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Résumé : Les méthodes de recalage d’images, 

qui ont pour but l’alignement de deux ou 

plusieurs images dans un même système de 

coordonnées, sont parmi les algorithmes les 

plus anciens et les plus utilisés en vision par 

ordinateur. Les méthodes de recalage servent à 

établir des correspondances entre des images 

(prises à des moments différents, par différents 

senseurs ou avec différentes perspectives), 

lesquelles ne sont pas évidentes pour l’œil 

humain. Un type particulier d’algorithme de 

recalage, connu comme « les méthodes de 

recalage déformables à l’aide de modèles 

graphiques » est devenu de plus en plus 

populaire ces dernières années, grâce à sa 

robustesse, sa scalabilité, son efficacité et sa 

simplicité théorique. La gamme des problèmes 

auxquels ce type d’algorithme peut être adapté 

est particulièrement vaste. Dans ce travail de 

thèse, nous proposons plusieurs extensions à la 

théorie de recalage déformable à l’aide de 

modèles graphiques, en explorant de nouvelles 

applications et en développant des 

contributions méthodologiques originales. 

   Notre première contribution est une extension 

du cadre du recalage à l’aide de graphes, en 

abordant le problème très complexe du recalage 

d’une tranche avec un volume. Le recalage 

d’une tranche avec un volume est le recalage 

2D dans un volume 3D, comme par exemple le 

mapping d’une tranche tomographique dans un 

système de coordonnées 3D d’un volume en 

particulier. Nos avons proposé une formulation 

scalable, modulaire et flexible pour 

accommoder des termes d'ordre élevé et de 

rang bas, qui peut sélectionner le plan et 

estimer la déformation dans le plan de manière 

simultanée par une seule approche 

d'optimisation. Le cadre proposé est instancié 

en différentes variantes, basés sur différentes 

topologies du graph, définitions de l'espace des 

étiquettes et constructions de l'énergie. Le 

potentiel de notre méthode a été démontré sur 

des données réelles ainsi que des données 

simulées dans le cadre d’une résonance 

magnétique d’ultrason (où le cadre  

d’installation et les stratégies d’optimisation 

ont été considérés).  

   Les deux autres contributions inclues dans ce 

travail de thèse, sont liées au problème de 

l’intégration de l’information sémantique dans 

la procédure de recalage (indépendamment de 

la dimensionnalité des images). Actuellement, 

la plupart des méthodes comprennent une seule 

fonction métrique pour expliquer la similarité 

entre l’image source et l’image cible. Nous 

soutenons que l'intégration des informations 

sémantiques pour guider la procédure de 

recalage pourra encore améliorer la précision 

des résultats, en particulier en présence 

d'étiquettes sémantiques faisant du recalage un 

problème spécifique adapté à  chaque domaine. 

   Nous considérons un premier scénario en 

proposant  un classificateur pour inférer des 

cartes de probabilité pour les différentes 

structures anatomiques dans les images 

d'entrée. Notre méthode vise à recaler et 

segmenter un ensemble d'images d'entrée 

simultanément, en intégrant cette information 

dans la formulation de l'énergie. L'idée 

principale est d'utiliser ces cartes estimées des 

étiquettes sémantiques (fournie par un 

classificateur arbitraire) comme un substitut 

pour les données non-étiquettées, et les 

combiner avec le recalage déformable pour 

améliorer l'alignement ainsi que la 

segmentation. Notre dernière contribution vise 

également à intégrer l'information sémantique 

pour la procédure de recalage, mais dans un 

scénario différent. Dans ce cas, au lieu de 

supposer que nous avons des classificateurs 

arbitraires pré-entraînés à notre disposition, 

nous considérons un ensemble d’annotations 

précis (vérité terrain) pour une variété de 

structures anatomiques. Nous présentons une 

contribution méthodologique qui vise à 

l'apprentissage des critères correspondants au 

contexte spécifique comme une agrégation des 

mesures de similarité standard à partir des 

données annotées, en utilisant une adaptation 

de l’algorithme « Latent Structured Support 

Vector Machine ». 
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Image registration methods, which aim at 

aligning two or more images into one 

coordinate system, are among the oldest and 

most widely used algorithms in computer 

vision. Registration methods serve to establish 

correspondence relationships among images 

(captured at different times, from different 

sensors or from different viewpoints) which are 

not obvious for the human eye. A particular 

type of registration algorithm, known as graph-

based deformable registration methods, has 

become popular during the last decade given its 

robustness, scalability, efficiency and 

theoretical simplicity. The range of problems to 

which it can be adapted is particularly broad. In 

this thesis, we propose several extensions to the 

graph-based deformable registration theory, by 

exploring new application scenarios and 

developing novel methodological 

contributions.  

    Our first contribution is an extension of the 

graph-based deformable registration 

framework, dealing with the challenging slice-

to-volume registration problem. Slice-to-

volume registration aims at registering a 2D 

image within a 3D volume, i.e. we seek a 

mapping function which optimally maps a 

tomographic slice to the 3D coordinate space of 

a given volume. We introduce a scalable, 

modular and flexible formulation 

accommodating low-rank and high order terms, 

which simultaneously selects the plane and 

estimates the in-plane deformation through a 

single shot optimization approach. The 

proposed framework is instantiated into 

different variants based on different graph 

topology, label space definition and energy 

construction. Simulated and real-data in the 

context of ultrasound and magnetic resonance 

registration (where both framework 

instantiations as well as different optimization 

strategies are considered) demonstrate the 

potentials of our method.  

    The other two contributions included in this 

thesis are related to how semantic information 

can be encompassed within the registration 

process (independently of the dimensionality of 

the images). Currently, most of the methods 

rely on a single metric function explaining the 

similarity between the source and target 

images. We argue that incorporating semantic  

information to guide the registration process 

will further improve the accuracy of the results, 

particularly in the presence of semantic labels 

making the registration a domain specific 

problem.  

