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émanant des établissements d’enseignement et de
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Abstract

Communication Support in Multi-core Architectures through Hardware

Mechanisms and Standardized Programming Interfaces

The application constraints driving the design of embedded systems are constantly

demanding higher performance and power efficiency. To meet these constraints, current

SoC platforms rely on replicating several processing cores while adding dedicated hard-

ware accelerators to handle specific tasks. However, developing embedded applications

is becoming a key challenge, since applications workload will continue to grow and the

software technologies are not evolving as fast as hardware architectures, leaving a gap

in the full system design. Indeed, the increased programming complexity can be asso-

ciated to the lack of software standards that supports heterogeneity, frequently leading

to custom solutions. On the other hand, implementing a standard software solution for

embedded systems might induce significant performance and memory usage overheads.

Therefore, this Thesis focus on decreasing this gap by implementing hardware mecha-

nisms in co-design with a standard programming interface for embedded systems. The

main objectives are to increase programmability through the implementation of a stan-

dardized communication application programming interface (MCAPI), and decrease the

overheads imposed by the software implementation through the use of the developed

hardware mechanisms.

The contributions of the Thesis comprise the implementation of MCAPI for a

generic multi-core platform and dedicated hardware mechanisms to improve communica-

tion connection phase and overall performance of data transfer phase. It is demonstrated

that the proposed mechanisms can be exploited by the software implementation without

increasing software complexity. Furthermore, performance estimations obtained using a

SystemC/TLM simulation model for the reference multi-core architecture show that the

proposed mechanisms provide significant gains in terms of latency (up to 97%), through-

put (40x increase) and network traffic (up to 68%) while reducing processor workload

for both characterization test-cases and real application benchmarks.
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Résumé

Support des communications dans des architectures multicœurs par

l’intermédiaire de mécanismes matériels et d’interfaces de programmation

standardisées

L’évolution des contraintes applicatives imposent des améliorations continues sur

les performances et l’efficacité énergétique des systèmes embarqués. Pour répondre à

ces contraintes, les plateformes « SoC » actuelles s’appuient sur la multiplication des

cœurs de calcul, tout en ajoutant des accélérateurs matériels dédiés pour gérer des tâches

spécifiques. Dans ce contexte, développer des applications embarquées devient un défi

complexe, en effet la charge de travail des applications continue à croître alors que les

technologies logicielles n’évoluent pas aussi vite que les architectures matérielles, lais-

sant un écart dans la conception complète du système. De fait, la complexité accrue

de programmation peut être associée à l’absence de standards logiciels qui prennent

en charge l’hétérogénéité des architectures, menant souvent à des solutions ad hoc. A

l’opposé, l’utilisation d’une solution logicielle standardisée pour les systèmes embarqués

peut induire des surcoûts importants concernant les performances et l’occupation de la

mémoire si elle n’est pas adaptée à l’architecture. Par conséquent, le travail de cette

Thèse se concentre sur la réduction de cet écart en mettant en œuvre des mécanismes

matériels dont la conception prend en compte une interface de programmation standard

pour systèmes embarqués. Les principaux objectifs sont ainsi d’accroître la programma-

bilité par la mise en œuvre d’une interface de programmation : MCAPI, et de diminuer

la charge logiciel des cœurs grâce à l’utilisation des mécanismes matériels développés.

Les contributions de la thèse comprennent la mise en œuvre de MCAPI pour une

plate-forme multicœur générique et des mécanismes matériels pour améliorer la perfor-

mance globale de la configuration de la communication et des transferts de données.

Il est démontré que les mécanismes peuvent être pris en charge par les interfaces logi-

cielles sans augmenter leur complexité. En outre, les résultats de performance obtenus

en utilisant un modèle SystemC/TLM de l’architecture multicœurs de référence mon-

trent que les mécanismes proposés apportent des gains significatifs en termes de latence,

débit, trafic réseau, temps de charge processeur et temps de communication sur des cas

d’étude et des applications complètes.
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Introduction

The technology scaling predicted by Moore’s law [1] continuously allows the integration

of a higher number of components in a single chip, named SoCs (System-on-Chip). In

the past few decades, along with increasing transistor count, the SoC performance could

be improved by simply increasing its operating frequency. However, due to technology

scaling limitations such as the power wall [2], this approach has reached its limit. Thus,

in order to further increase embedded systems performance, architectures with multiple

processing cores have been widely used in the past few years.

Nowadays, in addition to the higher performance requirement, multiple application

fields (e.g., communication standards, high-quality video processing and computer vi-

sion) also impose low-power consumption as a primary constraint. Therefore, hardware

accelerators might be employed to achieve higher power efficiency, i.e., higher perfor-

mance with lower power consumption, since they are designed to execute specific tasks

with a limited amount of resources, e.g., an FFT (Fast Fourier Transform) block, or a

DSP (Digital Signal Processing) processor.

On the other hand, the addition of multiple processing cores coupled with dedicated

hardware accelerators increases the system complexity and renders the application de-

velopment a key challenge for two main reasons [3]. Firstly, embedded application work-

loads continue to grow in diverse fields (e.g. spatial, automotive, etc.) [4]. Secondly, the

software technologies are not evolving as fast as hardware architectures, leaving a gap

in the full system design [5]. In other words, custom software solutions that take benefit

of given hardware platform aspects are required to decrease software overhead and fully

explore each hardware architecture. Moreover, it force the users to build custom infras-

tructures to support their programming requirements, decreasing code compatibility,

portability and reuse.

A solution to decrease this gap is the implementation of standard software APIs

(Application Programming Interface), which is the approach adopted by several works

presented in Section 1.2. However, these standards were developed in the context of

SMP (Symmetric Multi-Processors) systems, and impose limitations regarding hardware

1
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heterogeneity and memory footprint when addressing embedded systems. Indeed, the

induced overhead might compromise the application performance and, consequently,

violate the initial constraints. Hence, multi-core programming in embedded systems is

hindered by the lack of flexible and general-purpose support.

Therefore, a flexible and lightweight standard specifically designed for embedded

systems that addresses both homogeneous and heterogeneous architectures is desired.

By using such solution, the software overhead could be decreased and applications could

be efficiently ported between different architectures. A promising solution of software

standards for embedded system is proposed by the Multi-Core Association (MCA), called

Multi-core Communication API (MCAPI) [6]. This standard has been subject of many

works, such as [5, 7–12]. Yet, as shown by some of these works, the application perfor-

mance is also directly affected by the software stack/support efficiency, since MCAPI

does not target a specific hardware architecture and a simple implementation will not

take benefit of hardware aspects.

To counterpart this issue, the addition of hardware mechanisms able to handle and

speed-up the inter-process communication can increase the overall system performance.

On the other hand, most of the time, these mechanisms are not flexible to couple with

different types of architectures and/or do not take into account the increased complexity

in software development to manage them. Thus, it is mandatory to co-design hardware

and software to increase the programmability of multi-core architectures and achieve

the expected performance requirements. Moreover, the use of a standard software API

is essential for code reuse and compatibility.

Motivation

This work is motivated by the need of co-designing hardware and software in order to

increase applications programmability and efficiency while keeping good performance.

The main idea of this approach is represented in Figure 1. The scenario illustrating

a given application deployment in a heterogeneous hardware platform is depicted in

Figure 1(a). In this scenario, the programmer needs to consider each processing core

characteristics in order to code a given task accordingly. Although this approach allows

the application to take advantage of hardware features, it compromises programmability,

code reuse and portability.

On the other hand, Figure 1(b) illustrates that an API might increase the afore-

mentioned aspects, allowing programmers, developers and users to abstract hardware
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Application

TASK 1 TASK 2 TASK 3 TASK 4

CORE 1 CORE 2 CORE 3 CORE 4

Software Platform

Hardware Platform

(a)

Application

TASK 1 TASK 2 TASK 3 TASK 4

CORE 1 CORE 2 CORE 3 CORE 4

Hardware Platform

Software Platform

API

SW

/

HW

SW

/

HW

SW

/

HW

SW

/

HW

(b)

Figure 1: Application deployment in a multi-core architecture. (a) Without software
support. (b) With software support.

details. Nonetheless, the application performance must be preserved, since the applica-

tion requirements, e.g., output frame rate or data transfer rate, still have to be respected.

Therefore, as both hardware and software support play an important role in the overall

application performance, hardware or software mechanisms might be used by the API

to extract the required performance leveraging on hardware features.

Therefore, this thesis focuses on developing the elements introduced in Figure 1(b).

From the software side, a standard API targeting embedded systems is chosen, which

allows to increase programmability and code portability/reuse at the same time. As the

selected standard focuses on inter-process communication, the hardware mechanisms

focus on increasing the communication performance. Furthermore, the different com-

munication modes supported by the API are taken into account in order to co-design

the mechanisms accordingly. In summary, the main objective is to propose hardware

mechanisms that can alleviate the overheads imposed by the software implementation

and increase communication performance.

Contributions

In order to achieve the main objective, the developments performed during this thesis

concern platform software and hardware levels, as highlighted by the red line in Figure 2.

At the platform software level, the APIs and HAL (Hardware Abstraction Layer) must

be developed to couple with the reference architecture and increase software programma-

bility. Next, in order to increase application performance without increasing software
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complexity, the addition of modules or mechanisms in the platform hardware level must

take into account the software level. Thus, three main contributions are presented:

Platform 
Hardware

Level

Platform
Software

Level

Application
Software

Level

Application
Description

Level

IP

CPUDMA

HW 
accelerator

Configuration 
registers

HAL / Drivers / Platform specific API

MCAPI

Runtime

IT / Event

Services : synchronization, communication, data migration

API API

Co-design
• Performance optimization

• Reduced overhead

• Increased programmability

• Increased efficiency

Standardized

API

T1
T2

T3

task1() {

process

send to 2

send to 3

}

task2() {

recv from 1

process

Send to 3

}

task1() {

recv from 1

recv from 2

process

}

connect() send() recv()

main {

init tasks

start tasks

wait end of tasks

}

API Implementation

Figure 2: Co-design approach regarding different abstraction levels.

• Implementation and evaluation of a standard API for inter-process com-

munication.

MCAPI allows the applications to express inter-process communication in a stan-

dardized manner, increasing code portability and reuse. Therefore, the communi-

cation can be implemented independently from the hardware architecture. Addi-

tionally, we characterized the overhead imposed by the software implementation,

showing which points must be improved in order to avoid performance losses.

• Design and evaluation of a hardware mechanism to improve communi-

cation set-up performance.

We developed a hardware mechanism in co-design with MCAPI in order to de-

crease network traffic and processor workload during the communication set-up

phase. Due to the co-design approach, this mechanism can be easily accessed and

programmed at the API level, making the hardware modifications transparent to

the application.

• Design and evaluation of a hardware mechanism to improve data trans-

fer performance.
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We co-designed a hardware mechanism with MCAPI, which implements a FIFO-

like communication channel and handles the data transfer phase. This mechanism

is programmed through memory-mapped registers, making it flexible to be used

by processors or hardware accelerators. Similarly to the communication set-up

mechanism, the software modifications are performed only at API level, without

increasing programming complexity.

Thesis Organization

The thesis is divided into Introduction, five main chapters, and Conclusion. The Intro-

duction describes the context of this work and presents its motivation and contributions.

Chapter 1 places the thesis in relation with the state-of-the-art and provides background

in multi-core architectures and software programming interfaces. Since this work is in-

serted in the context of multi-core architectures programmability, the hardware-software

co-design aspect is also discussed, as well as hardware mechanisms looking for perfor-

mance improvements. Additionally, it presents the reference architecture used to develop

the contributions of this thesis.

Chapter 2 presents the MCAPI standard and the design choices performed to imple-

ment the specification for the reference architecture. Furthermore, an analysis is carried

out to evaluate the main drawbacks and bottlenecks in the referred implementation.

Then, Chapter 3 presents the Event Synchronizer mechanism, which is the second

contribution of this thesis. It also presents the polling processes present in the MCAPI

implementation and the modifications performed in the MCAPI implementation to take

advantage of the Event Synchronizer. Chapter 4 presents the third contribution of this

thesis, which is the Buffer Manager Mechanism. Initially, the data transfer phase and

the software implementation are reviewed. Then, the proposed mechanism is described.

Furthermore, the modifications performed in the MCAPI implementation to take ad-

vantage of the Buffer Manager are presented in the end of the chapter.

The environment set-up, experimental results and benchmark validation are de-

scribed in Chapter 5. The objective is to characterize the mechanisms proposed in

Chapters 3 and 4, as well as evaluate the MCAPI implementation described in Chapter

2 in terms of memory footprint. Furthermore, the performance gains obtained with the

proposed mechanisms are validated through the execution of image processing and path

calculation benchmarks. Finally, conclusion and perspectives are drawn.





Chapter 1

Multi-core Systems Overview:

Hardware and Software Related

Works

This chapter places the thesis in relation with the state-of-the-art and provides back-

ground for multi-core architectures and software programming interfaces. Since this work

is inserted in the context of multi-core architectures programmability, the hardware-

software co-design aspect is also discussed. Therefore, Section 1.1 presents examples of

recent multi-core platforms, providing insights to architecture trends. Then, Section 1.2

gives multiple options of software support that can be applied on these architectures.

Section 1.3 introduces works related to hardware mechanisms looking for improving the

performance of such architectures and discuss their support or interaction regarding the

software level. Finally, the reference architecture used to develop the contributions of

this thesis is presented in Section 1.4.

1.1 Multi-core Architectures

Multi-core architectures have been used in the past years as solution to meet application

constraints in several areas, such as high-bandwidth digital communication, gaming,

augmented reality and high-quality image and video encoding. In addition, according

to ITRS [13], the number of processing engines in a single device is expected to grow

exponentially in the next years, as depicted in Figure 1.1, which confirms the importance

of further developing such architectures.

7
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Besides the processing engine count, the core types must also be considered. When

more than one core type is employed, the multi-core platform can be classified as het-

erogeneous. On the other hand, homogeneous architectures are composed of a single

replicated processing engine, which can be either general purpose processors (GPPs)

(e.g., Intel’s multi-core CPUs, SCC [14]) or DSP processors [15]. Both homogeneous

and heterogeneous architectures have their advantages and drawbacks. While applica-

tions are easier to code and parallelize in homogeneous architectures, the power efficiency

of heterogeneous solutions is higher due to the specialized hardware units employed to

execute specific tasks.

Figure 1.1: Design complexity forecast for SoCs in terms of processing engines, logic
and memory sizes [13].

In fact, heterogeneous solutions are being widely employed in both industry and

academy. Additionally, according to ITRS, the SoC template consists of few processing

cores (4 cores, currently), GPUs (Graphics Processing Unit) and several processing en-

gines (PEs) to execute specific tasks (Figure 1.2), which characterizes a heterogeneous ar-

chitecture. Furthermore, “due to the continuously increasing demand for high-definition

audio and video playback, the number of GPUs is expected to rapidly increase” [13].

Therefore, it is safe to affirm that heterogeneous architectures will be preferred over ho-

mogeneous architectures due to the increased performance and higher power efficiency.

The industry has already demonstrated many examples of architectures composed

of GPPs and GPUs, such as Tegra from NVIDIA, Exynos from Samsung, Ax series from

Apple, Fusion APU from AMD and Ivy, Sandy and Haswell architectures from Intel.
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Figure 1.2: SoC architecture template for consumer portable devices [13].

Figure 1.3 details the block diagram of two industry architectures: big.LITTLE [16] and

Cell Processor [17], from ARM and STI, respectively.

Figure 1.3(a) shows the big.LITTLE block diagram, which consists of an ARM

Cortex-A15 pair (big) and an ARM Cortex-A7 pair (LITTLE) connected by the cache

coherent ARM CoreLink CGI-400 interconnect. The idea is to take advantage of dif-

ferent workload patterns in mobile applications to switch the operation between the

different cores. The “big” cores are used when high processing power is needed, while

the “LITTLE” cores are employed to execute simpler tasks. This architecture is used

in the Exynos 5 [18] and 7 Octa from Samsung and in Qualcomm Snapdragon 808 and

810 processors.

The Cell processor block diagram is presented in Figure 1.3(b). It is composed of

one Power Processor Element (PPE) and eight Synergistic Processing Elements (SPEs).

The interconnection is performed by the Element Interconnect Bus (EIB), which is a

set of 4 ring buses. The SPEs are responsible to execute computing intensive tasks

assigned by the PPE, which can also run an operating system and applications. This

architecture is used in PlayStation 3 gaming console and was developed in co-operation

between Sony, Toshiba and IBM [17].

Heterogeneous multi-core architectures are also research subject in the academy,

and several examples can be highlighted. The Tomahawk MPSoC [19] targets baseband

communications and multimedia applications. The platform is composed by two Ten-

silica processors (DC212), six fixed-point DSP units (VDSP), two scalar floating-point

DSP units (SDSP), among other specialized hardware blocks, as depicted in Figure 1.4.

All components are connected by two crossbar-like master/slave NoCs. The application

control and scheduling is centralized in the CoreManager unit. The platform is pro-

grammed using a C-based programming model. The programmer explicitly assigns the

C-functions that will be executed as tasks in a given PE using special #pragma direc-

tives. Before task execution, program and input memories are copied from the global
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(a) big.LITTLE block diagram overview [16].

(b) CELL processor architecture [17].

Figure 1.3: Block diagrams for biggle.LITTLE and CELL processors.

to the local PE memory. After task completion, the local PE memory is copied back to

the global memory.

There are also architectures targeting only a single application field, such as Magali

[20], X-GOLD SDR 20 [21] and COBRA [22]. These architectures are focused mainly on

Software Defined Radio (SDR) applications. Magali [20] is an evolution of the Faust [23]

platform, which is composed of 23 processing units, including VLIW DSP processors,

blocks dedicated for FFT/IFFT processing, a hardware block for managing configuration

and data (DCM) and an ARM processor working as a centralized general manager.

These units are connected by a 3x5 mesh asynchronous NoC (ANoC), as presented in

Figure 1.5. Also, this architecture supports dynamic data-flow reconfiguration. Using a

data-flow programming model, the ARM processor configures the Communication and

Configuration Controllers (CCCs), which are in charge to manage the communication in

a distributed way. The data flow is statically defined at compile time, but the number

of data to be exchanged between the different units can be modified dynamically. When
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Figure 1.4: Tomahawk block diagram overview [19].

a new configuration of a given task is missing, the CCC requests a configuration to one

of the DCMs, which stores all the configurations defined at compile time.

The X-GOLD SDR20 [21] platform supports the implementation of the physical

layer signal processing for GSM, EDGE, HSPA, LTE and others. The processor contains

an SDR subsystem, an ARM subsystem and a power management unit. The ARM

subsystem is composed by the ARM 1176 core, local memories, a DMA, external memory

interface, an audio DSP processor, among other peripherals. The SDR subsystem is

composed by SIMD clusters and an accelerator cluster. The SIMD cluster is composed

by four SIMD cores, two RC1632 scalar cores, a shared memory, a multi-layer local bus,

and a bridge to connect the cluster to the Global Bus. The scalar cores are intended

to be used for tasks without parallelism. Similarly, the Accelerator cluster contains

five accelerators in total. Each accelerator is composed of a RC1632 control processor

and the actual accelerator core, plus a shared memory. In the same way of the SIMD

Figure 1.5: General overview of Magali processing cores [20].
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cluster, the interconnection is done via a multi-layer local bus. Additionally to the

clusters and ARM subsystem, a dedicated mechanism allows synchronization between

tasks. However, there is no mention about the programming model or tool chain to

assist the programmer developing applications for this platform.

Lastly, the COBRA (Cognitive Baseband Radio) platform [22] is a multi-core SDR

platform based on the ADRES baseband processor [24]. This processor consists of one

or more VLIW processors and a set of Coarse Grain Array (CGA) resources. Each

VLIW processor is able to run the application sequential code, while the CGA runs the

parallel code. The COBRA platform contains 2 ADRES baseband processors, 2 DIFFS

(Digital Front For Sensing), 2 flexible forward error correction (FlexFEC), a Viterbi

accelerator and an ARM core for task controlling. All parts are programmable in C

or high level assembly. The interconnection is done via buses and crossbars. From the

memory hierarchy point of view, there are local memories, which are connected to each

thread and store local variables, and a shared memory, which stores shared variables

that are used by different threads or implement FIFO communication between threads.

The application are implemented using the MPA tool [25], which uses the application

C code and a file specifying the parallelization as input. Then, the tool analyzes the

dependencies in the C code, performs the parallelization and inserts FIFO buffers at the

points where communication between threads is needed.

However, more recent architectures are focused on flexibility and distributed con-

trol, such as Flextiles [26] and P2012 [27]. The FlexTiles platform targets high per-

formance and dynamic algorithms in embedded products with low power consumption.

The architecture is scalable, and there is not a fixed number of cores that the platform

supports. Indeed, it is composed by general purpose processing (GPP) nodes, DSP pro-

cessors, Accelerators Interfaces (AIs), an embedded FPGA, I/Os and a DDR controller.

The GPPs are used as masters while the DSP processors, eFPGA and I/Os are used as

slaves.

The interconnection infrastructure employs a NoC for communication. The inter-

face between NoC and GPP nodes, DDR controller, I/Os and eFPGA Configuration

Controller is done via a Network Interface (NI). In addition, for the DSP nodes, an AI is

used between the DSP core and the NI. The platform is not yet implemented in silicon.

However, for future implementations, it is proposed the use of 3D stacking technology.

In this case, eFPGA module is placed in a different layer from the GPP nodes.

The programmer’s view is a set of concurrent threads with different priorities that

can address domain-specific accelerators to meet application constraints. The applica-

tion is programmed in C or C++ language, while the accelerated parts are described in
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the respective accelerator language. The application parallelism is expressed by describ-

ing the threads as series of data-flow graphs and combining them with priority orders

and synchronization mechanisms. In fact, the application is defined as a set of static

clusters. Then, a cluster is described using Synchronous Data Flow (SDF) or Cyclo-

Static Data Flow (CSDF) models of computation, where each producer/consumer is

defined as an actor.

Finally, Platform 2012 [27] is a multi-core architecture composed of processor clus-

ters in a GALS approach targeting applications such as digital communication stan-

dards, gaming, augmented reality, high-quality audio and video, etc. Each cluster is

composed of a computer engine called ENCore, which can be composed from 1 to 16

PEs (STxP70-V4), a cluster controller and several Hardware Accelerators (HWPEs).

The cluster controller is responsible for booting and initializing the ENCore PE, appli-

cation deployment, error handling and also energy management. In fact, each cluster has

his own cluster controller, characterizing a distributed controlling approach. The ANoC

performs communication intra (between HWPEs and ENCore engine) and inter-cluster.

The platform supports three classes of programming models: (i) Native Program-

ming Layer (NPL); (ii) Standards-based Programming Models; (iii) Advanced Program-

ming Models. Using (i) the platform resources are accessed through a low-level C-based

API. In (ii) some standard programming models can be used to program the platform,

such as OpenCL and OpenMP. Finally, (iii) offer a midway productivity/performance

trade-off between the other two. From the software viewpoint, the 2012 architecture is

PGAS – Partitioned Global Address Space, where all processors have full visibility on

all the memories with no aliasing, i.e., a processor located in a given cluster can load

and store directly in remote L1 memory of other clusters.

Table 1.1 compares the mentioned architectures regarding their target applications

(specific, semi-specific or generic), inter-process communication (IPC), communication

control, hardware characteristics (interconnection and processing engines) and support

for application programming.

The architectures’ target applications differ and a trend can not be identified. How-

ever, with mobile devices supporting multiple features (4G and 5G standards, high-

quality video playback, etc) and Internet of Things (IoT) becoming increasingly in

evidence, architectures targeting specific application niches are not suitable. The pre-

dominant inter-process communication implementation is through shared memories with

centralized communication control. On the other hand, architectures supporting a high

number of processing nodes must implement distributed control to avoid a bottleneck in

the system. Moreover, only P2012 supports standard programming models. Therefore,
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the multi-core architecture presented in Section 1.4 is used as reference, taking flexibility

and scalability as the main target constraints.

1.2 Application Programming Interfaces

Besides the hardware architecture, efficient implementation of the software stack is also

important for two main aspects: application performance and portability/code reuse.

Usually, the application take advantage of Application Programming Interfaces (APIs) or

another software component that interfaces with the hardware. Parallel and distributed

computing have well established software standards for both shared memory and message

passing paradigms. On the other hand, the lack of standards for embedded systems often

leads to custom solutions.

1.2.1 Custom APIs

Several works present implementations of lightweight solutions for well-known standard

APIs when targeting embedded systems. In [28], only a set of MPI ([29]) functions

are implemented for four different network topologies. The code size is reported to be

between 11 kB and 16 kB. Similarly, [30] and [31] present optimizations for a set of

MPI functions. However, since only a set of MPI functions is implemented, application

portability might be compromised. Other works present solutions with specific archi-

tecture constraints, such as [32], where a processor with enough processing power to

run a full MPI implementation is needed, or such as [33], where the solution targets

CPU-GPU architectures. Even though these implementations take advantage of MPI,

they can not be considered a standard. Furthermore, [34] and [35] report performance

overheads induced by software implementation that might compromise the application

constraints.

Moreover, other custom software solutions can be highlighted. C-Heap [36] (CPU-

controlled Heterogeneous Architectures for Signal Processing) is a combination of an

architecture template with a protocol for cooperation and communication between au-

tonomous tasks. The architecture template is a MIMD (Multiple Instruction Multiple

Data) architecture, and has a main processor controlling the other processing devices.

The communication protocol is implemented using FIFO-based communication be-

tween the tasks. In this model, the communication is divided between synchronization

and data transportation. As the FIFOs are implemented using shared memories, no data

copy is necessary and only synchronization primitives are needed. In this architecture,
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the data transfers are based on tokens. Therefore, the tasks need to claim and release

tokens to manage the buffer memory space using primitives. These primitives, used by

the tasks, control the allocated space in a FIFO manner to implement a channel FIFO

buffer. Therefore, it provides flexibility to tune the FIFO and token sizes for an applica-

tion even after a silicon tape-out. Also, the number of FIFOs and their interconnection

structure can be changed in order to map different applications on the same hardware.

In [37], a message passing library with limited number of functions is presented.

The focus is to decrease the overhead imposed when setting up and controlling the

communication and in the data transfer. The library uses semaphores for data synchro-

nization, which are explicitly informed in the functions calls. The synchronization can

be done by polling or by waiting for an interruption for a given semaphore. Although

performance gains are shown, the library provides limited functionality and is not based

on a widely used standard.

A different approach is proposed in [38], where a programming interface to express

communication constraints at language level is presented. The constraints are evaluated

by the operating system, which configures the communication hardware accordingly.

The base programming language is the X10, which offers type safety, system modularity,

portioned global address space, dependent types, transactional memory, among other

features. The optimizations in the communication are done by resource allocation and

data pre-fetching through DMA.

Nevertheless, the main issue related to these solutions are code portability and

reuse, since the API, software framework or programming language are not widely em-

ployed. Therefore, as the multi-core hardware is evolving faster than software technolo-

gies, other software standards are necessary to address embedded systems capabilities

[5].

1.2.2 Standard APIs

Implementing a standard software solution provides benefits such as code portability

and code reuse. An example of a well-know standard is the OpenMP API [39]. It

supports multi-platform shared memory multiprocessing programming in C, C++, and

Fortran. In a multi-thread implementation, the master thread forks a specified number

of slave threads to work over a given set of data. Then, each slave thread executes its

parallelized code section. After the slaves processing completion, the slave threads join

back into the master thread, which continues to execute until the end of the program

or until the next fork. Thus, the work-sharing constructs can be used to divide a task

among threads so that each one executes its allocated part of the code.
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The code section that will be executed in parallel is defined by a preprocessor

directive, e.g. #pragmas in C language. The number of threads that will be generated

can be defined by the user, or left to be managed by the runtime environment. In the

later case, the runtime environment allocates threads to processors depending on usage,

machine load and other factors.

Another standard is the MPI (message passing interface) [29], which is a message

passing library standard for parallel programming. Therefore, MPI is not a library itself,

but the specification for developers and users of what this library should be. The goal

of the MPI is to provide a widely used standard for writing message passing programs.

The interface specifications are defined for C/C++ and Fortran.

