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Résumé 

 

Certaines observations suggèrent que les afférences méchano-sensorielles peuvent 

moduler l’activité des générateurs centraux du rythme locomoteur (ou Central Pattern 

Generators, CPGs). Cependant, il est impossible d’explorer les circuits neuronaux 

sous-jacents chez l’animal en mouvement à l’aide d’enregistrements 

électrophysiologiques lors d’expériences de locomotion dite « fictive ». Dans cette 

étude, nous avons enregistré de façon sélective et non-invasive les neurones moteurs 

et sensoriels dans la moelle épinière pendant la locomotion active en ciblant 

génétiquement le senseur bioluminescent GFP-Aequorin chez la larve de poisson 

zèbre. En utilisant l’imagerie calcique à l’échelle des neurones individuels, nous 

confirmons que les signaux de bioluminescence reflètent bien le recrutement 

différentiel des groupes de motoneurones spinaux durant la locomotion active. La 

diminution importante de ces signaux chez des animaux paralysés ou des mutants 

immobiles démontre que le retour méchano-sensoriel augmente le recrutement des 

motoneurones spinaux pendant la locomotion active. En accord avec cette 

observation, nous montrons que les neurones méchano-sensoriels spinaux sont en 

effet recrutés chez les animaux en mouvement, et que leur inhibition affecte les 

réflexes d’échappement chez des larves nageant librement. L’ensemble de ces 

résultats met en lumière la contribution du retour méchano-sensoriel sur la production 

locomotrice et les différences qui en résultent entre les locomotions active et fictive. 

 

Mots-clés : 

GFP-Aequorin, bioluminescence, intégration sensori-motrice, locomotion, moelle 

épinière, poisson-zèbre 
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Abstract 

 

There is converging evidence that mechanosensory feedback modulates the activity of 

spinal central pattern generators underlying vertebrate locomotion. However, probing 

the underlying circuits in behaving animals is not possible in “fictive” locomotion 

electrophysiological recordings. Here, we achieve selective and non-invasive 

monitoring of spinal motor and sensory neurons during active locomotion by 

genetically targeting the bioluminescent sensor GFP-Aequorin in larval zebrafish. 

Using GCaMP imaging of individual neurons, we confirm that bioluminescence 

signals reflect the differential recruitment of motor pools during motion. Their 

significant reduction in paralyzed animals and immotile mutants demonstrates that 

mechanosensory feedback enhances the recruitment of spinal motor neurons during 

active locomotion. Accordingly, we show that spinal mechanosensory neurons are 

recruited in moving animals and that their silencing impairs escapes in freely 

behaving larvae. Altogether, these results shed light on the contribution of 

mechanosensory feedback to motor output and the resulting differences between 

active and fictive locomotion. 

 

Keywords:  

GFP-Aequorin, bioluminescence, sensorimotor integration, locomotion, spinal cord, 

zebrafish 
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Part A. 

 
Sensorimotor integration in the spinal cord, from behaviors to circuits: new tools 

to close the loop?  
 

 

Abstract 

 

Sensorimotor behaviors are by definition “closed-loop” processes in which sensory 

feedback modulates behavioral output. Sensory feedback can be provided by visual, 

auditory and vestibular inputs or direct proprioceptive inputs from muscle contraction. 

Although sensory feedback is not necessary for oscillation underlying locomotion to 

occur, there is evidence in the cat that sensory feedback can initiate locomotion 

(Lundberg, 1979) or reset the rhythm (Schomburg et al., 1998). The contribution of 

sensory feedback to active locomotion is however difficult to estimate for technical 

reasons. Indeed most physiological studies of spinal circuits involved in sensorimotor 

integration rely on preparations where muscles are paralyzed or dissected out, and are 

therefore deprived of sensory feedback.  In this chapter, we will first explain closed-

loop processes, and we will review the precious information obtained using “open-

loop” experimental paradigms on how spinal neurons generate the neural rhythms that 

are at the basis of locomotion (Grillner et al., 2008). Optical and genetics techniques 

offer today alternatives to electrophysiology for monitoring neuronal activity from 

genetically defined populations of spinal neurons. We will then discuss how 

innovative tools for monitoring and manipulating neural activity, together with 

conducting sophisticated behavioral analysis, have provided exciting opportunities for 

“closing the loop” in genetically accessible model organisms with a special emphasis 

on zebrafish.  
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Introduction 

 

The transformation of a sensory input into a motor output is a fundamental 

computation process, which is carried out by the brain and the spinal cord itself. 

Sensorimotor integration occurs when a set of neurons detect a sensory stimulus and 

process it to generate a behavioral output. Classic physiological approaches aim to 

record neurons specifically activated during sensorimotor integration, and to dissect 

the causative links by manipulating the activity of these neurons. 

 

Sensorimotor behaviors are by definition “closed-loop” processes in which 

sensory feedback modulate the behavioral output. “Circuit dissection” experiment 

requires the experimenter to elicit a given sensory input and to quantitatively assess 

its behavioral output. In addition, it requires the determination of modulatory 

components such as systemic and local neuromodulators, or multiple sensory inputs.  

 

Studies of spinal sensorimotor integration are mainly based on preparations of 

isolated spinal cord, and therefore deprived of descending and ascending inputs to the 

spinal cord. Such “open-loop” experimental paradigms have proved extremely 

valuable in understanding how spinal neurons generate neural rhythms that are at the 

basis of locomotion (Grillner et al., 2008). They might however not be optimal for 

studying spinal sensorimotor integration in a dynamic fashion.  

 

In recent years, innovative tools for monitoring and manipulating neural 

activity in genetically accessible model organisms has provided alternative 

opportunities for “closing the loop”. By monitoring targeted populations of spinal 

neurons while the animal is fictively or actively performing a sensorimotor task, 

optogenetics offer new means to selectively study the role of a given class of neurons, 

without discarding sensory or neuromodulatory inputs.  

 

Probing neural activity of targeted sensorimotor circuits during active locomotion 

will also open new paths to study how spinal circuits can reconfigure after removal of 

supraspinal inputs. This could shed light on intriguing results observed in spinal cord 

injured rodents (Edgerton et al., 2008), and eventually provide new means to exploit 
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plasticity of spinal sensorimotor circuits in pathological conditions. 

 

1 A closed-loop approach to sensorimotor behaviors 

 

1.1. Defining sensorimotor behaviors  

 

1.1.1. Eliciting sensory input 

 

Even a behavior as simple as a fly approaching an odorant fruit while flying is 

nothing but a trivial sensorimotor task (Seelig and Jayaraman, 2011): the fly must first 

detect the odor (Budick and Dickinson, 2006), extract information regarding its 

environmental relevance, and adapt its locomotor course to approach the fruit. All 

those steps have to be achieved while the animal is moving, thus adjusting its 

locomotor output to a changing visual, olfactory and mechanosensory feedback (Frye, 

2010). Combining multiple sensory modalities (visual, olfactory, mechanosensory), 

and their closed-loop feedbacks, is critical to adapt to a noisy sensory environment 

and enhances the robustness of the behavioral output (Frye, 2010). Multisensory 

processing relies on interdependent sensory signals, allowing for increased efficiency 

during sensorimotor tasks compared to unimodal sensory stimuli (Loquet, 2013).  

 

 In mammals, it has long been demonstrated that “high-level” cortical areas, 

such as parietal and prefrontal cortices, were able to integrate multiple sensory 

modalities, increasing evidence suggests that multisensory integration also occurs in 

“low-level” cortices that were previously thought to be unisensory (Ghazanfar and 

Schroeder, 2006; Schroeder and Foxe, 2005). Studying sensorimotor integration, even 

at a relatively low-level, thus requires to reproduce a behaviorally relevant 

multisensory environment. However, experimental conditions often allow 

investigating only one sensory modality at a time.  

 

One solution proposed by the field of neuroethology (Dickinson and Moss, 

2012) is to consider that neural circuits can be experimentally understood in the 

context of the animal’s natural behavior. By focusing on innate behaviors in which 

the animal extracts critical sensory inputs to produce a behaviorally meaningful 
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locomotor output, neuroethology has provided important models for sensorimotor 

integration. For instance, escape behaviors, by which an animal escapes from its 

predator, are the perfect example of sensorimotor tasks that are crucial for the animal 

survival, and therefore are stereotyped. Interestingly, escape responses can be found 

in many species, including drosophila (Card, 2012), C. elegans (Pirri and Alkema, 

2012) and several fish species (Schuster, 2012), allowing for comparative studies of 

sensorimotor integration across taxa. 

 

 Determining the sensory stimulus to control experimentally is a critical step of 

sensorimotor studies. We cannot reproduce the highly variable and multidimensional 

sensory inputs from the animal’s natural environment, but we should at least choose a 

stimulus that replicates the minimum set of sensory cues necessary to elicit a 

behaviorally relevant and consistent motor output (Clark et al., 2013). We also need 

to reliably record and quantify the locomotor output elicited by this sensory input. 

 

 

1.1.2. Measuring motor output 

 

The behavioral output of a sensorimotor transformation can be measured at 

different spatial and temporal scales: from the migration of an entire population of 

animals over several days to the analysis of single muscle fibers at millisecond 

timescale (Clark et al., 2013). Choosing the right scale for addressing the 

sensorimotor process of interest is not trivial. 

 

At one extremity of this scale, “Taxis” behaviors, such as chemotaxis in 

drosophila (Gao et al., 2013) or rheotaxis in zebrafish (Suli et al., 2012), examine the 

cumulative change in spatial position of a group of animals over a relatively long 

period of time. It is also possible to look at the level of an individual in order to 

identify sequences of stereotyped behaviors such as mating in C. elegans (Liu and 

Sternberg, 1994). Sequential analysis of canonical behaviors allow the constitution of 

a detailed locomotor repertoire for a given specie, such as zebrafish (Budick and 

O'Malley, 2000). Lastly, a more detailed kinematics analysis could measure the 
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movements of individual joints, coupling this analysis with muscle activity recordings 

in rodents (Courtine et al., 2009a). 

 

With the refinement of locomotor analysis, and the increasing set of 

kinematics parameters measured simultaneously, automated tracking programs have 

become crucial to reliably quantify behaviors. Such programs have been successfully 

applied to track individuals and classify behaviors in C. elegans (Baek et al., 2002), 

drosophila (Fry et al., 2008) or zebrafish (Mirat et al., 2013). Interestingly, such 

automated tracking programs can also be used to identify interactions between 

populations of multiple animals (Branson et al., 2009; Mirat et al., 2013), characterize 

mutants behaviors and build behavioral phenotypes databases (Yemini et al., 2013), 

and might lead to high-throughput drug screening (Mirat et al., 2013). 

 

 Analyzing complex datasets with multiple levels of kinematics parameters per 

animal and several animals interacting simultaneously raises important technical 

challenges. Reducing the dimensionality of the behavioral dataset can be achieved 

either by arbitrarily focusing on a restricted number of kinematic parameters or 

though statistical dimensionality reduction as in principal component analysis (PCA) 

(Musienko et al., 2011). The main issue with dataset reduction is to determine and 

preserve the behavioral output related to the sensory stimulus of interest. This can be 

achieved by computing the level of prediction or correlation between the sensory 

input and motor output (Briggman et al., 2006). 

 

 Although sensory input and motor output are the two ends and most accessible 

parts of a sensorimotor circuit, they are not sufficient to apprehend sensorimotor 

neural computation. Modulating inputs related to “top-down” afferents or “bottom-

up” feedback also heavily influence sensorimotor processing. 

 

1.2. Modulating sensorimotor behaviors 

 

1.2.1. Sensory feedback  
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In real world, sensorimotor integration is a dynamic process where the animal 

is constantly updating its sensory inputs according to their behavioral output: as the 

fly is approaching the fruit, odorant and visual stimuli are continuously modified, 

allowing the fly to adjust its flight to reach the target (Frye, 2010). In experimental 

setting, the animal must often be restrained or paralyzed to allow for recording of 

neuronal activity. Such preparations are called “open-loop” because the motor output 

does not influence subsequent sensory input. But one might hypothesize that neuronal 

activity is not the same in the absence of sensory feedback. 

 

“Closed loop” experiments, where new sensory information is acquired as the 

motor output is produced, can be obtained mainly through two complementary 

approaches: by attaching a miniaturized device onto a freely moving animal 

interacting with a controlled environment, or by providing some simulated sensory 

inputs to a restrained animal. The developing field of brain-machine interfaces has 

provided numerous studies in which cortical activity is recorded through chronically 

implanted electrode arrays, and decoded in real-time to control a motor effector, such 

as prosthetic limb (Carmena et al., 2003). It has also been possible to restore tactile 

sensation using a “brain-machine-brain interface”, by providing a way to produce a 

virtual motor output and to generate the corresponding sensory feedback (O’Doherty 

et al., 2012) (Tabot et al., 2013).  

 

 Such tools make it possible to monitor neuronal activity while the animal is 

freely behaving, but they don’t provide precise control over its sensory inputs. Virtual 

reality environments (Dombeck and Reiser, 2012) reproduce a simulated sensory 

environment that is continuously updated based on the animal behavior. Besides 

providing a better-controlled sensory input, virtual environments most importantly 

enables simultaneous neural recording by allowing the animal to perform a closed 

loop sensorimotor task while being physically restrained.  

 

Combined with electrophysiology or genetically encoded calcium imaging, 

virtual environments have been applied in mice (Harvey et al., 2010), drosophila 

(Seelig et al., 2010) and zebrafish (Ahrens et al., 2012; Portugues, 2011). Notably, the 

zebrafish studies have showed that larvae were able to quickly modify their motor 
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output in response to an unexpected visual feedback (Portugues, 2011), and that this 

adaptive behavior correlated with state-dependent neural activity in a subset of brain 

areas identified using brain-wide calcium imaging (Ahrens et al., 2012). 

 

1.2.2. Neuromodulation  

 

State-dependent sensorimotor processing, in which the activity of a given 

population of neurons differs according to the behavioral state of the animal, are 

investigated within the larger framework of neuromodulation of neural circuits. 

 

The core hypothesis underlying the concept of “multifunctional circuits” is 

that a given neural circuit should not be considered as a hard-wired diagram, activated 

during discrete states, but rather as a distributed network that is able to switch 

continuously between a variety of dynamical states to produce different patterns of 

activity, and eventually different behaviors (Briggman and Kristan, 2008). In a 

multifunctional sensorimotor circuit, a given neuron can be active during multiple 

locomotor behaviors (Sankrithi and O'Malley, 2010), producing different patterns of 

activity based on its modulatory inputs (Briggman and Kristan, 2008). External 

parameters, such as neuromodulatory substances (Marder, 2012) or synaptic input, 

e.g. sensory afferents (Latorre et al., 2013), can control the transitions between these 

different phases. 

 

The neuromodulatory functions of monoaminergic substances have been 

extensively studied in invertebrates’ sensorimotor models such as the crustacean 

somatogastric ganglion (STG) (Marder, 2012). The central pattern generator circuit 

can generate fictive locomotor patterns and is modulated by numerous substances, 

from neurotransmitters released locally by projecting sensory neurons to diffused 

hormones released at distance by secretory structures (Blitz and Nusbaum, 2011). In 

spinal cord injured rats, the role of monoaminergic (in particular serotoninergic and 

dopaminergic) substances in modulating spinal locomotor circuits have been well 

documented (Musienko et al., 2011). Pharmacological manipulation, together with 

electrical spinal cord stimulation, could restore some locomotion independently of 

supraspinal inputs regeneration (Courtine et al., 2009b). Such neuromodulatory-
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mediated functional recovery is also phase-dependent, suggesting that different 

interventions facilitate distinct phases of the locomotor pattern (Edgerton et al., 2008). 

This observation is in line with a multifunctional framework for the spinal 

sensorimotor circuits driving locomotion in spinal cord injured rats. 

 

 Intrinsic sensory states, i.e. neural dynamics that are not directly affected by an 

external physical stimulus, can also modulate multifunctional sensorimotor networks. 

One interesting example is the dual role of the gravimetric organ of the mollusk 

Clione limacina, which can switch between two very different rhythmic patterns, and 

behavioral output, depending on whether the animal is under control of a “hunting 

neuron” (Latorre et al., 2013). Another example of intrinsic sensory modulation is the 

feeding behavior of the Aplysia californica, where the same neurons drive both 

ingestion and rejection of food, but are differentially modulated by the coupling 

between the mouth muscles (Ye et al., 2006). 

 

 

1.3. Modeling sensorimotor behaviors  

 

1.3.1. Behavioral computations 

 

Analyzing sensorimotor transformations is more complicated than just 

correlating an observed motor output with an experimentally elicited sensory input. 

Therefore, computational models for sensorimotor integration have proven more and 

more helpful as the number of measured variables increased with the improvement of 

experimental techniques. 

 

 For any sensorimotor task, the underlying computation is complex and can be 

modeled on a coarse behavioral scale, or on a more refined circuitry scale. Both 

approaches are complementary and have so far mostly been developed independently. 

The long-term objective is to map those behavioral computations on neural circuits 

models.  
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One major issue when dealing with sensorimotor computation is that our 

motor system is highly nonlinear (Franklin and Wolpert, 2011). In a linear system, 

one can easily predict the behavioral response to a multisensory stimulus by 

calculating the sum of the motor outputs for each individual sensory stimulus. 

However, the force developed by a muscle in response to its nervous input largely 

depends on other variables such as muscle length, velocity, tendons, joints positions, 

among others. (Zajac, 1989). Similarly, multiple sensory input creates multimodal 

sensory representations that are more than merely the sum of unimodal sensory inputs 

(Green and Angelaki, 2010). 

 

Besides nonlinearity, many other issues increase the complexity computations 

of sensorimotor behaviors. For instance, noise is limiting our ability to perceive 

accurately sensory inputs (e.g.: estimating the location of the fruit on the table for our 

approaching fly) and carry out motor outputs precisely (e.g.: adjusting speed by 

modifying wings movements to reach the target) (Rohrseitz and Fry, 2010). Other 

issues include redundancy, i.e. the fact that multiple combinations of motor sequences 

can achieve the same behavioral task; nonstationarity, i.e. the fact that sensory and 

motor systems are modified throughout development and aging; uncertainty arising 

from noise, sensory ambiguity, partial information; and even multiple and variable 

delays, whether due to sensory or motor processing (Franklin and Wolpert, 2011). 

 

One approach to resolve such complex sensorimotor computations is Bayesian 

decision theory (Wolpert, 2007).  Bayesian decision theory aims to produce, using a 

probabilistic reasoning, optimal inferences based on uncertain inputs by combining 

prior beliefs and multiple sensory modalities. Based on these inferences, decision 

theory is subsequently used to decide which action is more likely to achieve the task 

objectives (Franklin and Wolpert, 2011). In a Bayesian system, the probability of a 

sensory state being true (named “posterior”) is produced by combining the probability 

of receiving the sensory information if that state were true (named “likelihood”) with 

the prior probability of that state (named “prior”) (Körding and Wolpert, 2006). 

 

Such Bayesian sensorimotor computation can be easily tested using a simple 

task where a subject is asked to reach a cursor in a virtual-reality environment. The 



	   20	  

discrepancy is introduced between the subject’s actual and displayed hand position 

(Körding and Wolpert, 2004). The “prior” distribution can be experimentally changed 

by varying the size of the discrepancy, while the sensory feedback “likelihood” is 

adjusted by varying the degree of visual blur controls Using this approach, the authors 

showed that subjects combined prior statistical distribution with sensory feedback 

likelihood in a Bayesian manner to optimize their performance during sensorimotor 

learning. 

