
Analysis and modeling of the radio channel for secret

key generation

Taghrid Mazloum

To cite this version:

Taghrid Mazloum. Analysis and modeling of the radio channel for secret key generation.
Networking and Internet Architecture [cs.NI]. Télécom ParisTech, 2016. English. <NNT :
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Résumé

La sécurisation des communications sans fil prend une importance croissante aussi

bien pour les besoins des personnes privées que les besoins professionnels et institu-

tionnels. Bien que la cryptographie symétrique assure largement la confidentialité

des données, elle est pénalisée par la génération et la distribution de clés secrètes.

Des études récentes indiquent que les caractéristiques intrinsèques de la propagation

peuvent être exploitées afin de renforcer la sécurité. En effet, le canal radio fournit

une source d’aléa partagée par l’émetteur et le récepteur, à partir de laquelle des

clés secrètes peuvent être générées. Cette méthode de génération de clés secrètes

(“secret key generation”, SKG) repose sur la réciprocité du canal de transmission,

sur la richesse de la propagation multi-trajets et sur la décorrélation spatiale des

caractéristiques du canal.

Dans ce manuscrit, nous nous intéressons à la SKG, avec comme objectif de relier

les propriétés du canal radio à la qualité des clés générées. Le travail mené a permis

d’analyser l’impact du canal sur la performance de la SKG en relation avec le nombre

de degrés de liberté (DOF), dans différentes conditions en particulier dans des envi-

ronnements statiques. Nous avons développé un modèle statistique simplifié du canal

qui montre une mémoire spatiale résiduelle bien au-delà d’une distance de quelques

longueurs d’onde (scénarios spatialement non-stationnaires). Puis, nous avons étudié

des canaux plus réalistes en environnements extérieur et intérieur (respectivement

grâce à des données déterministes simulées et à des mesures) et mettant en évidence

l’effet de la dispersion du canal dans des domaines délai et angulaire. Les résultats

montrent que, même pour des bandes modérées (compatibles avec les normes IEEE

802.11a, g/n/ac), le seul DoF fréquentiel ou son association avec le DoF spatial est

souvent suffisant pour générer des clés longues, à condition d’utiliser une méthode

efficace de quantification des coefficients complexes du canal. La qualité de la clé

est en outre évaluée après les étapes postérieures à la SKG, i.e. la réconciliation et

l’amplification de confidentialité, qui jouent un rôle très important pour aboutir à un

schéma robuste et sécurisé.
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Abstract

Nowadays, the security of ubiquitous wireless communications becomes more and

more a crucial requirement for private, professional and institutional needs. Even

though data is widely protected via symmetric ciphering keys, a well-known difficulty

is the management of such keys, both regarding their generation and their distribu-

tion. In the recent years, a set of works have addressed the exploitation of inherent

characteristics of the fading propagation channel towards security. In particular, se-

cret keys could be generated from the wireless channel, considered as a shared source

of randomness, available merely to a pair of communicating entities. This approach

of secret key generation (SKG) relies on the reciprocity property of the transmission

channel, on the richness of the multipath propagation and on the spatial decorrelation

of channel characteristics.

In the present dissertation, we are interested in relating the radio channel proper-

ties to the quality of the generated keys obtained from SKG. Accordingly, we analyzed

the channel degrees of freedom (DoF) and their impact on the SKG performance in

different channel conditions, especially in static environments. We first developed a

simple stochastic channel model, focusing on the security with respect to the eaves-

dropper side, which appears to be impacted by a residual channel memory well beyond

a few wavelengths distance (in spatially non-stationary scenarios). Then, we investi-

gated more realistic channels in both outdoor and indoor environments (respectively

from simulated ray tracing data and through measurements) and highlighted the ef-

fect of channel dispersion in the delay and angular domains. The results show that,

even for moderately wide band (such as standardized in IEEE 802.11a, g/n/ac), the

sole frequency DOF or its association with the spatial DOF is often enough for gen-

erating long keys, provided an efficient quantization method of the complex channel

coefficients is used. The key quality is further assessed after the subsequent steps

of the SKG scheme, i.e. information reconciliation and privacy amplification, which

turn out to play an essential role in achieving a robust and secured scheme.
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Chapter 1

Introduction

1.1 General motivations

Given the growing prevalence of wireless communications, their security becomes a

major concern for various applications such as broadband internet, e-commerce, bank

services, health monitoring, terrorism and military operations. Indeed, the broadcast

nature of the wireless medium makes it vulnerable to various attacks, e.g. eaves-

dropping, man-in-the-middle attack, etc. Although classical security mechanisms are

widely used to protect data transmission, they present many challenges showing a

lack of confidentiality. This lack is proved by e.g. the monitoring of Angela Merkel’s

smartphone during years [2]. Therefore, trends to strengthen security are going to-

wards new security paradigm acting at the physical layer [3, 4].

Traditionally, a set of protocols provides security (e.g. confidentiality, authentica-

tion, integrity) by encrypting data using cryptographic keys. In symmetric encryption

methods, the main drawback is the key management, which includes key generation

and distribution, since the same secret key is used for both data encryption and data

decryption [5]. More clearly, challenges stem from, on one hand, the need to share a

prior key between each legitimate user and a key distribution center (KDC) which is

responsible for delivering secret keys. On the other hand, the KDC may not be easily

accessible in scenarios such as dynamic mobile networks and wireless sensor networks.

However, these symmetric key management issues are alleviated by asymmetric

techniques where a pair of public and private keys, generated by each user, is used to

secure communications [5]. Nevertheless, the usage of these public-key cryptosystems

is restricted for covert key exchange through the Diffie-Hellman algorithm [6] since
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they suffer from high computational cost. Moreover, the robustness of conventional

cryptography relies on computational constraint on the attacker. However, with the

continuous progress of high power computing, unconditionally secured systems are

more and more required [4].

Recently, several researches investigate information-theoretic security techniques

where the illegitimate user (let us call here Eve) of a wireless communication is as-

sumed to be enabled with unlimited computing power and only her information about

the propagation scenario may help her to break the data privacy [4, 7]. In this re-

spect, a special approach to physical layer security (PhySec) field [4] intends to achieve

wireless communications and data protection by exploiting the inherent properties of

the wireless propagation channel such as reciprocity, multipath fading and noise. On

one hand, security over the radio channel may be achieved through secrecy coding

schemes (e.g. LDPC, Lattice and polar codes [8, 9, 10]) that require advantages at the

legitimate part over the eavesdropper part, such as the signal to noise ratio (SNR).

On the other hand, for cryptographic purposes, PhySec enables legitimate parties to

generate independently identical secure key bits from the reciprocal radio channel.

Both of these approaches, often combined with beamforming techniques and artificial

noise [11, 12, 13, 14], are targeted in the European project PHYLAWS (i.e. physical

layer wireless security) [15], which supports the present PhD thesis work.

1.2 Brief history of physical layer security

Information-theoretic security was firstly introduced by Shannon in 1949 [16], where

a secrecy system had been defined in relation with Shannon’s previous work in in-

formation theory. Shannon proposed to use the one-time pad, where messages are

encrypted using the binary addition (XOR), in order to achieve perfect secrecy, where

the codeword conveys strictly no information about the initial message. Although no

restriction on the computational power of Eve was adopted, she was assumed to have

no useful information to break the data confidentiality. We note that this perfect

secrecy is impractical since it relies on unrealistic assumption where Eve can obtain

the codeword (i.e. the encrypted message) without any error [4], while in contrast,

the radio channel is corrupted by intrinsic noise.

In 1975, Wyner [3] revisited Shannon’s information theoretic secrecy by consider-

ing a realistic assumption, i.e. Eve obtains noisy observations owing to the intrinsic

noise of the wireless propagation. This implied the definition of the secrecy coding
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concept through a proposed channel model called the “wiretap channel”. Accordingly,

the protection of data entails that the channel seen by Eve should be degraded with

respect to legitimate entities channel, in other words, the Alice/Bob channel capacity

should be greater than that of Eve. Otherwise, wireless communication cannot be

secure.

Alternatively, in 1993, Ahlswede, Csiszar and Maurer [17, 18] proposed to distil

a shared secret key from a shared source of randomness, even if Alice ad Bob do

not have an advantage over Eve. This may be achieved through public discussions

over an error-free authenticated channel. The channel advantage may be provided

by exploiting the reciprocity law and the spatial decorrelation (intrinsic properties of

the electromagnetic channel, other than the SNR) in order to distil a shared secret

key from the channel randomness instead of using secrecy codes. The resulted secret

key may provide data confidentiality through e.g. conventional symmetric encryption

methods.

1.3 Thesis Context

In this work, we are mainly interested in wireless channel-based secret key genera-

tion (SKG), which seems to be an efficient alternative to conventional key distribu-

tion. Authorized users jointly generate a common secret key from a shared source

of randomness, which is not directly accessible to an eavesdropper. This theoretical

foundation goes back to Ahlswede, Csiszar and Maurer in 1993 [17, 18]. While the

first implementations of SKG concern quantum physics [19, 20], their application is

limited owing to many challenges, e.g. high cost. Hence, nowadays much attention

goes towards the ubiquitous wireless channel as a shared source of random secret

keys. Practical implementations have early been introduced by Hassan et al. [21, 22]

by establishing secret keys from the information phase of a frequency-selective fading

channel. Fundamentally, when channel reciprocity applies, typically when legitimate

parties use the same frequency at the same time instant, they share the same prop-

agation channel. Randomness is ensured through multipath fading, which results

in decorrelation properties in the spatial, temporal and frequency domains. Conse-

quently, an eavesdropper is probably not able to efficiently exploit her own measured

channel in order to crack the key.

While channel reciprocity is a crucial requirement for key reliability, i.e. ensuring

the same key for both legitimate users (typically referred to as Alice and Bob), it
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does not hold perfectly in practical scenarios owing to electronic hardware differences

between transceivers. Moreover, even in time-division duplex (TDD) systems where

the same frequency is used, the forward and reverse channels may differ from each

other when the environment changes between the two channel estimation instances, in

other words when the channel estimation is not occurring within the same coherence

time. All these issues, including noise, limit in practice the number of shared bits

that may be reliably extracted from a single channel observation. Therefore, a secret

key of a sufficient length generally results from the concatenation of several sub-keys,

obtained from multiple channel observations. Subsequently, especially in time-varying

channels, an issue related to the latency in the key generation process appears, which

requires further investigations in order to harvest more randomness from a single

channel estimation.

Furthermore, the random character of the key is essential in making eavesdropping

extremely difficult or, on the other hand, which requires a small correlation between

the channel samples seen by Alice/Bob and by the eavesdropper. This also entails

statistical independent channel samples. Indeed, key randomness may be achieved

through random channel variations, which occur inherently in small scale fading (SSF)

owing to constructive/destructive combination of dispersive multipaths. This may be

heavily accomplished by user movement, e.g. when using a smartphone or a connected

watch emerging from the internet of things. Obviously, if we consider the case of a

fixed laptop in an office, some channel variability may be provided if people are

moving around, but experiment shows that the degree of channel variation incurred

by such changing environment is quite weak, unless of dense crowds. So, a general

questions is: is the randomness of the key sufficiently guaranteed? If not, how may

the security performance be improved in static environments? Moreover, how much

correlated information can Eve obtain about the legitimate channel and subsequently

about the key?

1.4 Thesis objectives

The work reported in this PhD thesis takes place in the context of the European

project PHYLAWS [15], which aims to improve the protection and confidentiality

of wireless communications through approaches operating at the physical layer level,

mainly. PHYLAWS intends to identify and test security approaches in both theo-

retical and experimental manners in order to elaborate efficient techniques that are

simple to implement and consume few resources. The project outputs will thus benefit
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a variety of existing and future standards for a large set of needs.

PHYLAWS intends to investigate several techniques able to enhance the level of

security. Among them, the secrecy coding scheme assumes a message to be protected

by exploiting the channel noise instead of using encryption keys. Hence, the “secrecy

capacity” can be defined by the number of message bits that could be transmitted

securely and reliably, per channel use, between legitimate users while Eve is unable

to decode it. This approach requires an advantage on the legitimate link over the

eavesdropper link, otherwise, the secrecy capacity is null. Along this line, artificial

noise and jamming techniques are targeted within PHYLAWS project, in order to

confuse the attacker and sustain legitimate users.

Alternatively, PHYLAWS considers another aspect of PhySec, which is SKG from

common randomness provided by reciprocal radio channels, as introduced above.

Since the implementation of PhySec techniques, especially SKG, will be deeply im-

pacted by the radio channel characteristics, it is crucial to assess the main limitations

of this technology in realistic scenarios. Therefore, the main objective of this PhD

thesis is to study the fundamental role of multipath fading channels in security and,

subsequently, to relate the characteristics of the radio channel to the security of the

SKG process. Moreover, we intend within PHYLAWS to devise adequate channel

models, which imply specified measurements or simulations, where SKG behavior is

assessed either using information-theory or through the practical implementation of

a key agreement scheme.

1.5 New contributions

To summarize, the general aforementioned limitations in SKG concern the quality

of the key (i.e. reliability, randomness, size and secrecy), especially when SKG is

distilled from time-variant channels and in static environments. Accordingly, this

dissertation targets the strategy of generating shared keys from a reciprocal radio

channel that is seen as a shared source of randomness available at legitimate parties.

The main objective is to assess SKG performance with respect to realistic propagation

channel features. This is achieved through the usage of several channel models, e.g.

stochastic or deterministic, accounting for Alice/Bob/Eve locations and features. In

this context, the contributions of the present dissertation are:

1. Investigate the channel degrees of freedom (DoF) existing in either the space

or the frequency/delay domain, even in the joint space-frequency domain, in
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the generation of shared secure keys [23, 24]. Intuitively, such an investigation

intends to harvest more randomness from a single channel observation, and

thereby, to alleviate the issue of the lack of time-variability in static environ-

ments.

2. Analyze the quality of the generated keys in relation with the channel prop-

erties (delay spread, angular spread, shadow fading, LOS/NLOS, etc.) in dif-

ferent propagation environments including both indoor and outdoor. The key

robustness is assessed either in terms of size of the generated keys or of diffi-

culty/impossibility for Eve to reconstruct Alice/Bob’s key.

3. Define and “play” with a parameter based stochastic channel model, in order

to gain deep insight on the relation between SKG performance and physical

characteristics of the propagation and of the environments. Specifically, we

develop a multi-link channel model to account for the spatial correlation between

channels seen by Bob and Eve, covering both stationary and non-stationary

regions.

4. Use deterministic channel models “close to reality” for sets of outdoor environ-

ments of main interest, and see how much the channel characteristics investi-

gated impact SKG performance.

5. Carry out indoor channel measurement campaigns, which will allow to imple-

ment SKG in different environments and settings, considering varying separa-

tion distances between users on one hand and LOS/NLOS propagation condi-

tions on the other.

6. Analyze and compare the robustness of the generated key after each phase of

SKG (i.e. quantization, information reconciliation and privacy amplification),

while considering different approaches to compute the quantization maps.

1.6 Organization of the dissertation

Following the brief above introduction designed to motivate the main topic of the

dissertation, Chapter 2 provides in a first part an overview of the radio propagation

channel since it heavily impacts the security level bring by PhySec approaches. In the

second part, we describe the principle of wireless channel-based secret key generation

and review the prior works in the relevant area of SKG.
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We explain in Chapter 3 both the metrics and the methods used in the the present

work, to assess the robustness of the generated keys. In particular, we describe the

quantization algorithm, which maps the complex channel coefficients into a stream

of key bits. Moreover, we explain how to investigate the channel variability in either

the space or the frequency domain in order to increase the key rate per single channel

observation, with a specific emphasis on the delay dispersion through an exponential

decaying power delay profile (PDP).

A simple channel model is then developed in Chapter 4 and focuses on the

amount of information disclosed to Eve, which may cover several scenarios, including

stationary and non-stationary ones with respect to Bob-Eve distance. To adequately

model the spatial correlation between Bob and Eve, the proposed geometry-based

stochastic channel model employs a per path shadow fading correlation [25].

SKG, in relation with the exploitation of different types of channel degrees of

freedom, is investigated for deterministic outdoor channel models in Chapter 5 and

for measured indoor propagation in Chapter 6. The security is addressed from

Alice/Bob point of view, as well as from Eve point of view.

While we emphasis, in the aforementioned chapters, on the SKG performance

right after the channel quantization phase, we subsequently dedicate Chapter 7

to the full implementation of the SKG scheme, including reconciliation and privacy

amplification, and analyze the performance gain with respect to the sole quantization.

In addition, we investigate the impact of the way the quantization map is computed.

Finally, in Chapter 8, we summarize the work of the thesis and we draw some

conclusions after the comparison of the SKG behavior in different environments.
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Chapter 2

State of the art on secret key

generation from random channels

In the context of wireless communications, the propagation channel plays an impor-

tant role towards the improvement of security services at the physical layer level.

A deep understanding of this communication medium is thus crucial. Hence, the

first section of this chapter is dedicated to a brief overview of the main notions re-

garding the propagation channel, especially those relevant to PhySec. The second

section subsequently provides a state of the art about the propagation-based secret

key generation, including a description of the different steps of the SKG strategy.

2.1 Fundamentals of wireless propagation channels

A radio communication system, as depicted in Fig. 2-1, aims to convey a message

between two remote users through a propagation channel. At the transmitter side,

the message is encoded into an electrical signal which is suited to efficient transmission

and radiated into space by the antenna, in the form of an electromagnetic (EM) wave.

On the other side, at the receiver, the original information is reproduced from the

received EM waves, assuming it can be decoded without errors. The medium through

which these signals propagate between the transmit and the receive antenna is called

the wireless propagation channel. The wireless transmission channel is defined as the

combination of the propagation channel and of the antennas. Fig. 2-2 depicts the

difference between the transmission and the propagation channels.

The time-variant received signal y(t) is the convolution of the time-variant trans-
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Figure 2-1: Communication system.

Figure 2-2: Transmission vs. propagation channel.

mission channel response h(t, τ) and the emitted signal x(t), expressed as follows:

y(t) = (h ∗ x)(t) + n(t) (2.1)

where ∗ denotes for convolution. τ is the time delay. The received signal is affected

by an additive noise n(t), which may be generated inside the receiver itself or caused

by some radio interferences. n(t) is often approximated as a white Gaussian random

variable.

Before reaching the receiver antenna, the emitted signal undergoes several physical

interactions with the environment such as specular reflection, edge diffraction and

diffuse scattering, as shown in Fig. 2-3. Hence, the received signal is the superposition

of several replicas of the transmitted signal where each partial wave is attenuated,

delayed and phase shifted according to the traveled distance as well as to the type

of the physical interaction. This wave propagation phenomenon is referred to as

multipath propagation. Accordingly, the propagation channel impulse response may

be approximately described as:

h(t, τ) =

Np∑
n=1

βnδ(τ − τn) (2.2)

where βn and τn are respectively the complex gain and the delay of the nth partial
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wave. Np is the total number of paths occurring in the channel. This discrete multi-

path channel model neglects the frequency dependence of the interactions mentioned

above and is specially valid for narrow or moderate bands.

Figure 2-3: Location-specific multipath propagation.

2.1.1 Channel reciprocity

The channel impulse response measured between two transceivers is the same re-

gardless of the direction of transmission, since EM waves undergo the same physical

interactions in both directions and there are usually no magnetic (non reciprocal)

interactions. This is known by the channel “reciprocity” property, which holds in

TDD systems where the same frequency band is used for both uplink and downlink

[26, 27]. One benefit of such a property in wireless communications is, e.g., intended

to enhance transmission efficiency such as throughput by providing channel state in-

formation (CSI) at the transmitter side without additional feedback [28]. Recently,

the reciprocity has been exploited in PhySec in such a manner that the shared CSI

between two entities is exploited to protect exchanged data against an eavesdropper

[22], in particular by extracting identical encryption keys.

However, establishing radio reciprocity may be limited by some practical issues.

In fact, in TDD systems, the channel is required to remain invariable during the

channel estimation phase in both directions. In other words, the channel should

be estimated during the coherence time in order to reduce channel discrepancies.
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Moreover, the asymmetric radio-frequency electronic hardware in the transmit and

receive communication chains may break the reciprocity property [29, 30], owing

to the unidirectional characteristics of certain components. This challenge is mostly

addressed by performing calibration [31, 32, 33] and has been tested for SKG purposes

in [34]. Nevertheless, although reciprocity is not valid in frequency-division duplex

(FDD) systems, there have been attempts to mitigate its lack in such systems through

alternative approaches, for example by using a frequency correction algorithm [35].

However, for instance, the reciprocity in FDD systems is not sufficiently resolved to

sustain SKG algorithms.

All over the thesis, we concentrate on a communication scheme appropriate for

perfect reciprocity or nearly so, such as TDD. Then, any two entities (who may be

legitimate terminals) may privately share common information extracted from the

reciprocal channel, from which secure key bits may be established in order to encrypt

data and thereby protect wireless communications. More clearly, because of the

absence of an explicit feedback from receiver to transmitter, a third party (who may

be a malicious attacker) has no access to the shared information considered as a source

of secret keys, unless she exploits different methods, e.g. her own measurements.

2.1.2 Path loss, shadowing and small scale fading

Fig. 2-4 visually depicts the spatial variation of a propagation channel, which is often

expressed in terms of three physically identified phenomena according to the spatial

scale, i.e. the long distance path loss, the shadow fading and the small scale fading

[36].

Path loss is explained by the average attenuation of the power of the EM wave

with the transmitter-receiver separation distance d as the wave propagates through

space. If we consider propagation between two isotropic antennas in free space, the

signal experiences the following path loss (commonly known as the Friis transmission

equation) in dB:

PLfs = 20 log10

4πd

λ
(2.3)

where λ is the wavelength. Besides the distance, the path loss depends also on the

environment, the propagation medium and on the antenna location. Indeed, it is

largely impacted by interaction effects such as reflection, refraction and diffraction,

in addition to the minimal free-space loss. Accordingly, all these elements contribute

to define, based on measurements and theoretical analysis, an empirical model for the
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Figure 2-4: Path loss, shadowing and small scale fading.

average large scale path loss as follows:

PL(d) = PL(d0) + 10γ log10

d

d0
(2.4)

where d0 is a reference distance. γ is the path loss exponent that expresses how

fast the path loss increases with distance. This parameter strongly depends on the

propagation environment. According to measurements, the value of γ is in the range

of 2 to 6. While γ = 2 characterizes free space, we can found γ ≤ 2 for scenarios

presenting waveguide effects such as corridors. Moreover γ can reach the value 6 in

scenarios where there is a severe attenuation, e.g. terminals separated by multiple

floors/walls in an indoor environment.

Although the path loss changes mainly with the distance, two terminals at a fixed

distance from a base station do not receive the same power since they may not receive

the same dominant paths. In fact, according to the local surrounding media, some

paths may be blocked by obstacles such as building or hills for only one receiver while

they still reach the other. This phenomenon is known as shadowing where random

slow power variation occurs around the mean path loss. Shadowing is often modeled

by a log-normal random variable with zero-mean and a local standard deviation,

usually in the range of 3-10 dB [37]. Shadowing is also known as medium-scale fading
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since the changes in the received power occur for distances in the range of tens of

wavelengths or more.

Furthermore, the received power still changes randomly for smaller distances (on

the order of the signal wavelength) owing to the multipath propagation where the

combination of all partial waves may interfere constructively or destructively. The

changes in the interfering combination over a short distance is explained by the phase

shift experienced by the different paths when the receiver moves. This multipath

propagation effect is called either small-scale fading or fast fading. It is noteworthy

that the amplitude fluctuation is rapid and is often modeled either by a Rayleigh

distribution or by a Rician distribution. The first distribution describes environments

where interference is caused by a large number of paths uniformly distributed in

space and having almost the same average power. However, in the case where a path

(generally, but not necessarily, the line of sight (LOS)) dominates the propagation

channel, the amplitude variation is better described by the Rician distribution.

While the path loss variation is deterministic owing to the dependence with the

distance, the multipath fast fading is a random process. Therefore, the fading chan-

nel and the related differing physical mechanisms will make it very difficult for an

eavesdropper to reconstruct Alice-Bob’s channel accurately, especially for rich scat-

tering environments, if she is located at some distance from the legitimate terminals

(Fig. 2-3).

2.1.3 Channel degrees of freedom

In conventional communication system, the small scale fading is detrimental because

the receiver is unable to correctly reproduce the original transmitted message when

the channel is in a deep fade resulting from destructive multipath interference. In

order to mitigate this effect, the transmitter sends several time the same message

over the time-varying channel, until the fading turns toward constructive interference

where the message is correctly received. This means that the message should be

retransmitted after the channel coherence time, which is a statistical measure of the

time duration over which the channel response is considered invariant. In other

words, the coherence time is typically the time interval within which two channels

measured over two different time instances are highly correlated. The coherence time

is inversely proportional to the Doppler frequency, which is related to the rapidity of

channel variations.

Fortunately, SSF may be efficiently mitigated by exploiting the channel degrees of
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freedom (DoF) existing either over the frequency domain or in the space domain. The

idea consists of providing statistically independent multiple parallel fading channels,

which depends mainly on the richness on multipaths and their dispersion. Equiva-

lently, multiple DoF may bring improvements to the performance of a communication,

such as the channel capacity through multiplexing gain in multiple input/multiple

output - MIMO - techniques. In the frequency domain case, the channel correlations

are related to the dispersion of the propagation paths in the time domain. This can

be described by the root mean square (RMS) delay spread, computed as follows:

στ =

√∫ τmax

0
(τ − τ̄)2P (τ)dτ∫ τmax

0
P (τ)dτ

(2.5)

and the mean delay τ̄ is defined as follows:

τ̄ =

∫ τmax

0
τP (τ)dτ∫ τmax

0
P (τ)dτ

(2.6)

where τmax is the maximum excess delay and P (τ) is the average power delay profile

(PDP) computed over a set of time-varying CIRs as follows:

P (τ) = E{|h(t, τ)|2} (2.7)

The equivalent of the RMS delay spread in the frequency domain is the channel

coherence bandwidth, which provides a statistical measure of the range of frequencies

over which the channel undergoes a similar fading. In other words, the coherence

bandwidth is the frequency interval within which two sub-carriers are highly corre-

lated. We note that the coherence bandwidth is inversely proportional to the RMS

delay spread, although there is no unique relation between both.

Equivalently, the space diversity is investigated through the use of multiple an-

tennas, where the parallel channel correlations rely on the angular dispersion of the

multipaths. The higher the angular spread, the smaller the channel spatial corre-

lations. The RMS angular spread and the mean angle φ̄ are given respectively in

Eq. 2.8 and Eq. 2.9, where φ is the azimuth angle and P (φ) is the average power

angular spectrum. We note that this definition for σφ is specifically valid for small or

moderate angular spreads [38]. More general formulas could be found in [38, 39].

