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Abstract

The micro-structure of materials is an essential feature for the design of engineering structures
with improved performances. There are several possible approaches to the complex problem of
considering the effect of microstructures on the overall mechanical behavior of real materials which
basically belong to two philosophical categories:

• start from the description of the micro-scale to arrive to the description of the macro-scale,

• directly start from the description of the macro-scale somehow accounting for the presence of
micro-scales.

We refrain here from a deep analysis of the two “philosophies”, limiting ourselves to discuss some of
their advantages and disadvantages. Indeed, a remarkable literature exists based on the adoption
of the first viewpoint: start from the microscopic properties of complex materials to arrive to the
homogenized ones. With this respect, one can cite so-called homogenization models, multi-scale
methods, upscaling procedures and so on. The common idea to all such approaches is to establish “a
priori” the characteristics of the microstructure (e.g. topology, mechanical stiffnesses, distribution of
different phases, etc.) and develop suitable tools for arriving to the global mechanical properties at
higher scales. The main advantage of this type of methods is that they allow to directly know how the
macroscopic parameters are related to the microscopic ones. It is clear that such kind of information
is a really useful tool since it suffices to observe the characteristics of a given microstructure to arrive
to the homogenized descriptors which can henceforth be used to describe the material behavior at
higher scales. Nevertheless, some drawbacks can also be reported about such methods which are
substantially related to the fact that some simplifying assumptions about the characteristics of the
microstructure are sometimes needed and often become too restrictive to be able to give rise to a
homogenized behavior which is fully representative of the real material at higher scales. For example,
some standard homogenization techniques intrinsically need the imposition of boundary conditions
between representative cells and it is difficult to establish wether one type of boundary conditions
is more realistic than another. As a result, we can summarize by saying that it is true that the
homogenized system keeps in its memory some informations about the microscopic characteristics
of the system itself, but often the simplifying hypotheses which have been made at the level of
the microstructure are too restrictive to assure that the obtained homogenized system is fully able
to describe the real macroscopic material behavior. The second possible type of approach is to
start directly from the description of the macroscopic scale by developing models which are able to
describe the average mechanical behavior of the considered material by means of a relatively small
set of macroscopic descriptors. The main advantage of this kind of approach is that real material
behaviors can be described by means of few constitutive parameters at those macroscopic scales
which are often interesting from an engineering point of view. Moreover, the efficacy of the adopted
macroscopic theory can be easily compared with experiments which can be precisely conceived and
reproduced on specimens which have reasonable sizes to be handled without problems related e.g.
to the smallness of the samples themselves. Finally, the real material behavior being described by a
limited number of parameters, it is conceivable to design structures which have rather sophisticated
shapes and large dimensions just relying on few equations describing the global mechanical behavior
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of the considered structure. On the other hand, the drawbacks of such a type of procedures are
twofold

• one must know that, even if in a simplified macroscopic framework, the global theory must
be complemented with some additional macroscopic descriptors if one wants to model some
macroscopic manifestations of the microstructure and

• it is often hard to accomplish the inverse task of relating the proposed macroscopic descriptors
to precise characteristics of the microstructure.

In summary, if such macroscopic models are able to be more easily handled at scales which are
peculiar of engineering design, some difficulties arise when one needs to relate the used macroscopic
descriptors to detailed microscopical properties. Generalized continuum theories belong to the second
of the quoted categories and, in this memoir, we will try to analyze wether their possible use can
provide some advantages when dealing with real engineering problems. We are of course aware that
the first category previously discussed is as legitimate as the second one for approaching a wealthy of
problems, but its study will not be the object of the present manuscript. Instead, we will focus on a
discussion about the use of generalized continuum theories to model materials with microstructure:
we regard such theories as a reasonable “engineering” compromise between the complexity of the
model which we want to use and the detail at which microstructures can be described. In the
framework of continuum theories, the systematic use of continuum Cauchy theories may sometimes
represent a too drastic simplification of reality since some essential characteristics related to the
heterogeneity of microstructures are implicitly neglected in such models. Every material is actually
heterogeneous if one considers sufficiently small scales: it suffices to go down to the molecular or
atomic level to be aware of such heterogeneity. Nevertheless, very often, the effect of microstructure
cannot be detected at the engineering scale. In such cases, continuum Cauchy theory is a suitable
choice for modeling the mechanical behavior of considered materials in the simplest and more effective
way. However, there are some cases in which the considered materials are heterogeneous even at
relatively large scales and, as a consequence, the effect of microstructure on the overall mechanical
behavior of the medium cannot be neglected. In such situations, Cauchy continuum theory may not
be useful to fully describe the mechanical behavior of considered materials. It is in fact well known
that such continuum theory is not able to catch significant phenomena related to concentrations
of stress and strain and to specific deformation patterns in which high gradients of deformation
occur and which are, in turn, connected to particular phenomena which take place at lower scales.
Moreover, Cauchy models are not able to catch in an appropriate way the dynamical response of some
micro-structured materials showing dispersive behaviors or even frequency band-gaps. Generalized
continuum theories may be good candidates to model such micro-structured materials in a more
appropriate way (both in the static and dynamic regime) since they are able to account for the
description of the macroscopic manifestation of the presence of microstructure in a rather simplified
way.
The present manuscript is organized as follows:

• In chapter 1 a general description of fibrous composite reinforcements is given, with particular
attention to the introduction of standard experimental tests which are used to characterize the
micro- and macro-structural mechanical properties of such materials.

• In chapter 2 some fundamental issues concerning classical continuum mechanical models are
recalled. Moreover, second gradient continuum models are introduced and discussed by means
of the Principle of Virtual Work. Since the applications targeted in this manuscript are limited
to static cases, we refrain here to treat the more general case including inertia effects.

• In chapter 3 we start analyzing some discrete and continuum models for the description of the
mechanical behavior of 2D woven composites. At this stage of the manuscript, we want to show
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how some discrete numerical simulations allowed us to unveil some very special deformation
modes related to the effect of the local bending of fibers on the overall macroscopic deformation
of fibrous composite reinforcements. Such discrete simulations showed rather clearly that
microscopic bending of the fibers cannot be neglected when considering the deformation of
fibrous composite reinforcements. For this reason, we subsequently introduced a continuum
model which is able to account for such microstructure-related effects by means of second
gradient terms appearing in the strain energy density.

• In chapter 4 we reduce the general continuum mechanical framework introduced in Chapter 2
to the particular case of 2D continua. We put a strong accent on the geometric interpretation of
second gradient deformation measures which are seen to be directly related to the the in-plane
curvatures of suitable coordinate lines. Such coordinate lines will be interpreted in the next
chapters are the yarns of the considered 2D woven composite, so acquiring a direct physical
sense.

• In chapter 5 we introduce a strong kinematical hypothesis on the admissible deformations, as-
suming that the yarns composing the woven reinforcements are inextensible. Such assumption
allows us to build-up a simplified first gradient model for the behavior of 2D woven reinforce-
ments which is still representative of their mechanical behavior. A constrained least Action
principle is proposed and the associated integral Euler-Lagrange equations are presented. A
numerical method allowing to show some solutions concerning the case of bias extension test
is implemented in Mathematicar and the obtained results are discussed.
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Résumé

La microstructure des matériaux constitue un outil essentiel pour optimiser les propriétés mécaniques
des structures et ainsi améliorer leurs performances. Il existe plusieurs approches qui prennent en
compte les effets de la micro-structure sur le comportement macroscopique des matériaux, elles
appartiennent à l’une des catégories suivantes :

• description du comportement à l’échelle macroscopique à partir d’une description de celui-ci à
l’échelle microscopique,

• description directe du comportement macroscopique tenant indirectement compte de la pré-
sence d’une micro-structure.

Ne voulant pas aborder ici le problème délicat de l’analyse approfondie de ces deux approches qui
sont philosophiquement distinctes, on se limitera à mettre en évidence leurs principaux avantages
et inconvénients. En effet, il existe une littérature abondante qui se fonde sur le premier point de
vue : obtenir les propriétés homogénéisées du comportement mécanique des matériaux complexes à
l’échelle macroscopique en partant d’une description détaillée de leurs propriétés microscopiques. On
peut citer à ce propos les méthodes d’homogénéisation, les méthodes multi-échelles, les procédures
de upscaling, etc. L’idée commune à toutes ces approches consiste à établir a priori les caractéris-
tiques de la microstructure (par exemple la topologie, les propriétés mécaniques, la distribution des
phases, etc.) et d’en déduire les propriétés mécaniques aux échelles supérieures en développant les
outils adaptés. L’avantage principal de ce type de méthode se situe dans la connaissance directe
des liens entre les paramètres microscopiques et macroscopiques. Ce type d’information est alors
très utile puisqu’il suffira de prendre en compte les caractéristiques d’une microstructure donnée
pour obtenir les caractéristiques homogénéisées permettant de décrire le comportement du matériau
à l’échelle macroscopique. Cependant, on doit aussi mentionner les limites de ce type d’approches
micro-macro, limites pour la plupart liées aux hypothèses simplificatrices nécessaires pour la des-
cription de la microstructure. Celles-ci peuvent être excessives et ne plus permettre de représenter
correctement le comportement macroscopique. Par exemple, certaines techniques d’homogénéisation
standard nécessitent l’introduction de conditions aux limites adaptées entre les cellules élémentaires
et il est difficile de connaître a priori le type de conditions aux limites les plus réalistes. On peut
en conclure que si le système homogénéisé conserve bien une mémoire de la microstructure sous-
jacente, les hypothèses associées à sa description sont souvent trop restrictives pour permettre la
reconstruction complète du comportement réel du matériau. Le deuxième type d’approche possible
consiste à partir directement de la description à l’échelle macroscopique en développant des modèles
capables de décrire le comportement moyen du matériau par un ensemble relativement limité de
paramètres. L’avantage fondamental de ce type d’approche réside dans la possibilité de décrire le
comportement du matériau microstructuré à partir de l’introduction, à l’échelle macroscopique, de
ce nombre restreint de paramètres, ce qui est d’un grand intérêt pour les sciences de l’ingénieur. En
outre, la validité du modèle macroscopique adopté peut être directement évaluée par l’intermédiaire
d’essais mécaniques effectués sur des échantillons dont les dimensions sont suffisamment grandes
pour être réalisés facilement. On peut ainsi décrire le comportement global de structures de dimen-
sions importantes et de géométries complexes, en utilisant peu de paramètres et peu d’équations. Il
existe néanmoins quelques inconvénients liés à ces approches purement macroscopiques :
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• il faut être conscient que le modèle global doit être complété par des paramètres supplémen-
taires permettant de décrire certains effets de la microstructure et

• il est souvent compliqué de relier explicitement ces paramètres macroscopiques aux propriétés
de la micro- structure.

En résumant, on peut dire que ces dernières approches sont plus faciles d’utilisation aux échelles ha-
bituelles des sciences de l’ingénieur, mais il est alors plus difficile d’établir le lien entre les paramètres
et la microstructure. Les théories des milieux continus généralisés appartiennent à la deuxième classe
des modèles cités. On essaiera d’analyser dans ce travail les situations dans lesquelles leur utilisa-
tion permet d’apporter des avantages évidents. Même si la première classe de modèles permet aussi
la description de certains comportements, leur analyse ne fait pas partie de l’objet de ce manus-
crit. On se focalisera plutôt sur l’utilisation des théories de milieux continus généralisés pour la
description du comportement mécanique de certains matériaux microstructurés, en considérant ces
théories comme un compromis raisonnable entre d’une part la complexité du modèle, et d’autre part
le niveau de détail auquel les microstructures peuvent être décrites. Dans le cadre des théories des
milieux continus généralisés, l’utilisation systématique d’une théorie dite de Cauchy conduit souvent
à des simplifications trop fortes de la réalité. En effet, certaines caractéristiques de la microstructure
sont implicitement négligées dans ces approches. Cependant, même si tous les matériaux sont hé-
térogènes à une échelle suffisamment petite et possèdent donc une microstructure, celle-ci n’induit
pas forcément un comportement spécifique à une échelle macroscopique. Dans ce cas, la théorie de
Cauchy sera parfaitement adaptée à leur description. D’autres matériaux en revanche, possèdent des
microstructures à une échelle beaucoup plus grande (micron, millimètre, centimètre), dont l’effet se
répercute sur le comportement macroscopique. Le modèle de Cauchy est alors insuffisant pour décrire
leur comportement global spécifique, lié par exemple à la concentration d’efforts ou de déformations,
ou encore à des modes de déformations particuliers caractérisés par de forts gradients locaux indui-
sant des comportements eux-mêmes liés à ce qui se passe à des échelles plus petites. Les modèles de
Cauchy ne sont pas non plus adaptés à la description de la réponse dynamique de certains matériaux
microstructurés montrant des comportements dispersifs ou des band-gaps. Les théories de milieux
continus généralisés peuvent être de bonnes candidates pour modéliser ces matériaux d’une façon
plus précise et plus réaliste, aussi bien en statique qu’en dynamique, puisqu’elles peuvent décrire,
même d’une façon simplifiée, la manifestation macroscopique de la présence d’une microstructure.
Dans l’état actuel des connaissances et de la technologie, il est intéressant de faire porter les ef-
forts sur la concep- tion de matériaux microstructurés pouvant présenter des propriétés originales
afin d’améliorer et d’optimiser les réponses des structures qui les utilisent. En effet, ces structures
conçues en utilisant de tels matériaux microstructurés – aussi connus sous le nom de matériaux
architecturés ou metamatériaux – peuvent présenter des résistances améliorées, des facilités de mise
en forme, des poids minimisés, etc. Elles peuvent également posséder des propriétés innovantes dans
le domaine du contrôle des vibrations ou dans le domaine de la furtivité. Certaines microstructures
génèrent en effet des propriétés très particulières vis à vis de la propagation d’ondes, ce qui confère
aux structures résultantes des solutions de choix comme écran ou absorbeur d’ondes. Le nouveau
concept de metamatériaux est en train d’intéresser de plus en plus les physiciens et les mécaniciens.
Ces matériaux sont obtenus par l’assemblage optimal de plusieurs éléments individuels disposés en
sous-structures périodiques ou quasi-périodiques et permettent ainsi l’obtention de propriétés très
originales. En effet, la forme, la géométrie, les dimensions, le contraste des propriétés mécaniques,
l’orientation et la disposition de ces éléments peuvent influencer par exemple la propagation d’ondes,
d’une façon telle qu’aucun matériau naturel n’est capable de concurrencer. Les propriétés ainsi créées
peuvent certainement donner lieu à des applications innovantes en ingénierie.
Un des domaines d’application les plus prometteurs des théories de milieux continus généralisés
concerne l’étude du comportement mécanique des renforts tissés de composites. Cette classe de
metamatériaux est en effet constituée par le tissage de mèches (constituées de nombreuses fibres
plus fines), dont les rigidités sont très différentes en traction et en cisaillement : les mèches sont
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très raides en traction mais l’angle entre deux mèches peut varier très facilement. Ce contraste très
marqué des propriétés mécaniques de la meso-structure du matériau permet de décrire ses propriétés
homogénéisées dans le cadre d’une théorie de deuxième gradient. En effet, les théories de Cauchy
standard ne sont pas à même de décrire certains motifs de déformation qui sont souvent observés
comme par exemple, des concentrations de gradients de déformation dans des couches limites très
fines reliées aux déformations en flexion des mèches, et donc indirectement aux déformations en
flexion des fibres. Il est important de noter qu’en aucun cas une théorie de Cauchy ne peut tenir
compte des conséquences des mécanismes de déformation de flexion de la meso-structure sur le
comportement mécanique global d’une pièce, alors même qu’il est facile de comprendre que ces
mécanismes de déformation ont un effet macroscopique notamment lors de conditions aux limites
ou de conditions de chargement particuliers. La manifestation macroscopique de la meso-structure
peut en effet jouer un rôle majeur lors de la mise en forme des renforts de composites puisque
ces renforts sont contraints de prendre des formes très particulières pour permettre la réalisation
d’éléments structuraux de géométrie complexe. Lors du processus de mise en forme, la rigidité en
flexion des mèches joue certainement un rôle très important sur la déformation globale de la pièce.
C’est pour cette raison, principalement, qu’une théorie de milieux continus généralisés devient un
outil important pour la modélisation. Des raisonnements du même type que ceux exposés jusqu’ici
peuvent être formulés pour les composites constitués par des renforts fibreux englobés dans une
matrice molle. Dans ce cas, les théories de milieux continus généralisés s’appliquent lorsque l’on
considère l’ensemble du matériau fini : renfort fibreux + matrice molle.
Ce manuscrit est organisé comme suit :

• Dans le chapitre 1 nous introduisons les aspects généraux de la mécanique des renforts fibreux
de composites avec une attention particulière à la description des tests mécaniques standards
qui sont souvent utilisés pour caractériser les propriétés micro et macro de ces matériaux.

• Dans le chapitre 2 nous rappelons certains concepts fondamentaux concernant la mécanique
des milieux continus classiques. De plus, nous introduisons les théories de deuxième gradient
à l’aide du Principe des Travaux Virtuels.

• Dans le chapitre 3 nous nous proposons de présenter une première modélisation des renforts
fibreux de composites en mettant en place des modèles numériques discrets. Cette modélisation
discrète permet de rendre compte de certains effets de la microstructure des renforts fibreux
sur leur comportement macroscopique global. En particulier, il sera montré que la flexion
locale des mèches à l’échelle mesoscopique a un effet non-négligeable sur le comportement
macroscopique global de ces matériaux. Dans un deuxième moment nous introduisons une
modélisation continue de deuxième gradient pour la description des mêmes matériaux et nous
montrons que les termes d’ordre supérieur permettent une description satisfaisante des effets
de flexion locale sur-cités.

• Dans le chapitre 4 on particularise le cadre général de la mécanique des milieux continus
introduit dans le chapitre 2 au cas particulier des milieux continus 2D. On mettra un accent
fort sur l’interprétation géométrique des mesures de déformation de deuxième gradient qui
seront directement reliées aux courbures dans le plan de certaines lignes matérielles. Ces lignes
matérielles seront ensuite interprétées dans les chapitres suivantes comme décrivant les mèches
des renforts fibreux de composites qu’on se propose d’étudier.

• Dans le chapitre 5 nous introduisons une hypothèse cinématique forte sur les déformations ad-
missibles, en supposant que les mèches du renfort considéré sont inextensibles. Cette hypothèse
nous permettra de construire un modèle simplifié de premier gradient pour le comportement
des renforts de composites 2D qui est encore représentatif de leur comportement mécanique.
Une méthode numérique permettant de montrer certaines solutions concernant le cas du bias
extension test est codée en Mathematicar et les résultats obtenus sont discutés.
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General Introduction

It is today well accepted that a major scientific challenge is that of finding innovative ways of
assembling different components in periodic or quasi-periodic patterns in order to design new meta-
materials showing better performances and new functionalities. We are more and more accustomed
to expressions such as complex materials, architectured materials, metamaterials, smart materials
and so on. With all such expressions one wants to generally indicate materials exhibiting different
mechanical responses at different scales due to different levels of heterogeneity. The main character-
istic of such materials is that their overall mechanical behavior of is macroscopically influenced by
the underlying microstructure, especially in presence of particular loading and/or boundary condi-
tions. It is then clear that the fact of understanding the mechanics of meso- and micro-structured
materials is becoming a fundamental issue in engineering and science. Complex metamaterials may
exhibit superior mechanical properties with respect to more commonly used engineering materials,
also providing some advantages as easy formability processes, light weight and exotic behaviors
with respect to wave propagation. In this manuscript we address the problem of the description
of the mechanical behavior of a class of complex engineering materials which are known as woven
fibrous composite reinforcements. These materials possess a hierarchical microstructure, since they
are constituted by woven tows which are themselves made up of thousand of fibers. The high con-
trast between the high tension stiffness of the yarns and the very low resistance to angle variations
is a fundamental characteristic of such materials which contributes to the need of using a second
gradient theory for their mechanical description (see e.g. PIERRE ALIBERT). We will show that
the micro-structure of fibrous composites actually has a strong impact on the overall mechanical
behavior of the macroscopic engineering piece. In particular, according to the approach followed in
this work, the macroscopic manifestation of the microstructure of such materials is accounted for by

• the use of suitable orthotropic constitutive laws which allow for the description of two privileged
directions in the material corresponding to warp and weft and

• the introduction of second gradient terms in the strain energy density which permit to take
into account the bending stiffness of the yarns.

A first gradient continuum orthotropic model is not able, alone, to take into account all the possible
effects that the microstructure of considered materials have on their macroscopic deformation. More
precisely, as we will show, some particular loading conditions, associated to particular types of
boundary conditions may cause some microstructure-related deformation modes which are not fully
taken into account in first gradient continuum theories. One way to deal with the description
of such microstructure-induced deformations, while remaining in the framework of a macroscopic
theory, is to consider so-called “generalized continuum theories”. Such generalized theories allow
for the introduction of a class of internal actions which is wider than the one which is accounted
for by classical first gradient Cauchy continuum theory. These more general contact actions excite
additional deformation modes which can be seen to be directly related with the properties of the
microstructure of the considered materials. The main aim of the present work is to explicitly show
the interest of using second gradient theories for the modeling of the mechanical behavior of fibrous
composite reinforcements. This task will be accomplished by structuring the present manuscript as
follows:
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• In chapter 1 a general description of fibrous composite reinforcements is given, with particular
attention to the introduction of standard experimental tests which are used to characterize the
micro- and macro-structural mechanical properties of such materials.

• In chapter 2 some fundamental issues concerning classical continuum mechanical models are
recalled. Moreover, second gradient continuum models are introduced and discussed by means
of the Principle of Virtual Work. Since the applications targeted in this manuscript are limited
to static cases, we refrain here to treat the more general case including inertia effects.

• In chapter 3 we start analyzing some discrete and continuum models for the description of the
mechanical behavior of 2D woven composites. At this stage of the manuscript, we want to show
how some discrete numerical simulations allowed us to unveil some very special deformation
modes related to the effect of the local bending of fibers on the overall macroscopic deformation
of fibrous composite reinforcements. Such discrete simulations showed rather clearly that
microscopic bending of the fibers cannot be neglected when considering the deformation of
fibrous composite reinforcements. For this reason, we subsequently introduced a continuum
model which is able to account for such microstructure-related effects by means of second
gradient terms appearing in the strain energy density.

• In chapter 4 we reduce the general continuum mechanical framework introduced in Chapter 2
to the particular case of 2D continua. We put a strong accent on the geometric interpretation of
second gradient deformation measures which are seen to be directly related to the the in-plane
curvatures of suitable coordinate lines. Such coordinate lines will be interpreted in the next
chapters are the yarns of the considered 2D woven composite, so acquiring a direct physical
sense.

• In chapter 5 we introduce a strong kinematical hypothesis on the admissible deformations, as-
suming that the yarns composing the woven reinforcements are inextensible. Such assumption
allows us to build-up a simplified first gradient model for the behavior of 2D woven reinforce-
ments which is still representative of their mechanical behavior. A constrained least Action
principle is proposed and the associated integral Euler-Lagrange equations are presented. A
numerical method allowing to show some solutions concerning the case of bias extension test is
implemented in Mathematicar and the obtained results are discussed. We finally compare the
obtained numerical solutions with an analogous model implemented in COMSOLr in order to
be sure that the COMSOLr model gives the same results as the Mathematicar code.
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CHAPTER 1. COMPOSITE MATERIALS 18

1.1 Introduction

By composite materials we generally mean all materials that are composed at least of two distinct
constituents, which can have very different physical or chemical properties, assembled in a specific
way that gives to the final material specific characteristics which differ significantly from those of
every individual component. Composite materials are usually constituted by two phases, namely
the reinforcement and the matrix. These two phases posses different functionalities: the reinforce-
ment gives the fundamental mechanical properties to the material and the matrix plays the role of
cohesion between the different components. There exists several examples of natural or artificial ma-
terials which respect the definition given above and which can henceforth be classified as composite
materials. Among them we can list, for example

• Carbon-fiber-reinforced polymers: they are composed of a woven fibrous reinforcement in
which a polymeric resin is injected to give rise to the final engineering piece.

Figure 1.1: Example of carbon fabric

• Concrete: it consists of loose stones held with a matrix of cement.

Figure 1.2: Concrete

• Sandwich structure panel: it is a material realized attaching two stiff thin skins to a thick
lightweight core.
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CHAPTER 1. COMPOSITE MATERIALS 19

Figure 1.3: Sandwich panel used at NASA

• Plywood: it is a sheet material realized from thin layers of wood veneer that are glued together
rotated up to 90 degrees to one another.

Figure 1.4: Plywood used in construction

• Bone tissue: it is constituted by a hydroxyapatite matrix reinforced with collagen fibres.

Figure 1.5: Bone tissue structure

In this manuscript we will focus our attention on the description of the mechanical behavior of some
particular composite materials which are known as woven fiber-reinforced composites. Such materials
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CHAPTER 1. COMPOSITE MATERIALS 20

are conceived by molding the raw fiber reinforcement into the desired shape and then injecting a
polymeric resin which confers the final stiffness to the engineering piece. In the framework of the
present manuscript we will study of the mechanical behavior of the raw woven reinforcement alone,
before the injection of the polymeric resin. This fact is of crucial interest for an accurate description
of the forming process of such reinforcements. The tools which are needed to develop a complete
theoretical framework for the description of the behavior of such materials are not trivial since
different complicated aspects must be taken into account, such as:

• development of suitable hyperelastic constitutive laws which allow for the description of an
average material behavior at large strains,

• development of a generalized continuum theory which is able to account for the effect of the
presence of the mesostructure on the overall mechanical behavior of the considered material.