 

1.3.2. Circuits computations 

 

Mapping behavioral sensorimotor computations onto identified neural circuits 

requires knowing how do those circuits process sensory inputs to produce a motor 

output at a cellular scale.  

 

One important challenge for computing sensorimotor transformations, whether 

on a behavioral or cellular scale, is that they are mostly nonlinear, i.e. their motor 

output cannot be written as the weighted sum of its sensory inputs plus a constant. 

Geometrically, this means that modeling any neural network underlying a 

sensorimotor process requires at least a three-layers transformation, with an 

intermediate layer (referred to as “hidden layer”) used to recode sensory inputs before 

they are transformed into motor output. Such non-linear transformations can be 

approximated using a linear combination of “basis functions” (such as sine and cosine 

functions in a Fourier transform) as the intermediate layer: this is a called the “basis 

function approach” (Pouget et al., 2002) .This basis function approach is particularly 

relevant in the context of sensorimotor transformations. For instance, if a subject 

wants to reach toward a visual target as in the previously described experiment, the 

basis function approach postulates that the motor command can be approximated by 

the weighted sum of several non-linear basis functions of the visual and postural 

inputs (Pouget and Snyder, 2000). On a cellular scale, this ‘intermediate layer’ would 

be constituted by neurons whose firing properties, or “tuning curve”, can be described 

as a basis function for both visual and postural sensory inputs. Such neurons whose 

gain is modulated by visual and postural inputs can actually be found in the parietal 
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(Andersen et al., 1985),  occipital (Trotter and Celebrini, 1999) and prefrontal 

(Boussaoud et al., 1993) cortices. 

 

Besides nonlinearity, another major concern when looking at sensorimotor 

transformations is variability. Indeed, most experiments whether looking at 

sensorimotor processes or not, rely on mean statistics calculated from populations. 

However, it has been repeatedly shown that multiple solutions can produce similar 

circuit outputs (Marder, 2011). Even the most stereotyped motor behaviors such as 

rhythms generated by central pattern generators can be highly variable across animals 

(Marder and Taylor, 2011). The variability of the behavioral output to similar sensory 

inputs is well known, although not always documented.  Most studies describe the 

“typical” behavior of the system by a single model. One attempt to take into account 

variability in sensorimotor circuits models would be to construct of population of 

models reproducing the actual behavioral data rather than trying to use a single model 

to reproduce the generic behavior (Marder and Taylor, 2011).  

 

2. An open-loop access: sensorimotor circuits in the spinal cord across vertebrates 

 

In the particular case of spinal sensorimotor circuits, a great wealth of 

anatomical and electrophysiological data has been accumulated over the years. 

However, being able to elaborate broader models in order to fit those data onto 

observed behaviors still remains a challenge, largely due to the fact that available 

techniques have prevented monitoring sensory inputs concomitantly with motor 

outputs until recently. 

 

2.1. Extrinsic inputs to spinal sensorimotor circuits 

 

2.1.1. Descending motor control 

 

Located in the periphery of the spinal cord, white matter tracts comprise both 

ascending fibers, mainly located dorsally and laterally, carrying sensory information, 

and descending axons, mainly located ventrolaterally and laterally, carrying motor 

information (Figure 2A).   
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Descending motor tracts mainly include corticospinal tracts, which forms 

monosynaptic connections between motoneurons located in the primary motor cortex 

and spinal motoneurons located in the anterior horn of the grey matter at each 

segment. 80 to 90% of the corticospinal axons decussate to the contralateral side at 

the pyramid level in the medulla oblongata (hence the name “pyramidal tracts”), and 

travels in the dorsolateral funiculus (Guertin, 2013). Corticospinal tracts are mostly 

involved in voluntary skilled movements. 

 

Other descending motor tracts originate mainly in subcortical nuclei in the 

brainstem, and in particular the reticular formation, and are called “extra-pyramidal 

tracts” by opposition to the corticospinal (pyramidal) tract. Extra-pyramidal tracts are 

composed of the rubrospinal (located along the corticospinal tract in the dorsolateral 

funiculus), vestibulospinal, tectospinal and reticulospinal tracts (all three located in 

the ventrolateral funiculus) (Bican et al., 2013) (Rossignol and Frigon, 2011).  

 

Those descending inputs are mainly involved in autonomic functions, postural 

control and locomotion. More specifically: they facilitate contralateral upper limbs 

flexion (rubrospinal tract), neck and head motor control (tectospinal tract), autonomic 

functions (reticulospinal tract) and facilitating ipsilateral extensors and antigravity 

muscles to control tone and posture (vestibulospinal tract) (Guertin, 2013). Extra-

pyramidal tracts project mainly on premotor lamina (lamina VI to VIII) of the spinal 

cord grey matter at each segment (Bican et al., 2013). 

 

In particular, the role of reticulospinal pathways originating from the 

brainstem in the initiation and control of locomotion have been extensively studied, 

leading to the concept that, while the spinal central pattern generator produces the 

basic locomotor rhythm (see section 2.2.1), brainstem structures are necessary to 

activate and regulate this spinal central pattern generator (Jordan et al., 2008a; 

Whelan, 1996).  

 

Numerous studies, mainly using decerebrate cat preparations, have identified 

several areas within the brainstem that can lead to the production of locomotion when 
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activated, whether chemically or electrically. The mesencephalic locomotor region 

(MLR), first identified by Shik et al (Shik et al., 1969), receives inputs from both the 

basal ganglia, the limbic system and the frontal cortex, and projects to neurons of the 

medial medullary reticular formation (MRF), and then on to interneurons in the spinal 

cord (Whelan, 1996). When stimulated electrically in decerebrate cats, the MLR can 

generate different gait patterns (walking, trotting, galloping) depending on the 

strength of the electrical stimulus (Rossignol et al., 2006). Interestingly, after its 

initial description in cats, homologous areas of the MLR have been described in many 

vertebrate species, including the rat (Garcia-Rill et al., 1990), lamprey (McClellan and 

Grillner, 1984) and monkey (Eidelberg et al., 1981).  

 

Other areas in the midbrain, such as the medial MLR, the pontomedullary 

locomotor strip (PLS) or areas in the subthalamic nucleus (subthalamic locomotor 

region), have been shown to be involved in the control of locomotion by projecting 

onto spinal circuits through reticulospinal pathways in rodents (Whelan, 1996). More 

recently, isolated spinal cord preparations from neonatal rats and mice have allowed 

the identification of various neurotransmitters (N-methyl-D-aspartate, 5-

hydroxytryptamine, dopamine, noradrenaline) that can elicit locomotor rhythmic 

activity by stimulating the spinal CPG through descending reticulospinal pathways 

(Jordan et al., 2008b).  

 

In non-mammalian vertebrates, the descending control of locomotion has been 

particularly documented in the lamprey (Dubuc et al., 2008). Trigeminal relay cells 

activate reticulospinal neurons in a “all-or-nothing” fashion to elicit escape responses 

in response to a mechanical cutaneous stimulus (Viana Di Prisco et al., 1995).  On the 

contrary, MLR inputs to reticulospinal neurons initiate locomotion in a graded fashion 

through monosynaptic cholinergic and glutamatergic inputs, with the middle 

rhombencephalic reticular nucleus (RRN) being activated for low intensity 

stimulation, and the posterior RRN being activated for as the stimulation strength 

increases (Wannier et al., 1998) (Figure 3A).  
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2.1.2. Ascending sensory feedback 

 

While descending inputs schematically provide the motor command to spinal 

sensorimotor circuits, ascending afferents to the spinal cord mainly provide sensory 

information. In mammalian vertebrates, ascending sensory inputs include 

proprioceptive inputs (group Ia and II afferents from, respectively, primary and 

secondary endings of muscles spindles, and Ib afferents from Golgi tendon organs), 

cutaneous inputs (chemosensitive group III/Aδ and group IV/C fibers from 

nociceptive receptors). They have been extensively studied in the context of local 

spinal reflex pathways (Knikou, 2008; Rossignol et al., 2006) (Figure 2B).  

 

The simplest, and fastest, somatic reflex is the monosynaptic pathway between 

primary sensory afferents from primary muscle spindles (Ia) and homonymous alpha 

motoneurons in the ventral horn of the corresponding segment grey matter. This is the 

basic myotatic reflex that is elicited by a muscle stretch due to a tendon tap, but is 

also involved in tonus and postural adjustments (Guertin, 2013). The experimental 

analog of the Ia reflex, the Hoffman reflex (H-reflex), where the mechanical stretch is 

replaced by a sub-threshold electrical stimulation of the afferent nerve, has been 

extensively used to investigate spinal sensorimotor circuits, and in particular 

presynaptic and reciprocal inhibition (Jankowska, 1992; Knikou, 2008), see (section 

2.2.1). 

 

Golgi tendon organs are force-sensitive receptors located at the muscle-

tendinous junction, that are activated by passive and active muscle force. The Ib 

reflex arc, also known as the “inverse myotatic reflex”, is a disynaptic pathway by 

which group Ib sensory afferents from Golgi tendon organs inhibit alpha-

motoneurons. This is the reflex arc responsible for the abrupt termination of the 

myotatic reflex, the well-known “clasp-knife” phenomenon (Hultborn, 2006). 

Although stimulating the Golgi tendon organs at rest cannot induce any movement, 

the Ib reflex has been suggested to be important for regulating muscle stiffness 

(Knikou, 2008). 

 



	   25	  

While group Ib afferents from Golgi tendon organs provide information about 

the tension developed during muscle contraction, and group Ia afferents from primary 

muscle spindles inform spinal circuits about the dynamic of changes in muscle length, 

group II afferents from muscle spindle secondary endings provide information of 

muscle length itself (Jankowska and Edgley, 2010). Group Ia, Ib and II muscle 

afferents taken together constitute what is generally termed the “proprioception” 

input. Together with cutaneous afferents from nociceptors (Aδ and C fibers) and other 

muscle afferents (thinly myelinated group III and unmyelinated group IV fibers), 

group II muscle afferents constitute the flexion reflex afferents (FRA) involved in the 

withdrawal reflex, by which a painful stimulus lead to withdrawal of the limb through 

ipsilateral flexion and contralateral extension (Eccles and Lundberg, 1958). This 

sensorimotor reflex, more sophisticated than the “myotatic” and “inverse myotatic” 

reflexes, involves at least to two interneurons to either activate or inhibit the 

ipsilateral flexor or extensor alpha-motoneurons over several spinal segments 

(Guertin, 2013).  

 

 Sensory feedback pathways in non-mammalian vertebrates still remain 

unclear. Indeed, there is no clear equivalent to mammalian peripheral proprioceptive 

receptors in swimming vertebrates. However, in the lamprey, intra-spinal 

mechanosensitive receptors called the “edge cells” (Grillner et al., 1984) might 

provide movement-related sensory feedback (Di Prisco et al., 1990). Interestingly, it 

has recently been proposed that edge cells could be modulated by GABAergic 

cerebrospinal fluid contacting neurons (CSFns) (Jalalvand et al., 2014). Similar 

CSFns, called “Kolmer-Agduhr” cells, have been described in the zebrafish, and were 

able to trigger slow swim upon optical activation (Wyart et al., 2009). Another 

sensory feedback pathway in larvae and adult zebrafish is the lateral line system 

(Ghysen and Dambly-Chaudière, 2007). Mechanosensory hair cells in the lateral line 

neuromasts provide information about the water flow, contributing to orientating the 

fish against the water, a behavior called rheotaxis (Olszewski et al., 2012; Suli et al., 

2012) (Figure 3C).  
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2.2. Intrinsic spinal sensorimotor circuitry  

 

2.2.1. Sensorimotor interneuronal networks  

 

Presynaptic inhibition  

 

As we have seen, spinal circuits are continuously provided with multiple 

ascending sensory inputs from various sources. This sensory feedback needs to be 

controlled to allow for the proper execution of a motor task (Knikou, 2008). One way 

to control this sensory input is through presynaptic inhibition of muscle afferents on 

alpha-motoneurons through GABAergic axo-axonic synapses (Rudomin and Schmidt, 

1999) (Figure 2B). A similar control can be achieved through primary afferent 

depolarization (PAD), and the two phenomena are now actually considered to be 

mediated by the same interneurons (Jankowska, 1992).  

 

Initially described in relation to group Ia afferents from primary endings of 

muscle spindles (Frank and Fuortes, 1959), presynaptic inhibition though GABAergic 

interneurons has more recently also been described for group Ib and group II muscle 

afferents, as well as cutaneous and articular afferents (Rudomin, 2009). Although it 

has traditionally been considered that different subgroups of interneurons were 

mediating PAD of distinct muscle sensory afferents (Jankowska, 1992), it has also 

been demonstrated that the same interneurons, located within Rexed’s laminae VI-VII 

of the spinal cord grey matter (intermediate zone), could be co-excited by group Ia 

and group Ib afferents (Fetz et al., 1979). More surprisingly, even group Ib and group 

II inputs can be integrated by a common pool of interneurons, located within laminae 

V-VII (Bannatyne et al., 2009). These results led some authors to consider all those 

subpopulations of interneurons (groups Ia, Ib and II) may actually operate as a single 

functional population with multisensory inputs from both several types of afferents 

and several muscles (Jankowska and Edgley, 2010). (Figure 2 B1) 
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Reciprocal Ia inhibition 

 

Considered that the same Ia muscle afferents innervate motoneurons 

belonging to many different motor pools, it has long been postulated that a neural 

pathway involving Ia afferents allowed for inhibition of alpha-motoneurons 

controlling antagonist muscles. The reciprocal Ia inhibition is mediated by a single 

glycinergic inhibitory interneuron activated by Ia afferents from a given flexor 

muscle, which in turn inhibits alpha-motoneurons controlling the antagonistic 

extensor muscle (Eccles et al., 1957a; Jankowska, 1992). As for PAD interneurons, it 

has later been showed that these reciprocal Ia inhibitory interneurons, located 

dorsomedially to the motor nuclei in the ventral horn, actually also receives 

convergent inputs, both excitatory and inhibitory, from multiple descending and 

ascending sources, including Renshaw cells (see below) (Hultborn, 1972) (Figure 2 

B2). 

 

Non-reciprocal Ib inhibition 

 

Group Ib sensory afferents from Golgi tendon organs inhibit motoneurons 

projecting to synergist muscles and facilitate motoneurons projecting to antagonist 

muscles through di- or tri-synaptic pathways involving respectively one or two 

inhibitory glycinergic interneurons (Eccles et al., 1957b; Jankowska, 1992).  As for Ia 

interneurons mediating reciprocal inhibition, Ib inhibitory interneurons exhibit a wide 

convergence of inputs from both descending inputs (excitatory corticospinal, 

rubrospinal and inhibitory reticulospinal afferents) and ascending inputs (excitatory 

group Ia and Ib muscle afferents, as well as cutaneous and joint afferents) (Hultborn, 

2006) (Figure 2 B3). 

 

Recurrent inhibition 

 

Lastly, another sensorimotor interneuronal pathway involving an inhibitory 

interneuron is the one formed by Renshaw cells, located in the ventral horn (next to Ia 

reciprocal inhibitory interneurons) (Renshaw, 1946). Renshaw cells are excited by 

cholinergic axonal collaterals from alpha-motoneurons and provide glycinergic 
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recurrent inhibition to the same or synergistic muscles (Eccles et al., 1956). Again, as 

for other sensorimotor interneurons, Renshaw cells also receive inputs from other 

afferents, including ipsilateral group II and III muscle afferents, cutaneous afferents, 

and descending motor afferents, and project themselves not only to alpha-

motoneurons but also to gamma-motoneurons, Ia reciprocal inhibitory interneurons 

and other Renshaw cells within the same spinal segment (Windhorst, 2007).  

 

 

2.2.2. Spinal central pattern generator across vertebrates 

 

Along with this complex interplay between sensory afferents and sensorimotor 

interneuronal networks, a large amount a work has converged toward the 

identification of a spinal network able to generate the elementary patterns and 

rhythms of locomotion: the spinal central pattern generator (CPG). First postulated 

from studies of decerebrated cats more than a century ago (Brown, 1911), extensive 

research in non-mammalian vertebrate species such as the lamprey (Grillner, 2003) 

and the Xenopus tadpole (Roberts et al., 2009) have provided many insights into the 

swimming CPG and its cellular mechanisms, leading to rapid advances in the 

understanding of the mammalian walking CPG (Kiehn, 2006). 

 

Homology across vertebrates 

 

Interestingly, new insights into the genetic profiles of spinal interneurons have 

allowed direct comparison between different classes of interneurons across all 

vertebrates (Goulding, 2009). Based on the dynamic expression pattern of 

transcription factors, five major subclasses of spinal ventral interneurons have been 

described, called V0, V1, V2, V3 and Hb9 interneurons (Figure 3). Each class being 

characterized by a specific transcription factor, such “molecular code” opens the way 

for functional investigation of genetically targeted, rather morphologically or 

electrophysiologically identified, spinal interneurons within the CPG (Figure 3B).  

 

Excitatory rhythm-generating circuits 
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Several lines of evidence suggest that the rhythmogenic neurons of the CPG 

are glutamatergic excitatory neurons projecting ipsilaterally onto inhibitory left-right 

and flexor-extensor coordinating neurons at each spinal segment (Kiehn et al., 2008). 

Indeed, blocking inhibitory commissural or ipsilateral interneurons does not prevent 

rhythm generation, whether in the lamprey (Cangiano, 2005), rodent (Bonnot et al., 

2002) or cat (Kato, 1987), therefore discarding the “half-center model” for CPG 

rhythm generation (Kiehn, 2006). Various putative candidates for the role of 

“pacemakers” neurons have been recently investigated (Kiehn, 2011): among them, 

Hb9-expressing interneurons (Tazerart et al., 2008) and V2a-Chx10 expressing 

interneurons (Hägglund et al., 2010) have been shown to have rhythmogenic 

properties in neonatal mouse models.  Morphological homologs in the lamprey 

(Grillner, 2003)  and tadpole (Li et al., 2010), and molecular homologs in zebrafish 

(Mclean et al., 2007) support the hypothesis of a glutamatergic ipsilateral drive to the 

spinal CPG. 

 

Flexor-extensor coordination 

 

Ipsilateral-projecting glycinergic inhibitory interneurons are known to be 

involved in alternation of extensor and flexor muscles activation for a long time, since 

flexor-extensor coordination is suppressed when glycinergic transmission is blocked 

but can persist in hemisected spinal preparations (Bonnot et al., 2002). Putative 

candidate interneurons include Ia inhibitory interneurons and Renshaw cells (see 

section 2.2.1), as both have been shown to fire rhythmically during locomotion and in 

opposing phases in respect to their flexor/extensor afferents (McCrea et al., 1980).  

 

However, a recent study challenged this assumption (Gosgnach et al., 2006). 

