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Abstract

A fundamental problem in intrusion detection is what metric(s) can be used to objectively evaluate an
intrusion detection system (IDS) in terms of its ability to correctly classify events as normal or intrusion. In
this paper, we provide an in-depth analysis of existing metrics. We argue that the lack of a single unified
metric makes it difficult to fine tune and evaluate an IDS. The intrusion detection process can be examined
from an information-theoretic point of view. Intuitively, we should have less uncertainty about the input
(event data) given the IDS output (alarm data). We thus propose a new metric loallesion Detection
Capability, C;p, which is simply the ratio of the mutual information between IDS input and output, and the
entropy of the input.C;p has the desired property that: (1) it takes into account all the important aspects
of detection capability naturally, i.e., true positive rate, false positive rate, positive predictive value, negative
predictive value, and base rate; (2) it objectively provide an intrinsic measure of intrusion detection capability;
(3) itis sensitive to IDS operation parameters. We proposeipatis the appropriate performance measure
to maximize when fine tuning an IDS. The thus obtained operation point is the best that can be achieved by the
IDS in terms of its intrinsic ability to classify input data. We use numerical examples as well as experiments
of actual IDSs on various datasets to show that uéipg, we can choose the best (optimal) operating point
for an IDS, and can objectively compare different IDSs.

1 Introduction

A fundamental problem in intrusion detection is what metric(s) can be used to objectively measure the effec-
tiveness of an intrusion detection system (IDS) in terms of its ability to correctly classify events as normal or
intrusion. Defining an appropriate metric is essential to both practice and research because we need a metric
when selecting the best IDS configuration for an operation environment and when comparing different IDSs.

The most basic and commonly used metrics are true positiveFdétg (vhich is the probability that the IDS
outputs an alarm when there is an intrusion, and false positive ¥a®, (which is the probability that the IDS
outputs an alarm when there is no intrusion. Alternatively, one can use false negativé\ratel — 7P and
true negative ratd’N = 1 — FP. When we fine tune an IDS (especially an anomaly detection system), for
example by setting the threshold of deviation from a normal profile, there may be diffeReahd F' P values
associated with different IDS operation points (e.g., each with a different threshold). Clearly, Bathd ' P
need to be considered when selecting the best IDS operation point and comparing IDSs. The question is then
how to use these two metrics together.

A popular approach is to use an ROC (receiver operating characteristic) curve [HW66] to plot the different
TP and F'P values associated with different IDS operation points. For example, an ROC curve can show one
(operation) point withc TP = 0.99, FP = 0.001> and another with< TP = 0.999, FP = 0.01>, etc. An
ROC curve shows the relationship betwé&eh and F'P but by itself cannot be used to determine the best IDS
operation point. ROC curves may be used for comparing IDSs. If the ROC curves of two IDSs do not “cross”
(i.e., one isalwaysabove the other), then the IDS with the top ROC curve is better because foréfeity
has a highefl’P. However, if the curves do cross, then there is no easy way to compare the IDSs. It is not



Term | Equivalent Terms from IDS Literature | Meaning \

FP,ora | P(A|-I) False positive rate. The chance that there is an
alert, A, when there is no intrusiom;/.

TP (1-75), P(A|I) True positive rate. The chance the there is an
alert, A, when there is an intrusiod,

FN,or3 | P(-A|I) False negative rate. The chance there is no
alert,— A, when theras an intrusion,/.

TN (1 —a), P(A|-I) True negative rate. The chance there is|no
alert,— A, when there isointrusion,—1.

PPV “Bayesian detection rate’?(1|A) Positive predictive value. The chance that|an
intrusion, 7, is present when an IDS outputs
an alarm,A.

NPV P(—1]-A) Negative predictive value. The chance that
there is no intrusion;-Z, when an IDS does
not output an alarm; A.

B P(I) Base rate. The probability that there is an |n-
trusion in the observed audit data.

Table 1: List of terminology used in this paper. For readability, we will use the terms listed in the leftmost column.

always appropriate to use the area under ROC curve (AUC) for comparison because it measures all possible
operation points of an IDS. One can argue that comparison should be based on the best operation point of each
IDS because in practice an IDS is fine tuned to a particular configuration (e.g., using a particular threshold).

One approach to integrate the metric® and F'P together is through cost-based analysis. Essentially, the
tradeoff between a true positive and a false positive is considered in terms of cost measures (or estimates) of the
damage caused by an intrusion and inconvenience caused by a false alarm. Gaffney and Ulvila [GUO01, UG03]
use such an approach to combine ROC curves with cost analysis to compute an expected cost for each IDS
operation point. The expected cost can be used to select the best operation point and to compare different IDSs.
The quality of cost-based analysis depends on how well the cost estimates reflect the reality. However, cost
measures in security are often determisatjectivelybecause of the lack of good (risk) analysis models. Thus,
cost-based analysis cannot be usedhiectivelyevaluate and compare IDSs. Moreover, cost-based analysis
does not give an intrinsic measure of detection performance (or accuracy).

In addition toT' P and F' P, two other useful metrics are the positive predictive valB&{’), which is the
probability that there is an intrusion when the IDS outputs an alarm, and negative predictive N&hig),(
which is the probability that there is no intrusion when the IDS does not output an alarm. These metrics are very
important from a usability point of view because ultimately, the IDS alarms are useful to an intrusion response
system (or admin staff) only if the IDS has high?V and N PV. Both PPV and N PV depend ol P and
F P, and are very sensitive to base rat8,(which is the prior probability of intrusion. Thus, these two metrics
can be expressed using Bayes theorem (and PPV is called Bayesian detection rate [Axe99] in IDS literature)
so that the base rate can be entered as a piece of prior information about the IDS operational environment in
the Bayesian equations. Similar to the situation WitR and F P, both PPV and N PV are needed when
evaluating an IDS from a usability point of view, and currently there is no objective method to integrate both
metrics.

We need a single unified metric that takes into account all the important aspects of detection capability, i.e.,
TP, FP, PPV, NPV, andB. That is, this metric should incorporate existing metrics because they all are
useful in their own rights. This metric needs to be objective. That is, it should not depend on any subjective
measure. In addition, it needs to be sensitive to Ep8ration parameterso facilitate fine tuning and fine-
grained comparison of IDSs. We us& andF' P as the surrogates of IDS operation parameters (e.g., threshold)
because changing the operation parameters usually results in chafigesta 7' P. Although it is difficult or



sometimes impossible to control the base rate in an IDS, we still consider it as an operation parameter because
it is a measure of the environment in which the IDS operatd3.F P, B can be measured when we evaluate an
IDS because we have the evaluation data set and should know the ground truth.

We propose an information-theoretic measure of intrusion detection capability. At an abstract level, the
purpose of an IDS is to classify the input data (i.e., events that the IDS monitors) correctly as normal or an
intrusion. Thatis, the IDS outpuit (i.e., the alarms) should faithfully reflect the “truth” about the input (or whether
there is an intrusion or not). From an information-theoretic point of view, we should havenesdaintyabout
the input given the IDS output. Thus, our metric, calletfusion Detection Capabilityor C7p, is simply the
ratio of the mutual information between IDS input and output, and the entropy of the input. Mutual information
measures the amount of uncertainty of the input resolved by knowing the IDS output. We normalize it using the
entropy (the original uncertainty) of the input. Thus, the ratio provides a normalized measure of the amount of
certainty gained by observing IDS outputs. This natural metric incorpofaed” P, PPV, NPV andB, and
thus provides a unified measure of the detection capability of an IDS. It is also sensifiye 6P, andB.