    We consider a first scenario where we are 

given a classifier inferring probability maps for 

different anatomical structures in the input 

images. Our method seeks to simultaneously 

register and segment a set of input images, 

incorporating this information within the 

energy formulation. The main idea is to use 

these estimated maps of semantic labels 

(provided by an arbitrary classifier) as a 

surrogate for unlabeled data, and combine them 

with population deformable registration to 

improve both alignment and segmentation.  

    Our last contribution also aims at 

incorporating semantic information to the 

registration process, but in a different scenario. 

In this case, instead of supposing that we have 

pre-trained arbitrary classifiers at our disposal, 

we are given a set of accurate ground truth 

annotations for a variety of anatomical 

structures. We present a methodological 

contribution that aims at learning context 

specific matching criteria as an aggregation of 

standard similarity measures from the 

aforementioned annotated data, using an 

adapted version of the latent structured support 

vector machine (LSSVM) framework. 
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Chapter 1

Introduction

Image registration algorithms aim to align two or more images into the same coor-
dinate system and they are widely used in computer vision [Szeliski 2006]. Inspired
by Horn and Shunk [Horn 1980] and the work of Lucas and Kanade1 in the eight-
ies [Lucas 1981], the research community of computer vision has made major efforts
towards developing more accurate and efficient strategies. Registration methods
seek to establish correspondence relationships among images (captured at different
times, from different sensors or from different viewpoints [Brown 1992]) which are
not obvious for the human eye. The important image variations in conjunction with
their diverse origin, make image registration one of the most challenging tasks in
the field. Consequently, we observe the absence of a general algorithm suited to
solve the general registration problem [Zitová 2003], and research has still to be
done in order to address it. The literature in the area is vast and, every year, a
significant number of new papers relevant to this problem are published in the most
prestigious conferences and journals.

Graph-based deformable registration methods [Glocker 2011] have become pop-
ular during the last decade due to the fact that they exhibit robustness, scalability,
efficiency and theoretical simplicity. The range of problems to which it can be
adapted is broad. In this thesis, we propose several extensions to the graph-based
deformable registration theory, by exploring new application scenarios and introduc-
ing novel methodological contributions. Before presenting our work, let us briefly
motivate the research on image registration.

1.1 Motivation

Image registration is a central component for a large number of visual perception
problems. The classical optical flow estimation problem [Fortun 2015], for exam-
ple, can be formulated as a registration problem where we aim at recovering the
displacement of intensity patterns in two different images. Motion analysis, video
restoration, vehicle navigation systems and video surveillance, just to name a few,
are cases in which optical flow estimation and image registration are critical. An-
other application involves remote sensing images. Accurate registration algorithms
are essential in supporting Earth scientists as they mosaic satellite images and track
changes of the planet’s surface over time for environmental, political and fundamen-
tal science studies [Le Moigne 2011]. In the context of medical image analysis (main

1In this seminal work, they presented the well known patch-based translational alignment tech-
nique to estimate the optical flow between two images.
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interest of this thesis), image registration methods are ubiquitous: diagnostic, plan-
ning, surgical and radiotherapy procedures are a few examples where these methods
are essential.

The information provided by different anatomical imaging modalities (such as
computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US),
X-ray, video sequences obtained by laparoscopy or endoscopy, etc.) as well as func-
tional modalities (single-photon emission computed tomography (SPECT), positron
emission tomography (PET), functional MRI (fMRI), etc.) is of complementary
nature. Therefore, proper integration or fusion of data obtained from the inde-
pendent images is desirable [Maintz 1998]. Image registration plays a key role
in this task, since it allows bringing different image modalities into spatial corre-
spondence. Longitudinal studies [Csapo 2012] -where images are gathered for the
same subjects repeatedly over time- require image registration to monitor tumor
growth, post surgery control, etc. Motion correction when acquiring 3D images of
moving objects (such as fetal brain imaging [Rousseau 2006, Jiang 2007a] or fMRI
reconstruction [Kim 1999]) is another problem tackled by image registration, where
acquired images can once registered compensate the motion that occurred during
the their acquisition. Another example is image guided surgery, where pre-operative
3D volumes and intra-operative 2D images need to be fused to guide surgeons dur-
ing medical interventions. Image registration is fundamental in this process: it
allows doctors to navigate 3D pre-operative high-resolution annotated data using
low-resolution 2D images acquired in real-time during surgery. Several examples
can be cited in this case such as image guided surgeries and therapies [Fei 2002],
biopsies [Xu 2014a], radio frequency ablation [Xu 2013], tracking of particular or-
gans [Gill 2008] and minimally-invasive procedures [Liao 2013,Huang 2009].

1.2 Graph-based Deformable Registration

Image registration methods can be classified according to different criteria, such as
the transformation model (used to establish spatial correspondences), the match-
ing criterion (means of defining similarities between images) and the optimization
method (used to minimize the aforementioned matching criterion and thus infer
the optimal transformation model). Given the importance of this problem, a large
number of techniques has been proposed. We refer to the work by [Maintz 1998,Soti-
ras 2013] presenting a comprehensive study about medical image registration.

An active research approach to address deformable registration during the last
years, has been the use of discrete methods and graphical models [Glocker 2011].
The term deformable is used to denote the fact that the observed images are associ-
ated through a nonlinear dense transformation, or a spatially varying deformation
model [Sotiras 2013]. Discrete methods and graphical models [Wang 2013, Para-
gios 2014] are powerful formalisms that have been successfully applied to many
vision tasks including image registration. Casting image registration as a labeling
problem offers a simple yet robust and efficient way to model this problem. In such
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a formulation, the graphical model consists of nodes corresponding to a deformation
grid and the connectivity is used to impose regularization constraints. These nodes
are labeled with displacement vectors corresponding to a discrete search space of
allowable transformations.