V1-derived interneurons expressing the transcription factor Engrailed-1 (En1) are 

inhibitory ipsilaterally projecting interneurons that give rise to Renshaw cells and Ia 

inhibitory interneurons. Genetic knock out of En1-expressing neurons induced slower 

locomotor activity and increased step cycle, but did not suppress flexor-extensor 

coordination. This suggests the existence of other ipsilateral inhibitory interneurons, 

that might be specific to mammalian locomotor CPG (Kiehn, 2006). 
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Left-right coordination 

 

Coordination of left-right activity during locomotion is mainly achieved 

through commissural interneurons that are crossing the midline via the ventral 

commissure (Kiehn, 2006). Experiments in mice have revealed a dual system for 

left/right coordination: 1) during alternative walking, contralateral motoneurons 

inhibition is achieved either through mixed glycinergic and GABAergic inhibitory 

commissural interneurons projecting monosynaptically to contralateral motoneurons, 

or excitatory commissural interneurons projecting onto contralateral inhibitory 

premotor interneurons; 2) during synchronous “hopping”, contralateral motoneurons 

excitation is achieved through glutamatergic commissural interneurons (Quinlan and 

Kiehn, 2007).  

 

Candidate commissural interneurons for this left/right dual model are derived 

from Dbx1 positive neurons from the V0 transcription domain (Lanuza et al., 2004), 

in which about one third of commissural interneurons are glutamatergic (Evx-1-

positive, V0V interneurons) and two thirds are inhibitory (Evx1-negative, V0D 

interneurons) (Moran-Rivard et al., 2001). A recent study (Talpalar et al., 2013) 

confirmed and further refined this hypothesis by showing that V0-ablated mice 

exhibited a hopping gait at all frequencies, while selective ablation of inhibitory V0 

interneurons (V0D) led to a lack of left-right alternation only at low frequencies 

whereas selective ablation of excitatory V0 interneurons (V0V) led to similar hopping 

gait but only at medium and high frequencies.  

 

Neurons participating to the left-right alternation spinal network have also been 

identified in non-mammalian vertebrates. In the Xenopus tadpole, inhibitory 

glycinergic commissural interneurons are responsible for mid-cycle reciprocal 

inhibition and are driven by descending glutamatergic interneurons (Roberts et al., 

2009).  In the lamprey, both inhibitory and excitatory commissural interneurons have 

been described with left-right alternating pattern of activity (Grillner, 2003). Lastly, 

similar glycinergic inhibitory and glutamatergic excitatory commissural interneurons 

have been identified in the zebrafish, sharing molecular markers with the mouse V0 
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neurons, although the network details have not yet been worked out (Fetcho and 

Mclean, 2010).  

 

 

2.3. Dynamic spinal sensorimotor interactions 

 

2.3.1. Modulation of spinal circuitry from extrinsic inputs 

 

Both descending motor inputs and ascending sensory feedback can modulate 

the activity of the spinal CPG. Indeed, if the CPG is able to generate the basic 

locomotor patterns, dynamic sensorimotor interactions with both supraspinal and 

peripheral inputs continuously modulate these patterns to achieve a flexible 

adaptation to the environment. Such interactions take place in a phase-dependent 

(swing/stance) and state-dependent (forward/backward) manner, that is extrinsic 

inputs will result in different modulations depending on the ongoing phase of the 

locomotor cycle (Rossignol et al., 2006). 

 

As discussed in section 2.1.1, supraspinal pathways, such as the MLR and its 

projections through the reticulospinal tract, can induce locomotion in “fictive 

preparations”, i.e. isolated spinal cord or decerebrated adult cat preparations. 

However, descending pathways, whether carrying sensory or motor information, can 

also modulate ongoing locomotion. Such modulation can be achieved either though 

modulation of brainstem command circuitry, or through direct modulation of spinal 

circuitry (McCrea, 2001). 

 

  Vestibular inputs (relaying information about balance and posture) modulate 

the activity of reticulospinal neurons with a phasic pattern during fictive locomotion 

in lampreys, thereby avoiding a counteractive drive from reticulospinal neurons 

during ongoing locomotion (Bussières and Dubuc, 1992). A recent study in zebrafish 

larvae suggested that vestibular inputs are able to differentially recruit dorsal and 

ventral premotor spinal microcircuits during postural correction, possibly prefiguring 

the mammalian modular organization of spinal flexor/extensor microcircuits (Bagnall 

and McLean, 2014). The influence of visual feedback on the control of locomotion 
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can be experienced on a daily basis when one needs to anticipate and adjust his gait to 

avoid an obstacle (Rossignol, 1996). New experimental paradigms, such as the 

optomotor response in zebrafish (Orger et al., 2008), have started to shed light on the 

neural circuitry responsible for visually induced locomotion. 

 

Besides descending inputs, ascending sensory feedback, from either 

proprioceptive or cutaneous inputs, can also modulate the activity of the spinal CPG. 

Cutaneous inputs (C and A fibers, see section 2.1.2) are mainly involved in correcting 

the steps in response to external perturbations, such as an uneven floor, during the 

different phases of the step cycle (McCrea, 2001; Rossignol et al., 2006). 

Interestingly, the same cutaneous stimulus can lead to responses in flexor or extensor 

muscles depending on the initial position of the limb, therefore behaving as excitatory 

inputs to a given muscle group in one locomotor phase, and excitatory to the 

antagonist muscles in the opposite phase, a phenomenon termed “reversal” (Rossignol 

and Gauthier, 1980).  

 

Proprioceptive feedback also has an important role in modulating ongoing 

locomotion, in particular by adjusting the duration of, and facilitating the switch 

between, the different phases of the step cycle, therefore setting the frequency of 

locomotion (Rossignol et al., 2006). For instance, in decerebrate cats preparations, 

stimulation of group Ib afferents from Golgi tendon organs of extensor muscles can 

reset the locomotor cycle by abruptly terminating the ongoing fictive flexor activity 

and initiating a new burst in the extensor recording (Conway et al., 1987). Similarly, 

stretch-evoked Ia inputs can increase the duration of the stance phase, but only when 

stimulated during flexor activity (Guertin et al., 1995).  

 

Therefore, patterns of fictive locomotion produced by the spinal CPG should 

not be considered as a fixed output of a hard-wired circuit, but should be viewed 

rather as a dynamic multimodal process whose output is modulated by the various 

supraspinal and peripheral sensory inputs. 
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2.3.2. Implications for plasticity after spinal cord injury  

 

The emerging concept that intrinsic spinal circuits can produce adaptive 

locomotion with modulation by sensory feedback, independently, at least to some 

extent, from supra-spinal inputs, bears important consequences for new 

neurorehabilitative strategies after spinal cord injury. 

 

Experimental paradigms with adult cats walking on a treadmill have 

demonstrated that neither bilateral lesion of the dorsolateral spinal cord (interrupting 

cortico- and rubrospinal tracts) (Jiang and Drew, 1996), nor bilateral lesion of the 

ventrolateral spinal cord (interrupting vestibulo- and reticulospinal tracts) (Brustein 

and Rossignol, 1998), could permanently suppress quadrupedal locomotion. 

However, after unilateral complete hemisection at the lower thoracic (T13) level, 

interrupting both dorsal and ventral descending pathways, cats showed a complete 

paralysis of the ipsilateral hindlimb during the first three days, followed by a 

progressive recovery over the following three weeks (Rossignol and Frigon, 2011). 

Interestingly, this recovery was accompanied by a modification of the step cycle, 

forelimb/hindlimb and left/right coordination (Martinez et al., 2012). These results 

suggest that the intrinsic spinal circuitry is able to produce locomotion even after 

removal of all supraspinal inputs, and that this recovery is underpinned by extensive 

reorganization of the spinal sensorimotor network (Martinez and Rossignol, 2013). 

They also suggest that treadmill-induced locomotor training, by providing sensory 

feedback, is crucial to drive the reorganization of spinal circuits (Rossignol and 

Frigon, 2011). 

 

To test this hypothesis of a plastic spinal CPG, Rossignol et al. designed a 

dual-lesion paradigm in which a first hemisection performed at the T10/T11 spinal 

level is followed, after several weeks of locomotor training and complete recovery, by 

a complete spinal transection at the T13 level (Barrière et al., 2008; Martinez and 

Rossignol, 2013). The major finding was that cats regained full locomotor 

performance after only 24 hours, without any training of pharmacological intervention 

(Barrière et al., 2008), therefore indicating that intrinsic changes within the spinal 
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CPG had indeed occurred during the rehabilitation period, and could be retained after 

the complete removal of supraspinal inputs. 

 

Similar results have been obtained recently in rodents (Edgerton et al., 2008), 

in which recovery of coordinated hindlimbs locomotion on a treadmill could be 

achieved only one-week after complete thoracic (T7) spinal transection when 

combined lumbosacral electrical epidural stimulation (EES) and systemic application 

of serotoninergic agonists were applied (Courtine et al., 2009a). Interestingly, 

removing peripheral sensory inputs by unilateral dorsal rhizotomy prevented EES-

facilitated locomotor recovery after complete spinal transection, but only on the 

deafferented side, thereby confirming the hypothesis that sensory feedback drives the 

reorganization of intrinsic spinal circuitry (Lavrov et al., 2008).  

 

However, those results only concerned treadmill-induced “automatic” 

locomotion. To which extent can we exploit the plasticity of spinal sensorimotor 

circuits to induce restoration of voluntary locomotion? This question was investigated 

by a recent study (Brand et al., 2012), in which the authors used a simultaneous dual 

hemisection paradigm in adult rats together with a so-called “electrochemical 

neuroprosthesis” (i.e. the combination of lumbosacral epidural electrical stimulation 

together with systematic administration of a cocktail of monoaminergic agonists). 

They observed that rats trained with a robotic postural interface encouraging supra-

spinally mediated locomotion could regain voluntary control through remodeling of 

corticospinal projections. A similar approach have even been used successfully in a 

paraplegic human subject, who could regain some voluntary control of one of his 

lower extremity after intensive rehabilitation and electrical epidural stimulation, 

although this recovery was very limited and observed in a single individual only 

(Harkema et al., 2011).  

 

These results have raised hopes that clinically significant locomotor recovery 

can be achieved through reorganization of intrinsic sensorimotor circuitry, facilitated 

by intensive training and electrical and/or chemical manipulation. However, one 

major issue of such studies is that they can probe changes in spinal circuitry only in a 

very indirect manner. 
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Indeed, until now, one had to choose whether to be able to access spinal circuitry 

in open-loop “fictive” preparations, discarding the sensory feedback but being able to 

identify and record from neurons within the spinal cord, or to preserve active 

locomotion and sensory feedback but having only a limited and indirect access to 

spinal circuits. However, new tools and animal models might change this conundrum 

in a near future. 

 

3. Closing the loop? Optogenetic manipulation of spinal sensorimotor circuits in 

zebrafish 

 

3.1. Genetic targeting of spinal sensorimotor circuits in zebrafish 

 

3.1.1. Identified sensorimotor neurons in the zebrafish spinal cord 

 

As in any other vertebrates, neurons in the zebrafish spinal cord can be 

broadly divided between motoneurons, sensory neurons, and interneurons (Lewis and 

Eisen, 2003). Recent developments of genetic tools allowing specific targeting of 

subtypes of neurons has allowed marked progress in our understanding of their 

functional roles, and has led to a refined classification.  

 

Sensory neurons within the spinal cord mainly include mechanosensitive 

Rohon-Beard neurons, of which homologs can be found in most anamniote vertebrate, 

such as Xenopus tadpoles and lampreys (Reyes et al., 2003). Rohon-Beard neurons 

are derived from the same neural plate domain that generates neural crest cells, and 

presumably die during development to be replaced by dorsal root ganglion cells in 

adult zebrafish (Lewis and Eisen, 2003). When stimulated optically, Rohon-Beard 

neurons are able to trigger escape responses (Douglass et al., 2008; Wyart et al., 

2009), through either direct excitation of reticulospinal cells (Douglass et al., 2008) or 

activation of CoPA interneurons (Pietri et al., 2009).  

 

In larvae, both primary and secondary motoneurons (together with 

oligodendrocytes) are derived from the pMN transcription domain in the ventral 
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spinal cord, are positive for olig2 expression and persist through adulthood (Kimmel 

et al., 1994; Lewis and Eisen, 2003). Primary motoneurons are located more dorsally 

(with subtypes according to their position from caudal to rostral: CaP, MiP, RoP), 

innervate fast muscles, and are involved in fast swimming and startle response, while 

secondary motoneurons, located more ventrally, innervate both slow and fast muscles, 

and are also involved in slow swim (Lewis and Eisen, 2003).  

 

To explore the differences between slow swim and escape spinal networks, 

Ritter et al. used a head-embedded preparation in which they could elicit either slow 

swim by illuminating the head with a fiber optic, or escapes by tapping the head with 

a piezoelectric actuator. They simultaneously monitored the activity of 

morphologically identified interneurons in the embedded part of the tail using calcium 

imaging, and recorded the movements of the caudal tail using a high-speed camera 

(Ritter et al., 2001). They showed that “circumferential ipsilateral descending” (CiDs) 

interneurons were activated during escapes but not during slow swim movements, 

while excitatory glutamatergic “multipolar commissural and descending” (MCoDs) 

interneurons were, on the contrary, activated during swimming but not during escapes 

(Ritter et al., 2001).  

 

A subsequent study from the same group (Bhatt et al., 2007) combining 

calcium imaging and paired patch recording, confirmed that CiDs were responsible 

for motoneurons excitation during escapes, and showed that stronger escapes elicited 

by a head tap were associated with the recruitment of a larger number of CiDs than 

delayed escapes elicited by a tail tap, thereby apparently contradicting previous 

results about differential descending control from the hindbrain (Bhatt et al., 2007; 

Liu and Fetcho, 1999). Interestingly, the same authors also demonstrated that 

reinervation of CiDs by regenerating Mauthner axon, following injection of cAMP, 

was associated with improved locomotor performances (Bhatt et al., 2004). 

 

Using isolated spinal cord from larvae zebrafish, a “topographic map” of 

recruitment for premotor interneurons has been documented (Mclean et al., 2007; 

2008). MCoDs interneurons, located in the ventral spinal cord, provided a phasic 

drive to a subset of ventral contralateral motoneurons during slow swimming patterns. 
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On the other hand, when the swimming frequency was increased, MCoDs were 

inhibited through glycinergic synapses, while CiDs interneurons became activated, 

providing a glutamatergic excitatory drive to ipsilateral motoneurons, with the more 

dorsal CiDs being activated for the faster swimming speeds (Mclean et al., 2008). Of 

interest is the fact that CiDs interneurons are the fish homologs of the mouse V2a 

interneurons (Kimura, 2006; Kimura et al., 2013) (see section 2.2.2). 

 

Interestingly, it has also been shown in adult zebrafish that different 

motoneurons pools exhibited different patterns of recruitment, with slow, intermediate 

and fast secondary motoneurons being recruited progressively as the fictive 

locomotion frequency increased, while fast primary motoneurons were recruited only 

during presumed escapes. Moreover the distribution of these different motoneurons 

pools also followed a ventro-dorsal gradient, from slow secondary motoneurons to 

fast primary motoneurons (Ampatzis et al., 2013; Gabriel et al., 2011). 

 

Apart from premotor interneurons, other populations of interneurons are also 

rhythmically activated during fictive locomotion. Glycinergic “circumferential 

ascending (CiA) interneurons, that are Engrailed-1 positive interneurons derived from 

the V0 transcription domain, monosynaptically inhibit “commissural primary 

ascending” (CoPA) interneurons during swimming (Higashijima et al., 2004). 

Remarkably, CoPA interneurons are glutamatergic interneurons relaying excitation 

from Rohon-Beard sensory neurons, therefore providing a connectivity pattern that 

would be consistent with a homologous sensorimotor gating pathway observed in the 

Xenopus tadpole (Li et al., 2002; 2004).  

 

  “Commissural local” (CoLo) interneurons are inhibitory glycinergic 

interneurons driven by gap junctional inputs from reticulospinal cells (Mauthner cells, 

see section 3.3) that have been shown to exert monosynaptic inhibition on 

contralateral primary motoneurons during fast swimming, thereby enhancing the 

efficiency of the escape responses (Satou et al., 2009). Lastly, Kolmer-Agduhr 

interneurons, which are GABAergic cells located next to the central canal and have 

cilia extending into the cerebrospinal fluid, have been shown to be able to trigger slow 

swim when optically stimulated (Wyart et al., 2009). 
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Many other subtypes of spinal interneurons have been identified and 

classified, mainly according to their morphology and neurotransmitter phenotype 

(Hale et al., 2001; Satou et al., 2013), but their implication into sensorimotor circuits 

remains to be elucidated. 

 

3.1.2. A genetic toolbox for targeting populations of neurons 

 

Considered the large number of cells involved into spinal sensorimotor 

circuits, even in a simple vertebrate such as the zebrafish, one crucial requirement to 

investigate their functional role is to be able to specifically target the neural 

subpopulation of interest. Rather than relying on morphological cues, identification of 

specific promoters, and new tools to efficiently generate and screen transgenic lines, 

have recently allowed researchers to take full advantage of the optical and genetic 

accessibility of the zebrafish model.  

 

The most straightforward approach to target a given neuronal population is to 

identify a specific gene with selective expression in the population of interest, isolate 

its promoter sequence and generate a bacterial artificial chromosome (BAC) 

incorporating the putative promoter, the gene and an attached reporter such as GFP. 

The plasmid is then microinjected into embryos at the single-cell stage for 

homologous recombination to occur, and injected zebrafish are subsequently screened 

for fluorescence in order to establish the transgenic line (Asakawa et al., 2013). Such 

approach have been successfully used to produce transgenic lines labeling cranial 

motoneurons or trigeminal/Rohon-Beard sensory neurons under control of the Islet-1 

promoter (Higashijima et al., 2000). This transgenic line was then used to investigate 

the role of Rohon-Beard and trigeminal neurons in the sensorimotor escape circuitry 

(Douglass et al., 2008).  

 

This BAC approach can be combined with the bipartite Gal4/UAS system, 

widely used in drosophila, which relies on the specific expression of the yeast Gal4 

transcriptional activator to drive the expression of the reporter gene placed under the 

control of repetitive Gal4-responsive upstream activator sequences (UAS) (Asakawa 
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and Kawakami, 2009; Davison et al., 2007). Enhanced reporter expression can be 

obtained using Gal4-VP16 (Koster and Fraser, 2001) or Gal4FF (Asakawa and 

Kawakami, 2009) fusion sequences  and multiple (14X) repeats of the UAS Stable 

zebrafish transgenic lines using the Gal4/UAS system has been achieved using Tol2-

mediated transposition: a plasmid carrying the Tol2 element is injected in zebrafish 

embryos with the Tol2 transposase mRNA, generating genome-wide insertions in the 

zebrafish genome (Asakawa et al., 2008; Kawakami et al., 2000).  Tol2-mediated 

Gal4-UAS transgenesis has been used to successfully generate wide enhancer-trap 

screens, leading to identification of a large number of stable transgenic lines 

selectively labeling subsets of spinal neurons (Abe et al., 2011; Asakawa and 

Kawakami, 2009; Satou et al., 2013; Scott et al., 2007).  

