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Chapter 1

Introduction

1.1 Overview

At the time of writing, Particle Physics is at a very interesting juncture. Over the past 40 years the
story of our field has been the triumph of the Standard Model (SM), which has successfully predicted
or explained almost all laboratory data. At the same time, though, it has become increasingly clear
that the SM is only an approximation and is missing key components. The list of “known unknowns”
is now extensive: the origin of neutrino masses, dark matter, dark energy, the matter-antimatter
asymmetry of the universe, the hierarchy problem (and of course gravity). While numerous theories of
new physics (NP) beyond the SM have been proposed, there has been as yet no compelling experimental
observation that vindicates a particular theory or class of theories. The main goal of our field at present
is to establish the existence and nature of this NP.

Broadly speaking, there are two main approaches. One is to carry out direct searches for on-
shell NP particles. Since we have not yet observed them, such particles must be either too heavy to
have been produced in previous experiments, or have couplings to SM particles that are too small for
them to have been produced and detected. Several popular theories of NP, notably SuperSymmetry
(SUSY), require the existence of a spectrum of heavy particles, with masses in the TeV range often
being favoured1. To search for such particles requires an efficient, precise detector at a high-energy,
high-luminosity collider. This is the main motivation behind the ATLAS and CMS general-purpose
detectors at the Large Hadron Collider (LHC).

A second approach is to make indirect tests, measuring observables that could plausibly be affected
by the presence of NP and for which the SM value is well predicted, so that a deviation from the
SM value would be evidence for NP. The nature of such deviations (or, inverting the argument when
observables are found to be consistent with the SM, the lack of them) in general constrain the parameter
space available to NP models and in some cases2 exclude them entirely. Since virtual particles may
contribute to Feynman diagrams even when far off-shell, an important advantage of this approach is
that the effects of heavy new particles may be seen at energy scales much lower than their mass. Thus,
the LHC can have sensitivity to NP even if the NP mass spectrum begins above the LHC centre-of-mass
(CM) energy.

The main focus of the LHCb experiment is on this second, indirect class of searches for NP—and,
more specifically, on studies of heavy flavour physics. There is a wide range of measurements that can
be made with b- and c-hadrons, but most of those with sensitivity to NP fall into one of two categories:
measurements of CP violation (CPV), or measurements of very rare decays. This document will
describe results from certain CPV studies.

In addition, there are a variety of analyses in heavy flavour physics (and beyond, e.g. forward
electroweak) at LHCb that are not directly sensitive to NP but are of interest nonetheless—both

1 Though this feature is not universal, e.g. axions are predicted to be much lighter [1, 2].
2 For example, the recent BABAR results on B → D(∗)τ−ντ are inconsistent with any type II two Higgs doublet

model [3].
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Figure 1.1: Side view of the LHCb detector.

in and of themselves, and often also because they improve our understanding of the experimental or
phenomenological environment. For example, it is directly useful for LHCb analyses to measure hadron
production asymmetries, since they are difficult to calculate from first principles and can contaminate
time-integrated measurements of CP asymmetries. More broadly, measurements of quantities such as
mass splittings in hadron spectra can be used as constraints or inputs for phenomenlogical models of
QCD and lattice calculations. This document will describe two recent results in baryon spectroscopy.

1.2 The LHCb detector

All of the analyses presented in this document were carried out with data taken at LHCb. I will not
describe the detector in detail here, since there are existing publications on the detector as a whole [4, 5]
and on its subsystems and their performance [6, 7, 8, 9, 10, 11, 12]. A short guide follows for those
who are unfamiliar with it.

LHCb is a single-arm spectrometer, instrumenting the forward region (approximate pseudorapidity
range 2 < η < 5) at interaction point 8 of the LHC. The detector is illustrated in Fig. 1.1, with
the interaction region at z = 0. From left (innermost) to right (outermost), the detector subsystems
are: the silicon microstrip vertex detector (VELO), the first ring imaging Cherenkov detector with
C4F10 and aerogel radiators (RICH1), the upstream silicon tracking stations (TT), the dipole magnet
with an integrated field of 4Tm, the downstream tracking stations (T1–T3) which are equipped with
silicon strips in the inner region (IT) and straw tubes in the outer region (OT), the second RICH
detector with a CF4 radiator (RICH2), the first muon station with multi-wire proportional chambers
and triple gas electron multipliers (M1), the calorimeter system consisting of scintillating pad detectors
(SPD), a preshower detector (PS), electromagnetic (ECAL) and hadronic (HCAL) calorimeters, and
the remaining muon stations (M2–M5).

The detector is, in short, a fully equipped general-purpose detector—but covering the forward
instead of the central region. This design is natural for a heavy flavour experiment at a high-energy
collider. It is not a coincidence that the layout resembles that of a fixed-target experiment: the most
probable way for a bb or cc pair to be produced in the initial pp collision is from the interaction of one
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hard and one soft parton, so that the resulting b- or c-hadrons are produced with a large forward (or
backward) boost. Compared with the ATLAS and CMS detectors, LHCb puts a greater emphasis on
charged particle tracking and identification. The momentum resolution is approximately 0.5% for the
range 2–100 GeV/c, and the VELO provides an impact parameter resolution of approximately 20µm
for high-pT tracks, with the latter being important both for time-dependent measurements and for
separating products of b/c-hadron decays from the more copious prompt tracks that originate at the
event primary vertex. Hadron identification from the RICH systems provides kaon-pion3 separation for
tracks from a few GeV/c up to around 100 GeV/c. On the other hand, the calorimeter energy resolution
is not competitive with that of ATLAS and CMS—especially the hadronic calorimeter, which is almost
only used in the hardware trigger.

LHCb’s trigger is central to the operation of the detector. It consists of a hardware stage known
as Level 0 (L0) followed by a software stage known as the Higher Level Trigger (HLT). L0 operates at
the LHC 40MHz clock and must reduce the bandwidth to 1MHz, which is the maximum readout rate
that can be sustained with the present DAQ electronics. Only very limited information can be used
at this stage (mainly ET in the calorimeters and pT in the muon system, plus hit counts in certain
silicon subdetectors), so the trigger algorithms are of necessity very simple. In the HLT, however,
more time is available and the reconstruction quality is not far from that used offline. In HLT2, in
particular, full track vertexing and even RICH pattern recognition can be used. For many b-hadron
decays, an inclusive trigger based on a sophisticated partial reconstruction strategy and multivariate
selector is typically used. Charm triggers have to be more selective because of the very high production
cross-section, and generally require a fully reconstructed decay of the appropriate final state4.

3 The threshold for Cherenkov radiation of kaons in C4F10 is 9.3GeV/c. Below this momentum there is in principle
information from the aerogel, but in practice most of the discriminating power comes from the absence of photon hits
which would be present for a pion. The pion threshold in C4F10 is about 2.6 GeV/c, comparable to the momentum
needed to traverse the dipole magnet without being swept out of the acceptance.

4 An inclusive trigger for decays of the form D∗+ → D0π, D0 → h+h′−X was used for part of the 2012 data, where
h is any track and X represents zero or more additional particles not used in the trigger reconstruction.
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Chapter 2

Searches for CP violation in charm

In this chapter I will discuss the results of a few analyses at LHCb, each of which consists of a search
for CPV in the decays of charmed hadrons, and each of which I worked on as one of the main authors.
They are part of LHCb’s broader programme of charm physics, which I helped lead as convenor of
the Charm CP & Mixing subgroup (2010–2012) and as convenor of the Charm working group (2012–
2014). To set the stage, the chapter begins with a summary of the origin of CP violation in the quark
sector in the SM (Sec. 2.1), followed by a brief discussion of the theory expectations for CPV in charm
(Sec. 2.2, 2.3, and 2.4). We then dive into the analyses, first with a search for CPV in the phase space
of D+ → K−K+π+ in Sec. 2.5, and then a study of the decays D0 → K−K+ and D0 → π−π+ in
Sec. 2.6 using the ∆ACP technique to search for CPV. I will mention in passing a few other analyses
that I worked on in Sec. 2.7, then finally summarise the current state of play in Sec. 2.8, commenting
on what we have learned from the LHCb charm data and what we might expect for the near future.

2.1 The origin of CP violation in the Standard Model

A brief overview of the origin of CPV is given below. For more detail on the formalism, the reader is
encouraged to consult one of the many CPV primers which may be found, e.g. in [13].

In the SM, the SU(2) weak interaction couples only to left-handed fermions. Each generation of
quarks can therefore be represented as a doublet of left-handed particles (which can be transformed
into one another via SU(2) interactions) and two singlets of right-handed particles. The quarks in the
three doublets are weak flavour eigenstates and form a basis that spans the space of left-handed quarks.
However, this choice of basis is not unique. In particular, there are irreducible differences between the
weak flavour eigenstates and the mass eigenstates, which form a second natural basis for describing
the left-handed quarks. The convention normally used is that the up-type quarks are aligned in the
two bases (without loss of generality) but the down-type quarks differ. The relation between the two
bases is expressed as:  d′

s′

b′

 = VCKM

 d
s
b

 (2.1)

where (d, s, b) are the mass eigenstates, (d′, s′, b′) are the flavour eigenstates, and VCKM is a 3 × 3
complex matrix referred to as the Cabibbo-Kobayashi-Maskawa matrix1. It is written in the following
form:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (2.2)

The elements of this matrix are free parameters in the SM, subject to condition of unitarity (i.e. that
the net quark content of a system be the same irrespective of the basis in which it is expressed). The

1 VCKM is ultimately determined by the Yukawa couplings between the quarks and the Higgs field. See, e.g., review
12 of Ref. [14].
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Figure 2.1: Diagrams that could contribute to D0 → K−K+. The first two diagrams are the SM
tree (left) and penguin (centre) contributions. The third diagram is one possible NP contribution (in
this case, another penguin diagram from R-parity-violating supersymmetry [15]).

unitarity condition is expressed as:
VCKMV

+
CKM = I (2.3)

and corresponds to nine separate constraints of the form

VikV
∗
jk = δij . (2.4)

Six of these relations are sums to zero, which can be expressed graphically as triangles in the complex
plane; the unitarity condition is then equivalent to the requirement that the triangle close. After
taking into account these nine constraints, there remain nine free parameters in VCKM . Five of these
are relative phases between quarks which have no physical significance, leaving four free, physically
meaningful parameters. These can be expressed as three angles that mix between generations and one
complex phase δ, which must take a non-zero value for CPV to occur.

Experimentally, we find that VCKM is almost but not quite diagonal, and that the irreducible
imaginary part is small but not quite zero. In particular, the far off-diagonal terms Vub and Vtd are
both the smallest (being approximately 4×10−3 and 9×10−3, respectively) and also the elements with
the largest complex phases2 (when working in the standard phase convention). Consequently, ampli-
tudes involving ub and td couplings can contribute to CP violation—but are also strongly suppressed.
Amplitudes involving off-diagonal terms are referred to as Cabibbo-suppressed (CS), as compared to
Cabibbo-favoured (CF) amplitudes with on-diagonal terms. The degree of suppression in terms of
powers of λ may also be given: singly CS for O(λ), doubly CS for O(λ2).

There are a number of mechanisms by which CP violation can occur in hadrons, all of which
are fundamentally due to interference between amplitudes with different contributing CKM elements.
Despite this common origin, the mechanisms and their phenomenology differ greatly. We will discuss
them in the following sections.

2.2 Direct CP violation

Direct CP violation occurs when3

Γ(D → f) 6= Γ(D → f̄) (2.5)
2 It should be emphasised that Vub and Vtd are not the only elements with non-zero complex phases in the CKM

matrix. For example, the element Vcs has an imaginary component at order λ4, where λ = sin θC ≈ 0.23 and θC is the
Cabibbo angle.

3 As pointed out by Prof. Nir, the definition of direct CPV as used by the PDG is broader than this, and includes
the case of time-dependent CPV that is not universal between different final states.
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where D is a weakly decaying hadron4 with CP conjugate D, and f is a final state with CP conjugate
f̄ . To produce direct CPV we need two or more amplitudes with different strong and weak phases that
interfere, as we will show below. For example, in the SM the decay D0 → K−K+ can proceed via a
tree or a penguin decay5, as illustrated in Fig. 2.1. We can express these SM amplitudes as:

a(D0 → K−K+) = T + P (2.6)
a(D0 → K+K−) = T + P . (2.7)

The tree (T ) and penguin (P ) components can be expressed as:

T = |T | eiθt eiφt (2.8)
P = |P | eiθp eiφp ≡ r |T | ei(θt+∆θ) ei(φt+∆φ) (2.9)

where θt and θp are the strong phases for the tree and penguin diagrams and ∆θ is the difference
between them, φt and φp are likewise the weak phases and ∆φ their difference, and r = |P/T | is the
ratio of magnitudes6. The key distinction between the strong and weak phases is in how they transform
under CP :

T = |T | eiθt e−iφt (2.10)
P = |P | eiθp e−iφp = r |T | ei(θt+∆θ) e−i(φt+∆φ). (2.11)

Using this notation, we can write the combined amplitudes of eq. 2.6–2.7 as

a(D0 → K−K+) = |T | ei(θt+φt) (1 + r ei(∆θ+∆φ)) (2.12)
a(D0 → K+K−) = |T | ei(θt−φt) (1 + r ei(∆θ−∆φ)). (2.13)

It follows that the difference in the mod-amplitudes-squared (to which the difference in decay rates is
proportional7) is:

|a(D0 → K−K+)|2 − |a(D0 → K+K−)|2 = −4 r |T |2 sin ∆θ sin ∆φ (2.14)

Note that this is not time-dependent. The difference is more conveniently expressed as an asymmetry8:

A ≡ |a(D0 → K−K+)|2 − |a(D0 → K+K−)|2
|a(D0 → K−K+)|2 + |a(D0 → K+K−)|2 (2.15)

=
−4 r sin ∆θ sin ∆φ

2 +O(r)
(2.16)

' −2 r sin ∆θ sin ∆φ if r � 1. (2.17)

From this it is immediately clear that the asymmetry vanishes if there is only one contributing ampli-
tude (r = 0), or if the strong phases of the two amplitudes are equal9 (∆θ = 0), or if the weak phases
are equal (∆φ = 0). Conversely, for cases where there are non-trivial phase differences, the asymmetry
is largest when the two contributions are of comparable size. This is one reason why suppressed modes

4 The notation is chosen to suggest charm, but the same apples to hadrons with strangeness or beauty.
5 The topologies are illustrated in Fig. 2.1: tree diagrams have no loops and exactly one interaction of an initial state

quark, and penguin diagrams contain a loop from which a boson is emitted. In the gritty reality of QCD there is never
just one diagram, of course, so when we say “tree” and “penguin” what we mean in practice is a set of amplitudes with
a common CKM phase.

6 We usually consider the case r � 1, i.e. that the tree diagram dominates, but the same conclusions hold if r � 1:
one simply swaps P and T .

7 We ignore for the moment the possible complication of indirect CPV in D0 decays.
8 Here we quote an asymmetry with (D0 −D0) in the numerator, but it is also legitimate to define asymmetries as

(D0 − D0), i.e. with the opposite sign; this is quite often done in the B sector. In short, pay close attention to sign
conventions when comparing asymmetries.

9 Strictly, the condition is that the phase difference is zero modulo π.
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can be more sensitive to direct CP asymmetries: in favoured modes the tree diagram dominates all
other contributions.

Experimentally, the asymmetry of eq. 2.15 is usually measured as

A =
B(D0 → K−K+)− B(D0 → K+K−)

B(D0 → K−K+) + B(D0 → K+K−)
(2.18)

where B represents a branching fraction. The same formalism applies for measurements of direct CPV
in other decay modes10.

We have now introduced the mechanism by which direct CPV occurs. We will move on to cover
mixing and indirect CPV in Sec. 2.3, then return to direct CPV in charm for a more phenomenological
discussion in Sec. 2.4.

2.3 Mixing and indirect CP violation in charm

In the preceeding section, we discussed direct CPV. We now consider the other class of CPV, indirect,
which is induced by D0-D0 mixing and is characterised by a time-dependent asymmetry. We begin by
introducing mixing.

2.3.1 Mixing

Mixing occurs in weakly-decaying neutral mesons for which the flavour eigenstates (e.g. D0 and D0)
are distinct but are not distinguished by any conserved quantum number. Since the flavour eigenstates
are not (in general) eigenstates of the Hamiltonian, and since there exist Feynman diagrams allowing
D0 to be transformed into D0, mixing must occur11. For example, if a state is initially pure D0 (e.g.
produced in the strong decay D∗+ → D0π+) its wavefunction at some later time will have a component
of D0.

We quantify mixing with the normalised parameters x and y (Table 2.1), defined as12

Γ =
Γ2 + Γ1

2
(2.19)

x =
m2 −m1

Γ
(2.20)

y =
Γ2 − Γ1

2Γ
(2.21)

where mi and Γi are the masses and widths of the eigenstates of the Hamiltonian. These mass
eigenstates are related to flavour eigenstates |D0〉 and |D0〉 by:

|D1〉 = p|D0〉 − q|D0〉, (2.22)
|D2〉 = p|D0〉+ q|D0〉, (2.23)

where |p|2 + |q|2 = 1. The mixing rate13 RM is given by RM = (x2 + y2)/2. For each of the mesons
able to mix, this rate is of order 1 or more—except for charm, where it is approximately 3 × 10−5.

10 The example given here, K+K−, happens to be a self-conjugate, CP -even final state, but the same formalism applies
in general. For a final state f , the asymmetry would be A =

[
B(D → f)− B(D → f̄)

]
/
[
B(D → f) + B(D → f̄)

]
.

11 As ever: “Anything which is not forbidden is mandatory.”
12 The equations given are not quite enough to uniquely define the mixing parameters: there is one free phase as well.

Here we are using the HFAG convention in which, in the limit of no indirect CP violation, q/p = +1 and |D1〉 is the
CP -odd eigenstate. But this is a detail which is only relevant to those making or combining mixing measurements.

13 In concrete terms, this comes into play in meson oscillations with decays to semileptonic or to flavour-specific
hadronic final states (e.g. D0 → K+µ−νµ or D0 → K+π−). For small mixing and CPV, the lowest-order term in
the time-dependent rate for semileptonic final states has a quadratic-times-exponential time dependence (t2 e−Γt) and a
coefficient proportional to RM . For hadronic final states the time distribution is more complicated due to interference
with doubly CS decays, but the quadratic-times-exponential term is again proportional to RM . Here, though, we use it
more as a shorthand for the overall mixing scale.
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Table 2.1: Mixing parameters x and y for neutral mesons. Data from HFAG [24] and the PDG [14].
(Parabolic errors given for D0.)

Meson x y

K0 0.95 almost 1
D0 0.0037± 0.0016 0.0066± 0.0008
B0 0.774± 0.006 0.0005± 0.005
B0
s 26.85± 0.13 0.069± 0.006

This small rate is why it took about three decades from the discovery of charm to the first evidence of
mixing [16, 17].

Although the relative uncertainties on the charm mixing parameters are still fairly large, we are
now in a regime where the experimental uncertainties are much smaller than the theory uncertainties.
The charm mixing rate is notoriously difficult to calculate theoretically, because charm occupies an
awkward intermediate place in the hierarchy of masses (see, e.g., [18] for more discussion). Charm
is not heavy compared to the QCD mass scale and so mixing effects cannot easily be calculated
perturbatively within the heavy-quark approximation (unlike for the B0 and B0

s [19]). But charm is
not light either, so that an exclusive calculation summing over all possible final states would be an
enormous undertaking (unlike for the K0). Current theory estimates for the charm mixing parameters
are at best good to the order-of-magnitude level, and find that within the SM values of x and y up to
O(10−2) are plausible [20, 18]. Note that the experimental values are at the upper end of this range:
they may be small in an absolute sense, but they are perhaps also surprisingly large. An interesting
implication of the current order-of-magnitude theory uncertainties is that, for all we know, the mixing
rates observed could actually be dominated by NP effects. Inverting the argument, the observed level
of mixing in charm can be used to constrain models of NP by requiring that they at most saturate
it14 [21].

Within the SM, it is long-distance effects (rescattering processes such as D0 → K−K+ → D0) that
dominate. Short-distance effects (box diagrams of the type that dominate mixing in the B0 system)
would be much smaller, with a simple estimate indicating they should enter at the 10−5 level [22];
more sophisticated calculations give numbers that are larger but not dramatically so [23].

On the experimental side, there have been numerous measurements of charm mixing, most of
which can be divided into four categories. Because of the smallness of x and y, and because of the
complementarity of these different types of measurements, it was the case for several years that no
individual result had a significance exceeding 5σ, but that the combination of these measurements (as
calculated by HFAG) excluded the no-mixing hypothesis at a high level of significance15. The four
main classes of analysis contributing to the mixing combination are:16:

• Measurements of the time dependence of the ratio of wrong-sign (WS) to right-sign (RS) hadronic
decays for a particular final state. Here WS and RS refer to the charge configurations of the final
state, e.g. D0 → K±π∓. The RS decay, D0 → K−π+, proceeds through a simple, unsuppressed,
Cabibbo-favoured tree diagram. To a good approximation, its decay rate follows an exponential
time distribution, e−Γt. By contrast, its WS partner decay, D0 → K+π−, receives contributions
from two suppressed processes: the doubly CS tree diagram (D0 → K+π−), and mixing followed
by a CF decay (D0 → D0 → K+π−); there is also an interference term, of course. In the absence

14 In crude terms, suppose that we measure the mixing parameters, obtaining xmeas. We know that the total mixing
contains SM and NP contributions, x = xSM + xNP. If we knew the SM contribution well, we could subtract it off and
say that whatever remains is the NP contribution. But because of the large SM uncertainty, we instead use the much
weaker constraint that the NP contribution at most satures x and so |xNP| <∼ |xmeas|, thereby constraining the size of
NP contributions. (Here I ignore a factor of up to 2 that could arise in pathological cases.)

15 Three experiments have now published analyses that by themselves exceed 5σ [25, 26, 27, 28].
16 This list is not exhaustive. For example, it omits time-integrated measurements of wrong-sign semileptonic decays.
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of mixing, only the doubly CS term is present and produces a decay time distribution of the form
e−Γt, so that the WS/RS ratio is constant. However, mixing changes the time distribution. In
the limit of small mixing, the ratio of WS/RS decay rates acquires a quadratic time dependence
of the form [RD + y′Γt+ (x′2 + y′2)Γ2t2], where RD quantifies the DCS contribution and where
x′ and y′ are related to the mixing parameters x and y by rotation through the strong phase δ
between the DCS and CF decays to that final state17. The reason for measuring the WS/RS
ratio, rather than the WS time-dependence itself, is simply to cancel out experimental systematic
effects such as the overall decay time scale.

• Measurements of the ratio of the mean lifetime seen in CP eigenstates (e.g. D0 → K−K+, π−π+)
to that seen in CP-mixed states (e.g. D0 → K−π+). For small mixing, the decay time distri-
bution of CF, CP -mixed states can be described to a good approximation as a single expo-
nential of the form e−Γt, with τ = 1/Γ ' 410 fs being the average D0 lifetime. Similarly, CP
eigenstates of eigenvalue ±1 can be described by an exponential of the form e−[Γ∓∆Γ]t, where
the lifetime difference ∆Γ is related to the mixing parameter y (eq. 2.21). The observable
yCP = [τ(K−π+)/τ(K−K+)] − 1 is equal to y to a good approximation in the limit of small
CPV.

