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Abstract

Because of their parallel scalable structure, time-interleaved analog-to-digital convert-

ers (TIADC) seem to be the holy grail of analog-to-digital conversion. Theoretically, their

sampling speed can be increased, very simply, by duplicating the sub-converters. The

real world is different because mismatches between the converters strongly reduce the

TIADC performance, especially when trying to push forward the sampling speed, or the

resolution of the converter. In this thesis, I show that this limitation can be alleviated

by using background digital mismatch calibration.

The first part of the thesis is dedicated to studying the mismatches themselves. The

various technological sources of offset, gain, skew and bandwidth mismatches are ex-

plained. Following this explanation is the derivation of a frequency model that gives an

insight of the way the mismatch errors affect the TIADC output signal. Performance

metrics such as the SNDR and the SFDR are expressed as the function of the mismatch

levels.

In the second part of the thesis, I introduce new background digital mismatch cal-

ibration techniques that are able to reduce the offset, gain, skew and bandwidth mis-

match errors. In the proposed calibration methods, the mismatches are estimated by

using the statistical properties of the input signal. The calibration algorithms are shown

to converge for non-stationary signals, provided that the input signal autocovariance is

well-conditioned. Digital FIR filters are used to recover the correct output samples.

In the third part, a 1.6 GS/s TIADC test chip, implementing offset, gain and skew

mismatch calibration, demonstrates a reduction of the mismatch spurs down to a level of

-70 dBFS, up to an input frequency of 750 MHz. Temperature measurements of the chip

emphasize the need for background calibration by showing the mismatch variations with

respect to the temperature. The circuit achieves the lowest level of mismatches among

TIADCs in the same frequency range, with a reasonable power and area, despite the

overhead caused by the calibration.
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Chapter 1

Introduction

1.1 The challenges of high speed analog-to-digital

conversion

In modern communication systems, the information between a transmitter and a re-

ceiver is carried on continuous-time analog signals. This can be done either through

physical media, like copper wires (e.g. TV cable, phone line) or optic fiber (e.g local

networks, Internet), but the signal can also be transmitted in the vacuum via electro-

magnetic waves (e.g. WiFi, satellite). However, the information carried by the analog

signal is usually processed by digital circuits. Digital circuits have certain advantages as

compared to their analog counterparts:

— Complex signal processing is easier performed in the digital domain

— Digital compression algorithms and error correcting codes enable to encode signals

that carry more data on a given bandwidth

— Digital designs are easier to adapt to different CMOS technologies

— Digital designs benefit from the semi-automated CAD tools for synthesis, placing

and routing.

— Digital circuits are more robust to noise

— The simulation of digital circuits is faster than the simulation of analog circuits

The conversion from the analog domain to the digital domain is performed by Analog-

to-Digital Converters (ADC), which are often a bottleneck in modern communication

systems. The purpose of an ADC is to sample and quantize a continuous-time analog

signal in order to obtain discrete-time quantized values.

For these reasons, the trend is to reduce the analog circuitry by sampling the received

signal at an earlier stage at the receiver end.

The extreme case – where the market is going nowadays – is RF (Radio-Frequency)
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direct sampling, which consists in sampling the continuous-time signal without converting

it upstream to IF (Intermediate Frequency) with analog mixers. The block diagrams

shown in Figure 1.1 illustrate the difference between IF sampling and direct RF sampling.

ADC

ADC

DSP

DSP

LNA

LNA

LO

Figure 1.1 – Traditional IF sampling vs. direct RF sampling

However, moving the ADC ahead in the reception chain increases the performance

requirements on the ADC. One can cite cable TV (CATV) as an example to illustrate

the requirements of RF-direct sampling.

In cable TV transmissions, the signal is carried on a coaxial cable, and occupies a fre-

quency band that goes from 54 MHz to 1002 MHz (EIA Specifications in North America).

In the most common standard in use today (DOCSIS 3.0 [1]), the channels are transmit-

ted on 6 MHz frequency wide channels distributed across the full frequency band. Those

channels use QAM 256 constellations as a modulation scheme. Future improvements of

this standard (DOCSIS 3.1 [2]) include increasing the size of the constellations (up to

QAM 2048) as well as using OFDMA signals instead of the 6 MHz channels currently in

use. Plus, certain service providers want to use the cable as a mean of transmitting other

types of multimedia data (gaming, video streaming, HDTV) under the MoCA standard

(Multimedia over Coax Alliance). This standard uses a band that can go from 500 MHz

to 1650 MHz. To summarize, the signal that is transmitted on the cable can span a fre-

quency band going from 54 MHz to 1650 MHz, and is encoded using complex modulation

techniques such as QAM2048 and OFDMA.

Performing direct RF sampling of this kind of signal requires the ADC to be capable

of sampling at a frequency Fs at least equal to twice the signal bandwidth – i.e. at

least 3.2 GS/s for the cable TV application. In terms of resolution, the ADC is required

to quantize the signal with enough precision to make the demodulation possible. An

effective resolution of 10 bits is a minimum requirement for the cable TV application.
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1.2 Analog-to-Digital converter architectures

Over the years, numerous ADC architectures have been proposed, such as flash ADCs,

pipeline ADCs, Successive Approximation Register (SAR) ADCs and Time Interleaved

ADCs (TIADC). They differ by the sampling frequency and the effective resolution that

they achieve. Figure 1.2 shows a classification of the ADCs published between 1997

and 2014 at the International Solid State Circuit Conference (ISSCC) and the VLSI

Symposium. Flash ADCs are known to be fast ADCs with a low resolution whereas SAR

Fs [Hz]
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Pipeline
SAR
TI
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Figure 1.2 – Different ADC architectures classified with respect to their sampling fre-
quency and their SNDR (from data published at the ISSCC and the VLSI
symposium between 1997 and 2014 [3])

ADCs enable to achieve a higher SNDR at a lower sampling frequency. Pipeline ADCs

have long been the dominating architecture for achieving a high sampling speed (> 100

MHz) with a good SNDR but they are now surpassed by TIADCs.

Invented in 1980 [4], the TIADC is the only architecture that reaches a sampling

frequency of the order of 1 GS/s with a SNDR over 50 dB (around 8 effective bits).

Distinguishing TIADCs from the other ADC families is not completely accurate because

TIADCs are comprised of several sub-ADCs belonging to one of the other ADC families

(for example SAR ADCs). Time interleaving consists in having several “low frequency”

sub-ADCs sample the signal one after an other (as illustrated in Figure 1.3), in order to

increase the overall sampling frequency.
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Figure 1.3 – Principle of a time-interleaved ADC

Time-interleaving also improves the energy efficiency of the analog-to-digital conver-

sion because each of the sub-ADCs can be designed to operate in its most energy efficient

frequency zone. The scatter plot in Figure 1.4 classifies the different ADC architectures

based on their Figure of Merit (FOM) and their sampling frequency. The FOM is an

indicator that measures the energy that an ADC uses per conversion step. It takes into

account the power consumption, the effective resolution, and the sampling frequency of

the ADC. It is defined as follows:

FOM =
P

2ENOBFs

(1.1)

where P is the power consumption of the ADC, ENOB = (SNDR − 1.76)/6.02 is the

effective number of bits of the ADC and Fs is the sampling frequency. The idea behind

this metric is that doubling the sampling frequency of an ADC is as hard as improving

its effective resolution or reducing its power consumption by a factor of 2.

Whereas time-interleaved pipeline ADCs [5, 6, 7, 8, 9] were very popular a few years

ago to achieve a sampling frequency of the order of 1 GS/s, they seem to be slowly replaced

by time-interleaved SAR ADCs [10, 11, 12, 13]. Time-interleaved SAR ADCs enable to

achieve sampling frequencies above 10 GS/s [14, 15], and they hold the record of the

highest published sampling speed with 90 GS/s (for 5.5 bits of effective resolution) [16].

The performance of pipeline ADCs tends to worsen with technology scaling because the

gain of the MOSFET transistors decreases at each technology node. On the other hand,

SAR ADCs do not require dynamic circuits (see Chapter 4), and gain from technology
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Figure 1.4 – Different ADC architectures classified with respect to their sampling fre-
quency and their Walden FOM (from data published at the ISSCC and
the VLSI symposium between 1997 and 2014 [3])

scaling thanks to their seemingly digital nature. Very recently, hybrid flash/SAR time-

interleaved ADCs have been published [17]. The idea is to convert the Most Significant

Bits (MSB) of the signal at a high speed using a single low resolution flash ADC (≈ 4

bits) and resolve the remaining Least Significant Bits (LSB) using time-interleaved SAR

ADCs.

1.3 Mismatches in TIADCs

Theoretically, increasing the sampling frequency of a TIADC is simply done by in-

creasing the number of sub-ADCs. However, at some point, the performance becomes lim-

ited by the mismatches between the sub-converters. Indeed, the sub-ADCs have slightly

different characteristics due to random physical variations happening during the manu-

facturing process (see Chapter 2). These mismatches degrade the TIADC digital output

signal, and the noise power at the output of the TIADC becomes higher than the one of

a single sub-ADC.

The mismatches can be classified in different categories depending on their source. In

real circuits, the mismatches that most commonly limit the TIADC performance are:

— the offset mismatches that occur when the sub-ADCs have different offsets
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— the gain mismatches that occur when the sub-ADCs have different gains

— the timing skew mismatches that occur when the sub-ADCs sample the signal with

different timing offsets

— the bandwidth mismatches that occur when the sub-ADCs have different input

bandwidths

The sources and the effects of the mismatches are more detailed in Chapter 2. Figure 1.5

shows the output spectrum of a TIADC having offset, gain, skew and bandwidth mis-

matches. The offset mismatch noise takes the form of spurious tones at fixed frequencies,
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Figure 1.5 – TIADC output spectrum with mismatches

whereas the skew, gain and bandwidth mismatch noises consist of attenuated aliases of

the input signal.

Since the invention of the first TIADC [4], reducing the mismatches has been a chal-

lenge. This challenge is still existing today and a lot of research is being done to develop

calibration techniques to reduce the effects of the mismatches.

1.4 Mismatch calibration prior art

There are numerous types of mismatch calibration techniques, and the aim of this

section is to give an overview of the different paths that have been explored in the state

of the art.
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1.4.1 Foreground mismatch calibration

Foreground calibration techniques [18, 19] require an offline phase where the converter

is in “calibration mode”. During the offline phase, a known signal, for example a sine

wave with a known amplitude and a known frequency, is connected at the input of the

TIADC. In the circuit presented in [16], the timing offsets are adjusted in the analog

domain with a fixed-frequency sine input. In [20], the offset mismatches are calibrated

in the foreground by trimming the comparators of the sub-ADCs. Foreground mismatch

calibration is however not suitable for applications where the converter is always ’on’, for

example in communications receivers. Indeed, temperature variations and circuit aging

may require the calibration to be done frequently, or even continuously. These techniques

can however find their application in high-end measurement systems where the equipment

can either self-calibrate or be sent to calibration. This dissertation focuses on TIADCs in

the context of communication systems For that reason, foreground calibration techniques

will not be further discussed.

1.4.2 Background mismatch calibration

The alternative to foreground calibration is background calibration, where the mis-

match calibration is performed during the normal operation of the converter, in the

background.

Some background calibration techniques require the input signal to be slightly mod-

ified in the analog domain. Those techniques are referred as non blind calibration tech-

niques. For example, offset and gain mismatch calibrations can be performed with the

help of a random signal that is added to the analog input signal [21] or, multiplied with

it [22]. The techniques presented in [23] and [24] perform bandwidth mismatch calibration

by adding a known sine wave to the TIADC input signal.

On the other hand, blind calibration techniques do not require any modification of

the input signal, which reduces the risk of adding other sources of noise. Naturally, blind

background calibration techniques are the most challenging to develop because only a

limited prior knowledge about the signal is available. In reality, none of these methods

is fully blind. They require some information about the input signal, usually expressed

in term of spectral content or statistical properties. Among blind calibration techniques,

fully digital calibration techniques are performed entirely in the digital domain while

mixed mismatch calibration techniques partly operate in the digital domain and partly

in the analog domain.
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1.4.2.1 Mixed mismatch calibration

Most mixed mismatch calibration techniques have a structure where a digital unit

controls a feedback to the analog front-end to trim some parts of the circuit. The goal

of the digital unit is to detect the mismatches and to adaptively control a feebback to

adjust the analog front-end.

The chip reported in [25] is an exception to this rule as it embeds an all-analog

background skew mismatch calibration. The clock phases in the analog front-end can be

shifted using delay lines based on a comparison with a reference clock signal.

The offset mismatches are often calibrated by equalizing the sub-ADC output aver-

ages [26, 27]. The offset mismatches can then be corrected in the analog domain, for exam-

ple through digitally controlled current sources embedded in the track-and-hold amplifiers

of the sub-ADC [28]. Other techniques involve auto-zeroing comparators that reduce the

offset of each comparator individually, thereby reducing the offset mismatches [29, 30].

In a quite similar way, the gain mismatches can be calibrated by equalizing the output

powers of the sub-ADCs [26]. Alternatively, it is possible to estimate the gain mismatches

in the frequency domain by measuring the mismatch noise that appears in a frequency

band free of signal [31]. In [32], the circuit uses a random chopper Sample and Hold

Amplifier (SHA) in which the signal is multiplied in the analog domain by a random

sequence. The offset mismatches are then estimated by equalizing the averages of the

chopped sub-ADC outputs. The gain mismatches are estimated by equalizing the cross-

products between the chopped output and the non-chopped output of each sub-ADC.

Skew mismatch calibration usually involves more complex techniques. The estimation

of the timing mismatches can either be performed in the time domain or in the frequency

domain. The techniques described in [33, 34, 35] are time based ones. The timing

offsets are estimated through the minimization of a cost function calculated from cross-

correlations between adjacent channels, and the sub-ADCs sampling instants are adjusted

with variable delay lines. In [32], one of the two sub-ADC outputs of the 2-channel TIADC

is digitally delayed to match the samples of the second channel. The technique however

requires the input signal to be bandlimited to the Nyquist frequency of a single sub-ADC.

Some mixed calibration methods require the use of one or more redundant sub-ADCs.

It the case of the circuit described in [20] that detects the timing mismatches in the

digital domain, by minimizing the cross-covariance between each sub-ADC output and the

ouput of a redunda. The timing offsets are adjusted in the analog domain by controlling

adjustable delay lines. In [11, 27], the circuit has two redundant sub-ADCs, one that

serves as a reference and the other one that is slightly delayed. The difference between

the delayed reference ADC and the reference ADC gives a coarse approximate of the

signal derivative, which is used in a correlation-based adaptive algorithm to adjust the
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timing offsets through a bank of capacitors. In the TIADC circuit presented in [14], the

skew mismatch calibration is performed in two phases. First, a time-to-digital signature

is stored by inputting a known binary signal, generated by a DAC, into a reference ADC.

Then the sub-ADC to be calibrated are disconnected from the array one after the other

and replaced by the reference ADC. Their sampling times are adjusted in the analog

domain by comparing their output to the reference ADC signature with the same binary

signal at the input. In [17], the timing delays are adjusted through programmable delay

lines by comparing the output of the sub-ADCs to the output of a flash ADC running at

the TIADC overall sampling frequency.

Other approaches [36, 37, 18] propose to randomly reorganize the sampling order of

the channels in order to spread out the mismatch noise across the entire spectrum. In the

circuit described in [14], the offset mismatch noise is spread out by randomly connecting

together unit differential pairs in the comparator pre-amplifier.

Not many mixed bandwidth mismatch calibration techniques have been proposed.

One can cite the patent [38]. It describes a TIADC where the bandwidth of each sub-

ADC can be adjusted through a variable boost capacitor contained in the bootstrapped

switch.

1.4.2.2 Digital mismatch calibration

Digital mismatch calibration techniques have some advantages as compared to mixed

calibration methods. First, they do not require any modification of the analog front-end,

and they can therefore potentially be adapted to any TIADC architecture. Second, they

benefit from technology scaling and from semi-automated CAD tools. However, certain

functions that can be performed in the analog domain at a low cost – adjusting the delay

of a sub-ADCs for example – require complex operations in the digital domain.

Correcting the offset mismatches and the gain mismatches in the digital domain is

generally easy. Offset mismatch correction just requires to subtract each relative offset

from each sub-ADC output [11, 39, 27]. Gain mismatch correction can be done by multi-

plying the output signal of each sub-ADC by the inverse of the corresponding estimated

gain [35, 39]. The estimation of the offset and gain mismatches can be done similarly as

in the mixed calibration case, by equalizing respectively the sub-ADC output averages,

or the sub-ADC output squared average.

Solutions for fully digital calibration of the skew and bandwidth mismatches have been

investigated a lot from a theoretical point of view but no integrated circuit demonstrating

their efficiency has yet been published. In [40, 41], the authors propose to compensate

the gain and the timing mismatches adaptively by retrieving the Wide Sense Stationarity

of the signal at the TIADC output. The mismatches are digitally corrected by using a
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FIR filter with variables coefficients. The work is then extended in [42, 43] to the case

of arbitrary transfer function mismatches. Those methods are computationally costly

as they require FIR filter with variable coefficients [44]. The skew mismatch calibration

technique proposed in [45, 46] extends the work done in [47] to more than 2 interleaved

ADCs. The idea is to pass the sub-ADC output signals through an Hadamard transform

in order to separate the desired signal from the aliasing terms. This work is extended to

the case of signals in arbitrary Nyquist zones in [48].

The skew mismatch calibration technique presented in [49, 50, 51, 52] assumes that

the input signal is spectrally full, except for a small frequency band. The calibration is

iteratively done by minimizing the power of the mismatch noise in this “out-of-band”.

The skew mismatch calibration method described in [31] uses the same principle, and the

sampling errors are corrected using a first order Taylor approximation, which requires

the computation of the signal derivative.

The principle of minimizing the out-of band noise was also extended to the case of

generalized frequency mismatch calibration [53, 54]. In [42, 43], the frequency response of

each sub-ADC is approximated by a polynom. Some papers solely deal with the problem

of reconstructing a signal that is corrupted by the mismatch errors. The work done

in [55, 56] uses linear interpolation to correct timing errors. An other solution, often

more computationally complex, is to use fractional delay filters as explained in [57, 58]

1.5 Aim of this work and outline

This dissertation focuses on the fully digital mismatch calibration of the offset, gain,

timing and bandwidth mismatches.

As reviewed above, the state-of-the-art solutions in this domain are, on many aspects,

theoretical. Even, if numerical simulations prove their efficiency, most calibration tech-

niques presented before would add an important power/area overhead to the TIADC if

they were to be integrated on a circuit. This is especially true with the skew and band-

width mismatch calibration techniques because of the complex correction filters that are

required. Plus, the proposed calibration methods are always iterative and they would

need an extremely long time to converge if applied on real telecommunication signals (in-

stead of sine or multitone inputs). Finally, in most of the published work, it is assumed

that the TIADC input signal is Wide Sense Stationary (WSS), which is generally not

the case in practice. Real communication signals are at best Wide Sense Cyclostationary

(WSCS) or non stationary. The work presented in this dissertation aims at filling these

gaps.

The content of Chapter 2 is mostly a reformulation of previous work, explaining the
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sources of the mismatches, and their effects on the output signal. It provides the reader

with performance indicators (such as SNDR of SFDR) as a function of the mismatch

levels.

Chapter 3 is the heart of this dissertation as it describes direct, i.e. non iterative,

fully digital blind mismatch calibration techniques for reducing the effects of the offset

mismatches, the gain mismatches, the skew mismatches and the bandwidth mismatches.

The theoretical assumptions behind these techniques are carefully investigated, and it

is shown that convergence is insured for non-stationary signals provided that certain

conditions are met.

Chapter 4 describes the circuit realization of a TIADC embedding the offset, gain and

skew mismatch calibration techniques detailed in Chapter 3. The measurements from the

1.62 GS/s TIADC test-chip are analyzed and prove the viability of fully digital mismatch

calibration techniques.

Chapter 5 summarizes the findings given in this dissertation and presents some per-

spective to further improve calibration techniques for TIADCs.
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Chapter 2

Mismatches in Time-Interleaved

ADCs

2.1 Introduction

This chapter gives an overview of the sources of mismatch in TIADCs. The effects

of the mismatches on the output signal are analyzed in order to provide performance

metrics (SNDR and SFDR) based on the level of the mismatches. These performance

indicators are useful both during the TIADC design process itself and for determining

the accuracy of the mismatch calibration algorithms.

Although the mismatch problem was initially mentioned in the paper of Black and

Hodges [4], the first efforts to analytically derive the effects of offset and gain mismatches

on a TIADC performance were published in [59].

The analysis was later extended in [60] with a general frequency model that describes

the effects of the mismatches. The model was also used to derive SNDR expressions as

function of the level of the mismatches (offset, gain, skew).

The specific skew mismatch problem is also mentioned in papers dealing with non-

uniform sampling (which includes timing jitter) such as [61, 19, 62, 63]. Those papers

show the effects of non-uniform sampling for a sine input signal.

Later, an approach based on Hybrid Filter Banks (HFB) was proposed in order to

model the mismatch effects for arbitrary input signals. This approach is extensively

described in several articles [64, 65, 66] that include the effects of offset mismatches, gain

mismatches, skew mismatches as well as bandwidth mismatches (first order or more).

The specific case of a sine input is used to derive SNDR expressions as function of

the mismatch level. HFB modeling is extended in [67, 68] to encompass non-linearity

mismatches through the use of Non-Linear HFB (NL-HFB).

A probabilistic approach is proposed in [69]. The authors derive the probability
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distribution of the SNDR assuming Gaussian random distributions for the offsets, gains

and timing offsets.

Finally, whereas most of the literature analyzes the mismatch effects with sine input

signals, the work presented in [70] analyzes skew mismatch effects for wide-band input

signals. The authors show that for wide-band applications, evaluating the performances

of a TIADC with sine inputs often leads to over-pessimistic requirements on the timing

matching requirements.

This chapter re-demonstrates some of the results given in the literature by deriving a

TIADC output spectrum when different types of mismatches are present. The reasoning

that leads to these results is important because it gives a good sense of how the mis-

matches affect a TIADC performance. The chapter also introduces most of the notations

that are used throughout this dissertation

2.2 Ideal Time-Interleaved ADC

First, the proposed modeling technique is applied to an ideal TIADC in order to

introduce notations and explain the modeling principle in a simple case. With no imper-

fections nor mismatches, the derivation of the TIADC output spectrum unsurprisingly

leads to the well-known output spectrum of an ideal ADC.

The continuous analog input signal of the TIADC is denoted x(t). Depending on

the applications x(t) can either be a deterministic signal – for example a sine wave – or

a realization of Wide Sense Stationary (WSS) random process (see in Chapter 3) – for

example a complex wideband communication signal. This dissertation focuses on Nyquist

converters, which means that the input signal is assumed to be bandlimited to the first

Nyquist zone. If the signal is deterministic, its Continuous Time Fourier Transform

(CTFT) 1, X(Ω), verifies

X(Ω) = 0 for|Ω| >
Ωs

2
(2.1)

where Ωs = 2πFs is the sampling pulsation 2.

In a TIADC, the analog input signal x(t) is sampled by M sub-ADCs. Each sub-ADC

is indexed by m with m ∈ M = {0, · · · , M − 1}. The discrete sequence of samples at

the output of each sub-ADC is denoted {xm[k], m ∈ M}. In the case of an ideal TIADC,

1. The CTFT is here defined as X(Ω) =
∫ +∞

−∞ x(t)e−jΩtdt

2. If the signal is a WSS random process then its power spectrum density is zero outside the first
Nyquist zone

Rxx(Ω) = 0 for|Ω| >
Ωs

2
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each sub-ADC’s output signal can be expressed

xm[k] = x((kM + m)Ts) with k ∈ N (2.2)

For a frequency analysis, it is easier to express the sampled signal in a continuous time

form. Sampling a continuous signal at a frequency Fs = 1/Ts can be done by multiplying

the signal with a Dirac comb defined as follows:

c(t) =
+∞∑

k=−∞

δ(t − kTs) (2.3)

c(t)

c0(t)

c1(t)

c2(t)

c3(t)

Ts

MTs

Figure 2.1 – Full rate and sub-sampled Dirac combs for M = 4 sub-ADCs

The sampled signal denoted xs(t) is therefore obtained by multiplying the continuous-

time input signal x(t) by the Dirac comb c(t)

xs(t) = x(t)c(t) (2.4)

In a TIADC, each sub-ADC samples the input signal at a rate Fs/M and each sub-

ADC m has a delay mTs. The sampled sub-ADC output signals, denoted {xm(t), m ∈
M}, are now equal the product between the input signal x(t) and the respective sub-

sampling Dirac combs {cm(t), m ∈ M} (see illustration in Figure 2.1)

xm(t) = x(t)cm(t) (2.5)
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where

cm(t) =
+∞∑

k=−∞

δ(t − (kM + m)Ts) (2.6)

The sampled TIADC output signal is obtained by adding together the sampled signals

{xm(t), m ∈ M} from all the sub-ADCs. When there are no mismatches, the sampled

signal at the output of the TIADC is equal to the ideal sampled signal xs(t) defined in

equation 2.4

xs(t) =
M−1∑

m=0

xm(t) (2.7)

The output spectrum of an ideal TIADC is therefore the same as the output spectrum

of a regular ADC. The output spectrum, denoted Xs(Ω), is obtained by taking the CTFT

of the sampled signal xs(t) defined in equation 2.4. The product in the time domain

becomes a convolution product in the frequency domain 3 , which yields

Xs(Ω) =
1

2π
X(Ω) ∗ C(Ω) (2.8)

In the above equation 2.8, C(Ω) is the CTFT of the Dirac comb c(t), which is also a

Dirac comb in the frequency domain:

C(Ω) =
2π

Ts

+∞∑

k=−∞

δ(Ω − kΩs) (2.9)

Replacing C(Ω) in the equation of the TIADC output spectrum 2.8 yields a spectrum

that contains replica of the input spectrum centered at frequencies multiple of Ωs, a well

known phenomenon in sampling theory:

Xs(Ω) =
1

Ts

+∞∑

k=−∞

X(Ω − kΩs) (2.10)

The above expression can directly be linked to the Discrete Time Fourier Transform

(DTFT) of x[n]. Indeed, an other way of writing the sampled signal xs(t) is

xs(t) =
+∞∑

n=−∞

x(t)δ(t − nTs) (2.11)

=
+∞∑

n=−∞

x(nTs)δ(t − nTs) (2.12)

Taking the CTFT of the above expression and replacing x(nTs) by x[n] leads to the

3. The normalization by 1

2π
appears because of the use of angular frequencies in the CTFT.
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DTFT of x[n]:

Xs(Ω) =
+∞∑

n=−∞

x[n]e−jΩnTs (2.13)

which is periodic of period Ωs = 2π
Ts

. The DTFT will be denoted X2π(ω) where ω = ΩTs

is the normalized angular frequency 4

X2π(ω) = Xs(Ω)|Ω= ω

Ts

=
+∞∑

k=−∞

x[n]e−jωn (2.14)

In the following sections, the mismatches are added to the model in order to characterize

their effects on the TIADC output spectrum.

2.3 Mismatches in CMOS technology

Before diving into the problem of modeling TIADC mismatches, it is useful to do a

quick summary of the origin of mismatches in circuits. According to Pelgrom [71]

Mismatch that can be observed between the parameters of a group of equally

designed devices [...] is the result of several random processes which occur

during every fabrication phase of the devices.

The word “devices” can here be replaced by “transistor”, “resistor”, “capacitor” or “in-

ductor” depending of the type of circuit under analysis. Mismatches can be classified

according to the scale at which they happen. Thus, it is possible to distinguish

— Lot to lot mismatches, which consequence is to make devices of different lots have

different physical properties.

— Wafer to wafer mismatches are mismatches that occur between devices from dif-

ferent wafers belonging to the same lot

— Die to die mismatches happen among devices from different dies of the same wafer

— Within die mismatches occur between devices in the same circuit

The first three types of mismatches can be excluded from our analysis because we are

only interested in the mismatches between the sub-circuits (sub-ADCs) of a larger circuit

(TIADC). More specifically, our interest goes toward transistors and capacitors, which

are the main constituents of ADCs. In the remainder of this chapter, we will see that

most of the TIADC mismatches originate from parameter variability in transistors and

capacitors.

Among those parameters, the transistor threshold voltage has a particular role. The

threshold voltage is indeed a parameter of the transistor that affects the properties of

4. From now on, each spectrum denoted with the subscript 2π correspond to a DTFT, and is conse-
quently periodic in ω with period 2π.
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numerous basic circuits, and from which other important parameters can be derived,

such as the on-resistance of a switch. As we will see later in this chapter, understanding

transistor threshold variability is useful to analyze the sources of offset mismatches, skew

mismatches and bandwidth mismatches.

Threshold variability can be induced by

— Random dopant fluctuations in the channel 5 or in the source and drain [73]

— Effective channel length variability due to line edge roughness happening during

the lithography process [74]

— Electron mobility variability caused by random strain variation [75]

— Surface roughness causing gate oxide thickness variations [76]

It is not the purpose of this document to analyze all the sources of variability. The simple

(and old) model presented in [71] is used. It states that the variance of the threshold

voltage fluctuations from one device to an other is:

— inversely proportional to the area of the devices

— proportional to the square distance between the two devices. This type of mis-

match is called fixed mismatch and can be due for example to gradient effects on

the wafer.

This model can be summarized by the following expression 6:

σ2
Vth

=
A2

Vth

WL
+ S2

Vth
D2 (2.15)

where W is the gate width of the device, L the channel length, D the distance between two

devices and AVth
and SVth

are proportionality constants that depend on the technology.

We here assume that the distances between devices in the design are sufficiently small so

that the fixed part of the mismatches can be neglected. With that approximation, the

standard deviation of the threshold voltage variation becomes inversely proportional to

the square root of the device area:

σVth
=

AVth√
WL

(2.16)

One can naturally wonder if this model, which dates from 1989, is still valid in today

advanced CMOS technologies. The plots in Figure 2.2 show the standard deviation of the

threshold voltage obtained from Monte-Carlo simulations of NMOS transistors in 28nm

FDSOI CMOS technology, as a function of the width and the length of the transistor. It

5. In FDSOI technology, the channel is not doped, which decreases random dopant fluctuation [72]
6. The mismatches coming from the body-effect are here neglected, so that the standard deviation

for Vth is the same as the standard deviation of Vth0. The formula in Pelgrom’s model is actually
σVth0

=
AVth0√

W L
+ SVth0

D2 and Vth = Vth0 + K
(√

|Vsb| + 2φF −
√

2φF

)
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turns out that, for sufficiently small devices (L < 500 nm and W < 2µm), the Pelgrom

model seems to be valid with AVth
≈ 1.4 mV · µm.

The typical threshold voltage of a LVT NMOS transistor in 28nm FDSOI is around 360

mV for a minimum length device (L = 30 nm). It means that a minimum length transistor

of 1 µm wide can expect to have RMS threshold variability σVth
= 1.4/

√
0.03 × 1 = 8 mV.

This represents a mismatch of 8/360 = 2.2%.
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Figure 2.2 – Threshold voltage standard deviation as a function of transistor dimen-
sions. Calculated from 50 Monte-Carlo simulations of a LVT-NMOS tran-
sistor in 28nm FDSOI (Vgs = 1 V)

Of course, this is a simplified analysis that does not pretend to summarize the complex

concept of transistor mismatches in advanced CMOS technology.

Capacitors are another fundamental element in ADC designs. For example, they act

as the storage element during the sampling of an analog signal. Capacitors manufactured

on silicon can be of different types. In the past, parallel plate capacitors made of two

metal plates with oxide in between were commonly used. Nowadays, thanks to the

increasing metal interconnect density and the increasing number of available metal layers,

Metal-Oxide-Metal (MOM) capacitors become the norm. They are comprised of several

interdigitated metal fingers that store electrical charges laterally.

Mismatches in capacitors have to main causes [77]:
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— dielectric thickness variations

— edge effects

However, the capacitor mismatch behavior also obeys Pelgrom’s law, thereby yielding a

standard deviation of the variations inversely proportional to the area (and therefore to

the capacitance) of the device [78, 79]:

σC =
AC1

C
=

AC2√
WL

(2.17)

where AC1 and AC2 are constants that depend on the type of capacitor and the technology.

In the next sections, we will see how these technology variations cause mismatches in

a TIADC.

2.4 Offset mismatches

The model of the TIADC presented in Section 2.2 does no take into account the

mismatches between the converters. The aim of this section is to model the effects of

offset mismatches.