 

 Another recent approach for genetic targeting of neurons in zebrafish is to 

combine viral gene delivery, using for instance rabies of sindbis viruses, together with 

the Tet system (Zhu et al., 2009). The Tet system works in a similar fashion to the 

Gal4/UAS system, with the transactivator (itTA) binding to the tTA-responder 

element (Ptet) to drive transcription of the downstream gene (Gossen and Bujard, 

1992). However, the Tet system has the advantage of being able to be regulated with 

doxycycline, which binds to tTA and dramatically reduces its affinity to Ptet, turning 

off the expression of the gene of interest (Zhu et al., 2009). Interestingly, such 

silencing could also be used to generate sparse labeling in pan-neuronal HuC 

transgenic lines (Zhu et al., 2009). Combing the Tet and Gal4 systems provide 

exciting opportunities for combinatorial gene targeting of several neuronal 

populations of interest in zebrafish.  

 

3.2. Optogenetic tools for monitoring and breaking neural circuits 

 

3.2.1. Reporters: monitoring neural circuits 

 

Monitoring neural activity can be indirectly achieved by measuring the 

intracellular level of calcium, since electrical activity of neurons lead to a calcium 

influx through voltage dependent calcium channels (Grienberger and Konnerth, 

2012). This strategy has led to the elaboration of number of chemical calcium 
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indicators and genetically encoded calcium indicators (GECI) that have been 

successfully used in many different mammalian and non-mammalian animal models 

(Nakai et al., 2001; Tian et al., 2009) (Figure 4A). GECIs consist in engineered 

fluorescent proteins having two key features: their emission properties are modified 

depending upon the intracellular level of calcium, and their pattern of expression can 

be restricted using the above mentioned genetic toolbox. They include either 

permutated single fluorescent proteins whose fluorescence properties are modified 

when calcium is binding to Ca2+ recognition elements (Nagai et al., 2001), or pairs of 

fluorescent proteins in which conformational change induced by calcium binding 

leads to FRET (Förster Resonance Energy Transfer) mediated modification of 

fluorescence (Miyawaki et al., 1997) 

 

The transparency of the zebrafish larva and its genetic accessibility make it an 

ideal model to use such optical tools for monitoring neural activity. In the first 

zebrafish study using a GECI (cameleon), expressed under the islet-1 promoter 

(Higashijima et al., 2000) (see section 3.1.2), calcium transients could be observed 

within the spinal cord, in Rohon-Beard neurons activated by electrical cutaneous 

stimulation, and in motoneurons and CiD interneurons during escapes triggered by a 

mechanical head tap (Higashijima et al., 2003). Since this first study, GECIs have 

been extensively used in zebrafish to monitor neural activity in various behavioral 

paradigms, including investigating the role of the optic tectum in prey capture (Del 

Bene et al., 2010), performing brain-wide monitoring of neural dynamics in a 

sensorimotor virtual environment (Ahrens et al., 2012) or testing neural coding of 

odors by the olfactory bulb (Blumhagen et al., 2012). Targeted mutagenesis and high-

throughput screening have led to the continuously improvement of GECIs such as the 

single fluorophore GCaMP family by optimizing their calcium affinity, kinetics and 

dynamic range (Akerboom et al., 2012; Muto et al., 2011; Nakai et al., 2001; Tian et 

al., 2009). From the first GCaMP (Nakai et al., 2001) to the current GCaMP6 (Chen 

et al., 2013), and including the generation of multi-color variants (Akerboom et al., 

2013),  the always improving GECIs arsenal now allow for monitoring of neural 

activity over a wide range of firing rates. 
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One major limitation of GECIs such as GCaMP, regarding in particular 

investigation of closed-loop sensorimotor behaviors in vivo, is the need for providing 

focal excitation to the fluorescent proteins. Indeed, this limitation implies constraining 

the neurons of interest to a given focal plane, either by partially embedding and/or 

paralyzing the animal. One alternative approach is to use the bioluminescent protein 

aequorin-GFP, derived from the jellyfish Aequorea victoria (Shimomura et al., 

1962a). ApoAequorin, the naturally occurring complex of aequorin with GFP, binds 

to its substrate coelenterazine, which is then oxidized in the presence of calcium 

leading to the emission of a green photon by the GFP through chemiluminescence 

resonance energy transfer (CRET) (Baubet et al., 2000). Bioluminescence assays 

based on aequorin-GFP have been used for non-invasive monitoring of neural activity 

in vitro (Rogers et al., 2005), but also in restrained flies (Martin et al., 2007) and 

freely behaving mice (Rogers et al., 2007).  

 

Taking advantage of this bioluminescence approach, monitoring of neural 

activity in freely behaving zebrafish larvae has been achieved by genetically targeting 

the expression of aequorin-GFP in a specific subset of neurons and simultaneously 

counting the number of photons emitted over time while recording the locomotor 

activity using a high-frequency camera (Naumann et al., 2010). Remarkably, the 

author could monitor the activity of a small group of hypocretin-positive neurons in 

the hypothalamus over several days, or combine a gated photomultiplier tube with 

stroboscopic illumination to record visually evoked behaviors (Naumann et al., 2010). 

While the aequorin allows for non-invasive monitoring of an entire population of 

neurons in a moving animal, it does provide any spatial information, thus making the 

specificity of the genetic targeting a crucial limitation.  

 

3.2.2. Actuators: breaking neural circuits 

 

Besides monitoring neural activity, the optical and genetic accessibility of the 

zebrafish larva also constitute an optimal playground for optogenetic actuators, 

making it possible to selectively activate or inhibit genetically targeted neurons (Del 

Bene and Wyart, 2012; Portugues et al., 2013; Zhang et al., 2007a) (Figure 4B). 

Channelrhodopsin-2 (ChR2) is a light-gated channel derived from the unicellular alga 
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Chlamydomonas reinhardtii allowing non-specific influx of cations when illuminated 

with blue light (Li et al., 2005; Nagel et al., 2003). ChR2 can therefore be used to 

control a genetically targeted neuronal population with a millisecond timescale 

precision in a dynamic and reversible manner (Boyden et al., 2005). First tested in 

zebrafish to trigger escape responses by photo-activating Rohon-Beard neurons 

(Douglass et al., 2008),  ChR2 has subsequently been used to investigate diverse 

behaviors such as the optokinetic response (Schoonheim et al., 2010) or odor 

responses modulation (Bundschuh et al., 2012).  Synthetic excitatory actuators, 

obtained by combining a chemical ligand to a ionic channel, such as the light-gated 

ionotropic glutamate receptor (LiGluR, (Gorostiza et al., 2007; Szobota et al., 2007)) 

and the light-gated metabotropic glutamate receptor (LimGluR2, (Levitz et al., 2013)) 

have been successfully used to trigger neural activity in zebrafish. For instance, the 

potential role of Kolmer-Agduhr interneurons in modulating slow locomotion could 

be investigated by combining LiGluR activation and Gal4/UAS enhancer-trap 

transgenics (Wyart et al., 2009). 

 

Optogenetics have also been used to selectively silence genetically targeted 

neurons in zebrafish, using the light-gated chloride pump halorhodopsin (NpHR), 

derived from the archaebacterium Natronomonas pharaonis (Schobert and Lanyi, 

1982; Slimko et al., 2002). NpHR hyperpolarizes neurons by pumping chloride ions 

upon activation with yellow light, leading to optical silencing.  Interestingly, optical 

silencing with NpHR, and its improved variant eNpHR (Gradinaru et al., 2008), can 

be combined with photo-activation using ChR2 to provide a versatile optogenetic 

toolbox to dissect circuits within the same animal (Zhang et al., 2007b).  

 

Such combined strategy has been successfully used in zebrafish to identify 

neurons in the hindbrain able to initiate locomotion through a rebound activity after 

eNpHR silencing (Arrenberg et al., 2009), or dissecting the mechanism of eye 

saccades during optokinetic response (Schoonheim et al., 2010). In those two studies, 

light was delivered using optic fibers to achieve a high spatial selectivity regarding 

the stimulated area. However, new microscopic techniques relying on light patterning 

with multi-mirror devices (Blumhagen et al., 2012; Martial and Hartell, 2012) or 

temporal focusing of two-photon excitation (Papagiakoumou et al., 2010) should 
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allow for more complex 2D stimulation patterns. Lastly, 3D optical stimulation with a 

high spatiotemporal resolution could be achieved by combining digital holography 

and temporal focusing (Oron et al., 2012), opening the way for simultaneous imaging 

and neural manipulation in multiple planes in vivo (Portugues et al., 2013). 

 

 

3.3. The escape response as a model for sensorimotor integration 

 

3.3.1. The escape response and its supraspinal control 

 

The “escape response” is a stereotyped sensorimotor behavior whereby the 

animal aims to escape an approaching predator, which has been extensively described 

in many teleost fish species, including the goldfish and zebrafish (Eaton et al., 1977), 

but also in other anamniotic vertebrates such as the lamprey (Currie, 1991) or the 

Xenopus tadpole (Roberts et al., 2009). Escape responses in zebrafish can be elicited 

by several types of sensory stimuli, such as touch to the head or the tail (Bhatt et al., 

2007), a water jet to the otic vesicle (Kohashi et al., 2012) or an auditory-vestibular 

stimulus produced by a sound vibration for instance (Satou et al., 2009). In the 

zebrafish larvae aged 6 to 9 days post-fertilization (dpf), it typically consists in an 

initial fast “C-shaped” bend, followed by a counter-bend in the opposite direction, and 

lastly a burst swim (Budick and O'Malley, 2000). Typical kinematics parameters for 

escapes in zebrafish larvae are: a mean angular velocity of 21.2°/ms, a mean duration 

until completion of the first bend of 10.4 ms, a mean counter-bend angle of 125.1° 

(Budick and O'Malley, 2000).  

 

The role of reticulospinal neurons, and in particular the so-called “Mauthner 

cell” (M-cell), in the initiation of escape responses have been extensively 

documented, initially in the goldfish (Eaton et al., 2001; Korn and Faber, 2005). The 

M-cell and its homologs MiD2cm and MiD3cm are paired reticulospinal neurons, 

located respectively in hindbrain rhombomeres 4 to 6, sending their descending axons 

to the contralateral spinal cord. The M-cells receive excitatory inputs from the 

auditory and vestibular branches of the VIII nerve, the posterior lateral line, and the 

optic tectum (Nakayama and Oda, 2004). 
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In zebrafish larvae that were head-embedded in agar with the tail free to move, 

monitoring of neural activity in reticulospinal cells by calcium imaging has 

demonstrated that, while M-cells were activated by both head and tail mechanical 

stimuli, its homologs MiD2cm and MiD3cm were only activated by head taps 

(O'Malley et al., 1996). Ablation studies confirmed this differential descending 

control, showing that laser ablation of the whole array led to delayed escape responses 

elicited from both head and tail touch stimuli, while ablation of the M-cell only 

increased the latency of tail-induced escapes only (Liu and Fetcho, 1999). These 

results suggest that the Mauthner homologs can drive escape responses induced by 

mechanical head stimuli without the need for the M-cell. Remarkably, even ablation 

of the whole M-array was not sufficient to completely suppress the escape responses. 

 

Recent studies by the group of Oda (Kohashi and Oda, 2008; Kohashi et al., 

2012; Nakayama and Oda, 2004)  further refined our understanding of the descending 

control of this multimodal sensorimotor behavior. Using simultaneous calcium 

imaging of reticulospinal neurons and high-speed video recording of actual escapes 

elicited by a water jet to the otic vesicle, the authors demonstrated that activation of 

the Mauthner cell led to fast-onset (4-8 ms) escapes while activity in the MiD3cm 

homolog gave rise to delayed escapes (8-12 ms), and that these activation were 

mutually exclusive (Kohashi and Oda, 2008). Interestingly, the authors subsequently 

showed that: 1) before 75 hours post-fertilization (hpf), suppression of auditory-

vestibular inputs by selective ablation of the otic vesicle did not increased escapes 

latency, whereas ablating the trigeminal ganglia responsible for relaying tactile input 

did; 2) after 90 hpf, eliminating auditory-vestibular inputs increased escapes latency, 

whereas suppressing tactile input did not. These results therefore suggest a dual 

control of the escape behavior, switching during development from a preferentially 

tactile-driven, long-latency, non-M escape to a preferentially auditory-vestibular 

driven, short-latency, M-dependent pathway (Kohashi et al., 2012).  
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3.3.2. Monitoring spinal neurons during active locomotion 

 

The ability to simultaneously record active locomotor behavior and monitor 

neural activity in partially restrained zebrafish has proven very valuable to dissect the 

descending motor and sensory control of escape responses. Similar head-embedded 

experimental paradigms have also been used to investigate the recruitment of spinal 

interneurons during active locomotion (Bhatt et al., 2007; Ritter et al., 2001) (see 

section 3.1.1). Although studies based on calcium imaging of either hindbrain or 

spinal neurons in partially restrained animals has been an important step forward in 

the study of sensorimotor behaviors such as the escape response, they did not provide 

information about neural activity in the moving tail of the fish, therefore discarding 

segmental sensory feedback due to locomotion itself.  

 

Even though an attempt to indirectly monitor neural circuits involved underlying 

escape responses in freely swimming zebrafish larvae has been reported using electric 

field potentials recordings (Issa et al., 2011), this technique did not provide specific 

information about the nature of the neurons involved.  

 

However, new techniques such as bioluminescent monitoring of genetically targeted 

neurons with aequorin-GFP (see section 3.2.1) could prove helpful in providing 

specific monitoring of neural activity in actively moving animals, whether head-

restrained or freely swimming. Indeed, using an experimental setup adapted from 

Naumann et al. (2010) in which escape responses were elicited in head-embedded 

zebrafish larvae either by a water jet to the otic vesicle or an auditory-vestibular 

sound stimulus, we can simultaneously record detailed quantitative kinematics 

parameters and count photons emitted by the aequorin-GFP. Taking advantage of the 

Gal4/UAS system to restrict the expression of aequorin-GFP to motoneurons, we 

could obtain bioluminescence signals following the recruitment of spinal 

motoneurons (Figure 5, Knafo et al. unpublished). This approach could prove 

particularly useful to investigate the recruitment of sensory spinal neurons during 

active locomotion, and question whether sensory feedback from the moving part of 

the tail does actually modulate locomotion.  
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Conclusion 

 
The ability to monitor active behaviors in vivo with precise kinematics also provides a 

new framework in which results obtained from fictive recordings could be validated 

in order to confirm their environmental relevance. Moreover, the variability observed 

in real-world locomotor behaviors also questions whether “hard-wired” connectivity 

diagrams are actually the most suitable mean of modeling sensorimotor integration 

(Marder and Taylor, 2011). The emergence of multifunctional neuronal populations, 

i.e. neurons that are recruited during multiple behaviors (Liao and Fetcho, 2008), as 

opposed to specialized neurons that are only active for a given motor output (Satou et 

al., 2009), will also benefit from in vivo studies involving active locomotion, in which 

multiple behaviors can be tested within the same animal (Briggman and Kristan, 

2008). 

 

The advances in genetic targeting and the identification of molecular markers to 

classify homologous populations of spinal neurons have allowed bringing together 

results obtained across animal models. However, the extent to which the walking 

CPG of mammalian vertebrates (such as rodents and cats) and the swimming CPG of 

non-mammalian vertebrates (such lampreys, zebrafish or tadpoles) can mutually 

inform each other remains unclear. In this regard, amphibian metamorphosis, during 

which the swimming CPG of a tadpole is transformed into a frog walking CPG, could 

provide an intriguing and unique model (Sillar et al., 2008). 

 

Sensorimotor behaviors are inherently a closed-loop process, where sensory feedback 

heavily influence the motor output. Although spinal networks do integrate this 

sensory information to modulate locomotion, detailed access to spinal sensorimotor 

circuitry has so far been only possible in open-loop preparations, where the sensory 

feedback was not taken into account. New tools, such as optogenetic reporters and 

actuators, combined to genetically accessible animal models, such as zebrafish, 

should provide bright opportunities for monitoring targeted spinal sensorimotor 

neurons in actively moving animals, and, possibly, closing the loop.  
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Figure 1. Closed-loop sensorimotor behaviors versus open-loop access to neural 

circuitry 
A. A closed-loop virtual reality paradigm in the zebrafish larva. A moving visual stimulus is 

showed to a head-embedded larva (aged 6-7 days post-fertilization) while its behavior is monitored and 

its speed (red arrow) is modified by the swimming speed of the larva (A1). In this virtual closed-loop 

environment, a “gain” is used as a constant factor to adjust the grating speed to the larval swimming 

speed (A2). For 3 different gains, several kinematics parameters of the larvae locomotor output are 

modified consistently: bout duration (A3), interbout duration (A4), number of bouts (A5) and latency 

(A6).    Adapted from Portugues et al. 2011.  
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B. An open-loop experimental fictive preparation for accessing spinal circuits. To record from 

spinal neurons in a juvenile zebrafish (aged 8-15 weeks), the skin and muscles are dissected out to 

expose the isolated spinal cord (B1), and a stimulating electrode (1s, 40Hz) is placed at the junction 

with brainstem to elicit episodes of “fictive” swimming, while the motor output can be recorded from 

the ventral nerve root or from patched-clamp spinal neurons (B2). Bath application of pharmacological 

substances, such as the glycinergic antagonist strychnine, is used to modify the fictive motor output on 

the ventral nerve root recordings (B3). Short (10 minutes) application of strychnine results in increased 

swimming burst frequency, while longer application (20 minutes) leads to a decreased duration of the 

swimming episode as well as disruption of the left-right alternation (B4). Adapted from (Kyriakatos et 

al., 2011). 
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Figure 2. Descending and ascending inputs to spinal circuits involved in 
sensorimotor reflexes 
 

A. Motor and sensory inputs to spinal neurons and sites for sensorimotor integration. Descending 

motor control from the corticospinal and rubrospinal tracts (in the dorsolateral funiculus) and 

reticulospinal and vestibulospinal tracts (in the the ventrolateral funiculus) are integrated with 

ascending sensory inputs from proprioceptive afferents Ia and II (from muscle spindles) and Ib (from 

Golgi tendon organs) at various premotor locations. Adapted from Rossignol et al. 2006 

 

B. Some spinal sensorimotor reflexes and underlying interneuronal networks. Presynaptic 

inhibition of sensory afferents by GABAergic premotor interneurons in the intermediate laminae of the 

spinal cord is a common control mechanism for filtering sensory inputs (B1). Reciprocal Ia inhibition 

by glycinergic interneurons allows for antagonist muscles inhibition during a flexion movement (B2). 

Non-reciprocal Ib inhibition facilitates synergist muscle contraction though polysynaptic pathways 

(B3). 
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Figure 3. Neural substrates of spinal sensorimotor integration across vertebrates  
 

A. Descending motor control. In the lamprey, a mechanical stimulation to the head activates 

reticulospinal neurons through the trigeminal nerve, eliciting escapes reponses in an all-or-nothing 

fashion (A1 left). Swimming episodes can also be elicited by stimulating the Mesencephalic Locomotor 

Region (MLR), which projects onto reticulospinal neurons in the middle and posterior 

rhombencephalic reticular nuclei with a graded synaptic input (A1, right) Adapted from Dubuc et al. 