• Time-dependent amplitude analyses of Dalitz plots of self-conjugate final states, primarily D0 →
K0

Sπ
+π−, which measure x and y. These have similarities to the above two methods, and in

addition have the powerful feature that the strong phases between CF and DCS decays can be
obtained from amplitude analysis of the Dalitz plot18. This means that the mixing parameters
(x, y) may be extracted directly, as opposed to parameters (x′, y′) rotated through an a priori
unknown phase δ.

• Measurements of relative strong phases δ between doubly Cabibbo-suppressed (DCS) and Cabibbo-
favoured (CF) decays, carried out at charm-at-threshold experiments (CLEO-c, BESIII). While
these are not directly sensitive to mixing, they add information to the HFAG combination.

Other than the time-dependent amplitude analyses, these do not grant direct access to (x, y) but
rather combinations of physics parameters (x, y, relative strong phases, indirect CPV), such that the
world-average is not dominated by any one type of measurement but rather by their combination.

The most recent world average results on x and y from HFAG are illustrated in Fig. 2.2(a). Allowing
for CPV, the central values are:

x =
(
0.37+0.16

−0.16

)
%

y =
(
0.66+0.07

−0.10

)
%

As discussed above, the size of mixing in charm is a powerful constraint on models of NP. However,
because the theory uncertainties are so large, there is at present not much more to be learned on
this front from experiment; improving the precision on the mixing parameters will not move the upper
bounds on x and y significantly. Measuring them precisely is important for another reason, though: we
need to know x and y in order to go from measurements of CPV observables, such as time-dependent
CP asymmetries, to the underlying physics parameters. The precision on x and y thus affects how well
we can measure or constrain those parameters.

2.3.2 Indirect CPV

Indirect CPV in charm may be characterised by the magnitude and phase of q/p, with deviation from
|q/p| = 1 and φ ≡ arg(q/p) = 0 indicating CPV (see eq. 2.22–2.23). In the HFAG phase convention [24],

17 x′ = x cos δ + y sin δ; y′ = y cos δ − x sin δ. Note that x′2 + y′2 = x2 + y2.
18 Or from charm-at-threshold experiments in a model-independent way.
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Figure 2.2: World-average results from HFAG [24], as of 28 July 2015. In (a): the mixing parameters
x and y, with the no-mixing point at (0, 0) now excluded with high significance. In (b): the indirect
CPV parameters φ ≡ arg(q/p) and |q/p|, with the no-CPV point at (1, 0) still allowed within the 1σ
contour.

these are related to experimental observables as follows:19

2yCP = (|q/p|+ |p/q|) y cosφ− (|q/p| − |p/q|)x sinφ

2AΓ = (|q/p| − |p/q|) y cosφ− (|q/p|+ |p/q|)x sinφ

x′± =

(
1±AM
1∓AM

)1/4 (
x′ cosφ± y′ sinφ

)
y′± =

(
1±AM
1∓AM

)1/4 (
y′ cosφ∓ x′ sinφ

)
where

AM =
|q/p|2 − |p/q|2
|q/p|2 + |p/q|2 .

Here yCP is the mixing parameter obtained from the ratio of CP-even20 to CP-mixed lifetimes, discussed
in the previous section. AΓ is a related asymmetry:

AΓ =
τ(D0 → fCP,+)− τ(D0 → fCP,+)

τ(D0 → fCP,+) + τ(D0 → fCP,+)
, (2.24)

with the most precise results coming from D0 → K+K− and π+π−. The observables x′± and y′± are
simply the values of x′ and y′ measured with D0 and D0 events, respectively; a difference between x′+

and x′− or y′+ and y′− would indicate CPV.
19 Direct CPV is neglected in these expressions. This is a good approximation at present, but when the precision on

AΓ improves it may need to be taken into account [29].
20 CP-odd final states can also be used, with suitable changes to the formulae.
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Two key points follow directly from these expressions. First, the observable AΓ is scaled down
by a factor of x or y, such that even if indirect CPV is maximal AΓ will be limited in magnitude to
approximately x or y, i.e. O(1

2%). We have only recently entered a regime where the uncertainty on
AΓ is smaller than this. Second, while a non-zero value of AΓ would necessarily imply CPV, extracting
values or limits on the physics parameters φ and |q/p| would require x and y as inputs. Similar
considerations apply to x′± and y′±. The relative uncertainties on the mixing parameters are still
substantial, although the situation is much better now than a few years ago. Thus, improving the
precision with which x and y is known translates directly to improved constraints on the underlying
CPV parameters.

Some of the recent mixing measurements noted in Section 2.3.1 included measurements of CP
asymmetries [30, 26], and in addition LHCb has published a measurement of AΓ with 1 fb−1 of data [31].
Including these, the current world-average results with CPV fully allowed are shown in Fig. 2.2(b),
and correspond to:

|q/p| = 0.91+0.12
−0.08 (2.25)

φ =
(
−9.4+11.9

−9.8

)◦
. (2.26)

Those values allow for the presence of direct CPV in suppressed decays. If it is assumed that there is
no direct CPV in DCS decays21 [32], these constraints are strengthened considerably:

|q/p| = 1.002± 0.014 (2.27)
φ = (−0.07± 0.6)◦. (2.28)

The world-average values for |q/p| and φ shown in eq. 2.25–2.26 indicate that CPV of more than
10–20% is excluded, so it is now clear that we do not have O(1) indirect CPV in charm. If direct CPV
is negligible in DCS decays—and the excellent agreement with the null hypothesis of eq. 2.27–2.28
seems to back this up—then O(10−1) is also excluded and even O(10−2) is not far away. We have not
yet reached the SM level, which is estimated to be O(10−4) to O(10−3) [33, 34, 35], but it looms ahead
in the distance. On the plus side, the SM estimate of indirect CPV is dominated by short-distance
physics so it is a reasonably tractable problem for theory, unlike direct CP violation.

2.4 Phenomenology of direct CPV in charm

Indirect CPV, discussed in Sec. 2.3.2, is described in the SM by a small number of parameters. It is
not quite universal (since CPV in the interference between mixing and decay in general depends on the
final state) but, as with mixing, measurements from different final states all help constrain the same
underlying phenomenon. The story is very different for direct CPV, where the asymmetry can vary
greatly from one decay mode to another.

Both within the SM and in general models of NP, the largest direct CP asymmetries are expected
to be found in singly CS modes [36] where interference between penguin and tree diagrams can be
substantial. Consequently, this is where most experimental and theoretical interest has been focused,
and the analyses presented later in this chapter will search for CPV in singly CS decays. But it is not
the only place where direct CPV could conceivably arise: direct CPV in doubly CS charm decays is
negligible in the SM but possible in certain models of NP. Because double CS decays have branching
fractions roughly a factor of sin2 θC ∼ 0.05 smaller than comparable singly CS decays, the yields are
necessarily poorer and so there are few experimental measurements of direct CP asymmetries in doubly
CS decays with any useful precision at the moment. (CF modes have much higher BFs, of course, but
there direct CPV would be negligible even in the presence of NP because the favoured tree diagram
dominates—remember from eq. 2.17 that the asymmetry is proportional to r, the ratio of suppressed
to dominant amplitudes.)

21 This is certainly true for charm in the SM, and is also true in many but not all models of NP on the market.
However, we should be a little cautious simply because there have been few experimental tests of this.
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There has been a great deal of experimental progress in measurements of direct CPV in recent
years, with multiple two-body decay modes reaching precisions on CP -violating asymmetries of well
below 1% and closing in on 10−3, and searches for CPV in the phase space of multi-body decays with
signal yields in the millions. (Some of these searches will be discussed in detail later in this chapter.)
The theoretical side, however, is murky: thanks to advances in the understanding of the SM gluonic
penguin contributions (or, more precisely, to advances in the understanding of the theory uncertainties
which turn out to be larger than naively expected) we now know that direct CP asymmetries can
arise at the O(10−3) level in the SM, and as much as O(few × 10−3) can be accommodated. We
have already reached this level of precision experimentally, so in the absence of a major advance in
theoretical engineering it seems like we would not be able to say whether some future observation of
direct CPV in a generic singly CS mode at the 0.1%-level is SM physics or not. Therefore, we have no
chance22 of discovering NP with this kind of brute-force approach. But all is not lost: we can still test
the SM by combining information from SU(3)-related final states, testing whether the overall pattern
is consistent [37]. Another path forward is to focus effort on modes where the SM contribution to the
asymmetry is suppressed (e.g. SCS modes with ∆I = 3/2 [38]).

One last note: charmed baryons are also produced at significant rates at LHCb [39], and good-sized
samples have been accumulated at the B-factories. Their decays are also sensitive to direct CPV, but
measurements of this are sorely lacking.

2.5 Search for CPV in D+ → K−K+π+

This section summarises the analysis published in [40]. This was the first LHCb result on CP violation.

2.5.1 Introduction

As discussed in Section 2.4, singly Cabibbo-suppressed decays such as D+ → K−K+π+ are good
candidates to search for CP violation, which may occur through SM processes (interference of the
tree diagram with a gluonic penguin) and could be enhanced by NP. This particular channel has a
three-body final state, which makes the analysis more complicated but in the end adds to the sensitivity.

The asymmetry observable in eq. 2.18 is expressed in terms of branching fractions. It’s possible
to make an equivalent measurement for a three-body decay, constructing an asymmetry from the
branching fraction integrated across the phase space:

A =
B(D+ → K−K+π+)− B(D− → K+K−π−)

B(D+ → K−K+π+) + B(D− → K+K−π−)
. (2.29)

Measurements of this overall asymmetry have been performed at CLEO-c [41] and BABAR [42] (and,
with smaller statistics, at E791 and FOCUS), with no significant asymmetry found. However, this is
only part of the story.

A multi-body hadronic decay amplitude is really the quantum mechanical sum of many interfering
amplitudes—for example, D+ → φ(1020)π+, D+ → K∗(892)0K+, D+ → a0(1430)0π+, etc.. In charm
decays, where the available phase space is small (i.e. final-state particles and resonances are not
that much lighter than the parent) and crowded, these resonances overlap and interfere a lot. The
same arguments given previously about CPV arising from diagrams with different strong and weak
phases (e.g. tree vs. penguin) apply, but now we have additional sources of phase variation: between
resonances, and within each resonance.

To help us visualise this structure, the phase space of a decay of this type—a pseudoscalar into three
pseudoscalars—can be represented as a two-dimensional distribution known as a Dalitz plot (DP). An
example is shown23 in Fig. 2.3. The axes of a DP are the squares of the invariant masses of two of

22 Strictly speaking the door is not completely shut: we could observe direct CPV at some huge level like 10% in an
obscure decay mode which has not yet been tested. But realistically, no.

23 More details on the dataset and selection used for this plot will be given below.
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Figure 2.3: Dalitz plot of D+ → K−K+π+ with 0.35 pb−1 of LHCb data. The plot is not efficiency-
corrected or background-subtracted.

the three daughters, e.g. m2(K−π+) and m2(K−K+). This choice is motivated by the decay rate for
D → 123 being24

Γ =
1

32 (2π)3 s3/2
|M|2 dm2

12 dm2
13 (2.30)

where M is the matrix element and
√
s is the mass of the parent D. The phase space density is

proportional to (dm2
12 dm2

13) and is uniform within the physically allowed region of the Dalitz plot. As
a result, all of the structure seen can be attributed solely to variation in M (i.e. our amplitude). In
this representation, a narrow resonance will appear as a band that is horizontal (for K−K+ resonances
in our example), vertical (for K−π+), or diagonal (for a hypothetical K+π+ resonance). Such a band
will have internal structure, notably variation in intensity along the band that is associated with the
helicity angle and has J minima for a spin-J resonance. This can be seen clearly in Fig. 2.3 for the
dominant horizontal φ(1020) and vertical K∗(892)0 bands, both of which are spin 1 and so have two
lobes with a single node in between. Since all structure is due to variation in M, and direct CP
violation is a non-trivial difference between M for D+ and for D−, CP violation will show up as a
difference between the distributions in the D+ and D− Dalitz plots and/or as a difference in their
overall rates.

We now have a tool to visualise variation across the phase space of the decay, and can to a degree
associate regions of the DP with contributing resonances25. There is a good deal of interesting physics
in understanding and modelling this structure [44, 42] but that is not our main focus here: we want
to search for CPV. However, the resonant structure does affect how CPV might manifest itself and
therefore what strategy we should use to look for it. To investigate this, we will take a model of the
DP published by CLEO-c (fit B of [44]). They use what is known as the Isobar approach in which the
amplitude is expressed as a sum of interfering resonances each of which has a clear physical origin and

24 See [14], and in particluar the Dalitz Plot Analyais Formalism review.
25 This is obviously imperfect, since the resonances overlap and can have long tails, but nonetheless observing CPV

in one region of the DP would give us clues about the mechanism [43].
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varies in a predictable way across the Dalitz plot:

a(m2
12,m

2
13) =

∑
k

ck Fk(m
2
12,m

2
13), (2.31)

where a(m2
12,m

2
13) is the total amplitude at a point in the DP, k is an index that runs over the

different resonant components, ck is a complex coefficient giving the relative magnitude and phase of a
component, and Fk(m2

12,m
2
13) is a form factor describing the variation of a component across the DP.

We simplify the model by eliminating resonant contributions whose fit fraction26 is less than 2%. We
then generate toy events based on this model (with no inherent CPV), and variants of it with CPV
introduced. The asymmetry patterns in the DP are illustrated in Fig. 2.4 and summarised below.

When a CP asymmetry in the magnitude (|ck|) of a resonance is introduced27, we see an asymmetry
within the band of that resonance and, to a lesser degree, in the immediately adjacent tail/interference
regions, with the observed asymmetry having the same sign throughout.

When an asymmetry in the phase (arg ck) of a resonance is introduced, we see comparatively small
effects in the resonance band itself but much larger asymmetries in the nearby tail/interference regions
(with some effects still being visible quite far away even for a narrow resonance like the φ(1020)).
These effects are driven by the rapid variation in strong phase of the form factor of the resonance in
question (vs. via interference with other components whose phases are varying much more slowly). This
variation is illustrated in Fig. 2.5, showing the phase of the total amplitude in the φ(1020) region. The
combination of an asymmetry in the weak phase (arg ck) and the variation of the strong phase drives
the pattern of local rate asymmetries seen in Fig. 2.4. In particular, we see that the rate asymmetries
change sign from one side of the resonance to the other28. We will discuss the implications for the
analysis strategy in the following section.

2.5.2 Analysis strategy

We now start to have some idea of how CP asymmetries might manifest themselves29. In particular,
we see the importance of searching for local asymmetries. In the examples discussed above—a change
in the magnitude or phase of ck for a single resonance between D+ and D−—the asymmetries were
localised in particular regions of the DP, so that a measurement of the asymmetry integrated across the
whole DP would at best have diluted the asymmetry with a lot of zero-asymmetry events, and at worst
would have combined regions whose asymmetries have different signs and thereby cancelled them out.
This suggests a strategy of looking for local asymmetries across the DP. There are a number of methods
that could be used for this, including unbinned techniques [46]. We use instead a straightforward binned
approach in which we divide the DP into a number of bins which do not overlap and which between
them cover the entire DP. For each bin i we measure the yield of D+ events ni+ and of D− events ni−
in that bin. We also measure the total yields summed across all bins, N+ =

∑
i ni+ and N− =

∑
i ni−.

We can then obtain the difference ∆i in normalised yields and the significance SiCP of that difference:

∆i =
ni+
N+
− ni−
N−

(2.32)

SiCP =
∆i

σ(∆i)
(2.33)

26 Defined as: FFj ≡
[∫
|cjFj(m2

12,m
2
13)|2 dm2

12 dm2
13

]
/
[∫
|
∑
k ckFk(m2

12,m
2
13)|2 dm2

12 dm2
13

]
. In the limit of non-

interfering resonances, this would be the yield fraction.
27 That is, for some particular resonance k, |ck| for D+ is different from |ck| for D− (ignoring the pathological case of

an overall normalisation change in which ck for every resonance is scaled by a common factor).
28 The type of resonance plays a role here: the φ(1020) is a vector, so the amplitude is P -wave implying a sign change

along the resonance.
29 The examples above are simplistic, of course: CPV is very unlikely to show up in the φ(1020) alone, and could

appear associated with a broader S-wave component. But they illustrate the point.
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Figure 2.4: Local asymmetry significance for samples of toy events according to a model of the
D+ → K−K+π+ Dalitz plot based on a CLEO-c analysis, with m2

K−π+ along the x-axis and m2
K−K+

along the y-axis. The samples each contain 4M D+ and 4M D− events. Each DP is divided into
bins and the asymmetry significance calculated in each bin (red numbers); where it is less than 1σ the
bin is left blank. Upper left: no CP violation. Upper right: a 1% asymmetry in magnitude of the
D+ → φ(1020)π+ component, generating large asymmetries along the narrow resonance band. Lower:
a 10◦ asymmetry in the phase of the D+ → φ(1020)π+ component, generating asymmetries in the
tails (interference regions) near the resonance band. Acknowledgement: This figure was the work
of Alberto Reis from CPBF.
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phase across the resonance (A→D or B→C). Acknowledgement: This figure was the work of Hamish
Gordon, from Oxford (later CERN), and was published in [45]

where σ(∆i) is the statistical uncertainty30 on ∆i. This gives us a signed asymmetry significance in
each bin; if there is no CP asymmetry and sufficient statistics in each bin, it will form a Gaussian
distribution with mean of zero and sigma of one. With numerous bins we expect some fraction of
them to fluctuate away from zero even in the absence of CPV, so to assess whether we found genuine
asymmetry we perform a χ2 test, with

χ2 =
∑
i

(
SiCP

)2 (2.34)

and the number of degrees of freedom equal to the number of bins minus one (for the normalisation
N+/N−).

This brings us to a second, key point about the search strategy: having too many bins reduces our
sensitivity. To illustrate this, consider a region of the DP with a constant asymmetry throughout the
region such that the yields of D+ and D− are m+ and m−, with m− = rm+. Suppose that we divide
the region into q bins of equal size. In each bin, the expected yield difference is

m+

q
− m−

q
=
m+(1− r)

q
.

For simplicity, let’s assume that N+ ' N− (meaning that there is a balancing asymmetry of the
opposite sign somewhere else in the DP, or that the region with the asymmetry represents a small
fraction of the overall yield) so that we’re not distracted by normalisation factors, and as usual we
treat N+ and N− as fixed while calculating the χ2. Then for each bin in our region of interest, the
expected difference in normalised yields is

∆̄i =
m+(1− r)
qN+

, (2.35)

30 The per-bin statistical uncertainties on ni+ and ni− enter this calculation but the totals N+ and N− are treated as
constants. This is taken into account later in the count of the number of degrees of freedom (NDF).
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and the expected uncertainty on this will be

σ̄(∆i) =

√
m+(1 + r)

q

1

N+
. (2.36)

Dividing eq. 2.35 by 2.36, we obtain an expected significance in each bin:

S̄iCP =

√
m+

q

1− r√
1 + r

(2.37)

and, roughly, the expected χ2 sum for that region31 is

χ̄2 =
∑
i

(S̄iCP )2 = q(S̄iCP )2 = m+
(1− r)2

1 + r
. (2.38)

The important thing here is that increasing q does not increase the expected total χ2 for the region—
but it does increase the number of degrees of freedom. What this means is that having too fine a
binning actually hurts our sensitivity, because the extra bins don’t bring any new information but they
increase the number of times we could see a fluctuation under the null hypothesis. This runs counter
to the normal intuition for a Dalitz plot amplitude analysis, where (if binning at all) one tries to use
bins that are as fine as possible to resolve all of the substructure in the plot. Here we want just enough
bins to separate regions of different asymmetry but no more.

Of course, the problem is that we don’t know a priori how and where CPV might manifest itself.
We will hedge our bets by using four different binning schemes: two with a uniform binning (with 199
and 530 bins) and two with an “adaptive” binning (with 25 and 106 bins). The adaptive binnings were
chosen to reflect the structure of the DP and the insights about the structure of asymmetries discussed
above32. The uniform binnings offer a more agnostic alternative, making no explicit assumption about
the form taken by NP. If a CPV asymmetry is present but varies only slowly across the DP, a uniform
scheme with few bins may offer a better chance of finding it. (But after discussion these various
scenarios, it is worth emphasising that the method itself is model-independent: there will be no model
systematic uncertainty. We will be more sensitive to some CPV scenarios than others—but this is true
no matter what you do.)

2.5.3 Data, binning, and expected sensitivity

With a method in hand, we now turn to the data. The selection is described in [40] and requires
that the D+ → K−K+π+ candidate fire the software trigger and pass a variety of geometrical and
kinematic selection cuts after being reconstructed offline. In particular, the D+ decay vertex is required
to be well-separated from the event primary vertex (or from all such vertices, if there is more than
one), and the D+ candidate is required to originate at a primary vertex (PV). Hadronic particle
identification requirements based on RICH information are imposed to separate pions from kaons. The
same selection is used to select candidates for two Cabibbo-favoured control modes: D+

s → K−K+π+

and D+ → K−π+π+. The resulting mass spectra are shown in Fig. 2.6. The signal yields are
approximately 370k for D+ → K−K+π+, 515k for D+

s → K−K+π+, and 3760k for D+ → K−π+π+,
with purities of 91% for each of the K−K+π+ modes and 98% for the K−π+π+ mode.

Having fixed the binning and knowing the expected yield, we can use the DP model discussed
above to estimate our sensitivity to various CPV scenarios (and to check that the analysis finds no

31 This is an illustrative sketch rather than a proof—there are quite a few implicit assumptions here, such as m+/q
being large.

32 In previous DP analyses, adaptive binning algorithms were used to produce bins of approximately uniform popu-
lation. While this algorithm does aim to do that, it is also constrained to follow certain physical features of the DP.
Without going into fine detail, it will cut the dominant φ(1020) and K∗(892)0 bands in half transversely and is likely to
split their lobes in half longitudinally. It also compartmentalises a region in the upper-right of the plot, away from these
dominant bands, where broad/non-resonant contributions are more important.
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Figure 2.6: Mass spectra from most of the 35/pb data set. The plots show (a) K−π+π+, with the
D+ peak visible; (b) K−K+π+, with the D+ and D+

s peaks visible. For technical reasons related to
the trigger mass windows, about 17% of the data are not included in these plots but are used for the
CPV searches.

CPV when none is present). The decay kinematics are simulated in two steps: the D+ momentum p
and transverse momentum pT in the lab frame are sampled randomly from the 2D distribution found
in data, and the daughter momenta in the D+ rest frame are generated according to the DP model. As
before, we use a toy MC that does not simulate the detector response in detail (whereas the full MC
does, using Geant4). Instead, we use a parameterised model of the detector efficiency as a function of
position in the DP. We also include a momentum-dependent efficiency asymmetry betweenK− andK+

which arises because the interaction cross-sections in matter differ between the two33. The momentum
dependence of the latter is key: the mode D+ → K−K+π+ and its conjugate D− → K+K−π− have
the same numbers of K+ and of K− in the final state, but their momentum distributions can differ.
Table 2.2 summarises the sensitivity of the two adaptive binnings used under various CPV hypotheses,
evaluated by running sets of 100 toy experiments. For each toy experiment, the χ2 and NDF for the
whole DP are obtained and converted into a p-value34 and hence an unsigned significance measured in
σ. For each set of 100 toys, we quote two figures of merit: the fraction of toy experiments for which
the overall significance was at least 3σ, denoted p(3σ); and the mean significance, denoted 〈S〉. The
behaviour when generating events without CPV was as expected: a mean significance of approximately
1σ and a small fraction of toys with a 3σ signal consistent with the expected rate of 0.3%. (Additional
toy studies of D+ → K−K+π+ with no CPV showed no significant excess, and neither did a study of
D+ → K−π+π+ with a total of 109 toy events.) When inserting a real CP asymmetry into the model
used to generate the toy experiments, these numbers increase. As expected, the sensitivity depends on
the size of the asymmetry: we see this clearly when varying the phase asymmetry of the φ(1020) from
2◦ to 6◦. We also see that which binning is more sensitive depends on the CPV hypothesis: between
the two adaptive binnings, the first is the more sensitive for the φ(1020) phase asymmetry but the
second binning does better for a κ(800) magnitude asymmetry.