Intuitively, the offset mismatches can be seen as a periodic sequence that is added

to the signal. This sequence has a period M because the same offset is added to the

output signal every M samples. Because of its periodicity, the sequence can be expressed

in the frequency domain by its Fourier series, i.e. a sum of weighted tones at fixed

frequencies. Since the mismatch sequence adds up to the signal, the output spectrum is

therefore degraded by spurious tones. The mathematical framework developed for the

ideal TIADC proves this intuition.

2.4.1 Circuit sources

Depending of the architecture of the sub-ADC, one or several comparators are used

during the quantization phase. For example, a B-bit flash ADC requires 2B comparators

whereas a Successive Approximation Register (SAR) ADC only uses one. The offset

mismatches happen when the comparators inside the sub-ADCs have different offsets.

The offset sources in a comparator can be classified into two categories [30]:

— the static input offset, which is a static offset caused by the mismatches between the

internal devices of the comparator (essentially transistors). Although the static

input offset may slowly vary with temperature, it can be considered as a fixed

offset.

— the input referred supply noise, which is an offset due to the comparator supply

voltage variations. Input referred supply noise is by definition varying.
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Comparators are usually made of several gain stages that amplify a voltage difference.

Each of the stages has its own offset, which yield a global input referred offset. For

instance, in high-speed ADCs, the comparator is usually made of one or two stages of

pre-amplifiers followed by a latch comparator [15].

A simplest example of such an amplifier is a differential pair, which converts a voltage

difference into a current difference. A NMOS differential pair is made of saturated NMOS

transistors with sources connected to a current source I0, as illustrated in Figure 2.3. If

I0

vip vin

ip in

Figure 2.3 – Schematic of a NMOS differential pair

the two transistors of the pair have the same voltage on their gate, the current in each

branch is I0/2. On the other hand, different gate potentials yield different currents in

each branch because changing the gate-source voltage changes the biasing points of the

transistors. The offset of a differential pair is characterized by the fact that a current

difference is observed at the output while no voltage difference is applied at the input.

Or conversely, the offset is the opposite of the voltage difference that has to be applied

at the input such that no current difference appears at the output. The offset can be

caused by

— mismatches between the sizes of the two transistors of the pairs

— mismatches between the loads of each branch

— mismatches of threshold voltage between the two transistors

— mismatches of current factor between the two transistors

In advanced CMOS technology such as 28nm FDSOI, the Vth mismatches dominate. If

there is a threshold voltage difference ∆Vth between the two transistors of the pair, the

input referred offset is:

Vos = ∆Vth (2.18)

For example, a differential pair made of two minimum-length 1µm NMOS transistors

would have an offset standard deviation

σVos
= σVth

≈ 8 mV (2.19)

20



This value corresponds to 4 LSB in a 9-bit ADC with a peak-to-peak input range of 1V.

In a single ADC, the comparator offsets yield different effects depending on the archi-

tecture that is used. In a flash ADC, they create DNL errors since different comparators

with different offsets are used to compare the signal to the different reference voltages.

In a SAR ADC, the same comparator is used to determine all the bits. A comparator

offset therefore only creates a global offset.

When only a single ADC is used, a global offset is not a big issue because telecom-

munication signal do not contain any information at DC 7. The offset mismatch problem

arises when several converters, with different global offsets, are interleaved.

2.4.2 Effects on the output signal

When a TIADC has offset mismatches, a different offset is added to the output of

each sub-converter, as illustrated in Figure 2.4. Assuming no quantization, the sampled

o0

o1

oM−1

x̃0[k]

x̃1[k]

x̃M−1[k]

x(t) x̃[k]
MUX

Figure 2.4 – Model of a TIADC with offset mismatches

signal at the output of each sub-ADC becomes

x̃m[k] = xm[k] + om (2.20)

where om is the offset of the sub-ADC m.

Similar to the ideal TIADC case, the above expression can also be written in a con-

tinuous time form by adding an offset to the continuous-time signal, and by multiplying

7. However, an important offset can reduce the dynamic range of the ADC
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it by the corresponding sub-sampling Dirac comb:

x̃m(t) = (x(t) + om)cm(t) = xm(t) + omcm(t) (2.21)

The continuous TIADC output signal is obtained by adding the output signals of the

sub-converters together:

x̃s(t) = xs(t) +
M−1∑

m=0

omcm(t) (2.22)

The above equation 2.22 shows that the TIADC output signal is a sum of the ideal output

signal and weighted Dirac combs. Translating this expression into the frequency domain,

through the CTFT, yields

X̃s(Ω) = Xs(Ω) +
M−1∑

m=0

omCm(Ω) (2.23)

The CTFT Cm(Ω) of the sub-sampling Dirac combs cm(t) are also Dirac combs:

Cm(Ω) =
2π

MTs

e−jΩmTs

+∞∑

k=−∞

δ

(

Ω − k
Ωs

M

)

(2.24)

Replacing Cm(Ω) by its expression in equation 2.23 leads to

X̃s(Ω) = Xs(Ω) +
2π

MTs

M−1∑

m=0

ome−jΩmTs

+∞∑

k=−∞

δ

(

Ω − k
Ωs

M

)

(2.25)

The above expression can be rearranged by inverting the two sums and by noticing,

because of the Dirac impulses, that the exponential terms ejΩmTs only need to be evaluated

at the frequencies Ω = k Ωs

M
and can be rewritten e−j2π km

M . The spectrum of the sampled

output of the TIADC can thus be expressed

X̃s(Ω) = Xs(Ω) +
2π

MTs

+∞∑

k=−∞

Okδ

(

Ω − k
Ωs

M

)

(2.26)

where Ok are the Fourier coefficients associated to the sequence of offsets {o0, o1, · · · , oM−1}

Ok =
M−1∑

m=0

omej2π km

M (2.27)

The DTFT of the TIADC output signal x̃[n] is therefore

X̃2π(ω) = X2π(ω) +
2π

M

M−1∑

k=0

Okδ2π

(

ω − k
2π

M

)

(2.28)
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Figure 2.5 – Illustration of offset mismatch tones in TIADC output spectrum

where δ2π(ω) is the periodized Dirac comb DTFT, defined as follows:

δ2π(ω) =
1

Ts

+∞∑

k=−∞

δ
(

1

Ts

(ω − 2kπ)
)

(2.29)

As expected, the TIADC output spectrum is comprised of the ideal signal spectrum, and

spurious tones at frequencies multiple of 2π/M (equivalent of Fs/M). This is illustrated

in Figure 2.5.

2.4.3 Consequences on the TIADC performance

The output spectrum in Equation 2.28 can be used to derive important ADC perfor-

mance metrics such as the SNDR and the SFDR. As those metrics are calculated with a

sine input, let the input signal be x(t) = A cos(Ω0t + φ). The DTFT of x[n] = x(nTs)

X2π(ω) = Aπejωφ (δ2π(ω − ω0) + δ2π(ω + ω0)) (2.30)

where ω0 = Ω0Ts.

2.4.3.1 SNDR degradation

Replacing the ideal signal DTFT by the expression given above in Equation 2.28 gives

the TIADC output spectrum with offset mismatches:

X̃2π(ω) = Aπejωφ (δ2π(ω − ω0) + δ2π(ω + ω0))
︸ ︷︷ ︸

Original sine tones

+
2π

M

M−1∑

k=0

Okδ2π

(

ω − k
2π

M

)

︸ ︷︷ ︸

Offset mismatch spurious tones

(2.31)

As illustrated in Figure 2.6, the output spectrum is comprised of the original sine tone,

as well as offset mismatch spurious tones.

The SNDR is usually calculated for a full range sine input. It means that the sine wave
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Figure 2.6 – Output spectrum of a 9-bit TIADC with offset mismatches (M = 12,
ω0 = 0.7π, σo = 2 × LSB, NFFT = 12 × 4096)

takes values between −2B−1 ×LSB and 2B−1 ×LSB, and consequently that A = 2B−1LSB.

The SNDR, in this case, is the ratio (in dB) between the signal power and the offset

mismatch noise power 8:

SNDR = 10 log10

(

2 × 22B−2 × LSB2

4
M2

∑M−1
k=0 O2

k

)

(2.32)

The above expression 2.32 can be simplified using the Plancherel theorem that states that

M−1∑

k=0

O2
k = M

M−1∑

m=0

o2
m = M2σ2

o (2.33)

where σo =
√

1
M

∑M−1
m=0 o2

m is the Root Mean Square (RMS) offset mismatch level. Since

the offsets are usually specified in number of LSBs, it is more convenient to express their

RMS value in LSBs as well. For that, we define σLSB
o = σo/LSB and the final SNDR

expression is:

SNDR = 20 log10

(

2B−1

√
2σLSB

o

)

(2.34)

Figure 2.7 illustrates the above expression for different RMS offset mismatch levels. Ba-

8. The quantization noise is not taken into account in the calculation of the noise because we are
interesting in measuring the effects of the offset mismatches only
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sically, multiplying the amount of offset mismatch by 2 decreases the SNDR by 6 dB,

which is equivalent to loosing 1 bit of effective resolution.
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Figure 2.7 – SNDR as a function of RMS offset mismatch level

2.4.3.2 SFDR degradation

While the SNDR is an important metric to characterize an ADC performance, the

SFDR is also often used to characterize offset mismatch noise. Indeed, since the offset

mismatch noise takes the form of spurious tones, it is interesting to know the power of

the highest tone relative to the power of the signal.

The worst case SFDR is obtained when the offset mismatch noise is concentrated in

one spurious tone of index k0. For a fixed σo, this translates into:

Ok = Mσoδ[k − k0] (2.35)

where δ[·] is the Kronecker delta function. The values of the offsets {om, m ∈ M} are

given by the inverse DFT of the {Ok, k ∈ M}

om =
1

M

M−1∑

k=0

Okej2π km

M (2.36)
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When only Ok0 is non-zero, as expressed in equation 2.35, the above expression becomes:

om = σoe
j2π

k0m

M (2.37)

Since the offsets are real valued, k0 can either be equal to 0 or to M
2

. The case k0 = 0

can be discarded because it corresponds to the spurious tone that falls at DC. The case

k0 = M
2

, corresponding to a tone at the Nyquist frequency, is only possible if M is even,

which yields the following offset values:

om = σoe
jπm = σo(−1)m (2.38)

In this case, the expression of the worst case SFDR is the ratio between the power of the

positive side (or the negative side) of the fundamental, and the power of the unique offset

mismatch tone

SFDRworst = 20 log10

(

2B−1LSB

2 |Ok0| /M

)

= 20 log10

(

2B−1

2σLSB
o

)

= SNDR − 3 dB (2.39)

When M is even, the expression of the worst case SFDR is 3 dB lower than the SNDR

(Equation 2.32) because even if all the offset mismatch noise is concentrated in one

spurious tone, the calculation of the SFDR takes into account either the positive side, or

the negative side of the spectrum.

When M is odd, it is not possible for the offset mismatch noise to be concentrated

in only one spurious tone. In general, the spurious tones go in pairs, and the case where

M is even is a particular case, where the two tones of the pairs are at half the Nyquist

frequency. The fact that the offsets are real-valued implies that Ok = O∗
M−k ∀k ∈ M.

Consequently, the tone with index k and the tone with index M −k have the same power.

When M is odd, the worst case SFDR is obtained when the offset mismatch noise is only

concentrated in one pair of tones, respectively indexed by k0 and M − k0
9. The two

tones of the pair both have the same power since |Ok0 | =
∣
∣
∣O∗

M−k0

∣
∣
∣, and according to the

Plancherel theorem

|Ok0 |2 =
∣
∣
∣O∗

M−k0

∣
∣
∣

2
=

M2σ2
o

2
(2.40)

The worst case SFDR is therefore expressed as

SFDRworst = 20 log10

(

2B−1LSB

2 |Ok0| /M

)

= 20 log10

(

2B−1

√
2σLSB

o

)

= SNDR (2.41)

When the number of sub-ADCs is odd, the mismatch power, can at worse, be distributed

9. When M is even, the two tones can be mixed into one tone if M −k0 = k0, or alternatively k0 = M
2
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between two tones, which makes the worst case SFDR 3 dB better than when there is an

even number of sub-ADCs. The offset sequences {om, m ∈ M} that lead to this worst

SFDR are of the form

om =
1

M

(

Ok0ej2π
mk0

M + OM−k0ej2π
m(M−k0)

M

)

= σo

√
2 cos

(

2π
mk0

M
+ ϕ

)

(2.42)

where ϕ = ∠Ok0 .

This worst case SFDR expression is used later in Chapter 3 to analyze the performance

of the offset mismatch calibration algorithm.

2.5 Transfer function mismatches

The previous section explained how offset mismatches degrade the TIADC output

spectrum. Because the offset mismatches have an additive effect in the time domain, they

also have an additive effect in the frequency domain. Consequently, the offset mismatch

noise is signal independent.

This is no longer the case for multiplicative mismatches, such as gain mismatches,

skew mismatches or bandwidth mismatches. In this section, the same framework is used

as before to model general transfer function mismatches, for which the gain, skew and

bandwidth mismatches are particular cases. The choice of dealing with the general case

before applying the results to the particular cases is made to avoid redundant calculations.

Let hm(t) be the impulse responses associated to each channel and Hm(Ω) the cor-

responding CTFT, as illustrated in Figure 2.8. The ideal case is when hm(t) = δ(t),

or equivalently Hm(Ω) = 1 for all m ∈ M, but in practice the transfer functions dif-

fer from one sub-ADC to an other. When there are transfer function mismatches, the

continuous-time sampled sub-ADC output signals are 10

x̃m(t) = [x ∗ hm(t)] cm(t) (2.43)

and the continuous-time sampled output of the TIADC, obtained by adding the sub-ADC

output signals together, is

x̃s(t) =
M−1∑

m=0

[x(t) ∗ hm(t)] cm(t) (2.44)

10. The quantization noise is still neglected because we are interested in measuring the effects of the
mismatches.
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Figure 2.8 – Model of a TIADC with transfer function mismatches

In the frequency domain, the above expression translates into

X̃s(Ω) =
1

2π

M−1∑

m=0

[X(Ω)Hm(Ω)] ∗ Cm(Ω) (2.45)

The convolution product inside the sum can be simplified by inverting the sum and the

integral, which leads to a sum of aliased delayed and filtered versions of the input signal:

[X(Ω)Hm(Ω)] ∗ Cm(Ω) =
2π

MTs

+∞∑

k=−∞

∫ +∞

−∞
X(Ω − u)Hm(Ω − u)δ

(

u − k
Ωs

M

)

e−jumTsdu

=
2π

MTs

+∞∑

k=−∞

X

(

Ω − k
Ωs

MTs

)

Hm

(

Ω − k
Ωs

M

)

e−j2π km

M (2.46)

Inserting the previous result back into 2.45 gives the TIADC output spectrum:

X̃s(Ω) =
1

Ts

+∞∑

k=−∞

[

1

M

M−1∑

m=0

Hm

(

Ω − k
Ωs

M

)

e−j2π km

M

]

X

(

Ω − k
Ωs

M

)

(2.47)

which is equivalently expressed through its DTFT:

X̃2π(ω) =
M−1∑

k=0

[

1

M

M−1∑

m=0

Hm

(
1

Ts

(

ω − k
2π

M

))

e−j2π km

M

]

X2π

(

ω − k
2π

M

)

(2.48)

In presence of transfer function mismatches, the TIADC output spectrum contains M

aliases of the input signal spectrum around the frequencies 2π/M . These aliases are
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attenuated filtered versions of the input spectrum.

In the next sections, the above expression is used to derive the TIADC output spec-

trum when gain, skew or bandwidth mismatches are present.

2.6 Gain mismatches

This section analyzes the sources and effects of gain mismatches in TIADCs. Gain

mismatches happen when the sub-ADCs have different gains. When there are gain mis-

matches, the sub-ADCs output samples {x̃m[k], m ∈ M} are multiplied by the respective

gain {gm, m ∈ M} of each sub-ADC (see diagram in Figure 2.9):

x̃m[k] = gmx ((kM + m)Ts) (2.49)

Ideally, all the gains are all equal to unity.

g0

g1

gM−1

x̃0[k]

x̃1[k]

x̃M−1[k]

x(t) x̃[k]
MUX

Figure 2.9 – Model of a TIADC with gain mismatches

Adding gain mismatches to the signal can be seen as multiplying the signal by a

“rectangular” waveform, where each of the steps corresponds to a sub-ADC gain. This

waveform has a period MTs, and therefore its spectrum contains a fundamental at the

frequency Fs/M and harmonics at frequencies integer multiples of Fs/M . It is therefore

logical to expect that multiplying the input signal by this waveform will yield, in the

frequency domain, replica of the input signal spectrum around frequencies multiple of

Fs/M .
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This intuition is formally proved in Section 2.6.2 by using the expression of the spec-

trum obtained in the general case of transfer function mismatches (see Section 2.5).

2.6.1 Circuit sources

The source of gain mismatches between the sub-ADCs highly depends on the sub-ADC

architecture that is used. As for the case of offset mismatch, the list of gain mismatches

sources presented here is not exhaustive. In this section, we take the example of a SAR

ADC because it is the architecture that is used in the circuit presented in (Chapter 4) of

this document.

In a SAR ADC, the input signal is sampled and held on a sampling capacitor Cs before

being quantized. In this type of ADC architecture, gain mismatches can originate from

the quantization process itself. As detailed later in 4, the sampling capacitor is usually

comprised of binary weighted capacitors. During the quantization process the (bottom or

top) plate of each of the capacitors can be connected to different reference voltages. Gain

mismatches can appear if the reference voltages are different from sub-ADC to sub-ADC.

In practice however, those reference voltages are usually derived from resistively loaded

current sources that are common to all the sub-ADCs, which makes the variations rather

small.

Another (potentially more important) source of gain mismatches is the parasitic ca-

pacitance seen by the input signal in parallel to the sampling capacitor. Due to charge

sharing, the effective signal stored on the sampling capacitor is attenuated by the para-

sitic capacitance. If bottom place sampling (see 4) is used, the signal and the reference

voltages see the same parasitic capacitance and are therefore attenuated similarly. This

does not create an apparent gain during the quantization. If top plate sampling is used,

the signal is connected to the top plate of the sampling capacitor whereas the reference

voltages are connected to the bottom plates. It means that the reference voltages and

the input signal see different parasitic capacitances, which can lead to an apparent gain

during the quantization process. Consequently, gain mismatches can happen when the

parasitic capacitances vary from one sub-ADC to an other.

2.6.2 Effects on the output signal

When a TIADC has gain mismatches, the gain of the sub-ADCs are different. The

transfer function of each sub-ADC is:

hm(t) = gmδ(t) (2.50)
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for which the CTFTs are expressed as

Hm(Ω) = gm (2.51)

The TIADC output spectrum in presence of gain mismatches can be derived from the

TIADC output spectrum in presence of arbitrary transfer function mismatches. This is

done by replacing Hm(Ω) in Equation 2.48 by its expression given in Equation 2.51

X̃2π(ω) =
M−1∑

k=0

[

1

M

M−1∑

m=0

gme−j2π km

M

]

X2π

(

ω − k
2π

M

)

(2.52)

The obtained output spectrum is, not surprisingly, comprised of aliased versions of the

input spectrum (see Figure 2.10. This is even better highlighted if we denote

Gk =
M−1∑

m=0

gme−2jπ km

M (2.53)

and rewrite the output spectrum

X̃2π(ω) =
M−1∑

k=1

Gk

M
X2π

(

ω − k
2π

M

)

(2.54)

It is interesting to notice that the aliasing terms are weighted by the DFT coefficients
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Figure 2.10 – Illustration of TIADC output spectrum with gain mismatch aliases

{Gk, k ∈ M} associated to the gain sequence {gm, m ∈ M}. In other words, the atten-

uation of each of the aliases depends on the frequency signature of the gain mismatch

sequence. For example, if the sub-ADCs all have the same gain g (meaning that there

are no gain mismatches), only the DC frequency component of the gain sequence has a

non-zero value Gk = Mgδ[k]. In this case, the output spectrum is just an attenuated

version of the input spectrum and there are no aliases:

X̃2π(ω) = gX2π (ω) (2.55)
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This is expected, as a global gain just attenuates the signal without creating any other

perturbation.

2.6.3 Consequences on the TIADC performance

Contrary to the offset mismatch case, the noise due to the gain mismatches depends on

the frequency characteristics of the input signal. With a sine input, the output spectrum

takes the following form

X̃2π(ω) ≈ Aπejωφ




G0

M
(δ2π(ω − ω0) + δ2π(ω + ω0)))

+
M−1∑

k=1

Gk

M

(

δ2π

(

ω − k
2π

M
+ ω0

)

− δ2π

(

ω − k
2π

M
− ω0

))]

(2.56)

It is comprised of the original sine spectrum and of attenuated aliased versions of it, as

illustrated in Figure 2.11. The ratio between the signal power (first term in Equation 2.56)
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Figure 2.11 – Output spectrum of a 9-bit TIADC with of gain mismatches (M = 12,
ω0 = 0.7π, σg = 0.01, NFFT = 12 × 4096)

and the noise power (sum term in Equation 2.56) is

Power of the signal

Power of the noise
=

|G0|2

M2

1
M2

∑M−1
k=1 |Gk|2

(2.57)
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In Equation 2.57, the numerator and the denominator are function of the gains of the sub-

ADCs. The numerator corresponds to the squared average of the gains of the sub-ADCs

because
G0

M
= ḡ =

1

M

M−1∑

m=0

gm (2.58)

whereas the denominator can be rewritten using the Plancherel theorem. It states that

M−1∑

k=0

|Gk|2 = M
M−1∑

m=0

g2
m = (2.59)

It follows that
M−1∑

k=1

|Gk|2 = M
M−1∑

m=0

g2
m − Mḡ2 = Mσ2

g (2.60)

where σg =
√

1
M

∑M−1
m=0 (gm − ḡ)2 is the RMS gain mismatch level. Putting back the

results of equation 2.58 and equation 2.60 into the SNDR expression in equation 2.57

yields:

SNDR = 10 log10

(

ḡ2

σ2
g

)

= −20 log10 (σ̄g) (2.61)

where σ̄g = σg/ḡ is the normalized RMS gain mismatch level. The SNDR as a function

of the RMS gain mismatch level is plotted in Figure 2.12
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Figure 2.12 – SNDR as a function of RMS gain mismatch level

Although theoretically possible, analyzing the SFDR degradation caused by the gain
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mismatches is not as useful as in the offset mismatch case. Indeed, telecommunication

signals often have a wide frequency band, which has for consequence to spread the mis-

match noise across the entire Nyquist band. It does not mean that the level of the most

powerful gain mismatch tone is irrelevant. We will see in Chapter 4 that the SFDR is

an important indicator when evaluating the mismatch reduction achieved by each of the

calibration technique.

2.7 Skew mismatches

In a TIADC, skew mismatches appear when the sampling instants of the sub-ADCs

are not perfectly adjusted. In theory, each sub-ADC samples exactly Ts seconds after

the previous sub-ADC, which makes the overall sampling scheme uniform in time. In

practice, technology variations or layout imperfections can reduce or increase the sampling

interval between consecutive sub-ADCs. Normally, sub-ADC m samples the signal at

δt0

δt1

δtM−1

x̃0[k]

x̃1[k]

x̃M−1[k]

x(t) x̃[k]
MUX

Figure 2.13 – Model of a TIADC with skew mismatches

times (kM + m)Ts but because of the mismatches, a positive or negative delay δtm,

different for each sub-ADC, changes the sub-ADC sampling time to (kM + m)Ts + δtm.

This is illustrated by the block diagram in Figure 2.13.

Similar to gain mismatches, skew mismatches yield aliases of the input signal spectrum

around frequencies multiple of Fs/M . This is demonstrated later in this section by using

the general transfer function output spectrum derived in Section 2.5.
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2.7.1 Circuit sources

In a TIADC, each of the sub-ADC receives its own sampling clock, generated by a

phase generator. The sampling clock is used to close a switch (MOS transistor) and the

closing instant determines the sampling time. The skew mismatches can either come from

the clock signal path or from the switch itself.

Each clock signal is transmitted to each sub-ADC on metal wires and is usually passed

through several inverters. The timing mismatches can originate from load differences

between inverters from different clock paths. If two inverters are chained, the load of the

second inverter affects the speed of the first inverter, thereby delaying the clock signal

more or less. Mismatches can also come from metal trace thickness variations that change

the capacitance and the resistance of the wire driving the clock signal.

The threshold voltage variations is however the most detrimental effect because it

affects the inverters in the clock path and the sampling switch itself. Threshold voltage

variations move the trimming point of an inverter, thereby increasing or reducing its

propagation delay. If the sampling switch is a NMOS transistor, a reduced threshold

voltage, delays the sampling instant, whereas an increased threshold voltage advances

the sampling instant. For example, if the sampling clock slew rate is assumed to be 0.02

V/ps 11, a RMS threshold voltage variation σVth
= 8 mV (see example in Section 2.3)

yields a RMS timing skew mismatch level of 0.4 ps.

2.7.2 Effects on the output signal

The frequency domain effects of the skew mismatches can be derived in a way similar

to those of the gain mismatches (section 2.6). The skew mismatches occur when each sub-

converter samples the input signal with a different delay {∆tm, m ∈ M}. The transfer

function of each channel can be written

hm(t) = δ(t − ∆tm) (2.62)

In the frequency domain, the transfer function becomes

Hm(Ω) = e−jΩ∆tm (2.63)

11. it means that it takes 50 ps for the clock to go from 1 V down to 0 V.
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The output spectrum with the skew mismatch effects is obtained by inserting the above

expression in the general case expression of Equation 2.48:

X̃2π(ω) =
M−1∑

k=0

[

1

M

M−1∑

m=0

e−j(ω−k 2π

M
)rme−j2π km

M

]

X2π

(

ω − k
2π

M

)

(2.64)

where
{

rm = ∆tm

Ts
, m ∈ M

}

are the timing delays relative to the sampling period. In

practice, the timing mismatches are small as compared to the sampling period and we

can assume that rm ≪ 1. The small timing skew assumption enables to further simplify

expression 2.64 by noticing that

e−j(ω−k 2π

M
)rm ≈ 1 − jrm

(

ω − k
2π

M

)

(2.65)

Inserting the above first order approximation into expression 2.64 leads to the TIADC

output spectrum expression:

X̃2π(ω) ≈ (1 − jωr̄)X
(

ejω
)

−
M−1∑

k=1

[

1

M

M−1∑

m=0

rme−j2π km

M

]

j
(

ω − k
2π

M

)

X2π

(

ω − k
2π

M

)

(2.66)

where r̄ = 1
M

∑M−1
m=0 rm is the average of the relative timing delays. An analysis of the
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Figure 2.14 – Illustration of TIADC output spectrum with skew mismatch aliases

above expression show that, in presence of the timing skew mismatches, the TIADC

output spectrum is comprised of

— the ideal signal term with a global delay r̄, expressing the fact that the signal

is globally delayed by the average of the sub-ADC timing delays. Since a global

delay on the signal does not affect performance, r̄ is assumed to be zero without

loss of generality.

— aliasing terms of the derivative of the signal that are shifted in frequency (around

frequency multiple of Fs/M) and weighted by the DFT of the timing delays, de-
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noted Rk =
∑M−1

m=0 rme−j2π km

M with k ∈ {1, · · · , M − 1} 12.

2.7.3 Consequences on the TIADC performance

For a sine input, the output spectrum (illustrated in Figure 2.15) can be written

X̃2π(ω) ≈ Aπejωφ



δ2π(ω − ω0) + δ2π(ω + ω0)

+
M−1∑

k=1

Rk

M
jω0

(

δ2π

(

ω − k
2π

M
+ ω0

)

− δ2π

(

ω − k
2π

M
− ω0

))]

(2.67)

The SNDR is the ratio (in dB) between the power of the signal and the power of the
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Figure 2.15 – Output spectrum of a 9-bits TIADC with skew mismatches (M = 12,
ω0 = 0.7π, σr = 0.01, NFFT = 12 × 4096)

M − 1 aliases. Its expression is

SNDR = 10 log10




1

w2
0

M2

∑M−1
k=0 R2

k



 (2.68)

The Plancherel theorem, which states that 1
M

∑M−1
k=0 R2

k =
∑M−1

m=0 r2
m, can be applied to

Equation 2.68 to obtain the value of the SNDR as a function of the sub-ADC timing

12. R0 = Mr̄ = 0
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offsets and the input frequency

SNDR = 20 log10

(
1

ω0σr

)

(2.69)

In the above equation, σr =
√

1
M

∑M−1
m=0 r2

m is the RMS value of the timing delays. The

SNDR is plotted in Figure 2.16 for different mismatch levels. The SNDR naturally
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Figure 2.16 – SNDR as a function of input frequency for different RMS skew mismatch
levels (M = 12)

decreases when the mismatch level increases. The SNDR also decreases when the input

frequency increases. This is expected because a small delay affects more the value of the

sample when the signal varies quickly than when it varies slowly.

Interestingly the skew mismatch SNDR expression is similar to the jitter SNDR. One

way to look at it is to consider the skew mismatches as a periodic jitter. The difference

between these two types of timing imperfections is in the shape that the noise takes.

The periodicity of the timing skew mismatches yields aliased versions of the input signal,

whereas random clock jitter yields a frequency white noise.

2.8 Bandwidth mismatches

The last mismatch type that is considered in this thesis is bandwidth mismatch.

Actually, the case of transfer function mismatches mentioned in section 2.5 is relatively
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close to the topic of bandwidth mismatches.

Bandwidth mismatches happen when each sub-ADC has a (first order) low-pass trans-

fer function with a different cut-off frequency, as shown in Figure 2.17. Bandwidth

mismatches create both frequency-dependent gain mismatches and frequency-dependent

phase mismatches, thereby yielding aliases of the input signal spectrum around frequen-

cies multiple of Fs/M . This will be analyzed more deeply later in this section.

H0(Ω)

H1(Ω)

HM−1(Ω)

x̃0[k]

x̃1[k]

x̃M−1[k]

x(t) x̃[k]
MUX

Figure 2.17 – Model of a TIADC with bandwidth mismatches

2.8.1 Circuit sources

In the previous sections, it was assumed that the input signal was not filtered before

being sampled. In reality, the continuous signal is sampled by each sub-ADC using a

Track & Hold circuit (T&H) that acts approximatively as a low-pass RC filter. Bandwidth

mismatches can occur when the frequency characteristics differ of the T&H differ from

sub-ADC to sub-ADC. Different architectures of T&H circuits exist but they can generally

be conceptually modeled as a switch connected to a capacitor as illustrated in Figure 2.18.

The operation of the T&H can be divided into two phases:

— The tracking phase during which the switch is closed and the input signal Vi(t) is

tracked on the top plate of the capacitor Cs. If Rs is the resistance of the closed

switch, then the capacitor top plate voltage Vo(t) verifies the differential equation
dVo(t)

dt
+ 1

τ
Vo(t) = Vi(t), where τ = 1

RsCs
. The translation of this differential equation
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into the frequency domain gives the transfer function of the T&H:

F (Ω) =
1

1 + jΩτ
(2.70)

It corresponds to a first-order low-pass filter with a 3dB angular cut-off frequency

ωc = 1/τ .

— The holding phase during witch the switch is opened and the output voltage held

on the top plate of the capacitor in order to be quantized.

CsCsCs

Rs

Vi(t)Vi(t)Vi(t)

Vo(t)
dVo(t)

dt
+ 1

τ
Vo(t) = Vi(t) Vo(nTs)

Model Tracking phase Holding phase

Figure 2.18 – Operation principle of a T&H circuit

Bandwidth mismatches happen when each sub-ADC T&H has different time-constant

τm (or equivalently a different cut-off frequency). This can be caused either by variations

of the switch resistance or by variations of the sampling capacitance from T&H to T&H.

It means that the frequency response {Hm(Ω), m ∈ M} of each channel is different

Hm (Ω) =
1

1 + jΩτm

(2.71)

Different architectures using MOS transistors can be used to realize the switch in

the T&H. One of the simplest architecture uses a single NMOS transistor to perform

the switching operation, as shown in Figure 2.19. In advanced CMOS technologies, the

capacitor is comprised of a bank of Metal-Oxide-Metal (MOM) capacitors or can also be

specifically designed (see Chapter 4). The variations of time-constant from channel to

channel can be due to both local variations of the on-resistance of the transistors and

local variations of the capacitor values.

As seen in section 2.3, capacitor local variations follow Pelgrom’s law, which makes

them inversely proportional to the area of the capacitor. That is the reason why mis-

matches are more detrimental on fast designs, where the capacitors sizes are minimized.