2008. In mammalian vertebrates, forebrain regions such as the primary motor cortex can initiate 

locomotion by projection on the MLR, which in turn activate descending motor pathways that 

modulate the spinal circuitry (A2). Adapted from Goulding, 2009. 
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B. Intraspinal circuitry. Based on this molecular homology, similar neuronal cell types can be 

identified in the zebrafish (B1) and mouse (B2) spinal cords, as indicated by the same color in the 

schematic. Zebrafish homologs of the mouse interneurons are: CoSA/MCoD (V0), CiA (V1), CiD 

(V2a), VeLD (V2b), UCoD/VeMe (V3). Adapted from Goulding, 2009 

 

C. Ascending sensory feedback. In the lamprey, intraspinal stretch receptors called the “edge cells” 

are activated upon mechanical bending of the spinal cord and could serve as mechanoreceptor during 

swimming (C1, top. Adapted from Grillner et al. 1984 and Di Prisco et al. 1990). In the zebrafish, the 

lateral line can be used to sense the water flow and provide feedback for rheotaxis behavior. (C1, 

bottom. Adapted from Olszewski et al. 2012). In mammalian vertebrates, cutaneous and proprioceptive 

muscle receptors provide sensory feedback to the spinal circuitry and can modulate the motor output in 

a phase and state-dependent manner (C2. Adapted from Rossignol et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   52	  

 
 

 

Figure 4. Monitoring and breaking neural circuits with genetically encoded 

reporters and actuators 
 

A. Calcium indicators. Genetically encoded calcium indicators (GECIs) allows for monitoring neural 

activity through changes in intracellular calcium concentration. In a FRET-based GECI (A1), such as 

Cameleon, a conformational change occurs after calcium ions binding between the two fluorescent 

proteins, leading to Förster resonance energy transfer, with a decrease in the 480 nm fluorescence and 

an increase in the 530 nm fluorescence. In a single-fluorophore GECI (A2), such as GCaMP, 

conformational modification upon calcium binding is intra-molecular, leading to an increase in the 

emitted fluorescence (515 nm). Bioluminescent GECIs, such as aequorin, binding of calcium ions 

leads to oxidation of coelenterazine. Chemiluminescence resonance energy transfer (CRET) between 

A1

A2

A3

B1 B2 B3
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aequorin and GFP is responsible for the emission of a green photon. Adapted from Grienberger et al. 

2012 

 

B. Optogenetic actuators. Following illumination with blue light (470 nm, blue pulses in B3), 

channelrhodopsin-2 allows the entry of cations into the cell (B1), triggering action potentials in whole-

cell current-clamp (B3). Following illumination with yellow light (580 nm, yellow line in B3), 

halorhodopsin pumps chloride anions (B2), leading to neural silencing (B3).  Adapted from Zhang et 

al. 2007 
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Figure 5. Monitoring the activity of spinal neurons during active escape 

responses in zebrafish 
 

(A) A setup for simultaneously recording active locomotion using a high-speed camera and custom 

tracking software (B), while counting photons emitted by spinal motoneurons during escape responses 

in the transgenic line 1020;gal4/UAS:aequorin-GFP.  (C) In blue: alpha angle (in degree) between the 

first and last points of the tail over time, superimposed with the bioluminescent signal in green (number 

of photons emitted /10 ms) 
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Part B. 

 
Mechanosensory neurons enhance motor output in the zebrafish spinal cord 

during active locomotion 
 

 

Abstract 

 

 

Vertebrate locomotion relies on central pattern generators (CPGs) located in 

the spinal cord. Although there is converging evidence that mechanosensory feedback 

modulates the activity of CPGs, the mechanisms occurring at the circuit level are not 

well understood. One challenge lies in the fact that traditional electrophysiological 

techniques performed during so-called “fictive” locomotion do not allow the 

recording of identified neurons in the spinal cord of moving animals. Here we 

overcome this limitation by genetically targeting the bioluminescent sensor GFP-

Aequorin to achieve selective and non-invasive monitoring of spinal motor and 

sensory neurons during active locomotion in larval zebrafish. By combining this 

technique with GCaMP imaging of individual neurons, we validate that the 

bioluminescence signal emitted by spinal motor neurons reflects the differential 

recruitment of motor pools during motion. We show a major reduction in 

bioluminescence signals recorded from spinal motor neurons in paralyzed animals 

and immotile mutants, demonstrating that mechanosensory feedback enhances the 

recruitment of motor neurons during active locomotion. Accordingly, we confirm 

using bioluminescence monitoring and GCaMP imaging that spinal mechanosensory 

neurons are recruited in moving larvae while silenced in paralyzed animals. 

Moreover, we also demonstrate that silencing mechanosensory neurons impairs 

escape responses in freely moving larvae. Altogether, these results shed light on the 

contribution of mechanosensory feedback to motor output during motion, and the 

resulting differences between active and fictive locomotion. 
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1. Introduction 

 
Although the basic motor rhythm controlling flexion and extension can be 

produced by spinal central pattern generators in the absence of sensory inputs 

(Delcomyn, 1980), stimulation of peripheral afferents has the potential to control the 

amplitude and timing of motor output during ongoing locomotion (Grillner and 

Rossignol, 1978; Lundberg, 1979; Schomburg et al., 1998). However, 

electrophysiological investigation of spinal circuits typically rely on preparations 

where muscles are paralyzed or dissected out, thus abolishing the contribution of 

mechanosensory feedback caused by movement of the animal (Grillner, 2003). 

Although electromyogram recordings have been conducted in cats (Grillner and 

Rossignol, 1978), lampreys (Wallén and Williams, 1984),  and rodents (Courtine et 

al., 2009a), recordings of identified motor and sensory neurons in the spinal cord have 

not been performed during active locomotion. 

 

Recent advances in optogenetic sensors and actuators have enabled recording 

and stimulation of genetically identified neurons in freely behaving animals(Szabo et 

al., 2014). In particular, Aequorin is a bioluminescent calcium sensor derived from 

the jellyfish Aequorea victoria (Shimomura et al., 1962a). Upon neuronal activation, 

calcium binding leads to the oxidation of Aequorin substrate, coelenterazine, and 

subsequent chemiluminescence resonance energy transfer to a fused GFP results in 

the emission of a green photon (Baubet et al., 2000). Non-invasive bioluminescence 

neural monitoring has been conducted in restrained flies (Martin et al., 2007), mice 

(Rogers et al., 2007) and in freely swimming larval zebrafish (Naumann et al., 2010).  

 

Here, we combined bioluminescence monitoring with genetic targeting of 

spinal neurons to investigate the recruitment of motor and mechanosensory neurons in 

motile and immotile zebrafish larvae. Non-invasive bioluminescence recording of 

spinal motor neurons during various locomotor behaviors and comparison with 

calcium imaging monitoring at the cellular level shows that the amplitudes of 

bioluminescence signals reflect the intensity and number of recruited cells. We tested 

whether the loss of mechanosensory feedback would affect spinal motor neuron 

recruitment and observed that bioluminescence signals were increased in motile 
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compared to paralyzed larvae and immotile mutants. Accordingly, using 

bioluminescence and GCaMP monitoring in moving animals, we showed that spinal 

mechanosensory neurons were recruited during active but not fictive locomotion. 

Altogether, our data suggest a mechanosensory loop enhancing motor neurons 

recruitment during active locomotion. 

 

2. Results 

 

2.1. Bioluminescence signals reflect the level of recruitment of motor neurons 

during movement 

 

In Tg(mnx1:Gal4, UAS:GFP-Aequorin-opt) 4 dpf larvae we simultaneously 

recorded bioluminescence signals from the population of motor neurons and behavior 

during escapes elicited by an acoustic stimulus (see Methods and Fig. 1A, B). We 

observed three categories of behavioral responses: i) escapes ; ii) C-bends ; and iii) 

slow swims (Budick and O'Malley, 2000) (Fig. 1D ; Suppl. Table 1, n = 10 larvae). 

Each behavioral category was associated with different bioluminescence amplitudes 

(Fig. 1E), while the time-to-peak and the time decay of the signals remained 

approximately constant (Suppl. Fig. 1, A and B). Mean amplitude was higher for C-

bends and escapes than slow swims (Fig. 1F). For all maneuvers, and within each 

category, bioluminescence signal amplitude correlated with the maximal angle of the 

tail bend (Fig. 1G). These data suggest greater recruitment of spinal motor neurons 

during behaviors with larger tail bends. However, bioluminescence monitoring lacks 

the single cell resolution to determine whether this increase in recruitment is due to a 

larger population of neurons being active. 

 

We therefore performed calcium imaging in 4 dpf Tg(mnx1:Gal4, 

UAS:GCaMP6f;cryaa:mCherry) during fictive spontaneous slow swimming and 

fictive evoked escapes (Supp. Fig 2A, Supp. Fig. 2B). The locomotor burst frequency 

ranged between 20-30 Hz for slow swims (left panel, Fig 2A, (Masino and Fetcho, 

2005)) and gradually decreased from 40-80 Hz to 20 Hz for escapes (right panel Fig. 

2A). During slow swims, a small fraction of ventrally located motor neurons was 

active (Fig. 2, B and C, right panels). In contrast, the majority of the motor pool, 
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including large dorsal motor neurons, was recruited during escapes (Fig. 2, B and C, 

left panels). The dorsal motor neurons having larger calcium transients than ventral 

motor neurons (Fig. 2D), the mean ΔF/F amplitude was higher during escapes than 

slow swims across larvae (Fig. 2E) and within each larva (Supp. Fig. 2D). Calcium 

imaging in a fictive preparation demonstrates greater motor neuron recruitment during 

escapes than slow swims, resulting from a larger population of active cells and 

elevated calcium transients. The combination of these two phenomena could explain 

the increase in bioluminescence amplitudes for movements with larger tail bends. 

 

2.2. Spinal motor neurons recruitment is enhanced in the presence of 

mechanosensory feedback 

 

We next tested if the global recruitment of spinal motor neurons differed in 

actively moving versus immotile animals (Fig. 3A). In 4 dpf Tg(mnx1:Gal4, 

UAS:GFP-Aequorin-opt) larva, we performed the bioluminescence acoustic assay 

before and after paralysis induced by bath application of pancuronium bromide. 

Across all ten larvae, mean bioluminescence amplitude was markedly decreased in 

paralyzed compared to motile animals (Fig. 3, B and C). Within each larva, the mean 

normalized bioluminescence amplitude was decreased seven-fold (0.056 +/- 0.08 

versus 0.36 +/- 0.18, p < 0.001).  

 

Since pancuronium bromide acts on the alpha 7 subunit of the acetylcholine 

receptor, we conducted additional experiments in immotile Relaxed (cacnb1ts25) 

mutant zebrafish (Granato et al., 1996). Similarly to paralyzed larvae, the mean 

bioluminescence amplitude was markedly decreased in the triple transgenic 

Tg(cacnb1ts25/ts25, mnx1:Gal4, UAS:GFP-Aequorin-opt) immotile larvae compared to 

control motile siblings Tg(cacnb1+/+ or cacnb1ts25/+, mnx1:Gal4, UAS:GFP-

Aequorin-opt) (Fig. 3, D and E). Altogether, these results demonstrate that spinal 

motor neurons recruitment is enhanced in active compared to fictive locomotion in 

the same experimental conditions. 
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2.3. Mechanosensory neurons are recruited during active but not fictive 

locomotion 

 

 We tested whether spinal mechanosensory neurons were recruited during 

active locomotion. We used the Isl2b promoter to target the expression of GFP-

Aequorin to Rohon-Beard neurons and dorsal root ganglia in the spinal cord as well 

as trigeminal ganglia in the head (Fig. 4, A and B). We confirmed that there was no 

muscle expression by doing immunochemistry on GFP (Fig. 4B). In 4 dpf 

Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:GFP-Aequorin-opt) we observed bioluminescence 

signals emitted by these mechanosensory neurons during active locomotion. Upon 

paralysis, the bioluminescence signals were abolished in all trials (Fig. 4, C and D). 

Moreover, the amplitude of bioluminescence signals emitted by mechanosensory 

neurons correlated with the amplitude of movements (Fig. 4E). 

 

 To determine which population of sensory neurons is active during locomotion 

we designed a calcium imaging setup to record from both trigeminal neurons in the 

agar-embedded head and Rohon-Beard neurons in the freely moving tail. We used 4 

dpf Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:mRFP, UAS:GCaMP5) larvae to record 

calcium activity in the green channel while correcting for shifts in the focal plane 

using the red channel to monitor cell position (Fig. 5, A and B, and Methods). We 

found that 32.5% of monitored spinal mechanosensory neurons, called Rohon-Beard 

neurons in zebrafish, were active (ΔF/F ≥ 25%) during acoustic evoked escapes. 

Consistent with our bioluminescence results, most of the cells became silent after 

paralysis (4.3% of active cells in paralyzed larvae, Fig. 5, C and D). The mean ΔF/F 

amplitude in active Rohon-Beard neurons was also markedly reduced after paralysis 

(Fig. 5E). Similarly, trigeminal neurons showed activation only when the fish was 

actively moving, although significantly lower than in spinal Rohon-Beard neurons 

(23.2% of active cells, Supp. Fig. 3).  

 

Altogether, these data demonstrate that spinal and trigeminal mechanosensory 

neurons are recruited during active but not fictive locomotion suggesting that they 

might underlie spinal motoneurons differential recruitment. 
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2.4. Silencing mechanosensory neurons impairs escape responses 
 

Therefore, we finally tested whether silencing mechanosensory neurons could 

affect behavior in freely swimming larvae. In Tg(Isl2b:Gal4, cmlc2:eGFP, 

UAS:BoTxLCB-GFP) larvae, expression of botulinum toxin light chain B in 

mechanosensory neurons blocks vesicle release resulting in silencing their activity 

(see Methods). We found that several kinematic parameters of acoustic elicited 

escapes in 5 dpf Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:BoTxLCB-GFP) larvae were 

decreased compared to Tg(Isl2b:Gal4, cmlc2:eGFP) siblings : mean escape speed, 

mean tail beat frequency and mean number of bends were lower in larvae where 

mechanosensory neurons were silenced (Fig. 4, A and B). Interestingly, while the 

mean initial C-bend angle was similar in both groups, the mean amplitude of the 

subsequent counter-bend was decreased in Tg(Isl2b:Gal4, cmlc2:eGFP, 

UAS:BoTxLCB-GFP) larvae (Fig. 4, C and D). These results suggest that 

mechanosensory neurons might enhance escapes efficiency by recruiting contralateral 

primary motor neurons through Commissural Primary Ascending (CoPA) 

interneurons in the moving spinal cord (Fig. 4, E and F). 
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Figure 1. Bioluminescence monitoring of spinal motor neurons during active 

locomotion discriminates distinct behaviors 
 
A. Design of the setup: upon acoustic stimulation (500 Hz, 10 ms), behavioral responses were recorded 

from above under infrared illumination using a high-speed (1000 Hz) camera, while photons emitted 

by GFP-Aequorin were simultaneously collected from below by a photomultiplier tube (PMT). B. In 

vivo fluorescent image and C. Immunostaining for GFP in 4 dpf Tg(mnx1:Gal4, UAS:GFP-Aequorin-

opt) zebrafish larva show selective expression of GFP-Aequorin in all spinal motor neuron populations 

(arrowheads: dorsal primary motor neurons, arrows: ventral secondary motor neurons), with no 

expression in muscle fibers. D. Automated categorization based on maximum tail angle and number of 

cycles classified maneuvers into escapes (65.7%; n = 197 / 300), C-bends (21%; n = 63 / 300) and 

swims (7.7%; n = 23 / 300, n = 10 larvae with 30 trials each). E. Different bioluminescence signals and 

kinematic parameters were observed for each category. F. Mean bioluminescence amplitude was 

higher for C-bends (32.6 +/- 1.8 photons / 10 ms; normalized amplitude per larva = 0.54 +/- 0.04) and 

escapes (27.0 +/- 1.0 photons / 10 ms; normalized amplitude = 0.36 +/- 0.02) than slow swims (3.9 +/- 
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1.4 photons / 10 ms, p = 0.002; normalized amplitude = 0.06 +/- 0.02, p = 0.014). G. Correlation 

between bioluminescence signal amplitude and maximum tail angle amplitude (R = 0.4, p < 0.001) 

discriminate the three behavioral responses. 
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Figure 2. Calcium imaging of spinal motor neurons during fictive locomotion 

reveals specific patterns of recruitment for escape and slow swims 
 
A. VNR traces for each behavior are enlarged to illustrate the different components during escapes and 

slow swims. Fictive locomotor frequencies ranged between 15 and 30Hz for slow swims while they 

spanned from very slow (< 10 Hz) during the initial bends to very fast (> 40 Hz) gradually decaying to 

15Hz during the escapes. B. GCaMP6F signals from individual motor neurons aligned with VNR 

profile. Pie charts represent the proportion of active cells in each behavior: 16/69 cells across 27 swims 

versus 61/69 cells across 12 escapes, n = 3 larvae. C. Maps of motor neuron recruitment during fictive 

slow swimming and evoked escape. Active cells were highlighted with colors during each behavior 

(magenta for slow swimming, green for escapes). Black traces represent the spurious signals 

originating from light scattering in other planes and recorded in ventral and dorsal background regions 

for slow swimming and escapes respectively. D. Graph illustrating the D-V position of cells recruited 

during each behavior shows dorsal motor neurons are only recruited during escapes (mean D-V 

position for escapes = 0.41 +/- 0.02 versus 0.25 +/- 0.01, p < 0.001, n = 78 cells in n = 3 larvae). E. The 

mean "F/F amplitude was higher during escapes compared to spontaneous fictive swims across larvae 

(91.2 +/- 4.7% versus 25.9 +/- 3.8%, p < 0.001, 12 escapes and 78 slow swims in n = 3 larvae).  
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Figure 3. Spinal motor neurons recruitment is enhanced in the presence of 

mechanosensory feedback  
 

A. To compare spinal motor neurons recruitment when mechanosensory feedback was present (“active 

locomotion”) or suppressed (“fictive locomotion”), we conducted bioluminescence assays before and 

after paralyzing the same animal with pancuronium bromide, and in immotile Relaxed (cacnb1ts25/ts25) 

mutants compared to their motile siblings. B. Averaged bioluminescence signals traces in actively 

moving and paralyzed larvae revealed a marked decrease in bioluminescence amplitude after paralysis. 