σφ =

√√√√∫ 2π

0
(φ− φ̄)2P (φ)dφ∫ 2π

0
P (φ)dφ

(2.8)
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φ̄ =

∫ 2π

0
φP (φ)dφ∫ 2π

0
P (φ)dφ

(2.9)

2.1.4 Propagation channel models

For a long time, a multitude of propagation channel models has been widely proposed

and developed in the literature in order to express the EM propagation characteristics

that are involved in the functioning of wireless communication systems, and which

can support their evolution (e.g. from 2G to 4G and beyond). Channel models are

generally developed in order to be suited to specific applications, and the model is

required to be as simple as possible and with a limited number of parameters. Until

now, PhySec has not been considered as a scheme of interest for wireless communica-

tions. The main peculiar aspect resides in being a three terminal scenario, where the

presence of Alice, Bob and Eve has to be modeled in the same propagation environ-

ment. Although multi-link channel models have been investigated in the context of

relaying [40], a model that is able to address scenarios for three terminals with two

in proximity of each other is needed. Additionally, this model must have sufficient

accuracy in modeling the spatial correlation between the neighboring terminals.

Many classifications are possible to define channel models. An effective one is

presented in [41] and relies on the type of modeling approach. On one side, physical

models rely on the EM wave propagation by describing the double-directional multi-

path structure of the channel. These models are typically antenna independent, i.e.

the antenna can be embedded in post-processing. On the other side, non physical

analytical models characterize the channel in a mathematical/analytical way without

explicitly considering wave propagation.

Physical models

Ray-Tracing (RT) and related techniques such as ray-launching is a deterministic site-

specific method that is able to reproduce any channel characteristic and is therefore

suitable to be used in PhySec scenarios. Nevertheless, only very few contributions in

this context are found in the literature [42, 43]. The main drawback of RT resides in

its computational needs, especially when the environment becomes complex. It also

requests a very precise database of the geometrical environment, as regards the EM

aspects. The model is inherently usable in a multi-user scenario, although the amount

of computing need may accordingly increase. A great advantage of RT is its capability

to describe long distance channel variations, since it is able to compute the multipath
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structure at any Rx-Tx positions. However, there are two major drawbacks: i) Long

simulation times are required in the case of a massive computation, especially for

covering large areas and for many frequencies. ii) Pure specular path propagation

does not fully render the complexity of real channels, e.g. through “diffuse scatter-

ing”, which stems from the roughness of reflecting surfaces [44]. Conversely, diffuse

scattering may be included in RT tools, although this incurs even more computation

requirements and very long simulation times.

As opposed to RT, in geometry-based stochastic channel models (GSCM) the loca-

tions of scatterers and their characteristics are defined in a statistical way, according

to certain probability distributions. GSCMs are less computationally greedy than

RT and they can generate a variety of scenarios instead of a specific one. They are

able to simulate all channel characteristics, but only in the environment where they

have been parametrized. Moreover, only a subset of GSCM is multi-user/multi-link

oriented, e.g. Winner II [1] and COST 2100 [45].

The last and simplest, from the computational point of view, category of models

that relies on the physical wave propagation are the stochastic models that originate

from the Saleh-Valenzuela model [46]. This model relies on a cluster assumption

where clusters are defined in a purely statistical way, via cluster delay and intra-

cluster ray delay distributions. The amplitude of channel coefficients is Rayleigh

distributed and the phase uniformly distributed over [0, 2π]. This has been extended

including angular behavior for MIMO scenarios [47].

Analytical models

Among analytical models, we mention the correlation-based models that characterize

the MIMO channel matrix statistically in terms of the correlations between the matrix

entries. Popular models are the Kronecker model and the Weichselberger model. The

Kronecker model describes the propagation channels by separate transmit and receive

correlation matrices [48]. However, the Weichselberger model [49] aims at overcoming

the restriction of the Kronecker approximation in separating transmit and receive

sides and at modeling the correlation properties at the receiver and transmitter jointly.

Non stationary channel models

Non stationary channel models pose another challenge, since there is extra complexity

with respect to small scale channel modeling. In addition to modeling the charac-
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teristics of interest of the radio channel at a given Tx/Rx location (e.g. multipath

structure and parameters), which should typically be done for the variety of environ-

ments concerned by the targeted applications, it is needed to model the macroscopic

changes experienced by the channel when the device moves (e.g. along a route). This

may be useful within a given type of environment (e.g. indoor) or from one type

to another (e.g. outdoor to indoor). The channel changes thus need to express the

channel variations of the medium scale fading (typically: shadowing), as well as the

slower changes (typically: variation in the long distance average attenuation).

The literature is still scarce, although it is a recognized relevant issue, especially

now that more and more nomadic wireless devices of all sorts will be used in the

coming years (by walking people, in vehicles, etc.). One possible approach is to use

a GSCM in order to recover the spatial variability from the placement of scatterers

seen from the mobile over its route [50, 51, 52, 53]. A simple manner to model

shadowing is to use the lognormal model for the attenuation (i.e. a normal distribution

in dB), which allows to generate channel coefficients stochastically from correlation

coefficients in a well-known manner for a Gaussian stochastic process [54].

2.2 Wireless channel-based secret key generation

In the recent years, a set of works have addressed inherent characteristics of the

fading propagation channel in an information-theoretic framework oriented towards

security. In fact, a well-known problem in classical cryptography is the management

of ciphering keys, both regarding the generation and distribution of these keys. A

way to alleviate such difficulties is to use a common source of randomness for the

legitimate terminals, not accessible to an eavesdropper [17, 18]. This is the case of

the fading propagation channel, when exact or approximate reciprocity applies [21].

Fig. 2-5 depicts a communication scenario where Alice and Bob wish to communicate

securely in the presence of an eavesdropper (Eve). SKG seems to be efficient for

several systems, such as local area networks [55], mobile networks, wireless sensor

networks [29, 56] including both body area network and emerging internet of things

in which the energy consumption is of major importance.
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Figure 2-5: Wireless communication scenario.

2.2.1 SKG basics

Establishing secure keys from reciprocal radio channel may be achieved through four

consecutive steps: i) channel estimation, ii) channel quantization, iii) key reconcilia-

tion, and iv) privacy amplification. An illustrative scheme is depicted in Fig. 2-6.

In a TDD system, such as IEEE 802.11, Alice and Bob estimate their CSI by

successively sending each other a known training signal, using the same frequency

band. According to Section 2.1.1 and owing to the EM reciprocity law, the CSIs at

both Alice and Bob sides are very similar. Therefore, assuming they use a common

quantization algorithm, they are able to jointly translate their measured channel in-

formation into a shared string of cryptographic key bits, which may be used by the

upper-layer protocols in order to consolidate security. We note that the channel esti-

mation phase and the key quantization phase, together provide shared randomness to

Alice and Bob. This is equivalent to the “randomness sharing” step of the “sequential

key distillation” strategy presented in [4].

Despite that radio channels may not be reciprocal especially when estimated with

ordinary commercial devices, we assume in this thesis that the reverse and forward

channels are reciprocal and that the slight channel estimation inaccuracies owing to

TDD are lumped into channel noise. Therefore, the time-varying channel is estimated

as follows:

ĥ(t) = h(t) + n(t) (2.10)

where the time-varying additive noise n(t) is supposed to be a complex Gaussian
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Figure 2-6: The four steps of SKG to agree on the same key.

random process. We also assume that the noise signals of differing terminals are

independent.

Clearly, channel noise may lead to mismatches between Alice-Bob keys, subject

to the SNR and the quantization scheme. Fortunately, such a key disagreement may

be diminished, as a simple first step, through an efficient quantization technique (see

Section 3.2.1) employing suitable censoring schemes [57, 58, 59, 60]. These algorithms

may need to exchange appropriate public information, without revealing any useful

information about the bit value to Eve. Since key disagreement may still occur, a

reconciliation step [7] is required where Alice and Bob publicly exchange messages,

termed syndromes, in order to agree on the same shared key bits with vanishing error

probability. The correction of mismatched bits may involve linear error correcting

codes [7, 60, 61, 62, 63, 64, 65], e.g. Hamming code [64], LDPC codes [7, 61, 62, 65]

and polar codes [66], as examples. Moreover, key agreement is targeted through the

use of cyclic error correcting codes such as BCH code [55].

During the reconciliation phase, Eve attempts to exploit the shared public syn-

drome in order to guess as many key bits as she can. However, this information may

not be relevant, especially when the amount of the public information is small, which

in turn means that a small bit disagreement probability results after the quantization

phase. Nevertheless, a last step, called privacy amplification [67], seems essential in
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Figure 2-7: SKG in the presence of an eavesdropper.

rendering the key more random through e.g. hash functions, at the cost of a reduced

key length. However, indirectly, the key length reduction by privacy amplification

means that one of the first success criteria in SKG is the key length, so to have a

sufficient length margin. This part of the whole SKG mechanism, i.e. information

reconciliation and privacy amplification, is addressed in Chapter 7.

2.2.2 Security versus an eavesdropper

In the present work, we focus mainly on passive attacks where the eavesdropper is

able to measure the channel when either Alice or Bob transmits training signals.

She is also assumed to know the quantization algorithm used to establish a sequence

of key bits. Moreover, Eve is supposed to intercept all the public communications.

Therefore, Eve’s goal is mainly to exploit all this knowledge in order to collapse

the key space and make its search of the exact key easier. The idea underneath

SKG from random channels is that Eve’s gain of information about the key will be

negligible in a typical scenario, rich in dispersive multipaths. In such a scenario, the

location-specific propagation channel is expected to rapidly decorrelate in the space

or frequency domains, owing to rapid signal fluctuations (Fig. 2-3). Thus, a passive

eavesdropper who intercepts the communication between Alice and Bob, experiences

a channel significantly decorrelated from that experienced by legitimate users. As a

consequence, when Eve attempts to derive a key from the radio channel, the key has

few common features with that extracted by both Alice and Bob, making hacking in

practice unachievable. Fig. 2-7 depicts such a typical scenario.

However, channel decorrelation depends to a large extent on the nature of the
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propagation environment (e.g. multipath richness) as well as on the relative distance

between Eve and Alice/Bob. Furthermore, Eve might resort to some techniques in

order to gain insight about the wireless transmission between Alice and Bob and

therefore degrade the level of security. In [68], the degree of security is discussed

according to the statistical knowledge acquired by Eve, for example how Eve may

use her knowledge about the multipath structure in order to reconstruct the channel

coefficients and subsequently attempt to guess a portion of the secret key. In [42],

Eve uses ray tracing methods in order to predict the channel response, which depends

on side information such as the environment map and EM characteristics and on her

localization accuracy of the legitimate terminals.

Nevertheless, when considering active attacks, Eve may impersonate a legitimate

user since the channel over which Alice and Bob communicate is not authenticated.

This problem, also known as “man in the middle”, is extremely serious since difficult

to counter. In this respect, the authors in [60] proposed an authentication scheme

based on a level crossing algorithm. This kind of attacks is taken into account in the

PHYLAWS project where a technique based on furtive and adaptive radio signals

aims to protect the earliest stage of PhySec, in particular SKG [69]. Discussions

about different attacks and countermeasure may be found in [70]. Accordingly, we do

not consider active attacks in the present work.

2.2.3 Review of SKG

Prior works address issues encountered in the SKG process from either information-

theoretic perspective or from a practical view. In the former, bounds on secret key

rate are computed where simple analytical expressions are just found for perfect fad-

ing Gaussian channels, for either NB system [25, 58, 61, 62, 71, 72] or for WB/UWB

technology [63, 65, 73]. However, real measured channels may deviate from Gaus-

sian statistics, for example when a path dominates the propagation channel or when

limited interfering paths exist. Although secret key capacity is computed numer-

ically for both Nakagami and Suzuki fading channels in [74], this does not seem

efficient since a large amount of statistical data is required and more complications

appear for complex valued channel coefficients. Therefore, assessing security from the

information-theoretic side is not always suitable.

On the other hand, practical assessments consist of quantizing the channel infor-

mation (e.g. the received signal strength (RSS), the phase information, the CIR, etc.)

into a sequence of secret bits (Section 3.2.1), where security may be assessed through
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bit error rates and through achieved secret key rates. In this respect, most prior

works proposed quantization protocols, often combined with a reconciliation scheme,

in order to enhance the security [29, 59, 60, 75, 76, 77, 78]. In particular, they intend

to deliver key rates approaching the secret key capacity, after applying the four key

generation steps shown in Fig. 2-6. The authors in [71] target the key extraction

from the complex channel coefficients of a complex Gaussian channel model. They

show that the secret key rate may be within 1 bit from the secret key capacity, by

adapting the number of extracted bits according to the SNR, using gray codes and

LDPC codes with soft decision for error corrections.

Therefore, it is clear that most prior works focus on the role played by the quanti-

zation algorithm in retaining security, while few papers address the relation between

SKG and the propagation channel features. In [58], the authors emphasize the role of

multipath richness in 1) increasing the amount of randomness of MIMO technologies

and 2) keeping the key safe from Eve. SKG was also discussed with respect to the

Doppler frequency [60], to the LOS/NLOS character [58, 79] and to the coherence

time [63]. Premnath et al. [29] applied practical SKG algorithms to the RSS of real

channels, measured in different environment settings, including indoor and outdoor

conditions and stationary and mobile terminals/intermediate objects. The measure-

ments using 802.11-based laptops exhibited the weakness of SKG behavior in nearly

static environments, where the entropy of extracted key bits is very low, whereas it

turns out to be higher in mobile environments.

Hence, channel variability is a crucial requirement to establish long random se-

cret key bits. The quality of the key in part depends on the statistical independence

between key bits, which to some extent can be reduced to the lack of correlation

between channel samples. Such an independence stems from sufficiently separated

samples, in whatever domain sampling might be, which involves the physical propa-

gation mechanisms and characteristics of the radio environment. On the other hand,

several authors indeed emphasize the benefit of decorrelating channel observations,

especially highlighting MIMO systems [59, 62].

Security in static environments was targeted by creating channel fluctuations

through beamforming techniques provided by steerable array antennas [55, 80, 81].

Moreover, fast SKG in such environments was achieved by using opportunistic beam-

forming (without the need of a specific antenna design) and the frequency diversity

[82]. Furthermore, terminals/scatterers mobility can be compensated through the

investigation of the channel degrees of freedom (DoF), covering both the spatial do-

main and the frequency/delay domain, which express the channel richness and its
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expected impact on randomness [24, 58, 83, 84, 85]: the richer the channel, the better

the chance to exploit this richness usefully towards security. The spatial diversity

existing in MIMO systems is investigated theoretically and experimentally in indoor

channels [58]. In [65], the frequency diversity in orthogonal frequency division multi-

plexing (OFDM) systems is investigated theoretically in SKG techniques by assuming

independent and identically distributed (i.i.d.) channel transfer functions. However,

no validation of this approach was performed in well specified measurement campaigns

and no quantitative information about the achieved key length was provided.

From the eavesdropper point of view, several works assume that Eve is not able to

access correlated channel information when she is located more than a half or at most

a few wavelengths away from both legitimate terminals [55, 61]. This assumption is

valid in the case of rich omnidirectional multipaths, where the channel decorrelates

rapidly over the specified domain. Nevertheless, SKG performance has been inves-

tigated statistically and empirically for a simple scenario where Eve is very close to

Bob1 [58, 86]. Moreover, a simple correlation model, which relies on a low-pass filter,

is investigated equivalently in [84, 87]. However, the authors in [64] proved by mea-

surements that spatial correlation can be found even for larger separation distances.

In particular, shadow fading seems to be critical in PhySec, while shadow fading

correlations [37] between Bob and Eve are likely to affect the information accessible

to the eavesdropper and thus to impact the confidentiality. In this context, we have

presented in [72] a very simple version of a GSCM, relying on the presence of scat-

terers between Alice and Bob/Eve in order to capture the common characteristics

between Alice/Bob and Eve’s channels without a restriction to stationary region. An

extension of this model will be presented in Chapter 4.

2.3 Conclusion

This chapter presented an overview on the state of the art of both the wireless prop-

agation channel and the secret key generation. In the first section, a definition of the

wireless propagation was given, with special emphasis on features relevant to SKG,

such as the multipath propagation, the channel reciprocity and the three types of

channel fading. Moreover, an overview on existing channel models was given. These

models can not be directly exploited in the context of PhySec, in particular the SKG

scheme which seems to be very exigent. Indeed, on one hand, the SKG performance

analysis requires a multi-user channel model that accounts for the intrinsic spatial

1Both Bob and Eve are assumed to share the same multipath components
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channel variability between two users in proximity of each others, i.e. Bob and Eve.

Such a requirement is targeted in Chapter 4, by elaborating on a GSCM. On the other

hand, the quality of the key extracted from the radio channel heavily relies on the

multi-path channel richness, which should be modeled with a sufficient accuracy (e.g.

taking into account the diffuse components of the radio channel in RT simulations,

ref. to Chapter 5).

Furthermore, in the second section, the strategy of deriving keys from the prop-

agation channel was described, by discussing some scenarios for the eavesdropper.

Related works in the area of SKG were also cited, with particular emphasis on SKG

limitations.

In order to evaluate the quality of an on-the-fly generated key with respect to dif-

ferent propagation settings, we describe, in the following chapter, appropriate metrics

and performance methods. Specifically, we emphasize the relation between key qual-

ity and channel features when investigating delay-dispersive channels.
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Chapter 3

Secret key generation performance

evaluation methods

This chapter is dedicated to discuss different methods for evaluating the performance

in the establishment of secret keys and in relation to the randomness provided by

fading propagation channels. We first examine, in Section 3.1, both qualitative and

quantitative metrics that reveal the robustness of the generated key, mainly regarding

its length and its random character. These metrics may also be classified as theoretical

or practical, where the latter is evaluated after quantizing the channel information

into a stream of key bits. In contrast with the theoretical metrics where the SKG

performance is merely impacted by the propagation channel features, the practical

SKG behavior is also influenced by the employed quantization algorithm. Hence,

most earlier works intended to develop quantization protocols attempting to offer

performance approaching the theoretical one. Nonetheless, since our ultimate goal is

to relate the generated key robustness to the propagation channel characteristics, we

chose to implement an efficient quantization algorithm selected from the literature,

sensitive to fine channel characteristics and whose parameters can be adjusted. We

argue and describe this algorithm in Section 3.2.

Subsequently in Section 3.3, we target how to investigate the channel degrees of

freedom (DoF) existing in either the space or the frequency domain, with a goal to

harvest as much randomness as possible from a single channel observation, given that

channel noise or channel estimation errors limit the amount of random information

shared between Alice and Bob. One advantage of exploiting the DoF as much as

possible is to mitigate the requirement of terminal movements, in order to provide

independent channel samples. This is a critical constraint in static environments.
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Figure 3-1: The terminals’ propagation channels involved in the SKG scheme.

In other words, exploiting the channel DoFs may lead to address the SKG limita-

tions explained deeply in Section 1.2 and discussed with respect to the literature in

Section 2.2.3.

3.1 Metrics for SKG assessment

A cryptographic robust key is characterized by its length and its randomness. From

the computational constraint point of view, the importance of the key length resides

in avoiding a brute force attack, where the eavesdropper systematically checks all

possible keys until the correct one is found. Nevertheless, novel schemes (such as

investigated in the PHYLAWS project [15]) can bring an useful extra degree of se-

curity without requiring extremely long keys. This can be done by reinforcing the

security protocol, e.g. through a limited validity time for valid keys [88] or through

more sophisticated approaches [69]. On the other hand, from the perspective of

information-theory, a high key randomness is essential to avoid significant informa-

tion leakage to an eavesdropper, making life easier for her in reducing the key search

space [68].

Therefore, we discuss in this section how to quantitatively assess the quality of

the generated key, in terms of length and randomness, from both theoretical and

practical perspectives. Moreover, we present the channel correlation coefficient as a

qualitative metric, since, on one hand, the channel reciprocity is relevant to secret

sharing between Alice and Bob, on the other hand, the spatial decorrelation impacts

the amount of information exposed to Eve.
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3.1.1 Information theoretic bounds on key length

The reciprocal fading channels measured by Alice (ĥa) and Bob (ĥb) are considered

to contain a common randomness that should be quantized in order to obtain shared

key bits (see Fig. 3-1 for an illustrative scheme of the channels between members

of the trio). Thus, in an information-theoretic framework, the maximum amount of

random information reliably shared between Alice and Bob is measured by the mutual

information between their legitimate channels, or:

IK = I(ĥa, ĥb) (3.1)

We recall that the terminals measure noisy channel gains, as modeled in Eq. 2.10.

The available key bits are, on one hand, entirely secure only in case Eve experiences

channels (ĥe and ĥc) that are statistically independent from those measured by the

legitimate terminals, i.e. it is commonly considered that Eve should be sufficiently

far from both Alice and Bob. Furthermore, it is commonly assumed that Eve has

negligible information about the propagation scenario (e.g. terminals positions and

surrounding environment) [68], so that she is unable to perform channel predictions

through e.g. a ray tracing tool [42]. In general, not all of these bits are secure if the

eavesdropper may have access to some insight about the legitimate channels. There-

fore, the secret key rate ISK can be obtained by evaluating the mutual information

between the channels seen by Alice and Bob, given Eve’s observations [7, 17, 89], or:

ISK = I(ĥa, ĥb|ĥe, ĥc) (3.2)

In the present work, we consider a simplified scenario where Eve is closer to Bob

than to Alice, as seen in Fig. 3-1. As a result, we can assume that the channel Bob-

Eve (ĥc) is independent from the main channel Alice-Bob. Accordingly, the secret

key rate is simplified to:

ISK = I(ĥa, ĥb|ĥe). (3.3)

We also define the vulnerable key rate as follows:

IV K = IK − ISK (3.4)

Given that both available and secret/vulnerable key capacities are statistical quan-

tities computed based on mutual information, and in order to numerically evaluate

these theoretical bounds, we give in Eqs. 3.5 and 3.6 the basic definitions of the
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mutual information between two random variables (X and Y ) and also conditionally

to a third one (Z) [90].

I(X, Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(3.5)

I(X, Y |Z) =
∑
x

∑
y

∑
z

p(x, y, z) log
p(z)p(x, y, z)

p(x, z)p(y, z)
(3.6)

If the channels are jointly complex Gaussian random vectors with zero mean,

the mutual information in Eqs. 3.5 and 3.6 can be easily computed starting from

covariance matrices of channel observations [90]. In other words, the channels are

required to follow either Rayleigh or Rician fading, where the latter case requires the

removal of the dominant deterministic component [58, 71]. Nevertheless, IK and ISK

are expressed by the following formulas:

IK = I(ĥa, ĥb) = log2

|R̂aa||R̂bb|
|R̂AB|

(3.7)

ISK = I(ĥa, ĥb|ĥe) = log2

|R̂AE||R̂BE|
|R̂E||R̂ABE|

(3.8)

where covariances with lowercase subscripts denote R̂xy = E{ĥxĥ
H

y }, while those

with uppercase subscripts are covariances of stacked channel vectors, or R̂XY ···Z =

E{[ĥ
H

x ĥ
H

y · · · ĥ
H

z ]H [ĥ
H

x ĥ
H

y · · · ĥ
H

z ]}. Explicit evaluation of these covariance matrices

may be found in Appendix A.|.| denotes for the determinant.

Unfortunately, the Gaussianity of the channel coefficients cannot be ensured in all

scenarios. This will cause a significant difficulty in evaluating IK and ISK , since there

is no closed-form expression for the mutual information in the general case. Hence,

we just compute this mutual information for channels undergoing Rayleigh fading.

Nonetheless, we can assess the security performance after translating the channel

information into discrete key bits, as well explained in the next section, although

there is less guarantee than provided by the direct application of information theory

principles.
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Figure 3-2: The impact of the SNR on IK .

Impact of SNR

One main factor that limits the number of available key bits is the signal to noise

ratio (SNR). We assume that the transmitted power increases proportionally to the

number of transmission sub-channels. Thus, the average SNR, assumed for a single

antenna single frequency link, is defined as:

γ =
E{|h|2F}
Nhσ2

(3.9)

where |.|F and E{.} denote respectively the Frobenius norm and the expectation over

the channel realizations. σ2 is the noise power while Nh is the length of the channel

vector. Indeed, the components of the channel vectors refer to parallel multiple

channels, which occur in either an OFDM system, a SIMO/MIMO system or the

joint technologies.

We can simply examine the SNR impact by considering a narrow band complex

Gaussian channel between Alice and Bob, with i.i.d. channel realizations. It is

hence relatively easy to show that IK is determined by the signal to noise ratio γ (or

SNR = 10 log10(γ)), assumed identical at Alice and Bob sides. IK is thus expressed

by the following formula [71]:

IK = − log2

[
1−

(
γ

1 + γ

)2
]

(3.10)

Obviously, the available key bits just reveal the accuracy of the analog to digital

conversion, which is limited by the SNR. Consistently, we show in Fig. 3-2 that IK
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increases proportionally to the SNR in dB, at least beyond ∼10 dB. In most of the

results presented in the following chapters, we consider the SNR to be equal to 15

dB, which results in IK(1) = 4.05 bits per channel observation for Nh = 1. Indeed,

while a higher SNR can be considered interesting, since providing more key bits and

more randomness, the noise in Eq. 2.10 is not only an additive thermal noise, but

also comprises channel estimation errors, imperfect calibration of the measuring chain

etc. Since SKG might be used predominantly in low cost commercial devices, it can

be anticipated that the effective lack of reciprocity between Alice and Bob channels

(represented through the SNR) will be significant and assuming very high SNR would

not be realistic.

Impact of the Rician K factor

Besides the impact of the noise, the robustness of the SKG heavily depends on the

amount of randomness available in the reciprocal radio channel. Indeed, uncondition-

ally security schemes rely on the fact that the eavesdropper should have insufficient

information about the source from which keys are extracted. Accordingly, merely the

random portion of the radio channel is beneficial for secret key generation [58, 79].

While Rayleigh fading channels are fully random, Rician fading channels contain a

predictable part (i.e. typically the LOS path) that limits the amount of randomness.

Thus, in order to appropriately apply the SKG, it is suggested to remove any pre-

dictable portion of the channel [58, 71, 91]. However, this cannot be achieved by just

removing the channel mean, as suggested in [71], since the dominant path may have

a changing phase owing to terminals motion. For that reason, the authors in [58]

perform principal component removal by investigating the eigenvectors of the MIMO

covariance matrix, the drawbacks of which stem from the need of sufficient statistics

as well as sufficient DoFs. Moreover, since the deterministic part may not restrict to

a single dominant path, other protocols attempt to predict and remove such a part

through the use of, for example, a Markov chain [92] or a linear prediction approach

[91]. Nonetheless, the task of removing the predictable portion of the channel is be-

yond of the scope of the present work, while the aim here is to simply quantify the

impact of the limited amount of randomness on the SKG. For that reason, we often

take in consideration the Rician K factor in the results presented below.