This paper makes contributions to both research and practice. We provide an in-depth analysis of existing
metrics and provide a better understanding of their limitations. We examine the intrusion detection process from
an information-theoretic point of view and propose a new unified metric for intrusion detection capéhifty.
is the appropriate performance measure to maximize when fine tuning an IDS. The thus obtained operation point
is the best that can be achieved by the IDS in terms of its intrinsic ability to classify input data. We use numerical
examples as well as experiments of actual IDSs on various datasets to show that using this metric, we can choose
the best (optimal) operating point for an IDS, and can objectively compare different IDSs.

Note that this new metria;’;p, is not intended to replace existing metrics suclf'@s F' P, etc. In fact,

TP, FP are used as basic inputs to compGtg,. Thus,Crp presents a composite/unified measure. Further-
more,C;p is just one possible measure for IDS evaluation. Other approaches, e.g., cost-based analysis, may be
appropriate in some cases, e.g., when good (risk) analysis models are available.

Also note that in this paper we are not concerned with other important IDS performance objectives, such as
economy in resource usage, resilience to stress {PB(; and ability to resist attacks directed at the IDS [PN98,
Pax99]. We only focus on the intrinsic IDS ability of classifying input events accurately. Although our measure
can be used in other domains, we focus on intrusion detection (specifically network-based intrusion detection)
as a motivating example.

The rest of the paper is organized as follows. In section 2, we provide an information-theoretic view of
the intrusion detection process. After reviewing some essential information theory concepts, we introduce our
unified metric of intrusion detection capabilit§; . In section 3, we analyze existing metrics and compare
them withC;p. Section 4 describes ho@;p can be used to select the best operation point of an IDS and to
compare different IDSs. Section 5 discusses limitations and extensions. Section 6 introduces related work. We
conclude the paper and discuss future work in Section 7.

2 An Information-Theoretic View of Intrusion Detection

Let us revisit the intrusion detection process from an information-theoretic point of view. At an abstract level,
an IDS accepts and analyzes an input data stream, and produces alerts to indicate intrusions. Every unit of input
data stream has the status of either intrusion or normal. Thus, we can model the input of an IDS as a random
variable X, whereX = 1 represents an intrusion, aid = 0 represents normal traffic. The output alerts of an

IDS is also modeled as a random variablewhereY = 1 means there is an alert indicating an intrusion, and

Y = O represents no alert from the IDS. We assume here that there is an IDS output (decision) corresponding to
each input. The exact encoding ®f Y is related to the unit of input data stream, which is in fact related to IDS
analysis granularity, or the so-called unit of analysis [McHOQ]. For network-based IDSs such as Snort [Roe99],
the unit of analysis is a packet. The malicious packets are encod€d-ad. The IDS examines every packet

to classify it as malicious{{ = 1) or normal { = 0). There are also IDSs such as Bro [Pax99] which analyze
events based on flows. In this case, the malicious flow is encod&d-asl and the output indicates whether

this flow contains an attack’(= 1) or not (Y’ = 0).



An abstract model for intrusion detection is shown in Figure 1. In this madél,= 1) is the base rate,

X Y
Px=1)=B 1 O<—= »1

P(x=0)=1-B 0 »0 0

1-FP

Figure 1. An abstract model for intrusion detection.

which is the prior probability of intrusion in the input event data examined by the IDS. We denotBitAs
intrusion event has a probabiligfY = 0|X = 1) of being considered normal by the IDS. This is the false
negative rate £ V) and is denoted a8. Similarly, a normal event also has a probabijityy” = 1|X = 0) of
being misclassified as an intrusion. This is the false positive fafe) @nd is denoted as. We will use the
notations B, «, 3) throughout this paper. Table 1 lists the terms used by this paper and their meaning. Note that
when we evaluate an IDS, we should have the evaluation data set of which we know the ground truth. So once
the evaluation data set is given and the tests are run, we should be able to cdlculated 3.

This model is very useful because it allows us to analyze intrusion detection from an information-theoretic
point of view. We will first review a few basic concepts in information theory [CT91], which are the building
blocks of our proposed metric of intrusion detection capability.

2.1 Information Theory Background

Definition 1 The entropy (or self-information) H(X) of a discrete random variable X is defined by [CT91]
H(X)=-> p(z)logp(x)

This definition is commonly known as the Shannon entropy measure, or the uncertaihtyAdérger value
of H(X) indicates thatX is more uncertain. We use the convention thktg 0 = 0, which is easily justified
by continuity because logx — 0 asx — 0. The definition of entropy can be extended to the case of jointly
distributed random variables.

Definition 2 If (X,Y) is jointly distributed asp(x,y), then the joint entropy H(X,Y) of X and Y is defined
by [CT91]

H(X,Y) ==Y plx,y)logp(x,y)
oy

Definition 3 If (X,Y) is jointly distributed asp(z,y), then the conditional entropy¥ (X|Y) is defined
as [CT91]

HXY) =X, p)HXY =y) =-3,py) >, p(z|y) log p(z[y) )
= =%, 5, p(z,y) logp(aly) = — X, 3, p(z)p(y|z) log 24!
Conditional entropy is the amount of remaining uncertaintiaifterY” is known. We can saf/ (X|Y) =0

if and only if the value of X is completely determined by the valu&ofConverselyH (X |Y)=H(X) if and
only if X andY” are completely independent. Conditional entrépyX |Y") has the following property:

0< H(X|Y) < H(X)



Definition 4 Consider two random variableX and Y with a joint probability mass functiom(z,y) and
marginal probability mass functiongx) andp(y). The mutual informatiod (X;Y) is defined as [CT91]

Pz, y
I(X;Y) = zz: Zy:p(fcv y) log p(i)p(;)
Mutual information tells us the amount of information shared between two random varidbtesl Y.
Obviously,/(X;Y) = I(Y; X).
Theorem 1 Mutual information and entropy [CT91]:
I(X;Y)=HX)-H(X|Y)=H(Y)-H(Y|X)=HX)+HY)—-H(X,Y)

This shows that we can interpret mutual information as the amouetottionof uncertainty inX aftery’
is known, H(X|Y") being theremaininguncertainty. This theorem shows the relationship between conditional
entropy and mutual information. We can also express this relationship in a Venn diagram as shown in Figure 2.
Here, mutual informatiod (X ; Y) corresponds to the intersection of the informatioXinwith the information
inY. Clearly,0 < I(X;Y) < H(X).

H(Y)

Realistic IDS Situation

Figure 2: Relationship between entropy and mutual information. For example, the entrdpyafH (X), is the sum of

the mutual information o andY’, or I(X;Y’), and the conditional entropy between the two (X |Y"). On the right,

the entropyH (Y') is much larger thad? (X). This reflects a likely IDS scenario, where the base rate is very small (close
to zero), saH (X) is nearly zero. On the other hand, the IDS may produce quite a few false positives HltUscan be
larger thanH (X).