C. Mean bioluminescence amplitude over 30 trials per larva in active versus fictive locomotion 

recorded in the same animals before and after paralysis (26.6 +/- 0.9 photons / 10 ms versus 11.1 +/- 

0.4 photons / 10 ms, n = 10 larvae in each group, p < 0.001). D. Similarly, averaged bioluminescence 

signals were markedly decreased in immotile Tg(cacnb1ts25/ts25, mnx1:Gal4, UAS:GFP-Aequorin-opt) 

mutant larvae when compared with the motile siblings. E.  Mean bioluminescence amplitude in motile 

siblings (37.6 +/- 1.4 photons / 10 ms) and immotile mutants (9.8 +/- 0.4 photons / 10 ms, n = 300 trials 

in 10 larvae for each group, p = 0.001).  
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Figure 4. Mechanosensory neurons are recruited during active but not fictive 
locomotion 
 

A, B. In vivo fluorescent image (A) and immunostaining (B) for GFP in 4 dpf Tg(Isl2b:Gal4, 

cmlc2:eGFP, UAS:GFP-Aequorin-opt) triple transgenic zebrafish larva show selective expression of 

GFP-Aequorin in mechanosensory neurons (trigeminal ganglia, Rohon-Beard spinal neurons and 

dorsal root ganglia), as well as expression in the retina and heart, with no expression in muscle fibers (n 

= 4). C. Averaged bioluminescence traces demonstrate that mechanosensory neurons are recruited 

during active motion but not in paralyzed larvae (mean amplitude in active trials = 4.53 +/- 0.21 

photons / 10 ms, no detected signal in paralyzed trials, n = 10 fish, n = 600 trials). D. Mean 

bioluminescence amplitude in active larvae was higher compared to freely swimming larvae (4.53 +/- 

0.21 versus 2.20 +/- 0.10 photons / 10 ms, n = 10 fish, n = 600 trials, p < 0.001) and was completely 

suppressed in paralyzed larvae (n = 10 fish, n = 300 trials). E. Bioluminescence signals amplitude 

correlated with maximal tail angle during movements (R = 0.44, p < 0.01, n = 9 fish, n = 248 trials).  
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Figure 5. Calcium imaging of spinal mechanosensory neurons shows enhanced 
activation during motion 

 
A. Monitoring of Rohon-Beard neurons at the cellular level in the spinal cord during motion of the tail 

was achieved using two-photon time-lapse microscopy of Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:mRFP, 

UAS:GCaMP5) transgenic larvae at 4 dpf. B.  Artifacts due to shift of the focal plane during motion of 

the tail were corrected by subtracting the red "F/F from the green "F/F signal. C. Rohon-Beard 

neurons reliably recruited upon repeated acoustic stimuli were silenced after the animals were 

paralyzed. D. Distribution of mean "F/F amplitude ("F/F) of Rohon-Beard neurons during active 

locomotion (number of cells with "F/F # 25% across fish = 32.5%, no significant difference between 

fish) and after paralysis (4.3%, p = 0,038, n = 12 fish, n = 117 cells). E. The mean "F/F amplitude in 

recruited Rohon-Beard neurons during active locomotion was markedly reduced after paralysis (39.5 

+/- 2.4% versus 18.8 +/- 1.8%, n = 12 fish, n = 38 cells, p < 0,001). 
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Figure 6. Silencing mechanosensory neurons impairs escape responses 

 
A. In freely swimming 5 dpf larvae, Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:BoTxLCB-GFP) animals in 

which mechanosensory neurons are silenced showed a decreased tail-beat frequency (TBF, in Hz) 

during acoustic-elicited escapes compared to Tg(Isl2b:Gal4, cmlc2:eGFP) siblings (57.2 +/- 7.7 versus 

66.1 +/- 7.4 Hz, p < 0.001)  B. Similarly, the mean speed of escapes was decreased in silenced larvae 

(144 +/- versus 159 +/- 2.1 mm/s, p < 0.001). C. Mean initial C-bend bending of escapes was similar 

between the two groups (112.3 +/- 1.0 versus 115.1 +/- 1.6 degrees, p = 0.1). D. However, subsequent 

counter-bend was decreased in Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:BoTxLCB-GFP) larvae compared to 

siblings (63.7 +/- 1.2 versus 76.4 +/- 1.5 degrees, p < 0.001); for all variables: n = 356 escapes in 131 

larvae E. F. These results supports a closed-loop sensorimotor circuits within the spinal cord whereby 

mechanosensory Rohon-Beard neurons (in blue) would recruit Commissural Primary Ascending 

(CoPA) interneurons (in red), which in turn recruit contralateral spinal primary motor neurons (in 

green) during active (E) but not fictive (F) escapes. 
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Supp. Figure 1. Bioluminescence and kinematic parameters measured during 

active locomotion.  
 
A. There was an absence of correlation between the time decay constant of the signal and 

bioluminescence amplitude, indicating that bioluminescence decay remained approximately constant. 

B. Maximal tail angle were higher for C-bends compared to escapes and swims.  
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Supp. Figure 2. Calcium imaging of spinal motor neurons and fictive locomotion 

of ventral nerve root recording 

 
A. Expression pattern in a Tg(Mnx1:gal4;cry:mCherry-UAS:GCaMP6f) double transgenic larva at 4 

dpf imaged from the lateral side shows a specific targeting to motor neurons (white lines: ventral and 

dorsal limits of spinal cord; white dashed lines: axial segments limits; the dorso-ventral axis within the 

spinal cord is normalized to 0 at the ventral limit and 1 the dorsal limit; R is rostral, V is ventral; Scale 

bar is 50 µm). B. Experimental setup. A paralyzed larva, mounted on its side in agarose is placed under 

a 40X objective. Motor neuron output is recorded at a ventral nerve root (VNR). Water is puffed onto 

the otic vesicle to induce fictive escape responses. A 488 nm laser is used on a spinning disk confocal 

microscope to record GCaMP6F signals at 20Hz. C. Mean signal amplitude ("F/F) per fish for the 

active motor neuron population during each behavior (n=3 larvae). D. Proportion of active motor 

neurons per field of view during each behavior, plotted per fish (n = 12 escapes, 78 slow swims in N = 

3 larvae).  
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Supp. Figure 3. Calcium imaging of trigeminal neurons in active and paralyzed 

Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:mRFP, UAS:GCaMP5) larvae 
 
A,B. Time-lapse images (A) and ΔF/F traces (B) of trigeminal ganglia neurons showing moderate 

activation upon repeated acoustic stimuli in 4 dpf Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:mRFP, 

UAS:GCaMP5)  B.  C. Trigeminal neurons also showed a response upon acoustic stimulus when the 

fish was actively moving but the mean ΔF/F per cell was significantly lower than in spinal Rohon-

Beard neurons (mean ΔF/F = 18.0 +/- 1.4%, number of cells with ΔF/F ≥ 25% across fish = 16/69 

(23.2%), n = 6 fish, n = 69 cells. D. All trigeminal neurons active in the control condition were silenced 

after addition of pancuronium bromide (mean ΔF/F amplitude in active trigeminal neurons = 34.5 +/- 

7.3% in active larvae and was reduced to 7.6 +/- 3.2% after paralysis; n = 6 fish, n = 16 cells, p < 

0,001). 

 

 
Suppl. Movie 1: Bioluminescence and kinematics during escape.  

Suppl. Movie 2: Bioluminescence and kinematics during C-bend. 
Suppl. Movie 3: Bioluminescence and kinematics during slow swim. 

Supp. Movie 4: Calcium imaging of spinal motor neurons during escape 

Supp. Movie 5: Calcium imaging of spinal motor neurons during slow swim 
Supp. Movie 6: Calcium imaging of spinal Rohon-Beard neurons during escape 
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3. Discussion 

 

3.1. Investigating sensorimotor integration in the spinal cord during ongoing 

locomotion 

 

The ability to record spinal sensorimotor circuits during locomotion is crucial 

to understanding the contribution of sensory feedback to motor output from CPGs. 

Previous investigations of mechanosensory integration in the spinal cord mainly 

relied on sensory perturbation of fictive locomotor rhythm (Rossignol et al., 2006). 

Studies in paralyzed decerebrate cats demonstrated phase-dependent reorganization of 

classical sensorimotor reflex pathways during ongoing fictive locomotion(McCrea, 

2001). While stimulation of group Ib afferents at rest results in non-reciprocal 

inhibition of motor neurons projecting to synergist muscles, the same stimulation 

during ongoing fictive locomotion enhances ongoing motor neurons activity(Conway 

et al., 1987). Similarly, whereas stimulation of group II afferents inhibit extensors at 

rest, stimulation during ongoing fictive locomotion can reset the step cycle to flexion 

(Schomburg et al., 1998). Such experiments indicate that motor neuron activity can be 

strongly modulated by mechanosensory inputs during ongoing locomotion. However, 

because of the difficulty to record identified neurons in the moving spinal cord, the 

underlying cellular mechanisms remain elusive. Here, by taking advantage of the 

transparency and genetic accessibility of the zebrafish larva, we provide an innovative 

approach to achieve non-invasive recording of genetically targeted spinal motor and 

sensory neurons during active locomotion. By allowing monitoring of neural circuits 

in motion, this approach could be useful for revealing the contribution of spinal 

interneurons to active locomotion based on morphological and electrophysiological 

evidence accumulated in fictive preparations. 

 

3.2. Non-invasive bioluminescence monitoring of genetically targeted neurons in 

motion 

 

However, bioluminescence monitoring is technically challenging. Achieving 

GFP-Aequorin expression in a highly selective yet strong enough manner is key to 

obtain large signal-to-noise ratio allowing high-speed kinematics analysis. We 
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combined a codon-optimized version of GFP-Aequorin for zebrafish together with the 

GAL4/UAS amplification system to improve considerably the expression of the 

sensor. We carefully verified in live animals and after immunostaining for GFP that 

there was no expression in muscles. One practical limitation remains the ability to 

genetically identify neuronal populations of interest based on the expression of 

specific promoters. Continuously expanding sets of transgenic lines and recent 

refinement of genetic targeting techniques together with multiple color variants of 

Aequorin (Bakayan et al., 2011) should provide increasing options in the future. 

 

The interpretation of bioluminescence signals in vivo is another challenge. In 

vitro, the onset rate of the signal and the total photons yield remaining relatively 

constant, an increase in bioluminescence amplitude is rather due to a shorter signal, 

i.e. a faster decay rate (Hastings et al., 1969). The fact that GFP-Aequorin decay rate 

is itself determined at the molecular level by the state of its three calcium binding 

sites leads to a calcium-dependent model for bioluminescence signals amplitude 

(Tricoire et al., 2006). Bioluminescence assays in single pyramidal neurons ex vivo 

also showed that the recorded number of photons increased exponentially with the 

number of action potentials elicited (Drobac et al., 2010). However, one major 

difficulty in vivo is that the bioluminescence signal integrates signals from many cells 

with different levels of expression and variable patterns of activity. One technique to 

resolve the overall signal at the cellular level is to compare bioluminescence and 

calcium imaging data in similar experimental conditions.  

 

3.3. A closed-loop circuit within the spinal cord for mechanosensory integration  

 

By combining bioluminescence with calcium imaging, we demonstrate that 

spinal motor neuron recruitment is enhanced in active compared to fictive 

locomotion. Within the spinal cord, several mechanosensory neurons could enhance 

the recruitment of spinal motor neurons during active locomotion. We show that 

Rohon-Beard neurons in the spinal cord as well as trigeminal neurons in the head 

were specifically recruited during active locomotion. In particular, Rohon-Beard 

neurons have been shown to activate contralateral primary motor neurons through 

Commissural Primary Ascending (CoPA) interneurons in response to tactile stimuli in 
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zebrafish embryos (24, 25). In Xenopus, a similar pathway involving Rohon-Beard 

neurons and dorsolateral commissural (dlc) sensorimotor interneurons has been 

described, which also involves inhibitory interneurons providing ipsilateral inhibition 

during swimming (26, 27). Our calcium imaging results obtained from moving 

animals suggest a closed-loop neural circuit in which Rohon-Beard neurons recruited 

upon tail bending during an escape would trigger a synergistic recruitment of 

contralateral motor neurons so as to enhance the efficiency of the escape. Our 

behavioral results showing impaired escapes when mechanosensory neurons are 

silenced, and in particular a decrease in counter-bend amplitude and tail beat 

frequency, support this hypothesis. Altogether, these results shed light on the 

contribution of mechanosensory feedback to motor output during motion, and the 

resulting differences between active and fictive locomotion. 

 

4. Methods 

 

4.1. Zebrafish care and strains 

 

Adult AB and and Tüpfel long fin (TL) strains of Danio rerio were maintained 

and raised on a 14/ 10 hour light cycle and water was maintained at 28.5°C, 

conductivity at 500 μS and pH at 7.4. Embryos were raised in blue water (3 g of 

Instant Ocean® salts and 2 mL of methylene blue at 1% in 10 L of osmosed water) at 

28.5°C during the first 24 hours before screening for GFP expression. Selected 

embryos were subsequently dechorionated and soaked at 26°C in 100 µL of blue 

water with a final concentration of 60 µM of coelenterazine-h (Biotium, Hayward, 

USA). Coelenterazine-h was renewed at 2 days post-fertilization (dpf). Experiments 

were performed at 4 dpf unless otherwise stated. All procedures were approved by the 

Institutional Ethics Committee at the Institut du Cerveau et de la Moelle épinière 

(ICM), Paris, France, the Ethical Committee Charles Darwin and received subsequent 

approval from the EEC (2010/63/EU). 
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4.2. Generation of the transgenic lines 

 

The Tg(mnx1:Gal4) line driving selective expression in spinal motor neurons was 

kindly provided by Dr. T. Auer and Dr. F. Del Bene (Institut Curie, Paris, France) 

based on the injection of the mnx1 construct (Zelenchuk and Brusés, 2011). The 

original sequence for GFP-Aequorin was kindly provided by Dr. L. Tricoire 

(Université Pierre et Marie Curie, Paris, France) and was subsequently codon-

optimized for expression in zebrafish and subcloned into a 14xUAS plasmid kindly 

provided by Pr. K. Kawakami (National Institute of Genetics, Mishima, Japan). 

Injection of this construct in the Tg(mnx1:gal4) allowed the generation of the 

Tg(UAS:GFP-Aequorin-opt)icm09 by selective expression of the GFP-Aequorin in all 

spinal motor neuron populations: more prominently primary dorsal motor neurons but 

also intermediate and ventral secondary motor neurons (Fig. 1A) without any 

expression in the muscles and only very limited expression in the brain and hindbrain.  

 
Relaxed mutants (cacnb1ts25/ts25) (Granato et al., 1996) were kindly provided by Pr. 

Paul Brehm (Oregon Health and Science University, Portland, USA). In homozygous 

cacnb1 mutants, a mutation of the skeletal muscle dihydropyridine receptor β1a 

subunit interferes with the calcium release and mutant larvae are immotile 

(Schredelseker et al., 2005). 

 

The transgenic line Tg(UAS:GCaMP6f;cryaa:mCherry)icm06 was generated by 

subcloning GCaMP6f (Chen et al., 2013) into pDONR221 and then assembled into 

the final expression vector in a three-fragment Gateway reaction using p5E-14XUAS, 

pME-GCaMP6f, p3E-poly(A) and pDest-CryAA:mCherry. 

 

The Tg(Isl2b:Gal4, cmlc2:eGFP) line driving expression in trigeminal and 

Rohon-Beard neurons was kindly provided by V. Di Donato and Dr. F. Del Bene 

(Institut Curie, Paris, France) based on the injection of the isl2b construct (Auer et al., 

2015). Crossing Tg(Isl2b:Gal4, cmlc2:eGFP) with Tg(UAS:GFP-Aequorin-opt)icm09 

animals allowed us to drive expression of GFP-Aequorin in sensory neurons (bilateral 

trigeminal ganglia, spinal Rohon-Beard neurons and dorsal root ganglia). 
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Immunochemistry on GFP confirmed that there was no expression in muscle fibers 

but GFP expression could also be seen in the retina, heart and blood vessels. 

 

4.3. Immunohistochemistry for GFP-Aequorin and quantification of muscle fibers 

 

The chicken anti-GFP primary antibody was used at 1:500 dilution (Abcam, 

Cambridge, UK). The secondary antibody used was the Alexa Fluor 488 donkey anti-

chicken IgG (1:1000 dilution, Life Technologies). Immunostaining specificity was 

established by omitting the primary specific antibody, no immunoreactive signal was 

observed. Quantification of the number of muscle fibers expressing GFP-Aequorin 

was performed by counting the number of fibers in stacks of the whole 

Tg(mnx1:Gal4, UAS:GFP-Aequorin-opt) and Tg(Isl2b:Gal4, cmlc2:eGFP, 

UAS:GFP-Aequorin-opt) larvae imaged using a confocal spinning disk equipped with 

a 10X objective. 
 

4.4. Monitoring of neuronal activity with GFP-Aequorin bioluminescence 

 

All GFP-Aequorin expressing larvae were tested at 4 dpf (except 2 animals tested 

at 3 dpf for Fig. 2 and for which signals were comparable). In all experiments, one 

larva was head-embedded in 1.5% low melting agarose with the tail free to move in a 

circular (2 cm diameter) 3D-printed arena (Sculpteo, France). The arena was then 

placed in a lightproof box (Fig. 1A) and attached to a small speaker (2 Ohm). Each 

trial consisted of a 500 ms baseline followed by a 10 ms acoustic stimulus and 1990 

ms subsequent recording. Assays consisted of 30 trials with 1-minute inter trial 

intervals to reduce habituation. Sinusoidal stimuli (5 cycles, 500Hz) were delivered 

through a wave generator (Agilent, 33210-A) and audio amplifier (Lepai, LP2020A). 

Intensity was adjusted to the lowest value that reliably elicited an escape response 

(between 0.5 and 5 Vpp).  

 

The same larvae used for the active assay were subsequently paralyzed by bath 

application of pancuronium bromide (Sigma, P1918) at 0.6 mg/mL final 

concentration and stimulation intensity was adjusted to the lowest value that elicited a 

bioluminescent signal. For Fig. 4D-F cacnb1ts25/ts25 and control siblings were tested 
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alternatively on the same day and compared to each other. In non-moving animals 

(i.e. paralyzed or cacnb1 mutants), the intensity was progressively increased until 

stimuli elicited fictive responses. A higher intensity of the acoustic stimulus was often 

needed after addition of pancuronium bromide, possibly due to modulation of 

cholinergic arousal brain circuitry (Yokogawa et al., 2007). 

 

As negative controls, bioluminescence assays of wild type animals or 

Tg(mnx1:GFP) (Zelenchuk and Brusés, 2011) where motor neurons express GFP only 

revealed no signal (n = 3 wild type larvae with 30 trials each, n = 5 Tg(mnx1:GFP) 

larvae with 30 trials each). Animals deprived of GFP-Aequorin did not produce any 

signals above baseline noise level during escape responses. 

 

4.5. High-speed behavior recording  

 

Infrared light illumination for monitoring larval behavior was provided by an 850 

nm LED (Effisharp, Effilux, France) mounted with 2 long-pass 780 and 810 filters 

(Asahi ZIL0780 and Asahi XIL0810, respectively) and a diffuser (Thorlabs, DG10-

120B). Video acquisition was performed at 1000 Hz using a high-speed infrared 

sensitive camera (Eosens MC1362, Mikrotron, Germany; objective Nikkor 50 mm 

f/1.8D, Nikon, Japan) at 320x320 pixels resolution controlled by the software Hiris 

(RD Vision, France). Photons were counted with a PMT (Hamamatsu H7360-02) 

located under the larva arena and sent to an acquisition card (NI PCI 6602, National 

Instruments, USA). A band-pass filter (Carl Zeiss 525 nm / 50 nm, ref. 489038-8002) 

and a short-pass filter (Asahi 670 nm, XVS0670) were placed between the larva and 

the PMT. A custom application-programming interface developed in collaboration 

with R&D Vision synchronized the video acquisition with the photon count and the 

stimulus delivery using 30 trials batched TTL chronogram (EG Chrono, RD Vision).  

 

4.6. Bioluminescence analysis 

 

Photons were counted with a temporal resolution of 1 ms and then binned every 

10 ms. The signal was filtered using a running average with a window size of 10, 

giving a typical signal-to-noise ratio (SNR) for active movements of 50 to 1. Noise 
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was extrapolated from a linear fit of the cumulative photon count before the stimulus 

and subtracted from the signal. The start and end of the bioluminescent signal were 

computed as the first time point followed by 3 points with a differential value above 

0.4 photons / 10 ms and below 0.2 photons / 10 ms, respectively. The rising 

coefficient was calculated from a linear fit between the start and the peak of the 

bioluminescent signal while the decay coefficient was derived from the one-term 

exponential fit between the peak and the end of the signal. 