The main advantages of using MPI includes the portability, since there is no need to

modify the source code when porting an application to a different platform that supports

the MPI standard, and functionality, with more than 115 routines implemented already

in MPI-1. Also, implementations are available at both vendor and public domain [40].

Initially, MPI was designed to be used in distributed memory architectures. How-

ever, as the architecture trends changed, shared memory SMPs (Symmetric Multi-

Processors) were combined over networks, creating hybrid distributed/shared memory

systems. Then, the MPI implementors adapted the libraries to handle both types of

underlying memory architectures. Nowadays, MPI can run virtually on any kind of

memory architecture (distributed, shared or hybrid), but the programming model re-

mains as a distributed memory model. As a drawback, all parallelism is explicit, i.e.

the programmer is responsible for correctly identifying parallelism and implementing

parallel algorithms using the MPI constructs.

More recently, languages such as OpenCL [41] and OpenCV [42] were developed

to program heterogeneous multi-core platforms. OpenCL is an open standard main-

tained by the technology consortium Khronos Group. It has been adopted by Intel,

AMD, NVIDIA, Altera, Samsung, ARM, among others. The OpenCL framework is

used for writing programs that execute across heterogeneous platforms consisting of

CPUs, GPUs, DSP units and other processors. Also, it includes a language (based on

C99) for writing kernels, and APIs that are used to define and then control the platforms.

The programming language used to write computation kernels is based on C99 with

some limitations and additions. It omits the use of function pointers, recursion, bit fields,

variable-length arrays, and standard C99 header files, but provides some extensions. The

platform model considers one host device and one or more compute devices. In turn, each

compute device is composed of one or more compute units that can be divided processing

elements. The applications written in OpenCL are managed by the host, which submits
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the work to compute devices. The memory management is explicit, which means that

the programmer must move the data manually from/to any memory level, e.g. from

host memory to local memory, or vice-versa.

OpenCV s an open-source library including several hundreds of computer vision

algorithms that can take advantage of multi-core processing. It was firstly developed by

Intel, and now is supported by Itseez. The main focus is on real-time image processing,

but the functions also cover several areas such as machine learning, camera calibration,

stereo, 3D, among others. The library is written in C++, but there are interfaces in

Phyton, Java and Matlab.

Table 1.2 compares the aforementioned standards and also MCAPI, which is in-

troduced in the next section. Although multiple standards are available to implement

parallel applications, embedded systems with limited memory and power budgets are

not addressed. Indeed, the OpenCL standard does target embedded systems, but it im-

poses a model between host and computing devices that might not fit in some platforms.

In the same way, OpenMP API focus only on shared memory architectures and benefits

mainly SMP (Symmetric Multiprocessing) machines, lacking support for heterogeneity.

On the other hand, MPI and OpenCV could be explored by embedded systems. How-

ever, OpenCV needs to be executed on top of an operating system or other run-time

environment, which prohibits its use for platforms with limited resources. Similarly, the

implementation of the entire MPI standard is too heavyweight for such architectures [5].

Table 1.2: Comparison of different software standards for multi-core programming.

API/Library
Target

Architecture
Target

Application
Language

OpenMP Shared Memory based Fork-join algorithms C, C++, Fortran
MPI Any Generic Any
OpenCL Heterogenous Generic OpenCL, C99

OpenCV Any
Computer Vision and

Machine Learning
C++ and interfaces for

other languages
MCAPI Any Generic Any

1.2.3 MCAPI

The MCAPI (Multicore Communications API) specification [6] was created by the Mul-

ticore Association, an association with several industry companies, and defines an API

and semantics for communication and synchronization between processing cores in em-

bedded systems. This API uses the message passing communication model. The purpose

is to capture the basic elements of communication and synchronization that are required

for closely distributed embedded systems. The primary goals of MCAPI implementa-

tions are extremely high performance and low memory footprint. Additionally, MCAPI
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intends to be scalable and to virtually support any number of cores, each with a different

processing architecture and running the same, different, or no operating system at all.

Thus, MCAPI aims to provide source-code compatibility that allows applications to be

ported from one operating environment to another.

Three communication modes are provided: messages, packets, and scalars. Also,

MCAPI provides a limited number of calls with sufficient communication functionality

while keeping it simple enough to allow efficient implementations. In comparison with

other communication APIs such as MPI, the MCAPI targets inter-core communication

in a multi-core chip, while MPI was developed targeting inter-computer communica-

tion. Furthermore, other characteristics differ MCAPI from MPI, such as the support of

quality of service and priorities, the absence of collective communications, no concept of

groups, no synchronization methods (barriers, fences, locks), among others. Similarly, in

comparison with OpenCL and OpenCV, which more closely resembles a programming

model, MCAPI does not focus on architecture or application type, but in the inter-

process communication. Nevertheless, both standards can take benefit of MCAPI to

implement their low layers communication protocols.

Although the standard does not entirely cover multi-core programming, it pro-

vides a solution for the communication aspect and capability to implement a significant

amount of applications. Additionally, multiple implementation examples are already

available. For example, the MCAPI implementation presented in [5] is publicly avail-

able and can run on Linux computers. It separates the implementation in 2 layers:

common code with MCAPI function calls as presented in the specification, and a trans-

port layer, implementing the MCAPI functionalities through Posix shared memory and

semaphores. Another example of implementation using shared memory was performed

by Mentor Graphics [7]. In [8], the standard was extended to allow inter-chip communi-

cation. Finally, works presenting MCAPI implementations for FPGA [9–11] and Intel’s

SCC [12] are also available.

Thus, the MCAPI standard is a relevant development choice in the context of this

thesis. As mentioned, the MCAPI is an increasingly popular standard, which allows the

implementation described in Chapter 2 to be compared with other solutions, which is

performed in Section 5.2. In addition, the MCAPI main characteristics, i.e., focus on

embedded systems, low memory footprint, high communication performance, scalability

and heterogeneity, are fully compatible with the objectives of this thesis.
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1.3 Communication Hardware Mechanisms

Improving communication performance has been research subject for many years. Ini-

tially, the main concern was to decouple communication and computation in clusters of

processors through hardware support for inter-process communication [43]. However, as

showed in [44], both hardware support and software programming model must be ad-

dressed in order to successfully implement efficient communication. Yet, the Authors in

[44] propose a custom programming model as solution. Similarly, [45] presents software

optimizations to increase communication performance in SMP clusters by decreasing

synchronization overhead.

Nonetheless, the research on hardware/software co-design for embedded systems

must present different solutions, since its characteristics greatly differ from SMPs. In ad-

dition, multi-core architectures present high programmability complexity due to limited

software capabilities, e.g., smaller operating systems to couple with limited memory re-

sources. Usually, increasing programmability induces performance overheads [10–12, 46].

Thus, it is mandatory to co-design hardware and software to increase programmability

while meeting application constraints in multi-core architectures. Although aiming a

specific SoC and proposing a software custom solution, an example of hardware/soft-

ware co-design is presented in [47] and shows significant performance gains.

Since MCAPI targets inter-process communication, the research must focus on so-

lutions that improve this aspect. Considering the three communication modes, messages

is the most simple, since the data can be transferred by informing only the endpoint

identifiers. However, for packet and scalar channels, specific actions must be executed

by both communication endpoints before and after exchanging data. Indeed, for these

modes, the communication process can be split in two phases: communication set-up

and data transfer, as depicted in Figure 1.6. The first phase is used to establish a

connection, allocate and deallocate resources, while the second one is where the data

is actually exchanged. Therefore, both phases must be taken into account when de-

veloping the hardware mechanisms. The following sections describe related works for

synchronization mechanisms (that could be used during communication set-up) and data

transfer support. In the end, the work presented in this thesis is compared to the works

described in both sections.

1.3.1 Synchronization/Communication Set-Up

The communication set-up can be considered a set of synchronization steps, since the

MCAPI standard defines conditions that can be interpreted as a barrier, or a lock
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Figure 1.6: Communication set-up steps used by packet and scalar channels.

in shared resource. According to [48], an ideal synchronization mechanism has to be

flexible, scalable, contention free and present low latency and low overhead. Based on

these characteristics, a mechanism focused on thread synchronization is proposed in

[49]. The idea is to take advantage of the “weak synchronization principle” and tightly-

coupled accelerators to achieve high core utilizations. Although the mechanism is easily

usable by the applications, its flexibility is limited. This limitation is related to the

fact the mechanism only solves the issue of scheduling synchronization for multi-core

architectures employing tightly-coupled cores.

A more flexible solution is presented in [50], where the scratch-pad memory is used

to virtualize synchronization and communication operations. This way, the software

layer can issue operations by writing in the virtual addresses. The synchronization

primitives are provided by counters and queues. The counters provide software notifica-

tions upon completion of a given number of synchronization operations, e.g. a barrier,

in the pre-configured address. Queues are used to send and received data, but can also

be used to implement a lock or a semaphore. The main drawback of this solution is

related to the architecture constraints, since communication operations are expected

to be handled by a remote DMA (RDMA) due to address translation when accessing

remote memories. Moreover, the software support for the proposed mechanisms is not

mentioned.

Optimizations aiming the MPI standard in heterogeneous SMPs clusters are pro-

posed in [51]. In this work, barrier operations are optimized automatically according

to architecture profile. This is achieved by selecting different barrier algorithms accord-

ing to profiles extracted for different system topologies. This solution provides higher
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flexibility in relation to the target architecture and performance. However, implement-

ing this solution in embedded systems might induce significant processing and memory

footprint overheads.

Synchronization mechanisms targeting embedded systems are presented in [52–

55]. A flexible mechanism to improve synchronization primitives in the P2012 [27]

architecture is proposed in [52]. The mechanisms is composed of atomic counters and

a programmable notifier hardware. The processing cores use memory-mapped registers

to program the synchronization operations and, if a notification must be generated,

interruption lines are used to notify the cores. In addition, the characterization of

memory accesses to perform several synchronization primitives is detailed. However,

the software implementation is mentioned only for a non-standard API, called RTM.

Furthermore, as all the cores use the same module for synchronization, the scalability

might be compromised.

The SCC [14] provides a hardware module called Messaging Passing Buffer (MPB),

which is a software controlled memory of 16 kBytes that can be used for communication

and synchronization. In [53], barrier algorithms are used to improve one-sided communi-

cation by taking advantage of the available hardware. The modifications are integrated

in a MPI custom solution for the target architecture.

In [54] a synchronization method called C-Lock is presented. It aims to gather the

advantages of both lock-based and lock-free methods. While lock-based methods require

simpler control, lock-free methods access shared data in an optimistic manner, consid-

ering that conflicts will not occur. However, if a conflict does occur, a rollback and/or

re-execution must be performed, generating processing and power overheads. Thus, the

proposed mechanism targets to detect true data conflicts by considering the type, ad-

dress range, and dependency of simultaneous memory accesses. As result, rollbacks are

avoided and the cores with identified conflicts have their clock signals gated, increas-

ing energy efficiency. However, this mechanism addresses only shared memory systems

where mutual exclusion is needed to access the data. Additionally, the application code

must be changed in order to take advantage of the hardware mechanism.

In fact, when dealing with architectures composed of a high number of processing

cores, the lock-based method should be avoided due to low efficiency, as mentioned in

[55]. The authors evaluate different message passing algorithms for shared data syn-

chronization from HPC (High-Performance Computing) domain. The evaluations are

performed in a platform that provides hardware support for basic synchronization prim-

itives. The results show that synchronization through message passing can be also

efficient in embedded multi-core architectures.
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The comparison between these works and the thesis is performed in Table 1.3 (page

26).

1.3.2 Data Transfer

The data transfer phase occurs after performing the communication set-up. Indeed,

data transfer performance in multi-core architectures is subject of many works, since

it directly impacts the overall application performance. Most of these works present

solutions to improve data transfer performance by implementing hardware mechanisms

that perform operations usually handled by software, or by improving a given point of

the target architecture. Architectures and mechanisms addressing the two most common

programming models (shared memory and message passing) are considered.

A hardware mechanism for distributed memory architectures is proposed in [56].

The mechanism is composed of several components that handle the communication of the

processing nodes (Memory Sever Access Points – MSAP), a control network and a data

network. Each MSAP has several input and output ports connected to dedicated FIFOs

for data transfers. The connection is created by linking an input to an output port.

Though the results show the scalability of the proposed mechanism and a performance

increase for the evaluated applications, there is no mention about software support or

how the application is able to benefit from the hardware mechanism. Moreover, it barely

differs from a DMA with an arbiter, where the processing element generates the requests

and the arbiter configures the ports for data transfers.

Buono et. al. [57] presents a delegation mechanism that performs the communi-

cation between a producer and a consumer. This mechanism works in a DMA fashion.

It can be implemented by SW (thread) or hardware. The process/task is responsible

for passing a delegation descriptor that indicates the channel identifier and the message

pointer. Then, the mechanism is in charge of sending the message through a buffer

available from a static array. An application of this mechanism is channel creation in

MCAPI. However, there must be one mechanism for each endpoint, which may gener-

ate significant overheads. The software support is implemented by a simplified custom

solution.

In [58], the message-passing operations are handled in hardware. The proposed

mechanism provides point-to-point DMA communication and collective communication

operations (barrier, broadcast, collect, etc). Implementation details are not provided

and it is not presented how the hardware mechanisms are programmed neither the

used programming API. Similarly, [59] addresses the message passing performance by

proposing a hardware mechanism based on a DMA engine. The mechanism offers the
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possibility to program transfers by informing task IDs or memory addresses, increasing

the flexibility. There are buffers to store send and receive operations. The software

support is provided by a set of custom functions to send and receive data.

Collective communication operations are also addressed in [60]. The objective is

to offload the software processing for broadcast, scatter, gather and reduction collective

communications through a hardware module interfacing the processing core and net-

work interface, called Smart Network Adapter. The mechanism is based in the MCAPI

definitions, where data is transmitted between a pair of endpoints. However, the current

MCAPI specification release does not provide collective operations. Furthermore, the

communication channels are not taken into account.

A mechanism for communication and control of data-flow applications is introduced

in [61]. It aims to distribute the data-flow configuration between the resources in the

NoC and to increase the programming flexibility of such applications. Firstly, a boot

step is performed by the host, which sets initialization parameters (e.g., NoC topology,

global identifiers) and communication configurations to the configuration servers. Then,

the configuration servers are used during the application execution by the tasks when a

new communication configuration is needed.

Contrary to [59], the flow control implemented in this work is performed by credits,

which also allows task synchronization, i.e., end of credits means that the task commu-

nication has finished. The mechanism can be programmed through a custom instruction

set, allowing different configurations to be loaded without changing the hardware. How-

ever, to decrease the mechanism complexity, this instruction set is restricted to few

instructions, aiming only applications with deterministic scenarios and without data-

dependency.

In order to counterpart this issue, a mechanism to support stream-based communi-

cation is proposed in [62]. When the number of data exchanged between the processes

is not known, i.e., data dependent applications, the data/credit parameters must be

replaced by a dynamic stopping criteria. Thus, two approaches are presented: iteration-

based and mode-based. In the first one, the producer process is responsible for signaling

the end of data transfer process, while in the second one, an external controller is used

to determine when the data transfers are finished. Besides the flexibility increase, the

software support for this mechanism is not presented. Indeed, the external controller

centralizes the configurations and is implemented in software, which might generate

performance bottlenecks.

Addressing shared memory architectures, a hardware mechanism for tightly-coupled

embedded systems is introduced in [63, 64]. The mechanism support data transfers
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between processing cores, hardware accelerators and local memories inside a cluster by

multiplexing data access requests to/from hardware accelerators in the shared memory.

The software support is provided by functions for computer vision and image processing,

which are accessible by the application through custom OpenMP extensions. However,

the hardware mechanism provides support only at the local interconnection, without

addressing the communication between processes executing in different clusters.

Finally, in [65], the adopted data communication is based on multilevel switching.

Instead of moving the data, the cores can read from other cores directly by switching. Ba-

sically, the co-processors inside a core (group of a RISC CPU and several co-processors)

can read data from other co-processor’s memory space inside or outside their respective

core. However, if the number of memory access increases at a remote core, the data is

moved to the local core memory. Moreover, an independent thread is responsible for

transferring data between the several memory levels (external, L3, L2 and L1). This

thread can speculate and pre-fetch data, making available the needed data in each core

as long as possible. The main drawback of the system is the programming model, which

is a custom solution based on task level parallelism. In addition, the target architecture

is a very specific solution for image processing applications, where the communication

is handled by a switch, thus, limiting scalability.

Similarly to the previous section, the comparison between the described works and

this thesis is performed in Table 1.3 (page 26).

1.3.3 Thesis Positioning

Table 1.3 presents the comparison between the hardware mechanisms described in Sec-

tions 1.3.1 and 1.3.2 regarding the objectives of this thesis. The goal is to provide higher

flexibility (i.e., the possibility of handling a higher number of application scenarios) and

develop a solution to address both communication aspects (synchronization/set-up and

data transfer), while taking into account support for an inter-process communication

standard, in this case, MCAPI.

It is possible to see in the comparison table that some works present solution for

both communication aspects ([50, 61, 62]). However, the software support is either not

addressed or is presented as a custom solution. On the other hand, MCAPI is targeted

in [60]. Nonetheless, as already mentioned, the support for MCAPI channels is not

presented.
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The targeted flexibility is inspired by works such as [50], [52], [53], [59], [60] and

[62]. To achieve this, the proposed mechanisms can be programmed through memory-

mapped registers, which decreases programming complexity and increase flexibility. In

addition, the mechanisms are co-designed with MCAPI in order to favor hardware-

software interface. Furthermore, although the target software standard is MCAPI, the

mechanisms can be employed by other solutions to decrease the software overhead due

to their flexibility.

Table 1.3: Thesis positioning regarding communication and programmability aspects
in relation to the state-of-the-art.

Reference Flexibility
SW API
Support

Data Transfer
HW Support

Synchronization
HW Support

Target
Architecture

Calcado [49] + Custom No Yes
Tightly-Coupled

Embedded Systems

Kachris [50] ++
Not

Mentioned
Yes Yes

Embedded
Systems

Meyer [51] + MPI No Yes
SMP

Clusters
Tabhet [52] +++ RTM API No Yes P2012 [27]
Reble [53] +++ Custom MPI No Yes SCC [14]

Kim [54] + Custom No Yes
Embedded
Systems

Papadopoulos [55] +
Not

Mentioned
No Yes

Embedded
Systems

Han [56] + Custom Yes No
Embedded
Systems

Buono [57] + Custom Yes No
Multi-threaded

Multi-core

Gao [58] ++
Not

Mentioned
Yes No

Heterogeneous
Clusters

Kumar [59] ++ Custom Yes No
Embedded
Systems

Wallentowitz [60] +++ MCAPI Yes No
Embedded
Systems

Clermidy [61] ++ Custom Yes Yes
Embedded
Systems

Helmstetter [62] +++
Not

Mentioned
Yes Yes

Embedded
Systems

Burgio [63, 64] + Custom/Open MP Yes No
Tightly-Coupled

Embedded Systems

Ku [65] + Custom Yes No
Embedded
Systems

This thesis +++ MCAPI Yes Yes
Embedded
Systems

More specifically, the communication set-up mechanism has two parameters that

can be dynamically programmed: connection identifier and expected value. In this

thesis, each connection identifier corresponds to an endpoint, while the expected value

can be programmed according to the operation to be performed, e.g., wait the channel

set-up to be completed. Also, the mechanism is able to store different values for each

endpoint, making it possible for the processor to be notified at different events for each

endpoint.

The mechanism responsible for the data transfer phase controls data exchange in a

FIFO manner, as required by MCAPI channels. The flexibility concerns how the FIFOs
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are managed and how the data transfers can be performed. Indeed, the mechanism does

not provide dedicated FIFO, as presented by [56], but registers that store FIFO pa-

rameters, such as size and initial address. Therefore, the mechanism has no restriction

regarding FIFO size, number of FIFOs (controlling more FIFOs requires more regis-

ters) or FIFO location, which can be placed in memory or implemented as dedicated

resources for hardware accelerators. Since the application will not directly interact with

the mechanism, it is up to the MCAPI implementation to define the amount of memory

reserved for the FIFOs, which will impact the number and size of FIFOs. Finally, the

data transfer can be performed in two ways: informing source/destination addresses or

destination connection identifier, which increases flexibility.

Thus, the work presented in this thesis differs from the works previously described

by providing hardware support for communication set-up and data transfer while tar-

geting co-design with a standardized communication API.

1.4 Reference Architecture

A generic multi-core architecture is used as reference in order to implement and evaluate

the proposed mechanisms. This architecture follows the most common characteristics

presented in Section 1.1, such as a NoC interconnection and general purpose processors

as main processing engines. The objective is to develop the mechanisms under conditions

that can be met by most of the platforms, increasing their compatibility. Also, following

the trend of distributed architectures, the reference architecture is divided in clusters,

as depicted in Figure 1.7.

Each cluster comprises the CPUs (MIPS R3000 core) with their respective private

memories and control registers (Ctrl Regs), input (In) and output (Out) NoC modules

(CPU subsystem), a Shared Memory, a Network Interface (NI) and a DMA. Using this

template, it is possible to have intra and inter cluster communication by using the shared

memory and/or message passing. Additionally, hardware accelerators could replace some

clusters in order to make the architecture heterogeneous.

Inside a cluster, the interface between the CPUs with the NI is performed by the

modules In and Out. Both modules are shared between the CPUs and provide a queue

to store the information to be sent to and from the CPUs, respectively. Thus, when the

NI is busy and the CPU needs to send data through the NoC, it does not need to wait

until the NI becomes available. The control registers are used to set/unset the CPUs

to/from idle state and to store interrupt informations. The private memory stores the

application code, while the Shared Memory is used to store shared data or implement
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Figure 1.7: Reference architecture block diagram and hierarchy.

communication buffers. The DMA is able to perform data transfers through requests

issued by the CPUs. These requests provide usual parameters: source buffer address,

destination buffer address and transfer size. Finally, in order to avoid address translation

when moving data between clusters, the address mapping is global. Therefore, the set

of shared memories can be considered as a single distributed shared memory with non-

uniform memory access time (NUMA).

The address map is detailed in Table 1.4. Thus, to read or write in a remote cluster,

it is necessary to encode the respective identifier (value greater than zero) in the 9 MSBs

(most significant bits) of the target address. On the other hand, when performing local

read/write operations, the cluster identifier must remain zero.

Table 1.4: Cluster address map.

Cluster ID
[31..23]

Address (hex)
[22..0] Module

Start End

N

0x000000 0x01FFFC Local Memory 0
0x020000 0x03FFFC Local Memory 1
0x040000 0x13FFFC Shared Memory
0x140000 0x1FFFFC Unused
0x200000 0x20003C Control Regs 0
0x200040 0x20007C Control Regs 1
0x200080 0x2000FC Unused
0x200100 0x200114 Input 0
0x200118 0x20012C Input 1
0x200130 0x2001FC Unused
0x200200 0x20023C Output
0x200240 0x2004FC Unused
0x200500 0x2005FC DMA

The Network Interface is responsible for interfacing the cluster and NoC. The mod-

ules that can send data through the NI are CPUs and DMA. In turn, the data received
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by the NI is forwarded to the respective module based on the destination address and

address mapping. The NIs exchange data through the NoC in packets, which are com-

posed by flits (32-bits words). Additionally, the NI can read and write data in the

private and shared memories, similarly to a remote DMA. Table 1.5 presents the packet

types that are managed by the NI.

Table 1.5: Packets used to exchange data and control through the NoC.

Packet Type Description

WRITE REQ Writes data in the respective destination address.
END OF WRITE Signals the end of a move packet.
READ REQ Request the data from a given address.
READ RESP Replies with the data from the respective address.
CONTROL Sends a 32-bit control word.
TEST AND SET Performs an atomic test and set operation.

The data movement is performed by the WRITE REQ packet, which carries the ini-

tial destination address and the data. When sending multiple flits, the data is stored

sequentially by incrementing the initial destination address. The END OF WRITE packet

is used to inform that the data sequence is finished. Thus, large chunks of data can

be split in several WRITE REQ packets to avoid network contention. The packets READ

REQ and READ RESP are used to perform read operations in a remote address. Once a

READ REQ is received, the NI access the respective requested address to read the data

and packs it into a READ RESP packet. Then, when the response is received, the data is

forwarded to the input (In) module. The CONTROL packet is used to send a single word of

32-bits directly to the input module of a given cluster. This packet can be used to send

control information or to perform synchronization between tasks. Finally, the TEST AND

SET packet is used to perform an atomic test and set operation in the memories. This

packet is similar to a READ REQ, except that the operation can be performed only on

memories. If the memory address had the logic value ‘0’, it will be changed to logic value

‘1’. Otherwise, the value is not changed. In any case, a READ RESP packet containing

the previous memory value is issued to the CPU that sent the TEST AND SET packet,

i.e., logic value ‘0’ means the memory address was set to ‘1’.

From the software point of view, a Hardware Abstraction Layer (HAL) is pro-

vided to program and access the hardware resources. As the peripherals are accessed as

memory-mapped registers, the functions implement read and write in specific memory

addresses. This allows the applications to abstract the address mapping and seamlessly

access hardware resources. These functions include functionalities such as creating data

transfer requests for DMA, sending the packets presented in Table 1.5, read data from

the input module and access control registers.
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In addition, the inter-process communication can be performed through FIFOs,

which benefits a wide range of data-flow applications. The FIFOs are placed in the

Shared Memory and controlled by software routines, called FIFO API. Thus, the appli-

cation does not need to manage local or remote addresses in data transfers, decreasing

programming complexity at application level. When a CPU communicates with another

CPU in the same cluster, they use FIFOs placed in the local shared memory to exchange

data. However, when CPUs in different clusters needs to communicate, a packet is sent

to the FIFO placed in the destination cluster through the NoC, since reading data from

a remote address is more costly than writing data in a remote address.

The FIFOs are controlled through a FIFO descriptor that contains the following

fields: base_address, size, first (read pointer), last (write pointer) and remote_addr.

The application must initialize the FIFO descriptor prior to writing and reading data.

Figure 1.8 shows the steps performed in the initialization (1 and 2) and data exchange

(3) in both communication sides. Initially, each process provides the address of their

respective write/read pointers to be updated. Then, each process stores the remote

pointer address in their remote_addr FIFO descriptor field. Later, when the data is

exchanged, the pointers are written in the respective remote address, avoiding remote

reads to check empty and full conditions.
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Figure 1.8: FIFO descriptor initialization and update.

Lastly, the application can read and write data by using three functions: fifo_read,

fifo_write and fifo_write_block. The first two functions are used to read and write

a single word of 32-bits in the FIFO and third function allows writing multiple words.

Additionally, the fifo_write_block takes advantage of the DMA to transfer data, while

the fifo_write uses the WRITE REQ packet to send data and update the remote write

pointer. On the other hand, as the FIFOs are placed in the receiver cluster memory, the

fifo_read is implemented as a simple read in the shared memory followed by a WRITE

REQ packet to update the remote read pointer.



Chapter 1. Multi-core Systems Overview 31

Chapter Summary

This chapter presented related works regarding multi-core architectures, software solu-

tions for APIs and hardware mechanisms to increase synchronization and communication

performance. However, unlike the previous works, this thesis focus on co-designing hard-

ware mechanisms and a standardized software API for a generic multi-core architecture.

The objectives of this approach are to increase programmability and communication

performance. Also, the mechanisms are flexible and aim to decrease programming com-

plexity.





Chapter 2

MCAPI Mapping and Overhead

Characterization

This chapter presents the MCAPI standard and its implementation for the reference

architecture, which is the first contribution of this Thesis. Section 2.1 describes the

MCAPI specification and how the standard can be used. Next, Section 2.2 explains

the design choices performed to implement the MCAPI specification (version 2.015) for

the reference architecture and details the implemented functions. Finally, an analysis

is carried out in Section 2.3 in order to evaluate the main drawbacks and bottlenecks

regarding the implementation for the reference architecture, which are caused mainly

due to lack of hardware support.

2.1 MCAPI Standard and Specification

MCAPI [6] is a specification for inter-task communication and synchronization between

processing cores in embedded systems. The main goal of MCAPI is to provide source

code portability, scalable communication performance and low memory footprint. Ad-

ditionally, the specification does not restrict the system topology, which can be either

homogeneous or heterogeneous architectures located on a single chip or on multiple chips

in a circuit board.

