest for hypergraph. However, despite of the sequential aspect,
parallel approaches runs faster.

KaHiP: Karlsruhe High Quality Partitioning KaHiP is a multilevel graph parti-
tioning solver which mixes global search strategies from multigrid linear solvers to max-
flow min-cut computations. This solver also solves the partitioning problem using load
balancing constraints. They compare the solution quality of their approach to Jostle
using instances of Walshaw [195] (which are also used in this thesis). KaHiP manages
to get slightly better results than Jostle depending on the instances. However, they are
only focused on the partitioning problem and not the mapping problem. [161]

Other solvers Many other solvers can be found. All of them are solving problems with
load balancing constraints. Some are considering multilevel algorithm for Hypergraph like
Parkway [184], other are reconsidering the aspect ratio of partitions like Party [148], or
are oriented towards solving the edge-cut problem like DiBaP [135].

The main solvers have been detailed. The attention has been put on the fact that
solvers, despite of the fact of being able to map hundreds of million tasks, mainly depend
on load balancing constraints.
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2.7 Discussion

In this section, a synopsis of the literature around the mapping problem is detailed and
will enable a positioning of this thesis in the literature.

2.7.1 Overview

The aim of this thesis is to solve a mapping problem with several requirements. First,
heuristics must be scalable. It is also required that the approach should be able to easily
map as much as tens and millions of tasks in a reasonable amount of time while maintain-
ing good solution quality. Second, the optimization constraint which must be considered
are capacity constraints. The main will is to maximize the occupation of processors while
minimizing communication costs. In ΣC, introduced in Section 1.6, constraints depends
on the CPU and the memories in embedded systems. If these constraints are met, the
application works fine and each execution cycle is performed in bounded time. We can
cite image processing operations as an example. Sixty images must be displayed each
second. One way to have such a fast execution consists in placing the adequate task on
the suitable processor in order to reduce execution time.

Table 2.1 and Table 2.2 present an overview filtered using the 3 just defined require-
ments :

• scalability,

• topology-awareness of the target architecture,

• optimization constraints.

Clearly, all exact methods of the literature are eliminated because, despite of their ability
to find the optimal solution, the problem size prevents execution in reasonable time. They
could be used to compare the solution quality of our heuristic for small instances, but it
is not sure that the heuristic behavior will remain the same on 100 tasks than on 250, 000
tasks.

Considering the one-phase mapping heuristics: only few articles present an approach
able to solve the mapping problem with capacity constraints and topology awareness of
the target. However, they are not able to scale on instances which present more than
2, 000 tasks. Some greedy or iterative approaches are able to deal with important numbers
of vertices but either they do not meet the requirements, or solution quality is relatively
poor.

Concerning the two-phases mapping heuristics, spectral bisection may provide very
good quality results but they face the same scalability problem. For partitioning algo-
rithms, the graph partitioning problem is NP -hard, which means while the number of
tasks is greater than a certain limit, the complexity of finding a good partitioning becomes
equivalent to the complexity of finding a good mapping. Moreover, capacity constraints
add some complexities. For clustering heuristics, it is possible to transform the obtained
clusters and to map them onto processors. However, the application size remains a limit
which has not been overcome yet.
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This led us to multilevel approaches. Many heuristics are able to deal with a high
number of tasks and, above all, are topology aware. In contrast to all just cited heuristics,
no multilevel heuristic deals with capacity constraints because it uses heuristics which do
not deal with this type of constraint. Most of those heuristics focus on the load balancing
problem.

2.7.2 Our work

The mapping heuristics which are developed in this thesis are focused on dataflow process
networks. These heuristics are scalable, topology-aware of the target architecture and are
dependent of capacity constraints.

One of the three heuristics is a two-phases mapping. First, a cluster of tasks is built
using graph exploration algorithm. Second, the cluster is either merged to another cluster
or directly mapped onto the corresponding processor.

The two others are one-phase mapping heuristics. One consists in a greedy heuristic
which maps tasks one after another using an affinity notion which is explained in Chap-
ter 3; it also uses graph exploration algorithms. The second one, which is explained in
Chapter 4, uses game theory principles in order to select how to map tasks.

2.8 Conclusion

In this chapter, the importance of the mapping problem has been emphasized. The
state of the art has been organized using the number of mapping phases which exists
in approaches used to solve the mapping problem. For one-phase methods, mapping
approaches, exact methods, evolutionary algorithms, and greedy or iterative heuristics
have been highlighted. Concerning two-phases methods, methods have been split in the
following categories: partitioning, clustering, multilevel and spectral bisection. For each
element of the literature, a brief description of the mapping methods or partitioning and
mapping approach has been provided. Then, the requirements our problem is depending
on, have been highlighted from all works, that is to say: scalability, topology awareness
and capacity constraints. At the end, it has been noticed that many approaches combined
two of these three requirements but never met all of them. This evidence of this lack
in the literature motivated us in the development of the three heuristics which will be
presented in the following chapters.
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Name Constraints # of tasks Topology aware

(PT-)SCOTCH ( [142]) [145] Load Balancing ≤ 109 Yes
Pellegrini et al.
(Par)Metis ( [100]) [95] Load Balancing ≤ 108 No
Karypis, Kumar et al.
ΣC toolchain - Aubry et al. Knapsack < 2000 Yes
Partitioning & Placing [174]
Sirdey et al.
ΣC toolchain - Aubry et al. Knapsack < 2000 Yes
Parallel Simulated Annealing [65]
Galea et al.
Energy and Perf. Aware Mapping Bandwidth ≤ 50 Yes
for Regular NoC Architecture [87]
Hu et al.
Multiobjective Optimization and Knapsack ≤ 1000 Yes
evolutionary algorithms for the
application mapping problem
in MPSoC [45]
Erbas et al.
Automated memory-aware Communication to ≤ 100 No
application distribution computation
for MPSoC [139] ratio
Orsila et al.
Task mapping and priority Deadline miss ratio ≤ 40 No
assignment for soft real-time
applications under deadline miss
ratio constraints [127]
Manolache et al.
Communication-aware allocation Knapsack ≤ 10 No
and scheduling framework for
stream oriented MPSoC [156]
Ruggiero et al.
An efficient and complete approach for Load Balancing ≤ 250 Yes
throughput-maximal SDF allocation and
scheduling on multi-core platforms [22]
Bonfietti et al.
Efficient resource mapping framework Bandwidth ≤ 350 No
over networked clouds via iterated local
search based request partitioning [116]
Leivadeas et al.

Table 2.1: Related works
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Name Constraints # of tasks Topology aware

Cluster partitioning approaches to mapping Load balancing ≤ 1449 Yes
parallel programs onto a hypercube [157]
Sadayappan et al.
Topology aware task mapping for Load balancing ≤ 3240 Yes
reducing communication contention on
large parallel machines [2]
Agarwal et al.
Fast multilevel implementation of Load balancing < 105 No
recursive spectral bisection for
partitioning unstructured problems [12]
Barnard et al.
Multilevel reactive tabu search Load balancing ≤ 65536 No
for graph partitioning [15]
Battiti et al.
Graph bisection algorithm Load balancing ≤ 800 No
with good average case behavior [25]
Bui et al.
Jostle [192] Load balancing ≤ 107 Yes
Walshaw et al.

Table 2.2: Related works
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3.1 Introduction

In this chapter, the aim is to develop scalable, topology-aware of the target architecture
and constraints-based mapping methods. The task mapping problem can be interpreted
as a graph mapping problem. The application is modeled as an undirected graph where
vertices are tasks and an edge between two tasks exists if and only if the edge is valued by
a non-zero bandwidth. We wanted to start our research by considering unitary weighted
tasks in order to facilitate the problem and to determine approaches that may be used on
non-unitary weighted tasks. This first step consists in establishing such a method where
all task or communication channel weight values are set to one. The main idea consists in
taking advantage of the task graph topology in order to gather on the same processor tasks
which have the lowest distance among each other. Once terminologies of graph theory
have been introduced, two static mapping heuristics are presented. First, a two phase-
mapping heuristic, denoted as Subgraph-Wise Placement (SWP), is introduced. This
heuristic is an iterative process in which, at each step, a subset of unassigned tasks is
determined using a breadth-first search strategy. The obtained subgraph is then mapped
onto the node which satisfies the most a notion of affinity, among nodes of sufficient
available capacity for all tasks of the subgraph. A second heuristic is then presented.

69
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It is a one phase mapping heuristic referred to as Task-Wise Placement (TWP). In this
heuristic, all tasks are mapped one after another using a notion of task-to-node affinity.

The two heuristics are then evaluated in a comparative study with a method which
has been presented in the state of the art [174] and is currently used in the ΣC toolchain;
they are also compared to random based mappings, as discussed in Section 1.8.

3.2 A Two Phase Mapping Method: Subgraph-Wise

Placement (SWP)

In this section, a two phase mapping method, denoted as Subgraph task-wise placement,
is presented. A subset of tasks referred to as subgraph is built using an adapted version of
the BFT presented in Subsection 3.2.1. Once the subgraph is built, a metric called affinity
is computed in order to evaluate the subgraph. The metric is detailed in Subsection 1.9.3.
If the node with the greatest affinity towards the subgraph has enough space left, tasks
which compose the subgraph are mapped onto the node. The pseudo-code is detailed by
Algorithm 3.

3.2.1 Creation of a Subgraph of Tasks

Working with applications that are modeled by dataflow process networks implies that
these types of graphs are connected. The main idea is to take advantage of this feature by
gathering tasks which are communicating together and building a connected subgraph.
As explained in Subsection 1.9.2, breadth-first traversal is able to provide a task ordering
where all tasks in the assembled subsets are near to each other. However, it is not possible
to map all the task graph onto one processor because of the node capacity limits. This
means that the sum of weights of all tasks must not exceed this capacity. The size of
the subgraph corresponds to the sum of all weights of its members. This size must be
limited in order to respect the capacity constraint. Moreover, another feature has to be
considered. While assigning tasks to processors, the remaining capacity of each node
where subgraphs are mapped is decreasing. Due to the fact that remaining capacities on
nodes may vary, the size of the subset is computed by determining the maximal remaining
node capacity and this value is multiplied by a factor 1

2
as shown in the following equation:

size =
max
∀n∈N

RCn

2
, (3.1)

where RC corresponds to an array containing the remaining capacities of each node. The
factor 1

2
has been added because empirical results show that best performance is obtained

using this factor.
The starting task selection may be one of the most important operation of the whole

computation. Indeed, a bad task selection leads to a very bad mapping because it favors
the emergence of singletons, that is to say, a task whose all neighbors are already mapped
onto a node. Unfortunately, it may happen that these singletons are mapped onto nodes



3.2. SUBGRAPH-WISE PLACEMENT 71

which are located far away from the nodes to which the neighboring tasks of the singletons
are mapped. This aspect drastically degrades the global mapping quality. This is one
reason why this step plays a major role. In order to avoid singletons, the task with the
lowest number of neighbors is determined and used as starting task for the breadth first
traversal algorithm. Tasks with the lowest number of neighbors are often located at the
extremity of a graph. By starting with these tasks, singleton are reduced and we reached
a high number of connected tasks.

Now that the starting task determination strategy and the size of the subgraph to
compute have been explained, the BFT will be computed. However, it has to be adapted
to take into account different features like task weights and the size of the subgraph
to generate. Algorithm 1 describes the process. It is a classic BFT process with an
additional stop criterion which is the sum of weights of all the already explored tasks.
When this sum reaches the expected size, the execution of the algorithm stops.

Algorithm 1 Breadth-first traversal for SWP (BFT1)

Input: G = (T,E) ⊲ Task graph.
Input: t0 ⊲ Starting task.
Input: size ⊲ Maximum threshold of the subgraph.
Input: W |T | ⊲ An array which contains the weights of all tasks.
Input: M |T | ⊲ An array indicating if a task is flagged on not. M [v] = 1 if v explored, 0

otherwise.
Output: S ⊲ Subgraph to build.
Output: M |T | ⊲ Updated with the new flagged tasks.
Output: sgWeight ⊲ The sum of weights of all tasks in the subgraph.
1: Q: ⊲ A FIFO queue.
2: pos← 0
3: inc← 1 ⊲ Number of tasks in the subgraph.
4: sgWeight← 0
5: Q← {t0}
6: sgWeight← W [t0]
7: while sgWeight ≤ size and pos < inc do
8: t← Q.pop

9: if M [t] = 0 and sgWeight + W [t] ≤ size then
10: inc← inc + 1
11: S ← v

12: M [t]← 1
13: sgWeight← sgWeight + W [t]
14: for all t′ ∈ NG(t) and M [t′] = 0 do
15: Q.push(t′)

16: pos← pos + 1

17: return S,M |T |, sgWeight

Now that the rules which allows to determine a subgraph out of a task graph has
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been identified, the attention is focused on how to estimate on which node the subgraph
should be mapped onto.

3.2.2 Subgraph to node affinity

The aim is to determine which node is the most suitable to contain the subgraph. Clearly,
the remaining capacity must be greater than the size of the subgraph. The idea is to
gather as many tasks as possible which have the strongest edge weights on the same
node. One way to determine where the subgraph has to be mapped onto, it is virtually
mapped onto one node after another. For each node, the subgraph to node affinity is
computed using the affinity notion detailed in Subsection 1.9.3. The affinity equation
1.10 is adapted for this computation :

AffSN =
∑

∀t∈S

∑

∀t′∈t
t 6=t′

qtt′ . (3.2)

Once the computation is over, the highest measured affinity indicates the most suitable
node the subgraph should be mapped onto. Algorithm 2 describes the affinity computa-
tion.

Algorithm 2 Computation of subgraph to nodes affinity.