Such a formulation, introduced in [Glocker 2008] is modular with respect to
the matching criterion and can be efficiently optimized through different discrete
optimization methods (see Section 2.4). Glocker proposed a formulation to deal
with registration of images of the same dimension (i.e. 3D to 3D or 2D to 2D
registration). Numerous extensions to this work were then introduced, proving
the robustness of the framework. Just to name a few, let us consider: (i) the
work of [Sotiras 2009] extending this framework to perform population registration
(i.e. to identify an homology between more than two images at the same time),
(ii) the work from the same authors coupling geometric and iconic registration
method [Sotiras 2010a], where the matching criterion is modified so that it ac-
counts for landmark correspondences and intensity based similarity measures, (iii)
multi-atlas segmentation using graph-based deformable registration was proposed
by [Alchatzidis 2014a,Alchatzidis 2015], while in (iv) [Fecamp 2015a,Fecamp 2015b]
authors focused on how linear and deformable parameters can be decoupled when
performing graph based registration. In another line of research, regularization
constraints based on learned deformation priors were incorporated to the frame-
work [Glocker 2009b], while an adaptive co-registration and segmentation of brain
tumors where the sampling resolution of the label space is adapted according to the
image content is proposed in [Parisot 2013]. Last but not least, a modified version
of the initial work was also applied to detect temporal changes in remote sensing
images [Vakalopoulou 2015].

The number of extensions proposed to the graph-based deformable registration
framework, demonstrates how flexible and powerful it can be. Let us now present
the main ideas developed in this thesis, which contemplate new application scenarios
and introduce a number of methodological contributions.

1.3 Contributions

We begin this thesis by including, in chapter 2, an initial overview concerning
discrete models in computer vision. We derive the standard semantic segmentation
and image registration problems within this framework, and we present the inference
algorithms used in this dissertation to optimize such models.

The first class of contributions is presented in chapter 3. We introduce a generic
graph-based deformable registration framework, to deal with the challenging slice-
to-volume registration problem. As we mentioned, the initial work by [Glocker 2008]
proposes a formulation for deformable registration of images in dimensional corre-
spondence. However, in slice-to-volume registration, we aim at registering a 2D
image within a 3D volume, i.e. we seek a mapping function which optimally maps
a tomographic slice I to the 3D coordinate space of a volume J . This problem is
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substantially different from the 3D-3D or 2D-2D case; therefore, the standard reg-
istration approach cannot be directly extrapolated to the slice-to-volume scenario.
We instantiate this generic framework into three different models to solve this chal-
lenging problem. Our aim is to demonstrate how flexible and powerful the graph
theory is in terms of expressive potential of the modeling process, while solving a
new problem using graphical models. This general formulation can be expressed
through different discrete labeling problems on a graph by changing its topology,
label space and energy terms.

First, we propose the so-called overparameterized method, which combines linear
and deformable parameters within a coupled formulation on a 5-dimensional label
space [Ferrante 2013]. We adopt a metric free locally over-parametrized graphical
model seeking simultaneously a linear plane transformation and an in-plane dense
deformation. Image similarity is encoded in singleton terms, while geometric lin-
ear consistency of the solution (common/single plane) and in-plane deformations
smoothness are modeled in a pair-wise term. The main advantage of such a model is
the simplicity provided by its pairwise structure, while the main disadvantage is the
dimensionality of the label space which makes inference computationally inefficient
and approximate (limited sampling of search space).

Motivated by the work of [Shekhovtsov 2008], we present an alternative model
referred as the decoupled approach. In this case, linear and deformable parameters
are separated into two interconnected subgraphs which refer to lower dimensional
label spaces [Ferrante 2015b]. The main contribution is the ability to decouple the
plane selection and the in-plane deformation parts of the transformation towards
reducing the complexity of the model, while being able to obtain simultaneously
the solution for both of them. To this end, the plane selection process is expressed
as a local graph-labeling problem endowed with planarity satisfaction constraints,
which is then directly linked with the deformable part through the data registration
likelihoods. The resulting model is modular with respect to the image metric, can
cope with arbitrary in-plane regularization terms and inherits excellent properties
in terms of computational efficiency.

The last slice-to-volume registration model presented in this work is the high-
order approach [Ferrante 2015a]. Differently from the strategy adopted for the
decoupled model, here we aim at reducing the dimensionality of the label space
by augmenting the order of the graphical model. Using third-order cliques which
exploit the expression power of this type of variable interactions, we simplify the
label space to standard 3D displacement vectors. Geometrical consistency (unique
plane selection) and deformation smoothness (in-plane deformations) as well as
image similarity are encoded in different third order cliques. Such a model provides
better satisfaction of the global deformation constraints at the expense of quite
challenging inference.

The second class of contributions is presented in chapter 4. The objective is
to introduce semantic information within the registration process (independently
of the dimensionality of the images). The notion of semantic segmentation refers
to either partial or full labeling of the source/target volumes. Currently, most of
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the methods rely on a single metric function that explains the similarity between
the source and target images. We argue that incorporating semantic information
to guide the registration process, will further improve the accuracy of the results,
in particular, in the presence of semantic labels which then make the registration a
domain specific problem.

In section 4.2, we consider the scenario where we are given a classifier inferring
probability maps for the anatomical structures being present in the images. The
method seeks to simultaneously register and segment a set of input images, incor-
porating this information within the energy formulation. The central idea is to use
these estimated maps of semantic labels (provided by an arbitrary classifier) as a
surrogate for unlabeled data, and combine them with deformable registration to im-
prove both alignment and segmentation. To this end, images are deformed towards
a common space where consensus with respect to image similarities (according to
a given arbitrary metric) and semantic labels is achieved. We employ an approach
sharing conceptual similarities with α-expansion [Boykov 2001], combined with ef-
ficient linear programming optimization methods. Promising results demonstrate
the potential of our method on two different datasets, containing annotations of
challenging brain structures.