The K factor is defined as the power ratio of the dominant deterministic path to

the remained scattered paths. We consider the case of a narrow band Rician channel

resulting from the presence of a fixed dominant path hlos (with a unit mean power),
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where the complex channel gain can be modeled as follows:

h =

√
K

1 +K
hlos +

√
1

1 +K
hscatt (3.11)

hscatt results from the contribution of a sufficient number of i.i.d. scattered multipath

components, assuming a rich scattered environment. Hence, according to the central

limit theorem, hscatt follows a zero-mean complex Gaussian distribution with a unit

variance, i.e. hscatt ∼ CN(0, 1). We adequately evaluate the amount of shared

randomness between Alice and Bob once the dominant path is removed. We assume

that Alice and Bob see noisy versions of the reciprocal channel h with a fixed SNR

of 15 dB (γ in linear scale). Since SKG exploits merely the scattered part of the

channel, IK depends on the SNR of such a part, i.e. γscatt = γ
1+K

. Consequently,

IK = − log2{1− ( γ
γ+(1+K)

)2}. We plot in Fig. 3-3 the variation of IK with the Rician

K factor for SNR=15 dB. It is straightforward to notice that IK decreases as K

increases. This results from the decrease in the received power as K increases after

removing the dominant component, yielding a smaller SNR for the scatterered paths

(γscatt). This shows that random keys may be extracted from Rician channels if the

diffuse components has sufficient SNR, however the price to pay is the capability for

the system to properly extract the dominant component.
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Figure 3-3: IK as a function of the Rician K factor.

Vulnerability in an ideal scenario

It is usually assumed that Eve has negligible information about the main wireless

channel provided that she is sufficiently far away from both Alice and Bob. This
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Figure 3-4: IV K/IK as a function of the separation distance d for Clarke’s model.

means that the channel experienced by Eve is totally decorrelated from that measured

by legitimate terminals. In fact, this represents an ideal scenario (i.e. the Clarke

model) where the channel is assumed rich in paths uniformly dispersive in the angular

domain. This brings rapid channel variations in either the time or the spatial domain,

expressed by the Jakes correlation function [93]:

E{hb, he} = J0(2πd/λ) (3.12)

where J0() is the zero-order Bessel function, λ is the wavelength, and d is the distance

between Bob (B) and Eve (E). Accordingly, the normalized vulnerable key rate, which

is plotted versus the distance d in Fig. 3-4, reveals that no information is disclosed

to Eve after a few wavelengths. However, the reality is more complex and may

significantly deviate from Clarke’s scenario. Indeed, in practice, the channel is often

dominated by a set of discrete multipaths, for which the angular spread may cover a

moderate angle, which will require a larger separation distance to warrant sufficient

decorrelation and an adequate degree of security. In the following chapters, we will

consider the vulnerability issue in more realistic scenarios.

3.1.2 Channel correlations

Given that the information security metrics for Gaussian channels recalled above

are based on second order quantities, the correlation between channel coefficients is

responsible for the imperfect security performance. Clearly speaking, the larger the

correlation between the legitimate channels, the more shared bits between Alice and
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Bob can be expected to be successfully extracted. Moreover, the confidentiality is

assured owing to the spatially decorrelated channel measured by the eavesdropper.

Therefore, the correlation can be used to assess qualitatively SKG performance in

terms of reliability and confidentiality.

We use the conventional channel correlation coefficient between two random com-

plex variables X and Y of mean µX = E{X} and µY = E{Y } , defined as follows:

corr(X, Y ) =
E{(X − µX)(Y − µY )∗}√

(E{|X − µX |2})(E{|Y − µY |2})
(3.13)

where (.)∗ stands for complex conjugate. We consider two types of channel correla-

tions: 1) the complex channel correlation coefficient (referred to as ρxy) where X and

Y represent respectively the complex channel coefficients hx and hy and 2) the power

envelope correlation coefficient, where X and Y are replaced by the channel powers

|hx|2 and |hy|2, respectively.

3.1.3 Channel quantization performance

As discussed in Section 2.2.1, Alice and Bob jointly quantize their estimated channel

information into a stream of key bits. If the EM reciprocity holds perfectly even

without channel estimation noise (i.e. ĥa = ĥb), legitimate users are then able to

adequately share the same string of key bits. Otherwise, they should reconcile their

keys with the least amount of information leaked to Eve. For that reason, the bit

error rate (BER) should be small. Hence, it is crucial to study the BER between

the key bits extracted by both Alice and Bob, which is the ratio of the number of

erroneous bits to the total number of bits1. Accordingly, we define the efficiency

η (in bits/channel observation) as the average identical number of bits that can be

extracted from a single channel observation even over Nh channel degrees of freedom

(i.e. the case of stacked channel vectors), or:

η = Nh(1−BER) log2(M) (3.14)

This formula assumes i.i.d. channel coefficients even over the stacked channels, which

refers to the channel DoF. As a consequence, this expression is not able to quantify

the length of “random” bits. Furthermore, if Alice and Bob do not agree on a given

symbol, it is relevant to discard the erroneous bit rather than the whole symbol since

1We choose to evaluate the BER instead of the symbol error rate (SER) in order to account for
the reconciliation phase which operates at the bit level.
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they are able to reconcile their bits in the steps that follow the bit extraction phase.

For that reason, we use the BER in the expression of η instead of the symbol error

rate as admitted in [58].

3.1.4 NIST tests

The fact that key bits are not statistically independent reduces the key quality since

in an information-theoretic framework Eve may exploit any useful information to

collapse the key space. In this context, the source of randomness, in addition to the

admitted quantization algorithm, is the most critical aspect that mainly affects the

key robustness behavior. Hence, we aim to assess the security performance in terms

of randomness, which can be achieved using the NIST test suite [94]. We notice that

these tests are not able to prove the perfect randomness of a key. However, each

test shows if the key bits follow a certain expected behavior owing to key generation

process [75]. There are 16 statistical tests in total, but we are not able to apply all

these tests owing to limitations on the requirement of each tested key length. Table

3.1 shows length limitations for some tests applied in this dissertation, where m is the

length in bits of the bit strings used in each test and N is the key length in bits. The

remaining tests require very long keys and do not apply to the physical layer based

wireless security scheme we here target.

Table 3.1: NIST tests limitations.
Mono-bit frequency N ≥ 100
Block frequency N ≥ 100
Runs N ≥ 100
Serial m < blog2Nc − 2
Approximate entropy m < blog2Nc − 5

Some tests try to show whether the sequence of bits has the statistical properties

of a random sequence. Consistently, the “mono-bit frequency” and the “block fre-

quency” tests investigate this randomness criteria on respectively the entire key bits

and in sub-blocks. For example, if we consider the following sequence of N bits:

00...00︸ ︷︷ ︸
N/4

10...10︸ ︷︷ ︸
N/4

11...11︸ ︷︷ ︸
N/4

01...01︸ ︷︷ ︸
N/4

,

we notice that it passes the mono-bit frequency test since 0 and 1 are equiprobable

bits in the whole sequence whereas it is not the case in subblocks where too many
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bits equal either to 0 or to 1 may be present, leading to failure of the block-frequency

test. Another test, which is the “runs” test, checks whether the frequency of runs

(uninterrupted strings of identical bits either 0 or 1) is that expected for a random

sequence. In other words, it determines whether the transition between bits 0 and 1

is too fast or too slow. Accordingly, the sequence in the above example is considered

random since the number of runs is very close to that expected for a random sequence

(i.e. N/2 runs). However, the following sequence:

00...00︸ ︷︷ ︸
N/3

11...11︸ ︷︷ ︸
N/3

00...00︸ ︷︷ ︸
N/3

is not random since only 3 runs are computed.

Both the “approximate entropy” (ApEnt) test and the “serial” test focus on the

frequency of occurrences of all possible overlapping 2m strings of m-bits length each,

across the entire key bits. Their purpose is to compare the frequency of overlapping

strings of several consecutive lengths against the expected result for a random se-

quence. To that aim, the ApEnt test uses two consecutive bit lengths (m and m+ 1)

while the serial test uses three consecutive lengths (m, m− 1 and m− 2). Moreover

the serial test differs from the ApEnt test by the fact that longer bit strings can be

used in the former for the same key length, as shown in Table 3.1. According to

both the ApEnt test with m = 1 and the serial test with m = 2, the first sequence

example is supposed random since strings of 2 bits are almost equiprobable whereas

the second key example fails these two tests. Furthermore if we consider strings of

higher lengths, the first sequence may fail the tests. More information about these

statistical tests can be found in [94].

For a single key, each randomness test indicates whether the key is accordingly

random or not. Furthermore, in order to relate the quality of the randomness to the

features of the radio channel, a set of generated keys is tested by each randomness

test, which returns a percentage of sequences passing the test. Then we computed

the “mean pass rate” by averaging the percentages of sequences passing each NIST

test and thus over all the applied statistical tests, which provides a global assessment

of the randomness for each specific scenario.
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3.2 Channel quantization alternating (CQA) algo-

rithm for SKG

Apart from the crucial impact of random wireless channel, security through SKG is,

to some extent, related to the effectiveness of the quantization mechanism that is

required to extract more random key bits with vanishing error rate. Thus, we firstly

review various algorithms attempting to distill keys from various channel information,

such as the RSS. Then, we describe the channel quantization alternating scheme,

proposed in [58], which is used throughout this work to practically establish symmetric

keys.

3.2.1 State of the art

The key rate may be increased by extracting several bits from a single channel sam-

ple. However, this may increase the number of mismatched bits extracted by both

Alice and Bob, since samples become closer to quantization boundaries. In order

to address this issue in either mono- or multi-bit extraction schemes, quantization

algorithms seek to employ a suitable censoring scheme. While some algorithms in-

crease Alice-Bob’s key agreement by dropping down samples falling into a predefined

guardband region [57, 58], the time required to construct a long secret key increases,

which reduces the effectiveness of such algorithms. Alternatively, a more efficient

protocol adapts the quantization map to each channel observation, by using at least

two alternative maps [58, 59]. The main goal of these censoring schemes is to reduce

the BER in order to render the reconciliation phase more efficient, with a minimum

amount of information disclosed to Eve.

Furthermore, some algorithms intend to provide security by better ensuring the

random character of the generated bits. In this respect, decorrelation transformations

are proposed to be employed before the quantization step. In [59], a linear transform

(discrete Karhunen-Love transform), which exploits the eigenvectors of the covariance

matrix, is used to convert an estimated channel vector into decorrelated components.

A similar approach is used in [62], where the eigenvectors are transmitted over the

public channel between Alice and Bob. Other protocols attempt to exploit just the

unpredictable portion of the channel information, by predicting and removing the

deterministic components [58, 91, 92], as discussed above in Section 3.1.1. Despite

the pros and cons of these approaches, since we aim to assess the amount of intrin-

sic random information in relation to the channel features, we are interested in a
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simple approach that ensures preliminary randomness by defining statistically equal

quantization intervals [58] without any further data processing.

Moreover, the channel information quantized into key bits impacts the security.

Although the most common channel quantity used in practical SKG is the RSSI

[29, 55, 56, 57] because this parameter is widely accessible in most radio receivers,

the entropy of the generated keys is not very high. Alternatively, the channel phase

information has been investigated and found to generate more random and secure

stream of bits, such as in [65, 76, 95, 96]. However, either RSSI or the phase only

partially exploit the richness of the channel information [65]. Another candidate for

SKG is the channel impulse response (CIR) of either an OFDM, WB or even UWB

channels, whose ability to support SKG techniques has been targeted through the

literature [61, 64, 73, 75, 97]. Nevertheless, we can efficiently establish a sufficient

long and random key by exploiting as much as possible channel information at once,

which is achieved by making use of the joint real and imaginary parts of channel

coefficients (complex CSI) [58, 62].

3.2.2 CQA description

Therefore, we specifically consider in the present work the channel quantization al-

ternating (CQA) protocol proposed in [58], which offers the following advantages: 1)

the exploitation of the full information contained in the complex CSI, 2) the defini-

tion of statistically equally probable quantization regions (QR), and 3) the decrease

of the BER without samples rejection. A preliminary set of channel coefficients is

required in an initial learning phase, in order to statistically define the quantization

regions of a quantization map. Subsequently, it will be necessary to specify the nature

of the channel observations that serve in the construction of the I/Q maps (learn-

ing phase), from which subsequent observations can be quantized according to CQA

(SKG phase). Obviously, the more numerous observations can be used in the learning

phase, the more precise will the maps be and the more similar Alice’s and Bob’s maps

will be. Along this line, the more channel observations we have for the SKG phase,

the longer and the more secure the keys will be, providing margin since key length is

reduced after the privacy amplification step.

To generate secure key bits from the shared source of randomness, Alice and Bob

separately employ CQA. Alice defines her map QRs by quantifying the cumulative

distribution function (CDF) of each of the aggregated real and imaginary parts of

the channel coefficients into
√
M statistically equal quantization intervals, resulting
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Figure 3-5: Illustration of the quantization intervals of the CQA scheme on one
dimension I or Q with M = 16.

in M quantization regions. In seeking key mismatches reduction, Alice divides each

quantization interval into two sub-intervals of equal probability. She then sets a

quantization mapping (QM) index to 0 or 1 if the current sample falls within the

first or the second sub-interval, respectively, and then publicly sends the QM to Bob.

Fig. 3-5 illustrates the quantization intervals along a single dimension (I or Q) for

both Alice and Bob and for M = 16 QRs (i.e. 4 quantization intervals in each single

dimension). On the other hand, Bob first performs the same earlier step done by Alice

and computes the preliminary boundaries from his own set of channel coefficients

observations. Bob then defines two alternative maps by shifting the quantization

boundaries, each one in a different direction, with the same probability (i.e. 1/4
√
M),

which corresponds to the half of each QM probability (please refer to [58] for further

insights). Fig. 3-5 shows a simple example demonstrating the efficiency of CQA where

Alice and Bob are able to obtain the same string of bits. Alice obtains the string

“00” by using her own unique map. If Bob uses the same map, he obtains a different

string, i.e. “01”. Otherwise, if Bob uses the map labeled with QM=1 as indicated

by Alice, he is able to reproduce the same string as Alice, i.e. “00”. Hence, Alice

publicly communicates the adequate QM index to Bob.

We note that we use the Gray coding in mapping each QR into a string of key bits,

since symbols affected to two alternative QRs differ from only 1 bit, which in turn

aids in diminishing the BER [71]. Fig. 3-6 depicts a particular channel realization

in the complex I-Q plane and shows Alice’s map by presenting the correspondence

between symbols and QR, both for M = 4 and M = 16. We recall that the interest of
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Figure 3-6: Correspondence between symbols and QR.

increasing M is to establish a certain key length with fewer channel samples. However,

we will see in the subsequent chapters the conditions suitable to increase M .

3.3 Exploiting channel variability in SKG

As shown in Section 3.1.1, the available key rate IK is limited by both the SNR

and the deterministic components of the radio environment. This is pragmatically

addressed through the accumulation of several sub-keys, which are required however

to be independent. Indeed, the quality of the key in part depends on the statistical

independence between key bits, which to some extent can be reduced to the lack of

correlation between channel samples. Such an independence stems from sufficiently

separated samples, in whatever domain sampling might be, which involves the phys-

ical propagation mechanisms and characteristics of the radio environment. Hence,

channel variability is essential to achieve SKG.

Given the limitations of SKG when exploiting the time variability, achieved through

movements of either the terminals or scatterers in the surrounding environment, we

propose to investigate either the space, the frequency or joint space-frequency degrees

of freedom (DoF). The benefit stems from the increase in the number of shared ran-

dom bits per channel observation and the reduction in the time required to achieve a

long secret key, for time variant channels. In the case of Nh independent degrees of

freedom, which would result from independent parallel sub-channels with reciprocity

between Alice and Bob limited by an SNR given by γ, the number of available key
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bits is given as follows:

IK = −Nh log2{1− (
γ

1 + γ
)2}. (3.15)

However, this equality does not hold in the case of non independent parallel sub-

channels. Hence, the security strongly relies on the sub-channels correlation degree.

Intuitively, the less correlation between them, the more key bits per single channel

observation.

SKG performance goes through maximizing key length, under the condition that

key bits are as much independent as possible, which means capturing as many as

possible parallel sub-channels and ensure as much as possible independence between

these channels. Such a consideration will be at the heart of the work performed and

described throughout this dissertation. In the present section, we mainly focus on

the exploitation of parallel channels coming from the dispersion in the delay domain

and try to get insights from a simple model of dispersive channels.

3.3.1 Space variability

Space variability stems from the use of several antennas at either the receiver or the

transmitter side (e.g. massive MIMO [98]) although coupling and other effects may

disturb this simple picture. Space variability also stems from varying positions for a

single antenna, which is equivalent to time variability if the channel can be assumed

static over the CIR duration.

The correlation between spatially variant channels relies in general on the angular

characteristics of the radio propagation. If the multipaths are dispersive in the angular

domain, the channels exhibit faster spatial decorrelation, especially in rich scattered

environments as may be expressed by the Bessel function of Eq. 3.12. On the opposite,

more correlated channels result from a highly directional multipaths scenario, for a

given distance between points where the channel is measured. This may be expressed

through the channel coherence distance. In dense and sufficiently omnidirectional

scenarios, it is commonplace to consider that antennas separated by at least λ/2

provide sufficiently decorrelated signals (i.e. channel coefficients). However, this is

less true in directional ones, such as rural scenarios or in street canyons with visibility

from the BST [99]. We notice that the vulnerability of SKG in either static or LOS

conditions may be reduced through the use of specific configurable antennas enabling

to create artificial fluctuations by randomly changing the beam-patterns, thus giving
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Figure 3-7: Some examples of PDP with different RMS delay spreads.

Alice/Bob an advantage over Eve [55, 81].

3.3.2 Frequency variability

In real world applications, a spatial degree of freedom may not always be available (e.g.

in single antennas links with very stable channels). In such a case, it is recommended

to find another source of channel variability, hence the need to exploit the frequency

variability existing in WB/UWB channels.

We here describe a simple dispersive channel model, which will help identify the

phenomena under SKG performance from correlated sub-channels and address the op-

timization of SKG schemes. It is based on periodic multipaths in the delay domain,

with an exponentially decreasing mean power. Each path is Rayleigh distributed,

i.e. independently Gaussian distributed with the same variance on the I and Q com-

ponents. The two sole channel parameters are then the delay gap between each

multipath and the delay spread (στ ), plus the SNR (Fig. 3-7). The instantaneous

channel response writes:

h(t, τ) =

Npath∑
n=1

βne
jφnδ(t− (n− 1)∆τ) (3.16)

∆τ and Npath are respectively the delay resolution and the number of paths that are

assumed statistically independent. φn is the random phase shift uniformly distributed

within [0, 2π] while βn is the positive real-valued amplitude of the nth path, assumed
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Rayleigh distributed with a mean power [100, 101, 102]:

E{|βn|2} = exp{−(n− 1)∆τ

στ
} (3.17)

Notably, however simplified this model may seem, it is commonly used for repre-

senting channels in standards as advanced as IEEE 802.11ac [103, 104], complemented

by several clusters rather than one, and with extra parameters specifying the spatial

dependence of this channel (readily needed for multiple antenna systems).

Some examples of such PDP are displayed in Fig. 3-7 with both στ = 140 ns

and στ = 100 ns. The maximum excess delay is set to 1980 ns, corresponding to

Npath = 100 and ∆τ = 20 ns. Starting from the CIRs, we perform a discrete Fourier

transform in order to obtain 100 channel transfer functions within a BW of 50 MHz.

Then, Nf (≥ 1) channel transfer functions are stacked within a vector used in the

computation of the number of available key bits per single channel observation, i.e.

IK(Nf ). In other words, IK is computed in the frequency domain. Nonetheless, it

is also shown in [65, 63, 73, 71] that IK may be alternatively computed in the time

domain. In particular, the upper bound on the key rate may be expressed as follows2:

IK ≤ −
Nf∑
n=1

log2

[
1−

(
γt(n)

1 + γt(n)

)2
]

(3.18)

where γt(n) is the SNR of the nth resolved path. The equality holds when the resolved

paths are independent.

In order to assess the security behavior with the channel DoF brought by the

frequency variability, we consider two different schemes with an increasing number of

sub-carriers, as illustrated in Fig. 3-8. The first consists in studying the impact on

the security of an increasing bandwidth with a fixed frequency separation (∆f = 0.5

MHz). More clearly, the BW increases proportionally to the number of investigated

sub-carriers Nf (i.e. BW = Nf∆f) that are added around a central frequency. The

second method investigates the increased number of sub-carriers within a fixed BW

(BW = 50 MHz) which is achieved by decreasing ∆f . Whatever the adopted method

is, we assume a fixed and equal SNR for both Alice and Bob, i.e. SNR = 15 dB for

which IK(1) = 4.05 bits per single channel observation. Moreover, we note that the

power spectral density (PSD) of both the sub-carrier and the noise is constant, which

means that increasing Nf yields a proportional increase in the transmitted/received

2The total number of resolved paths is equal to the number of investigated frequencies Nf .

44



N
f
=6

N
f
=5

N
f
=4

N
f
=3

N
f
=2

BW

(a) (b)

∆f

N
f
=1

Figure 3-8: Frequency variability schemes with an increasing number of sub-carriers
Nf : (a) an increasing BW and a fixed ∆f , (b) a fixed BW and a decreasing ∆f .

power.

An increasing BW with a fixed frequency separation ∆f

Fig. 3-9 shows the evolution of the available key rate with respect to the number

of sub-carriers, directly proportional to the BW, and thus for several time delay

resolutions and for στ = 100 ns. It is shown that IK linearly increases with Nf

until a certain value beyond which the slope of the curve decreases showing a nearly

saturation behavior. This means that until this critical value, the set of selected

frequencies is not able to accurately resolve all the multipath components of the PDP

[105]. However, when using Nf frequencies corresponding to BW = 1/∆τ , the paths

are perfectly resolved indicating a full exploitation of the channel DoFs. In fact, when

Nf sub-carriers are used, the delays are quantized into Nf delay bins, each one with a

gain obtained by using a sinus cardinal filter [65]. As the inverse of the BW is larger

than ∆τ , several paths are overlapped to give correlated gains in several delay bins.

However, when 1/(Nf∆f) is proportional to ∆τ , the paths are perfectly resolved as

clearly illustrated in Fig. 3-10.

Once the CIRs are perfectly resolved, IK still increases with Nf (or BW), even

slowly. This is explained by the improvement on the SNR per resolved path owing

to the increase in the total transmitted power as the number of investigated sub-

carriers increases, according to Parseval theorem. Similar results are seen in [97].

However, we notice that if the energy is fixed in the frequency domain instead of the
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Figure 3-9: Evolution of IK with respect to Nf and to the time resolution ∆τ , for
στ = 100 ns.

PSD, the authors in [63] show that there is an optimal bandwidth that maximizes

the mutual information IK since increasing the BW yields a decrease in the power of

each sub-carrier.

Fig. 3-11 plots IK as a function of Nf , for several RMS delay spreads and for

∆τ = 20 ns, while Fig. 3-12 presents the variation of IK with στ for both Nf = 2 and

Nf = 100. Obviously, the available key rate increases as στ increases. Indeed, the

higher the RMS delay spread, the more randomness available in the radio channel

through the multipath components. This is explicitly shown in Fig. 3-7 where the

diffuse paths become with higher relative power for higher στ . As seen in Fig. 3-12,

the increase in στ yields that IK may approach the theoretical value corresponding

to i.i.d. observations even for small bandwidths, e.g. when Nf = 2, where the paths

are not perfectly resolved.

A fixed BW with a decreasing frequency separation ∆f

Consider now the case where Nf frequencies are uniformly distributed within a fixed

BW of 50 MHz (Fig. 3-8 (b)). The variation of IK with respect to Nf is depicted in

Fig. 3-13, where ∆τ = 20 ns and στ = 100 ns. For relatively small values of Nf , IK

increases dramatically with Nf in a manner such that it approaches the available key

bits given by i.i.d. sub-carriers, in contrast to results shown in Fig. 3-11. Indeed, the

fixed BW corresponds to the time resolution of the signal, leading to an observation of

the fine structure of MPCs while the decreasing value of ∆f determines the duration

of the resolved PDP. As a consequence, as Nf increases, more independent paths are
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Figure 3-10: Equivalent time domain when perfectly resolved paths, for ∆τ = 60 ns
and στ = 100 ns.

resolved in the time domain, revealing more information to be exploited in the key

generation process. In these conditions, it is clearly shown that IK can be computed

as in Eq. 3.18. When the number of sub-carriers becomes relatively dense, the SNR

per additional resolved path decreases as Nf increases, revealing little information

available to SKG, especially that the path power becomes near the noise power. This

results in a diminishing slope in the curve of IK . We note that a similar scheme is

targeted in [62] regarding the space variability, which results in almost similar results.

While this analysis only considers the security from Alice/Bob side, studying from

Eve’s side needs further investigations, which necessitates modeling the correlation

between Eve’s observations and those experienced by Alice/Bob. Therefore, this

more complicated scenario is addressed in the following chapters where more realistic

channel models, e.g. deterministic ones, are considered.

3.3.3 Joint space-frequency variability

Intuitively, the smaller the coherence bandwidth, the more efficient will the SKG

be able to exploit frequency variability. Unfortunately, the coherence bandwidth

changes from an environment to another and is out of control. SKG performance

should be achieved also in environments where the coherence bandwidth is small,

which is a difficulty when no sufficient spatial variability is provided. As a way of

mitigation, we propose to exploit jointly the space and frequency degrees of freedom,

so to relax the requirements on each of both individually. A potential use case is that
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Figure 3-11: Evolution of IK with respect to Nf and to RMS delay spread στ , for
∆τ = 20 ns.
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Figure 3-12: Variation of IK with the RMS delay spread for ∆τ = 20 ns.

of MIMO systems (such as IEEE 802.11n/ac), providing spatial variability, together

with OFDM technology providing frequency variability.

3.4 Conclusion

We present in this chapter the relevant metrics, including theoretical bounds and that

related to the quantization algorithm, which are used in the present dissertation to

assess the SKG performance. Furthermore, we have discussed the impact of using

various channel degrees of freedom, including spatial and frequency domain, on the

security behavior.
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Figure 3-13: IK as a function of Nf for BW = 50 MHz.

In particular, we address the potential SKG performance from delay dispersive

channels. This has been done through a simple model of CIR, with equidistributed

path delays, an exponentially decaying PDP and uncorrelated, Rayleigh faded path

amplitudes. Although simple, this model has allowed to identify major features in

terms of secret key rate (or available number of key bits) from a CIR, which can be

summarized as follows:

• For a fixed sub-carrier interval in the frequency domain, the secret key rate

increases roughly proportionally to the number of frequency sub-channels, al-

though more slowly than for i.i.d. sub-channels, until a first breakpoint for

which the number of available key bits equals the number of DoF computed

from the noise level for independent paths. Successive breakpoints occur at

each time the bandwidth “resonates” with the inverse of the inter-path delay.

This means that at very high BW, the increase in the secret key rate gets lower

and lower.

• When the bandwidth is fixed, increasing the number of sub-carriers nearly pro-

portionally increases the key rate, at a “speed” equal of that for i.i.d. sub-

channels. This comes from the fact that for few sub-carriers, their frequency

separation is large and they can be assume uncorrelated. A more slow pro-

gression occurs below a certain number of sub-carriers, because of the onset of

frequency correlation. This onset comes later, i.e. the available number of key

bits can be higher, if the delay spread is higher, because of a smaller coherence

bandwidth.
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We will further see, in the following chapters (5 and 6), to which extent these

observations would be seen in more sophisticated channel models as well as in nearly

realistic channel models.
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Chapter 4

Performance of secret key

generation in non-stationary

channels

In a PhySec perspective, the confidentiality of any wireless communication heavily re-

lies on the scenario of the Alice/Bob/Eve trio [68, 106]. On one side, the propagation

scenario of Alice/Bob (e.g. SNR, channel degrees of freedom, richness in dispersive

multipaths, etc.) determines the maximum amount of random information that would

be reliably shared between legitimate users. On the other side, the relative propaga-

tion scenario of Eve (e.g. SNR, distance, channel fading, etc.) affects the amount of

shared bits that would be useful for the generation of a “secret” key. Therefore, given

that the SKG is simply targeted from the Alice/Bob sides in the previous chapter

(Section 3.3.2), we intend in the present chapter to deeply investigate the relation

between the Eve propagation scenario and the secret key quality. In fact, the SKG

analysis with respect to Eve is more critical and requires a multi-user channel model

that accounts for the spatial correlation between two users in proximity of each other,

i.e. Bob and Eve.