We have checked the sensitivity of the method under a few hypotheses and verified that it doesn’t
produce false positivies with toy MC that includes parameterisations of the detector efficiency and kaon
detection asymmetry. However, there could be some other effect that produces fake local35 asymmetries
in real data. We will now use control samples of data to establish that there is no such effect at the
level of our sensitivity.

33 This effect has since been studied extensively at LHCb with control samples of data, but at the time we had only
information from GEANT simulation studies.

34 A measure of how frequently a result of this size or larger would be expected under the null hypothesis.
35 Remember, effects which produce a D+/D− asymmetry that’s constant across the DP will drop out in our normal-

isation and don’t bother us.
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Table 2.2: Results from sets of 100 toy experiments with sample size corresponding to the D+ →
K−K+π+ signal yield for different CP asymmetries, analysed with the Adaptive I and II binnings.
p(3σ) is the fraction of toys with a 3σ or larger CPV significance. 〈S〉 is the mean significance with
which CPV is seen.

CPV Adaptive I Adaptive II
p(3σ) 〈S〉 p(3σ) 〈S〉

no CPV 0% 0.84σ 1% 0.84σ
2◦ in φ(1020) phase 5% 1.6σ 2% 1.2σ
3◦ in φ(1020) phase 38% 2.8σ 12% 1.9σ
4◦ in φ(1020) phase 76% 3.8σ 41% 2.7σ
5◦ in φ(1020) phase 97% 5.5σ 79% 3.8σ
6◦ in φ(1020) phase 99% 7.0σ 98% 5.2σ

6.3% in κ(800) magnitude 16% 1.9σ 24% 2.2σ
11% in κ(800) magnitude 83% 4.2σ 95% 5.6σ

One potentially dangerous source of such asymmetries consists of left-right differences in the de-
tector itself. These are relevant because, as they pass through LHCb’s dipole magnet, tracks of one
charge are pushed towards the left and tracks of the other charge towards the right. There is overlap
in the parts of the detector seen by the two charges, but for final states with a net charge such as
ours there will necessarily be some difference in the subdetector elements used for D+ and D−. Of
course, the detector is designed to be as left-right symmetric as possible, but nonetheless we can imag-
ine small differences in material, misalignments, inefficiencies at the level of individual channels, etc..
To reduce the potential effect of such differences, the polarity of LHCb’s magnet was changed several
times during the data-taking period, with roughly equal amounts of integrated luminosity for each of
the two polarities. This is important because such effects would flip around when the magnet polarity
is changed (i.e. the fake asymmetries they generate would change sign). We therefore treat the magnet
polarity up (MagUp) and down (MagDown) samples separately, so that for each Dalitz plot bin we
have a measured asymmetry for each. We then take the average of the two asymmetries for that bin,
cancelling out effects which change sign. As we will show with control samples below, this suppresses
left-right effects below the level of our sensitivity.

2.5.4 Results in control samples

As explained in Sec. 2.4, we expect that CPV should be much too small to observe in Cabibbo-favoured
charm decays even in the presence of NP. We can therefore use CF decay modes as a check: we should
see no significant CP asymmetry when we apply our method to them. The two modes of interest are
shown in Fig. 2.6 along with the signal. The first is D+

s → K−K+π+, which has the same final state
as our signal mode and a larger yield (515k vs 370k), allowing us to make tests under conditions which
closely mimic the final measurement. The second is D+ → K−π+π+, which is much more sensitive
to fake asymmetries than our signal for two reasons: first, its yield is an order of magnitude larger
(3760k); second, its final state contains only one kaon. As discussed earlier, we know that there is
a momentum-dependent charge asymmetry in kaon efficiency that arises from the different material
interaction cross-sections; we would expect at least partial cancellation between the K+K− pair in
our signal mode but there is no equivalent cancellation in D+ → K−π+π+. This makes for a powerful
control: if we obtain a null result in D+ → K−π+π+, that will imply that many potentially nasty
effects are negligible in D+ → K−K+π+. The main exception will be effects that are specific to
the final state, such as from backgrounds. We will use D+

s → K−K+π+, and the mass sidebands to
account for those.

For each of the control modes, we try a range of binnings using both the uniform and adaptive
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Table 2.3: Results of consistency tests for the D+ → K−π+π+ control mode for a variety of bin-
ning schemes. The table shows the p-values obtained for the individual magnet polarities (MagUp,
MagDown) and for the bin-wise average of the two (MagAvg). The numbers for individual magnet
polarities with 25 uniform bins are not available.

Binning scheme MagUp MagDown MagAvg
25 adaptive 49% 0.1% 12%
100 adaptive 57% 7.9% 30%
400 adaptive 93% 58% 66%
900 adaptive 75% 35% 57%
1300 adaptive 70% 61% 82%

25 uniform 1.7%
100 uniform 96% 4.4% 55%
400 uniform 63% 38% 73%
900 uniform 46% 2.5% 18%
1300 uniform 53% 44% 74%

binning schemes. The results for D+ → K−π+π+ are shown in Table 2.3. We see that the average of
the magnet polarities is more robust than each individually; this is expected since the polarity flip leads
to the cancellation of systematic effects associated with left-right asymmetries as discussed earlier. The
p-values for the averaged data are generally consistent with a null result. The most significant of these,
1.7% seen for 25 uniform bins, is small but not dangerously small, considering that (a) the yield for this
mode is an order of magnitude larger than for the signal, (b) this mode is less robust than the signal
against systematic effects related to kaon asymmetries, and (c) we have made ten different statistical
tests36.

The results for D+
s → K−K+π− are shown in Table 2.4. Adaptive binnings with 25 and 129 bins

are tested. Because the structure of the DP is highly non-uniform, the uniform binnings are tested
within sub-regions of the DP, referred to as the φ region with m2(K−K+) < 1.1 GeV2/c4, the K∗0

region with 0.7 < m2(K−π+) < 0.95 GeV2/c4, and the middle region with m2(K−K+) > 1.1 GeV2/c4

and m2(K−π+) > 0.95 GeV2/c4. All of the values are fully compatible with the null hypothesis.
The sideband data are also analysed to search for asymmetries in the backgrounds that might affect

the signal regions37. Five subsamples are used, as illustrated in Fig. 2.6: the lower and upper K−π+π+

sidebands, and the lower, middle, and upper K−K+π+ sidebands. Localised backgrounds from D∗+

decays are removed: fully reconstructed D∗+ → D0(K−K+)π+ decays in the upper K−K+π+ side-
band, and partially reconstructed or misidentified D∗+ → D0π+ decays in the lower m(K−π+π+)
sideband. No significant asymmetries are seen in the magnet-averaged data, with the lowest p-value
being 9%. Other cross-checks are also carried out, notably: tightening kaon PID cuts (to check for
misidentified charm backgrounds), imposing a cut requiring the D+ to point to the PV (to check the
effect of secondary charm), carrying out the analysis on simulated data, and investigating the effect of
different trigger requirements. No false positives are seen.

2.5.5 Results

The results of the analysis are shown in Table 2.5 and Fig. 2.7 with four binning schemes, two adaptive
and two uniform. No statistically significant asymmetry is seen. As a further check, the analysis is
repeated with a range of other binning schemes; in all cases the data are consistent with no CPV.

36 They are not statistically independent, of course—but the binnings are substantially different and will tend to pick
up different fluctuations.

37 A separate procedure was also defined to check for second-order effects from interactions between a global background
asymmetry and different global signal asymmetry in the event of a significant signal, but was not needed.
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Table 2.4: Results of consistency tests for the D+ → K−K+π+ control mode for a variety of binning
schemes and in regions of the DP. The table shows the p-values obtained for the individual magnet
polarities (MagUp, MagDown) and for the combination of the two samples (Combined). The combined
number for the whole DP with 129 bins is not available.

Region Binning scheme MagUp MagDown Combined
All 25 adaptive 89% 16% 34%
All 129 adaptive 25% 94%
φ ≈ 30 uniform 65% 40% 66%
φ ≈ 100 uniform 11% 16% 42%
φ ≈ 300 uniform 31% 53% 20%

K∗0 ≈ 30 uniform 44% 58% 63%

K∗0 ≈ 100 uniform 22% 93% 85%

K∗0 ≈ 300 uniform 44% 53% 25%
middle ≈ 30 uniform 84% 10% 25%
middle ≈ 100 uniform 80% 83% 90%
middle ≈ 300 uniform 25% 88% 15%

Binning scheme χ2/ndf p-value (%)
25 adaptive 32.0/24 12.7
106 adaptive 126.1/105 7.9
199 uniform 191.3/198 82.1
530 uniform 519.5/529 60.5

Table 2.5: Results of the CPV search in D+ → K−K+π+ for four different binning schemes.
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Figure 2.7: Distribution of the local asymmetry significance, SiCP , for D+ → K−K+π+ for four
binning schemes: (a) 25-bin adaptive, (b) 106-bin adaptive, (c) 199-bin uniform, (d) 530-bin uniform.
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It is worth emphasizing that even with a small fraction of the LHCb data, this result implies
strong constraints on direct CPV in charm decays. As we saw in eq. 2.17, direct CP asymmetries are
approximated by −2 r sin ∆θ sin ∆φ. Each of these three components (r, ∆θ, ∆φ) varies in a different
way across the DP. Scanning the entire DP for local asymmetries lets us see the points in phase space
where the three pieces align to give the largest effect, maximising the overall sensitivity. This was
illustrated dramatically in subsequent studies of charmless B decays performed by other members of
the LHCb collaboration, which found local asymmetries of up to ≈ 80% [47]. The absence of signals
in this analysis implies that the penguin amplitudes in D+ → K−K+π+ are either heavily suppressed
or closely aligned in phase with the tree amplitudes.

2.6 Search for CPV in D0 → K−K+, π−π+ (∆ACP )

This section summarises three analyses: one with 35 pb−1 of data from 2010 [48], one with 0.6 fb−1

of data from 2011 [49], and one with 1.0 fb−1 of data from 2011 [50]. Since all three use similar
methodology, they are presented together. After this thesis had been written, a fourth analysis on
3.0 fb−1 was made public, and is discussed briefly in Sec. 2.6.7.

2.6.1 Introduction and formalism

We turn to another search for CPV in singly Cabibbo-suppressed charm decays, this time considering
two decay modes: D0 → K−K+ and D0 → π−π+. These are two-body decays of a pseudoscalar, so
the situation is conceptually simpler than in Sec. 2.5: instead of a local asymmetry that varies across
the phase space, we simply have an overall decay asymmetry for each final state. This was introduced
previously in eq. 2.15 for direct CPV. We now extend it to allow for the presence of a time-dependent
indirect asymmetry. For D0 decays to a final state f (which for us will be a CP eigenstate accessible
to both D0 and D0),

ACP (f ; t) ≡ Γ(D0(t)→ f)− Γ(D0(t)→ f)

Γ(D0(t)→ f) + Γ(D0(t)→ f)
. (2.39)

In the limit of small mixing—which is certainly the case for charm—this may be written as: [51, 52]

ACP (f ; t) = adir
CP (f) +

t

τ
aind
CP , (2.40)

where adir
CP and aind

CP are the direct and indirect CP asymmetries, and where τ is the D0 lifetime. Note
that adir

CP depends on the final state f , whereas aind
CP is (to a good approximation) independent of

f [36, 32] and is related to the observable AΓ introduced earlier (eq. 2.24) by [29]

AΓ = −aind
CP − adir

CP (f) yCP . (2.41)

The time-integrated asymmetry measured by an experiment, ACP (f), will depend on the decay-time
acceptance of that experiment:

ACP (f) = adir
CP (f) +

〈t(f)〉
τ

aind
CP , (2.42)

where 〈t(f)〉 is the average decay time of the reconstructed and selected events used38. Thus, the
difference in asymmetry between the decay modes D0 → K−K+ and D0 → π−π+ is given by:

∆ACP ≡ ACP (K−K+)−ACP (π−π+) (2.43)

= adir
CP (K−K+)− adir

CP (π−π+) +
〈t(K−K+)〉 − 〈t(π−π+)〉

τ
aind
CP (2.44)

= ∆adir
CP +

∆〈t〉
τ

aind
CP , (2.45)

38 For the special case of an unbiased time acceptance, as might be found at an e+e− B-factory, this simplifies to
adir
CP (f) + aind

CP .
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where the ∆ denotes a difference between D0 → K−K+ and D0 → π−π+. Since the average time
acceptance will be similar for the two final states, this has the effect of strongly suppressing the indirect
CPV term39. The real reason for using ∆ACP is experimental, as we’ll see shortly, but we should first
ask: is it a useful observable? As stated earlier, direct CP asymmetries depend upon the final state, so
in general we do not expect cancellation between adir

CP (K−K+) and adir
CP (π−π+). More quantitatively,

in the limit of U -spin symmetry we expect that the two final states have direct CP asymmetries that
are equal in magnitude and opposite in sign [36], adir

CP (K−K+) = −adir
CP (π−π+), maximising the size of

∆ACP . In practice, U -spin can be broken through strong interaction effects [53]—but the key point is
that we do not expect the two direct CP asymmetries to cancel in ∆ACP .

So far we have discussed the underlying physical CP asymmetries. However, the basic quantities
which we measure experimentally are event yields. We can construct raw asymmetries from them:

Araw(f) =
N(D0 → f)−N(D0 → f)

N(D0 → f) +N(D0 → f)
, (2.46)

where N is a measured signal yield. The raw asymmetry includes the true CP asymmetry ACP (f)
but also experimental effects, notably detection efficiency and production asymmetries, which we will
discuss below. As a practical matter, it is necessary to separate D0 → f from D0 → f . Since the
final states f are identical, the flavour of the D0 must be tagged. Two methods are in common use at
LHCb: tagging with D∗+ decays and tagging with semileptonic B decays. In the analyses described
here, we use D∗+ tags, looking for a decay chain of the form (D∗+ → D0π+, D0 → f), or the conjugate
process (D∗− → D0π−, D0 → f). The charge of the soft pion indicates the flavour of the D0/D0 at
production40. The D∗+ is easily separated from combinatoric background: the very small energy
release means that it produces a sharp peak in the mass difference

δm ≡ mcand(D∗+)−mcand(D0)− m(π+), (2.47)

with small experimental resolution and natural width. Both D∗+ produced at the primary vertex
(“prompt”) and D∗+ produced in the decays of b-hadrons (“secondary”) can be used, but in practice
nearly all of our sample will consist of prompt charm. The other approach used at LHCb is to look for
a secondary D0 produced in association with a muon, from a decay of the form B → D0µ−X; in that
method, the charge of the muon indicates the flavour of the D0 at decay. Results obtained with this
second method will be discussed at the end of this section.

What we measure in practice, then, are the raw yields and their asymmetries:

Araw(f) =
N [D∗+ → D0(f)π+]−N [D∗− → D0(f)π−]

N [D∗+ → D0(f)π+] +N [D∗− → D0(f)π−]
. (2.48)

The ratio of yields may be obtained from the asymmetries as:

N [D∗+ → D0(f)π+]

N [D∗− → D0(f)π−]
=

1 +Araw(f)

1−Araw(f)
. (2.49)

The yields may be written as:

N [D∗+ → D0(f)π+] = P+B+(f) ε+(f) (2.50)
N [D∗− → D0(f)π−] = P−B−(f) ε−(f), (2.51)

39 For the LHCb analyses presented here, ∆〈t〉/τ is approximately 10% (specifically, 0.10±0.01 in the 1.0 fb−1 analysis).
40 Because of D0-D0 mixing, the flavour at production isn’t necessarily the same as the flavour at decay. This implies

a dilution factor, reducing the CP asymmetry. However, (a) the effect is small because charm mixing is small, and (b) it
is a multiplicative correction, i.e. a couple of orders of magnitude smaller than something that’s too small to measure.
Therefore, we don’t need to worry about it until that happy day when we are making precision measurements of CP
asymmetries in charm.
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where P± is the number of D∗± produced in the LHCb acceptance, B± is the full branching fraction
(D∗+ → D0π+, D0 → f), and ε± is the efficiency to reconstruct and select a D∗± produced in the
LHCb acceptance. Note that P± is manifestly independent of the subsequent decay mode. The ratio
of the yields is then simply

N [D∗+ → D0(f)π+]

N [D∗− → D0(f)π−]
=
P+B+(f) ε+(f)

P−B−(f) ε−(f)
. (2.52)

Combining eq. 2.52 with repeated applications of the identity in eq. 2.49, we obtain

1 +Araw(f)

1−Araw(f)
=

(
1 +AP
1−AP

)(
1 +AB(f)

1−AB(f)

)(
1 +Aε(f)

1−Aε(f)

)
, (2.53)

where AP , AB(f), and Aε are the production, branching fraction, and efficiency asymmetries. The
branching fraction asymmetry here is the same as the CP asymmetry,

AB(f) ≡ ACP (f). (2.54)

We can simplify things by noticing that the efficiency asymmetry is independent of the final state f
within a local area of phase space41. To see this, we split the efficiency into parts:

ε+(f) = ε(D∗+ → D0π+) ε(D0 → f) (2.55)
ε−(f) = ε(D∗− → D0π−) ε(D0 → f) (2.56)

But in a local region of phase space, the efficiencies to reconstruct D0 → f and D0 → f are the
same—it’s the exact same final state f , with no difference in angular distribution etc. in the decay of
the spin-0 D0 meson. Therefore ε(D0 → f) = ε(D0 → f), and so they cancel in the ratio:

ε+(f)

ε−(f)
=
ε(D∗+ → D0π+)

ε(D∗− → D0π−)
(2.57)

Thus, in a local region of phase space, Aε is independent of f . Taylor-expanding eq. 2.53 at second
order and writing Aε as independent of f , we obtain:

1 + 2Araw(f) + 2[Araw(f)]2 ≈ [1 + 2AP + 2A2
P ] [1 + 2ACP (f) + 2A2

CP (f)] [1 + 2A−ε+ 2A2
ε]. (2.58)

At first order this reduces to
Araw(f) ≈ AP +ACP (f) +Aε, (2.59)

the rather intuitive result that we can combine small asymmetries just by adding them. We also see
immediately that AP and Aε will cancel in the difference between two decay modes:

Araw(K−K+)−Araw(π−π+) ≈ ACP (K−K+)−ACP (π−π+) = ∆ACP . (2.60)

The approximation here is the first-order Taylor expansion from eq. 2.59. We can, of course, go back
and add higher-order terms if we wish—but in practice there is no need, for two reasons. First, we
will work in a region of phase space where the nuisance asymmetries are small, O(10−2) or less, such
that the second-order terms are below O(10−4) and are smaller than our level of sensitivity by at
least an order of magnitude. Second, in the absence of a physics asymmetry (ACP = 0) the nuisance
asymmetries cancel at all orders and the expected value is exactly zero. This, in short, is why we focus
on ∆ACP as an observable: it elegantly removes a whole slew of experimental effects which we would
otherwise have to measure, and which would come with unacceptably large systematic uncertainties.

41 As the alert reader is no doubt already thinking, this means that we will have to take precautions when combining
different parts of phase space to obtain an overall asymmetry.
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2.6.2 Kinematic binning and reweighting

There are a few subtleties in the experimental procedure. The most important is that the method
outlined above is only strictly correct if carried out within a local area of phase space. If we make naive
measurements of the charge asymmetries integrated across the entire phase space for D0 → K−K+ and
D0 → π−π+, we risk introducing second-order effects in ∆ACP . This is perhaps easiest to understand
with a toy example. Suppose that we have two regions of phase space, A and B. Suppose also that
there is no true CP asymmetry, and that we have huge samples so that statistical errors are negligible.
In region A, there is a charge asymmetry in the soft pion detection efficiency, Aε = 0.1, but in region
B the asymmetry is zero. Let’s also say that the ratios of efficiencies to select D0 → K−K+ and
D0 → π−π+ are different in the two regions42, so that for K−K+ the yields are equal in A and B but
for the π−π+ mode the yield is four times larger in A than in B. Neither of these effects is a problem
in itself, and if we measure ∆ACP in A and in B separately they will not cause a bias. (The soft
pion charge asymmetry in A will affect both K−K+ and π−π+ decays and vanish in the difference,
and the K−K+/π−π+ efficiency difference in B may reduce the statistical precision but will not affect
the asymmetry measurements.) However, if we fail to separate the data from regions A and B, we’ll
have a problem: the K−K+ mode has equal yields from both regions but the π−π+ mode is more
strongly weighted towards region A. So the average raw asymmetry in K−K+ will be around 0.05 (i.e.
an equally weighted average of 0.10 and 0) but in π−π+ it will be around 0.08 (i.e. a 4 : 1 weighted
average of 0.10 and 0). That is, there will be a non-cancelling portion of the asymmetry—0.03 in this
toy example—in ∆ACP . More generally, effects like this occur when the K−K+/π−π+ yield ratio and
the asymmetry sum from detector effects (AP + Aε) both vary within the phase space of which we
integrate.

There is a very simple solution to the problem outlined above: you can divide the phase space
up into kinematic bins that are small enough so that there isn’t significant coherent variation of the
ratio and asymmetry within a given bin. (The data must also be split by magnet polarity and trigger
status for similar reasons.) Then you simply measure ∆ACP in each bin independently and combine
the results. This approach was used in all three of the analyses. Some care is required when choosing
the binning scheme: it must be fine enough (and in the right variables) to protect against the coherent
variation effect, but increasing the number of fits poses its own practical problems—not just that
adding to the total number of free parameters will reduce the overall statistical precision, but also
that the proper behaviour and convergence of all of the fits must be ensured. In the first analysis on
35 pb−1, the data were split into a total of 12 kinematic bins by the pT and pseudorapidity (η) of the
D0 meson, then further split by magnet polarity and trigger configuration for a total of 48 subsamples.
In the second analysis on 0.6 fb−1, this was extended to include a binning in the soft pion momentum
(for a total of 54 kinematic bins) and divided by left/right detector side as well as magnet polarity and
data-processing version, for a total of 216 subsamples. A similar approach was used in the 1.0 fb−1

analysis, though with a modified partition43.
However, this method does not scale well: although the systematic uncertainty is small (see later),

managing such a large number of fits is a complex and error-prone task. In addition, the sophistication
of the fits is limited compared to what could be done with the whole data sample because the individual
yields are reduced by a couple of orders of magnitude. A better method is to reweight the data so
that the D0 → K−K+ and D0 → π−π+ samples have the same kinematic distribution (or, at least,
the same for all variables that are relevant to D∗ production or soft pion efficiency asymmetries); this
removes potential biases due to the coherent variation effect entirely. This method was adopted for the
1.0 fb−1 analysis, with the binning approach described above serving as a cross-check. The reweighting
was done in two steps: a 2D weighting in the |p| and pT of the D∗+, followed by a 1D weighting
in the azimuthal angle φ of the D∗+. Although this is not the full set of kinematic observables, the

42 Differences of this kind (though generally less extreme than in the toy example) can arise because of the RICH
particle identification system performance, or even simply from the difference in energy release of the two decays.