The on-resistance of a NMOS transistor Ron is defined as the slope of the Vgs(Ids) curve
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Figure 2.19 – Realization of a basic T&H circuit with a NMOS transistor

in the linear region (Vds = 0):

Ron =
∂Vgs

∂Ids

∣
∣
∣
∣
∣
Vds=0

(2.72)

For square-law devices, the on-resistance is inversely proportional to the width of the

transistor and proportional to its length

Ron =
1

µnCox
W
L

(Vgs − Vth)
(2.73)

where µn is the mobility of the electrons, Cox the gate oxide capacitance density, W

the gate width, L the gate length, Vgs the grid source voltage and Vth the threshold

voltage. Even though, short-channel devices in deep sub-micron technologies do not

necessarily follow the square law any more, their on-resistance still increases when the

length increases and when the width decreases. The on-resistance is also dependent

on the overdrive voltage Vgs − Vth, and since the overdrive voltage depends on Vth, the

on-resistance is affected by threshold voltage variations.

The plot in Figure 2.20 shows the RMS value of Ron as a function of the transistor

width. For example, a 1 µm minimum length transistor has a on-resistance RMS value

σRon
= 5 Ω, for a nominal resistance of 500 Ω. This represents a RMS mismatch of 1%

on the time-constant τ = RsCs of the T&H circuit.

2.8.2 Effects on the output signal

The effects of the bandwidth mismatches on the output signal spectrum can be calcu-

lated by applying the same methodology as in Sections 2.6.2 and 2.7.2. Since, we know

Hm(Ω), the output spectrum is gain found by using the general mismatch spectrum

expression in Equation 2.48

X̃2π(ω) =
M−1∑

k=0




1

M

M−1∑

m=0

1

1 + j
(

ω − k 2π
M

)

bm

e−j2π km

M



X2π

(

ω − k
2π

M

)

(2.74)
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Figure 2.20 – Standard deviation of the on-resistance as a function of transistor dimen-
sions. Calculated from 50 Monte-Carlo runs of a LVT-NMOS transistor
in 28 nm FDSOI CMOS technology (Vgs = 1 V, L = 30 nm)

where bm = τm

Ts
represents the time constant of each channel low-pass filter relative to the

sampling period.

Each time constant {bm, m ∈ M} can be expressed as a sum between a nominal time

constant b̄ = 1
M

∑M−1
m=0 bm and a time-constant offset {∆bm, m ∈ M}:

bm = b̄ + ∆bm (2.75)

It is reasonable to suppose that the time-constant offsets are small as compared to the

nominal time-constant (∆bm ≪ b̄), such that the expression 2.74 can be approximated

using a first order Taylor expansion:

X̃2π(ω) ≈ X2π(ω)

1 + jωb̄
−

M−1∑

k=1

[

1

M

M−1∑

m=0

∆bm

b̄
e−j2π km

M

]
j
(

ω − k 2π
M

)

b̄

1 + j
(

ω − k 2π
M

)

b̄

X2π

(

ω − k 2π
M

)

1 + j
(

ω − k 2π
M

)

b̄

(2.76)

The previous expression can be made clearer by denoting Y2π(ω) the spectrum of the

signal that is filtered by the reference low-pass filter

Y2π(ω) =
X2π(ω)

1 + jωb̄
(2.77)
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and Bk the DFT of the normalized time-constant offsets βm = ∆bm

b̄

Bk =
M−1∑

m=0

βme−j2π km

M (2.78)

The output signal spectrum of the TIADC defined in equation 2.76 can therefore be

rewritten in a simplified way

X̃2π(ω) ≈ Y2π(ω) −
M−1∑

k=1

Bk

M

j
(

ω − k 2π
M

)

b̄

1 + j
(

ω − k 2π
M

)

b̄
Y2π

(

ω − k
2π

M

)

(2.79)

The spectrum expression in Equation 2.79 has a lot of similarities with the expression

of the output spectrum with skew mismatches in Equation 2.66. It contains two main
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Figure 2.21 – Illustration of TIADC output spectrum with bandwidth mismatch aliases

terms:

— the spectrum of the ideal signal Y2π(ω), which is a low-pass filtered version of the

input signal (quite similar the globally delayed signal term in Equation 2.66).

— aliased versions of the ideal signal attenuated by the derivative of the reference

low-pass filter, and weighted by the DFT coefficients Bk of the time-constants of

the sub-ADCs (quite similar to the weighted and frequency-shifted versions of the

derivative in Equation 2.66).

2.8.3 Consequences on the TIADC performance

The output spectrum defined in 2.79 can be used to derive the SNDR of the TIADC

in presence of bandwidth mismatches. If the input signal is a sine input, the obtained
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output spectrum is almost similar to the one found in the skew mismatch case

X̃2π(ω) ≈ Aπ
ejωφ

1 + jω0b̄



δ2π(ω − ω0) + δ2π(ω + ω0)

+
M−1∑

k=1

Bk

M

jω0b̄

1 + jω0b̄

(

δ2π

(

ω − k
2π

M
+ ω0

)

− δ2π

(

ω − k
2π

M
− ω0

))]

(2.80)

If we compare the bandwidth mismatch spectrum expression to its counter part for skew

mismatches, we notice that

— the spurious tones are now weighted by the coefficients Bk as opposed to Rk

— the spurious tones are multiplied by jωob̄
1+jω0b̄

as opposed to jω0

Using this similarity between the two expressions makes the calculation of the band-

width mismatch SNDR straightforward. The calculation is done by using the SNDR

expression in Equation 2.69 and by replacing the RMS skew mismatch level σr by the

RMS bandwidth mismatch level σβ =
√

1
M

∑M−1
m=0 β2

m and by replacing ω0 = |jω0| by
ω0b̄√

1+(ω0b̄)2
=
∣
∣
∣

jω0b̄
1+jω0b̄

∣
∣
∣ It yields the following SNDR expression for bandwidth mismatches:

SNDR = 20 log10





√

1 + (ω0b̄)2

ω0b̄σβ



 (2.81)

The above SNDR expression can equivalently be represented as a function of the nominal

angular cut-off frequency ω̄c = 1/b̄ of the low-pass filter:

SNDR = 20 log10





√

1 + (ω0

ω̄c
)2

ω0

ω̄c
σβ



 (2.82)

It is interesting to notice that when the input frequency is small as compared to the

cut-off frequency (ω0 ≪ ω̄c), the SNDR looks similar to the SNDR in presence of skew

mismatches:

SNDR ≈ −20 log10

(

ω0
σβ

ω̄c

)

(2.83)

The reason is that, at a low input frequency, the bandwidth mismatch noise is dominated

by phase mismatches. Conversely, if the input signal frequency is above the nominal cut-

off frequency (ω0 ≫ ω̄c)
13, the SNDR becomes independent of the input signal frequency,

and looks like the SNDR expression found for gain mismatches:

SNDR = −20 log10 (σβ) (2.84)

13. This is never the case in practice because this results in the input signal being very attenuated.
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These observations tell us that when the input frequency increases the bandwidth mis-

match noise becomes increasingly dominated by frequency-dependent gain mismatches.

The SNDR as function of the input signal frequency is plotted in Figure 2.22, for a

nominal cut-off frequency equal to the Nyquist frequency.
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Figure 2.22 – SNDR vs. input frequency for different RMS bandwidth mismatch levels
(M = 12, cut-off frequency b̄ = 1/2π)

2.9 Conclusion

This chapter presents the sources of the mismatches and analyzes their effects on the

output signal. It was shown that the mismatches mostly come from random variations in

the devices constituting the circuit, principally MOS transistors. The mismatches were

separated in different categories: offset mismatches, gain mismatches, timing skew mis-

matches and bandwidth mismatches. For each of those categories, a close form expression

of the SNDR as a function of the RMS mismatch level was derived in order to give insight

on how the mismatches contribute to increase the noise in the TIADC output signal. For

offset mismatches we also derived a close form expression of the SFDR in order to better

analyze the spurious nature of offset mismatch noise. The expressions that were derived

in this chapter will prove useful in the two following chapters to analyze the performance

of the different mismatch calibration techniques.
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Chapter 3

Background digital mismatch

calibration

3.1 Introduction

This chapter constitutes the heart of this dissertation. It presents fully digital mis-

match calibration techniques for TIADCs and perhaps, as importantly, deeply analyzes

the input signal requirements that make those calibration techniques work. The introduc-

tion of each of the calibration techniques aims at giving the reader an intuition about their

principle. However, intuitions are not proofs, which is why each technique is carefully

analyzed with simulations or statistical tools when possible. The performance of each

technique is voluntary analyzed under ideal conditions (i.e. no noise, only one mismatch

at a time) in order to focus on the intrinsic limitations of each of the solutions. A more

practical case is treated in Chapter 4 with a circuit implementation of the calibration

techniques.

Offset and gain mismatch calibrations are presented first in Sections 3.4 and 3.5. Their

concepts are rather simple and inspired from prior art. The offset mismatch calibration

equalizes the sub-ADC output signal averages whereas the gain mismatch calibration

equalizes the sub-ADC output signal variances. Both techniques require the signal to

be non-stationary and to verify certain specific properties. Analyzing those requirements

goes beyond existing research on the subject, which usually assumes that the input signal

is a realization of a Wide-Sense Stationary (WSS) random process. We extend the –

widely admitted – statement that says that blind digital mismatch calibration techniques

do not work with a sine input signal with an input frequency multiple of Fs/M .

Skew mismatch calibration is presented in Section 3.6. The calibration is based on the

equalization, among the sub-ADCs, of the covariances between each sub-ADC’s output

signal and its respective derivative. As opposed to previous work, the calibration is non
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adaptive, which means that estimates of the timing offsets are available after a single

iteration and no feedback loop is required. This greatly reduces the calibration time and

eliminates the risk of instability that potentially occurs with adaptive techniques. The

timing offsets of the sub-ADCs are adjusted digitally by doing a first-order interpolation

of the signal. The interpolation only requires a derivative FIR filter with fixed coefficients.

Finally, a new bandwidth mismatch calibration technique is presented in Section 3.7.

The technique is based on measuring the powers of two differently filtered versions of

each of sub-ADC’s output signal. It is possible to show that equalizing the ratios between

those two powers among all the sub-ADCs enables to detect the bandwidth mismatches

independently of the gain mismatches. The bandwidth mismatch calibration is also done

in a single iteration and uses a fixed-coefficient FIR filter to adjust each sub-ADC’s

bandwidth.

3.2 Requirements on the input signal

3.2.1 Foreword

The calibration techniques presented in this chapter require the input signal x(t) of

the TIADC to be the realization of non stationary process {Xt, t ∈ R} that has certain

constraints. The aim of this section is to provide a few mathematical tools and notations

to analyze such processes. This study is a necessary preliminary step to understand the

foundations of the calibration techniques presented thereafter. The published papers on

blind background calibration techniques often omit to carefully analyze the assumptions

that they make about the input signal. In my opinion, this analysis is essential because

it highlights the limitations of fully digital mismatch calibration techniques and it helps

analyze and solve the problems that arise when testing the algorithms with real circuits.

3.2.2 Wide Sense Stationary processes

Wide Sense Stationary (WSS) processes are a special case of random processes often

used in signal processing because they are appropriate for calculations. A continuous

time random process {Xt, t ∈ R} is said to be wide-sense stationary (WSS) if it verifies

the two following conditions:

— Its expected value mX is independent of time

E(Xt) = mX ∀t ∈ R (3.1)

— Its autocovariance rXX(t, τ) is a function that only depends on the time lag τ
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between Xt and Xt+τ :

E((Xt − mX)(Xt+τ − mX)) = rXX(t, τ) = rXX(τ) ∀t ∈ R (3.2)

If the two conditions above are met, it is possible to define the power spectral density

(PSD) RXX(Ω) of the random process {Xt, t ∈ R}. The PSD is the Fourier transform of

the above expression with respect to the variable τ :

RXX(Ω) =
∫ +∞

−∞
rXX(τ)e−jΩτ dτ (3.3)

If a continuous-time process is WSS then any discrete process {Xn, n ∈ N} = {Xt, t =

nTs}, obtained by sampling the process {Xt}, is also WSS and

— Its expected value is time invariant and is equal to the expected value of the

continuous time process:

E(Xn) = mX ∀n ∈ N (3.4)

— Its autocovariance function only depends on the shift l between Xn and Xn+l

E((Xn − mX)(Xn+l − mX)) = rXX(nTs, lTs) = rXX [l] ∀n ∈ N (3.5)

The discrete time PSD (DT-PSD) R̆XX(ω) of the process is the DTFT of the discrete

autocovariance function rXX [l]:

R̆XX(ω) =
1

Ts

+∞∑

k=−∞

RXX

(
1

Ts

(ω − k2π)
)

(3.6)

where ω = ΩTs.

3.2.3 Non-stationary processes

Although convenient for calculations, WSS random processes do not necessarily de-

scribe communication signals very well. Indeed, communication signals are often linear

combinations of random processes and periodic functions, which destroys the stationar-

ity property. In the next sections, we show that the proposed calibration algorithms are

valid even if the signal is a realization of a non-stationary process provided that the signal

verifies some properties.

As opposed to WSS random processes, of which they are a generalization, non-

stationary processes have an expectation and an autocovariance that vary in time. If

{Xt, t ∈ R} is a non-stationary process then

— E (Xt) = mX(t), where mX(t) is assumed to be a continuous function of time that
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is square summable

— E (XtXt+τ ) = rXX(t, τ), where rXX(t, τ) is assumed to be a continuous function

of t and τ and square summable with respect to both variables

The expected value can be expressed in the frequency domain by taking the CTFT

of mX(t):

MX(Ω) =
∫ +∞

−∞
mX(t)e−jΩtdt (3.7)

The autocovariance function also has its counterpart in the frequency domain. However,

since the autocovariance is a function of two time variables, two frequency domains can

be defined: one associated to the variable t and one associated to the variable τ . The

angular frequency associated with the time variable τ is denoted Ω for consistency with

the PSD of a WSS random process. The angular frequency associated with the time

variable t is denoted Υ. As a consequence, the PSD of the process now depends on the

time t:

Rt
XX(Ω) =

∫ +∞

−∞
rXX(t, τ)e−jΩτ dτ (3.8)

and the CTFT of the autocovariance function rXX(t, τ) with respect to the variable t

depends on the time lag τ :

Rτ
XX(Υ) =

∫ +∞

−∞
rXX(t, τ)e−jΥtdt (3.9)

3.2.4 Application to digital communications signals

In this section we show that how our probabilistic assumptions apply to wideband

communication signals. Wideband digital communications signals generally consist of a

linear combination of several channels modulated at different carrier frequencies [1, 2] .

x(t) =
Nc∑

j=0

cj(t) (3.10)

where Nc is the number of channels and cj(t) corresponds to the signal of a single channel.

The signal of a single channel cj(t) is obtained by modulating an in-phase baseband

waveform ij(t) and a quadrature baseband waveform qj(t) at the carrier frequency Ωi

such that

cj(t) = ij(t) cos (Ωjt) − qj(t) sin (Ωjt) (3.11)

The baseband waveforms correspond respectively to the real and imaginary parts of the

complex baseband waveform sj(t), obtained by using spectral shaping on the stream of
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complex-valued symbols {sj[k]} to be transmitted:

sj(t) =
+∞∑

k=−∞

sj[k]p(t − kT j
symb) (3.12)

where p(t) is the pulse shaping filter and 1/T j
symb is the symbol rate of channel j. Often,

the pulse shaping filter is a Root-Raised Cosine (RRC) filter having an approximate

bandwidth of 1/T j
symb.

The complex baseband waveform sj(t) can be modeled as being the realization of the

random process

Sj
t =

+∞∑

k=−∞

Sj
kp(t − kT j

symb) (3.13)

where the {Sj
k, k ∈ N} are independent random variables with zero-mean 1 modeling the

stream of symbols. Obviously, this process is stationary for the first order with expected

value zero because

E
(

Sj
t

)

=
+∞∑

k=−∞

E
(

Sj
k

)

p(t − kT j
symb) = 0 (3.14)

The autocovariance function rj
SS(t, τ) is however periodic of period T j

symb if the pulse

shaping filter has a bandwidth larger than 1/T j
symb [80]. This is generally the case because

pulse shaping filters classically have an excess bandwidth (1 + α)Tsymb, where α is the

excess bandwidth factor with a typical value of 0.25 [1, 2]. Because of the periodicity,

the random process
{

Sj
t , t ∈ R

}

is called cyclostationary for the second moment and its

autocovariance function verifies

rj
SS(t, τ) = rj

SS

(

t + T j
symb, τ

)

(3.15)

As a consequence, the signal corresponding to a single channel is (in general) also cyclo-

stationary. The autocovariance function of the associated random process is

rj
CC(t, τ) =

1

2
rj

II(t, τ) (cos (Ωj(2t + τ) + cos(τ))) +
1

2
rj

QQ(t, τ) (cos (Ωj(2t + τ) − cos(τ)))

(3.16)

where rII(t, τ) and rQQ(t, τ) are the T j
symb-periodic autocovariance functions associated

to the in-phase baseband waveform and the quadrature baseband waveform respectively.

The channel autocovariance function is a product between a T j
symb-periodic function and

a T j
c /2-periodic function, T j

c = 2π/Ωj being the period of the carrier. Therefore, the

overall period T j = n1T
j
c /2 = n2T

j
symb exists only if 2T j

symb/T j
c is rational, i.e. if it can be

1. The constellations used in today’s communication signals (mostly QAM) are centered around 0
such that the mean of the symbol stream can be considered to be 0 if all symbols are equally likely to
be picked.
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written

T j =
2T j

symb

T j
c

=
n1

n2

with (n1, n2) ∈ N
∗2 (3.17)

If 2T j
symb/T j

c is not rational then the random process Cj
t associated to the channel signal is

not cyclostationary. However, when 2T j
symb/T j

c is rational, it is interesting to have an idea

of the typical value for T j. For that, we can take the example of the TV cable application

using DOCSIS 3.0 [1] as a standard. In the DOCSIS 3.0 standard, the data is transmitted

on contiguous 6 MHz channels on a frequency band that goes from 54 MHz to 1002 MHz.

In the US, the carrier frequencies for cable TV are fixed and standardized by the EIA.

The symbol rate can either be 5.360357 Msymb/s or 5.056941 Msymb/s depending on the

type of modulation that is used (QAM64 or QAM256). For the example, let us consider

the carrier frequency 993 MHz (channel 157) and the data rate 5.360357 Msymb/s. These

parameters give the following irreducible n1/n2 ratio:

n1

n2

=
2 × 993000000

5360357
(3.18)

which in turn leads to T j = 5360357 × Tsymb = 1 s. This value is obtained assuming that

the carrier frequency is perfectly adjusted. If there is a shift as small as 0.1 Hz on the

value of the carrier frequency the ratio becomes

n1

n2

=
9930000001

26801785
(3.19)

which yields T j = 26801785 × Tsymb = 5 s. This simple example shows that in practice

the cyclostationarity period of a single channel can be of several seconds. It is easy

to imagine that the cyclostationarity period of the whole signal can become very big.

Indeed, the overall cyclostationarity period T must be the smallest common multiplier of

all the channels cyclostationarity periods T j
c such that T = njT

j
c ∀j ∈ {1, · · · , Nc}.

As we will see in the next sections, the calibration algorithms do not need more than

1 second of signal in order to reach a sufficient accuracy. Therefore, at this scale of

observation, it is reasonable to assume that the input signal is non-stationary.

Below is a summary of the statistical assumptions that we make on the random process

{Xt, t ∈ R} associated to the TIADC input signal x(t):

— Zero expected value: E (Xt) = mX(t) = 0 ∀t ∈ R (stationarity for the first

moment)

— Time-dependent autocovariance function E (XtXt+τ ) = rXX(t, τ) ∀t ∈ R
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3.3 Overall mismatch calibration architecture

The next sections present each of the calibration techniques separately, assuming for

each of them, that the other mismatches are absent, or have already been corrected.

In reality, all the mismatches (or a subset of them) are present at the same time and

they must be calibrated in a precise order. A block diagram illustrating the order of the

calibration functions is shown in Figure 3.1.

Offset

mismatch

calibration

Bandwidth

mismatchmismatch

calibration

Gain

calibration

Skew

mismatch

calibration

TIADC

Figure 3.1 – Overall mismatch calibration structure

The offset mismatch calibration is done first because the other mismatch calibration

techniques require the sub-ADC’s output signals to have zero-mean. The bandwidth mis-

match calibration is done next because bandwidth mismatches yield frequency-dependent

phase and gain mismatches. These frequency-dependent mismatches must be corrected

before skew and gain mismatch calibration happen. If the bandwidth mismatch calibra-

tion was not done before the gain mismatch calibration, the gain mismatch calibration

unit would measure both the frequency dependent gain and the static gain without being

able to distinguish them. Similarly, the skew mismatch calibration unit would measure

both the frequency dependent phase mismatches and the timing mismatches. The band-

width mismatch calibration, on the other hand, is designed to be insensitive to static gain

mismatches and static timing mismatches.

The gain mismatch calibration has to be performed before the skew mismatch calibra-

tion. Indeed, the skew mismatch calibration relies on the calculation of the autocovariance

function at each sub-ADC’s output. Performing the gain mismatch calibration first guar-

antees that the calculation of the autocovariance function is not affected by the sub-ADC

static gains.

This chapter does not follow the structural order of the calibration blocks. The band-

width mismatch calibration technique is described last because it is better understood

after gaining insight about the gain and skew mismatch calibration principles.
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3.4 Offset mismatch calibration

3.4.1 Introduction

As explained in Chapter 2, the offset mismatch problem arises when the sub-ADCs

have different offsets. The offset mismatch calibration can be done by equalizing the sub-

ADC output averages. The overall architecture of the calibration is shown in Figure 3.2.

It is divided into two phases: the first one is to estimate the offsets of the sub-ADCs; the

second one is to correct the sub-ADC output signals given the estimated offsets.

TIADC

Offset

Offset

estimation

correction

x(t)

x̃0[k] · · · x̃M−1[k] x̂0[k] · · · x̂M−1[k]

ô0 · · · ôM−1

Figure 3.2 – Offset mismatch calibration block diagram

3.4.2 Offset mismatch correction

3.4.2.1 Principle

The offset estimation algorithm provides the estimated offsets {ôm, m ∈ M} of the

sub-ADCs. Correcting the output signal of the TIADC, knowing these offsets, is done

by subtracting each offset from the output signal of the corresponding sub-ADC. The

corrected sub-ADC output signals {x̂m[k], m ∈ M} become:

x̂m[k] = x̃m[k] − ôm (3.20)

3.4.2.2 Circuit implementation

The block diagram of the offset mismatch correction is shown in Figure 3.3. The

offset mismatch correction unit requires M adders that work at the rate Fs/M of the

sub-ADCs.

Although the offset mismatch correction seems simple, quantization issues may limit

its performance because the offset cannot be corrected with a precision of more than half

a LSB. Indeed, let assume that the uncorrected signal and the corrected signal are coded
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x̂m[k]x̃m[k]x(t)

ôm

ADC m

Random
sequence Up-quantization

B′

Figure 3.3 – Offset mismatch correction block diagram

with the same number of bits B, and that ôm is a perfect estimate of the real offset om,

that is ôm = om. Each offset estimate ôm can be decomposed as a sum of an integer

number qm of LSBs plus a fraction ξm of a LSB.

ôm = qmLSB + ξmLSB (3.21)

where qm ∈ Z and 0 ≤ ξm < 1. The correction operation consists in subtracting the above

estimated offset from the quantized sub-ADC output signal x̃B
m[k] = QB(x̃m[k]) × LSB

and then in quantizing the result with B bits:

x̂B
m[k] = QB(x̂m[k]) =

(

x̃B
m[k] − qm

)

LSB − QB(ξm)LSB (3.22)

where QB(·) denotes the quantization function. Depending on the fractional part of the

offsets, QB(ξm) can either take the value 0 or 1:

QB(ξm) =







0 if ξm < 0.5

1 if ξm ≥ 0.5
(3.23)

Thus, the difference between the signal that is quantized after offset correction and the

signal that is not quantized after correction is:

ǫm = [QB(ξm) − ξm] LSB (3.24)

This error ǫm acts as a residual offset, different for each sub-ADC, and is comprised

between −0.5 LSB and +0.5 LSB. This is a serious limitation as it creates – at worse –

a noise with the same power as the quantization noise, thereby reducing the ENOB of

the TIADC by half a bit (or equivalently reducing the SNDR by 3 dB). This limitation

is illustrated in Figure 3.4a and Figure 3.4b where the output TIADC spectrums before

and after mismatch correction are shown. Most of all, the quantization at the output

of the offset correction stage degrades the SFDR, the worst case being when the noise

power is concentrated in only one or two spurious tones (see chapter 2).
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The most straightforward technique to alleviate this problem is to increase the number

of bits at the output of the offset mismatch correction stage. Doing so enables to reduce

the residual offset mismatch noise, thereby increasing the SNDR and the SFDR. For

example, quantizing the corrected signal on B′ = B +3 bits yields residual offsets 8 times

lower because the residual offsets become

ǫ′
m = [QB′(ξ′

m) − ξ′
m] LSB′ (3.25)

where LSB′ = LSB/8 and ξ′
m is the fractional part of the estimated offset when the

estimated offset is expressed as a function of LSB′. Figure 3.4c shows that 3 additional

bits almost enable to reach the ideal SNDR of a 9-bit TIADC (≈ 56 dB). Although

conceptually easy, increasing the number of bits at the output of the offset correction

stage is not a benign operation when it comes to manufacturing the circuit because

increases the number of bits also increases the number of wires to route. Increasing the

number of bits is acceptable only up to a certain level, for instance 2 to 3 additional bits

for a 9-bit TIADC.

Digital dithering can be used to further increase the SFDR (while still maintaining

the same level of residual offset mismatch noise). The idea is to render the residual offsets

random in order to spread the mismatch noise across the entire spectrum. This can be

done during the quantization to B′ bits by making QB′(ξ′
m) vary randomly in time, but

with an average equal to ξ′
m. Such dithering can be done by adding a random sequence

with mean 0 to ξ′
m before the quantization, such that the residual offsets become

ǫ′
m[k] = [QB′ (ξ′

m + w[k]) − ξ′
m] LSB′ (3.26)

where w[k] is a random sequence generating 1 or 0 with equal probabilities. Using this

digital dithering technique is equivalent to replacing a fixed residual offset by a varying

residual offset with average 0. The TIADC output spectrum after offset mismatch cor-

rection and dithering is shown in Figure 3.4d. As predicted, the SNDR is similar to the

correction without dithering but the SFDR is greatly increased.

3.4.3 Offset mismatch estimation

3.4.3.1 General idea

The offset mismatch estimation block uses the fact that the sub-ADCs output signals

have the same average if there are no offset mismatches. If there are offset mismatches,

the average of each sub-ADC’s output signal is shifted by the offset of the sub-ADC. If,

as assumed in Section 3.2, the input signal has a zero-mean, an estimated offset ôm of the

55



Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 45.28 dB

Fundamental
Offset mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(a) Before correction
Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 52.97 dB

Fundamental
Offset mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(b) After correction (B′ = 9)

Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 55.93 dB

Fundamental
Offset mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(c) After correction (B′ = 12)
Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 55.87 dB

Fundamental
Offset mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(d) After correction & dithering (B′ = 12)

Figure 3.4 – Simulation of spectrums after offset mismatch correction for different
quantization levels and with or without dithering (B = 9, M = 12,
NFFT = 12 × 4096, σo = 1 LSB, true offset values used for correction)
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offset om of sub-ADC m can be estimated by calculating the average of its output signal

x̃m[k], as illustrated in Figure 3.5.

ADC m
Average

N samples

x(t) x̃m[k] ôm

Figure 3.5 – Offset mismatch estimation block diagram

3.4.3.2 Theoretical explanation

The idea described above can be explained using theory. For that, we need to assume

that the input signal is a realization of a random process that is stationary for the first

moment. When there are no offset mismatches, the output signals of the sub-ADCs have

the same expected value. Indeed, each sequence of output samples x̃m[k] associated to

each sub-ADC is a sampled realization of the input first-order stationary process {Xt}.

Each sequence is consequently a realization of a sub-process {Xm
k , m ∈ M} with an

expected value equal to the expected value of the overall process (assumed to be zero):

E (Xm
k ) = E (Xn) = E (Xt) = 0 for m ∈ M (3.27)

If there are offset mismatches the expected values of the sub-sequences are each shifted

by the offset of the respective sub-ADC such that:

E
(

X̃m
k

)

= E (Xm
k + om) = om (3.28)

where {X̃m
k , m ∈ M} are the sub-processes with offset mismatches. The above expression

shows that knowing the expected value of one sub-ADCs output signal is equivalent to

knowing the value of the sub-ADC offset.

In reality, it is impossible to know the theoretical value of the expected value in ex-

pression 3.28. It is however well known that the classical average is an unbiased estimator

of the expected value. If we assume that the sub-process is ergodic for the first moment,

the average of an infinitely long realization of the sub-process converges toward the value

of the offset:

lim
N→+∞

1

N

N−1∑

k=0

x̃m[k] = E
(

X̃m
k

)

= om (3.29)

This statement implies that estimates ôm of the sub-ADC offsets can be obtained by
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averaging the sub-ADC output signals over a finite number N of samples:

ôm =
1

N

N−1∑

k=0

x̃m[k] (3.30)

3.4.3.3 Circuit implementation

Implementing the offset estimation scheme with digital circuits is simple because the

offset estimation only requires one adder and one register per sub-ADC. The adder is

used to perform the accumulation (the division by N is not necessary) and the register

is used to store the accumulated value.

The next section describes how to use the offset estimates to correct the signal.

3.4.3.4 Accuracy analysis

Something important to know is how to determine the number N of samples that is

required to get a sufficient estimation accuracy. A good way to analyze the accuracy of

the offset estimator is to look at its variance. Indeed, it was shown in Chapter 2 that the

SNDR is directly linked to the RMS value σo of the offsets. If we assume that we can

correct the offset mismatches, the residual offset RMS value after correction σõ would be

σõ =

√
√
√
√

1

M

M−1∑

k=0

(ôm − om)2 ≈
√

var
(

Ôm

)

∀m ∈ M (3.31)

where {Ôm = 1
N

∑M−1
k=0 X̃m

k , m ∈ M} are the offset estimators associated to each sub-

ADC. We are therefore interested in calculating:

var
(

Ôm

)

= E
(

Ô2
m

)

− o2
m (3.32)

Case N = +∞ A possibility to calculate the variance of the offset estimator is to

analyze the offset estimator in the frequency domain. For the analysis, we assume that the

signal is also second-order stationary, which makes the calculation of its PSD possible 2.

In that case, the variance of the offset estimator is the integral of the PSD Rm
ÔÔ

(ω′) at

the output of the estimator

var
(

Ôm

)

=
1

2π

∫ 2π

0
Rm

ÔÔ
(ω′)dω′ (3.33)

2. The analysis would also hold for non second-order stationary signals but this makes the PSD
dependent on the time.
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where ω′ = MΩTs is the normalized angular frequency associated to the signal sampled

at a rate Fs/M . To calculate the variance expression, we need to know the PSD at the

output of the offset estimator, which is straight forward if we interpret the finite-length

average done in the estimation as a FIR filter. The averaging filter has a z-transform:

HÔ(z) =
1

N

N−1∑

k=0

zk (3.34)

The averaging filter is applied to the sub-process
{

X̃m
k

}

, which PSD R̆m
X̃X̃

(ω′) contains

the aliases of the full-rate PSD:

R̆m
X̃X̃ (ω′) =

1

M

M−1∑

k=0

R̆XX

(

ω′

M
− k

2π

M

)

e
−jm

(
ω

′

M
−k 2π

M

)

(3.35)

The frequency response of the averaging filter is

H̆Ô(ω′) =
sin (Nω′/2)

N sin (ω′/2)
(3.36)

It converges toward the Kronecker delta function when the average length goes toward

infinity:

lim
N→+∞

H̆Ô(ω′) = δ[ω′] (3.37)

The PSD at the output of the estimation filter when N → +∞ therefore only contains

information at DC:

R̆m
ÔÔ

(ω′) = R̆m
X̃X̃ (ω′)

∣
∣
∣H̆Ô(ω′)

∣
∣
∣

2
(3.38)

=
1

M

M−1∑

k=0

R̆XX

(

2kπ

M

)

ej2π km

M δ[ω′] (3.39)

The variance of the offset estimator is obtained by integrating the above expression

(Equation 3.33). Due to the Kronecker function, the integration effectively happens

between 0 and 0:

var
(

Ôm

)

=
1

2πM

M−1∑

k=0

[
∫ 0

0
R̆XX

(

2kπ

M

)

dω′

]

ej2π km

M (3.40)

If the input signal does not contain periodic components at frequencies multiple of Fs/M

then the power spectral density at these frequencies is bounded such that R̆XX

(
2kπ
M

)

<

+∞, and the integral is zero. An opposite assumption would mean that the signal

contains sine waves a frequencies multiple of Fs/M , which breaks the assumption that

the signal is stationary for the first moment. Actually, making the assumption that the
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signal is first-order stationary is a sufficient condition but not a necessary condition. If the

signal is not stationary for the first moment but the Fourier transform of its expected value

mX(t) does not contain Dirac impulses at frequencies multiple of Fs/M , the condition

is also true. Under those conditions, the conclusion is that the variance of the offset

estimator converges to zero when N grows infinity.

var
(

Ôm

)

= 0 (3.41)

Case N finite The previous paragraph showed that the offset mismatch estimator was

unbiased with variance 0 when N is infinite but what is interesting in practice is the case

with a finite N . When N is finite, the frequency of the offset estimation filter H̆Ô is no

longer a Kronecker delta function. The frequency response has a low pass characteristics

as shown in Figure 3.6. The width of the pass band depends on the average length and it

ω′/2π

∣ ∣ ∣H̆
Ô

N
(ω

′ )
∣ ∣ ∣

[d
B

]

Real
Approximated

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
-50

-40

-30

-20

-10

0

Figure 3.6 – Real and approximated frequency responses of the offset mismatch esti-
mation filter (N = 1000)

can be shown that, in case of a wide band input signal, 99% 3. of the output power comes

from the part of the signal that lies in the band [−ω′
99, ω′

99] where ω′
99 ≈ 2π × α99/N

(in practice α99 ≈ 10.29). For our analysis we consider that the square amplitude of the

offset estimation filter frequency response can be approximated by the one of an ideal

3. The value of 99% is chosen quite arbitrarily to illustrate the concept.
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low pass filter with cut-off angular frequency ω′
99.