In [58], a simple channel model is proposed where Bob and Eve are assumed very

close to each other, so they share the same multipath components (MPC). This sce-

nario may be valid in wireless sensor networks in which sensors may be located in

the same stationary region1. More general scenarios should account for larger sepa-

ration distances between Bob and Eve, which mean not only several wavelengths but

1By stationary, we imply an area/volume of space where the statistics of the radio channel are
constant
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ultimately up to distances such that all radio channel characteristics are completely

different (independent in mathematical terms). When this is achieved, the environ-

ments seen by Alice/Bob and Eve are necessarily different, which means that they are

not in the same stationary spatial domain. Such a scenario is targeted in our previous

work [72] through a very simple version of a “Geometry based Stochastic Channel

Model” (GSCM), relying on the presence of scatterers between Alice and Bob/Eve in

order to represent the propagation events at the origin of multipaths. However, the

proposed model did not account for the shadow fading and its spatial dependence,

involed in the spatial correlation.

Nevertheless, multi-user channel simulations are allowed through some GSCMs

(refer to Section 2.1.4 for propagation channel models state of the art). In particular,

the Winner II model [1] enables the simulation of correlated channels through the

filtering of large scale parameters such as shadow fading. However, the main draw-

backs reside in that the channel parameters are valid in a low temporal duration and

that radio links involving different propagation scenarios cannot be simulated. While

these issues are resolved to some extent in the QuaDRiGa model [107], physical layer

security protocols are investigated through both Winner II and QuaDRiGa models

in the PHYLAWS project [15], for either WIFI or LTE simulations.

Both Winner II and QuaDRiGa models are parameterized for some given scenar-

ios. However, we aim to understand how the security is impacted by simply changing

the channel features. Hence, in this chapter, we elaborate on the non-stationary

channel model previously presented in [72]. We hence present further developments

in order to better account for shadowing, which is a well-known feature of space vari-

ant channels beyond a few wavelengths. In order to account for channels varying

over macroscopic distances and impacted by shadow fading, such an effect must be

specifically involved in the model.

4.1 Shadowing

In narrow band systems, the total received power slowly fluctuates around the dis-

tance dependent path loss, following a log-normal distribution (i.e. in dB, a zero-

mean normal distribution with a shadow fading standard deviation σ). In fact, such

a phenomenon results from the obstruction of some paths due to the variation in the

surrounding environment (i.e. interacting objects) around either the mobile station

or the base station. As a consequence, in wide band systems, shadowing occurs per
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clusters that gather multipath components of similar delays and angular character-

istics [1, 52, 108, 109]. Measurements in outdoor urban environments showed that

each cluster undergoes independent log-normal shadow fading with different standard

deviation values [110].

While the correlation properties of the shadow fading process are targeted through

the literature for the design of macroscopic diversity and handover schemes [37], such

properties seem essential in the modeling of spatial variant channels in the context of

PhySec. Typically, two types of spatial correlations are defined: the auto-correlation

and the cross-correlation, both illustrated in Fig. 4-1. The former considers the cor-

relation between two links connecting the base station (BS) to two locations of the

mobile station (MS) at two different instances, while the latter corresponds to two

links connecting the same MS to different BS. Several shadow fading correlation mod-

els are proposed and addressed in the literature. A summary could be found in [111].

In particular, Gudmundson [37] proposed a distance-dependent exponential decay-

ing function to account for the spatial auto-correlation function, while the authors

in [54, 112] consider the angle difference between the links in the modeling of the

shadowing cross-correlation. Nonetheless, without loss of generality, we use in the

present work the term of shadow fading correlation without differentiating between

the auto-correlation and the cross-correlation [111].

Figure 4-1: Shadow fading auto-correlation (right) and shadow fading cross-
correlation (left) [1].
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4.2 Disc of scatterers based channel model details

In order to accurately study the security provided by the SKG technique against any

passive eavesdropper, we should address realistic cases of interest for the locations of

Alice, Bob and Eve. Alice and Bob can commonly be a cellular base station (above or

below roof tops of macro, micro or small cells), an indoor access point, or a terminal

(either a fixed or a mobile one). More critical is the relative position of Eve in

the Alice/Bob environment since this impacts the amount of correlated information

between the channels seen by the trio. While it is unlikely that Eve can be very close

to Alice/Bob when the latter is a BS, this is not fully impossible. Alternatively, Eve

can potentially be very close, moderately far or very far from Alice/Bob. This may

rely, respectively, on the wavelength, on the shadow fading distance or on the long

distance attenuation. In other words, the location of Eve with respect to e.g. Bob

may determine the distinct spatial characteristics between the channels seen by Bob

and Eve from Alice. These differences can be ascribed to differences in some or all the

multipath compenents (MPC) in terms of e.g. path amplitude and path direction,

even polarization.

Briefly speaking, the channel MPCs seen by Bob and Eve can change according

to the relative distance between them and also according to the environment. For

example, the propagation channel components are likely to be more sensitive to the

separation distance in a dense scattering urban environment than in a rural one.

Therefore, in order to study the effect of the lack of spatial stationarity between

Bob and Eve on the SKG, we consider a 2-D GSCM, where scatterers are uniformly

distributed within a disc [113, 114] centered at Bob (Fig. 4-2). Eve is located within

the disc at a distance d from Bob. The maximum separation distance is kept to a

value low enough to avoid edge effects due to the finite size of the disc. Furthermore,

the transmitter, Alice, is supposed far away from the disc so that we can consider

rays arriving from a single direction ~KA to the local scatterers. This situation occurs

mostly in urban macro-cells, when the BS is located over rooftops and the angular

scenario at the BS level is very directional. Each terminal is considered to be in non

line-of-sight condition with respect to Alice. Hence, all the rays received by Bob/Eve

originate from the scatterers, acting as secondary sources. We also assume that Bob

and Eve are both equipped with an omnidirectional antenna.

In GSCMs, interacting objects over which the impinging wave is either reflected,

diffracted or scattered are represented by discrete scatterers distributed in the sur-

rounding medium. The scattering coefficient assigned to each scatterer may be mod-
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Figure 4-2: Geometrical representation of the communication scenario.

eled according to the physical interaction type, as shown in [52, 108] where the au-

thors differentiate between the LOS path, the specular interactions (i.e. reflection

and diffraction) and the diffuse scattering. However, for the sake of simplicity, we do

not consider in the present work a specific physical mechanism but a more general

one, where the impinging wave is re-radiated in different directions. Accordingly,

each scatterer is assumed to act as a non-omnidirectional lossy re-transmitter, which

is statistically independent from the others. Hence, Bob and Eve may not see the

same power of rays. Moreover, in order to account for the shadow fading correla-

tion between Bob and Eve, we assume that each scattered path emitted from the

same scatterer is spatially correlated according to the following correlation coefficient

[54, 112], which is based on an angle rather than a distance:

ρi = 0.5 + 0.5 cos{∆φi} (4.1)

where ∆φi is the angle of departure difference at the ith scatterer, as shown in Fig. 4-

2. More clearly, if SBi and SEi are the shadowing gains of the rays emitted by the

ith scatterer towards respectively Bob and Eve,

E{SBiSEi} = ρi. (4.2)

This may be achieved when:

SBi = aBi (4.3)

55



and

SEi = ρiaBi +
√

1− ρ2i aEi (4.4)

where the shadowing coefficients aBi and aEi are i.i.d. and follow a normal distribution

with zero-mean and a standard deviation σ in dB. The correlation ρi accounts for the

similarity/difference of the surrounding interacting objects around Bob and Eve. This

is not revealed in the distance decay exponential model [37] which is rather preferred

for especially closer receivers.

According to the scatterers distribution, physical path structures towards Bob/Eve,

including directions, are determined from a simple geometrical relationship; hence,

the multipath fading channel can be computed. Therefore, the narrow band single

input single output (SISO) channel seen by Bob/Eve is defined as follows:

hX =

NS∑
i=1

10SXi/20

dXi
exp[j(KdXi + ~KA.~ri)] (4.5)

where NS, dXi and ~ri are respectively the number of scatterers within the disc, the

distance from an ith scatterer to X (Bob/Eve) side and the ith scatterer coordinate.

Moreover, K = 2π/λ and ~KA are respectively the wave number and the wave vector

of the plane wave emitted by Alice towards the disc. This equation also expresses that

the power of the incoming wave from Alice is diffused by scatterers and attenuated

by free space propagation according to the separation distance towards Bob/Eve

[52, 108, 115, 116]. We note that, while we implement in our model the shadow

fading correlation per diffused scattered paths, such correlation is applied merely for

both LOS path and specular interactions in [52, 115].

In order to account for the channel estimation errors and noise, the channels are

assumed corrupted by noise (see Eq. 2.10), as ĥX = hX + nX where nX is the noise

estimation which can be modeled as zero-mean complex Gaussian random variable

with variance σ2
n. X denotes here A (Alice), B (Bob) and E (Eve). Moreover, the

noise at the different terminals is assumed independent.

Usually, the shadow fading is accounted for once the small-scale fading (SSF)

is removed by averaging [37]. However, in the context of PhySec, SSF is essential

in providing randomness from which robust keys may be extracted. Therefore, we

model both small scale fading and shadow fading (per path), where SKG metrics are

assessed from SSF statistic while maintaining fixed the shadow fading parameters.

Then a statistic on the SKG metrics may be derived owing to the shadow fading

statistic. More clearly, we define how the random variables change according to these

56



two fading types, as follows:

• Shadow fading statistic: It is defined by different realizations of the environ-

ment, characterized by the macroscopic scatterers positions and the shadowing

coefficients (aBi and aEi). This statistic leads to get a set of keys, or equivalently

to get a set of each SKG metric, e.g. a set of IK or IV K values.

• SSF statistic: For a fixed shadow fading realization, where the macroscopic

environment around Bob and Eve is fixed, scatterers are allowed to randomly

move on a square grid of surface 5λ × 5λ centered at the fixed macroscopic

position, providing SSF channels through varying phases over 0 to 2π. In other

words, SSF is provided by maintaining the same paths amplitudes and changing

the phases according to the small scale spatial movement of scatterers. This

SSF statistic is essential in order to generate a single key, or equivalently to get

a single value of each SKG metric.

4.3 SKG performance evaluation

Table 4.1 presents the simulation parameters values. We assume that all terminals

have the same SNR and that 250 scatterers are distributed uniformly within the

disc, unless differently stated. The maximum separation distance is 1000λ providing

equivalent statistics for both Bob and Eve. Each statistical quantity (correlation co-

efficient, information theoretic key bound and BER value) is computed from an SSF

statistic with 250 realizations. Then, statistical distributions for these quantities are

obtained from the combined macroscopic scatterers randomness and the shadow fad-

ing parameters randomness, with also 250 realizations. Thus, with 62,500 realizations

in total, the results are considered quite accurate.

Table 4.1: Simulation parameters.
Frequency 2 GHz
SNR 15 dB
Disc radius 5000 λ
Scatterers number NS 250
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4.3.1 Channel correlations

As a qualitative assessment of SKG performance, we compute both the complex

channel correlation (ρBE) and the envelope power correlation as in Eq. 3.13, involv-

ing respectively the complex channel coefficients seen by both Bob and Eve, and their

powers. Fig. 4-3 shows the cumulative distribution functions (CDF) of complex chan-

nel correlation coefficients for both shadow fading standard deviation σ = 3 dB and

σ = 10 dB, and for several separation distances d between Bob and Eve.
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Figure 4-3: CDF of complex channel correlations.

Obviously, as Bob/Eve’s separation distance d increases, the complex channel

correlation |ρBE| decreases. Indeed, this is ascribed to the fact that Bob and Eve do

not see the same interferences as d increases since they experience different multipath

structures, in particular the phase. Moreover, for NS = 250, the average distance

between scatterers is almost 600λ. For d > 600λ, the interferences seen by Bob and

Eve become independent and |ρBE| vanishes.

Furthermore, we notice that |ρBE| increases when σ increases. Usually, increasing

σ yields more rapidly channel decorrelations (e.g. σ is higher in NLOS channels than

in LOS one, since the former may undergo more severe shadow fading). However, this

is not the case here. This is due to the fact that the shadow fading is implemented

per path and with the same standard deviation. In fact, the tail of the log-normal

distribution, especially for σ = 10 dB (Fig. 4-4), indicates relatively rare instances

in which there is a dominant scattering coefficient (i.e. 10SXi) with a relatively high

power. Such a power may be either amplified if the scatterer is very close to the
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terminal or attenuated in the opposite case, and thus owing to the free space atten-

uation. As a consequence, the model is able to reproduce both Rayleigh and Rician

distributions. The proportion of these two distributions is impacted by the value of

σ. When σ increases, the proportion of Rician channels increases. We here consider

that channel amplitudes are Rician distributed if the Rician K factor is greater or

equal to 1. The results show that almost 18% of the channels are Rician for σ = 3 dB

whereas we have 30% for σ = 10 dB. Indeed, we find that the correlation increases

for Rician channels, where a dominant predictable path exists. This is also the reason

why we still have large correlation values for large separation distances.
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Figure 4-4: Log-normal shadowing per path for both σ = 3 dB and σ = 10 dB.

Fig. 4-5 depicts the CDFs of the power correlations for several Bob-Eve distances,

for both σ = 3 dB and σ = 10 dB. As expected, the power correlation decreases when

d increases. When Eve goes away from Bob, they see different multipath components,

leading to a decrease in both complex and power envelope correlations. Moreover,

due to the high proportion of Rician channels for σ = 10 dB, the variance of the power

correlation is the largest in this case, which can be explained by more correlations

resulting from less significant scatterers in the presence of a dominant path.

4.3.2 Vulnerable key rate

According to the chosen SNR, the maximum number of key bits IK is nearly equal to

4.05 per channel observation. Fig. 4-6 shows the statistics of the relative vulnerable

key rate IV K/IK as a function of several separation distances d between Bob and Eve,

for both σ = 3 dB and σ = 10 dB. We recall that these statistics are computed over the
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Figure 4-5: CDFs of the power envelope correlations.

250 shadow fading realizations. The average and the variance values of the IV K/IK

statistics are shown respectively in Fig. 4-7 and Fig. 4-8. While all these results only

consider the case of NS = 250 scatterers within the disc, Fig. 4-7 considers also the

case where NS = 100.

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

I
VK

/I
K

C
D

F

 

 

σ=3dB
σ=10dB

d=10λd=100λ

d=1000λ

Figure 4-6: CDF of relative vulnerable key bits.

The results presented in both Fig. 4-6 and Fig. 4-7 show that IV K/IK decreases as

either d increases or σ decreases. These results are consistent with those obtained for

the channel correlations, revealing the strong relation between IV K and the spatial

channel correlations between Bob and Eve. For the smallest value of d (i.e. d =
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0.1λ), Bob and Eve nearly see the same MPCs with high shadow fading correlation,

which results in relatively high vulnerability. When Eve moves away from Bob while

remaining very close (i.e. d ≤ λ/2), the channel phase shifts decorrelate rapidly,

yielding a high decrease in the vulnerability rate. Then, with larger values of d, it is

apparent that the decrease on IV K/IK is quite progressive owing to the long distance

spatial memory of the channel, even for relatively different structures of MPCs seen

by Both Bob and Eve. Finally, as d gets larger values, the angle difference at each

scatterer ∆φi increases, yielding a less shadow fading correlation and subsequently

IV K/IK vanishes.
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Figure 4-7: Averaged BER and vulnerable key bits as function of the separation
distance d between Bob and Eve.

Furthermore, if the density of scatterers NS decreases, the effective number of

scatterers (i.e. the number of scatterers with relatively significant power) seen by Bob

and Eve decreases, resulting in more vulnerability. Moreover, regarding the variance

of IV K/IK shown implicitly in Fig. 4-6 and explicitly in Fig. 4-8, the security behavior

changes according to each environment realization with more significant variation for

moderate d values and for large σ values. This heavily relies on the effective number

of scatterers that contribute to the most channel power and also to their relative

position with respect to Bob/Eve which affect the shadow fading correlation. Briefly

speaking, good security performance is provided for dense multipath propagation

channels corresponding to the lower tail of the CDFs, whereas it is degraded for

environments where a predictable dominant path exists corresponding to the higher

tail of the CDFs.
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Figure 4-8: The statistical variance of IV K/IK as a function of d.

4.3.3 CQA performance

Alice, Bob and Eve quantify their complex channel coefficients into stream bits by

extracting 1 bit from each I and Q parts (i.e. M = 4 quantization regions provide 2

bits), according to the channel quantization alternating (CQA) algorithm explained

in Section. 3.2. Fig. 4-9 shows the CDFs of the bit error rate (BER) of Bob/Eve

keys, for different values of σ and d, while Fig.4-7 shows the average values of the

BER in addition to the IV K/IK . Although we have almost the same average value

of the BER for different values of both d and σ, the behavior changes from one

environment to another, as shown implicitly by the variance of each CDF, see also in

Fig. 4-10. While σ does not impact the mean of the BER whatever d, it impacts the

variance of the BER as shown in Fig. 4-10. It is interesting that the BER variance and

the variance of IV K/IK have partly similar behaviors. Large values of σ favour few

dominant scatterers, which results in more variability from one realization to another

and consequently a higher variance on both related parameters.

When Eve goes away from Bob, the security is enhanced since the mean BER

converges towards 0.5, which is consistent with the behavior of the average IV K/IK .

Actually, the BER simply expresses the raw difference between the key bits directly

extracted from the channel coefficients seen by Bob and Eve. The algorithm doesn’t

attempt to develop more powerful strategies in order to exploit the common charac-

teristics between these channels. This is the reason why the remaining vulnerability

expressed in IV K beyond about one wavelength distance between Bob and Eve, is not

reflected in the mean BER. However, we still see it in the BER variance.
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Figure 4-9: CDF of BER between Bob and Eve.
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Figure 4-10: The statistical variance of BER as a function of d.

4.4 Conclusion

The GSCM model described above provides a realistic approach to channel richness

(tunable through the number of scatterers) and shadowing, in addition to simple

free space attenuation. This has been described by an extra log-normal attenuation

and an angular dependent decorrelation between the shadow fading coefficients. The

observation that, in spite of these features, the complex correlation coefficient between

Bob and Eve’s channels decreases relatively slowly with their distance (Fig. 4-3)

demonstrates the role of long distance common characteristics. This expresses a
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“spatial memory” of the channels, which is responsible for a tail in the number of

vulnerable key bits (Fig. 4-7), as computed for Gaussian statistics generated from SSF

channels for both Bob and Eve. This memory is not seen for the direct comparison

between Bob and Eve’s generated keys, making use of CQA. This means that such

an algorithm, operating directly in the I-Q complex plane, is based on major changes

of the channel as regards key confidentiality, but it cannot guarantee that a very

clever Eve would not capture some of this long distance memory to acquire partial

information on Bob’s key.

Another unexpected feature is the enhanced correlation between channel coeffi-

cients for high shadowing coefficients, which may sound strange at first sight. This is

basically an outcome of the model, which can be explained by the fact that under high

shadowing, farther distant scatterers are less visible (the dominant ones, producing

shadowing, mask them), which effectively reduces the channel richness. Although sur-

prising, the observation is not meaningless. For instance, for an indoor scenario with

thick absorbing walls, the channels are less rich and more spatially correlated than

with partly transparent ones, where outside scatterers will contribute to multipaths.
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Chapter 5

Security behavior through ray

tracing channel models

The model developed and discussed in Chapter 4 is mainly intended to investigate

the role of important physical phenomena, such as small scale fading and shadow

fading, on the security performance provided by SKG. However, its role is not to

be “realistic” with respect to the variety of possible environments concerned by the

practical use of SKG techniques. In particular, as opposed to what is commonly

done in radio channel modeling (see, e.g. Section 2.1.4), the parameters have not

been, and are not intended to be, determined from channel measurement campaigns.

A complementary approach, in this respect, is addressed in the PHYLAWS project

[15], where the Winner II and its extension QuaDRiGa are considered for PhySec

simulation purposes in LTE networks.

This being said, it is of interest to investigate SKG performance in a variety of

environments and see what relation can be drawn between the characteristics of the

channels and SKG security performance. Examples of site specific channel models are

well known to be ray-tracing (RT) or ray-launching (RL) techniques, which compute

the wave paths between the transmitter and the receiver deterministically, based on

ray approximation (plane waves) and basic theory of the fundamental propagation

events (reflexion, diffraction, transmission and the like). The main advantage of RT is

that it takes into account the true scatterers, such as buildings, into the computation

of rays between Tx and Rx. Its main drawback is the heaviness of computations, and

above all the great difficulty in reproducing in the numerical model of the propagation

environment the true and fine features of reality.

In this chapter, we present results on RT-RL simulations, which had been obtained
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from a previous national (French) project and are re-used in the present SKG context.

This may provide valuable added value and insight with respect to the model of

Chapter 4, as well as of measurements results from the literature.

5.1 Environments and characteristics of the simu-

lations

The radio wave propagation simulation software used here employs the Volcano tool

commercialized by Siradel [117], which is a 2.5D ray-based method. Ray launching in

the horizontal plane is used for determination of the multipaths angles of departure

and arrival, while a modified Deygout method combined with a uniform theory of

diffraction are used for each of these paths in the elevation plane [118]. An extension

to this commercial tool has been privately provided by the comapny, in order to

incorporate to some extent diffuse propagation. Indeed, it is well known that diffuse

scattering (DS) plays an important role in the radio channel, up to a proportion that

depends on the geometry, density and features of the scatterers. It is commonplace to

consider that the energy carried through diffuse scattering can take between 20 % and

80 % of the whole energy in a channel impulse response (CIR). The DS is included

using a model based on the Effective Roughness approach [119, 120]. Each wall surface

is divided in a multitude of facets (tiles). Each of those radiates a scattering wave

whose amplitude depends on a scattering coefficient S and on a directive scattering

pattern, centered around the direction of specular reflection. An example of ray traces

in the absence and in presence of DS can be seen in Fig. 5-1 for an indoor case.

The parameters involved in the reflexion/diffraction have been chosen according

to proposed ones by the Volcano tool, based on a large set of previous measurement

campaigns and parameters calibration achieved by SIRADEL. Indoor locations of

mobile terminals (MT) are not taken into account, while the attenuation by vegetation

is considered within the simulations. The simulation frequency used in the present

analysis is 5.5 GHz.

The considered environments are locations in Paris and around, particularly:

• “Carrousel du Louvre (Paris)” (Fig. 5-2(a)) with two heights1 for the base sta-

tion antenna (Louvre4: 4 m and Louvre48: 48 m). The investigated zone had

a size of 1200m x 360m and contained 4011 terminals positions (10m as spatial

1The heights are computed from the ground level.
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Figure 5-1: Example of an (indoor) deterministic simulation without (up) and with
(down) diffuse scattering.

resolution).

• “Avenue de Paris (Versailles)” (Fig. 5-2(b)). The BST had a single antenna

height (19 m), the investigated zone was of size of 850m x 60m and contained

2193 terminals positions (5m as spatial resolution).

Moreover, for the sake of comparison, we dedicate a scenario without diffuse scatter-

ing (WDS) implementation, which is the scenario Louvre48-WDS. It has the same

description as Louvre48 except for the spatial resolution, which is 5m, and thereby

of the number of terminals positions (15756).
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(a) Louvre

(b) Versailles

Figure 5-2: The digital 2D maps highlighting the simulated area.

5.2 Propagation channel characteristics

5.2.1 Channel model

A ray tracing tool generally computes almost all electromagnetic waves propagating

from the base station to a single or several receivers at different locations, taking

into account the relevant propagation mechanisms such as reflection on walls and

diffraction by building wedges and corners. Each received ray at position r is then

characterized by its gain βi, its time delay τi, its azimuth 2 angle of arrival (AoA) φi

and its azimuth angle of departure (AoD) θi. The base station (BST) is at location

rt. The combination of all computed Npath paths allows to calculate the parameter

2We do not consider elevation angles since the Volcano tool is a 2.5D tool.
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of interest, i.e. the channel impulse response (CIR), as follows:

h(r, τ) =

Npath∑
i=1

βi exp{j(kRi.r− kT i.rT )}δ(τ − τi) (5.1)

where the wave vector at the receiver is defined as kRi = 2π
λ

[cosφi sinφi] while it is

defined at the transmitter side as kTi = 2π
λ

[cos θi sin θi]. λ is the wavelength.

The channel transfer function is then obtained by performing a Fourier transform

on the CIR, as follows:

H(r, f) =

Npath∑
i=1

h(r, τi) exp{−2πfτi} (5.2)

We notice that the measured channels are space-varying and thereby the number of

paths Npath changes from one location to another as well as the parameters of each

multipath component (MPC).

Given that commercial receivers have limited performance, we just consider ter-

minals’ positions where the path loss verifies PL < 125 dB. Naturally, it is useful

to restrict the analysis to the locations where the predicted received power does not

fall below the receiver noise level. Moreover, we consider a receiver with a limited

bandwidth of 200 MHz, which results in a time delay resolution of 5 ns. Accordingly,

the paths falling into the same delay bin ∆τ are vectorially added in the i-Q domain.

Furthermore, the frequency separation is set to ∆f = 312.5 KHz, corresponding to

the interval between subcarriers in the IEEE 802.11.ac standard, which results in

a maximum excess delay of 3200 ns, beyond which all computed paths are simply

discarded.

5.2.2 Small scale fading statistics

As discussed throughout this dissertation, random channel fluctuations provided by

SSF are essential for robust SKG. Since MPCs are predicted on positions separated

by at least 5 m, which does not support SSF statistics, we need to reconstruct SSF

channels. For that reason, we adopt the plane wave assumption and consequently,

simply compute CIRs by deterministically shifting the phase of each path according

to the distance. In this context, channel responses are estimated over a local area

modeled by a 5λx5λ square grid, with a step of λ/5, centered at each terminal position.

Subsequently, the Rician K factor is computed by fitting the amplitude statistics into
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a Rician distribution, which includes pure Rayleigh fading for the extreme case where

K = 0. Since an ideal Rayleigh distribution can never be achieved in practice,

channels with K ≤ 1 are here assumed to follow Rayleigh fading.

Table 5.1 presents the number of retained channels as well as the ratio of Rayleigh

channels with respect to the former number. We notice that the ratio of Rayleigh

channels is very small, whatever the considered scenario. This is due in part to the

nature of the propagation environment, e.g. an open space for the Louvre environ-

ment. This may also in part be due to limitations on RT simulations, such as 1) the

limited number of physical interactions, 2) the simplified model of diffuse scattering

and 3) the simple description of the required maps (e.g. EM maps and geometrical

maps).