 

4.7. Kinematics analysis 

 

The rostral and caudal extremity of the tail were manually determined for each 

larva and the tail was subsequently automatically tracked with a custom Matlab 

algorithm (R2012b, Mathworks, USA). The tail angle (see Fig.1) was computed for 

each frame and filtered using median filtering (window size = 10). The start of the 

movement was determined as the first frame followed by 3 with a differential tail 

angle value above 0.08. The end was determined as the end of the 20 frames with a 

differential tail angle value below 0.1 degree. Local minimal and maximal values of 

the tail angle occurred at least 2 ms apart and 1 degree above the 5 ms preceding 

value (Fig. 1C). Only larvae with at least one tail bend above 45° were included in the 

final analysis. The number of cycles was determined by dividing the numbers of 

minima and maxima by two. Angular velocity was calculated by dividing the 

cumulative angle between the two extrema by the time between them. Automated 

movement categorization was determined as follows: Escapes for all movements with 

maximum values of tail angle > 45° and number of cycles > 1; C-bends for all 

movements with maximum values of tail angle > 45° and number of cycles ≤ 1; 

Swims for all movement with maximum values of tail angle  < 25° and number of 

cycles > 1 (Fig. 1D). 

 

4.8. Calcium imaging of spinal motor neurons 

 

4 dpf Tg(mnx1:Gal4, UAS:GCaMP6f;cryaa:mCherry) double transgenic larvae 

were screened for dense labeling and good expression of GCaMP6f in spinal motor 

neurons under a dissecting microscope equipped with an epifluorescence lamp (Leica, 
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Germany). Larvae were anaesthetized in 0.02% Tricaine-Methiodide (MS-222, 

Sigma-Aldrich, St-Louis, USA) diluted in fish facility water and mounted on their 

lateral side in 1.5% low-melting point agarose in glass-bottom dishes filled with 

external solution ([NaCl]=134mM, [KCl]=2.9mM, [MgCl2]=1.2mM, 

[HEPES]=10mM, [glucose]=10mM and [CaCl2]=2.1mM; adjusted to pH 7.7-7.8 with 

NaOH and osmolarity 290mOsm). Larvae were immobilized by injecting 0.1-0.3 nL 

of 0.5mM α-Bungarotoxin (Tocris, UK) in the ventral axial musculature. A portion of 

agar was removed using a razor blade in order to expose 2 to 3 segments. To achieve 

a strong signal-to-noise ratio during fictive locomotion recordings, the skin overlying 

these segments was removed using suction glass pipettes. Zebrafish larvae were 

imaged using a custom spinning disk microscope (Intelligent Imaging Innovation, 

Denver, USA) equipped with a set of water-immersion objectives (Zeiss 20X, 40X, 

NA=1). Recordings were acquired using Slidebook® software at 20 Hz at 488nm. 

Gain and binning were optimized to maximize signal to noise ratio. Z projection 

stacks showed full pattern of expression using Fiji (Schindelin et al., 2012). Positions 

of cells along the D-V axis were computed using Fiji and MATLAB. Calcium signals 

were extracted online using custom scripts. Regions of interest (ROIs) were manually 

designed and calcium signals time series were extracted as the mean fluorescence 

from individual ROIs at each time point of the recording. We observed that out-of-

focus signals varied between animals, from dorsal to ventral spinal cord regions in a 

behavior-dependent manner. To estimate the contribution of out-of-focus signals we 

systematically picked two background ROIs, one placed below the ventral limit of the 

spinal cord to capture out-of-focus signals at the level of ventral motor neurons during 

slow swimming, the second in the dorsal-most part of the spinal cord to capture out-

of-focus signals in the dorsal spinal cord during the escape. We estimated the 

maximum out-of-focus signals observed during each behavior (see black traces in Fig 

2D) and used this value as a threshold for discriminating active from silent motor 

neurons.  

 

4.9. Ventral nerve root recording (VNR) 

 

Thin-walled, borosilicate glass capillaries (Sutter Instruments, USA) were pulled 

and fire-polished from a Flaming/Brown pipette puller (Sutter Instruments, USA) to 
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obtain peripheral nerve recording micropipettes. Pipettes were filled with external 

solution and positioned next to the preparation using motorized micromanipulators 

under the microscope. Light suction was applied when the pipette reached the muscle 

region located at the vicinity of intermyotomal junctions, ventral to the axial 

musculature midline. VNR signals were acquired at 10kHz in current clamp IC=0 

mode using a MultiClamp 700A amplifier (Molecular Devices–Axon Instruments, 

USA), a Digidata series 1322A digitizer (Axon Instruments, USA) and pClamp 8.2 

software (Axon instruments, USA). Recordings were considered for analysis when 

the background noise did not exceed 0.05 mV amplitude and signal to noise ratio for 

fictive locomotor events detection was above three. VNR recordings were analyzed 

offline and aligned to calcium imaging data using custom-made MATLAB scripts.  

 

4.10. Calcium imaging of spinal sensory neurons 

 

Zebrafish larvae Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:mRFP;UAS:GCaMP5) were 

screened at 3 dpf for nacre phenotype and selective expression of both GCaMP5 and 

mRFP in Rohon-Beard neurons and trigeminal ganglia under a dissecting microscope 

with an epifluorescence lamp (Leica, Germany). At 4 dpf larvae were embedded 

dorsally in 1.5% low melting agarose in a circular (2 cm diameter) 3D-printed arena 

(Sculpteo, France). The agar was cut at approximately the 10th segment of the tail so 

that the majority of the tail could move freely while also remaining stable enough to 

image. The arena was attached to a small speaker (2 Ohm) and mounted on the stage 

of a two-photon microscope (Intelligent Imaging Innovations, USA) with a 20x 

water-immersion objective (Zeiss, Germany). A 500 Hz acoustic stimulus was 

delivered for 10 ms with a one-minute interval between each trial for a total of 10-15 

trials per region imaged. Rohon-Beard cells were imaged at least one segment outside 

and caudal to the agar cut and trigeminal ganglia were imaged through the agar. Two-

photon time-lapse microscopy with an excitation wavelength of 900-1000 nm and an 

acquisition rate of 11 Hz was used to capture simultaneously both red (612/69 nm) 

and green (525/40 nm) channels in SlideBook 6 (Intelligent Imaging Innovations, 

USA) during the escape behavior elicited by the acoustic stimulus. Regions of interest 

(ROIs) were drawn with a graphics tablet (Wacom Co., Ltd., Japan) in Fiji 

(Schindelin et al., 2012). Calcium signals were extracted using custom-written scripts 
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in Matlab (2013a, Mathworks, USA). Cell positions were tracked over time and ΔF/F 

values were computed for both red and green channels with the background 

subtracted by ΔF/F=(F(t)-F0)/(F0-Fbg). The red ΔF/F data was then subtracted from 

the green ΔF/F data to control for any shifts in the focal plane following the motion 

artifact. Changes in ΔF/F were computed by subtracting the average of the 10 frames 

before the stimulus from the maximum value during 10 frames following the 

stimulus. 

 

4.11 Behavioral analysis of freely moving BoTxLCB larvae 

 
 

Zebrafish larvae Tg(Isl2b:Gal4, cmlc2:eGFP, UAS:BoTxLCB-GFP) were 

screened at 3 dpf for expression. At 5 dpf, larvae were tested 4 by 4: each larva was 

positioned in a separate dish (2 cm diameter) with underneath illumination, freely 

moving. Escapes were elicited by delivering a 1 KHz stimulus for 1 ms using attached 

speakers. Each trial consisted of a 200 ms baseline followed by a 1 ms stimulus at 1 

kHz and 800 ms subsequent recording. Assays consisted in 5 trials with 2 minutes 

inter-trial intervals. Behavior was recorded at 650 fps with a high-speed camera 

(Basler acA2000-340km) and analyzed using a tracking algorithm made in 

collaboration with R&D Vision and a custom Matlab script (R2012b, Mathworks, 

USA). 

 

4.12  Statistical analysis 

 

SPSS 20 (IBM, USA) was used to perform all statistical analyses. Comparisons 

of bioluminescence signals parameters was conducted using a t-test for paired 

samples for repeated measures within subjects (i.e. head-restrained versus free 

swimming or active versus paralyzed data). Mixed linear model analysis with 

repeated measures using an auto-regressive covariance structure was performed to 

compare the bioluminescence amplitude between movement categories in active 

assays, and between moving and immotile larvae in active versus fictive assays. 

Bioluminescence decay coefficients (tau) were included if the goodness of fit r-square 

value was > 0.95. Normalized bioluminescence values were calculated as [X(i)-

mean(X)/(max(X)-min(X))]. When comparing the exponential time decay, only trials 
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with a bioluminescence signal to noise ratio ≥ 5 were included, so as to obtain an r-

square for goodness of fit ≥ 90%. A Pearson test was used to assess correlations for 

parametric data. Statistical significance is represented in the graphs as *** for p < 

0.001, ** for p < 0.01, * for p < 0.05; all data are provided in the figures and text as 

means +/- standard error of the mean (SEM). 
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Part C.  

 
From spatial to genetic targeting: a paradigm shift for neurosurgery 

 
 

Abstract 

 
 

Genetic targeting has become a dominant approach in neurosciences over the last 

twenty years. Promoters have complemented morphological and spatial information 

to identify neurons, and numbers of genome editing techniques now allow the 

generation of an always-expanding library of transgenic lines in tractable animal 

models. Recently the development of optogenetics brought a toolbox of effectors to 

selectively monitor and manipulate the activity of neurons in space and time, opening 

new paths for dissecting neural circuits. While modern neurosciences rely heavily on 

genetically targeted approaches, neurosurgery has remained essentially based on 

spatial information (e.g. tumor location and morphology, deep brain stimulation target 

coordinates, etc.). However, spatial targeting might not be the most relevant approach 

for diseases with poor spatial resolution (e.g. diffuse gliomas, basal ganglia disorders, 

epilepsy) or when circuits are intrinsically mixed. Genetically targeted neurosurgery, 

consisting in selective expression of exogenous genes encoding effectors in identified 

cellular populations, could be a promising strategy for these conditions. Selectivity 

would be achieved through restricted gene expression by targeting cells rather than 

spatial selection by the surgeon’s direct manipulation. However, to achieve this 

paradigm shift, several challenges must be overcome, such as the identification of 

selective genetic entry points into neurological diseases, safe gene delivery, efficient 

transduction and stimulation methods for clinical practice in humans. 
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1. Introduction 

 

The formidable expansion of genetic tools and tractable animal models in the last 

decades has radically transformed basic neurosciences. Neuroscientists used to 

characterize neurons and circuits based on morphological and electrophysiological 

parameters in ex-vivo preparations. Nowadays, neurons can also be classified based 

on their genetic profile, which allows selective expression of tools to record and 

disrupt circuits at the cellular and population levels (Fink et al., 2015). Optogenetics, 

which is the convergence of optical tools and genetic targeting, is the best example, 

but not the only one, of this powerful combination (Miesenböck, 2009). 

 

Similarly to the early days of neuroscience, neurosurgery is a field relying almost 

exclusively on spatial information. When a neurosurgeon is planning to remove a 

brain tumor, he needs to analyze its location relatively to anatomical landmarks and 

functional areas in order to choose the safest and most effective surgical approach. 

Hence, the recent development of advanced imaging tools, such as neuronavigation 

and peroperative imaging. 

 

However, spatial targeting might not always be the most relevant approach to 

some neurosurgical conditions. For instance, gliomas are diffuse tumors that are 

known to spread far beyond their visible limits on magnetic resonance imaging. Deep 

brain stimulation has side effects due to non-selective electrical stimulation of mixed 

population of neurons in the vicinity of the electrode. Genetically targeted 

neurosurgery, that is achieving selectivity through genetic expression by the target 

rather than spatial selection by the surgeon, could provide some answers to these 

poorly spatially defined neurosurgical conditions.   

 
2. How we moved to genetically targeted neurosciences 

 

2.1. From morphological to genetic identification of neurons 

 

 Identification of neurons traditionally relies on spatial information: soma 

shape, dendritic branching, axonal projection, and localization within histological 
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structures. Based on morphological identification of neurons, traditional techniques of 

investigation such as microscopy and electrophysiology have built putative neuronal 

circuits. Making assumptions based on anatomical or electrophysiological 

observations in ex-vivo samples, neuroscientists drew “wiring diagrams” and 

extrapolated neuronal function.  

 

 However, because most experimental techniques based on spatial 

identification can only record neurons immobilized under a microscope objective, 

asserting the functional relevance in behaving animals of circuits identified ex-vivo is 

very difficult. Although such experiments have proved very valuable in characterizing 

neurons properties and proposing neuronal circuits, they are also subject to important 

limitations. For instance, different neuronal populations are intricate within the space 

of a single ex-vivo sample, and subtypes of neurons can share morphological or 

electrophysiological features without having a similar function. 

 

Beyond morphological characteristics, several overlapping features can be 

used to classify neurons: developmental lineage, electrophysiological properties 

(firing patterns and currents), molecular markers (neurotransmitters and receptors), 

genes promoters and function (neurons performing the same function within a given 

circuit belong to the same class) (Masland, 2004). Ideally, these various classification 

methods should converge and define functionally relevant classes of neurons.  

 

Among these classifying parameters, genetic profile is probably the best 

strategy to establish reliable experimental access to specific cell populations. Progress 

in developmental biology has brought the ability to use specific transcription factors 

to identify neuronal lineages (Siegert et al., 2012). Interestingly, these genetic 

signatures of neuronal populations can often be matched with topographic maps 

across species. In the spinal cord for instance, homologous neurons expressing the 

same transcription factors and sharing similar morphological features can be 

identified in tadpoles, larval zebrafish and embryonic mice (Goulding, 2009). Such 

homology across species makes it particularly relevant to study genetically targeted 

populations of neurons in less developed and more genetic model organisms. 
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2.2. Genetic targeting of neurons in tractable animal models 

 

Genetic targeting is the selective expression of an exogenous gene of interest 

by a genetically identified cell population. Transgenesis can be achieved with various 

techniques at each step of the process: vector delivery (microinjection, electroporation 

or viral delivery), genome insertion (homologous recombination or transposition), 

gene transduction (endogenous expression or enhancer traps) and conditional 

expression (binary and inducible systems). 

 

Vectors including the gene of interest can be delivered in embryonic stem cells 

or fertilized eggs through DNA microinjection or electroporation (Fig. 1A). If the 

construct gets inserted into germ cells genome, then the injected animal can transmit 

it to the next generation and establish a stable transgenic line. Viral delivery of 

vectors is an alternative that can be used to target cell types based on injection site, 

viral tropism and promoter-specific expression. Several viral vectors allowing long-

term gene expression without cytotoxic effects are available, among which lentivirus 

(RNA virus), adeno-associated virus (single-stranded DNA) and herpes simplex virus 

(double-stranded DNA) (Verma and Weitzman, 2005). 

 

Insertion of the gene of interest can either be directed to a specific locus in the 

host genome or random (Fig. 1B). Knock-in gene targeting uses homologous 

recombination at the targeted locus to insert the exogenous gene under an endogenous 

promoter whose expression is to be mimicked (Capecchi, 1989). However, this 

technique requires knowing the targeted locus DNA sequence, and disrupts 

expression of the endogenous gene. On the other hand, transposition relies on random 

insertion of the vector in the host genome by an enzyme called transposase. In 

zebrafish, the Tol2-mediated transposition relies on a donor plasmid containing a non-

autonomous Tol2-construct delivered together with transposase mRNA. The Tol2 

construct contains specific sequences that are recognized by the transposase and allow 

upon excision its random insertion within the host genome (Kawakami et al., 2000).  

 

Recent techniques such as TALEN (transcription activator-like effector 

nuclease) or CRISPR (clustered regularly interspaced short palindromic repeat) now 
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allow easy and efficient targeting of precise sequences in the host genome (Seruggia 

and Montoliu, 2014). Both TALEN and CRISPR systems have the ability to induce 

double-strand breaks at the targeted sequence using associated endonucleases FokI 

and Cas9 respectively. This double-strand DNA break can then generate two different 

outcomes: non-homologous end-joining in order to create a targeted mutation and 

gene disruption, or homologous-directed repair using an exogenous donor template in 

order to achieve gene correction or transgene insertion (Yin et al., 2014).   

 

To drive the transduction of the inserted gene, one can either transfect the 

regulatory elements and promoter within the same construct or rely on the promoters 

and enhancers of the host genome (Fig. 1C). A bacterial artificial chromosome (BAC) 

can hold the promoter, the reporter gene and the target gene. If a BAC containing a 

specific promoter is inserted (even randomly) within the host genome, the enclosed 

reporter and exogenous gene will only be transduced in neurons where this promoter 

is expressed (Asakawa et al., 2013). Unlike BAC, enhancer traps take advantage of 

the random transposition into the genome of a given plasmid. In addition to the 

reporter gene, this plasmid contains a minimal promoter that is activated only when 

inserted close to an enhancer gene. Therefore, multiple transgenic lines labeling 

several neuronal populations can be rapidly generated and screened based on their 

fluorescence pattern of expression (Scott et al., 2007). 

 

Lastly, combinatorial tools, such as the Gal4/UAS system in flies and fish, can 

optimize gene targeting (Fig. 1D). This bipartite system relies on the specific 

expression of the yeast Gal4 transcriptional activator to drive and increase the 

expression of the reporter gene placed under the control of repetitive Gal4-responsive 

upstream activator sequences (UAS) (Asakawa and Kawakami, 2009; Davison et al., 

2007). Therefore, researchers can easily combine drivers and effectors by crossing 

animals with Gal4-attached promoters to others with UAS-attached gene of interest 

(Scott, 2009).  

 

Another binary method for gene expression used in mammals is the Cre/LoxP 

system, in which expression of the Cre recombinase is driven by a specific promoter 

while the gene of interest is under the control of an ubiquitous promoter but is 
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interrupted by a stop-codon flanked by two recombinase target sites (LoxP).  If the 

two transgenes are present in the same cell, the LoxP sites are excised by the Cre 

recombinase and the target gene is expressed (Huang and Zeng, 2013). Lastly, the 

expression of the transgene of interest can be controlled in time and space using 

inducible systems such as the tetracycline-dependent promoter: the tetracycline-

regulated transactivator (tTA) is driven by the targeted promoter and can activate, only 

in the absence of doxycycline (a tetracycline analog), its operator sequence (tetO) 

controlling the gene of interest (Gossen and Bujard, 1992). 

 

2.3. A toolbox for manipulating genetically identified neurons  

 

Proteins expressed in the targeted population of neurons can either simply 

label the cells, e.g. fluorescent reporters such as the green fluorescent protein (GFP), 

monitor neuronal activity, e.g. genetically encoded calcium indicators (GECIs), 

activate or inhibit neuronal activity, e.g. optogenetic actuators, and even silence or 

ablate an entire neuronal population. 