∣
∣
∣H̆ÔN

(ω′)
∣
∣
∣

2 ≈ 0.99

2α99

× rect

(

ω′

2ω′
99

)

(3.42)

Figure 3.6 shows this approximate response superimposed on the real frequency response.

Given this approximation, the power spectral density at the output of the offset

estimation filter is

R̆m
ÔÔ

(ω′) =R̆m
X̃X̃ (ω′)

∣
∣
∣H̆ÔN

(ω′)
∣
∣
∣

2

=
0.99

2α99

1

M

M−1∑

k=0

R̆XX

(

ω′

M
− 2kπ

M

)

e
−jm

(
ω

′

M
−k 2π

M

)

rect

(

ω′

2ω′
99

)

(3.43)

Integrating the above spectral density expression over the entire Nyquist band leads to

the variance of the offset estimator:

var
(

Ôm

)

=
1

2π

0.99

2α99

1

M

M−1∑

k=0

∫ ω′

99

−ω′

99

R̆XX

(

ω′

M
− 2kπ

M

)

dω′ (3.44)

Unlike the infinite average case, the variance of the estimator contains a non-zero term

that makes the output of the offset estimator oscillate around its average om. The variance

of the offset estimator now depends on the spectral properties of the input signal.

The best case (lowest variance) is when no signal is present in the frequency bands of

width 2ω′
99 around the angular frequencies multiple of Fs/M . In that case, only the noise

is integrated M times between −ω′
99 and ω′

99. For example, if the noise is dominated by

quantization noise only the power spectral density of the quantization noise is integrated.

The power spectral density RQQ(ω) of the quantization noise is given by

RQQ(ω) =
LSB2

12
(3.45)

Inserting the above expression of the quantization noise PSD into the offset estimator

variance expression 3.44 gives after simplification:

σ2
ÔN

= 0.99 × LSB2

12N
(3.46)

If the specification is to have the offset mismatch noise after correction 10 times lower

than the quantization noise, the variance of the estimator must be:

0.99 × LSB2

12N
=

1

10

LSB2

12
(3.47)
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which corresponds to an average length N ≈ 120. However, this requirement is too

optimistic because when it comes to offset mismatch, one usually enforces limits on the

SFDR rather than on the SNDR. We saw in Chapter 2 that specifying SFDR limits lead

to more stringent requirements on the offset mismatch level. In a 9-bit TIADC, because

of quantization noise, the maximum reachable SNDR for a full-scale sine input is 56dB.

If the offset mismatch noise is specified to be a tenth of the power of the quantization

noise, then the worst-case SFDR (equal to the SNDR as shown in Chapter 2) is 66dB,

which is not necessarily an acceptable level. If for example we want a worst case SFDR of

86dB, the offset mismatch noise has to be 1000 times lower than the quantization noise,

which yields an averaging length N ≈ 12000.

Moreover, considering that only a relatively low power noise is present in the 2ω′
99-

wide frequency bands around multiple of Fs/M yields a best case variance for the offset

estimator. In real communication systems, the input signal is usually wide band and it

possibly carries some non-negligible power in those frequency bands. A simple situation

is to consider a signal that has a constant power spectral density over the entire Nyquist

band 4. The signal PSD can be expressed in terms of the Peak-to-Average-Power-Ratio

(PAPR) (expressed in dB) of the signal, such that:

R̆XX(ω) = 10− PAPR
10 22B−1LSB2 (3.48)

Therefore, the variance of the offset estimator with a wide band input signal is

σ2
ÔN

=
0.99

N
× 10− PAPR

10 22B−1LSB2 (3.49)

Using the example of the 9-bit TIADC with a 86 dB worst case SFDR requirement and

assuming that the signal PAPR is 15 dB 5, leads to the following condition on the average

length:
0.99

N
× 10− PAPR

10 22B−1LSB2 =
1

1000

LSB2

12
⇒ N ≈ 50 millions (3.50)

To put things in perspective, the above averaging length requirement corresponds to an

estimation time of 0.25 second if the sub-ADCs are sampling at a rate of 200 MS/s.

4. It is not a realistic case because communication signal are usually comprised of several narrow
band channels centered at different carrier frequencies. The approximation of a full band signal can
nonetheless give a good idea of the required averaging length.

5. This is a reasonable value for communication signals.
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3.4.4 Conclusion

This section presents the concept of the offset mismatch calibration technique. It

converges for first-order stationary signals but it can be applied on non-stationary signals

if the time-dependent expected value of the signal does not contain spurious tones at

frequencies multiples of Fs/M . After the offset mismatches have been calibrated, the

mean of each sub-ADC’s output signal becomes very close to zero, which is a requirement

for the gain mismatch calibration stage.

3.5 Gain mismatch calibration

3.5.1 Introduction

TIADC

Gain

Gain

estimation

correction

x(t)

x̃0[k] · · · x̃M−1[k] x̂0[k] · · · x̂M−1[k]

1/ĝ1 · · · 1/ĝM−1

Figure 3.7 – Gain mismatch calibration block diagram

This section describes the principle of the proposed background gain mismatch cali-

bration technique and analyzes its performance. The other mismatches are assumed to

be zero.

The purpose of the gain mismatch calibration is to

— estimate the relative gains of the sub-ADCs with respect to a reference sub-ADC

(sub-ADC 0)

— correct each sub-ADC’s output signal once the estimated gains are known

Whereas the offset mismatch calibration algorithm tries to equalize the averages of the

sub-ADC output signals, the gain mismatch calibration algorithm tries to equalize the

sampled variance of the sub-ADC output signals. The block diagram of the gain mismatch

calibration is given in Figure 3.7. As explained in section 3.5.3, the relative gain of one

sub-ADC with respect to a reference sub-ADC is estimated by taking the ratio between

the sub-ADC output power and the output power of the reference sub-ADC. The gain

mismatch correction stage multiplies each sub-ADC’s output signal by the inverse of the

corresponding power ratio. The correction stage is explained in section 3.5.2.
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3.5.2 Gain mismatch correction

3.5.2.1 Principle

If we know estimates {ĝm, m ∈ M∗} of the gains of the sub-ADCs with respect to

the reference sub-ADC (sub-ADC 0), gain mismatch correction can be done by dividing

each sub-ADC’s output signal by its respective gain estimate as illustrated in Figure 3.8.

Sub-ADC 0 is the reference ADC and therefore its gain is left unchanged (gain of 1).

x̂m[k]x̃m[k]x(t)

1/ĝm

ADC m

Figure 3.8 – Gain mismatch correction block diagram

After the gain mismatch correction, the sub-ADC output signals are

x̂m[k] =
x̃m[k]

ĝm

= g̃mxm[k] for m ∈ M∗ (3.51)

where {g̃m = gm/ĝm, m ∈ M∗} are the residual gains after correction. Naturally, if the

gain mismatch estimation is perfect ĝm = gm and the original signal is perfectly recovered

(assuming no quantization):

x̂m[k] = xm[k] for m ∈ M (3.52)

The gain mismatch correction effect on the TIADC output signal is demonstrated in

Figure 3.9 where the TIADC output spectrums before and after gain mismatch correction

are shown.

3.5.2.2 Circuit implementation

The architecture of the gain mismatch correction is illustrated in Figure 3.8. The

required amount of hardware is relatively low because the correction only uses M − 1

multipliers (one per sub-ADC except sub-ADC 0 that serves as the reference).

Dividing each sub-ADC’s output signal by its respective gain is done at the rate Fs/M

of one sub-ADC but because implementing dividers at a high clock frequency is resource

hungry, designers prefer to replace them by multipliers that have a lower hardware cost.

In other words, it is preferable to multiply each sub-ADC’s output signal by the inverse
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(b) After correction

Figure 3.9 – Output spectrum before and after gain mismatch correction (B = 9, M =
12, NFFT = 12 × 4096, σ̄g = 0.01, ideal gain values used for correction)

of its gain estimate rather than dividing by the gain estimate itself. As it will be later be

explained in Section 3.5.3, the gain estimation unit can easily be implemented such that

it provides the inverse of the gain estimates rather than the gain estimates themselves.

3.5.3 Gain mismatch estimation

3.5.3.1 General idea

The general idea of gain mismatch estimation relies on a simple principle. When

there are no gain mismatches, each sub-ADC’s output power is equal to the input signal

power. With gain mismatches, each sub-ADC’s output power is different. Each sub-

ADC’s output power is equal to the input signal power multiplied by the squared gain of

the sub-ADC. Estimating the relative gain mismatches is easily done by measuring the

ratio between each sub-ADC’s output power and the reference sub-ADC output power,

as shown in Figure 3.10.
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ADC 0

ADC m
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Figure 3.10 – Gain mismatch estimation block diagram

3.5.3.2 Theoretical explanation – WSS process

The gain mismatch estimation principle is easy to understand but it requires that

the signal verifies certain statistical properties. The mathematical proof is first done

assuming that the input signal is a realization of a WSS process with zero mean, and

then extended to the slightly more complex case where the signal is a realization of a

non-stationary process.

As explained in Section 3.4, the autocovariance function of a WSS process is time

independent. In particular, the variance of the process is also time-independent. When

there are no gain mismatches, each sub-ADC’s output signal xm[k] is a realization of a

sub-process {Xm
k , m ∈ M} that has the same variance as the input random process:

var (Xm
k ) = var (Xn) = var (Xt) = rXX [0] for m ∈ M (3.53)

With gain mismatches, the above property is no longer verified, and each sub-ADC’s

output signal {x̃m[k], m ∈ M} is a realization of a scaled version {X̃m
k , m ∈ M} of the

random sub-process {Xm
k , m ∈ M}:

var
(

X̃m
k

)

= g2
m var (Xm

k ) = g2
mrXX [0] (3.54)

where {gm, m ∈ M} are the gains of the sub-ADCs. Since we are only interested in the

relative gains between the sub-ADCs, we assume that g0 = 1 without loss of generality.

It follows that each gain gm can be obtained as the square root of the ratio between the

output variance of sub-ADC m and the output variance of sub-ADC 0

gm =

√
√
√
√
√

var
(

X̃m
k

)

var
(

X̃0
k

) (3.55)
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A natural way to obtain estimates {ĝm, m ∈ M∗} of the gains {gm, m ∈ M∗} is to

replace the variance terms in the above expression 3.55 by their estimates. Since the

signal is assumed to have zero mean, the variance can be estimated by using the sampled

mean square. Replacing the variance by the sampled mean square leads to the the gain

mismatch estimation formula:

ĝm =

√
√
√
√

1
N

∑N−1
k=0 x̃m[k]2

1
N

∑N−1
k=0 x̃0[k]2

(3.56)

One can define the estimator P̂m associated to the mean square of each sub-ADC’s output

signal:

P̂m =
1

N

N−1∑

k=0

(

X̃m
k

)2
(3.57)

For a process with zero expected value, the mean square is an unbiased estimator of the

variance because

E
(

P̂m

)

= var
(

X̃m
k

)

(3.58)

If the random input process is assumed ergodic for the second moment, the estimates

{p̂m, m ∈ M}, provided by the variance estimators {P̂m, m ∈ M}, converge toward their

expected value when the average length N becomes infinite:

lim
N→+∞

p̂m = g2
mrXX [0] (3.59)

3.5.3.3 Theoretical explanation – non-stationary process

Section 3.2 of this document that communication signals are more accurately de-

scribed as realizations of non-stationary random processes. As we saw, an importance

consequence is that the autocovariance of the signal, and by extension the variance of

the signal, is time-dependent. Nonetheless, the gain mismatch estimator described in the

previous section remains valid provided that certain conditions on the autocovariance of

the signal are met.

To clarify this affirmation, let us define the M random processes {Y m
k , m ∈ M}

verifying

Y m
k =

(

X̃m
k

)2 − g2
mrXX((kM + m)Ts, 0) (3.60)

These processes are first-order stationary because their expected value does not depend

on the time:

E (Y m
k ) = E

(

(Xm
k )2

)

− g2
mrXX [kM + m, 0] = 0 (3.61)

As a consequence, the expected value of the estimator P̂ ′
m = 1

N

∑N−1
k=0 Y m

k is equal to zero.
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Since the associated estimates p̂′
m = 1

N

∑N−1
k=0 [x̃m[k]2 − rXX [kM + m, 0]] tend to their

expected value when the averaging length becomes infinite, we obtain

lim
N→+∞

1

N

N−1∑

k=0

(

x̃m[k]2 − g2
mrXX [kM + m, 0]

)

= 0 (3.62)

Assuming that limN→+∞
∑N−1

k=0 rXX [kM + m, 0] exists, the limit of the sum can be written

as the sum of the limits, which implies that:

lim
N→+∞

1

N

N−1∑

k=0

x̃m[k]2 = g2
m lim

N→+∞

1

N

N−1∑

k=0

rXX ((kM + m)Ts, 0) (3.63)

In order to find an expression that is similar to that of Equation 3.59, it is necessary to

demonstrate that the limit limN→+∞
1
N

∑N−1
k=0 rXX ((kM + m)Ts, 0) is the same for each

sub-ADC, or in other words that the value of the limit is independent of m.

Interestingly, this problem is very similar the offset estimation case where we show

that the average of each channel converges to zero. Indeed, averaging rXX [kM + m, 0]

is similar to averaging x̃m[k] in Equation 3.30. Once again this problem is more easily

tackled in the frequency domain. First, we can express the continuous autocovariance

function rXX(t, τ) in terms of its Fourier transform along the time variable t:

The term rXX [kM + m, 0] is a sampled version of rXX (t, 0) and in the frequency

domain becomes:

R̆0,m
XX(υ′) =

1

M

M−1∑

l=0

R̆0
XX

(

υ′

M
− l

2π

M

)

e
−j

(
υ

′

M
−l 2π

M

)

m
(3.64)

where υ′ = MΥTs. When the average length becomes infinite, the right-hand side limit in

Equation 3.63 can be interpreted in the frequency domain associated to the time variable

t as the product of the DTFT in Equation 3.64 with the Kronecker delta function δ[υ′]:

lim
N→+∞

1

N

N−1∑

k=0

rXX ((kM + m)Ts, 0) = F−1(R̆0,m
XX(υ′)δ[υ′]) (3.65)

The result is a sum of M terms corresponding to the Fs/M frequency components of the

spectrum of rXX(t, 0).

R̆0,m
XX(υ′)δ[υ′] =

1

M

M−1∑

l=0

R̆0
XX

(

−2π
l

M

)

ej2π lm

M δ[υ′] (3.66)

This expression is independent of the sub-ADC m if and only if the autocovariance

function of the input random process {Xt} does not contain non-stationary components
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at multiples of Fs/M . This observation translates mathematically into:

R̆∗0
XX

(

2π
l

M

)

= 0 for l 6= 0 (3.67)

If the above condition is verified the power estimates p̂m converge toward the DC value,

i.e. the stationary component, of the autocovariance function:

lim
N→+∞

p̂m = g2
m lim

N→+∞

1

N

N−1∑

k=0

rXX [k, 0] = g2
mr̄XX [0] (3.68)

This generalizes the situation where the input random process is WSS. When the input

random process is WSS, all the non-stationary frequency components of the autocovari-

ance function are zeros by definition (not only the ones that are multiple of Fs/M). The

constraint for non-stationary signals is weaker. Only the frequency components of the

autocovariance function at multiple of Fs/M have to be zero.

Whereas wideband communication signals are in general not WSS, they usually verify

the above weaker condition. This convergence condition is however broken if the cyclo-

stationarity period of the input signal is an integer fraction of MTs because in that case

the Fourier decomposition of RXX(t, 0) has a strong harmonic tone at this frequency. In

practice, this situation is unlikely. We saw in section 3.2 that the cyclostationarity period

of typical communication signals is often of the order of the second, as opposed to the

sampling period which is of the order of the nanosecond.

In general, if the input signal is cyclostationarity with period T its autocovariance can

be decomposed with its Fourier series, which shows that Rτ
XX (Υ) has harmonic tones

at frequencies multiple of 1/T . If the k-th harmonic falls on a frequency multiple of

Fs/M , the above convergence condition is theoretically broken. However, in practice,

k is very big 6, and consequently, the associated harmonic tone is very weak. Indeed,

it is reasonable to assume that that rXX(t, τ) varies smoothly with t (this is the case

in the example of a multi-channel communication signal defined in Section 3.2), such

that at least some of its derivatives with respect to t are defined. If we consider that

derivatives are defined up to the n-th order, then the Fourier coefficients (the power of

the harmonics) of rXX(t, τ) decrease faster than 1/kn and the harmonics at frequencies

multiple of Fs/M are very weak as compared to the DC value. Therefore, the negative

effect of a cyclostationary signal with large cyclostationary period on the gain estimation

is minimal.

6. At least of the order of 1 billion if T = 1 s and Fs = 1 GS/s
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3.5.3.4 Circuit implementation

The implementation of the gain mismatch estimation algorithm requires M − 1 aver-

aging units (one adder and one register per unit), M − 1 squaring units (one multiplier

per unit) and M −1 dividers. From a practical standpoint, the gain mismatch estimation

unit is designed to provides the inverses of the gain estimates to the mismatch correction

stage. It just means that in practice the inverse of the gain mismatch estimation formula

is computed (Equation 3.56).

One can also reduce the hardware overhead by replacing the squaring operation by an

absolute value operation, which suppresses one multiplier per sub-ADC (see Figure 3.11).

It also avoids calculating the square root of 1/ĝ2
m. The ratio between the averages of the

absolute values gives the value of the gain estimate directly. This implementation trick

slightly decreases the estimation accuracy as shown in the next section.

The division is done in several clock cycles with only a few slow multipliers after the

results of the averages are available.

ADC 0

ADC m | · |

| · |

Average

Average

N samples

N samples
x(t)

x̃m[k]

x̃0[k]

1/ĝm

Figure 3.11 – Alternative implementation of the gain mismatch estimation

3.5.3.5 Accuracy analysis

In order to determine the required average length N , we need to study the behavior

of the expected value and the variance of the gain mismatch estimator Ĝm as a function

of N , where

Ĝm =

√
√
√
√ P̂m

P̂0

(3.69)

Assuming an ideal gain mismatch correction (given a set of gain estimates), we want

to know how big N needs to be such that the residual gains after correction are small

enough to reach the wanted SNDR. We know from Equation 2.61 in Chapter 2, that

the SNDR after correction is a function of the RMS value σg̃ of the residual gains {g̃m =

gm/ĝm, m ∈ M}. Therefore, it is natural to calculate the variance of the random variables
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{G̃m, m ∈ M} associated to those residual gains:

var
(

G̃m

)

= var

(

gm

Ĝm

)

(3.70)

Unfortunately, deriving a theoretical expression of the variance in the above equation is

complex because it requires information about the 4th moment of the input signal, which

in general is not a known quantity. Making the same type of analysis as we did with

offset mismatch estimation is difficult here.

In the – non realistic – case where the signal is White Gaussian Noise (WGN), nu-

merical simulations show that the residual gain variance is inversely proportional to N :

var
(

G̃m

)

=
1

2N
(3.71)

To evaluate the accuracy of the gain mismatch estimation algorithm, we can calculate

the SNDR at the TIADC output with a sinewave at the input. The plots in Figure 3.13

show the SNDR as a function of the average length when the residual gain mismatches

are the only source of noise. We observe that the theoretical formula for the WGN case

matches numerical Monte-Carlo simulations. For example, 300 000 samples per sub-ADC

are needed in order to achieve a SNDR of 56 dB, which is a level equivalent to the level

of the quantization noise of 9-bit ADC.

However, a WGN input signal is not a realistic input signal, and it is legitimate to

wonder how valid this expression of the variance is when the output samples of the sub-

ADCs are not independent, as it is the case in a real communication signal. If the signal

is generated from a list of random symbols that are passed through a pulse shaping filter

and then modulated by a sine wave, the signal is correlated with itself on a duration tc

that depends on the length K × Tsymb of the pulse shaping filter, where K is typically

equal to 40.

When expressed as a function of the sampling period Ts, the duration during which

the correlation is not zero depends on the oversampling ratio α and the pulse duration

tc = KαTs. For instance, the oversampling ratio for a 6 MHz wide carrier sampled at

1.6 GS/s is α = 266. As a consequence, a sub-ADC output signal is correlated with

itself on a length Lc = Kα/M . Another way to look at it is to consider that each

sub-ADC’s output signal is made of N/Lc subsets of uncorrelated samples on which the

above theory can be applied. The worst-case scenario is to assume that the subsets are

identical, i.e. perfectly correlated. In that case, averaging over N × Lc samples gives the

same accuracy as averaging over N samples and a factor Lc more samples is required to

get the estimation precision obtained for N uncorrelated samples.
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Figure 3.12 – Gain mismatch estimation accuracy as a function of average length, and
for different types of modulated input signals (M = 12, σg = 1%, residual
gains averaged over 100 Monte-Carlo simulations, no quantization)

If we consider a 12-channel TIADC with an oversampling ratio α = 266 and a filter

length K = 40, the correlation length is Lc = 266 × 40/12 ≈ 887. In theory, at least 887

times more samples would be required to get the same estimation accuracy as with the

uncorrelated case, i.e. around 9 billions samples per sub-ADC. In reality, this is an upper

bound that is not reached because the Lc subsets of samples are not identical and each

sub-set gives additional statistical information about the signal.

The plots in Figure 3.13 demonstrate this effect. As predicted, the gain mismatch

estimation error becomes bigger when the correlation length increases. However, the

upper bound that was mentioned above is far from being reached. A SNDR of 43 dB

is reached for an average length N = 10000 if the input is WGN. If the input is a

modulated signal with an oversampling ratio of 265 as in the example above, an average

length N = 30000 is required to reach the same SNDR. It is only 3 times as many samples,

which is rather far from the 887 factor mentioned before. The reason is that, in practice,

the signal autocorrelation function is not equal to 1 for samples that are distant from

each other (as it would be if the samples were perfectly correlated) but decreases when

the distance between samples increases.

Figure 3.13 shows the gain mismatch estimation accuracy degradation that occurs

when the ratio of the average absolute values is computed instead of the ratio of the
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average squared values. It proves that using the absolute value incurs a minimal accuracy

loss while saving hardware cost.
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Figure 3.13 – Gain mismatch estimation accuracy comparison between using averaged
absolute value or averaged squared value (M = 12, σg = 1%, residual
gains averaged over 100 Monte-Carlo simulations, no quantization)

3.5.4 Conclusion

We showed a background gain mismatch calibration technique that equalizes the sub-

ADC output average powers. The calibration can successfully be run on input signals that

are realizations of non-stationary processes as long as the time-dependent autocovariance

of the process does not contain spurious tones at frequencies multiple of fs/M .

After gain mismatch calibration, the sub-ADC output signals have the same average

power, which is a requirement for the skew mismatch calibration stage that is performed

downstream.

3.6 Skew mismatch calibration

3.6.1 Introduction

This section describes an innovative skew mismatch calibration technique that per-

forms a direct estimation of the sub-ADCs’ timing offsets. This approach stands out of
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the state of the art that often relies on adaptive estimation techniques such as gradient

descent.

TIADC

Skew mismatch

Skew mismatch

estimation

correction

x(t)

x̃0[k] · · · x̃M−1[k]
︸ ︷︷ ︸

Mismatch corrupted signal

x̂0[k] · · · x̂M−1[k]
︸ ︷︷ ︸

Corrected signal

Timing offset estimates
︷ ︸︸ ︷

r̂1 · · · r̂M−1

Figure 3.14 – Skew mismatch calibration block diagram

The calibration is done in two phases (see Figure 3.14) that consist in

— estimating each sub-ADC’s timing offset with respect to a reference sub-ADC

— correcting each sub-ADC’s output signal based on the result of the estimation

We assume that the timing offsets are small, which allows linearizing the delay transfer

function.

The correction of each sub-ADC’s output signal is done through linear interpolation

based on the timing offset estimates and the signal derivative.

The timing mismatch estimation provides timing offset estimates after a single itera-

tion with two distinct phases:

— First phase: calculation of the covariance between each sub-ADC’s output signal

and each sub-ADC’s output signal derivative

— Second phase: calculation of the timing offset estimates by linearly post-processing

the covariances obtained during the first phase

3.6.2 Skew mismatch correction

3.6.2.1 General idea

The Figure 3.15 shows how a sub-ADC sample is affected by a sampling error. If

the delay is sufficiently small, the original sample can be recovered from the delayed

sample by following the tangent of the signal around the sample to be corrected (linear

interpolation).

In other words, the original sample can be recovered from the delayed sample by

subtracting from it an error term proportional to the derivative of the signal and the
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Figure 3.15 – Skew mismatch correction illustration

timing offset. This is illustrated in Figure 3.16 that shows the block diagram of the skew

mismatch correction unit.

x̂m[k]x̃m[k]x(t)

Estimated timing offset r̂m

ADC m

Derivative samples x̃′
m[k]

Figure 3.16 – Skew mismatch correction block diagram

3.6.2.2 Theoretical explanation

Assuming that timing offset estimates {r̂m, m ∈ M} of the real timing offsets {rm, m ∈
M} are provided, one can recover the original signal through a first-order Taylor approx-

imation, by using the fact that the timing offsets are small as compared to the sampling

period. We showed in Chapter 2 that each sub-ADC’s output signal {x̃m[k], m ∈ M} is

the sum of an ideal term and an error term:

x̃m[k] ≈ xm[k] + rmTsx
′
m[k] (3.72)

where x′
m[k] denotes the derivative of the input signal x(t) taken at the instant (kM +

m)Ts. It naturally follows that each sub-ADC’s output signal {xm[k], m ∈ M} can be

recovered from its slightly-delayed version {x̃m[k], m ∈ M} by subtracting the error term:

xm[k] ≈ x̃m[k] − rmTsx
′
m[k] (3.73)
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Obviously, this reconstruction formula requires some knowledge about the signal deriva-

tive. If the TIADC output signal is bandlimited to the first Nyquist zone, its derivative

is obtained by filtering the TIADC output signal x[n] with a derivative FIR filter with

frequency response Fd(ejω) = jω, which well-known impulse response is

fd[n] =







0 if n = 0

(−1)n/n ∀n ∈ Z
∗

(3.74)

The derivative terms associated to the sub-ADCs are therefore:

x′
m[k] =

1

Ts

x ∗ hd[kM + m] (3.75)

TIADC

Derivative

filter

x(t)

x̂′
0[k] · · · x̂′

M−1[k]

Figure 3.17 – Calculation of TIADC output signal derivative

In practice, the derivative cannot be calculated from the ideal TIADC output signal

x[n] because one only has access to the signal x̃[n] containing timing mismatch errors.

The best possible derivative estimate x̂′
m[k] is obtained by filtering the non-ideal signal

with the derivative filter fd[n] as shown in Figure 3.17.

x̂′
m[k] =

1

Ts

x̃ ∗ hd[kM + m] (3.76)

Therefore, in practice, each sub-ADC’s output signal x̂m[k] is recovered using the following

reconstruction formula:

x̂m[k] = x̃m[k] − r̂mx̃ ∗ hd[kM + m] (3.77)

In the above formula, both the timing offsets and the signal derivative have been replaced

by their estimates.

3.6.2.3 Circuit implementation

The implementation of the derivative filter cannot use the infinite number of coeffi-

cients given in Equation ??. If the input signal lies in the first Nyquist zone, the easiest

way to implement the filter is to use a digital FIR structure with a finite number of taps
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2Kd + 1:

f̃d[n] =







0 if n = 0

(−1)n/n ∀|n| < Kd

(3.78)

This filter architecture, shown in Figure 3.18, does not require general-purpose multipliers

because the coefficients are fixed. Furthermore, the multiplications corresponding to the

antisymmetric coefficients are grouped in pairs in order to reduce the number of fixed

multipliers.

TIADC output

samples x̃[k]

samples x̂′[k]

Derivative

fd[Kd − 1]fd[Kd] fd[1]

Figure 3.18 – Efficient derivative filter implementation

Naturally, the frequency response of the filter gets closer to the theoretical frequency

response at the expense of more hardware by increasing the number of coefficients. There

are several ways of limiting the number of coefficients of the filter. A simple truncation of

the number of coefficients does not lead to a very optimal frequency response. Truncation

is equivalent to the multiplication of the filter coefficients by a rectangular window, which

is known to have big side lobes in the frequency domain. Other windows offer better

frequency properties. The Blackman window enables the lowest side lobes and gives the

best in-band accuracy. Figure 3.19 illustrates this property by showing the frequency

response of a derivative filter with and without Blackman windowing. The frequency

response of the windowed derivative filter is close to the ideal frequency response only up

to a certain cut-off frequency ωd. This cut-off frequency can be defined as the frequency

at which the ratio between the ideal frequency response Fd (ejω = jω) and the frequency

response F̃d (ejω) of the truncated windowed filter falls under a certain threshold value

ǫd:

ωd = max






ω ∈ [0, π],

∣
∣
∣F̃d(ejω)

∣
∣
∣

w
< 1 − ǫd






(3.79)

Increasing the number of filter coefficients increases the cut-off frequency. The simulation

data shown in Figure 3.20 shows that the cut-off frequency is inversely proportional to
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Figure 3.19 – Frequency response of the derivative filter for different windows (Kd =
16)

ǫd = 0.1% ǫd = 0.5% ǫd = 1%
Value of α(ǫd) 17.18 15.41 14.49

Table 3.1 – Values of the proportionality constant α(ǫd) for different threshold values

the number of coefficients 2Kd + 1:

ωd = π − α(ǫd)

2Kd + 1
(3.80)

where α(ǫd) is a constant that depends on the threshold value ǫd. The value of this

constant for different threshold values is given in Table 3.1. The appropriate threshold

value can be chosen through numerical simulations based on the skew mismatch correction

accuracy that is needed.

In a real application, the cut-off frequency is determined based on the input signals

spectrum, and the accuracy up to which the timing mismatches must be corrected. For

example, a cable-TV signal has energy in the frequency band between 54 MHz and 1002

MHz. If such a signal is sampled at 2.2 GS/s, the derivative filter must be accurate up

to 1.002/1.1 ≈ 91% of the Nyquist frequency. The yields a filter length of 61 (Kd = 30)

if the threshold value is set to ǫd = 0.1%.
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Figure 3.20 – Cut-off frequency of the derivative filter as a function of the number of
coefficients, and for different levels of accuracy

3.6.2.4 Accuracy analysis

The proposed reconstruction technique is a linear approximation that only correct the

timing skew errors down to a certain level. It has three types of limitations:

— the derivative-based correction assumes first-order sampling errors. This assump-

tion does not hold when the timing offsets become large.

— the derivative filter is implemented using a limited number of coefficients, which

limits the accuracy of the filter’s frequency response (see previous section)

— the derivative is calculated by filtering the mismatch-corrupted TIADC output

signal instead of the ideal signal

These limitations are illustrated in Figure 3.21 that compares the SNDR as a function of

frequency before and after skew mismatch correction. The green dotted curve is obtained

by using the theoretical expression of the signal derivative to perform the correction 7.