Our last contribution -presented in section 4.3- also exploits semantic infor-
mation in the registration process with a rather different objective. In this case,
instead of supposing that we have more or less accurate classifiers at our disposal,
we are given a set of ground truth annotations for different anatomical structures.
We present a method that aims at learning context-specific matching criteria as
a weighted aggregation of standard similarity measures from the aforementioned
annotated data. As we will show in section 2.3, graph-based registration is mod-
ular with respect to the matching criterion. In other words, alternative similarity
measures can be used depending on the type of images we are registering. Even so,
the definition of this metric function is among the most critical and complicated
aspects of the registration process. To alleviate this task, we show how different
content specific metrics can be combined towards defining more efficient matching
criteria. To this end, we adapted the standard latent structured support vector
machine (lssvm) framework [Yu 2009] so that optimal combinations of standard
similarity measures can be learned from examples.

We conclude this work in chapter 5, presenting some general conclusions and
giving further ideas and future research directions.





Chapter 2

Discrete Models in Computer
Vision

In this chapter we provide an overview as it concerns discrete models in computer
vision. First, we describe how classical discrete optimization and graphical models
theory can be used to cast vision tasks as a graph labeling problem, giving a simple
example where the semantic segmentation problem is solved within this framework.
Second, following [Glocker 2008,Glocker 2011], we focus on how deformable image
registration can be formulated using discrete models. In an effort to make this
thesis self-contained, we also describe some standard discrete inference algorithms,
applied in various parts of our work to perform the optimization task. We conclude
with a small discussion about the relevance of discrete methods when modeling
vision tasks.
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2.1 Graphical Models in Computer Vision

Graphical models have been part of the computer vision field for more than three
decades. In late nineties, they started to gain more attention in the community,
thanks to the advent of efficient inference methods. They are also known as prob-
abilistic graphical models (PGMs) [Koller 2009], since they encode probability dis-
tributions over high-dimensional spaces, and can be efficiently manipulated using
ideas from discrete optimization and computer sciences. They enjoy a combination
of simplicity -in mathematical terms- and efficiency that makes them the choice of
preference for a wide spectrum of vision problems. Low, mid and high-level vision
tasks can be modeled within this framework. Visual perception is addressed by
defining a specific parametric model, associating it to the available observations
(images) through an objective function and optimizing the model parameters given
both, the objective and the observations [Paragios 2014].

Markov Random Fields (MRF) are a particular class of graphical models, ubiq-
uitous in computer vision research [Wang 2013]. This powerful modeling tool cor-
responds to an undirected graph G encoding a probability distribution governed
by the local independence assumption (also known as local Markov or markovian
property). Each node of this graph represents a variable from the probability dis-
tribution. Dependence among the variables is modeled using the graph neighbor
system, meaning that two variables are dependent of each other if and only if there
is an edge between them. This dependency can be extended from order two to any
order, through the concept of clique. A clique is defined as set of fully connected
nodes; therefore, all the variables represented by nodes in a given clique depend on
each other. The Markov property imposes that a node is independent of any other
node given all its neighbors. This holds for any distribution that can be represented
by a MRF.

Formally, a MRF is an undirected graph G = 〈V, C〉, where V is a set of nodes
(every node i ∈ V is associated to a variable xi ∈ X ) and C is the set of cliques
defining the graph connectivity. The Hammersley-Clifford [Hammersley 1971] the-
orem states that the probability distribution of any MRF can be factorized over its
cliques as follows:

p(x) = 1
Z

∏
c∈C

ψc(xc), x = {xc}, (2.1)

where Z is the so-called partition function (used to normalize the probability dis-
tribution so that

∑
x p(x) = 1), ψc is the positive potential function associated to

clique c and xc is a possible configuration (assignment) for the variables xi being
part of the clique. Note that this definition is general enough to accommodate dis-
crete and continuous variables. In this work, we focus on the discrete case, where
variables xi associated to nodes i ∈ V take values l from a discrete label space L.
This is known as a discrete MRF where x is a labeling (or assignment or realization)
that imputes a label li ∈ L to every variable xi ∈ X , xc ⊂ x is a subset of x that
assigns a label to every variable in the clique c and ψc is a clique potential mapping
a positive real value to every possible configuration xc.
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In this framework, nodes represent the variables of interest while domain spe-
cific/prior information is expressed through the clique potentials. Once the objective
function is defined, the optimal solution can be obtained by performing inference
via Maximum a posteriori (MAP) estimation (i.e. the solution x̂ will be the one
that maximizes the probability function p):

x̂ = arg max
x∈X

p(x) = arg max
x∈X

1
Z

∏
c∈C

ψc(xc). (2.2)

A more convenient representation of the joint distribution p(x) can be obtained,
so that the objective function is defined as a sum of clique potentials instead of a
product. To this end, let us define a new type of potentials φ such that φc(xc) =
− logψc(xc). Therefore, the probability distribution p(x) is redefined in terms of
φc as:

p(x) = 1
Z

exp{−
∑
c∈C

φc(xc)}, x = {xc}. (2.3)

Let us denote E(x; Ψ), the energy of a MRF, as the sum of the clique potentials
Φ = {φc}, ∀c ∈ C given by:

E(x; Φ) =
∑
c∈C

φc(xc). (2.4)

We reformulate the aforementioned MAP inference problem in a discrete MRF
from equation 2.2 as an equivalent minimization problem where the objective func-
tion is the MRF energy E(x; Φ) as follows:

x̂ = arg min
x∈X

E(x; Φ) = arg min
x∈X

∑
c∈C

φc(xc) (2.5)

Note that this equivalent energy minimization problem, does not compute the
actual probability function p(x). Therefore, the partition function Z (frequently
defined as the sum of all the potentials evaluated in all possible labelings) is not
required. This is desirable since computing Z as a normalizing factor for p(x)
requires the evaluation of the potentials for all possible labelings, usually intractable
considering its definition.