In this chapter we introduce composite materials, in general and fibrous composite reinforcements,
in particular. We then explicitly show that fibrous composite reinforcements are materials with
hierarchical microstructure and this fact confers them peculiar mechanical properties. Indeed, dif-
ferent scales of heterogeneities may be identified, namely the microscopic scale (scale of the fiber),
the mesoscopic scale (of the yarns) and the macroscopic scale (of the engineering piece). The micro-
and meso-structure of the materials considered in this thesis play a crucial role on the overall me-
chanical behavior of the material at the macroscopic scale. We try here to specify which are the
main characteristics of the micro- and meso-structures which have a macroscopic manifestation on
the overall behavior of woven fibrous composite reinforcements. We presented some simple and
standard mechanical tests which allow to characterize some basic macroscopic deformation modes
as related to the meso- and microscopic ones. All the considerations exposed in this chapter are at
the basis of the conception of suitable macroscopic hyperelastic constitutive laws to be used in the
modeling of fibrous composite reinforcements in the framework of a continuum theory.

1.2 Carbon fiber reinforced polymer: production method

In this work we will consider only composite materials in which the reinforcement is constituted
by carbon fibers which are suitably woven together in order to give rise to materials which are
very easily molded in complex shapes. More particularly, we will focus on the description of the
composite alone during its forming process before that the polymeric resin is injected and cured.
In this section we analyze the process of fabrication of these reinforcements explaining briefly the
various production steps. The understanding of such processes is important to understand which are
the mechanical properties which can be conferred to the reinforcement by changing the production
process.

In order to obtain the final engineering pieces usually employed in aeronautical engineering the
following steps are implemented:

1. fiber manufacturing,

2. obtaining of yarns by assembling the single fibers together,

3. weaving of the yarns to get the reinforcement,

4. molding of the reinforcement into the desired shape,

5. injection of the polymeric resin,

6. solidification of the resin.

In what follows, we analyze in some detail certain aspects of the manufacturing process of fiber
composite materials.
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1.2.1 Fibers and yarns

There are mainly two ways to manufacture carbon fibers:

• starting from polyacrylonitrile fibers (PAN),

• starting from pitch fibers.

In the first case, the carbon fibers are made by conversion of a precursor in polyacrylonitrile. The
filaments are first spun from the precursor heated to its oxidation temperature, then held under
tension, and then carbonized in a nitrogen atmosphere at about 1 200 C°. The non-carbon elements
volatilize, leaving mainly carbon. The fibers obtained after this step are called high resistance fibers
(RH). An additional step of graphitization at 2500 C° allows to perfect the structure and obtain
so-called high-modulus fibers (MH). Variations during step graphitization lead to different types of
fibers.
For the case of pitch fibers, the filaments are cooked, after spinning, at 600 C°, then carbonized in a
nitrogen atmosphere at 2500 C° to enrich them with carbon. The obtained fibers show a very good
level of carbon. However, the difficulty of removing impurities in the original pitch gives them a
lower tensile stiffness.
The last step before obtaining usable fibers is the textile sizing. This operation consists of treating
the fiber surface and it plays a leading role in their lifetime. Its main function is to achieve better
compatibility and greater cohesion between fiber and matrix to optimize the mechanical properties
of the final piece. Its composition may vary significantly from one producer to another.

Figure 1.6: PAN and pitch based carbon fiber manufacturing procedure.

The obtained fibers can undergo treatments or transformations in order to give them new properties
(see Fig. 1.6). In our case, they are assembled into yarns, with possible additional treatments.
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Once assembled, the strands of carbon fibers generally contain between 3,000 and 48,000 fibers. The
characteristic quantities generally used to describe a yarn are: material, type of assembly, number
of fibers, fiber diameter, linear density, rigidity and tensile strength.

1.2.2 Reinforcement

The reinforcements studied in this manuscript are assemblies of carbon yarns obtained by weaving.
Weaving can be 2D (surface), 2.5D (interlocks) or 3D (three-dimensional). The first ones are obtained
interlacing the yarns in two perpendicular preferred directions called warp and weft. The type of
arrangement used is said armor of the reinforcement. For the 2D case, the traditional armor of the
textile industry are used. For 3D weaving, a third direction is added to the thickness of reinforcement.
Finally, the weavings called 2.5D, are situated on the border between woven 2D and 3D.

A reinforcement armor is obtained from a weaving machine (loom), in the same way as clothing
textiles. The weaving process requires a number of steps performed by specific parts of the weaving
machine as schematically shown in Figure 1.2.2.

Figure 1.7: Basic structure of a loom

Regarding the 2D fabrics, there are three main armors (see Fig.1.8):

• plain weave, it is the simplest armor: each warp yarn passes alternately above and below each
weft yarn,

• twill N ⇥M : the weft yarns pass over N warp yarns then under M warp yarns, shifting of
one yarn to each passage,
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• satin: the weft yarn passes over N warp yarns then below 1 warp yarn.

Figure 1.8: Schemes of weaving for fibrous composite reinforcements

The combination of these three families of armors with the plurality of available geometries and
materials constituting the yarns, allows to obtain a wide variety of woven reinforcements. If the
reinforcement is the same in the warp and weft direction, we will talk about balanced fabric. Gen-
erally, a fabric can be characterized by his armor, the relative arrangement of warp and weft yarns
and the shrinkage that is the relative difference between the length of the fabric in one direction and
the length of a yarn in the same direction. The shrinkage is given by:

shrinkage =

l
yarn

� l
fabric

l
yarn

.

Thick specimens can be obtained superimposing these 2D armors. The resulting structure is laminar
in the sense that the various lamina have no links other than the resin. These materials are then
highly susceptible to delamination that can lead to a collapse of the structure. To overcome the
problems peculiar of 2D armors, thick woven reinforcements were designed. These reinforcements
can be seen as the superposition of different lamina structurally assembled during the weaving.
Instead of continually intersects in the same plane, the weft yarns intersect several planes of warp
yarns within the thickness of material (see Figure 1.5). The obtained woven fabric can then reach
thicknesses of the order of ten centimeters (see e.g. Figs. 1.8,1.9).
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Figure 1.9: Examples of thick woven reinforcements

Figure 1.10: 2.5D woven composite interlock

1.3 Multi-scale mechanical behavior of fibrous composite reinforce-
ments

As we have already pointed out, woven composite reinforcements are multi-scale materials and their
macroscopic mechanical behavior is strongly influenced by the different scales presented by the
materials themselves. The hierarchical heterogeneity of composite reinforcements is illustrated in
Fig. 1.11, in which three different scales can be recognized:

• the macroscopic scale (left): scale of the engineering piece;

• the mesoscopic scale (center): scale of the yarn;

• the microscopic scale (right): scale of the fibre.
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The meso- and micro-structural characteristics of composite reinforcements have visible effects on
their overall mechanical behavior at the macroscopic scale. Such influence of the microstructure on
the macroscopic behavior of the material has a twofold nature related to:

• the orthotropy conferred to the material by the presence of the woven yarns and

• the effect of some mesostructural properties (as the effect of the bending stiffness of the yarns)
on the macroscopic deformation mechanisms.

We will show in this manuscript how the first point concerning the orthotropy of the material
can be approached in a continuum framework by means of the use of suitable constitutive laws,
while the second point can be addressed by using generalized, second gradient, continuum theories.
Another possible approach which can give interesting informations about the behavior of fibrous
reinforcements is the use of discrete models, which is what we do in this manuscript to complete our
continuum analysis.

Figure 1.11: Hierarchical microstructure of fibrous composite reinforcements.

It is clear at this point that the macroscopic behavior of fibrous composite reinforcements is related
to specific deformations mechanisms associated to the deformation of the yarns at the mesoscopic
scale. Such mesoscopic deformation mechanisms are, in turn, influenced by the microscopic structure
of the material, i.e. by the behavior of the fibers which constitute the yarns.
In order to be able to understand the intrinsic behavior of fibrous composite reinforcements, one
needs to catch which are the deformation mechanisms which take place at the mesoscopic scale. To
do so, it is sensible to describe some basic experimental tests which are used in the community of
woven fiber reinforcements and which allow for the measurement of simple mechanical parameters
related to simple deformation mechanisms at the mesoscopic and microscopic scales. We present
anddiscuss such experimental tests with the twofold aim of

• better understanding the deformation mechanisms which may take place at the mesoscopic
(and also microscopic) scale

• proposing some simple procedures to measure some mechanical characteristics of the material
at the mesoscopic (or microscopic) scale.

The experimental tests introduced in this chapter will be a basis to propose a procedure to measure
first and second gradient elastic coefficients in the last chapter of this manuscript.

1.3.1 Tensile behavior of the Yarns

The yarns, as already remarked above, are constituted by many fibers. When a yarn is subjected
to tension, a nonlinear behavior can be recognized which is due to the fact that the fibers are not
all stretched simultaneously. Nevertheless, when reaching a certain threshold load, corresponding
to which the fibers are all stretched, the yarn starts showing a very high stiffness. When the
transition from the nonlinear behavior to the acquisition of the complete stiffness of the yarn does
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not have significant effects on the macroscopic material behavior of the woven fabric, one can also
consider, as a limit case that the fibers are inextensible which is what we do starting from Chapter
5. The study of the material behavior of woven composite reinforcements based on such simplifying
hypothesis (inextensibility) is of interest in order to obtain some “reference” material behaviors
starting from which one can then conceive and propose some experimental procedures for measuring
first and second gradient coefficients mainly related to angle variation and to bending of the yarns.
In this manuscript, and in particular in Chapter 5, we will see that, although such study of the
inextensible case introduces conceptual difficulties related to the fact that the ratio between the
value of the tension stiffness and that of the shear stiffness tends to infinity, suitable solutions
cans be found for the bias extension test. These findings, will allow us to propose in Chapter 6 a
simple procedure to identify the relevant first and second gradient parameters which intervene in
the observed phenomena.

1.3.2 Compaction of the Yarn in the Transverse Plane

The compaction of the yarn is defined as the change of the area in the transversal plane to the
yarn, which is the plane orthogonal to the fibers directions. When the yarn is compressed in the
direction orthogonal to its main direction the internal fibers are more closely packed together and
fill the voids initially present in the transversal section of the fibers. We remark that the behavior
of the material in compaction presents an asymptotical behavior: after an initial phase in which
the fibers re-organize themselves in such a way that the voids are filled, the material shows an
increased stiffness. In particular, the stiffness of the yarn finally tends to the stiffness of the material
constituting the fibers. In addition, is it worth noting that this type of mechanism is difficult to
characterize from an experimental point of view due to the fact that a pure compaction test is
difficult to be realized and reproduced. For this reason, throughout this manuscript, we will assume
that the compaction deformation mechanism does not have a significant impact on the macroscopic
deformation of the considered specimens.

1.3.3 Shear Behavior of the Yarn

Two types of shear modes can be individuated in the yarns

• the distortion: this deformation mode occurs in the transversal plane of the yarn;

• the transverse shear: this deformation mode occurs in the direction of the fibers.

The first deformation mode is characterized by the fact that the cross section of the yarn changes
its shape without activating compaction deformation modes. Such deformation mode is due to the
fact that the fibers constituting the yarn slide one with respect to the other in order to adapt the
overall imposed deformation. So, if one considers, for example, a yarn with cross sections which
are initially, let us say, vertical and if a bending deformation is imposed to the yarns, the fibers are
forced to slide one with respect to the other in order to let the yarn assume the desired form and,
at the same time, let the fibers respect the quasi-inextensibility constraint. This internal sliding of
the fibers can be interpreted as a motion of the cross sections (for example a rotation). It is worth
noting that a coupling mechanism can be recognized between the compaction of the yarn and its
distortion: when the yarn is compacted the distortion of the yarn occurs with increased difficulty.
This is sensible since when the fibers are compacted friction mechanisms are more pronounced which
render sliding more difficult.
The transverse shear is a deformation mode in the direction of the fibers and corresponds to a slid-
ing between the fibers in the direction of the fibers themselves. As for the distortion, an increased
compaction of the yarn causes a stiffening effect on the transversal shear. It can be also under-
stood that, being the two quoted deformation modes of the yarns based on the same microscopic
mechanism of fibers’, a coupling exists between them. Both these types of deformation are difficult
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to be characterized from an experimental point of view, in particular the stiffening effects due to
compaction.

1.3.4 Behavior of the Yarn Subject to Bending

There exist only few studies which concern the behavior of the yarns subjected to bending. This
type of studies, however, is interesting since the bending properties of the yarns can affect the
macroscopical behavior of the specimen. In particular, as we will see in the next chapters, the
fact of neglecting the effect of the bending stiffness of the yarns (and so of the fibers), produces
macroscopic models that are not able to describe all the experimental evidences. As it will be shown
in detail in the remainder of this manuscript, a Cauchy continuum theory is not able to account
for the effect of bending stiffness of the yarns on the macroscopic behavior of the fabric. It is for
this reason that generalized continuum theories (second gradient) may be introduced to palliate this
inconvenience. Such theories are indeed able to account for the macroscopic manifestation of the
mesoscopic bending of the yarns, still remaining in the framework of a continuum theory. I

Figure 1.12: Bending of the yarn before the lateral expansion (a) and after (b).

When the yarn is subjected to a three point bending test, three different types of mechanism are
turned on, that are (see Fig. 1.12)

• the transversal shear of the yarn;

• the bending of the fibers which constitute the yarn;

• the lateral expansion of the fibers in correspondence of the central support.

The first mechanism is activated due to the internal sliding of the fibers which takes pace as a
consequence of the fact that they are bending together and that they are almost inextensible. The
activation of the second mechanism is evidently easy to understand. As for the third mechanism, one
can imagine that the contact with the central support can induce the fibers to rearrange themselves
in the horizontal plane.

1.4 Macroscopic Behavior

In this section we present and discuss some elementary material tests that are commonly used to
characterize the macroscopic mechanical behavior of woven fibrous composite reinforcements. Such
tests are an indispensable tool for the correct comprehension of the mechanical behavior of fibrous
composite reinforcements as influenced by the presence of their micro- and meso-structure.
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1.4.1 Uniaxial Extension Test

The behavior of the fibrous composite reinforcements subjected to uniaxial tension test results to be
nonlinear. This nonlinearity is due to the compaction of the yarns and the undulation of the tissue
with the subsequent straightening (decrimping). More particularly, when an uniaxial tension test is
performed on a given specimen, two successive phenomena can be observed

• a reduction of the undulation in the direction of the solicitation up to arrive to a complete
straightening of the yarns (decrimping)

• the elongation of the yarns in the direction of the solicitation.

These two mechanisms give an easy interpretation of the diagram obtained from experimental mea-
surements in the plane force vs imposed displacement (see [13, 59]). In the first phase, corresponding
to the reduction of the undulation of the yarns in the direction of the solicitation, the material pos-
sesses a stiffness that increases as the undulation decreases. When the complete straightening of the
solicited yarns is reached, the material offers a constant stiffness which corresponds to an increasing
force measured in function of the elongation of the yarns. A small elongation of the macroscopic
specimen will be observed due to decrimping phenomena. On the other hand, if the fibers are not
parallel to the side of the specimen (and hence to the applied load) the resistance to tension is
much lower and significant macroscopic elongations can be observed which are substantially due to
pantographic motions of the yarns (see Fig. 1.13).
In the second part of this thesis we will introduce the hypothesis of inextensibility of the yarns, so
implicitly assuming that decrimping phenomena and yarns’ elongations are not the predominant de-
formation mechanisms intervening in the deformation process of a fibrous composite reinforcements.

Figure 1.13: Pantographic motions of the yarns.

1.4.2 Biaxial Extension Test

The biaxial extension test is performed by soliciting to tension the material simultaneously in the
warp and weft directions. If one denotes the deformation in one of the solicited observed direction
as "

obs

(i.e. warp or weft) and the deformation in the orthogonal direction as "
orth

, is possible to
define the coefficient of the biaxial extension test as

k =

"
orth

"
obs

from which different cases of solicitation can be identified

• k = 0 or k = 1 corresponds to a limit case in which the biaxial test degenerates into an
uniaxial one;

• k = 1corresponds to an equal solicitation in both direction;

• k = r with r 2 Rcorresponds to a solicitation case in which the deformation in the orthogonal
direction is r times the deformation in the observed one.
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The results of the test, naturally, depend on the chosen value of the coefficient k and one can
experimentally observe that when k = 1 the deformation in the observed direction is due to the
compaction of the yarns, indeed whenk = 0 or k = 1 the deformation is due to the reduction
of the undulation (that involves the shear of the yarns in its transversal plane). When k = r the
two mechanism are in competition. The biaxial extension test can be hence used if one wants to
understand better which is the effect of such two deformation mechanisms on the overall mechanical
behavior of the macroscopic piece.
In this manuscript we will only focus our attention on some deformation patterns in which the two
family of fibers are equally solicited in the two directions. More than that, when considering the
inextensibility constraint, such deformation mechanisms will be considered to be unessential.

1.4.3 Shear Tests in the Plane of the Reinforcement

The main deformation mechanism in fibrous composite reinforcements is certainly associated to
shear, i.e. to the change of the angle between yarns at the mesoscopic scale. The behavior of the
reinforcement subjected to shear in the plane, results to be highly nonlinear. Some studies based
on the technique of the image correlation [27, 26] have shown that, in an initial phase of the test,
the two families of yarns rotate in a relative way (like rigid bodies connected by internal pivots) and
hence the shear force associated to this deformation is relatively low. When the shear angle variation
between yarns becomes larger than 40° (and lower than 50°) a stiffening in the shear behavior is
observed and the mechanism of deformation drastically changes. In this second phase the relative
motions described above are replaced by a lateral contact between the yarns (and their relative lateral
compaction), so this fact corresponds to an increased stiffness. Two simple tests permit the study of
the behavior of the composite reinforcement subjected to shear in the plane: the picture frame test
and the bias extension test. Due to the important effect that such macroscopic deformation mode
has on the deformation of specimens subjected to more complex loading conditions it is essential to
set up experimental procedures which are able to give precise informations in this sense.

1.4.3.1 Picture Frame Test

In the picture frame test the composite reinforcement is placed into an articulated quadrilateral
structure, that initially possesses a square shape. By imposing a displacement d at one node of the
structure, see Figs. 1.14,1.15, the reinforcement is subjected to pure shear and a simple kinematical
relation furnishes the shear angle variation as a function of the imposed displacement d and the
length L of the edge of the articulated square:

� =

⇡

2

� 2 arccos

 

2d+
p
2L

2L

!

(1.1)

It has been experimentally shown that the picture frame test is not the more suitable one to correctly
measure the shear angle resistance since some parasite tensions take place which render the measure
of the force not reliable. More particularly, the measured force is not due only to the shear stiffness,
but also to a big extent to such parasite tensions. Due the occurrence of such problems during the
picture frame tests, a second test for the measure of the shear stiffness was conceived which is known
as bias extension test.

1.4.3.2 Bias Extension Test

The bias extension test is performed on rectangular samples of composite reinforcements, with the
height (in the loading direction) relatively greater (at least twice) than the width, and the yarns
initially oriented at ±45-degrees with respect to the loading direction. The specimen is clamped at
its two ends, one of which is maintained fixed and the second one is displaced of a given amount.
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Figure 1.14: Kinematic of the picture frame test. (a) Specimen before the deformation (b) specimen
after the imposed displacement d.

The relative displacement of the two ends of the specimen generates angle variations between the
warp and weft: the creation of three different regions A, B and C, in which the shear angle between
fibers remains almost constant after deformation, can be detected (see Figs. 1.16 and 3.3).
In particular, the fibers in regions C remain undeformed, i.e. the angle between fibers remains at
45° also after deformation. On the other hand, the angle between yarns becomes much smaller than
45° in regions A and B, but it keeps almost constant in each of them. In particular if in the zone
A the angle is � it will be of �/2 in the zone B . Also in this case, a simple kinematical relation
furnishes the shear angle variation as function of the imposed displacement and of the geometry of
the specimen:
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It is worth noting that the kinematical relations (1.1) and (1.2) are deduced by implicitly using
the assumption that the yarns are inextensible so that only pantographic motions are activated at
the scale of the yarns which allow to univocally relate the angle variation to the geometry of the
specimen and the imposed displacement. As we will show in the remainder of this manuscript,
other deformation mechanisms actually intervenes in the bias extension test which are related to the
bending of the yarns at the mesoscopic scale. Such mesoscopic bending actually creates transition
layers between the regions A, B and C which allow to shift from one value of the angle to the other.
It is for this reason that the bias extension test, when simulated in the framework of second gradient
theories, contains useful additional informations about the bending stiffness of the yarns.

1.4.4 Transversal Shear Test

This test is performed in order to characterize the behavior of the composite reinforcement when it is
subjected to transversal shear. The machine, depicted in Fig. 1.17, imposes on the specimen (shaped
as a parallelepiped) a kinematic of pure transversal shear in order to solicit the only transversal shear
deformation mode. The test is usually performed twice by orienting the specimen in the direction

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0061/these.pdf 
© [M.V. D'agostino], [2015], INSA Lyon, tous droits réservés



CHAPTER 1. COMPOSITE MATERIALS 31

Figure 1.15: Experimental set-up for a picture frame test.

of the warp and weft, since the material, if not perfectly balanced, may have different stiffnesses in
these two directions.

1.5 2D fibrous composite reinforcements: main deformation mech-
anisms and essential experimental tests.

In this thesis we will mainly focus on the modeling of the mechanical behavior of 2D fibrous composite
reinforcements trying to isolate the fundamental deformation mechanisms which intervene in the
deformation of such complex materials. Indeed, as we have seen in the first part of this chapter,
different deformation mechanisms related to the microstructure of such materials can be identified.
Nevertheless, the relative importance of such deformations with respect to the overall behavior of
the material is not the same for each deformation mode. More particularly, we can argue that the
main deformation mode intervening in the deformation of 2D fibrous composite reinforcements is
the variation of the angle between the warp and weft direction which results in panthographic-type
deformations (see Figs. 1.18,1.19).
For this reason, starting from chapter 5, we will introduce in our arguments the hypothesis of
inextensibility of the yarns, so allowing the simplification of excluding elongation deformation modes.
This will allow us to focus our attention on a unique first gradient deformation mode: the shear
angle variation. On the other hand, we will show by means of the bias extension test that some
particular boundary and loading conditions can be applied to the material that trigger second
gradient deformation modes which are mainly associated to the local bending of the fibers. We
will hence be able at the end of this manuscript to propose a very simple second gradient model
with inextensible fibers which can guide us towards the identification of first and second gradient
parameters from an experimental point of view. More particularly, a bias extension test will be
proposed to calibrate first and second gradient elastic parameters on observable quantities.
Before thinking about an effective way of evaluating second gradient parameters, a suitable way
of measuring first gradient ones must be individuated. This is what is done from several years to
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Figure 1.16: Kinematics of the bias extension test.

measure the shear stiffness in 2D woven reinforcements. The main idea is to try to conceive a test
in which the shear angle variation is the sole intervening deformation mode. To this purpose, the
picture frame test was conceived.

1.5.1 The picture frame test is not the best test to evaluate shear stiffness

Even if, from a theoretical point of view, the picture frame test is the most suitable way of measuring
the shear angle variation and the associated shear stiffness, this is not indeed the case when trying to
do so experimentally. If one looks at Fig. 1.14, it could seem evident that only an affine deformation
of the frame takes place and that the only deformation mechanism of the tested reinforcement is the
shear angle variation. Nevertheless, when trying to set up the experimental test (Fig. 1.15), it is not
evident how one can fix the composite to the frame without creating parasite tensions in the yarns.
The desirable situation would be that of having a pivot linking each yarn to the frame: this would
allow rotations of the yarns so avoiding parasite tensions. Since such experimental configuration is
difficult to be set up, the picture frame test is nowadays less used for the determination of the shear
stiffness. Another test was conceived to this task which is the bias extension test already described
above.

1.5.2 Bias extension test is suitable for the evaluation of the shear stiffness and
for the local bending stiffness of the fibers

As already pointed out, the bias extension test was originally conceived to give an alternative to the
picture frame test for measuring the shear stiffness of 2D fibous reinforcements. indeed (see Fig.
1.16) the central zone C of the specimen can be seen as equivalent to the picture frame specimen.
The advantage of the bias extension test is that each yarn of the specimen has at least a free end
and this fact is sufficient to avoid tensions in the yarns themselves. Nevertheless, what was less
clear until recently is that a secondary, microstructure-related, deformation mechanism takes place
in a bias extension test which was not fully evidenced. Such deformation mechanism is the bending
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Figure 1.17: Kinematic of the transversal shear test. (a) Specimen before the deformation (b)
specimen after the imposed displacement d.

of the yarns corresponding to the transition zones from one region at constant angle variation to
the adjacent one (see Fig. 3.4). Although one could think that the energy associated to such local
bending is not quantitative relevant, this is indeed not the case. We will show at the end of this
manuscript (Chapter 6) how with a simple second gradient model with inextensible fibers, we can
set up a very neat procedure to measure both first and second gradient elastic parameters as follows:

• We calibrate the second gradient parameter (associated to local bending) in order to fit the
thickness of the transition layer between the zones A and B

• We calibrate the first gradient parameter (associated to shear angle variations) in order to fit
the experimental force-displacement curve.

We will show that, contrarily to what one could expect, the second gradient energy related to the
local bending of the fibers can range from the 5 to the 10% of the total energy associated to such
test. This means that when performing a bias-extension test a macroscopic error can be committed
if one ignores such bending phenomena and a second gradient theory can avoid such imprecisions.
We are henceforth proposing a clear procedure to quantitatively measure for the first time first and
second gradient coefficients of fibrous reinforcements by means of a unique test.
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Figure 1.18: Example of pantographic motions.

Figure 1.19: Pseudo-panthographic motions in 2D fibrous composite reinforcements.
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Chapter 2

Generalized continuum mechanics

In this chapter we will present and discuss some well assessed facts concerning first and second
gradient theories. First of all, the kinematics of such continua is introduced by defining the space
of configurations and of admissible virtual displacements together with the deformation measures
which will used throughout this thesis.
As a second step the concept of hyperelasticity is introduced since it is useful for the modeling of
materials which undergo to large elastic strains as it is the case for fibrous composite reinforcements.
The concepts of objectivity and of material symmetries are then introduced and their effect on the
form of the strain energy density are discussed.
Representation theorems for isotropic, transversally isotropic and orthotropic continua are recalled.
Finally, we will set up the principle of virtual powers for first and second gradient continua, so
naturally introducing the equilibrium problem for such continua in weak and strong form.