It demonstrates that even with a perfect derivative, the SNDR decreases with the input

frequency, indicating that second-order timing mismatch errors limit the reconstruction

accuracy. A similar curve is obtained when the ideal derivative is replaced by a derivative

obtained by filtering the mismatch-free signal. The only difference happens at frequencies

above the cut-off frequency of the derivative filter because of the limited number of

7. The input signal is of the form x(t) = A cos(Ωt) and its derivative is x′(t) = −AΩ sin(Ωt)
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Figure 3.21 – SNDR before and after skew mismatch correction as a function of input
frequency (M = 12, σr = 1%, Kd = 8, no quantization, true timing
offsets used as estimates)

coefficients in the filter. Finally, the magenta curve shows the performance of the skew

mismatch correction as it is implemented in practice, i.e. with a derivative obtained by

filtering the mismatch-corrupted TIADC output signal. These plots enable to draw a few

conclusions:

— the problem of filtering the non-ideal signal is limiting the performance of the

correction at low input frequency

— non-linear timing errors become non negligible when the input frequency increases

— for input frequencies above the derivative filter cut-off frequency, the finite impulse

response of the filter limits the performance

Despite those limitations, the linear reconstruction method enables to drastically re-

duce the timing mismatch errors. The plots in Figure 3.21 show that, at 70% of Nyquist

frequency, with a mismatch level of 1%, the SNDR goes from approximately 35 dB before

correction to around 70dB after correction. This improvement can also be seen on the

spectrums displayed in Figure 3.22. After skew mismatch correction, the SNDR is close

to the maximum reachable SNDR for a 9-bit ADC (56 dB) even though spurious tones

are not completely removed.

80



Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 33.78 dB

Fundamental
Skew mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(a) Before correction
Normalized frequency w0/2π

F
F

T
[d

B
F

S
]

SNDR = 55.85 dB

Fundamental
Skew mism. tones

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

(b) After correction

Figure 3.22 – Output spectrum before and after skew mismatch correction (B = 9,
M = 12, Kd = 8, NFFT = 12 × 4096, σr = 1%, true timing offsets used
for correction)
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3.6.3 Skew mismatch estimation

3.6.3.1 General idea

This section aims at giving an intuitive sense of the skew mismatch estimation algo-

rithm, and we make some coarse assertions to serve this purpose. The rigorous mathe-

matical demonstrations are provided in the next section.

Timing skew mismatches shift positively or negatively the sub-ADC sampling times,

and therefore also create a small error in the sampled value. If a sub-ADC has a small

positive timing offset, the error on the sampled value is positive if the slope of the sig-

nal is locally positive, and negative if the slope of the signal is locally negative. As a

consequence, the average of the delayed samples corresponding to positive slopes of the

signal will be in higher than the average of the original samples corresponding to positive

slopes, and the average of the delayed samples corresponding to negative slopes will be

lower than the average of the original samples corresponding to negative slopes. If the

timing offset is small, it makes sense intuitively that the average shift is proportional to

the timing offset and to the average slope. Without formalism, this can be written

avg. of x̃m[k] in pos. slopes ≈ avg. of xm[k] in pos. slopes + avg. pos. slope × rm

(3.81)

avg. of x̃m[k] in neg. slopes ≈ avg. of xm[k] in neg. slopes + avg. neg. slope × rm

(3.82)

If the signal is assumed to have a zero-mean, the average of the original samples cor-

responding to positive slopes and the average of the original samples corresponding to

negative slopes are both equal to 0. Subtracting Equation 3.82 from Equation 3.81, con-

sequently makes the two corresponding terms cancel out, yielding a right hand side that

is proportional to the timing offset:

avg. of x̃m[k] in pos. slopes − avg. of x̃m[k] in neg. slopes

≈ (avg. pos. slope − avg. neg. slope) rm (3.83)

Of course, the slope is nothing more than the derivative of the signal, so we can rewrite

Equation 3.83 as follows:

1

N

N−1∑

k=0

x̃m[k] × sgn(x′
m[k]) = rm

1

N

N−1∑

k=0

x′
m[k] × sgn(x′

m[k]) (3.84)

In the above equation, taking the sign of the derivative is equivalent to a 1-bit quantization

of the derivative. A natural thing to do to generalize this equation is to remove the
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sign function in order to get a “non quantized” version of the derivative. This yields an

expression that indicates that the product average between each sub-ADC’s output signal

and each corresponding derivative is proportional to the timing offset and the average

power of the derivative:

1

N

N−1∑

k=0

x̃m[k] × x′
m[k] = rm

1

N

N−1∑

k=0

x′
m[k]2 (3.85)

The timing offsets can straightforwardly be obtained from the above equation by calcu-

lating the following ratio:

r̂m =

∑N−1
k=0 x̃m[k] × x′

m[k]
∑N−1

k=0 x′
m[k]2

(3.86)

In the next section, we will demonstrate that this intuitive skew mismatch estimation

formula is valid with small changes. For example, the true derivative must be replaced

by its estimate, obtained by filtering the mismatch-corrupted TIADC output signal (see

Section 3.6.2). We will see that this seemingly small change must be compensated to

obtain accurate timing offset estimates.

3.6.3.2 Theoretical explanation – WSS process

In this section, we formally describe the skew mismatch estimation algorithm. We

first assume that the input signal is a realization of random WSS process, and then extend

the proofs to non-stationary random processes.

As a starting point, let us analyze the covariance between each sub-ADC’s output sig-

nal and their corresponding derivative estimate. As shown in Section 3.6.2, the derivative

can be estimated by filtering the TIADC output signal with the FIR filter with 2Kd + 1

coefficients fd[k]. Therefore, the output of the derivative filter is itself a realization of a

discrete random process
{

X̃ ′
n

}

:

X̃ ′
n =

Kd∑

l=1

fd[k]
(

X̃n+l − X̃n−l

)

(3.87)

Correlating the output signal of one sub-ADC to its derivative is the same as taking

the expected value Γm of the product between the discrete random process
{

X̃kM+m

}

=

{Xt, t = (kM + m + rm)Ts} associated to this sub-ADC, and the random process X̃ ′
kM+m

associated to the derivative estimate:

Γm = E
(

X̃kM+mX̃ ′
kM+m

)

=
Kd∑

l=1

fd[l]
[

E
(

X̃kM+mX̃kM+m+l

)

− E
(

X̃kM+mX̃kM+m−l

)]

(3.88)
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This expression can be rewritten in terms of the autocovariance function rXX(τ) of the

input random process:

Γm =
Kd∑

l=1

fd[l] [rXX((l + rm+l − rm)Ts) − rXX((l − rm−l + rm)Ts)] (3.89)

where rm+l denotes the normalized timing offset associated to sub-ADC m + l 8. As

mentioned before, the timing offsets are assumed to be small as compared to the sampling

period, which means that rm ≪ 1. The autocovariance function in expression 3.89 can

therefore be approximated by its 1st-order Taylor expansion:

Γm =
Kd∑

l=1

fd[l] (rXX [l] + (rm+l − rm)r′
XX [l] − rXX [l] − (rm − rm−l)r

′
XX [l])

= −2rm

Kd∑

l=1

fd[l]r′
XX [l] +

Kd∑

l=1

fd[l](rm+l + rm−l)r
′
XX [l] (3.90)

The expression of Γm shows that the covariance between each sub-ADC’s output signal

and its estimated derivative is not only proportional to the timing offset rm (contrary

to what we thought in our intuitive analysis). The right-hand side of the equation is

comprised of

— A term proportional to the timing offset rm with a proportionality constant ap-

proximately equal to the average power of the derivative. The demonstration in

Appendix ??) indeed shows that

Kd∑

l=1

fd[l]r′
XX [l] ≈ 1

2
E
([

X̃ ′
n

]2
)

(3.91)

— An “interference” term that is a linear combination of the surrounding sub-ADCs’

timing offsets, the derivative filter coefficients fd[l], and the derivative of the auto-

covariance function r′
XX [l] taken at different time lags l. The proof in Appendix ??

shows that the derivative of the autocovariance function can be expressed:

r′
XX [l] =

1

2
E ((Xn+l − Xn−l) X ′

n) ≈ E
((

X̃n+l − X̃n−l

)

X̃ ′
n

)

(3.92)

In fact, this linear system of equations relating the covariance functions {Γm, m ∈ M}
with the the timing offsets {rm, m ∈ M} can be inverted, and the timing offsets can be

expressed in terms of the covariance functions. This system of equations is better seen

8. Since there are only M sub-ADCs, the subscript m + l must be interpreted as (m + l) mod M but
the modulo sign is here voluntary omitted in order to keep the notations simple.
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by rewriting expression 3.90 in matrix form:

Γ = −
Kd∑

l=1

fd[l]r′
XX [l]Cl∆ (3.93)

where Γ = [Γ0, · · · , ΓM−1]
T is a column vector containing the covariance functions, ∆ =

[r0, · · · , rM−1]T is a column vector containing the timing offsets, and Cl is a M×M -matrix

which coefficients Cl(i, j) are defined as follows 9:

— If l mod M 6= 0:

Cl(i, j) =







2 if i 6= j

−1 if j = (i + l) mod M or j = (i − l) mod M

0 otherwise

(3.94)

— If l mod M = 0:

Cl(i, j) = 0 ∀(i, j) ∈ M2 (3.95)

Each matrix Cl is a circulant matrix because each of its row vectors is equal to the above

row vector rotated one element to the right. In other words, the matrix Cl is comprised

of shifted versions of its topmost row vector:

cl =




2, 0 · · · 0

︸ ︷︷ ︸

(l mod M)−1 zeros

, −1, 0 · · · 0
︸ ︷︷ ︸

M−2(l mod M)−1 zeros

, −1, 0 · · · 0
︸ ︷︷ ︸

(l mod M)−1 zeros






T

(3.96)

The M × M matrix C = −∑Kd

l=1 fd[l]r′
XX [l]Cl is also a circulant matrix because circulant

matrices form a commutative algebra. The matrix C is assumed to have a rank equal

to M − 1 even though it difficult to formally prove (see Appendix ??). Having a rank

of M − 1 makes the matrix non-invertible, which means that the timing offset vector ∆

cannot be obtained by solving the system of equations Γ = C∆.

Intuitively, this non-invertability is not too surprising because the timing offset vec-

tor ∆ contains the absolute timing offsets of the sub-ADCs. It consequently contains

information about the global delay of the TIADC output signal with respect to the input

signal. Of course, it is not possible to infer the absolute sampling delay from the TIADC

output signal because the absolute time information does not exist anymore after sam-

pling. The system has an infinite number of solutions. If a vector of timing offsets is a

solution to the system, then adding a global delay to each of its coordinate, generates

another solution to the system. This is not an issue for our problem because we only

want to measure the timing offset difference between the sub-ADCs. We have no interest

9. i represents the row index, j represents the column index
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in the global delay.

It is easy to slightly modify the system of equations in order to suppress the contribu-

tion of the global delay. For instance, we can arbitrarily choose that the timing offset of

sub-ADC 0 is r0 = 0 (or any other value) and solve the system for the remaining timing

offsets {rm, m ∈ M∗}. In that case, the system of equation to solve becomes:

Γ = Cr∆r (3.97)

where ∆r = [r1, · · · , rM−1]
T and Cr is the M × M − 1 matrix obtained by removing the

first column of C. The reduced matrix Cr has M − 1 independent columns because the

rank of C is M − 1. Consequently, CT
r Cr is non-singular and the system of equations

defined in 3.97 can be solved using the pseudo-inverse of Cr. Solving the system gives

the value of the timing offsets as functions of the covariance functions 10:

∆r =
(

CT
r Cr

)−1
CT

r Γ (3.98)

The last step is to replace the quantities in this equation by their estimates. Doing

so leads to the skew mismatch estimation formula:

∆̂r =
(

ĈT
r Ĉr

)−1
ĈT

r Γ̂ (3.99)

where

— ∆̂r = [r̂1, · · · , r̂M−1] is a vector containing the timing delays estimates of sub-ADC

1 to sub-ADC M − 1 (sub-ADC 0 is assumed to have a delay equal to zero)

— Ĉr is a M×M−1 matrix containing the M−1 last columns of Ĉ =
∑Kd

l=1 fd[l]r̂′
XX [l]Cl.

The sampled autocovariance derivative r′
XX [l] can be estimated by replacing the

random variables in Equation 3.92 by their realization, and by averaging over N

samples:

r̂′
XX [l] =

1

2N

N−1∑

n=0

(x̃[n + l] − x̃[n − l])x̃′[n] (3.100)

— Γ̂ =
[

Γ̂0, · · · , Γ̂M−1

]

is a vector containing the estimates of the covariance between

10. The skew estimation formula 3.98 is easily obtained by multiplying each side of expression 3.97:
CT

r :
CT

r Γ = CT
r Cr∆r

and then by
(
CT

r Cr

)−1
:

∆r =
(
CT

r Cr

)−1
CT

r Γ
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the signal derivative and the sub-ADCs’ output signals:

Γ̂m =
1

N

N−1∑

k=0

x̃m[k]x̃′
m[k] (3.101)

3.6.3.3 Theoretical explanation – non-stationary process

As with gain mismatch estimation, the skew mismatch estimation formula in Equa-

tion 3.101 is valid, with some constraints, when the input signal is a realization of a

non-stationary random process. This is better understood by looking at the calculation

of the covariance between each sub-ADC’s output signal and its derivative (Equation 3.88)

when the input random process {Xt} is non-stationary:

Γm =
Kd∑

l=1

fd[l]
[

E
(

X̃kM+mX̃kM+m+l

)

− E
(

X̃kM+mX̃kM+m−l

)]

(3.102)

Now, the autocovariance function depends both on the time and the time lag:

Γm =
Kd∑

l=1

fd[l] [rXX((kM + m + rm)Ts, (l + rm+l − rm)Ts)

− rXX((kM + m + rm)Ts, (l − rm−l + rm)Ts)] (3.103)

As with the WSS case, this expression can be expanded using a first-order Taylor approx-

imation with respect to the time-lag τ . As in Equation 3.90, the two zero-order terms

cancel out:

Γm ≈
Kd∑

l=1

fd[l]Ts(−2rm + rm+l + rm−l)
∂rXX

∂τ
((kM + m + rm)Ts, lTs) (3.104)

This equation can further be simplified by linearizing with respect to the time variable t,

and by neglecting the second-order terms:

Γm ≈
Kd∑

l=1

fd[l]Ts(−2rm + rm+l + rm−l)
∂rXX

∂τ
((kM + m)Ts, lTs)

+
Kd∑

l=1

fd[l] T 2
s rm(−2rm + rm+l + rm−l)
︸ ︷︷ ︸

≈0

∂2rXX

∂τ∂t
((kM + m)Ts, lTs) (3.105)

Therefore, the covariance between each sub-ADC’s output signal and its derivative can

be written in terms of the partial derivative of the discrete autocovariance function and
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the timing offsets:

Γm ≈
Kd∑

l=1

fd[l]Ts(−2rm + rm+l + rm−l)
∂rXX

∂τ
[kM + m, l] (3.106)

where ∂rXX

∂τ
[kM + m, l] = Ts

∂rXX

∂τ
((kM + m + rm)Ts, lTs). The {Γm, m ∈ M} are time-

dependent, as opposed to the WSS case. However, the estimates {Γ̂m, m ∈ M} of

{Γm, m ∈ M}, obtained by replacing the expectation by a finite-length average, converge

toward a value independent of the sub-ADC index m if certain conditions are verified. If

we replace those estimates by their expression, we obtain:

Γ̂m =
1

N

N−1∑

k=0

x̃m[k]x̃′
m[k] =

Kd∑

l=1

fd[l]Ts(−2rm + rm+l + rm−l)
1

N

N−1∑

k=0

∂rXX

∂τ
[kM + m, l]

(3.107)

In order for the above expression to be independent of the sub-ADC index m, the av-

erage of the autocovariance function’s derivative must converge to a value independent

of m. This requirement enforces conditions on the autocovariance function that are

similar to those enforced on the variance with gain mismatch estimation. Without div-

ing into the same level of details as in section 3.5.3.3, one can say that the average
1
N

∑N−1
k=0

∂rXX

∂τ
[kM + m, l] converges to a value independent of m if the partial derivative

∂rXX

∂τ
(t, τ) of the autocovariance function with respect to τ does not contain significant

periodic components (with respect to the variable t) at frequencies multiples of Fs/M .

If this is verified for the autocovariance function itself (see conditions in section 3.5.3.3),

then it is also verified for its partial derivative with respect to τ . Indeed, differentiating

with respect to τ is a linear operation that does not add new components in the frequency

domain associated to the variable t.

Thus, when the average length N tends to infinity, the estimates {Γ̂m, m ∈ M} only

depend on the sub-ADCs’ timing offsets and the m-independent stationary components
∂rXX

∂τ
[l] of the autocovariance function partial derivatives:

lim
N→+∞

1

N

N−1∑

k=0

x̃m[k]x̃′
m[k] =

Kd∑

l=1

fd[l]Ts(−2rm + rm+l + rm−l)
∂rXX

∂τ
[l] (3.108)

where ∂rXX

∂τ
[l] = limN→+∞

1
N

∑N−1
k=0

∂rXX

∂τ
[kM + m, l].

This quick analysis demonstrates that the skew mismatch estimation formula in Equa-

tion 3.99 is valid when the input signal is a realization of a non-stationary random process

if its autocovariance function verifies specific conditions. As seen in Section 3.5.3.3, those

conditions are generally met for typical communication signals.
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3.6.4 Generalization

Interestingly, if we have a closer look at Equation 3.93, we notice that the filter

coefficients {fd[l], l ∈ {1, · · · , Kd}} could be chosen arbitrarily, i.e. that they do no

need to be the coefficients of a derivative filter. One could pick any set of coefficients

{fe[l], l ∈ {1, · · · , Ke}} without changing the skew estimation formula. As long as the

values of the autovariance derivative {r′
XX [l], l ∈ {1, · · · , Ke}} are known, the skew mis-

match estimation formula remains valid 11.

It means that correlating each sub-ADC’s output signal xm[k] with the output signal

xe
m[k] of any antisymmetric filter does not change the estimation technique. This is a big

advantage when it comes to circuit implementation. The proof in Appendix ?? shows

that one cannot be completely sure that the matrix C has a rank M − 1, and therefore

that the matrix CT
r Cr is invertible. It is technically possible to design a matrix inversion

circuit that verifies the singularity of a matrix before trying to invert it but it is an

additional burden that a designer prefers to avoid.

A way to avoid performing the matrix inversion is to use a one-coefficient filter, such

that Ke = 1 and fe[1] = 1. In this case, the matrix C has a simple form:

C = −r′
XX [1]C1 (3.109)

It can be proven (see Appendix ??) that the matrix C has a rank M − 1 if r′
XX [1] 6= 0.

The skew mismatch estimation formula becomes

∆̂r =
(

ĈT
r Ĉr

)−1
ĈT

r Γ̂ =
1

r̂′
XX [1]

(

CT
1rC1r

)−1
C1rΓ̂ (3.110)

where C1r is a M × M − 1 matrix obtained by taking C1 and removing its first column.

As opposed to the multi-coefficient case, the matrix to invert is constant such that its

inversion does not have to be performed on-chip. The calculation of the pseudo-inverse

matrix
(

CT
1rC1r

)−1
C1r can be performed off-chip, and the result can be hard-coded in

the circuit.

3.6.4.1 Circuit implementation

Skew mismatch estimation as described in Equation 3.110 is easy to implement in

a circuit. The estimation is direct (as opposed to adaptive), which means that it can

be performed with one iteration with no need for a feedback loop. The timing offset

estimates are available after calculating a finite-length average over a single batch of

11. The derivative filter is still needed for the correction part and for the estimation of the covariance
derivatives.
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M × N samples. The estimation can be performed at start up, and then continuously or

sparsely during the normal operation of the circuit.

Figure 3.23 shows the global block diagram of the circuit implementation. The design

TIADC

Multiplication by
1

r̂′

XX
[1]

(

CT
1rC1r

)−1 C1r

Average

N samples

x(t)

x̃0[k] · · · x̃M−1[k]

Filtered signal

x̃e
0[k] · · · x̃e

M−1[k]

Γ̂0 · · · Γ̂M−1 r̂1 · · · r̂M−1

Autocovariance derivative

sample r̂′
XX [1]

Covariance function

calculation (sub-ADC speed)

Post-processing

(low speed)

Figure 3.23 – Skew mismatch estimation block diagram

can be separated into a “high-speed” part and a “low-speed” part. The “high-speed” part

corresponds to the calculation of the covariance between each sub-ADC’s output signal

and its corresponding derivative, which needs to have a throughput equal to the TIADC

sampling rate. The matrix multiplication, on the other hand, can be done at a much

lower rate.

The calculation of the post-processing matrix
(

CT
r Cr

)−1
Cr uses the estimate of the

autocovariance derivative r̂′
XX [1]. This estimate is obtained by adding a stage to the

derivative filter, as illustrated in Figure 3.24. This is possible because the calculation

reuses some terms that are also used for the calculation of the signal derivative. Indeed,

Equation 3.100 shows that the calculation of r̂′
XX [1] contains the product between the

signal derivative taken at time n, and the difference between adjacent signal samples

taken respectively at time n + 1 and time n − 1. The former term is the output of the

derivative filter while the latter term is an intermediate calculation done in one of the

filter stages.

3.6.4.2 Accuracy analysis

The skew mismatch SNDR equation in Chapter 2 shows that when the skew mis-

matches are small the SNDR depends on the frequency of the input signal and the RMS

skew mismatch level σr. The residual timing offsets {r̃m = r̂m − rm, m ∈ M} are de-

fined as the difference between the true timing offsets and their estimates, and the RMS
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TIADC output

samples x̃[k]

samples x̂′[k]

Derivative

fd[Kd − 1]fd[Kd] fd[1]

Average

N samples

2fd[1]r̂′
XX [1]

Figure 3.24 – Modification of the derivative filter implementation to calculate the au-
tocovariance derivative

residual skew mismatch level σr̃ is defined as

σr̃ =
1

M

M−1∑

m=0

r̃2
m (3.111)

For a sine input, the SNDR due to residual timing skew mismatches is

SNDR = 20 log10 (ω0σr̃) (3.112)

where ω0 is the angular frequency of the sinusoid.

The plots displayed in Figure 3.25 show the SNDR as a function of the average length

N when the skew estimation is performed on a QAM modulated signal. The SNDR is

calculated for a sine input with an input frequency equal to the cut-off frequency of the

derivative filter, which in this example is 0.8π.

Not surprisingly, the accuracy of the estimation increases when the average length

increases. It appears that the bandwidth of the QAM modulated signal (normalized to

Fs) does not affect the performance much. However, the higher is the carrier frequency,

the better is the estimation. This effect is normal because the mismatch effects are

smaller at a lower carrier frequency, and it takes more time to average out the signal
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Figure 3.25 – [Skew mismatch estimation accuracy as a function of the average length
(M = 12, σr = 1%, sine input frequency ω0 = 0.8π, residual timing offset
mismatches averaged over 50 Monte-Carlo simulations, no quantization)

contribution. Interestingly, above a certain average length, the SNDR reaches a plateau

where the estimation accuracy does not improve anymore. This plateau happens when

the second-order timing errors become limiting.

The residual level of skew mismatch noise reached when N > 105 is however equivalent

to the quantization noise of a 11-bit ADC. In practice, the average length often needs to

be higher in a real TIADC because other sources of noise also need to be averaged out

(quantization noise or thermal noise for example).

3.6.5 Conclusion

This section presented a non-iterative skew mismatch calibration technique that relies

on the timing offsets being small as compared to the sampling period. The estimation

algorithm is guaranteed to converge when the input signal is a realization of a non-

stationary random process verifying certain requirements. Specifically, the non-stationary

component of the autocovariance function must not contain spurious tones at frequencies

multiple of Fs/M . In practice, we showed that this requirement held true for pulse-shaped

modulated signals.

In a real implementation, the skew mismatch calibration is the last stage of calibration

because it must be performed after the correction of the static gain mismatches, the
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frequency-dependent gain mismatches and the frequency-dependent phase mismatches.

The next section describes the bandwidth mismatch calibration technique. As we will

see, it borrows some concepts from the skew mismatch calibration technique, particularly

for the correction phase.

3.7 Bandwidth mismatch calibration

3.7.1 Introduction

Bandwidth mismatch calibration is complicated because bandwidth mismatches create

frequency-dependent gain mismatches, and frequency dependent phase mismatches. To

simplify the problem, we only look at first-order bandwidth mismatches, which are a

good approximation of mismatches that occur in practice. The bandwidth mismatch

calibration algorithm is performed in two distinct phases:

— estimating the mismatches by calculating the time-constant associated to each

sub-ADC (or equivalently the cut-off frequencies)

— correcting the mismatches by equalizing the sub-ADC frequency responses

The bandwidth mismatch estimation algorithm, described in section 3.7.3, is done by

measuring the frequency dependent gain mismatches that are induced by the bandwidth

mismatches. The bandwidth mismatch correction technique is detailed in Section 3.7.2

and is very similar to the timing skew mismatch correction technique.

3.7.2 Bandwidth mismatch correction

3.7.2.1 General idea

The aim of the bandwidth mismatch correction stage is to correct the TIADC output

signal such that the sub-ADCs appear to have been passed through filters with equal

frequency responses. This step requires the sub-ADC time-constants to be known. The

bandwidth mismatch estimation stage, which operation is explained in section 3.7.3,

provides estimates of those time constants.

The structure of the bandwidth mismatch correction stage, shown in Figure 3.26, is

similar to the structure of the skew mismatch correction stage, albeit with a different

filter.

We assume that the time-constant offsets are small as compared to the original nomi-

nal time-constant so that the sampling error at each sub-ADC’s output can be linearized.

With this linearization, a sub-ADC’s sampling error due to bandwidth mismatches is

proportional to the sub-ADC’s time-constant offset and the low-pass filtered signal’s
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ŷm[k]ỹm[k]x(t)

Estimated time-constant offset b̂m

ADC m

Low-pass derivative samples ỹ′
m[k]

Figure 3.26 – Bandwidth mismatch correction block diagram

derivative. Once the time-constant offset is known, the original signal is recovered by

calculating the error signal and by subtracting it from each sub-ADC’s output signal.

3.7.2.2 Theoretical explanation

In a TIADC, each sub-ADC’s input signal is filtered by a different first-order low-

pass filter (see explanation in Chapter 2). Each filter’s continuous frequency response

{Hm(Ω), m ∈ M} is defined as:

Hm(Ω) =
1

1 + jΩτm

(3.113)

where {τm, m ∈ M} is the time-constant of the low-pass filter. Each filter’s time-constant

can also be expressed as a sum between the average (or nominal) time-constant τ̄ and a

time-constant offset {∆τm, m ∈ M}. Using this notation, the filter’s frequency response

becomes:

Hm(Ω) =
1

1 + jΩ(τ̄ + ∆τm)
(3.114)

If the mismatches are small, i.e. if the time-constant offsets are small as compared to

the nominal time constant (∆τm ≪ τ̄), the filter frequency response can be expanded by

its Taylor series around the nominal time constant τ̄ :

Hm(Ω) ≈ 1

1 + jΩτ̄

(

1 +
∆τm

τ̄

jΩτ̄

1 + jΩτ̄

)

(3.115)

The CTFT of each sub-ADC’s output signal (before sampling) is a sum of an ideal term

Y (Ω) = X(Ω)
1+jΩτ̄

corresponding to the TIADC input signal filtered by the nominal low-pass
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filter, and an error term:

Ỹm(Ω) =
X(Ω)

1 + jΩτ̄

(

1 +
∆τm

τ̄

jΩτ̄

1 + jΩτ̄

)

= Y (Ω)
︸ ︷︷ ︸

desired signal

+
∆τm

τ̄
Y (Ω)

jΩτ̄

1 + jΩτ̄
︸ ︷︷ ︸

error term

(3.116)

The error signal is proportional to the normalized time-constant offset and the desired

signal filtered by a low-pass derivative filter. The frequency response of the low-pass

derivative filter is:

Hb(Ω) =
jΩτ̄

1 + jΩτ̄
(3.117)

The denomination “low-pass derivative filter” stems from the fact that the frequency

response is a product between a derivative filter (response jΩ) and a first-order low-pass

filter (response 1
1+jΩτ̄

).

It is clear from Equation ?? that the bandwidth mismatch correction problem is

similar to the skew mismatch correction problem. The only differences are that a low-

pass derivative filter Hb replaces the derivative filter, and the time-constant offsets replace

the timing offsets. The bandwidth mismatch reconstruction equation can consequently

be expressed as follows:

ŷm[k] = ỹm[k] − β̂mỹ ∗ fb[kM + m] (3.118)

where fb[n] is the discrete impulse response of the low-pass derivative filter, ỹ[n] represents

the mismatch-corrupted TIADC output signal, and β̂m = ∆̂τm

τ̄
is the estimated normalized

time-constant offset. The low-pass derivative filter output signal associated to each sub-

ADC is denoted ỹ′
m[n] = ỹ ∗ fb[kM + m].

The discrete impulse response of the low-pass derivative filter is obtained by convolving

the continuous time impulse response hb(t) with an antialiasing filter, and by sampling

the result at interval nTs:

fb[n] =
∫ +∞

−∞
hb(u) sinc

(
nTs − u

Ts

)

du (3.119)

The term hb(t) is the continuous-time impulse response of the low-pass derivative filter,

and it is equal to the derivative of the continuous impulse response h(t) = e−t/τ̄ of the

nominal low-pass filter:

hb(t) =
d

dt
h(t) = −1

τ̄
e−t/τ̄ (3.120)

Inserting the expression of hb(t) into Equation 3.119 gives the discrete impulse response
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of the low-pass derivative filter:

fb[n] = −1

τ̄

∫ +∞

−∞
e−u/τ̄ sinc

(
nTs − u

Ts

)

du (3.121)

The right-hand side of this equation does not have a close-form expression but the coef-

ficients can be approximated with the help of mathematical tools such as Matlab (see in

next section).

3.7.2.3 Circuit implementation

The 2Kb + 1 low-pass derivative filter coefficients are obtained similarly to those of

the derivative filter, by windowing the infinite filter impulse response in Equation 3.121.

Since no close form of the impulse response exists, the filter coefficients are calculated

using the symbolic calculation toolbox of Matlab. An example of those coefficients is

plotted in Figure 3.28b.

The hardware implementation of the low-pass derivative filter is shown in 3.28. As

TIADC output

samples ỹ[k]

Low-pass derivative

samples ỹ′[k]

fb[Kb − 1]fb[Kb] fb[1] fb[0]

Figure 3.27 – Efficient low-pass derivative filter implementation

opposed to the derivative filter, the coefficients of the low-pass derivative filter are not

symmetric. They cannot be regrouped in order to reduce the number of fixed multipliers.

The frequency response of the filter is shown in Figure 3.28a. Once again, one can notice

that the windowing improves the accuracy of the in-band response by reducing the ripples.

Naturally, increasing the number of coefficients leads to a frequency response closer

the ideal frequency response. Increasing the number of coefficients enables to increase the

filter’s cut-off frequency, and an analysis similar to that of the derivative filter accuracy

could be done here.

Figure 3.29 illustrates the performance of the bandwidth mismatch correction tech-

nique by showing the TIADC output spectrum before and after correction. The band-

width mismatch spurious tones are reduced from -60 dBFS level down to the noise floor.
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Figure 3.28 – Frequency response of the low-pass derivative filter for different windows
(Kb = 16)

The design of the low-pass derivative filter requires to know the nominal time-constant

of the sub-ADCs. This average time-constant can be obtained through Monte-Carlo

simulations of the analog front-end. However, in practice, nothing guarantees that the

sub-ADC time-constants of one particular chip will be centered around this nominal

time-constant. It is possible that for one particular chip, the filter time-constant is

underestimated or overestimated. The impact of this problem on the correction accuracy

is illustrated in Figure 3.30. The figure shows that the SNDR after correction decreases

when the input signal frequency increases. This degradation at high frequency stems from

the fact that the second-order bandwidth mismatch errors become dominant at high

input signal frequency. Overestimating or underestimating the nominal time-constant

primarily degrades the performance at low frequencies, where the second-order errors are

not dominant.
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Figure 3.29 – Output spectrum before and after bandwidth mismatch correction (B =
9, M = 12, Kb = 32, NFFT = 12 × 4096, σβ = 1% b̄ = 1/2π, true
time-constant offsets used for correction)
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Figure 3.30 – Bandwidth mismatch estimation accuracy as a function of the input fre-
quency (M = 12, σβ = 1%, Kb = 128, b̄ = 1/2π, true time-constant
offsets used for correction)

3.7.3 Bandwidth mismatch estimation

3.7.3.1 General idea

Bandwidth mismatches create both frequency-dependent gain and phase mismatches.