The underlying graph can involve cliques of different sizes. The size of the
maximum clique indicates the order of the MRF, which is one of its most distinc-
tive properties. MRFs of order two are known as pairwise, whereas those whose
order is higher than two are referred as high-order. In the same way, the energy
terms of equation 2.5 involving two variables are called pairwise terms, while those
with more than two variables are the high-order terms. The terms associated to
only one variable are the unary terms. It is worth mentioning that the vast ma-
jority of the graph-based vision methods exploit pairwise models. The reason is
that exact or approximate efficient inference solutions can be obtained in these
cases. The quality of the inference depends on several facts such as the cardi-
nality of the label space or different mathematical properties of the energy func-
tion [Kolmogorov 2004]. Nonetheless, during the last few years, novel high-order



12 Chapter 2. Discrete Models in Computer Vision

models and inference algorithms have been developed leading to more accurate so-
lutions [Kohli 2012,Komodakis 2011, Ishikawa 2009]. In chapter 3, we explore the
expressive power of such models in the context slice-to-volume deformable registra-
tion.

The cardinality of the label space defines either a binary problem (two labels)
or a multi-label problem (more than two labels). Kolmogorov and coworkers [Kol-
mogorov 2004] showed that, for a particular type of binary problems where the
energy fulfills a condition known as submodularity, the global minimum can be
found in polynomial time using graph-cuts [Boykov 1998].

An alternative structure frequently used to represent graphical models is factor
graph. Some inference libraries, such as OpenGM2 [Kappes 2013] (used in this
thesis), model the MAP problem using factor graphs since they explicitly describe
the factorization of the joint distribution in the graph. It leads to a clear conceptu-
alization of the underlying factorization. For the sake of completeness, we include
in the appendix (section A.1) a brief description of this representation.

Several approaches were proposed to perform MAP inference on graphs, depend-
ing on the structure, order and energy of the discrete MRF. We refer the reader
to the comprehensive survey [Kappes 2013] where a comparative study of modern
inference techniques is presented. For demonstration purposes, in the remaining of
this chapter we present two generic formulations of graphical models towards ad-
dressing two fundamental problems in computer vision and medical imaging. The
semantic segmentation problem is used as an introductory and simple example.
Then, image registration (the problem that we tackle in this thesis) is formulated
within the same framework.

2.2 Semantic Segmentation as a Discrete Labeling Prob-
lem

Semantic segmentation is a typical example illustrating how a vision task can be
solved through MAP inference on a discrete MRF. Given an image I(i) : Ω ∈ <2 →
<, we would like to assign a semantic class to every pixel i ∈ Ω. Let us consider the
case where we have a map indicating the probability of every pixel to be part of a
given semantic class l ∈ L (label). This map could be obtained using any classifier.
This probability map is represented by function Pi(l) : L → [0, 1], which is a prior
of the semantic classes, where i indicates a pixel from the original image.

Let G = 〈V, E〉 be a graph representing a MRF, where nodes in V are associated
to variables (pixels) and E is a standard 4-connected neighborhood system defining a
two-dimensional lattice (grid). In such a simple 4-connected neighborhood system
each node is connected to its adjacent neighbors in left, right, top, and bottom
directions. Variables xi associated to nodes i ∈ V can take labels li from a label
space L. A labeling S = {li | i ∈ V} assigns one label to every variable. We define
the energy E(S; Φ) consisting of unary potentials Vi ∈ Φ and pairwise potentials
Vij ∈ Φ such that it is minimum when S corresponds to the best labeling.
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Unary terms Vi(li) = − log(Pi(li)) assign low energy to high probability values.
Pairwise terms encode an spatial homogeneity constraint by simply encouraging
neighbor variables to take the same semantic label Vi,j(li, lj) = [li 6= lj ]. This type
of pairwise term is known as Potts model, and it is defined as:

[li 6= lj ] =

1, if li 6= lj

0, otherwise.
(2.6)

Finally, the energy minimization problem is:

S∗ = arg minE(S; Φ) = arg min
∑
i∈V

Vi(li) + λ
∑

(i,j)∈E
Vi,j(li, lj). (2.7)

S∗ represents the optimal label assignment. Note that this energy is a metric in
the space of labels L. According to [Boykov 2001], V is called a metric in the space
of labels L if, given any three labels α, β, γ ∈ L it satisfies:

V (α, β) = 0 ⇔ α = β, (2.8)
V (α, β) = V (β, α) ≥ 0, (2.9)
V (α, β) ≤ V (α, γ) + V (γ, β). (2.10)

Thus, if the energy fulfills these conditions, it is guaranteed that by using α-
expansion technique we can find a solution Ŝ whose energy lies within a factor of
2 with respect to the optimal energy (i.e. E(Ŝ) ≤ 2.E(S∗)). α-expansion is a
well known move-making technique to perform approximate inference using graph-
cuts [Boykov 1998]. It proved to be accurate in a broad range of vision problems. We
refer the reader to [Boykov 2001] for a complete discussion on energy minimization
using α-expansion.