Table 5.1: Statistics of the computed channels.
Scenario retained channels Rayleigh (%) Rayleigh passing K-S test (%)
Louvre48 2605 11.44 8.68
Louvre4 1922 12.75 5.2
Versailles19 1469 6.19 4.56

Fig. 5-3 displays, for each scenario, a 2D map localizing the BST as well as the

total receiver positions, including LOS and NLOS conditions. Moreover, we marked

receiver positions where K ≤ 1. Regarding the Louvre environment, we find that, for

higher antenna height (i.e. 48 m), receivers with K ≤ 1 are located behind or on the

corner of buildings, as seen in Fig. 5-3(a). However, for a smaller antenna height (i.e.

4 m) as shown in Fig. 5-3(b), the aforementioned positions are difficult to reach with

several interfering paths, while channels with K ≤ 1 are distributed in the open area

as the receiver goes farther from the BST, yielding more attenuation in the dominant

path. Regarding the scenario Versailles19, the positions with K ≤ 1 are concentrated

behind buildings.

5.2.3 Delay and angular spreads

Both RMS delay spread (RMS-DS) στ and angular spread σφ, given respectively in

Eq. 2.5 and Eq. 2.8, are computed by just considering paths within 20 dB from the

highest peak of the power delay profile (PDP) and the angular power spectrum (APS).

We note that these spreads are evaluated at the MT side. Fig. 5-4 plots the statistics

of the RMS delay spread for the 4 scenarios, differing between Rayleigh and Rician

channels. Intuitively, Rayleigh channels provide RMS delay spreads higher than those
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(c) The scenario Versailles19

Figure 5-3: The measured receiver locations in 2D maps.

observed in Rician fading, owing to the presence of a dominant path in the latter case.

In particular, at 80% of the CDF, the maximum of the RMS-DS (90 ns) of Rician

channels is less than the minimum (104 ns) of that of Rayleigh channels.

We focus our analysis on Rayleigh channels, which are of particular interest in

generating randomness used to establish secret key bits. Accordingly, we consider

now the RMS-DS of channels having K ≤ 1, presented in Fig. 5-4(a). Given that

time dispersion relies on geometric relationships between transmitter, receiver and

the surrounding physical area, we remark that a higher antenna provides more time

dispersive paths, when considering the Louvre scenarios. Indeed, as already discussed,

the locations of Rayleigh channels differ between Louvre48 and Louvre4, where for

the former more diffused paths result from the interaction with buildings. Further-

more, channels without diffuse scattering implementation obviously show smaller de-

71



0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

RMS delay spread (ns)

C
D

F

 

 

Louvre48
Louvre4
Versailles19
Louvre48−WDS

(a) Rayleigh channels (K ≤ 1).
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(b) Rician channels (K > 1).

Figure 5-4: RMS delay spread statistics.

lay spread values. Furthermore, the scenario Versailles19 reaches the smallest RMS-

DS since the avenue is narrow relative to the large open area of the Louvre. The path

lengths are smaller for the former scenario [121]. Nonetheless, small values of στ may

due to limitations in the RT simulations.

Some examples of PDPs corresponding to particular values of στ are shown in

Fig. 5-5. Considering the plots from right to left, the RMS delay spreads are re-

spectively 15 ns, 360 ns and 728 ns. Particularly, we point out that, although the

left PDP offers the highest delay spread, the channel presented by the middle PDP

is the richer in MPCs within even the 10 dB threshold. Furthermore, we note that

the discontinuous character of the PDPs stems from the discrete channel simulations

but also from the limitations of the RT tool, which is not able to reproduce the full

multipath density of a real channel.

Fig. 5-6 shows the statistics of the angular spread computed in the different sce-

narios for either Rayleigh or Rician channels. The same analysis as that done for the

RMS delay spread can be made here. We recall that angular spread is statistically

larger for Rayleigh than for Rician channels. Among the Rayleigh fading channels,

Louvre48 offers higher angular spreads than Louvre4 owing to the relevant antenna

height in the former scenario. We notice also the relevance of implementing diffuse

scattering in enriching the radio propagation in more dispersive paths. Furthermore,

some examples of APS are plotted in Fig. 5-7, focusing on particular values of the

angular spread, corresponding to channels with K ≤ 1.

In the following, we just retain Rayleigh channels that pass the Kolmogorov-

Smirnov (K-S) test in order to adequately calculate the theoretical key bounds. The
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Figure 5-5: Some examples of PDPs corresponding to Louvre48 (right: στ = 15 ns,
middle: στ = 360 ns, left: στ = 728 ns).
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(a) Rayleigh channels (K ≤ 1).
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(b) Rician channels (K > 1).

Figure 5-6: Angular spread statistics.

K-S test relies upon the computation of a statistical parameter, which is the maximum

distance between the CDF of the empirical channel F (h) and that of a reference

distribution, here being the Rician distribution F (hRice). Explicitly, the K-S statistic

is expressed as DKS = max(|F (h)− F (hRice)|). The goodness of fit is revealed once

DKS is compared to a threshold according to a given significance level (α = 5% being

a commonly used value). Although we use the Rician statistic in the test, we just keep
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Figure 5-7: Some examples of APS corresponding to Louvre48 (right: σφ = 5.3 degree,
middle: σφ = 71.3 degree, left: σφ = 115 degree).

channels having K ≤ 1. We point out that the number of channel passing the K-S

test, presented in Table 5.1, is not so high and thereby reveals the limited number of

significant scattered paths seen by most measured points, as already discussed above

in Section 5.2.2.

5.3 SKG from frequency variability

In order to assess the benefit brought by the frequency variability of an OFDM channel

to wireless security, we consider in particular the effect of the increasing bandwidth

with an increasing number of sub-carriers Nf and a fixed separation frequency ∆f ,

as considered in Section 3.3.2 and illustrated in Fig. 3-8 (a). We recall that the

BW is directly proportional to the number of investigated sub-carriers, i.e. BW =

Nf∆f . We consider an OFDM channel with BW = 20 MHz, typical of the 802.11

standard, and a frequency separation of ∆f = 312.5 KHz, which results in 64 total

sub-carriers. We also recall that the frequencies are always equally spaced within the

BW. We note that the security is addressed from both legitimate terminals side and

the eavesdropper side.
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5.3.1 Available key bits

5.3.1.1 BW impact by investigating more sub-carriers

Fig. 5-8 plots IK as a function of Nf for each position showing a Rayleigh amplitude

that passes the K-S test. In accordance with results presented in Section 3.3.2, it is

shown that IK increases with the BW (or Nf ) in a sub-linear manner, which reveals

that the main channel DoFs (i.e. the rays carrying the major energy) are resolved

with a BW less than the total BW of 20 MHz. The curves here show non linear

behavior with respect to results reported in Fig. 3-9, since the deterministic channels

are more complex, so that the ray powers are not distributed over all the delay bins

according to the simple exponential power decay profile. Moreover, some PDPs may

show clustering effect.
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Figure 5-8: Evolution of IK with respect to the number of frequencies Nf .
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We stress that the variance of IK within each environment and for each value of

Nf is relatively large, especially for high values of Nf . This means that the length

of the common generated key is strongly related to the channel characteristics of

each measured location. Among the relevant parameters to characterize a channel

CIR is the delay spread. Hence, we plot in Fig. 5-9 the variation of IK with στ ,

for both two and 64 sub-carriers. Obviously, IK increases as the RMS delay spread

increases, revealing that more random information can be shared between Alice and

Bob, especially when the used BW is large. These results are consistent with those

presented in Fig. 3-12, except for the decreasing behavior in IK beyond στ = 400 ns

and for Nf = 64. Such a behavior results from the clustering aspect seen in the PDP,

where e.g. two far clusters yield an increase in the apparent coherence bandwidth

while the channel DoFs or the number of independent paths is small. For a clear

illustrative scheme, we can relate the PDPs plotted in Fig. 5-5, according to their

labels, to their corresponding (στ ,IK). In particular, if we compare the PDPs labeled

(2) and (3), although (2) is characterized by a smaller delay spread, it is richer in

MPCs, yielding more randomness to be exploited in SKG.
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Figure 5-9: IK as a function of the RMS delay spread (στ ) for the scenario Louvre48.

5.3.1.2 Impact of the radio environment

Also from Fig. 5-8, we can study the impact of the physical environment on the

security. First, we notice from Table 5.1 that the percentage of Rayleigh channels

(either passing or not the K-S test) is very low for these outdoor environments. This

results in a smaller chance to be secure in such environments. Indeed, as seen in
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Section 3.1.1, Rician channels are less favorable to SKG than Rayleigh ones, since 1)

some efficient methods are required to predict and remove the nonfading part of the

radio channel and 2) the remaining power of the random channel part may be very

small. Then, if we compare the behavior of IK for the different scenarios and especially

for Nf = 64, we notice that the highest values of IK are reached in Louvre48, where

the channels seem to be the richest in DoFs, or equivalently, significant MPCs. This

is consistent with the discussion made above in regards of the στ statistics, presented

in Fig. 5-4.

5.3.1.3 Impact of the diffuse scattering

In order to highlight the crucial role played by the diffuse scattered paths on the

robustness of generated keys, we compute IK for scenarios where the channels are

predicted with and without implementation of diffuse scattering. An explicit com-

parison is shown in Fig. 5-9 where IK is evaluated with respect to στ for both scenarios

Louvre48 (with implementation of diffuse scattering) and Louvre48-WDS (without

implementation of diffuse scattering), while Fig. 5-10 plots IK versus Nf for channels

excluding from diffuse scattering contributions. First of all, we stress that the ratio of

Rayleigh channels significantly decreases when any contribution from scattered paths

is considered, yielding less opportunities to achieve secure communications. Secondly,

we obviously see that smaller values of IK are reached in the scenario Louvre48-WDS.

However, we still have some values of IK that are comparable with scenarios where

diffuse scattering is implemented, and this relies on specific surrounding environment

where an important number of specular reflections and edge diffraction exist. Briefly

speaking, these results show the relevance of diffuse scattered paths to sustain wireless

security in a PhySec context.

5.3.1.4 BW impact by investigating a fixed number of sub-carriers

Fig. 5-11 compares the statistics of IK when 64 sub-carriers are uniformly distributed

within a BW of either 20, 40, 80 or even 160 MHz. For a fixed number of sub-

carriers, the number of resolved delay paths is the same, whatever the BW. As the

BW increases, the effect of overlapped paths reduces, yielding more information to be

exploited in the shared key between Alice and Bob. Hence, the key length increases

with the BW, provided sufficient channel DoFs are available. More clearly, while the

lower tails of the distributions correspond to lower delay spreads and consequently to

poor channels, the higher tails correspond to larger delay spreads and consequently
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Figure 5-10: IK as a function of Nf for the scenario Louvre48-WDS.

to richer channels in MPCs, as deduced from Fig. 5-9. As a consequence, IK takes

benefit from the increase in BW for higher tails rather than in lower tails. Moreover,

for the same reasons, it seems that IK at BW = 80 MHz and BW = 160 MHz are

relatively close to each other revealing that most paths are almost perfectly resolved

at a BW less than 160 MHz.
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Figure 5-11: The impact of BW on IK for Nf = 64 and for the scenario Louvre48.
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5.3.2 Evaluation of the degree of secrecy

After discussing the behavior of IK with respect to the channel features, it is relevant

to assess the amount of information revealed to Eve according to her situation. To

this end, we consider a set of Bob-Eve separation distances d, ranging from 0 up to

259λ. Since the RT computes the channel characteristics over a grid of 5 m3 as a step,

the channels at d = 183λ and d = 259λ are computed based on RT output while,

however, it is not the case for d ≤ 10λ. For d ≤ 10λ, Bob and Eve are supposed

to be located in the same local area, so they share the same MPCs. Hence, the

channels at these distances may be computed by adopting the assumption of plane

waves. Furthermore, we assume that Bob and Eve are moving, in the same manner,

in the 5λx5λ centered square grid in order to build a statistical distribution over

which the vulnerable key rates are computed. Moreover, only the channel measured

by Eve when Alice is the transmitter is supposed to contain correlated information

with the propagation channel between Alice and Bob. We note that the vulnerability

is discussed by investigating merely the scenario Louvre48.

Fig. 5-12 depicts the distributions of relative vulnerable key bits IV K/IK as a

function of Bob-Eve separation distance d and also with different values of Nf . It is

straightforward that IV K/IK decreases as the distance increases owing to the mul-

tipath interference in small-scale distances and to the change in the structure of

multipath components at larger distances, as already discussed for the disc of scat-

terers model in Chapter 4. Fig. 5-13 shows that the angular spread is critical for the

vulnerability when a single frequency is investigated, especially for d = 0.1λ where

the variance of the relative vulnerable key bits is large. Hence, more secure key bits

may be obtained in scenarios where a large angular spread is provided. On the other

hand, by increasing the bandwidth, or equivalently Nf , IV K/IK increases. Hence, an

increase in the channel DoFs brings an advantage for the legitimate terminals in terms

of IK , it also brings an advantage for Eve who is potentially able to capture higher

portion of key bits. Similar results are shown in [58, 72], when exploiting the richness

available in MIMO channels. We stress that for WB channels (i.e. large values of

Nf ), the vulnerability does not rely merely on the angular spread since other factors

such as the delay spread are also critical in this case.

3A distance of 5 m corresponds to 183λ.
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Figure 5-12: CDF of IV K/IK depending on Nf and on Bob/Eve distance (Louvre48).
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Figure 5-13: IV K/IK as a function of the angular spread, for Nf = 1 and d = 0.1λ.
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5.4 SKG from space variability

We aim in this section to briefly assess the robustness of the extracted key, when

exploiting the space variability of the channel. For that reason, we consider a 8x8

square array antennas with λ/2 inter-element spacing for Bob, while keeping Alice

with a single antenna. In this case, the channel vector is constituted by these 64

space-varying parallel channels. The frequency domain, with BW = 500 MHz and

Nf = 2500, is used to form the statistics over which IK is computed. Again, we just

consider the scenario Louvre48.

5.4.1 Available key bits

Fig. 5-14 shows IK as a function of the angular spread σφ. Obviously, IK increases

with σφ until a certain value beyond which IK decreases. Indeed, the same behavior

is shown in Fig. 5-9 where the frequency variability is considered. This decrease in

IK can be ascribed to the clustering effect presented in the angular power spectrum,

in relation to the APS plots in Fig. 5-7.
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Figure 5-14: Space variability: IK as a function of the angular spread.

The comparison between the key extraction from 64 parallel sub-channels pro-

vided in either the space or the frequency domain is displayed in Fig. 5-15. It turns

out that the lower tails of the CDF correspond to small values of either the angular

spread or the RMS delay spread, when dealing with space domain or frequency do-

main SKG, respectively, while the higher tails correspond to larger spreads. In poor

channel conditions, corresponding either to small values of στ or of σφ, the space
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variability appears to contain more random information. Nevertheless, in general, IK

takes almost the same values in the two domains, which indicates that these sources

of variability statistically offer the same amount of random information in the inves-

tigated environment.
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Figure 5-15: Space vs. frequency variability.

5.5 Conclusion

RT simulations constitute an interesting tool in order to assess SKG performance,

especially if we want to be “site-specific”. The difficulty, which is uncommon for most

users of RT tools, is that high performance SKG comes with the full exploitation

of the DoF, which must be properly rendered in the simulation framework. Since

much of the wireless power is carried by diffuse scattered waves, this puts strong

requirements on RT tools in including diffuse scattering. The problem is two-fold:

(i) diffuse scattering must be correctly included from the point of view of the laws of

physics ; (ii) the extra amount of computations can be expected to be large, based

on the dense character of the multipaths structure.

Given these cautionary comments, the work carried out in the present chapter has

concentrated on a few scenarios for which a data base of RT simulations including

DS was available. A systematic evaluation of the secret key rate vs. the number

of frequency sub-carriers was conducted with parameters suited to the IEEE 802.11

standard (WIFI), qualitatively confirming the results of Section 3.3.2 in terms of a

sub-linear dependence of the number of available key bits vs. Nf , well below the i.i.d.
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case. IK tends to increase with the RMS-DS, up to a saturation. IK also tends to

increase with the BW, although in a sub-linear dependence.

The “spatial memory” of the channel, surmised from the results of Chapter 4, has

been observed on RT results, most likely because the considered scenarios cover rather

wide areas with slowly varying multipaths, resulting in a significant vulnerability

(from Eve’s point of view) of Alice-Bob keys. This implies the necessity to devise

privacy amplification schemes that remove the common information between Eve

and Alice-Bob for moderate distances.

Finally, for the parameters and considered scenarios, the spatial and frequency

based SKG performance appear to be equivalent, as observed from the similarity

between the statistical distributions of the secret key rate. This issue will be further

investigated in the measurement results of Chapter 6.
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Chapter 6

Security performance in measured

channels

In this chapter, we intend to test the performance of SKG schemes, especially when

exploiting the channel degrees of freedom (DoF), in indoor empirical channels, at

both 2.4625 GHz and 5.4 GHz bands (i.e. the typical WIFI bands). We first start

by describing the measurement campaign in Section 6.1. Then, in Section 6.2 and

Section 6.3, we test the security performance relatively to the CQA algorithm as well

as to the electromagnetic propagation features, in terms of key agreement between

the Alice/Bob/Eve trio and in terms of key randomness. Subsequently, we exploit

these measurements in Section 6.4, towards achievable key rates according to mutual

information computations. Finally, the results are compared and discussed in the

conclusion.

6.1 Measuring systems and scenarios

Measurements have been performed in the premises of Telecom ParisTech (TPT),

which is a century old engineering education building with a highly heterogeneous

internal structuring due to many refurbishing events over the years. A 4-port vector

network analyzer (VNA: Agilent ENA E5071C) has been used to record channel

coefficients over 4 GHz of bandwidth (2-6 GHz) with 2.5 MHz as frequency step.

This step, which translates into a maximum channel response delay of 400 ns, is

enough to avoid aliasing, given the instrument noise floor and the typical delay spread

of multipaths in the concerned environments. Table 6.1 presents the VNA setup

85



parameters. One port of the VNA has been devoted to Alice, as transmitter, whereas

the three remaining ports have been devoted to Bob/Eve, as receivers. Each port

was equipped with an identical UWB bicone antenna with 2 dBi gain, specifically

designed for the frequency stability of the radiation pattern [122]. The VNA has

been calibrated with a “full 4 ports” method including the (highly phase stable)

cables, resulting as output at each frequency in the full 4x4 matrix of the complex

channel coefficients including all antennas.

Furthermore, the measurements were carried out in a time period where few people

were present (mainly during week-ends, evenings etc.). Given the conditions of the

measurements (in particular the time duration of a frequency sweep), there is no

doubt that the time stability was largely sufficient for the needs of the experiments.

Table 6.1: VNA setup parameters.

Parameter value
Start frequency 2 GHz
Stop frequency 6 GHz
Frequency points 1601
IF Bandwidth 5 KHz
Transmitted power 10 dBm
Dynamic range 96 dB
Typical noise floor -86 dBm

The measurements have been carried out in classrooms and in an auditorium,

in order to have indoor scenarios of sufficiently different characteristics, including

identical or different heights for the terminals; LOS or NLOS propagation condition

and also different room sizes. Fig. 6-1 shows the floor plans of both classrooms and

auditorium where the environment is mainly constituted of concrete, plywood and

partition walls. In the classroom scenario, the terminals have been placed at the

same height (1.3 m from the ground) whereas in the auditorium they have been

placed at different heights as seen in Fig. 6-2 and Fig. 6-3. The location of Alice

was fixed for each of the two environments whereas the remaining three antennas

have been moved across the area in a set of irregular locations, mostly within the

room but also in the adjacent corridor or in an adjacent room. More clearly, the

antennas representing Bob had 51 different positions in the classrooms scenario and

42 positions in the auditorium scenario, where only 25 total positions were in NLOS

condition with respect to Alice. The NLOS scenario encompasses either room-to-room

or room-to-corridor propagation conditions, as shown in Fig. 6-1.
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Figure 6-1: TPT measurement floor plans: (left) classrooms and (right) auditorium.

Figure 6-2: A sketch of measurement run in TPT classrooms scenario.

In each measurement run, the three receivers representing Bob are steady while

the transmitter representing Alice is spatially scanned over a square grid of 11x11

points (30 cm side and 3 cm step) confined to a small area, so as to capture fast

fading. More clearly, since the grid step is about half a wavelength at 5 GHz, we

can expect to achieve close to statistically independent channel coefficients owing

to spatial fading. The total 4 GHz bandwidth (BW ) enables us to investigate in

this paper the security performance of wide band (WB) channels centered at either

2.4625 GHz or 5.4 GHz (typical of the WIFI band) with e.g. a bandwidth either of
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Figure 6-3: A sketch of measurement run in TPT auditorium scenario.

20, 40, 80 or even 160 MHz, according to the series of WIFI (IEEE 802.11) standards

(Appendix B).

6.2 Evaluation of errors between Alice, Bob and

Eve keys

This section is dedicated to assess the quality of the key from the view point of the

key similarities or differences between the Alice/Bob/Eve trio, for both NB and WB

channels centered at 5.4 GHz band. The keys are derived from the noisy complex

channel coefficients, through the CQA algorithm. Eve also employs the same algo-

rithm and exploits all the public information exchanged between Alice and Bob, i.e.

the quantization map QM.

The VNA measurements were carried out in excellent dynamic range conditions,

owing to the VNA measurement principle. For that reason, the correlation coefficient

between the Alice to Bob and Bob to Alice channels is almost always equal to 1, indi-

cating a high degree of reciprocity (very high signal to noise ratio (SNR)). Therefore,
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we added independent artificial noise in the form of a zero-mean circular complex

Gaussian random variable to study the effect of noise on security performance. The

BER is computed over keys extracted from both the spatial domain (i.e. the 121 spa-

tial positions of Alice over the grid) and the frequency domain (i.e. Nf sub-carriers).

The BER is then averaged over 500 channel realizations where only the noise is the

random variable. All the terminals are supposed with an equal SNR.

6.2.1 Dependence on the mapping

Fig. 6-4(a) and Fig. 6-4(b) show the variation of the BER between the keys generated

by Alice (A) and Bob (B) with respect to the SNR, the number of QRs M and for

LOS and NLOS propagation conditions. Instead of averaging the BER over all Bob

positions representing either LOS or NLOS conditions with respect to Alice, we just

choose certain positions in order to reduce the simulation time. In the LOS case, two

scenarios for Bob are considered. The first one, named close LOS, corresponds to a

separation distance of 1.5 m with respect to Alice, while the second, named far LOS,

corresponds to a separation distance of 6.5 m. In the NLOS scenario, Bob and Alice

are located in two adjacent rooms belonging to the classroom environment. Fig. 6-

4(a) and Fig. 6-4(b) consider, respectively, NB channels (Nf = 1) and WB channels

(Nf = 9 sub-carriers separated with ∆f = 10 MHz). It is clear that the BER

is improved by increasing the SNR and by decreasing the number of QRs, leading

to less sensitivity on noise. Moreover, the BER is almost similar for NB and WB

channels since, in the latter, the sub-carriers have almost the same average SNR.
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Figure 6-4: Alice-Bob BER vs. SNR and M .
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Figure 6-5: Secret key rate η for both NB and WB (Nf = 3) channels.

Fig. 6-5 shows the values of the efficiency η (i.e. effective key rate) for both NB and

WB channels where in the latter Nf = 3. These values are always improved with the

SNR, while an increase in M intuitively yields an increase in the efficiency. Further-

more, a WB channel is preferred since it provides the largest value of η. However, this

is relevant merely in the case of decorrelated sub-carriers, from which result decor-

related bits, which is a feature not expressed by η. Therefore, in practice, Alice and

Bob should be aware of the channel coherence bandwidth in order to appropriately

choose the sub-carriers used as the shared source of randomness.

6.2.2 Alice-Bob disagreement vs. a simple channel model

In Fig. 6-6, we show the CDF of the bit disagreement between Alice and Bob, ag-

gregating all locations while distinguishing between LOS and NLOS cases. This is

done for different values of the SNR but only for M = 4 and for NB channels. We

clearly see that LOS propagation is statistically more favorable, from the point of

view of Alice and Bob’s agreement between key bits, especially when there is a dom-

inant component and at high SNR. This can be understood from the fact that, for

a given SNR, the stochastic character of the fading channel coefficients is higher in

NLOS than in LOS. This results in a larger number of channel coefficients with low

instantaneous SNR in the former case.

If both Alice and Bob are in the same room, a LOS path may dominate the mul-

tipath channel between them. Since the channel variation is due to Alice movements

over the square grid, the LOS phase is not constant. Given the regular movements

90



10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

BER A−B

C
D

F

 

 

LOS meas
LOS model
NLOS meas
NLOS model

15dB 10dB20dB

Figure 6-6: Comparison of the BER A-B computed over both the measurements and
the model, for SNR=10, 15 and 20 dB.

of Alice and the Bob positions set, we are able to reproduce the channel by modeling

the LOS component as follows:

hLOS =

√
GtGr(

λ

4πd
)2 exp j

2π

λ
d (6.1)

where the amplitude is computed according to the Friis equation, given the antenna

gains at both the transmit (Gt) and the received (Gr) sides. d is the distance between

Bob and a position of Alice on the grid. The fading multipath components are

then modeled as zero-mean circular Gaussian distribution (resulting in a Rayleigh

multipath channel) of power equal to the total measured NLOS power and added to

the LOS component. This procedure ensured that the K factor of the Rician statistics

observed in the presence of a significant LOS component was correctly reproduced.

Then again, the fading components model is used to model the channel when NLOS

condition is provided.

Fig. 6-6 compares the behavior of the SKG from both empirical channels and the

simple channel model, for NB channels. The results show a good fit between the BER

distributions of the measured and modeled channels, especially in LOS. In the NLOS

case, the discrepancies affect the tails of the distributions, which can be ascribed

to the fact that the model (Rayleigh distribution for the multipaths contribution)

imperfectly describes the limited number of significant paths in the concerned indoor

environment. Similar results can be found for the WB case since the sub-carriers have

the same behavior regarding the BER.
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6.2.3 Security performance with respect to Eve

Eve is assumed to be a passive attacker. She is able to measure the radio channel

between herself and Alice hea as well as with Bob heb. Each terminal is considered

at each time as either Bob or Eve. Furthermore, Eve is assumed to also apply the

CQA algorithm on her channel observation in the hope to derive a secret key close to

Alice-Bob’s by exploiting her own channel estimates hea and heb. The BER between

the keys constructed by Alice and Bob and that derived by Eve is then evaluated.

The results are shown in Fig. 6-7 for M = 4, SNR = 15 dB and NB channels.

It can be seen that, based on this simple comparaison between the keys, making

use of the heb channel by Eve does not give her a strong advantage, since the BER

is around 0.5. This is due to the fact that this channel is almost constant and does

not reveal significant information about the key. On the other hand, the channel hea

is more critical since it is a time-varying channel, depending on Alice movements.

Furthermore, a LOS condition between Bob and Eve (LOS B-E) may reveal more

information about the secret key than the NLOS case (NLOS B-E). Indeed, in indoor

environments, LOS B-E means that Bob and Eve are in the same room and maybe

very close, and they are surrounded by almost the same interacting objects, which

results in a high probability that they experience correlated channels. Nevertheless,

by increasing M , the leakage information to Eve decreases as shown in Fig. 6-8, where

only the BER from hea is considered and for LOS B-E.