The MCAPI specification defines two levels of hierarchy: domains and nodes. A

domain is composed of one or more nodes and it is used for routing purposes. Its

scope is defined by each implementation and might be a set of processors in a multi-core

system, or even an entire circuit board with several chips. A node is defined by the

specification as an “independent thread of control” [6], i.e. an entity that can exclusively

33
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execute a sequential flow of instructions, such as a process, thread, processor, hardware

accelerator, etc. The definition’s objective is to have a single node definition within

the same implementation. Domains and nodes have a global unique identifier, which

means that domain numbers must not be repeated, as well as node numbers that are

grouped in the same domain.

The communication is performed between nodes through a pair of socket-like ter-

mination points called endpoints. The endpoints can be created and managed by

the application through specific functions. The maximum number of endpoints that

a given node can have must be defined prior to the compilation. Each endpoint is

created by passing a port identifier as argument to the respective function, and can be

managed by several functions by passing as argument a tuple composed of domain,

node and port identifiers. Additionally, each endpoint has its own set of attributes

related to Quality of Service (QoS), timeouts, buffers, etc. As the endpoints are unidi-

rectional, the communication is often referred to occur between a sender and a receiver.

Three communication modes are supported (Figure 2.1):

Messages – Connection-less datagrams.

Packet Channels – Connection-oriented, unidirectional, FIFO packet streams.

Scalar Channels – Connection-oriented, single-word, unidirectional, FIFO packet

streams.

MCAPI domain 2MCAPI domain 1

MCAPI node 1

MCAPI node 2

MCAPI node 2

Endpoint<1,1,1>

Attributes port 1

Endpoint<1,1,2>

Attributes port 2

Endpoint<1,2,1>

Attributes port 1

MCAPI node 1

Endpoint<2,1,1>

port 1 Attributes

Endpoint<2,2,1>

port 1 Attributes

Endpoint<2,2,2>

port 2 Attributes

Message

Packet Channel

Scalar Channel

Figure 2.1: MCAPI communication modes.
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The upper part of Figure 2.1 depicts messages transmission between the endpoints

<1,1,1> and <2,1,1>. Messages are similar to UDP datagrams in networking. The main

difference between messages and packet or scalar channels is the flexibility, allowing data

transmission between sender and receiver without having to establish a connection.

Other differences are the possibility to send messages with different priorities and the

sender and receiver buffers, which must be provided by the application.

Packet and Scalar channels are depicted in Figure 2.1 in the transmissions between

the pair of endpoints <1,1,2> and <2,2,1> and the pair of endpoints <1,2,1> and

<2,2,2>, respectively. The main difference between packets and scalar channels is the

size of data transfers. Packet channels are able to transfer data chunks of variable sizes,

while Scalar channels support transfers of 8, 16, 32 or 64-bits only. Both Channel types

are able to provide lightweight socket-like stream communication by establishing an

unidirectionally connection between sender and receiver endpoints previously to data

transfer. The data is delivered in a FIFO manner and, contrarily to Messages, the buffer

in the receiver side is provided by the MCAPI implementation (the sender buffer must

be provided by the application). However, this buffer must be returned to the MCAPI

implementation once the receiver has finished to process the received data.

The connection set-up is performed in two steps for both Packet and Scalar chan-

nels: connection and opening. These two steps must be performed by both sides of the

communication channel. Later, when the communication is finished, both sides must

perform a closing step to release the communication buffer and other possible allocated

resources. Collective operations such as multi or broadcast are not currently supported

by the MCAPI specification.

The MCAPI functions defined by the specification for establishing a connection

(packet and scalar channels) are only non-blocking. On the other hand, send and receive

functions for Messages and Packet Channel have blocking and non-blocking variants.

The non-blocking functions have a “_i” appended to the function name to indicate that

the function will return immediately. The non-blocking functions return a request

structure that can be used to query its status. Three operations can be performed using

a request structure:

test - Verifies if the respective function of a given request has completed.

wait - Waits until the respective function of a given request has completed.

cancel - Cancels the execution of the respective function of a given request.
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The test and cancel operations are non-blocking, returning to the application

upon finishing the request processing, while the wait operation will block until the

requested function completes or a time-out occurs.

The most common MCAPI functions are presented in Table 2.1. Since scalar

channels are intended to provide very low-overhead for moving a stream of values

and non-blocking functions add overhead, send and receive operations are available

only as blocking functions. As previously mentioned, the non-blocking functions are

identified by the suffix “_i” in their names, e.g., mcapi_pktchan_send_close_i and

mcapi_pktchan_connect_i.

2.2 MCAPI Implementation

The first contribution of this Thesis is the implementation of the MCAPI specification

for the reference architecture presented in Section 1.4. This Thesis focuses on the im-

plementation of packet channel communication mode. This can be explained by the

fact that packet channels are more flexible than scalar channels and provide better per-

formance than messages, covering a wider range of data-flow applications. Moreover,

due to characteristics such as resource reservation and FIFO-like data exchange, there

are more opportunities to exploit hardware mechanisms than the other communica-

tion modes. Additionally, applications can communicate using only the set of functions

provided by packet channels, since the data types used in scalar channels can be sent

through packet channels and messages are mostly used for synchronization and initial-

ization. The MCAPI domains and nodes are represented by clusters and CPUs in the

reference architecture, as showed in Figure 2.2.
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Figure 2.2: MCAPI domain and node mapping in the reference architecture.
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Table 2.1: Non-exhaustive list of MCAPI functions.

Group Function Description

General
mcapi_initialize Initializes an MCAPI node.

mcapi_finalize
Finalizes the MCAPI environment on the local MCAPI

node.

Endpoints

mcapi_endpoint_create
Creates an endpoint in the local node with the specified

port ID.

mcapi_endpoint_get
Retrieves and endpoint in a remote node regarding the

informed domain, node and port identifiers.

mcapi_endpoint_delete Delete the specified endpoint in the local node.

Messages
mcapi_msg_recv Receives a message from a receive endpoint.

mcapi_msg_send
Sends a message from a send endpoint to a receive

endpoint.

Packet

Channel

mcapi_pktchan_connect_i
Connects a pair of endpoints into an unidirectional

FIFO packet channel.

mcapi_pktchan_open_recv_i Opens the receive end of a packet channel.

mcapi_pktchan_open_send_i Opens the send end of a packet channel.

mcapi_pktchan_recv Receives a packet on the opened packet channel.

mcapi_pktchan_send Sends a packet on the opened packet channel.

mcapi_pktchan_available Checks if packets are available on a receive endpoint.

mcapi_pktchan_release
Returns the system buffer for the MCAPI implementation

after finishing a packet receive call.

mcapi_pktchan_recv_close_i Closes the receive side of a packet channel.

mcapi_pktchan_send_close_i Closes the send side of a packet channel.

Scalar

Channel

mcapi_sclchan_connect_i
Connects a pair of endpoints into an unidirectional FIFO

scalar channel.

mcapi_sclchan_recv_open_i Opens the receive end of a scalar channel.

mcapi_sclchan_send_open_i Opens the send end of a scalar channel.

mcapi_sclchan_recv_uintXa Receives a X-bit scalar on an opened scalar channel.

mcapi_sclchan_send_uintXb Sends a X-bit scalar on an opened scalar channel.

mcapi_sclchan_available Checks if scalars are available on a receive endpoint.

mcapi_sclchan_recv_close_i Closes the receive side of a scalar channel.

mcapi_sclchan_send_close_i Closes the send side of a scalar channel.

Non-Blocking

Operations

mcapi_test Checks if a non-blocking operation has completed.

mcapi_wait Wait until a non-blocking operation has completed.

mcapi_cancel Cancels an outstanding non-blocking operation.

aX stands for values 64, 32, 16 and 8.
bRefer to footnote a.
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This mapping was defined based on the fact that each CPU can execute only one

task (thread) at a time, which configures an independent thread of control. Moreover, as

the domains are used for routing purposes, CPUs in the same cluster can be grouped

in a single domain, since the data does not have to be routed by the NoC. When

communicating with a CPU located in a remote cluster, the MCAPI implementation

must compute the path to the target cluster, characterizing a communication between

two different domains. Each node has its own set of endpoints, which are represented

by a 32-bit integer that encodes cluster, node and port identifiers. The codification has

the 16 most significant bits (MSBs) representing the domain identifier, the following 8

MSBs representing the node identifier and the 8 less significant bits (LSBs) representing

the port identifier.

2.2.1 Data Structures

In order to implement MCAPI for the reference architecture, some information have to

be accessible by all MCAPI domains. This is achieved by statically allocating areas of the

Shared Memory in each cluster to store three data structure types: MCAPI attributes,

FIFOs and Requests. The main advantage of storing this information in the Shared

Memory is allowing remote nodes to easily read the data by performing a simple read

in the remote Shared Memory.

2.2.1.1 MCAPI Attributes Structure

The organization of domain, node and endpoint attributes is presented in Figure

2.3. The domain data is placed in the top of the structure and contains all its node

structures. The address storing the domain identifier is called base address and is

defined prior to compilation. The node structures are organized in an ascending order

(lowest identifier in the lowest address and highest identifier at the highest address).

Each node structure has its own attributes and the attributes of its own endpoints.

The endpoint attributes comprise maximum payload size, status, buffer type, FIFO

descriptor (Section 1.4, Figure 1.8), among others. Since the maximum number of

endpoint is fixed, domain, node and endpoints attributes can be accessed by simply

adding an offset to the base address based on node and port identifiers. As an example,

considering that Node 0 needs to read the attribute 5 of endpoint 8 at Node 1 in the

following configuration:

– base address at 0x0004000;

– Size of domain attributes: 16 bytes (0x10);
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– Size of node attributes: 16 bytes (0x10);

– Size of endpoint structure: 32 bytes (0x20);

– Size of each endpoint attribute: 4 bytes (0x04);

– Maximum number of endpoints: 16;

The address that should be read is the 0x0004344, since it is needed to sum up:

read_addr = base_address + domain_attributes

+ (node_attributes + (endpoint_structure ∗ maximum_endpoints))

+ node_attributes + (endpoint_structure ∗ endpoint_port_id)

+ (attribute_size ∗ attribute_number)
(2.1)

When an attribute located in a remote domain has to be read, the address calcu-

lation is performed in the same way, with the domain identifier being used to properly

address the remote cluster in the MSBs of the address, as mentioned in Section 1.4.

The attributes are accessed most of the time when a packet channel connection is being

set-up, since several endpoint attributes must match in order to successfully establish

the connection.
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Figure 2.3: MCAPI attributes organization in the Shared Memory.
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2.2.1.2 FIFO Structure

The packet channels require the data to be transmitted in a FIFO manner. To ac-

complish this with limited overhead, an area of the Shared Memory is dedicated to

implement FIFO structures, based on the available FIFO API presented in Section 1.4.

This structure is depicted in Figure 2.4 and is responsible for storing the data trans-

mitted between sender and receiver, the addresses of read and write pointers (first and

last), the endpoint identifiers of sender (s_endpt) and receiver (r_endpt) processes and

a “lock” variable used to inform if the respective structure is being used. Therefore,

the MCAPI implementation can take advantage of FIFO API functions to implement

packet channel transmission. The FIFOs are shared among all nodes of a Cluster. Since

the FIFO control is implemented in software, the number of FIFOs and their respective

sizes are flexible and can be tuned according to the requirements of each application.

...

Domain data structure

FIFO 0

FIFO 1

FIFO 2

FIFO 3

FIFO 4

FIFO 5

FIFO 6

FIFO 7

data 0

data 1

data n

first

last

lock

s_endpt

r_endpt

…

Figure 2.4: Organization of the FIFO structures in the Shared Memory.

The FIFO is allocated in the connection step and is always placed at the receiver

side. This design choice is due to the fact that remote writes (posted write) present lower

latency over remote reads, since the waiting time of a response is removed. In order to

implement an atomic operation in the FIFO lock variable, the test-and-set packet (Table

1.5) is used to perform the FIFO allocation. Then, the FIFO structure is initialized with

write and read pointers initial values and endpoints identifiers. Later, during the data

transfer phase, the data is exchanged in the respective FIFO addresses in the Shared

Memory and the pointers are updated in both sender and receiver sides accordingly.

Finally, in the closing step, the FIFO structure is released by updating the lock variable

and reseting read/write pointers and endpoint identifiers.
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2.2.1.3 Request Structure

The last structure created to support the MCAPI implementation is related to the

request structure used to query the status of non-blocking operations. The implemen-

tation provides a programmable number of requests per endpoint. Table 2.2 presents

the fields that compose a request structure and its respective descriptions. All the

requests structures are placed in the Shared Memory. It is important to highlight that

the organization of these structures in the Shared Memory can be modified to present

higher efficiency in terms of memory usage.

Table 2.2: Request structure fields.

Request Field Description

id Request identifier.

function The function related to the respective request.

endpt1 Sender endpoint identifier.

endpt2 Receiver endpoint identifier.

fifo_id Identifier of the FIFO structure.

size Amount of data exchanged in bytes.

status Request status.

The structure must be filled during the execution of a non-blocking function by

the MCAPI implementation. Some fields are not used by all functions, such as size

and fifo_id. The id field is used to calculate the offset needed to access the respective

structure in the Shared Memory. The function field is responsible for encoding the

function that is related to the respective request and is used to decide which actions

should be performed by non-blocking operations. The endpoint identifiers are used to

access the endpoints related to the function and, eventually, access their attributes and

update them, e.g when a mcapi_pktchan_send_close_i has finished and the endpoint

status has to be changed from MCAPI_CLOSE_PENDING to MCAPI_AVAILABLE.

The fifo_id field is filled only by packet channel non-blocking functions and is used

to determine the offset needed to access the respective FIFO in the Shared Memory.

The FIFO structure is accessed during the connection and closing steps in order to

check or modify the lock variable. The size field is used to return to the application

the amount of data exchanged during non-blocking packet channel send or receive calls.

When other non-blocking functions are executed this value will be always zero. Finally,

the status field informs the current status of the respective request and is also used

by non-blocking operations to determine the actions that must be performed.
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2.2.2 Connection Set-up non-blocking Functions

The implementation of packet channel non-blocking functions focus on allocating re-

sources in the connection step and updating endpoint attributes in the opening and

closing steps. The common constraint is that all the steps must fill the request struc-

ture in order to successfully finish its execution during wait or test non-blocking oper-

ations. Furthermore, since all the steps must be performed by both sender and receiver

endpoints, they can be seen as a handshake protocol for starting and finishing the

communication. An example of the function call order for both sender and receiver

processes is presented in Figure 2.5.

TASK - Sender

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_send_open_i

mcapi_wait

…

TASK - Receiver

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_recv_open_i

mcapi_wait

…

Channel 

(FIFO)

Not Connected

Channel 

(FIFO)

Not Connected

Channel (FIFO)

Connected

Channel (FIFO)

Connected

Channel (FIFO)

Open

TASK - Receiver

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_recv_open_i

mcapi_wait

…

TASK - Receiver

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_recv_open_i

mcapi_wait

…

TASK - Receiver

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_recv_open_i

mcapi_wait

…

TASK - Receiver

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_recv_open_i

mcapi_wait

…

TASK - Sender

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_send_open_i

mcapi_wait

…

TASK - Sender

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_send_open_i

mcapi_wait

…

TASK - Sender

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_send_open_i

mcapi_wait

…

TASK - Sender

mcapi_initialize
.

.

.

mcapi_pktchan_connect_i

mcapi_wait

mcapi_pktchan_send_open_i

mcapi_wait

…

Figure 2.5: Function call order for a packet channel set-up.

The connection step is performed by calling the mcapi_pktchan_connect_i func-

tion. At the sender side, the MCAPI implementation seeks for a FIFO in the receiver

domain using the test-and-set packet, which returns a positive value if an available

FIFO was found or otherwise, the zero value. If a FIFO was successfully allocated,

its structure is initialized as explained in Section 1.4 and a request structure is filled

accordingly. Contrarily, if there is no available FIFO, an error is returned to the appli-

cation. At the receiver side, the MCAPI implementation seeks for a FIFO in its local

domain that has been initialized with the respective receiver endpoint identifier and

fills a request structure accordingly. If there is not any FIFO corresponding to the

receiver endpoint identifier, the request is filled with an invalid FIFO identifier.

The opening step is performed by calling the mcapi_pktchan_send_open_i and

mcapi_pktchan_recv_open_i functions at sender and receiver side, respectively. These

functions change the endpoint status to OPEN_PENDING, signaling that the opening step

was initiated in that respective communication side. The handshake protocol is per-

formed by non-blocking operations, and the implementation assumes that the receiver
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side must start the handshake by changing its endpoint status to OPEN when it identifies

that the sender status is OPEN_PENDING. Next, the receiver side waits until the sender

status changes to OPEN to finish the protocol. The sender side only needs to wait the

status of the receiver side to be OPEN in order to also modify its own status to OPEN and

finish the protocol.

The closing step is similar to the opening step in terms of handshake proto-

col implementation. In addition, this step is also responsible for deallocating the

FIFO employed in the communication channel. This step is performed by calling the

mcapi_pktchan_send_close_i and mcapi_pktchan_recv_close_i functions at sender

and receiver side, respectively. The endpoint status are changed to CLOSE_PENDING and

the non-blocking operations perform the handshake protocol. When the handshake pro-

tocol is finished, the receiver side deallocates the respective FIFO structure by reseting

the endpoint identifiers and write/read pointers and by releasing the lock variable.

Finally, although Figure 2.5 shows the sender process performing the set-up steps

before the receiver, the implementation does not impose this order as a constraint.

Indeed, the only order that must be respected is the step order, i.e., connection before

opening, and opening before closing. However, within each step, the implementation

supports both sender and receiver initializing the respective step.

2.2.3 MCAPI non-blocking Operations

Non-blocking operations are used to query the status of a request (mcapi_test) or

to wait until the non-blocking function related to the respective request has finished

(mcapi_wait), as mentioned in Section 2.1. These operations perform different actions

for each connection set-up step and may return different request status. The mcapi_wait

may return request success, invalid request or timeout status. In addition, mcapi_test

may return also a request pending status, i.e the non-blocking function is not finished

yet. The actions that must be executed depending on the returned status are defined by

the application programmer. In either way, a communication set-up step is considered

to be finished only when the returned status is success, i.e., it is mandatory to perform

mpcai_wait or mcapi_test operations before executing the next communication set-up

step, as depicted in Figure 2.5.

In the connection step, the non-blocking operations ensure that both communica-

tion sides had successfully allocated the FIFO and both endpoints changed their status.

Firstly, the non-blocking operations have to identify the local domain communication

side. In the sender side, the mcapi_wait operation checks the receiver endpoint status

and, once it is connected, changes the sender endpoint status to connected. Similarly,
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the mcapi_test operation checks the receiver endpoint, but returns a request pending

status if it is not connected. In the receiver side, the first action is to check if the sender

has allocated any FIFO related to the receiver endpoint. If there is not any FIFO

related to the receive endpoint, the mcapi_wait operation will block until the FIFO

is allocated, and the mcapi_test operation returns a request pending status. On the

other hand, if a related FIFO has been identified, the receiver endpoint attributes are

updated and the endpoint status is changed to connected. Then, the mcapi_wait oper-

ation blocks until the sender endpoint status is also changed to connected and returns a

request success status, while the mcapi_test operation returns a request pending sta-

tus. Finally, the mcapi_test operation returns a request success status when the sender

endpoint status is connected.

The opening and closing steps are simpler than the connection step, since they only

implement a handshake protocol, as mentioned in paragraphs 3 and 4 of Section 2.2.2.

Thus, the mcapi_wait operation has to check the remote endpoint status and blocks

if the status is not updated or, if the remote endpoint status is updated, changes the

local endpoint status and blocks until the next handshake. Similarly, the mcapi_test

operation has to check the remote endpoint status, change the local endpoint status if

needed, and return request pending status while the handshake protocol is not finished.

2.2.4 Data Transfer

After performing the channel set-up steps, the data transmission may start. The packet

channel function used to send data is the mcapi_pktchan_send and the function used

to receive data is the mcapi_pktchan_recv. The send and receive calls receive a pa-

rameter called handle, which is a type defined by the MCAPI specification, but is

implementation-specific. In this work, this type refers to the local endpoint structure in

the Shared Memory (Section 2.2.1.1).

Despite the handle, the send function also receive a pointer to the source buffer

and the amount of that must be transmitted in bytes as parameters. In this Thesis, the

packet size is the first data sent in a packet channel data transfer. This decreases the

receive function complexity, since it knows the expected size beforehand. Additionally,

as the FIFO is already allocated, the MCAPI implementation of this function has only

to retrieve the FIFO ID to calculate the offset to where the data should be sent (stored

as an endpoint attribute in the Shared Memory) and take benefit from the functions

provided by the FIFO API to send the data (write in the FIFO and check full status).

Similarly, the receive function also take benefit from the functions provided by the

FIFO API to receive the data (read from the FIFO and check empty status). However,
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the amount of received data and the buffer containing the received data are supplied to

the application by the MCAPI implementation. In order to implement this specification

constraint, the first received data is stored as the packet size and is used by the imple-

mentation to control the amount of data to be read from the FIFO. Furthermore, an

area of the Shared Memory is also reserved for the so-called MCAPI System Buffer. In

this Thesis, one System Buffer of 4 kB is available at each cluster. The main differences

between the packet channel FIFOs and the System Buffer are that the later can be ac-

cessed and used by the application in any way it chooses to, and their storage capacity.

While FIFOs are kept small to avoid hardware overhead (128 Bytes in the current imple-

mentation), the System Buffer size must be able to store the maximum size of a MCAPI

packet, which is also implementation-specific. Thus, when a mcapi_pktchan_recv is

performed, only the actual received data is copied from the FIFO to the System Buffer,

i.e., the first received data is returned to the application as the amount of received

data. Later, when the packet is finished and the application has already processed the

data stored in the System Buffer, the application must return the System Buffer to the

MCAPI implementation through the mcapi_pktchan_release function.

2.3 Performance Limitations of Software Implementation

The main advantage of fully implementing MCAPI in software is the flexibility, since

there is no need to concern about the hardware architecture. Moreover, as mentioned

in Chapter 1, the programming complexity might increase significantly when specific

hardware solutions have to be used by the software layer, since the programmer must

be aware of all hardware details. However, the software implementation might present

significant overheads. In order to avoid these overheads, the MCAPI implementation

was analyzed in two points: Communication Set-up and Data Transfer.

2.3.1 Communication Set-up Overheads

During this communication phase no data is transferred and still several packets are

exchanged in order to verify endpoint status and attributes. A scenario containing one

sender and one receiver is evaluated to characterize the traffic generated by the MCAPI

implementation, with the results presented in Figure 2.6.

The result shows that, despite the mcapi_pktchan_connect_i function on both

communication sides, the highest overhead is generated by the mcapi_wait operations,

which is around 10 flits for each call. This overhead is explained by the polling performed

in the remote address storing the remote endpoint status. Although this amount of flits
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Figure 2.6: Evaluation of the number of flits sent by each function in the connection
set-up.

might be not relevant when compared to the data transfer process, a condition herein

called “synchronization gap”, which is depicted in Figure 2.7, may significantly increase

this overhead.
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Figure 2.7: Synchronization gap between the connection set-up steps.

This gap is a desynchronization between sender and receiver and may occur due

to several factors, such as different initialization times in the processors, different pro-

cessing loads, etc. Moreover, it is a common scenario and it is mostly likely to occur

when executing several applications. Therefore, in order to measure the impact of this

condition, a scenario with one sender and one receiver performing the connection set-up

10 times was evaluated for several values of “desynchronization”. This parameter was

calculated by measuring the average execution time of the non-blocking functions used

during the connection set-up phase. Then, the receiver side execution was delayed by

different fractions of this value, which it is called “desynchronization rate”. As an ex-

ample, if the opening function is executed in the receiver side only after the equivalent
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function was executed in the sender side, the “desynchronization rate” will be 100%,

while functions that start to execute at the same time will have a “desynchronization

rate” of 0%. The results are presented in Figure 2.8.
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Figure 2.8: Generated traffic during channel set-up with desynchronization between
sender and receiver.

The above chart shows that the traffic increase is linear as the desynchronization

increases. Furthermore, the generated traffic with desynchronization of 60% is around

50% higher than the traffic generated with desynchronization of 10%. In addition to

the increased traffic overhead, Figure 2.7 also shows that the CPU is always active,

leading to processing overhead as well. Therefore, these numbers reflect the importance

of providing an efficient solution that can be able to decrease these overheads. This issue

is further discussed in Chapter 3, where a hardware mechanism that aims to decrease

this overhead is proposed.

2.3.2 Data Transfer and FIFO Control Overheads

The data transfer phase is executed almost entirely by one function in each commu-

nication side (packet channel send and receive). Thus, the investigation of possible

overheads can be narrowed to these functions. As already mentioned, both send and

receive functions take advantage of the FIFO software implementation. However, the im-

plementation of a FIFO mechanism in software creates processing and traffic overheads.

Although the data transfer is performed by the DMA, the FIFO control is handled by

the CPU and impact the performance during data transfers, as exemplified in Figure

2.9.
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Figure 2.9: Initialization and pointer exchanging of FIFO structure.

In this example, the structure is initialized in the steps 2.9(a) and 2.9(b). In 2.9(a)

the address of the sender process read pointer and the address of the receiver process

write pointer are stored in the FIFO structure. Then, in 2.9(b), these addresses are

stored in the field remote_addr, allowing each endpoint to update the remote pointer

when the local pointer is updated (2.9(c)). Therefore, for each write or read operation,

the CPU has to perform pointer updates and FIFO status checking. Moreover, when

sender and receiver processes are in different clusters, the pointers must be exchanged

through the NoC, resulting in traffic overhead and higher communication latencies.

Thus, in order to completely decouple computation and communication and in-

crease system performance, a hardware mechanism to manage buffers/FIFOs with flex-

ible configuration and low control overhead is proposed in this Thesis and is detailed in

Chapter 4.



Chapter 3

Communication Set-up Support

This chapter presents the Event Synchronizer hardware module, which is the second

contribution of this Thesis. The mechanism focus on decreasing processing and traffic

overheads imposed by the MCAPI implementation. This is achieved by replacing polling

phases with programmable event signaling. Moreover, as the mechanism was developed

in co-design with MCAPI, it also targets to be flexible and easily programmable. The

polling phases present in the MCAPI implementation are detailed in 3.1, while the

Event Synchronizer is described in Section 3.2. Finally, the modifications performed in

the MCAPI implementation to take advantage of the Event Synchronizer are presented

in Section 3.3.

3.1 Communication Set-up Polling Phases

The software implementation of the communication set-up phase relies mainly on reading

specific attributes of an endpoint until it matches an expected value (polling phase).

Indeed, a given process can check many times a specific attribute of its target endpoint;

if the target endpoint is in a remote cluster, several messages are sent over the NoC,

requesting the value stored in that respective address. If in the same cluster, several

read operations are performed in the Shared Memory. Either way, both cases present an

overhead since the result of read operations remains the same until the endpoint status

changes.

The polling phases are performed in both sides of the communication channel.

Figure 3.1 depicts the polling phases performed during the communication set-up in

the sender side. It is possible to see that four polling phases are performed from

mcapi_initialize to mcapi_finalize. Considering only the mcapi_wait operation,

49
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there are three polling phases, being one for each connection set-up step (connect, open,

close).

MCAPI .MCAPI Implem.

Sender Receiver
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mcapi_endpoint_create;…Ϳ
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mcapi_endpoint_get;…Ϳ

endpoint creation
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mcapi_finalize;…Ϳ

Polling Phase

Figure 3.1: Connection set-up polling phases in the sender side.

At the receiver side, considering only the mcapi_wait operations, there are four

remote and one local polling phases, as represented in Figure 3.2.



Chapter 3. Communication Set-up Support 51

MCAPI

ReceiverReceiver

mcapi_initialize()

ŵcapi_eŶdpoiŶt_create;…Ϳ
status = available

mcapi_endpoint_get;…Ϳ

ŵcapi_pktchaŶ_coŶŶect_i;…Ϳ

mcapi_wait;…Ϳ

endpoint creation

SenderSender

Conditions

Blocks until…

ŵcapi_pktchaŶ_recv_opeŶ_i;…Ϳ
status = open pending

Blocks until…

FIFO initialization

status = connected

Sender endpoint 

status changes to 

connected

Blocks until…

Blocks until…

Sender endpoint 

status changes to 

open pending

status = open

mcapi_wait(..)