2.2 Cip: A New Metric of Intrusion Detection Capability

Our goal is to define a metric to measure the capability of an IDS to classify the input events correctly. At
the abstract level, the purpose of an IDS is to classify the input correctly as normal or intrusion. That is, the
IDS output should faithfully reflect the “truth” about the input (or whether there is an intrusion or not). From
an information-theoretic point of view, we should have lassertaintyabout the input given the IDS output.
Mutual information is a proper yardstick because it captures the reduction of original uncertainty (intrusion or
normal) given that we observe the IDS alerts.

We propose a new metritntrusion Detection Capabilityor C;p, which is simply the ratio of the mutual
information between IDS input and output, and the entropy of the input.

Definition 5 Let X be the random variable representing the IDS input and Y be the random variable representing
the IDS output. Intrusion Detection Capability is defined as

I(X;Y)

CID = W (2)



As discussed in Section 2.1, mutual information measures the reduction of uncertainty of the input by know-
ing the IDS output. We normalize it using the entropy (i.e., the original uncertainty) of the input. Thti$s
the ratio of reduction of uncertainty of the IDS input given the IDS output. Its value ran@gljs Obviously, a
largerCp value means that the IDS has a better capability in classifying input events correctly.

Cp can also be interpreted in the following way. Considéms a stochastic binary vector which is the
“correct assessment” of the input data streﬁm‘.e. the correct indication whether each stream unit is an
intrusion or not. The detection algorithm is a deterministic function actin@,oylielding a bitstringl7 that
should ideally be identical t& . The IDS has to make correct guesses about the unkddvirased on the input
streamS. The actual number of required binary guessd$ (%), the “real” information content ok . Of these,
the number correctly guessed by the IDS(; Y) (see Figure 2 for the intersectidii(X) A H(Y)). Thus
I(X;Y)/H(X) is the fraction of correct guesses.

Using the definitions in Section 2.1 and the abstract model of IDS ingditafhd output ¥') as shown in
Figure 1, we have;p = I(X;Y)/H(X) = (H(X) — H(X|Y))/H(X), H(X) = -~ Y, p(z)log p(x) =
—BlogB — (1 - B)log(1— B),and

HXY) = —¥,%, p(@)p(yle) log HopUl)
B(1-B) Y Bp
= —B(-P)log grpri-m ~ BAlos srrm-mun—a )

1-B)(1—«a 1-B)a
(1= B)(1 ~ ) log (g1 eyt — (1~ Blalog (regjat i)

We can see that;p is a function of three basic variables: base réty ¢ P («), andF' N (5). WhenB =0
or B =1 (i.e., the input is 100% normal or 100% intrusio®j{X) = 0. We defineC;p = 1 for these two
cases.
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Figure 3: Intrusion Detection Capability. For a realistic low base ratg, is more sensitive to changesdrthan changes
in 3. See Appendix A.1 for a formal proof.

From Figure 3(a) we can see the effect of different base raté% gnIn realistic situations where the base
rate (B) is very low, an increase iB will improve C;p. We should emphasize that the base rate is not normally
controlled by an IDS. However, it is an important factor when studying intrusion detection capability.

Figure 3(a) clearly shows that for low base rates, it is better to decfeRsban F'N in order to achieve a
betterC;p. For example, suppose we have an IDS with a base?ate10~?, and aF P = 0.1, andF'N = 0.1.

If we decrease thé'P from 0.1 to 0.01 (a ten-fold decrease), tigp moves from 0.1405 to 0.3053. If we
instead decrease tleV from 0.1 to 0.01, th&€’;p only moves from about 0.1405 to 0.1778. Thus, for very low
base rates, a reduction inP yields more improvement in intrusion detection capability than the same reduction
in F'N. This is intuitive as well, if one realizes that boftyV and F'P are misclassification errors. When the



base rate is low, there are more normal packets that have a chance of being misclassgificdeagn a large
change inF’N may not be very beneficial if there are few attack packets at risk for misclassificatioy ag
formal proof thatC;p is more sensitive td' P than toF' N is given in Appendix A.1.

We know that in the perfect case wherd® = F'N = 0, the ID capability is always the sam€'(p = 1)
because the IDS classifies the events without mistake. For realistic (low) base rates, the efféttnafF" NV
are shown in Figure 3(b) and 3(c¥’';p will improve with a decrease of both P and F'N. Note that any
reasonable (or “allowable”) IDS should have detection rate greater than the false positiverdtéV( > F'P).
That is, an IDS should be doing better than random guessing, whici Ra$' N=50%. Thus, wheh — FN <
FP,we defineC;p = 0.

There do exist several other similar metrics based on normalized mutual information in other research areas.
For example, in medical image processMill (Normalized Mutual Information [PMV03], which is defined
asNMI = (H(X)+ H(Y))/H(X,Y)), is used to compare the similarity of two medical images. In fact
NMI=(HX)+HY))/HX,Y)=(HX,Y)+I(X;Y))/HX,Y)=1+I(X;Y)/H(X,Y). Itranges
from 1 to 2. For comparison wit@';p, we can plotN M usingNMI = [(X;Y)/H(X,Y) (omitting the “1
plus” from the term as a constant) in Figure 4.
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C'p plotin Figure 3(b).
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plot to the C;p performance in Fig-
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Figure 4: NMI=I(X;Y)/H(X,Y). Using a realistic base raté3, we plot N M I against changes in and3. Compared to
Figure 3, NM [ is far less sensitive thafi;p. Note the orders of magnitude difference in scales used in this plot, and
Figure 3.

We can see from Figure 4(a) thltMl has a similar trend a€7p. But we clearly see thaW M [ is not
sensitive toF' N in that a variation ofF' N has almost no effect. For example, whE#® = 0.01, if we vary
F'N from 0.01 to 0.1NMI remains almost the same. The reason of this is because in a realistic IDS operation
environment, the base rate is very low (close to zero) which means the uncertaitig afose to zero. Thus,
the entropy ofX (nearly zero) is far less than the entropyyobecause the IDS can produce many false positives,
as shown in the right part of Figure 2. We have\/I = I(X;Y)/H(X,Y) = I(X;Y)/(H(X) + H(Y) —
I(X;Y)),andH(Y) > H(X) > I(X;Y). We also know that a change 6tV will only cause a very slight
change ofl (X;Y). (Recall the discussion above, where a low base rate implies there are few attack packets
exposed to the risk of being misclassifiedfad’). Thus, a change i’ N actually has very little effect on the
change ofNM 1.

Further, consider the plots in Figure 3(c) with Figure 4(c). For equivalent rangE&/othe y-axis for the
NMI plot in Figure 4 ranges from 0 to 0.07, while the axis for thgy ranges from 0.1 to 0.6. Thu€j;p is
almost an order of magnitude more sensitive thal/ I to changes irF'N. Similarly, the corresponding’ P
plots in Figure 3(b) and Figure 4(b) show ti@{p is approximately 100 times more sensitive thisd/ [ to
equivalent shifts irf” P rates. For all these reasodé)\/ I is not a good measure of intrusion detection capability.



In other domains, where the relatiédf( X' ) < H(Y') does not apply)N M I may be a suitable metric.