Input: G = (T,E) ⊲ task graph with q bandwidth matrix.
Input: G′ = (N,E ′) ⊲ node graph with d distance matrix.
Input: S ∈ T ⊲ the subgraph computed by BFT1 algorithm.
Input: S2NA|N | ⊲ Task to Nodes affinity array.
Input: sgWeight ⊲ Sum of all weights of tasks in the subgraph.
Input: RC |N | ∈ N

+ ⊲ Node remaining capacity array.
Output: node ⊲ the node on which the subgraph should be mapped.
1: maxAff ← 0 ⊲ the maximal affinity value.
2: A|T | ⊲ An array containing the node where t′ is mapped.
3: for all t ∈ S do
4: for all t′ ∈ NG(t) do
5: node← A[t′]
6: if node 6= ∅ then
7: S2NA[node]← S2NA[node] + val[t′]

8: node← argmax
n∈N

RC[n]<sgWeight

(S2NA[n])

9: return node

3.2.3 Complexity of the algorithm

Computing the affinities of one subgraph to all nodes as presented in Algorithm 4 has an
average complexity of O( |E|

|N |
), since |E|

|T |
is the average degree δ of G which is computed
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line 4. The affinity is computed for each task in the subgraph line 3 in |T |
|N |

, which is the
maximal number of tasks in one subgraph.

For the following complexity computation, let X be the number generated subgraph.
The focus is now laid on the SWP algorithm detailed in Algorithm 3. It is important to
note that the “while” loop of line 11 depends on the number of created subgraphs. This
means, this loop is computed X times.

Inside the loop, the maximum complexity of all statements is O(|E|+ |E|
|X|
×δ). Indeed:

• At line 12, the search for the minimum edge value is performed in O(|E|).

• At line 16, the affinity computation depends on the size of the subgraph. The worst
case consists in computing the BFS on the whole task graph. Thus, the worst
complexity of this computation is O(|E|).

• At line 17, the number of tasks depends on the number of tasks in the current
subgraph, that is |E|

|X|
.

• At line 21, the number of tasks corresponds to the average degree of G which is |E|
|T |

.

The worst case for the number of subgraphs is the number of nodes times the node
capacities C. C is a constant value which is the same for all nodes in this context. This
means that X = |N | × C.

Therefore, the overall complexity of SWP is O(|T | + C|N ||E| + |E|2

|T |
). Because this

complexity depends on the node capacity which is given as an input, the complexity of
SWP is pseudo-polynomial.

3.2.4 Conclusion

In this section, a two phase mapping heuristic denoted as subgraph-wize placement is
presented. The first phase constructs a subset of tasks using an adapted breadth-first
traversal algorithm. The second mapping phase is performed by mapping the subset
of tasks on the affinity-based determined node. Experimental results are presented in
section 3.4.

Now, another mapping heuristic will be presented. Instead of processing the mapping
in two phases, this alternative consists in determining a one-phase mapping heuristic.

3.3 One Phase Mapping Method: Task-Wise Place-

ment (TWP)

In this section, a one-phase mapping heuristic, denoted as Task-Wise Placement (TWP),
is presented. Instead of partitioning a set of tasks and mapping it as shown in SWP,
tasks are rather mapped one after another on nodes which are given preference according
to an affinity function specially developed for that purpose. Despite of the fact that the
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Algorithm 3 Subgraph Wise Placement(SWP)

Input: G = (T,E): task graph with q bandwidth matrix
Input: G′ = (N,E ′): node graph with d distance matrix
Input: RC |N | ∈ N

+: node remaining capacity array
Input: W |T | ∈ N

+: task weight array
Output: A: Task mapping assignment array of size |T |
1: S2NA← {0}|S|×|N | ⊲ Subgraph to nodes affinity matrix
2: M ← {0}|T | ⊲ Tasks marking array
3: RC ← {0}|N | ⊲ Node Remaining Capacity
4: count← 0 ⊲ An assigned task counter
5: n1 ← 0, n2 ← 0, n← 0 ⊲ nodes identifier
6: S2NAff ← 0 ⊲ Maximal value of S2NA

7: sgWeight← 0 ⊲ Sum of all tasks weight in S

8: degrees← {0}|T | ⊲ array array of degrees of each task
9: for all t ∈ T do
10: degrees[t]← |NG(t)|
11: while count < |T | do
12: t← argmin

t∈T
A[t] 6=∅

(
∑

t′∈NG(t)

qtt′)

13: size← (max
n∈N

RC[n])× 0.5)

14: S ← {0}size
15: (S, sgWeight)← BFT1(G, t, size,M,W )
16: n← computeS2N(S,G,G′, S2NA,RC, sgWeight)
17: for all t ∈ S do
18: A[t]← n

19: M [t]← 1
20: RC[n]← RC[n]−W [t]
21: for all t′ ∈ NG(t) do
22: if M [t′] = 0 then
23: degrees[t′]← degrees[t′]− 1

24: count← count + 1

25: return A
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mapping is done in one phase, the mapping procedure is split in two sub-procedures: the
mapping procedure and the node saturation algorithm.

First, all tasks are mapped using a notion of distance affinity which will be introduced
in Subsection 3.3.1. This operation lasts until one node gets saturated. When this occurs,
all tasks, with their greatest affinity toward the saturated node, are reinitialized in the
affinity matrix. The saturated node is removed of the candidate nodes set. Tasks, whose
affinity towards this node is maximal are also removed from the waiting set which contains
all marked tasks to map.

Before giving further details, it is necessary to define a metric which indicates on
which node each task must be mapped. The affinity notion detailed in Subsection 1.9.3
computes affinity for sets. Therefore it is necessary to adapt it so that it only computes
task to node affinities.

3.3.1 Distance affinity

When iteratively choosing on which node a task must be placed, an intuitive way is to
place it as close as possible from its neighboring tasks which are already placed. This
leads to the determination of the following equation. A notion of distance affinity is
introduced. For any DPN mapping solution, the distance affinity βtn between a task t

and a node n is represented by the following equation:

βtn =
∑

n′∈N

∑

t′∈T

xt′n′xtnqtt′ ×
1

2× dnn′ + 1
, (3.3)

where :

• G = (T,E) is the task graph to map,

• G′ = (N,E ′) is the node graph of the target architecture,

• xtn, xt′n′ are boolean values indicating if task t and t′ are respectively mapped onto
node n and n′

• dnn′ is the distance between node n and n′, and

• and qtt′ is the bandwidth between task t and task t′.

The equation can be described by the following: an available node is defined by
a node which has enough remaining space in order to host the task. The sum of each
independent contribution of each task in the neighborhood of t is computed. The equation
is proportional to the bandwidth qtt′ between all tasks processed during this summation.
When the distance between two nodes increases, the distance affinity decreases. This
equation favors the mapping of tasks that communicates the most with t.

The final summation of the obtained results for each task corresponds to the affinity
of task t to node n.
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3.3.2 The mapping procedure

In this method, all tasks are assigned one after another using the distance affinity as the
criterion for choosing the next task to be placed.

Initially, the algorithm first determines the task with the greatest sum of the band-
widths of adjacency edges. All of its neighbors are inserted in a candidate set. All tasks
presents in this candidate set are considered as candidate tasks. For each candidate task,
the distance affinity is computed and this computation allows to determine the more suit-
able node onto which the candidate task should be mapped. Once all distance affinities
are computed, the (task,node) pair with the highest affinity is selected. If two or more
pairs have the same affinity, the priority corresponds to the FIFO order. The selected
task is then placed in the corresponding node.

This operation lasts until it is no longer possible to map a task to its corresponding
node because the node has not enough space left for the task.

After a while, it is obvious that nodes get saturated, so that no tasks can no longer
fit in the node. However, many candidate tasks are still expected to be mapped onto it
because of their affinities. The corresponding obsolete pairs must be therefore removed
from the candidate set. All nodes, which are not saturated, in the neighborhood of the
saturated node are used as a new basis for the mapping. In addition, a pre-generated
ordering of all tasks, generated by breadth first traversal, performed at the beginning of
the algorithm, is processed for choosing as many unassigned tasks as nodes which have
been selected. Basically, each of the first unassigned tasks in the ordering are assigned
to a different selected node. The unassigned neighbors of those tasks are then placed in
the queue and their respective affinities are updated.

The whole process repeats itself as long as unassigned tasks remain.

Algorithm 4 updateAffinities algorithm computing the distance affinities for the input
task toward all nodes. The complexity of the algorithm is O(tn)

Input: G = (T,E): task graph with q bandwidth matrix
Input: G′ = (N,E ′): node graph with d distance matrix
Input: A: Task mapping assignment array of size |T |
Input: t: task whose affinities have to be computed.
Output: T2NA

1: T2NA|N | ← {0}|N |: Task to Nodes affinity array of t to all nodes.
2: for all t′ ∈ NG(t) do
3: node← A[t′]
4: if node 6= ∅) then
5: for all n ∈ N do
6: T2NA[n]← T2NA[n] + qtt′ × 1

2×d[node][n]+1

7: return T2NA



3.3. TASK-WISE PLACEMENT 77

Algorithm 5 Task-Wise Placement (TWP)

Input: G = (T,E): task graph with q bandwidth matrix
Input: G′ = (N,E ′): node graph
Input: Q BFT : BFT algorithm result starting from t0
Input: C ∈ R: node capacity
Output: A: Task mapping assignment array of size |T |
1: T2NA← {0}|T |×|N | ⊲ Tasks to nodes affinity matrix
2: t0 ← argmax

t∈T
(

∑

t′∈NG(t)

qtt′) ⊲ Starting task

3: Q← NG(t0) ⊲ Candidate set for tasks to be placed next
4: count← 0 ⊲ A assigned Task counter
5: A← {∅}|T | ⊲ All vertices are initially unassigned
6: A[t0]← 0 ⊲ Assign t0 to arbitrary node
7: for all t′ ∈ NG(t0) do
8: T2NA[t0]← updateAffinities(G,G′, A, t′)

9: count← count + 1
10: while count < |T | do
11: if count > 1 then
12: t1 ← argmax

t∈T
(

∑

t′∈NG(t)

qtt′)

13: Q← {t1}
14: for all t′ ∈ NG(t1) do
15: T2NA[t1]← updateAffinities(G,G′, A, t′)

16: count← count + 1

17: while |Q| > 0 do
18: (t, n)← argmax

(t′,n′)∈Q×N

(T2NA[t′][n′])

19: Q← Q\{t}
20: if wt +

∑

t′:A[t′]=n

wt′ ≤ C then ⊲ n is not saturated

21: Q← Q ∪NG(t)
22: A[t]← n

23: count← count + 1
24: for all t′ ∈ NG(t) do
25: T2NA[t]← updateAffinities(G,G′, A, t′)

26: else
27: Q← Q\{t ∈ Q : argmax

n′∈N
(T2NA[t][n′]) = n}

28: for all n′ ∈ NG′(n) do
29: if n′ not saturated then
30: repeat
31: t← deQueue(Q BFT )
32: until A[t] = ∅

33: Q← Q ∪NG(t)
34: A[t]← n

35: count← count + 1
36: for all t′ ∈ NG(t) do
37: T2NA[t]← updateAffinities(G,G′, A, t′)

38: return A
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3.3.3 Complexity of the Algorithm

TWP is presented in Algorithm 5. The whole algorithm will be detailed and the algorithm
complexity is also analyzed.

Theorem 2. The complexity of TWP is O(|T |2|N |).

Proof. Computing the distance affinities of one task to all nodes as presented in Algo-
rithm 4 has an average complexity of O( |N ||E|

|T |
), since |E|

|T |
is the average degree of G.

It is important to note that both nested “while” loops starting from line 10 and
17 actually span all tasks one by one, so the overall complexity of both loops, without
considering their content, is O(|T |).

Inside both loops, the maximum complexity of all statements is O(|T ||N |). Indeed:

• At line 11, the search for the best (task,node) pair is performed in O(|Q||N |) where
Q is the size of the candidate set. We have no precise estimation for the size of Q
since it strongly depends on the topology of G, and the order tasks are processed.
We can only affirm that |Q| ≤ |T |, hence a complexity of O(|T ||N |).

• At line 20, the test for node saturation is actually implemented using an array of
remaining capacities, in nodes, updated in O(1) when each task is placed. So the
test is bounded by O(1).

• At line 27, the search for tasks to be removed from the candidate set is O(|Q||N |),
which is bounded by O(|T ||N |).

• Different calls to Algorithm 4 are done in O( |N ||E|
|T |

). When called for all neighbors of
a task, the overall complexity is multiplied by the average degree hence a complexity

of O( |N ||E|2

|T |

2
). Since O( |E|2

|T |2
) < |T | for large enough sizes of T , the complexity is

bounded by O(|N ||T |).

Therefore, the overall complexity of TWP is O(|T |2|N |).

3.3.4 Conclusion

Now that the one phase mapping heuristic has been defined, performance of both mapping
methods will be analyzed. In the next section, experiments on several types of instances
will be performed in order to compare the performance of our algorithms.

3.4 Results

3.4.1 Execution Platform

The target system is a PC based on the Intel Xeon E5/Core i7 processor running at 2.0
GHz. As our algorithms are purely sequential, only one CPU core is used.
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Name # tasks # nodes node capacity

grid12x12 144 4 40
grid23x23 529 16 40
grid46x46 2,116 64 40

grid100x100 10,000 256 40

Table 3.1: Grid shaped task topologies.

Name # tasks # nodes node capacity

b12 1,065 36 40
b17 24,171 256 100
b18 114,561 400 300
b19 231,266 576 410

Table 3.2: Logic gate network topologies.