Sender endpoint 

status changes to 

open

Blocks until…

mcapi_pktchan_recv(...)

mcapi_pktchan_recv_close_i(...)

status = close pending

mcapi_wait(...)

Blocks until…

Sender endpoint 

status changes to 

close
status = available

mcapi_finalize(...)

Polling Phase

Figure 3.2: Connection set-up polling phases in the receiver side.
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The additional polling phase occurs due to the opening step, where the receiver must

assure that the sender side also finishes this step. Otherwise, if the receiver performs the

closing step right after the mcapi_wait operation has completed, the endpoint status

will change to CLOSE_PENDING and the mcapi_wait operation in the sender side

will stall.

The polling phase overhead is twofold: increased network traffic and processing

load. The network traffic is increased due to remote reads performed when sender

and receiver are not in the same cluster, while the processing load is increased due to

execution of several meaningless operations to generate the read packets and check the

remote data value. Considering the case where sender and receiver are in the same

cluster, there is no traffic overhead. However, the processing load is further increased

due to memory reads performed in the local polling phases. Regardless sender and

receiver placing, these overheads compromise system performance and efficiency.

Therefore, a flexible hardware module that can handle the different communica-

tion set-up steps is required. Additionally, the mechanism must offer support to other

functions that present the same behavior, such as the mcapi_endpoint_get function.

Furthermore, in order to provide further flexibility and to be to be seamlessly compli-

ant with other standard APIs, the software implementation complexity must not be

increased.

3.2 Event Synchronizer Mechanism

In order to solve the aforementioned issues, a mechanism called Event Synchronizer

(ES) is proposed. This module targets to be as flexible as the solutions presented in

[52] and [53], but also aiming co-design with the MCAPI standard. The ES is a pro-

grammable hardware module able to handle a parameterizable number of events, which

is a software-level defined condition to be accomplished, for each communication termi-

nal in a processing element. Furthermore, each CPU is attached to an independent Event

Synchronizer for increased scalability, as showed in the updated cluster representation

(Figure 3.3).

Each ES interacts with three modules in the reference architecture cluster: Network

Interface (NI), respective CPU and respective Control Registers (Ctrl Regs) (Figure

3.4). The NI is responsible for forwarding the synchronization packets to the ES. The

synchronization packet contains the information of sender and receiver connections, as

well as the event code. The CPU is responsible for programming the ES according to

the expected events. The ES is responsible for notifying the Ctrl Regs module when a
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Figure 3.3: Cluster block diagram with Event Synchronizer.

received event matches the expected event, or when an expected event matches a stored

event. Finally, the Ctrl Regs is responsible for generating an interruption for the CPU.

It is important to note that no reference with MCAPI is assumed, i.e., the ES can be

used with any API that uses the concept of termination points to establish a connection.

Furthermore, the ES can be used to implement other synchronization actions, such as

barriers, by programming the event mask (Figure 3.5) accordingly.

CPU n
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Interface
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Event 

Synchronizer n

synch packet

Header

Event Code

Source Connection

Target Connection

Figure 3.4: Synchronization packet and Event Synchronizer block interactions.

The ES hardware structure is showed in Figure 3.5. The ES is composed of multiple

Synchronization Event Registers (SERs), Remote Connection ID Registers (RCRs), two

mask registers and 4 processes to handle received information and events generation.

The SERs are responsible for storing the events for each communication terminal, with

its number and size defined by the maximum number of connections and the maximum

number of different events that a given processor should handle. In this work, the number

of SERs is set to 64 and their size to 12 bits. The RCRs are 32-bit registers used to

store the remote termination points identifiers of each connection, which can be used

by the software to retrieve the termination point related to the respective connection
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or to perform error checking. The number of RCRs is equal to the number of SERs.

The mask registers are used by the CPU to program the expected events. The access is

performed through memory-mapped registers, where the CPU can write and read the

masks. The connection mask defines the termination point to be tested and the event

mask defines the expected event. The event mask can also be programmed to expect

multiple events, i.e., the ES will notify the Ctrl Regs only when a set of events matches

the mask value.
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Figure 3.5: Event Synchronizer structural view.

Each one of the four processes can be seen as a Finite State Machine (FSM), which

wait for data or a trigger signal and execute specific actions. The “Decode Packet”

process is responsible for receiving the synchronization packet from NI, extracting the

information and triggering the “Store Event” process. The “Test/Send Event” process

is responsible for notifying the Ctrl Regs when events and masks match. This process

is executed in two scenarios: after processing a synchronization packet (“Store Event”

process) or when masks are updated (“Get/Set Masks” process).

Thus, it is possible to remove all polling phases performed during communication

set-up in both sender and receiver sides by taking advantage of the Event Synchronizer.

This is achieved by defining a different event for each phase of handshake protocol and

for each communication set-up step. Figure 3.6 depicts how the ES is used in comparison

with the MCAPI software implementation. In addition to avoiding unnecessary network

traffic, the ES allows the CPU to enter in “idle” state, which can be translated into a

low-power state if this feature is available in the architecture. In this Thesis the “idle”

state is considered as a sleep, where the CPU does not execute any instruction and the

clock signal is disabled.
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Figure 3.6: Comparison of the hardware platform utilization with and without the
ES.

An example of the ES detailed operation for the opening step is presented in Figure

3.7. In action 1 the sender open function changes the endpoint status attribute and sends

the first synchronization packet to the receiver process. Then, it programs the ES in

order to wait for the reception of a synchronization packet signaling that the mcapi_wait

operation was performed in the receiver process (action 2 ). The action 3 shows that the

synchronization packet arrives in the receiver. However, as the ES was not programmed

to be notified for this synchronization packet, the event is stored. In action 4, the receiver

process programs the ES to wait for the respective event and, as the event was already

stored, the CPU is notified. Next, the receiver process sends the second synchronization

packet to the sender process and programs the ES to wait for the event representing

the end of protocol (action 5 ). Then, action 6 shows the second synchronization packet

arriving in the sender process and the CPU being notified. Finally, the sender process

sends the final synchronization packet (action 7 ), which arrives in the receiver process

(action 8 ) and, as the receiver was already expecting this event, finishes the opening

step (action 9 ). The other communication set-up steps are implemented using the same

behavior, changing only the ES programming respectively to each function.

3.3 MCAPI Modifications

In order to modify the MCAPI implementation it is considered that each termination

point represents one endpoint. Also, as each node (CPU) has its own Event Synchronizer,

the only identifier used to correlate a SER and an endpoint is the port_id. Finally, nine

events were defined in order to differentiate the communication set-up steps (Table 3.1).
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Figure 3.7: Communication opening diagram using the Event Synchronizer.

Table 3.1: MCAPI communication set-up events.

Event Code

SENDER_INIT_FIFO 0
SENDER_CONNECTED 1
RECEIVER_CONNECTED 2
SENDER_OPEN_PENDING 3
RECEIVER_OPEN_PENDING 4
SENDER_OPEN 5
RECEIVER_OPEN 6
SENDER_CLOSE 7
RECEIVER_CLOSE 8

These events can cover all the connection set-up steps and are mainly used in

the mcapi_wait operation. Furthermore, two functions were created to avoid code

replication: mcapi_trans_wait_synch and mcapi_trans_send_synch. These functions

are called when waiting or sending a given event and are presented in Figures 3.8 and

3.9, respectively. Both functions receive as parameters the remote and local endpoint

identifiers and the event code (info) to be sent or expected. The wait_synch function

programs the ES and set the CPU to the idle state, while the send_synch function

sends the synchronization packet. These functions are used in the implementation of

the primitives employed in the connection set-up steps and in the implementation of the

mcapi_wait operation.

Figure 3.10 presents a piece of code containing the implementation of the mcapi_wait

operation for the mcapi_pktchan_send_open_i function. The programmer can define

to use or not the Event Synchronizer by defining the POLLING_SET_UP directive. As it

can be seen, if the directive is defined, the compiler will use the polling code, where

the receiver endpoint status is read until the status changes to connected. Alternatively,
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without the directive definition, the implementation will take advantage of the ES by us-

ing the wait_synch and send_synch functions. In this specific example, these functions

represent action 2 and action 7 in Figure 3.7.

Therefore, thanks to hardware and software co-design, the bottlenecks of the com-

munication set-up phase were identified and transfered to a hardware module. As re-

sult, the mechanism is able to handle multiple steps of the MCAPI implementation and

showed to be easily accessible and programmable. Moreover, the programmer does not

need to change the application code since the software modifications are performed only

at the API level. Finally, the performance evaluation and the overhead in terms of code

size is presented in Chapter 5, showing that the ES can significantly decrease network

and processor loads with minimal increase in memory footprint.

mcapi_boolean_t mcapi_trans_wait_synch (

mcapi_endpoint_t local_ep ,

mcapi_endpoint_t remote_ep ,

mcapi_uint32_t info)

{

unsigned int mips_id ;

// Check if the connected endpoint is a valid endpoint .

if( mcapi_trans_valid_endpoint ( remote_ep ))

return MCAPI_FALSE ;

// Retrieves the local node identifier .

mcapi_trans_get_node_num (& mips_id );

// Set the IT Control module to interrupt the CPU when

// the Event Synchronizer signals that an event has arrived .

set_mask_sleep ( SLEEP_MASK_ALL );

unset_mask_sleep ( IT_PKT_SYNCH );

clear_status ( IT_PKT_SYNCH );

// Programs the Event Synchronizer with the respective

// endpoint identifier and event code.

set_mask_synch_conn (mips_id , local_ep );

set_mask_synch_info (mips_id , (1<< info));

// Reads the status of the CPU and set the sleeping mode

// in case no interruption has occurred .

if(! read_status_sleep ())

sleeping_mode ();

// CPU Pause -> Next instruction executed only when the CPU is

// woken up

// Clear Event Synchronizer Masks.

clear_mask_synch_info (mips_id ,(1<< info));

clear_mask_synch_conn ( mips_id );

return MCAPI_TRUE ;

}

Figure 3.8: Source code of the wait_synch function.
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void mcapi_trans_send_synch (

mcapi_endpoint_t remote_ep ,

mcapi_endpoint_t local_ep ,

mcapi_uint32_t info)

{

mcapi_uint32_t remote_domain , remote_node ;

// Decodes domain and node identifiers for the remote endpoint .

mcapi_trans_decode_endpoint (remote_ep , & remote_domain , & remote_node ,

NULL);

// Uses the lower level software function to send the packet .

// This function sends the source , target and info variables

// in the NI and informs it is a synchronization packet .

com_api_send_synch_packet (

remote_domain ,

remote_node ,

local_ep ,

remote_ep ,

info);

}

Figure 3.9: Source code of the send_synch function.

#ifdef POLLING_SET_UP

timeout_count = 0;

while (! mcapi_trans_endpoint_channel_isopen ( receiver_endpoint )){

timeout_count ++;

if( timeout_count == timeout ){

* mcapi_status = MCAPI_TIMEOUT ;

return MCAPI_FALSE ;

}

}

#else

// The CPU is set to sleeping mode until receive the

// RECEIVER_OPEN event.

if (! mcapi_trans_wait_synch ( receiver_endpoint , sender_endpoint ,

RECEIVER_OPEN ))

return MCAPI_FALSE ;

// Sends the SENDER_OPEN event.

mcapi_trans_send_synch ( sender_endpoint , receiver_endpoint ,

SENDER_OPEN );

#endif

Figure 3.10: Implementation of polling-based and event-based approaches for the
opening step in the sender side.
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Data Transfer Support

This chapter presents the third contribution of the Thesis, which is the development of

a hardware module to decrease computation and traffic overheads described in Section

2.3.2. This module is responsible for managing buffers used in the data transfer and

for packing/unpacking the sent/received data. The module is called Buffer Manager

and, similarly to the Event Synchronizer (Chapter 3), was developed in co-design with

MCAPI, targeting flexibility and low programming complexity. In order to introduce

the issues addressed by the proposed module, the data transfer phase and the software

implementation of FIFO control are reviewed in Section 4.1. Then, Section 4.2 details

the Buffer Manager implementation. Finally, the modifications performed in the MCAPI

implementation to take advantage of the Buffer Manager are presented in Section 4.3.

4.1 Data Transfer Phase

The data transfer phase is performed once the communication set-up is completed and

the channel is opened. The MCAPI implementation uses software FIFOs mapped in the

shared memory (Section 2.2.1.2) to send and receive data. Furthermore, the implemen-

tation uses the functions provided by the reference architecture software stack (Section

1.4) to avoid managing and translating addresses, which decreases the implementation

complexity. Thus, the mcapi_pktchan_send and mcapi_pktchan_recv functions use an

additional software layer, as depicted in Figure 4.1.

The FIFO API is responsible for interfacing the MCAPI implementation and the

hardware blocks. On the sender side, two functions are available: fifo_write and

fifo_write_block. These functions are able to send a 32-bits value and a buffer

of 32-bit values, respectively. On the receiver side, the only available function is the

59
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Figure 4.1: Steps performed during data transfer using pure software implementation.

fifo_read, which returns a 32-bit value. The numbers showed in Figure 4.1 represent

the order of the actions when sending and receiving data, up from MCAPI implemen-

tation. The actions performed when sending data with the fifo_write_block function

are represented by the numbers from 1 to 7 (up to writing the data in the destination

FIFO), while the numbers from 8 to 12 represent the actions performed in the receiver

side.

The first action executed by the mcapi_pktchan_send function is to check the

amount of data being sent and call the respective write function. The fifo_write_block

function is used when sending more than one 32-bit value (word). This function presents

lower traffic overhead since it uses the DMA block to perform read/write operations

and updates the FIFO write pointer only once. On the other hand, it presents higher

processing overhead, due to the address control needed when updating the write pointer

(wrapping), and is avoided when transferring only one word. Next, the FIFO descriptor

attribute (Section 2.2) is accessed in order to retrieve the destination address (action

3 ), followed by the DMA request creation (action 4 ). Then, the DMA reads data

from memory (action 5 ), packs and sends it to the remote Shared Memory through the

NI (action 6 ). In this particular example, the data is read from the Private Memory.

However, the DMA is also able to read data from the Shared Memory. Finally, in the

receiver cluster, action 7 represents the data being written in the respective FIFO.
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The process is very similar when using the fifo_write function. The main differ-

ence is that the DMA is not used, since the data is supplied by the application, i.e., it

is already in the CPU. Thus, the action 5 is skipped and the action 4 directly creates

the packet to the NI, which, in turn, follows the same behavior.

In the receiver side, the mcapi_pktchan_recv take advantage of the fifo_read

function (action 8 ). The FIFO descriptor is accessed (action 9 ) and the data is returned

from the FIFO (action 10 ) to the MCAPI implementation (action 11 ). Finally, the

MCAPI implementation moves the data to the System Buffer (action 12 ) and returns

its address. However, contrary to the sender side, the read function does not take

advantage of the DMA block. Thus, when receiving a buffer, each word is read and copied

sequentially, impacting communication performance. Additionally, although the pointer

updates are not depicted in Figure 4.1, it creates additional traffic overhead, which

also impacts communication performance (Section 2.3.2). This overhead is induced by

the packets sent to the remote cluster after executing every write or read function, as

explained in Figure 2.9.

Therefore, in order to completely decouple computation and communication and to

increase system performance, a hardware mechanism to manage buffers/FIFOs should

be exploited. Also, similarly to the Event Synchronizer, the mechanism must be flexible

and easily programmable in order to avoid an increase in the software implementation

complexity and to be seamlessly compliant with other standard APIs.

Figure 4.2 illustrates how the mechanism could work: two hardware blocks (Writer

and Reader) are introduced to manage the data access in the shared FIFO buffer. These

blocks detach the low level communication management from Sender and Receiver pro-

cesses and could be accessed and/or programmed through memory-mapped registers.

Three partitioning schemes, depicted by the numbers 1, 2 and 3, are considered. Each

number represents a partitioning of blocks among sending and receiving clusters: left side

of the dotted line is implemented in the sender side, while the right side is implemented

in the receiver side.

Partitioning 1 and 3 are equivalent since the FIFO buffer is exclusively placed in

one of the clusters with the respective blocks for writing and reading data. On the

other hand, the partitioning 2 completely separates the writing and read blocks in their

respective clusters. In common, all schemes alleviate the processing overhead due to the

FIFO buffer control being performed in hardware. However, the partitioning 2 presents a

higher overhead in network traffic since the Writer and Reader blocks must exchange the

pointer addresses. Furthermore, the main advantage partitioning 1 has over partitioning

3 is to require remote writes instead of remote reads when transferring data, presenting

a lower latency in the reference architecture, as mentioned in Section 2.2.1.2. Thus,
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the communication mechanism presented in the next section is implemented using the

partitioning scheme 1.

Sender 

Process

Writer

Receiver 

Process

Reader

1 2 3

SW

HW

Figure 4.2: Partitioning schemes options to implement a buffer management solution
in hardware.

4.2 Buffer Manager Mechanism

The proposed mechanism is called Buffer Manager Mechanism (BMM) and targets to

decrease the computation and traffic overheads in inter-process communication. The

main objectives to achieve this are:

• Accelerate the FIFO buffer management by using hardware implementation;

• Decrease control complexity by avoiding pointer exchange;

– Implementation of an end-to-end credit flow control mechanism;

• Abstract addresses by using port identifiers (IDs) in the communication;

• Increase flexibility by providing three different communication modes:

– Address-based transfer – from a source to a destination address (DMA-like).

– Direct data transfer – a single 32-bit word from source ID to destination ID.

– Buffer transfer – a buffer of variable size from source ID to destination ID.

The BMM is composed of four hardware modules, as depicted in Figure 4.3. This

mechanism was developed in co-design with MCAPI and replaces the DMA in the Com-

munication and Synchronization Subsystem (Section 1.4) to handle data transfers. The

main differences between the BMM and the DMA are that the earlier can handle read

operations as well as write operations, and the use of port identifiers to implement a

connection-based communication for direct data and buffer transfers. Also, due to the

port identifiers, the BMM is able to handle multiple connections in parallel through read

and write requests, reducing the hardware cost while increasing flexibility.
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Figure 4.3: Cluster block diagram with BMM modules.

The Buffer Manager Interface (BMI) is responsible for fetching and packing the

data to be transmitted in the sender side, while the Buffer Manager Write (BMW) is re-

sponsible for, in the receiver side, receiving and writing the data in the respective buffer.

The Buffer Manager Read (BMR) is used in the receiver side to fetch the received data

from the buffer. Finally, the Credit Manager (CM) implements the communication flow

control through a credit-based policy. The CM is responsible for sending and updating

credits when data is read or sent, respectively. Additionally to the hardware modules,

the BMM uses three table structures to control the communication: Connection Table,

Credit Table and Buffer Table. These tables are implemented as registers, while the

buffers are still placed in the cluster Shared Memory. However, since the mechanism is

programmable, the tables could be placed in a memory and buffers could be implemented

as a hardware block, for instance. The implementation of these blocks are detailed in

the next sections.

Drawing a parallel with Figure 4.2, the BMM blocks are organized as depicted

in Figure 4.4 (the Credit Manager block is omitted since the figure represents only

the data flow during the communication). Using this approach, the FIFO buffer is

managed only in the receiver side, avoiding pointers exchanging between sender and

receiver. Additionally, from the software point of view, there is no need to manage

remote addresses since the sender processes use only connection IDs, thus, simplifying

the API programmability.
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Figure 4.4: Partitioning of BMM blocks regarding communication sides.

4.2.1 Table Structures

The table structures are responsible for storing important parameters in the communica-

tion process: connection identifiers, available credits and buffer descriptors. These tables

are implemented as registers and are accessed by the CPU as memory-mapped registers.

The access to read and write from/in the tables is performed by using the primitives

read_table(table, id) and write_table(table, id, data), where table and id

represent the table (each structure has a single identifier) and the port identifier to be

accessed, respectively. This implementation allows the software API to seamlessly access

the table structures without significant performance degradation, since read and write

operations are performed similarly as in the Private Memory.

The Connection Table (CT) stores the port identifiers (ID) that are connected to

each local port. Each position of the CT refers to the local port ID, e.g. position 0 refers

to local port 0, position 1 to the local port 1, and so forth. Thus, the size of the CT

depends on the number of maximum ports per process/CPU. As each port can be used

as input or output, the value stored in the CT may refer to destination or source ID. If

a given port is being used as output port, the value stored in its respective position of

the CT informs the ID of the remote input port (destination ID). On the other hand,

if a given port is being used as input port, the value stored in its respective position

of the CT informs the ID of the remote output port (source ID). It is a programmer

responsibility to manage the direction and configure the port IDs during the connection

set-up phase (Section 4.2.2).

The Credit Table (CrT) stores the available credits for each output port of the

CPU. Each entry corresponds to a local port ID. If a given port is not being used or is

being used as input, the value of its respective entry is zero. Since all the ports in a CPU

can be used as output ports, the number of entries in the CrT is the maximum number

of ports in a process/CPU. As the number of credits represents the buffer available space

in bytes, the width in bits of each position depends on the buffer size (e.g. for a buffer
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size of 128 bytes, each entry would be an 8-bits register). This table is written only

by the Credit Manager module. Thus, attempting to write in this table from the CPU

results in an error.

The Buffer Table (BT) stores the buffer descriptors for each local port ID. In order

to simplify the design, the BT size is the maximum number of ports in a process/CPU.

Therefore, if a given port ID does not have an associated connection, its entry in the BT

is NULL. Each BT entry stores the buffer base address in the Shared Memory, buffer size,

read and write pointers and a credit threshold. This table is written by the CPU only

during connection set-up. During the data transfer, it is BMW and BMR responsibility

to update the write and read pointers, respectively.

4.2.2 Connection Set-up

Although only the data transfer phase takes advantage of the BMM, few initialization

steps are required during the opening step of communication set-up. These steps are

called connection set-up and must be accomplished by both communicating ports, as

further detailed in Section 4.3. As each port can be used as output (sender) or input

(receiver), the connection, credit and buffer table structures must be filled accordingly in

both sides. Therefore, the following steps must be performed to set-up the connection:

From Sender side:

– The CPU updates the Connection Table according to the input and output port

IDs;

From Receiver side:

– The CPU updates the Connection Table according to the input and output port

IDs;

– The CPU updates the Buffer Table with the buffer descriptor according to the

input port ID;

– The CPU creates the Initial Credit Packet (Table 4.4), sending credits to the

process related to the output port ID;

Finally, when the set-up phase is finished, the CPUs can start sending and receiving

data by creating requests to the Buffer Manager Interface (BMI) in the sender side and

to the Buffer Manager Read (BMR) in the receiver side. The BMI, BMR and Table
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Structures are mapped in the Global Address Map as showed in Table 4.1. The bits 22,

21 and 20 defines that the CPU or peripherals are accessing the Buffer Manager and

Tables. In case of accessing the BMM, the bit 19 defines if the data will be delivered

to the BMI or to the BMR. The request creation and the parameters (bits 18 to 0) are

detailed in the next section.

Table 4.1: Buffer Manager mapping into the Global Address Map.

Cluster

ID
Group Address

Module

31 23 22 21 20 19 18 0

N

RAM 0 0 ... ... Private and Shared Memories.

Peripherals
0 1 0 0 ... Status Registers,

Input, Ouput, etc.0 1 0 1 ...

Buffer

Manager

0 1 1 0 Parameters Buffer Manager Interface.

0 1 1 1 Parameters Buffer Manager Read.

Tables 1 0 1 Parameters
Connection, Credit and

Buffer Tables.

Unused 1 1 ... ...

4.2.3 Data Transfer Requests

The CPU schedules send and receive operations by creating requests to the BMM. To

create a request, the data has to be written in specific addresses that encode the request

parameters, referred as configuration address. When sending data, three options are

available: (i) address-based transfer, (ii) direct stream-based transfer, or (iii) indirect

stream-based transfer. The address-based request is implemented as a legacy function-

ality and used to perform transfers previously addressed to the DMA, where the source

and destination addresses are explicitly provided. On the other hand, the stream-based

requests abstracts the destination addresses through the port IDs. In the direct stream-

based request a single word of 32-bits is transmitted from a source port ID to a target

port ID, while in the indirect stream-based request a buffer of 32-bits words is trans-

mitted from a source port ID to a target port ID. As the BMM is used to accelerate

FIFO-like data transfers, only options (ii) and (iii) are supported when receiving data.

Thus, when the address-based transfer (option i) is used to send data, the receiver pro-

cess must know the destination address and read the data using the functions provided

by the HAL layer.
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The number of writes required to generate a request varies according to its type.

The address-based transfer request requires three writes, while word and buffer transfer

requests require one and two writes, respectively. Table 4.2 shows the request fields

coded in the 18 LSBs of the configuration address, and the selection of BMI and BMR

memory-mapped registers from bits 22 to 19. The main objective of encoding the request

parameters in the configuration address is to decrease the number of memory writes

needed to complete a request, hence, lowering the software processing overhead in the

overall communication performance.

Table 4.2: Buffer Manager request parameters encoding.

31 23 22 21 20 19 18 17 16 15 8 7 4 3 0

CLUSTER ID 0 1 1 R/W T EoR port/src id/flag CPU ID Unused

R/W - Read or Write operation; T - Type; EoR - End of Request ;

The bit 19 defines the request operation: Write for BMI or Read for BMR. The bit

18 defines request Type (address-based, indirect or direct stream based) and the bit 16

signals that the request has been completed (End of request). The port, src id or flag

information are encoded from the bit 15 to 8, with the respective information depending

on the request type. Finally, the CPU ID is coded from the bit 7 to 4. The 4 LSBs (3

to 0) are left unused.

4.2.3.1 Write Request

The write request is defined by the value “0” in the bit 19 of the configuration address

and is directed to the BMI. The other bits are filled according to the request type, CPU

and port/src id/flag. Table 4.3 details the possible configuration options when creating

a write request. The CPU ID information is available at the HAL layer after the system

boot, and thus, does not need to be provided at every request write. Instead, when the

CPU writes the data for the BMM, it encodes this information accordingly.

When the request type is the address-based transfer, the bit 18 is set to ‘0’ and the

bits 17 and 16 are changed according to the parameter to be informed. Three writes are

needed to complete an address-based transfer request. The first write will inform the

“Source Buffer Address” (line 1) and the second one the “Target Buffer Address” (line

3). The third and last write must inform the “Buffer Size” (line 4), which completes

the request by setting the bit 16 (EoR) to ‘1’. Additionally to the data, the SRC ID

parameter is coded from the bits 15 to 8 in the second write. This parameter is needed

to create the packet header that is sent through the NI.
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Table 4.3: Write requests encoding.

R/W Type EoR
Request Type Written Data

19 18 17 16 15 8 7 4

1 Address Based Transfer Source Buffer Address 0 0 0 0 - CPU ID

2 Address Based Transfer Not used 0 0 0 1 - -

3 Address Based Transfer Target Buffer Address 0 0 1 0 SRC ID CPU ID

4 Address Based Transfer Buffer Size 0 0 1 1 - CPU ID

5 Stream Based Direct (data) Not used 0 1 0 0 - -

6 Stream Based Direct (data) Data to be transmitted 0 1 0 1 Port ID CPU ID

7 Stream Based Indirect (buffer) Source Buffer Address 0 1 1 0 Port ID CPU ID

8 Stream Based Indirect (buffer) Buffer Size 0 1 1 1 Flag CPU ID

When using the stream-based transfers, the bit 18 is set to ‘1’. In this transfer type

two request types are possible: Direct and Indirect. In the direct transfer (line 6) the

bit 17 is set to ‘0’ and the bit 16 to ’1’ since only one write is needed (informing the data

to be transferred). On the other hand, the indirect transfer takes two writes, informing

the source buffer address (line 7) and the buffer size (line 8). In both request types the

sender port ID is coded from the bits 15 to 8, since the BMI needs this information

to retrieve the respective destination port ID in the Connection Table. Furthermore,

for indirect stream-based transfers the flag parameter might be informed. When this

parameter is specified (any value other than zero) and the transfer is finished, the BMI

sends a loop-back synchronization packet to the respective Event Synchronizer (based

on the CPU ID) with the informed flag as the event code, signaling that the source

buffer can be reused.