NMI is a symmetric measure. There is an asymmetric measure called NAMI (Normalized Asymmetric
Mutual Information) in [Str02], which is defined &8 AMI = I(X;Y)/H(Y). This metric has the same
problem asVM 1 in that it is relatively insensitive to changesinV. In realistic IDS scenarios, the base rate
is low, andH (X) < H(Y). Accordingly, H(Y) ~ H(X,Y). SONAMI ~ NMI, and is unsuitable for an
intrusion detection metric.

3 Analysis and Comparison

In this section we provide an in-depth analysis of existing IDS metrics and compare them with our new metric
Crp.

3.1 ROC Curve Based Measurement

An ROC curve shows the relationship betwéeR and F'P but by itself cannot be used to determine the best

IDS operation point. ROC curves can sometimes be used for comparing IDSs. If ROC curves of two IDSs do
not “cross” (i.e., one islwaysabove the other), then the IDS with the top ROC curve is better. However, if

the curves do cross, the area under ROC curve (AUC) can be used for comparison. However, this may not be a
“fair” comparison because AUC measures all possible operation points of an IDS, while in practice an IDS is
fine- tuned to a particular (optimal) configuration (e.g., using a particular threshold).

Gaffney and Ulvila [GUOL, UGO03] proposed to combine cost-based analysis with ROC to compute an ex-
pected cost for each IDS operation point. The expected cost can then be used to select the best operation point
and to compare different IDSs. They assigned a €astfor responding to a false alarm and cost for every
missed attack. They defined the cost ratiadCas- C3/C,. Using a decision tree model, the expected cost of
operating at a given point on the ROC curve is the sum of the products of the probabilities of the IDS alerts and
the expected costs conditional on the alerts. This expected cost is given by the following equation:

Cezp = Min{CBB, (1 —a)(1 - B)}+ Min{C(1 - 5)B,a(l — B)} 4

In a realistic IDS operation environment, the base rate is very low]8ay. Thea is also very low, say
102 (because most IDSs are tuned to have very dgwwhile 3 may not be as low, say0~'. So we can
reasonably assum@ < a < 3 < 1. If we have selected a very sméll(say, less than/(B(1 — 3))), then

Cesp = CAB +C(1 - B)B = CB

This means that whatever false positive and false negative rates are, the expected cost metric remains the same
C B! If we have chosen a very lardge (say, larger than / B), then the expected cost will become

Ceaap=(1—-a)(1-B)+a(l-B)=1—-B

Again in this case it has nothing to do withandg.
Consider thal — o = 1 — B = 1 in realistic situations, we can approximate Eq.( 4) as

Cezp = Min{CpBB,1} + Min{C(1 — §)B, a} (5)
Above equation can be rewritten as,

Cezp = CB if CB<i%3
= CBB+a if %3<CB<I1 (6)
= l4+a if CB>1

'Note that the notatiod’; p has no relation to the notatiaft,. Our metric measures capability, while Gaffney and Ulvila measured
cost.



From the above analysis, we can see that a very important factor in determining the expected cost.
However,C' is not an objective measure. In fact, in practice, it is very hard to determine the appropriate value
of C. Furthermore, in [GUO1, UGO03], Gaffney and Ulvila assumed a stationary cost €gtioThis may not
be appropriate because in practical situations, the relative cost (or tradeoff) of false alarm and missed attack
changes as the total number of false alarms and missed attacks changes.

To conclude, using ROC alone has limitations. Combining it with cost analysis can be useful but it involves
a subjective parameter that is very hard to estimate because a good (risk) analysis model is hard to obtain in
many cases. On the other hand, i is a very natural and objective metric.

3.2 Bayesian Detection Rate

Bayesian detection rate [Axe99] is in fact the positive predictive valRiBY(), which is the probability that
there is an intrusion when the IDS outputs an alarm. Similarly, Bayesian negative rate (or negative predictive
value, N PV) is the probability that there is no intrusion when the IDS does not output an alarm. These metrics
are very important from a usability point of view because ultimately, the IDS alarms are useful only if the IDS
has highPPV and N PV. Both PPV and N PV depend orf'P and F'P, and are sensitive to base rate. Thus,
they can be expressed using Bayes theorem so that the base rate can be entered as a piece of prior informatior
about the IDS operational environment in the Bayesian equations.

The Bayesian detection rat€ PV) is defined as [Axe99]:

P(1, A) P(I)P(A|I) B(1-p)
P(I1A) = = =
P(A) P(I)P(A|I)+ P(-I)P(A|-=I) B(1-p8)+(1- B)a

Here, A means IDS outputs an alert afidndicates there is an intrusion. That B(I) is the base raté,
P(A|-I)is FPora, P(-A|I)is FN or 3, andP(A|I)isTP or1—4.

Similarly, the Bayesian negative rat& PV) is:

PI4) = p(X =0y =0) = 7 Egﬁ)f“_) : )Bﬂ

Clearly PPV andN PV are functions on variableB, o, 5. Their relationship is shown in Figure 5. We can
see that botlP PV and N PV will increase if FP and F'N decrease. This is intuitive because low&P and
F'N should yield better detection results.

Figures 5(a) and 5(b) shows thaP actually dominate$’ PV when the base rate is very low. This means
that in most operation environments (whBnis very low), PPV almost totally depends only oR P. It also
only changes very slightly with differed /N values. For example, wheiP = 0.01, if we vary F'N from 0.01
to 0.1, PPV remains almost the same. This shows tA&V is not sensitive ta"N. Figure 5(c) shows® PV
is not as sensitive t6'NV asC;p. Similarly, Figures 5(d), 5(e), and 5(f) show th&tPV is not sensitive td"' P
andF'N.

To conclude, when evaluating IDS from an usability point of view, bBfAV and N PV are needed. How-
ever, similar to the situation witlh' P and ' P, there is no existing objective method to integrate these metrics.
On the other hand, we can rewrite Equation (3) as

H(X|Y) =—B(1—B)log PPV — BBlog (1 — NPV)—(1—B)(1—a)log NPV — (1— B)alog (1 — PPV)

We can see that our new metidg p has incorporated botR PV and N PV in measuring intrusion detection
capability. C;p in fact unifies all existing commonly used metrics, I8P, FFP, PPV, and NPV. It also
factors in base rate, a measure of the IDS operation environment.
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Figure 5: Positive and Negative Predictive Value. These plots, similar to those in Figures 4 shad#RWaand N PV
are not sensitive measures when the base rate is low. In (a), changé®irthe samex values) have nearly no effect on
PPV. In (b) for a low base rate, changesdrhave a small effect of? PV. The insensitivity ofP PV is also seen in (c),
where changes i do not result in large changes inPV. The same is true falV PV, in graphs (d), (e), and (f), which
show that changes im and3 do not significantly affectv PV.

3.3 Sensitivity Analysis

We already see one important advantag€'g# over existing metrics: it is a single unified metric, and is very
intuitive and appealing, with a grounding in information theory.