3.4.2 Instances

Two kinds of task graph topologies were used. First, a set of grid-shaped task topologies,
which correspond to dataflow computational networks like matrix products (Table 3.1).
The other kind of task graph is generated out of logic gate networks resulting in the
design of microprocessors. These configurations of task networks typically can be found
in real life complex dataflow applications (Table 3.2).

The node layout is a square torus, hence the number of nodes in all instances is a
square value.

For each pair (t, t′) of tasks of the grid, the bandwidth qtt′ is set to 1 if tasks t and
t′ are adjacent in the task grid, and 0 otherwise. For graphs generated out of logic gate
networks, the edge weights are the number of arcs between the corresponding elements
in the original multigraph.

For each pair of nodes (n, n′), the distance dnn′ is the Manhattan distance between
nodes n and n′.

In those experimentations, all instances are limited to one resource and the resource
occupation of every task in arbitrarily set to 1.

3.4.3 Computational results

We compare our methods with that of [174] which is a two-phase method where the tasks
are first partitioned into as many partitions as there are processors, then the partitions
are mapped onto the processors. We denote this method as Partition and Place (P&P).
It is the only other method we know to solve the DPN mapping problem.

All tables display the solution objective value and the execution time of the meth-
ods we cited. The tables display the application of the algorithms on grid-shaped task
topologies and on logic gate network topologies (Table 3.3). The results are also illus-
trated by Figure 3.1 and Figure 3.2. We can observe that, for small instances of grids, the
P&P algorithm provides better results than TWP algorithm whereas that TWP is faster.
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Name
P&P SWP TWP

Sol. Val. run time Sol. Val. run time Sol. Val. run time

grid12x12 37 0.02 s 75 84 µs 41 2.3 ms
grid23x23 220 0.05 s 338 400 µs 338 5.2 ms
grid46x46 2, 500 2 s 2, 565 9.93 ms 2, 306 0.17 s

grid100x100 45, 613 240 s 18, 700 0.49 s 16, 000 3 s
b12 1, 200 4.85 s 2, 205 5.77 ms 1, 598 9.6 ms
b17 135, 000 3, 100 s 155, 396 2.71 s 109, 879 88 s
b18 832, 538 40 h 18 min 1, 936, 952 22.25 s 395, 624 2, 163 s
b19 - - 5, 613, 634 75.24 s - -

Table 3.3: P&P , TWP and SWP approach on grids and LGNs.

Name P&P SWP TWP
Ratio Ratio Ratio

grid12x12 7.14 3.52 6.43
grid23x23 9.2 5.98 5.99
grid46x46 6.62 6.45 7.18

grid100x100 3.47 8.47 9.9
b12 5.57 3.04 4.19
b17 3.13 2.72 3.85
b18 10.25 4.40 21.58
b19 - 3.63 -

Table 3.4: Random
P&P

, Random
TWP

, Random
SWP

ratios on grids and LGNs.
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Figure 3.1: Solution qualities and execution times of P&P, TWP and SWP on grids.
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Figure 3.2: Solution qualities and execution times of P&P, TWP and SWP on grids.
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Figure 3.3: Random
P&P

, Random
TWP

, Random
SWP

ratios on Grids and LGNs.

However when the number of tasks is higher than 2000, TWP begins to provide better
results and far better execution times. The solution quality of TWP tends to get better
than P&P when the number of tasks increases, with a relative speedup of 67 for the b18
instance. One fact that calls our attention is the fact that the TWP algorithm works
fine either on logic gate network topologies or grid-shaped task topologies. However, the
algorithm cannot give any results in a reasonable amount of time for instances of 200, 000
tasks.

The focus is now set on SWP. Execution times are several orders of magnitude faster
than the P&P approach, while providing solutions whose quality tends to get compar-
atively similar or better on the largest instances. By comparing the difference between
SWP and TWP, the TWP method provides better results than the subgraph method,
while the subgraph method runs faster than the TWP method and scales easily on very
large instances.

Now, the interest is set on the ratios obtained by comparing results obtained by the
random based mapping metric defined in Section 1.8 (Table 3.4). Results are displayed
in Figure 3.3. For all instances, heuristics are at least 2 to 21 times better than random
based mapping. One can observe that for small instances of either grids or LGN, P&P
provides better ratios than SWP and TWP. Yet on larger instances, this tends is reversed.
This is not surprising and has already be pointed out above. Moreover, by having a deeper
look, we can notice that when the number of tasks increases, the Random

P&P
ratio decreases.

However, for SWP and TWP, on grids either, while the number of tasks increases, the
ratio also increases. This confirms that both algorithms have a better behavior on large
instances. On LGN instances, it seems that this type of graph is harder to map for all three
heuristics. Even if TWP outperforms P&P which outperforms SWP as mentioned above,
heuristics behavior cannot be interpreted by only making conclusions on the number of
tasks. Moreover, LGN topologies are not likely DPN topologies which can be represented
as series-parallel graphs. Grids are similar to this type of graphs and the fact that ratios
are higher on large graphs shows that TWP and SWP may be efficient on it. The metric
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was able to show the difference of efficiency of the heuristics between the different graphs
topologies which have been used.

The increase in terms of compared solution quality between our methods and the
P&P algorithm finds its explanation in two different aspects. First, as the partitioning
phase of P&P does not take node distance into account, tasks are gathered together
with no knowledge of the destination processor topology. Thus, choices made during this
phase may undermine the overall solution quality. In the opposite, the distance affinity
notion we use in the TWP approach allows us to take profit of the topology and avoid
many bad choices. Second, even not taking profit from the node distances, the subgraph
placement method has the advantage that it tries to avoid placing singletons or very small
subgraphs, while the last 10% (or perhaps more) of the tasks to be assigned in P&P may
probably not be efficiently assigned, leading to a drop in quality.

3.5 Conclusion

In this chapter, two mapping heuristics have been developed. Subgraph-Wise Placement
heuristic is a two-phase mapping. First a subgraph is built using the breadth-first traver-
sal algorithm with several parameters. Second the mapping phase occurs by mapping the
subset of tasks on the corresponding node using a notion of affinity. On the other hand,
the Task-Wise Placement heuristic is a one-phase mapping which assigns each task one
after another using a distance affinity metric. The whole set of tasks is ordered using
BFS and used when the need to populate an empty node appears.

These two approaches are scalable, topology-aware and work with knapsack con-
straints. Obtained results are satisfying on unitary-weighted tasks graphs. Now, the
focus will set on non-unitary weighted task graphs. For these types of task graphs, using
locality of tasks is not enough, some characteristics have to be added in the algorithmic
approach. This leads us to the next chapter which present a new mapping heuristic based
on regret theory.
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4.1 Introduction

In this chapter, the goal consists in setting up a mapping method able to deal with homo-
geneous target architectures, but with non-unitary weighted task graphs. The difficulty
lies in the way tasks are mapped because the mapping presents a high uncertainty level.
It is not known if an intermediate partial solution at time t may lead to final disastrous
global mapping quality at the end of the mapping procedure. One approach able to deal
with this concept of quality fluctuation which depends on the system evolution is Game
Theory. This mathematical field originates from economic science and is a powerful tool
which contains methods that are effective in case of uncertainty like the model we are
working on. More precisely, the focus will be set on a sub-domain of game theory: re-
peated behavioral games. This sub-domain features a portfolio of algorithms and decision
making techniques. One of these techniques is denoted as “regret theory”. In this work,
regret theory is applied in the task selection process in order to allow the development of

85
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a new mapping algorithm able to map tasks while paying attention to the impact of not
mapping a task at any solution construction step.

In order to verify the strength of the algorithm, it is tested on several types of task
graph instances. For all types of task graph, a pool of different task and edge weighted
instances are generated. At the time of writing of this dissertation, no comparable heuris-
tic could be found. The metric defined in 1.8 will help in the evaluation of the results.
In addition, an adapted version of TWP is used as comparative heuristic. Once perfor-
mance of the regret heuristic have been detailed, a GRASP procedure is set up in order
to improve the solution quality of the presented heuristic and also determines how many
runs have to be performed in order to get the best generated solution quality.

4.2 Game theory background

Game theory is a mathematical domain which aims at analyzing and predicting how
rational players strategically behave in different situations. Basic principles assume all
players first analyse what other players might do. This is denoted as strategical thinking.
Depending on the result of the analytics and the panel of possible choices, players select
the most suitable option. This phase is named optimization. Then players try to adapt
their responses in order to reach a form of equilibrium where all players get the maximum
profit they can have.

In this section, a formal definition of game theory will be presented, then an ex-
planation about the behavioral aspect of game theory will be given as well as a brief
introduction of decision making technique.

4.2.1 Overview of game theory

Game theory is a branch of mathematics which has been pioneered by J. Von Neumann
and O. Morgenstern [189] for economic purposes. Later, the fields of applications widened
to other fields like sociology and psychology, engineering, computer science and informa-
tion technology. One of the main goals consists in determining optimum strategies for
players using mathematical and logical tools with the aim of dealing with a given situa-
tion. Such situations can be represented as gain maximization for one or several players
or as risk minimization.

Three main type of games can be found: pure conflict, also denoted as zero-sum
games like chess; cooperation games, where all participants are supposed to choose and
to implement their actions together. The third type is more complex because it is neither
a cooperation game nor a conflict game: participants choose their actions separately.
However, one player’s behavior with other players is a mix of cooperation and competition.
The essence of a game consists in the dependence of all player’s strategies. Either a game
is sequential, or simultaneous.

In sequential games, the main principle consists in looking ahead in order to evaluate
the situation and then to reason back. Each player tries to understand how other players
could respond to his current moves and thus to anticipate plausible reactions. Using
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Silence Defect

Silence (3, 3) (10, 0)
Defect (0, 10) (5, 5)

Table 4.1: Prisoners’ dilemna [151]. If A stays silent and B betrays, B goes free and A

stays 10 years in prison. If B stays silent and A betrays, A goes free and B stay 10 years
in prison. If both remain silent, both of them stay 3 years in prison. Otherwise, if both
betrays each other, they stay in prison for 5 years. If A and B cooperate, they stay 3
years in prison. If not, either the betrayer is free or stays 5 years in prison. What is the
best strategy? Dixit and Nalebuff offer alternatives like mixing moves, strategic moves,
bargaining, concealing and revealing about this problem [43].

this information, he calculates the best choice that allows him to take an advantageous
position. It has to put himself into his opponent’s shoes because he cannot impose its
own reasoning scheme to them. Sequential games are limited and have a finite number
of moves. Each player has to determine how to achieve the best outcome in this limit of
moves. For games like tic-tac-toe, it is easy to compute all strategies in advance. On the
contrary, games like chess have a prohibitively large combinatorial number of possible
sequences, making the resolution hard to perform. This is why a player (human being
and computers) can only look for a few moves ahead for that game.

In simultaneous games, things are more tricky because such games involve a logical
circle of reflexion. Players are acting at the same moment without having any clue about
what other players are thinking. An approach able to deal with this type of games has
been introduced by John Nash with the famous Nash equilibrium. Let us explain the idea
behind this concept of equilibrium. A set of choices is determined for each player. All
players play their own best strategy, which improves the outcome for themselves. It may
happen that the best choice of one player leads to win the highest outcome. The played
strategy is denoted as dominant strategy for this player. Of course, if one wins, another
player loses. The strategy which leads to the lowest income is denoted as dominated
strategy. The search for the equilibrium consists in eliminating any dominated strategies
while all players have dominant strategies. However, an equilibrium might not lead to a
collectivity positive outcome. In the case of the prisoner’s dilemma, illustrated by Table
4.1: maximizing the best private interests leads to a negative outcome for each player.
Because an individual’s success in making profit depends on the choice of others, or, in
the case of this dissertation, depends on where all tasks are currently mapped, leading
this dissertation to focus on behavioral game theory.

4.2.2 Behavioral game theory

Two types of games, based on thinking, learning, feeling and sharing principle, can be
pointed out in behavioral games: one-shot games and repeated games.
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One-Shot Games

The thinking model is designed to predict behavior and to provide initial condition for any
models of learning. It allows to favor one strategy above others. The strategy attraction
settles the probabilities of choosing the most suitable strategy using a response function.
Some commonly used notations will now be defined. For any player i, there are mi sets
of strategies. Each set of strategies is indexed by j. This means that strategy j of player
i is denoted by s

j
i . The period or step of the game is represented by t. When t = 0,

the corresponding attraction of a given strategy j and a given player i can be written as
A

j
i (0). When the focus is set on a player i, other players will be denoted as -i. During

some period t, players i’s payoff for choosing s
j
i is valued by equation:

A
j
i (t) = πi(s

j
i , s−i(t)) . (4.1)

Camerer indicates that the probability of having a specific set of strategies of a player i

at time t can be computed using equation 4.2. [28]. One can notice that this equation
consists in computing the ratio of the attraction of the specific set of strategy on the sum
of all mi sets of strategies player i possesses. A λ factor is also introduced in order to
regulate the response sensibility.

P
j
i (t + 1) =

eλ.A
j
i (t)

mi
∑

k=1

eλ.A
k
i (t)

. (4.2)

One-shot games are massively used in games where the aim is to determine a winning
sequence among others. Paying attention to behavior of other players has the only interest
of establishing the winning sequence. If one-shot games are applied to the mapping
problem, the goal would consist in determining a global configuration or sequence which
minimizes the global mapping value. This means that all previous sequences have to
be taken into account. This aspect invalidates the representation of the mapping as a
one-shot game. This is the reason why repeated games will now be presented.