4.2.3.2 Read Request

The read request is defined by the value “1” in the bit 19 of the configuration address

and is directed to the BMR. The other bits are filled according to the request type, CPU

and port IDs. Table 4.4 details the possible configuration options when creating a read

request. Contrary to write requests, only the stream based requests are available. This

is because the application uses the CPU to read directly from specific memory addresses.

Thus, there is no need to provide support for address-based requests when reading data.

Consequently, the bit 18 is always set to ‘1’ when creating a read request.

The direct data transfer has a different behavior when compared to the other re-

quests. In this case, the CPU reads from the configuration address instead of writing

on it. Thus, the CPU stays blocked until the BMR replies with the read data, the same

way that when reading from memories. The information coded from the bits 15 to 8 is
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Table 4.4: Read requests encoding.

R/W Type EoR
Request Type Written Data

19 18 17 16 15 8 7 4

1 Initial Credit Generation Number of Credits 1 0 0 0 Port ID CPU ID

2 Address Based Transfer Not used 1 0 0 1 - -

3 Address Based Transfer Not used 1 0 1 0 - -

4 Address Based Transfer Not used 1 0 1 1 - -

5 Stream Based Direct (data) Not used 1 1 0 0 - -

6 Stream Based Direct (data) (read access) 1 1 0 1 Port ID CPU ID

7 Stream Based Indirect (buffer) Destination Buffer Address 1 1 1 0 Port ID CPU ID

8 Stream Based Indirect (buffer) Buffer Size 1 1 1 1 Flag CPU ID

the receiver port ID, which is used to retrieve the respective source port ID and buffer

descriptor.

When using the indirect transfer, the bit 17 is set to ‘1’ and two writes are needed.

The first write (with bit 16 set to ‘0’) informs the destination address and encodes the

receiver port ID. The second write (bit 16 set to ‘1’) informs the buffer size to be read

and might encode a flag parameter, which can be used in a similar way as in the write

requests, to inform that the destination buffer has been filled.

Besides the read requests, the BMR is also used in the communication set-up. Since

the Credit Manager is not directly accessible by the CPU, an unused configuration ad-

dress was selected to encode the generation of the initial credit packet (Section 4.2.2).

Thus, when the initialization is performed, the amount of credits is written in the cor-

responding configuration address, which also encodes the local port ID (Table 4.4 - line

1). As the Connection Table is initialized prior to credit generation, the BMR is able to

retrieve the corresponding port ID and signal the Credit Manager to generate the credit

packet.

4.2.4 Data Transfer Operations

Figure 4.5 depicts how the mechanism works during an indirect stream-based request

in both communication sides. Firstly, there is a set-up phase in both sides (action

1 ), which consists of the CPU initializing the Connection Table with the remote port

IDs (R ID) that will be sending/receiving data for the respective local ports (L ID).

Although it is not represented for clarity purposes, in the receiver side, the CPU is also

responsible for initializing the Buffer Table and requesting the initial credit generation

to the BMR. Next, in the Sender cluster, the CPU writes data in a buffer in the local

memory and creates a write request for the BMI (action 2 ). Then, the BMI picks the
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request and retrieves the remote port ID and available credit for the local port ID from

the Connection Table and Credit Manager, respectively (action 3 ). In case of available

credits, the data packet is sent through the NoC (action 4 ) with the information of the

target port ID, while the CM is notified to update credits for the respective local port

ID. Otherwise, the request is not dequeued and the BMI searches for other requests.

In the Receiver cluster, the data is received by the BMW, which accesses the Buffer

Table (action 5 ) based on the target port ID and writes the data in the respective buffer

(action 6 ). At a given moment, the CPU in the Receiver cluster creates a read request

for the BMR (action 7 ). Then, the BMR access the Buffer Table (action 8 ) based in

the local port ID and copies the data from the respective buffer to the target address

(action 9 ). Finally, the BMR notifies the CM to generate credits to the remote port ID

(action 10 ), which, in turn, creates and sends the credit packet through the NI (action

11 ).
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Figure 4.5: Buffer Manager Mechanism operation in an indirect stream-based request.

For direct stream-based requests the process is very similar from the hardware

point of view in both communication sides. However, as only one 32-bit word is trans-

mitted, the software does not pass a buffer address to be read or filled, but provides the

data directly to the BMM. Also, the number of credits needed to complete the request

corresponds to 4 bytes. Finally, in address-based transfers, the BMI does not need to

retrieve information from Tables and Credit Manager, but should pack the data with

the respective destination address before handling the packet to the NI.

4.2.5 Buffer Manager Interface (BMI)

The Buffer Manager Interface is the block responsible for receiving send requests from

the CPUs (software layer) and performing the data transfers in the sender side. The

BMI is connected to the CPU, Memories, Credit Manager (CM), Connection Table
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and Network Interface (NI), as depicted in 4.6. The CPUs write the requests for the

BMI through memory-mapped registers, as detailed in Section 4.2.3.1. The data is

fetched from Private or Shared Memory, depending on the provided source address.

Credit Manager and Connection Table are accessed to retrieve the available credit and

destination port ID information, respectively. Finally, the Network Interface is used to

send the data and the Credit Manager to update the available credits for the respective

port.

Connection 

Table

BMI

CPU

CM

Private/Shared

Memory

NI

Figure 4.6: Buffer Manager Interface connected modules.

The BMI function view is presented in Figure 4.7. The BMI is implemented in 4

main processes, which can be translated into Finite State Machines (FSMs), and has

CPU-independent queues, which store the send requests and are managed as hardware

FIFOs. The Request Decode is the first process is and receive as input the data written

by the CPU and the configuration address. This process decodes the information from

configuration address and assembles them together with the written data into a request.

Then, the CPU ID information retrieved from the configuration address is used to store

the send request in the respective queue. An alternative implementation is to connect

each CPU directly to its respective queue, allowing multiple CPUs to store send requests

in parallel. However, this implementation might significantly increase area and power

overheads as the CPU count increases.

Next, the requests are selected by the process Request Selection & Credit Test. This

process selects the requests using a round-robin policy. However, for stream-based trans-

fers, the request is selected only if there are available credits for the data transfer. Thus,

the send requests must have the respective buffer size as maximum transfer size in order

to be successfully handled. When the application has to perform data transfers larger

than the buffer size, it must create multiple requests of smaller size. This constraint

avoids data transfer deadlocks that might be caused due to the request scheduling and

allows other data transfer flows to start when a given receiver buffer is full. The available

credits information is retrieved through the Credit Manager block.

Then, after request selection, the process Request Processing is triggered. This

process is responsible for retrieving the destination ID from the Connection Table and
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for triggering the Data Fetch and Packing process according to the request type. In the

Data Fetch and Packing process, the data is read from the respective source address

and packed according to the request type. For address-based transfers, the destination

address is packed after the packet header, while in stream-based transfer, the destination

port ID is packed within the packet header.
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Figure 4.7: Buffer Manager Interface functional description.

4.2.6 Buffer Manager Write (BMW)

The Buffer Manager Write is the smallest BMM module. Indeed, it can be considered a

complement for the BMI placed in the receiver process, as discussed in Figures 4.2 and

4.4. It is connected to the Network Interface (NI), Buffer Table and Shared Memory,

as showed in Figure 4.8. The NI directs the packet to the BMW when it identifies a

stream-based data packet. The Buffer Table is accessed to retrieve the buffer descriptor,

allowing the BMW to write in the respective destination buffer. The connection with the

Shared Memory is related to the implementation realized by this Thesis, which places

the buffers in the Shared Memory and implement them as software FIFOs. However, in

cases where the buffers are mapped in other structures or are implemented in a different

way, the BMW must access the respective location, as well as the information/addresses

stored in the buffer descriptor.

Figure 4.9 presents the BMW functional view. As the only source of data is the NI,

which receives one packet at a time, the BMM has a single process (Data Processing).
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Figure 4.8: Buffer Manager Write connected modules.

This process is triggered by the reception of a new packet from the NI. The first action

is to retrieve the buffer descriptor from the Buffer Table. Next, the data received from

NI is written in the respective buffer. At the same time, the BMW updates the buffer

write pointer of the respective buffer descriptor in the Buffer Table. These actions are

executed until the entire data packet is received. Then, the Data Processing process

starts to wait for a new package. Finally, tt is important to highlight that, due to the

credit-based flow control, the BMW always has available space to write the data in the

destination buffer, which avoids NoC contention and possible deadlocks.
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Figure 4.9: Buffer Manager Write functional description.

4.2.7 Buffer Manager Read (BMR)

The Buffer Manager Read module is responsible for storing the read requests created

by the CPU (software layer) and performing the data transfers in the receiver side.

The BMR interacts with the Credit Manager (CM), Buffer Table, Shared and Private

Memories and the CPU (Figure 4.10). Similarly to send requests in BMI, the read

requests are created by writing data in memory-mapped registers and stored in CPU-

independent queues (hardware FIFOs). As detailed in Section 4.2.3.2, the destination

address must be informed as one request field, and can belong either to Private or Shared

Memory. The Buffer Table is accessed to retrieve the respective buffer descriptor that

stores the read pointer address. As mentioned in Section 4.2.6, the reason to access the
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Shared Memory to retrieve the received data is due to the FIFO buffers being mapped

there.

BMRCPU

CM

Shared/Private 

Memory

Buffer 

Table

Shared

Memory

Figure 4.10: Buffer Manager Read connected modules.

The BMR functional behavior is detailed in Figure 4.11. The left side shows the

Request Decode process, which is responsible for decoding the written data and config-

uration address generated by the CPU. After the request is completed (EoR bit set to

‘1’), the request type is evaluated to decide which process have to be triggered. As both

read requests are stream-based, they are referred only as direct and indirect.

As direct requests are issued by performing a read operation instead of a write in

the respective configuration address, they must be handled differently. Thus, the Direct

Data Fetch process is triggered. This process accesses the Buffer Table to retrieve the

respective read pointer, reads the data from the FIFO buffer in Shared Memory and

returns it to the CPU. Furthermore, in order to respect the request queuing order, the

number of indirect requests stored in the request queues is informed to Direct Data

Fetch process when a direct request is identified (not shown in Figure 4.11 for clarity

purposes). Thus, the data returns to the CPU only after processing the informed number

of indirect requests. Lastly, the Credit Update process is triggered to send 4-bytes credit

to the sender process.

When an indirect request is identified, it is stored in queues. The Request Selection

& Processing process selects the requests from queues using a round-robin policy. Then,

the read pointer is retrieved from the respective buffer descriptor in the Buffer Table, and

the Data Fetch process is triggered to read the data from the FIFO buffer and write it in

the destination address, which can be either in Private or Shared Memory. Additionally

to the read pointer, the credit threshold value is retrieved from Buffer Table. This value

is set at connection set-up, when initializing the Buffer Table, and defines the number

of reads to perform before sending credit to the sender process. Therefore, the Credit

Update process is triggered when the number of reads achieve the credit threshold value

or when the last data was read.
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The last possibility identified by the Request Decode process is the initial credit

generation (Table 4.4). In this case, the Credit Update process is triggered directly with

the number of credits provided in the request.

Configuration Address (CPU)

Written Data (CPU) CPU ID

Request
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recv req 0 recv req 1

Type
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Figure 4.11: Buffer Manager Read functional description.

4.2.8 Credit Manager (CM)

The Credit Manager module implements the credit-based control flow used in the com-

munication. To do so, it interacts with Network Interface (NI), Buffer Manager Interface

(BMI), Buffer Manager Read (BMR) and Credit and Connection Tables, as shown in

Figure 4.12. The NI is responsible for forwarding the credit packets to CM and also for

sending them to the network. The BMI can read and update credits in data transfers,

while the BMR only perform credit updates. The Connection Table is used to retrieve

the destination port id, and the Credit Table is used to read or update credits of the

local ports.

CM

Connection

Table

BMI

Credit

Table
BMR

NI

credit packet

Header

# of credits

Destination Port

Figure 4.12: Credit Manager connected modules.
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The Credit Manager implementation is represented in Figure 4.13. It is possible

to see that data coming from NI, BMI and BMR are handled separately. The Packet

Decode process retrieves destination port and amount of credits from the credit packet

and triggers the Credit Update process, which performs an increment of credits for the

respective port in the Credit Table.

The interface with BMI is performed by the process BMI Request. This process

identifies the operation to be performed: read or write. When the BMI is writing credits,

it means that a data transfer has been performed and the Credit Updated is triggered to

decrease the number of available credits for the respective port. On the other hand, if

the BMI is requesting credit information, the Credit Read process is triggered to return

the number of available credits for the respective port. Thus, a single process updates

the Credit Table and simultaneously manages credit increase and decrease.

On the left side, the process BMR Request is responsible for identifying credit

updates generated by the BMR and store a credit request in a queue. The credit

request contains the local port ID and the number of credits to be sent. Then, the

credit requests are picked by Credit Packing process, which retrieves the destination ID

from Connection Table, packs the data and sends the credit packet to the NI. A request

queue is employed to avoid the BMR to block after generating credit updates. As the

NI is a shared resource, this scenario may occur when sending the credit packet at the

same time that the NI is being used by another hardware module.
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Figure 4.13: Credit Manager functional description.

4.3 MCAPI Modifications

The modifications in the MCAPI implementation are performed in the opening and

closing steps of communication set-up phase and in the send and receive packet channel

MCAPI functions. The modifications in the communication set-up phase are performed
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to assure that the BMM is configured according to Section 4.2.2, while the modifi-

cations in mcapi_trans_pktchan_send and mcapi_trans_pktchan_recv functions are

performed to take advantage of BMI and BMR modules. As the endpoints encodes port,

CPU and Cluster IDs, they can be directly mapped to an available port ID in the BMM.

Thus, when executing MCAPI functions, the decoding of an endpoint tuple to a port

ID is a simple shift.

During the opening step, the modifications are performed in the mcapi_wait oper-

ation for both communication sides. In the sender side, the following lines are added:

unsigned int local_id = ( sender_endpoint & 0xFFFF );

update_conn_tab (local_id , receiver_endpoint );

This function writes the receiver_endpoint value in the connection table. As

mentioned in Section 4.2.1, the Tables are mapped in the CPU address space. Thus,

to address the correct port ID, the sender_endpoint has the domain ID masked (16

MSBs).

The code added in the MCAPI implementation for the opening step in the receiver

is the following:

unsigned int local_id = ( receiver_endpoint & 0xFFFF );

update_conn_tab (local_id , sender_endpoint );

update_buff_tab (local_id , base_addr , size , credit_th );

initial_credit_generation (fifo_size , local_id );

Similarly to the sender side, the function update_conn_tab initializes the Connec-

tion Table accordingly. Additionally, the function update_buff_tab is used to initialize

the Buffer Table for the respective endpoint. However, as each memory write supports

only a 32-bit word, the buffer descriptor need two write accesses to be initialized. In

the first access, the function writes the base address of the FIFO buffer, which is a

32-bit address in the Shared Memory. As the FIFO buffer is empty at the initialization,

the read and write pointers also receive this value. The second write is responsible for

initializing the FIFO buffer size and credit threshold fields. The size is coded in the 16

MSBs and the credit threshold value in the 16 LSBs. Finally, the MCAPI implemen-

tation uses a function to write the initial credit generation request for BMR, informing

the fifo_size as the number of credits to be sent.

For the closing step, the mcapi_wait operation is modified only in the receiver side.

This modification assures that the credits for the respective port in the sender side are

reseted by executing the following lines:

unsigned int local_id = ( receiver_endpoint & 0xFFFF );

initial_credit_generation (( fifo_size *-1), local_id );
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This function is called after changing the receiver endpoint status to CLOSED, which

guarantees that both sender and receiver performed the closing step.

In the data transfer phase, the modifications comprise changing the functions used

to write and read data through the FIFO API by functions to write direct and indirect

stream-based requests. Furthermore, two new events were created to take benefit from

the flag parameter in indirect stream-based requests (Tables 4.3 and 4.4). These events

are called SENDER_PACKET and RECEIVER_PACKET, and are represented by the values 9

and 10, respectively, following the codes presented in Table 3.1.

The mcapi_trans_pktchan_recv code becomes very short, as follows:

unsigned int local_port ;

// Decodes the endpoint into port , node and domain IDs. Only port ID

used in this case.

mcapi_trans_decode_endpoint ( receive_handle , NULL , NULL , & local_port );

// Received size retrieved with a direct stream -based request .

* received_size = com_api_stream_based_direct_read ( local_port );

// Creation of a indirect stream -based request to receive the entire

buffer .

stream_based_indirect_read (( int) sys_buffer_addr , * received_size ,

local_port , RECEIVER_PACKET );

// Uses the Event Synchronizer to wait the end of packet reception .

wait_stream_based_transfer_synch (local_port , RECEIVER_PACKET );

// Returns the System Buffer address to the application .

* buffer = (void *) sys_buffer_addr ;

As it is showed, only three functions are used to perform the packet reception.

The first one is a direct stream-based request to retrieve the packet size, as discussed

in Section 2.2.4. Then, this size is used as a parameter when creating the indirect

stream-based request. In this request, the System Buffer address is the destination ad-

dress (sys_buffer_addr), since the MCAPI implementation must provide the buffer

containing the data to the application. Thus, the BMR will copy the data from the

respective FIFO buffer to the System Buffer. Furthermore, the RECEIVER_PACKET is

informed as flag, and used later as the expected event for the ES in the function

wait_stream_based_transfer_synch.

The implementation of the mcapi_trans_pktchan_send follows the same idea:

send the packet size through direct stream-based request, send the entire packet through

indirect stream-based request and inform the ES to wait for the SENDER_PACKET event.
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However, as the requests in the BMI are selected only if there are enough credits, pack-

ets that are larger than FIFO buffers would never be processed (Section 4.2.5). Thus, a

size control is implemented in this function to split the packet into several smaller size

requests.

Despite only taking advantage of BMM for packet channels, the other two commu-

nication modes can also be fully handled by the BMM due to the different request types

it supports. MCAPI messages specify source and target address and a transfer size,

which can be handled with address-based requests. Scalar channels require dedicated

connections and exchange only fixed data sizes. These characteristics are supported by

direct stream based requests. Thus, the MCAPI implementation only needs to decode

the channel identifier into a port ID and create the respective requests to perform send

and receive operations. Therefore, as the BMM configuration can be performed with a

maximum of 3 CPU write operations in memory-mapped registers, the overhead induced

by the MCAPI implementation is limited and do not impact performance.





Chapter 5

Experimental Results and

Validation

This chapter describes the evaluations performed to characterize the mechanisms pro-

posed in Chapters 3 and 4, as well as the evaluation of MCAPI implementation de-

scribed in Chapter 2 in terms of memory footprint. Furthermore, the performance gains

obtained with the proposed mechanisms are validated through the execution of video

processing and path calculation benchmarks in Section 5.5. The environment set-up is

described in Section 5.1, while Sections 5.2, 5.3 and 5.4 present the characterization re-

sults for MCAPI implementation, Event Synchronizer and Buffer Manager Mechanism,

respectively.

5.1 Simulation Environment

The results presented in this chapter were obtained through simulations using a SystemC

[66] model of the reference architecture (Section 1.4), which was developed during this

Thesis. The model is described at TLM (Transaction-Level Modeling) level with timing

annotation, with the CPU core wrapping a MIPS R3000 ISS model [67]. The modules

are connected through socket ports, exchanging generic TLM transactions [66]. At

network level, each flit is represented by one TLM transaction. However, for NoC flits,

the transaction is a specific class that models the different flit types. Inside Clusters,

the transactions are managed mainly by a generic bus, which forwards the transactions

according to their destination addresses and the cluster address map.

81
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Table 5.1 presents the parameters used in the simulations. The number of clusters

differs according to the scenario being evaluated. On the other hand, the other parame-

ters are fixed. Indeed, the Private Memory size can be set to values up to 128 kilobytes

(kB) before running the simulation, while the Shared Memory size supports values up

to 1024 kB. By default, the simulations are performed using the maximum sizes. How-

ever, if a given application requires larger memory sizes, e.g., video processing, the CPU

address map can be modified to fit with the new sizes.

Table 5.1: Architecture parameters used in the simulations.

Parameter Value

CPU Frequency 200 MHz
NoC Frequency 500 MHz
Number of Clusters 2 to 16
Number of CPUs per Cluster 2
Private Memory Maximum Size 128 kB
Shared Memory Maximum Size 1024 kB

5.1.1 Simulation Scenarios

The simulations are performed with two objectives: characterize the performance of

the proposed mechanisms and evaluate the performance gains at application level. The

mechanisms characterization is performed with the “ping-pong” benchmark, which is

usually employed to characterize latency and throughput in works such as [12, 68, 69].

This application consists of sending a message from one process to another and wait for

the reply. In this context, the process that generates the first message is called ping,

while the process that receives and replies the message is called pong. Furthermore,

scenarios with multiple pong processes are evaluated, as depicted in Figure 5.1. These

evaluations are performed to represent a single-producer multiple-consumer scenario

(Figure 5.1(a)) when the ping process is sending the first message, and a multiple-

producer single-consumer scenario (Figure 5.1(b)) when the pong processes are sending

their replies.

In addition to the multiple number of connections (pong processes), two synchro-

nization schemes were evaluated in the Event Synchronizer characterization. These

schemes are depicted in Figure 5.2. In the sequential synchronization scheme (Mode S),

all the communication set-up steps (connect, opening and closing) and their respective

mcapi_wait operations are performed with each pong process before communicating to

the next one (Figure 5.2(a)). On the other hand, in the parallel synchronization scheme

(Mode P), each step is performed with every pong processes (1 and 2 in Figure 5.2(b))

before performing the respective mcapi_wait operation (3 and 4 in Figure 5.2(b)) with
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Figure 5.1: Ping-Pong application with multiple connections. (a) The “ping” process
sends data to multiple “pong” processes. (b) The “pong” processes send data to the

“ping” process.

the respective process. These schemes reflect how the programmer might code the appli-

cation/benchmark, i.e., the non-blocking operation does not need to be performed right

after the completion of a non-blocking function.
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Figure 5.2: Sequential and parallel synchronization schemes for the ping-pong bench-
mark.

Finally, the applications susan and dijkstra were used to validate the performance

gains obtained with the proposed mechanisms. These applications are part of MiBench

suite [70] and were modified by [71] to employ MCAPI packet channels in inter-process

communication. Susan is an image recognition package used for recognizing corners and

edges in magnetic resonance images. This type of image processing is common in real

world applications and could be employed for a vision based quality assurance applica-

tion. This benchmark provides image adjustments for threshold, brightness, and spatial

control. The dijkstra benchmark is used to calculate the shortest path between every

pair of nodes in a given graph using repeated applications of the Dijkstra’s algorithm

[72].
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5.2 MCAPI Memory Footprint

Implementing MCAPI with low memory footprint is mandatory, since this characteristic

is one of the main goals of MCAPI. However, it is not only the code size that occupies

memory space in the MCAPI implementation. The structures also contribute for a

significant part of the total memory footprint. Thus, both aspects are taken into account

in the evaluations and are detailed in the following sections.

5.2.1 Transport Layer Code

The evaluation of code size and comparison with the other APIs from the reference

architecture are presented in Table 5.2 and Figure 5.3, respectively. The MCAPI imple-

mentation has two layers: mcapi and mcapi_trans. The first layer provides the MCAPI

functions calls as defined in the specification, e.g mcapi_pktchan_send. Additionally,

this layer performs tests in order to cover the error conditions determined by the spec-

ification. Then, after executing the error checking functions, the mcapi layer calls a

mcapi_trans function, which implements the respective functionality.

Table 5.2: Code sizes for different implementations of software API layers in the
reference architecture.

BMM and ES DMA and ES DMA Pure Software
API Size

(bytes)
#

instructions
Size

(bytes)
#

instructions
Size

(bytes)
#

instructions
Size

(bytes)
#

instructions

boot 176 44 176 44 176 44 176 44
mips_debug 1316 329 1316 329 1316 329 1316 329
libc 504 126 504 126 504 126 504 126
mips_com_api 8124 2031 8124 2031 8124 2031 8124 2031
fifo 1480 370 1480 370 1480 370 1480 370
mcapi 4428 1107 4428 1107 4428 1107 4428 1107
mcapi_trans 13460 3365 13320 3330 12520 3130 12432 3108
Total 29488 7362 29348 7337 28548 7137 28460 7115

boot
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libc
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Figure 5.3: Software layers proportional contribution in the entire software stack.
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The error checking process introduces a processing overhead that is intrinsic to the

MCAPI implementation, since these errors are covered by the specification. An example

would be at endpoint creation, when the MCAPI implementation must check for a valid

port ID (e.g. port ID <= MCAPI MAX ENDPOINT). Table 5.3 shows the number

of cycles and instructions used to execute the mcapi_pktchan_send_open_i function.

The number of cycles used to execute the functional implementation corresponds for

54% of the total function execution time and the number of instructions corresponds

for 41% of the instructions, i.e., 46% and 59% of execution time and memory footprint

overheads, respectively. These overheads are not negligible for functions that execute

opening and closing set-up steps, since they are used basically for changing endpoint

status and filling up a MCAPI request structure. A solution to eliminate these overheads

would be assuring that all the parameters are correct prior to the executing these steps,

and then, implement these functions without error checking.

Table 5.3: Number of cycles spent by each function in the transport layer to complete
a mcapi_pktchan_send_open_i function.

Function Purpose Function Call # Cycles
% of Total

Cycles
# of

instructions
% of Total

instructions

Functional
Implementation

trans_send_open 703 51% 123 35%
Get domain and node ids 41 3% 22 6%

Error Checking

Check initialized 43 3% 37 10%
Check valid endpoint 156 11% 46 13%
Check channel type 105 8% 35 10%
Check send endpoint 111 8% 32 9%
Check open pending 104 8% 30 8%
Check channel open 107 8% 30 8%
Total 1370 100% 355 100%

In terms of code size, the MCAPI implementation code size ranges from 16.5 kB

to 17.5 kB (considering both layers), which represents 59.2% and 60.7% of total code

size for the entire software stack. Matilainen et. al [9] reported a total code size of

25 kB, using 1450 lines of C code for the transport layer (equivalent to mcapi_trans),

while the Authors in [5] used around 3700 lines of code to implement the transport layer.

For comparison sake, the MCAPI implementation performed by this work uses around

2500 lines of C code (without comments). Although only the packet channel functions

are implemented in the mcapi_trans layer, most functions used for error checking and

endpoint management can be reused to implement the other communication modes.

Therefore, implementing messages and scalar channel functions will not increase the

code size significantly. Thus, the MCAPI implementation present similar characteristics

to the state-of-the-art.

The variation highlighted in Table 5.2 for mcapi_trans is related to the code mod-

ifications described in Sections 3.3 and 4.3. The functions that contribute the most
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for this variation are presented in Table 5.4, as well as their code sizes for different

implementation versions.

The version that uses less memory is the pure software implementation. In this ver-

sion, the differences in code size are not significant when compared to the DMA version,

with only two functions presenting lower memory occupation: pktchan_send (line 3)

and init_paths (line 6). The difference in the pktchan_send function is explained by

the size control when sending blocks of data. This modification was performed in order

to send blocks of data according to the available space in the FIFO. As the pure software

implementation uses only the fifo_write function (sends only one 32-bits data), the

code is a simple for loop of the packet size. The init_paths has lower size for pure

software because there is no need to initialize the DMA routing table. Nevertheless, the

code size is increased in 88 bytes (0.3% of total size) in the MCAPI implementation and

in 748 bytes (2.7% of total size) in fifo layer for the addition of fifo_write_block

function.

The performance gains were evaluated through the “ping-ping” application with 1

pong process and is presented in Figure 5.4. The metric used is the total execution time

for different packet sizes. It is possible to see that, using the DMA, the performance

is increased for packet sizes larger than 16 bytes (4 words) and can achieve up to 23%

for packet sizes of 1 kB or higher. However, for smaller sizes, the processing overhead

decreases the overall performance. Thus, the DMA is used only when sending packets

of 4 or more 32-bits words.

Table 5.4: Memory footprint for the different versions of functions affected by the use
of BMM, DMA and ES.