43 The data were reprocessed for this analysis, so that split could be removed; instead a separation by hardware trigger
decision was added.
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other relevant quantities (e.g. the soft pion momentum) are sufficiently correlated with them that they
are also equalized for D0 → K−K+ and D0 → π−π+ after reweighting. In detail, the procedure
is to obtain the kinematic distributions for the two decay modes separately, using sWeights in δm
to separate signal from background and splitting the data into subsamples by magnet polarity and
hardware trigger decision. We then produce normalised histograms of these distributions—one 2D
histogram for (|p|, pT) and one 1D histogram for φ—and take their ratio. For a given D0 → K−K+

candidate we look at each histogram, see which bin it falls into, and find the value of that ratio in
that bin; its weight is the product of those ratios. The distribution of the weights is peaked at 1, with
nearly all weights between 0.5 and 2.0. (The weights for D0 → π−π+ candidates are simply 1.)

2.6.3 Reconstruction and Selection

We now turn to the data. As outlined above, we reconstruct candiates in the decay chains D∗+ →
D0π+, D0 → K−K+, π−π+. Events must first pass the L0 hardware trigger, either because one of the
D0 daughters deposits enough transverse energy in the calorimeter, or because a particle from outside
the D∗+ decay chain fires the trigger44. The former path is referred to as TOS (Triggered On Signal),
and the latter as TIS (Triggered Independently of the Signal)45. D0 candidates must also pass the
software trigger. Offline selection criteria are applied, including requirements that the decay chain have
the expected topology: the D0 and the soft pion should originate at a primary vertex, the D0 daughter
tracks should meet at a common vertex, the D0 decay vertex should be displaced from its origin,
and the direction of the D0 momentum should be consistent with the displacement vector between
its origin and decay vertices. The D0 daughter tracks are also required to pass particle identification
requirements for pions or kaons, as appropriate, suppressing background from misidentified charm
decays. For the 1.0 fb−1 analysis, a further refitting step was added in which the D∗+ was constrained
in the fit to originate at a PV. This improves the δm resolution significantly, reducing the signal width
by a factor of 2–3. (This is so effective because the soft pion is both less precisely measured than the
other tracks and nearly collinear with the D0.)

In addition, starting with the 0.6 fb−1 analysis we require that the candidate lie within a fiducial
kinematic region. This is needed to ensure that the efficiency asymmetry for the tagging soft pion is
indeed small throughout the phase space used, as we assumed for the formalism. Because the soft
pion has low momentum (typically a few GeV/c), the dipole field at LHCb is strong (bending power
of about 4Tm), and the LHCb acceptance is narrow (around 300mrad), the pions may be swept out
of the LHCb acceptance entirely. Moreover, for a given magnet polarity and kinematic configuration,
this depends strongly on the pion charge. For example, suppose that the magnetic field is in the up
direction and that the soft pion has a momentum vector of (+200, 0, 2000) MeV/c. The magnetic field
will bend π+ to the left (−x direction) and π− to the right (+x direction). So a π+ would be swung
back left towards the centre of the detector and is likely to be detected, whereas a π− would be pushed
further right and would not reach the downstream tracking stations. This is illustrated in the upper
row of Fig. 2.8, along with the fiducial cuts imposed to eliminate those regions of large local asymmetry.
There is an additional geometrical effect arising from the hole in the acceptance due to the beampipe,
illustrated for tracks with small |py| in the lower row of Fig. 2.8. These regions of large asymmetry are
also removed.

For D∗+ candidates passing the selection in the 1.0 fb−1 sample, the m(K−K+) and m(π−π+)
distributions are shown in Fig. 2.9, and the δm distributions in Fig. 2.10. Note that these are 1D

44 Between them, these two possibilities cover nearly all the ways that the hardware trigger can be activated. They
exclude certain technical/diagnostic triggers, and more importantly they also exclude the rare events in which only the
soft pion fires the trigger. We want to exclude the latter because their charge efficiency asymmetry could be more
complicated to understand.

45 In the usual LHCb convention, these are not mutually exclusive since events may be both TOS and TIS (e.g. in an
event where the energy deposit from one of the D0 daughters fires the calorimeter trigger, and in addition so does the
calorimeter deposit or a muon station track of a particle from the decay of another charmed hadron). For the purposes of
the ∆ACP analysis we divide the data into two disjoint sets: candidates with a D0 daughter that is TOS on the hadron
calorimeter trigger, and candidates that do not fulfil the TOS requirement but are triggered as TIS.
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Figure 2.8: Raw asymmetry in bins of soft pion px vs |p| for D∗+ → D0π+, D0 → K−K+ candidates.
Upper row: candidates with |py/pz| > 0.02. Lower row: candidates with |py/pz| < 0.02 (beam pipe
region). Left column: magnet polarity up. Right column: magnet polarity down. The fiducial cuts
are marked with solid black lines, and exclude the regions of large asymmetry.
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Figure 2.9: Fits to the m(K−K+) and m(π−π+) spectra of D∗+ candidates passing the selection and
satisfying 0 < δm < 12 MeV/c2.

Table 2.6: Yields for the various signal and control samples used to measure ∆ACP . The D0 decay
mode is indicated, along with whether it was tagged by a D∗+ → D0π+ decay.

Analysis Sample Signal yield
35 pb−1 Untagged K−π+ 5.1× 106

35 pb−1 Tagged K−π+ 1.0× 106

35 pb−1 Tagged K−K+ 1.2× 105

35 pb−1 Tagged π−π+ 3.6× 104

0.6 fb−1 Tagged K−K+ 1.44× 106

0.6 fb−1 Tagged π−π+ 0.38× 106

1.0 fb−1 Tagged K−K+ 2.24× 106

1.0 fb−1 Tagged π−π+ 0.69× 106

projections of a 2D distribution, and in particular that the same D0 → h−h+ combination may appear
more than once in Fig. 2.9 if there is more than one candidate in an event. This occurs in approximately
6–10% of cases, and is almost always due to a single D0 being compatible with more than one soft pion.
This is entirely normal and expected—many pions are produced at an event primary vertex—and does
not need any special handling46. For the δm fits and asymmetry measurement, the D0 candidate mass
is required to lie in the narrow window 1844–1884MeV/c2. The yields obtained in the three analyses
are shown in Table 2.6.

2.6.4 Fit procedure and results

The fit procedure was updated over the three analyses as more data were added, and as we passed
from a strategy of performing many independent fits in kinematic bins to one of performing a small
number of fits to weighted data. In each case, the baseline results use 1D fits to δm distributions, with
signal and background components. The signal peak is described by the convolution of (the sum of
n Gaussian functions with the same mean but different widths) and a function B that improves the

46 There is often a temptation to remove candidates until only one remains, either at random or according to a figure
of merit such as a vertex χ2. There are cases when this is appropriate, notably for self-cross-feed when a single decay
can produce multiple correlated candidates peaking at the same place, but it can be actively harmful if misapplied. For
us it would reduce the signal efficiency in a way which is correlated in a hard-to-understand way with the background
level, and probably with the decay kinematics. It would therefore mean exchanging a small amount of combinatoric
background for a tricky systematic uncertainty—not a good trade-off.
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Figure 2.10: Fits to the δm spectra of D∗+ candidates passing the selection and with 1844 < m(D0) <
1884 MeV/c2.
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description of the tails:
B(x; s) = Θ(x)xs, (2.61)

where Θ is the Heaviside function and the parameter s typically takes a value a little greater than −1.
For the 35 pb−1 and 0.6 fb−1 analyses we use n = 2 Gaussian functions, and for the 1.0 fb−1 analysis we
use n = 3 Gaussian functions. The combinatorial background is described by an empirical threshold
function. For the 35 pb−1 and 0.6 fb−1 analysis it is of the form

f(δm) = 1− e−(δm−δm0)/α, (2.62)

where δm0 and α are free parameters describing the threshold and shape, respectively; and for the
1.0 fb−1 analysis it is of the form

f(δm) = (δm− δm0)β e−(δm−δm0)/α, (2.63)

where β is an additional free parameter. For a particular subsample, the D∗+ and D∗− events are
fitted simultaneously so that the raw asymmetry and its uncertainty are obtained directly from the fit.
The D∗+ and D∗− events share nearly all shape parameters, except for a charge-dependent offset in
the signal peak position and a charge-dependent scale factor in the signal peak width (and not even
those for the 35 pb−1 analysis). By contrast, no free parameters are shared between the different D0

decay modes (K−K+, π−π+), nor between different subsamples (magnet polarities, kinematic bins if
appropriate, etc). This ensures that the fits are statistically independent and simplifies the propagation
of statistical uncertainties. Asymmetries in the background yield are also allowed in the fit, but don’t
have any particular physical significance.

After the fits, we have measurements of the raw asymmetries Araw(K−K+) and Araw(π−π+) for
each of the independent subsamples. As shown in eq. 2.59, these raw asymmetries include production
and detector effects—and those effects can and do vary depending on the particles’ kinematics, the
magnet polarity, the detector conditions, etc., so we do not attempt to assign them any physical
significance. However, the differences are meaningful. For each subsample we obtain a statistically
independent measurement of ∆ACP . When using the kinematic binning approach this amounts to a
very large number of measurements which are not given here in full but which are internally consistent
(χ2/NDF = 211/215, for a p-value of 56% with 0.6 fb−1). The results among the subsamples obtained
with the weighting method in the 1.0 fb−1 are shown in Table 2.7. Again, the values of ∆ACP measured
among the subsamples are consistent (χ2/ndof = 0.9/3). In each analysis, the individual ∆ACP
measurements were combined in a weighted average, obtaining:

35 pb−1 : (−0.28± 0.70)%,

0.6 fb−1 : (−0.82± 0.21)%,

1.0 fb−1 : (−0.34± 0.15)%,

where the uncertainties are statistical only.
Some time was spent understanding the change in the central value between the 0.6 fb−1 and 1.0 fb−1

analyses. Several effects contribute. We will step through the changes between the two, looking at the
effect on ∆ACP at each stage.

Reconstruction software check: First and foremost are several statistical effects: the 0.6 fb−1 sam-
ple is not a simple subset of the 1.0 fb−1 sample. The data were reprocessed with a new calibration
and a new version of the reconstruction software. This increased the yields (see Table 2.6), espe-
cially for the D0 → π−π+ sample which dominates the statistical uncertainty. Further, some of
the events previously used were no longer selected47, corresponding to about 15% of the K−K+

47 Note that the selection cuts themselves did not change. However, some events which previously passed the cuts
now fail, and vice versa. This is true even for straightforward quantities like pT: rerunning the construction with a new
calibration will in general give different results, so some events will migrate in or out. This goes double for more complex
quantities, like the vertex fit χ2 and the output of the multivariate particle identification selector, which are especially
sensitive to changes in conditions.
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Table 2.7: Measured asymmetries from the fits of the 1.0 fb−1 analysis using the weighting method,
with statistical uncertainties only. The data are divided into disjoint samples according to the D0

decay mode, the magnet polarity, and the hardware trigger category. (Here TIS indicates that the
event was triggered TIS and was not triggered TOS on the D0.)

Quantity Magnet polarity Hardware trigger decision Observed value [%]
Araw(K−K+) Up TOS −1.35± 0.18
Araw(K−K+) Down TOS −0.45± 0.15
Araw(π−π+) Up TOS −0.73± 0.31
Araw(π−π+) Down TOS −0.08± 0.26
Araw(K−K+) Up TIS −1.72± 0.15
Araw(K−K+) Down TIS +0.12± 0.12
Araw(π−π+) Up TIS −1.43± 0.26
Araw(π−π+) Down TIS +0.34± 0.22

∆ACP Up TOS −0.62± 0.36
∆ACP Down TOS −0.36± 0.30
∆ACP Up TIS −0.30± 0.30
∆ACP Down TIS −0.22± 0.25

sample and 14% of the π−π+ sample. As a starting point and to check that there is no bias
due to the reconstruction software and calibration, we measure ∆ACP with the method of the
0.6 fb−1 analysis on the set of events that were selected by both analyses, first when the events
are reconstructed with the previous code and calibration, and second with the new version. The
two values obtained are (−0.80 ± 0.23)% and (−0.78 ± 0.23)%. Thus, the two versions of the
reconstruction software give fully consistent results when applied to the same set of events. These
are also consistent with the result obtained on the full 0.6 fb−1 sample with the old analysis.

New events in the first 0.6 fb−1: In addition to this overlap sample, there are two groups of new
events added in the 1.0 fb−1 analysis. The first comprises additional events in the first 0.6 fb−1,
with yields of approximately 0.21 × 106 for K−K+ and 0.11 × 106 for π−π+, corresponding to
about 17% and 34% of the yields in the first 0.6 fb−1. The π−π+ sample gains disproportionately
from changes to the RICH calibration, effectively improving the efficiency of the PID cut. The
value of ∆ACP evaluated in the first 0.6 fb−1 with these additional events included, but still using
the methodology of the 0.6 fb−1 analysis, is (−0.55± 0.21)%.

New events in the last 0.4 fb−1: The second set of new events comes from the final 0.4 fb−1 of data
taken in 2011. When ∆ACP is measured on this subsample alone (still using the methodology of
the 0.6 fb−1 analysis), a value of (−0.28± 0.26)% is obtained; and when fitting the full 1.0 fb−1

as a block, a value of (−0.45± 0.16)% is obtained.

Change from kinematic binning to reweighting: One important difference between the old and
the new analysis is a change from kinematic binning to weighting. While this involves quite large
technical changes to how the fits are carried out, it makes essentially no difference to the results:
the value of ∆ACP becomes (−0.45± 0.17)%.

Primary vertex constraint: The other important change is the constraint that the D0 and soft
pion meet at a primary vertex, which improves the δm resolution substantially as noted in Sec-
tion 2.6.3. This in turn gives better background rejection and reduces the statistical uncertainty.
With this change, the measured value of ∆ACP becomes (−0.34 ± 0.15)%, corresponding to a
shift of +0.11%. The expected variation from statistical effects alone has a standard deviation
of 0.05% (evaluated with toy experiments). The change seen is marginally consistent with being
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purely statistical, being just over 2σ. In addition, a systematic effect associated with excluding
events in which the soft pion does not point to the PV is considered (see later), with a size of
0.08%. Taking this into account, the results are consistent with uncertainties.

The pattern that emerges is fairly clear and more than a little disheartening: while the central value
of the first 0.6 fb−1 was intriguingly far from zero, with each addition of new events or improvement in
statistical precision, the central value moves steadily in the direction of zero. While there may still be
a modest level of real CPV present, the behaviour closely tracks what would be seen following a large
statistical fluctuation in a sample whose underlying value is zero.

2.6.5 Systematic uncertainties and checks

A similar set of systematic uncertainties were considered for each of the three analyses, with the
treatment becoming gradually more precise and more sophisticated as data were added. In most cases
there is a substantial statistical component. The uncertainties are summarised in Table 2.8. To avoid
repetition, we focus here on the uncertainties for the most recent analysis. They consist of:

Fiducial cut: The fiducial cuts were loosened (see dashed line in Fig. 2.8). By pushing closer to
the large-asymmetry zone, we test whether we may be affected by its tails. The systematic
uncertainty is assigned based on the difference in the value of ∆ACP measured.

Peaking background: Because we fit only the δm distribution, we are in principle vulnerable to
background components which peak in δm. These can occur from misreconstructed D∗+ decays.
For example, suppose that the decay D∗+ → D0π+, D0 → K−π+π0 occurs and we find all of
the charged tracks successfully but misidentify the D0 daughter π+ as a K+ (and ignore the π0).
Because we found most of the D0 momentum and the soft pion, the value of δm will be roughly
correct (though with a degraded resolution). The D0 candidate mass will be a smooth function
and will not peak in the right place—but some fraction of the events will end up in our signal
window and be selected (since some energy is lost due to the missing π0 and some is gained
back due to the π → K misidentification). In practice the rate of such events is small, due to
the mass and PID cuts, but it is not zero. The systematic uncertainty is assigned by changing
the fit procedure to fit the m(K−K+) and m(π−π+) distributions in the δm signal window
(and, separately, sidebands) instead of fitting δm in the m(h−h+) signal window. The modified
procedure eliminates this class of peaking background entirely. The systematic uncertainty is
assigned based on the difference in the value of ∆ACP measured.

Fit procedure: To check that the result does not depend on the details of the signal shapes and fit
procedure, we remeasure ∆ACP without any fitting whatsoever, instead counting candidates and
using sideband subtraction to obtain signal yields. The systematic uncertainty is assigned based
on the difference found.

Multiple candidates: As discussed in Sec. 2.6.3, for events in which more than one candidate passes
the full selection, we retain all of them. Broadly speaking this is the right thing to do, but it could
conceivably introduce a bias if there were an unknown source of correlated multiple candidates
(e.g. duplicate tracks introduced by some software bug) that were not eliminated by existing
clone-removing tools and which occurred at different rates for D∗+ and D∗−. To check for this,
we apply an algorithm to reject all candidates but one (chosen at random) for each event and
remeasure ∆ACP . The difference found is assigned as a systematic uncertainty.

Kinematic weighting: If the procedure does not equalize the kinematic distributions fully, there
might be residual second-order effects. To bound the scale of this effect, we turn off the reweight-
ing entirely and repeat the measurement: this should give a larger distortion. It’s nonetheless
small in absolute terms and we assign the difference seen as a systematic uncertainty.
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Table 2.8: Systematic uncertainties on ∆ACP for the three analyses. For the 35 pb−1 analysis, the
uncertainty denoted “peaking background” corresponds to the effect of varying the cut on the D0 mass
window.

Source 35 pb−1 0.6 fb−1 1.0 fb−1

Fiducial cut — 0.01% 0.02%
Peaking background 0.20% 0.04% 0.04%
Fit procedure 0.06% 0.08% 0.03%
Multiple candidates 0.13% 0.06% 0.01%
Kinematic binning/weighting 0.01% 0.02% 0.01%
Soft pion χ2

IP — — 0.08%

Total 0.25% 0.11% 0.10%

Soft pion χ2
IP: Events are present in which the soft pion has a large impact parameter χ2 with respect

to the primary vertex48. This is primarily due to multiple scattering of the soft pion. (Secondary
D∗+ could also contribute in principle, but the tight pointing requirement on the D0 means
they are subdominant.) However, the vertex fit constrains the soft pion to originate at the PV.
This could distort the δm spectrum. While the effect is not expected to be large, a systematic
uncertainty is assigned because a dependence of ∆ACP on the soft pion χ2

IP cannot be excluded
with the 1 fb−1 data sample (see Fig. 2.11).

Numerous other crosschecks were carried out, including: monitoring the value of ∆ACP as a function
of the time at which the data were taken; tightening particle identification requrements; using a different
D∗+ selection; testing different fit functions/lineshapes; computing ∆ACP with the previous kinematic
binning procedure; applying muon and electron vetoes to the soft pion and theD0 daughters; validation
of the statistical uncertainties with toy experiments; testing for dependence of the result on the event
occupancy (track and PV multiplicity); and measuring ∆ACP in a large sample of simulated events to
verify that the procedure is unbiased. The analysis is found to be robust against systematic effects.

Including systematic uncertainties, the measured values of ∆ACP were found to be

35 pb−1 : (−0.28± 0.70± 0.25)%,

0.6 fb−1 : (−0.82± 0.21± 0.11)%,

1.0 fb−1 : (−0.34± 0.15± 0.10)%.

A separate measurement of ∆ACP on an independent dataset, in which the D0 is produced in a
semileptonic b-hadron decay, gave a value of (+0.14± 0.16± 0.08)% with 3 fb−1 of data [54].

2.6.6 Conclusions

The current HFAG world average of ∆ACP is (−0.257±0.104)%, consistent with no CP violation at the
1.8% confidence level [24]. This is illustrated in Fig. 2.12. The result on the 0.6 fb−1 sample, which had
a significance of 3.5σ and was in agreement with similar results from CDF [55] and Belle [56], caused
some excitement and seemed to suggest that an unexpected observation of CP violation in charm
might be around the corner. Sadly, it seems to be suffering the fate of many 3σ results: subsequent
measurements suggest that it was a fluctuation. (Optimistically, it might have been a fluctuation not
from zero but from a CP asymmetry of order 10−3.)

One happy consequence was that a good deal of progress was made on the question of CP violation
in charm decays, and in particular what amount and type of direct CPV could be accommodated within
the SM. Previously, predictions had generally been of order 10−3 or less. We now understand that the

48 Formally, this is defined as the difference in the primary vertex fit χ2 when the soft pion is included or excluded.
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Figure 2.12: Combination plot for CP asymmetries in D0 → K−K+, π−π+ by HFAG [24]. The x-axis
gives the indirect CP asymmetry (under the assumption that it is universal among CP eigenstates) and
the y-axis gives the difference in direct CP asymmetry, equivalent to ∆ACP . Diagonal bands, such as
that for the measurement presented here, arise because the observable used is also sensitive to indirect
CPV (see Sec. 2.6.1).

uncertainties on these estimates are larger than had been realised: QCD power corrections can enhance
the penguin contribution (eq. 2.9) and thereby increase the CP asymmetry (eq. 2.17), and while the
power corrections are not expected to be huge, there is no fundamental reason why they could not be.
Indeed, the case of D0 → K−K+ and D0 → π−π+ is a special one: if both decays were tree-dominated,
one would naively expect the branching fraction for π−π+ to be larger than that for K−K+, due to the
difference in phase space. In fact the opposite is true, with B(D0 → K−K+)/B(D0 → π−π+) ' 2.8.
An enhanced penguin contribution would naturally produce such an effect, and if it is interpreted as
being solely due to penguin enhancements then one would expect a value of ∆ACP of several per-
mille [57, 58, 53, 38]. Thus, the current central value could easily be accommodated within the SM.
Improved measurements of ∆ACP are still worth pursuing experimentally, but absent a breakthrough
in theoretical engineering it will not be possible to uncover new physics in this mode. By contrast,
modes with ∆I = 3/2 are much less susceptible to SM contamination and may yet reveal NP.

2.6.7 Afterword

After this thesis had been written, a new LHCb measurement of ∆ACP was completed on the full
3 fb−1 sample [59]. I worked on this analysis too, but more as a consultant than as one of the principal
analysts. The result is: ∆ACP = (−0.10± 0.08± 0.03)%, fully consistent with zero.

2.7 Other analyses of interest

I omit results from other charm CPV and mixing analyses I have worked on in the interest of brevity,
but discerning readers may be interested in the following:

• A measurement of the prompt charm production cross-section at LHCb at
√
s = 7 TeV (Ref. [39],

36



in collaboration with several institutions)

• A measurement of the D± production asymmetry at LHCb (Ref. [60], in collaboration with a
student at Oxford)

• A search for CP violation in D+ → φπ+ and D+
s → K0

Sπ
+ (Ref. [45], in collaboration with a

student at Oxford)

• A measurement of the charm mixing parameters in D0 → K0
Sπ

+π− using a novel, model-
independent method (Ref. [61], in collaboration with Cambridge, Warwick, and a student at
Oxford)

2.8 Summary and outlook

At the time of writing, LHCb had taken 3 fb−1 of data at 7–8 TeV and had begin taking data at 13 TeV.
The charm cross-section, already large in the 2011–2012 data, has increased by a factor of roughly 2
after moving to 13 TeV [62]. On top of this, improvements in the software trigger architecture will
permit a higher efficiency for charm data (or, at least, for a target list of high-sensitivity modes).