Repeated games

In repeated games, a game is played repeatedly, with the same players. Such games are
also named stage games. Unlike in one-shot games, best shots may not lead to the best
results. During the game, players mays cooperate at some turn or defect at others turns,
leading to the use of a mixed strategy. The game can be either repeated during a finite
number of steps or infinitely repeated. Some associated notations for this kind of games
will now be defined. Let i ∈ {1, ..., n} be the set of players. Let ai ∈ Ai be the possible
actions of player i, and let πi be the respective payoff. Due to the repetition aspect, this
type of game also includes a notion of history h. Because ofa infinite number of different
actions, the history is rarely the same. For each step or period t of the game, the possible
actions available may vary. Equation 4.3 is a sequence of the past action profiles at the
beginning of the period.

ht = (a(1), a(2), ....., a(t− 1)) ∈ Ht = At−1 , (4.3)
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where At−1 consists in the set of actions performed until t − 1, t be the number time
occurencies and Ht represents the set of possible histories and is represented by equation
4.4:

H = ∪∞t=1Ht . (4.4)

The payoff of player i is πi(a(t)) for step t. Player i’s strategy si ∈ Si can be defined as
a mapping from H to Ai. A chosen strategy si ∈ Si for player i involves a different set
of actions. The average payoff of a sequence of actions at a period τ can be computed
using equation 4.5, where γ ∈ [0, 1) is a discount factor.

πi(s) = (1− γ)
∞
∑

τ=1

γτ−1πi(aτ ) (4.5)

In this kind of games, it is very difficult to find a global Nash equilibrium. Yet, on a
local sight, it is easier to determine a Nash equilibrium for each stage of the game. This
aspect is denoted as Subgame Perfect Equilibrium.

In this thesis, the task affectation process can be viewed as a repeated game. The
algorithm is the only player. This aspect is known as game against nature. Actions consist
in choosing where tasks should be mapped. The strategy consists in how to choose the
right task to map. The global history is represented by the final global mapping and
a period is designated by the number of tasks which have already been mapped. Now
that the game environment has been defined, the next step consists in determining how
to select the best task mapping, meaning which decision process could lead to the best
possible mapping. This requirement allows the introduction of decision theory.

4.2.3 Decision theory

Decision theory is a very diversified field. Many different ways exist to theorize decisions.
The different levels and ways of decision processes can be modeled by the following:

• punctual decisions;

• decisions based on past evolutions of one situation;

• decisions based on future outcomes;

• decisions based on behavior of people;

• decisions based on different choices;

Decision theory has been introduced in the middle of the 20th century. Since then,
economists, statisticians, psychologists, politicians, social scientists and even philosophers
have been developing this field using very different approaches and tools transforming
this research field into a very diversified and multipurpose domain. A way to model
decisions consists in building a decision tree as illustrated by Figure 4.1. It is defined
as a classification procedure that recursively partitions data sets into smaller sets. The
subdivision is made with a rule that is defined by decision makers. A decision tree
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Figure 4.1: A decision tree. Each circle is a node. Data are split into smaller groups
depending on a rule defined by the decision maker. At the end of the tree, each leaf
contains a various amount of data.

is composed of a root node, several split nodes and terminal nodes denoted as leaves
[159]. Despite of these disparate approaches, decision theory can be split into two main
categories: Normative Decision Theory (NDT) and Descriptive Decision Theory (DDT).
NDT consists in how decisions should be made. DDT consists in how decisions are made.
In addition to all these aspects, the decision process is sequential.

Many research have been performed in order to model and partition the decision
process into phases. Condorcet was the first to divide the decision process into three
phases [40]. In the first phase, important principles which are mandatory in the well-
understanding of the problem are identified. In the second phase, each player’s sug-
gestions are taken into account and considered. In the last phase, the choice between
all alternatives is made. A more recent and precise decision process model has been
developed by Brim et al. [24]. The decision process is divided in six steps:

1. Problem identification.

2. Necessary information search.

3. Determination of possible solutions.

4. Evaluation of each determined solution.

5. Selection of the suitable solution.

6. Implementation of the solution.

For a connection of decision process and this thesis, only step 4 which evaluates
the solution will be focused on. It occurs that the largest part of all merged fields of
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literature about decision making is dealing with this step. The definition that is given
is only applicable to decision process in game theory and cannot be generalized to any
other fields.

Solutions that have to be evaluated have been provided by utility functions of the
modeled problem. One problem, which appears related to the mapping problem but does
not have the same requirements and is not the same problem, is the minimax problem.
In this algorithmic problem, costs are minimized and profit is maximized. A notion of
uncertainty, defined by persistence of the choice and its impact on the final solution has to
be dealt with. A good approach able to manage this incertitude is regret theory, because
its aim is to eliminate or at least reduce the risk of choosing a solution that might be
regretted afterwards.

4.3 Regret theory

Regret is a negative emotion that people feel when they realize that things would have
been better if an action had been performed differently. The comparability of a decision
outcome with the outcomes forgone is the central element in regret. Simonson [169] states
that:

“ regret and responsibility should be regarded as separate constructs. Regret
represents the sorrow over something done or not done, regardless of whether
the decision maker was responsible for the outcome[...]. The magnitude of
responsibility, on the other hand, represents the degree of self-blame (or self
congratulation) for the decision that led to the obtained outcome. ”

To fully understand the impact of this emotion and to be able to master it, it is important
to penetrate into the psychology of this emotion and to discern the processes that may
moderate it. Von Djik and Zeelenberg [186] studied some differences between factual
and counter-factual outcomes. They determined that, depending on the context, the
perception and the comparison motivation, the regret feeling is more or less strong.

Economist decision theoretician like Bell [16] and Loomes and Sugden [119] got in-
spired by this emotion. They provided a more mathematical definition of regret which
could be used in decision processes. Sugden splits regret in two major components: it can
firstly be interpreted as a wish that you had done differently; and secondly as a feeling
of self blame [180]:

“The pain you feel when you compare “what is” with “what might have been”
depends upon something more than the nature of two consequences you are
comparing. It seems to depend also on the extent to which you can defend your
original decision to yourself as reasonable, sensible or normal[...]the intensity
of regret depends on the extent to which the individual blames himself for his
original decision.”

Loomes and Sugden introduced a regret theory under uncertainty model where players
have to choose between pairs of choices determined by a mathematical representation of
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the outcome of actions. The regret model applied to the mapping problem will be detailed
later in this thesis. Several types of regret can be identified. Each type corresponds to
one problem to solve.

4.3.1 External regret, internal regret and swap regret

When an algorithm uses policy π1, it sometimes incurs some loss in terms of quality.
Unfortunately, if this algorithm had used another policy π2 to deal with the problem, the
loss would have been less. Then, in this case, regret value corresponds to the difference
between π1 and π2. This raises an interrogation: how can different policies be catego-
rized and how to know which policy should be used. Blum and Mansour provided some
elements of response. Regret can be split into three parts: external regret, internal regret
and swap regret [19].

External regret is the highest level approach. It considers all alternative policies that
are independent of the choice made by the algorithm. It is also denoted as best expert
problem. This means, solution qualities of the algorithm are compared to the best of
N actions in retrospect. Loss is compared to a constant sequence of possible solutions.
Hannan is one of the first that emphasizes this aspect [76]. Hannan-consistency property
guarantees, in a long run, that players have an average payoff as large as the best reply
payoff resulting from the empirical distribution of actions of other players. External
regret is mostly used in on-line algorithms. Obtained performance may match with that
of an optimal static off-line algorithm modeling all possible static solutions. Some famous
external approaches result from a work of Foster and Vohra where a randomized strategy
for selecting better forecasts is applied without making any assumptions about events
distribution or errors distribution [58].

Now, the focus is set on internal regret. In contrast to external regret, the loss is
compared to a class of sequences. That is to say, a single simple modification performed
in the algorithm. For every occurrence, a given action i is converted into another action
j. The aim is to maximize payoffs. One of the first approaches is performed by Blackwell
on the Von Neumann minimax theorem which is a zero-sum game between two players.
Adding some features of the law of large numbers, assertions are made about the possible
extension that each player can control the center of gravity of the actual payoffs in a
long series of plays. A center of gravity is a quantitative method able to determine the
distribution center location that will minimize costs. The question this work answered
deals with a given r× s matrix M = ‖m(i, j)‖ [187], whose m(i, j) elements are points of
an euclidean N -Space. It uses a notion of approachability in order to prove that the center
of gravity of all payoffs is in or near a subset S ⊂ N -Space [18]. This approachability
was taken in other approaches like Hart and Mas-Colell where a correlated equilibrium
of the game is determined using adaptive strategies described in [79]. Cesa-bianchi and
Lugosi, on their side, improve and find out performance bounds in decision theory field.
They also establish a link between potential based analysis in learning algorithm and
their counterpart developed in game theory. Internal regret appears in the latest [30].
Foster and Vohra also introduced notions of internal regret as an alternative to external
decision processes. Instead of measuring the success of a decision scheme by comparing
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it to other schemes, internal sequence will be transformed [57].
In some circumstances, low external regret can be transformed into low internal regret.

This transformation is called swap regret and has been proposed by Blum and Mansour
[19]. It allows to simultaneously swap multiple pairs of actions. This means, for N

actions, swap-regret is bounded by N times internal regret. In a repeated game scenario,
if each player uses an algorithm which determines an action, whose regret computation
is sublinear to the number of time steps, the empirical distribution of actions of players
converges to a correlated equilibrium. Moreover, this approach can be used either in
either full information model or in partial information model.

Now that several form of regrets have been presented, the focus is laid on the first
version of regret established by Loones and Sugden; based on Bell’s work.

4.3.2 Formal definition

Regret theory was first proposed by Bell [16]. Later, Loones and Sugden presented many
works about this theory of choice under incertitude, other way to define regret theory,
which can describe several aspects.

Loones and Sugden regret approach

Regret theory is always formulated by a choice between two actions (A1 and A2) made
by a player. Of course, the choice condition is under uncertainty. The player does not
know which of a number of states of the world will be performed. Using the definitions of
Leonard Savage [162], a world is an object about which a person is considered and a state
of the world is defined by a full description of the world, without leaving any relevant
detail undefined. In some states, A1 will provide a better consequence or payoff, while in
others, it will be A2 which will lead to a better consequence. Now, let us assume that the
player chooses action A1, but unfortunately, the consequence which occurs is worse than
the one that would have occurred had he chosen A2. The player will feel regret of not
having chosen the best choice. Otherwise, he would have feel joy. In this theory, players
can foresee if an action will lead to regret or joy. This information will obviously affect
the selection made by the player [181].

Let the world be a infinite set of states. Depending on the rules which are used, the
probability that a state occurs instead of another may be uniform or depend of a unknown
distribution which can or cannot be identified. Let a state be denoted as Sj = {S1, ...., Sn}
where n can be infinite. Most of the time, operations are computing in a finite subset
of S. When choosing an action, S is unknown. For each action, there will be a various
number of consequences which will arise. A consequence is denoted as X. An action A

is composed of a finite number k of consequences Ai = {xi1, xi2, , , , xik}. Because there is
only the choice between two actions, A1 = {x11, x12, , , , x1k} and A2 = {x21, x22, , , , x2k}.
If player chooses A1 and state Sj occurs, the associated consequence will be x1j. He also
knows that consequence x2j would have occurred if he had chosen A2.

Utility stands for the motivation of players in any game. Utility function represents,
for a given player, a numerical value assignment for all possible outcomes of the game.
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This assignment requires that a higher number implies a more preferred outcome. In
regret theory, utility (or level of satisfaction) of having a consequence x1j and missing
out x2j is represented by v(x1j, x2j). ρ is the function which provides a real-valued utility
which evaluates the utility for each pair (x1j, x2j) ⊂ X2. Loones and Sugden formulate
the utility using the following functional form:

v(x1j, x2j) = C(x1j) + R(C(x1j)− C(x2j)) . (4.6)

where C(x1j) and C(x2j) are the corresponding utilities of x1j and x2j. R corresponds
to the function which measures the regret. In most games, the goal of each players is to
maximize v. The level of satisfaction utility computation function can be expressed in
many different ways. Quiggin uses a more simple approach [150]. The set of consequence
X is ordered by preference relationship. The level of satisfaction is defined by the following
equation:

v∗(x1n, x2n) = v(x1n, x2n)− (x2n, x1n) . (4.7)

It displays the net advantage because v is not decreasing in its first argument and not
increasing in the second argument. The positive expectation or mean of v∗ is provided
by:

E[v∗(x1n, x2n)] =
N
∑

n=1

ρnv
∗(x1n, x2n) . (4.8)

In equation 4.8, the notation ρn is introduced. It corresponds to a probability mea-
sure. Because we are in a model which works under uncertainty, this assumes the use of
probabilities. Let si be one of a N possible state of the world occurring with probability
π(si). Depending on the game features, the distribution π may change. Probability also
appears for the finite given n-tuple set of consequences X. In [121], probability distribu-
tion of consequences is denoted as prospect. A prospect (or risky prospect) is denoted
as pi = (pi1, pi2...., pik) where pi corresponds to the probability of observing consequence
xi. Moreover, probabilities are stochastic, which means

∑

pi = 1. A choice set si often
consists of any number of prospects. That is to say, the consequence probability may in-
terfere in the state selection. Let ρ(p1, s1) be the probability of choosing s1 and ρ(p2, s2)
the probability of choosing s2. If

k
∑

i=0

p1iu(x1i) ≤
k

∑

i=0

p2iu(x2i) , (4.9)

then π(p1, s1) = 0 and π(p2, s2) = 1 [122].
Loomes and Sugden indicate, using equations 4.7, 4.8 and 4.9, that statewise stochas-

tic dominance is preserved for all pairwise choices [120]. In addition, Quiggin shows that
stochastic dominance will hold for Ai over Aj if, and only if, for any state k such that
xik ≤ xjk, it exists another equally probable state l such that xjl ≤ xik ≤ xjk ≤ xjl [149].