35
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2.1 Kinematics

In the framework of mechanical engineering, there are two fundamental objects that we have to
specify in order to rigorously formulate our models: that of deformable body and that of physical
space. The choice of an appropriate mathematical representative for deformable bodies and physical
space is a very delicate point since, in addition to reflect the intuitive properties that a material body
must have, such choice must also allow us to be able to apply a certain number of mathematical
techniques, such as integration by parts. The definition of material body that we adopt in this work
is as follows:

Definition 1. A deformable body B is a compact connected topological 3-manifold with boundary
such that:

• ˚B can be covered with a single chart,

• there exists a homeomorphism $ : B ! R3 such that $ (B) ✓ R3 is a subset of R3 with a
piece-wise C k-regular boundary, i.e., there exist a finite number of C 1-regular curves {�

↵

}h2N⇤
↵=1

defined on compact intervals [a
↵

, b
↵

], that can be intersected each other only at the images of
the boundary points of the intervals, such that, if we call ˆ

� =

S

h

↵

�
↵

✓ @B (the skeleton of
the boundary) we have that @B \ ˆ

� consists of a finite number of C k-regular disjoint surfaces
{⌃

�

}k2N⇤
�=1

.

A point p 2 B is said material particle .

Figure 2.1: Examples of piecewise C k-regular boundary

This definition of deformable body is sufficiently general to include a large part of the objects of
interest in engineering context. For example Figs. (2.2),(2.1) give simple examples of deformable
bodies in our definition.
The choice of physical space, in which our deformable bodies manifest themselves, is not univocal
but it is related to the kind of phenomenon that we want to describe. In dealing exclusively with
static problems, the choice that seems most appropriate for the physical space S is that of three-
dimensional Euclidean space.

The deformable body B manifests itself in the physical space S thanks to suitable functions:
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Figure 2.2: Example of admissible deformable body

Definition 2. A configuration ' is an embedding of B in S such that ' � $�1 is a C k-
diffeomorphism1. We call, space of admissible configurations, a suitable subset2 Q of the
set of all configurations.

In the space of admissible configurations, we can consider a map '
?

that we call Lagrangian

configuration.

In this way, setting B?

:= '
?

(B) ✓ S we can refer every admissible configuration directly to B?

considering the composition maps

�
'

:= ' � '�1

?

: S ◆ B? ! S , 8' 2 Q.

With an abuse of notation, we will refer also to the set B? as Lagrangian configuration, to maps �
'

as configurations and we will use the symbol Q to indicate both the set of admissible {'} and {�
'

}.
When there is no danger of confusion, we will write simply � instead of �

'

. The image of B? with
respect to the configuration � is called Eulerian or current configuration of the deformable
body B in S .

With the specific choice of an Euclidean structure for the physical space, we can associate, to every
configuration �, a vector field u defined on B? as follows:

u ('
?

(p)) := � ('
?

(p))� '
?

(p) .

We call the vector field u, the displacement field associated to �.

2.2 Deformation measures

In this section we introduce the classical deformation measure tensors which will be used in the
following to establish the constitutive laws for the considered continua. In order to do this, it is
convenient to consider two cartesian systems of coordinates3 OX and O0

x

on S thanks to which we
1Sometimes can be also useful to ask a piece-wise C k-regularity
2The specific nature of the space of configurations is specified for any particular physical problem. In particular,

it is a subset of the set of all configurations when imposing specific kinematical boundary conditions on a measurable
subset of the boundary.

3The coordinates X =
�
X

1
, X

2
, X

3
�

of OX are called Lagrangian coordinates, while the coordinates x =�
x

1
, x

2
, x

3
�

of O0
x

are called Eulerian coordinates
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can associate, to every material particle, two triples of real numbers that represent its position in
the Lagrangian and Eulerian configuration. Thanks to the identifications induced by OX and O0

x

of
S with R3, we can regard a configuration � as a map � from R3 to R3 such that:

� (X) = x

that transforms triples of real numbers (the coordinates4 X
(p)

of the image '
?

(p) 2 B? of a material
particle p 2 B in the coordinate system (S ,OX)) in triples of real numbers (the coordinates of the
images � (X) in (S ,O0

x

)).
It is very important to point out that, in general, we can consider two different coordinate systems
on S that give us two different identifications of this Euclidean space with R3.
A gradient5 of order n  k of a regular C k map � defined on a domain of R3 at a point X

0

is the
multilinear function

rn

� (X
0

) : R3 ⇥ . . .⇥ R3

| {z }

n�times

! R3

whose components, in the natural tensorial base, are

�i

,A1...Ak
(X

0

) =

@k�i

@XA1 . . . @XAk
(X

0

) ,

where from now on we label with capital letters the Lagrangian components and with small letters
the Eulerian components of the considered tensor.

Definition 3. We call deformation gradient the 2-point tensor r� of order
⇥

0 1
1 0

⇤

that we will
indicate with F.

If we indicate with TXB? the tangent space to the Lagrangian configuration at the point X and with
T
x

� (B?

) the tangent space to the Eulerian configuration at the point x, the deformation gradient
F of � maps elements of TXB? (Lagrangian tangent vectors) in elements of T

x

� (B?

) (Eulerian
tangent vectors) i.e.

8U 2 TXB?, F ·U = u 2 T
x

� (B?

) .

The deformation gradient gives a linear approximation of the deformation of an infinitesimal cube
around a point of coordinates X in B?. The action of this tensor on the cube had been deeply
understood and it is sealed in the polar decomposition theorem for non singular isomorphism:

Polar decomposition theorem. Let us consider a configuration � with deformation gradient F.

We can find two unique tensor fields, one Lagrangian purely symmetric positive definite U, and one

two-point orthogonal

6 R of order

⇥

0 1
1 0

⇤

, such that for every X 2 B?

we have

F (X) = R (X) ·U (X) .

4If there is no danger of confusion, we will simply write X instead of X(p) .
5All the k-order gradients are, in the language of differential geometry, 2-point tensors that are k-times covariant

in the Lagrangian part and 1-times contra-variant in the Eulerian part. We remember that if we have a differentiable
map  between two differentiable manifolds M and N , a 2-point tensor of order

h
p r
q s

i
, over the map  , is a section

T 2 �
�M, T

p
q M⌦M T

r
s  

⇤ (TN )
�

of the vector bundle T

p
q M ⌦M T

r
s  

⇤ (TN ) on M where T

p
q M is the (p, q)-tensor

bundle on M and T

r
s  

⇤ (TN ) is the (r, s)-tensor bundle on the pullback of the tangent bundle TN . In the Language
of continuum mechanics, the sections of are T

p
q M are said Lagrangian tensor fields and the sections of T r

s  
⇤ (TN )

Eulerian tensor fields.
6A two point

h
0 1
1 0

i
tensor field R, over a map  between two Riemannian manifolds (M, gM) (the Lagrangian

configuration) and (N , gN ) (the Eulerian configuration), is said orthogonal if for every p 2 M we have that Rt (X) ·
R (X) = 1M and R (X) ·Rt (X) = 1N , with 1M identity on the tangent space TpM to M at p and 1N identity on
the tangent space T (p)N to N at  (p). The transpose tensor field Rt, of R, is the unique two point

h
1 0
0 1

i
tensor

field such that: gN , (p)

�
Rp ·Up,v (p)

�
= gM,p

�
Up,R

t
 (p) · v (p)

� 8p 2 M, Up 2 TpM, v (p) 2 T (p)N , where
Rp : TpM ! T (p)N and Rt

 (p) : T (p)N ! TpM are linear functions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0061/these.pdf 
© [M.V. D'agostino], [2015], INSA Lyon, tous droits réservés



CHAPTER 2. GENERALIZED CONTINUUM MECHANICS 40

X

cOX
xO'

x

x

xT c B( )
XBT

c B( )B

F(X)

U
u

Figure 2.3: 2-point tensor and tangent spaces

The polar decomposition theorem states that every deformation gradient can be always decomposed
in an unique way as a composition of a rotation and a purely deformation map at every point of the
Lagrangian configuration.

Figure 2.4: Geometric interpretation of the action of R and U on an infinitesimal cube

In the theory of elasticity the energy cost is related only to the symmetric part of the deformation
gradient. This means that the rotations are energy free. So this suggests the introduction of a new
kinematical quantity that takes into account only the deformative symmetric part of F.

Definition 4. We call the Lagrangian tensor field C (X) := Ft

(X)F (X) = U2

(X) the right

Cauchy-Green tensor .

In coordinates we have
CA

B

=

�

F t

�

A

i

F i

B

.

The Cauchy-Green tensor transforms Lagrangian tangent vectors in Lagrangian tangent vectors.
Remark 5. Considering the scalar product hu,vi in S , we can obtain canonical isomorphism between
spaces of tensors. For example it can be easily proved that7

T 0

2

(TB?

)

[

⇠ h·,·i T
1

1

(TB?

)

]⇠!h·,·i T
2

0

(TB?

) ,

where T 0

2

(TB?

) is the bundle of 2-covariant tensors, T 1

1

(B?

) the bundle of 1-contravariant 1-
covariant tensors and T 2

0

(TB?

) is the bundle of 2-contravariant tensors and [ and ] are the musical
isomorphisms associated to the metric given by the scalar product. So, we can always associate to
C a corresponding tensor completely contravariant or covariant. In indicial notation we set

7We remember the formal construction of a general bundle of (p, q)-tensors on a smooth manifold M: T

p
q (TM) :=

(TM)⌦p ⌦M (T ⇤M)⌦q . Moreover, in the smooth case, it results that the space of (p, q)-tensor fields is equivalent to
a tensor product of modules over the algebra of smooth functions: �

�M, T

p
q (TM)

� ⇠= (X1 (M))⌦p ⌦ �
⌦1 (M)

�⌦q ,
where X1 (M) is the module of smooth vector fields over C 1 (M) and ⌦1 (M) is the module of 1-forms over C 1 (M).
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8

>

<

>

:

C[

:= [ (C) C
AB

= �
AC

CC

B

C]

:= ] (C) CAB

= �ACCB

C

where �
AC

and �ACare Kronecker delta.

Remark 6. The fundamental theorem concerning the spectral decomposition of a self-adjoint au-
tomorphism of a finite dimensional vector space with scalar product, states that there exists an
orthonormal basis of eigenvectors such that the matrix representing the automorphism in this basis
is diagonal, and the diagonal elements are the eigenvalues. In mechanics, the eigenvalues of C are
said principal stretches and the corresponding eigenvectors principal directions . The deviation
of the eigenvalues from the unity measures the amount of strain in a deformation.

Remark 7. In term of differential geometry language, the tensor [C is a metric tensor on the La-
grangian configuration B? obtained thanks to the pull-back �⇤ of the standard Euclidean metric on
S . For this reason, it can be easily proved that the induced curvature tensor vanishes.

Definition 8. We call the Lagrangian tensor field E (X) :=

1

2

(C (X)� 1L), Green-Lagrange

tensor field .

2.3 Hyperelastic formulation

An hyperelastic model, of the behavior of a material, consists to give a triple (Q,L ,A ) where:

• Q is a suitable space of admissible configurations,

• L : RN ◆ A ! R is a real values function from a subset of RN , with N 2 N⇤, called
Lagrangian density or stored energy function ,

• A : Q! R is a functional (in general not linear) called action functional or Lagrangian

energy functionally related to the Lagrangian density.

A mechanical phenomenon is modeled, in a hyperelastic framework, specifying these three objects.
In the following we analyze in detail the so called n-th gradient model for hyperelastic materials,
with great attention to the first and second gradient.

The choice of the Lagrangian density is said the constitutive law of the model.

Once specified the functional dependence of A from L , the action functional associates to every
configuration a real number that represent its “energetic cost”.
Our objective is so to detect the configuration, if it exists, that minimizes the energetic cost, and so
the configuration �

?

such that
A [�

?

]  A [�] 8� 2 Q. (2.1)

This is exactly the content of the last action principle.

2.3.1 First gradient model

An hyperelastic model is a first gradient hyper-elastic model if the Lagrangian density is of the
following type:

L : R3 ⇥ R3 ⇥ R3⇥3

| {z }

⇠R15

! R, with L 2 C h

�

R15

�
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for a suitable h 2 N. In this case we will say that the Lagrangian density is a first gradient

Lagrangian density .
If we consider a configuration �, we can evaluate the Lagrangian density only at the points in
B? ⇥ R3 ⇥ G l

3

(R) ✓ R15 of the form (X,� (X) ,r� (X)) . In this way we can associate to every
configuration � a Cmin{h,k�1} real valued function L

�

defined on B? as

L
�

(X) := L (X,� (X) ,r� (X))

The action functional is then defined as

A : Q! R, A [�] := �
ˆ

B?
L

�

dm = �
ˆ

B?
L (X,�,r�) dm, (2.2)

where dm is the volume form on B? induced by the Euclidean structure of S .

Definition 9. We will call first gradient body the couple (B?,L ), where L is a first gradient
Lagrangian density.

2.3.2 Second gradient model

In a second gradient model, the Lagrangian density is more complex depending also to the second
gradient of the configuration. For this reason the domain of L has to be larger:

L : R3 ⇥ R3 ⇥ R3⇥3 ⇥ R3⇥3⇥3

| {z }

⇠R42

! R, with L 2 C h

�

R42

�

, h 2 N

As in the first gradient model, we can associate to every configuration a Cmin{h,k�1} real valued
function L

�

defined on B? thanks to the relation

L
�

(X) := L
�

X,� (X) ,r� (X) ,r2

� (X)

�

.

In this case, the action functional will be

A [�] := �
ˆ

B?
L

�

X,�,r�,r2

�

�

dm. (2.3)

Definition 10. A couple (B?,L ) in which L is a second gradient Lagrangian density is said to be
a second gradient body .

2.4 Material symmetries, Galilean invariance and homogeneity.

In this paragraph, we want to formalize the observation according to which the mechanical response
of certain materials is independent of the direction (or a subset of directions) of the imposed external
solicitation and also by the point of application.
Moreover, every physical theory has to be independent by a specified class of observers. In our
contest we will consider only the invariance with respect to the Galilean reference system. This
means that the proposed formulation of the physical phenomenon, has to be invariant by the right
orthogonal group action.

2.4.1 Material symmetries

In the proposed framework, the material symmetry at a given point X of a Lagrangian density L
of a first gradient body B? can be formulated as follows:
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Definition 11. Let G be a subgroup of the group of invertible orientations preserving matrices
G l

3

(R). We say that a first gradient body (B?,L ) is G -symmetric at X with symmetry group

GX = G if we have
L (X,F ·Q) = L (X,F) 8Q 2 G . (2.4)

In components the relation (2.4) becomes

L
�

XA, F i

A

QA

I

�

= L
�

XA, F i

I

� 8Q 2 G .

In an analogous way, we can adapt the given definition for a second gradient material. We follow
the approach done in [28]. Let G be a subgroup of the group of invertible orientation preserving
matrices G l

3

(R) and S a subgroup of the group of the (1, 2)-tensors, symmetric with respect to
covariant indices

�

GA

IJ

= GA

JI

8 I, J�. We can consider a subgroup H of the cartesian product
G l

3

(R)⇥ S with respect to the following operation �:

(Q
3

,G
3

) = (Q
1

,G
1

)� (Q
2

,G
2

) =

�

Q
1

·Q
2

, (G
1

·Q
2

)

tt ·Q
2

+Q
1

·G
2

�

,

where the transposition operation tt of the three-order tensor G
1

·Q
2

is understood to act on the
last two indices. In components we have

8

>

<

>

:

(Q
3

)

A

I

= (Q
1

)

A

B

(Q
2

)

B

I

(G
3

)

A

IJ

= (G
1

)

A

BC

(Q
2

)

B

I

(Q
2

)

C

J

+ (Q
1

)

A

B

(G
2

)

B

IJ

(2.5)

The identity element with respect to the introduced operation is (1,0) . In this way it can be easy
proved that (H ,�, (1,0)) is a group.

Definition 12. Let (H ,�, (1,0)) be a subgroup of G l
3

(R) ⇥ S. We say that a second gradient
body (B?,L ) is H -symmetric at X with symmetry group GX = H if we have

L
�

XA, F i

A

QA

I

, F i

A,B

QA

I

QB

J

+ F i

A

GA

IJ

�

= L
�

XA, F i

I

, F i

I,J

� 8 (Q,G) 2H . (2.6)

2.4.1.1 Derivation of second gradient material symmetry definition

In this paragraph we want to understand how the group operation (2.5) (and so the definition of
material symmetry for a second gradient material) has been conceived. In order to do this, we have
the exigence of considering a curvilinear orientation preserving coordinate system O00

Y on S . Chosen
a point p 2 B we assume that the origins O and O00 are coincident with '

?

(p) and, moreover, that

rXY = Q (X) with Q 2 SO
3

(R) 8X 2 B?.

If we indicate with F the gradient of � respect to X and with H the gradient of � respect to Y, we
obtain the following relations:

F (X) = rX� (Y (X)) = rY� (Y) ·rXY =) F (X) = H (Y (X)) ·Q (X) 8X 2 B?

and

rXF (X) = rX (rY� (Y (X)) ·rXY) =

=

�r2

Y� (Y (X)) ·rXY
�

tt ·rXY +rY� (Y (X)) ·r2

XY =

= (rYH (Y (X)) ·Q (X))

tt ·Q (X) +H (Y (X)) ·rXQ (X) .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0061/these.pdf 
© [M.V. D'agostino], [2015], INSA Lyon, tous droits réservés



CHAPTER 2. GENERALIZED CONTINUUM MECHANICS 44

So finally we find that the invariants for a second gradient continuum reads:

L (X,F (X) ,rXF (X)) =

=

8

>

<

>

:

L
�

X,H (Y (X)) ·Q (X) , (rYH (Y (X)) ·Q (X))

tt ·Q (X) +H (Y (X)) ·rXQ (X)

�

ˇL (Y,H (Y) ,rYH (Y)).

where ˇL is the expression of the Lagrangian with respect to the curvilinear coordinate system O0
Y.

2.4.2 Galilean invariance

The class of observers considered this work is that of Galileian observers. This means that every
Lagrangian density, to be physically admissible, has to verify the following condition

L (X,�,F,rF) = L (X,Q · � (X) + b,Q · F,Q ·rF) 8Q 2 SO
3

(R) ,b 2 R3. (2.7)

Definition 13. Every Lagrangian density that verifies the condition (2.7) is said to be objective.

The imposed condition implies that any objective Lagrangian density cannot depend on � (X) and
so it will be of the form

L (X,F,rF) .
The invariance under the left action of SO

3

(R) on F and rF allow us to prove the following
proposition [21]:

Proposition 14. If L is an objective Lagrangian density then there exists another function

ˆL :

R3 ⇥ R6 ⇥ R18

| {z }

⇠R27

! R such that, for every F 2 G l
3

(R), we have

L (X,F,rF) = ˆL (X,U,rU) ,

where U is the symmetric part of F in its polar decomposition.

Corollary 15. Given an objective Lagrangian density L , it is always possible to find two functions

˜L and

¯L such that

L (X,F,rF) = ˆL (X,U,rU) =

˜L (X,C,rC) =

¯L (X,E,rE) ,

where U is the symmetric part of F, C is the Cauchy tensor and E is the Green-Lagrange tensor.

2.4.3 Homogeneity

Informally, a body is said homogeneous if we can describe its behavior with an energy density that
does not depend explicitly on a considered point.

Definition 16. We say that a deformable first gradient body (B?,L ) is homogeneous if there exists
a Lagrangian density L hom

: R3 ⇥ R3⇥3 ! R3 such that

L (X,� (X) ,r� (X)) = L hom

(� (X) ,r� (X)) 8X 2 B?.

In an analogous way the notion of homogeneity is introduced for second gradient continua.
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2.4.4 Representation theorems for first gradient energies

In this section, we follow the ideas presents in [15] and [75]. In order to exhibit the principal results
of this section, we remember the definition of the principal invariants of a matrix of order three.

Definition 17. Given a matrix8 A 2M
3

(R), its principal invariants are the coefficients ◆
1

, ◆
2

, ◆
3

appearing in the characteristic polynomial of A.

From the definition of characteristic polynomial of a matrix A = (a
ij

)

det (A� �1) = ��3

+ ◆
1

�2 � ◆
2

�+ ◆
3

,

the following useful relations can be easily established:
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

◆
1

= tr (A) = �
1

+ �
2

+ �
3

◆
2

=

1

2

⇥

tr2 (A)� tr
�

A2

�⇤

= tr (Cof A) = �
1

�
2

+ �
2

�
3

+ �
3

�
1

◆
3

= det (A) = �
1

�
2

�
3

where �
1

,�
2

,�
3

are the eigenvalues of the considered matrix. We will indicate with

◆

3

A = (◆
1

, ◆
2

, ◆
3

)

the triple of the principal invariants of the considered matrix A. If we have the necessity of specifying
the dependence of the principal invariants by the chosen matrix, we will write ◆

1

(A) , ◆
2

(A) , ◆
3

(A).

In what follows, we will need to introduce other invariants of a generic matrix A and, for this reason,
we give the following definition:

Definition 18. We call invariant of a matrix A 2 M
3

(R), with respect to a subgroup G (
said the subgroup of invariance) of G l

3

(R), any real valued function f : M
3

(R) ! Rm such that
f
�

B�1AB
�

= f (A) 8B 2 G .

In the spirit of definition (18) we can reinterpret the introduced principal invariants as real valued
functions9:

◆
1

, ◆
2

, ◆
3

: M
3

(R)! R

and
◆

3

: M
3

(R)! R3

as vector valued function.
It is known that ◆

1

, ◆
2

, ◆
3

are invariant with respect to G l
3

(R) according to the given definition.

2.4.4.1 Representation theorem for isotropic materials

Definition 19. A first gradient body (B?,L ) is isotropic at a point X if it is SO
3

(R)-symmetric
at X. If (B?,L ) is also homogeneous (GX = SO

3

(R) 8XB?

) then we will say that it is isotropic.

It can be proved the following result
8M3 (R) is the set of all the real 3⇥ 3 matrices.
9With an abuse of notation we indicate the values and the functions with the same symbol.
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Theorem 20. Given a first gradient body (B?,L ), under the assumption that L is objective, we

have that (B?,L ) is isotropic at a point X if and only if there exist a function

10 L iso

: ◆

3

(S>
3

)! R
such that

L (X,F) = ˜L (X,C) = L iso

�

X, ◆3
�

FtF
��

= L iso

�

X, ◆3 (C)

� 8F 2 G l
3

(R) .

In this way, we have that the energy density L does not depend arbitrarily and entirely on C, but
only on three scalar invariants of such tensor field.

2.4.4.2 Representation theorem for transversally-isotropic materials

Definition 21. A first gradient body (B?,L ) is transversally-isotropic at a point X with

respect to a given unitary vector D 2 TXB?, if it is G -symmetric at X with

{Q 2 SO
3

(R) : Q ·D = ±D} ✓ G . (2.8)

If the relation (2.8) is verified for every11 X 2 B? we will call (B?,L ) transversally-isotropic

with respect to D.

In order to formulate a representation theorem for the class of transversally-isotropic materials,
we have to introduce another two invariants, in the spirit of definition 18, for a matrix. Indeed
as transverse isotropy is less restrictive than isotropy, we need more variables in order to find the
correct domain of a suitable representation energy L tran. In this case, however, the subgroup of
invariance will be SO

3

(R) instead of G l
3

(R).
We define the two following functions

◆
4

, ◆
5

: S>
3

⇥ R3 ! R, ◆
4

(C,D) = hC ·D,Di , ◆
5

(C,D) =

⌦

C2 ·D,D
↵

.

If there is not possibility of confusion, we will omit the explicit dependance by the chosen unitary
vector. It is immediate to verify that

8Q 2 SO
3

(R) ◆
↵

�

Q�1 ·C ·Q�

= ◆
↵

�

Qt ·C ·Q�

= ◆
↵

(C) with ↵ = 1, . . . , 5.

In this way also the function

◆

5

: S>
3

! R5, ◆

5

(C) = (◆
1

(C) , . . . , ◆
5

(C))

is invariant with respect to SO
3

(R).
Remark 22. Remarking that

◆
5

(C) = hC ·D,C ·Di = kC ·Dk2 � ◆
4

(C) ,

we can conclude that ◆

5

(S>
3

) is a strict subset of (R+

⇤ )
5, where R+

⇤ is the subset of R of strictly
positive real numbers.
Finally we can give the desired representation theorem:

Theorem 23. Given a first gradient body (B?,L ), under the assumption that L is objective, we

have that (B?,L ) is transversally-isotropic at a point X with respect to the unitary vector D 2 TXB?

if and only if there exist a function L tran

: ◆

5

(S>
3

)! R such that

L (X,F) = ˜L (X,C) = L tran

�

X, ◆5 (C)

� 8F 2 G l
3

(R) .

Then, the representation theorem for transversally isotropic materials states that the energy depends
on five scalar invariants.

10S>
3 is the subset of M3 (R) of symmetric definite positive 3⇥ 3 matrices.

11Thanks to the canonical parallelism always defined in Euclidean spaces.
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2.4.4.3 Representation theorem for orthotropic materials with two orthogonal pre-

ferred directions

We consider two orthogonal unitary vectors D
1

and D
2

in the tangent space to B? at X. Associated
with these two vectors, we can consider the two matrices RD1 ,RD2 denoting the rotations with axis
respectively D

1

and D
2

and angle ⇡.
Definition 24. A first gradient body (B?,L ) is orthotropic at a point X with respect to

orthogonal vectors D
1

and D
2

if it is G -symmetric at X with

{RD1 ,RD2} ✓ G . (2.9)

If the relation (2.9) is verified for every X 2 B? we will call (B?,L ) orthotropic with respect to

D
1

and D
2

.