Of course, this direct comparison is not a proof of the inability for Eve to access

Alice-Bob’s common key. It just shows that Eve’s job will not be simple and she must

call for more sophisticated means and make use of any extra information she can get

to guess the legitimate users’ key. The number of vulnerable key bits, deduced from

information theory, will be presented in Section 6.4.3 below.

6.3 Channel degrees of freedom for SKG

Since the efficiency η does not consider the randomness character of the key, we

assess in this section this key quality through the statistical NIST tests described in

Section 3.1.4. We also investigate the impact of the space, time, frequency and joint

space-frequency degrees of freedom on the SKG performance, given that these DoFs

may provide more available shared bits. The relevance of such an investigation is also

discussed in Section 3.3.
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Figure 6-8: BER of Eve key bits from hea, for LOS B-E and for NB channels.

6.3.1 Space vs. time variability

In TPT measurements, the spatial variability is provided by the movement of Alice

over the 11x11 square grid as explained in Section 6.1, which is equivalent to the

first type of time variability. These 121 antenna positions allow testing the SKG

performance provided by spatial/time degrees of freedom, where Alice’s antenna can

take random positions over the grid. In this way, we obtain NS complex channel

coefficients, exploited to construct a (N = NS log2M)-bits key at a given frequency.

Hence, we randomly choose to construct 60 sets of random Alice positions for each

Bob’s position and for each available frequency in the 20 MHz-bandwidth. A statis-

tical distribution can then be computed over Bob’s positions, over the frequencies in

the 20 MHz-bandwidth and over the 60 random sets of Alice positions.
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6.3.2 Frequency variability

In order to investigate SKG performance in frequency variant channels, the data has

been processed almost consistently with the 802.11a/g/n/ac standard, i.e. in order

to obtain complex channel coefficients at the required number of sub-carriers for each

BW. For that purpose, TPT campaign measurements were frequency interpolated,

which was feasible since the effective maximum delay was well below the inverse

of the BW (in other words, the frequency gap between sub-carriers is well below

the coherence BW). Moreover, for the same WIFI standard consistency, we discard

the channel coefficients at frequencies dedicated either for guardband interval or to

transmit pilot bits, and we keep only those at data transmitting frequencies. Table 6.2

shows some frequency channel characteristics for each bandwidth and according in

general to the 802.11 standard, where we denote by FFT the fast Fourier transform.

Nonetheless, for the sake of simplicity, we do not respect the exact features of each

802.11 standard, which are recalled in Appendix B).

Table 6.2: Frequency channel characteristics for each BW.
BW occupied FFT Number of sub-carrier separation
(MHz) BW (MHz) size sub-carriers (MHz)
20 16.25 64 52 0.3125
40 33.75 128 108 0.3125
80 73.125 256 234 0.3125
160 146.25 512 468 0.3125

Given these parameters, not all the sub-carriers need be used to generate keys of

enough bit length, then comes the question: how to choose the sub-carriers? Intu-

itively, more correlation is likely to occur when the frequency difference between two

channel coefficients is reduced. Unless the ratio between the number of available and

the number of required sub-carriers is integer, there is no unique and obvious way to

choose the sub-carriers used in the SKG process. Hence, Alice chooses randomly a

set of Nf frequency sub-carriers, from which (N = Nf log2M)-bits key is extracted,

and she sends publicly this set to Bob. Although this information is transmitted also

to Eve, it is not very relevant since it does not indicate any information about the

key bit value. Finally, a set of secret keys is obtained over Bob’s positions, over the

121 positions of Alice and over the random sets of sub-carriers (arbitrarily taken to

be 10 sets).
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6.3.3 Joint space-frequency variability

Intuitively, the smaller the coherence bandwidth, the more efficient will the SKG be

able to exploit frequency variability. Unfortunately, the coherence bandwidth changes

from an environment to another and is out of control. SKG performance should be

achieved also in environments where the coherence bandwidth is small, which is a

difficulty when no sufficient spatial variability is provided. As a way of mitigation

we here consider the possibility to exploit jointly the space and frequency DoF, so

to relax the requirements on each of both individually. A potential use case is that

of MIMO systems (such as IEEE 802.11n/ac), providing spatial variability, together

with OFDM technology providing frequency variability.

Based on the features of the TPT campaign, spatial variability is provided by

considering either each two consecutive Alice positions on each row of the grid or

each four-square consecutive Alice positions on each two consecutive rows of the grid,

as an array antenna resulting respectively in either 110 sets of 2-array antennas or in

100 sets of 4-square array antennas. More clearly, the following vector

V = [X1
1 , · · · , XNant

1 , · · · , X1
i , · · · , XNant

i , · · · , X1
Nf
, · · · , XNant

Nf
]

is used to construct a single key of length N = NantNf log2(M) where Nant is the

number of array antennas. X1
i , · · · , XNant

i together form an Nant-array antennas at

the sith chosen frequency. Finally a set of keys is obtained over Bob’s positions, over

the sets of Nant-array antennas and over the 10 sets of randomly chosen sub-carriers.

6.3.4 Results

In the following, we use a fixed key length (N = 128) in the key randomness quality

evaluation, with the exception of the pure spatial variability case where a comparison

between different key lengths is carried out. For each channel variability type, a

statistical distribution over the extracted keys is formed in order to compute a mean

pass rate using the NIST tests. Table 6.3 shows the number of tested keys for each

type of channel variability.

Whatever the source of channel variability used to generate the key, our results

show that all the keys pass the mono-bit frequency test. This is due to the statistically

equal quantization intervals on each I and Q, used to transform channel coefficients

into discrete sequences of bits through CQA. Consequently, all the strings (of length
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Table 6.3: Size of key set vs. the variability type.

Variability
Number of keys

LOS NLOS total
Space 36720 13500 50220

Frequency 82280 30250 112530
Joint Nant = 2 74800 27500 102300

space-frequency Nant = 4 68000 25000 93000

log2

√
M) have the same probability to occur and equivalently, the probability to have

either bit 0 or bit 1 is 1/2. Therefore, we exclude the mono-bit frequency test when

we compute the mean pass rate.

For N = 128 and according to Table 3.1, the approximate entropy (ApEnt) test

can be applied with a bit string of length m = 1, while the serial test with both m = 3

and m = 4. Accordingly, a 128-key bits passes the ApEnt test when overlapping

strings of length 2 bits are equiprobable (i.e. uniform). For the serial test, the

result depends on the uniformity of overlapping strings of length 4, 3 and 2 bits.

When quantizing the CSIs into M quantization regions according to CQA, 1) the

non-overlapping strings of length log2

√
M bits, derived from the I/Q domains, are

equiprobable; 2) the uniformity of the strings of length log2M bits, which result from

the concatenation of the log2

√
M bit strings quantized from the I and Q domains,

depends on the correlation between the I and Q domains; 3) the uniformity of the

non-overlapping strings relies on the channel samples correlation. Consequently, the

percentage of sequences passing the ApEnt test is very high for M = 16 whatever the

channel variability type, while that of the serial test is smaller especially for frequency

variability with BW = 20 MHz (starting from a percentage of 0.3533). For M = 4,

the success to the ApEnt test depends mainly on the correlation between I and Q of

the channel coefficients. It also depends on the correlation of the used subsequent

channel coefficients. Therefore, the worst case is considered for LOS case exploiting

frequency variability with BW = 40 MHz, and thus with a percentage of 0.7273.

Moreover, small mean pass rates for M = 4 stem from the approximately complete

failure of serial tests.

6.3.4.1 Spatial variability

Key length effect : Fig. 6-9 represents the mean pass rate of key sequences passing

the chosen selection of NIST tests, for both N = 128 and N = 242. The spatial

channel variability is used here to construct keys of N bits with M = 4. NS = 64 and
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NS = 121 channel samples are needed to respectively construct a 128-bits key and

242-bits key. Whatever the used frequency, it is shown that shorter keys better profit

from the channel randomness. While maintaining the same M , we need more channel

samples in order to construct a longer secret key and consequently the probability to

have more correlated samples increases, yielding bits with more correlations.

Figure 6-9: Mean pass rate exploiting spatial variability for both N = 128 and
N = 242.

Carrier frequency effect : Fig. 6-10 shows the mean pass rate for N = 128,

for both 5.4 GHz and 2.4625 GHz bands, and with respect to LOS/NLOS cases.

The impact of carrier frequency is not really meaningful in Fig. 6-9 and Fig. 6-10

since the mean pass rates are very high, i.e. nearly 1, in good part owing to the

random positions taken by Alice over the grid. Nonetheless this impact may be

shown for the worst-case scenario corresponding to consecutive Alice positions over

the regular grid, and thereby the 5.4 GHz band offers more random keys than the

2.4625 GHz band. Indeed the distance between two adjacent Alice positions on the

grid corresponds almost to λ/2 at 5.4 GHz and to λ/4 at 2.4625 GHz, while λ/2

typically corresponds to the coherence distance over which channels are statistically

well decorrelated in omnidirectional scenarios, resulting in extracted bits with a good

level of independence.

LOS/NLOS effect : The key randomness is enhanced in NLOS propagation

conditions, as shown in Fig. 6-10, due to the lack of a dominant path yielding then

more fluctuation of the channel transfer function than in LOS cases.

Briefly speaking, it is noteworthy that in all cases the mean pass rate is very high,
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Figure 6-10: Mean pass rate exploiting spatial variability with respect to LOS/NLOS
and for N = 128.

indicating that the spatial degree of freedom is suitable for random key generation.

As discussed above, spatial variability can be translated into time variability through

a random movement of Alice in space, providing adequate key randomness. As an

extra advantage, such a time variant scheme would make it difficult for Eve to track

accurately Alice’s positions, reducing her ability to gather deterministic information

about the channel characteristics and to guess the sequence of bits.

6.3.4.2 Frequency variability

A quantitative measure of the key randomness behavior with respect to the frequency

variability domain can be found from the analysis of the root mean square (RMS)

delay spread στ and consequently of the coherence bandwidth, which typically varies

inversely to the RMS delay spread. For each position of Alice over the square grid,

a CIR is computed by taking inverse Fourier transforms of the frequency responses

recorded over 500 MHz bandwidth centered on either 2.4625 GHz or 5.4 GHz band

and filtered with a Hamming window. The power delay profile (PDP) P (τ) is then

the average of the 121 squared CIRs computed over the spatial grid (see Eq. 2.7 where

the time domain is replaced by the space domain). Only multipath components with

amplitude within 20 dB from the peak of each PDP are included in the computation

of στ , which is given in Eq. 2.5.

Fig. 6-11 shows two examples of normalized measured PDPs and their correspond-

ing frequency responses for both LOS and NLOS cases. It is clear that the NLOS
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PDP is richer in multipath components and thereby exhibits higher delay spreads

than the LOS one, having a few dominant peaks at short delays. This observation

is validated in Fig. 6-12 where στ is plotted against the distance between Alice and

Bob, both for LOS and NLOS cases.
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Figure 6-11: Examples of PDPs and channel transfer functions.
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Figure 6-12: The variation of the RMS delay spread with the distance.

We assess the key randomness exploiting frequency variability by maintaining the

same key length as in most analysis above, i.e. N = 128 bits. To this end, we fix the

number of sub-carriers Nf used for SKG according to M , i.e. Nf = 64 for M = 4

and Nf = 32 for M = 16. Fig. 6-13 shows the variation of the mean pass rate as a

function of the distance between Alice and Bob at 5.4 GHz band, by differentiating

between LOS and NLOS for different bandwidths and both for M = 4 and M = 16.

We stress that unfortunately 128 key bits cannot be extracted by exploiting the

frequency variability in BW = 20 MHz when M = 4. Fig. 6-14 considers the impact
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Figure 6-13: Mean pass rate as a function of the distance for 5.4 GHz and for frequency
variability.

Figure 6-14: Mean pass rate exploiting frequency variability for BW = 40 MHz and
M = 16.

of the carrier frequency on the key randomness behavior for BW = 40 MHz and

M = 16.

Both LOS/NLOS and distance effect : Fig. 6-13 shows that the higher the

separation distance between Alice and Bob, the higher the mean pass rate, especially

for LOS channels or for small values of M . Moreover, NLOS channels provide sta-

tistically more random secure key bits as seen in both Fig. 6-13 and Fig. 6-14. The

same behavior is noticed in Fig. 6-12 with respect to the delay spread. Hence, the

improvement of the mean pass rate is explained by an increase of στ indicating a
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reduction in the coherence bandwidth, which yields less channel correlations for close

frequency responses. Furthermore, the advantage of NLOS channels over the LOS

ones in providing random keys comes from the multipaths richness of the former:

the lack of proper Rayleigh fading reduces the channel variability in the frequency

domain and creates insufficient randomness for a satisfactory success to NIST tests.

Nonetheless, στ takes relatively small values ranging from 5 ns to 30 ns, due to the

open and little cluttered environment of TPT investigated locations. These values

are consistent with typical ones for indoor environments, see e.g. ref. [123]. An

improvement in mean pass rate is thus expected for richer scattering environments.
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Figure 6-15: Example illustrating SKG from channel responses, for M=4.

Bandwidth effect : Larger available bandwidths yield larger separation of the

sub-carriers used for SKG and consequently smaller correlations. This results in

improved key randomness, as seen in Fig. 6-13. Fig. 6-15(a) and Fig. 6-15(b) illustrate

two examples of key generation from respectively very close and very far spaced

channel responses, for M = 4. It is clear that more randomness is provided by the

case where the channel coefficients are very far spaced, where SKG profits from the

whole bandwidth, while the efficient bandwidth is reduced in the other case yielding

a key with poor randomness.

Carrier frequency effect : As seen in Fig. 6-14, the carrier frequency affects

the key randomness behavior just for LOS channels, where higher mean pass rates

are seen for the smallest carrier frequency (i.e. 2.4625 GHz). This is explained by

the decrease in the coherence bandwidth, or equivalently by the increase in the RMS

delay spread, when the frequency gets lower, as shown in Fig. 6-12(a). Furthermore,

as displayed in Fig. 6-12(b), στ does not change with the frequency for NLOS channels.

The behavior of στ with the carrier frequency is consistent with results obtained in
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[124, 125]. However the difference in mean pass rates is weak, implying that there is

no strong preference between the low and high WIFI band from this point of view.

Still, the fact that the low band is limited to 20 MHz bandwidth while the high band

reaches 160 MHz provides a clear advantage of the latter for SKG, given the above

results.

6.3.4.3 Joint space-frequency variability
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Figure 6-16: Comparison of key randomness in different channel variability at 5.4
GHz.

Fig. 6-16 compares the mean pass rate for the three types of channel variability

in the 5.4 GHz band for both M = 4 and M = 16. The full space variability provides

the most robust keys and thereby the most suitable source for SKG. However, such

a scheme would either require the terminal mobility over all the scanned positions

before generating a key or would need that many antennas in a stable scenario.

Therefore we now assess the security provided by joint space-frequency variability, for

both Nant = 2 and Nant = 4, which relaxes such requirements. Indeed, this scheme

provides more random keys, especially with Nant = 4, than the pure frequency domain

variability, which stems from the larger average difference between frequency channels

and the resulting reduced correlations between channel coefficients. Simply stated,

for fully decorrelated antenna signals, the increase in Nant reduces the bandwidth

requirements. This is a very encouraging result for the effectiveness of SKG toward

physical layer security. Since many wireless devices (for 3G, 4G, WIFI...) tend to

be multi-antenna systems, such a solution will certainly be more and more feasible
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in the short term future. We also stress the importance of increasing M , which well

improves the key randomness, despite the requirement of a higher SNR.

6.4 Information theoretic bounds on key length

In order to account for both the key agreement and the key randomness, it is crucial

to evaluate the mutual information between channels. To that aim, the radio chan-

nels are required to be jointly Gaussian. However, in real channels, the central limit

theorem may not hold owing to limitation in the number of dispersive paths. There-

fore, we test the Gaussianity of the channels with the Kolmogorov-Smirnov (K-S) test

and then, we just compute available key rate IK and vulnerable key rate IV K for the

channel coefficients that passes the test.

In this section, the results are obtained for SNR = 15 dB and for a central

frequency of 5.4 GHz.

6.4.1 SKG from frequency variability

The frequency variability scheme adopted in this section is the same as that repre-

sented in Fig. 3-8(a) in Chapter 3. By increasing the number of sub-carriers Nf , the

BW increases linearly while the frequency separation ∆f is fixed. The 121 positions

of Alice over the square grid form the statistics over which mutual information is

computed for each position of Bob. Moreover, the channel vector results from the

aggregation of Nf frequencies around the central frequency, as already done for out-

door environments. The impact of investigating Nf sub-carriers with different ∆f is

depicted in Fig. 6-17, by distinguishing between LOS and NLOS conditions.

As already shown in the previous chapters and also here above, investigating more

sub-carriers with larger ∆f yields an improvement on the SKG process. In contrast

with results shown for outdoor deterministic channels, we notice here that the curves

are more linear, which could be explained by the fact that the empirical CIRs are very

dense in multipaths, and subsequently, we need a BW much higher than 160 MHz

in order to exploit the most random information contained in the CIR. Furthermore,

IK is greater in NLOS cases than in LOS ones, which is an intuitive behavior heavily

related to that of the delay spread shown in Fig. 6-12. These results are consistent

with those presented in Fig. 6-13 and Fig. 6-5, where respectively, the mean pass rate

and the efficiency increase with the BW.
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Figure 6-17: IK as a function of Nf and the BW.

6.4.2 SKG from space variability

Regarding the space variability, the channel vector is constructed by Alice positions

over the grid, providing a virtual antennas-array. We consider three specific cases: a

linear antenna array formed with two successive positions over the grid (Nant = 2),

and two square antenna arrays with both Nant = 4 and Nant = 64. The statistics

necessary to compute the statistical quantity IK are the frequency variability com-

puted over a BW of 500 MHz with a separation of 2.5 MHz. For each position of Bob,

a distribution of IK values may be obtained by shifting the array in order to cover

all the possibilities over the Alice’s grid. The results are shown in Fig. 6-18, also by

distinguishing between LOS and NLOS cases.

Again, increasing the channel DoFs yields an increase in the shared available key

bits between Alice and Bob. Furthermore, NLOS channels provide greater values of

IK than LOS, although the channels in both cases are Rayleigh fading. This relies on

the angular spread of the paths which seems to be greater in NLOS channels. In the

same context, the authors in [58] proved that NLOS channels are prone to provide

more randomness than LOS ones undergoing Rician fading, where the dominant path

should be removed, which will yield a decrease in the power (i.e. SNR). Moreover,

the authors in [58] tested SKG performance by performing indoor measurement cam-

paigns at 2.55 GHz band and using MIMO channels. Specifically, at the same SNR

of 15 dB, IK in [58] attains values (i.e. ranging from 40 to 100 bits) larger than

that reached in our measurements (IK varies between 40 to 80), even with smaller

degrees of freedom (32 instead of 64 DoFs). This may be ascribed to the fact that
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Figure 6-18: IK vs. Nant from space variability.

they use MIMO channels, exploiting the angular spread at both the transmitter and

the receiver sides, while in our case, we just exploit the channel diversity at a single

side of the channel, i.e. at Alice (multiple input single output: MISO).

Although the randomness provided in the space domain is always better than that

provided in the frequency domain (fig. 6-16), according to NIST, the two domains

contain, according to IK , the same amount of randomness if higher BWs, i.e. 40 or

160 MHz are exploited.

6.4.3 Relative vulnerable key rate

We intend here to evaluate the relative vulnerable key rate IV K/IK for NB single

antenna channels. Each terminal is considered as either Bob or Eve. Mutual infor-

mation is computed over the 121 Alice’s positions. IV K is evaluated by considering

just the channels measured by both Bob and Eve when Alice is the transmitter since

the latter is responsible of the time channel variability. Fig. 6-19 depicts IV K/IK

against the separation distance between Bob and Eve. It is obvious that the relative

vulnerable key rate decreases as the distance between Bob and Eve increases. Eve

may still obtain little information correlated with the channel measured by Bob even

at large distances with respect to λ (e.g. 55 λ). These results are consistent with

those obtained above in this dissertation, however they are in contrast with the ideal

Clarke scenario. In fact, this means that some paths may be correlated between Bob

and Eve and they are of relatively high power.
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6.5 Conclusion

In this chapter, we presented a study of the SKG approach in indoor radio channels

at the WIFI bands.

Regarding the quantization CQA protocol, Alice and Bob should choose the ap-

propriate mapping scheme, given the SNR, in order to agree on the largest key size

while having a sufficient number of identical key bits. When this is done correctly,

the BER between Bob and Eve’s key bits after CQA is close to 0.5 and the propor-

tion of cases for which the BER deviates significantly from this target value is small

enough that downstream techniques such as privacy amplification should be sufficient

to guarantee a very good degree of confidentiality for Alice-Bob communication, un-

less of a very close or very powerful Eve. While we focus in this work on the channel

features by just using the CQA algorithm, the complete scheme of SKG, including

the reconciliation and the privacy amplification, is targeted in the PhyLaws project

either for indoor or outdoor channels and using either WIFI or LTE signals.

Notably, while the amount of random information is almost the same when ex-

ploiting either the space or the frequency variability in the outdoor environment, at

least from the RT results of Chapter 5, such an amount is poor when merely exploiting

the frequency domain in indoor environments. Indeed, the security performance when

exploiting the frequency variability relies on the statistics of the delay spread, which

is higher in outdoor environments than in indoor ones and reveals that channels in

outdoor environments are more frequency-selective and contains more random infor-
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mation. In other words, indoor environments such as those measured here will need

to use at least two antennas in order to capture a sufficient number of decorrelated

key bits (e.g. 128).
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Chapter 7

Complete Secret Key Generation

Scheme

While the previous chapters evaluate the robustness of the generated keys directly

after the channel quantization phase, we implement here the whole SKG strategy

(Fig. 2-6), including information reconciliation and privacy amplification. The in-

formation reconciliation phase allows Alice and Bob to agree on the same key bits,

by using error correcting codes such as LDPC codes [7, 61, 62, 65] and BCH codes

[55, 126]. The last step, i.e. privacy amplification, consists of randomizing the key

and removing information leaked to the eavesdropper.

We discuss the robustness of the proposed PhySec scheme by using secure sketch

based on BCH codes for information reconciliation and hash functions for the privacy

amplification, as proposed in [126]. To this end, we consider the indoor measured

channels, presented in Chapter 6. We restrict the analysis to WIFI signals centered

at 5.4 GHz band, while in the PHYLAWS project, both WIFI and LTE signals are

processed through both indoor and outdoor measurements [126].

Furthermore, we discuss how the definition of the quantization maps may affect

the generated key robustness. More precisely, since the CQA algorithm statistically

defines the maps, how much statistical data (relatively to the key length) is required

in order to achieve high key quality in terms of reliability and randomness.
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7.1 Quantization

As admitted throughout this dissertation, the channel coefficients are quantized into

bit streams through the CQA algorithm, where two alternative maps are defined in

the I/Q domain. The maps are statistically determined after aggregating certain

channel samples. Thus, the question is: how many channel samples are necessary to

obtain reliable random keys?

We propose, relatively to the key length, two different sizes/densities of channel

samples that may be used in the learning phase (the quantization maps definition):

1. The first method, called single key-single map (SKSM), consists in merely

considering channel observations that are used in the construction of the key.

In other words, SKSM just uses the same channel observations as those used

to construct a given key. For example, quantization maps may be formed over

just e.g. 64 channel coefficients when the number of quantization regions is 4

(M = 4), and for a key of 128 bits. The benefit of such a method is that it is fast

and nearly simultaneous with the construction of the key. The drawback is an

anticipated lesser robustness, since few observations imply more disagreement

between Alice and Bob maps.

2. On the contrary, the second way to build a map, called multiple key-single

map (MKSM), consists of accumulating a lot of channel samples, where most

of them are not used in a unique key construction. In other words, several keys

may be constructed from different observations, while all observations are used

in the definition of an unique map. The drawback of such an approach is that

the learning phase may be slow, however we may expect a better agreement

between Alice and Bob maps, owing to the larger number of observations. Such

a scheme is here implemented by accumulating all the channel samples available

for the 121 Alice positions and the 108 sub-carriers, thus for each position of

Bob1.

7.2 Information reconciliation

Information reconciliation aims to suppress the remaining mismatches between Alice

and Bob keys, by employing an error correcting code. In the PHYLAWS project,

1The SNR is averaged over all these channel samples, which are used to define the quantization
map.
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keys reconciliation is implemented through the use of secure sketch based on error

correcting codes [127]. Without loss of generality, we suppose that Alice is the leader

so that her computed key (Ka) is considered as the secret key, while Bob attempts to

retrieve Alice’s key using the key (Kb) he extracts from his own channel measurements.

The protocol can be described as follows:

Alice

• selects a random codeword c from an error correcting code

• computes the secure sketch s = Ka ⊕ c

• sends s to Bob over the public channel

Bob

• subtracts s from its computed key Kb: cb = Kb ⊕ s = Kb ⊕Ka ⊕ c

• decodes cb to recover the random codeword c and gets ĉ

• estimates Ka by computing: K̂a = ĉ⊕ s

Full reconciliation occurs when Bob perfectly retrieves the random codeword cho-

sen by Alice (ĉ = c). As a result, Alice and Bob agree on exactly the same key

(K̂a = Ka). The public transmission of the secure sketch, which allows the exact

recovery of the key, may reveal some information to Eve, even though it does not dis-

close the exact value of the key. Indeed, similarly to Bob, Eve uses the secure sketch

to retrieve the key Ka. Therefore, some amount of information may be revealed to

Eve during this phase. In order to suppress this information leakage and randomize

the key, a final step is required. This may be done through the Privacy amplification,

as described in the next section.

7.3 Privacy amplification

As already mentioned, we employ privacy amplification [67, 128] in order to achieve

a high key randomness, while decreasing the amount of vulnerable information. This

may be achieved through either hash functions or randomness extractor, which may

reduce the final key length by erasing redundant information. The efficiency of such
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a process may require some information about Eve’s knowledge in order to maximize

the conditional entropy of the generated key, as discussed in [67].

We made use of the privacy amplification scheme developed in PHYLAWS [126],

through the two-universal family of hash functions [67, 128]. We note that a class

of hash functions {g} is defined as two-universal if, from two distinct strings (i.e.

x1 6= x2), it is nearly impossible to obtain the same result (i.e. g(x1) 6= g(x2)) [67, 128].

What is particularly important here, is that with a suitable hashing scheme, this

property holds even though x1 and x2 (i.e. the keys) are extremely close (e.g. differing

by a single bit). In other words, even though Eve succeeds in obtaining nearly the

same key as Alice/Bob, after the privacy amplification step, her key becomes totally

different from Alice/Bob’s one. Thus, Alice and Bob publicly agree on a random

function (g), which, even known from Eve, reveals nearly negligible information about

the final key. This hash function, defined as g : {0, 1}n → {0, 1}r, transforms a

partially secret key of length n into a highly secret but shorter key, with a length

r ≤ n.