In this section we analyze in depth wbyp is more sensitive than traditional measures in realistic situations
(i.e., where the base rate is low). IDS design and deployment often results in slight changes in these parameters.
For example, when fine-tuning an IDS (e.g., setting a threshold), different operation points have différent
andF'P. Being sensitive means th@}p can be used to measure even the slight improvements to arFPB.
and N PV, on the other hand, require more dramatic improvements to an IDS to yield measurable differences.
Similarly, C;p provides a fairer comparison of two IDSs because, for example, a slightly b&kfeactually
shows more of an improvement in capability tharA® V. In short,Crp is a more “precise” metric.

As we know, the scales d?PV, NPV, Cp are all the same, i.e., from 0 to 1. This provides a fair situation
to test their sensitivity. To investigate how much more sensdlyg is compared ta®? PV and N PV, we can
perform a differential analysis of base rdte false positiveF' P, and false negativeE N to study the effect of
changing these parameters BV, NPV, andC;p. We can assume th& < 1 anda < 1, i.e., for most
IDSs and their operation environments, base rate and false positive rates are very low. Approximate derivatives
are shown below. (The detailed steps in this differential analysis appear in Appendix A.2). Note that although
we originally plot Figure 6 according to Equation(7) where we simpBfy 1 anda < 1, it turns out we will
get almost the same figures when we do the numerical solution on the differential fornriRba6EV PV, C;p
without any simplification oB, «.
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Figure 6: Derivative analysis (in absolute value). In every situatinn, has the highest sensitivity, comparedR&V
andN PV . For realistic situations, its derivative is always higher than other measures.

Figure 6 shows the derivatives (in absolute value) for different metrics. We only need to see the absolute
value of derivative. A larger derivative value shows more sensitivity to changes. For example, in Figure 6(a), a
change in the base rate results in very tiny chang& V. PPV improves with the change, but not as much
asCrp. Clearly, from Figure 6 we can see tl@tp is more sensitive to changesih F'P, FN thanPPV and
NPV,

For small base rates and false negative ratd3) is more sensitive to changes in the base rate [Axe99],
than changes i’ P. It is least sensitive té&'N. Given the same base rate ah@, the change oF' N has a
very small effect onP PV. This implies that for a large difference AN but a small difference i P, the IDS
with the smallerF' P will have a betterP PV. For example, suppose we have two IDSs with the same base rate
B =0.00001, IDS; hasFP = 0.2%, FN = 1% while IDSs hasF'P = 0.1%, FFN = 30%. AlthoughIDS;
has a far lowei’ N (1% < 30%) and slightly highe P (0.2% > 0.1%), its PPV (0.0049) is still lower than
I1DS, (0.007). On the other hand, €% p (0.4870) is greater thahD Ss (0.3374).

N PV on the other hand is more sensitiveRand F'N. It does not change much for a changeir. This
implies that for large difference ifi' P but small difference inF’ N, the one with the smalleF' N will have a
better N PV. For example, two IDS’s with the same base rate 0.00001§; hasFP = 0.1%, FN = 2%
while IDSs hasF'P = 2%, FN = 1%. AlthoughIDS; has far lowerF’P (0.1% < 2%) and slightly higher
FN 2% > 1%), its NPV (1-2.002e-6) is still lower thad DS, (1-1.0204e-6). On the other hand, its ID
Capability (0.4014) is greater thdiD.S; (0.2555).

To conclude(;p is a more precise and sensitive measure thatV and N PV,
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4 Performance Measurement Using”';p

4.1 Selection of Optimal Operating Point

C;p factors in all existing measurements, i.e., base &, F'N, PPV, and NPV, and is the appropriate
performance measure to maximize when fine tuning an IDS (so as to select the best IDS operation point). The
thus obtained operation point is the best that can be achieved by the IDS in terms of its intrinsic ability to classify
input data. For anomaly detection systems, we can change some threshold in the detection algorithm so that we
can achieve different correspondifAg® and£' N, and create an ROC curve. In order to obtain the best optimized
operational point, we can calculate a corresponding ID capability for every point in the ROC. We then select the
point which gives the highest ID capability, and the threshold corresponding to this point provides the optimal
threshold for use in practice.

To illustrate, we first give a numerical example. We take the two ROC examples from [GUO1]. These
two intrusion detectors, denoted AB.S; andIDS,, have ROC curves that were determined from data in the
1998 DARPA off-line intrusion detection evaluation [GELT We do not address how these ROC curves were
obtained, and instead merely use them to demonstrate how one selects an optimized operating péipbusing

As in [GUO1], theI DS; ROC can be approximated as- 3 = 0.6909 x (1 — exp(—65625.64a!1%)). The
IDS; ROC is approximated as— 3 = 0.4909 x (1 — exp(—11932.6a!1?)). For both IDSs, the base rate is
B = 43/660000 = 6.52 x 10~°. From these two ROC curves, we can get their corresponding ID Capability
curves in Figure 7.

0.8 w \ ;

@ o O OIOI0I0I010001010:10:10:10101000 9

<0.6f )

% o oAk A A Ao b A A= b A A

m0.4’ A’k‘A— b

c A” ¢ IDS

8020 A Ds. | |

F_-! A =B 2

G,) 0 1 L 1

o 0 o 1o 1.5 2

alse positive rate (@ .
p @) « 1072

"8 000 . |

C04F o Ny ol 0060 1

20.3 o Max C\p M omo'”o”'°'”°”'°”'°”'f’

<~ A oAb Ah A-A A-A A A A 4L

© L ‘_A—‘A A

%0'2 Ak Ma{ch o IDS,

001} A

90-(1) " -a- IDS,
0 0.5 1 1.5 2

False positive rate (a) %107

Figure 7: IDS; andIDS; ROC curves and corresponding ID Capability Curves. These plots, based on values reported
in [GUO1], show howC; can be used to select an optimal operating point. It is not clear how simple ROC analysis could
arrive at this same threshold.

We can see thatD.S; achieves the best ID Capability (0.4557) when the false positive rate is approximately
0.0003 (corresponding to detection rdte- 5 = 0.6807). So this point (with the corresponding threshold)
provides the best optimized operating pointf@.S;. The optimized operating point fdtD.S, is approximately
a = 0.001,1— 3 = 0.4711 and the corresponding maximized ID capability is 0.2403. Thus, to set the optimized
threshold one merely has to calculat€'s, for each known point (for it§" P and F' P) on the ROC curve, and
then select the maximum.
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4.2 Comparison of Different IDSs

When we get the maximized;p for every IDS, we can compare théip to tell which IDS has better Intrusion
Detection Capability. For example, in the previous section, cleatly; is better thary DS, because it has a
higherC;p. Granted, in this case it is easy to compaf®S; and DS just from ROC curves. But in many
cases comparing ROC curves is not straight forward, particularly when the curves cross.

Consider another simple numerical example with the data taken from [LFe00]. We compare two IDSs which
have onlysinglepoint ROC curves (for PROBE attackd)DS; hasF'P=1/660, 000, TP =0.88, while 1 DS
hasF'P =7/660,000, TP =0.97. The base rate here 8 = 17/(17 4+ 660, 000). We note these single point
curves were critiqued in [McHOQ], but here we use it merely as a simple numerical example 6f;powight
compare two IDSsI DS hasCrp = 0.8390 andI DS, hasCrp = 0.8881. Thus,I DS; is a little better than
I1DS,. Reaching this same conclusion using just the ROC curves in [LFe00] is not obvious.