4.3.3 Use of regret theory in the literature

In everyday life, one must often make decisions in benign situations which tend to repeat
frequently. For instance, which queue is the fastest in the supermarket? What route to
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drive in order to reach the destination as fast as possible? These decisions are made in
an uncertain environment where many decisive factors are unknown. In order to increase
difficulty, other players with unknown strategies are also part of the environment, which
can be described as repeated games, and often play against us. Blum and Mansour
understood very well the situation and proposed a model which can describe it. They
also propose regret-based approaches on full or partial information games which may
allow to reach a Nash Equilibrium [20].

Reaching the Nash equilibrium using regret approaches has been subject to many
investigations for the no-regret learning field. An algorithm is considered as no-regret
if, for every input sequence, the regret grows sub-linearly in T periods which correspond
to the history of the repeated game [115]. Greenwald and Jafari defined a general class
of no-regret algorithms able to span the spectrum from no-internal regret learning to
no-external regret algorithm. A class of game-theoretic equilibrium, denoted as Φ, is also
defined which shows that any distribution of execution of no-regret algorithm converges
to this equilibrium [72],[88]. Germano and Lugosi introduced the regret testing which
allows the player to use stochastic learning defined by Foster and Young [59] to reach
Nash equilibrium without knowing anything about the opponent, even if it exists [67].
However, regret theory is not only used in order to provide interesting approaches, it is
also used in order to determine bounds on learning procedures using Markov Decision
Processes [7], or in more precise algorithmic problems: regret Matching algorithms [73]
and Distance Constrained Vehicle Routing problem [61], among others.

Another aspect to consider, matrix games are often used in the literature, but much
less is known about convex games [167]. A convex game is based on a convex set of
functions. In this type of games, one way to win the game consists in being part to
a powerful cooperation of players. A coalition with a high number of players is more
attractive than a feeble numbered coalition. This means, when players are attracted by
a coalition, the attraction factors proportionally increases. This aspect only works when
the game is played cooperatively leading to a “snowballing” effect. For this type of game,
traditional regret algorithm cannot be applied. It has to be adapted as was done in [81]
and [70].

Regret algorithm is also often used in optimization problem which are under uncer-
tainty like random sampling [123], spanning tree, shortest path [9], p-center problems [8],
cheapest insertion for TSP [80] and many others. Most of the cited problems are dealing
with the minimax regret problem introduced by Von Neumann [187].

In this dissertation, tasks are placed one after another. The previous choices have
to be taken into account and a will to optimize the global solution quality is present.
This scheduling problem can be related to the mapping problem in some particular cases.
Because there is currently no regret algorithm on the mapping problem, the focus will
be laid on regret algorithm for the scheduling problem. A number of minimax regret
scheduling problems are dealt in [110]. For instance, Averbakh use the regret for max-
imum weighted tardiness scheduling problem [8]. Kaspersky and Lu et al. also worked
with regret for scheduling single machine sequencing [101], [102] and [124].

One can notice that regret algorithm are able to propose acceptable solutions for
scheduling problems. Because scheduling and mapping problems are similar, regret theory
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will now be applied on the mapping problem in order to minimize the solution quality of
the mapping.

4.4 Regret Based Heuristic for mapping of non-unitary

weighted task graphs

In the previous chapter, the Task Wise Placement (TWP) algorithm (Algorithm 5) has
been introduced. Although the introduced algorithm provides satisfying results on uni-
tary weighted instances (i.e. all weights and resources are set to 1), it is not able to deal
with instances with various weights. Therefore, after a quick redefinition of TWP, a new
regret-based algorithm will be presented, able to provide valuable solutions for this issue.

4.4.1 Task-Wise Placement behavior on non-unitary task graphs

Brief summary of TWP

In TWP, for the evaluation of the cost of mapping a task onto a node, a metric has been
set up called the distance affinity. It is also described in the previous chapter. In a single
phase placement process, TWP iteratively assigns each task with respect to this metric.

Initially, a task whose number of adjacent edges is maximum is placed on an arbitrary
node. All its (unassigned) neighbors are placed into a waiting set and their corresponding
distance affinities towards the selected node are computed.

Next, the task with the highest task to node affinity is selected and removed from the
waiting set. If two or more tasks have the same affinity, the priority corresponds to the
FIFO order. The selected task is then placed in the node with whom it has the greatest
affinity.

When the chosen node is saturated, all tasks whose greatest affinity corresponds to
a saturated node are removed from the waiting set. All unsaturated nodes which are in
the neighborhood of the saturated node are assigned one unassigned task in the order of
a pre-generated ordering, generated by Breadth-First Traversal (BFT).

Bounds of TWP

The general behavior of the algorithm with homogeneous instances is that a task may and
will always be assigned to the node with sufficient free space and with the best affinity.
On non-unitary instances, diverse weight values constrain the execution of the algorithm
to a further extent. In some configurations, the mapping cannot be computed because
of insufficient free space on the target node. Previous choices, which lead to the actual
task configuration in a node, may prohibit the mapping of a task which could have really
improved the solution quality. This behavior tends to dramatically decrease the quality
of the mapping solutions.
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4.4.2 Introduction of the task cost notion

In TWP, in order to determine to which node a task should be mapped, a distance affinity
function between a task t and a node n is used. This function is defined as follows:

aff(t, n) =
∑

n′

∑

t′

xt′n′qtt′ ×
1

2× dnn′ + 1
. (4.10)

Each time a task is mapped, the affinities of all tasks which can be affected by this
mapping have to be computed again. In the new algorithm, the notion of task to node
affinity is replaced by a notion of task to node cost. The cost function is the following:

cost(t, n) =
∑

n′

∑

t′

xt′n′qtt′dnn′ . (4.11)

Maximizing the affinity corresponds to minimizing the cost. This new function corre-
sponds to the local cost added to the global DPN mapping objective function detailed
in Subsection 1.7 when t is assigned to n. It has the advantage of removing a compute
expensive division operation, with positive impact on global execution performance.

4.4.3 A new task selection model based on regret theory

In the traditional regret approach, the choice is only made between the two best nodes.
Limiting the mapping selection to only two nodes which present the lowest cost at the time
of the current task selection potentially misses important opportunities which may lead
to disastrous solution quality. Kilby’s augmented regret approach limits this behavior.

Kilby’s augmented regret

Several efficient regret-based heuristics have been developed in order to improve the two
choices model [3]. Kilby proposes a new approach which bypasses those bounds [104].
He assumes that sometimes, the best choice may be the third or the fourth element. By
evaluating only the two most interesting choices, the best choice may be missed. The
probability for this case augments when the number of choices is large. Moreover, in
our case, bad choices lead to bad mappings due to the high level of task correlation. In
Kilby’s heuristic, the regret value is computed using all candidate nodes.

For each task t, an ordered set C = {ct1, ct2, ..., ctm},m ≤ |N | is built, containing the
cost values to each of the candidate nodes (i.e. nodes onto which the task can be placed)
in ascending order.

The regret value is now the average of all levels of satisfaction for all pairs of nodes.
It can be expressed as follows:

regrett =

m−1
∑

i=1

m
∑

j=i+1

(ctj − cti)

m(m−1)
2

. (4.12)
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This formula can be computed in linear time using the equivalent expression:

regrett =

m
∑

i=1

cti × (2i−m− 1)

m(m−1)
2

. (4.13)

The task with the highest level of satisfaction is mapped to the node with the lowest
corresponding task to node cost.

4.4.4 Description of the algorithm

Algorithm 6 performs the regret computation and Algorithm 7 is the regret-based map-
ping algorithm.

The choice of the first task to be mapped is similar to TWP (that is, the task with
the highest sum of adjacent edge bandwidths). The task is assigned to the first available
node. Typical processor architectures show a sufficient level of symmetry for us to assume
the initial task assignment has no impact on mapping quality. Then, the regret criterion
explained in Section 4.4.3 is used for iteratively choosing the next task to be mapped, and
this process is repeated until all tasks are mapped. A set of candidate tasks is maintained
along this process, containing all the adjacent tasks that have not been mapped yet and
are neighbors of the already assigned tasks; this set corresponds to the tasks that have a
non-zero regret value.

4.4.5 Complexity of the algorithm

The complexity of the whole algorithm is now studied.
The regret computation of Algorithm 6 can be divided in three parts. First, the

cost values of each node where the task fits in are pushed into a queue. It is obviously
useless to deal with costs of nodes where the task can never be mapped onto. This
selection phase is performed in O(|N |). Second, costs are sorted in ascending order with
typical sort complexity O(|N | log |N |). Third, the regret equation 4.13 is computed.
This computation has a complexity of O(|N |). The greatest complexity of the function
correspond to the sort, this means the computation of Algorithm 6 has a complexity of
O(|N | log |N |).

Algorithm 7 can be divided into 2 parts: initialization and main loop. In the initial-
ization part, the task to node mapping costs for all neighbors of the assigned task are
computed along with the corresponding regret values. The complexity of this operation
is O(δ(n + |N | log |N |)) = O(δ|N | log |N |).

Now, we focus on the main loop part of the algorithm. All tasks are processed
sequentially and for each of them, the following operations are performed: a search for
the task with the greatest regret value (O(|T |)), a search for the node with the minimum
task to node cost value (O(|N |)), a cost update operation in the same way as in the
initialization with an identical complexity of O(δ|N | log |N |). Hence, assuming |T | > |N |,
the main loop complexity (which is the overall complexity) is O(|T |2 + |E||N | log |N |).
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Algorithm 6 compute Regret

Input: t ⊲ The task whose regret has to be computed.
Input: G′ = (N,E ′) ⊲ Node graph.
Input: costt ⊲ node cost vector of task t of size |N |.
Input: A ⊲ Task mapping assignment array of size |T |.
Input: C ∈ R ⊲ Node capacity.
Output: regret ⊲ Regret value of t.
1: Q← {∅} ⊲ Task to node costs array.
2: regret← 0 ⊲ Regret value.
3: for all n ∈ N do
4: if wt +

∑

t′:A[t′]=n

wt′ ≤ C then

5: Q← costtn

6: sort(Q) ⊲ Ascending sort of Q
7: k ← −|Q|+ 1
8: for all i ∈ Q do
9: regret← regret + Q[i]× k

10: k ← k + 2

11: if |Q| > 1 then
12: regret← regret

|Q|(|Q|−1)
2

13: else
14: regret← 99999999

15: return regret
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Algorithm 7 Regret-based Task Placement

Input: G = (T,E): task graph with q bandwidth matrix
Input: G′ = (N,E ′): node graph with d distance matrix
Input: C ∈ R: node capacity
Output: A: Task mapping assignment array of size |T |
1: R← {0}|T | ⊲ Regret value of each task
2: W ← {∅} ⊲ Waiting set
3: costt ← {0}|N | ⊲ task to node cost vector of task t
4: t0 ← argmax

t

(
∑

t′∈NG(t)

qtt′)

5: A[t0]← 1
6: for all t ∈ NG(t0) do ⊲ Update of the cost vector
7: W ← W ∪ {t}
8: for all n ∈ N do
9: costtn ← costtn + qt0t × d1n

10: Rt ← computeRegret(t, G′, costt, A, C)

11: while |W | > 0 do
12: t← argmax

t∈W
(Rt)

13: n← argmin
n∈N

(costtn)

14: A[t] = n

15: W ← W\{t}
16: for all t′ ∈ NG(t) do ⊲ Update of the cost vector
17: W ← W ∪ {t′}
18: for all n′ ∈ N do
19: costt′n′ ← costt′n′ + qtt′ × dnn′

20: Rt′ ← computeRegret(t′, G′, costt′ , A, C)

21: return A
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Now that the complexity has been determined, the algorithm is compared to other
approaches in terms of performance.

Algorithm 8 GRASP procedure

Input: G = (T,E) ⊲ Task graph with q bandwidth matrix.
Input: G′ = (N,E ′) ⊲ Node graph with d distance matrix.
Input: C ∈ R ⊲ Node capacity.
Input: Max ⊲ The maximal number of times the GRASP is performed.
Output: A ⊲ Task mapping assignment array of size |T |.
1: for all (seed ∈ [0;Max]) do
2: Ac ← construction phase(G,G′, C, seed)
3: A← local Search Phase(Ac)

4: return A

4.5 A greedy randomized adaptive search procedure

for the Regret-Based Approach

On certain instances, a greedy algorithm may be trapped by a wrong decision which
leads to a lower mapping quality independently of the size of the instance. In order to
avoid this trap, one solution consists in running several times a randomized version of the
algorithm and only considering the best generated-solution. One efficient randomization
approach consists in performing a Greedy Adaptive Search Procedure (GRASP) [49].

4.5.1 Definition of the GRASP procedure

A GRASP is a two-phase iterative process: a construction phase and a local search
phase. During the construction phase, a list of possible solution is built and the benefits
of all elements in this list are computed. This computation makes the GRASP procedure
adaptive. A solution is randomly chosen among all solutions in the list. Once the solution
has been built, a local search phase occurs. The neighborhood of the solution, obtained
during the construction phase, is explored and if a better solution if found, it replaces
the current solution. This phase is performed until no better solution can be determined.
Algorithm 8 sums up the description of the GRASP procedure applied to our approach.

Let us emphasize the fact that the execution of all the different randomized procedures
are strictly independent, and can be done in parallel, meaning that with a sufficient
number of processors, the GRASP procedure only takes the longest time among all the
different searches.

Feo et. al. use this approach in order to solve the set covering problem and the
maximal independent set problem which are combinatorial problems [49].

Sirdey et. al. propose a GRASP-based approach in order to generate partitions which,
applied to a simulated annealing heuristic able to solve the QAP, solves the mapping
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problem as explained in Section 2.4. In this heuristic, only the construction phase is
performed, but no local search.