With the Run 1 data, LHCb has made precise measurements of many key charm observables,
notably mixing [26, 63, 61], indirect CP violation [26, 31, 63, 64], and studies of direct CPV in two-body
decays [54, 65, 66, 60] and multi-body decays [67, 68, 69, 70]. For direct CP violation, the uncertainties
are already reaching the per-mille level in some modes, and others will surely follow. This is both very
exciting—these are world-leading measurements, driving into regions of parameter space never before
probed where new physics may be lurking—and, at the same time, a little disappointing: we have
already swept out much of the parameter space where a direct CPV discovery would indicate new
physics. Attention in searches for direct CPV will need to turn to modes where the SM contribution is
small, such as doubly-Cabbibo-suppressed decays or ∆I = 3/2 transitions—though these will be more
tricky experimentally. The situation is rosier for indirect CPV searches, where, despite again having
made major gains in sensitivity, we are still some distance from the SM.
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Chapter 3

Heavy baryon spectroscopy

In this chapter I will present results from recent analyses of heavy baryon spectroscopy that I carried
out at LHCb. First, I will give a brief overview of what is expected for low-lying heavy baryon states.
I will then describe a search for Ξ−b resonances decaying strongly to the final state Ξ0

b π
− in Sec. 3.2

and a search for the doubly heavy baryon Ξ+
cc decaying weakly to the final state Λ+

c K
−π+ in Sec. 3.3.

3.1 Introduction

This section is heavily based on the text I wrote for the “Charmed baryon spectroscopy and decays”
section of the The Physics of the B Factories book [13].

3.1.1 Overview

The spectroscopy of heavy baryons is beautiful and intricate. With three quarks there are numerous
degrees of freedom, giving rise to many more states than in the meson sector. At the same time,
the large difference in mass between the heavy quark and the light quarks provides a natural way
to classify and understand these states: Heavy Quark Effective Theory (HQET) [71, 72, 73]. For
pedagocial purposes we will focus in this section on charmed baryons, which are more thoroughly
explored experimentally than beauty baryons. The spectrum of known singly charmed states can be
thought of in three broad regimes: the ground states, which are a vindication of the constituent quark
model; the low-lying excited states, which are described well by HQET; and higher excited states,
where the situation is murkier.

The naming convention for charmed and beauty baryons is to take a light baryon, replace one or
more s quarks with c (or b) quarks, and add a c (or b) subscript for every quark replaced. Isospin is
unchanged. For example, Λ denotes an sud baryon with isospin zero and so Λ+

c denotes a cud baryon
with isospin zero. Likewise, Ξ0

c denotes a csd baryon and Ξ+
cc denotes a ccd baryon. A summary

of charmed baryon states is given in Table 3.1. Following this convention, the experimentally known
C = 1 baryon states1 are summarized in Fig. 3.1. Spin-parity assignments follow the PDG [14]; note
that in many cases these are assigned based on quark model expectations rather than measurements.

3.1.2 Quark model for ground states

In the constituent quark model [74, 75, 76], baryons composed of u, d, s, c quarks can be classified
into SU(4) multiplets according to the symmetry of their flavour, spin, and spatial wavefunctions.
All states in a given SU(4) multiplet have the same angular momentum J , and parity P , but can
have different quark flavours. For excited states with multiple units of orbital angular momentum the
number of possible multiplets becomes large, but for the ground states the picture is much simpler.

1 Strongly-decaying states are distinguished by their mass following the PDG convention, e.g. Ξc(2645). The Ξ ′c and
Ω∗c do not decay strongly and are therefore not labelled by their mass, although the latter is sometimes referred to as
the Ωc(2770) in the literature.
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Table 3.1: Baryon flavour states, isospin, and quark content. The symbol q denotes a u or d quark.
Baryons with beauty are not included for brevity, but follow a similar pattern.

Symbol I Content
N (p,n) 1/2 udq
∆ 3/2 qqq
Λ 0 sud
Σ 1 sqq
Ξ 1/2 ssq
Ω 0 sss
Λc 0 cud
Σc 1 cqq
Ξc 1/2 csq
Ωc 0 css
Ξcc 1/2 ccq
Ωcc 0 ccs
Ωccc 0 ccc
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Figure 3.1: Summary of the known charmed baryon states. The spin-parity JP is given, or marked
“?” if not known. States whose existence is unclear (one-star rating in PDG) are marked with a dashed
line.
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Table 3.2: Summary of the ground state singly charmed baryons. S denotes a wavefunction that is
fully symmetric under interchange of any two quarks; MS and MA denote mixed overall symmetry
with interchange of the two light quarks being symmetric or antisymmetric, respectively; and A would
denote a fully antisymmetric wavefunction.

Baryon Diquark Diquark I Diquark jp Baryon flavour sym. Baryon spin sym. Baryon JP

Λc qq 0 0+ MA MA 1/2+

Σc qq 1 1+ MS MS 1/2+

Σ∗c qq 1 1+ S S 3/2+

Ξc sq 1/2 0+ MA MA 1/2+

Ξ ′c sq 1/2 1+ MS MS 1/2+

Ξ∗c sq 1/2 1+ S S 3/2+

Ωc ss 0 1+ MS MS 1/2+

Ω∗c ss 0 1+ S S 3/2+

This framework is not exact—different states with the same conserved quantum numbers will mix, and
baryons are not pure three-quark objects—but it works remarkably well for the ground states.

Quarks are fermions, so the baryon wavefunction must be overall antisymmetric under quark inter-
change2. Baryons are color singlets, and so have an antisymmetric color wavefunction. In the ground
state, the orbital angular momentum L is zero (S-wave) and the spatial wavefunction is symmetric.
Therefore, the product of the spin and flavour wavefunctions must also be symmetric for ground-state
baryons. There are two ways this can be accomplished: both wavefunctions can be fully symmetric,
or both can have mixed symmetry with the product being symmetric.

In concrete terms, we can consider a singly charmed baryon to consist of a heavy c quark and a
light diquark with spin-parity jp. Assuming isospin symmetry and letting q denote a u or d quark,
there are four possibilities for the flavour content of the diquark:

• qq with isospin 0 (flavour antisymmetric);

• qq with isospin 1 (flavour symmetric);

• sq with isospin 1/2 (either);

• ss with isospin 0 (flavour symmetric).

These correspond to the Λc, Σc, Ξc, and Ωc states, respectively. The diquark wavefunction must be
antisymmetric under quark interchange. Its color wavefunction is antisymmetric and in the ground
state its spatial wavefunction is symmetric, so it may be either flavour-symmetric and spin-symmetric
(jp = 1+) or flavour-antisymmetric and spin-antisymmetric (jp = 0+). Combining the diquark with
the charm quark gives rise to the possible states set out in Table 3.2 and illustrated in Fig. 3.2. Those
with JP = 1/2+ are all members of the same multiplet as the proton, and those with JP = 3/2+

are all members of the same multiplet as the ∆ and Ω (Fig. 3.3). Note that there is a second isospin
doublet of Ξc states with JP = 1/2+, denoted Ξ ′c.

The constituent quark model predicts relations between the masses of these states as well as their
existence and quantum numbers. These were expressed for the light baryons as sum rules (see Ref. [77,

2 Strictly, it only needs to be antisymmetric under interchange of equal-mass quarks, but in order to build the model
we assume SU(4) is a good symmetry.

40



Σ0
c Σ+

c Σ++
c

Ξ′0
c Ξ′+

c

Ω0
c

Ξ0
c Ξ+

c

Λ+
c

j = 0, JP = 1
2
+

j = 1, JP = 1
2
+

Σ∗0
c Σ∗+

c Σ∗++
c

Ξ∗0
c Ξ∗+

c

Ω∗0
c

j = 1, JP = 3
2
+
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78]):

(mN +mΞ)/2 = (3mΛ +mΣ)/4, (3.1)
mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ , (3.2)
mΣ∗ −mΣ = mΞ∗ −mΞ , (3.3)

of which the first is the famous Gell-Mann-Okubo rule. These can be thought of as expressing the
mass as the sum of the valence quark masses plus a hyperfine (spin-spin) coupling. This can be
parameterized in various ways3, such as [80]:

M = A+B′
∑
i

∆mi + C ′
∑
i>j

si · sj (mq −∆mi −∆mj) , (3.4)

where A, B′, and C ′ are constants, mq is the mass of a light quark, ∆mi = mi − mq is the mass
difference of the ith quark compared to mq, and si is the spin of the ith quark. When evaluated for the
ground state baryons, the sum rules given in Eq. 3.1–3.3 are recovered. This simple model can also
be extended to baryons with heavy quarks. To illustrate its effectiveness, we note that the spectrum
and decay pattern of singly charmed baryon ground states was mapped out in an essentially correct
way within about three months of the discovery of charm but it took three decades before all of the
states were seen experimentally. The last to be discovered was the Ω∗c . The equal-spacing mass rule
still holds for the singly charmed J = 3/2+ multiplet:

mΩ∗c −mΞ∗c = mΞ∗c −mΣ∗c , (3.5)

but with additional flavours the hyperfine terms become more complicated so the analog of Eq. 3.3 is:

mΩ∗c −mΩc = 2
(
mΞ∗c −mΞ′c

)
−
(
mΣ∗c −mΣc

)
. (3.6)

Substituting in the current world-average experimental masses for states other than the Ω∗c , one would
calculate mΩ∗c to be approximately 2774 MeV/c2 from Eq. 3.5 or 2770 MeV/c2 from Eq. 3.6. These
simple estimates are in remarkably good agreement with the observed mass, 2765.9± 2.0 MeV/c2 [14].

3.1.3 Higher states

Baryons can be given orbital (l) or radial (k) excitations. Since they are three-body systems there are
two degrees of freedom in each case (denoted ρ, λ). For baryons with one heavy quark (mass M) and
two light quarks (mass m), a natural way to specify these is to divide the system into a light diquark
and the heavy quark. Taking a simple potential model based on the harmonic oscillator, the energy
levels are given by [81]:

E =

√
K

m
(3 + 2lρ + 4kρ) +

√
K

µ
(3 + 2lλ + 4kλ) , (3.7)

where K is a constant describing the potential and µ = (2/3M + 1/3m)−1 ≈ 3m in the heavy quark
limit. Thus, the ρ excitations (within the diquark) require roughly

√
3 times as much energy as the

corresponding λ excitations (between quark and diquark). Therefore the lowest-lying excitations are
those with lλ = 1 and the other quantum numbers zero, i.e. L = 1. (Within this band there will
be further splitting, e.g. due to spin-spin and spin-orbit couplings.) The second band will consist of
two groups of states that have comparable energy: those with lλ = 2 (L = 2) and those with kλ = 1
(L = 0), with the other quantum numbers being zero. Beyond the second band the degeneracy grows
further, but we lack useful experimental data in this region in any case.

3 See also [79] for a nice review with a different hyperfine interaction term.
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We can take this quark-diquark separation one step further for singly heavy baryons by considering
the heavy quark to be essentially a spectator and treating the diquark as a distinct object with its
own conserved quantum numbers jp that is the main actor in decays (HQET: see Ref. [73]). As a
consequence, some transitions that would otherwise be allowed are now forbidden. To take a concrete
example4, when the decay Λ+

c (2880) → Σc(2455)π was first observed [82], the analysts wished to see
if it was consistent with the state (JP , jp) = (1/2−, 0−). If we consider only the overall JP , an S-wave
(L = 0) strong decay of the heavier state to the lighter state plus a pion, (1/2− → 1/2+ 0−), would
be allowed. However, conservation of angular momentum forbids the corresponding S-wave diquark
transition (0− → 1+ 0−). The interpretation that the state is purely (1/2−, 0−) is therefore disfavoured
(though it could have been an admixture of that state and some other). The HQET constraints thus
have a concrete effect on the decay pattern of excited states, and imply that some will be narrow.

All this said, it is important to bear in mind that states which share all conserved, external quantum
numbers (J , P , I, C, S) can mix. Therefore we should be careful when interpreting observed resonances
as specific expected states, particularly for higher excitations.

3.2 Search for Ξ−b resonances

This section summarises the analysis published in [84].

3.2.1 Introduction

As explained in Sec. 3.1.2, baryons form multiplets according to the symmetry of their flavour, spin,
and spatial wavefunctions. The pattern of the ground states—that is, those that are neither orbitally
nor radially excited—is straightforward to understand and was set out for charm in Sec. 3.1.2. The
equivalent b-baryon states should follow a pattern that is broadly similar, but differs in detail (since
the splittings depend upon the heavy quark mass). As of 2014, several of the ground states had been
discovered including all of the weakly decaying states (Λ0

b , Ξ
−
b , Ξ

0
b , Ω

−
b ) and the charged Σb states.

In addition, CMS had observed a peak in the Ξ−b π
+ mass spectrum, interpreted as the JP = 3/2+ Ξ0

b

state [85]. No studies with comparable sensitivity had been done for the Ξ0
b π
− spectrum. In short,

this was one of the relatively rare textbook examples where the existence and properties of previously
undiscovered states could be foreseen and tested5.

In the charm system, the JP = 3/2+ Ξ∗c states decay strongly to Ξcπ, but the JP = 1/2+ Ξ ′c are
below threshold for strong decay, with m(Ξ ′+c ) −m(Ξ+

c ) = 108 ± 3 MeV/c2 and m(Ξ ′0c ) −m(Ξ0
c ) =

107 ± 3 MeV/c2 [14]. Instead, they decay electromagnetically via Ξ ′c → Ξcγ. If the analogous Ξ ′b
states also decay electromagnetically, they will be hard to observe at LHCb: we would need to find
and measure a soft photon from the primary vertex, for which the background would be vast. By
contrast, strong decays to final states above but close to the Ξbπ± threshold would be easy to observe
(similar to the D∗+ → D0π+ decay used in Sec. 2.6). It was not clear a priori whether the Ξ ′−b state
would be above or below threshold: there were a variety of theory predictions, some above threshold,
some below threshold, and others essentially at threshold [81, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96].
Further, nearly all of the predictions were for the average mass of the isospin doublet which, as we will
see shortly, is not the whole story.

We do have two key pieces of experimental input. The first is the mass of the state seen by CMS,
which we will assume to be the Ξ∗0b . They reported that

m(Ξ∗0b )−m(Ξ−b )−m(π+) = 14.84± 0.74± 0.28 MeV/c2. (3.8)

4 This example is based on the discussion of the decay Λ+
c (2880)→ Σc(2455)π in Ref. [82]. The JP of the state were

subsequently measured by Belle to be 5/2+ [83].
5 Full disclosure: Before looking at the data, I guessed incorrectly that the Ξ ′−b would be below threshold and that

only one resonance, the Ξ∗−b , would be seen in the Ξ0
bπ
− spectrum. But hindsight makes for better textbooks.
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Mass splittings

24

Let's put all of this information & assumptions together:

Ξb−Ξb0

6±2 MeV

6±1 MeV

6±2 MeV

154±1 MeV
(CMS)

≈20 ± 5 MeV  
(theory, my naive average)

Ξbʹ0 → Ξb− π+ :  
134 ± 5 MeV
⇒ Forbidden? 

Ξbʹ− → Ξb0 π− :  
146 ± 6 MeV
⇒ Allowed? 

Approximate uncertainties
Figure 3.4: Expected spectrum of the low-lying Ξb states, under the assumptions outlined in the text.
The mass differences are not to scale.

The second is the isospin splitting between the Ξ−b and Ξ0
b weakly decaying ground states, measured

recently by LHCb to be [97]

m(Ξ−b )−m(Ξ0
b ) = 5.92± 0.64 MeV/c2, (3.9)

is in good agreement with the predicted value of 6.24± 0.21 MeV/c2 [86]. We would also like to know
the isospin splittings for the Ξ ′b and Ξ∗b doublets. These should be roughly similar, but because the
hyperfine interaction term differs between the three doublets (eq. 3.4), the isospin splittings will also
differ and are likely to be a little smaller for the spin-excited states. As an approximation, we will
guess that the splitting is 6± 2 MeV/c2 for Ξ ′b and for Ξ∗b .

We need one more piece of information: the expected splitting between the Ξ∗b and Ξ ′b doublets.
Theory estimates of this difference are more robust (and more consistent) than the those for the
full difference between the spin-excited states and the weakly decaying ground states, typically falling
between 10 and 30MeV/c2. We will make a naive average, take it to be 20±5 MeV/c2. Putting together
these numbers we arrive at the pattern of masses shown in Fig. 3.4, in which the Ξ ′−b → Ξ0

b π
− decay

is a few MeV/c2 above threshold while the Ξ ′0b → Ξ−b π
+ decay is a few MeV/c2 below threshold—

though in both cases the difference is only about 1σ. In short, it would be quite plausible for the decay
Ξ ′−b → Ξ0

b π
− to be kinematically allowed and for the decay Ξ ′0b → Ξ−b π

+ to be forbidden (consistent
with the lack of such a peak in CMS’s paper).

3.2.2 Reconstruction and selection

We reconstruct (Ξ0
b π
−) candidates via the following decay chain: Ξ0

b → Ξ+
c π
−, Ξ+

c → pK−π+. As for
the D∗+ decays discussed in Sec. 2.6, the first π− is produced at the PV together with the Ξ0

b and is
referred to as the soft pion. These Ξ0

b and Ξ+
c decay modes had been studied previously at LHCb [98],

and the selection used for this search was heavily based on that6 and other previous analyses, notably
6 ... with one important difference: as well as a traditional cut-based selection, Ref. [98] used a Boosted Decision Tree

multivariate selector to further improve the signal purity. A multivariate selector is not used in this analysis.
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those described in Sec. 3.3 (for the baryon selection) and Sec. 2.6 (for the soft pion and related cuts).
Candidates were required to pass the trigger, and specifically to pass an inclusive b-hadron selection
in the higher-level software trigger. Additional cuts were applied in a centrally run preselection and in
a subsequent offline selection. At each stage of the decay chain, the daughter particles were required
to form a common vertex with good fit quality, with the top-level Ξ0

b π
− vertex being constrained in

the fit to be consistent with an event PV. Cuts on momentum, track quality, and topology/pointing
are applied to reduce combinatorial background, and the decay vertices of the Ξ+

c and Ξ0
b are required

to be displaced from all PVs. The soft pion and the Ξ0
b are required to come from the same PV.

Particle identification requirements are applied to the final state tracks to remove background from
misidentified particles. In addition, Ξ+

c candidates are vetoed if they are kinematically consistent with
being misidentified D+ → K−K+π+, D+

s → K−K+π+, D+ → K−π+π+, or D∗+ → D0(K−K+)π+

decays7. Lastly, we apply invariant mass cuts to the Ξ+
c and Ξ0

b candidates. The Ξ+
c mass is required

to lie within 20MeV/c2 of its nominal value (about ±3σ), and the Ξ0
b is required to fulfil8

5765 < mcand(Ξ0
b )−mcand(Ξ+

c ) +mΞ+
c
< 5825 MeV/c2,

where mcand and mΞ+
c

refer to the candidate and world-average masses. This window corresponds to
approximately ±2σ. Lastly, we impose a broad requirement on the mass difference, which we define as

δm ≡ mcand(Ξ0
b π
−
s )−mcand(Ξ0

b )−mπ− ,

in analogy to what was done for the D∗+. The fit region is 0 < δm < 45 MeV/c2. After the full
selection, we find that there are on average 1.15 candidates in this region per event. Similarly to the
D∗+, such multiple candidates are predominantly due to a single Ξ0

b being paired with more than one
soft pion.

For those (Ξ0
b π
−) candidates passing the selection (except the Ξ0

b mass cut), the Ξ0
b mass spectrum

is shown in the left-hand plot of Fig. 3.5. The Ξ0
b mass peak can be seen clearly. The δm distribution

is shown in the right-hand plot of the same figure For the right-sign Ξ0
b π
− data in the Ξ0

b mass signal
window, two peaks are clearly visible, one just below 4MeV/c2 and one around 24MeV/c2. Two control
samples in which only background is expected are also shown: right-sign data in the Ξ0

b mass sidebands,
and wrong-sign Ξ0

b π
+ data in the Ξ0

b mass signal window. Neither of the background samples exhibits
any peaking structure.

3.2.3 Fit to the δm spectrum

At this point it is clear that we have two highly significant peaks. We now need to measure their
properties and check that they are consistent with what we would expect for resonances. To do this,
we need to fit the δm spectrum. Our model will consist of the two peaks plus an empirical background
function. In general, the observed shape of a resonance may be described as its natural lineshape
convolved with a resolution function.

To model the resolution, we generate and fit large samples of signal MC in which Ξ−b resonances are
included with δm values of 3.69 MeV/c2 and 23.69 MeV/c2, chosen to correspond to the two peaks seen
in data. The natural widths Γ are set to negligible values in the simulation so that the reconstructed
width is purely due to resolution effects. We parameterise it as the sum of three Gaussian functions
with independent means and fit the simulated data. The general scale of the resolution can be seen
from the weighted average of the σ of the three Gaussians, and is 0.21 MeV/c2 for the lower-mass
peak and 0.54 MeV/c2 for the higher-mass peak. In the fits to data described below, the resolution
function will be fixed to that obtained from the fits to simulation, and small corrections will be applied

7 These vetoes would probably be overkill if considering things purely from the point of view of signal significance,
but when aiming to establish new states we want to be really sure that we do not have some pathological peaking
background.

8 This construction effectively takes the Ξ+
c resolution out of the Ξ0

b mass, improving the resolution.
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Figure 3.5: Spectra of selected Ξ0
b π
−
s candidates. Left: The distribution of Ξ0

b masses for Ξ0
b π
−
s

candidates passing the full selection apart from the Ξ0
b mass requirement. Left inset: The subset of

candidates that lie in the δm signal regions of 3.0 < δm < 4.2 MeV/c2 and 21 < δm < 27 MeV/c2.
Right: The δm spectra after the full selection, showing right-sign candidates in the Ξ0

b mass signal
window (points with error bars), wrong-sign candidates with the same selection (red histogram), and
right-sign candidates in the Ξ0

b mass sidebands (blue histogram). Right inset: Detail of the region
2.0–5.5 MeV/c2.

to the masses corresponding to the offsets in the resolution functions seen in the simulation. The
combinatorial background will be described by an empirical threshold function of the form

f(δm) =
(

1− e−δm/C
)

(δm)A,

where A and C are freely varying parameters determined in the fit to the data.
We now turn to the natural lineshapes of the peaks. Interpreting the peaks as the Ξ ′−b and Ξ∗−b

states, the transitions would both be P -wave9. So in an initial unbinned maximum likelihood fit,
each peak is described using a P -wave relativistic Breit-Wigner (RBW) line shape [99] with a Blatt-
Weisskopf barrier factor [100], convolved with the resolution function obtained from simulation. The
natural width of the lower peak is found to be consistent with zero, i.e. the peak is dominated by the
resolution, so its natural width is fixed to zero in the nominal fit10. We set an upper limit on the
width peak using ensembles of toy experiments with the same parameters as in data, but with natural
widths ranging from 0.01 to 0.12MeV. The upper limit is taken to be the value of Γ for which a width
equal to or greater than that obtained in data is observed in 95% of the toy experiments. The resulting
upper limit is Γ(Ξ ′−b ) < 0.08 MeV at 95% confidence level (CL).

The nominal fit with the lower width fixed to zero is shown in Fig. 3.6. The fitted yields in
the lower- and higher-mass peaks are 121 ± 12 and 237 ± 24 events, with statistical significances
in excess of 10σ. With statistical uncertainties only, we measure δm(Ξ ′−b ) = 3.653 ± 0.018 MeV/c2,
δm(Ξ∗−b ) = 23.96±0.12 MeV/c2, and Γ(Ξ∗−b ) = 1.65±0.31 MeV. The natural width of the higher-mass
peak is inconsistent with zero: the change in likelihood when it is fixed to zero corresponds to a p-value
of 4× 10−14 using Wilks’s theorem [101].