2.3 Deformable Image Registration as a Discrete La-
beling Problem

In the previous section, we described how semantic segmentation can be modeled
through MAP inference on a discrete MRF. This problem is inherently discrete
since the solution is given by a finite set of discrete labels indicating the class
that corresponds to every pixel of the input image. However, in other cases like
deformable image registration, the nature of the problem is not discrete. Thus,
modeling it through discrete methods is not an obvious task. In this section, fol-
lowing [Glocker 2008, Glocker 2009c, Glocker 2011], we describe how deformable
image registration can be intelligently formulated as a discrete labeling problem.

Deformable image registration is an NP-complete problem [Keysers 2003] and
consists in recovering a transformation T : <d → <d mapping a source image I
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Figure 2.1: (a) Overlapping between the source (I) and target (J) images, before
registration. As it can be observed, the aligment bewteen the images is not perfect.
(b) Overlapping between the deformed source image and the target, after registra-
tion. The deformable registration algorithm recovered a deformation field T(x) that
was applied to the source image, in order to align them.

to a target image J (I, J : Ω ⊂ <d → <), so that optimal alignment is achieved1

(the warped image is denoted by I ◦ T ). Figure 2.1 illustrates this idea. This can
be mathematically formulated as follows:

T̂ = arg min
T

M(I, J ;T ) +R(T ), (2.11)

where M represents the data term (similarity between the warped source image
I ◦ T and the target image J) and R the regularization term (geometric consis-
tency/realistic deformations). Here T̂ indicates the optimal transformation.

T is usually defined using a dense deformation field D : <d → <d (relative with
respect to the current position), mapping every position x ∈ Ω from image I to its
corresponding position T (x) in image J :

T (x) = x+D(x). (2.12)

In such a setting, the dense deformation field D has as many parameters as
pixels in the image (one d-dimensional displacement vector for every x ∈ Ω). Such
dimensionality of the graph results on high complexity which should be avoided
(e.g. for a standard volumetric image of 256 × 256 × 256 voxels, the degrees of
freedom of our parameteric model would be 2563 = 16777216 3-dimensional vec-
tors). Therefore, a sparse representation of the deformation field is adopted. It
is a reparametrization which uses k control points distributed uniformily within

1Note that we are assuming that both images have the same dimension d (i.e. we are performing
monodimensional deformable registration, e.g. using 2D or 3D images). When we mix different
dimensionalities (for example, we register 2D to 3D images), the formulation of the problem must
be different. In the chapter 3 of this thesis, we present an extension to this standard formulation,
adapted to the case where we aim at registering 2D slices within a 3D volume.
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the image domain to represent the complete deformation field. An interpolation
strategy acting on the displacement of these control points is used to reconstruct
the final solution. The simplification introduced by such a model is significant: we
can interpolate the displacement vectors that correspond to every image position
x by simply manipulating a few control points. Given a set of control point dis-
placements D = {d1..dk}, the dense deformation field D(x) used in equation 2.12
is reparameterized as:

D(x) =
k∑
i=1

ωi(x)di, (2.13)

where ωi are weighting (or interpolation) factors determining the influence of the
control point in the interpolated final position (the closer the control point is to
the current position x, the higher the influence of the displacement di). A com-
mon choice to define these weighting factors is the use of B-splines, resulting in the
well-known Free Form Deformation (FFD) model. FFDs were popularized in the
medical image registration community by [Rueckert 1999]. They adopt a regular
grid as parametric model. Every control point contributes locally to the interpo-
lation function. Other interpolation models like Thin-Plate Splines (see section
3.1.3.2) could be adopted. However, the local support for deformations and in-
herent computational efficiency make FFDs a good choice to deal with deformable
image registration in a discrete scenario.

Once the parametric model is chosen, let us proceed with a formal definition
of the corresponding graphical model and the energy function associated with it.
Let us consider an undirected graph G = 〈V, E〉, where nodes are associated to
variables representing control points, and E is a regular grid (2D or 3D depending
on the dimensionality of the images) with a 4-connected neighborhood system in
case of 2D registration, and a 6-connected neighborhood system in case of 3D reg-
istration (where edges connecting nodes along the z axis are added to the standard
4-connected system). The edges (i, j) ∈ E are used to impose smoothness on the
deformation field and render the problem well posed.

The label space L consists of labels li ∈ L associated to d-dimensional displace-
ment vector dli ∈ <d (i.e. the integer label li could be seen as an index value for
the displacement vector dli). Several strategies can be used to discretize the space.
Two common approaches are the so-called dense and sparse sampling (illustrated
in figure 2.2). When we assign a label li to a node i, the control point pi is moved
according to the displacement vector dli . A labeling Γ assigns one label li to every
node i ∈ V. Recall that every discrete label li is associated in our framework to
a d-dimensional displacement vectors dli . Thus, we define DΓ as the set formed
by the displacement vectors associated to the labeling Γ. Hence, by considering
different labelings Γ, we explore a discretized version of the naturally continuous
space of deformation fields (see example in Figure 2.3. For example, let us consider
a simple 2D label space formed by 5 labels L = {0, 1, 2, 3, 4}. We assign to every
label a vector of length 1 in each direction (according to the sparse sampling shown
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Figure 2.2: Different type of sampling strategies for the discrete label space used
for image registration: sparse (a) and dense (b). Note that every label in this
formulation corresponds to a displacement vector (in orange).

in figure 2.2), together with the null vector. Therefore, the vectors associated to ev-
ery label would be: d0 = (0, 0),d1 = (1, 0),d2 = (0, 1),d3 = (−1, 0),d4 = (0,−1).
If we are dealing with a graph of 6 nodes, then the labeling Γ = {0, 3, 1, 1, 3, 2} is
interpreted as the following control point based representation of the displacement
field DΓ = {d0,d3,d1,d1,d3,d2}.