Stan et. al. elaborate a GRASP method able to determine the best partitioning-based
mapping with routing constraint. [176], [177], [178].

4.5.2 GRASP and RBA

The GRASP 1 procedure is applied to the RBA heuristic. The construction phase consists
in running Algorithm 7 as many times as necessary in order to build the best possible
mapping. However, RBA is modified during the determination of the highest regret value
operation detailed in Subsection 4.4.3 and illustrated by Algorithm 6. Several identical
maximal regret values may exist. The heuristic, detailed above, used a FIFO policy
for selecting the highest regret of the first task. Instead of choosing the first task, the
choice is randomly made among the highest regret values. This choice can be extended
to tasks whose regret values are not the highest but five or ten percents lower. Our
implementation uses a uniform random generator. In order to avoid the generation of
same random values, the seed of the random generator is different for each construction
phase.

In this dissertation, no local search heuristics have been developed despite the fact that
many heuristics which perform local search operation can be found in the literature, more
precisely in multilevel partitioning or in mapping solvers cited in Chapter 2. However,
most of them are processing a neighborhood search with load balancing constraint on
nodes. This is the reason why these heuristics cannot be applied to our problem. The
design of such a heuristic is at least as hard as the elaboration of the mapping heuristic.
This is the reason why the GRASP is only performed using a construction phase.

4.6 Application of the heuristic

4.6.1 Execution platform

The target system is a server based on the AMD Opteron 6172 processor running at 2.1
GHz.

4.6.2 Instances

We challenged our algorithm to test its strength on several graph architectures. In the
previous chapter, we only used two kinds of instances: grids and logic gate networks. In
this work, we added more types of instances. Table 4.2 shows the list of all instances
which have been computed for our tests. The provided diameter values are estimates
obtained by computing the eccentricity of pseudo-peripheral tasks.

1Stricto-sensu our algorithm is a semi-greedy algorithm rather than a proper GRASP as it lacks the
local search phase. Still, as the semi-greedy procedure is the key component of a GRASP, such algorithms
are often slightly abusively referred to as GRASP in the operational research literature.
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Graph Name |T | |E| diam. (est.)

Grids
grid100x100 10, 000 39, 588 200

250, 000 250, 000 997, 474 1000
LGN b14 10, 012 38, 111 14

b19 231, 266 881, 690 41

Mat.M
Cote/vibrobox 12, 328 330, 311 9

Cote/troll 213, 453 11, 979, 477 77

Series-
10235 SP40 10, 235 31, 470 34

Parallel
15779 SP30 15, 779 44, 244 347
201880 SP40 201, 880 620, 594 196
261033 SP30 261, 033 732, 097 1, 155

Random
10000 10, 000 68, 808 8
200001 200, 001 11, 883, 611 4

Table 4.2: Task graphs with several topologies. Shown values are the number of tasks,
the number of edges and the diameter.

Grids

It consists of a set of grid (or square mesh) shaped task topologies, which correspond to
regular dataflow computational networks like matrix products.

Logic gate networks

The Logic Gate Networks (LGN) instances are generated out of logic gate networks
resulting in the design of microprocessors. These configurations of task networks typically
can be found in real life complex dataflow applications.

Matrix market

The Matrix Market [38] is a large collection of sparse matrices. The purpose of this
collection is to be used in comparative studies of algorithm. Each matrix has got its
dedicated web page where its features can be found. Besides those features, a graphical
representation of the matrix and the corresponding graph can be found. It is also possible
to download it. One major quality of the Matrix Market collection is the presence of very
large sparse matrices.

We specialized our study on one famous collection of matrices, the Walshaw’s instances
[195]. Those matrices can also be found in the Matrix Market Collection. Those matrices
are often used in the literature for other works like graph partitioning [11], [86].

Random graphs

We made the assumption that random generated graphs do not show the particular local
structure which makes the dataflow task graphs convenient for mapping, meaning that
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if our algorithm is able to find a good mapping on random topologies, it may be able to
find a good mapping on any kind of graphs.

They are generated using the Erdos-Renyi algorithm properties [46]. This choice has
been made because it is one of the most famous models for generating random graphs.
The generation is such that we preserve an average degree similar to that of typical
dataflow graphs.

Series-parallel graphs

Series-parallel graphs present a structure very similar to that of classical DPN graphs.
They are fertile testing ground for various hypotheses like modeling sequences of events
in time series data [126], modeling transmission sequencing requirements of multimedia
presentation [4] or the modeling of task dependencies in a dataflow model of massive data
processing for computer vision [34].

Two classes of instances have been randomly generated with two different genera-
tion settings. One of these classes, named SP30, contains two instances of 15, 779 and
261, 033 tasks respectively which have been generated using a probability of 30% of par-
allel branches. The other class, named SP40, with two instances of 10, 235 and 201, 880
tasks with a parallel branch probability of 40%.

4.6.3 The node layout

The node layout is a square torus, hence the number of nodes in all instances is a square
value.

For each pair of nodes (n, n′), the distance dnn′ is the Manhattan distance between
nodes n and n′. It can be modulated to improve the efficiency of the algorithm like for
instance using the square Manhattan distance values than the standard one.

4.6.4 Random weight generation

We want to adapt the tasks and the edges weights in order to work with instances which
are very similar to real applications.

Let x a random variable for weight generation. In order to be as close as possible to real
applications, the weight distribution should follow a continuous probability distribution
for each realization of x. The most suitable distribution to this requirement is the Normal
(Gaussian) distribution, whose density function is detailed below:

f(x,m, s) =
1

s×
√

2π
e(

−1
2
)(x−m

s
)2 . (4.14)

In Equation 4.14, m represents the average value and s corresponds to the standard
deviation.

Our test cases consists of several types of tasks which show different characteristics
(for instance in terms of memory usage or CPU time consumption). In this study, we
generated instances using two different task types with significantly different behaviors.
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Figure 4.2: weight density function (m0 = 5, s0 = 2,m1 = 15, s1 = 3).

Each of those behaviors follow the same normal distribution but with different parameters;
for this probabilistic model, we use the bimodal density function below:

g(x) = αf(x,m0, s0) + βf(x,m1, s1) . (4.15)

In Equation 4.15, m0 and m1 respectively have been assigned the values 5 and 15.
s0 and s1 are the corresponding standard deviations whose values are respectively 2 and
3. We do not want the x value to be too irregular, this is why the range of x values is:
x ∈ [0 : 30]. α and β respectively have the value of 0.8 and 0.2 because in usual dataflow
task graphs, more small tasks are found than large ones.

Figure 4.2 provides a graphical view of the weighting density function.

4.6.5 Experimental protocol

We suppose that, depending on the number of nodes, the behavior of the algorithm is
different. This is why the algorithm is applied to several node values: 16, 36, 64, 144,
256, 400, 576, 1024. Those values have been chosen because they correspond to square
torus architectures. The upper bound limit of the number of nodes is set to 1024, which
is a large value compared to the size of currently existing manycore systems.

In order to reduce statistical anomaly, for each number of nodes and each task graph
topology, a group of 30 instances has been generated. Each instance in a same group
shares the same topology and the sum of all task weights are the same. The individual
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Figure 4.3: Random
Regret

for task graphs with an order of magnitude of 10, 000 tasks.

# of 10, 000 Grids 12, 328 MM 15, 779 SP30
nodes ratio time(s) ratio time(s) ratio time(s)

16 26.02 0.9 3.25 14.43 76.90 0.77
36 21.95 1.08 3.44 15.77 61.87 1.00
64 20.45 1.29 3.58 17.83 55.72 1.35
144 18.13 1.81 3.66 23.16 50.34 1.82
256 17.15 2.64 3.72 31.1 45.60 2.65
400 16.52 3.79 3.76 42.34 41.30 3.67
576 16.06 5.24 3.71 55.56 38.22 4.97
1024 15.43 8.87 3.75 89.6 33.87 8.38

Table 4.3: Ratio Random
Regret

for task graphs with an order of magnitude of 10, 000 tasks.

weights are different from one instance to another. Those weights are generated using
the density function from Equation 4.15. In order to add some stress on the algorithm,
the total sum of task weights is equal to 95% of the sum of node capacities, making the
instances very tight with a very reduced feasible domain. The following results in this
paper are average values, for each group, of the results obtained of the 30 corresponding
instances.

4.6.6 Experimental results and analysis

In this analysis, the algorithm which generates a random mapping is denoted as Random
Approach (RA). The algorithm with a regret-based task selection is called Regret Based
Approach (RBA). The solution value of the random approach is divided with that of the
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# of 10, 235 SP40 10, 000 random 10, 012 LGN
nodes ratio time (s) ratio time (s) ratio time (s)

16 12.56 4.39 2.58 11.36 21.51 6.5
36 11.69 4.76 2.36 12.2 13.21 6.89
64 12.09 4.34 2.35 12.48 12.17 7.17
144 12.20 4.95 2.27 13 13.86 8.19
256 11.36 5.75 2.26 16.45 14.42 9.11
400 11.64 6.45 2.26 18.6 14.29 10.9
576 11.17 7.48 2.26 22.33 14.31 13.12
1024 10.37 10.03 2.25 30 14.13 17.71

Table 4.4: Ratio Random
Regret

for task graphs with an order of magnitude of 10, 000 tasks.
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Figure 4.4: Random
Regret

for task graphs with an order of magnitude of 200, 000 tasks.

# of 231, 266 LGN 200, 001 rand 201, 880 SP40
nodes ratio time (s) ratio time (s) ratio time (s)

16 7 3,886 1.57 14,889 21 1,474
36 8 3,483 1.43 13,562 25 1,189
64 9 3,000 1.43 14,000 27 1,119
144 9 3,041 1.38 13,526 27 1,165
256 10 2,686 1.36 12,281 27 1,214
400 10 2,255 1.51 12,790 27 957
576 10 2,655 1.37 13,165 27 942
1024 9 2,567 1.37 15,156 26 1,107

Table 4.5: Ratio Random
Regret

for task graphs with an order of magnitude of 200, 000 tasks.



108 CHAPTER 4. REGRET-BASED MAPPING METHOD

 1

 10

 100

 16  36  64  144  256  400  576  1024

Re
gr

et
/R

an
do

m
 R

at
io

 

Number of Nodes

Random Graph (200,001)
Cote/Troll (213,453)

LGN (231,266)

Figure 4.5: Random
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for task graphs with an order of magnitude of 200, 000 tasks.

# of 250, 000 Grids 261, 033 SP30 213, 453 MM
nodes ratio time (s) ratio time (s) ratio time (s)

16 158 1091 144 62 23 829
36 92 698 143 59 18 825
64 104 592 84 47 17 939
144 114 756 86 65 16 1,055
256 117 872 115 74 16 1,260
400 119 825 118 109 16 1,570
576 119 815 107 75 16 1,934
1024 123 821 102 113 16 2,875

Table 4.6: Ratio Random
Regret

for task graphs with an order of magnitude of 200, 000 tasks.

# of 1, 000, 000 Grids 1, 256, 931 SP30 2, 285, 274 SP30
nodes ratio time (s) ratio time (s) ratio time (s)

16 847 3, 743.00 4, 667 1, 743.00 411 17, 090.00
36 402 5, 381.00 3, 044 1, 887.00 458 13, 728.00
64 186 5, 666.00 2, 124 1, 792.00 295 16, 482.00
144 196 7, 133.00 2, 419 1, 944.00 322 14, 882.00
256 262 7, 635.00 3, 224 2, 191.00 430 14, 965.00
400 243 8, 118.00 2, 874 2, 281.00 439 14, 098.00
576 237 8, 506.00 2, 837 2, 505.00 429 13, 448.00
1024 232 8, 927.00 2, 625 2, 848.00 398 14, 702.00

Table 4.7: Ratio Random
Regret

for task graphs with an order of magnitude of 1 and 2 million
tasks.
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for task graphs with an order of magnitude of 10, 000 tasks.

regret-based approach. The aim of this ratio is to evaluate the quality of the mapping
according to the metric defined in section 1.8. As explained in section 1.7, as our problem
is a minimization problem, higher solution quality ratios are preferable.

Table 4.3 and Table 4.4 display the solution quality ratio of the RBA compared to
RA on instances with tens of thousands of tasks. Figure 4.3 is a graphical view of these
tables. The values of the abscissa axis correspond to the number of nodes and the values
of the ordinate axes correspond to the ratio. Table 4.5, Table 4.6 and Figure 4.5 show a
similar analysis on instances of hundreds of thousands tasks.

Random graphs (10, 000, 200, 001) present no particular structures to exploit. This
makes it difficult for the regret-based approach to exploit any internal graph structures.
However the average results of RBA are 1.5 to 2.3 times better than RA’s for any number
of nodes. Moreover, from 16 to 256 nodes, it is the approach which is the longest to
compute.

The sparse matrix of the matrix market graph (12,328) is a sparse matrix in which
all non-zero values are situated in very heterogeneous positions. It still contains enough
local structures that can be exploited to show better behavior than on random graphs
(average ratio of 3). Nevertheless, starting from 256 nodes, computation times increase
very significantly and is twice as high as those of random graphs.

For Logic Gate Networks (231, 266), the average ratio is around 9. The average
mapping time is around 1 hour.

Grids (10,000, 250,000) present a particular square architecture which is easily ex-
ploitable. On this kind of architecture, our algorithm starts to provide respectively about
16 and 150 times better results than RA. This is very encouraging because this type of
structure has similarities with some DPN architectures.

For series-parallel class SP40, the obtained results provide average ratio values which
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vary from 11 to 27. Besides, on SP30 instances, results vary from 33.26 to 144. This is
the only task graph topology for which we can notice that the ratio decreases when the
number of nodes increases.