In this case, after introducing the following functions
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

◆
4

: S>
3

! R, ◆
4

(C) = hC ·D
1

,D
1

i

◆
6

: S>
3

! R, ◆
6

(C) = hC ·D
2

,D
2

i

◆
8

: S>
3

! R, ◆
8

(C) = hC ·D
1

,D
2

i

◆
9

: S>
3

! R, ◆
9

(C) = hC · (D
1

^D
2

) ,D
1

i

◆
10

: S>
3

! R, ◆
10

(C) = hC · (D
1

^D
2

) ,D
2

i ,
where D

1

^ D
2

is the vector product of D
1

and D
2

, it is immediately clear that, in the basis
{D

1

,D
2

,D
1

^D
2

}, the endomorphism C, that in the standard basis is represented by the matrix
C, is represented by the symmetric matrix

2

4

◆
4

(C) ◆
8

(C) ◆
9

(C)

◆
8

(C) ◆
6

(C) ◆
10

(C)

◆
9

(C) ◆
10

(C) ◆
1

(C)� (◆
4

(C) + ◆
6

(C))

3

5 .

As a consequence, there exists a function L orth such that

L (X,F) = ˜L (X,C) =

˘L orth

�

X, ◆orth (C)

� 8F 2 G l
3

(R) ,
where ◆

orth

(C) is the function

◆

orth

: S>
3

! R6, ◆

orth

(C) = (◆
1

(C) , ◆
4

(C) , ◆
6

(C) , ◆
8

(C) , ◆
9

(C) , ◆
10

(C)) .

The main result of this section concerns the possibility of restricting the codomain of ◆orth. In order
to do this, we can first remark that the matrix

2

4

◆
4

◆
8

◆
9

◆
8

◆
6

◆
10

◆
9

◆
10

◆
1

� (◆
4

+ ◆
6

)

3

5

has to be positive definite. This implies that, writing the explicit expression of the principal minors,
we have

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

◆
4

> 0

◆
4

◆
6

� ◆2
8

> 0

�

◆
4

◆
6

� ◆2
8

�

(◆
1

� (◆
4

+ ◆
6

))� ◆
4

◆2
10

� ◆
6

◆2
9

+ 2◆
8

◆
9

◆
10

> 0,
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from which it follows immediately that ◆
1

> 0 and ◆
6

> 0. On the contrary, ◆
8

, ◆
9

, ◆
10

need not to be
positive and so ◆

orth

(S>
3

) ✓ (R+

⇤ )
3⇥R3. The representation theorem for orthotropic material states

that:

Theorem 25. Given a first gradient body (B?,L ), under the assumption that L is objective, we

have that (B?,L ) is orthotropic at a point X with respect to the unitary vectors D
1

and D
2

if and

only if there exist a function L orth

:

�

�

◆

orth

�

�

�

S3
>

�! R such that

L (X,F) = ˜L (X,C) = L tran

�

X,
�

�

◆

orth

�

�

(C) , sgn (◆
8

◆
9

◆
10

)

� 8F 2 G l
3

(R) ,

where

�

�

◆

orth

�

�

: S>
3

! (R+

⇤ )
6

defined as

�

�

◆

orth

�

�

(C) = (◆
1

, ◆
4

, ◆
6

, |◆
8

| , |◆
9

| , |◆
10

|).

2.5 First and second variation of the action functional

We have already pointed out that we assume the validity of the least action principle. So we are
assuming that the effective deformation consequent to the application of certain external conditions,
will be the configuration that minimizes in the sense of (2.1), if this configuration exists, the ac-
tion functional. In this perspective, it is fundamental to dispose of the opportune instruments to
determine the eventual minimum.
From the mathematical point of view, one only needs to readapt the standard notions of differen-
tiation, developed in the contest of vector valued function of several variables, to functionals. This
leads to the formulation of the notions of Fréchet and Gâteaux differential12

In this contest, we will call first variation of the action its Gâteaux differential13.
Informally, the Gâteaux differential allows us to regard the behavior of the action functional when
we perturb a little bit the configuration on which it is calculated. So the first variation works on a
couple [�, �u] formed by a configuration � and a virtual displacement field �u (the small variation).
For a first gradient model, the first variation of an action functional at a configuration � is14

�A [�; �u] = �
ˆ

B?
D

F

L
�

| r�u dm = �
ˆ

B?

@L
�

@F i

A

�ui
,A

dm

where the symbol | indicates the total contraction of interested tensors.

12Given two normed vector spaces
�
X↵, k·k↵

�
,
⇣
X� , k·k�

⌘
and a map � : X↵ ! X� , we say that � is Fréchet

differentiable at ⇠0 2 X↵ if there exists a linear continuous map �⇤⇠0 : X↵ ! X� such that

lim
⇠!0

k� (⇠ + ⇠0)� � (⇠0)� �⇤⇠0 · ⇠k�
k⇠k↵

= 0.

We say that � : X↵ ! X� is Gâteaux differentiable at ⇠0 2 X↵ if there exists, for every ⌘ 2 X↵, the following limit:

lim
t!0

1
t

[� (t⌘ + ⇠0)� � (⇠0)] =: �� [⇠0; ⌘] 2 X� .

It can be easily proved, thanks to the mean value theorem for normed spaces, that Fréchet differentiability always
implies the Gâteaux one.

13There are many results concerning the regularity of functionals of type (2.2) and (2.3). For example it can be
proved that: let [a, b] be a real interval and (C n [a, b] , k·k n,1) the set of n-times differentiable real valued maps with
the sup-norm of order n. Let also L : [a, b]⇥ Rn+1 ! R be a C n+1 function. Then the integral functional

A [f ] :=

ˆ b

a

L
⇣
x, f (x) , . . . , f (n) (x)

⌘
dx

is continuous and Fréchet differentiable at every f 2 C n [a, b].
14In what follows, considering the objective first gradient Lagrangian density L : R3⇥R9 3 (X, F ) 7! L (X, F ) 2 R,

we indicate with DFL the gradient of L with respect to F -variables. So DFL
�

indicates the F -gradient of L
evaluated in the points (X,r� (X)) = (X,F (X)) of R3 ⇥ R9

.
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From the obtained expression, we can define the first Piola-Kirchhoff stress tensor P as

P := PA

i

dxi ⌦ @

@XA

, with PA

i

=

@L
�

@F i

A

.

In same way, the first variation of a second gradient action is15

�A [�; �u] = �
ˆ

B?

⇥

D
F

L
�

| r�u+ D
G

L
�

| r2�u
⇤

dm =

= �
ˆ

B?



@L
�

@F i

A

�ui
,A

+

@L
�

@F i

AB

�ui
,AB

�

dm.

How it was done for the first Piola-Kirchhoff stress tensor, we define the iper-stress tensor M as

M := MAB

i

dxi ⌦ @

@XA

⌦ @

@XB

, with MAB

i

=

@L
�

@Gi

AB

.

In elementary calculus classes, it is proved that, for regular functions, the property of being a
stationary point is a necessary condition for being an extremum. In the contest of functional, we
find the same situation.

Definition 26. A configuration �

?

2 Q is a stationary point for an action functional A if

�A [�

?

; �u] = 0

for any admissible16 virtual displacement �u.

Once the stationary points have been found, the extremum can be detected regarding the hessian
of the function evaluated at these points. It is possible to adapt to functionals also the notion of
hessian.
In our case, we have that the second Gâteaux differential17 for action functionals of the type (2.2)
and (2.3) is:

�2A [�; �u, �v] = �
ˆ

B?
D2

FF

L
�

| (r�u⌦r�v) dm = �
ˆ

B?

@2L

@F i

A

@F j

B

�ui
,A

�vj
,B

dm

for a first gradient functional and
15where, considering the objective second gradient Lagrangian density L : R3 ⇥ R9 ⇥ R27 3 (X, F,G) 7!

L (X, F,G) 2 R, we indicate with DGL the gradient of L with respect to G-variables. So DGL
�

indicates the
G-gradient of L evaluated in the points

�
X,r� (X) ,r2

� (X)
�
= (X,F (X) ,rF (X)) of R3 ⇥ R9 ⇥ R27

.

16Roughly speaking, an admissible virtual displacement �u is a vector field such that, given a configuration � 2 Q,
we have that �+ �u is still in Q. Considering for example a Dirichlet boundary problem, in which Q is determined
by the imposition of the condition � ⌘  0 on a measurable subset � of the boundary @B?, in the language of
differential geometry we have that Q has the structure of a Banach manifold and the set of admissible virtual
displacements at � 2 Q is an open subset (one in which the exponential map is a diffeomorphism) of the tangent
space T

�

Q =
�
�u : B? ! T� (B?) | ⇡ � �u = � & �u|� = (� (X) ,0)

 
, where ⇡ is the projection of tangent bundle

T� (B?) on � (B?).
17The second order Gâteaux differential, for a map � : X↵ ! X� between two normed vector spaces

�
X↵, k·k↵

�
and⇣

X� , k·k�
⌘
, is defined as follows:

�

2� [⇠0; ⌘, ⇣] := ��� [[⇠0; ⌘] , ⇣] = lim
t!0

1
t

[�� [⇠0 + t⇣; ⌘]� �� [⇠0; ⌘]]

if such limit exists for every ⌘, ⇣ 2 X↵.
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�2A [�; �u, �v] = �
ˆ

B?



D2

FF

L
�

| (r�u⌦r�v) + D2

GG

L
�

| �r2�u⌦r2�v
�

+

+D2

FG

L
�

| �r�u⌦r2�v
�

+ D2

GF

L
�

| �r2�u⌦r�v�
�

dm =

= �
ˆ

B?

"

@2L

@F i

A

@F j

B

�ui
,A

�vj
,B

+

@2L

@Gi

AB

@Gj

CD

�ui
,AB

�vj
,CD

+

+

@2L

@F i

A

@Gj

BC

�ui
,A

�vj
,BC

+

@2L

@Gi

AB

@F j

C

�ui
,AB

�vj
,C

#

dm.

for a second gradient one.
Remark 27. The tensor field D2

FF

L of order
⇥

2 0
0 2

⇤

is the fourth order elasticity tensor.
This is a fundamental result in theory of functionals:

Theorem 28. Let � : X! R be a functional 2-times Gâteaux differentiable on a normed space X.

Then

1) if � has a local (global) minimum in ⇠
0

2 X then �� [⇠
0

; ⌘] = 0 8⌘ 2 X,
2) if ⇠

0

2 X is a stationary point for � and �2� [⇠; ⌘, ⌘] � 0 8⌘ 2 X, 8⇠ 2 B
r

(⇠
0

) (8⇠ 2 X), � has

a local (global) minimum in ⇠
0

.

2.5.1 General assumption on stored energy function and the problem of con-
vexity

In mathematical literature, there are many useful theorems that guarantee the existence of a solution
for the variational problem (2.1) under suitable conditions on the Lagrangian density. One of the
most powerful tool, stated in the following theorem, demands the convexity of the stored energy
function.

Theorem 29. Let be B?

a domain in Rn

with boundary @B?

, and let

18

L : B? ⇥M
n,m

(R)! [a,+1] ✓ R1

be a function with the following properties:

1) Convexity: for almost all X 2 B?

the function L (X, ·) : M
n,m

(R) 3 F ! L (X,F) 2
[a,+1] is convex.

2) Continuity and measurability: for almost all X 2 B?

the function L (X, ·) : M
n,m

(R) 3
F! L (X,F) 2 [a,+1] is continuos and the function L (·,F) : B? 3 X! L (X,F) 2 [a,+1] is

measurable 8F 2M
n,m

(R).
3) Coerciveness: there exist constants ↵ > 0 and c > 1 such that L (X,F) � ↵ kFkc + a for

almost all X 2 B?

and 8F 2M
n,m

(R).
Let us indicate with ds the surface measure on the boundary, and let us also to consider a ds-
measurable subset �

0

of @B?

with ds (�
0

) > 0 and a measurable function �

0

: �

0

! Rm

such that

the resulting configuration space

19

Q =

n

� 2W 1,p

(B?,Rm

) : �

a.e.⌘
�0 �

0

o

18R1 := R [ {1}.
19
W

1,p (B?
,Rm) is a Sobolev space.
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is not empty. Then, if we consider the action functional A : Q! R defined as

A [�] :=

ˆ
B?

L (X,r�) dm� F [�]

with F linear and continuous functional on W 1,p

(B?,Rm

), and assume that inf

�2Q {A [�]} < +1,

we have that there exists at least one function �

?

2 Q such that

A [�

?

] = inf

�2Q {A [�]} .
In this paragraph we want to understand if this theorem can be useful in the contest of the hyper-
elasticity. The crucial point consists to establish if the hypothesis of convexity for the Lagrangian
density can be reasonable from a physical point of view.

2.5.1.1 Suitable mathematical conditions for physically reasonable energies

Many physical evidences suggest that a good hyper-elastic formulation of the mechanical behavior of
an elastic body has to take into account the intuitive idea that, if the stress tends to infinity, also the
corresponding strain should tend to infinity. We briefly see how to consider, in our framework, such
consideration. A possible choice is as follows: we require that the Lagrangian density L approaches
+1 if any one of the eigenvalues �

µ

(C) tends to 0 or +1. Under a suitable regularity for L , we
can expect, thanks to the mean value theorem, that kr

F

L (X,F)k tends to +1. If two of the
eigenvalues �

µ1 (C) and �
µ2 (C) are kept confined in a compact interval of (0,+1) it can be easily

proved that:
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�
µ3 (C)! 0

+ () det (F)! 0

+

�
µ3 (C)! +1() kFk ! +1

�
µ3 (C)! +1() kCof Fk ! +1

�
µ3 (C)! +1() det (F)! +1

and so we are naturally led to make the following two requests to provide a criterion for determining
what functions can actually represent physical reasonable energies:

8

>

<

>

:

L (X,F)! +1 as det (F)! 0

+

L (X,F)! +1 as kFk+ kCof Fk+ det (F)! +1
The proposed conditions have so the following physically meaning: an infinite energy is needed for
expanding a continuous body in an infinite range or to annihilate the volume loosing one or more
dimensions.

2.5.1.2 Comparison between the introduced conditions and the convexity.

Now we want to understand if the introduced suitable mathematical conditions for physical reason-
able energies are compatibles with the assumption of convexity of the stored energy function. In
order to answer, we have first the necessity to introduce the following object:

Definition 30. Given a first gradient body (B?,L ) and considering a map � : B? ! R3, we will
call Cauchy stress tensor the quantity

T := (det (r�))�1P · [ �r�t

�

where the contraction is intended on the Lagrangian parts of the two considered tensors.
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Remark 31. From given definition, we can remark that the the Cauchy stress tensor is an Eulerian
tensor of order (0, 2). In indicial notation we have

T
ij

= (det (r�))�1 PA

i

�
AB

FB

j

.

Theorem 32. Let us consider a first gradient body (B?,L ) and let us assume that, for X 2 B?

,

the Lagrangian density

L (X, ·) : G l+
3

(R) 3 F! L (X,F) 2 R

is a convex function in F. Then

1) this property is incompatible with the property L (X,F)! +1 as detF! 0

+,F 2 G l+
3

(R).
2) The axiom of frame indifference implies that, 8� : B? ! R3

and 8X 2 B?

, the eigenvalues

of the Cauchy stress tensor P (x) evaluated at x = � (X) have to satisfy the following inequalities:

�
1

+ �
2

� 0, �
2

+ �
3

� 0, �
1

+ �
3

� 0.

In the light of theorem (32), it seems that it is not possible to have convex energies which are also
reasonable.

Example 33. For example, the condition 2) of theorem (32) is not respected in we consider a sphere
subjected to a uniform pressure.

For these reasons, John Ball has introduced the notion of polyconvex function. Indeed this is a
weaker requirement with respect to the convexity that does not conflict with any reasonable physical
assumption. For completeness we give the definition of polyconvex function:

Definition 34. Let be G a subset of M
3

(R). A function L : G ! R is polyconvex if there exist a
convex function L : U! R, where

U := {(F,Cof F, det (F)) 2 G ⇥M
3

(R)⇥ R}

such that
L (F) = L (F,Cof F, det (F))

for every F 2 G .

2.6 Irreducible form for the first variation for the action functional
and external forces

From a mathematical point of view, there are not a priori restrictions on the possible choice of the
kinematical constraints. From a mechanical point of view, on the other hand, fixed the degree of
the theory, we are interested to consider only those kinematical constraints that have a counter part
in term of external forces. This means that, if we consider a kinematical constraint, we want also
an external force that works on this constrain. One of the most relevant advantage of adopting a
variational formulation is that it is directly possible to identify the external forces sustainable by
the considered continuum, by only imposing compatible kinematical constraints. The technical tool
that allows us to do so, is the integration by parts. The initial definition of a material body is so
designed to allow this integration by parts.
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2.6.1 First gradient

We start analyzing the standard case of first gradient theory. From the first variation of the action
functional

�A [�; �u] = �
ˆ

B?

@L
�

@F i

A

�ui
,A

dm,

integrating by parts, we arrive to

�A [�; �u] =

ˆ
B?

✓

@L
�

@F i

A

◆

,A

�uidm�
ˆ
@B?

@L
�

@F i

A

�uiN
A

ds

where the N
A

are the components of the 1-form N

⇤ dual of the external Lagrangian normal N to
the surface @B?, where it is defined. In compact form we have

�A [�; �u] =

ˆ
B?
hDivP , �ui dm�

ˆ
@B?
hP ·N⇤, �ui ds.

From the found expression, we can remark how the only sustainable forces, in a first gradient model,
are volume and surface ones. The only kinematical constraint compatible with this forces is that
of assigning the displacement on a subregion of the boundary. Even farther we can remark how
in a first gradient theory the surface actions depend only on the normal of the considered surface.
Setting

fint := DivP and gint

:= P ·N⇤

for the internal actions, the external work will be of the form

Wext

[�u] =

ˆ
B?

fext · �u dm�
ˆ
@B?

gext · �u ds,

where fext and gext are prescribed external forces.
The principle of virtual works is expressed as

W int

[�; �u]�Wext

[�u] = �A [�; �u]�Wext

[�u] =

=

ˆ
B?

�

fint � fext
� · �u dm�

ˆ
@B?

�

gint � gext

� · �u ds =

=

ˆ
B?

�

DivP � fext
� · �u dm�

ˆ
@B?

�

P ·N⇤ � gext

� · �u ds = 0, 8 compatible �u.

2.6.2 Second gradient

Applying the same procedure to a theory of the second gradient, it turns out that the family of
sustainable contact actions is richer.
Furthermore, the dependence of the boundary contact actions by the shape of the @B?, it is not
merely related to the vector field of external normals N but also to the curvature (and so to rN).
The following calculation towards the irreducible form for the internal work of a second gradient
continuum closely follow those presented in [52] and [3].
Let us so consider the first variation of the second gradient action functional:

�A [�, �u] = �
ˆ

B?
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If we integrate by parts, we obtain

�A [�, �u] = +

ˆ
B?

PA

i,A

�uidm�
ˆ
@B?

PA

i

�uiN
A

ds+

+

ˆ
B?

MAB

i,B

�ui
,A

dm
| {z }

I

�
ˆ
@B?

MAB

i

�ui
,A

N
B

ds
| {z }

II

Considering the two addends I and II of the first variation, it is clear that we can integrate them
by parts once again. We start with the term I:

ˆ
B?

MAB

i,B

�ui
,A

dm = �
ˆ

B?
MAB

i,AB

�uidm+

ˆ
@B?

MAB
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n
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�uids =

= �
ˆ

B?
Div (Div (M)) · �u dm+

ˆ
@B?

(Div (M) ·N⇤
) · �u ds

Now we proceed with the term II. We need to introduce the two Lagrangian tensors, T and N, of
order (1,1), called respectively tangent and normal projector20 defined as follows:

T := N ⌦N

⇤, N := 1�N ⌦N

⇤.

So, in coordinates, we have

�C
B

=

�

TC

B

+NC

B

�

Thanks to the two introduced projectors, we can rewrite the term II as follows:

ˆ
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,

being so able to decompose II as sum of the two sub-terms | and �. We can easily remark that |
is the tangential part of the tensor r�u which has only 4 non zero components. In this way, we can
regard such quantity as an intrinsic superficial one, and so we are authorized to use the divergence
theorem for Riemannian manifold with boundary on every regular components of @B?:

ˆ
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D
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20This tensor fields have to be defined in an adapted tubular neighborhood of the boundary.
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where, for any ↵, V ⇤
↵

is the Lagrangian 1-form dual to the normal V
↵

to �
↵

tangent to ⌃

�

where
� 2 [�

↵

] and [�
↵

] represents the set of indices labeling the surfaces ⌃

�
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.
Given expression � , remembering that we set N := N ⌦N

⇤ or equivalently in index notation
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We can hence finally introduce the irreducible form for the internal work as:
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or equivalently in compact form:

�A [�, �u] =
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Div(P �Div (M)) · �u dm+

�
ˆ
@B?

((P �Div (M)) ·N⇤ � [r (M ·N⇤
) ·T] : T) · �u ds+

�
ˆ
@B?

M · (N⇤ ⌦N

⇤
) ·rn�u ds�

ˆ
@@B?

M · (N⇤ ⌦ V

⇤
) · �u dl.

If we set
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

fint = Div (P �Div (M))

gint = (P �Div (M)) ·N⇤ � [r (M ·N⇤
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)
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with fint, gint, bint, tint 2 ⌦

1

(� (B?

)), we can rewrite the internal work in the simple form:

�A [�; �u] =

ˆ
B?

fint · �u dm�
ˆ
@B?

gint · �u ds�
ˆ
@B?

bint ·rn�u ds�
ˆ
@@B?

tint · �u dl.

So in a second gradient model, the external actions compatibles with the introduced form of the
internal work are

• forces per unite volume,

• forces per unite area,

• forces per unite line,

• double-forces per unite area, i.e., objects that expend work on the normal derivative of virtual
displacements.

Therefor the external work which has to be introduced in a second gradient theory, has the following
general form:

Wext

[�u] =

ˆ
B?

fext · �u dm�
ˆ
@B?

gext · �u ds�
ˆ
@B?

bext ·rn�u ds�
ˆ
@@B?

text · �u dl,

where

• fext is the external force per unite volume,

• gext is the external force per unite area,

• bext is the external double-force for unite area,

• text is the external force for unite line.
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Chapter 3

Discrete and continuum models for 2D

fabrics

As it happens for every mathematical model intended to be used for natural phenomena, the con-
tinuum model of deformable bodies developed following Cauchy’s point of view, although may be
very effective to carefully describe a wealthy of systems, cannot be universally applied. As a matter
of fact, already at a very early stage of Cauchy formulation of the basic ideas of continuum mod-
els, Gabrio Piola [19], with a stringent mathematical study, analyzed its limits and proposed some
more general models which are nowadays widely used. More than one century later Piola’s ideas
resurfaced (for a discussion of these phenomena of re-discovery the interested reader should consult
the work by Russo [79]) and a group of scientists (Mindlin [55, 56, 57], Toupin [86, 87], Green and
Rivlin [39, 37, 38, 40], Germain [35, 36] Eringen and Suhubi [30, 31]) reformulated, accepted and un-
derstood the objections and observations pushed forward by Piola and re-started and developed his
work. Although, for some reasons to be investigated, the impetus of this flow of ideas was relented
until the beginning of XXI century, they are now flourishing and constitute those fields which are
variously named as: generalized continuum models, multi-scale models, second or higher gradient (or
higher grade) continua, microstructured continua, multipolar continua, enhanced continuum models
and so on (see e.g. [18, 9, 10, 60]).
In this work we propose to show that such generalized continuum models can be useful to characterize
mechanical systems composed by nearly inextensible fibers with relatively low bending stiffness. To
these systems was dedicated the interesting work [83], which represents an unavoidable reference in
the field. Such work has been followed by several researchers (e.g., [74, 54]) .
We start by presenting two discrete models which are inspired by, but do not exactly coincide with,
some woven fabrics constituted by nearly inextensible fibers (see e.g. [33, 7, 11]):

• A simple two-dimensional structure consisting of (long) elasticae (as models for nearly inex-
tensible fibers) connected to each other by means of perfect internal pivots, in the manner
of a pantographic lattice (the internal pivots do not interrupt the continuity of the fibers).
These fibers, and associated pivots, are assumed to be uniformly distributed in the plane. We
assume that the fibers are (nearly-)inextensible elasticae with equal flexural stiffnesses. Once
a corresponding homogenized model is introduced we get a generalization of Pipkin’s theory
of perfectly flexible inextensible nets with shear resistance [65, 66, 72], the latter manifesting
itself as a dependence of the strain-energy function on the shear angle between intersecting
fibers. This type of shear resistance vanishes in the present model of ideal pantographic lat-
tices characterized by ideal pivots in which there is no concentrated rotational elastic stiffness.
Similar structures that exhibit such floppy modes (modes with vanishing associated energy) are
discussed comprehensively in [49] and closely resemble those studied in [2]. Here, we recall that
(see [24]) the compatibility of the first gradient of the deformation is shown to imply a direct
connection between the gradient of fiber shear and the fiber bending strains: this effect is as-
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sociated with the second gradient of deformation. Accordingly, the pantographic substructure

leads naturally to a particular second-gradient continuum theory of elasticity. This is indeed
a very particular generalized continuum, where no extra kinematical descriptor is introduced:
the only difference of the model which we present here when compared with standard Cauchy
continua consists in the introduction of second gradient of displacement as an independent
variable in the constitutive equation for deformation energy.

• Another way to model a metamaterial with a microstructure consisting of nearly inextensible
fibers is given by the introduction of local constraints in the discrete continuum model at
the finite element (FE) level. More particularly, the elementary cell of the discretization
is composed by standard quadrilateral elements with the addition of very stiff diagonal bar
elements joining the opposite corner nodes (mimicking the behavior of fibers) with an axial
stiffness which is very high with respect to the in-plane stiffness of the considered FE. Basically,
this strategy consists in a penalty for the deformations along particular directions in the plane
of the material, (TPM, Truss Penalty Method). This strategy is a weak version of the one
presented in [41] in which the authors have implicitly imposed the inextensibility constraint
locally at each Gauss points of the FE. The strategy presented in this work imposes the
inextensibility constraint globally at the element level. Moreover, in this way it is possible
to generalize the method for a n-family of constrained directions. In this work we presents a
2-family fiber reinforcement that in the following is denoted by TPM-2 and which will be seen
to be useful for the description of so-called bias extension test.