Function
BMM and ES DMA and ES DMA Pure Software
Size (Bytes) Size (Bytes) Size (Bytes) Size (Bytes)

1 mcapi_trans_pktchan_connect_i 992 992 952 952
2 mcapi_trans_pktchan_recv 152 248 248 248
3 mcapi_trans_pktchan_send 280 244 244 188
4 mcapi_trans_test_i 2280 2168 1760 1760
5 mcapi_trans_wait 1996 1884 1524 1524
6 mcapi_trans_init_paths 56 56 56 16

With the modifications performed to take advantage of the Event Synchronizer the

mcapi_wait (line 5) and mcapi_test (line 4) operations had their code size increased.

Both functions represent an increase of 768 bytes (2.7% of total size) when compared to

the DMA column. This increase is a consequence of the modifications described in Sec-

tion 3.3. Finally, the modifications described in Section 4.3 also affected pktchan_send

and pktchan_recv function sizes. However, as the pktchan_recv function was simpli-

fied, the code size was decreased in 96 bytes. Overall, the code size was increased in 940

bytes (3.3% of total size) when compared to the DMA version. Nonetheless, the instruc-

tions count increase does not imply higher execution times, as showed in Sections 5.3
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and 5.4. Indeed, the additional code is required to configure the proposed mechanisms

accordingly, which offloads the inter-process communication from software and, hence,

leads to a lower number of executed instructions.
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Figure 5.4: Difference in the total execution time for the ping-pong application when
using DMA or pure software for data transfers.

5.2.2 MCAPI Structures

The memory footprint for the MCAPI structures are related to: number of nodes,

number of FIFOs per domain, maximum FIFO size, number of endpoints, maximum

number of requests per endpoint and System Buffer size. The values of these parameters

can be modified in the MCAPI implementation header file. However, the size of domain,

node and endpoint attributes as well as the request structure size are fixed. These values

are detailed in Table 5.5.

Table 5.5: Size of MCAPI structures placed in the Shared Memory.

Domain Structure Size (Bytes)

domain entry 20
node entry 20
endpoint entry 8
endpoint attributes 64
request structure 32

On the other hand, the total size of the other structures depend on the application

constraints. Considering the case where the highest amount of memory was used, all

the structures occupied around 37 kB of the Shared Memory (Table 5.6), using FIFOs

of 128 Bytes. However, this size can be dramatically decreased by tuning the amount

of resources according to the application (e.g. reducing the number of FIFOs, System

Buffer size, number of endpoints per node, etc).
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Table 5.6: Evaluation of data structures memory footprint.

Parameter #

Number of Nodes per Domain 2
Number of Endpoints per Node 64
Number of Requests per Endpoint 4
Number of FIFOs 64
System Buffer 1

Data Structure Size (Bytes)

Attributes Structure 9276
Request Structure 16384

FIFO Structure
8192

(128B per FIFO)
System Buffer 4096
Total 37948

5.3 Communication Set-up Characterization

The Event Synchronizer aims to decrease the processing and traffic overheads due to

polling operations used by the software implementation. Thus, two metrics are used to

characterize the performance gains obtained with the ES: network load and CPU load.

The network load is evaluated by tracking the amount of data sent by each process

through the Network Interface. In turn, total execution time and active/idle processor

time are taken into account to evaluate the CPU load. Both metrics can be related to

the overall system power efficiency.

The data injected in the network reflects directly the power consumption. Reducing

the number of flits sent by each process decreases the power consumption in two ways:

(i) less information being routed; (ii) lower bandwidth used, which avoids collision and

makes the packets to arrive faster at their destination. Indeed, lower network activity

decreases switching activity and consequently, the dynamic power consumption.

The idle time directly reflects in power consumption since it decreases the num-

ber of executed instructions and memory accesses, decreasing switching activity and,

consequently, dynamic power consumption. Furthermore, the idle mode can take ad-

vantage from a CPU low-power state, e.g. using DVFS, if it is supported by hardware

architecture.

The first evaluation has the objective to compare the results presented in Figures

2.6 and 2.8 and the results obtained with the MCAPI implementation taking advantage

of the Event Synchronizer. This comparison is performed using the sequential synchro-

nization scheme (Mode S) for the “ping-pong” application with one pong process. The

results are showed in Figures 5.5 and 5.6.
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Figure 5.5: Number of flits sent by each connection set-up function using polling and
event-based approaches.

Figure 5.5 demonstrates that the total number of flits was decreased for both sender

and receiver processes, despite the slight increase in the number of flits due to the syn-

chronization packet sent by the connect and open functions in the sender. Nevertheless,

the number of flits was decreased from 93 to 86 in the sender side, while in the receiver

side the decrease was from 72 to 60 flits, which represents a reduction of 7.5% and 16.7%

for sender and receiver, respectively, and an overall reduction of 11.5%. This difference

becomes more significant if the desynchronization is considered, as showed in Figure 5.6.

The desynchronization occurs when the communication sides do not perform a syn-

chronization step at the same time. Thus, a desynchronization rate can be defined as the

amount of time a communication process takes to start a synchronization step, relatively

to the amount of processing already performed by the opposite communication process.

It means that, if a receiver process starts the execution of a synchronization step only

after the sender process has already performed half of the same step, the desynchro-

nization rate would be of 50%. Similarly, if a sender process starts the execution of

a synchronization step only after the receiver has already finished the execution of its

respective function, the desynchronization rate would be of 100%.

To evaluate this effect, all flits sent by sender and receiver processes are consid-

ered (initialization, synchronization, etc). However, in order to decrease the influence

of traffics generated by other sources, the communication set-up is performed 10 times

between the ping and pong processes. Furthermore, no data is transferred, which means

that only the 3 communication set-up steps are performed. The results show that, with
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Figure 5.6: Number of flits sent in the communication set-up phase using polling and
event-based approaches for several desynchronization rates.

the Event Synchronizer, the number of flits sent is the same regardless the desynchro-

nization rate. Thus, when compared to the software implementation, the gain in the

number of flits is linear and achieves 36.2% for a desynchronization rate of 60%.

These evaluations demonstrate that the gains obtained with the Event Synchronizer

can be very significant. Therefore, several scenarios were simulated to further evaluate

network and processing loads.

5.3.1 Network Load

Figures 5.7 and 5.8 present the results obtained in terms of network traffic for several

numbers of pong processes and for both synchronization schemes. The number of flits

sent by the ping process for different number of connections (pong processes) is presented

in Figure 5.7. Although no data is transferred, up to 16 endpoints are created in the

ping process, since it is supposed to send and receive data. The values of the Y-axis are

showed in thousands and represent the traffic generated for the communication set-up

between the endpoints used to send and receive data. The communication set-up phase

was performed 64 times.

The chart shows that, compared to polling scheme, the number of flits significantly

decreases in Mode P and slightly decreases in Mode S when using the Event Synchronizer.

This can be explained by the fact that while the ping process performs the connection

step with all pong processes before going to the next step (opening) (Mode P), the

pong processes that completed the connection step start to perform polling operations

to read the ping process status for the opening step, generating network traffic. On the
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other hand, in the sequential synchronization scheme (Mode S), the pong processes stay

blocked in the connection step checking if the local FIFO is initialized by performing local

polling. Therefore, the decreasing in network traffic for Mode S is less significant than

for Mode P due to receivers performing local polling (translated into memory accesses)

instead of remote polling (translated into network traffic).
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Figure 5.7: Number of flits sent by the ping process for different number of connections
in both synchronization schemes.

Figure 5.8 shows the decrease in the flits sent by the ping process in percentage.

It can be seen that with the event-based scheme (using ES) the number of flits is kept

almost the same for both synchronization schemes. The reduction in the number of flits

sent ranges from 4% to 7% for Mode S and from 1% to 88% for Mode P. Additionally, the

number of memory access in Mode S was also decreased from 1% to 87%. Although the

curves show the data only for the ping process, the pong processes also present the same

gains for both synchronization schemes according to the total number of connections.

Moreover, it is important to highlight that the way the application is coded may

impact the overall performance. Considering this scenario, even the application present-

ing the same behavior for both synchronization schemes, the parallel synchronization

presents a significant higher amount of flits sent by each process. However, from the

software programmer point of view, this difference may be not clear when coding the

application. Therefore, the hardware optimizations co-designed with software API can

compensate this difference without impacting coding complexity.

5.3.2 CPU Load

When using pure software implementation, the polling operations in the synchronization

steps are performed by the processor. It has been stated in Chapter 3 that this approach
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Figure 5.8: Decrease in the number of sent flits when using ES in both synchronization
modes.

is not optimal and leads to resources misuse and, consequently, to low power efficiency.

On the other hand, the event-based approach has higher power efficient, since it allows

the processor to execute other tasks while waiting for an event or to switch to a low-

power/idle state. Thus, the total execution time and idle/active time ratio was used to

evaluate the CPU processing load.

Figure 5.9 presents the execution time for both synchronization schemes according

to the number of connections when using polling and event-based approaches. The total

execution time is decreased by 1% in average when using the Event Synchronizer for

both synchronization schemes. The reason for not achieving higher gains is explained

by the fact that the communication set-up steps cannot be speed-up, since the ES

is not able to generate the condition to complete a step faster. In other words, the

processors will execute the same instructions to perform the connection set-up in both

communication sides either using or not the ES. As an example, considering that the

ping process executes the pktchan_connect_i function at t0, the mcapi_wait operation

has to wait until the endpoint in the pong process change its status to connected, which

will happen at t1 and will not be influenced by the Event Synchronizer. The same idea

can be applied to the other polling processes.

However, by taking advantage of the event-based approach, the CPU can program

the ES to be notified when the respective event is received and, in the meantime, perform

other actions (e.g., task preemption in case of multi-thread operating system or decrease

CPU voltage and frequency to save power). In the scope of this Thesis, the reference

architecture model CPU has the clock signal stopped, which is called “idle” state. Figure

5.10 presents the evaluation in terms of idle time for the previously mentioned scenario.
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Figure 5.9: Total execution time of ping-pong application for a different number of
connections in both synchronization modes.
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Figure 5.10: Relation between idle time (solid line) and reduction in the number of
executed instructions (dotted line) for both synchronization modes.

In addition to the idle time represented by the left Y-axis and solid lines, the

decrease in the number of executed instructions is represented by the right Y-axis and

dashed lines. The number of executed instructions reflects the CPU switching activity

and memory accesses. As expected, the decrease in the number of executed instructions

is directly proportional to the idle time contribution over the total execution time. Figure

5.10 shows that the idle time increases significantly with the number of connections for

both Modes. The curves show that with 2 connections the idle time already contributes

for around 50% of the total time execution. With 8 connections, the idle time achieves

around 88% of the total execution time. A synthesis of idle, active and total execution

times is presented in Figure 5.11. Therefore, the CPU load can be dramatically decreased

by taking benefit of the Event Synchronizer, which gives opportunity to increase power
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efficiency.
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Figure 5.11: Total execution time divided between idle and active times for different
number of connections in both synchronization modes.

5.4 Data Transfer Characterization

The Buffer Manager Mechanism targets to decrease processing and traffic overheads by

implementing FIFO management and a credit-based flow control policy in hardware.

This mechanism is used in the data transfer phase. Therefore, two basic metrics used to

evaluate communication performance are employed: throughput and latency. Moreover,

the performance gains obtained with the BMM are evaluated by analyzing network

traffic, communication time and total execution time.

Throughput and latency measurements are performed with one connection in the

“ping-pong” application. However, for throughput evaluations, only the “ping” process

sends data, since the throughput measurement can be performed with a single com-

munication channel. On the other hand, for network traffic and communication/total

time measurements, both processes send data to each other for a number of ping-pong

connections varying from 1 to 8. Additionally, since the ES is used in all the evaluations

and both sequential and parallel synchronization schemes present similar performance

with ES, only the sequential synchronization scheme is considered.

5.4.1 Throughput Evaluation

The initial throughput evaluation is performed by transferring 32 kB of data from ping

to pong process for different packet sizes. Figure 5.12 presents the throughput obtained
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when using Pure Software implementation, DMA and BMM. Furthermore, the curves

are compared to the theoretical throughput limit, represented by the dotted line (TP

Limit). This limit is calculated by taking into account the CPU frequency (200 MHz)

and the fact that it takes 2 clock cycles to write each data (32 bits) in the bus. Therefore,

the maximum achievable throughput is 3200 Mbps. The evaluations are performed with

a FIFO size of 32 bytes.
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Figure 5.12: Throughput comparison between BMM and DMA for 32 kB of trans-
mitted data at different packet sizes.

The Y-axis is represented in logarithmic base due to the difference between the

obtained throughputs. It is possible to see that the throughput increases for larger

packet sizes, since the application divides the total amount of data in fewer requests

and, consequently, generates less processing overhead and finishes the data transfer

faster. With pure software and DMA implementations, the FIFO available space is

used by the API level to create a packet (software implementation) or request (DMA)

of its respective size. On the other hand, when using the BMM, the FIFO size (fixed

parameter) determines the request size. Thus, it can be assumed that larger FIFO

sizes can increase the throughput, specially for smaller packet sizes. However, since

indefinitely increasing FIFO size is not realistic, the throughput for large packets (e.g.,

2kB) do not change significantly, maintaining the same curve behaviors.

The throughput achieved with DMA and FIFO API ranges from 15 Mbps to 46

Mbps, while the throughput achieved with pure software implementation ranges from 13

Mbps to 38 Mbps. This difference shows that, even with a DMA being in charge of data

transfer, the throughput is limited by the FIFO control software implementation. On

the other hand, when using the BMM, the achieved throughput ranges from 29 Mbps to

1425 Mbps, i.e., a throughput up to 30 times higher. Moreover, since the performance

with a DMA is higher than pure software implementation, the next comparisons are

performed only between DMA and BMM.
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To further characterize BMM throughput, scenarios with different amounts of trans-

ferred data are evaluated. Figure 5.13 presents the results for data transfers of 8, 16,

32, 64 and 128 kB. In Figure 5.13(a) the curves show that the maximum throughput

achieved with BMM gets closer to the theoretical limit as the amount of transferred data

is increased. Figure 5.13(b) compares the throughput achieved with BMM and DMA for

different transfer sizes with a packet size of 8 kB. While the BMM throughput increases

for higher amounts of transferred data, the throughput using the DMA stays constant,

which exposes the overhead imposed by the FIFO API.
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Figure 5.13: Maximum achievable throughput for different amounts of transmitted
data.

Finally, the throughput efficiency is evaluated in Figure 5.14. The efficiency is cal-

culated as the ratio between the number of useful data bytes and the total number of

bytes sent through the NoC, which includes the protocol overhead. The evaluation was

performed for 32 kB of useful data transmitted. The total number of bytes takes into

account only the ping process and considers the channel set-up messages. The result

shows that the BMM doubles the throughput efficiency, since the overhead induced by

the software implementation due to the FIFO pointer exchanging is removed. The re-

maining overhead is produced by the header of each packet containing data, the packet

informing the transfer size and the synchronization packet. Thus, a lower overhead im-

pact is expected for larger packets, since the number of transfer size and synchronization

packets is decreased.

5.4.2 Latency Evaluation

The latency evaluation is performed by measuring the round-trip time (RTT) in two

scenarios: (i) a single packet of variable size and (ii) transmission of 8KB of data with

different packet sizes. The results are presented in Figure 5.15.

Figure 5.15(a) presents the round-trip time comparison between DMA and BMM.

The RTT is measured from the mcapi_pktchan_send function call to the completion of
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Figure 5.14: Throughput efficiency comparison between BMM and DMA.
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Figure 5.15: Round-trip time evaluation. (a) Round-trip time for 1 packet of different
sizes. (b) Round-trip time for 8 kB of data transmitted at different packet sizes.

the mcapi_pktchan_recv function in the ping process, thus taking into account receive

and send functions performed by the pong process. The time spent to complete one

“ping-pong” exchange by the implementation using the DMA ranges from 11.4 ms (8

bytes packet) to 356.8 ms (1 kB packet). On the other hand, the implementation taking

benefit from BMM presented RTT times ranging from 4.8 ms to 11.1 ms. This difference

represents a decrease around 60% for smaller packets and up to 97% for larger pack-

ets. It shows that the BMM is able to completely overcome the overhead introduced

by the software implementation. Furthermore, this result shows that the BMM can

dramatically increase the performance of applications that use scalar channels, since the

streamed data will be delivered a lot quicker to the receiver endpoint.

Similar gains were obtained when evaluating the round-trip time for a transmission

of 8 kB of data with different packet sizes, as shown in Figure 5.15(b). In this scenario,

all the data is considered a “single packet”, i.e the pong process replies to the ping

process only after receiving all the 8 kB of data. This evaluation mimics the behavior

of applications that needs to exchange large amounts of data at once, such as video
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processing. The total latency is higher for smaller packet due to the higher number of

packets needed to complete the entire transmission. In summary, the latency is decreased

up to 97% and 80% in average.

5.4.3 Network Load

The network traffic is evaluated by measuring the amount of data exchanged through

the NoC. The evaluation is performed with the “ping-pong” application exchanging 128

kB of data with each ping-pong connection. Two parameters are considered: packet size

(from 32 to 1024 bytes) and number of connections (from 1 to 8). However, for clarity

purposes, Figure 5.16 present the number of flits sent by the ping process for three

different number of pong processes. Nevertheless, the average gain curve is calculated

considering all scenarios.

The number of connections is denoted by the suffix in DMA and BMM series. The

“2c” suffix denotes the scenario with 2 pong processes, while suffixes “4c” and “8c” are

used to identify the scenarios with 4 and 8 pong processes, respectively.
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Figure 5.16: Total number of flits sent by for the ping process to transfer 128 kB of
data.

The decrease in the number of flits sent by the ping process, in percentage, is the

same despite the number of connections. Indeed, the number of flits sent by the ping

process is around the sum of flits sent by all pong processes, since both sides perform the

same actions. The results demonstrate that the BMM provides an important decrease in

the total number of flits, from 33.6% to 68.2% and 58.2% in average. It is also possible
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to note that, around 128 bytes packets, increasing packet size has no significant impact

in the total number of flits exchanged.

Furthermore, the results presented in Figure 5.16 can be compared to the through-

put efficiency, shown in Figure 5.14. Considering the scenario with 8 connections and

packet size of 1 kB using the BMM, the total number of flits sent by the ping process

is of 528,000, which represents 66,000 flits per connection. As the useful and minimal

amount of flits is 32,000 (each flit has 4 bytes), the obtained efficiency is 48.4%.

However, Figure 5.14 suggests that, for this packet size, the efficiency should be

higher. This can be explained by the fact that only the ping process sends data in the

throughput evaluation. On the other hand, in this scenario, the ping process sends and

receive data. Therefore, in addition to the aforementioned overhead, the credit packets

sent to the pong processes also contributes to decrease the global efficiency.

5.4.4 Communication and Total Execution Times

The last evaluations use communication and total execution time as metrics. These eval-

uations allow to characterize the impact of the BMM in the application performance. In

addition to the number of ping-pong connections and packet size, the MCAPI FIFO size

is also used as parameter. Three FIFO sizes are analyzed: 64, 128 and 256 bytes. Figure

5.17 compares the communication time when using DMA and BMM for different packet

and FIFO sizes and for 2, 4 and 8 connections. The X-axis variables are represented in

the following order, from top to bottom of the figure: packet size (from 32 to 1024 bytes,

in vertical), FIFO size and number of pong processes. The amount of data transmitted

between each ping-pong connection was 32 kB for all scenarios.
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Figure 5.17: Communication time using DMA and BMM for different packet and
FIFO sizes with different number of connections.

The curves show that the communication time using the BMM was decreased be-

tween 55% and 67%. Additionally, it can be seen that the FIFO size does not impact the
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communication time for 2 and 4 connections. On the other hand, scenarios with 8 pong

processes present a slight difference in the communication time for packet sizes between

128 and 1024 bytes depending on the FIFO size. It is possible to see that, for 8 pong

processes, the lowest communication time is obtained when the packet size matches the

FIFO size. This occurs due to the ping process writing the entire packet in the pong

process FIFO and starting to send the data to the next pong process. However, when

the packet size is larger than the FIFO size (i.e., the API has to decouple the packet in

several DMA/BMM requests), the ping process needs to wait for available space (DMA)

or credit (BMM) to continue the data transfer. This difference is less visible for the

64 bytes FIFO due to the overhead generated by request creation at software level.

Nonetheless, real case scenarios having one task producing data for eight consumers are

not typical. Therefore, in order to keep a compromise between performance and cost,

the remaining evaluations employ 128 bytes FIFOs.

To further evaluate the communication time for a fixed FIFO size, a scenario ex-

changing 128 kB of data between each ping-pong connection is evaluated. The compar-

ison between DMA and BMM performances is depicted in Figure 5.18. The number of

connections used in this scenario are 2, 4 and 8, with packet sizes ranging from 8 bytes

to 8 kB. The gain curve shows that the communication time can be further decreased, in

comparison with DMA, when exchanging large amounts of data (up to 98%). The gains

are similar regardless the number of pong processes, showing that BMM can efficiently

handle several connections in parallel.
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Figure 5.18: Communication time comparison for a data transfer of 128 kB.

Finally, the application execution time is evaluated using the same scenarios of

Figure 5.18 and the results are presented in Figure 5.19. The communication time

dominates the total execution time, since the amount of data exchanged hides channel

set-up and initialization times. It is clear that managing FIFO communication in soft-

ware highly impacts the application performance, even with a DMA being in charge of

data transfers. The gains obtained with BMM are lower for smaller packet sizes, since
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the application needs to create a higher number of requests. Nevertheless, the gains

range from around 50% for a packet size of 8 Bytes to 97% for a packet size of 8 kB.
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Figure 5.19: Ping-pong application execution time to transfer 128 kB of data with
different number of connections.

In summary, the characterization of the Buffer Manager Mechanism showed that it

can provide very significant gains in terms of throughput, latency, network load, commu-

nication time and execution time. While the throughput was increased up to 40 times,

the latency and communication time were decreased up to 97%. As the application

used to characterize communication time is used only for data transfers, the total execu-

tion time presented gains are similar to communication time gains. Therefore, the next

section present performance evaluations benchmarks by using benchmark applications.

5.5 Benchmarks Validation

The evaluations using real application benchmarks are used to validate the results ob-

tained with the “ping-pong” application and to demonstrate that the mechanisms co-

designed with MCAPI fulfill the objectives presented in Chapter 1. Therefore, network

load and communication and execution time are evaluated with two benchmarks: SU-

SAN and Djisktra. The results obtained with SUSAN are presented in Section 5.5.1

and the results obtained for two scenarios with Djisktra are presented in Section 5.5.2.

5.5.1 SUSAN

As mentioned in Section 5.1, SUSAN (Smallest Univalue Segment Assimilating Nucleus)

is a video processing algorithm used for recognizing corners and edges in images. The

parameter used to evaluate this application is the number of CPUs processing the input
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data, which is a 256x256 pixel image. The algorithm is implemented using a master-slave

approach, where all the CPUs run the same algorithm over a part of the image. However,

the number of processors used must be known before the application execution.

Initially, the “master” processor, which can be any processor, divides the image

in blocks by the amount of processors that will be used to execute the application and

sends the data for each “slave” processor. Then, each processor will execute the first

part of the algorithm over its respective block. Next, before executing the last part of

the algorithm, each “slave” must exchange data with the processors that have adjacent

image blocks of its own. Therefore, it sends part of the processed block as well as

receives parts of adjacent blocks to complete the algorithm. Finally, all “slaves” return

the processed blocks to the “master”, which is responsible for writing the data in the

output file.

Figure 5.20 shows the average number of flits sent by each slave task. The network

traffic for 2 slave tasks is significantly lower due to the application task mapping, which

placed one of the tasks in the same cluster/domain as the master task. However, with

4 or more CPUs running a slave task, the results are similar to the gains presented in

Section 5.4.3. The gain slightly decreases as the number of CPUs increases, since the

amount data exchanged per task is decreased, which in turn, decreases the overhead

imposed by the FIFO API and DMA.
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Figure 5.20: Average number of flits sent by each task for SUSAN benchmark.

The communication time evaluation is depicted in Figure 5.21. Similarly to the

network traffic evaluation, the communication time is showed as an average of the com-

munication time in the slave tasks. The “Gain” curve shows that the communication

time was decreased around 95% regardless the number of CPUs executing the bench-

mark. Since a large amount of data is exchanged in this application (around 500 kB)

[71], this benchmark corroborates the results presented in Figure 5.18, showing a very

significant decrease in the software implementation overhead.
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Figure 5.21: Average communication time comparison between BMM and DMA for
SUSAN benchmark.

Lastly, Figure 5.22 shows the evaluations for total execution time (a) and speedup

(b) in the same scenario. It is possible to notice that, with fewer CPUs, the significant

decrease in the communication time presented in Figure 5.21 has lower impact in the

application performance, since the CPUs spend considerably more time processing than

transferring data. However, as the number of CPUs increases, the gain in the application

performance also becomes significant, due to the higher impact of the communication

time over total execution time. This is also evidenced in Figure 5.22(b), where the

speedup with 32 CPUs is around 10 when using the BMM and around 8 when using the

DMA and FIFO API.
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Figure 5.22: Average total execution time (a) and speedup (b) comparison between
BMM and DMA for SUSAN benchmark.

5.5.2 Dijkstra

The second benchmark evaluated is called dijkstra, and similarly to SUSAN, the evalu-

ation parameter is the number of processing cores used to execute the algorithm. The

benchmark consists on finding the shortest path between every pair of nodes in a given
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graph. The shortest path calculation is performed by the Dijkstra’s algorithm [72],

which is a well known solution to the shortest path problem with run-time complexity

of O(n2).

The application is also implemented using a master-slave approach, where the mas-

ter process creates a list of tasks that will be issued by the different slave processes. Then,

the graph is sent to the Shared Memory of each cluster as a matrix, where the value

x stored in the position {i,j} corresponds to the distance between the nodes i and j.

The evaluation is performed for 2 matrix sizes: 80x80 and 160x160. Next, each slave

receives a task from the master, process it and returns the result. If the application is

not finished, i.e., there are available tasks, the master sends another task to the slave

that returned a result. Otherwise, it sends a message signaling that the application has

finished. In this benchmark, the slave processes do not exchange messages.

Figures 5.23, 5.24 and 5.25 present the results regarding network traffic, communi-

cation and execution times, respectively. All evaluations depict the results for the small

scenario (80x80) in Figure (a) and the results for the big scenario (160x160) in Figure

(b). The gains in terms of network traffic are similar for both scenarios and also similar

to the previous results regarding network traffic, as showed in Figure 5.23. In average,

the decrease in number of flits sent by all processors is of 66% and 67.5%, respectively.

This is explained by the fact that the largest data transfer occurs at the application

start, where the graph is sent to all processors as a single packet. Thus, the average

decrease is around the values presented for large packets in Figure 5.16.
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Figure 5.23: Average number of flits sent by each task for Dijkstra benchmark. (a)
Scenario with 80x80 matrix. (b) Scenario with 160x160 matrix.

Figures 5.24 and 5.25 show the average communication and execution times, re-

spectively, between the processors of a given scenario. It is possible to note that, in

Figures 5.24(a) and 5.24(b), the highest communication time using the DMA is around

2 and 8 times higher when compared to SUSAN benchmark, respectively. Nonetheless,

the average gains slightly change, staying always higher than 93%. These results show
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that the BMM can handle different traffic patterns and communication volume without

performance degradation.
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Figure 5.24: Average communication time comparison between BMM and DMA for
Dijkstra benchmark. (a) Scenario with 80x80 matrix. (b) Scenario with 160x160 matrix.

Finally, the gains in the application performance are measured through the total

execution time and speedup, which are presented in Figure 5.25. Similarly to SUSAN

benchmark, the gain curve shows that the performance increase is higher when the

communication time has higher impact over total execution time. However, Figure

5.25(a) achieves higher gains than Figure 5.21 (up to 26%) since, in contrast to SUSAN,

the communication time increases proportionally to the processor count. Figure 5.25(b)

corroborates this behavior, presenting lower gains than SUSAN.