Another aspect to mention concerns computation times. For grids and series-parallel
architectures, the computation is very fast. We are able to find a good valid mapping in
less than 5 seconds for tens of thousands tasks and less than 2 minutes for hundreds of
thousands tasks.

Our regret-based method shows particularly good behavior when the instances con-
tain a large part of local structure that can be exploited, similarly to real life dataflow
applications. This is particularly true on grids, logic gate networks and series-parallel
task graph topologies. The best results are obtained on graphs with high diameter value
and relatively low average degree such as grids and series-parallel. The impact of the
diameter is visible when comparing SP30 and SP40 instances for which a higher diame-
ter leads to better solution values and better performance. On LGN graphs, where the
diameter is significantly lower than our series-parallel instances, the obtained ratios are
still up to ten times better than RA.

Figure 4.6 is a graphical comparative study between the task-wise placement method
and the regret-based approach on task graphs with an order of magnitude of 10, 000
tasks. The abscissa values correspond to the TWP

Regret
time ratio and the ordinate axis

value correspond to the TWP
Regret

mapping solution value ratio. Each curve on the figure
corresponds to the mapping of one of the task graph topology groups on the different
target architectures (from 16 to 1024 nodes). For each curve, the ratios tend to increase
when the number of nodes increases. Three different behaviors can be observed. For
grids and SP30, the solution quality of RBA tends to be much better than TWP on the
larger target architectures while the computation time of RBA remains slightly better
(ratio < 2). For LGN and random instances, the solution quality ratio is close or inferior
to 1 while the computation time ratio increases along with target size (RBA is 10 times
on 1024). SP40 and Matrix Market show an intermediate behavior where both ratios
increase with the target size.

These results show that the regret-based approach performs in a much more scalable
way than TWP and provides better solution qualities on graphs with the most similarity
with typical dataflow process network graphs. Due to excessive run times of TWP, this
study could not be performed on graphs with orders of magnitude of 200, 000 tasks.

In a completely different subject, the RBA heuristic is applied on task graphs up to
1 and 2 millions of tasks. Table 4.7 displays the obtained results. In line of what we
concluded, RBA is able to map grids in less than 3 hours with solution values which are
several hundreds of times better than the random approach. However, over 1 million,
grids computational time start to explode. The focus is now set on series-parallel task
graphs. RBA is able to map within one hour a one million task graphs with solution
values several thousands times better than those from the random approach. Moreover,
on task graphs up to 2 million tasks, it takes 4 to 5 hours for mapping the task graph
with a ratio still hundreds of times better than the random approach.
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# of solutions 0% 1% 2% 5% 10% 20%

1 17.2 32.4 41.9 60.4 82.9 97.4
2 23.6 43.3 52.6 71.8 90 99.2
3 29.3 50.2 59.9 78.7 93.6 99.5
4 34 55 64.5 83.3 94.9 99.7
5 38.3 59.3 68.4 86.6 96.4 99.8
6 42.3 62.8 71.9 88.4 96.9 99.9
7 46.3 66.3 74.8 90 97.3 99.9
8 49.6 69.1 77.1 91.5 97.9 99.9
9 52.3 71.2 78.8 92.7 98.3 99.9
10 55.3 73.4 80.5 93.4 98.4 99.9

Table 4.8: Cumulated percentage of solution values.

4.6.7 Experimental results and analysis using GRASP proce-
dure

The experimental protocol of applying the GRASP procedure on the RBA, as explained
in Subsection 4.5, consists in the following: the seed of the random generator is modified
for each mapping generation. We chose to select 30 different seed values because, in
practice, it corresponds to a sufficiently large value which allows to assess the behavior of
the heuristic. Depending on obtained mapping results, the best mapping solution quality
and the worst execution time among 30 mapping solutions values are selected. However,
one drawback of computing all seeds consists in the explosion of execution time. For
instance, on Logic Gate Networks instances up to 231, 266 tasks, the execution times
varies from 4, 000 seconds to 12, 000 seconds. In addition, empirical results show that
instances which are long to compute tend to exhibit a poor solution quality. We cannot
afford to compute all seeds in order to find the lowest mapping quality even if it is run in
parallel. The question we want to answer is how many iteration of the GRASP procedure
are required in order to get a mapping quality value as close as possible to the lowest
mapping quality value. The terminology best solution quality means the lowest mapping
value among all seeds. This terminology is used in the following.

Determination of the number of solutions

In order to address this issue, instances detailed in Subsection 4.6.2 are computed again.
Random graphs up to 200, 000 tasks are not considered because execution times of this
type of instances are too important. The same experimental protocol is performed than
that described in Subsection 4.6.5. All types of tasks graphs are mapped onto several
manycore architectures whose number of node vary. This means that for each type of
graphs, 8 sets of instances are created. For each set, a group of 30 instances are generated
with different tasks and edges weights. The average mapping value is computed. One
additional feature is added. For each instance, the mapping heuristic is performed with
all 30 different seeds in parallel.
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# of 10, 000 Random 12, 328 MM 15, 779 SP30
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 1.00 0.78 1.01 0.83 1.25 0.64
36 1.01 0.85 1.00 0.85 1.13 0.69
64 1.02 0.84 1.01 0.89 1.08 0.81
144 1.01 0.81 1.00 0.94 1.06 0.92
256 1.00 0.92 1.00 0.98 1.05 0.96
400 1.00 0.92 1.00 1.03 1.03 0.98
576 1.00 0.97 1.00 1.06 1.06 1.04
1024 1.00 0.98 1.00 1.07 1.04 1.05

Table 4.9: Solution Quality and Time Ratios Regret

GRASP
for task graphs with an order of

magnitude of 10, 000 tasks.

After computing all instances, the best mapping value (BMV) and the worst execu-
tion time are determined for each group of instances. During the computation of these
thousands of instances, the order (in terms of execution time) at which the BMV occurs
is determined. First column of Table 4.8 shows the result of this analysis. This table
represents the percentage of the cumulated number of best quality solutions found at the
corresponding number of generated solutions. In this table, only the first 10 generated
solutions among the 30 seeds is displayed. Clearly, even if the event of having the BMV
at the first generated solution is a probability of 0.17, after 10 generated solutions, there
is only a probability of 0.55 to get the BMV. In order to reduce the number of generated
solutions for getting an acceptable solution, mapping values which are 1 percent worse
than BMV, are accepted. It happens that after 3 generated solutions, the probability
of having one acceptable solution is 0.5. We choose to increase the range of acceptable
solutions by considering solutions which are 2%, 5%, 10% and 20% worse than BMV. For
2% worse solutions values, it requires only 2 generated solutions for having a probability
of 0.5 to get an acceptable solution. For 5% worse solution values, 7 generated solutions
are needed to get a probability of 0.9 for having one acceptable solution. For 10%, it
takes 2 generated solutions for having the same probability and for 20% worse solutions,
just one generated solution is needed.

GRASP computation

Table 4.9 and Table 4.10 display the results of the GRASP by accepting first only best
solution values. In these tables can be found solution quality ratios and execution time
ratios of RBA

GRASP
on instances of thousands of tasks. Table 4.11, Table 4.12 show a similar

analysis on instance of hundreds thousands of tasks. If solution quality ratios are lower
than 1, it means that solution qualities of the GRASP procedure are worse than that
obtained by RBA computations. In addition, if time ratios are lower than 1, it means
that GRASP computations take more time than RBA computations.

On random graphs of several thousands tasks, the solution quality ratios is 1 for all
sets of instances. Time ratios vary from 0.78 to 0.98. It has been explained that these
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# of 10, 235 SP40 10, 000 grids 10, 012 LGN
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 1.09 0.86 1.16 0.74 0.99 0.73
36 1.13 0.87 1.13 0.78 0.98 0.76
64 1.06 0.77 1.10 0.81 1.02 0.76
144 1.01 0.85 1.12 0.94 1.04 0.79
256 1.08 0.88 1.12 0.98 1.05 0.87
400 1.01 0.89 1.12 1.04 1.04 0.94
576 1.05 0.93 1.10 1.08 1.04 0.99

1,024 1.07 0.95 1.08 1.09 1.03 0.99

Table 4.10: Solution Quality and Time Ratios Regret

GRASP
for task graphs with an order of

magnitude of 10, 000 tasks.

# of 231, 266 LGN 201, 880 SP40
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 1.09 0.54 1.00 0.46
36 1.06 0.57 1.06 0.49
64 1.09 0.51 1.06 0.39
144 1.10 0.5 1.06 0.38
256 1.09 0.57 1.08 0.63
400 1.10 0.6 1.07 0.60
576 1.09 0.58 1.07 0.57

1,024 1.09 0.29 1.08 0.65

Table 4.11: Solution Quality and Time Ratios Regret

GRASP
for task graphs with an order of

magnitude of 200, 000 tasks.

# of 250, 000 Grids 261, 033 SP30 213, 453 MM
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 0.9 0.6 1.08 0.64 1.09 0.71
36 1.03 0.71 1.04 0.67 1.07 0.71
64 1.06 0.7 1.06 0.67 1.08 0.75
144 1.04 0.73 1.09 0.73 1.09 0.79
256 1.10 0.81 1.06 0.75 1.09 0.89
400 1.10 0.81 1.07 0.81 1.09 0.94
576 1.10 0.82 1.06 0.79 1.06 0.97

1,024 1.11 0.85 1.06 0.87 1.06 1.00

Table 4.12: Solution Quality and Time Ratios Regret

GRASP
for task graphs with an order of

magnitude of 200, 000 tasks.
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types of graphs are very hard to map. Using a GRASP does not improve the solution
quality. Moreover, GRASP computation takes more time. These computational times
are already important, computing GRASP on several hundreds of thousands tasks is
pointless.

On Logic Gate Networks, solution quality ratios increase from 2% to 5%. However, for
several thousands of tasks, time ratio varies from 0.73 to 0.99. Time variations seems more
important for a weak number of nodes than on an important one. This trend concerns
only this order of magnitude. For several hundred thousands of tasks, the solution quality
increase remain constant around 10% but the ratio is around 0.6 for all nodes except for
1024 which runs slower.

On Matrix Market instances, as detailed in Subsection 4.6.5, these matrices present
similar behavior than random graphs. There is no improvement on solution quality and,
for instances lower than 256 nodes, it runs slower. However, starting from 400 nodes,
GRASP starts to run faster. It might be that for large target topology, it is much easier
for GRASP to map this type of graphs.

On grids, solutions are 1.03 to 1.17 better than RBA. One exception can be found on
several hundreds of thousands tasks mapped on 16 nodes where solution quality is lower.
This may be due to the fact that GRASP was not able to find a better solution than
RBA. on several thousands tasks graphs, starting from 256 nodes, GRASP runs 4 to 9%
faster than RBA. However, for hundreds of thousands tasks, time ratio varies from 0.6
to 0.85.

On SP40 instances, independently of the number of tasks, GRASP provides better
solutions. Moreover, for 10, 235, solution quality ratios vary from 1.01 to 1.13 while the
corresponding time ratio varies from 0.77 to 0.93. For 201, 880, solution quality ratios are
slightly better (from 1.00 to 1.08) but computational time ratios are lower than 10, 235
(0.38 to 0.63).

On SP30 instances, for 15, 779, solution qualities vary from 1.03 to 1.25 However,
for a 25% increase of the solution quality, execution time of this solution is 49% lower
than the deterministic heuristic. From 36 nodes to 400 nodes, execution time are lower
however, starting from 576 nodes, GRASP runs faster than RBA. On 261, 033 instance,
solution qualities are also slightly better (from 4 to 8%) while execution times are lower
(from 0.64 to 0.87).

After analyzing all instances, we observe best solution quality performance is reached
for series-parallel graphs (SP30 and SP40) ad grids meaning that GRASP is efficient
and consistently improves the solution quality. Random graphs, Matrix Market and
LGN remain hard to map. This is the reason why solution quality increase is weak. In
addition to this analysis, independently of the type of instance, we can also notice that
while the number of nodes increase, GRASP execution time decrease. Depending on the
type of instance, standard deviation between 16 and s1, 024 nodes ratios are not the same.

Partial GRASP computation

We decided to accept solutions which are 5% worse than BMV and stopped GRASP
execution after 7 generated solutions. With this number of generated solutions, the
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# of 10, 000 Random 10, 000 grids 12, 328 MM
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 0, 97 0, 81 1, 08 0, 88 0.97 0, 84
36 0, 97 0, 85 1, 070 0, 92 0.97 0, 85
64 0, 97 0, 85 1, 041 0, 95 0.97 0, 89
144 0, 97 0, 88 1, 05 1, 04 0.97 0.94
256 0, 97 0, 91 1, 06 1, 05 0.97 0.96
400 0, 97 0, 92 1, 04 1, 09 0.97 1.01
576 0, 97 0, 96 1, 04 1, 10 0.97 1.03

1,024 0, 97 0, 98 1, 00 1, 09 0.97 1.04

Table 4.13: Solution Quality and Time Ratios Regret

GRASP
for partial GRASPs for task graphs

with an order of magnitude of 10, 000 tasks.

# of 10, 012 LGN 15, 779 SP30 10, 235 SP40
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 0, 96 0, 79 1, 15 0, 72 1, 04 0, 86
36 0, 94 0, 80 1, 06 0, 81 1, 075 0, 88
64 0, 97 0, 80 1, 02 0, 93 1, 01 0, 88
144 0, 99 0, 85 1, 00 1, 03 0, 97 0, 86
256 0, 99 0, 89 1, 00 1, 04 1, 03 0, 89
400 0, 99 0, 94 0, 98 1, 03 0, 97 0, 89
576 0, 99 0, 98 1, 00 1, 07 1, 00 0, 93

1,024 0, 99 0, 98 0, 93 0, 99 1, 01 0, 93

Table 4.14: Solution Quality and Time Ratios Regret

GRASP
for partial GRASPs for task graphs

with an order of magnitude of 10, 000 tasks.