The search across this space is guided by the minimization of the MRF energy
defined as:

E(Γ;G,F ) =
∑
i∈V

gi(li) + λ
∑

(i,j)∈E
fi,j(li, lj), (2.14)

where Γ is a labeling assigning one label li to every node i ∈ V, G are the unary
potentials playing the role of data (or matching) terms and F are the pairwise
terms acting as regularizers of the estimated deformation field. The MAP inference
problem (a discretized version of the continuous formulation from equation 2.11,
where G = {gi(·)}i∈V is associated to data terms M and F = {fij(·, ·)}(i,j)∈E to
regularization terms R) is therefore defined as:

Γ̂ = arg min
Γ

E(Γ;G,F ) = arg min
Γ

∑
i∈V

gi(li) + λ
∑

(i,j)∈E
fi,j(li, lj). (2.15)

The final dense deformation field D̂ is interpolated from the set of displacement
vectors DΓ̂ associated to the parameters Γ̂, as previously explained.

The data term measures the matching quality (according to the similarity mea-
sure) between the deformed source image I and the target image J , given the
displacement vectors. In this thesis, we only consider iconic matching criteria (i.e.
image intensities based functions). However, other matching criteria could be con-
sidered (we refer the reader to the review by [Sotiras 2013] for complete discussion
about this topic in the context of deformable medical image registration). Every
pixel (or voxel) will contribute to the data term of a given control point, according
to its distance. The control points have only a limited local image support. We
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Figure 2.3: Deformable registration is formulated as a discrete labeling problem
on a grid-graph, superimposed to the source 2D image. The nodes of the graph
correspond to the variables of a Markov Random Field, and model the control points
of a FFD. The space of plausible deformations is explored by choosing different
labelings.

consider a patch-based similarity measure where the region of support for control
point pi is given by the image patch Ωi (note that, most frequently, the complete
image domain Ω is covered by the union of patches Ωi, i.e. Ω =

⋃
i Ωi). Therefore,

the unary potentials are defined as:

gi(li) =
∫

Ωi

ωi(x)δ(I ◦ Tdli
(x), J(x))dx, (2.16)

where δ is an iconic similarity measure. Examples of standard similarity measures
are the sum of absolute differences (SAD) and the sum of squared differences. In
the context of different image modalities, the intensity correlation is not obvious
and usually more complex functions based on statistical measures such as mutual
information (MI) or cross-correlation (CC) may be adopted (for further information
about iconic similarity measures, we refer the reader to section 3.1.2.1).

The data term is the driving force of the optimization process. However, even
if the matching criterion is optimally minimized, the resulting deformation field
could be erroneous from geometrically view point. The regularization term plays
a key role in this process, since it imposes geometrical and smoothness constraints
towards anatomically realistic solutions. We define it as a pairwise term acting on
the two labels (displacement vectors) assigned to neighbor nodes. Using pairwise
terms, we can encode different smoothness constraints, such as the standard Pott’s
model (penalizes deviations in the displacement assignment), truncated absolute
or quadratic difference (penalize the magnitude of the vectors difference up to a
bound), approximated curvature penalty (approximates a second order derivative
of the displacement field) or the distance preserving approach (penalizes changes
in the distances between neighboring control points with respect to their initial
position) [Glocker 2009a]. Let us illustrate, for example, the distance preserving
approach, defined as the ratio between the current position of the control points
pi, pj and their original position po,i, po,j :
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fi,j(li, lj) =
|| (pi + dli)− (pj + dlj) ||
|| (po,i)− (po,j) || . (2.17)

As mentioned, alternative definitions could be considered for this term, depend-
ing on different constraints and domain specific restrictions.

A common strategy to improve the accuracy of the method and increase its cap-
ture range consists in using a pyramidal approach. It allows a progressive search
space exploration, while keeping low complexity. The idea is to start with dis-
placement vectors with important distance and progressively reduce their spread,
centering them around the current solution. It is clear that increasing the number of
labels to infinity will converge to a continuous formulation. Since this is intractable
from computational perspective [Glocker 2008], the idea behind this approach is to
iteratively compose several deformation fields, while refining the grid of nodes and
the label space, so that big as well as small local deformations are captured. At ev-
ery iteration we consider a fixed label space and constant number of grid nodes, we
perform MAP inference for equation 2.15 and we compose the resulting deformation
field with the previous one.

2.4 MAP Estimation on Graphical Models

The computer vision tasks that were presented in the previous sections (i.e. se-
mantic segmentation and deformable image registration) were formulated as MAP
inference problems. In this section, we focus on how these MAP problems can be
solved through discrete optimization.

Discrete optimization of MRFs is, in general, an NP-hard problem [Shimony 1994].
However, in special cases, it can benefit from very efficient solutions. The trivial
brute force algorithm (i.e. trying all possible combination of labels for each and
every variable) has an exponential complexity that makes such an approach unsuit-
able. More efficient algorithms have been developed during the last two decades
which boosted the use of graphical models in the field of computer vision. They
can be classified in three main categories according to [Kappes 2013]:

i. Polyhedral and combinatorial methods, solving a continuous linear program-
ming (LP) relaxation of the discrete energy minimization problem. The cen-
tral idea is to relax the integrality condition of the variables in order to sim-
plify the problem. Once the integrality constraint is relaxed, standard lin-
ear programming methods can be applied to solve the optimization problem,
and rounding strategies are used to recover the integral solution. Examples
of such approaches are Linear Programming Relaxations over the Local Poly-
tope, Quadratic Pseudo Boolean Optimization (QPBO) [Rother 2007] and Dual
Decomposition [Komodakis 2011].

ii. Message passing methods, in which messages are calculated and propagated
between nodes in a graph. This propagation can be seen as a re-parametrization
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of the original problem aiming to establish special properties in the re-weighted
function that makes inference easier. Examples are the standard Loopy Belief
Propagation (LBP) [Murphy 1999] and Three Re-weighted Belief Propagation
(TRBP) [Wainwright 2005].

iii. Max-flow and move-making algorithms make use of the well know max-flow
min-cut [Boykov 2004] algorithm from graph theory, which can optimally solve
some instances of discrete energies. These methods are usually combined with
greedy strategies that iteratively minimize over the label space by solving a
sequence of max-flow min-cut sub problems. Examples are α-expansion, αβ
swap [Boykov 2001] and FastPD [Komodakis 2007a] algorithms. Simpler move-
making algorithms not using max-flow, but still applying the strategy of starting
with an initial labeling and iteratively moving to a better one until a conver-
gence criterion is met, are the classical Iterated conditional modes (ICM) [Be-
sag 1986] and its generalization Lazy Flipper [Andres 2012].