The relativeC;p between different IDSs is fairly stable even if the base rate in realistic situations may
change a little. This can be easily seen from Figure 3(a). The four curves do not intersect within the range of
base rate from0~" to 107!,

4.3 Experiments

To demonstrate how to use the sensitivity of the ID capability measurement to select the optimal operation point
(or fine tune an IDS) in practice, we examined several existing anomaly detection systems, and measured their
accuracyCrp, under various configurations. Specifically, we used two anomaly network intrusion detection
systems, Packet Header Anomaly Detection (PHAD) [MCO01] and Payload Anomaly Detection (PAYL) [WSO04].
To demonstrate how to compare two different IDSs usiiag, we compared an anomaly detection system PAYL

with another open source signature-based IDS, Snort [Roe99], in terms of their capabilities to detect Web attacks
based on the same testing data set.

PHAD and PAYL both detect anomalies at the packet level, with PHAD focusing on the packet header, and
PAYL using byte frequencies in the payload. We tested PHAD using the DARPA 1999 test data set [LLO1],
using week 3 for training and weeks 4 and 5 for testing. We configured PHAD to monitoHafliPtraffic. As
noted in [WSO04], it is difficult to find sufficient data in the DARPA 1999 data set to thoroughly test PAYL, so we
used GTTrace, a backbone capture from Georgia Tech network. The GTTrace data set consists of approximately
6 hours ofHTTPtraffic captured on a very busy 1Gb/s backbone, or approximately 1G of data. We filtered the
GTTrace set to remove known attacks, split the trace into training and testing sets, and injected nHfi€RUS
attacks into the testing set, using tools such as libwhisker [Pup04]. We(lysetb identify an optimal setting
for each IDS.

In PHAD, a score is computed based on selected fields in each packet header. If this score exceeds a
threshold, then an intrusion alert is issued. Adjusting this threshold yields difféienk’'P values, shown
in Figure 8(a). We configured PHAD to recognize the attack packets, instead of the attack instances reported
in [MCO1].

We can see in Figure 8(a), that tkép curve almost follows the ROC curve (both like straight lines).

The reason is that with the DARPA data set, we found the false positive rate for PHAD was fairly low, while
the false negative rate was extremely high, withe 1. As shown in Appendix A.3, given small values of

« and large values of, ROC andC;p can both be approximated as straight lines, and the equatiafi;for
becomes essentially (1 — 3)/H(X), whereK is a constant. We note that the authors in [MCO01] used PHAD

to monitor traffic of all types, and the details of training and testing were also different from our experiments.
In particular, we configured PHAD to report each packet involved in an attack instead of reporting the attack
instance. Therefore, our PHAD has a hjglkthan reported in [MCO01].

One can argue that just selecting the point from the ROC with the highest detection rate is an adequate way
to tune an IDS. This may be true in anecdotal cases, as illustrated by our configuration of PHAD. But it is not
always the case, as shown in other situations such as Figure 7.

Our reanalysis of PHAD therefore illustrates a worst-case scenari@for With 8 ~ 1, anda ~ 0, Cip
identifies an operating point no better than existing detection measurements, e.g. ROC. Note, howé¥ey, that
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Figure 8: Experiment Results. a) A low false positive and high false positive rate in the PHAD test figaisno better
(and no worse) than ROC. 1b);  identifies an optimal threshold in PAYL. A simple ROC analysis would fail to find this
point because of an increasing detection rate.

will never return a worse operating point.

In other situationsC7p will outperform existing metrics. Indeed, our analysis of PAYL and the GTTrace
data set illustrates a situation wherep provides a better measure than simple ROC analysis. PAYL requires
the user to select an optimal threshold for determining whether observed byte frequencies vary significantly from
a trained model. For example, a threshold of 256 allows each character in an observed payload to vary within
one standard deviation of the model [WS04]. As before, we can experiment with different threshold values, and
measure the resulting P, F'N rates. In Figure 8(b), we see that for the GTTrace data, as the threshold drops,
Crp reaches a peak and then drops, while the ROC curves (shown in the top graph) continues to slowly increase.

An analyst using just the top graph in Figure 8(b) might be tempted to set a threshold lower than, say, 8
(wherea = 3 x 1073), because the detection capability still increases, even if the false positive rate grows
slightly as well. But using’;p, we see the detection capability actually declines &ftgs =0.033448 (marked
in Figure 8(b) with a vertical line). Thug/;p identifies a higher, but optimal operating threshold of 64 (where
a=0.7x 10731 — =0.10563). In this situation(;p provides a better operating point. It is not obvious how
ROC analysis could provide the same optimal threshold.

To demonstrate hoW';p can be used to compare different IDS, we ran Snort (Version 2.1.0 Build 9) on the
same data as PAYL to compare their capabilities. Since the use of libwhisker which tried to evade snort, we have
a poor detection rate with — 8 = 0.0117 (worse than PAYL), a good false positive rate= 0.0000006701
(better than PAYL). Withou€'; p, we cannot tell which IDS is better based on existing metrics. With the base rate
B = 0.000010191, we can calculat€’;p = 0.0081 for Snort in this testing data. Clearly033448 > 0.0081,
so (optimally configured) PAYL performs better than Snort based on our test data.

Again we emphasize that as with all evaluation attempts, the above results are very related to the testing data

in use.

5 Discussion

5.1 Estimation of Base Rate, FP, FN

When we are evaluating IDSs, we should have the evaluation data set where we know the details about the
ground truth, i.e., what data are attacks and what data are normal traffic. Thus, we can easily find out the base
rate which is the fraction of the attacks in the whole data set. After the testing of IDS on this evaluation data

set, we compare the IDS alerts with the ground truth, then we can calculate the false positive rate (the fraction
of misclassified normal data in the whole normal data) and false negative rate (the fraction of undetected attacks
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among all the attack data). Using these basic metrics as inputs, we can finally ca@rpute

If the testing data is a very representative sample of the real situation, we can use the FP, FN in the testing
data to approximate the real situation. In machine learning, there is a similar problem: based on an observed
error (FP and FN) over a sample of data, how well can we estimate the true error. Using statistical theory,
machine learning researchers have already answered this question [Mit97]. Given an observed sample error

with approximatelyN% (e.g. 99%) probability, the true erref will lies in the intervale; + zn @

wheren is the number of records in sample datg,is a constant related to the confidence inteiNél we want
to reach. For example, if we want approximate 99% confidence intervalg then2.58.

Once we have estimated the FB,(FN (3), we can also approximately estimate the base rate in real traffic
using the estimated FP, FN. First we can easily calculate the alert4ateo{ the IDS by dividing the total
number of alerts by the total number of data packets. On the other hand, the current alert rate can also be
calculated using base rate, andg as shown in equation (8)

A, =B(1-8)+(1- B 8)

. Solving above equation for B gives us,
A —«
B=——"— 9
TR p— 9)

. This provides a good estimation of the real world base rate.

5.2 Unit of Analysis

An important problem in IDS evaluation is “unit of analysis” [McHOO]. As we have mentioned when introducing
the abstract IDS model, for network based intrusion detection, there are at least two units of analysis in different
IDSs. Some IDSs (such as Snort, PAYL [WSO04], etc) analyze packets and output alerts on the packets. While
other IDSs such as Bro analyze traffic based on flows.