Without loss of generality, we implement the privacy amplification by choosing a

specific function (g) from the two-universal family of hash functions. For that, we

interpret the shared key K as an element of the Galois field GF (2n), where n is the

number of bits of K. For 1 ≤ r ≤ n and for a random element a ∈ GF (2n), g assigns

to the key K the first r bits of the product a.K ∈ GF (2n), i.e. g : (K)n → (a.K)r. Let

us recall that the multiplication in the Galois field is a polynomial product, which can

be expressed as a convolution between bit sequences. Such an operation is performed

modulo an irreducible polynomial of degree n over GF (2n). Thus, a little difference

between two initial binary strings, even over just one bit, yields to a wide gap between

the resulting strings.

In practice, at each new key computation, Alice randomly choose a ∈ GF (2n) and

sends it to Bob over the public channel. Both Alice and Bob compute the galois field

product a.K ∈ GF (2n), which is considered as the final secret key.

More clearly, the hash mechanism spreads any bit error all over the final key

(a.K)r (i.e. first r bits of a.K), thus:

• When Eve applies the privacy amplification on her key (rather her reconciled

key), any remaining disagreement between her key and that shared between

Alice and Bob after the reconciliation step, implies quite different computed

keys (a.K)r, which make her key unusable.
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• From Bob point of view, he agrees on the same key generated by Alice once the

keys are perfectly reconciled during the information reconciliation phase. Thus,

the key is useful for legitimate users but not for Eve.

7.4 Results

In this section, we analyze the robustness of the key, in terms both of terminals

disagreement and key randomness, and after each phase of the secret key generation

process: 1) At the quantization phase, keys of 128 bits are generated using M = 4,

using either SKSM or MKSM; 2) A secure sketch based on (127, 92, 11) BCH code2

is then performed for information reconciliation, which requires to keep only the first

127 bits of the key. 3) Finally, the privacy amplification is applied with r = n = 127.

Although more privacy would be achieved with r < n, we made this choice since

it allows the comparison between key randomness quality before and after privacy

amplification, while using the same NIST tests.

According to the previous chapters, the keys are generated by exploiting different

channel degrees of freedom, e.g. in the space and the frequency domain, where the

parallel channels are randomly selected from the available set of channels. For the

frequency DoF, we investigate channels with a BW of 40 MHz. In addition to the

three phases of SKG, the results are discussed according to the way used to define

the quantization maps (i.e. SKSM vs. MKSM).

7.4.1 Alice-Bob disagreement

A successful SKG scheme allows Alice and Bob to agree on the same key, which

consequently may be useful for encrypting data. Thus, we intend here to verify the

agreement between Alice and Bob after considering the whole SKG scheme as well

as considering each step alone, as presented in Fig. 7-1. We note that these keys

are extracted by exploiting the space variability, while key statistics are constructed

over both Bob positions and different sub-carriers. Fig. 7-1 also compares the BER

between Alice and Bob keys between SKSM and MKSM, for different SNR (10 and

15 dB).

The information reconciliation phase allows Alice and Bob to perfectly reconcile

a certain proportion of the quantized bits, which intuitively increases with the SNR.

2Perfect reconciliation is performed when the keys differ by at most 5 bits.
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Figure 7-1: Disagreement between Alice and Bob keys.

More precisely, the keys are perfectly corrected once the BER after CQA is at most

4%, which results from a capability to correct at most 5 bits from 127 key bits.

This is consistent with the parameters chosen for the BCH code, with a Hamming

distance of 11. In order to increase the keys agreement ratio, we note that the

parameters of the BCH code could be adapted according mainly to the channel SNR,

and also to the required key length (e.g. increasing the Hamming distance for low

SNR). Furthermore, when increasing the capability of correcting mismatches, the

amount of redundant information (publicly exchanged) increases, which may reveal

some information to Eve. Such a vulnerable information may be removed during the

privacy amplification step, which outputs an exactly identical key for both Alice and

Bob once perfect reconciliation occurs. However, the cost to pay is the reduce in

the key length. Therefore, potential schemes require to perform perfect reconciliation

with the least amount of public messages.

By comparing the key agreement for both SKSM and MKSM shown respectively

in Fig. 7-1(a) and Fig .7-1(b), we observe that the proportion of perfect reconciliation

increases with the latter scheme, i.e. MKSM. For SNR = 15 dB, 99% of keys are

perfectly corrected when using MKSM, while it is 93% for SKSM. Indeed, when

building maps from a relatively big number of observations, Alice and Bob are able

to obtain approximately the same maps.
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7.4.2 Bob-Eve disagreement

Similarly to Alice-Bob disagreement, we present in Fig. 7-2 the BER between the

keys constructed by Bob and Eve after each step of SKG, for space DoF and for the

SKSM approach. Obviously, owing to space decorrelation, the BER is small after

quantization and becomes closer to 0.5 after the privacy amplification. Indeed, as

previously mentioned, the privacy amplification spreads the errors all over the key.

More precisely, the BER after privacy amplification is varying in a range centered

around 0.5, i.e. in [0.4; 0.6]. This may be ascribed to the statistical independence

between the keys generated by Bob and Eve, with a uniform distribution of bits. In

other terms, this may be described by keys following the binomial law, i.e. B(127, 0.5),

as shown in Fig. 7-3. We note that the results are similar for MKSM.
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Figure 7-2: Disagreement between Bob and Eve keys for SKSM.

7.4.3 Key randomness

The randomness of the generated keys was firstly assessed using the statistical NIST

tests in Chapter 6, where the keys were derived merely from CQA and no privacy

amplification was considered. We extend this randomness assessment in this section,

by considering the privacy amplification step and different definitions of the quanti-

zation map (SKSM ans MKSM). We note that we consider a key length of 127 bits,

even after the privacy amplification (r = 127). However, in practice, the key length

r should be reduced in order to erase most of the leaked information.
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Figure 7-3: Eve key BER after privacy amplification vs. the BER for keys following
B(127,0.5).

7.4.3.1 Results for the SKSM approach

We first consider the SKSM approach where the maps are defined from the channel

samples directly used to build each 128 bits key. We take back some results presented

in the previous chapter and compare key randomness right after the quantization

scheme to that after the final privacy amplification phase. Hence, Fig. 7-4 compares

the mean pass rates for keys in both cases, for M = 4 and BW = 40 MHz. Obvi-

ously, the privacy amplification improves the key randomness, whatever the channel

variability. It is observable also that the mean pass rates are not equal to 1, since

according to NIST, each key is characterized random if the proportion that passes the

test fall into a range of acceptable proportions, without the necessity of reaching 1.

As discussed in Section 3.1.4 and Section 6.3, the NIST tests are not able to judge

a perfect randomness of the key. They are rather able to evaluate a specific defect

according to a specific criteria, e.g. the tests described in Section 3.1.4. Therefore,

we resort to a visual interpretation of the key randomness, as admitted in [75]. More

clearly, two dimensional keys are plotted, as in Fig. 7-5.

Graphical representations of keys extracted by exploiting the spatial DoFs, the

frequency DoFs, the joint space-frequency DoFs for both Nant = 2 and Nant = 4 are

plotted respectively in Fig. 7-5, Fig. 7-6, Fig. 7-7 and Fig. 7-8. These keys are shown

for different Bob positions, using SKSM, and more importantly right after quantiza-

tion or after privacy amplification. It is clearly shown that a much better randomness

is provided by the complete scheme, either over each generated key (vertical axis) or
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Figure 7-4: Mean pass rates before and after privacy amplification, for SKSM.

over different keys at different Bob positions (horizontal axis). Let us now focus

on the randomness provided by the quantization since the more vulnerability, the

shorter the key after privacy amplification (although simulations are performed with

r = n). More clearly, Eve intelligence is exploited at the quantization phase in order

to maximize the mutual information between the channels, and consequently, reduce

the final key length (after the last step of SKG).

Consistently with Fig. 7-4, we see that the randomness is improved from frequency

variability to joint space-frequency variability, then to spatial variability. However,

the graphical representations still show some deterministic behaviors that would be

useful to Eve. In particular, in Fig. 7-6, the vertical keys show some long sequences

with the same bit value, which is due to the small channel coherence bandwidth or,

in other words, to the high channel correlations. Moreover, in Fig. 7-7 and Fig. 7-8,

deterministic behaviors are shown through the repetition of some string patterns of

certain length. Furthermore, we can notice that the keys are almost uncorrelated

from one position of Bob to another one. This means that it is possible for different

terminals to generate different keys.

Fig. 7-9 plots key matrices generated using the frequency variability, for each Alice

position over the grid, and for a given position of Bob. Thus, we consider both LOS

and NLOS radio channels between Alice and Bob. It is apparent, for keys generated
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Figure 7-5: Keys from spatial DoFs, for different Bob positions and for SKSM.
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Figure 7-6: Keys from frequency DoFs, for different Bob positions and for SKSM.

right after CQA, that slightly more randomness is present in the NLOS channels.

Nevertheless, both channels are very deterministic owing to the long sequences of

bit e.g. 1. In the LOS case (Fig. 7-9(a)), the variation of the bits from one key to

another is very periodic, such that the bit values is changing with respect to the LOS

path phase. After privacy amplification, it turns out that a very good randomness is

achieved in both cases, although a sharp eye would likely be able to capture subtle

structures characterizing weak randomness imperfections.

To summarize, for raw keys (i.e. right after CQA), most of the randomness is pro-

vided by the spatial variability. The joint space-frequency variability may be useful

since it leaks less information about the radio channel and it follows less deterministic
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Figure 7-7: Keys from joint space-frequency DoFs (Nant = 2), for different Bob
positions and for SKSM.
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Figure 7-8: Keys from joint space-frequency DoFs (Nant = 4), for different Bob
positions and for SKSM.

behavior, especially when increasing the number of investigated antennas. Further-

more, privacy amplification significantly increases the randomness of generated keys.

Despite that, the price to pay is in principle a small key length r < n (even it is not

considered in simulations), especially when more information is revealed to Eve during

the reconciliation step. Therefore, it is interesting to assess the amount of random-

ness available on raw keys (just after CQA), since Eve may exploit any deterministic

behavior to guess the key.
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Figure 7-9: Keys from frequency DoFs, over Alice positions and for SKSM.

7.4.3.2 Results for the MKSM approach

We here generate keys by defining once the quantization map using all the channel

samples provided by the spatial variability of the Alice grid and the frequency vari-

ability, resulting in a single map for each position of Bob. This is explained above as

the MKSM approach.

Fig. 7-10 shows the mean pass rates for keys generated using MKSM and when

exploiting both the space and the frequency variability. As expected, the random

character of the keys is enhanced after the privacy amplification phase. However,

the randomness before this step is very poor, especially when comparing with that

provided by SKSM (Fig. 7-4). This may be ascribed to the fact that using MKSM,

the number of bits equal to 1 and 0 in each key is not identical, which results in keys

with single value for example, especially for the frequency variability. This idea may
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be clarified through Fig. 7-11 and Fig. 7-12.

Figure 7-10: Mean pass rates before and after privacy amplification, for MKSM.

Fig. 7-11 and Fig. 7-12 illustrate key matrices computed respectively over the

space and the frequency variability. Such keys are quantized from maps computed

based on the MKSM approach. We still see high randomness degree for the spatial

variability, even slightly less than that shown for the SKSM. Also similarly to the

results presented above, the keys generated from the frequency variability are almost

deterministic owing to the long stream of identical key bits. However, the difference

is that the number of bit 0 and bit 1 is not identical for each generated key, as we can

remark for all the keys generated from the SKSM approach. In particular, we can

notice some keys formed with the same value of the bits. We note that the mid line

in Fig. 7-12(a) is ascribed to the way of concatenating the bit streams, i.e. here the

bits generated over the real values are first concatenated, then those of the imaginary

part.

Fig. 7-13 displays the key matrices generated for two specific positions of Bob, both

in LOS and NLOS conditions, where the frequency variability is exploited. Again, for

quantization, these channels are very poor in randomness. Moreover, the frequency

variability when using the MKSM approach is the worst. One point to notice, indeed,

is that MKSM is not perfectly suited to each generated key. While the map is optimal

as a whole, it is sub-optimal for the individual generated keys, for which each set

of channel observations does not necessarily respect the equal probability for sub-

intervals, as targeted by CQA (see Section 3.2.2).
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Figure 7-11: Keys from spatial DoFs, over Bob positions and for MKSM.
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Figure 7-12: Keys from frequency DoFs, over Bob positions and for MKSM.

7.5 Conclusion

We have implemented in the present chapter the whole scheme of SKG from reciprocal

radio channels. Although CQA is used throughout the dissertation to extract key bits

from the channel coefficients, we proposed two different approaches to compute the

maps (i.e. the SKSM and the MKSM approaches). Information reconciliation was

achieved with a secure sketch based on BCH codes, while privacy amplification was

applied through two-universal of family hash functions.

It has been shown that once the keys are perfectly reconciled, Alice and Bob

agree on the same key length after the privacy amplification. With respect to Eve,
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Figure 7-13: Keys from the frequency DoFs, over Alice positions and for MKSM.

the discrepancies between her key and Alice/Bob key increase after the privacy am-

plification. We also found that the graphical representation of the key matrices was

easier to interpret in terms of randomness imperfections than the performance figures

provided by NIST tests, especially for MKSM.

Furthermore, we have seen that the MKSM approach allows Alice and Bob to

easily agree on the same key bits, with a proportion higher than that enabled by

the other approach. However, more key randomness may be provided by the SKSM

approach. Consequently, we remark that a trade-off between key reliability and key

randomness results from the use of these approaches.
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Chapter 8

Conclusion and perspectives

8.1 Conclusion

In this dissertation, we have addressed the role of the radio channel in terms of its

impact on SKG performance. The work has been carried out as regards:

• The identification of important features of the radio channel regarding SKG.

• The selection of a few metrics intended to evaluate the performance quantita-

tively.

• The application of these metrics to modeled and measured channels.

Among the results, we have shown that, subject to an efficient exploitation of

the channel richness with an adequate algorithm able to capture the details of the

complex channel coefficients, suitably long keys could be obtained, either from the

sole frequency domain or from the combination of several domains, notably in the

space or Doppler domains.

Indoor environments are less prone to SKG, since such environments are naturally

rather time stable (low Doppler) and with large coherence bandwidths. However, by

exploiting also the spatial domain (e.g. 2 or 4 antennas), and with a wide enough

BW (such as 40 MHz and up to 160 MHz, as in WIFI variants), much can be done

to obtain suitably long keys.

In outdoor environments, the channel richness and the longer delay spreads favor

large degrees of freedom and small coherence bandwidths. This implies that it is
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relatively easy to construct suitably long keys, even though the effective DOF (seen

the secret key rates) are less than for i.i.d. sub-channels. This is even better, since

outdoor channels are expected to be more time variant, due to the Doppler incurred

by moving vehicles, a moving terminal or any other short or long distance time variant

disturbance.

Generally speaking, it is interesting to increase the number of sub-channels, even

when they are correlated, since this increases somewhat the total secret key rate.

However, this also means to devise clever schemes, able to produce long keys made of

independent bits from very long ones made of correlated bits. This is typically what

can be done in privacy amplification.

Nevertheless, it has been shown that information reconciliation and privacy am-

plification allow Alice and Bob to reliably share a key with a high randomness degree,

whatever the channel DoF. On the other hand, the privacy amplification may increase

the Eve key BER although some information are leaked during the earlier phases of

SKG. Furthermore, a trade-off between reliability and randomness has been shown

in relation to the statistical map computation.

8.2 Perspectives

Several important issues could not investigated in this task, owing to the specific

PHYLAWS objectives and, above all, to the available resources. Some of them would

require further efforts in order to consolidate the fundamental basis on SKG perfor-

mance. Others may be addressed according to a practical approach, based on the

observed performance in specific cases. This includes:

• The evaluation of secret key capacity in non Gaussian cases, i.e. when we want

to ascertain the vulnerability of key bits when Eve can take any possible position

around Bob, in other words well beyond a small scale area for which Rayleigh

fading ensures that the complex channel coefficients are Gaussian distributed.

Such an evaluation requires going back to the basics of mutual information (see

Eq. 3.5 and Eq. 3.6) and attempt to compute IK and ISK from such general

formulas, directly or approximately.

• The analysis of SKG performance in terms of antenna characteristics (e.g. an-

tenna radiation pattern). Although omnidirectional scenarios favor SKG owing

to the capability to capture dispersive paths, it has been shown in literature
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that specific design of antennas would be advantageous to create channel fluc-

tuations in static environment [55, 80, 81]. Furthermore, it seems interesting to

assess SKG for different kind of antennas, especially from Eve point of view.

• Deeply investigate SKG from the eavesdropper point of view. Throughout this

thesis, the passive Eve merely derives the key from her own measurements,

without any effort to get more insight about the Alice/Bob channel. This may

be done through ray tracing algorithms, provided diffuse scattering was suitably

implemented.

• Taking into account many non ideal features that would obscure the similarity

of channels seen by Alice and Bob, such as deviations from reciprocity. This oc-

curs in the radio frequency signal processing stages, in particular due to the non

linearity of certain devices and their non reciprocal character by nature (such

as amplifiers, which are commonly highly directional and non reciprocal). The

imperfect calibration of signal acquisition blocks, their variation with time, tem-

perature etc. are common causes of non reciprocity. While this can be modeled

[32, 129], another simplest way is to assessed the differences between channels

measured from both ways of the link in available devices. VNAs are extremely

performant equipments and it is commonplace that the non reciprocity is van-

ishingly small, owing to accurate calibration. However, in commercial wireless

equipments, much less is done in this direction, resulting in mismatched mea-

surements.

• Trying to pre-process the channel data, prior to extracting keys. One particular

benefit would be through the removal of dominant paths, responsible for the

Rician fading rather than Rayleigh and of more vulnerability. Advanced pro-

cessing might be useful, such as principal components removal [58]. However,

this would come at a price: the reduced power and consequently of the SNR. So

a trade-off should be sought in order to see to what extent the security would

be enhanced by this method.

• As seen in Chapter 7, privacy amplification phase is responsible of ensuring

security through increasing the key randomness and increasing the Eve key

BER. We have also mentioned that it implies key length reduction in order

to decrease the amount of information revealed to Eve during the earlier SKG

phase. Therefore, it is interesting to assess how much the key should be reduced

in order to ensure robust key generation.
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Résumé en Français 

1. Introduction 

Avec l’explosion des technologies sans fil et la multiplication des services associés, on a de 

plus en plus besoin de sécurité et de confidentialité. Bien que la cryptographie symétrique 

assure la confidentialité des données, elle est pénalisée par la gestion (i.e. la génération et la 

distribution) de clés qui doivent être tenues secrètes.  

Des études récentes indiquent que les caractéristiques intrinsèques de la propagation peuvent 

être exploitées afin de consolider la sécurité. Ces nouvelles techniques, agissant au niveau de 

la couche physique, assurent une sécurité du point de vue de la théorie de l’information. Plus 

clairement et contrairement à la cryptographie classique, l’espion est supposé jouir d’une 

capacité de calcul illimitée et supposé ne pas avoir des informations suffisantes pour lui 

permettre d’affaiblir la confidentialité. 

En particulier, le canal radio fournit une source d’aléa commune à deux utilisateurs à partir de 

laquelle des clés secrètes peuvent être générées. En effet, en raison de la réciprocité du canal, 

typiquement dans un système à multiplexage temporel, un émetteur et un récepteur mesurent 

presque le même canal de propagation, ce qui implique le partage de la même source. En 

outre, l’aléa est assuré par la propagation multi-trajets (Figure 1), qui aboutit à des 

interférences constructives/destructives et implique des propriétés de décorrélation dans les 

domaines temporel, spatial et/ou fréquentiel. Pour ces mêmes raisons, un espion ne parviendra 

pas à obtenir la clé partagée par les utilisateurs légitimes.  

 

Figure 1 Propagation multi-trajets 

Une clé de cryptage se caractérise par sa longueur, son caractère aléatoire ainsi que par son 

taux de sécurité. Une longue clé résulte de la concaténation de plusieurs symboles quantifiés à 

partir de plusieurs échantillons du canal. Néanmoins, les bits de la clé doivent être 

statistiquement indépendants afin d’assurer son caractère aléatoire. Cela dépend de la 

corrélation des canaux dans le domaine de variation considéré.  En outre, bien que le taux de 
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sécurité de la clé dépende de son caractère aléatoire, il nécessite aussi le minimum 

d’informations divulguées à l’espion. Cela concerne le scénario relatif de l’espion vis à vis 

des terminaux légitimes, par exemple la distance entre Eve et Alice/Bob.  

Le travail de cette thèse s’inscrit dans le cadre du projet européen PHYLAWS (PHYsical 

LAyer Wireless Security) qui a pour objet de renforcer la sécurité des systèmes actuels tout en 

exploitant les propriétés inhérentes de la couche physique. PHYLAWS vise ainsi à développer 

des techniques efficaces et flexibles, qui sont faciles à implémenter et consomment peu de 

ressources. Il concerne de nombreuses applications comme l’internet des objets ainsi que 

différents standards comme WIFI et LTE.  

On s’intéresse dans cette thèse, en particulier, au processus de génération de clés secrètes 

(« Secret Key Generation », SKG) à partir de l’aléa du canal de propagation. On vise à 

analyser la performance de la SKG en fonction des caractéristiques réelles du canal radio et 

ceci à travers différents types de canaux, i.e. des canaux simulés à partir d’un modèle 

stochastique du canal, des canaux simulés par tracés de rayons et des canaux mesurés. Cette 

étude de performance repose sur la qualité des clés générées à partir de l’exploitation des 

degrés de liberté du canal dans les domaines temporel, spatial et/ou fréquentiel et dans 

différents types d’environnement. D’autre part, il s’agit d’examiner la vulnérabilité de la SKG 

vis-à-vis du scénario de l’espion, tel que la distance entre l’espion et au moins l’un des 

terminaux légitimes dans un environnement donné. 

2. Méthodes d’évaluation de la SKG 

Soient Alice et Bob deux terminaux légitimes qui souhaitent communiquer en toute sécurité 

en présence d’un espion Eve (Figure 2). Les terminaux mesurent des canaux altérés par du 

bruit et des erreurs d’estimation qu’on suppose complexes Gaussiens (�̂�𝒙 = 𝒉𝒙 + 𝒏𝒙). Ces 

canaux peuvent être des vecteurs de sous-canaux mesurés dans le cas d’un système multi-

antennaires ou OFDM. 

 

Figure 2 Scenario de communication secrète en présence d'un espion 

L’approche de génération de clés secrètes s’accomplit en plusieurs étapes, comme montre la 

Figure 3. Après l’estimation du canal radio, les terminaux légitimes quantifient l’information 



131 
 

du canal (telle que la puissance, la phase ou le coefficient complexe) en un ensemble de bits 

constituant la clé. En raison du bruit additif et des erreurs d’estimation, les clés générées par 

Alice et Bob ne sont pas les mêmes. D’où la nécessité de l’étape de réconciliation qui aboutit 

à des clés identiques grâce à la mise en œuvre de codes correcteurs d’erreurs. En outre, les 

messages échangés publiquement entre les terminaux légitimes révèlent des informations à 

l’espion. L’amplification de confidentialité sert ainsi à réduire la vulnérabilité potentielle qui 

en résulte et à augmenter l’aléa de la clé, bien qu’aboutissant à des clés plus courtes. En effet, 

même si Eve obtient une clé très proche de celle d’Alice/Bob (par exemple avec une 

différence d’un seul bit), cette dernière étape amplifie l’erreur en la distribuant sur la totalité 

de la clé grâce à des fonctions de hachage. 

 
Figure 3 La stratégie complète de la SKG 

2.1.Métriques d’évaluation de performance de la SKG 

Théoriquement, la longueur de la clé que les différents terminaux peuvent partager se mesure 

en fonction de l’information mutuelle de leurs canaux. On définit ainsi la longueur de clé 

disponible comme étant la longueur maximale de la clé que les terminaux légitimes peuvent 

partager en toute fiabilité, i.e. 𝐼𝐾 = 𝐼(ℎ̂𝑎, ℎ̂𝑏). En tenant compte des observations faites par 

l’espion, on obtient le nombre de bits secrets, i.e. 𝐼𝑆𝐾 = 𝐼(ℎ̂𝑎, ℎ̂𝑏|ℎ̂𝑒 , ℎ̂𝑐), ainsi que celui de 

bits vulnérables, i.e. 𝐼𝑉𝐾 = 𝐼𝐾 − 𝐼𝑆𝐾. Dans le cas des canaux conjointement Gaussiens, 

l’information mutuelle est facilement évaluée à partir des caractéristiques du second ordre 

(matrices de corrélations). 

Considérons le cas d’un canal Gaussien avec du bruit additif Gaussien, qui est un canal 

aléatoire, l’évaluation numérique montre que 𝐼𝐾 est limité par le rapport signal sur bruit 

(« signal to noise ratio », SNR) (Figure 4). Par ailleurs, on considère un scénario de Clarke 
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pour avoir un premier accès au nombre de bits vulnérables. Le résultat montre qu’une distance 

d’une demi-longueur d’onde (λ/2) entre Bob et Eve est suffisante pour annuler la vulnérabilité 

(Figure 5). Ce scénario de Clarke est idéal et correspond à un canal où le nombre de trajets est 

infini. En revanche, la réalité est différente, comme on va le voir dans la suite.  

 
Figure 4 𝑰𝑲en fonction du SNR 

 
Figure 5 𝑰𝑽𝑲/𝑰𝑲 en fonction de la distance de séparation Bob-Eve 

D’autre part, les métriques concrètes résultent de l’évaluation de clés binaires après 

l’implémentation de la stratégie de la SKG, que ce soit après la quantification ou dans les 

étapes postérieures. On obtient alors un taux d’erreur binaire (« bit error rate », BER) résultant 

de la comparaison directe entre les clés générées. En outre, le caractère aléatoire des clés est 

évalué à travers un ensemble de tests statistiques développés par l’Institut National de 

Standards et de Technologie (NIST) [94]. Chaque test identifie l’aléa selon un certain critère. 
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On a choisi quelques tests pertinents et on a regardé le taux moyen de succès aux tests (i.e. 

mean pass rate) afin de simplifier l’analyse.  

2.2. L’étape de quantification 

On a choisi de quantifier le coefficient complexe du canal en raison de sa richesse en 

information, surtout du fait qu’il contient à la fois l’information sur la puissance et sur la 

phase. Pour transformer cette information en un certain nombre de bits, on a choisi 

d’implémenter l’algorithme de quantification alternatif (« channel quantization alternating », 

CQA), qui utilise deux plans de quantification en alternance de telle sorte que le plan choisi 

soit adapté à l’observation du canal [58]. En d’autres termes, cela permet de réduire l’erreur 

entre les clés d’Alice et de Bob lorsque le coefficient du canal est proche d’une frontière entre 

deux symboles différents. L’intérêt de cet algorithme est qu’il améliore l’accord entre Alice et 

Bob sans perte d’information et qu’il fournit des symboles équiprobables sur I et sur Q, ce qui 

aide à générer des clés aléatoires.  