On the basis of the informations obtained by means of the considered discrete models we finally
investigate the continuum description of fibrous composite reinforcements and we end up with the
conclusion that a second gradient theory is indeed necessary in order to account for the bending
stiffness of fibers at the microscopic level. We are of course aware that the particular second gradi-
ent continuous model which we present here may not be general enough to describe carefully all the
macroscopic phenomenology of considered mechanical systems: we may need to introduce continua
endowed with microstructure fields (see e.g. [31]) as, for instance, directors. Moreover, the most
general constitutive modeling of 2D anisotropic structures made of flexible nets of fibers should rely
on the methods based on the material symmetry groups. Inertial, damage, plastic deformation or
dislocation effects are not included in the present model. The phenomenology of fibrous reinforce-
ments is rich of instability and bifurcation phenomena due to the interest which has to be directed
towards their large deformation configurations (see e.g. [6, 7, 43, 48, 91] ). Indeed, one can observe
wrinkling (see e.g [8, 48]), plies and plastic deformations etc.
When presenting the numerical simulations associated to the introduced continuum models, we will
point out that some numerical errors related to the high contrast between the tensile stiffness and the
bending stiffness of yarns may arise. These phenomena are known as tension locking phenomena (see
e.g.[42]) and are mitigated here by choosing suitably refined meshes and finite elements of suitably
high order.
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3.1 Materials with strong contrast of the mechanical properties at
the microscopic level

It is known (see e.g. [80]) that materials which have strong contrasts of the mechanical properties
at the microscopic level are likely to behave as generalized continua when subjected to particular
loading and/or boundary conditions. It has been recently shown (see [33]) that a particular class of
engineering materials, known as fibrous composite reinforcements, show exotic mechanical properties
when considering particular loading conditions and kinematical constraints. Fibrous composite
reinforcements are woven fabrics which present a very high tension stiffness in the warp and weft
directions together with a very low shear stiffness. In other words, the yarns constituting such
materials are very stiff in tension, while the angle variation between two superimposed yarns (warp
and weft) can occur very easily. These characteristics make fibrous composite reinforcements a
topical example to better understand which types of microstructures must be considered in order to
obtain second or higher order continua at the homogenized level.
In virtue of the importance of the mechanical modeling of these materials for engineering, it is
essential to establish which theoretical and numerical models must be adopted to better describe
their macroscopic and mesoscopic properties.

Figure 3.1: Macroscopic, mesoscopic and microscopic scale of a woven fabric.

Figure 3.1 shows the macroscopic engineering component of fibrous composite reinforcement, its
mesoscopic scale (warp and weft) and the microstructure of each yarn. We are interested here to
the mesoscopic and macroscopic scale of such materials and we will try to model from a theoretical
and a numerical point of view some peculiar deformation patterns of 2D woven composites at the
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scale of warp and weft and then at the scale of the whole engineering component. As already dis-
cussed, we propose here to address the modeling of the mechanical behavior of 2D fibrous composite
reinforcements both by considering

• discrete mechanical systems mimicking at best the characteristics of the underlying mesostruc-
tures,

• continuum models which are able to correctly catch the overall mechanical behavior of such
systems.

We will show the limits of the considered discrete modeling while capturing from them some essential
features which are needed to understand the correct way of exploiting generalized continuum theories
via finite element methods.
In this work, we target to reproduce a very common experimental test on woven composites which
is known as bias extension test: we will use this example as a reference case for testing the efficacy
of all the introduced discrete and continuum models. The bias extension test is a mechanical test
which is widely used in the field of fibrous composite materials. This test is useful to characterize
the mechanical behavior of woven fibrous composites undergoing large shear deformations.

Figure 3.2: Reference configuration of a specimen of fibrous composite reinforcement for a bias-
extension test.

The bias extension test is performed on rectangular samples of woven composites, with the height
(in the loading direction) relatively greater (at least twice) than the width, and the yarns initially
oriented at ± 45-degrees with respect to the loading direction (see Fig.3.2). The specimen is clamped
at two ends: one end is maintained fixed and the second one is gradually displaced of a given amount.
The relative displacement of the two ends of the specimen generates angle variations between the
warp and weft. The deformed configuration consists of three different regions A, B and C, in which
the shear angle between the yarns remains almost constant (see Fig.3.3 and references [6, 11, 44]).
More particularly, the fibers in regions C remain undeformed, i.e. the angle between fibers remains
at 45° also after deformation. As far as considering the other regions A and B, the angle between
fibers becomes much smaller than 45°, but it keeps almost constant in each region. The main
characteristics of the bias extension test are summarized in Fig. 3.3 in which both the undeformed
and deformed shapes of the considered specimen are schematically depicted. In [33] it has also been
put in evidence that another important phenomenological aspect of the bias extension test must be
taken into account. In particular, at the transition lines between two different regions at constant
shear angle the presence of thin transition layers can be identified which allow a smooth transition
from a region with constant shear angle to the adjacent one (see Fig.3.4).
These layers will be called shear transition layers and their thickness can be associated to the gradient
of shear angle variation between yarns (or equivalently to the in-plane bending stiffness of the yarns).
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Figure 3.3: Simplified description of the deformation pattern in the bias extension test.

It is clear that a complete predictive model of the bias extension test must necessarily include an
accurate description of such shear transition layers.
In the reminder of this work, we will propose different discrete and continuum models for the
description of the bias extension test and we will point out which ones of the main characteristics
of this test are well described (or not) in each model.

3.2 Discrete mechanical systems including strong contrast at lower
scales

As it has been previously discussed, fibrous composite reinforcements exhibit a strong contrast
between the tension and the shear stiffnesses at the mesoscopic level. In this section we propose two
different discrete systems which can be built-up by means of available softwares and which include
the possibility of accounting for such kinds of strong contrasts.

3.2.1 Pantographic lattices

As a first example of discrete modeling of fibrous networks, we introduce a modular pantographic
structure which can be described, at the mesoscopic level, as a structure constituted by nearly in-
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Figure 3.4: Shear transition layers in a fibrous composite reinforcement subjected to a bias extension
test.

extensible but flexible Euler-Bernouilli beams connected by pivots at their intersection points. It is
worth noting that the considered structure is different from a truss-like structure since the internal
pivots do not interrupt the continuity of each beam. In other words, in presence of appropriate
loading and boundary conditions, the bending moment in each beam is not vanishing as in truss
structures, but it is instead fundamental to characterize the global structural response. The con-
sidered beams have an elliptical cross section, in which the major and minor axis are respectively
denoted by D

1

and D
2

: the major axis lies in the considered plane and the orientation of the beams
is at ±45° with respect to the global reference frame (see Fig.3.5). The yarns are supposed to
be constituted by carbon fibers and the used elastic and geometric parameters are summarized in
table 3.1.

E ⌫ D
1

D
2

[GPa] [�] [mm] [mm]

6 0.3 1.5 0.6

Table 3.1: Properties of the bars constituting the pantographic lattice.

The considered beams are linear-elastic beams i.e. no geometrical nor material linearities are included
in this model. We assume that external actions and external constraints are applied at intersection
nodes only. In the next section we will show numerical simulations in which this pantographic lattice
is used to model a bias extension test and we will discuss the obtained results.
The reason for which the presented discrete lattice cannot be regarded as an always effective model
of the fiber reinforcements considered e.g. in [11] is simple. Indeed, it is true that the fibers which
form these fabrics may effectively be individually modeled as beams and that their contact can be
in some circumstances be modeled as pivots (see e.g. [88]): however, as they have a section whose
diameter can be comparable with the distance between two closest contact zones, the model of Euler
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Figure 3.5: Module of the pantographic lattice.

beam does not seem always applicable for describing their behavior when they are included in woven
fabrics. On the other hand, in the next subsection, we present a structure constituted by elasticae
whose section is small when compared to the distance between the closest introduced pivots which
are inter-connecting them, so that every fiber can be always effectively modeled as Euler beam.

3.2.2 Truss Penalty Model

A second way to model networks of almost inextensible yarns is the Truss Penalty Model (TPM). The
discretization of the problem is obtained by constraining in a suitable way a standard quadrilateral
shell element available in a software like ADINA. In particular, we choose to constrain a quadrilateral
shell finite element by means of two rigid bars which are connected to the corners of the element by
means of internal pivots. The rigid diagonal bars are not connected by an internal hinge at their
intersection, as for the pantographic lattices case, but they are free to slide in a relative motion (see
Fig.3.6). We call the obtained finite element TPM-2. We choose this kind of finite element because
it is very robust and accurate. Moreover, this finite element is formulated with a full quadrature
scheme (using all Gauss points) so in this way a specific strategy to control the in-plane hour-glass
mode is not necessary. It is worth noting that, this kind of finite element is a shell-element, but in
this numerical investigation the out-of-plane displacement of the element are forbidden and then the
rotational degree of freedom are not activated for the plane geometry and in-plane load condition
considered. Summarizing, only the in-plane deformation part is considered and the inextensibility
constraint in the fiber direction is accounted for by adding rigid bars as diagonals of the finite
element. The introduction of the diagonal truss element constraint penalizes some deformation
modes of the finite element: in particular, the global shear deformation mode with respect to the
spatial reference frame at the element level.
The admissible deformation modes associated to TPM-2 elements are depicted in Fig. 3.6: it can be
noticed that the presence of the diagonal rigid bars forbids the classical shear modes of the element
thus reducing the degrees of freedom from 8 to 6. We can summarize with reference to Fig.3.6 by
saying that the TPM-2 element only allows the three rigid modes (1,2,3), the extensional deforma-
tion mode (4) and the two hour-glass deformation modes (5,6). The introduced penalty method
can be interesting for further developments oriented towards the design of specific finite elements.
For example, it is possible to conceive a quadrilateral finite element in which the inextensibility
constraint along the two diagonals can be implicitly formulated, adopting a reduced integration
scheme to overcome the in-plane shear locking and adopting a stabilization strategy for the hour-
glass modes analogously to [41, 42], (or introducing in-plane bending stiffness). In the numerical
simulations based on the TPM-2 elements which will be presented in the next section, the considered
constitutive model for the bars is simply linear elastic. Table 3.2 summarizes the values used for
the Young modulus E

m

of the membrane, for the Young modulus E
b

of the internal bars and for
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Figure 3.6: TPM-2: Deformation modes for the base cell obtained by means of the constrained finite
element.

the corresponding Poisson ratios ⌫
m

and ⌫
b

. Moreover, the diameter D of the bars is also given
in this table. This linear constitutive assumption will be shown to be sensible for relatively small
imposed displacements, but will be seen to be too restrictive to describe the bias extension test for
high imposed displacements of the top surface.

E
m

E
b

⌫
m

⌫
b

D
[MPa] [GPa] [�] [�] [mm]

0.168 20 0.3 0.3 0.6

Table 3.2: Elastic properties of the TPM-2 bars.

The main advantages of this strategy used to account for the inextensibility conditions are: i)
the numerical implementation is very easy to be performed, ii) the inextensibility condition is not
imposed locally at the Gauss points, but a global formulation of the inextensibility conditions is
considered for the whole finite element, and iii) it is possible to obtain a parametric modulation of
the stiffness of the constraining bars in order to obtain solutions which are close to the experimental
deformed shapes. On the other hand, only linear constitutive equations have been implemented
in this model for the sake of simplicity. This fact limits the applicability of the TPM-2 to the
case of imposed displacements of the top surface which only activate geometric non-linearities and
not material ones. Indeed, as it will be more deeply discussed, geometrical non-linearities are
not sufficient to describe large shear angle variations in the bias test which are associated to high
displacements of the top surface. In order to catch such strongly non-linear behavior, material
non-linearities have also to be introduced in the constitutive model.
Notwithstanding these limits of the considered TPM-2 finite element for what concerns the highly
non-linear regime, we show that it is indeed well adapted to describe the overall behavior of 2D
fibrous composites at moderate strains. Of course, a generalization of the considered FE including
the possibility of material non-linearities is possible, but is not attempted in the present work. Such
generalization would, in fact, lead to the difficulty of choosing the correct material behavior and,
in a second time, induce a long procedure of calibration of the introduced parameters to fit at best
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Figure 3.7: A periodic modular pattern of TPM-2 discretization (2-family inextensible directions).

the experimental behavior at high strains. The main task of the present work being that of showing
the limits of the considered discrete model with respect to the description of the observed transition
layers, we limit ourselves to consider a simplified linear case.

3.3 Equilibrium shapes of introduced discrete systems

In this section we show the results of the numerical investigations obtained with the different discrete
methods presented above. In the next sections, we will instead present two continuum models which
will be seen to be better adapted than the discrete ones to the description of the mechanical behavior
of 2D fibrous composites also at high strains. In Fig. 3.8 we schematically present the three different
approaches which we use in this work to simulate the bias extension test: two particular discrete
systems and a continuum approach. The characteristic sizes of the specimen are the same for all
numerical simulations treated in this work:

• basis: 100mm

• height: 300mm

In this section we show the strong and weak points of the proposed discrete approaches and we leave
to the following sections the treatment of the bias extension test by means of continuum theories.

3.3.1 Pantographic lattices

Employing the discrete pantographic lattice model introduced in section 3.2.1, we compute the equi-
librium shape of the specimen subjected to an imposed displacement of the top surface. Figure 3.9
displays the current configuration of the testing sample for an imposed displacement of 55 mm: the
color distribution indicates, for each yarn, the angle variation field of the yarn itself with respect to
its reference configuration. In particular, we can see that the three characteristic regions denoted by
A, B and C in Fig. 3.3 are recovered in the considered discrete numerical simulation. The portion of
yarns lying in the triangle C basically stay undeformed and indeed the angle rotation of each fiber
with respect to its reference configuration is vanishing as it can be easily deduced from Fig. 3.9.
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Figure 3.8: Schematic representation of the bias extension test simulated with the discrete and
continuum models. Basis: 100mm, height: 300mm.

The two orders of fibers lying in the region A actually rotate of the same amount (almost 20�) with
respect to their reference configuration: this is equivalent to say that the total angle variation in
the region A is of almost 40�. The situation is slightly different for the portion of yarns lying in the
region B. Indeed, it can be recognized that one order of yarns almost remains parallel to the reference
configuration (no angle variation). On the other hand, the second order of fibers rotates of almost
20

� with respect to the reference configuration: this means that the total angle variation in the
region B is of almost 20�. Clearly, it is possible to directly relate the angle variation to the in-plane
cross-section rotation of beams due to the fact that the beams are bending in a small transition
zone from one triangle at constant shear strain to the adjacent one. Indeed, it is possible to remark
that in Fig. 3.9 the presence of the so called shear transition layer can be detected. The thickness
of this transition layer is directly related to the in-plane bending stiffness of fibers. The performed
numerical simulations on the pantographic lattice structure allow us to conclude that the presence of
the shear transition layer at the macroscopic level is indeed naturally stemming from the particular
mesostructure of the considered medium. In particular, we are able to claim that the onset of such
transition layers is due to the fact that the shear angle gradually varies from one constant value to
another constant value: this variation is made in a thin transition zone in which a rapid gradient of
the shear angle variation can be observed. The thickness of such transition layers is clearly related
to the in-plane bending stiffness of the fibers. These observations fit with the theoretical results
presented in [24] in which a direct relationship between the in-plane bending strain of fibers and the
gradient of shear strain is found. It is hence possible to claim that, in this context, the need of a
higher gradient theory is directly stemming from micro-structural effects.
Figure 3.3.1 shows the bending energy and the axial energy of the pantographic lattice, respectively.
As we could expect, it can be noticed that the bending energy is concentrated in the shear transition
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layer which determines the transition between two regions at constant shear angle. On the other
hand, the axial energy is concentrated on few beams close to the corners of the specimen.

Figure 3.9: Fiber angle variation in the pantographic lattice for a displacement of 55 mm.
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Figure 3.10: From left to right: bending energy (J/m) and axial energy (J/m) of the pantographic
structure.
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3.3.2 TPM elements: mesh-dependence of the thickness of the shear transition
layer

In figure 3.11, we consider the set up for the problem in study by means of TPM-2 finite elements.

Figure 3.11: Set up of the problem and its discretization by TPM-2 mesh

We remark that, in virtue of symmetry, we are able to implement only one fourth of the structure
(see Fig. 3.11). Figure 3.12 shows simultaneously the undeformed configuration for the TPM-2
material, the deformed one and a schematic representation of the solution for the bias test in which
the three zones at constant shear angle are indicated here as 1, 2 and 3 (see also Fig.3.3). Large
deformation assumption is accounted for in the numerical simulations only because of geometrical
non-linearities. More precisely, the constitutive relations for the single beams are the classical linear-
elastic ones (quadratic energy in the deformation measures), but the considered strain measures are
nonlinear.
The obtained solution (Fig. 3.12(b)) reproduces quite precisely the solution for the bias test on
a fibrous composite reinforcement, at least for imposed displacements up to 50 � 55mm. The
obtained solution presents the previously discussed three different zones at constant shear angle:
these zones being characterized by a homogeneous deformation process, they show constant strain
(or stress) field. It is worth noticing that the representative deformation modes which allow for
the transition from one region to the adjacent one are the hour-glass deformation modes 5 and 6
as indicated in figure 3.6. More particularly, these deformation modes are also influenced from the
imposed boundary conditions which indeed fix two of the four sides of the TPM-2 elements which
remain undeformed. In this context, it is evident how the thickness of the transition layer which
is responsible of the transition between two zones at constant shear angle strongly depends on the
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Figure 3.12: Initial configuration (a); final configuration (b); homogeneous strain zones (c).

size of the chosen elements: the transition always occurs on one and only finite element. This fact
is underlined in Fig.3.13 in which the transition deformation strips are highlighted by means of a
different color. This fact must systematically be taken into account when looking for FEM solutions
for the bias extension test: a model in which each finite element deforms independently of the
deformation of the adjacent ones cannot account for the description of the transition zone in which
high gradients of the shear angle variation occur.
The three in-plane Cauchy stress components obtained by means of the TPM-2 model are shown in
figure 3.14. In this figure one can appreciate the homogeneity of the response and the high strain
jumps corresponding to the two transition zones are also evident. Furthermore, we observe that
in the limit of very high axial stiffness for the truss there are strong concentrations of the reaction
forces in the corners of the specimen, as it is indicated in figure 3.15: all the other reactions are
negligible in comparison with respect to those which are highlighted in this picture. This is coherent
with the results obtained by means of the panthographic structure model. We explicitly remark
that the main features of the obtained response strongly depend on the ratio between the stiffness
of the internal diagonal truss and that of the membrane. When decreasing the truss stiffness, all the
observed peculiarities of the solution vanish and a standard elastic solution is recovered.
In fact, as it is depicted e.g. in figure 3.16, decreasing the stiffness of the truss of the TPM-2 dis-
cretization, the strong gradients disappear compared to the previous high stiffness case. Analogously,
the strong concentration at the corners of the reaction field disappears as well. These results allow us
to deduce that the typical solution of the bias extension test in which three zones at constant shear
angle are present, is indeed deeply related to the strong contrast between the high tensile stiffness
of the yarns and the low shear angle variation stiffness. Consequently, this strong contrast of the
mechanical properties at the mesoscopic level is also responsible for the onset of shear transition
layers between the transition zones: these transition zones cannot be properly taken into account by
the considered TPM-2 model. As suggested by the homogenization techniques proposed in [2], when
considering truss structures with strong contrasts of the mechanical properties, one possible solution
to correctly model the structure itself is to consider a second (or higher) gradient continuum model.
On the light of these considerations, we are led to the conclusion that one possible strategy for the
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Figure 3.13: Transition deformation zones.

correct modeling of 2D woven fabrics is indeed that of considering a generalized continuum theory
which allows for the description of high strain gradients concentrated in thin transition layers. The
development of such continuum theory will be presented in the next section.
In summary, the TPM-2 model is able to catch the basic features of the bias extension test, but it is
not able to correctly describe the thickness of shear transition layers. The geometric non-linearities
included in the TPM-2 model allow us to test here the material behavior for imposed displacements
up to 55mm. The solutions obtained by means of the proposed finite elements are reliable and no
tension locking problems are encountered.

3.4 Generalized continuum modeling of fibrous composite reinforce-
ments

In this section we introduce and discuss the interest of using continuum models for the description of
the mechanical behavior of fibrous composite reinforcements, also by comparison with the previously
discussed discrete numerical simulations. Continuous approaches have been widely used in the
last decades to model such class of engineering materials (see e.g.[88, 91, 4, 41, 8, 34, 25, 48]).
Nevertheless, when modeling with a continuum theory materials which have strong discontinuities
of the mechanical properties at the microscopic scale, then a standard Cauchy continuum theory
may not be sufficient to fully describe their mechanical behavior at the homogenized scale (see [2]).
This is the case for woven composite reinforcements, at least for certain cases in which particular
boundary and/or loading conditions are applied to the considered specimen. Indeed, an orthotropic,
first gradient, constitutive law which is able to account for the presence of privileged directions with
very high tension stiffness, is not sufficient to catch all the characteristic deformation patterns which
woven fabrics may experience. In order to describe the experimentally observed shear strain high
gradients related to the bending of fibers at the mesoscopic level, one has to complete the orthotropic
continuum model by considering a generalized, second gradient, continuum theory.
The anisotropic behavior of woven composites, due to the presence of very stiff yarns in the warp
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Figure 3.14: Stress components of the membrane obtained by means of the TPM-2 discretization
approach: �

Y Y

(left), �
XY

(center), �
XX

(right).

and weft directions, can be modeled in a continuum framework by means of well established repre-
sentation theorems (see e.g. [75, 33, 12, 14] and references there cited). These theorems state that
orthotropic material behaviors can be described in a continuum framework by choosing constitutive
relations which express the strain energy density as function of some invariants of the Cauchy-Green
deformation tensor which also take into account the presence of particular orthotropic directions.
In particular, for an in-plane 2D problem the quoted orthotropic invariants can be introduced as

i
4

= m
1

·C ·m
1

, i
6

= m
2

·C ·m
2,

i
8

= m
1

·C ·m
2

, (3.1)

where m
1

and m
2

are orthonormal vectors in the warp and weft directions, C = FT ·F is the classical
Cauchy-Green deformation tensor and F = r� is the gradient of the placement map �. Clearly,
the displacement field can be also introduced as a function of � as: u = � � X, where X is the
Lagrangian position of material particles in the reference configuration ⌦ of the body. It is worth
noticing that the first two invariants i

4

and i
6

are related to changes of length in the directions m
1

and m
2

respectively, while the invariant i
8

is a measure of the angle variation between two yarns.
Indeed, it can be checked that the total angle variation � of two superimposed yarns with respect
to the reference configuration can be directly related to the introduced invariants by means of the
relation
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.

It is worth noticing that when one wants to consider orthotropic materials which experience plastic
deformations, then an evolution of the considered anisotropy should be taken into account. This
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Figure 3.15: Reactions force concentration in the TPM-2 model.

would lead to the definition of a more general constitutive framework with respect to the one
considered in this work (see e.g. [16]). Different 2D orthotropic materials can be modeled by choosing
particular constitutive expressions of the strain energy density in terms of the three introduced
invariants. Indeed, orthotropic constitutive relations are able to account for the presence of an
orthotropic mesostructure in the considered continua, but they are not able to fully describe the
effect of this mesostructure on the macroscopic deformation of the continuum when concentrations
of stress and strain occur. For example, it has already been remarked that, when considering the
bias extension test, thin transition layers exhibiting concentration of strain appear at the transition
between two regions at constant shear angle. We also remarked, on the basis of the discrete models
presented in the present work, that the thickness of these transition layers is directly related to the
bending stiffness of the fibers. Moreover, when considering the TPM-2 element, we highlighted the
fact that the size of the shear transition layer is directly related to the size of the considered mesh.
On the other hand, when considering the pantographic structure, the size of the transition layer is
seen to be well described and to directly depend on the bending stiffness of considered beams. In
order to be able to describe the onset of shear transition layers in the framework of a continuum
theory, higher gradient theories are known to be needed. On the basis of the quoted remarks and
of other phenomenological considerations on the bias test, the constitutive expression of the strain
energy density considered in this work is of the form

W =
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The coefficients K
4

and K
6

represent the tensile rigidity in the m
1

and m
2

directions respectively,
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Figure 3.16: TPM-2 Model: (a) High diagonal truss stiffness; (b) Low diagonal truss stiffness.

K
8

is the shear angle variation stiffness which is valid for small strains (up to an imposed external
displacement of 55 mm) and A

8

is instead the shear stiffness for the non-linear regime (external
displacements higher than 55mm). Finally, the coefficient ↵ is the second gradient elastic coefficient
which allows to account for high gradients of the shear angle variation and which is capable to
describe the onset of shear transition layers.

3.4.1 Principle of virtual powers and equations in weak form

In this subsection, the least action principle needed to describe the mechanical behavior of fibrous
composite reinforcements in the quasi-static regime is set up. In particular, the action functional
for our generalized orthotropic continuum can be written as

A =

ˆ
⌦

W (i
4

, i
6

, i
8

,ri
8

) d⌦,

where ⌦ is the volume occupied by the fibrous specimen in its reference configuration and the
constitutive expression for the strain energy density W is given in Eq. (3.2). It is worth noticing
that considering this expression for the action functional, we are implicitly assuming that all inertial
effects can be neglected and that the phenomenon that we are studying can be considered to be
quasi-static. As classically done, the power of internal forces of the considered generalized continuum
can be written as the first variation of the action functional as: P int

= �A. Relying on the principle
of virtual powers we can hence write the governing equations for the considered fibrous system in
the following weak form

�A = Pext, (3.3)
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where Pext is the power of external forces that, in the framework of the considered second gradient
model, we choose to take the particular form

Pext

=

ˆ
@⌦

�

f ext · �u�+
ˆ
@⌦

(⌧
4

· �i
4
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8
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8

) ,

where �u is the virtual displacement field, while �i
4

, �i
6

and �i
8

are the virtual variations of the
three invariants introduced in Eq. (3.1). The virtual variations of these invariants can clearly be
expressed in terms of the virtual variation of displacement and of its space derivatives by means of
the definitions (3.1). The quantities ⌧

4

, ⌧
6

, and ⌧
8

, represent the external actions expending power
on the elongation of the two orders of fibers and on the shear angle variation respectively, while f ext

is the classical surface external force.