Different unit of analysis will result in different base rate even on the same evaluation data set. It does not
affect the usage af;p in fine-tuning an IDS to get optimal operation point. But when comparing different IDSs,
we do need to consider this problem. In this paper, we are not trying to solve the “unit of analysis” problem,
because this is not a problem specifiatgp, but is a general problem for all the existing evaluation metrics,

e.g. TP, FP, etc. We recommend that, in order to provide a fair and meaningful comparison, it is better to run
the IDSs based on the same unit of analysis, as well as the same data set and the same detection spaces (or atta
coverages).

The “unit of analysis” problem is a general and hard problem in IDS evaluation, regardless of the metrics
being used. In some cases, we can also convert the different units to the same one when comparing different
IDSs. For example, we can convert a packet-level analysis to a flow-level analysis by defining a flow is malicious
when it contains any malicious packet and otherwise it is a normal flow. Using such a conversion, it makes the
comparison between a packet-level IDS and a flow-level IDS possible based on the same (“virtual”) granularity
or unit of analysis. But this kind of conversion does not always work, especially when the two units are totally
un-related, such as packet sequence and system call sequence.

5.3 Involving Cost Analysis inCip

We have showed thdt;p is a very natural and objective metric to measure the intrusion detection capability.
But in some cases we may want to include some subjective cost analysis especially when a good risk analysis
model is available. For instance, considering a military site that is highly cautious, false negatives are probably
the biggest worry. Accordingly, an IDS is considered to be optimal if it minimizes false negatives, even when
that implies many false positives (e.g., the military site has got the resources to sort through the false positives).
Conversely, a site with a single overloaded operator (or with an automated response system) will likely prefer a
low false positive rate because the operator will not use the IDS otherwise (and the response system will cause
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a lot of damage, respectively). These two examples illustrate the cases where the risk model is clear and cost
analysis combing ROC is possibly useful when evaluating IDSs.

Although so far we have only shown the objective property’pf to measure the natural capability of
intrusion detection, we can easily involve cost analysi§'ip as an extension. A possible solution is achieved
by using a weighted conditional entrog§(X|Y") when calculating”;p = (H(X) — H(X|Y))/H(X). We
can slightly change the original form of conditional entropy and place weights in. Now

— 20 2y Wayp (T, y) log p(z(y)
Zm Ey Way

wherew,,, means the weight/cost considered when= z,Y = y. We can set larger weight af,, when we

believe the situatioX = z,Y = y costs more. For instance, in the military network example, we can define

a very large weight o9 which essentially gives more weight to missed attacks= 1 while Y = 0), i.e.,

false negative. In this weighted settind;p will give more preference t¢'N than F'P. Similarly, we can set

a larger weight ofwg; in the case with a single overloaded operator (or with an automated response system),
which means false positiveX( = 0,Y = 1) is more important in the analysis. In such a cost-based extension,
Crp can achieve similar capability as ROC combining cost analysis. Note that there are some other possible
cost-based extensions 6hp. We will further study this topic in our future work.

Hy(X[Y) =

6 Related Work

Intrusion detection has been a field of active research for more than two decades, and many IDSs have been
developed (a good survey is by Debar et al. [DDW99]). Since our work is concerned with a fundamental
problem in intrusion detection, we first discuss some relevant fundamental (theoretical) research in this field.

Denning [Den87] introduced an intrusion detection model and proposed a framework for a general-purpose
intrusion-detection expert system. Several statistical models were proposed to build normal profiles. This is the
first systematic work in IDS.

Helman and Liepins [HL93] modeled the normal traffic and attack traffic as the output of two independent
stationary stochastic processes. Assuming the knowledge of the base rate and exact distributions of the normal
and attack traffic, their algorithm can produce the misuse detector with the lowest Bayesian error rate. In the
absence of base rate, they proposed a metric called prioritization error to determine the accuracy of the intrusion
detector. They also proved that for a realistic environment where one does not know the exact distribution
of normal and attack traffic, it is very hard to optimize the IDS for an error rate. This motivated a heuristic
approach; however, the authors did not propose any solution for the evaluation of IDS in such an environment.

Axelsson [Axe00] argued that the well established signal detection and estimation theory bears similarities
with the IDS domain. We can think of the anomaly detection model as “signal source” in detection and esti-
mation theory, the auditing mechanism as “signal transmission”, the audit data as “observation space”, and in
both cases, the task is to derive detection rules. Thus, results from detection and estimation theory, which have
been found applicable to a wide range of problems, may be used in the IDS research. However this work is very
preliminary and it is unclear how these similarities can benefit the design and evaluation of IDS in practice.

Maxion et al. [MTOOQ] studied the relationship between data regularity and anomaly detection performance.
The study focused on sequence data, and hence regularity is defined as conditional entropy. The key result
from experiments on synthetic data is that when an anomaly detection model is tested on datasets with vary-
ing regularity values, the detection performance also varies. Lee et al. [LX01] applied information theoretic
measurement to describe the characteristics of audit data set, suggest the appropriate anomaly detection model
and explain the performance of the models. Our work is another application of information theory to IDS and
provides a natural and unified metric of intrusion detection capability.

In the area of IDS evaluation, true positive rate and false positive rate are two commonly used metrics. To
consider both of these metrics, we can ROC (receiver operating characteristic) curve [HW66] based analysis,
which has been already well studied in other fields such as medical diagnostic tests [Swe88]. Lippmann et
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al. [LFe00] evaluated IDSs on the 1998 DARPA Intrusion Detection Evaluation Data Set and used ROC curves
to evaluate (and implicitly compare) the IDSs. McHugh [McHOO] pointed out that the evaluation in [LFe00] had
serious shortcomings. For example, the appropriateness of ROC analysis is very questionable when the IDSs
only produce 0 or 1 outputs and the proper unit of analysis and measurement is different for different detectors.
McHugh also called for the more helpful measure of IDS performance. Our work is an attempt to develop a
better metric. Gaffney and Ulvila [GUO1, UG03] combined ROC curves with cost analysis methods to compute
the expected cost for an IDS so that different IDSs can be evaluated and compared based on their expected costs
This approach is not practical because the result depends on the subjective estimate of the cost ratio between
true and false positives.

Axelsson [Axe99] proposed two other metrics, the Bayesian detection rate and the Bayesian negative rate.
These are in fact the Bayesian representations of positive predictive YaRigé) and negative predictive value
(NPV), which are commonly used in medical diagnostic [Swe88]. Axelsson’s main conclusion is that given
that the base rate is very low in most environments, the false alarm rate needs to be a lot lower than what most
current algorithms can achieve in order to have a reasonable Bayesian detection rate.

The existing metrics are all useful. However, the lack of a unified metric makes it hard to fine tune and eval-
uate an IDS. Our new metric, Intrusion Detection Capability, is derived from analyzing the intrusion detection
process from an information-theoretic point of view. It nicely unifies all the existing objective measures of IDS
detection capability.

RIDAX [Dac] method and tool, developed by the IBM Zurich team in the context of the European MAFTIA
project, also noticed the fact that a mere counting of false and true positives is insufficient. They proposed a set
of metrics like precision, recall, etc., as used in the information-retrieval field. Their approach is very different
from Cp because they focus on assessing the completeness and utility of arbitrary IDS combinations, while we
try to capture the intrinsic capability of IDS using an information-theoretic approach.