9 The JP transitions of Ξ ′−b → Ξ0
bπ
− and Ξ∗−b → Ξ0

bπ
− are 1

2

+ → 1
2

+
0− and 3

2

+ → 1
2

+
0−. The parity changes so

we require an odd-numbered orbital angular momentum L. In both cases, the only legal solution is L = 1.
10 We use a numerical method to convolve the natural lineshape and the resolution function. This becomes unstable

for very small values of Γ—crudely speaking, when the step size of the convolution is not small compared to Γ—so it is
better simply to declare the width to be zero and use only the resolution function to describe the data.
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Figure 3.6: Fitted spectra of selected Ξ0
b π
−
s candidates. The points with error bars show right-sign

candidates in the Ξ0
b mass signal region, and the hatched histogram shows wrong-sign candidates with

the same selection. The curve shows the nominal fit to the right-sign candidates. Inset: detail of the
region 2.0–5.5 MeV/c2.

3.2.4 Systematic uncertainties and cross-checks for the δm fit

The measurements of the mass differences and the Ξ∗−b width are the main quantitative results of
the analysis, and their statistical uncertainties are small: all sub-MeV. We therefore need to evaluate
the systematic uncertainties carefully. Happily, the low background in our channel and the excellent
calibration and precision of the LHCb detector make this analysis robust against systematic effects.
The uncertainties assigned are summarised in Table 3.3 and described below.

Simulated sample size: The resolution shapes and mass offset corrections are obtained with signal
MC. The statistical errors from the fits to the MC samples are assigned as systematic uncertain-
ties.

Multiple candidates: We go back and filter the dataset such that in events where there is more than
one candidate in the fit range 0–45MeV/c2 after the selection, we choose one at random to retain
and reject the rest. Both signals remain highly significant. The changes in the fitted parameters
are assigned as systematic uncertainties.

Resolution model: We use signal MC to model the resolution function. However, it might not
describe the resolution in data fully. To test this, we inflate the resolution width by a scale
factor. When this factor is floated as a free parameter in the fit11, it is found to be 1.03± 0.11,
consistent with 1. We repeat the fit with the scale factor fixed to 1.1, based on estimates in
previous LHCb analyses and from the D∗+ control sample (see below), and assign the changes
in the fitted parameters as systematic uncertainties.

11 Remember that we fixed the natural width of the lower peak to be zero, i.e. it’s a pure resolution function. This is
where the main constraint on the scale factor comes from. Since the natural width of the upper peak is floated, we have
much less of a constraint from it.
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Background description: We try a different background function, specifically a first-order polyno-
mial multiplied by the two-body phase space function. The changes in the fitted parameters are
assigned as systematic uncertainties.

Momentum scale: The LHCb reconstruction software includes momentum scale corrections chosen
to align the masses of several hadrons with their PDG values. Based on the agreement obtained,
the tracking group estimates the systematic uncertainty on the momentum scale to be 3×10−4; we
propagate this effect to our mass and width measurements and assign systematic uncertainties
accordingly. To check that this is realistic for an analysis like ours working with small mass
differences, we validate it on a large sample of D∗+ → D0(K−K+)π+ decays used previously for
the ∆ACP analysis described in Sec. 2.6. We follow the same procedure, including fitting large
MC samples to determine the resolution function and mass corrections, to measure the D∗+ mass
difference. We then compare it to a recent BABAR measurement [102, 103] and find a difference
of 5.9 ± 0.34 ± 0.37 ± 1.75 ± 4 keV/c2, where the errors are our data statistical uncertainty, our
MC statistical uncertainty, the BABAR uncertainty, and our estimated mass scale uncertainty,
respectively; this means that we are 1.3σ from the BABAR result, implying that our momentum
scale uncertainty is sensible.

RBW spin and radial parameter: The signal lineshape model used for the Ξ∗−b required us to
assume an angular momentum L, and in addition the barrier factor needs a value for a radius
parameter R. In the baseline fit, we took L = 1 and R = 3 GeV −1. We vary these, trying
R = 1 GeV −1, R = 5 GeV −1, L = 0, and L = 2. The largest changes in the fitted parameters
are assigned as systematic uncertainties. As expected, these have negligible effect on the Ξ ′−b
since the lineshape model includes only the resolution.

Taking these into account, we obtain

δm(Ξ ′−b ) = 3.653± 0.018± 0.006 MeV/c2,

δm(Ξ∗−b ) = 23.96± 0.12± 0.06 MeV/c2,

Γ(Ξ∗−b ) = 1.65± 0.31± 0.10 MeV,

Γ(Ξ ′−b ) < 0.08 MeV at 95% CL.

Combining these with the measurement of m(Ξ0
b ) = 5791.80 ± 0.50 MeV/c2 obtained previously at

LHCb [98], the masses of these states are found to be

m(Ξ ′−b ) = 5935.02± 0.02± 0.01± 0.50 MeV/c2,

m(Ξ∗−b ) = 5955.33± 0.12± 0.06± 0.50 MeV/c2,

where the uncertainties are statistical, systematic, and due to the m(Ξ0
b ) measurement, respectively.

Further cross-checks were carried out, including splitting the data by magnet polarity, splitting the
data into Ξ0

b π
− and Ξ+

b π
+ samples, using a symmetric resolution function, imposing a stricter trigger

requirement, fitting the wrong-sign control sample, and fixing the natural width of the lower peak to a
non-zero value. Consistent behaviour was seen throughout. In addition, other decay modes of the Ξ0

b

were tested. These do not give such clean, Ξ0
b efficient signals (else we would have used them instead!)

but we do nonetheless find complementary evidence for the resonances as shown in Table 3.4. The data
from Ξ0

b → Λ+
c K

−π+π−, Λ+
c → pK−π+, the cleanest of the crosscheck modes, are shown in Fig. 3.7.

3.2.5 Angular analysis

At this point we can be reasonably confident in saying that we have found two new states. Their
masses and widths are consistent with what we would expect for the Ξ ′−b and Ξ∗−b states, which in
the quark model have JP of 1/2+ and 3/2+. For both, we reconstruct them through the decay chain:
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Table 3.3: Systematic uncertainties, in units of MeV/c2 (masses) and MeV (width). The statistical
uncertainties are also shown for comparison.

Source δm(Ξ ′b) δm(Ξ∗b ) Γ(Ξ∗b )

Simulated sample size 0.002 0.005
Multiple candidates 0.004 0.048 0.055
Resolution model 0.002 0.003 0.070
Background description 0.001 0.003 0.019
Momentum scale 0.003 0.014 0.003
RBW spin and radial parameter 0.000 0.023 0.028
Sum in quadrature 0.006 0.055 0.095
Statistical uncertainty 0.018 0.119 0.311

Table 3.4: Statistical significances of the signals. For the nominal mode, the masses of the resonances
are free parameters in the fit, as is the natural width of the Ξ∗−b . For the other modes, the masses and
widths are fixed in the fit.

Ξ0
b decay mode Significance for Ξ ′−b Significance for Ξ∗−b

Ξ0
b → Ξ+

c π
−, Ξ+

c → pK−π+ (nominal) > 10σ > 10σ
Ξ0
b → Λ+

c K
−π+π−, Λ+

c → pK−π+ 6.4σ 4.7σ
Ξ0
b → D0pK−, D0 → K−π+ 4σ 2σ

Ξ0
b → D+pK−π−, D+ → K−π+π+ 3σ 3σ
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Figure 3.7: The crosscheck mode Ξ0
b → Λ+

c K
−π+π−. The left plot shows the unfitted mass spectrum

for right-sign Ξ0
b π
− in the m(Ξ0

b ) signal window (points), wrong-sign Ξ0
b π
− (red histogram), and the

right-sign mass sidebands (blue histogram). The right plot shows a fit to the same right-sign data.
In the fit, the masses and widths are fixed to the values obtained in the fit to the main Ξ0

b → Ξ+
c π
−

sample. The statistical significances are 6.4σ for the lower peak and 4.7σ for the upper peak (from
Wilks’ theorem).
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Table 3.5: Results of the fits to the background-subtracted, efficiency-corrected cos θh distribution.

Peak Fitted a χ2/NDF for best-fit a χ2/NDF for a = 1

Lower 0.89± 0.11 9.4/7 10.3/8
Upper 0.88± 0.11 3.1/7 4.4/8

Ξ
(′,∗)−
b → Ξ0

b π
−, Ξ0

b → Ξ+
c π
−. In the quark model, the JP of both the Ξ0

b and the Ξ+
c is 1/2+.

Assuming that this is correct, we can put some constraints on the expected angular distributions12.
We define the decay helicity angle θh as the angle between the 3-momentum of the Ξ0

b in the Ξ(′,∗)−
b

rest frame and the 3-momentum of the Ξ+
c in the Ξ0

b rest frame. This quantity is Lorentz-invariant
and can be calculated via

cos θh =
(p · d) (q · q)− (p · q) (q · d)√

[(p · q) (p · q)− (q · q) (p · p)] [(q · d) (q · d)− (q · q) (d · d)]
, (3.10)

where p, q, and d are the 4-momenta of the Ξ(′,∗)−
b , the Ξ0

b , and the Ξ+
c , respectively. (Since cos θh is

Lorentz-invariant we can evaluate these in any frame, as long as we use the same frame for all three—so
we will simply use the lab frame.)

We consider a decay chain JP → 1
2

+
0−, 1

2

+ → 1
2

+
0−. For J = 1

2 the distribution the angular
distribution is uniform (flat in cos θh). For higher spins the distribution in cos θh is in general a
polynomial of order (2J − 1). The coefficients of the polynomial are determined by the elements of the
density matrix ρij . For the case that the matrix is diagonal, the function will be even (symmetric about
cos θh = 0, i.e. only even powers of cos θh survive). So if we see a polynomial of order 2n then we know
that J ≥ (n + 1)/2. However, if the Ξ(′,∗)−

b is unpolarized then the diagonal matrix elements will be
equally populated and all of the higher-order terms will cancel, leaving a flat distribution independent
of J . So in the quite likely scenario that the state is produced unpolarized or mostly-unpolarized we
will not be able to say anything about its quantum numbers—but if we do see a non-flat distribution
we will be able to exclude lower spins.

For each of the two peaks, we define a narrow window and sideband regions in δm, and from them
obtain the background-subtracted, efficiency-corrected cos θh distribution. This gives us a background-
subtracted, efficiency-corrected distribution. We normalize this, setting the sum of all bin contents to
one, and fit it with a function of the form

f(cos θh) ∝ a+ 3(1− a) cos2 θh (3.11)

where the factor of 3 is for normalisation. A value of a differing from 1 would indicate J > 1/2. The
results of the fits are given in Table 3.5 and plotted in Fig. 3.8. For both states the distribution is
consistent with flat. This gives us only weak constraints: it is consistent with the lower peak being a
J = 1/2 state and the upper peak being an unpolarized or weakly polarized J = 3/2 state, but other
J are not excluded.

3.2.6 Relative production rates

Finally, we measure the production rates of the two resonances relative to that of the weakly decaying
ground state, selected inclusively and passing the same Ξ0

b selection criteria as the signal sample.
Because of bandwidth restrictions in the centrally run preselection, not all events could be retained
for the Ξ0

b normalisation mode. Instead, 10% of the candidates were randomly selected and retained
12 For more background, see Ref. [83] in which Belle applied a similar analysis technique to the decay Λc(2880) →

Σc(2455)π, Σc(2455)→ Λcπ; Ref. [104] in which BABAR examined the decay Ξ0
c → Ω−K+, Ω− → ΛK−; Ref. [105] in

which BABAR examined the decay Λ+
c → Ξ(1530)0K+, Ξ(1530)0 → Ξ−π+; and Ref. [106] for a guide to the helicity

formalism.
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Figure 3.8: Fits to the cos θh distributions, for (left) Ξ ′−b and (right) Ξ∗−b . The dashed black line
indicates a flat distribution (a = 1 in eq. 3.11). The red curve is a fit in which a quadratic component
is allowed.

for use in this analysis. To ensure that the efficiencies are well understood, we use only the subset
of events in which one or more of the Ξ0

b decay products is consistent with activating the hardware
trigger in the calorimeter.

For this subsample of events, the fitted yields are 93± 10 for the lower-mass Ξ0
b π
−
s state, 166± 20

for the higher-mass Ξ0
b π
−
s state, and 162±15 for the Ξ0

b normalization sample. The efficiency ratios are
determined with simulated decays, applying the same trigger, reconstruction, and selection procedures
that are used for the data. Systematic uncertainties (and, where appropriate, corrections) are assigned
for those sources that do not cancel in the efficiency ratios. These uncertainties include the modeling
of the Ξb momentum spectra, the π−s reconstruction efficiency [5], the fit method, and the efficiency
of those selection criteria that are applied to the Ξ0

b π
−
s candidates but not to the Ξ0

b normalization
mode. Combining the 7TeV and 8TeV data samples, the results obtained are

σ(pp→ Ξ ′−b X)B(Ξ ′−b → Ξ0
b π
−)

σ(pp→ Ξ0
bX)

= 0.118± 0.017± 0.007,

σ(pp→ Ξ∗−b X)B(Ξ∗−b → Ξ0
b π
−)

σ(pp→ Ξ0
bX)

= 0.207± 0.032± 0.015,

σ(pp→ Ξ∗−b X)B(Ξ∗−b → Ξ0
b π
−)

σ(pp→ Ξ ′−b X)B(Ξ ′−b → Ξ0
b π
−)

= 1.74± 0.30± 0.12,

where the first and second uncertainties are statistical and systematic, respectively, σ denotes a cross-
section measured within the LHCb acceptance and extrapolated to the full kinematic range with
Pythia, B represents a branching fraction, and X refers to the rest of the event. Given that isospin
partner modes Ξ ′0b → Ξ0

b π
0 and Ξ∗0b → Ξ0

b π
0 are also expected, these results imply that a large fraction

of Ξ0
b baryons in the forward region are produced in the decays of Ξb resonances.

3.2.7 Feed-down mechanism

With a very specific configuration of other excited Ξb states, it is possible to produce a narrow peak
in the Ξ0

b π
− mass spectrum without invoking a Ξ ′−b state. This can occur for the decay chain:

Ξ∗∗−b → Ξ ′0b π
−, Ξ ′0b → Ξ0

b π
0

where Ξ∗∗−b is a higher excitation. If both decays are close to threshold, the particles produced will
be kinematically correlated such that combining the Ξ0

b daughter with the π− from the Ξ∗∗−b would
produce a structure in the m(Ξ0

b π
−) spectrum. In general such a structure would be broader than
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that seen in the data and would be accompanied by a similar peak in the wrong-sign Ξ0
b π

+ spectrum
from the isospin-partner decay, Ξ∗∗0b → Ξ ′−b π

+, Ξ ′−b → Ξ0
b π
−. However, if a number of conditions are

fulfilled13, it is possible to circumvent these constraints. This would also require that the production
rate of the L = 1 state be comparable to that of the L = 0, JP = 3

2

+ state. Although this scenario is
contrived, it cannot be excluded at present.

3.2.8 Conclusions

To summarise: two structures are observed with high significance in the Ξ0
b π
− mass spectrum with

mass differences above threshold of δm = 3.653±0.018±0.006 MeV/c2 and 23.96±0.12±0.06 MeV/c2.
These values are in general agreement with quark model expectations for the JP = 1

2

+
Ξ ′−b and

JP = 3
2

+
Ξ∗−b states; these very precise measurements, especially that of m(Ξ ′−b ) − m(Ξ0

b ), impose
strong constraints on models of heavy baryon spectroscopy. Their natural widths are measured to
be Γ(Ξ ′−b ) < 0.08 MeV at 95% CL and Γ(Ξ∗−b ) = 1.65 ± 0.31 ± 0.10 MeV. The observed angular
distributions in the decays of these states are consistent with the spins expected in the quark model,
but other J values are not excluded. The relative production rates are also measured.

3.2.9 Afterword: Ξ∗0b
After this thesis had been written, a follow-on analysis to the above was carried out to investigate the
Ξ−b π

+ final state in which CMS had initially observed the Ξ∗0b . The analysis methodology is similar
to that described above, except that we use the decay chain Ξ−b → Ξ0

c π
−, Ξ0

c → pK−K−π+. A fit to
the data is shown in Fig. 3.9. We confirm the CMS observation, improving the measurement of the
mass and making a first measurement of the width:

m(Ξ∗0b )−m(Ξ−b )−m(π+) = 15.727± 0.068± 0.023 MeV/c2,

Γ(Ξ∗0b ) = 0.90± 0.16± 0.08 MeV.

These results are consistent with, and an order of magnitude more precise than, the CMS values of
δm = 14.84 ± 0.74 ± 0.28 MeV/c2 and Γ = 2.1 ± 1.7 (stat) MeV [85]. Preliminary results from this
analysis were presented at Moriond QCD 2016, and a paper will be submitted to JHEP [107].

3.3 Search for Ξ+
cc

This section summarises the analysis published in [108].

3.3.1 Introduction and background

The spectroscopy of ground state baryons was discussed in Sec. 3.1, with a focus on singly heavy
states. However, the quark model also predicts doubly (and triply) heavy baryons. In the meson
system, charmonium (cc) and bottomonium (bb) states have been known for many years, and the B+

c

meson (bc) is now well-established. Very recently, the first pentaquark state was observed14 [109] and
has quark content uudcc, making it the first doubly heavy baryon state seen. However, it still has net
charm quantum number zero and will not be discussed further in this document.

The lightest doubly heavy baryons are Ξ+
cc = ccd and Ξ++

cc = ccu, which are predicted to form
an isospin doublet with JP = 1

2

+. Many theoretical model predict the masses and lifetimes of Ξcc
13 The details are discussed in Appendix B.1, but in short it would only reproduce the observed spectra if

m(Ξb
∗∗−)−m(Ξ0

b ) = 279.0± 0.5 MeV/c2

m(Ξ ′0b )−m(Ξ0
b ) = 135.8± 0.5 MeV/c2

m(Ξ ′−b )−m(Ξ0
b ) = 138.3± 1.0 MeV/c2.

14 This was not the first report of a pentaquark observation, but in my opinion it’s the first credible one.
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Figure 3.9: Fitted distribution of δm for the final state Ξ−b π
+ from the follow-on analysis 3.9, as

described in Sec. 3.2.9.

baryons. Most15 predict the Ξcc mass to be in the range of 3.5–3.7 GeV/c2 [111, 112, 113, 114, 115,
116, 117, 118, 95], and the lifetime to be in the range of 110–250 fs [119, 120, 121].

To date, only one experiment, SELEX, has reported observations of Ξcc baryons. The data they
used were collected by colliding a hyperon beam (containing a mixture of p, Σ−, and π−) with a
fixed target. They first announced the discovery of the decay Ξ+

cc → Λ+
c K

−π+ at a mass of 3518.7±
1.7 MeV/c2 [122] and subsequently reported a confirmation in the pD+K− final state [123]16. The
lifetime was found to be compatible with zero within experimental resolution and less than 33 fs at
the 90% confidence level (CL), which is incompatible with the theoretical predictions listed above.
SELEX also estimated that 20% of their Λ+

c yield originates from Ξ+
cc decays, in contrast to theory

expectations that the production of doubly charmed baryons would be suppressed by several orders of
magnitude with respect to singly charmed baryons [114].

Other experiments tried to repeat SELEX’s result, but without success. The FOCUS collaboration,
a heavy-flavor photoproduction experiment at Fermilab, failed to observe Ξ+

cc in a sample of 19,400
reconstructed Λ+

c , compared to the 1650 Λ+
c used at SELEX [124]. The e+e− b-factories, Belle and

BaBar, also reported null results in searches for doubly charmed baryons with large data samples [125,
126]. Still, the production environments at these experiments differed from SELEX’s, and it cannot
be excluded that the cross-section was greatly enhanced at SELEX compared to the others. While not
identical due to the absence of net strangeness in the inital state, LHCb’s production environment—
hadron-hadron collisions in the forward region—is comparatively close to that of SELEX. If there is
such an enhancement, we might see it.

More broadly, double charm production has been observed previously at LHCb both in the J/ψ J/ψ
final state [127] and in final states including one or two open charm hadrons [128]. The Ξcc production
cross-section is of course unknown, but phenomenological estimates exist for pp collisions at

√
s =

14TeV and are in the range 60–1800nb [114, 129, 130]; the cross-section at
√
s = 7TeV is expected to

be roughly a factor of two smaller. As is typical for charmed hadrons, the production is expected to
be concentrated in the low transverse momentum and forward rapidity kinematic region that LHCb
instruments [130]. For comparison, the prompt Λ+

c cross-section in the range 0 < pT < 8000 MeV/c
and 2.0 < y < 4.5 at

√
s = 7TeV has been measured to be (233±26±71±14)µb at LHCb [39], where

the uncertainties are statistical, systematic, and due to the description of the fragmentation model,
15 There are also some references which predict the mass to be beyond 4GeV/c2 [110].
16 SELEX also presented evidence for other new Ξcc states and decay modes at a Fermilab seminar in 2003, but these

claims were never published. The slides are available at: http://www-selex.fnal.gov/documentation/fnal.pdf
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respectively. Taking into account the LHCb acceptance, the cross-section for Ξ+
cc production at LHCb

is predicted to be smaller than that for Λ+
c by a factor of order 10−4 to 10−3.

3.3.2 Analysis overview

We’ll carry out a search forΞ+
cc in 0.65 pb−1 of LHCb data using the decay chainΞ+

cc → Λ+
c K

−π+, Λ+
c →

pK−π+, and will set upper limits17 on the production cross-section. We’ll quote the Ξ+
cc cross-section

relative to that of the Λ+
c . This reduces systematic uncertainties, and also makes it simpler to compare

our limits to previous experimental results18. The production ratio R that is measured is defined as

R ≡ σ(Ξ+
cc)B(Ξ+

cc→ Λ+
c K

−π+)

σ(Λ+
c )

=
Nsig

Nnorm

εnorm

εsig
, (3.12)

where Nsig and Nnorm refer to the measured yields of the signal (Ξ+
cc) and normalisation (Λ+

c ) modes,
εsig and εnorm are the corresponding efficiencies, B indicates a branching fraction, and σ indicates a
cross-section. Assuming that B(Ξ+

cc→ Λ+
c K

−π+) ≈ B(Λ+
c → pK−π+) ≈ 5% [14], the expected value

of R at LHCb is of order 10−5 to 10−4. By contrast, the SELEX observation [122] reported 15.9 Ξ+
cc

signal events in a sample of 1630 Λ+
c events with an efficiency ratio of 11%, corresponding to R = 9%.

For convenience, the single-event sensitivity α is defined as

α ≡ εnorm

Nnorm εsig
(3.13)

such that R = αNsig. For each candidate the mass difference is computed as

δm = mcand(Λ+
c K

−π+)−mcand(Λ+
c )−m(K−)−m(π+), (3.14)

in analogy to what was done in previous sections for the D∗+ and Ξ∗−b .
Since we don’t know the Ξ+

cc mass, a wide signal window of 380 < δm < 880 MeV/c2 is used for the
search, corresponding to approximately 3300 < m(Ξ+

cc) < 3800 MeV/c2. The search was done entirely
blinded: all aspects of the analysis procedure were fixed before the data in this signal region were
examined. Likewise, we don’t know the Ξ+

cc lifetime, and the efficiency εsig depends on its lifetime (and
mass). We’ll therefore quote limits on R as a function of the Ξ+

cc mass and lifetime.