When the input signal x(t) = A cos(Ωt + φ) is a sine wave, the signal y(t) seen by each

sub-ADC is

y(t) =
A

√

1 + (Ωτ)2
cos (Ωt + φ − atan(Ωτ)) (3.122)

When there are bandwidth mismatches, the sub-ADC output signals {ỹm[k], m ∈ M} are

therefore:

ỹm[k] = Aγm(ω) cos (ω(kM + m) + φ − ϕm(ω)) (3.123)

where γm(ω) is a frequency-dependent gain

γm(ω) =
1

√

1 + ω(b̄ + ∆bm)2
(3.124)

and ϕm(ω) is a frequency-dependent phase

ϕm(ω) = − atan(ω(b̄ + ∆bm) (3.125)
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Let us remind that b̄ = τ̄ /Ts is the normalized average time-constant and {∆bm =

∆τ/Ts, m ∈ M} are the normalized time-constant offsets.

It seems that the bandwidth mismatches can be estimated by looking either at a

gain-dependent quantity or at a phase dependent quantity (or a combination of both).

The approach that was chosen in this work was to measure a gain-dependent quantity.

However, it is realistic to think that it is possible to extend the findings in this chapter

by including measurements of a phase-dependent quantity.

A natural idea is to use the gain mismatch estimation algorithm presented earlier to

estimate the relative gains between the sub-ADC, and deduce the amount of bandwidth

mismatch from the measurement. However, this approach is only possible if the static gain

mismatches, i.e. the non frequency-dependent gain mismatches, are absent or small. If

there are static gain mismatches, the estimation of the variance of each sub-ADC’s output

signal is affected both by the frequency-dependent gain mismatches and the static gain

mismatches, and it is impossible to distinguish between the two types of mismatches.

Therefore, it is necessary to isolate the frequency-dependent gain mismatch effects

from the static gain mismatch effects. A solution to tackle this problem is to measure the

variance of each sub-ADC’s output signal for different frequency bands. Conceptually,

the idea is to measure each sub-ADC’s output power for low input signal frequencies,

and then each sub-ADC’s output power for high input signal frequencies. These two

powers supposedly differ from each other, and taking their ratio eliminates the static

gain contribution.

In order for these quantities to be non-zero, the signal must have frequency content

both at high and low input frequencies. For example, let us say that the signal is a sum of

a sine input at a low frequency ΩL with amplitude AL, and a sine input a high frequency

ΩH with amplitude AH :

x(t) = AL cos(ΩLt) + AH cos(ΩHt) (3.126)

In presence of both static gain mismatches and bandwidth mismatches, each sub-ADC’s

output signals can be expressed:

ỹm[k] = ALgmγm(ωL) cos (ωL(kM + m) − ϕm(ωL))

+ AHgmγm(ωH) cos (ωH(kM + m) − ϕm(ωH)) (3.127)

Let us suppose that there is a way to measure each sub-ADC’s output power {P L
m, m ∈

M} corresponding to low input frequencies, and each sub-ADC’s output power {P H
m , m ∈
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M} corresponding to high input frequencies, such that

P L
m =

1

2
A2

Lg2
mγ2

m(ωL) (3.128)

P H
m =

1

2
A2

Hg2
mγ2

m(ωH) (3.129)

For each sub-ADC, the ratio βm of these powers is independent of the static gain:

βm =
A2

Lγ2
m(ωL)

A2
Hγ2

m(ωH)
(3.130)

These power ratios can serve as a measure of the bandwidth mismatches because they

only contain information about the frequency-dependent gains of the sub-ADCs. In

expression 3.130, it is interesting to notice that the ratios become independent of the

bandwidth mismatches if the frequencies of the two sine waves are the same, or if the

amplitude of one of the sine waves if zero. It tells us that estimating the bandwidth

mismatches requires the input signal to span a sufficient frequency range, which seems

quite intuitive given that we are trying to detect frequency-dependent mismatches. Doing

so on a single sine wave with unknown frequency is obviously not possible.

The next section provides an analytical approach to explain how to extract the time-

constant offset estimates from the power ratios.

3.7.3.2 Cosine and sine filtering

The idea presented in the previous section requires measuring the power of the signal in

two different frequency regions. However, it we filter the TIADC output signal, the filter

output signal is a linear combination of of the sub-ADC output signals, and it contains

information about each single sub-ADC. The only viable solution is to filter each sub-

ADC’s output signal separately, which constrains a lot the frequency response of the filter

that it is possible to design. Since each sub-ADC’s output signal is a subsampled version

of the TIADC output signal, the equivalent frequency response of the filter at the TIADC

full rate is comprised of aliases at multiple of Fs/M of the frequency response of the filter

at the sub-ADC sampling rate, as shown in Figure 3.31. In other words, if the frequency

response of the filter at the output of the sub-ADC is H(ejω′

), its equivalent frequency

response the TIADC sampling rate is H(ejω) = 1
M

H
(

ejω′

)∣
∣
∣
ω′=Mω

The original idea of extracting low and high frequency components of the entire signal

by filtering only one sub-ADC output is therefore compromised. Instead, we can design

sub-ADC filters which frequency responses are somewhat complementary, such that one

filter one filter has its passband where the other one has its stopband. Sine and cosine

filters loosely correspond to this description. Their z-transforms are Hsin(z) = 0.5z −
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Frequency response at sub-ADC output (rate Fs/M)

Equivalent frequency response at TIADC output (rate Fs)

π

π

−π

−π

−π/2 π/2

ω′

ω

Figure 3.31 – Effects of upsampling on the frequency response of a filter (M = 4)

0.5z−1 and Hcos(z) = 0.5z + 0.5z−1. We call these filters sine and cosine filters because

their respective frequency responses are:

Hsin(ejω′

) = j sin(ω′) (3.131)

Hcos(e
jω′

) = cos(ω′) (3.132)

Their frequency response magnitudes, shown in Figure 3.32, illustrate the complemen-

tarity criterion. The sine filter has its zeroes were the cosine filter has its peaks and

conversely.

Frequency response at sub-ADC output (rate Fs/M)

Equivalent frequency response at TIADC output (rate Fs)

π

π

−π

−π

−π/2 π/2

ω′

ω

S&H frequency response

Sine filterCosine filter

Figure 3.32 – Spectral interpretation of sine and cosine filtering (M = 4)

102



3.7.3.3 Theoretical explanation – WSS process

The general idea behind the bandwidth mismatch estimation technique is to measure

the variance of each sub-ADC’s output signal after cosine filtering and after sine filtering,

and then calculate the ratio between those values (Figure 3.33). In order to more formally

prove the idea, we first make the assumption that the input signal is a realization of a WSS

random process. If the PSD of the TIADC input random process {Xt, t ∈ R} is RXX(Ω)

ADC m

(·)2

(·)2

Hcos(z) = 1
2(z + z−1)

Hsin(z) = 1
2(z − z−1)

Average

Average

N samples

N samples
x(t) ỹm[k]

P̂cos(bm)

P̂sin(bm)

γ̂m

Figure 3.33 – Bandwidth mismatch estimation block diagram

then the PSD associated to the continuous input random processes {Y m
t , t ∈ R, m ∈ M}

of each sub-ADC is

Rm
Y Y (Ω) =

RXX(Ω)

1 + (Ωτm)2
(3.133)

where each sub-ADC’s time-constant is of the form τm = τ̄ + ∆τm. If the signal is

bandlimited to the first Nyquist region, the PSD corresponding to the discretization of

the signal at rate Fs is naturally 12

R̆m
Y Y (ω) =

R̆XX(ω)

1 + (ωbm)2
(3.134)

and the PSD of the processes {Y m
t , t ∈ R, m ∈ M} sampled at a rate Fs/M are aliased

versions of the full rate PSD:

R̆m
Y Y (ω′) =

1

M

M−1∑

k=0

R̆m
Y Y

(

ω′

M
− k

2π

M

)

(3.135)

The PSDs after sine and cosine filtering (R̆m,cos
Y Y (ω′) and R̆m,sin

Y Y (ω′) respectively) corre-

spond sub-sampled PSDs (Equation 3.135) multiplied by the frequency response magni-

tude of the filters:

R̆m,cos
Y Y (ω′) = R̆m

Y Y (ω′) cos(ω′)2 (3.136)

R̆m,sin
Y Y (ω′) = R̆m

Y Y (ω′) sin(ω′)2 (3.137)

12. The symbol ·̆ is here used significate that the spectrum is made periodic with period 2π (DT-PSD).

103



We are trying to extract the time-constant offsets from the sine-filtered and cosine-

filtered variances. The variance (or power) Pcos(bm) (respectively Psin(bm)) can be ob-

tained by integrating the PSD R̆m,cos
Y Y (ω′) (respectively R̆m,sin

Y Y (ω′)) over the frequency

interval [−π, π].

Pcos(bm) =
∫ π

−π
R̆m

Y Y (ω′) cos(ω′)2dω′ (3.138)

Psin(bm) =
∫ π

−π
R̆m

Y Y (ω′) sin(ω′)2dω′ (3.139)

which can be further developed by replacing the sub-sampled PSD by its expression:

Pcos(bm) =
1

M

∫ π

−π
R̆m

Y Y (ω) cos(Mω)2dω′ (3.140)

Psin(bm) =
1

M

∫ π

−π
R̆m

Y Y (ω) sin(Mω)2dω′ (3.141)

If the normalized time-constant offsets {∆bm, m ∈ M} are small as compared to the

average normalized time-constant b̄, the sine and cosine powers can be approximated by

their 1st-order Taylor approximation around the average normalized time-constant b̄:

Pcos(bm) = Pcos(b̄) + ∆bm
∂Pcos

∂b

(

b̄
)

(3.142)

Psin(bm) = Psin(b̄) + ∆bm
∂Psin

∂b

(

b̄
)

(3.143)

where Pcos(b̄) (respectively Psin(b̄)) is the power that would have the cosine-filtered (re-

spectively sine-filtered) sub-ADC output signal if the S&H’s normalized time-constant

was b̄:

Pcos(b̄) =
∫ π

−π

R̆XX(ω)

1 + (ωb̄)2
cos(Mω)2dω (3.144)

Psin(b̄) =
∫ π

−π

R̆XX(ω)

1 + (ωb̄)2
sin(Mω)2dω (3.145)

As explained in the introduction of this section, making the bandwidth mismatch

estimation immune to static gain mismatches is achieved by taking the ratio {γm, m ∈ M}
between the sine power {P m

sin, m ∈ M} and the cosine power {P m
cos, m ∈ M}

γm =
Pcos(b̄) + ∆bm

∂Pcos

∂b

(

b̄
)

Psin(b̄) + ∆bm
∂Psin

∂b

(

b̄
) (3.146)

If the cosine and sine powers are non zero, rearranging Equation 3.146 leads to a band-

width mismatch estimation formula that provides a relation between the normalized
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time-constant offsets
{

βm = ∆bm

b̄
, m ∈ M

}

and the ratios {γm, m ∈ M}:

βm =
Pcos(b̄) − γmPsin(b̄)

γmb̄∂Psin

∂b

(

b̄
)

− b̄∂Pcos

∂b

(

b̄
) (3.147)

The partial derivatives of the cosine power (respectively sine power) are obtained

by differentiating Equation 3.140 (respectively Equation 3.141), and by swapping the

derivative and the integral operators:

b̄
∂Pcos

∂b

(

b̄
)

= −2
∫ π

−π

R̆XX(ω) cos(Mω)2(ωb̄)2

(

1 + (ωb̄)2
)2 dω (3.148)

b̄
∂Psin

∂b

(

b̄
)

= −2
∫ π

−π

R̆XX(ω) sin(Mω)2(ωb̄)2

(

1 + (ωb̄)2
)2 dω (3.149)

A closer look at these expressions indicates that the cosine (respectively sine) power

derivative are equal to the power of the output signal of the bandwidth mismatch cor-

rection filter Fb, itself filtered by a cosine filter (respectively sine filter)

b̄
∂Pcos

∂b̄

(

b̄
)

= −2
∫ π

−π
R̆Y Y (ω) cos(Mω)2

∣
∣
∣Fb

(

ejω
)∣
∣
∣

2
dω (3.150)

b̄
∂Psin

∂b̄

(

b̄
)

= −2
∫ π

−π
R̆Y Y (ω) sin(Mω)2

∣
∣
∣Fb

(

ejω
)∣
∣
∣

2
dω (3.151)

As we will see later, this equality makes it easy to calculate the value of the partial

derivatives.

3.7.3.4 Theoretical explanation – non-stationary process

The analysis in the previous section remains valid when the input signal is a realization

of a non-stationary random process. The reasons are similar to those mentioned for the

gain and skew mismatch estimation algorithms. When the TIADC input signal is non-

stationary, the variances of the cosine filtered and sine filtered sub-ADC output signals

depend on the time (variable k):

Pcos(bm) = E
(

1

2

[

Ỹ m
k+1 + Ỹ m

k−1

]2
)

= rm
Y Y [kM + m, 0] + rm

Y Y [kM + m, 1] (3.152)

Psin(bm) = E
(

1

2

[

Ỹ m
k+1 − Ỹ m

k−1

]2
)

= rm
Y Y [kM + m, 0] − rm

Y Y [kM + m, 1] (3.153)

where rm
Y Y [n, l] is the autocovariance function associated to sub-ADC m. As a conse-

quence, the ratios {γm[k], m ∈ M} are also time-dependent. This time-dependence is not

an issue for the estimation as long as the non-stationary components of {γm[k], m ∈ M}
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do not contain spurious tones at frequencies multiple of Fs/M . It means that the autoco-

variance function rY Y (t, τ) of the low-pass filtered input signal must not contain frequency

components (with respect to the time variable t) that are multiple of Fs/M . This con-

dition is true if the autocovariance function rXX(t, τ) of the input signal before low-pass

filtering also verifies the property. Indeed, the low-pass filtering operation does not add

new frequency components to the signal, just attenuate those which already exist.

3.7.3.5 Circuit implementation

The bandwidth mismatch estimation formula in Equation 3.147 contains quantities

that are replaced by their estimates in the circuit implementation of the algorithm.

Each power ratio {γm, m ∈ M} is replaced by its estimate {γ̂m, m ∈ M} that is a

ratio between a cosine power estimate
{

P̂cos(bm), m ∈ M
}

and a sine power estimate
{

P̂sin(bm), m ∈ M
}

.

γ̂m =
P̂cos(bm)

P̂sin(bm)
(3.154)

Each sine (respectively cosine) power estimate is obtained by calculating the mean square

of each sine-filtered (respectively cosine-filtered) sub-ADC’s output signal:

P̂cos(bm) =
1

N

N−1∑

k=0

[
1

2
(ỹm[k + 1] + ỹm[k − 1]2)

]2

(3.155)

P̂sin(bm) =
1

N

N−1∑

k=0

[
1

2
(ỹm[k + 1] − ỹm[k − 1]2)

]2

(3.156)

We do not know the ideal low-pass filtered signal because the sub-ADCs are corrupted

by bandwidth mismatch. Therefore, calculating the ideal cosine filtered power estimate

P̂cos(b̄) (respectively ideal sine filtered power estimate P̂sin(b̄)) directly is not possible.

However, if the number of sub-ADCs is large enough, one can consider that the time

constants have a normal distribution around b̄ such that the ideal cosine (respectively sine)

filtered power estimate can be obtained by averaging the cosine filtered power estimates
{

P̂cos(bm)
}

(respectively sine filtered power estimates
{

P̂sin(bm)
}

) across the sub-ADCs:

P̂cos(b̄) =
1

M

M−1∑

k=0

P̂cos(bm) (3.157)

P̂sin(b̄) =
1

M

M−1∑

k=0

P̂sin(bm) (3.158)

The sine and cosine power derivative estimates are obtained by replacing the signal term
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by the output signal of the bandwidth correction filter in the above equation:

b̄
∂P̂cos

∂b
(b̄) =

1

N

N−1∑

k=0

[
1

2
(ỹ′[k + 1] + ỹ′[k − 1])

]2

(3.159)

b̄
∂P̂sin

∂b
(b̄) =

1

N

N−1∑

k=0

[
1

2
(ỹ′[k + 1] − ỹ′[k − 1])

]2

(3.160)

Replacing all the theoretical by their estimates yields the following bandwidth mis-

match estimation formula:

β̂m =
P̂cos(b̄) − γ̂mP̂sin(b̄)

γ̂mb̄∂P̂sin

∂b

(

b̄
)

− b̄∂P̂cos

∂b

(

b̄
) (3.161)

In term of hardware cost, the sine and cosine filtered power estimations each require

one simple 2-tap filter per sub-ADC, two multipliers to square the output of the filters and

one adder to perform the average. The same amount of hardware is required for the cal-

culation of the cosine and sine power derivative estimates. The division in Equation 3.154

and Equation 3.161 can be processed at low speed with one multiplier.

3.7.4 Accuracy analysis

This section provides an analysis of the bandwidth mismatch estimation accuracy. The

bandwidth mismatch estimation algorithm was run on a narrow band signal (normalized

bandwidth of 0.014) at different carrier frequencies, and the RMS level of the residual

mismatches was measured and averaged over 10 Monte-Carlo simulations.

The residual mismatches are defined in term of the RMS error σβ̃ between the nor-

malized time-constant offset estimates and their true value.

σβ̃ =

√
√
√
√

1

M

M−1∑

m=0

(

β̂m − βm

)2
(3.162)

This residual mismatch level is in turn expressed as a function of the SNDR with a sine

input using (Equation 2.81). Figure 3.35 shows the variation of the SNDR as a function

of the average length N .

The plot in Figure 3.34 corresponds to the case where the RMS level of the bandwidth

mismatch was relatively high (σβ = 5%), and we see that the estimation accuracy does

not improve anymore above a certain average length. This limitation arises when the

estimation error becomes limited by the second-order terms. This phenomenon is further

emphasized when looking at Figure 3.35a where the initial mismatch level is smaller

(σβ = 1%). In this case, the attainable SNDR is much higher, and it is reached for a
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Figure 3.34 – Bandwidth mismatch estimation accuracy as a function of average length,
and for different modulated signals (M = 12, σβ = 5%, sine input fre-
quency ω0 = 0.8π residual mismatches averaged over 10 Monte-Carlo
simulations, no quantization)

bigger value of N . The plot in Figure 3.35b gives an example of the estimated time-

constant offsets values when the bandwidth mismatch estimation has converged.

3.7.5 Conclusion

This section addressed the problem of first-order bandwidth mismatch calibration. In

the proposed technique, both the bandwidth mismatch estimation and the bandwidth

mismatch correction take advantage of the fact that the time-constant offsets are small

as compared to the nominal time-constant of the S&H low pass filter. In this linear

regime, the bandwidth mismatch correction can be done using a FIR filter with fixed

coefficients, and the bandwidth mismatches are estimated by linearizing the mean-square

of a sine-filtered version and a cosine-filtered version of each sub-ADC’s output signal.

Importantly, the bandwidth mismatch estimation is insensitive to static gain mismatches,

and converges for non-stationary signals with only small restrictions.

108



Average length N

S
N

D
R

[d
B

]

Bw. = 0.014 - ωc = 0.21π
Bw. = 0.014 - ωc = 0.61π

104 106
30

40

50

60

70

80

90

(a) SNDR vs. average length
sub-ADC index

N
or

m
al

iz
ed

ti
m

e-
co

n
st

an
t

va
lu

e

True
Estimated

2 4 6 8 10 12
0.312

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

0.33

(b) sub-ADC time-constants

Figure 3.35 – Bandwidth mismatch estimation accuracy as a function of average length,
and for different modulated signals (M = 12, σβ = 1%, sine input fre-
quency ω0 = 0.8π, residual mismatches averaged over 10 Monte-Carlo
simulations, no quantization)
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3.8 Conclusion

The problem of TIADC blind background mismatch calibration has been a widely

studied topic in the literature, and numerous solutions have been proposed to alleviate

the effects of offset, gain, timing and bandwidth mismatches. This chapter adds two

major contributions to the state of the art.

First, making the assumption that the mismatches are small enables to linearize the

mismatch error models, and devise mismatch estimation algorithms that converge in

a single iteration. This approach greatly reduces the estimation time as compared to

adaptive calibration techniques. To the best of my knowledge, state of the art publications

on TIADC digital mismatch calibration all use adaptive architectures with feedback loops.

Adaptive techniques potentially have instability issues when the input signal is not known.

The algorithms proposed in this chapter are guaranteed not to stay in a non-converging

state for an undetermined amount of time in case a bad input signal situation happens

(absence of signal for example).

Second, the input signal conditions on which blind calibration relies were analyzed in

the context of wideband communication systems. The proposed estimation techniques

converge even if the input signal is non-stationary as long as certain spectral properties of

its autocovariance function are satisfied. Specifically, it is required that the non-stationary

part of the input signal autocovariance does not have spurious tones at frequencies mul-

tiple of Fs/M . These findings widen the generally admitted but restricting assumption

that the input signal must be WSS, which is important because WSS processes often do

not accurately describe communication signals. We showed that pulse-shaped modulated

signals exhibits properties that make them suitable for blind mismatch estimation, and

further work needs to be done to study a wider class of inputs such as OFDM signals.

One of the goals of this chapter was to emphasize the structural similarities between

the different calibration stages, particularly between skew mismatch calibration and band-

width mismatch calibration. It would be interesting to see other types of mismatches (n-th

order bandwidth mismatches for example) treated using the same type of framework.
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Chapter 4

Digital mismatch calibration circuit

implementation

4.1 Introduction

The previous chapter gave the theoretical foundations of the mismatch algorithms as

well as analysis and simulations that proved their performance. This chapter presents

a circuit implementation that embeds offset, gain and skew mismatch calibration [13].

Bandwidth mismatch calibration was not required in this implementation because the

circuit to calibrate was not foreseen to exhibit significant bandwidth mismatch impair-

ments.

The ADC in this implementation is a 1.62 GS/s TIADC comprised of 12 SAR sub-

ADCs. After mismatch calibration, it achieves mismatch spurs below -70 dBFS up to

750 MHz of input frequency.

4.2 Overall architecture

The overall architecture of the circuit is shown in Figure 4.1. It consists of a TIADC,

the “analog” front-end, followed by the digital mismatch calibration. The mismatch

calibration takes the 9-bit output samples of the TIADC and outputs 12-bit samples.

The calibration runs in the background and there is no feedback loop either toward the

analog-front-end or inside the digital unit itself.

The chip, which photo is shown in Figure 4.2, was designed in ST 40 nm CMOS

technology, and contains two copies of the same TIADC and two copies of the digital

mismatch calibration unit. It has a total area of 1.66 mm2 with 0.70 mm2 (42%) dedicated

to the digital mismatch calibration and 0.96 mm2 (58%) to the analog front-end.
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Figure 4.1 – Overall architecture of the circuit

Figure 4.2 – Die photo of the chip comprised of 2 copies of the 12-way TIADC and 2
copies of the digital mismatch calibration unit
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4.2.1 Analog front-end

The TIADC to calibrate is comprised of 12 SAR sub-ADCs, each having a sampling

frequency of 135 MS/s. All the sub-ADCs are driven by a 1.7 V input buffer that delivers

a differential input signal with a maximum amplitude of 1 V peak-to-peak. The input

buffer is a simple follower that isolates the signal source from the kickback noise generated

by the TIADC operation.

The sub-ADCs are radix-2 SAR ADCs (Figure 4.3), meaning that, during the quan-

tization, the input signal is successively compared to voltage levels that are ratios of two

of a reference voltage.

Vip

Vin

Cs

2

Cs

2

Cs

4

Cs

4

Cs

8

Cs

8

Cs

256

Cs

256

Cs

256

Cs

256

Cs

Top plate switches

Top plate switches

+

−

Vrp

Vrp

Vrn

Vrn

Vrm

Vrm

Vcm

Figure 4.3 – Sub-ADC architecture

The input signal is sampled individually by each of the SAR ADCs, and the signal

is held on a sampling capacitor, comprised of a bank of binary weighted capacitors.

This capacitor array has a custom interdigitated structure as shown in Figure 4.4. The

top plates of the capacitors are metal fingers (two layers) that are inserted into a comb

structure that represents the common bottom plate of the capacitors. The (lateral)

capacitance of each capacitor is determined by its number of fingers. The specificity of

this design is that the unit capacitor Cs/512 is made of a quarter finger and the capacitor

Cs/256 is made of a half finger. This custom layout structure ensures good matching

between the capacitors (and therefore a good ADC linearity), and the small size of the

overall structure helps reduce the wiring to the capacitors.

The signal is sampled using bottom plate sampling in order to reduce signal-dependent

charge injection on the sampling capacitor. During the tracking phase, the input signal

is tracked on the top plate of the sampling capacitor (top plate switch closed) and the
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Cs/16 Cs/32Cs/2
Cs/4
Cs/8
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Figure 4.4 – Custom layout of the binary weighted capacitor array

bottom plate is connected to a fixed-voltage Vcm = 700 mV (bottom plate switch closed).

The sampling is done in two phases (Figure 4.5). First, the bottom plate switch is opened,

Cs Cs Cs

Vip/in Vip/in Vip/in

Vcm Vcm Vcm

Tracking phase Sampling phase 1 Sampling phase 2

Figure 4.5 – Bottom plate sampling principle

which prevents the charge stored on the sampling capacitor to change. Second, the top

plate switch is opened in order to disconnect the input signal from the top plates of the

capacitors. When the top plate switch is opened, no charge injection can occur because

the bottom plates of the capacitors are in a high impedance state. The only time when

charge injection happens is when the bottom plate switch is opened. However, the charge

that is injected at that moment is not signal dependent, thereby only yielding a fixed

offset that gets cancelled out in differential operation.

The top plate switches are transmission gates made of back-to-back PMOS and NMOS

transistors to improves linearity. Indeed, as shown in Chapter 2, the resistance of a MOS

transistor depends on its gate-to-source voltage. That is why switches made of MOS

transistors have a signal-dependent on-resistance. Using a transmission gate reduces this

effect because the resistance of the PMOS, and the resistance of the NMOS vary in

opposite direction when the input signal amplitude varies.

The quantization process is done using the Merge Capacitive Switching (MCS) scheme [15].

The signal is successively compared to different voltage levels generated by the capacitive

DAC. In the MCS scheme, the top plates of the capacitors are initially all connected to a

middle voltage (Vrm = 250 mV). During this initial state, the differential voltage at the
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input of the comparator is Vi = Vip − Vin and the signal is therefore compared to 0 V.

Depending on the value of the MSB (1 if Vi > 0 and 0 if Vi < 0), the bottom plates of the

two MSB capacitors are either connected to a positive reference voltage Vrp = 750 mV, or

a negative reference voltage Vrn = 250 mV, such that the differential signal at the input

of the comparator is either Vi + (Vrp − Vrn)/2 or Vi − (Vrp − Vrn)/2. This operation is

managed by the SAR logic and is repeated until each bit is resolved. The fully differential

comparator is comprised of a two-stage pre-amplifier followed by a latch comparator.

Of course, the design of the TIADC was done carefully in order to minimize the

amount of mismatches but no additional analog circuitry was used for calibration. The

mismatches are compensated by the digital mismatch calibration unit described in the

next section.

4.2.2 Mismatch calibration

The digital mismatch calibration unit takes the 12 streams of 9-bit samples coming

from the sub-ADCs in order reduce the mismatches. It is driven by a 135 MHz digital

clock and has it own 1.1 V supply.

The samples are passed through three calibration stages as shown in Figure 4.6. First,
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mismatch

calibration

Gain

mismatch

calibration

Skew

mismatch

calibration

TIADC

Figure 4.6 – Mismatch calibration structure

offset mismatch calibration is performed. In order to reduce the post-calibration residual

offsets, the samples at the output of the offset calibration stage are quantized to 12 bits.

Digital dithering as described in Chapter 3 is also performed, which enables to whiten

the residual offset mismatch noise.

The 12 streams of 12-bit samples coming out of the offset mismatch calibration block

are then transmitted to the gain mismatch calibration unit described in 3.

After gain mismatch calibration, the samples are passed through the skew mismatch

calibration stage before being multiplexed at the output of the chip in 4 streams of 12-bit

samples. The derivative of the signal is calculated using a FIR filter of 32 taps that has an

accurate frequency response up to 700 MHz. The choice to set the cut-off frequency of the

derivative filter to 700 MHz was governed by the product specifications that insured that

the input signal had no frequency content above this frequency. The calibration blocks are

designed such that the average length during the estimation phase can be programmed
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to up to 230 samples per sub-ADC. This average length represents an estimation time

of about 8 seconds. In practice however, the estimation length is set to 225 samples per

sub-ADC, which corresponds to an estimation time of 250 ms .

One of the greatest advantages of digital mismatch calibration as compared to mixed

mismatch calibration is the ability to use an automated digital design flow. In order to

further increase this advantage, High Level Synthesis (HLS) was used to generate the

calibration unit. The goal was to develop a flow that was easily reusable and verifiable

for any TIADC architecture.

The design steps that we followed are illustrated in Figure 4.7. First, the mismatch
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Figure 4.7 – Mismatch calibration digital flow

calibration algorithms were entirely simulated in Matlab in order to optimize the pa-

rameters associated to each block (average length, number of filter taps, quantization).

Doing so enables to benefits from the simulation speed of Matlab, as well as its powerful

visualization tools.

Then, the calibration algorithms were implemented in fixed-point synthesizable C

code and executed on CPU-based machines in order to verify that the performance was

similar to the one obtained in Matlab. The C code was written with a high degree of

parametrization (number of ADCs, level of mismatches, level of quantization), which
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makes it easy to adapt to any TIADC architecture. The power of HLS tools, such as

Catapult, lies in their ability to generate optimized Register Transfer Level (RTL) code

that can be targeted either to FPGAs or to ASICs.

We used that versatility by first implementing the calibration unit in a FPGA that

we connected to an existing TIADC to verify its functionality. This validation phase was

critical to refine the initial Matlab model, and the calibration algorithms. For example,

the FPGA implementation helped us tune the bit-width of the different signals inside the

calibration blocks.

The last development stage was to synthesize the RTL code for the ASIC. We followed

the classical steps of digital design (synthesis, placing and routing, verification).

4.3 Measurements

The section provides measurement results of the chip. The focus is put on the mis-

match calibration performance but the usual performance indicators are also provided

(SNDR and SFDR vs. frequency, Figure of Merit (FOM), linearity), and the overall

TIADC performance is compared to the state of the art.

4.3.1 Measurement test bench

The chip is mounted on a PCB and supplied by 1.1 V and 1.7 V supplies. The 1.62

GHz clock is generated by a sine wave generator and converted into a square waveform

before being provided single-ended at the input of the chip. Single or multi-tone signals

are generated by a vector signal generator, and more complicated waveforms such as

modulated signals are generated by an Arbitrary Waveform Generator (AWG). Single-

tone signals are also low-pass or band-pass filtered in order to suppress the harmonics

coming from the generator non-linearities. A high bandwidth splitter generates the 0◦

and 180◦ signal phases that are provided to the chip.

The digital outputs of the TIADC (12 × 12 bits divided into 4 groups) are buffered

and acquired at a rate of 400 MHz by the Logic Analyzer. The digital samples are then

transmitted and processed on a PC. The PC also controls the signal generators (frequency,

amplitude) such that the whole testing can be performed through this unique interface.

The calibration can be by-passed by an on-board switch (hard by-pass), or finely

controlled through a SPI interface also controlled from the PC. The SPI control enables

to turn on or off the different calibration blocks and modify parameters such as the

average length of each estimation. The values of the estimated mismatches is stored in

internal registers and can also be accessed through the SPI interface.
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4.3.2 Mismatch calibration performance

Figure 4.8 illustrates the performance of the mismatch calibration by showing the

TIADC output spectrum before (Figure 4.8a) and after calibration (Figure 4.8b) with

a sine input signal 1 dB below full scale (-1 dBFS). Before mismatch calibration, the

mismatch tones are as high as -55 dBFS, whereas after calibration they are reduced to a

level around -80 dBFS that is not distinguishable from the noise floor. Only harmonics

due the non-linearity of the TIADC remain.
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Figure 4.8 – Output spectrum before and after calibration with a −1 dBFS 600 MHz
sine input (NFFT = 12 × 4096)

The plots in Figure 4.9 are obtained by sweeping the input signal frequency and by

measuring the SNDR and the SFDR at each frequency. Before calibration, the SNDR

decreases with increasing input frequency because the skew mismatch effects degrade the

signal more at high frequency. After calibration, the SNDR still decreases with increasing

input frequency but it stays above 47 dB almost up to the Nyquist frequency. This

increase in SNDR represents almost 1 additional effective bit of resolution as compared to

the non-calibrated case. A performance drop can be seen closer to the Nyquist frequency

because of the derivative filter frequency response starts to roll down above 700 MHz.