3.4.2 Numerical simulations

The numerical simulations of the continuum model presented in the previous subsection are intended
to be directly implemented in the weak form (3.3) by using the code COMSOL Multiphysics. Indeed,
in order to improve the stability of the numerical simulation, the second gradient simulations are
implemented via the constrained micromorphic approach presented in [33] to which, to the sake of
simplicity, we refer for details on the relation between second gradient and constrained micromorphic
theories. Indeed, it is known that second gradient theories can be obtained as suitable limits of
micromorphic theories subjected to precise kinematical restrictions (see e.g. [53, 58]).

K
4

K
6

K
8

A
8

↵
[GPa] [GPa] [MPa] [MPa] [MPa⇥m2

]

6 6 0.0428 0.18 2⇥ 10

�5

Table 3.3: First and second gradient constitutive parameters for the considered orthotropic contin-
uum model.

Table 3.3 shows the values of the first and second gradient parameters appearing in Eq. (3.2) which
are used in the numerical simulations proposed here. The geometry of the problem in study is of
the same type as the one considered in the discrete approaches. More particularly, we consider
a rectangular specimen of the same dimensions as the ones considered for the discrete numerical
simulations (see Fig. 3.8). As for the boundary conditions we choose:

• vanishing displacement of the bottom surface (�u = {0, 0}),
• imposed vertical displacement of the top surface (�u = {0, 55mm}),
• vanishing angle variation at the bottom and top surfaces (�i

8

= 0),

• vanishing double-tractions at the top and bottom surfaces (⌧
4

= 0, ⌧
6

= 0).
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Figure 3.17: Total angle variation � for an imposed displacement of 55mm: first gradient theory.
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Figure 3.18: Total angle variation � for an imposed displacement of 55mm: second gradient theory.

It is worth to discuss with some more details how the aforementioned problem and, in particular, the
used boundary conditions have been implemented in the numerical code. The continuum numerical
simulations presented in this work have been performed via the code COMSOL Multiphysics by
directly implementing the principle of virtual powers (3.3). The boundary conditions listed above
have been imposed in weak form as well by means of suitable Lagrange multipliers. More precisely,
instead of imposing locally that the displacement is vanishing on one side of the specimen, we impose
a global integral constraint on the whole line by using a Lagrange multiplier. This approach allows
us to directly obtain the value of the resultant reaction force on the basis of the specimen which
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is indeed directly the value of the introduced Lagrange multiplier. This approach permits to avoid
numerical errors in the post-processing phase related to line integrations of the reaction force field
on the basis of the specimen.
We start showing the results for the total angle variation obtained via the first and second gradient
theory. Indeed, figure 3.17 shows the total angle variation between yarns when imposing a displace-
ment of the top surface of 55mm. Figure 3.18 shows the same quantity obtained by using a second
gradient theory. As already proven in [33], it can be seen that when considering the numerical
simulation obtained by using a classical first gradient Cauchy theory (see Fig.3.17), the solution sen-
sibly deviates from the experimental one, especially for what concerns the description of the shear
transition layers. Indeed, as it will be better pointed out in the remainder of this section, the size of
the transition layer which is obtained in the framework of a first gradient theory strongly depends
on the size of the considered elements. Figure 3.18 shows the second gradient solution for the total
angle variation: it can be seen that the description of the transition layer is much more accurate
and the transition between two zones at constant shear angle actually takes place on smooth tran-
sition layers. Moreover, the thickness of the transition layer is seen to be mesh-independent when
considering a second gradient theory. Figure 3.19 shows in detail how the thickness of the transition
layers strongly depend on the size of the considered mesh in the case of the first gradient solution,
while Fig. 3.20 actually shows that this mesh-dependency disappears in the case of second gradient
solution when a sufficiently small mesh is considered. It is in fact clear that the characteristic size of
the used mesh must be smaller of the thickness of the transition layer in order to obtain the correct
solution in the transition layer region. It is for this reason that a sufficiently fine mesh is necessary
also in the case of second gradient solution in order to be able to catch the correct solution of the
considered problem.

Figure 3.19: Dependency of the first gradient solution on the size of the considered mesh.

Figure 3.20: Independency of the second gradient solution on the size of the considered mesh.

More particularly, it can be remarked that, independently of the size of the considered mesh, in the
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first gradient solution the thickness of the transition layer is always comparable to the size of one
element of the considered mesh (as happened for the TPM-2 solution), while in the second gradient
solution, as far as the mesh is small enough to catch the characteristic features of the considered
phenomenon, the thickness of the transition layer keeps constant also when considering smaller and
smaller meshes. This phenomenon of mesh-dependency is better underlined in figures 3.21 and 3.22
in which the solution restricted to one section passing across the transition layer is depicted for three
different mesh sizes.
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Figure 3.21: Dependency of the first gradient solution on the size of the considered mesh.

In these figures the blue line corresponds to the shear angle variation obtained by means of the
coarser mesh, while the green and the red line represent the solution corresponding to the medium
and the finer mesh respectively. The discussed mesh-independency related to the second gradient
solution appears clearly in Fig. 3.22: indeed, the solutions obtained with the medium and finer mesh
(green and red lines) are almost perfectly superimposed.

3.5 Force-displacement curves: discussion about the occurrence of
tension locking and comparison of discrete and continuum mod-
els

An important physical parameter which directly allows for the comparison of the numerical simula-
tions with the experimental tests is the evolution of the overall force on the bottom surface of the
specimen as a function of the displacement imposed at the top surface. Indeed, the force calculated
starting from finite element solutions based on continuum models is seen to be often subjected to
what is called numerical tension locking (see e.g. [42]). In particular, the search of a numerical
solution for a system which exhibits strong differences between the tension stiffness and the shear
angle variation stiffness can lead to numerical errors which give rise to equilibrium configurations in
which the fibers appear to be artificially stretched. This implies that the calculated values of the
reaction force on the basis of the specimen appear to be of many orders of magnitude bigger than
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Figure 3.22: Independency of the second gradient solution on the size of the considered mesh.

the expected ones. In [42] the authors show that the phenomenon of tension locking can be avoided
when using bi-linear finite elements, by means of i) meshes adapted to the directions of the fibers
and ii) stabilization techniques based on reduced integration. Indeed, the phenomenon of tension
locking can be also seen to be related to i) the non-linearity of the considered constitutive behavior
and ii) the type and order of considered finite elements.
Figure 3.23 shows that, when considering bi-linear Lagrange square finite elements in the first gradi-
ent continuum simulation, the force-displacement curve is over-estimating of three orders of magni-
tude the expected values of force which is normally included between 0 and 30N . When decreasing
the mesh size one gets better and better approximation of the calculated force-displacement curve in
spite of an increment of calculation time. On the other hand, Fig. 3.24 shows that when considering
quadratic Lagrange elements the convergence to the expected solution is much quicker than in the
case of linear elements.
We can summarize by saying that the fact of using continuum theories with constitutive equations
of the type (3.2) in which strong contrasts of the mechanical properties at the mesoscopic level are
present, may give rise to numerical errors which are known as tension locking phenomena. This is why
the convergence of the calculated solution must always be checked by controlling the corresponding
force-displacement curve. The continuum model proposed in the present work do not show tension
locking when considering quadratic elements with a reasonably refined mesh.
Once that the convergence of the continuum solution has been checked, it can be compared with
the discrete solutions.
Figure 3.25 shows the comparison of the force-displacement curve in the linear regime (0� 55mm)
as obtained with the pantographic structure, the TPM-2 and the continuum first gradient model
respectively. It can be seen that, when considering a range of small imposed displacements (0 �
55mm), then the discrete models and the first gradient continuum one are all suitable to describe the
force-displacement curve for the bias extension test. It is worth to remark that solution obtained with
the pantographic lattice slightly overestimates the value of the force and that the force-displacement
behavior is perfectly linear. The perfectly linear behavior of the force-displacement curve obtained
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Figure 3.23: Comparison of the force-displacement curves for different mesh sizes: the case of bi-
linear square finite elements.

via the pantographic lattice is related to the fact that the deformation measures of the considered
Euler-Bernouilli beams are linearized. On the other hand, the solutions obtained via the TPM-2
and the continuum model show a slightly non-linear behavior which is related to the presence of
geometric non-linearities. As already observed, material non-linearities have not been implemented
in the pantographic lattice and in the TPM-2 models, while they are taken into account in the
continuum model by means of a non-linear constitutive equation for the deformation energy density
(A

8

6= 0 in Eq. (3.2)). Fig.3.26 shows the comparison of the first gradient (↵ = 0) continuum
solution with linear and non-linear material behavior.
The value of the non-linear coefficient A

8

has been calibrated in order to fit at best the experimental
force-displacement curve.
Finally, we want to highlight which is the effect of the second gradient constitutive behavior (↵ 6= 0)
on the force-displacement curve. To this task, we refer to Fig. 3.27
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Figure 3.24: Comparison of the force-displacement curves for different mesh sizes: the case of bi-
quadratic square finite elements.
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Figure 3.27: Force-displacement curves obtained via the continuum first gradient theory: linear and
non-linear constitutive assumption.

in which the first and second gradient solutions are depicted both for the linear and non-linear
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Figure 3.25: Comparison of the force-displacement curve obtained via TPM-2 elements and via the
continuum first gradient theory: the case of small imposed displacements (up to 55mm).

case. It can be immediately noticed that the global effect of adding a second gradient term in the
constitutive equation is that of obtaining a stiffer material, at least for what concerns high imposed
displacements. This stiffening effect is much more evident when considering a linear first gradient
model (A

8

= 0 ) than in the non-linear case (A
8

6= 0 ). The stiffening effect related to second
gradient can be associated to the fact that the model accounts for the bending stiffness of the yarns
at the mesoscopic level differently to what happens in the first gradient case.

3.6 Conclusions and Perspectives

In this work it is proven that simple physical mesostructures (which resembles closely some mesostruc-
tures used in the technology of fiber reinforced composites) can induce, in the corresponding macro-
scopic continuum model, a dependence of deformation energy on strain gradient (second gradient
theory). The second gradient macroscopic constitutive equation for deformation energy is heuristi-
cally determined in terms of the geometry and the mechanical properties of the considered fibrous
material. The results obtained in the present work urge to be rigorously framed in the context of
mathematical homogenization techniques of the kind presented in [2].
On the basis of the comparison between discrete and continuum models, we conclude that one pos-
sible way to correctly describe the behavior of fibrous composite reinforcements is to use a simplified
continuum macroscopic description of microscopically complex (i.e. constituted by heterogeneous
parts connected following a specific geometric pattern) mechanical systems. One of the main physi-
cal feature which leads to conclude that a fibrous composite reinforcement must indeed be modeled
as a second gradient continuum is represented by the strong contrast between the very high tensile
stiffness of the yarns constituting the lattice and the very low shear angle variation stiffness. Indeed,
the yarns of considered woven fabrics can be considered to be almost inextensible, while two super-
imposed yarns can easily rotate one with respect to the other. In the limit case of inextensibility the
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Figure 3.26: Force-displacement curves obtained via the continuum first gradient theory: linear and
non-linear constitutive assumption.

introduction of suitable Lagrange multipliers (remarked already by Piola [19]) cannot be avoided.
In the present work we limit ourselves to consider models in which the tensile stiffness of the yarns
is much higher than the shear stiffness. The study of the limit case of inextensible networks by
the introduction of Lagrange multipliers presents numerous conceptual difficulties which need to be
carefully addressed. We henceforth leave the investigation of this delicate case to future work. In
this work, we show how the fact of considering strong contrasts of the mechanical properties at the
mesoscopic level actually leads to the conclusion that a second gradient deformation energy must
be introduced at the homogenized level. We hence focus on the description of the so-called bias
extension test by means of the introduced discrete and continuum models. We find out that:

• The pantographic lattice discrete model is able to account for the description of the basic
features of the bias extension test on woven composites, including the description of the onset
of shear transition layers. This is possible since each yarn is modeled as an unique Euler-
Bernouilli beam with its own bending stiffness: the connection between different beams is
realized via perfect internal pivots which do not interrupt the continuity of each yarn. The
basic information provided by this discrete model is that if one wants to use a continuum
model for the description of the bias extension test, then the possibility of the description of
shear transition layers related to the bending stiffness of the yarns at the mesoscopic level
must necessarily be taken into account. This result naturally leads to the conclusion that the
thickness of the shear transition layers which are observed at the macroscopic scale is indeed
directly related to the bending stiffness of the yarns at the mesoscopic scale. This fact must be
accounted for when considering a continuum theory for the description of the bias extension
test. In particular, following the reasonings presented in [24], higher gradients of the shear
strain must be considered in order to describe the effect of bending stiffness of the yarns on
the overall mechanical behavior of the material at the macroscopic level.

• The TPM-2 model is suitable to account for the basic features of the bias extension test, but it
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shows some limits related to the fact that TPM-2 elements are not actually able to mimic the
continuity of yarns. Indeed, the connections between two elements is made by internal pivots,
but the bars constituting the rigid truss are not continuous when passing from one element
to the adjacent one. This interruption of the continuity of yarns does not create particular
problems for the description of the overall behavior of the bias extension test, but it forbids the
correct description of the onset of shear transition layers. This limit is related to the fact that
no shear angle gradients can be accounted for due to interruption of yarns’ continuity. Indeed,
we show that the transition from one region at constant shear angle to the adjacent one is
made on one single finite element: non-local bending of fibers is not allowed in the TPM-2
model. This means that the solution is mesh-dependent for what concerns the description of
the thickness of the shear transition layers. The main information provided by this discrete
model is that when using finite elements, non-local material behaviors must be conceived in
order to be able to describe gradual bending of the yarns on more than one element. This
information can be added to the preceding ones to conclude that higher order theories are
needed for the correct modeling of woven fabrics.

• Continuum models are seen to be suitable to describe in a satisfactory way the basic features
of the bias extension test. First gradient models are able to catch most of the features of
the considered solution, except for what concerns the correct description of transition layers.
Indeed, the thickness of the transition layers predicted by means of the first gradient model
strongly depend on the size of the considered mesh (the transition layer is always localized
on one element as happened for the TPM-2 model). On the other hand, a second gradient
continuum model is able to cure this mesh dependency and the thickness of the shear transition
layer remains indeed fixed when decreasing the mesh size. The fact of introducing higher
gradients of shear strain in the proposed continuum theory has been seen to be necessary
on the basis of precise mesoscopic considerations. In particular the fact of considering such
higher gradients of the shear strain allows to account for the bending stiffness of the yarns at
the mesoscopic level.

In virtue of the aforementioned remarks, we can conclude that a second gradient continuum model
is a possible framework to precisely treat the bias extension test from a theoretical and also from a
numerical point of view. Nevertheless, one must be aware of the fact that when looking for finite
element solutions of continuum models in which such strong contrasts of the mechanical properties
exist, numerical errors related to so-called locking phenomena can be easily introduced (see e.g. [42]).
As a consequence, the numerical integration schemes to be used, in order to apply the formulated
model to technologically relevant problems (e.g. bias tests [44, 85], shear tests [45] or (pre)forming of
reinforcements [4, 43, 6, 25, 91]) need to be able to confront the corresponding difficulties. In partic-
ular, the convergence of the solution must be carefully checked when considering highly-contrasted
media, for example by checking that the obtained solution does not change when refining the mesh
of the considered domain.
Further investigations will involve some immediate and interesting developments of presented anal-
ysis. These will include the study of:

• pantographic lattices constituted by inextensible fibers by using Lagrange multipliers

• pantographic lattices constituted by different kinds of fibers, having for instance different
bending stiffnesses, and showing eventually material gradients of mechanical properties, so
that their continuum modeling may require the introduction of inhomogeneous constitutive
equations

• more general microstructures with different inextensibility directions in order to more closely
aid the design of new meta-materials
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• dynamics of pantographic lattices, including eventually phenomena of excitation of internal
degrees of freedom

• well-posedness properties (e.g. of the kind studied in for the class of nonstandard deformation
energies arising in the class of generalized continua we introduced here.
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Chapter 4

2D models: reduced kinematics and

geometric interpretation of first and

second gradient deformation measures

In this chapter, we introduce the particular case of 2D continua and we explicitly show that in such
case we can finally give a direct interpretation of the first and second gradient of the placement field
in the light of differential geometry.
Moreover, we explicitly point out that, when assuming the introduced coordinate system to coincide
with two preferential mutually orthogonal material directions (orthotropic media), then the com-
ponents of the second gradient of the placement can be thought to have precise physical meanings
associated to elementary deformation modes. When considering the particular case of inextensible
fibers both the kinematics and the expression of the introduced deformation measures appear to be
ulteriorly simplified. This drastic simplification allows the possibility of setting up reduced mechan-
ical models which account for the predominant deformation mechanisms of particular orthotropic
systems.

88
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4.1 First and second gradient of 2D placement fields

In this subsection we try to give a geometrical interpretation of the components of the second
gradient of the displacement field with reference to a suitable Lagrangian basis {D

1

,D
2

} which, in
general, may or may not coincide with preferential material directions. The coordinate of Lagrangian
material particles in such basis will be denoted by (⇣

1

, ⇣
2

). The following considerations are inspired
by [?] and [76].
Let us consider a two-dimensional material body B. As usually done, we will keep the hypothesis
that the physical space S is a two-dimensional Euclidean space.
Hereafter, we will consider that the placement r : B? ! R2 is a C 2 diffeomorphism mapping the
Lagrangian configuration in the current one. Our primary objective is here to give a geometrical
interpretation of the second gradient (the hessian) of the map r and then prove the Rivlin decompo-
sition under the assumption of inextensibility. Denoting {D

1

,D
2

} a Lagrangian orthonormal basis,
the vector valued map rcan be decomposed as

r (⇣
1

, ⇣
2

) = r
1

(⇣
1

, ⇣
2

)D
1

+ r
2

(⇣
1

, ⇣
2

)D
2

,

where r
1

and r
2

are the components of r in the considered basis. With such notations, we can write
the matrix representation of the first gradient of placement as
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where we simultaneously introduce different notations for the partial derivatives which will be equiv-
alently used in the following.
It can be checked that the compact tensorial expression for the first gradient of placement takes the
form

rr (⇣
1

, ⇣
2

) = d
1

⌦D
1

+ d
2

⌦D
2

,

where
d
1

=

@r

@⇣
1

= F ·D1 and d
2

=

@r

@⇣
2

= F ·D2. (4.1)

At this point, we want to create a sort of grid on our body in order to be able to follow its deformation
and to assign to the components of the second gradient of displacement particular geometrical
meanings. To do so, we consider, for the sake of simplicity, the case in which the body is a convex
set, so that a simple representative grid can be defined introducing the coordinate lines as (see also
fig 4.1)
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.

It can be remarked that, in general, due to the shape of the body, the projections of the coordinate
lines on the two axes, vary when varying the considered coordinate line. When considering a vertical
coordinate line l

¯

⇣1
, we will denote by D

¯

⇣1
its projection on the ⇣

2

axis and, analogously, fixed a
horizontal coordinate line l

¯

⇣2
, by D

¯

⇣2
its projection on the ⇣

1

axis.
We set the block matrix representation of the hessian to take the form:
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Figure 4.1: Images of coordinates lines, tangent vectors and projections
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while its tensorial expression can be recognized to take the form
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Now, we will explicitly proceed towards the geometric interpretation of the three vectors g
1

,g
2

,�
appearing in Eq. (4.3). To do so, we indicate with ⇡

1

and ⇡
2

the two projections of B? on the
coordinate axes and with I

1

and I
2

the image of these projections (see also Fig. 4.1), i.e.

I
1

:= ⇡
1

(B?

) and I
2

:= ⇡
2

(B?

) .

The pure geometrical meaning of the gradient and second gradient of the placement field may allow
us to describe how the coordinates lines are deformed.

1Remember that for the Schwartz theorem, being r C 2 regular, we have r1,21 = r1,12 and r2,21 = r2,12
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Figure 4.2: Hessian components and directional derivatives of tangent vectors to the images of
coordinates lines

Given the two parametric families of coordinate curves
�

l
¯

⇣1

 

¯

⇣12I1
and

�

l
¯

⇣2

 

¯

⇣22I2
relative to our grid,

we can introduce for each coordinate curve l
¯

⇣↵
its image � under the introduced displacement field

as
8

>

>

<

>

>

:

�

¯

⇣1
(⇣

2

) = r|
l⇣̄1

8¯⇣
1

2 I
1

, with ⇣
2

2 D
¯

⇣1

�

¯

⇣2
(⇣

1

) = r|
l⇣̄2

8¯⇣
2

2 I
2

with ⇣
1

2 D
¯

⇣2

for their images. According to definitions (4.1), it can be checked that

d
1

�

r
�

⇣
1

, ¯⇣
2

��

=

d�
¯

⇣2

d⇣
1

�

�

�

�

r
(

⇣1,
¯

⇣2)

and d
2

�

r
�

¯⇣
1

, ⇣
2

��

=

d�
¯

⇣1

d⇣
2

�

�

�

�

r
(

¯

⇣1,⇣2)

.

In this way we can see that d
1

and d
2

can be seen to be tangent (generally non-unitary) vectors to
the images of coordinate lines.

4.1.1 2D deformation measures

In order to give a geometric interpretation of the components of the second gradient of the placement
field r given in (4.2), we first define the two unit vectors associated to d

1

and d
2

as

⌧

1

=

d
1

�
1

and ⌧

2

=

d
2

�
2

, (4.5)

where we set
�
1

:= kd
1

k and �
2

:= kd
2

k .
We can also define the four following angles:

#
1

:= arccos h⌧
1

,D
1

i , #
2

:= arccos h⌧
2

,D
1

i , � =

⇡

2

� (#
2

� #
1

), # =

⇡

2

� �, (4.6)

shown in figure (4.1.1). The fact of introducing such supplementary kinematical descriptors may
be useful if one wants to interpret the results which we are going to present in the case in which
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the coordinate lines coincides with preferred material directions inside an orthotropic medium. In
particular, in the case of fibrous composite reinforcements such angles can be visualized as

• angle variations between fibers (for what concerns #),

• angle variations from the reference configuration of the fibers to the current one (for what
concerns �).

In what follows, we will introduce all relevant quantities both in terms of the Eulerian vectors d
1

and d
2

, and of the total angle variation � in order to have the possibility of better interpret them
when the particular case of orthotropic materials will be considered.

J
J

g

d

d

J1

1 t1
D1

D2

2

t2

2

Figure 4.3: Defined angles

It can be checked that, introducing the quantity S := hd
1

,d
2

i = �
1

�
2

h⌧
1

, ⌧
2

i = �
1

�
2

sin �, the
Cauchy-Green deformation tensor associated to r can be written as

C = Ft · F = �
1

D
1

⌦D
1

+ �
2

D
2

⌦D
2

+ S (D
1

⌦D
2

+D
2

⌦D
1

) . (4.7)

Now we can give a geometric interpretation of the components of the hessian.
A direct calculation shows that, recalling Eqs. (4.1), (4.4) and (4.5), the following identities hold

8

>

>

>

>

<

>

>

>

>

:

g
1

�

⇣
1

, ¯⇣
2

�

=

d

d⇣
1

d
1

|
l⇣̄2

=

d

d⇣
1

(�
1

⌧

1

) =

d�
1

d⇣
1

⌧

1

+ �
1

d⌧
1

d⇣
1

,

g
2

�

¯⇣
1

, ⇣
2

�

=

d

d⇣
2

d
2

|
l⇣̄1

=

d

d⇣
2

(�
2

⌧

2

) =

d�
2

d⇣
2

⌧

2

+ �
2

d⌧
2

d⇣
2

.

Setting

b
↵

=

�

�

�

�

d⌧
↵

d⇣
↵

�

�

�

�

for ↵ = 1, 2,

and being ⌧

↵

unitary, we have that ⌧

↵

?d⌧↵
d⇣↵

, so that introducing a unit vector ⌫ orthogonal to ⌧

2

we can finally write
2oriented in such a way that {⌧ ,⌫} is obtained as a simple rotation of {D1,D2}
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d⌧
↵

d⇣
↵

= b
↵

⌫

↵

for ↵ = 1, 2. (4.8)

With these notations, we can finally express the two vectors g
1

and g
2

as

g
↵

= �
↵,⇣↵⌧↵

+ �
↵

b
↵

⌫

↵

, (4.9)

that give a complete representation of the vectors g
1

and g
2

in the adapted (Eulerian) local basis
{⌧ ,⌫}. The fact of rewriting the vectors g

1

and g
2

in this adapted basis is useful for catching the
geometrical meaning of the quoted vectors. Indeed, the vectors g

↵

account for a tangent component
which contains informations about variations of elongations along the coordinate line (term �

↵,⇣↵)
and of a normal component which accounts for the the product of the elongation and bending
strain (term �

↵

b
↵

). We explicitly remark that in the particular case of inextensible coordinate lines
(i.e. �

↵

⌘ 1), the vectors g
↵

have only a normal component and the only intervening deformation
mechanism is that of bending.
In an analogous way, we want to represent the vector � in such adapted basis, so that we start by
noticing that by definition (4.4)

� = d
1,2

= d
2,1

. (4.10)

Being the two vector fields ⌧

↵

(⇣
1

, ⇣
2

) unitary for every (⇣
1

, ⇣
2

) 2 B?, we have also that

⌧

1,2

?⌧
1

, and ⌧

2,1

?⌧
2

.

So, according to Eq. (4.5) we finally find that

� = d
1,2

= �
1,2

⌧

1

+ �
1

⌧

1,2

= �
1,2

⌧

1

+ �
1

k⌧
1,2

k⌫
1

(4.11)
= d

2,1

= �
2,1

⌧

2

+ �
2

⌧

2,1

= �
2,1

⌧

2

+ �
2

k⌧
2,1

k⌫
2

.