3.3.3 Reconstruction and selection

The topology of Ξ+
cc → Λ+

c K
−π+, Λ+

c → pK−π+ is similar to that of the Ξ0
b decay used in Sec. 3.2.2,

and the reconstruction and selection share several features. In this section, we focus on the features
that are specific to the Ξ+

cc search.
First, we aim to measure or set a limit on the production relative to that of Λ+

c , and will therefore
align the trigger and selection between the signal (Ξ+

cc) and normalisation (Λ+
c ) modes as far as practi-

cal. Second, while the Ξ+
cc is weakly decaying and so has a non-zero lifetime, that lifetime is expected

to be much shorter than that of the Ξ0
b from Sec. 3.2, and could be very short (< 100 fs). Although a

strong dependence of the efficiency on the lifetime is inevitable due to trigger and preselection require-
ments, we will try to avoid making things worse. Third, the expected S/B is worse, so we will need to
treat the background more carefully. There are three main sources: fully combinatorial background,
consisting of combinations of unrelated tracks and generally originating at the PV; mis-reconstructed
charm or beauty hadron decays, which typically occur at a displaced vertex; and combinations of a real
Λ+
c with other tracks to form a fake Ξ+

cc candidate. The first two classes have a smooth distribution
in both mcand(Λ+

c ) and δm; the third peaks in mcand(Λ+
c ) but is smooth in δm.

We first reconstruct Λ+
c → pK−π+, applying kinematic, track quality, particle identification, and

vertex fit quality requirements. The decay vertex of the Λ+
c is required to be significantly displaced

17 We would have quoted a value if we’d seen it, but we didn’t.
18 The price is that the selection is not statistically optimal for discovery, since we reject some signal candidates whose

relative efficiency is difficult to control.
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from the PV (χ2 > 36) and all three daughter tracks are required not to point to any PV in the event.
A loose pointing requirement19 is applied to the Λ+

c daughters of Ξ+
cc candidates, with a stricter cut

used for Λ+
c in the normalisation mode. One of the Λ+

c daughter tracks must activate the calorimeter
hardware trigger20 and the Λ+

c candidate must activate a dedicated software trigger. This software
trigger was only enabled for part of the 2011 run, hence the use of 0.65 fb−1 rather than the full
1.0 fb−1. A broad mass window of 2185–2385MeV/c2 is applied to Λ+

c candidates. Other than the
pointing requirement mentioned above, the Λ+

c selection is identical for the signal and normalisation
modes.

The Λ+
c candidates are then combined with two tracks to form a Ξ+

cc → Λ+
c K

−π+ candidate.
Kinematic, track quality, particle identification, and vertex fit quality cuts are applied, along with
requirements that the Λ+

c vertex be at least 10µm downstream of the Ξ+
cc vertex, and that the Ξ+

cc

vertex be displaced from the PV (χ2 > 16). The latter cut was applied in the centrally run preselection
and, in combination with cuts on the pointing of the two Ξ+

cc daughter tracks, has the unpleasant effect
of killing the efficiency of short-lived21 Ξ+

cc. Those Ξ+
cc candidates passing the selection are refitted

with a constraint requiring them to originate at the PV.
Finally, a multivariate selector, implemented as an artificial neural network (ANN), is used to

further suppress background for the Ξ+
cc channel. Nine input variables are used, eight associated with

the geometry of the decay (e.g. the flight distance impact parameter χ2s and the vertex quality) with
the ninth being the smallest pT of the Ξ+

cc daughters. These variables were chosen both for their ability
to separate signal from background and for their relative ease of reproducibility in signal MC22. The
relative efficiency of the ANN was approximately 56% for signal (assuming a mass of 3500MeV/c2 and
a lifetime of 333 fs) and 4% for background.

3.3.4 Fit to the Λ+
c normalisation mode

We will need the yield of inclusive Λ+
c . We use a simple 1D fit to the pK−π+ mass spectrum. The signal

shape is described as the sum of two Gaussian functions with a common mean, and the background
is parameterised as a first-order polynomial. The fit is shown in Fig. 3.10. The selected Λ+

c yield
in the full 0.65 fb−1 sample is Nnorm = (818 ± 7) × 103, with an invariant mass resolution of around
6MeV/c2. This is taken to be fully prompt: the tight pointing requirement rejects Λ+

c produced in
b-hadron decays.

3.3.5 Ξ+
cc yield determination method

Next, we need a method to measure the Ξ+
cc signal yield. We don’t know what the mass of the state

is23, so we’ll scan across the allowed range (380 ≤ δm ≤ 880 MeV/c2) in steps of 1MeV/c2, for a total
of 501 tests. The step size is chosen to be safely smaller than the experimental resolution (see below),
so that there is no risk of accidentally missing a real peak. Clearly the 501 separate measurements will
not all be statistically independent; we’ll discuss the statistical procedure to handle them in Sec. 3.3.7.
For each mass hypothesis we’ll compute a background-subtracted yield. For robustness, two different
methods, described below, were used to measure the yield.

19 The Λ+
c daughter of a long-lived Ξ+

cc wouldn’t point exactly to PV, but the cut here is loose enough that the loss
would be minimal in practice. It corresponds to a cone with an opening angle of 2× 11.5◦.

20 This requirement costs us quite a lot of efficiency. The calorimeter ET cuts are tight, especially for tracks from
multibody charm decays. We could have increased the efficiency by using a broader variety of triggers—but then the
efficiency ratio to the normalisation mode would have become much less certain.

21 It also rejects strongly decaying Ξ+
c resonances such as the Ξ+

c (2980) and Ξ+
c (3055) which are known to decay to

the Λ+
c K
−π+ final state, but which of course don’t fly any measureable distance. This is a pity, since they would have

made excellent control modes.
22 Cuts on the hadron ID likelihood ratios, for example, would have been great for separating signal from background

in a multivariate selector, but because of MC-data differences it would have been very hard to calculate and validate the
efficiency.

23 We also don’t know its lifetime, but that doesn’t affect the yield measurement method, just the efficiency.
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Figure 3.10: Invariant mass spectrum of Λ+
c → pK−π+ candidates for 5% of the data, with events chosen

at random during preselection (due to bandwidth limits for the normalisation mode). The red line shows the
fitted background contribution, and the blue line the sum of Λ+

c signal and background.

In Fig. 3.11, we see the δm spectrum of truth-matched Ξ+
cc candidates in a sample of signal MC

events. Fitting the candidates with the sum of two Gaussian functions, the resolution is found to be
approximately 4.4MeV/c2. While this is probably reasonably close to the right number, we don’t want
to rely on the MC modelling the lineshape exactly: it will depend on the production kinematics, which
are not known a priori. We also can’t rely on getting the lineshape from data, since the yield is likely
to be small or zero. We therefore design our yield measurement methods to be insensitive to the details
of the Ξ+

cc lineshape.
For both methods, we start by defining a narrow signal window in δm and mcand(Λ+

c ). We take
2273 < mcand(Λ+

c ) < 2303 MeV/c2 and |δm− δm0| < 10 MeV/c2, where δm0 is the value of δm under
the current Ξ+

cc mass hypothesis. Let the number of candidates inside that 2D window be NS+B. We
then use candidates outside the narrow 2D window to estimate the expected background NB inside the
window. The signal yield is then just NS = NS+B −NB. In this way we avoid the need to model the
signal shape in δm (beyond an efficiency correction for the tails24 that are lost outside the ±10 MeV/c2

window in δm). It also saves us from the various technical heartaches that come from trying to fit
a small or zero signal above a small background25. Toy MC experiments were used to validate both
methods, and to check that they produced unbiased yield estimates.

The first method is an analytic, two-dimensional sideband subtraction in mcand(Λ+
c ) and δm. A

two-dimensional region of width 80MeV/c2 in mcand(Λ+
c ) and width 200MeV/c2 in δm is defined,

centred around the narrow signal window. A 5× 5 array of non-overlapping bins is defined within this
region, with the central bin identical to the narrow signal window (see Fig. 3.12). We then assume
that the background consists of two components: a combinatorial component, which is described by a
two-dimensional quadratic function, and a Λ+

c component, which is described by the product of a signal
peak in mcand(Λ+

c ) and a quadratic function in δm. Under this assumption, we can fully determine the
24 The resolution depends on the energy release, i.e. on δm. So the efficiency correction depends on δm. This isn’t

a big effect, but it does get noticeable towards the upper end of the δm range. In hindsight, we could have made the
efficiency vary less with δm by choosing a wider window.

25 χ2 fits are useless in this scenario: they give biased yields when the yield per bin is small and the background is
estimated from the data. Likelihood fits work after a fashion, but their yields are biased and difficult to interpret: the
PDF is not allowed to go negative so when the background is small the signal yield must be bounded below at zero.
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Figure 3.11: The distribution of the invariant mass difference δm, defined in Eq. 3.14, for simulated Ξ+
cc

events with a Ξ+
cc mass of 3500MeV/c2. The solid line shows the fitted signal shape. In order to increase the

available statistics, the trigger and ANN requirements are not applied in this plot.

background distribution from the 24 sideband bins, and hence evaluate its integral within the signal
box analytically. This gives us both NB and its statistical uncertainty. This method has the advantage
that it requires only minor assumptions about the background distribution, which is a big plus since
we can’t actually look at the central part of that distribution prior to unblinding (because events that
are background for one mass hypothesis may be in the signal box for a different mass hypothesis).
Because of this, we adopt it as the baseline approach.

The second method is used as a cross-check. We impose a narrow window on all candidates of
2273 < mcand(Λ+

c ) < 2303 MeV/c2 to reduce the problem to a one-dimensional distribution in δm. In
studies of the mcand(Λ+

c ) and δm sidebands, shown in Fig. 3.13, we find that the background can be
described by a function of the form

f(δm) =

{
L(δm;µ, σL) δm ≤ µ
aL(δm;µ, σR) δm ≥ µ (3.15)

where L(δm;µ, σ) is a Landau distribution, a is chosen such that L(µ;µ, σL) = aL(µ;µ, σR), and µ,
σL, and σR are free parameters. So for each hypothesis δm0, the data will be fitted with this function
across the full range, 0 < δm < 1500 MeV/c2, excluding the signal window of width 20MeV/c2. The
fitted function is then integrated across the signal window to give the expected background NB.

3.3.6 Efficiency calculation and systematic uncertainties

We have a procedure to measure the yields. However, we want to be able to convert them into values
(or upper limits) on R, as defined in Eq. 3.12. To do this we’ll need the efficiency ratio, εnorm/εsig.
There are some subtleties in its calculation, but since we will in the end be dominated by statistical
effects we’ll elide most of those. The efficiencies are factorised into components for the geometric
acceptance, the reconstruction and selection, the PID cuts, the ANN selector used for the Ξ+

cc signal,
and the trigger. The efficiencies are estimated from signal MC and corrected for known data-MC
differences with control samples of data. Note that generating the signal MC in the first place required
us to assume a model for the production (i.e. a distribution for Ξ+

cc in pT and rapidity); the efficiency

57



)2 candidate (MeV/c+
cΛMass of 

2200 2250 2300 2350 2400

)2
 c

an
d

id
at

e 
(M

eV
/c

+ ccΞ
m

 f
o

r 
δ

450

500

550

600

650

700

a
b
c
d

α β γ δ

Figure 3.12: The definitions of signal and sideband boxes for the baseline (25 tiles) method, shown
for an example mass hypothesis of δm0 = 600 MeV/c2. The narrow signal window is the blue, central
box. The numerical values can vary—in particular, the central point in δm will be moved in steps.

)2m (MeV/cδ
0 200 400 600 800 1000 1200 1400

E
n

tr
ie

s 
p

er
 1

00
 M

eV
 b

in

0

20

40

60

80

100 /NDF = 15.3/11 (17.1%)2χ

)2m (MeV/cδ
0 200 400 600 800 1000 1200 1400

E
n

tr
ie

s 
(a

rb
it

ra
ry

 n
o

rm
.)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
2 lower sideband: <2248 MeV/ccΛ

2 upper sideband: >2328 MeV/ccΛ

2 signal box: 2273-2303 MeV/ccΛ
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signal region (black). The blinded δm signal window is indicated by the dotted vertical lines. The
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x-axis is shifted by 20 MeV/c2 to align the bin edges with the blinded region.
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Table 3.6: Systematic uncertainties on the single-event sensitivity α, evaluated for a Ξ+
cc mass of 3500MeV/c2

and a lifetime of 333 fs.

Source Size
Simulated sample size 18.0%
IP resolution 13.3%
PID calibration 11.8%
Tracking efficiency 4.7%
Trigger efficiency 3.3%

Total uncertainty 26.0%

Table 3.7: Single-event sensitivity α for different lifetime hypotheses τ , assuming m(Ξ+
cc) = 3500 MeV/c2.

The uncertainties quoted include statistical and systematic effects, and are correlated between different lifetime
hypotheses.

τ α (×10−5)
100 fs 63± 31
150 fs 15± 5
250 fs 4.1± 1.1
333 fs 2.5± 0.6
400 fs 1.9± 0.5

depends fundamentally on this assumption. The model used is the Genxicc generator [131] and in
the absence of a signal in experimental data we simply make an explicit assumption that it is correct.

The efficiency depends on the assumed Ξ+
cc mass and lifetime. We generate full MC for a working

point at 3500MeV/c2 and 333 fs, and extrapolate the efficiency to other values by reweighting the
kinematic distributions (for the mass) or the decay time distribution (for the lifetime)26. At our
working point, the efficiency ratio is εnorm/εsig = 20.4. Together with the normalisation mode yield,
this implies that the single-event sensitivity (defined in Eq. 3.13) at our working point is α = 2.5×10−5.

We compute systematic uncertainties on the efficiency (although in practice these will turn out to
be small compared to the statistical uncertainty in data). They are evaluated at the working point and
summarised in Table 3.6. Taking their sum in quadrature, the total systematic uncertainty is 26%.
Additional systematic uncertainties associated with candidate multiplicity, yield measurement, and the
decay model of Ξ+

cc→ Λ+
c K

−π+, which may proceed through intermediate resonances, were considered
but found to be negligible in comparison with the total systematic uncertainty. The systematic uncer-
tainties are tested for dependence on the lifetime and mass hypotheses of the Ξ+

cc. In most cases they
are unaffected, but the uncertainties associated with the MC sample size and the trigger efficiency do
depend on the lifetime and we take this variation into account. The values and uncertainties of the
single-event sensitivity α are given for several lifetime hypotheses in Table 3.7.

Finally, we can use the values of the single-event sensitivity to calculate the expected yield for
various values of the production ratio R. As explained earlier, the value of R at LHCb is not known
but is expected to be of the order 10−5 to 10−4, while the SELEX observation corresponds to R = 9%.
Table 3.8 shows the expected signal yield, calculated according to eq. 3.8, for various values of R and
lifetime hypotheses. From studies of the sidebands in mcand(Λ+

c ) and δm, the expected background in
the narrow signal window is between 10 and 20 events. Thus, no significant signal excess is expected if
the value of R at LHCb is in the range suggested by theory. However, if production is greatly enhanced

26 It turns out that the overall efficiency is pretty insensitive to the mass. It depends very strongly on the lifetime, of
course.
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Table 3.8: Expected value of the signal yield Nsig for different values of R and lifetime hypotheses, assuming
m(Ξ+

cc) = 3500 MeV/c2. The uncertainties quoted are due to the systematic uncertainty on α.

τ R = 9% R = 10−4 R = 10−5

100 fs 140± 70 0.2± 0.1 0.02± 0.01
150 fs 600± 200 0.7± 0.2 0.07± 0.02
250 fs 2200± 600 2.4± 0.7 0.24± 0.07
333 fs 3600± 900 4.0± 1.0 0.40± 0.10
400 fs 4800± 1200 5.3± 1.4 0.53± 0.14

for baryon-baryon collisions at high rapidity, as reported at SELEX, a large signal might be visible.
The procedure for determining the significance of a signal, or for establishing limits on R, is discussed
in the following section.

3.3.7 Significance and upper limit procedures

As explained earlier, we don’t know the Ξ+
cc mass so we test for the presence of a signal at numerous

mass hypotheses, between δm = 380 MeV/c2 and δm = 880 MeV/c2 inclusive in 1MeV/c2 steps, for
a total of 501 tests. For a given value of δm, the signal and background yields and their associated
statistical uncertainties are estimated. From these, the local significance S(δm) is calculated, where
S(δm) is defined as

S(δm) ≡ NS+B −NB√
σ2
S+B + σ2

B

(3.16)

and σS+B and σB are the estimated statistical uncertainties on the yield in the signal window and
on the expected background, respectively. Since we check for a peak at multiple points, we have to
take the look elsewhere effect (LEE) [132] into account. The procedure used is to generate a large
number of toy experiments containing only background events, with the amount and distribution of
background chosen to match the data (as estimated from sidebands). For each toy experiment, the
full analysis procedure is applied in the same way as for data, and the local significance is measured
at all 501 values of δm. The LEE-corrected p-value for a given S is then taken to be the fraction of
the toy experiments that contain an equal or larger local significance at any point in the δm range.

The procedure we established before unblinding is that if no signal with an LEE-corrected signifi-
cance of at least 3σ is seen, upper limits on R would be quoted. The CLs method [133, 134] is applied
to determine upper limits on R for a particular δm and lifetime hypothesis, given the observed yield
NS+B and expected background NB in the signal window. The statistical uncertainty on NB and
systematic uncertainties on α are taken into account. The 95% CL upper limit is then evaluated as
the value of R for which CLs = 0.05. Upper limits are calculated at each of the 501 δm hypotheses,
and for five lifetime hypotheses (100, 150, 250, 333, 400 fs).

3.3.8 Results

The δm spectrum in data is shown in Fig. 3.14, and the estimated signal yield in Fig. 3.15. No
clear signal is found with either background subtraction method. In both cases the largest local
significance occurs at δm = 513 MeV/c2, with S = 1.5σ in the baseline method and S = 2.2σ in the
cross-check. Applying the LEE correction described above, these correspond to p-values of 99% and
53%, respectively. Since there is no significant excess above background, upper limits are set on R at
the 95% CL, shown in Fig. 3.16 for the first method. These limits are tabulated in Table 3.9 for blocks
of δm and the five lifetime hypotheses. The blocks are 50MeV/c2 wide, and for each block the largest
(worst) upper limit seen for a δm point in that block is given. Similarly, the largest upper limit seen

60



]2cm [MeV/δ
0 500 1000 1500

 )2 c
E

nt
ri

es
 / 

( 
25

 M
eV

/

0

5

10

15

20

25

30 LHCb

]2cm [MeV/δ
400 500 600 700 800

 )2 c
E

nt
ri

es
 / 

( 
4 

M
eV

/

0

2

4

6

8

10

12 LHCb

Figure 3.14: Spectrum of δm requiring 2273 < mcand(Λ+
c ) < 2303 MeV/c2. Both plots show the same data

sample, but with different δm ranges and binnings. The wide signal region is shown in the right plot and
indicated by the dotted vertical lines in the left plot.

Table 3.9: Largest values of the upper limits (UL) on R at the 95% CL in blocks of δm for a range of lifetime
hypotheses, given in units of 10−3. The largest values across the entire 500MeV/c2 range are also shown.

R, largest 95% CL UL in range ×103

δm (MeV/c2) 100 fs 150 fs 250 fs 333 fs 400 fs

380–429 12.6 2.7 0.73 0.43 0.33
430–479 11.2 2.4 0.65 0.39 0.29
480–529 14.8 3.2 0.85 0.51 0.39
530–579 10.7 2.3 0.63 0.38 0.29
580–629 10.9 2.3 0.63 0.38 0.29
630–679 14.2 3.0 0.81 0.49 0.37
680–729 9.5 2.0 0.56 0.33 0.25
730–779 10.8 2.3 0.63 0.37 0.28
780–829 12.8 2.8 0.74 0.45 0.34
830–880 12.2 2.6 0.70 0.42 0.32
380–880 14.8 3.2 0.85 0.51 0.39

in the entire 500MeV/c2 mass range is also given. As expected, we find that the sensitivity depends
strongly on the lifetime hypothesis.

The decay Ξ+
cc→ Λ+

c K
−π+ could proceed through an intermediate Σ++

c → Λ+
c π

+ resonance. Such
decays would be included in the yields and limits already shown, since the decay would wind up in
the same final state. But we can be a bit smarter: if there were a large Σ++

c component, imposing
a cut on m(Λ+

c π
+) would reject a lot of combinatoric background and hence improve our sensitivity.

For Σc(2455)++, we require that the mass offset [m(Λ+
c π

+)−mcand(Λ+
c )] is within ±4 MeV/c2 of the

world-average expected value, and for the wider Σc(2520)++ we use a ±15 MeV/c2 cut. The resulting
δm spectra are shown in Fig. 3.17. No statistically significant excess is present.

3.3.9 Conclusions

We carried out a search for the decay Ξ+
cc→ Λ+

c K
−π+ with a sample of 0.65 fb−1 of pp collisions but

found no significant signal (as was expected from theory predictions of the cross-section). We set upper
limits on the Ξ+

cc cross-section times branching fraction relative to the Λ+
c cross-section for a range of

mass and lifetime hypotheses. Because of cuts in the software trigger and preselection requiring the Ξ+
cc
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Figure 3.15: Measured signal yields as a function of δm. The upper two plots show the estimated signal yield
as a dark line and the ±1σ statistical error bands as light grey lines for (upper left) the baseline method and
(upper right) the cross-check method. The central values of the two methods are compared in the lower plot
and found to agree well.
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Figure 3.16: Upper limits on R at the 95% CL as a function of δm, for five Ξ+
cc lifetime hypotheses.
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Figure 3.17: Mass difference spectrum requiring 2273 < mcand(Λ+
c ) < 2303 MeV/c2. Candidates are also

required to be consistent with (left) an intermediate Σc(2455)++, (right) an intermediate Σc(2520)++.
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decay vertex and its daughter tracks to be separated from the PV, the upper limit depends strongly on
the lifetime, varying from 1.5× 10−2 for 100 fs to 3.9× 10−4 for 400 fs. Those limits are well below the
value of R found at SELEX. But, as with previous null results, this doesn’t exclude the SELEX claim:
the difference could be due to the different production environment, or if the Ξ+

cc lifetime is indeed
very short (� 100 fs). The good news is that LHCb’s potential sensitivity is much better: a follow-on
search on the full Run 1 dataset and with additional decay modes is in progress. The cuts that suppress
short-lived Ξcc have been removed from the preselection. In addition, the trigger efficiency at short
lifetimes is expected to be better for decay modes where the charmed hadron has a longer lifetime than
the Λ+

c (e.g. Ξ+
cc → D+pK− should be much more efficient than Ξ+

cc → Λ+
c K

−π+). There is every
reason to hope that the elusive doubly charmed baryon should been visible in this analysis.