This is also noticed in Figures 5.25(c) and 5.25(d), where the speedup difference be-

tween the two approaches is higher in the 80x80 matrix scenario. Nevertheless, although

the gains were decreased by one-third compared to the small scenario, the execution

times are around 15 times higher. Therefore, the BMM offers significant performance

gains for applications that are not computation-bound and/or for architectures with a

high number of processing cores.
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Figure 5.25: Average total execution time and speedup comparison between BMM
and DMA for Dijkstra benchmark. (a) Total execution time in the scenario with a 80x80
matrix. (b) Total execution time in the scenario with a 160x160 matrix. (c) Speedup in
the scenario with a 80x80 matrix. (d) Speedup in the scenario with a 160x160 matrix.



Conclusion and Perspectives

Programming distributed and parallel applications in embedded multi-core systems have

become increasingly complex due to the system heterogeneity. Additionally, the lack of

standard software solutions contributes to further increase this complexity. Thus, in

order to decrease the gap between hardware and software technologies, this Thesis has

addressed hardware and software co-design of multi-core architectures. The objective

was to increase programmability through the implementation of a software standard

for inter-process communication while decreasing the performance overhead imposed by

this implementation and, hence, improving communication performance. Three main

contributions were developed to achieve this:

• Implementation of MCAPI for a generic multi-core architecture (Chapter 2).

• Implementation and evaluation of a hardware mechanism for communication set-

up and synchronization (Chapter 3)

• Implementation and evaluation of a hardware mechanism for data transfers (Chap-

ter 4)

The programmability of multi-core architectures is improved by the implementa-

tion of MCAPI, which specifies primitives for inter-process communication. Then, the

overheads imposed by the software implementation were characterized and mechanisms

addressing communication set-up and data transfer were proposed.

Regarding the MCAPI implementation, it is showed that the API is lightweight

and compatible for embedded systems. The implementation performed in the scope of

this Thesis reported to be smaller than the implementations performed by other works.

However, it is important to highlight that the total memory footprint, i.e., considering

the data structures, depends also on the application constraints. For instance, the less

the number of simultaneous connections a single node requires, the lower is the total

memory footprint.
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The first overheads identified in the software implementation were increased net-

work traffic and processing loads during the communication set-up phase. These over-

heads are caused by the polling processes performed at each connection set-up steps.

To overcome this issue, the Event Synchronizer (ES) hardware module is proposed. It

works as a programmable mechanism able to handle a parameterizable number of events.

As showed in Chapter 3, this mechanism is easily accessible and programmable since it

was developed in co-design with MCAPI. The results obtained when taking advantage

of the ES are presented in Section 5.3, and show that both network traffic and CPU

loads are significantly decreased, up to 87% and 88% respectively, without increasing

software complexity.

Next, the overheads presented in data transfer phase were evaluated, showing that

the FIFO control implementation in software also induces increased network traffic and

processing loads. Therefore, the Buffer Manager Mechanism (BMM) is proposed in order

to implement FIFO control in hardware. Also, in order to achieve higher flexibility, the

mechanism does not provide FIFO structures or impose constraint about memory sizes.

Instead, it has table structures to store FIFO parameters, such FIFO sizes and their

placement. Additionally, it uses a credit-based flow control to avoid pointer exchanges.

Moreover, the BMM can be programmed through memory-mapped registers, allowing

it to be used by hardware accelerators and, similarly to the ES, not increasing software

complexity. The characterization regarding latency, throughput, network and applica-

tion performance is presented in Section 5.4 and shows significant gains: throughput

increased up to 30 times, latency decreased up to 97%, network traffic decreased up to

68% and total execution time decreased up to 97%.

In addition to the mechanisms characterization, which was performed with the

“ping-pong” benchmark, their performance was evaluated using real applications. The

results presented in Section 5.5 corroborate the gains obtained in the previous evaluation

regarding network traffic and communication time. However, it is demonstrated that

with applications that are not computation bound, the gains in terms of total execution

time vary from 1% to 26%. As conclusion, the proposed mechanisms are more effective

for communication bound applications or when employed by a high number of processing

engines.

Therefore, this Thesis has demonstrated that co-designing hardware mechanisms

and MCAPI can significantly decrease the performance overheads imposed by software

implementation. Also, it is showed that the mechanisms can be flexible and easily pro-

grammable, which does not increase programmability complexity or memory footprint.
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Future Works

The contributions made in this Thesis are a first step in the hardware and standard

software co-design for embedded systems, and several works can be envisaged based on

them. A natural addition is to exploit the proposed mechanisms for the other two com-

munication modes supported by MCAPI: messages and scalar channels. This extension

is performed at the API transport level and does not require any hardware modifica-

tion. Also, the number of System Buffers can be increased in order to allow multiple

reception flows in a cluster and/or node. However, this improvement would require a

hardware mechanism to handle the resources and possibly implement dynamic memory

allocation, since the System Buffers are a finite resource and the applications may call

the receive primitive in a different order of the received data. Another possible solution

is to implement the zero-copy concept, which would allow the data to be transferred

to the application directly from the FIFOs and, consequently, increase the communica-

tion performance. Finally, regarding the MCAPI implementation, the receiver-initiated

messages concept ([73]) can be evaluated and compared with the adopted pre-pushing

strategy.

The perspectives about the mechanisms are to increase their functionality and

flexibility to support communication and/or synchronization operations that are not

currently supported by MCAPI. Thus, other APIs targeting different aspects, such as

MRAPI (resource management) and MTAPI (task management) can also take benefit

from the proposed mechanisms. Furthermore, according to the MCAPI website [6], a new

specification is under development, requiring the mechanisms to be updated accordingly.

In terms of performance evaluation, additional benchmarks with different relations

between computation and communications can be considered. Furthermore, different

architecture configurations might change the results obtained with susan and dijkstra,

e.g., the processor operating frequency higher than NoC operating frequency. In this

case, the performance increase is expected to be greater, i.e., higher decrease in total

execution times.

Finally, the mechanisms can be inserted in a heterogeneous platform to demon-

strate their flexibility. As the mechanisms are programmable through memory-mapped

registers, hardware accelerators might interpret them as memory extension. Further-

more, by using MCAPI, the application can abstract the platform heterogeneity, leaving

to the transport layer implementation the responsibility of programming the hardware

accordingly. Thus, the software component responsible for controlling the respective

hardware accelerator has to be modified in order to access the mechanisms. However,

as already demonstrated in this Thesis, the software complexity is not increased.
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Appendix B

Résumé en Français

B.1 Introduction

Les progrès technologiques ont permis jusqu’à présent l’intégration toujours croissante

d’un plus grand nombre de composants sur une seule puce [1], nommée «SoC» (système-

sur-puce). Au cours des dernières décennies, conjointement à l’augmentation du nombre

de transistors, la performance des SoC pouvait être améliorée en augmentant également

leurs fréquences de fonctionnement. Cependant, ces changements d’échelle atteignent

des limites, telles que le «power wall» [2], cette approche ne peut être reproduite in-

définiment. Ainsi, pour augmenter davantage les performances des systèmes embarqués,

des architectures utilisant plusieurs cœurs de traitement ont été largement utilisées au

cours des dernières années.

Actuellement, en plus de l’exigence de performance plus élevée, plusieurs domaines

applicatifs (tels que les télécommunications haut-débit, la vision artificielle ou le traite-

ment vidéo haute-définition) imposent également des consommations d’énergie réduite

comme une contrainte primaire. Par conséquent, des accélérateurs matériels peuvent être

utilisés pour atteindre une meilleure efficacité énergétique. Dans ce contexte, dévelop-

per des applications embarquées sur des plateformes hétérogènes devient une probléma-

tique complexe. En effet, des difficultés de programmation apparaissent compte-tenu

de l’absence de standards logiciels qui prennent en charge l’hétérogénéité des nouvelles

architectures, menant souvent à des solutions adhoc.

Une API (Interface de Programmation Applicative) de programmation standard-

isée pour les systèmes embarqués est proposé par la «Multicore Association» (MCA) [6].

La «Multicore Communication API» (MCAPI) est mise en œuvre dans [10–12]. Cepen-

dant, comme le montrent ces travaux, l’utilisation de MCAPI peut induire des surcoûts
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importants concernant les performances. L’ajout de mécanismes matériels pour gérer

les communications inter-processus peut augmenter la performance globale en accélérant

les phases de communication. D’autre part, dans la plupart du temps, ces mécanismes

ne sont pas flexibles, en ce qui concerne leur utilisation dans différentes architectures, ou

ne prennent pas en compte la complexité accrue dans le développement de logiciels pour

les gérer. En conséquence, il apparait pertinent de suivre une approche de co-conception

logicielle et matérielle afin d’augmenter la programmabilité des architectures multi-cœur

tout en répondant aux exigences de performances. Néanmoins, l’utilisation d’une API

(Interface de programmation) logicielle standard est essentielle pour la réutilisation et

compatibilité du code applicatif.

Les principaux objectifs sont ainsi d’accroître la programmabilité et de diminuer

la charge logiciel des cœurs de processeur grâce à l’utilisation de mécanismes matériel

adéquates. Afin d’atteindre ces objectives, les trois contributions principales de cette

thèse sont:

• La mise en œuvre et l’évaluation d’une Interface de programmation (API) standard

pour les communications inter-processus.

• La conception et évaluation d’un mécanisme matériel pour améliorer la perfor-

mance dans la phase de synchronisation de la communication.

• La conception et évaluation d’un mécanisme matériel pour améliorer la perfor-

mance des transferts de données.

B.1.1 Organisation de la Thèse

Le résumé est divisée en sept sections. L’introduction décrit le contexte de ce travail et

présente ses contributions. La Section B.2 place la thèse en relation avec l’état de l’art

et décrit l’architecture de référence. La Section B.3 présente le standard MCAPI et les

choix de conception effectués pour sa mise en œuvre sur l’architecture de référence. Une

analyse est également effectuée pour évaluer les principaux surcoûts de cette mise en

œuvre.

Ensuite, la Section B.4 présente le mécanisme «Event Synchronizer», qui est la

deuxième contribution de cette thèse. Puis, la Section B.5 présente la troisième con-

tribution de cette thèse, qui est le mécanisme «Buffer Manager». L’environnement de

simulation et les résultats expérimentaux sont décrits dans la Section B.6. Finalement,

la conclusion est présentée dans la Section B.7.
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B.2 Vue d’ensemble des Systèmes Multi-cœurs

Les architectures multi-cœurs ont été utilisées au cours des dernières années en tant

que solution pour répondre aux contraintes de performance dans plusieurs domaines

applicatifs. Par ailleurs, selon l’ITRS [13], le nombre de cœurs de traitement intégrés sur

une seule puce devrait croître de façon exponentielle dans les prochaines années, ce qui

confirme l’importance de développer davantage ces architectures. Au-delà du nombre de

cœurs de traitement, leurs types doivent également être pris en considération. Lorsque

des cœurs de types différents sont utilisés sur une même puce, l’architecture peut être

classée comme hétérogène. A l’inverse, les architectures homogènes sont composées d’un

seul type de cœur dupliqué, qui peut être soit un processeurs générique (par exemple,

les processeurs multi-cœurs d’Intel, SCC [14]) soit un processeur DSP [15]. Les deux

types d’architectures homogènes ou hétérogènes ont leurs avantages et inconvénients.

Même si les applications sont plus faciles à coder et paralléliser sur les architectures

homogènes, l’efficacité énergétique des solutions hétérogènes est plus élevée ce qui est

souvent un critère prépondérant. Le Tableau B.1 montre la comparaison entre plusieurs

architectures en ce qui concerne leurs applications cibles (spécifique, semi-spécifique ou

générique), la communication inter-processus (IPC), le contrôle de la communication,

les caractéristiques matérielles (interconnexion et de traitement) et le support pour la

programmation de l’application.

Les applications cibles des architectures sont multiples et une tendance ne peut

pas être identifiée. Cependant, avec les dispositifs mobiles supportant de multiples

fonctionnalités (normes 4G et 5G, lecture vidéo de haute-défintion, etc) et l’Internet

des objets (IoT), il devient de plus en plus en évident que des architectures ciblant des

niches spécifiques d’application ne sont pas suffisantes. Dans la troisième colonne, les

communications inter-processus sont principalement réalisées par le biais de mémoires

partagées avec un contrôle de centralisé. Cependant, avec l’augmentation du nombre de

nœuds de traitement, les architectures doivent mettre en œuvre un contrôle distribué

pour éviter les goulots d’étranglement dans le système. Par conséquent, l’architecture

multi-cœur utilisée comme référence mettra en avant la flexibilité et la scalabilité comme

les principales contraintes cibles.

B.2.1 Architecture de Référence

L’architecture de référence est composée de plusieurs clusters connectés par un réseau sur

puce (NoC). Chaque cluster comprend plusieurs processeurs (MIPS R3000) avec leurs

mémoires privées respectives, des modules de sortie et d’entrée (sous-système CPU),
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une mémoire partagée, une interface réseau (NI) et un DMA, comme représenté sur la

Figure B.1. Le sous-système CPU envoie et reçoit des messages de contrôle à travers

des modules de sortie et d’entrée, respectivement. Le DMA est capable d’effectuer

des transferts de données par des requêtes émises par les processeurs. Ces requêtes

fournissent des paramètres habituels: adresse du buffer d’origine, adresse du buffer de

destination, la taille du transfert et l’identification de transfert (ID).
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Figure B.1: Schéma et hiérarchie de l’architecture de référence.

Du point de vue logiciel, un ensemble de fonctions est prévue pour la communication

inter-processus. La communication est gérée par FIFO qui sont placées dans la mémoire

partagée et contrôlées par des routines logicielles. Ainsi, l’application n’a pas besoin de

gérer les adresses locales ou distantes dans les transferts de données, ce qui réduit la

complexité de la programmation. En outre, comme l’adressage est global, l’ensemble

de l’espace mémoire peut être considéré comme une seule mémoire partagée distribuée

avec des temps d’accès non uniformes (NUMA), ce qui rend possible pour tout CPU

d’accéder dans n’importe quelle mémoire FIFO quelle que soit son placement.

B.2.2 Positionnement de la Thèse

MCAPI cible les communications inter-processus et les travaux de recherche doivent

s’orienter sur des solutions qui améliorent cet aspect. Cette thèse se concentre sur la

mise en œuvre du mode de communication par canaux de paquets décrit par le standard

MCAPI. Ceci peut être expliqué par le fait qu’ils sont plus flexibles que les canaux de

scalaires et offrent de meilleures performances par rapport aux messages, couvrant une

large gamme d’applications de flux de données. Pour utiliser ce type de canal, il est

obligatoire d’abord établir une connexion.
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En effet, des actions spécifiques doivent être exécutées par les deux extrémités de

la communication avant et après l’échange de données. Donc, le processus de commu-

nication peut être divisé en deux phases: la configuration de la communication (syn-

chronisation) et le transfert de données. La première phase est utilisée pour établir

une connexion et pour allouer et désallouer des ressources alors que la seconde est util-

isée pour échanger des données. Par conséquent, les deux phases doivent être prises

en compte lors de l’élaboration des mécanismes matériels. Le résumé de cet étude est

présenté dans le Tableau B.2.

Tableau B.2: Positionnement de la thèse concernant les aspects de communication
et de programmabilité en relation avec l’état de l’art.

Référence Flexibilité
Support

de API SW

Support HW
pour la transfert

de données

Support HW pour
la synchronisation

Architecture
Cible

Calcado [49] + Customisé Non Oui
Systèmes embarqués
étroitement couplé

Kachris [50] ++
Pas

Mentionné
Oui Oui

Systèmes
embarqués

Meyer [51] + MPI Non Oui
Clusters

SMP
Tabhet [52] +++ RTM API Non Oui P2012 [27]
Reble [53] +++ MPI Customisé Non Oui SCC [14]

Kim [54] + Customisé Non Oui
Systèmes

embarqués

Papadopoulos [55] +
Pas

Mentionné
Non Oui

Systèmes
embarqués

Han [56] + Customisé Oui Non
Systèmes

embarqués

Buono [57] + Customisé Oui Non
Multi-cœur

Multi-threaded

Gao [58] ++
Pas

Mentionné
Oui Non

Clusters
Hétérogènes

Kumar [59] ++ Customisé Oui Non
Systèmes

embarqués

Wallentowitz [60] +++ MCAPI Oui Non
Systèmes

embarqués

Clermidy [61] ++ Customisé Oui Oui
Systèmes

embarqués

Helmstetter [62] +++
Pas

Mentionné
Oui Oui

Systèmes
embarqués

Burgio [63, 64] +
Customisé/
Open MP

Oui Non
Systèmes embarqués
étroitement couplé

Ku [65] + Customisé Oui Non
Systèmes

embarqués

This thesis +++ MCAPI Oui Oui
Systèmes

embarqués

Ainsi, le travail présenté dans cette thèse diffère des travaux antérieurs en four-

nissant un support matériel flexible pour la configuration de la communication ainsi que

pour les transferts de données, conçu conjointement avec une API de communication

standardisée.
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B.3 Mise en Œuvre de MCAPI et Caractérisation des Sur-

coûts

MCAPI est une API spécifiée par le Multicore Association [6] qui définit des fonctions

pour la communication et la synchronisation inter-processus dans les systèmes embar-

qués. Son principal objectif est de fournir de la portabilité pour des codes d’application,

des performances scalables de communication et une faible empreinte mémoire. La spé-

cification MCAPI définit deux niveaux de hiérarchie: les domaines et les nœuds. Un

domaine est composé d’un ou plusieurs nœuds. Un nœud est défini comme un thread (fil

d’exécution) indépendant de contrôle, i.e. une entité qui peut exécuter uniquement un

flux séquentiel d’instructions, à savoir une tâche, un processeur, un accélérateur matériel,

etc. Comme l’architecture de référence est divisée en clusters, chacun représente un do-

maine, alors que chaque CPU à l’intérieur d’un cluster représente un nœud (Figure

B.2).
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Figure B.2: Mappage des domaines et des nœuds MCAPI dans l’architecture de
référence.

La communication est établie entre les nœuds à travers une paire de «endpoints».

Trois modes de communication sont disponibles: des messages, des canaux de paquets

et des canaux de scalaires. La principale différence entre les messages et les canaux

(paquets ou scalaires) est la flexibilité, ce qui permet la transmission de données entre

les nœuds sans établir une connexion. D’autre part, les canaux offrent une performance

supérieure en raison des ressources déjà allouées dans la phase de synchronisation. Les

canaux transmettent des données d’une façon FIFO. La différence entre les paquets et

les scalaires concerne la taille de transferts de données, quand les canaux de paquets

peuvent transférer des blocs de données de tailles variables, les canaux scalaires trans-

fèrent seulement de données de tailles fixes (8, 16, 32 ou 64 bits). De plus, une zone de la
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mémoire partagée est allouée de manière statique pour stocker trois types de structures

de données: attributs MCAPI, FIFOs et requêtes.

B.3.1 Limitations de Performance

Le principal avantage de la mise en œuvre de MCAPI en logiciel est la flexibilité. A

l’opposé, cette mise en œuvre peut induire des surcoûts importants. Afin d’éviter ces

surcoûts, la mise en œuvre de MCAPI a été analysée à 2 niveaux: la synchronisation et

les transferts de données. Dans le premier point, il a été identifié que les phases d’attente

active (polling) effectuées pour vérifier les attributs du endpoint induisent des surcoûts

de trafic réseau et de charge processeur. En ce qui concerne le deuxième point, les mêmes

surcoûts sont induits par le contrôle FIFO implémenté en logiciel. Par conséquent, deux

mécanismes ont été développés pour résoudre les limitations identifiées.

B.4 Support pour la Configuration de la Communication

Afin de résoudre les problèmes mentionnés ci-dessus, un mécanisme appelé «Event Syn-

chronizer» (ES) est proposé. Ce module a comme objectif d’être flexible tel que les solu-

tions présentées dans [52] et [53], et aussi d’être développé en co-conception avec MCAPI.

L’ES est un module matériel programmable capable de gérer un nombre paramétrable

d’événements. De plus, pour une plus grande flexibilité, chaque CPU est attaché à un

module indépendant.

L’ES est composé de multiples registres de synchronisation d’événements (SERs),

de registres d’identification de connexions distantes (RCRs), de deux registres de masque

et de 4 processus pour traiter les informations reçus et les événements générés. Les

SERs sont chargés de stocker les événements pour chaque terminal de communication

(endpoint). Les RCRs sont des registres de 32 bits utilisés pour stocker les identifiants

de connexion distante pour chaque endpoint local. Les registres de masque sont utilisés

pour programmer les événements attendus par le processeur. L’accès se fait grâce à

des registres visible dans l’espace d’adressage, où le processeur peut écrire et lire les

masques.

Ainsi, en utilisant l’Event Synchronizer, il est possible de supprimer toutes les

pollings effectués lors de la synchronisation des deux côtés de la communication. Ceci est

réalisé par la définition d’un événement différent pour chaque phase de synchronisation.

La Figure B.3 montre comment l’ES est utilisé (à droite) par rapport à la mise en œuvre

de MCAPI en logiciel (à gauche). En plus d’éviter le trafic réseau inutile, l’ES permet
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au CPU d’entrer dans un état “inactif”, qui peut être traduit dans un état de faible

consommation.

SenderSender

Communication Infrastructure

Appli

connectconnect syncsync transfertransfer syncsync syncsyncclosecloseAPI

NoC

API implementation WITHOUT hardware support

activeactiveCPU

ReceiverReceiver

CPU

Appli

activeactive

connectconnect syncsync transfertransfer syncsync syncsyncclosecloseAPI

polling

Communication Infrastructure

connectconnect syncsync transfertransfer syncsync syncsynccloseclose

connectconnect syncsync transfertransfer syncsync syncsynccloseclose

Event SynchronizerEvent Synchronizer

Event SynchronizerEvent Synchronizer

activeactive idleidle activeactive idleidle idleidleactiveactive

activeactive idleidle activeactive idleidle idleidleactiveactive

config event

SenderSender

synch

ReceiverReceiver

API implementation WITH hardware support

Figure B.3: Comparaison d’utilisation de la plate-forme matériel sans et avec l’ES.

B.5 Support pour les Transferts de Données

Le mécanisme proposé est appelé «Buffer Manager Mechanism» (BMM) et a comme

objectifs réduire les surcoûts de trafic réseau et de charge processeur pendant la commu-

nication inter-processus. Il est composé de 4 modules matériels: BMI, BMW, BMR et

CM. Ce mécanisme a été développé en co-conception avec MCAPI et remplace le DMA

dans les transferts de données. Les principales différences entre le BMM et le DMA

sont que le BMM peut gérer des opérations de lecture et d’écriture ainsi que l’utilisation

d’identificateurs de connexion. De plus, en raison de ces identificateurs de connexion, le

BMM est capable de gérer plusieurs transferts de données en parallèle en utilisant des

requêtes de lecture et d’écriture, ce qui réduit le coût du matériel tout en augmentant

la flexibilité.

Le BMI (Buffer Manager Interface) est responsable de la lecture et de la paquéti-

sation des données à transmettre du côté émetteur, alors que le BMW (Buffer Manager

Write) est responsable, du côté récepteur, de la réception et de l’écriture des données

dans les mémoires FIFO respectives. Le BMR (Buffer Manager Read) est utilisé du

côté récepteur pour récupérer les données reçues. Enfin, le CM (Credit Manager) met

en œuvre un contrôle de flux de communication par crédits. Le CM est responsable

de l’envoi et de la mise à jour des crédits lorsque les données sont lues ou envoyées.

En plus des modules matériels, le BMM utilise trois table pour faire le contrôle de la

communication: la table de connexion, la table de crédits et la table des buffers.
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Le CPU effectue des opérations d’envoi et de réception de données en créant des

requêtes au BMM. Pour créer une requête, les données doivent être écrites dans des

adresses spécifiques qui codent les paramètres de la requête, nommées adresses de con-

figuration. Lors de l’envoi des données, trois options sont disponibles: (i) transfert basé

sur les adresses, (ii) transfert streaming direct, ou (iii) transfert streaming indirect.

Le transfert à base d’adresses est implémentée comme une fonctionnalité héritée pour

effectuer des transferts précédemment réalisé par le DMA. D’autre part, les transferts

streaming utilisent les identificateurs de connexion au lieu d’adresses de destination.

Dans le transfert streaming direct un seul mot de 32 bits est transmis à partir d’un

identificateur source à un identificateur destination, alors que dans le transfert stream-

ing indirect un buffer de mots de 32 bits est transmis à partir d’un identificateur source

à un identificateur destination.

La Figure B.4 montre le fonctionnement du mécanisme des deux côtés de la com-

munication lors d’un transfert streaming indirect. Tout d’abord, il y a une phase

d’initialisation des deux côtés (action 1 ), qui se compose de l’initialisation de la table

de connexions par chaque CPU. Ensuite, au niveau du cluster émetteur, le CPU écrit

les données dans un buffer alloué dans la mémoire privée et crée une requêtes d’écriture

pour le BMI (action 2 ). Ensuite, le BMI prend la requête et récupère l’identificateur de

connexion distant et la quantité crédit disponible (action 3 ). Dans le cas où les crédits

sont disponibles, le paquet de données est envoyé (action 4 ) avec les informations de

l’identificateur de connexion de destination, et le CM est notifié qu’une mise à jour des

crédits est nécessaire.

Dans le cluster récepteur, les données sont reçues par le BMW, qui accède au table

des buffers (action 5 ) et écrit les données dans le buffer cible (action 6 ). A un moment

donné, la CPU du cluster récepteur crée une requête de lecture pour le BMR (action

7 ). Ensuite, le BMR accède à la table de buffers (action 8) et copie les données vers

l’adresse de destination (action 9 ). Enfin, le BMR informe le CM qu’il doit générer des

crédits pour l’identificateur de connexion distant (action 10), qui, à son tour, crée et

envoie le paquet de crédit via le NI (action 11 ).

B.6 Résultats Expérimentaux et Validation

Les résultats présentés dans cette section ont été obtenues avec des simulations en util-

isant un modèle SystemC [66] de l’architecture de référence (SectionB.2.1), qui a été

développé au cours de cette thèse. Le modèle est décrit au niveau TLM (Transaction

Level-Modeling), les CPU sont modélisés par ISS du MIPS R3000 [67]. Les modules

sont connectés via des sockets et échangent des transactions TLM génériques [66]. Au



Résumé en Français 123

RECEIVER CLUSTERSENDER CLUSTER

CPU

NI
Conn Table

R ID

R ID

L ID

L ID

CPU

NI

BMW
Shared Mem

Private Mem

BMR

CM

BMI

Credit Table

Credit

Credit

L ID

L ID

Private Mem

Conn Table

R ID

R ID

L ID

L ID

CM

NoC

data

config

control

Buffer Table

L ID

L ID

1

1

2

2

3

4

5

6

7

8

9

9

10

11

Figure B.4: Opération du mécanisme de communication dans une requête streaming
indirect.

niveau du réseau, chaque flit est représenté par une seule transaction TLM. Dans les

clusters, les transactions sont gérées par un bus générique, qui transmet les transactions

en fonction de leurs adresses de destination. Enfin, l’application SUSAN a été utilisées

pour valider les gains de performance obtenus avec les mécanismes proposés.

B.6.1 SUSAN

L’application SUSAN (Smallest Univalue Segment Assimilating Nucleus) est un algo-

rithme de traitement vidéo utilisé pour reconnaître les coins et les bords des images. Le

paramètre utilisé pour évaluer cette application est le nombre de CPU qui traitent les

données d’entrée (une image de 256x256 pixels). L’algorithme est implémenté en util-

isant une approche maître-esclave, où tous les processeurs exécutent le même algorithme

sur une partie de l’image.

La figure B.5 montre le nombre moyen de flits envoyé par chaque tâche esclave.

Le trafic réseau pour 2 tâches esclaves est nettement plus faible car l’une des tâches est

positionnée dans le même cluster que la tâche maître. Pourtant, avec 4 ou plusieurs

processeurs exécutant une tâche esclave, les résultats sont similaires aux gains présentés

dans la Section 5.4.3 (manuscrit en anglais): entre 60% et 70%. Le gain diminue légère-

ment à mesure que le nombre de CPU augmente, étant donné que la quantité de données

échangées par tâche est diminuée, ce qui, à son tour, diminue les surcoûts imposée par

l’API FIFO logiciel et le DMA.