It is worth to remark that such decomposition of the vector � contains informations about the
variation of elongation of a family of coordinate lines when moving on a coordinate line of the other
family (term �

1,2

) and about the relative motion of two adjacent coordinate lines of the same family
when moving on a coordinate line of the other one (see Fig. (4.4)).

Having identified the vectors g
↵

and � in the local adapted basis, we have obtained a complete geo-
metrical description of the second gradient of placement given in Eq. (4.3). Such second gradient of
placement is a third order tensor field which is easily seen to contain informations about the defor-
mation mechanisms of both families of coordinate lines. It is worth to introduce two new quantities
which instead isolate informations concerning the two families of coordinate lines separately. To do
so, we apply the tensor r2r to the vectors D

1

and D
2

so obtaining

r2r ·D
1

= g
1

⌦D
1

+ �⌦D
2

and r2r ·D
2

= g
2

⌦D
2

+ �⌦D
1

.

4.1.2 Expression of the bending strain in terms of the geometric curvature

We have introduced in the previous subsection the bending strain b
↵

= kd⌧
↵

/d⇣
↵

k which can be
seen to account for variations of the direction of the unitary tangent vector ⌧

↵

along the considered
coordinate line. Hence, such quantity b

↵

is clearly related to a deformation mechanism which ac-
counts for the fact that the coordinate line is curving. Nevertheless, the quantity which is classically
introduced in differential geometry to account for such deformation mechanism is not b

↵

, but the
curvature k

↵

, so that it appears useful to identify the relation between our bending strain and the
classical curvature.
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Figure 4.4: Geometrical interpretation of the introduced deformation measures.

Indeed, if we denote by sthe arc length parameter of the considered curve, then we can write
we have that

d⌧
↵

d⇣
↵

=

d⌧
↵

ds

ds

d⇣
↵

for ↵ = 1, 2

and so
�

�

�

�

d⌧
↵

d⇣
↵

�

�

�

�

| {z }

b↵

=

�

�

�

�

d⌧
↵

ds

�

�

�

�

| {z }

k↵

�

�

�

�

ds

d⇣
↵

�

�

�

�

| {z }

kd↵k=�↵

for ↵ = 1, 2

from which we finally recognize

b
↵

= �
↵

k
↵

for ↵ = 1, 2.

Remark 35.

4.1.3 Deformation measures in terms of the angles variations

In this subsection we rewrite the previously introduced first and second gradient deformation mea-
sures in terms of the angles � and #
introduced in Eq. (4.6).
Since ⌧

↵

?⌫
↵

for all (⇣
1

, ⇣
2

) 2 B?, then there exist two matrix rotation fields R
↵

: B? ! SO
2

(R)
such that

R
↵

·D
1

= ⌧

↵

and R
↵

·D
2

= ⌫

↵

,

and so two functions (introduced in (4.6)) #
↵

: B? ! (�2⇡, 2⇡) such that (see also Fig. (4.5) and
Eqs. (4.6))

⌧

↵

= cos#
↵

D
1

+ sin#
↵

D
2

, ⌫

↵

= � sin#
↵

D
1

+ cos#
↵

D
2

. (4.12)

Differentiating ⌧

↵

with respect to ⇣
↵

one has

⌧

↵,↵

= #
↵,↵

(� sin#
↵

D
1

+ cos#
↵

D
2

) = #
↵,↵

⌫

↵

for ↵ = 1, 2,
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Figure 4.5: Representation of functions #
↵

at different point of coordinates (a, b) , (c, d) , (e, f) of B?

which, recalling Eq. (4.8) implies
#
↵,↵

= b
↵

(4.13)

On the other hand, differentiating ⌧

1

with respect to ⇣
2

(analogously ⌧

2

with respect to ⇣
1

) one has

⌧

1,2

= #
1,2

⌫

1

, ⌧

2,1

= #
2,1

⌫

2

. (4.14)

Remark 36. The quantities #
1,2

, #
2,1

are called Tchebychev curvatures [49, 84].
At this point, recalling Eq. (4.9) and using (4.13), we can rewrite the two vector fields g

↵

in terms
of #

↵

as
g
↵

= �
↵,⇣↵⌧↵

+ �
↵

#
↵,↵

⌫

↵

.

Analogously, recalling Eq. (4.11) and using 4.14, we have that the vector field � can be rewritten as

� = d
1,2

= �
1,2

⌧

1

+ �
1

#
1,2

⌫

1

= d
2,1

= �
2,1

⌧

2

+ �
2

#
2,1

⌫

2

. (4.15)

We have thus identified the vectors g
↵

and � in terms of the angles #
↵

and their derivatives.
Nevertheless, such angles #

↵

are not the more natural ones, if one wants to associate a precise
geometrical meaning to the deformation mechanisms that we want to describe. Indeed, the shear
angle � represents the total angle variation of the coordinate lines from their reference configuration
to the current one (see Fig. 4.1.1), so that its geometrical meaning is much more direct in view of
phenomenological interpretations.
In order to rewrite g

↵

and � in terms of the shear angle � we start to remark that

#
2

� #
1

=

⇡

2

� �,

It follows that, taking the gradient of this formula

r� = r#
1

�r#
2

.

On the other hand, we have

r#
↵

= (r#
↵

·D
1

)D
1

+ (r#
↵

·D
2

)D
2

= #
↵,1

D
1

+ #
↵,2

D
2

.
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Recalling Eq. (4.13)we can hence express the Tchebychev curvatures as functions of the bending
strains and the shear angle � as

8

>

<

>

:

�
,1

= #
1,1

� #
2,1

() #
2,1

= b
1

+ �
,1

,

�
,2

= #
1,2

� #
2,2

() #
1,2

= b
2

+ �
,2

.

(4.16)

In order to complete our reasoning and to finally write the Tchebychev curvatures as functions of
the sole angle � we project (4.15) on ⌧

1

and ⌧

2

so obtaining

hd
1,2

, ⌧
1

i = �
1,2

= hd
2,1

, ⌧
1

i = �
2,1

h⌧
1

, ⌧
2

i+ �
2

#
2,1

h⌧
1

,⌫
2

i = �
2,1

sin � � �
2

#
2,1

cos �,

and

hd
1,2

, ⌧
2

i = �
1,2

h⌧
1

, ⌧
2

i+ �
1

#
1,2

h⌫
1

, ⌧
2

i = �
1,2

sin � + �
1

#
1,2

cos � = hd
2,1

, ⌧
2

i = �
2,1

,

which finally implies
8

>

<

>

:

�
2

#
2,1

cos � = �
2,1

sin � � �
1,2

�
1

#
1,2

cos � = �
2,1

� �
1,2

sin �.

Replacing the expressions of Tchebychev curvatures found in Eq. (4.16) in these last equations we
have

8

>

<

>

:

�
2

(b
1

+ �
,1

) cos � = �
2,1

sin � � �
1,2

�
1

(b
2

+ �
,2

) cos � = �
2,1

� �
1,2

sin �,

(4.17)

from which we can explicitly deduce the expression of b
↵

in terms of the shear angle �.
Using the relationships (4.16) and (4.17) in the definitions of g

↵

and �, these latter can be rewritten
in terms of �

↵

, � and their gradients.

4.1.4 Hypothesis of inextensibility

In this section, after having introduced the definition of inextensible field, we will explore the con-
sequences of this assumption.

Definition 37. A map r : R2 ◆ B? ! R2 is said inextensible if kd
1

k = kd
2

k = 1 for every
(⇣

1

, ⇣
2

) 2 B?.

If we explicitly write the two expressions kd
1

k = kd
2

k = 1 by recalling Eqs. (4.1), we get
8

>

>

>

>

>

<

>

>

>

>

>

:

✓

@r
1

@⇣
1

◆

2

+

✓

@r
2

@⇣
1

◆

2

= 1

✓

@r
1

@⇣
2

◆

2

+

✓

@r
2

@⇣
2

◆

2

= 1.

Differentiating the first of such equations with respect to ⇣
2

and the second with respect to ⇣
1

we
obtain

8

>

>

>

>

<

>

>

>

>

:

@r
1

@⇣
1

@2r
1

@⇣
1

@⇣
2

+

@r
2

@⇣
1

@2r
2

@⇣
1

@⇣
2

= 0

@r
1

@⇣
2

@2r
1

@⇣
1

@⇣
2

+

@r
2

@⇣
2

@2r
2

@⇣
1

@⇣
2

= 0
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or in matrix notation

2

6

6

6

4

@r
1

@⇣
1

@r
2

@⇣
1

@r
1

@⇣
2

@r
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7

7

7

5

2
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4

@2r
1

@⇣
1

@⇣
2

@2r
2

@⇣
1

@⇣
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3

7

7

7

7

5

= rr ·

2

6

6

6
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4

@2r
1

@⇣
1

@⇣
2

@2r
2

@⇣
1

@⇣
2

3

7

7

7

7

5

= 0. (4.18)

Having that the map r is C 2 diffeomorphism, the only possibility, for every (⇣
1

, ⇣
2

) 2 B? to have a
solution of (4.18) is that

@2r
1

@⇣
1

@⇣
2

=

@2r
2

@⇣
1

@⇣
2

= 0, (4.19)

Using such result in equation (4.2) we can find that the second gradient of the placement field in
the case of inextensibility takes the following simplified form

r2r (⇣
1

, ⇣
2

) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
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7

7

5

2
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6

4

@2r
2

@⇣2
1

0

0

@2r
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2

3

7

7
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5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (4.20)

The equation (4.19) is the well known wave equation in the second form that, in connected domains
has the solution

r (⇣
1

, ⇣
2

) = r
1

(⇣
1

, ⇣
2

)D
1

+ r
2

(⇣
1

, ⇣
2

)D
2

= (µ
1

(⇣
1

) + ⌫
2

(⇣
2

))D
1

+ (⌫
1

(⇣
1

) + µ
2

(⇣
2

))D
2

, (4.21)

which we can rewrite in compact form as

r (⇣
1

, ⇣
2

) = r
1

(⇣
1

) + r
2

(⇣
2

) (4.22)

with r
1

and r
2

vector valued maps of a real variable defined respectively (on the projection I
1

and
I
2

of B? on coordinate axis) as
8

>

<

>

:

r
1

(⇣
1

) = µ
1

(⇣
1

)D
1

+ ⌫
1

(⇣
1

)D
2

r
2

(⇣
2

) = ⌫
2

(⇣
2

)D
1

+ µ
2

(⇣
2

)D
2

,

with µ
1

, ⌫
1

and µ
2

, ⌫
2

real valued functions of real variable defined respectively on I
1

and I
2

.
Consequently, according to Eq. (4.1), the vectors d

1

and d
2

will take following form
8

>

<

>

:

d
1

(⇣
1

) = µ
1,1

(⇣
1

)D
1

+ ⌫
1,1

(⇣
1

)D
2

d
2

(⇣
2

) = ⌫
2,2

(⇣
2

)D
1

+ µ
2,2

(⇣
2

)D
2

.
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These last equations, together with the fact that in the inextensible case the vectors d
1

and d
2

are
unitary, implies

kd
1

k2 = 1) (µ
1,1

)

2

+ (⌫
1,1

)

2

= 1 ) ⌫
1,1

= ±
q

1� (µ
1,1

)

2 (4.23)

kd
2

k2 = 1) (µ
2,2

)

2

+ (⌫
2,2

)

2

= 1 ) ⌫
2,2

= ±
q

1� (µ
2,2

)

2. (4.24)

Integrating these last expressions we get

⌫
1

(⇣
1

)� ⌫
1

(⇣
1min

) = ±
ˆ

⇣1

⇣1min

q

1� (µ
1,1

(⌘))2d⌘, 8⇣
1

2 I
1

⌫
2

(⇣
2

)� ⌫
2

(⇣
2min

) = ±
ˆ

⇣2

⇣2min

q

1� (µ
2,2

(⌘))2d⌘, 8⇣
2

2 I
2

,

where the points ⇣
1min

and ⇣
2min

can be defined as (see also Fig. 4.6)

⇣
1min

:= min {I
1

} and ⇣
2min

:= min {I
2

} .

The existence of ⇣
1min

and ⇣
2min

is guaranteed by the fact that, since B? is a compact connected set
and the projection maps are continuous maps, we also have that I

1

and I
2

are compact connected
subsets of R (and so intervals). In what follows, whenever square roots appear in the formulas we
will choose the sign + since only the corresponding specific families of deformations are involved in
the problems that we will study.

z
1min

2
z min

D2

1D

I2

I 1

Figure 4.6: ⇣
1min

and ⇣
2min
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Chapter 5

A 2D first gradient problem for

rectangular specimens of fibrous

materials with inextensible fibers

In the Fifties and Sixties decades of XX century Adkin, Rivlin [76, 77, 78, 81, 82, 1, 29, 68] and
Pipkin [61, 73, 70, 62, 63, 71, 65, 66, 72, 84, 89, 90, 32, 69, 64, 67] developed a continuum model for
inextensible fiber networks, to supply a predictive tool for many emerging and important technolog-
ical applications. The mathematical problems which arose in their theoretical studies immediately
appeared to be formidable. Indeed, they could not solve in a closed form a reasonably large number
of exercises and, even if in Pipkin’s works the analysis of some numerical problems is attempted,
the numerical methods needed to supply meaningful solutions for applications could not be fully
developed and exploited.
More recently, under the impulse of aeronautical and aerospace engineering, the attention of the-
oretical and applied mechanicians was attracted again to the study of mechanical systems and
materials reinforced with “practically” inextensible fibers [33, 12, 6, 11]. However, the memory of
the theoretical efforts produced by Adkin, Rivlin and Pipkin seemed to be lost and the standard
first gradient Cauchy continuum model was used in a context which had been already recognized to
be unsuitable. In particular, many numerical undesired effects, as locking (see e.g. [42, 17, 41]) or
loss of convergence, cannot be easily avoided in the presence of inextensible material lines. More-
over the associated kinematical constraints have been recognized (see e.g. [5]) to cause the onset
of ill-posedness in first gradient continuum models. Indeed, the incompressibility constraint is the
only kind of kinematical constraint whose presence does not render inapplicable the standard proof
strategy developed for proving existence and uniqueness results developed for not-constrained first
gradient continua.
In the present paragraph:

• we start by characterizing the kinematics of considered mechanical system: we limit our at-
tention to symmetric planar systems including two families of inextensible fibers in which any
admissible configuration is specifiable by means of one real function of one real variable. More
details about this one-to-one characterization of the set of admissible configurations can be
found in Adkin and Rivlin [1, 78, 76];

• we then limit our attention to a suitable class of deformation energies [46, 64, 66, 47, 73] which
depend on the variation of the angle between the fibers;

• we characterize the equilibrium configurations of considered mechanical systems as those ad-
missible configurations which verify suitable imposed displacement conditions and for which
the total potential energy attains its minima;
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• we find that the conditions naturally associated to the introduced principle of minimum of
total energy reduce to an integro-differential equations;

• we introduce an efficient iterative integration scheme, in the particular case of a specimen
having length three times larger than width, in order to solve the integro-differential equation
which govern the extensional bias-test.

Actually we call standard bias test the extension test where rectangular specimen whose length is
exactly three times their width are clamped at their shorter sides and where a relative displacement
(compatible with the presence of inextensible fiber) is imposed between the clamped specimen sides.
Many further investigations are motivated by the presented results: for instance there is a great
interest in the determination of internal stress induced in the inextensible fibers by imposed defor-
mation, in order to completely describe experimental evidence (see e.g. [50, 51]) or in the design of
non-standard bias extension tests where the specimen is longer or shorter, or in designing bias tests
for specimen where the inextensible fibers are not orthogonal in the reference configuration.
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5.1 Kinematics

The main conceptual tool used in this work is the principle of minimum total energy for the deter-
mination of equilibrium configurations. Therefore we must specify carefully and preliminarily the
set of admissible configurations among which we look for in order to find the energy minimizers.

5.1.1 Geometry

We introduce an orthonormal reference system (O, X
1

, X
2

) on S .
We assume that B? is a rectangle whose sides have length l and L, with L = 3l, described by the
following conditions:

B?

=

⇢

(X
1

, X
2

) 2 S : X
1

2 [0, L] , X
2

2


� l

2

,
l

2

��

.

L

l
X1

X2

O

✓

l
2, 0

◆

✓

l
2 + L, 0

◆

✓

0, l
2

◆

Figure 5.1: Space of material particles and the orthonormal system (O, X
1

, X
2

) .

The body B? may be, in some conditions to be better determined, a model for a rectangular
specimen of a woven fabric composed by two families of fibers which form a uniform orthogonal net
intersecting the perimeter of B? with an angle of 45 degrees. It is therefore convenient to introduce
another orthogonal reference system, (O, ⇠

1

, ⇠
2

), oriented according to the directions of the fibers
of the fabric and shifted as shown in figure 5.2. In (O, ⇠

1

, ⇠
2

) we consider non-dimensional space
coordinates, defined as follows:

⇠
1

:=

1

l
(X

1

�X
2

) +

1

2

, ⇠
2

:=

1

l
(X

1

+X
2

) +

1

2

. (5.1)

We call fiber reference the new reference system introduced and fiber directions the two directions in
which the coordinates ⇠

1

, ⇠
2

are spanning. It will be useful to represent all deformation measures also
in the reference system (O, ⇠

1

, ⇠
2

), since ⇠
1

, ⇠
2

represent the orthotropic directions of the material.
Let the two lines ⌃

1

and ⌃

2

be considered, in the fiber reference, which are described by the following
algebraic equations (see also Fig. 5.3:
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⇠2

⇠1

X1

X2

O

D1

D2

(⇠
1

, ⇠
2

)

(1, 0)

(0, 1)
Fibers

Figure 5.2: Material axes and fibers directions.

⌃

1

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

2 [0, 1] , ⇠
2

= 1� ⇠
1

} , (5.2)

⌃

2

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

2 [3, 4] , ⇠
2

= 7� ⇠
1

} . (5.3)

In this work, we impose the following boundary conditions on the two subsets ⌃

1

and ⌃

2

of the
boundary of B?:

1. vanishing displacement of the face ⌃

1

,

2. imposed displacement u
0

= u
0

(D
1

+D
2

) of the face ⌃

2

.

The kinematics of considered bias test naturally leads us to define 6 lines:

S
1

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

2 [0, 2] , ⇠
2

= 1} , S
2

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

= 1, ⇠
2

2 [0, 2]} ,

S
3

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

2 [1, 3] , ⇠
2

= 2} , S
4

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

= 2, ⇠
2

2 [1, 3]} (5.4)

S
5

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

2 [2, 4] , ⇠
2

= 3} , S
6

:= {(⇠
1

, ⇠
2

) 2 B?

: ⇠
1

= 3, ⇠
2

2 [2, 4]} .

Indeed these lines are separating zones in which the inextensible fibers are subject to different
kinematical conditions: as it is possible to check easily in Fig. 5.3 we remark that the part of the
specimen characterized by the values of ⇠2  1 (i.e the part of the specimen below S

1

) is constituted
by all the fibers which i) are parallel to ⇠

1

and ii) have one end blocked in ⌃

1

while their other end
is free. Exactly the same kinematical consideration is valid in the zone above S

5

(concerning all
the fibers parallel to ⇠

1

which have an end blocked in ⌃

2

and the other one free) and in the zones
above S

2

and under S
6

(where one has to consider the fibers parallel to ⇠
2

). The central part of
the specimen is characterized kinematically as follows: the part between S

1

and S
3

is composed by
fibers parallel to ⇠

1

with both ends free that have interaction with fibers parallel to ⇠
2

with an end
fixed in ⌃

1

. Similarly, one can characterize kinematically all the subsets of the partition which we
have introduced via the curves defined in equations (5.4).
If we indicate with ⇡

1

and ⇡
2

the projection maps respectively on ⇠
1

and ⇠
2

, we introduce the
notations (see also Fig. 5.4)
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S2 S4 S6

S1 S3 S5

⌃1 ⌃2

Figure 5.3: Discontinuity lines in the considered specimen.

I
10

:= ⇡
1

(⌃

1

) = [0, 1] I
13

:= ⇡
1

(⌃

2

) = [3, 4] (5.5)

I
20

:= ⇡
2

(⌃

1

) = [0, 1] I
23

:= ⇡
2

(⌃

2

) = [3, 4]. (5.6)

Analogously, we can define the projections of the whole B? on the fiber axes as (see also Fig. 5.4):

I
1

:= ⇡
1

(B?

), I
2

:= ⇡
2

(B?

). (5.7)

Moreover, considering the projections of the lines S
i

we define the following ranges:

I
11

:= [⇡
1

(S
2

) ,⇡
1

(S
4

)] = [1, 2], I
12

:= [⇡
1

(S
4

) ,⇡
1

(S
6

)] = [2, 3] (5.8)

I
21

:= [⇡
2

(S
1

) ,⇡
2

(S
3

)] = [1, 2] I
23

:= [⇡
2

(S
3

) ,⇡
2

(S
5

)] = [2, 3]. (5.9)

Therefore the following partition of the two intervals I
1

and I
2

are naturally introduced on the basis
of the aforementioned kinematical considerations:

I
1

= I
10

[ I
11

[ I
12

[ I
13

I
2

= I
20

[ I
21

[ I
22

[ I
23

(5.10)

⇠1

⇠2

O

I20

I21

I22

I23

I12

I11

I10

I13

(0, 2)

(0, 3)

(0, 4)

(2, 0)

(3, 0)

(4, 0)

Figure 5.4: Projections of the domains on the fiber axes.
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Furthermore, the partition of the axes naturally defines a partition of B? in regions �

ij

as follows
(see Fig. 5.5)

�

ij

:= (I
1i

⇥ I
2j

) \B?, B?

=

3

[

i,j=1

�

ij

. (5.11)

�
10

�
01

�
11

�
21

�
22

�
32

�
23

�
33

�
12

�
00

Figure 5.5: Partition of the body B? in different subdomains individuated by sets of fibers with
different boundary conditions or different type of interaction with the orthogonal fibers.

5.2 Assumptions on admissible placement fields

We will assume that the placement field r is:
• continuous in the whole domain B?;

• suffering some first-kind discontinuities in its first or in its second gradient at a finite number
of inextensible fibers, at most;

• twice continuously differentiable in the other points of B?.
We indicate with F the space gradient of r and we use the notation:

d
1

= F ·D
1

, d
2

= F ·D
2

. (5.12)
The two vectors d

1

and d
2

represent the directions of the fibers in the current configuration. Because
of our assumptions we can say that:

• the inextensible fibers are not cut in the passage from the reference to the current configuration;

• the current fiber directions are uniquely defined for every material point except on some inex-
tensible fibers where they may suffer jumps;

• the domain B? can be partitioned into a finite number of convex subsets in each of which the
placement is of class C 2.

5.3 Inextensible continuum model

We assume that the placement field is twice continuously differentiable in any �

ij

. If we indicate
with r(i,j) (⇠

1

, ⇠
2

) the restriction of r to the �

ij

component, for the propriety in (4.22) we have

r(i,j) (⇠
1

, ⇠
2

) = r
(i)

1

(⇠
1

) + r
(j)

2

(⇠
2

) =:

⇣

µ(i)

1

(⇠
1

) + ⌫(j)
2

(⇠
2

)

⌘

D
1

+

⇣

⌫(i)
1

(⇠
1

) + µ(j)

2

(⇠
2

)

⌘

D
2

, (5.13)

as the global continuity condition of r allows us to identify the vector fields r
(i)

1

(⇠
1

) , r(j)
2

(⇠
2

) along
straight lines included in B.
Indeed, if we consider two regions �

ij

and �

ik

then we have that r(�ij)

1

(⇠
1

) = r�ik
1

(⇠
1

) =: r
(i)

1

(⇠
1

) and
analogously, when considering two regions �

ij

and �

hj

, one has r
(�ij)

2

(⇠
2

) = r
�kj

2

(⇠
2

) =: r
(j)

2

(⇠
2

).
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5.3.1 Space of Configurations for considered system

A number of properties and results can be proven for the scalar fields determining the displacement
field. The regularity assumptions, which we have accepted together with the condition of inextensi-
bility of the fibers and the boundary conditions which we impose, will indeed determine the space of
configurations inside which we can look for the equilibrium configurations: i.e. those configurations
which minimize total energy.

5.3.1.1 Restrictions on the fields µ and ⌫ imposed by boundary conditions

We prove here the three following properties of the displacement field relative to the considered bias
test problem with inextensible fibers:

1. the boundary conditions on ⌃

1

implies that r (⇠
1

, ⇠
2

) = ⇠
1

D
1

+ ⇠
2

D
2

8 (⇠
1

, ⇠
2

) 2 �

00

,

2. the boundary conditions on ⌃

2

implies that r (⇠
1

, ⇠
2

) = ⇠
1

D
1

+ ⇠
2

D
2

+ u
0

8 (⇠
1

, ⇠
2

) 2 �

33

,

3. the continuity of r in the point (3, 3) implies a system (which is specified at the end of this
section) of integral conditions for the two functions µ

1

(⇠
1

) and µ
2

(⇠
2

) .

Proposition 38. Let r(0,0) be the restriction of r to the subdomain �

00

. If the displacement vanishes

on ⌃

1

, then we have r(0,0) (⇠
1

, ⇠
2

) = ⇠
1

D
1

+ ⇠
2

D
2

8 (⇠
1

, ⇠
2

) 2 �

00

.

Proof. We consider the following parametric description of ⌃
1

:

⌃

1

= {(⇠
1

(t) , ⇠
2

(t)) : ⇠
1

(t) = t, ⇠
2

(t) = 1� t with t 2 [0, 1]} . (5.14)

We have that

r(0,0) (⇠
1

(t) , ⇠
2

(t)) = r
(0)

1

(⇠
1

(t)) + r
(0)

2

(⇠
2

(t)) =

=

⇣

µ(0)

1

(⇠
1

(t)) + ⌫(0)
2

(⇠
2

(t))
⌘

D
1

+

⇣

⌫(0)
1

(⇠
1

(t)) + µ(0)

2

(⇠
2

(t))
⌘

D
2

(5.15)

which, because of the imposed boundary conditions, imply

8

>

<

>

:

µ(0)

1

(⇠
1

(t)) + ⌫(0)
2

(⇠
2

(t)) = t

⌫(0)
1

(⇠
1

(t)) + µ(0)

2

(⇠
2

(t)) = 1� t.