3.4 Summary and outlook

In this chapter, we’ve seen an overview of the spectroscopy of low-lying heavy baryon states, plus two
examples of analyses investigating it. While we don’t expect to find New Physics in this type of study,
it is nonetheless good small-p physics. Even though the Quark Model has been around for a very long
time and QCD nearly as long, spectroscopy still turns up plenty of surprises—as it should, for while
the big picture is straightforward, the quantitative details are in the domain of non-perturbative QCD
and require experiment as much as theory to pin down. These measurements may, in turn, be used
to constrain models of QCD allowing key observables of the SM to be predicted with precision. To
take a very recent example, precise measurements of the masses of the B0 and B0

s mesons were among
the inputs to QCD lattice calculations of hadronic matrix elements, which are necessary to obtain a
number of physics parameters from experimental measurements—notably the ratio of CKM matrix
elements |Vtd/Vts| [135].
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Chapter 4

Outlook

4.1 Machine and detector status

The first LHC run ended in early 2013. After a difficult start, it has proved a tremendous success.
The data collected in 2011 and 2012 have been used for a great many analyses, not least of which is
the discovery of the Higgs boson by the ATLAS and CMS collaborations. This sample still represents
the bulk of the data, and new results continue to be published with them. In the field of flavour
physics, these include discoveries of new states and numerous searches for New Physics. There is no
hope of describing every measurement made at LHCb1, but I will summarise some key results below.
Meanwhile, the second LHC run has now started at a centre-of-mass energy of 13TeV. The amount
of data taken so far is only a fraction of the Run 1 sample, but it will soon take over as the focus
of attention. For the general purpose detectors ATLAS and CMS, the difference is night and day:
the increase in CM energy extends the sensitivity to NP into a regime never before probed, and even
modest samples are of immediate interest. For LHCb, however, the increase in

√
s brings roughly a

doubling in the heavy flavour production cross-sections but does not by itself dramatically change the
sensitivity. Nor will the instantaneous luminosity be much different from that seen in 2012; we are
already close to the limits of the detector and its electronics. We will, though, benefit from an improved
software trigger whose performance is systematically approaching that achieved offline. This is thanks
both to a near-real-time calibration system and to a redesign of the trigger architecture that effectively
increased the CPU time available per event2 so that offline-quality reconstruction code could be run.
Since our data-taking capacity is limited not by the output bandwidth of the farm but by the amount
of offline storage available, having a better reconstruction and smarter selection will allow us to write
more signal and less background. For the same reason, reductions in the event size will also translate
into increased efficiencies for high-statistics modes, notably in charm. (But note the corollorary: with
the increase in cross-sections, we will get twice as much signal produced but the same amount of output
bandwidth in which to record it. So the trigger efficiency has to double just to keep up.)

The upshot is that for LHCb, Run 2 will be a significant improvement on Run 1. We expect to take
roughly twice as much integrated luminosity (5–6 fb−1 vs. 3 fb−1), with bb and cc cross-sections a factor
of two larger, and a trigger efficiency that is improved for many modes. This brings us to roughly a
factor of 5–10 in signal yields, but with quite a lot of variation from mode to mode depending on the
trigger.

Looking further ahead, Run 2 will be followed by a long shutdown (LS2) and then by Run 3.
Clearly, there would be limited interest in simply accumulating another 5–6 fb−1 over the course of a
few years. Instead, a major programme of upgrades is planned for LS2, so that LHCb can operate at a

1 Roughly 300 papers and 20 conference notes as of March 2016.
2 This is not the place to get into the details, but a major factor is the introduction of deferred processing in which

events passing the early trigger stages are saved to the local disks of the trigger computing farm nodes and then processed
asynchronously. In this way, the higher-level software trigger can be run during the inter-fill periods when no new data
is arriving; this in turn frees up CPU time during data-taking so that the lower-level software trigger can be more
sophisticated.
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much higher luminosity in Run 3 and increase the data sample by a further order of magnitude. Some
detector subsystems will be replaced entirely, serving not only to improve their performance but also
to enable them to handle the increased occupancy and output rate. The whole detector will be read
out at 40MHz and all trigger decisions will be taken in software. This removes one of the fundamental
limitations of the existing architecture, namely the crude but fast L0 hardware trigger. The importance
of this change is obvious at once if you consider that the current electronics is limited to a 1MHz output
but that during nominal Run 2 running we expect to produce cc pairs in the LHCb acceptance at a
rate of around 1.2 MHz, and bb pairs at around 100 kHz. The hardware trigger only knows to how
look for high-pT muons tracks or calorimeter clusters, and how to count hits in the silicon detectors; it
can distinguish heavy flavour events from light quark decays, and it can separate bb and cc events to a
degree, but it cannot hope to distinguish between interesting and uninteresting heavy flavour decays3.
Instead, the high-performance low-level software trigger and the deferred readout system already in
place for Run 2 will be extended so handle the full 40MHz output. In combination with a reduction
in event size, this will enable an unprecedented volume of heavy flavour data to be recorded.

4.2 Key LHCb results

In the analyses so far published on the Run 1 data set, LHCb has not found a “smoking gun” indicating
the presence of New Physics beyond the Standard Model. There are a number of results which are
presently at the 3σ level; depending on your Bayesian prior, you can look at these either as the
most promosing candidates for an observation in Run 2, or as a collection of results each of which is
individually likely to be a statistical fluctuation. Either way, they are of interest and are outlined below.
In addition, I will touch on results that, even though fully consistent with the SM, are nonetheless
important for their ability to constrain the parameter space of NP; or which are of interest despite not
sensitive to NP per se.

B0
s → µ+µ−: [136] One of the most awaited results from the LHC Run 1 was the measurement of

the branching fraction B(B0
s → µ+µ−), which is highly suppressed in the SM (all SM diagrams

are at least 1-loop, and are suppressed by helicity and CKM factors). By contrast, NP (and
especially supersymmetry) could plausibly have an amplitude which is comparable to or even
dominates the SM contribution. Combining the LHCb and CMS data, the decay mode was
observed with a significance of 6.2σ but a value of (2.8 +0.7

−0.6) × 10−9 which is, sadly, perfectly
compatible with the SM. The decay mode B0 → µ+µ− is even more suppressed; the central
value of its branching fraction is higher than expected [(3.9+1.6

−1.4) × 10−10 compared to a SM
value of (1.06± 0.09)× 10−10], but the difference is not statistically significant at present. Still,
precision measurements of B(B0

s → µ+µ−) or of the ratio between B0
s and B0 might reveal small

discrepancies (and, if not, would further limit the SUSY parameter space).

|Vub| in Λ0
b decays: [137] The CKM parameter |Vub| has been measured at the e+e− B-factories Belle

and BaBar using two classes of method: exclusive measurements of ratios of branching frac-
tions, and inclusive measurements of all b → ul−νl decays of B mesons. LHCb performed a
measurement of the ratio of branching fractions B(Λ0

b → pµ−νµ)/B(Λ0
b → Λ+

c µ
−νµ) and, with

additional input for |Vcb| and for a ratio of form factors obtained with lattice QCD, obtained
|Vub| = (3.27± 0.15± 0.16± 0.06)× 10−3. This value is consistent with the average of previous
exclusive measurements, but disagrees with the average of inclusive measurements at the 3.5σ
level.

B0 → K∗0µ+µ−: [138] As with B0
s → µ+µ−, this is a flavour-changing neutral current process and

is suppressed in the SM. However, the topology is different: being a four-body decay, there are
many more degrees of freedom in the final state, so in addition to the branching fraction itself

3 This is already a problem for charm in Run 2: L0 rejects a good fraction of charm events more or less indiscriminately.
As ever, the problems of charm today are the problems of b-physics tomorrow.
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it is possible to construct a variety of angular observables describing the distribution in phase
space. Among these is one known as P ′5, which attracted attention previously because, in an
analysis of the 2011 data, the results deviated visibly from the SM expectation in certain q2

regions, corresponding to a local significance of 3.7σ [139]. After analysis of the 3 fb−1 sample,
the mode remains tantalizing: the local significance is still 3.7σ. Updates with further data will
certainly be of interest.

RK in B+ → K+l−l+: [140] In the SM, the coupling of electroweak interactions to leptons is universal.
Aside from phase space corrections, one would therefore expect that the ratio RK of branching
fractions of B+ → K+µ−µ+ and B+ → K+e−e+ is unity, both overall and in any particular
range of q2 = m2(l+l−). NP (such as a Z ′ that does not couple equally to electrons and muons)
could break this universality. LHCb has measured RK in the range 1 < q2 < 6 GeV2/c4 with the
Run 1 data and found a value of 0.745 +0.090

−0.074 ± 0.036, which differs from one at a significance of
2.6σ. While this is only marginally significant, it is interesting because it is so closely related to
the B0 → K∗0µ+µ− anomaly discussed above. Analysis of the related ratio RK∗ of the branching
fractions B0 → K∗0l−l+ is ongoing.

B(B0 → D∗+l−ν̄l): [141] Belle and BaBar have previously measured the ratios of branching frac-
tions RD ≡ B(B0 → D+τ−ν̄τ )/B(B0 → D+µ−ν̄µ) and RD∗ ≡ B(B0 → D∗+τ−ν̄τ )/B(B0 →
D∗+µ−ν̄µ), finding values in tension with the SM. The discrepancy is below 3σ for each indi-
vidual measurement, but they are systematically above the SM value. LHCb has now measured
RD∗ to be 0.336± 0.027± 0.030, in agreement with the B-factory results and 2.1σ above the SM
expectation. Combining the LHCb, BABAR, and Belle results, the world average value differs
from the SM expectation by 3.9σ [24]. (Note that the final state B0 → D∗+τ−ν̄τ , τ

− → µ−ντνµ
contains three neutrinos; making this measurement at LHCb was quite a feat!)

Exotic hadrons: Ref. [142, 109] LHCb has confirmed the existence and exotic nature of the Z(4430)−

meson, which has minimal quark content ccdu and therefore cannot be a conventional (q1q̄2)
meson. This state was first observed by Belle, and was studied by LHCb in the decay B0 →
ψ′π−K+, with Z(4430)− → ψ′π− appearing as an intermediate resonance. The analysis was
particularly compelling, using a combination of amplitude analysis and a model-independent
measurement of the phase motion of the resonance. The same techniques were applied to the
related decay Λ0

b → J/ψK−p, and it was shown that the structure in the J/ψp mass spectrum
required the existence of two pentaquark resonances with minimal quark content ccuud; again,
this cannot be a conventional (q1q2q3) baryon state. While these states are not forbidden and their
discovery does not constitute NP, they are nonetheless of considerable interest—the existence of
pentaquarks in particular has been a matter of speculation for decades—and studies of their
properties, starting with the nature of their binding, will be followed closely.

4.3 The longer term

As well as Runs 2 and 3 of the LHC, there will be a programme of heavy flavour physics at Belle-II,
which is scheduled to begin data-taking at high luminosity in 2019. There is considerable complemen-
tarity between LHCb and Belle-II: while Belle-II will struggle to compete in terms of raw statistics
for decays to final states containing only charged tracks4, it will be on a more even footing for modes
containing a K0

S and will have a distinct advantage for decay modes with a γ or π0, modes with miss-
ing particles, and inclusively reconstructed decays. The competition will be healthy for LHCb, and in
many instances the combination of results allows for new or improved tests of the SM5. Between the

4 Especially for charm, due to the huge LHC cross-section; and even more so for B0
s , B+

c , and b-baryons which are
too heavy to produce at the Υ (4S) resonance. Belle-II is capable of running at the Υ (5S) to produce B0

sB
0
s pairs, but

the cross-section is not as favourable as for BB at the Υ (4S).
5 The comparison of inclusive and exclusive |Vub| measurements discussed above is a good example. More broadly,

the whole history of unitarity triangle measurements is an illustration of the power of the approach.
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two experiments, we can look forward to a great increase in NP reach, with sensitivities improving by
an order of magnitude or more (see Refs. [143, 144] for concrete numbers). While nothing in research
is guaranteed, and Nature has been unusually protective of the Standard Model, we know that it must
crack at some point and we have reason to be hopeful that heavy flavour physics will play a part in
revealing the NP that lies beyond.

4.4 Perspectives at LPNHE

The analyses presented in this thesis fall into two broad categories: searches for phenomena that are
sensitive to NP (in this case, CP violation in charm), and studies that are not sensitive to NP but which
improve our understanding of the SM (in this case, baryon spectroscopy). Both kinds are important to
the health of a research group. Searches for NP are the main goal of experimental high energy physics
as a field at present, and are the core around which the LPNHE group is built. But while we can
be confident that there is NP waiting to be discovered, the chance of finding it in any given search is
slim; SM measurements allow for more modest but concrete advances in our understanding. And of
course there is coupling between the two: we often have systematic uncertainties on NP measurements
associated with SM processes6.

As well as the analyses presented in this thesis (and follow-on work, discussed below), the LPNHE
group is involved in two main areas: studies of multi-body charmless hadronic B-meson decays and
of B decays of the form b→ sl+l−. In both cases the interest comes from potential sensitivity to the
presence of NP, which may enter via loop diagrams. We have already discussed B0 → K∗0µ+µ− and
the interest there is clear; there will also be follow-on work in related modes, especially lepton-flavour-
violating decays such as B0 → K∗0µ+e−.

For charmless B decays the phenomenology varies greatly from mode to mode, since the contribut-
ing diagrams and their CKM phases depend upon the final state. Recent work in this area at LPNHE
has focused on decays of the form (B0, B0

s ) → K0
Sh

+h′−, where h and h′ denote a hadron that can
be either a kaon or a pion, and in particular on the decays (B0, B0

s )→ K0
SK

+K−. There are several
Feynman diagrams that can contribute, but the most important are tree-level decays with a b→ uūd
weak transition, and penguin (loop) diagrams with a b→ sqq̄ or b→ dqq̄ transition. The CKM matrix
element associated with the b → u vertex is small in magnitude and has a large weak phase (see
Sec. 2.1). In some decays, such as B0

s → K0
Sπ

+π−, there is no further suppression to the tree diagram
and it should still dominate. For such tree-dominated modes, we have the potential to measure CKM
phases in a theoretically clean way, most notably obtaining constraints on γ through B0

s → K0
Sπ

+π−.
In other decays, the tree diagram may be colour-suppressed (e.g. B0

s → K0
SK

+K−, where the W
emission is internal) and/or further CKM-suppressed (e.g. B0 → K0

SK
+K−, where the W converts to

ūs) such that the penguin diagram dominates. For such penguin-dominated modes, we expect to see
mixing-induced CPV, which in the SM will be no different between our charmless b → (s/d)qq̄ and
the charmful b → scc̄ (e.g. the well-known B0 → J/ψK0

S and B0
s → J/ψφ). However, if there are

additional contributions from NP loop diagrams, these could change the behaviour of the charmless
modes—but would not have a significant impact on the b→ scc̄ modes where the SM diagram would
still dominate. Thus, we can test for the presence of NP by comparing results from the charmless
decays to the b→ scc̄ control modes.

Both of the charmless analyses discussed above (constraints on γ, mixing-induced CPV in penguin-
dominated modes) are long-term projects. They require time-dependent amplitude analyses, for which
there are several preparatory steps, notably time-integrated amplitude analyses to build a decay model,

6 To take just one example, when studying direct CP violation the yield asymmetries that we observe depend on the
underlying CP asymmetries that we want to determine but also on the particles’ production asymmetries. In Sec. 2.6
we had to work hard to cancel out these production asymmetries; the double-difference method adopted got rid of them,
but at the price of losing sensitivity to the individual asymmetries ACP (D0 → K−K+) and ACP (D0 → π−π+). A better
understanding of the production asymmetry (and of detector effects such as efficiency asymmetries) would have increased
our sensitivity to NP.
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and study of the time acceptance of these modes at LHCb and how to take it into account7. They will
also benefit from larger yields than are available at present—not only because of the tiny branching
fractions of CKM-suppressed charmless decays, but also because of the reduced K0

S reconstruction
efficiency of LHCb8. For both of these reasons, these analyses have begun with observations and
measurements of branching fractions [146] in the Run 1 data. While it may be possible to do a trial
run with the Run 1+2 data, the full time-dependent analyses will come into their own after the upgrade
when an order of magnitude more events will be available.

As well as this long-term analysis project, I plan to carry out a number of smaller, more self-
contained analyses with the data already collected9

• First, there is a very natural follow-on to the Ξ+
cc search presented in Sec. 3.3. The original

analysis used only one decay mode, and only 0.65 fb−1 of data. Since then, the full Run 1 data
sample has been reprocessed with a greater range of modes and a more efficient preselection.
There is good discovery potential here, and quite a bit of interest from the theory community.

• Second, it would be straightforward to extend the study of Ξ0
b π
− presented in Sec. 3.2 to the

isospin partner final state, Ξ−b π
+. This would allow the CMS observation of the Ξ∗0b to be

confirmed, and its mass and width to be measured with much better precision.

• Third, there is a wide variety of other studies that could be carried out in the Ξb system. In
particular, by analogy with the charm system we might expect to see narrow resonances in the
Ξbπ

−π+ final state decaying via an intermediate Ξ ′b or Ξ
∗
b . Ultimately, we may be limited by the

production cross-section (which tends to drop rapidly with mass) and the efficiency to reconstruct
multiple soft pions.

• Fourth, one can carry out a search for baryon number violation by looking for Ξ0
b oscilla-

tions. These might occur in models of NP in which the flavour interactions were entirely di-
agonal [147, 148], which would allow BNV without violating current constraints on the proton
lifetime. The experimental signature at LHCb would be a particle produced as a Ξ0

b that decays
to an antibaryon final state (or vice versa). The Ξ(′,∗)−

b → Ξ0
b π
− sample presented in Sec. 3.2 is

ideal for this, since the soft pion tags the initial flavour in a very clean way. Of course, even if
such an effect were present it would likely be invisible in the Run 1 sample of only a few hundred
events, but the groundwork will be laid for upgrade studies with much higher statistics.

... and I am equally sure that new, interesting, and unanticipated analyses will pop up over the
coming years as we take more data.

7 Roughly speaking, this means either a fully time-unbiased selection from the trigger to the ntuple, or a method to
correct for it. Such a correction could come from Monte Carlo, if the systematic uncertainties are tolerable; otherwise a
data-driven correction such as swimming [145] is needed.

8 The origin of this problem is pure physics: K0
S have a finite lifetime, with cτ = 2.7 cm in the rest frame. Due to the

large boost at LHCb, many will fly for several metres in the lab frame. But to calculate the momentum of the daughter
tracks, we need to measure their position both upstream and downstream of the magnet. Any K0

S that decay after the
TT station (see Fig. 1.1) will be lost. Note also that K0

S which decay between the VELO and the TT will have poorer
momentum and vertex resolution than the minority which decay inside the VELO.

9 Several of these are in progress at the time of writing, and there is a non-zero risk that some public results will be
available before the HDR soutenance.
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Appendix A
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Each of the analyses presented in this document was carried out in close collaboration with one or
more colleagues. Specificially:

D+ → K−K+π+: The analysis in paper [40] was done in collaboration with my student Hamish Gor-
don (Oxford); Sandra Amato, Erica Polycarpo, and Danielle Martins Tostes (UFRJ); Carla Gobel
and Josue Molina (PUC); and Alberto Reis (CBPF).

∆ACP : The analysis on 0.37 pb−1 in conference note [48] and that on 0.6 fb−1 in paper [49] were
both done in collaboration with Guy Wilkinson (Oxford); and Angelo Carbone and Vincenzo
Vagnoni (Bologna). The analysis on 1.0 fb−1 in conference note [50] was done in collaboration
with the above plus Stefano Perazzini (Bologna), Chris Thomas (Oxford), and Evelina Gersabeck
(Heidelberg)

Ξb: The analysis in paper [84] was done in collaboration with Steve Blusk (Syracuse).

Ξcc: The analysis in paper [108] was done in collaboration with Patrick Spradlin (Glasgow); Yuanning
Gao, Feng Zhang, and Liang Zhong (Tsinghua).

None of these papers would have been possible without the work of a large number of collaborators,
notably the design, construction, and operation of the LHCb detector; offline data reconstruction and
processing; tuning and development of the Monte Carlo simulation; and the collaboration’s internal
review process. Neither would they have been possible without the construction and operation of the
LHC itself, or the support of numerous governments and funding agencies. I dare not attempt an
exhaustive list, but should note in particular STFC (which supported my work at Oxford) and the
Université Pierre et Marie Curie and CNRS (which support my work at UPMC).
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Appendix B

Extra material

This appendix contains extra material which is relevant but not critical to the analyses discussed in
this document.

B.1 Ξb feed-down

With a very specific configuration of other excited Ξb states, it is possible to produce a narrow peak
in the Ξ0

b π
− mass spectrum without invoking a Ξ ′−b state. This can occur for the decay chain:

Ξ∗∗−b → Ξ ′0b π
−, Ξ ′0b → Ξ0

b π
0

where the Ξ∗∗−b is the JP = 1/2− state analagous to the Ξc(2790). If the decays are close to threshold,
the tracks will be kinematically correlated such that combining the Ξ0

b daughter with the π− from the
Ξ∗∗−b (and ignoring the π0) would produce a structure in the m(Ξ0

b π
−) spectrum. In order for this

feed-down to produce a fake peak consistent with what we see in data, several criteria must be fulfilled:

1. The process Ξ ′−b → Ξ0
b π
− must be below threshold, i.e. m(Ξ ′−b ) < m(Ξ0

b ) +m(π−). Otherwise
we would still see a real Ξ ′−b peak.

2. The process Ξ∗∗−b → Ξ ′0b π
− must be above threshold by 3.653± 0.018± 0.006 MeV/c2, in order

to produce a peak where we see it in data, i.e. m(Ξ∗∗−b ) = m(Ξ ′0b ) +m(π−) + 3.65 MeV/c2.

3. The process Ξ ′0b → Ξ0
b π

0 must be above threshold but by a very small amount. This follows
from the fact that the width of the feed-down peak increases rapidly with the Q-value yet the
peak observed in data is very narrow. If the decay to Ξ0

b π
0 were below threshold then it would

instead go 100% to Ξ0
b γ with a much larger Q-value so that the feed-down peak would be broad;

if the decay to Ξ0
b π

0 were much above threshold then the feed-down peak would again be broad.
From toy MC studies we estimate that this means the Ξ ′0b is at most 2MeV/c2 above threshold,
so: 0 < m(Ξ ′0b )−m(Ξ0

b )−m(π0) . 2 MeV/c2.

4. Combining conditions 1 and 3, it follows that m(Ξ ′−b )−m(Ξ ′0b ) < m(π−)−m(π0) = 4.6 MeV/c2.
This does not leave much room, given the typical isospin splittings seen in other Ξb and Ξc
systems. (But does not totally exclude the feed-down hypothesis, since the hyperfine corrections
can reduce the isospin splitting relative to that seen in the ground state.)

5. The isospin partner process Ξ∗∗0b → Ξ ′−b π
+ must be below threshold, else we’d see a correspond-

ing peak in the wrong-sign spectrum, so: m(Ξ∗∗0b )−m(Ξ ′−b )−m(π+) < 0.

If we collect the above constraints and in addition impose:

m(Ξ−b )−m(Ξ0
b ) = 5.92± 0.60± 0.23 MeV/c2

m(Ξ∗0b )−m(Ξ−b )−m(π+) = 14.84± 0.74± 0.28 MeV/c2

m(Ξ∗−b )−m(Ξ0
b )−m(π−) = 23.96± 0.12± 0.06 MeV/c2
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then we have most of the constraints necessary to fully determine the spectrum of low-lying Ξb states.
We generate toy MC with these values (Gaussian-fluctuated within their errors) and in addition gen-
erate

m(Ξ ′0b )−m(Ξ0
b ) = Gaus(µ = 135.0, σ = 10.0)

m(Ξ ′−b )−m(Ξ ′0b ) = Gaus(µ = 4.0, σ = 2.0)

m(Ξ∗∗−b −m(Ξ∗∗0b ) = Gaus(µ = 3.0, σ = 2.0)

indicating Gaussian random distributions with the mean and standard deviation shown. These last
three are deliberately generated within fairly wide ranges. We then require that the toy spectra fulfil
the five conditions set out above, which rejects a large fraction of the toys. Note that we apply only
the conditions above so that, for example, some of the surviving toys have m(Ξ′0b ) > m(Ξ′−b ), which
is not terribly likely but in principle not excluded by the data. The splittings are highly constrained,
and in this scenario we estimate

m(Ξ∗∗−b )−m(Ξ0
b) = 279.0± 0.5 MeV/c2

m(Ξ′0b )−m(Ξ0
b) = 135.8± 0.5 MeV/c2

m(Ξ
′−
b )−m(Ξ0

b) = 138.3± 1.0 MeV/c2.
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