 

GECIs can indirectly monitor neural activity by measuring the intracellular 

calcium concentration (Grienberger and Konnerth, 2012) (Fig. 2A). Being the 

combination of a calcium-binding protein and a fluorescent protein, GECIs have the 

ability to modify their fluorescence properties when intracellular calcium levels 

increase. Calcium affinity, kinetics and dynamic range of some GECIs family such as 

GCaMP have been continuously improved through targeted mutagenesis and 

screening (Akerboom et al., 2012; Muto et al., 2011; Nakai et al., 2001; Tian et al., 

2009). Expression of GCaMP under a specific promoter allows monitoring of 

genetically identified neurons at the population level in many animal models, from 

drosophila to zebrafish (Akerboom et al., 2012). However, because fluorescent GECIs 

such GCaMP need to be excited to emit photons, the sample must usually be 

immobilized under a microscope. Neural monitoring with GECI in freely behaving 

animals can however be achieved with either bioluminescence sensors that do not 

require light excitation to emit photons, such as GFP-Aequorin (Naumann et al., 

2010; Shimomura et al., 1962b), or fiber optic apparatus tethered to the animal’s head 

(Flusberg et al., 2008).  
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Optogenetic actuators are mainly light-activated ion channels that can 

depolarize (i.e. activate) or hyperpolarize (i.e. inhibit) genetically targeted neurons 

upon illumination with a specific wavelength (Fig. 2B). For instance, 

Channelrhodopsin-2 (ChR2) allows non-specific cation influx when illuminated with 

blue light, thus reversibly activating neurons with a millisecond-timescale precision 

(Boyden et al., 2005; Nagel et al., 2003). Similarly to the GCaMP family, the 

Channelrhodopsins family is continuously expanding with color shifted or improved 

kinetics and sensitivity variants (Klapoetke et al., 2014). Light-gated inhibition of 

genetically targeted neurons has been initially achieved using the chloride-pump 

Halorhodopsin (NpHR): being sensitive to yellow light, NpHR can be co-expressed 

with ChR2 to allow bidirectional optical stimulation of neurons (Zhang et al., 2007b). 

Following NpHR, genetically targeted optical inhibition of neurons has been achieved 

with proton pump Arch (archaerhodopsin-3) (Chow et al., 2010), a red-sensitive 

halordhopsin called Jaws (Chuong et al., 2014), and ChloC, a variant of ChR2 

modified to allow influx of chloride instead of sodium (Wietek et al., 2014). 

 

Besides opsins-mediated optical control, silencing of an entire population of 

neurons can also be achieved with genetic targeting of toxins aiming for the SNARE 

proteins at the synapse (Fig. 2C). Expression of the tetanus toxin light chain 

(TeTxLc), which prevents neurotransmitter release by cleaving the synaptic vesicle 

protein synaptobrevin, has been successfully used in drosophila and zebrafish, in 

combination with the Gal4/UAS system, to silence neurons and affect behavior 

(Asakawa et al., 2008). Genetically targeted chemoablation of neurons can also be 

conducted using the expression of nitroreductase, a bacterial enzyme that catalyzes 

the innocuous prodrug metronidazole into a cytotoxic product leading to inducible 

and selective cell death (Curado et al., 2008). 
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3. Moving toward genetically targeted neurosurgery 

 

3.1.Candidate diseases for genetically targeted neurosurgery 

 

The rationale of genetically targeted (GT) neurosurgery is to achieve 

selectivity based on expression of effectors by genetically identified cells rather than 

manipulation of spatially identified targets by the surgeon.  

 

Good candidate diseases for GT neurosurgery are therefore those having a 

poor spatial resolution, i.e. a diffuse cellular substrate mixed within healthy tissue, 

located within an individualized brain or spinal cord area. The aim can be to either 

monitor and/or modulate neuronal activity, as would be the case with Parkinson’s 

disease and most current indications for electrical neuromodulation, or ablate targeted 

cells within a non-specific environment, as would be the case for gliomas. Conditions 

to which GT neurosurgery would typically not apply are those with diffuse or 

unidentified cellular substrates (e.g. Alzheimer’s disease) or, on the other hand, well 

circumscribed lesions (e.g. meningiomas, metastases, etc.). 

 

Neuromodulation is an obvious application of GT neurosurgery as most of the 

tools developed in GT neurosciences aim at selectively monitoring and manipulating 

neuronal activity.  Parkinson’s disease is currently the main indication for deep brain 

stimulation but its optimal target and the mechanisms underlying its efficacy remain a 

matter of debate (Rossi et al., 2015). Moreover, non-selective electrical stimulation 

within a few millimeters from the implantation site recruits many cells types 

belonging to distinct functional circuits, thereby producing side effects. By allowing 

selective and reversible control of basal ganglia circuitry in animal models of 

Parkinson’s disease, optogenetics provided a new insight into the underlying 

mechanisms of the disease (Kravitz et al., 2010) but also of DBS itself (Gradinaru et 

al., 2009). The aim would be to achieve selective stimulation of genetically identified 

neuronal populations so as to maximize therapeutic effectiveness while avoiding side 

effects.  
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Gliomas are one of the most appealing disease candidates for GT 

neuroablation. Indeed, it is now documented that even low-grade gliomas (LGG) 

actually extend far beyond the visible boundaries on magnetic resonance imaging 

(Pallud et al., 2010). Since it has been demonstrated that the extent of resection was a 

key prognostic factor of LGG (Sanai and Berger, 2008), some authors proposed that 

“supratotal resection”, that is resection guided by intraoperative functional mapping 

rather than preoperative morphological evaluation, should be the goal whenever 

feasible (Yordanova et al., 2011). But even functionally guided resection makes sense 

only because it is currently impossible to remove malignant glial cells without 

removing surrounding neurons with them. Unfortunately, this intricacy between 

healthy brain and diffuse glioma is also a key limitation of brain radiation therapy. 

Moreover, the blood brain barrier hinders the penetration of systemically administered 

chemotherapy, making a new approach to treating gliomas all the more needed. 

 

3.2. Genetic identification and cellular targeting in the human brain 

 

Genetic targeting involves, among others, two critical parameters: the ability 

to identify the cell type of interest based on specific genetic expression and the ability 

to efficiently deliver the desired effector to the targeted genome.  

 

Unlike tractable animal models in which stable transgenic lines can easily be 

generated and tested, genetic identification of neurons in humans must rely on a 

different approach to look for differential genetic expression in healthy and diseased 

tissues. Gene expression profiling (GEP) studies are mainly based on complementary 

DNA microarrays to monitor RNA levels of expression (i.e. “transcriptomes”) in a 

given sample. By allowing thousands of genes to be tested simultaneously, GEP has 

become a powerful tool to screen for specific genetic expression in various 

neurological disorders, ranging from Parkinson’s disease to gliomas (Cooper-Knock 

et al., 2012; Riddick and Fine, 2011).  

 

Several GEP studies in post-mortem samples from patients with Parkinson’s 

disease have demonstrated genetic alterations in the protein processing machinery and 

mitochondrial pathways (Cooper-Knock et al., 2012). In particular, microarray 
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analysis of the substantia nigra of parkinsonian patients showed a down-regulation of 

the SKP1 gene, involved in the formation of several proteasome subunits, which may 

account for the abnormal accumulation of proteins such as Lewy bodies, a 

histological hallmark of PD (Mandel et al., 2005).   

 

In high-grade gliomas (HGG), recent studies based on transcriptome-wide 

profiling of tumors have revealed genetically distinct subtypes, among which 

“proneural” HGG, whose molecular signature is global DNA methylation and 

mutations in the IDH1 gene, and “mesenchymal” HGG, harboring non-methylated 

DNA and NF1 gene mutations (Nakano, 2015). Interestingly, these two genetic 

profiles are also associated with different clinical prognoses, proneural gliomas being 

less aggressive than mesenchymal ones (Phillips et al., 2006). Since gliomas are 

thought to arise from a small population of “glioma stem cells” (GSCs) able to initiate 

and propagate the tumor (Singh et al., 2004), targeting these GSCs could prove to be a 

powerful therapeutic approach. Interestingly, distinct genetic markers of GSCs have 

also been described for specific HGG subtypes (Mao et al., 2013), making GSCs an 

ideal target for genetically targeted therapies. 

 

However, identification of genetic alterations in neurological diseases has not 

yet provided a reliable genetic entry point for targeted expression of exogenous 

effectors. Until now, and in stark contrast to basic neurosciences, delivery of gene 

therapy relies essentially on spatial targeting, through either viral or non-viral 

techniques.  

 

The majority of gene therapy preclinical and clinical trials conducted so far 

have used viral delivery to achieve exogenous gene insertion into spatially targeted 

cells. For instance, in a recent phase 1/2 clinical trial of gene therapy for Parkinson’s 

disease, a lentiviral vector carrying genes encoding dopamine biosynthetic enzymes 

(tyrosine hydroxylase, aminoacid decarboxylase, cyclohydrolase) was bilaterally 

injected in the striatum of parkinsonian patients (Palfi et al., 2014). The aim was to 

use striatal cells, which do not degenerate in PD, as a source for dopamine production. 

At 12-months follow-up, all 15 patients who received the gene therapy showed motor 

improvement. In preclinical trials for gliomas, modified adenovirus (HAd5 serotype) 
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or Herpes-Simplex Virus-1 (HSV-1) have been used to deliver genes encoding 

cytotoxic proteins or even anti-angiogenic angiostatin (Kane et al., 2015). Even if 

some vectors can be engineered to achieve a higher infection rate in glioma cells 

(Had5 expressing an improved receptor-binding motif for instance), inoculation of 

viruses was always spatially targeted to the tumor site in order to achieve transfection.  

 

Non-viral synthetic vectors include liposomes, polymers, peptides and 

inorganic nanoparticles (Yin et al., 2014). These delivery techniques have several 

advantages over viruses: lower immunogenicity, larger DNA loading capacity and 

easier and cheaper synthesis methods. Until now, lower delivery efficiency has 

limited their use in clinical studies. However, recently developed non-viral vectors 

were used to deliver various exogenous materials such as DNA but also mRNA, small 

interfering RNA or microRNA (Yin et al., 2014). Owing to their better safety and 

cost-efficiency profiles, non-viral delivery techniques might represent a viable 

alternative to viral vectors in clinical applications. 

 

3.3. Genetically targeted neuromodulation and neuroablation in patients 

 

Most of optogenetic studies so far have been conducted tractable animal 

models such as rodents, zebrafish or drosophila. But successful translation of 

genetically targeted neuromodulation to humans will also require non-human primates 

studies. Indeed, delivery strategy (vector-based versus transgenic lines), genetic 

targeting (efficiency and selectivity of promoters), and effectors expression are quite 

different between rodents and non-human primates. So are neural circuitry and 

mechanisms of diseases. Two initial optogenetic studies in non-human primates 

(Diester et al., 2011) (Han et al., 2009) have relied on viral delivery (lentiviral and 

AAV-based) of opsins (excitatory ChR2 and inhibitory NpHR) under the control of 

ubiquitous neural promoters (CaMKIIα, hThy1, hSyn) to achieve genetically targeted 

neuromodulation of neural activity in the frontal eye field and motor cortex 

respectively. However, these initial optogenetic studies in non-human primates failed 

to induce a behavioral effect, and even tough subsequent studies achieved changes in 

behavior (Afraz et al., 2015), their relatively low number in comparison with other 

animal models underscores their technical difficulty. Besides limitation of gene 
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transduction efficiency inherent to viral delivery, another issue is the ability to deliver 

enough light to neurons located further away: in the brain, 99% of the intensity of the 

blue light used to activate channelrhodopsin (480 nm) is lost 1 mm away from the 

fiber optic (2012). Increasing light wavelength could allow larger volume of tissue 

being activated, hence the interest in red-shifted opsins (Chuong et al., 2014). It is 

therefore not surprising that the retina, being easily accessible to both gene delivery 

and light, is a promising target for translational optogenetics (Busskamp et al., 2010). 

Moreover, since most experiments involving non-human primates are chronic, tissue 

damage from devices insertion and heat is also another major concern, requiring the 

development of specific tools (Han, 2012).  

 

However, non-human and human optogenetics could benefit from the 

experience of chronically implanted electrophysiological devices. Combining optical 

and electrophysiological devices would indeed allow closed-loop neuromodulation, 

i.e. simultaneous electrical recording and optical stimulation of neuronal activity 

(Laxpati et al., 2014). To this end, high-density microelectrode arrays incorporating 

integrated fiber optics, or “optrodes”, could be chronically implanted for chronic 

closed-loop neuromodulation (Buzsáki et al., 2015). 

 

Genetically targeted neuroablation for high-grade gliomas has been achieved 

in animal models and clinical trials using the “suicide gene therapy” strategy.  It relies 

on the introduction in the tumor cells genome of an exogenous gene encoding an 

enzyme capable of converting a non-toxic prodrug into a lethal molecule. Systemic 

administration of this non-toxic prodrug therefore induces cell death selectively in 

transduced tumors cells (Kane et al., 2015).  Two main systems have been used for 

suicide gene therapy in HGG: the herpes simplex virus type 1 thymidine kinase / 

ganciclovir (HSV-tk / GCV) system and the cytosine deaminase / 5-fluorocytosine 

(CD / 5-FC) system. In both systems, the non-toxic prodrug (GCV and 5-FC) is 

converted into a toxic compound (5-FU and GCV-3P respectively) by the genetically 

targeted enzyme (tk and CD) (Fischer et al., 2005). In addition to the direct toxicity, 

gene suicide therapy involves a so-called “bystander” effect in which toxicity is 

transferred from infected cells to surrounding cells, thereby enhancing its efficiency. 

Several clinical trials tested the safety and efficiency of HSV-1/tk gene therapy in 
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HGG: in the largest randomized phase III trial, involving 248 with newly diagnosed 

glioblastoma, HSV-1/tk proved to be safe but did not lead to a significant difference 

in median survival nor tumor progression(Rainov, 2000). This disappointing result is 

attributed to the lack of efficiency in transfecting the tk gene into tumoral cells 

genome (Okura et al., 2014), emphasizing the need for improved delivery and 

transduction strategies in humans.  

 

Another technique to achieve genetically targeted neuroablation in HGG is 

“oncolytic” gene therapy, which relies on the introduction of replication competent 

viral vectors having a lytic cycle, thereby selectively killing the host cells while 

spreading to adjacent cells. Selectivity to tumor cells in oncolytic gene therapy can be 

achieved by genetically engineering a HSV-1 mutant (G207) carrying a mutation in 

the gene (UL39) encoding an enzyme (ribonucleotide reductase, RR) that is required 

for viral replication and expressed in dividing cells only. Although, oncolytic G207 

HSV-1 cannot replicate in non-dividing cells, mitotic glioma cells can provide 

cellular RR and rescue HSV-1 lytic replication. However, only 5 to 15% of glioma 

cells being in mitotic phase at a given moment, the majority of tumor cells can 

actually escape this strategy (Okura et al., 2014). 

 

4. Two challenges for a paradigm shift 

 

Genetically targeted techniques have revolutionized neurosciences over the 

last twenty years. Relying on genetic rather than spatial identification of neurons, 

selective expression of effectors to manipulate neuronal activity has proved to be a 

very powerful tool to dissect neuronal circuits. Tractable animal models, continuous 

innovation in genome editing and an always-expanding library of transgenic lines 

made genetic targeting a predominant approach in modern neurosciences. 

 

Translating this genetic approach to neurosurgery would imply three key 

steps: 1) being able to genetically identify cells that are involved in neurological 

diseases; 2) achieve selective delivery and transduction of exogenous effector genes 

in this cell population; 3) deliver, without spatial selectivity, the appropriate 

stimulation to activate the transduced effector. 
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Therefore, genetic targeting can be considered as a paradigm shift for 

neurosurgery: selectivity is not in the surgeon’s hands anymore but in the neurons 

DNA instead. Although GT neurosurgery would not be, of course, always 

appropriate, it could represent a more rational approach to diseases that are poorly 

spatially defined such as high-grade gliomas or basal ganglia disorders. However, to 

achieve in the clinics this transformation from spatial to genetic targeting, two 

important challenges must be overcome. 

 

 The first challenge is a technical one. At each key step involved in GT 

neurosurgery, techniques from basic sciences would need to be modified or even 

reinvented to fit a clinical application. For instance, gene delivery will need improved 

viral or non-viral vectors, gene insertion and transduction techniques will require very 

efficient and safe tools, stimulation hardware must be improved to deliver more 

energy for longer durations without injuring the brain, etc. But these are foremost 

technical issues. And the speed of technical innovation in basic neurosciences in 

recent years gives an optimistic indication in this regard. 

 

 The second challenge is a biological one. The core assumption of GT 

neurosurgery is the knowledge of a specific genetic entry point into diseases. This 

entry point is key to a selective expression of the effector by targeted cells, and 

therefore the efficiency of the approach. Recent genetic expression profiling studies 

have provided evidence for a number of mutations involved in pathogenic processes, 

but have also shed light on the genetic heterogeneity of most neurological diseases. 

Therefore, it is likely that there won’t be a single genetic entry point into a given 

condition, but rather a combination of them for each patient. 

 

The paradigm shift behind genetic targeting might actually lie in the fact that 

these two challenges are driving each other: technical innovations are driving genetic 

dissection of diseases; genetic identification of target cells is paving the way for new 

treatments.  
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Figure 1. Genetic targeting of neurons in tractable animal models 

 
A) In tractable animal models, such as zebrafish or mice, the vector carrying the exogenous gene can 

be delivered at embryonic stage to generate stable transgenic lines or using viral vector injection in 

targeted tissue. B) Insertion of the exogenous gene into the host genome can be achieved via 

homologous recombination if the targeted sequence is known or with random insertion with 

transposition. C) Gene transduction can rely on the control by an endogenous promoter (“targeted 
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knock-in”) or an unknown enhancer if the insertion was random (“enhancer trap”). D) Expression of 

the targeted gene can be restricted using condition expression systems such as the Gal4/UAS or the 

Cre/LoxP systems, and even induced by drug administration such as in the tTA/tetO system. 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 2. A toolbox for manipulating genetically identified neurons 
 

A) Genetically targeted reporters allow fluorescent labeling of targeted cells using green or red 

fluorescent proteins and their variants. Neural activity can be monitored using genetically encoded 

calcium indicators (GECIs). Fluorescent GECIs, such as GCaMP, modify their fluorescence properties 

upon calcium binding, while bioluminescent GECIs, such as GFP-Aequorin, can transfer the energy 

upon oxidation of their substrate coelenterazine to an attached fluorescent protein in order to emit 

photons without the need for light excitation. B). Genetically targeted actuators are light-gated opsins 

that can dynamically activate (as with the cationic channel channelrhodopsin) or inhibit (as with the 
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chloride pump halorhodopsin) neurons in which they are expressed. C) Definitive neural silencing can 

also be achieved using vesicle release blockers, such as tetanus toxin light chain (TeTxLc), or 

chemically induced apoptosis with nitroreductase.  

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

Figure 3. Moving toward genetically targeted neurosurgery 
 
A) Ideal candidate diseases for genetically targeted neurosurgery involve a cellular substrate having a 

poor spatial resolution, e.g. the causative cells are mixed with healthy tissue, while still being in an 

individualized brain or spinal cord region. B) Genetic targeting faces a double challenge: being able to 

identify a genetic entry point that will be selective of the cell population of interest, and being able to 

deliver the vector into the host genome in order to achieve successful transduction. C) Genetically 

targeted effectors can achieve therapeutic results through either neuromodulation, using modified 

optogenetic tools, or neuroablation, using improved gene therapy techniques.  
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