(5.16)

By differentiating the two equations in (5.16) with respect to t we obtain (with obvious meaning of
used notation)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

dµ(0)

1

d⇠
1

�

�

�

�

�

t

� d⌫(0)
2

d⇠
2

�

�

�

�

�

1�t

= 1

d⌫(0)
1

d⇠
1

�

�

�

�

�

t

� dµ(0)

2

d⇠
2

�

�

�

�

�

1�t

= �1

=)

8

>

<

>

:

µ(0)

1,1

= 1 + ⌫(0)
2,2

⌫(0)
1,1

= µ(0)

2,2

� 1.

(5.17)

Recalling the relation 1 =

⇣

µ(0)

1,1

⌘

2

+

⇣

⌫(0)
1,1

⌘

2

, we obtain
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1 =

⇣

µ(0)

1,1

⌘

2

+

⇣

⌫(0)
1,1

⌘

2

=

⇣

1 + ⌫(0)
2,2

⌘

2

+

⇣

µ(0)

2,2

� 1

⌘

2

= (5.18)

=

⇣

µ(0)

2,2

⌘

2

+

⇣

⌫(0)
2,2

⌘

2

| {z }

=1

+2� 2µ(0)

2,2

+ 2⌫(0)
2,2

= 3 + 2

⇣

⌫(0)
2,2

� µ(0)

2,2

⌘

. (5.19)

As a consequence

1 = 3 + 2

⇣

⌫(0)
2,2

� µ(0)

2,2

⌘

=) µ(0)

2,2

� ⌫(0)
2,2

= 1. (5.20)

Therefore we can easily find the fields µ(0)

2,2

and ⌫(0)
2,2

. Indeed
8

>

>

<

>

>

:

⇣

µ(0)

2,2

⌘

2

+

⇣

⌫(0)
2,2

⌘

2

= 1

µ(0)

2,2

� ⌫(0)
2,2

= 1

=) ⌫(0)
2,2

= 0 _ ⌫(0)
2,2

= �1, (5.21)

but, restricting to the case ⌫(0)
2,2

2 ⇥

0,
p
2/2

⇤

, we can consider only the solution ⌫(0)
2,2

= 0. As a
consequence µ(0)

2,2

= 1.
In the same way we find that ⌫(0)

1,1

= 0 and µ(0)

1,1

= 1 for any ⇠
1

2 I
10

.
Integrating the obtained expressions we have

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

µ(0)

1

(⇠
1

) = ⇠
1

+ µ(0)

1

(0) ⇠
1

2 I
10

⌫(0)
1

(⇠
1

) = ⌫(0)
1

(0) ⇠
1

2 I
10

µ(0)

2

(⇠
2

) = ⇠
2

+ µ(0)

2

(0) ⇠
2

2 I
20

⌫(0)
2

(⇠
2

) = ⌫(0)
2

(0) ⇠
2

2 I
20

.

(5.22)

In the decomposition (5.13) the functions r
1

and r
2

are determined up to an additive vector constant
(i.e. up to two scalar constants). We can choose it so to have:

µ(0)

1

(0) = ⌫(0)
1

(0) = µ(0)

2

(0) = ⌫(0)
2

(0) = 0. (5.23)

In a similar way1, we can prove also the following

Proposition 39. Let r(3,3) be the restriction of r to the subdomain �

33

and u
0

the imposed dis-

placement on ⌃

2

. Then we have r(3,3) (⇠
1

, ⇠
2

) = ⇠
1

D
1

+ ⇠
2

D
2

+ u
0

.

Remark 40. It is very important to remark that in every region �

ij

the two vector fields r(i)
1

(⇠
1

) andr(j)
2

(⇠
2

)

in the decomposition

r(i,j) (⇠
1

, ⇠
2

) = r
(i)

1

(⇠
1

) + r
(j)

2

(⇠
2

) , (5.24)

are defined up to two additive constants.
Indeed, if we take

1One could also apply the previous proposition to the function r(3,3) (⇠1, ⇠2)� u0.
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r
(i)

1

(⇠
1

) = µ(i)

1

(⇠
1

)D
1

+ ⌫(i)
1

(⇠
1

)D
2

, r
(j)

2

(⇠
2

) = ⌫(j)
2

(⇠
2

)D
1

+ µ(j)

2

(⇠
2

)D
2

, (5.25)

then it is immediately evident that also for

¯r
(i)

1

(⇠
1

) =

⇣

µ(i)

1

(⇠
1

) + ↵
i

⌘

D
1

+

⇣

⌫(i)
1

(⇠
1

) + �
j

⌘

D
2

¯r
(j)

2

(⇠
2

) =

⇣

⌫(j)
2

(⇠
2

)� ↵
i

⌘

D
1

+

⇣

µ(j)

2

(⇠
2

)� �
j

⌘

D
2

(5.26)

with ↵
i

,�
j

2 R, we have

r(i,j) (⇠
1

, ⇠
2

) =

¯r
(i)

1

(⇠
1

) +

¯r
(j)

2

(⇠
2

) = r
(i)

1

(⇠
1

) + r
(j)

2

(⇠
2

) . (5.27)

Now, we can define the four functions µ
1

, ⌫
1

, µ
2

and ⌫
2

in the intervals I
1

and I
2

respectively as
follows:

(8⇠
1

2 I
1j

)

⇣

µ
1

(⇠
1

) = µ(j)

1

(⇠
1

) , ⌫
1

(⇠
1

) = ⌫(j)
1

(⇠
1

)

⌘

(5.28)

(8⇠
2

2 I
2j

)

⇣

µ
2

(⇠
2

) = µ(j)

2

(⇠
2

) , ⌫
2

(⇠
2

) = ⌫(j)
2

(⇠
2

)

⌘

. (5.29)

Obviously it is easy to see that we can determine (uniquely) the constants left arbitrary by the
decomposition formula for displacement, after the initial choice in (5.23), simply by demanding the
continuity on the intervals I

1

and I
2

of the just introduced four functions.

5.3.1.2 Continuity conditions in (3, 3)

Because of (5.13), (4.23), (4.24), (5.28) and (5.29), the continuity conditions of the placement field
r in (3, 3) with respect to the functions µ

1

, µ
2

can be written as:
8

>

>

<

>

>

:

µ
1

(3) +

´
3

1

q

1� (µ
2,2

(⌘))2d⌘ = 3 + u
0

µ
2

(3) +

´
3

1

q

1� (µ
1,1

(⌘))2d⌘ = 3 + u
0

.

(5.30)

This condition is a consequence of the continuity of displacement in B and that its subbody �

33

undergoes the translation u
0

.

5.3.2 Symmetry conditions

In this section we characterize the displacement fields which are symmetric with respect to the
X

1

�axis. This means that, given a point P of coordinates (⇠, ⌘) and its symmetric P
s

having
coordinates (⌘, ⇠) , the following conditions hold:

8

>

<

>

:

d
1

(P ) ·D
1

= d
2

(P
s

) ·D
2

d
1

(P ) ·D
2

= d
2

(P
s

) ·D
1

=)

8

>

<

>

:

µ
1,1

(⇠) = µ
2,2

(⇠)

⌫
1,1

(⌘) = ⌫
2,2

(⌘)

(5.31)

Considering the symmetry of boundary conditions and the first equality in (5.31) we get directly the
following identity:

µ
1

(⇠) = µ
2

(⇠) =: µ(⇠) 8⇠ 2 [0, 4] . (5.32)

Therefore, considering the relations between µ
1

, µ
2

and ⌫
1

, ⌫
2

, the kinematics of the symmetric bias
extension problem is completely described by means of a unique field µ. It is possible to determine
another symmetry for the placement field. Indeed, our problem is equivalent (up to a translation)
to the other one obtained imposing the following boundary conditions:
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1. imposed displacement �u
0

/2 = �u
0

/2 (D
1

+D
2

) of the face ⌃

1

,

2. imposed displacement u
0

/2 = u
0

/2 (D
1

+D
2

) of the face ⌃

2

.

This implies the symmetry of r with respect to the line parallel to the X
2

-axis passing through the
point of coordinates (2, 2) in the ⇠

1

⇠
2

�reference. It is straightforward to deduce that the functions
µ
1,1

and µ
2,2

are even with respect to the points ⇠
1

= 2 and ⇠
2

= 2 in their domains of definition.
Since the derivative of a even function is always an odd function, and in general the derivative of
µ
1,1

and µ
2,2

is not equal to zero in ⇠
1

= 2 and ⇠
2

= 2 , the second derivative of the fields µ
1

and µ
2

can be discontinuous in these points.

5.3.3 First variations of the fields belonging to the space of configurations

If we assume the hypothesis of symmetry, the configuration of considered body B is characterized
by only one scalar field µ (⇠), defined on the real interval [0, 4]. However, having already determined
µ on [0, 1] and [3, 4] by means of imposed boundary conditions, we are left to find µ on I = [1, 3].
Due to Proposition 1, continuity of the function µ and (5.30) we have also the conditions

µ (1) = 1, µ (3) +

ˆ
3

1

q

1� (µ
,⇠

)

2d⌘ = 3 + u
0

, (5.33)

which must be verified by the functions in the space of configurations. Therefore the space of
configurations is constituted by the set of functions µ in C 2

pw

(I, {2}), that is the space of two times
continuously differentiable functions on I whose second derivatives can jump in 2, verifying the
conditions (5.33).
Therefore, in order to be kinematically admissible, a variation �µ of µ has to verify the following
conditions:

�µ (1) = 0, µ (3) + �µ (3) +

ˆ
3

1

q

1� (µ
,⇠

+ �µ
,⇠

)

2d⌘ = u
0

+ 3 (5.34)

First we subtract the integral condition (5.33) to (5.34) to obtain:

�µ (3) +

ˆ
3

1

q

1� (µ
,⇠

+ �µ
,⇠

)

2d⌘ �
ˆ

3

1

q

1� (µ
,⇠

)

2d⌘ = 0. (5.35)

Developing the argument of the first square root to the first order2, we obtain

�µ (3) +

ˆ
3

1

0

@

q

1� (µ
,⇠

)

2 � µ0
q

1� (µ
,⇠

)

2

�µ
,⇠

1

A d⌘ �
ˆ

3

1

q

1� (µ
,⇠

)

2d⌘ = 0 (5.36)

and consequently

�µ (3)�
ˆ

3

1

µ
,⇠

q

1� (µ
,⇠

)

2

�µ
,⇠

d⌘ = 0. (5.37)

Remarking that we can write �µ (3) as
´
3

1

�µ
,⇠

d⌘, we find that (5.37) is equivalent to

ˆ
3

1

0

@

1� µ
,⇠

q

1� (µ
,⇠

)

2

1

A �µ
,⇠

d⌘ = 0. (5.38)

This last orthogonality condition characterizes the admissible first variations of the functions in the
space of configurations.

2Remark that this development is not possible in the neighborhood of the reference configuration.
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5.3.4 First variation of energy

We assume the following expression for the energy density:

W (⇠
1

, ⇠
2

) =

1

2

(d
1

· d
2

)

2 , (5.39)

which, once expressed in terms of the kinematical field µ, becomes

W (⇠
1

, ⇠
2

) =

1

2

 

(µ
,⇠

(⇠
1

))

2

⇣

1� (µ
,⇠

(⇠
2

))

2

⌘

+ (µ
,⇠

(⇠
2

))

2

⇣

1� (µ
,⇠

(⇠
1

))

2

⌘

+

(5.40)

+2µ
,⇠

(⇠
1

)µ
,⇠

(⇠
2

)

r

⇣

1� (µ
,⇠

(⇠
1

))

2

⌘⇣

1� (µ
,⇠

(⇠
2

))

2

⌘

!

.

In order to minimize the energy in the defined space of configurations, we have to introduce a
Lagrange multiplier to take into account the integral constraint (5.33) imposed on µ. By using the
notation

C (µ
,⇠

) := µ (3) +

ˆ
3

1

q

1� (µ
,⇠

)

2d⌘ � 3� u
0

we must consider the following energy functional

A
W

=

ˆ
B

W dm+ ⇤C (µ
,⇠

) , with⇤ 2 R. (5.41)

Its first variation is

�A
W

=

ˆ
B

�W dm+ ⇤�C (µ
,⇠

) + C (µ
,⇠

) �⇤. (5.42)

In the appendix we show all the details of the performed calculations for obtaining the aforementioned
variation: to present them in the most effective way it is useful to introduce four integral operators
A

i

and D
i

, where i = 1, 2. These operators are assumed to map a function f defined in the interval
[0, 4] into a function defined respectively in J

1

= [1, 2] , J
2

= [2, 3] and are defined by means of the
following equalities:

8

>

>

>

>

>

<

>

>

>

>

>

:

[A
1

(f)] (⇠) =

ˆ
⇠+1

1

f (⌘)
q

1� (f (⌘))2d⌘

[D
1

(f)] (⇠) =

✓

1�
ˆ

⇠+1

1

⇣

1� (f (⌘))2
⌘

d⌘

◆

,

8

>

>

>

>

>

<

>

>

>

>

>

:

[A
2

(f)] (⇠) =

ˆ
3

⇠�1

f (⌘)
q

1� (f (⌘))2d⌘

[D
2

(f)] (⇠) =

✓

1�
ˆ

3

⇠�1

⇣

1� (f (⌘))2
⌘

d⌘

◆

.

(5.43)

Remark. It is easy to check that for every function f if sup |f |  1 then sup |A
i

(f)|  1 and
sup |D

i

(f)|  1, where i = 1, 2 and the sup is estimated in the corresponding domain of definition.
The stationarity condition finally obtained is expressed by the following integro-differential equations
(to be complemented by suitable boundary conditions)

1� 2 (µ
,⇠

)

2

2

q

1� (µ
,⇠

)

2

A
i

(µ
,⇠

)� µ
,⇠

D
i

(µ
,⇠

) + ⇤

0

@

1� µ
,⇠

q

1� (µ
,⇠

)

2

1

A

= 0. 8⇠ 2 J
i

, i = 1, 2 (5.44)
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which can be transformed in the other one:
0

@

1� 2 (µ
,⇠

)

2

2

q

1� (µ
,⇠

)

2

A
i

(µ
,⇠

)� µ
,⇠

D
i

(µ
,⇠

)

1

A

0

@

µ
,⇠

q

1� (µ
,⇠

)

2

� 1

1

A

�1

= ⇤. 8⇠ 2 J
i

, i = 1, 2

To proceed in the study of the found integro-differential equation it is useful to introduce an auxiliary
function F defined on the domain

R3 ◆ D : =

"p
2

2

, 1

!

⇥ (0, 1]⇥ (0, 1] . (5.45)

as follows:

F (x, a, d) =

✓

1� 2x2

2

p
1� x2

a� xd

◆✓

xp
1� x2

� 1

◆�1

, (5.46)

It can be checked that F (D) = R� and that there exists a function

G : (0, 1]⇥ (0, 1]⇥ R� !
"p

2

2

, 1

!

(5.47)

such that
F (G(a, d,⇤), a, d) = ⇤; G(a, d, F (x, a, d)) = x (5.48)

By means of the just introduced functions F and G the stationarity problem can be formulated in
the two following more compact forms.

Problem 41. Find a function µ̂ 2 C 2

pw

(I, {2}) such that i) µ̂ (1) = 1, and ii) there exists a negative
real number ⇤ such that the following equations are verified:

8

>

<

>

:

F (µ̂
,⇠

,A
i

(µ̂
,⇠

) ,D
i

(µ̂
,⇠

)) = ⇤ 8⇠ 2 J
i

, i = 1, 2.

C (µ̂
,⇠

) = 0

(5.49)

By using the second of identities (5.48) and conditions (5.49) it can be easily seen that the just
introduced problem is equivalent to the following one, which is more suitable to the application of
the Picard-type iteration method we will use in the following section:

Problem 42. Find a function µ⇤ 2 C 2

pw

(I, {2}) such that

8

>

>

>

>

>

<

>

>

>

>

>

:

µ⇤(⇠) = 1 +

ˆ
⇠

1

G([A
1

(µ⇤,⇠)] (⌘) , [D1

(µ⇤,⇠)] (⌘) ,⇤)d⌘ 8⇠ 2 [1, 2]

µ⇤(⇠) = µ⇤(2) +

ˆ
⇠

2

G([A
2

(µ⇤,⇠)] (⌘) , [D2

(µ⇤,⇠)] (⌘) ,⇤)d⌘ 8⇠ 2]2, 3],
, (5.50)

choosing the parameter ⇤ in order to verify the integral condition C (µ⇤,⇠) = 0.
Postponing the study of the well-posedness of the formulated integro-differential problem to further
investigations we show that the last presented form more easily lends itself to numerical integration.
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5.3.5 Numerical resolution of the problem

The problem expressed by (5.49) cannot be, in general, solved in closed form: therefore we are
obliged to resort to numerical methods.
In order to solve the problem (42) by means of numerical integration techniques we define an iterative
scheme in which the initial function µ

[0]

is chosen to be a first order polynomial satisfying the
boundary conditions (5.33).
Given the approximation of the solution of the Picard-type problem formulated in (42) at the step
n� 1, that is the function µ

[n�1]

we find the n� th approximation as follows

8
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>
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>

>

>

>

>

:

µ
[n]

(⇠) = 1 +

ˆ
⇠

1
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⇥

A
1

�

µ
[n�1],⇠

�⇤

(⌘) ,
⇥

D
1

�

µ
[n�1],⇠

�⇤

(⌘) ,⇤
n

)d⌘ 8⇠ 2 [1, 2]

µ
[n]

(⇠) = µ
[n]

(2) +

ˆ
⇠

2

G(

⇥

A
2

�

µ
[n�1],⇠

�⇤

(⌘) ,
⇥

D
2

�

µ
[n�1],⇠

�⇤

(⌘) ,⇤
n

)d⌘ 8⇠ 2]2, 3],
, (5.51)

choosing the parameter ⇤

n

in order to verify the boundary condition C
�

µ
[n],⇠

�

= 0.
We iterate until the numerical convergence of the solution is obtained. In the following figure it is
shown the flow chart of the algorithm.

Figure 5.6: Resolutive algorithm

5.3.5.1 Numerical results

The algorithm is implemented in Mathematicar with different values of the imposed displacement
u
0

. In the figure (5.7) we show the deformed geometry for 3 different imposed displacements. The
results match qualitatively the experimental results obtained with the standard bias extension text
for composite fiber reinforcements.
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d1ÿ d2

0 0.2 0.4 0.6 0.8 1.0

Figure 5.7: Deformed shape for imposed displacements u
0

of: 0.65, 0.73 and 0.8

The numerical analysis shows an interesting phenomenon which deserves some discussion and further
theoretical, numerical and experimental investigations.
Indeed in the numerical solutions obtained, in general, one can check that the scalar field giving
angle between the inextensible fibers (fiber shear angle), easily related to the field d

1

· d
2

, is not
piece-wise constant in the kinematically determined (see previous sections) different zones of the
domain as it is usually stated in the literature of fiber composite reinforcements. Actually the plots
of this field along lines parallel to the long side of the specimen also show different concavities for
different imposed displacements and it is also possible to observe the existence of a unique critical
displacement for which the fiber shear angle is piece-wise constant.
This numerical results raises questions about their causes and implications. The questions to be
addressed are, in particular, the following ones: is the numerical behavior detected related to some
phenomena? Are these phenomena present in the fiber reinforcements which originated our investi-
gations? Which complex mechanical structures show the behavior detected by the model which we
consider in the present work?
The values of d

1

·d
2

are plotted for the entire reference specimen in figure (5.8,5.9) and for particular
sections in figure (5.10) to highlight the meaningful entity of the angle variation in each region. It is
possible to find the critical value of displacement in correspondence of which the change of concavity
occurs. This value is placed approximately at a displacement having a dimensionless value of 0.73
(which corresponds about to one quarter of the length of the specimen) and we can see in the
presented figures that for the critical displacement d

1

· d
2

it remains constant in all the different
zones of the specimen.
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d1◊ d2

0 0.2 0.4 0.6 0.8 1.0

Figure 5.8: Cosine of the angle between the fibers for an imposed displacement u
0

of: 0.65 and 0.8

d1◊ d2

0 0.2 0.4 0.6 0.8 1.0

Figure 5.9: The critical value 0.73
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Figure 5.10: Cosine of the angle between the fibers in the symmetry axis X
1

and in the section
X

2

= 0.25

5.3.6 Conclusion

In the present section the standard bias extension test for first gradient continua with inextensible
fibers was studied assuming that the only deformation mechanism related to deformation energy
consists in the change of angle between the fibers occurring in the passage from reference to current
configuration: this change may be interpreted as a shear deformation of the considered continuum.
Such a continuum seems suitable to describe the behavior of some complex materials in which very
stiff fibers are embedded and can be applied, with some cautions, to describe the mechanical behavior
of some fiber reinforcements.
The kinematics considered in this section is rather restrictive, even if the assumption of exact
inextensibility of orthogonal families of fibers seems to be rather well-grounded from a physical point
of view. Also the deformation energy considered (which depends quadratically only on the variation
of the shear angle between the inextensible fibers) does not seem sufficient to describe completely
many experimental evidences [33, 11, 12, 41, 42, 50, 51, 6]. It will be subject of further investigations
the study of continua with extensible or inextensible fibers whose energy depend also on higher
displacement gradients (by using the methods presented e.g. [22, 23, 24] e.g. [46, 64, 66, 47, 73].
The simple first gradient continuum considered here has been introduced mainly to move a first step
towards a effective modeling of bias extension tests for fiber reinforcements or for newly conceived
and built metamaterials. However it seems rich enough to catch some peculiarities of the mechanical
behavior of fiber reinforcements. Indeed the results of presented analysis predict a sharp discontinuity
in the angle variation (shear deformation between inextensible fibers) in the passage between the
different (as kinematically characterized in terms of the imposed boundary conditions) zones of
the specimen undergoing bias test. This circumstance catches some features of the experimentally
observed evidence: indeed [33] in extension bias test shear deformation is concentrated in narrow
regions in the neighborhood of some inextensible fibers. On the other hand the thickness of these
regions is experimentally seen to be non-vanishing: therefore it seems a well-grounded conjecture to
state that at least second gradient energies [20] are needed if one wants to get models capable to
predict the onset of the boundary layers where high gradients of shear angle are concentrated.
Here it has to be underlined, once more, that it is very difficult to characterize, for considered
mechanical systems, equilibrium configurations as those configurations where balance of force and
momentum is to be verified. Indeed, as already implied in [90, 83], the postulation of continuum
mechanics based on balance equations does not seem adapted to formulate the models needed here:
the difficulties in formulating balance laws when introducing Lagrange multipliers in order to account
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for all possible contact actions can be insurmountable. Only when mechanics is based on suitable
variational principles then well-posed mathematical problems are easily obtained: the continuum
models formulated in [1, 29, 68, 76, 77, 78, 81, 82, 69, 70, 62, 64, 71, 65, 66] give simply a further
example of this statement.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0061/these.pdf 
© [M.V. D'agostino], [2015], INSA Lyon, tous droits réservés



General conclusion

The complete characterization of fibrous composite reinforcements must account for the description
of their mechanical behavior at the mesoscopic and microscopic scales. In this manuscript we
basically limit ourselves to the study of 2D fibrous reinforcements but approaching the problem of
their modeling by treating a wealthy of different aspects.

• First of all we treat the case of bias extension test by introducing different discrete numerical
simulations which allow us to conclude that the effect of the local bending of the fibers at the
mesoscopic level cannot be neglected if one wants to fully characterize the behavior of fibrous
composite reinforcements.

• On the basis of such observations, we introduce a second gradient continuum model which al-
lows to properly describe the presence of such local bending of the yarns while still remaining
in a macroscopic continuum framework. We present some numerical simulations, always con-
cerning the bias extension test, which show the soundness of the proposed continuum model.

• We introduce the constraint of inextensibility of the yarns in order to investigate limit systems
which can serve as a reference for more complicated material behaviors. We do so for first
gradient continua and we show some numerical solutions for the bias extension test which
allow to appreciate the well-posedness of the developed modeling.

Further studies should investigate the possibility of including the inextensibility constraint also for
second gradient continua as it has been underlined in the first part of this thesis.
Moreover, the usefulness of higher gradient models for the description of the mechanical behavior of
unbalanced fabrics could also be of use. Indeed, when the warp and weft have very different bending
stiffnesses, the effect of such mesoscopic properties on the macroscopic behavior of the fabric could
be unexpectedly important.
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Appendix

First variation of the action functional of the first gradient inexten-
sible model

In this appendix we supply some more details about the derivation of the Euler-Lagrange conditions
found in the corresponding section.

Deformation energy functional

The functional whose first variation has to be calculated is:
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Remark. The reader must remark that the just introduced functional maps a real function µ defined
in the interval [1, 3] into a real number. However the function µ is calculated in some occurrences in
the variable ⇠

1

and in some other occurrences in the variable ⇠
2

when forming the integrand function
appearing inside the square brackets of the previous equation. This integrand is indeed a function
of the two variables (⇠

1

, ⇠
2

) and its domain of integration is the two-dimensional domain B.

Considering the partition (5.11) of the domain B and defining � = �

11

[ �

21

[ �
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[ �

21

, it is
possible to rewrite the functional as follows:
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which, by using the assumed symmetry of the solution, becomes
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Calculation of the first variation of the deformation energy functional

The first variation of the deformation energy functional can be expressed as:

�A
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We have
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So, replacing (5.57) and (5.58) in (5.56), we obtain:
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Now, applying the Fubini Theorem we find:
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Renaming the variables by means of the equalities ⇠
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Therefore the first variation of the deformation energy can be represented as follows:
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Integration by parts and the final expression for Euler-Lagrange stationarity
condition

Thanks to an integration by parts, it is possible to rewrite the variation of the deformation energy
functional as follows:
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Because of the arbitrariness of the variation �µ, we get that:
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Therefore, the stationarity condition is given by the system of equations:
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with I
1

= [1, 2] , I
2

= [2, 3].
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