Before calibration, the SFDR also decreases with increasing input frequency and is

mainly affected by the mismatch tones. This effect is shown in Figure 4.10a and in

Figure 4.10b that represent the level of the offset and skew/gain mismatch tones as a
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function of the input signal frequency. After calibration, the SFDR stays above 60 dB up

to 750 MHz, with a peak at 72 dB close to 400 MHz. However, the SFDR plot does not

completely represent the performance of the calibration because the calculation of the

SFDR also takes into account the harmonics of the signal. These harmonics are mostly

caused by the non-linearity of the input buffer that drives the sub-ADCs. The level of

the mismatch tones after calibration is a more relevant indicator to assess the calibration

performance. The plot in Figure 4.10a shows that the offset mismatch tones stay at

a level below -75 dBFS across the entire spectrum, whereas the plot in Figure 4.10b)

indicates that the skew and gain mismatch tones are below -70 dBFS up to 750 MHz of

input frequency.
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Figure 4.9 – Measurement of SNDR and SFDR as a function of input frequency with
and without calibration

4.3.3 Mismatch characterization

Another advantage of non-adaptive mismatch estimation is that it provides precise

values for the offset, gain and timing offset estimated for each sub-ADC. This is very

useful has a feedback to the analog design team. By measuring the signature of the

mismatches from chip to chip, one can look for deterministic mismatch patterns caused,

for example, by a layout mistake.
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Figure 4.10 – Measurement of highest mismatch tones as a function of the input fre-
quency

It also allows to look at the mismatch variations as a function of the input frequency

and across different temperatures.

4.3.3.1 Mismatch variations vs. input frequency

Figures 4.11a, 4.12a and 4.13a show the mismatch levels before and after calibration

as functions of the input frequency.

The offset mismatches are measured in terms of the RMS offset mismatch level σo.

The RMS offset mismatch level is determined by inverting the “offset mismatch SNDR”

expression given in Chapter 2. This is done by only considering the offset mismatch tones

in the calculation of the SNDR. Theoretically, the offset mismatches should not vary with

the input frequency but the plot in Figure 4.11a shows slights variations around a RMS

level of 0.23 LSB. This might be due to measurement imprecisions (because the input

signal is a sinusoid for example), or to analog effects such as signal feedthrough in the

sampling switch. After calibration, the offset mismatches are kept under a RMS level of

0.03 LSB 1. The distribution of the estimated offsets across the sub-ADCs is shown in

Figure 4.11b.

1. The residual offset mismatches might even be lower because after offset calibration most of the
offset mismatch tones are not distinguishable from the noise floor
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Figure 4.11 – Offset mismatch measurements as a function of the input frequency

Since the gain mismatch tones are not distinguishable from the skew mismatch tones,

the gain mismatch level was measured just by looking at the estimated gains provided

by the calibration. The gain mismatch RMS value σg, defined in 2, is used to measure

the level of the gain mismatches. The plot in Figure 4.12a shows that the gain mismatch

level is low (below 0.1%) for this particular circuit implementation. However, the gain

mismatch level increases at high input frequency most likely due to small bandwidth

mismatches between the sub-ADC samplers. The plots in Figure 4.12b shows the distri-

bution of the gains across the sub-ADCs for different input frequencies. As compared to

the offset distribution, the estimated gain distribution is more “noisy”. Again, this in-

consistency most likely stem from frequency dependent gain mismatches that get added

to the static gain mismatches. Given the small gain mismatch level, it is also possible

that, the gain estimation algorithm provides slightly imprecise gain estimates.

Based on these observations, the effect of gain mismatches on the skew mismatch

spurious tones can be considered negligible, especially at high input frequency where the

skew mismatches deteriorate more the signal. Therefore, the skew mismatch level can be

measured by inverting the “skew mismatch SNDR” equation derived in Chapter 2. The

noise level is calculated by adding together each skew mismatch tone’s power whereas the

signal power is obtained by measuring the power of the fundamental. This calculation

leads to the plot in Figure 4.13a that represents the RMS skew mismatch level σδt = σr×Ts
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Figure 4.12 – Gain mismatch measurements as a function of the input frequency

as a function of the input signal frequency. The plot only shows the skew mismatch

level above 200 MHz in order to make sure that the gain mismatches have a negligible

contribution to the level of the mismatch tones. Before calibration, the skew mismatch

level is around 1.2 ps whereas after calibration it stays below 100 fs up to an input signal

frequency of 700 MHz. Past 700 MHz, the skew mismatch level after calibration increases

because the signal is reaching the cut-off frequency of the derivative filter. The plot in

Figure 4.13b shows the timing offset distribution across the sub-ADCs for different input

frequencies 2.

4.3.3.2 Mismatch variations vs. temperature

One of the main advantage of background mismatch calibration is its ability to track

mismatch changes caused by temperature variations. In order to quantify this effect,

the chip was tested in a temperature-controlled environment, and we measured the mis-

match levels while stressing the chip with different temperatures. The results of these

measurements are displayed in Figures 4.14, 4.15 and 4.16.

As shown in Figure 4.14a, the offset mismatch level barely varies with temperature,

spanning a RMS level range from 0.222 LSB at 50◦C to 0.24 LSB at 50◦C. Therefore, if

2. The data points close to the Nyquist frequency have been removed because the estimated values
make little sense in that frequency region
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Figure 4.13 – Skew mismatch measurements as a function of the input frequency

the offset mismatch calibration was not running continuously, the RMS level difference

would be at most 0.02 LSB from one extreme temperature case to another. This does

not seem sufficient to justify the use of background calibration because the error is of the

same order as the residual offset mismatches after calibration. However, a close look at

Figure 4.14b shows that the offset distribution across the sub-ADCs changes slightly with

temperature, even though the RMS value is not affected much. Therefore, estimating the

offsets of the sub-ADCs at one temperature, and using the same set of estimated value to

correct the TIADC at another temperature would increase the level of the offset mismatch

tones.

Figure 4.15a shows that the effects of temperature on the gain mismatches is a little

more clear. The plot shows an increase in gain mismatch level with temperature but

the increase is very small relatively to the original gain mismatch level. In this chip, the

gain mismatch level was very small to begin with so the temperature effects are almost

completely negligible. The distribution of the gains across the different sub-ADCs also

remains relatively constant across temperature as shown in Figure 4.15b.

The variation of the skew mismatch level as a function of the temperature is shown in

Figure 4.16a. The skew mismatch level first decreases with temperature, with a minimum

around 25◦C, before increasing again 3. As illustrated in Figure 4.16b, the distribution of

3. It is not clear whether the data point at 100◦C is a measurement error or a real phenomenon
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Figure 4.14 – Offset mismatch measurements as a function of temperature
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Figure 4.15 – Gain mismatch measurements as a function of temperature
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the timing offsets across the sub-ADCs does not change much with temperature, How-

ever, some sub-ADC timing offsets vary significantly from one temperature to another.

For example, the estimated timing offset of sub-ADC 9 changes by about 1 ps across

the temperature range. This type of local variation reinforces the need for background

mismatch calibration to track the mismatch variations due to temperature.
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Figure 4.16 – Skew mismatch measurements as a function of temperature

4.3.4 Performance with non sinusoid inputs

It is a common practice to characterize an ADC using a sine input because it helps

comparing the performance of different ADCs. When it comes to evaluating mismatch

calibration performance however, a sine input is not the most relevant type of signal

because it does not have the statistical properties of a real telecommunication signals.

Chapter 2 gives a proof that the calibration algorithms perform well for real telecom-

munication signals; this is emphasized in Figure 4.17. The figure shows the TIADC output

spectrum before and after calibration when the input is a QAM modulated signal with

a 1-MHz bandwidth. Now, the skew and gain mismatch frequency artifacts are aliases

versions of the input signal and not spurious tones. Before calibration, the mismatch

artifacts are above the noise level. After calibration, both the offset mismatch spurious

tones and the skew and gain mismatch artifacts are not distinguishable from the noise
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floor. Some remaining artifacts, very likely caused by imperfections of the equipment

generating the input signal, can be observed around DC and 400 MHz.
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Figure 4.17 – Output spectrum before and after calibration with a QAM modulated
input (NFFT = 12 × 4096)

Results of calibration with a multi-tone signal are displayed in Figure 4.18. They

show that the mismatch calibration is efficient for this type of input signal as well. Be-

fore calibration (Figure 4.18a), the offset mismatch spurious tones can be seen at fixed

frequencies independent of the input signal, whereas the gain and skew mismatch tones

are now in greater number because of the multi-tone nature of the input signal. After

calibration (Figure 4.18b), the mismatch artifacts are not distinguishable from the noise

floor. Some imperfections remain below 200 MHz but they are due to the imperfections

of the signal generator that was used for this experiment.

4.3.5 Power consumption breakdown

The pie chart in Figure 4.19 illustrates the power consumed by each part of the

TIADC. The overall power consumption is 93.5 mW.

The left half of the pie chart represents the power consumed by the analog front-end

(43.5 mW), where most of the power is consumed by the ADC core and the input driver.

The digital mismatch calibration power consumption (49.5 mW) is represented on the
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Figure 4.18 – Output spectrum before and after calibration with a multitone input
(NFFT = 12 × 4096)

right half of the pie-chart. A large share of the mismatch calibration power comes from

the skew mismatch calibration block, mostly because of the 32-tap FIR derivative filter

used for the timing correction. It is important to note that the skew estimation power

is calculated assuming that the estimation is performed continuously. However, in a real

setting, it is likely that the average power consumption would be much less because the

estimation block would be turned on only periodically, to track temperature effects for

example. The power consumption overhead due to the calibration is not negligible but

the next section shows that the overall TIADC energy efficiency is similar or better state

of the art high-speed time-interleaved ADCs.

4.4 Comparison with state of the art

Table 4.1 summarizes the performance achieved by our chip, and compares it with

previously published TIADCs in the same sampling frequency range.

The key performance of this chip is the mismatch noise reduction, especially skew

mismatch noise reduction. The mismatch tones are kept at a level below -70 dBFS across

an Effective Resolution Bandwidth (ERBW) representing 90% of the first Nyquist zone.

This is better by 10 dB than the best published TIADC [11] with respect to this particular
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Figure 4.19 – Circuit power breakdown

metric.

This improvement comes at the expense of a slightly lower energy efficiency with a

Walden Figure of Merit of 283 fJ/conv. This is worse than the TIADCs published in [11]

and [17] 4.

The TIADC achieves a linearity performance similar to the state of the art with a

Total Harmonic Distortion (THD) of -58 dB. The SNDR is at least 48 dB over the ERBW,

which is also similar to the other circuits in the comparison table.

4.5 Conclusion

After the theoretical proofs and explanations of Chapter 3, this chapter demonstrates

the functionally of the mismatch calibration algorithms in a real circuit implementation.

The background digital mismatch calibration helps reduce the mismatch noise, especially

the timing mismatch noise, to a level lower than state-of-the-art TIADCs. We also

show that the background operation is important to track mismatch variations across

temperature. This achievement comes at the expense of a higher power consumption

(and chip area), which ends up slightly degrading the FOM of the TIADC.

It is also important put this work in perspective with the industrial challenges as-

sociated to the design of high-speed data converters. It is indeed extremely difficult to

4. The TIADCs presented in [11] and [17] exhibit lower power consumption because they do not have
on-chip reference voltages nor input buffer, which consequently reduces their FOM
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ISSCC JSSC VLSI ISSCC ISSCC
2013 [12] 2011 [10] 2012 [11] 2014 [17] 2014 [13]

Technology CMOS 65 nm 65 nm 65 nm 65 nm 40 nm
Sampling rate [GS/s] 3.6 2.6 2.8 1.0 1.6
Offset mismatch cal. yes yes yes yes yes
Gain mismatch cal. yes yes no no yes
Skew mismatch cal. no no yes yes yes
Highest mismatch tone [dbFS] 50 55 60 60 70
SFDR [dBFS] 50 55 55 60 62
THD [dB] -55 -58 -55 – -58
SNDR [dB] 47 49 48 51.4 48
Power [mW] 795 480 44.6 19.8 93
Walden FOM [fJ/conv] 1207 801 76 62.3 283
Area [mm2] 7.4 5.1 0.63 0.78 0.83

Table 4.1 – Comparison with state of the art

design high-speed TIADCs with a low level of mismatches. Blind background mismatch

calibration offers a flexible way to drastically reduce the mismatch effects without modi-

fying the analog design. High Level Synthesis, which offers the possibility to synthesize

the calibration blocks in a short time for any TIADC architecture, explains part of this

flexibility. A flexible and easily-reusable design is very important in industry but hard

to quantize with a hard metric. It is nonetheless important to keep this aspect in mind

when comparing background digital calibration to other techniques.

At the end, the calibration techniques presented here are particularly relevant when:

— the mismatches must be reduced to a very low level

— the success of the product requires a quick ADC design cycle

— the power consumption is important but is not the main variable
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Chapter 5

Conclusion

The aim of this last chapter is to highlight and summarize the main findings of this

work, and to share some perspectives about TIADC mismatch calibration.

5.1 Summary

As explained in Chapter 1, the problem of mismatch calibration in TIADCs arises

from the ever increasing demand for high speed ADCs in the communication industry.

Indeed, the time-interleaved architecture has become the dominant ADC architecture

because its enables both a high sampling rate and a good resolution, for a moderate

hardware cost.

The mismatches between the interleaved converters are the main limitation of this

architecture. Mismatches are characterized by the fact each sub-ADC has different char-

acteristics (for example offset, gain, sampling instant or bandwidth). Chapter 2 briefly

lists some of the physical sources for these mismatches, and offers a characterization of

their effects on a TIADC performance, for example in terms of SNDR and SFDR.

An overview of state-of-the-art publications in the domain in Chapter 1 shows that

reducing the effects of the mismatches, by means of calibration or other techniques, has

been a widely investigated topic both in industry and academia. Most circuit realizations

that include mismatch calibration perform some part of the calibration in the analog

domain, which makes them mixed solutions. Mixed calibration techniques work well but

they require the analog front-end of the TIADC to undergo special modifications.

The concept of fully digital background mismatch calibration has also been extensively

investigated in the literature. From an industrial point of view, it is a very seducing con-

cept because digital designs have a lot of advantages over analog designs when it comes

to circuit implementation. Digital designs scale better with technology, they are easily

adaptable to any TIADC architecture, and they benefit from fast CAD and simulation
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tools. Unfortunately, published digital mismatch calibration techniques are rarely proven

beyond numerical simulations. This limitation makes their performance difficult to eval-

uate. From a more conceptual point of view, the existing calibration techniques are often

proven by making assumptions about the input signal that are generally too optimistic

in real communication systems.

The goal of this work was to go beyond state-of-the-art research in the area of digital

mismatch calibration. The offset and gain mismatch calibration algorithms are inspired

from prior art but their convergence is proven for non-stationary signals, which had not

been studied in the past. This proof is an important achievement because non-stationary

random processes generally describe communication signals more accurately than WSS

random processes. The skew mismatch and bandwidth mismatch calibration algorithms

achieve a direct estimation of the timing offsets, and the time constant offsets of each

sub-ADC. This is a significant difference as compared to the adaptive solutions pro-

posed in the past. Indeed, adaptive solutions need several (potentially long) iterations

to converge to the correct estimates, whereas a direct estimation provides the mismatch

parameter estimates after a single iteration. The convergence of both the bandwidth mis-

match calibration technique and the skew mismatch calibration technique was also proven

for non-stationary input signals with certain spectral conditions on their autocovariance

function.

If theoretical proofs are an important and required step when it comes to calibration

algorithms, they rarely take into account all the non-idealities that can occur in a real

circuit. A circuit implementation can reveal limitations that are not always foreseen

when working at a theoretical or numerical simulation level. For example, a circuit

implementation enables to accurately measure the power consumption of a calibration

algorithm, and compare it to the power consumption of the ADC itself. This is hard (if not

impossible) if working with numerical simulations only. For that reason, the offset, gain

and skew mismatch calibration algorithms described in Chapter 3 were implemented in

a 1.6 GS/s TIADC manufactured in ST 40 nm CMOS technology. The measurements of

the chip, described in Chapter 4, validate the behavior expected by the theory. With the

help of the digital calibration unit, the TIADC achieves the lowest mismatch level among

published circuits in the same sampling frequency range. This is to the expense of a power

and area overhead that could potentially be reduced in future implementations. Finally,

the circuit implementation allows to analyze the mismatch variation across temperatures,

which shows the necessity of background calibration.

If summarized, here are the main breakthroughs of this work:

— Analysis and proof of calibration algorithms in the context of non-stationary sig-

nals
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— Development of a direct method for estimating the timing offsets and time-constant

offsets of the sub-ADCs

— First integrated circuit realization of a TIADC embedding a fully digital offset,

gain and skew mismatch calibration unit

5.2 Perspectives and future work

This work used the small-mismatch approximation to linearize the mismatch models

and devise mismatch estimation and correction methods. This strategy works well in

the case of 9-bit 1.6 GS/s TIADC with RMS skew mismatch not higher than 0.2% of

the sampling period Ts but it is likely that TIADC performances will keep being pushed

forward both in term of sampling speed and resolution. At some point, the second-order

effects may start to become non negligible, which will require to modifications of the

timing skew calibration.

Adding more complex filters to recover the correct sampling times is an option but, as

seen in Chapter 4, the simple derivative-based correction in this work already consumes

a significant share of the total power of the circuit. A better solution might be to use

a mixed mismatch calibration technique but with a different strategy that what was

published so far. We saw that digital mismatch calibration is efficient in reducing the

timing mismatches to a very small residual level (of the order of 100 fs RMS), assuming

that the original skew mismatch level was small enough. Reaching these levels only by

trimming analog elements will probably be difficult, so this role should be left to digital

circuits. However, one could think about using the current skew mismatch estimation

algorithm to reduce very coarsely the mismatches in the analog domain such that they

fall within the acceptable digital calibration range for fine tuning.

The bandwidth mismatch calibration technique will probably be subject to the same

type of decision in a more distant future. For now, bandwidth mismatches have not been

performance-limiting enough that they require calibration. However, with increasing

sampling speeds, it is likely that signal degradation due to bandwidth mismatches will

become noticeable in the performance of the circuit. This will be an opportunity for a

on-chip validation of the proposed bandwidth mismatch calibration method.

Last but not least, we began to extend the digital mismatch calibration algorithms to-

non stationary input random processes because those processes describe communication

signals more accurately. It would be interesting to analyze more deeply the statistical

characteristics of different classes of real-world wide band communication signals (such

as modern CATV signals or satellite signals) to fully understand how they behave in

term of their autocovariance function. This analysis would enable to build a very strong
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framework to analyze the convergence of blind mismatch calibration techniques in real

applications.
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Résumé en français

Introduction

Problématique générale

Dans les systèmes de communications modernes, l’information transmise entre un

émetteur et un récepteur est véhiculée par des signaux analogiques. Ces signaux ana-

logiques peuvent prendre la forme de courants électriques transmis par des câbles en

cuivre ou encore d’impulsions lumineuses transmises par des fibres optiques. Ils peuvent

aussi, dans le cas des communications sans fil, être des ondes électromagnétiques qui

se déplacent dans le vide. Cependant l’information qu’ils contiennent doit généralement

être traitée par des circuits numériques. En effet, les circuits numériques comportent de

nombreux avantages par rapport aux circuit analogiques. Ils permettent notamment d’ef-

fectuer des traitements mathématiques complexes comme de la correction d’erreur. De

plus, concevoir des circuits numériques est plus aisé car les outils de génération de circuit

sont largement automatisés. Les circuits numériques sont aussi plus facilement portables

d’un noeud technologique à un autre, et plus robustes au bruit. Enfin, de part la na-

ture discrète des signaux, les simulations numériques sont beaucoup plus rapides que les

simulations analogiques.

La conversion du domaine analogique au domaine numérique est faite par des Conver-

tisseurs Analogique-Numérique (CAN ou ADC pour Analog-to-Digital converter). Ceux-ci

sont souvent considérés comme un goulot d’étranglement dans les systèmes de commu-

nication modernes. Le but d’un ADC est d’échantillonner le signal analogique continu à

des intervalles de temps réguliers et de quantifier sa valeur à chaque instant en utilisant

un nombre finis de bits.

Du fait des avantages des circuits numériques, la tendance est la réduction des com-

posants analogiques dans les systèmes de communication. Ceux-ci sont remplacés par des

équivalents numériques ayant une fonction similaire. On peut notamment citer l’exemple

de l’échantillonnage direct en radio-fréquence (RF direct sampling). Il s’agit d’effectuer la

conversion analogique numérique dans le domaine RF, c’est-à-dire sans ramener le signal
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au préalable dans une bande fréquence intermédiaire (IF pour Intermediate Frequency)

par l’intermédiaire de mixeurs analogiques.

Cela implique de déplacer l’ADC plus en amont dans la chaîne de réception. Cepen-

dant, cela impose des contraintes de performances élevées sur l’ADC. Pour illustrer ce

problème, on peut citer le cas de la transmission TV par câble où le signal est transmis

sur un câble coaxial sur une bande de fréquence allant de 54 MHz à 1002 MHz. Dans

le standard le plus commun aujourd’hui (DOCSIS 3.0 [1]), cette bande est occupée par

des canaux de 6 MHz de large, représentant chacun une chaîne de télévision. Ces ca-

naux utilisent généralement des modulations de type QAM 256 mais il est prévu que la

taille des constellations soient augmentée dans les versions future du standard (DOCSIS

3.1 [2]). D’autant plus que certains fournisseurs cherchent à utiliser le câble pour trans-

mettre d’autres types de services multimédia (jeux, vidéos en streaming, TV HD) sous

le standard MoCA (Multimedia over Coax Alliance). Ce standard utilise une bande qui

peut s’étaler de 500 MHz à 1650 MHz. En résumé, le signal occupe potentiellement une

bande fréquentielle allant de 54 MHz jusqu’à 1650 MHz et est encodé en utilisant des

techniques de modulations complexes.

Pour parvenir à effectuer de l’échantillonnage direct en RF sur ce type de signal, la

fréquence d’échantillonnage de l’ADC doit être au moins deux fois supérieure à la largeur

de bande du signal, soit par exemple 3.2 GE/s. Sa résolution doit aussi être importante,

de l’ordre de 10 bits effectifs.

Convertisseurs analogique-numérique à entrelacement temporel

Il existe de nombreuses architectures d’ADCs, parmi lesquelles figurent notamment les

ADCs flash, les ADCs pipeline, les ADCs à approximations successives (SAR ADC pour

Successive Approximation Register ADC) ou encore les ADCs à entrelacement temporel

(TIADC pour Time-Interleaved ADC). Les ADCs pipeline ont longtemps été très utilisés

pour atteindre une fréquence d’échantillonnage élevée (> 100 MHz) avec un bon rapport

signal sur bruit (SNDR pour Signal to Noise and Distorsion Ratio). Il sont maintenant

en compétition avec les TIADCs.

Inventés dans les années 1980 [4], le TIADC est, aujourd’hui, le seul type de conver-

tisseur qui permet d’atteindre de des fréquences d’échantillonnage de l’ordre du GE/s

avec un SNDR supérieur à 50 dB. En pratique, il est exagéré de séparer les TIADCs des

autres familles de convertisseurs analogique-numérique puisque un TIADC est composé

de plusieurs sous-ADCs appartenant à l’une des autres familles (par exemple des ADCs

SAR). L’idée de l’architecture à entrelacement temporel est d’augmenter la fréquence

d’échantillonnage en mettant en parallèle plusieurs sous-convertisseurs fonctionnant à

une vitesse plus faible. Les sous-ADCs échantillonnent le signal d’entrée tour à tour et
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leurs échantillons de sortie sont recombinés pour constituer le signal discrétisé complet.

Un autre avantage des TIADCs est de présenter une efficacité énergétique très bonne car

chacun des sous-convertisseurs peut-être conçu de sorte à fonctionner dans sa zone de

fonctionnement optimale (en terme de fréquence d’échantillonnage).

Comme mentionné précédemment, un TIADC est constitué de plusieurs sous-convertisseurs,

eux-mêmes appartenant à une catégorie d’ADCs. Parmi les type de convertisseurs fré-

quemment utilisés comme sous-ADCs de base, les ADCs pipeline [5, 6, 7, 8, 9] sont sou-

vent privilégiés mais ils sont de plus en plus fréquemment délaissés au profit des ADCs

SAR [10, 11, 12, 13]. Les TIADCs à base d’ADCs SAR sont ceux qui permettent d’at-

teindre les fréquences d’échantillonnage les plus élevées [14, 15] avec en particulier une

fréquence d’échantillonnage record de 90 GE/s [16]. Ce choix est dû au fait que les perfor-

mance des ADCs pipeline tendent à empirer dans les nouveaux noeuds technologiques, du

fait des plus faibles gains des transistors. D’un autre côté, les ADCs SAR ne contiennent

pas de circuits dynamiques (amplificateurs) et bénéficient davantage de l’évolution des

technologies CMOS grâce à leur fonctionnement très similaire à un circuit numérique.

Désappariements dans les TIADCs

Bien que les TIADCs semblent être la solution idéale pour augmenter la fréquence

d’échantillonnage des convertisseurs, en mettant en parallèle de nombreux sous-ADCs,

leurs performances sont limitées par les désappariements entre les sous-convertisseurs. En

effet, lors de la fabrication du circuit, il est impossible de garantir que tous les sous-ADCs

auront les mêmes caractéristiques, notamment à cause des variations aléatoires dans le

processus de fabrication.

La conséquence de ces désappariements est une dégradation du signal numérique de

sortie, ce qui se traduit par un bruit en sortie du TIADC. Les désappariements peuvent

être classés en différentes catégories en fonction de leurs effets. Les catégories les plus

communes, celles qui en pratique limitent les performances du TIADC, sont :

— les désappariements d’offset (offset mismatches) lorsque les sous-ADCs ont des

offsets différents

— les désappariements de gain (gain mismatches) lorsque les sous-ADCs ont des gains

différents

— les désappariements d’instant d’échantillonnage (timing skew mismatches) lorsque

les sous-ADCs échantillonnent le signal avec un décalage par rapport à l’instant

d’échantillonnage idéal

— les désappariements de bande passante (bandwidth mismatches) lorsque les filtres

d’entrée des sous-ADCs ont des fréquences de coupure différentes

Les désappariements d’offset se traduisent, dans le spectre de sortie, par des raies à des
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fréquences multiples de fréquence d’échantillonnage des sous-ADCs. Les désappariements

de gain, d’instant d’échantillonnage et de bande passante créent des réplications du signal

d’entrée autour des fréquences multiples de la fréquence d’échantillonnage des sous-ADCs.

Les sources et les effets des désappariements sont traités en détails dans le Chapitre 2.

La réduction du bruit dû aux désappariements est apparu comme un challenge dès

l’invention du premier TIADC [4]. Bien que de nombreuses solutions de calibration des

désappariements aient été proposées, le challenge existe toujours aujourd’hui.

État de l’art de la calibration des désappariements

Différentes types de techniques de calibrations ont été inventées pour réduire les effets

des désappariements dans les TIADCs depuis l’invention du premier TIADC.

Calibration hors-ligne

Le principe des techniques de calibrations hors-ligne est de faire la calibration lorsque

que le TIADC est dans un mode “spécial” de calibration [18, 19]. Durant ces phase, dite

hors-ligne, le signal d’entrée peut être remplacé par un signal connu, par exemple un

signal sinusoïdal de fréquence et d’amplitude connues. Dans le circuit présenté dans [16],

les instants d’échantillonnage des sous-ADCs sont ajustés dans le domaine analogique,

avec un signal sinusoïdal connu à l’entrée du TIADC. Dans [20], les offsets des sous-

ADCs sont calibrés hors-ligne en ajustant certaines caractéristiques des comparateurs

constituant les sous-ADCs. Les techniques de calibration hors-ligne ne sont cependant

pas adaptées à des applications dans lesquelles le convertisseur ne peut pas être arrêté,

ce qui est généralement le cas dans une chaîne de réception. En effet, les variations de

température et les effets du vieillissement du circuit peuvent nécessiter de calibrer le

convertisseur très fréquemment.

Calibration en ligne

L’alternative aux techniques de calibration hors-ligne est la calibration en ligne qui

consiste à effectuer la calibration pendant le fonctionnement normal du TIADC, sans

l’arrêter.

Certaines de ces techniques nécessitent cependant de modifier le signal d’entrée dans le

domaine analogique. C’est le cas des techniques présentées dans [21] et [22] pour lesquelles

un séquence aléatoire est ajoutée ou multipliée au signal d’entrée avant la conversion.

Dans [23] et [24], c’est un signal sinusoïdal qui est rajouté au signal d’entrée pour la

calibration des désappariements de bande passante.
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Les techniques de calibration dites aveugles, en revanche, ne nécessitent pas de modi-

fier le signal d’entrée, ce qui réduit le risque d’introduire d’autres perturbations. Bien sûr,

développer des techniques de calibration aveugles est, en général, plus difficile car peu

d’informations sur le signal d’entrée sont disponibles. Parmi les techniques de calibration

aveugles, on peut distinguer celles qui sont mixtes, c’est-à-dire en partie faites à la fois

dans le domaine numérique et dans le domaine analogique, et celles qui sont entièrement

numériques.

Calibration mixte

La plupart des techniques de calibration mixtes sont séparées en une partie numé-

rique qui quantifie les désappariements et une partie analogique qui utile les informations

provenant de la partie numérique afin de réduire les désappariements.

Ainsi, une manière classique d’estimer les désappariements d’offsets est de mesurer les

différences entre les moyennes des signaux de sortie de chaque sous-ADCs [26, 27]. Cette

information peut ensuite servir à ajuster les caractéristiques des comparateurs présents

dans les sous-ADCs [28].

De façon similaire, les désappariements de gain peuvent être mesurés en calculant les

rapports entre les puissances moyennes de sortie des sous-ADCs [26]. Un autre approche

est d’essayer de minimiser le bruit dû aux désappariements de gains dans le domaine

fréquentiel [31].

Les techniques de calibration des désappariements d’instants d’échantillonnage sont

généralement plus complexes. L’estimation des désappariements peut se faire dans le do-

maine temporel en minimisant des un fonction de coût basée sur des corrélations des si-

gnaux de sortie des sous-ADCs [33, 34, 35]. Les instants d’échantillonnage des sous-ADCs

peuvent ensuite être ajustés à l’aide de délais ajustables dans le domaine analogique. Cer-

taines techniques requièrent des sous-ADCs redondants [11, 27, 20], ce qui complique la

conception analogique. Enfin, d’autres approches [36, 37, 18] proposent de réorganiser

aléatoirement les instants d’échantillonnage des sous-ADCs de façon étaler le bruit sur

toute la bande fréquentielle.

Il existe peu de techniques de calibration mixtes des désappariements de bande pas-

sante mais l’on peut citer le brevet [38] dans lequel la bande passante de chaque sous-ADC

est ajustée en faisant varier le condensateur de bootstrap dans l’échantillonneur.

Calibration numérique

Les techniques de calibration entièrement numériques des désappariements présentent

certains avantages comparées aux techniques de calibration mixtes. En effet, elles ne né-
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cessitent pas de modifier la partie analogique du TIADC et elles s’adaptent à n’importe

quelle architecture de TIADC. De plus, elles sont facilement portables d’un noeud tech-

nologique à un autre, et bénéficie des gains de performances associés à la réduction de

la taille des transistors. Cependant, certaines fonctions qui peuvent être faites dans le

domaine analogique à un coût modéré sont beaucoup plus coûteuses à effectuer dans le

domaine numérique.

La correction des désappariements d’offset et de gain dans le domaine numérique est

assez aisée. La correction des désappariements d’offset peut se faire en soustrayant du

signal de sortie de chaque sous-ADC l’offset estimé correspondant [11, 39, 27]. De la

même manière, la correction des désappariements de gain peut se faire en multipliant le

signal de sortie de chaque sous-ADC par l’inverse du gain estimé correspondant [35, 39].

L’estimation des désappariements d’offset et de gain peut être faite de la même façon que

pour les calibrations mixtes.

Les solutions purement numériques de calibration des désappariements d’instant d’échan-

tillonnage et de bande passante ont été très étudiés de manière théorique mais peu de

circuit intégrés ont fait la preuve de leur bon fonctionnement. Les techniques présentées

dans [40, 44, 41, 42, 42] corrigent le signal de sortie du TIADC de telle sorte à ce qu’il

retrouve sa propriété de stationnarité au sens large. Dans [45, 46, 47, 48], les signaux

de sortie des sous-ADCs subissent une transformation de Hadamard, ce qui permet de

séparer le signal désiré du bruit dû aux désappariements. Dans [49, 50, 51, 52, 31, 53, 54],

les effets des désappariements de bande passante et d’instant d’échantillonnage sont com-

pensés en minimisant le bruit qu’ils génèrent dans une bande fréquentielle qui ne contient

pas le signal utile. La correction des désappariements se fait ensuite au moyen de filtres

numériques, coûteux dans la plupart des cas, du fait de leurs coefficients variables. Les

travaux présentés dans [55, 56, 57, 58] se concentrent uniquement sur la correction des

désappariements.