Our new metric is similar to but different from NMI (Normalized Mutual Informatiofff(A) +
H(B))/H(A, B)) used in medical image registration [PMV03] and NAMI (Normalized Asymmetric Mutual
Information, I(X;Y)/H(Y)) [Str02]. These other metrics are not as sensitiv€’gs for realistic intrusion
detection scenarios, as discussed in Section 2.

7 Conclusion and Future Work

The contributions of this paper are both theoretical and practical.

We provided an in-depth analysis of existing IDS metrics. We argued that the lack of a unified metric makes
it hard to fine-tune an IDS and compare different IDSs. We studied the intrusion detection process from the
viewpoint of information theory, and proposed a natural, unified metric to measure the capability of IDS in
terms of its capability to correctly classify input events. Our metric, Intrusion Detection Capability;Qr
is simply the ratio of mutual information between the IDS input and output, and entropy of IDS input. This
intuitive metric combines all commonly used metrics, i.e., true positive rate, false positive rate, and both positive
and negative predictive values. It also factors in base rate, aimportant measure of the IDS operation environment.

Using this metric, one can choose the best (optimized) operation point of an IDS (e.g., the threshold for an
anomaly detection system). Further, sidgg, is normalized, we can compare different ID models, even though
their F'P, F' N rates are different. We presented numerical experiments and case studies.

This paper has not presented every application for Intrusion Detection Capability, and numerous extensions
are possible. For example, the abstract model for intrusion detection, presented in Section 2, can be easily
expanded to multiple IDS models. The normalized valu€'g$ also allows designers to compare different IDS
configurations, topologies, and deployment strategies, even if individual components have differantd
F N rates.

An obvious extension of’;p comes from rethinking the simple model of IDS inputs and outphitsy”,
represented as a 1 or 0. We can instead encode different types of attacks inf@reating a more accurate
model, especially in the context of signature-based IDS. We are aware of this more accurate model and will use
C1p to measure more signature-based detection systems. We b@ligvis a useful yardstick for the type of
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evaluation and testing of misuse detection systems performed by Vigna et al. [VRB04]. We will publish our
result in the near future.

We notice that our abstract model for the intrusion detection process can be further studied using channel
capacity models from information theory. Multiple processes (or layers) of IDS can be considered as multiple
(chained) channels. We can analyze and improve both internal and external designs of IDS, instead of only
considering the intrusion detection process as a whole black box.
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A Appendix

A.1 Proof that Cip is more sensitive to FP than to FN

This is equivalent to proveSe | > ‘agéD . The derivatives o€ are given by

JdCp 1-B a 1—gq -1 1-0 J6]
Oa h(B) %1 4 q 1-logB | « 1—a+o( )
o0Cp B I5] q -1 1-081—«
98  h(B) BP1-51-q 1_logB 5 +tOB)

whereq = P(Y = 1), h(.) is defined aé(x) = —zlog(x) — (1 — x)log(1 — ). The rightmost parts of the two
equations are based on a Taylor expansion.
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We define a monotonically increasing functi¢fz) = z — log z and two constants; = (1 — )/« and
= (1 — «)/3. Using these definitions and derivatives, we can write

ICm| |9Cm| _ f(z1) — f(1/22) + O(B)
O B | 1—logB ’

B is very close to zero in realistic IDS situation. We will neglect ¢pg3) terms. In the ordinary operational
regime one ha$ — 3 > « (and henceg < 1 — a). Thusz; > z5 > 1. We use the fact that is an increasing
function and that; > z; to write f(z1) > f(z2). Then we use the property thétz) — f(1/z) > 0for z > 1.
Sincezy > 1, we havef(z2) — f(1/22) > 0. We conclude tha©Crp /0a| — |0Cp /05| > 0.

(10)

A.2 Partial Differential Analysis

For approximation purpose, we use- B~ 1;1 —a ~ 1;log (1l — B) ~ —B;log (1 — a) = —a.
Equations below show the partial derivatives of PPV.

0 _ 1-B)a ~ 1-8
2 PPV = +(B(1 (1-8) N+( a(1-p)

—ra-Bar ~ TarapBe
9 __ BUAO-B) (BB
3PV = BBz~ @t )B?

P - B(1-B)a ~ aB
%PPV = T BO-A+I-B)a)?Z ~ " (at(1-H)B)?

Equations below show the derivatives of NPV.

) _ (1-a)B ~
NPV = —twaa e ~ 0
) _ B(1-B)B ~
NPV = —mamreee ~ B8
o . B(1-B)(1—«) ~
VPV = —waa sz ~© 8

Equations below show the derivatives of Entropy of Intrusion Detector.

0 1-B 0 0
—H(X) = log 5 ~ —logB; %H(X)—O, a3

H(X)=0

Equations below show the derivatives©fp,.
H(X)-H(X|Y XY
20 = d%( ( >H(X<) V) — H(lX) L(H(X|Y) - H<(Xl)2> 2 H(X)
1-B 1-a)(1-B
= Hoo? (logB(alogW;(l o) log 5
1
—log (1 — B)((1 — B)log B1-6)+(1-B)a + ﬂlog T-a)( 63)_,_3/3))

a 3)B 1—
02 {a(log ara-pB — BA)log B+ Blog ;7 o, Cahs — Blog 7ﬂ<a+<1fﬁ>3>)}

Q

20> = §<H<X>};(§3XT>>—) oy TXY)
a(l—-B 1—-a)(1—-B
= HX <y (10g 777 —)T(1-Bja %8 T=a)(1-B)+B3)
H(X) log sxi-pB
20 = %<iﬂx>};§gﬂ“> iy s (H(X]Y)

B(1-p8 B
H(X) (log 773 1ﬁ(>+<1) Ba ~ 18 ey BT 55)

X =100 198 s B

20



A.3 Approximation of C;p for very small o and very large 3

Substitutingl — a =~ 1 and1 — B ~ 1 in equation 3 in section 2, we will get

H(X|[Y) = —B(1-f)log Bﬁ(ﬁ?@a — BBlog B3 — (1 — B)log (1 — BB) — alog 515
_ B(1 - 5)
= (=B(1-p) logm — alog m) + (=BpBlog B — (1 — B)log (1 — Bf3)) (12)

~~

T1 T2
After substitutings = 1, second term of the above equation will become
T2 =—-BlogB — (1—B)log(1—B)=H(X)

For very small values af, we can approximat@ —exp(Ka!'1?)) ~ Ka. Thus the ROC curve (Section 4.1)
becomes a straight line = m(1 — 3) passing through the center. By substituting this in the first term,

_ B0~ i —5)
T =B -Plee gr—gyi—p ~ " O gy = p)
= <1ﬂ>(Blongm +mlog o)

B

As B andm are constant, we can writ€ = B log 57,

+ mlog 57, whereK is a constant. Thus,
T1=-K(1-7)

HX|Y)=T1+T2=H(X)- K(1-8)
H(X)-HXJY) H(X)-H(X)+K(1-p)

“=""Fx) H(X)

=(1—ﬁ)Hf(X)
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