2.3. Canal dispersif dans le temps 

Comme une clé résulte de la concaténation de plusieurs symboles, sa robustesse est en partie 

liée à la décorrélation entre les symboles, ce qui requiert une décorrélation entre les 

coefficients du canal. Cela implique de disposer d'échantillons suffisamment séparés dans 

n’importe quel domaine et dépend des caractéristiques de l'environnement radio (surtout la 

richesse en multi-trajets). Par conséquent, la variabilité du canal est essentielle pour achever la 

SKG avec de meilleures performances.  

Les plus simples variations du canal auront lieu dans le temps grâce à la mobilité des 

terminaux ou à des mouvements dans leur entourage. En revanche, un tel scénario n’est pas 

toujours possible, par exemple lorsqu’il s’agit d’une communication entre un point d’accès et 

un ordinateur fixe dans un environnement statique. De ce fait, on propose d’appliquer la SKG 

tout en exploitant autres types de variations du canal et cela à travers l’exploitation des degrés 

de liberté dans les domaines spatial et fréquentiel. 

Cette partie est dédiée à l’analyse de la qualité des clés générées tout en exploitant le degré de 

liberté fréquentiel. Pour cela, on considère un modèle simple de profil de puissance-retard 

(« Power delay profile », PDP) où les trajets discrets sont périodiques dans le domaine 

temporel et avec une puissance moyenne exponentiellement décroissante. Les trajets sont 

indépendants et leurs amplitudes sont distribuées selon la loi Rayleigh. Par une simple 

transformée de Fourier, on obtient un ensemble de coefficients du canal dans le domaine 

fréquentiel.  

Idéalement, le nombre de bits disponibles (𝐼𝐾) croît proportionnellement au nombre de sous-

porteuses (𝑁𝑓) utilisées dans la génération de clés. Toutefois, à cause des corrélations entre les 

sous-porteuses, cette croissance se fait avec une pente plus faible. En fait, 𝐼𝐾 augmente 

linéairement avec 𝑁𝑓 jusqu’à une certaine valeur au-delà de laquelle la pente de la courbe 

diminue montrant une tendance à la saturation (Figure 6). Au point de déviation, les degrés de 

liberté sont pleinement exploités dans la SKG où l’ensemble de fréquences utilisées permet de 
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résoudre parfaitement les multi-trajets dans le domaine temporel par des sinus cardinaux.  

Puisque les trajets filtrés sont indépendants, la SKG profite du degré de liberté de chaque 

trajet tout en considérant son SNR. Au-delà de la première déviation, la courbe continue à 

augmenter, même avec une pente plus faible, en montrant plusieurs résonances. En effet, la 

densité spectrale de puissance de chaque sous-porteuse est constante. L’augmentation de 𝑁𝑓 

implique ainsi une augmentation de la puissance totale et ensuite une amélioration du SNR de 

chaque trajet résolu.  

 
Figure 6 L'évolution de 𝑰𝑲 en fonction du nombre de sous-porteuses 

Par ailleurs, pour un SNR fixe par sous-porteuse, l’augmentation de l’étalement temporel 𝜎𝜏 

aboutit à une augmentation de la puissance relative de chaque trajet. Cela implique un canal 

plus riche en aléa et par conséquent des clés plus longues (Figure 7).  

 

Figure 7 𝑰𝑲 en fonction de l’étalement temporel 𝝈𝝉 pour 𝑵𝒇 = 𝟐 (gauche) et 𝑵𝒇 = 𝟏𝟎𝟎 

(droite) 

 

0 20 40 60 80 100
0

10

20

30

40

50

60

N
f

I K

0 100 200
-40

-20

0

 (ns)

P
D

P

 

 

0 100 200
-40

-20

0

 (ns)

P
D

P

 

 

0 500 1000 1500 2000
0

2

4

6

8



 (ns)

I K

i.i.d.

0 500 1000 1500 2000
0

100

200

300

400

500



 (ns)

I K

i.i.d.



135 
 

3. Modèle du canal adapté à la SKG 

L’objectif de cette partie est d’étudier l’impact du scénario de l’espion Eve sur la qualité des 

clés générées. Dans ce but, on a besoin d’un canal multi-utilisateurs qui prend en compte la 

corrélation spatiale entre deux utilisateurs à proximité l’un de l’autre.  

Dans la littérature, la SKG est étudiée tout en considérant deux cas extrêmes : le premier 

correspond à un espion très lointain des terminaux légitimes, alors que le deuxième 

correspond à un scénario où Bob et Eve sont très proches l’un de l’autre et où ils partagent les 

mêmes composantes de multi-trajets. Comme ils ne sont pas co-localisés, ils partagent les 

mêmes puissances de multi-trajets alors que les phases changent sur une distance d’une 

fraction de λ. Les résultats dépendent de la richesse en multi-trajets.  

D’autre part, bien que la littérature sur les modèles de canaux soit très riche, ces modèles ne 

sont pas dédiés à la problématique de la SKG et ne répondent pas à son besoin spécifique, tel 

que la nécessité d’une modélisation fidèle de la corrélation spatiale.  

Pour toutes ces raisons, et afin d’évaluer la SKG en utilisant un modèle de canal simple avec 

un petit nombre de paramètres, on a développé notre propre modèle de type stochastique et 

géométrique. On vise notamment à dépasser la stationnarité spatiale entre Bob et Eve. 

3.1. Description du modèle 

 

Figure 8 Modèle stochastique et géométrique 

On considère un modèle stochastique et géométrique où les diffuseurs sont uniformément 

répartis dans un disque centré autour de Bob (Figure 8). Eve est à l’intérieur du disque et se 

trouve à une certaine distance de Bob. Quant à Alice, elle est supposée très lointaine, de sorte 

que les rayons envoyés vers le disque proviennent d’une direction unique. Les canaux vus par 

Bob et Eve sont calculés en utilisant les propriétés géométriques de la distribution des 

diffuseurs. Ainsi, on tient en compte de l’atténuation en espace libre et de la corrélation 

spatiale du shadowing en utilisant une loi log-normale. On suppose que les diffuseurs sont 
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indépendants les uns des autres, alors que les trajets émis par le même diffuseur vers Bob et 

Eve sont corrélés en fonction de leur écartement angulaire. Les terminaux sont équipés 

d’antennes omnidirectionnelles.  

La génération d’une clé secrète requiert de l’aléa qui peut être fourni par une variation petite 

échelle (« Small Scale Fading », SSF). Pour cela, on fixe les paramètres macroscopiques et 

ceux du shadowing et on crée de la variabilité petite-échelle en bougeant les diffuseurs autour 

de leurs positions macroscopiques. Cela implique que la phase varie fortement, créant ainsi 

des variations SSF par le jeu des interférences et l’indépendance entre le mouvement des 

divers diffuseurs. La statistique petite échelle SSF permet d’obtenir une clé unique alors que 

la statistique macroscopique sert à fournir un ensemble de clés. 

D’après la Figure 9, on observe que lorsqu’Eve s’éloigne de Bob, les composantes des multi-

trajets vus par chacun d’eux se décorrèlent, ce qui implique une décroissance de la 

vulnérabilité, en terme de proportion de bits vulnérables (𝐼𝑉𝐾/𝐼𝐾) ainsi que de taux d’erreur 

binaire entre leurs clés (BER). En particulier, concernant 𝐼𝑉𝐾/𝐼𝐾, on constate qu’au-delà de 

λ/2, cette proportion ne diminue que de façon progressive avec la distance, montrant une 

mémoire spatiale allant bien au-delà de la longueur d’onde.  

En comparant avec le scénario de Clarke, on aperçoit qu’il y a ainsi une vulnérabilité 

résiduelle au-delà de λ/2. Cela est expliqué par le nombre limite de trajets dont l’augmentation 

aboutit à moins de vulnérabilité. En revanche, le BER ne reflète pas la vulnérabilité résiduelle. 

En effet, l’algorithme CQA repose sur des changements majeurs du canal, ce qui ne permet 

pas à Eve d’exploiter toute l’information partagée avec les terminaux légitimes.    

 

 Figure 9 La vulnérabilité (𝑰𝑽𝑲/𝑰𝑲 et BER) en fonction de la distance Bob-Eve  
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l’environnement ouvert du Louvre (Paris) en mettant en relief l’implémentation du modèle de 

diffusion dans l’outil de simulation.   

On considère un système OFDM de 64 sous-porteuses couvrant une bande de 20 MHz. La 

densité spectrale de puissance de chaque sous-porteuse est constante et son SNR moyen est 

fixe. Conformément aux résultats obtenus pour le modèle PDP (Figure 6), 𝐼𝐾 augmente avec 

𝑁𝑓 en présentant une tendance à la saturation mais de façon sous-linéaire (Figure 10). Cette 

tendance indique que les principaux trajets sont résolus pour une bande inférieure à 20 MHz. 

En effet, puisque l’environnement est ouvert, la réponse impulsionnelle est longue et les 

trajets principaux sont bien étalés dans le temps. D’autre part, cela peut-être dû, en partie, aux 

limitations de l’outil de tracés de rayons où le nombre d’interactions rayons-obstacles est 

limité, ce qui implique une réponse impulsionnelle non continue (Figure 11). 

On calcule les canaux en utilisant l’outil de tracés de rayons, avec et sans implémentation du 

modèle de diffusion. La Figure 10 met en relief la pertinence des trajets diffus sur la SKG où 

les valeurs de 𝐼𝐾 atteignent le double de celles obtenues pour des canaux simulés sans le 

modèle de diffusion. En effet, les rayons diffus enrichissent le canal en des nouveaux trajets, 

ce qui implique plus d’aléa à exploiter dans la génération de clés.  

 
Figure 10 𝑰𝑲 en fonction de 𝑵𝒇 : avec diffusion (gauche) et sans diffusion (droite) 

 
Figure 11 Des exemples de profils de puissance-délai  
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L’augmentation de l’étalement temporel 𝜎𝜏 entraîne une réponse impulsionnelle plus étalée 

dans le temps, ou en d’autres termes, une bande de cohérence plus faible. Ce qui implique une 

croissance de 𝐼𝐾 (Figure 12). Ce résultat est ainsi cohérent avec celui obtenu plus haut (Figure 

7), sauf pour un grand 𝑁𝑓 et pour des grandes valeurs de 𝜎𝜏. Ceci est expliqué par le fait 

qu’une réponse impulsionnelle plus étalée dans le temps ne signifie pas un canal plus riche en 

multi-trajets, mais plutôt des trajets bien espacés temporellement. 

 
Figure 12 𝑰𝑲en fonction de delay spread: 𝑵𝒇=2 (gauche) et 𝑵𝒇=64 (droite) 

La Figure 13 montre une comparaison statistique des valeurs de 𝑰𝑲 résultant de l’exploitation 

des degrés de liberté spatial et fréquentiel. On note que le calcul d’une seule valeur de 𝑰𝑲 dans 

le domaine fréquentiel repose sur une statistique petite-échelle en espace, alors que dans le 

domaine spatial, ce calcul utilise une statistique fréquentielle. Pour l’environnement étudié, il 

est fiable d’utiliser les deux domaines dans la SKG puisqu’ils contiennent statistiquement la 

même quantité d’aléa.  

 
Figure 13 𝑰𝑲 dans les domaines spatiaux et fréquentiels 
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d’une vulnérabilité résiduelle, même pour de grandes distances, ce qui montre l’impact de 

l’environnement local sur la SKG (par exemple la richesse en multi-trajets). Par ailleurs, 

augmenter 𝑁𝑓 apporte un avantage à Eve comme aux terminaux légitimes.  

 
Figure 14 𝑰𝑽𝑲/𝑰𝑲 en fonction de la distance Bob-Eve et pour 𝑵𝒇=1 (gauche) et 𝑵𝒇=32 

(droite) 

5. Le comportement de la SKG pour des canaux mesurés 

On vise dans cette partie à examiner la performance de la SKG pour des canaux réels et 

mesurés en environnement intérieur.  

Les mesures ont été effectuées dans les locaux de Télécom ParisTech dans deux salles de 

dimensions et caractéristiques différentes (Figure 15 et Figure 16). Les coefficients complexes 

du canal ont été mesurés et enregistrés par un analyseur de réseaux (VNA) à 4 ports dont les 

paramètres de configuration sont indiqués dans le Tableau 1. Un port du VNA était dédié à 

Alice alors que les trois autres correspondaient à Bob et/ou Eve. Chaque port a été équipé 

d'une antenne ULB bicône de 2 dBi de gain. 

 
Figure 15 Mesures en salles de classe 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
VK

/I
K

C
D

F

 

 

d=0

d=0.1

d=0.5

d=1

d=10

d=183

d=259

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
VK

/I
K

C
D

F

 

 



140 
 

 
Figure 16 Mesures en amphithéâtre 

Tableau 1 Les paramètres de configuration du VNA 

Fréquences 2-6 GHz 

Nombre de fréquences 1601 

Bande IF 5 KHz 

Puissance transmise  10 dBm 

Dynamique de mesure 96 dB 

Plancher de bruit typique -86 dBm 

 

Pour générer des clés, on a besoin de l’aléa. Pour ce but, lors de ces mesures, les trois 

récepteurs représentant Bob/Eve sont statiques alors que l'émetteur représentant Alice est 

spatialement balayé sur une grille carrée de 11x11 points (30 cm de côté et 3 cm de pas) 

confinée à une petite zone, de manière à capturer l’évanouissement petite-échelle (SSF). Plus 

clairement, puisque le pas de la grille est d'environ une demi-longueur d'onde à 5 GHz, les 

coefficients du canal sont très probablement statistiquement décorrélés. 

5.1.La comparaison des clés générées par le trio Alice-Bob-Eve 

Pour générer des clés, les terminaux appliquent l’algorithme CQA sur l’ensemble de 

coefficients complexes du canal qui constituent le plan de quantification. Ce plan est divisé en 

𝑀 régions de quantification, ce qui résulte en un symbole de √𝑀 bits par coefficient du canal. 

D’après la Figure 17, le taux d’erreur binaire des clés générées par Alice et Bob diminue 

quand le SNR augmente et quand 𝑀 diminue. Par conséquent et pour une meilleure 

performance, le nombre de bits (√𝑀) à générer par observation du canal doit être adapté au 

SNR de manière à ne pas dépasser un certain seuil de BER.  
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Figure 17 Le BER entre les clés d'Alice et de Bob en fonction du SNR 

Eve exploite ses mesures pour générer une clé en espérant qu’elle soit très proche de celle 

obtenue par les terminaux légitimes. Elle applique CQA sur les canaux mesurés quand 

l’émetteur est Alice (ℎ𝑒𝑎) ou Bob (ℎ𝑒𝑏), et obtient ainsi deux valeurs de clés. D’après la 

Figure 18, le BER est autour de 0.5, ce qui signifie que les clés générées par Eve sont presque 

complètement différentes de la clé légitime. Cependant, la vulnérabilité augmente quand Eve 

est en vue directe de Bob et quand Alice est l’émettrice puisque l’aléa mesuré par Bob et Eve 

est apporté par les déplacements d’Alice sur la grille. 

 
Figure 18 Taux d'erreur binaire par rapport à l’espion 
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correspondant aux 121 positions d’Alice sur la grille carrée. Un ensemble de clés résulte 

d’une sélection arbitraire sur différentes sous-porteuses de la bande 20 MHz. Quant au degré 

de liberté fréquentiel, l’ensemble des clés résulte d’une sélection aléatoire de sous-porteuses 

dans une certaine bande, pour différentes positions d’Alice sur la grille. Chaque clé est 

fabriquée par accumulation des bits quantifiés à partir de sous-porteuses sélectionnées de 

façon arbitraire. En effet, pour construire une clé de 128 bits et en utilisant 𝑀 = 4, on a 

besoin de quantifier 64 sous-porteuses dans les bandes de 40, 80 ou 160 MHz.  

Les tests de NIST montrent que les clés dérivées du degré de liberté spatial sont suffisamment 

aléatoires (Figure 19). Cela est dû au fait que le canal est échantillonné avec un pas minimal 

de λ/2 à 5 GHz. En outre, l’exploitation du degré de liberté fréquentiel (Figure 20) montre que 

le caractère aléatoire s’améliore avec une bande passante plus grande où l’écart entre deux 

sous-porteuses sélectionnées augmente, impliquant moins de corrélation entre elles et par la 

suite entre les bits générés. Les coefficients du canal doivent être séparés par la bande de 

cohérence pour garantir leur décorrélation. En outre, le mean pass rate augmente avec la 

distance de séparation entre Alice et Bob, ce qui est expliqué dans la Figure 21 par le fait que 

l’étalement temporel augmente avec la distance et par la suite la bande de cohérence diminue. 

De plus, on remarque que la condition NLOS assure plus d’aléa que LOS puisque la première 

implique des canaux plus riches en multi-trajets.  

 
Figure 19 Evaluation de l’aléa fourni par le degré de liberté spatial 
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Figure 20 Evaluation de l’aléa fourni par le degré de liberté fréquentiel pour M=4 

 
Figure 21 𝝈𝝉 en fonction de la distance Alice-Bob pour LOS (gauche) et NLOS (droite) 

En environnement intérieur, le degré de liberté fréquentiel fournit moins d’aléa que le spatial 

(Figure 22). En d’autres termes, la source d’aléa la plus adaptée à la SKG provient du degré 
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Figure 22 Comparaison de l'aléa fourni par les différents degrés de liberté 

5.3. L’impact de 𝑵𝒇 sur le nombre de bits disponibles 𝑰𝑲 

En exploitant plus de degrés de liberté en fréquence, le nombre de bits qu’Alice et Bob 

peuvent partager croît de façon sous-linéaire (Figure 23). Contrairement aux résultats déjà 

obtenus pour l’environnement extérieur (Figure 10), l’évolution de 𝐼𝐾 en fonction de 𝑁𝑓 n’a 

pas tendance à saturer puisque la réponse impulsionnelle (Figure 24)  est continue et requiert 

une large bande pour que les trajets soient parfaitement résolus. Néanmoins, les canaux en 

intérieur sont moins riches en aléa que ceux en extérieur en raison du faible étalement 

temporel. Pour augmenter les valeurs de 𝐼𝐾, les sous-porteuses doivent être plus écartées en 

augmentant la bande passante. 

 

Figure 23 𝑰𝑲 en fonction de 𝑵𝒇 
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Figure 24 Un exemple de réponse impulsionnelle en environnement à l'intérieur 

5.4.La stratégie complète de la SKG 

Alice et Bob doivent parvenir à générer exactement la même clé (i.e. BER=0) pour qu’elle 

soit utilisée pour le cryptage des données. En revanche, les clés résultant de l’étape de 

quantification présentent quelques différences évaluées par le BER. Le rôle de la 

réconciliation est ainsi de rendre les clés d’Alice et de Bob complètement identiques tout en 

utilisant un code correcteur d’erreur. On choisit ainsi le code BCH pour mettre en œuvre cette 

étape. D’autre part, pour réduire l’information révélée à Eve et améliorer la qualité de la clé, 

on implémente l’étape d’amplification de confidentialité à travers des fonctions de hachage. 

Chaque erreur sera distribuée sur la clé entière grâce à des opérations de convolution, ce qui 

augmente la différence entre les clés d’Eve et des terminaux légitimes. 

La Figure 25  montre que presque 95% des clés sont parfaitement réconciliées pour SNR=15 

dB alors que seulement 12% le sont pour SNR=10 dB. On peut ainsi souligner qu’il faut bien 

choisir les paramètres de la réconciliation pour qu’ils soient adaptés au SNR. En outre, 

l’amplification de confidentialité augmente le BER des clés non réconciliées, ce qui révèle 

son utilité pour compliquer le travail de l’espion. Par ailleurs, cette dernière étape améliore la 

qualité de l’aléa des clés quel que soit le type de degré de liberté utilisé (Figure 26). 
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Figure 25 Le BER des clés légitimes durant les différentes étapes de la SKG 

 
Figure 26 Le caractère aléatoire des clés durant les étapes de la SKG 

6. Conclusion et perspectives 

6.1.Conclusion 

On a examiné dans cette thèse le processus de génération de clés secrètes à partir de l’aléa du 

canal de propagation. En particulier, l’analyse de performance a concerné l’impact de la 

propagation sur la qualité des clés, tout en considérant différents degrés de liberté du canal. 

Le degré de liberté spatial est le plus adapté à la SKG quel que soit le type de 

l’environnement. Cela est conditionné par le fait que les antennes sont suffisamment espacées, 

par exemple λ/2.  En outre, le degré de liberté fréquentiel ne fournit pas suffisamment d’aléa 

en environnement intérieur, au contraire d’en environnement extérieur. En effet, la bande de 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

BER A-B

C
D

F

 

 

quantization

reconciliation

amplification

SNR=10 dB

SNR=15 dB



147 
 

cohérence est plus large dans le premier que le second. Toutefois, en exploitant conjointement 

le domaine spatial (par exemple avec 2 ou 4 antennes) et fréquentiel (avec une certaine 

bande), des clés robustes peuvent êtres extraites du canal. 

D'une manière générale, il est intéressant d'augmenter le nombre de sous-canaux, même 

lorsqu'ils sont corrélés, puisque cela augmente légèrement le taux de clé secrète. Cependant, 

cela signifie également de concevoir des systèmes intelligents, capables de produire de 

longues clés de bits indépendants à partir de très longues clés de bits corrélés. Cela peut être 

accompli par l’amplification de confidentialité. Néanmoins, la qualité de clé est améliorée de 

façon remarquable tout en implémentant la stratégie complète de la SKG, i.e. la réconciliation 

et l’amplification de confidentialité. Les paramètres utilisés doivent être adaptés au SNR. 

 

6.2.Perspectives 

Il existe plusieurs perspectives au travail réalisé dans cette thèse.  

 Il est intéressant de calculer la longueur théorique des clés, i.e. l’information mutuelle, 

pour n’importe quel type du canal. Cela permet d’évaluer l’efficacité de la SKG dans 

l’environnement considéré 

 L’antenne est un élément du canal de transmission et elle peut affecter la performance 

de la SKG, d’où la nécessité de considérer et d’étudier son influence sur la qualité des 

clés générées 

 En pratique, le canal n’est pas parfaitement réciproque puisque d’une part, les 

terminaux ne l’estiment pas en même instant et d’autre part, dans un système 

d’émission-réception les signaux émis ne suivent pas le même chemin que les signaux 

reçus. Par conséquent, il est important de considérer les sources de non réciprocité 

 La SKG repose sur une sécurité du point de vue de la théorie de l’information où seule 

l’information peut aider l’espion à affaiblir la confidentialité des données. De ce fait, 

Eve peut investir des techniques lui permettant d’acquérir plus d’information ainsi que 

plus de corrélation avec le canal légitime. Dans ce but, Eve peut utiliser des outils 

puissants de calcul de la propagation pour améliorer sa connaissance du canal Bob-

Eve, de type tracé de rayons. Néanmoins, la complexité de la physique de la 

propagation, par exemple la diffusion diffuse, rendent une telle hypothèse très peu 

vraisemblable ? 
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Appendix A

Information theoretic bounds

For zero-mean jointly complex Gaussian channels, the capacity of available key bits

is expressed as follows:

IK = I(ĥa, ĥb)

= log2

|R̂aa||R̂bb|
|R̂AB|

(A.1)

Straightforward evaluation of the estimated covariance matrices reveals:

R̂aa = E{ĥaĥ
H

a } = Raa + σ2
aI (A.2)

R̂bb = E{ĥbĥ
H

b } = Rbb + σ2
b I (A.3)

R̂AB = E{[ĥa
H

ĥ
H

b ]H [ĥ
H

a ĥ
H

b ]} =

[
Raa + σ2

aI Rab

RH
ab Rbb + σ2

b I

]
(A.4)

with

Rxy = E{hxhHy } (A.5)

We recall that hx is a stacked channel vector with Nh elements, i.e. parallel sub-

channels, assuming all the terminals having the same number Nh. Accordingly, I

is an Nh × Nh identity matrix, while {.}H denotes for matrix conjugate transpose

(Hermitian). Moreover, we designate by σ2
x the average noise power at node x, with

x being referring to Alice (a or A), Bob (b or B) and Eve (e or E).
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Similarly, the secret key capacity is expressed as follows:

ISK = I(ĥa, ĥb|ĥe)

= log2

|R̂AE||R̂BE|
|R̂E||R̂ABE|

(A.6)

while the estimated covariance matrices are explicitly evaluated as:

R̂AE =

[
Raa + σ2

aI Rae

RH
ae Ree + σ2

eI

]
(A.7)

R̂BE =

[
Raa + σ2

aI Rae

RH
ae Ree + σ2

eI

]
(A.8)

R̂E = R̂ee = Ree + σ2
eI (A.9)

R̂ABE =

 Raa + σ2
aI Raa Rae

Raa Raa + σ2
b I Rae

RH
ae RH

ae Ree + σ2
eI

 (A.10)
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Appendix B

Some characteristics of the IEEE

802.11 standard

IEEE 802.11 [130] is a set of MAC (media access control) and PHY (physical layer)

specifications for implementing WLAN (wireless local area network). It is commonly

known as WiFi. It relies on a series of half-duplex modulation techniques that employ

the same basic protocol. While the family of the IEEE 802.11 standards uses mainly

two modulation techniques: DSSS and OFDM, we focus here on the characteristics

of the OFDM waveforms.

Table B.1 summarizes the main characteristics of the IEEE 802.11 versions that

use the OFDM modulation at the physical layer, where the number of data sub-

carriers excludes those dedicated for guardband interval.

• 802.11a: Released in 1999, it defines protocols that enable transmission and

reception of data at rates of 1.5 to 54 Mbit/s at 5 GHz band. Wireless access

point (cards and routers) manufacturers used the term “802.11a” to describe

interoperability of their systems at 5.8 GHz, 54 Mbit/s.

• 802.11g: Released in 2003, it operates at 2.4 GHz band with a maximum phys-

ical layer bit rate of 54 Mbit/s. Owing to the desire for higher data rates as

well as to reductions in manufacturing costs, consumers started adopting the

802.11g in January 2003.

• 802.11n: Released in 2009, it is an amendment which improves upon the previ-

ous 802.11 standards mainly by increasing the channel DoFs, by adding MIMO

and wider channel bandwidths (40 MHz vs. 20 MHz). 802.11n operates on both

167



the 2.4 GHz and the lesser used 5 GHz bands, where the 40 MHz bandwidth is

exclusively used at 5 GHz band. It operates at a maximum net data rate from

54 Mbit/s to 600 Mbit/s.

• 802.11ac: Approved in 2014, it is an amendment that operates at the 5 GHz

band. It relies on 802.11n, but brings improvement with respect to 802.11n

including wider channel bandwidths (80 or 160 MHz vs. 40 MHz), more spatial

streams (up to 8 vs. 4), higher order modulation (up to 256-QAM vs. 64-QAM),

and the addition of multi-user MIMO.

Table B.1: IEEE 802.11 standard characteristics.

Standard Frequency Bandwidth FFT size Total sub-carriers Data sub-carriers MIMO
IEEE band (GHz) (MHz)
802.11a 5 20 64 52 48 N/A
802.11g 2.4 20 64 52 48 N/A
802.11n 2.4, 5 20, 40 64, 128 52(or 56), 114 48(or 52), 108 4
802.11ac 5 20, 40, 80, 160 64, 128, 256, 512 52, 114, 242, 484 48, 108, 234, 468 8
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