Objectifs de la thèse

Le but de ce travail est de démontrer la faisabilité d’une méthode numérique et aveugle

de calibration des désappariements d’offset, de gain, d’instant d’échantillonnage et de

bande passante, implémentable dans un circuit intégré et adaptée aux signaux de com-

munication réels.

Les solutions de d’état de l’art sur ce sujet sont majoritairement théoriques. Même

si des simulations numériques prouvent leur efficacité, la plupart des solutions existantes

ajouteraient une surconsommation non négligeable si elles étaient réalisées dans un circuit.

C’est notamment le cas pour les techniques de calibration des désappariements de bande
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passante et des désappariements d’instants d’échantillonnage qui nécessitent souvent des

filtres de correction complexes. D’autre part, les solutions proposées dans l’état de l’art

sont toutes itératives et nécessiteraient un temps de convergence long si elles étaient

appliquées à un signal réel de communication. Enfin, la plupart des travaux partent du

principe que le signal d’entrée du TIADC est un signal stationnaire au sens large (SSL)

Ce n’est pas le cas, en pratique, pour des signaux réels de télécommunication. Ceux-ci

sont en général cyclostationnaires au sens large (CSSL) au mieux, voire non stationnaires.

Les travaux présentés dans cette thèse ont pour but d’apporter une réponse à ces

limitations. Le Chapitre 2 est principalement une reformulation de nombreux travaux

précédents. Il explique les sources des désappariements dans un circuit et analyse leurs

effets sur le signal de sortie. En particulier, il donne des indicateurs de performances du

TIADC (SNDR et SFDR) en fonction du niveau des désappariements

Le Chapitre 3 constitue le coeur de cette thèse car il décrit des techniques de calibra-

tion des désappariements entièrement numériques et non itératives. Il analyse aussi les

suppositions théoriques permettant le bon fonctionnement de ces techniques de calibra-

tion, en particulier lorsque le signal est une réalisation d’un signal non stationnaire.

Le Chapitre 4 présente le circuit intégré d’un TIADC cadencé à 1.62 GE/s et intégrant

les calibrations des désappariements d’offset, de gain et d’instant d’échantillonnage pré-

sentées dans le Chapitre 3. Les mesures de ce circuit démontre la viabilité des calibrations

entièrement numérique, tout en mettant en évidence certaines de leur limitations.

Enfin, le Chapitre 5 résume les résultats des chapitres précédents et donne des pers-

pectives concernant le futur des méthodes de calibration des désappariements dans les

TIADCs.

Sources et effets des désappariements dans les TIADCs

Sources des désappariements

Les désappariements dans les TIADCs, bien qu’ils puissent être dûs à des erreurs de

design, sont généralement intrinsèques à la technologie employée pour créer le circuit.

En effet, il est impossible de concevoir deux circuits dont les composants présentent des

caractéristiques physiques égales. Du fait de phénomènes aléatoire, des composants d’un

même circuit supposés être identiques peuvent ainsi présenter des différences de compor-

tements. Ces désappariements, sont d’autant plus important que la taille des composantes

est faible, comme l’affirme la loi de Pelgröm [71].

Parmi les composants de base des circuits intégrés en technologie CMOS on trouve

notamment les transistors et les condensateurs, et ce sont eux qui sont à la source d’une
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grande partie des désappariements dans les TIADCs. Ainsi deux transistors d’un même

circuit peuvent ainsi présenter des désappariements de tension de seuil, ce qui affecte

nombre de leurs caractéristiques telles que leur résistance à l’état fermé ou leur vitesse

de fermeture. Ces désappariements de tension de seuil sont un des contributeurs majeurs

en ce qui concerne les désappariements d’offset, de gain, de décalage de temps de bande

passante. De la même façon, deux condensateurs conçus avec des paramètres identiques

auront des capacités différentes. Étant donné que les circuits d’échantillonnages sont

généralement modélisables par un circuit RC, on comprend bien que ces désappariements

de condensateurs peuvent être une source importante des désappariements des bande

passante dans les TIADCs.

Effets des désappariements

Les effets des Désappariements sur les performances des TIADCs ont fait l’objet de

nombreuses études [59, 60, 61, 19, 62, 63, 64, 65, 66, 68, 69, 70] et sont donc un sujet

bien connu. Certains des résultats de ces études sont redémontrés dans ce mémoire afin

de donner une lecteur une bonne compréhension des effets des désappariements.

Ainsi, il est redémontré que les désappariements d’offset créent, dans le spectre du

signal de sortie, des raies à des fréquence multiples de Fs/M , où Fs est la fréquence

d’échantillonnage du TIADC et M est le nombre de sous-ADCs entrelacés. Cela conduit

à une dégradation du SNDR (calculé sur un signal sinusoïdal) en sortie du TIADC, et

on peut ainsi démontrer que le SNDR en présence de désappariements d’offset est de la

forme :

SNDR = 20 log10

(

2B−1

√
2σLSB

o

)

où B est le nombre de bits du TIADC et σLSB
o est l’écart-type de la distribution des offsets

des sous-ADCs, exprimée en LSB. Il est aussi intéressant de constater que la hauteur de

chaque raie d’offset est liée à la magnitude des coefficients de la série de Fourier associée

aux valeurs des offsets des sous-ADCs.

Les effets des désappariements de gain sont différents. Cette fois, ce sont des réplica-

tions du signal autour de fréquences multiples de Fs/M qui viennent dégrader le signal de

sortie du TIADC. Ainsi, si le signal d’entrée est large bande, le bruit dû au désapparie-

ments de gain sera lui aussi large bande. Comme pour le cas des désappariements d’offset,

on peut montrer que la puissance de chaque réplica est liée à la magnitude des coefficients

de la série de Fourier associées aux valeurs de gains des sous-ADCs. La valeur du SNDR
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en présence de désappariements de gains peut être exprimée de la façon suivante :

SNDR = 10 log10

(

ḡ2

σ2
g

)

= −20 log10 (σ̄g)

où ḡ est la moyenne des gains des sous-ADCs et σg est leur écart-type. Ainsi, on remarque

que, bien que les effets des désappariements de gain soient liés au signal d’entrée, le SNDR

ne dépend ni de la fréquence, ni de l’amplitude du signal.

De façon similaire, les désappariements d’instants d’échantillonnages génèrent, dans

le spectre du signal de sortie, des réplications sur spectre du signal d’entrée autour des

fréquences multiples de Fs/M . Cette fois, le SNDR dépends à la fois du niveau des

désappariements mais aussi de la fréquence du signal d’entrée. Lorsque les décalages de

temps sont petits par rapport à la période d’échantillonnage, il peut s’exprimer :

SNDR = −20 log10 (ω0σr)

où w0 est pulsation du signal d’entrée et σr l’écart type des décalages d’instant d’échan-

tillonnage des sous-ADCs. On voit logiquement que la dégradation de SNDR est plus

importante lorsque la fréquence d’entrée du signal est élevée. En effet, un signal variant

rapidement est plus affecté par une erreur d’échantillonnage qu’un signal variant lente-

ment.

Les désappariements de bande passante, liés à des différences de constante de temps

entre les filtres d’entrée du premier ordre des sous-ADCs, occasionnent le même type

de bruit que les désappariements de gain et d’instant d’échantillonnage. En effet, ils

créent une combinaison d’un désappariement de gain et d’un désappariement de phase,

dépendant de la fréquence du signal d’entrée. Lorsque les décalages de constante de

temps sont petits par rapport à la valeur de la constante de temps nominale, le SNDR

peut s’exprimer :

SNDR = 20 log10





√

1 + (ω0b̄)2

ω0b̄σβ





où ω0 est la pulsation du signal d’entrée, b̄ est la moyenne des constantes de temps et σβ

leur écart-type.

Quantifier les dégradations du signal dues aux désappariements est primordial car cela

permet de concevoir des méthodes de calibrations adaptées aux performances à atteindre.

Comme démontré dans le Chapitre 3, cela permet aussi d’analyser les performances des

méthodes de calibration selon les différents paramètres.
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Calibration numérique des désappariements

Les résultats présentés dans Chapitre 3 sur les techniques de calibration s’ajoutent

aux travaux précédents sur le sujet tout en s’en inspirant.

Conditions sur le signal d’entrée

Dans les précédents travaux sur la calibration aveugle des désappariements, le signal

est généralement supposé stationnaire au sens large (SSL), ce qui n’est en pratique pas

vérifié par les signaux de communication, généralement constitués de plusieurs canaux de

faible largeur de bande. Une autre condition généralement admise est que le spectre du

signal d’entrée ne doit pas contenir de raies à des fréquences multiples de Fs/M .

L’étude présentée dans ce mémoire généralise ces hypothèses aux cas de signaux is-

sues de processus aléatoires non stationnaires, plus réalistes dans le contexte des systèmes

de télécommunications large bande. L’espérance et l’autocovariance d’un processus sta-

tionnaire varient dans le temps et peuvent donc être représentées par leur transformée de

Fourier. La condition pour les que les techniques de calibration proposées dans ce mémoire

fonctionnent est que les transformées de Fourier de l’espérance et de l’autocovariance ne

contiennent pas de raie à des fréquences multiples de Fs/M . Il est démontré que cela est

le cas lorsque le signal d’entrée est une somme de canaux ayant subis une mise en forme

d’impulsion, et modulés à différentes fréquences porteuses.

Structure de calibration

L’idée du système de calibration proposé est d’enchaîner des blocs de calibration cha-

cun dédié à un type de désappariement. L’ordre des blocs de calibration ne peut cependant

pas être choisi de façon arbitraire. La calibration des désappariements d’offset doit avoir

lieu en premier car la présence de désappariements d’offset perturberait la détection des

autres types de désappariement. La calibration des désappariements de bande passante

suit le bloc calibration des désappariements d’offset. En effet, les désappariements de

bande passante occasionnent des désappariements de gain et de phase qui dépendent de

la fréquence du signal d’entrée. Ces erreurs de désappariement doivent être corrigées pour

ne pas perturber la détection des désappariements de gain statique et celle des désap-

pariements d’instant d’échantillonnage. L’ordre des deux blocs de calibration restant est

aussi important. La calibration des désappariements de gain n’étant pas perturbée par

des décalage d’instant d’échantillonnage, c’est celle qui doit être effectuée en premier. Le

dernier bloc de calibration est donc celui de la calibration des désappariements d’instant

d’échantillonnage.
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Calibration des désappariements d’offset

La calibration des désappariements d’offset se fait en deux temps. Dans un premier

temps, l’offset de chaque sous-ADC est estimé. Une fois les offsets des sous-ADCs connus,

le signal est corrigé.

L’estimation des offsets se fait en calculant la moyenne du signal de sortie de chaque

sous-ADC. Si le signal d’entrée est supposé de moyenne nulle, alors la moyenne du signal

de sortie de chaque sous-ADC devrait aussi être nulle. En présence de désappariements

d’offset, la moyenne du signal de sortie de chaque sous-ADC converge vers la valeur de

l’offset correspondant. Suivant le type du signal d’entrée et les performances voulues,

le temps de moyennage peut varier. Pour un signal de télécommunication large bande

typique, la longueur de moyennage peut atteindre 50 millions d’échantillons par sous-

ADC.

Une fois l’offset de chaque sous-ADC connu, le signal est corrigé en soustrayant l’offset

estimé au signal de sortie de l’ADC correspondant. Afin d’éviter les désappariements

résiduels dus à la quantification de l’offset estimé, il peut être nécessaire de coder le

signal de sortie sur un plus grand nombre de bits. Une séquence aléatoire peut aussi

être rajoutée au moment de la correction pour étaler le bruit résiduel sur toute la bande

fréquentielle.

Calibration des désappariements de gain

Similairement à la calibration des désappariements d’offsets, la calibration des désap-

pariements de gains se fait en deux temps. Tout l’abord on estime le gain de chaque

sous-ADC relativement à un sous-ADC de référence puis ensuite le signal de sortie de

chaque sous-ADC est corrigé.

L’estimation du gain relatif de chaque sous-ADC par rapport au sous-ADC de réfé-

rence se fait en calculant la puissance moyenne en sortie de chaque sous-ADC. Lorsqu’il

n’y a pas de désappariements de gain, la puissance moyenne de sortie de chaque sous-ADC

est la même. En présence de désappariements de gain, les puissances moyennes des sous-

ADCs sont différentes et le ratio entre la puissance du signal de sortie d’un sous-ADC et

la puissance de sortie du sous-ADC de référence donne le gain relatif du sous-ADC. Le

calcul de la puissance moyenne de sortie de chaque sous-ADC se fait en moyennant les

carrés des échantillons de sortie du sous-ADC. Pour simplifier l’implémentation, on peut

préférer calculer la moyenne des valeurs absolues des échantillons. Comme pour l’estima-

tion des désappariements d’offset, la longueur de moyennage doit prendre en compte les

spécifications à atteindre et le type de signal d’entrée. Les simulations montrent que dans

des cas typiques, 1 million d’échantillons par sous-ADC peuvent être nécessaire.
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Une fois les gain relatif de chaque sous-ADC connu, la correction est simple et peut

coûteuse puisqu’elle se fait en divisant le signal de sortie de chaque sous-ADC par le gain

correspondant.

Calibration des désappariements d’instant d’échantillonnage

La calibration des désappariements d’instant d’échantillonnage est plus complexe, et

donc plus coûteuse que les calibration, relativement simples, des désappariements de gain

et d’offset. La technique proposée dans ce mémoire utilise le fait que les décalages d’instant

d’échantillonnage sont petits comparés à la période d’échantillonnage globale du TIADC.

Cela permet de linéariser les modèles en faisant des approximations de Taylor au premier

ordre des équations.

Ainsi, lorsque les décalages d’instant d’échantillonnage sont petits, l’erreur occasionnée

par un décalage de temps sur un sous-ADC est proportionnelle au décalage de temps et

à la dérivée du signal, les termes du second ordre étant négligeables. Dès lors que l’on

connaît le décalage de temps de chaque sous-ADC et la dérivée du signal, on peut calculer

l’erreur d’échantillonnage et la soustraire au signal de sortie du TIADC. En pratique, il est

impossible de connaître la dérivée du signal avec exactitude car seul le signal échantillonné

est connu. Cependant, il est possible d’utiliser un filtre à réponse impulsionnelle finie (FIR

pour Finite Impulse Response) pour estimer la dérivée du signal. Suivant le nombre de

coefficients du filtre, l’estimation de la dérivée du signal est plus ou moins en précise. En

particulier, augmenter le nombre de coefficients du filtre permet d’augmenter la fréquence

jusqu’à laquelle le filtre est précis. Malheureusement, augmenter le nombre de coefficients

augmente la complexité du filtre et donc son coût en composants lorsqu’implémenté dans

un circuit. Pour cette raison, le nombre de coefficients est une compromis entre coût

d’implémentation et précision de correction. En pratique, un filtre avec 50 coefficients

permet d’estimer la dérivée du signal avec une erreur en magnitude inférieure à 0.1%

jusqu’à 90% de la fréquence de Nyquist.

L’estimation des décalage de temps utilise le fait que, lorsqu’il n’y a pas de désap-

pariements d’instant d’échantillonnage, le signal de sortie de chaque sous-ADC est “or-

thogonal” au signal de sortie du TIADC filtré par un filtre FIR dont les coefficients sont

impairs. Ici l’orthogonalité signifie que la moyenne du produit du signal de sortie de chaque

sous-ADC avec le signal de sortie du TIADC filtré tends vers 0. On peut montrer qu’en

présence de disparités d’instant d’échantillonnage, l’orthogonalité n’est plus vérifiée. La

moyenne du produit signal sous-ADC/signal filtré n’est pas égale à 0 mais dépends des

décalages de temps des sous-ADCs adjacents au sous-ADC considéré. Cette dépendance

est linéaire lorsque les décalages d’instant d’échantillonnage sont petits par rapport à la

période d’échantillonnage. On obtient donc un système linéaire de M équations mettant
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en relation les produits signal sous-ADC/signal filtré et les décalages de temps des sous-

ADCs. Ce système d’équations peut être réécrit de sorte à exprimer le décalage de temps

de chaque sous-ADC par rapport à celui d’un sous-ADC de référence, ce qui permet de

l’inverser. On obtient ainsi les valeurs des décalages de temps en fonction des valeurs

des produits signal sous-ADC/signal filtré. Comme dans les calibrations précédemment

mentionnées, la longueur de moyennage est importante puisqu’elle détermine la précision

de l’estimation. Ainsi pour des cas typiques d’application, le nombre d’échantillons par

sous-ADC requis pour atteindre des performances correctes est de l’ordre de quelques

millions.

Bien sûr, que ce soit pour la correction ou pour l’estimation, les approximations du

premier ordre qui sont faites limitent la performance. En pratique on constate que les

décalages de temps relatifs à la période d’échantillonnage augmentent lorsque la fréquence

d’échantillonnage du TIADC augmente. Or, plus le TIADC est rapide, moins sa résolution

est importante et moins la calibration des désappariements d’instant d’échantillonnage

a besoin d’être précise. De ce fait, une calibration au premier ordre est souvent adaptée

aux besoins de performance des TIADCs modernes.

Calibration des désappariements de bande passante

La technique calibration des désappariements de bande passante proposée dans ce

mémoire est adaptée au cas où les filtres d’entrée des sous-ADC peuvent être assimilés à

des filtres passe-bas du premier ordre. Comme pour la calibration des désappariements

d’instant d’échantillonnage, elle tient compte du fait que les décalages de constante de

temps des filtres sont petits par rapport à la constante de temps nominale.

La correction des désappariements de bande passante est relativement similaire à celle

des désappariements d’instant d’échantillonnage. Ainsi, lorsque les décalages de constante

de temps sont petits, l’erreur d’échantillonnage apparaissant à la sortie d’un sous-ADC

est proportionnel au décalage de constante de temps et à la “dérivée passe-bas” du si-

gnal. La dérivée passe-bas du signal est ainsi dénommée car elle s’obtient en filtrant le

signal de sortie du TIADC par un filtre FIR dont la réponse fréquentielle est le produit

de la réponse fréquentielle d’un filtre passe-bas et de la réponse fréquentielle d’un filtre

différenciateur. Lorsque l’on connaît la “dérivée passe-bas” du signal et les décalage de

constante de temps des sous-ADCs, on peut donc calculer les erreurs d’échantillonnage

associées et les soustraire au signal de sortie du TIADC. Comme dans le cas, du filtre dif-

férenciateur, le nombre de coefficients du filtre “dérivée passe-bas” détermine la fréquence

maximale jusqu’à laquelle le filtre est précis. Il doit donc être déterminé en fonction des

caractéristiques du signal d’entrée et des performances à atteindre.

Étant donné, que les désappariements de bande passante occasionnent des désappa-
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riements de gain et de phase, détecter l’un ou l’autre de ces effets permet de détecter

les désappariements de bande passante. L’approche choisie dans ce travail est détecter

les désappariements de bande passante en mesurant les désappariements de gain qu’ils

occasionnent. Cela peut être fait de manière assez similaire à l’estimation des désap-

pariements de gain statique en faisant des mesures de puissance moyenne en sortie de

chaque sous-ADC Cependant, il est important que la calibration soit immune aux désap-

pariements de gain statique. Afin de supprimer cette dépendance, la solution proposée

consiste à mesurer la puissance moyenne de deux versions filtrées du signal de sortie de

chaque sous-ADC. Étant donné que les désappariements de bande passante occasionnent

des désappariements de gain dépendant de la fréquence, les puissances correspondant à

ces deux versions filtrées contiennent de l’information sur les désappariements de gain

correspondant à deux régions fréquentielles différentes. En revanche, les gains statiques

affectent ces mesures de puissances de façon exactement similaire, et en prenant le ratio

des puissances des signaux filtrés, on peut éliminer la contribution des désappariements

de gain statique. En pratique chaque sous-ADC est filtré par des filtres de type “sinus” et

“cosinus”, dénotés ainsi du fait de la forme de leur réponse fréquentielle. Une fois que les

ratios de puissance sont calculés pour chaque sous-ADC, l’erreur de décalage de constante

de temps relative à la constante de temps nominale peut être estimée de manière directe,

en faisant l’approximation que que les décalages de constante de temps sont petits. La

condition pour que cette technique de calibration soit fonctionnelle est bien sûr que le si-

gnal soit suffisamment large bande pour que les puissances des signaux filtrés contiennent

suffisamment d’information sur les désappariements de gain dépendant de la fréquence.

Comme pour l’estimation des autres types de désappariements, la précision de estimation

des désappariements de bande passante dépend du nombre d’échantillons pris en compte

dans le calcul de la puissance moyenne. En pratique, on constate que plusieurs millions

d’échantillons par sous-ADC sont nécessaires pour atteindre des performances suffisantes.

Implémentation d’un circuit intégré de test

Les techniques de calibration décrites précédemment ont été implémentées sur un

circuit de test afin de valider leur principe théorique. Un TIADC de 1.6 GS/s comprenant

12 sous-ADCs a permis de valider les calibrations numérique des désappariements d’offset,

de gain et d’instant d’échantillonnage. Le système de calibration permet notamment une

réduction des raies de désappariement à un niveau inférieur à -70 dB par rapport à un

signal sinusoïdal pleine échelle pour des fréquence d’entrée jusqu’à 750 MHz.
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Partie analogique

Le TIADC est constitué de 12 SAR ADC fonctionnant à 135 ME/s. L’architecture

SAR (Successive Approximation Register) a été choisie pour son efficacité énergétique

particulièrement bonne dans cette zone de fréquence. Bien qu’aucune technique de ré-

duction des désappariements n’ait été mise en place du point de vue analogique, chacun

des sous-ADC a été conçu de façon minutieuse.

Ainsi le condensateur d’échantillonnage, constitué de sous-condensateurs de capacité

un multiple d’une capacité unitaire, a été dessiné spécifiquement. Il prend la forme d’un

peigne métallique dans lequel sont insérés des doigts, le nombre de doigts déterminant

la valeur de chaque condensateur. Cela permet notamment d’augmenter la compacité

tout en maintenant un bon niveau d’appariements entre les condensateurs constituant

un même sous-ADC. L’échantillonnage du signal se fait en utilisant la technique dite

de “bottom plate sampling”. La quantification à proprement parlée est effectuée par

approximations successives en utilisant la technique dite MCS (pour Merge Capacitive

Switching an anglais). Elle consiste à utiliser une tension de référence milieu, une ten-

sion de référence haute et une tension de référence basse, qui peuvent être connectées

aux sous-condensateurs, afin de comparer le signal échantillonné à différents niveaux par

dichotomie.

Enfin un suiveur en entrée du TIADC permet de transmettre différentiellement le

signal d’entrée aux différents sous-ADCs, tout isolant les sous-ADCs du circuit de géné-

ration du signal.

Calibration numérique

Le signal numérisé est ensuite transmis aux différents blocs de calibration numérique.

La calibration des désappariement d’offset est effectuée en premier, puis elle est suivie par

la calibration des désappariements de gain, et enfin la calibration des désappariements

d’instant d’échantillonnage est effectuée.

Un des principaux avantages des techniques de calibration numériques, comparées

aux techniques de calibration mixtes, est leur rapidité de mise en place. Cela est critique

dans un environnement où le temps de mise sur le marché est un aspect essentiel de

la compétitivité des entreprises. Ainsi le processus de conception utilise la synthèse au

niveau (HLS pour High Level Synthesis en anglais). Cela permet, à partir d’un programme

écrit en langage C, de générer du code RTL synthétisable. La simulation du code se fait

avec des simulateurs C classique bien plus rapide que les simulateurs de code RTL. De

plus, le langage C permet de décrire les algorithmes avec un grand niveau d’abstraction,

ce qui permet d’adapter les blocs de calibration facilement à n’importe quelle architecture
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de TIADC.

Les autres avantages d’effectuer la calibration dans le domaine numérique tiennent au

fait des avantages de la conception numérique par rapport à la conception analogique de

manière générale. Ainsi, la conception numérique bénéficie d’outils de conception pres-

qu’entièrement automatisés qui permettent de générer rapidement l’architecture physique

du circuit à partir d’une description relativement haut niveau (langage RTL). De plus,

l’évolution d’un noeud technologique à un autre est relativement simple car le code ne

nécessite pas d’être changé, ce qui rend les blocs de calibration très portables.

La calibration des désappariements de bande passante n’est pas intégrée dans le circuit

car les désappariements de bande passante ne sont pas limitant dans ce circuit. Elle fera

cependant l’objet de validation sur circuit dans un futur relativement proche.

Performances du circuit en fonction de la fréquence

Les performances des algorithmes de calibration, après avoir été validés par des simu-

lations Matlab, on été vérifiés à travers des mesures de performance du circuit de test

implémentant le TIADC.

Le test de mesure le plus classique pour un ADC est d’observer le spectre de sor-

tie lorsque le signal d’entrée est un signal sinusoïdal pleine échelle. En faisant varier la

fréquence du signal d’entrée, on peut mesurer des indicateurs de performance tels que

le SNDR, la SFDR, la hauteur des raies harmoniques, et surtout le niveau des raies de

désappariement.

Afin d’évaluer les performance du bloc de calibration numérique, les spectres du si-

gnal de sortie avant et après calibration de désappariement on été mesurés. Ces mesures

montrent une forte réduction des raies de désappariement sur une bande fréquence al-

lant jusqu’à 750 MHz. Par exemple, un gain de 5 dB de SNDR est obtenu pour une

fréquence d’entrée de 750 MHz. De la même façon, les raies de désappariements après

calibration restent inférieures à -70 dBFS jusqu’à 750 MHz de fréquence d’entrée. Au

dessus de 750 MHz, on observe une baisse de performance de la calibration du fait du

choix de conception effectué pour le filtre différenciateur inclus dans le bloc de calibration

des désappariements d’instant d’échantillonnage. En effet, le nombre du coefficients du

filtre a été choisi de telle sorte que sa fréquence limite soit autour de 750 MHz, ce afin de

limiter sa complexité.

Au final, la SFDR du TIADC est limitée par les raies harmoniques dues au non-

linéarités du suivre d’entrée, et non par les raies dues aux désappariements.

Bien que les ADC soient caractérisés avec des signaux sinusoïdaux, ces types de si-

gnaux reflètent mal la réalité des signaux de communication. Les résultats de test du

circuit avec des signaux modulés démontrent l’efficacité de la calibration en réduisant le
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niveau de bruit de façon importante.

Évolution des niveaux de désappariement avec la température

Afin de justifier l’emploi d’une technique de calibration fonctionnant en arrière-plan

(background calibration en anglais), des mesures du circuit à différentes températures ont

été effectuées. En effet, le niveau des désappariements change avec la température et il est

important de savoir si ces changements justifient une calibration fonctionnant en continu.

L’avantage des algorithmes de calibration proposés est qu’ils fonctionnent tous de

manière directe et permettent d’obtenir la valeur estimée des désappariements relatifs

de chaque sous-ADC. Connaissant la hauteur des différentes raies, on peut aussi déduire

l’écart-type de chaque type de désappariement, en inversant les équations données dans

le Chapitre 2. En utilisant ces deux résultats, on peut donc mesurer le niveau global des

désappariements et aussi avoir une idée du désappariement relatif d’un sous-ADC par

rapport à une autre.

Les résultats des mesures montrent que le niveau des désappariements est affecté par la

température. D’une part, l’écart-type des désappariements parmi les sous-ADC varie mais

les variations ne sont pas nécessairement homogène parmi les sous-ADC. En pratique, on

remarque on la variation d’écart-type seule n’est pas suffisante pour justifier l’utilisation

d’une calibration en continu. En revanche, les variations locales d’un sous-ADC à l’autre

peuvent être parfois plus importantes et les désappariements nécessitent d’être ajustés en

continu.

Comparaison à l’état de l’art

Le circuit décrit dans ce manuscrit a été réalisé en technologie CMOS 40nm de chez

STMicroelectronics et sa surface est de 0.83 mm2. Environ 40 % de cette surface est

dédiée au bloc de calibration numérique alors que les 60 % restant sont dédiés à la partie

analogique.

Le circuit consomme une puissance de 283 mW sous une alimentation de 1.1 V. Envi-

ron 45% de cette puissance est allouée à la conversion analogique-numérique en tant que

telle (partie analogique)et 55 % sont utilisés par la calibration numérique. Une grande

partie de cette énergie est consommée par le filtre numérique permettant de calculer la

dérivée du signal.

Il s’agit d’une surcharge de consommation importante mais qui peut se relativiser

lorsque l’on compare les performances du circuit à d’autres circuits qui ont des caracté-

ristiques similaires. Le tableau ci-dessous compare le circuit proposé à d’autres TIADC

de l’état de l’art. Malgré la consommation de la calibration, l’efficacité énergétique (FOM
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ISSCC JSSC VLSI ISSCC ISSCC
2013 [12] 2011 [10] 2012 [11] 2014 [17] 2014 [13]

Technologie CMOS 65 nm 65 nm 65 nm 65 nm 40 nm
Fréquence d’échantillonnage [GE/s] 3.6 2.6 2.8 1.0 1.6
Cal. offset oui oui oui oui oui
Cal. gain oui oui non non oui
Cal. instant d’échantillonnage non non oui oui oui
Plus haute raie de désappariement 50 55 60 60 70
SFDR [dBFS] 50 55 55 60 62
THD [dB] -55 -58 -55 – -58
SNDR [dB] 47 49 48 51.4 48
Puissance [mW] 795 480 44.6 19.8 93
Walden FOM [fJ/conv] 1207 801 76 62.3 283
Surface [mm2] 7.4 5.1 0.63 0.78 0.83

Table 1 – Comparaison avec l’état de l’art

pour Figure of Merit en anglais) reste acceptable, et en dessous de la plupart des autres

circuits. Après calibration, la hauteur des raies de désappariement est plus faible de 10

dB par rapport à la meilleure de performances publiées jusqu’à maintenant.

Conclusion et perspectives

Le travail présenté dans ce mémoire utilise de façon extensive le fait que les désapparie-

ments sont petits. Cela permet de notamment d’écrire des systèmes d’équations linéaires

aisément solvable de façon directe, sans nécessiter d’utiliser de techniques adaptatives, ou

fonctionnant par approximations successives. Alors que cette technique a ici été utilisée

dans le cas des désappariements d’instant d’échantillonnage et de bande passante, on

peut très bien imaginer appliquer le même genre de raisonnement pour d’autres types de

désappariements, par exemple des désappariements de bande passante qui ne sont pas du

premier ordre.

Il faut cependant garder à l’esprit, qu’avec les performances des TIADCs s’améliorant

sans cesse (fréquence d’échantillonnage et résolution), il est possible que les effets du

second ordre ne soient plus négligeables dans le futur. Cela nécessitera vraisemblablement

d’étendre les méthodes proposées dans ce mémoire.

On peut par exemple imaginer utiliser des filtres de correction plus complexes mais cela

rajouterait une pénalité de consommation non négligeable. Une autre approche pourrait

être de s’aider d’une correction de type mixte basique. Par exemple, les travaux présentés

ici montrent que la calibration numérique permet de réduire les niveaux de désapparie-

ments d’instant d’échantillonnage à des niveaux très faibles, lorsque les désappariements
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initiaux étaient petits. Il est fort possible qu’atteindre ce niveau de précision en ajus-

tant des éléments analogiques sera très difficile. Une meilleure stratégie pourrait être

d’effectuer une correction analogique grossière des décalages d’instant d’échantillonnage.

Cela permettrait de réduire le niveau des désappariements à un seuil que la calibration

numérique est en mesure de gérer très précisément à un coût acceptable.

La calibration des désappariements de bande passante sera probablement sujette au

même type de décision dans un future distant. Pour l’instant, les désappariements de

bande passante ne limitent pas encore les performances des TIADCs actuels, mais avec

l’augmentation des vitesses d’échantillonnage, il est fort à parier que ce ne sera plus

le cas d’ici à quelques années. Cela sera bien sûr une bonne opportunité de tester une

implémentation sur circuit des algorithmes de calibration des désappariements de bande

passante proposés dans ce mémoire.

Enfin, la partie théorique sous-jacente à ce travail a permis de définir les conditions

de fonctionnement des algorithmes de calibration, en montrant qu’ils fonctionnaient pour

des signaux non stationnaires, à certaines conditions sur leur fonction d’autocovariance.

Bien que certaines réponses soient apportées ici, il serait très intéressant de s’intéresser

de plus prêts aux caractéristiques statistiques de signaux de communication numérique

large bande réels (comme les signaux de TV par câble ou les signaux de communication

satellitaires). A terme, cela permettrait d’avoir un cadre théorique bien défini pour la

validation des algorithmes de calibration.
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