Le temps de communication est évalué et représenté dans la Figure B.6. Comme

pour l’évaluation du trafic du réseau, le temps de communication est calculé comme la

moyenne du temps de communication dans les tâches esclaves. La courbe de gain montre

que le temps de communication a diminué d’environ 95% quel que soit le nombre de
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Figure B.5: Nombre moyen de flits envoyés par chaque tâche pour l’application SU-
SAN.

processeurs exécutant l’application. Étant donnée qu’une grande quantité de données

sont échangées (environ 500 kB) [71], ce benchmark corrobore les résultats présentés

dans la Figure 5.18 (manuscrit en anglais), montrant une diminution très significative

des surcoûts de la mise en œuvre en logiciel.
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Figure B.6: Comparaison des temps de communication moyen entre le BMM et le
DMA pour l’application SUSAN.

Enfin, la Figure B.7 montre les évaluations pour le temps total d’exécution (a)

et facteur d’accélération (b). Il est possible de constater que, avec moins de CPUs, la

diminution significative du temps de communication présentée dans la Figure B.6 a un

impact plus faible dans la performance de l’application, puisque les processeurs passent

beaucoup plus de temps pour traiter les données que pour les transférer. D’autre part,

avec un plus grand nombre de processeurs, le gain de performance devient important,

étant donné que le temps de communication a plus d’influence dans le temps total

d’exécution. Ceci est également mis en évidence dans la Figure B.7(b), où l’accélération
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avec 32 processeurs est d’environ 10 lors de l’utilisation du BMM et autour de 8 lors de

l’utilisation de l’API DMA et FIFO.
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Figure B.7: Comparaison des temps d’exécution (a) et speedup (b) entre le BMM et
le DMA pour l’application SUSAN.

B.7 Conclusion

L’objectif de cette thèse était d’augmenter la programmabilité à travers la mise en œuvre

d’une API logiciel standard pour la communication inter-processus, tout en réduisant les

surcoûts de performance imposé par cette mise en œuvre et, par conséquent, améliorant

les performances de communication.

La programmabilité des architectures multi-cœurs est améliorée par la mise en

œuvre de MCAPI, qui spécifie des primitives de communication inter-processus. Ensuite,

les surcoûts imposés par la charge logicielle ont été caractérisés et des mécanismes de

communication pour la synchronisation et les transferts de données ont été proposés. Les

résultats de performance obtenus montrent que les mécanismes proposés apportent des

gains significatifs en termes de latence, débit, trafic réseau, temps de charge processeur

et temps de communication.

Par conséquent, cette thèse a démontré que les mécanismes matériels développés

en co-conception avec MCAPI peuvent réduire considérablement les surcoûts de per-

formance imposés par une mise en œuvre logicielle. En outre, il est montré que les

mécanismes peuvent être flexibles et facilement programmable.





Bibliography

[1] G.E. Moore. Progress in digital integrated electronics. In International Elec-

tron Devices Meeting, 1975, volume 21, pages 11–13, 1975.

[2] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn To-

ward Concurrency in Software, 2005. http://www.gotw.ca/publications/

concurrency-ddj.htm [Accessed: 2016-01-05].

[3] A.M. Jallad and L.B. Mohammad. Comparative analysis of middleware for

multi-processor system-on-chip (MPSoC). In 9th International Conference

on Innovations in Information Technology (IIT), pages 113–117, March 2013.

[4] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and Future.

Computer, 42(4):42–52, April 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.118.

[5] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister.

Software Standards for the Multicore Era. Micro, IEEE, 29(3):40–51, May

2009. ISSN 0272-1732.

[6] The Multicore Association. Multicore Communications API, 2011. http://

www.multicoreassociation.org/workgroup/mcapi.php [Accessed: 2015-10-16].

[7] Mentor Graphics. A Case for MCAPI: CPU-TO-CPU Communications in

Multicore Designs. White paper, Aug 2010.

[8] S. Miura, T. Hanawa, T. Boku, and M. Sato. XMCAPI: Inter-core Commu-

nication Interface on Multi-chip Embedded Systems. In 9th International

Conference on Embedded and Ubiquitous Computing (EUC), pages 397–402, Oct

2011. doi: 10.1109/EUC.2011.78.

[9] L. Matilainen, E. Salminen, T.D. Hamalainen, and M. Hannikainen. Multicore

Communications API (MCAPI) implementation on an FPGA multipro-

cessor. In International Conference on Embedded Computer Systems (SAMOS),

pages 286–293, July 2011. doi: 10.1109/SAMOS.2011.6045473.

127

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.multicoreassociation.org/workgroup/mcapi.php
http://www.multicoreassociation.org/workgroup/mcapi.php


128 Bibliography

[10] Lauri Matilainen, Erno Salminen, and Timo D. Hämäläinen. MCAPI Abstrac-

tion on FPGA Based SoC Design. In Proceedings of the Annual FPGA Con-

ference, FPGAworld ’12, pages 5:1–5:6, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1645-3. doi: 10.1145/2451636.2451641. URL http://doi.acm.org/10.

1145/2451636.2451641.

[11] L. Matilainen, L. Lehtonen, J.-M. Maatta, E. Salminen, and T.D. Hamalainen.

System-on-Chip deployment with MCAPI abstraction and IP-XACT

metadata. In International Conference on Embedded Computer Systems

(SAMOS), pages 209–216, July 2012. doi: 10.1109/SAMOS.2012.6404176.

[12] C. Clauss, S. Pickartz, S. Lankes, and T. Bemmerl. Towards a Multicore Com-

munications API Implementation (MCAPI) for the Intel Single-Chip

Cloud Computer (SCC). In 11th International Symposium on Parallel and Dis-

tributed Computing (ISPDC), pages 148–155, June 2012. doi: 10.1109/ISPDC.2012.

28.

[13] W.-T.J. Chan, A.B. Kahng, S. Nath, and I. Yamamoto. The ITRS MPU

and SOC system drivers: Calibration and implications for design-based

equivalent scaling in the roadmap. In 32nd IEEE International Conference

on Computer Design (ICCD), pages 153–160, Oct 2014. doi: 10.1109/ICCD.2014.

6974675.

[14] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-

son, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,

P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,

M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van

Der Wijngaart, and T. Mattson. A 48-Core IA-32 message-passing proces-

sor with DVFS in 45nm CMOS. In IEEE International Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), pages 108–109, Feb 2010. doi:

10.1109/ISSCC.2010.5434077.

[15] C. Jalier, D. Lattard, G. Sassatelli, P. Benoit, and L. Torres. A Homogeneous

MPSoC with Dynamic Task Mapping for Software Defined Radio. In

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 345–350,

July 2010. doi: 10.1109/ISVLSI.2010.110.

[16] ARM. big.LITTLE Technology: The Future of Mobile, 2013. http://

www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf

[Accessed: 2015-11-14].

[17] Nicholas Blachford. Cell Architecture Explained Version 2, 2005. http:

//www.blachford.info/computer/Cell/Cell1_v2.html [Accessed: 2015-11-14].

http://doi.acm.org/10.1145/2451636.2451641
http://doi.acm.org/10.1145/2451636.2451641
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://www.blachford.info/computer/Cell/Cell1_v2.html
http://www.blachford.info/computer/Cell/Cell1_v2.html


Bibliography 129

[18] Samsung Electronics Co., Ltd. Heterogeneous Multi-Processing Solu-

tion of Exynos 5 Octa with ARM R© big.LITTLETM Technology,

2012. http://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_

Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf [Accessed:

2015-11-14].

[19] T. Limberg, M. Winter, M. Bimberg, R. Klemm, M. Tavares, H. Eisenreich,

G. Ellguth, J. Schlussler, E. Matus, G. Fettweis, and H. Ahlendorf. A Heteroge-

neous MPSOC with Hardware Supported Dynamic Task Scheduling for

Software Defined Radio. In DAC/ISSCC Student Design Contest, July 2009.

[20] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades, Y. Thonnart,

P. Vivet, and N. Wehn. MAGALI: A Network-on-Chip based multi-core

system-on-chip for MIMO 4G SDR. In IEEE International Conference on IC

Design and Technology (ICICDT), pages 74–77, June 2010. doi: 10.1109/ICICDT.

2010.5510291.

[21] U. Ramacher, W. Raab, U. Hachmann, D. Langen, J. Berthold, R. Kramer,

A. Schackow, C. Grassmann, M. Sauermann, P. Szreder, F. Capar, G. Obradovic,

W. Xu, N. Bruls, Kang Lee, E. Weber, R. Kuhn, and J. Harrington. Architecture

and implementation of a Software-Defined Radio baseband processor.

In IEEE International Symposium on Circuits and Systems (ISCAS), pages 2193–

2196, May 2011.

[22] T. Vander Aa, M. Palkovic, M. Hartmann, P. Raghavan, A. Dejonghe, and

L. Van der Perre. A multi-threaded coarse-grained array processor for

wireless baseband. In IEEE 9th Symposium on Application Specific Processors

(SASP), pages 102–107, June 2011. doi: 10.1109/SASP.2011.5941087.

[23] D. Lattard, E. Beigne, F. Clermidy, Y. Durand, R. Lemaire, P. Vivet, and

F. Berens. A Reconfigurable Baseband Platform Based on an Asyn-

chronous Network-on-Chip. IEEE Journal of Solid-State Circuits, 43(1):223–

235, Jan 2008. ISSN 0018-9200. doi: 10.1109/JSSC.2007.909339.

[24] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-

ereins. ADRES: An Architecture with Tightly Coupled VLIW Processor

and Coarse-Grained Reconfigurable Matrix. In Peter Y. K. Cheung and

GeorgeA. Constantinides, editors, Field Programmable Logic and Application, vol-

ume 2778 of Lecture Notes in Computer Science, pages 61–70. Springer Berlin Hei-

delberg, 2003. ISBN 978-3-540-40822-2. doi: 10.1007/978-3-540-45234-8_7. URL

http://dx.doi.org/10.1007/978-3-540-45234-8_7.

http://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
http://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
http://dx.doi.org/10.1007/978-3-540-45234-8_7


130 Bibliography

[25] R. Baert, E. Brockmeyer, S. Wuytack, and T.J. Ashby. Exploring paralleliza-

tions of applications for MPSoC platforms using MPA. In Design, Au-

tomation Test in Europe Conference Exhibition, pages 1148–1153, April 2009. doi:

10.1109/DATE.2009.5090836.

[26] F. Lemonnier, P. Millet, G.M. Almeida, M. Hubner, J. Becker, S. Pillement, O. Sen-

tieys, M. Koedam, S. Sinha, K. Goossens, C. Piguet, M.-N. Morgan, and R. Lemaire.

Towards future adaptive multiprocessor systems-on-chip: An innovative

approach for flexible architectures. In International Conference on Embedded

Computer Systems (SAMOS), pages 228–235, July 2012.

[27] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy,

and D. Dutoit. Platform 2012, a many-core computing accelerator for

embedded SoCs: Performance evaluation of visual analytics applications.

In 49th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1137–

1142, June 2012.

[28] P. Mahr, C. Lorchner, H. Ishebabi, and C. Bobda. SoC-MPI: A Flexible Mes-

sage Passing Library for Multiprocessor Systems-on-Chips. In Interna-

tional Conference on Reconfigurable Computing and FPGAs, pages 187–192, Dec

2008.

[29] Message Passing Interface Forum, 1994. http://www.mpi-forum.org/index.

html [Accessed: 2015-11-16].

[30] D.L. Ly, M. Saldana, and P. Chow. The challenges of using an embedded

MPI for hardware-based processing nodes. In International Conference on

Field-Programmable Technology, pages 120–127, Dec 2009. doi: 10.1109/FPT.2009.

5377688.

[31] Shih-Hao Hung, Wen-Long Yang, and Chia-Heng Tu. Designing and Implement-

ing a Portable, Efficient Inter-core Communication Scheme for Embed-

ded Multicore Platforms. In IEEE 16th International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), pages 303–308, Aug

2010. doi: 10.1109/RTCSA.2010.17.

[32] A. Agbaria, Dong-In Kang, and K. Singh. LMPI: MPI for heterogeneous

embedded distributed systems. In 12th International Conference on Parallel

and Distributed Systems, volume 1, pages 8 pp.–, 2006. doi: 10.1109/ICPADS.2006.

56.

[33] A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, Wu chun Feng, K.R. Bisset, and

R. Thakur. MPI-ACC: An Integrated and Extensible Approach to Data

http://www.mpi-forum.org/index.html
http://www.mpi-forum.org/index.html


Bibliography 131

Movement in Accelerator-based Systems. In IEEE 14th International Confer-

ence on High Performance Computing and Communication, IEEE 9th International

Conference on Embedded Software and Systems (HPCC-ICESS), pages 647–654,

June 2012. doi: 10.1109/HPCC.2012.92.

[34] J.L. Abellan, J. Fernandez, and M.E. Acacio. CellStats: A Tool to Evaluate

the Basic Synchronization and Communication Operations of the Cell

BE. In 16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing, pages 261–268, Feb 2008. doi: 10.1109/PDP.2008.49.

[35] Wajid Hassan Minhass, Johnny Öberg, and Ingo Sander. Design and Imple-

mentation of a Plesiochronous Multi-core 4x4 Network-on-chip FPGA

Platform with MPI HAL Support. In Proceedings of the 6th FPGAworld Con-

ference, FPGAworld ’09, pages 52–57, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-879-7. doi: 10.1145/1667520.1667527. URL http://doi.acm.org/

10.1145/1667520.1667527.

[36] André Nieuwland, Jeffrey Kang, OmPrakash Gangwal, Ramanathan Sethuraman,

Natalino Busá, Kees Goossens, Rafael Peset Llopis, and Paul Lippens. C-HEAP:

A Heterogeneous Multi-Processor Architecture Template and Scalable

and Flexible Protocol for the Design of Embedded Signal Processing

Systems. Design Automation for Embedded Systems, 7(3):233–270, 2002. ISSN

0929-5585. doi: 10.1023/A:1019782306621. URL http://dx.doi.org/10.1023/A%

3A1019782306621.

[37] P. Francesco, P. Antonio, and P. Marchal. Flexible hardware/software support

for message passing on a distributed shared memory architecture. In

Design, Automation and Test in Europe, pages 736–741 Vol. 2, March 2005. doi:

10.1109/DATE.2005.156.

[38] J. Heisswolf, A. Zaib, A. Zwinkau, S. Kobbe, A. Weichslgartner, J. Teich, J. Henkel,

G. Snelting, A. Herkersdorf, and J. Becker. CAP: Communication aware pro-

gramming. In 51st ACM/EDAC/IEEE Design Automation Conference (DAC),

pages 1–6, June 2014. doi: 10.1145/2593069.2593103.

[39] OpenMP Architecture Review Board. The OpenMP R© API specification for

parallel programming, 1998. http://openmp.org/wp/ [Accessed: 2015-11-16].

[40] The Open MPI Project. Open MPI: Open Source High Performance Com-

puting, 2004. http://www.open-mpi.org/ [Accessed: 2015-11-16].

[41] Khronos Group. OpenCLTM (Open Computing Language), 2008. https:

//www.khronos.org/opencl/ [Accessed: 2015-11-16].

http://doi.acm.org/10.1145/1667520.1667527
http://doi.acm.org/10.1145/1667520.1667527
http://dx.doi.org/10.1023/A%3A1019782306621
http://dx.doi.org/10.1023/A%3A1019782306621
http://openmp.org/wp/
http://www.open-mpi.org/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/


132 Bibliography

[42] Itseez. OpenCV (Open Source Computer Vision), 2006. http://opencv.

org/ [Accessed: 2015-11-16].

[43] Umakishore Ramachandran, M. Solomon, and M.K. Vernon. Hardware sup-

port for interprocess communication. IEEE Transactions on Parallel and Dis-

tributed Systems, 1(3):318–329, Jul 1990. ISSN 1045-9219. doi: 10.1109/71.80159.

[44] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. Active Messages: A Mechanism for Integrated Communica-

tion and Computation. In Proceedings of the 19th Annual International Sym-

posium on Computer Architecture, ISCA ’92, pages 256–266, New York, NY,

USA, 1992. ACM. ISBN 0-89791-509-7. doi: 10.1145/139669.140382. URL

http://doi.acm.org/10.1145/139669.140382.

[45] Kwan-Po Wong and Cho-Li Wang. Push-Pull Messaging: a high-performance

communication mechanism for commodity SMP clusters. In International

Conference on Parallel Processing, pages 12–19, 1999. doi: 10.1109/ICPP.1999.

797383.

[46] R.B. Abdallah, T. Risset, A. Fraboulet, and J. Martin. Virtual Machine for

Software Defined Radio: Evaluating the Software VM Approach. In

IEEE 10th International Conference on Computer and Information Technology,

pages 1970–1977, June 2010. doi: 10.1109/CIT.2010.334.

[47] J. Wassner, K. Zahn, and U. Dersch. Hardware-software codesign of a tightly-

coupled coprocessor for video content analysis. In IEEE Workshop on Signal

Processing Systems, pages 87–92, Oct 2010. doi: 10.1109/SIPS.2010.5624770.

[48] Shaoshan Liu and Jean-Luc Gaudiot. Synchronization Mechanisms on Mod-

ern Multi-core Architectures. In Proceedings of the 12th Asia-Pacific Confer-

ence on Advances in Computer Systems Architecture, ACSAC’07, pages 290–303,

Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-74308-1, 978-3-540-74308-8.

URL http://dl.acm.org/citation.cfm?id=2392163.2392191.

[49] F. Calcado, S. Louise, V. David, and A. Merigot. Efficient Use of Processing

Cores on Heterogeneous Multicore Architecture. In International Confer-

ence on Complex, Intelligent and Software Intensive Systems, pages 669–674, March

2009. doi: 10.1109/CISIS.2009.121.

[50] C. Kachris, G. Nikiforos, V. Papaefstathiou, Xiaojun Yang, S. Kavadias, and

M. Katevenis. Low-latency explicit communication and synchronization

http://opencv.org/
http://opencv.org/
http://doi.acm.org/10.1145/139669.140382
http://dl.acm.org/citation.cfm?id=2392163.2392191


Bibliography 133

in scalable multi-core clusters. In IEEE International Conference on Clus-

ter Computing Workshops and Posters, pages 1–4, Sept 2010. doi: 10.1109/

CLUSTERWKSP.2010.5613092.

[51] J.C. Meyer and A.C. Elster. Optimized Barriers for Heterogeneous Sys-

tems Using MPI. In IEEE International Symposium on Parallel and Dis-

tributed Processing Workshops and Phd Forum, pages 20–33, May 2011. doi:

10.1109/IPDPS.2011.124.

[52] Farhat Thabet, Yves Lhuillier, Caaliph Andriamisaina, Jean-Marc Philippe, and

Raphael David. An efficient and flexible hardware support for accelerating

synchronization operations on the STHORM many-core architecture. In

Design, Automation Test in Europe Conference Exhibition (DATE), pages 531–534,

March 2013. doi: 10.7873/DATE.2013.119.

[53] P. Reble, C. Clauss, and S. Lankes. One-sided communication and synchro-

nization for non-coherent memory-coupled cores. In International Confer-

ence on High Performance Computing and Simulation (HPCS), pages 390–397, July

2013. doi: 10.1109/HPCSim.2013.6641445.

[54] Seung Hun Kim, Sang Hyong Lee, Minje Jun, Byunghoon Lee, Won Woo Ro, Eui-

Young Chung, and J.-L. Gaudiot. C!!-!!Lock : Energy Efficient Synchroniza-

tion for Embedded Multicore Systems. IEEE Transactions on Computers, 63

(8):1962–1974, Aug 2014. ISSN 0018-9340. doi: 10.1109/TC.2013.84.

[55] L. Papadopoulos, I. Walulya, P. Tsigas, D. Soudris, and B. Barry. Evalua-

tion of message passing synchronization algorithms in embedded sys-

tems. In International Conference on Embedded Computer Systems: Architec-

tures, Modeling, and Simulation (SAMOS XIV), pages 282–289, July 2014. doi:

10.1109/SAMOS.2014.6893222.

[56] Sang-Il Han, A. Baghdadi, M. Bonaciu, Soo-Ik Chae, and A.A. Jerraya. An effi-

cient scalable and flexible data transfer architecture for multiprocessor

SoC with massive distributed memory. In Proceedings of 41st Design Au-

tomation Conference, pages 250–255, July 2004.

[57] D. Buono, T. De Matteis, G. Mencagli, and M. Vanneschi. Optimizing message-

passing on multicore architectures using hardware multi-threading. In

22nd Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP), pages 262–270, Feb 2014. doi: 10.1109/PDP.2014.63.

[58] Shanyuan Gao, Bin Huang, and R. Sass. The Impact of Hardware Commu-

nication on a Heterogeneous Computing System. In IEEE 21st Annual



134 Bibliography

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 234–234, April 2013. doi: 10.1109/FCCM.2013.43.

[59] S.S. Kumar, M.T.A. Djie, and R. van Leuken. Low Overhead Message Passing

for High Performance Many-Core Processors. In First International Sym-

posium on Computing and Networking (CANDAR), pages 345–351, Dec 2013. doi:

10.1109/CANDAR.2013.62.

[60] S. Wallentowitz, M. Meyer, T. Wild, and A. Herkersdorf. Accelerating collec-

tive communication in message passing on manycore System-on-Chip. In

International Conference on Embedded Computer Systems (SAMOS), pages 9–16,

July 2011. doi: 10.1109/SAMOS.2011.6045439.

[61] F. Clermidy, R. Lemaire, Y. Thonnart, and P. Vivet. A Communication and

configuration controller for NoC based reconfigurable data flow architec-

ture. In 3rd ACM/IEEE International Symposium on Networks-on-Chip, (NoCS),

pages 153–162, May 2009. doi: 10.1109/NOCS.2009.5071463.

[62] C. Helmstetter, S. Basset, R. Lemaire, F. Clermidy, P. Vivet, M. Langevin, C. Pilk-

ington, P. Paulin, and D. Fuin. A dynamic stream link for efficient data

flow control in NoC based heterogeneous MPSoC. In 18th Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 41–46, Jan 2013. doi:

10.1109/ASPDAC.2013.6509556.

[63] P. Burgio, A. Marongiu, R. Danilo, P. Coussy, and L. Benini. Architecture and

programming model support for efficient heterogeneous computing on

tigthly-coupled shared-memory clusters. In Conference on Design and Archi-

tectures for Signal and Image Processing (DASIP), pages 22–29, Oct 2013.

[64] P. Burgio, R. Danilo, A. Marongiu, P. Coussy, and L. Benini. A tightly-

coupled hardware controller to improve scalability and programmabil-

ity of shared-memory heterogeneous clusters. In Design, Automation and

Test in Europe Conference and Exhibition (DATE), pages 1–4, March 2014. doi:

10.7873/DATE.2014.038.

[65] Wei-Chun Ku, Shu-Hsuan Chou, Jui-Chin Chu, Chi-Lin Liu, Tien-Fu Chen, Jiun-In

Guo, and Jinn-Shyan Wang. VisoMT: A Collaborative Multithreading Mul-

ticore Processor for Multimedia Applications With a Fast Data Switch-

ing Mechanism. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 19(11):1633–1645, Nov 2009.

[66] Accellera Systems Initiative. SystemC 2.2 and TLM 2.0, 2007. http:

//accellera.org/downloads/standards/systemc/files [Accessed: 2015-11-10].

http://accellera.org/downloads/standards/systemc/files
http://accellera.org/downloads/standards/systemc/files


Bibliography 135

[67] OpenCores. Plasma Version 3, 2001. http://opencores.com/project,plasma,

overview [Accessed: 2015-11-10].

[68] A.J. Pena and S.R. Alam. Evaluation of Inter- and Intra-node Data Transfer

Efficiencies between GPU Devices and their Impact on Scalable Appli-

cations. In 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), pages 144–151, May 2013. doi: 10.1109/CCGrid.2013.15.

[69] Victor Frederico Silva, Cantidio de Oliveira Fontes, and Flavio Rech Wagner.

The impact of synchronization in message passing while scaling multi-

core MPSoC systems. In IEEE/IFIP 20th International Conference on VLSI

and System-on-Chip, 2012 (VLSI-SoC), pages 267–270, Oct 2012. doi: 10.1109/

VLSI-SoC.2012.7332114.

[70] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A Free, Commercially Representative Embedded

Benchmark Suite. In Proceedings of the Workload Characterization, 2001. WWC-

4. 2001 IEEE International Workshop, pages 3–14, Washington, DC, USA, 2001.

IEEE Computer Society. ISBN 0-7803-7315-4.

[71] Thomas Mesquida. Portage de Benchmarks applicatifs sur architecture

multi-coeur hétérogène. Technical report, École Centrale de Lyon, 2015. Un-

published.

[72] E.W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, 1959. ISSN 0029-599X. doi: 10.1007/

BF01386390. URL http://dx.doi.org/10.1007/BF01386390.

[73] Scott Pakin. Receiver-initiated message passing over RDMA Networks. In

IEEE International Symposium on Parallel and Distributed Processing, 2008, pages

1–12, April 2008. doi: 10.1109/IPDPS.2008.4536262.

http://opencores.com/project,plasma,overview
http://opencores.com/project,plasma,overview
http://dx.doi.org/10.1007/BF01386390

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	1 Multi-core Systems Overview: Hardware and Software Related Works
	1.1 Multi-core Architectures
	1.2 Application Programming Interfaces
	1.2.1 Custom APIs
	1.2.2 Standard APIs
	1.2.3 MCAPI

	1.3 Communication Hardware Mechanisms
	1.3.1 Synchronization/Communication Set-Up
	1.3.2 Data Transfer
	1.3.3 Thesis Positioning

	1.4 Reference Architecture

	2 MCAPI Mapping and Overhead Characterization
	2.1 MCAPI Standard and Specification
	2.2 MCAPI Implementation
	2.2.1 Data Structures
	2.2.1.1 MCAPI Attributes Structure
	2.2.1.2 FIFO Structure
	2.2.1.3 Request Structure

	2.2.2 Connection Set-up non-blocking Functions
	2.2.3 MCAPI non-blocking Operations
	2.2.4 Data Transfer

	2.3 Performance Limitations of Software Implementation
	2.3.1 Communication Set-up Overheads
	2.3.2 Data Transfer and FIFO Control Overheads


	3 Communication Set-up Support
	3.1 Communication Set-up Polling Phases
	3.2 Event Synchronizer Mechanism
	3.3 MCAPI Modifications

	4 Data Transfer Support
	4.1 Data Transfer Phase
	4.2 Buffer Manager Mechanism
	4.2.1 Table Structures
	4.2.2 Connection Set-up
	4.2.3 Data Transfer Requests
	4.2.3.1 Write Request
	4.2.3.2 Read Request

	4.2.4 Data Transfer Operations
	4.2.5 Buffer Manager Interface (BMI)
	4.2.6 Buffer Manager Write (BMW)
	4.2.7 Buffer Manager Read (BMR)
	4.2.8 Credit Manager (CM)

	4.3 MCAPI Modifications

	5 Experimental Results and Validation
	5.1 Simulation Environment
	5.1.1 Simulation Scenarios

	5.2 MCAPI Memory Footprint
	5.2.1 Transport Layer Code
	5.2.2 MCAPI Structures

	5.3 Communication Set-up Characterization
	5.3.1 Network Load
	5.3.2 CPU Load

	5.4 Data Transfer Characterization
	5.4.1 Throughput Evaluation
	5.4.2 Latency Evaluation
	5.4.3 Network Load
	5.4.4 Communication and Total Execution Times

	5.5 Benchmarks Validation
	5.5.1 SUSAN
	5.5.2 Dijkstra


	Conclusion and Perspectives
	A List of Publications
	B Résumé en Français
	B.1 Introduction
	B.1.1 Organisation de la Thèse

	B.2 Vue d'ensemble des Systèmes Multi-cœurs
	B.2.1 Architecture de Référence
	B.2.2 Positionnement de la Thèse

	B.3 Mise en Œuvre de MCAPI et Caractérisation des Surcoûts
	B.3.1 Limitations de Performance

	B.4 Support pour la Configuration de la Communication
	B.5 Support pour les Transferts de Données
	B.6 Résultats Expérimentaux et Validation
	B.6.1 SUSAN

	B.7 Conclusion

	Bibliography