# of 213, 453 MM 231, 266 LGN 250, 000 Grids
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 1, 02 0, 87 1, 03 0, 66 0, 87 0, 72
36 1, 01 0, 84 1, 01 0, 70 0, 95 0, 78
64 1, 02 0, 93 1, 02 0, 70 1.00 0, 76
144 1, 05 0, 95 1, 04 0, 70 0, 97 0, 81
256 1, 04 1, 04 1, 03 0, 75 1, 03 0, 87
400 1, 04 1, 07 1, 05 0, 79 1, 03 0, 88
576 1, 02 1, 07 1, 04 0, 73 1, 03 0, 88

1,024 1.01 1.06 1, 03 0, 48 1, 04 0, 90

Table 4.15: Solution Quality and Time Ratios Regret

GRASP
for partial GRASPs for task graphs

with an order of magnitude of 200, 000 tasks.
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# of 201, 880 SP40 261, 033 SP30
nodes Sol. Qual. Time Ratio Sol. Qual. Time Ratio

16 0, 94 0, 61 0, 99 0, 70
36 1, 01 0, 67 0, 95 0, 77
64 0, 99 0, 61 0, 95 0, 80
144 1, 00 0, 56 1, 01 0, 88
256 1, 01 0, 81 1, 00 0, 90
400 1, 03 0, 78 0, 99 0, 95
576 1, 02 0, 72 0, 99 0, 93

1,024 1, 03 0, 84 0, 97 0, 96

Table 4.16: Solution Quality and Time Ratios Regret

GRASP
for partial GRASPs for task graphs

with an order of magnitude of 200, 000 tasks.

probability of 0.9 to get an acceptable solution. Table 4.13 and Table 4.14 display solution
quality and execution ratios of GRASP procedure compared to RBA on instances of
thousands of tasks. Table 4.15, Table 4.16 also show a similar analysis on instance of
hundreds of thousands tasks. Even if it is a GRASP procedure which is performed, this
GRASP execution is denoted as Partial GRASP.

Because obtained solutions correspond to a subset of solutions, the behavior of the
GRASP remains the same than the one described in Subsection 4.6.7. The focus will be
set on differences between the whole set of seeds and a subset of seeds.

First of all, the best solution correspond to a mapping solution which is 5 percent
worse than MBV. The range of possible solutions is brighter and the solution quality can
be less than 5% worse. Table 4.8 shows that for 7 generated solutions, the probability
of having BMV is 0.46, for 1% worse solution this probability is 0.66 and for 2% worse
solution , the probability is 0.75. Solution quality ratios displayed by Table 4.13, Table
4.14, Table 4.15 and Table 4.16 are in this range. Despite all these probabilities, it occurs
that for one instance, 7 generated solutions did not lead to a good solution quality. This
corresponds to the bold value in Table 4.13.

Even if solution qualities are near from BMV, all of them are lower. However, if
execution time ratios are analyzed, one can notice that either partial GRASP runs faster
than GRASP or it has the same computational time.

Using a GRASP procedure allows to determine acceptable solution qualities with fee-
ble deterioration which can be selected as shown in Figure 4.8. The number of generated
solutions and the computational time depends on the chosen deterioration. By allowing
an increasing percentage of worse solutions, it occurs that the GRASP procedure is able
to find an acceptable solution faster and needs to generate a feeble number of solutions.
This procedure can run in parallel and once a solution which fits the deterioration criteria
is found, the GRASP computation can be stopped.
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4.7 Conclusion

The goal of this chapter was to propose a new heuristic method able to tackle large
non-unitary weighted instances of the DPN mapping problem with capacity constraints
which emerge from the cyclo-static dataflow parallel programming paradigm. Being able
to provide good placements is crucial for execution performance of large-sized dataflow
programs on massively parallel architectures which are currently emerging. A previous
approach we called TWP provided average quality results on homogeneous instances but
not on non-unitary weighted instances. In this chapter, a greedy regret-based approach
adapted from TWP is presented. The cost property computation improvement led to bet-
ter runtime and a new regret-based task selection approach allows an adaptive mapping
taking further advantage from the locality properties of the task graph architecture.

As there is no known possible way to compare our results with exact solutions and
as we could not find equivalent algorithms in the literature to compare our results with,
we used the metric defined in Section 1.8 in order to evaluate the performance of our
heuristic. Moreover, TWP has been adapted for non-unitary weighted tasks and used as
a comparison heuristic. These two comparisons allowed us to appreciate the performance
of RBA.

Finally, we choose to apply a GRASP procedure on RBA. A uniform random task
selection has been added in the task selection process. After performing experiments, we
were able to build a statistical table which indicates the number of solution generation
needed in order to get an acceptable solution as close as possible to the best solution
that RBA is able to provide. Depending on the required solution quality, we are able to
estimate how many parallel executions are needed to be performed in order to achieve
this solution quality.

Due to the fact that the series-parallel architecture is very similar to the DPN archi-
tecture and that our algorithm provides solutions of good quality on such topologies, we
may conclude that our method is able to map large non-unitary weighted task graphs on
SMPs under capacity constraints in scalable time.
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Conclusion

The purpose of this thesis is the development of static mapping methods of tasks graphs on
homogeneous architectures. Several requirements for the mapping have to be met. Firstly,
the mapping algorithm should be scalable; secondly it has to be topology-aware of the
target architecture, and finally, it has to enforce node capacity constraints. This mapping
fits in the ΣC compilation toolchain and is intended to reduce inter-task communication
while merging as many tasks as possible on the same node. The interest of this gathering
consists in minimizing the execution time of the application.

In the state of the art, many mapping approaches are dealing with capacity constraints
and are topology-aware of the target architecture. However, despite the efficiency of the
produced mappings, these approaches are not scalable and their limits are often reached
around several thousands of tasks. In addition, partitioning and mapping solver, able to
deal with task graphs up to tens of million tasks, are focused on load balancing constraints
and are not considering capacity constraints. This aspect might shows that the state of
the art, at the time of writing of this thesis, does not provide approaches able to solve our
problem. This leads us to the establishment of heuristics able to fulfill the aforementioned
requirements.

The analysis of the state of the art shows, at the time of writing this thesis, that no
comparable algorithm can be found. This led to the establishment of a metric which is
able to evaluate the quality of the newly developed heuristics. This metric is based on
the solution value obtained by a random mapping. This metric allows to locate results
quality where the optimal is not known and where no approximations can be performed.

A first approach consists is solving the mapping problem using unitary-weighted tasks
and edges. Two heuristics have been developed: Subgraph-Wise Placement (SWP) and
Task-Wise placement (TWP). SWP is a two-phase mapping method. First, a subgraph is
built using the breadth-first traversal algorithm. Second, the subgraph is mapped using
a notion of affinity. The second heuristic is a greedy mapping heuristic which maps tasks
one after another using a notion of distance affinity. This type of mapping is defined
as one-phase mapping. These heuristics have been tested on grids and graphs which
come from Logic Gate Networks (LGN). They have been compared to the random based
mapping (RBM) metric and a heuristic which is currently used in the ΣC compilation
toolchain,called Partitioning and Placing (P&P). For grids, on a small number of tasks
(below thousands), SWP and TWP run faster but provide a lower solution quality than
P&P. However, when the number of tasks increases, the solution quality of both heuristics
becomes better than P&P. On LGN, only TWP provides better solution quality than P&P
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and runs tens times faster. However, despite the fact that solution quality of SWP is
lower than that of P&P, it runs several order of magnitude faster than P&P. For grids, the
RBM metric shows that SWP and TWP tends to outperform P&P while the number of
tasks increases. However, on LGN instance, SWP is not able to provide satisfying results.
However, TWP is able to provide very good solution quality. We may conclude that SWP
is more grid-oriented while TWP is more adaptable to different types of instances. The
application domain of these heuristics only concerns unitary-weighted tasks graphs. This
is why a more general heuristic is needed for non-unitary weighted tasks graphs.

A second work consists in solving the mapping problem using various weights for tasks
and edges. Uncertainty, raises by the fact that an adequate mapping during the execution
of the algorithm may lead to poor solution quality, is managed by regret theory. This
sub-domain of game theory is able to achieve good results for choices under uncertainty.
However, it is not often used for mapping problems. It is more used in scheduling or
quadratic assignment problems. The idea of applying it to the mapping problem comes
from the fact that scheduling and QAP problems are close to the mapping problem. In the
mapping heuristic, denoted as Regret Based Approach (RBA) which is also a one-phase
mapping which places one task after another, tasks noticed during the computation are
placed in a waiting set. Regret-theory is used at this step of the heuristic, more precisely in
the determination of the task to map. It also provides the most suitable node onto which
the selected task is to be mapped. The heuristic is applied on several task graph topologies
such as grids, LGN, series-parallel (similar to dataflow process networks), sparse matrices
and random graphs. This heuristic is compared to a non-unitary weighted adaptation of
TWP and the RBM metric is used in order to evaluate the heuristic. Solution qualities
of RBA is tens to hundreds times better than those of RBM for grids and series-parallel.
Moreover, runtime of the heuristic on this type of topologies are the lowest compared to
other topologies. On the contrary, random graphs or LGN which are very different to
DPN, ration of solution qualities are less honorable but RBA is still better than RBM.
By comparing RBA to TWP, it appears, depending on the task graph topology, that
either RBA is faster than TWP but the solution quality is similar, or the solution quality
of RBA is better than the solution quality of TWP but there is no significant speed-up.
Finally, a parallel approach for the RBA has been set up. A greedy randomized adaptive
search procedure (GRASP) is applied to the RBA. We managed to determine how many
parallel runs of the RBA are needed in order to get the best parameterized solution value.

During this thesis, three heuristics which are scalable, topology aware of the target
architecture and respectful of capacity constraints, have been developed. Moreover, a
random-based metric has been introduced in order to compare the solution quality of
these heuristics. However, despite of a solution quality which is acceptable, even good,
the optimal mapping is not reached, meaning the solution quality is improvable. This
leads to further investigations.

The focus has been set on the construction of the best mapping solution. These
solutions can be improved by local-search heuristics. Many elements in the literature use
local-search heuristics in their refinement techniques in order to improve the solutions.
Such an approach can be found in many solvers like Metis and Scotch. However, many
refinement heuristics focus on load balancing constraints. This aspect makes difficult
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to find refinement techniques that could be applied to our problems. Many different
strategies such as traditional local-search heuristics or more complex heuristics can be
applied in order to improve our solutions. One approach consists in gathering nodes in
pairs and for each pair to perform task swaps in order to improve the global solution.
However, in that case, the refinement approach may be divided into two problems: finding
an heuristic able to perform feasible task swaps while enforcing all capacity constraints
and determining the sequence of pair of nodes which leads to the improvement of the
solution.

One investigation consists in surpassing the 2 million task graphs limit and to be
able to map these graphs onto target architecture including more than 1024 nodes. One
way to overcome this limit and to reduce execution time consists in the parallelization
of costs, affinities and regrets computations. For that, the use of hybrid CPU/GPU, in
order to speed-up costs and regret computations, may reduce the global execution time
of our heuristics.

Another aspect to consider consists in improving solution qualities for more dense ap-
plication. During this thesis, we developed heuristics able to find good mapping qualities
for sparse applications with series-parallel topologies. However, when the task graph is
dense or has a more complicated topology, quality is decreasing. One approach would be
to use a multi-start approach on tasks which are diametrically opposite and to map these
tasks onto also diametrically opposite nodes of the target architecture. This approach
will not provide equivalent performances but it may increases solution quality for dense
applications.

Let us consider another perspective which is not related on the local improvement of
our heuristics. Rather than mapping tasks graphs onto homogeneous architectures, the
focus is now set on heterogeneous architecture. For architectures with different SMPs
features, it is expected to have equivalent results because our heuristics takes into con-
sideration available resources.

One last perspective consists in deepening the analysis of the random-based metric
introduced in this thesis both from a theoretical and experimental viewpoint. In par-
ticular, we would like to experimentally verify if this metric still is of interest on other
variants of the mapping problem and if it can be generalized to other problems and
further investigate its theoretical properties and connections.

Finally we hope that our contribution was able to construct good mapping solutions
which can be used as a basis for the design of local-search heuristics. Moreover, another
contribution consists in the random based metric able to generate comparable mapping
solutions for graphs with a large number of vertices. We also hope that this metric may
be used as tool for comparable approaches in the mapping problem domain.
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Dupont De Dinechin, François Galea, Thierry Goubier, Michel Harrand,
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[29] Ümit Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hypergraphs).
In Encyclopedia of Parallel Computing, pages 1479–1487. Springer, 2011.
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[33] Cédric Chevalier and François Pellegrini. Improvement of the efficiency of genetic
algorithms for scalable parallel graph partitioning in a multi-level framework. In
Euro-Par 2006 Parallel Processing, pages 243–252. Springer, 2006.

[34] Alok N. Choudhary, Bhagirath Narahari, David M. Nicol, and Rahul Simha. Op-
timal processor assignment for a class of pipelined computations. Parallel and
Distributed Systems, IEEE Transactions on, 5(4):439–445, 1994.

[35] B Jack Copeland. Colossus: The secrets of Bletchley Park’s code-breaking comput-
ers. Oxford University Press, 2006.

[36] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer archi-
tecture: a hardware/software approach. Gulf Professional Publishing, 1999.



126 BIBLIOGRAPHY

[37] V. David, C. Fraboul, J.-Y. Rousselot, and P. Siron. Étude et réalisation d’une ar-
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