In the spirit of making this thesis self contained, in this coming section we de-
scribe three MAP inference algorithms used in our work. Loopy Belief Propagation
and Lazy Flipper are used in chapter 3, since they can be applied to arbitrary graph
topologies, label spaces and energy terms. In that chapter, we consider three dif-
ferent approaches to solve slice-to-volume deformable registration, varying in terms
of graph topology, label space definition and energy construction. Therefore, we
adopted these two algorithms which can be used to perform MAP inference in all
these models. FastPD is used in chapter 4 where we propose context-specific pair-
wise deformable registration models which can be efficiently optimized through this
method. In what follows, we briefly describe these three approaches.

2.4.1 Loopy Belief Propagation

Message passing algorithms estimate a solution by iteratively passing messages
around the variables of the random field. These messages mij (sent from a node
i to a node j) are actually vectors of size | L | (cardinality of the label space),
where every scalar entry represents what node i thinks about assigning label l to
the node j (every entry is therefore mij(lj)). Given, for example, a pairwise random
field with unary potentials φi and pairwise potentials φij , the message mij(lj) is
computed as:

mij(lj) = min
li∈L

(φi(li) + φij(li, lj) +
∑

r∈N (i)\{j}
mrj(li)), (2.18)

where N (i) is the set of neighbors of i. Once a node (variable) i receives all the
messages from its neighbors, it computes its beliefs (also vectors of size | L |) in a
label li as follows:

beli(li) = φi(li) +
∑

j∈N (i)
mij(li). (2.19)
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The messages are iteratively passed from one node to its neighbors until no
change occurs from one iteration to the next one. When convergence is achieved,
the MAP labeling is obtained for every node i as the label li that minimizes the
belief beli(li).

Note that both, messages and beliefs computed for a given node i, depend on the
messages received from its neighbors j ∈ N (i). Therefore, we need a way to initialize
the message calculation process. If the graph that underlies the MRF is a tree, this
process is initialized in the roots since messages for these nodes can be calculated
considering just the potentials (the set N (i) \ {j} from equation 2.18 is empty).
In this case, at convergence, the solution is guaranteed to be optimal for arbitrary
energies. If the structure is not a tree, messages are passed in arbitrary order, and
the algorithm is not guaranteed to converge in a finite number of iterations. LBP
has shown good experimental performance in empirical studies [Murphy 1999] with
arbitrary graphs and it was successfully applied in this thesis to optimize different
type of graphical models in 3.

2.4.2 Lazy Flipper

Lazy Flipper is a movie-making algorithm proposed by [Andres 2012]. It is a gener-
alization of the well-known ICM [Besag 1986] which explores (exhaustively or not)
the search space.

The idea is to start from an arbitrary initial assignment and perform successive
flips of variables that reduce the local (and consequently the global) energy to be
minimized. A greedy strategy is adopted to explore the space of solutions: as soon as
a flip reducing the energy is found, the current configuration is updated accordingly.
In a first stage, only one variable is flipped at a time (in the same way that ICM).
However, once a configuration is found whose energy can no longer be reduced by
flips of one variable, a new stage starts where all subsets of two connected variables
(i.e. variables that are linked by an edge in the graph) are considered. This strategy
is applied, considering sets of maximum size k. This parameter controls the search
depth. For k = 1, it specializes to ICM. For bigger values of k a tradeoff between
approximation quality and runtime is established, which in the limit converges to
an exhaustive search over only the connected subgraphs (intractable in most of
the cases). The algorithm is implemented using two efficient data structures: the
connected subgraph tree (CS-tree, used to efficiently and uniquely enumerate the
subgraphs so that only connected subsets of variables are considered) and a tag list
that prevents the repeated assessment of unsuccessful flips.

The solutions obtained using Lazy Flipper are guaranteed to be optimal within
a given Hamming distance in the label space. This move-making algorithm can
be applied to problems modeled with arbitrary graphs, energies and label spaces.
That is the reason why we choose such a basic but robust approach to compare
different types of models in chapter 3. We refer the reader to [B Andres, JH
Kappes 2010, Andres 2012] for a complete description and discussion about this
method.
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2.4.3 FastPD

FastPD is a discrete optimization algorithm based on principles from linear pro-
gramming and primal dual strategies, which at the same time generalizes α-expansion
[Komodakis 2008]. Therefore, it may be included in categories (i) and (iii) from
the classification scheme proposed at the beginning of this section. One of the
main advantages of FastPD is its modularity/scalability, since it deals with a much
wider class of problems than α-expansion, being an order of magnitude faster while
providing the same optimality guarantees when performing metric labeling [Ko-
modakis 2007b].

FastPD solves a series of max-flow min-cut problems on a graph. In that sense,
it is similar to α-expansion which also performs MAP inference on multi-label prob-
lems by solving successive binary max-flow min-cut problems. The main difference
between these approaches is the construction of the graph where max-flow min-cut
algorithm is applied. α-expansion constructs the binary problem by restricting the
label space, so that the only options for a given variable are to remain in its current
assignment, or to take a label α (which varies in every iteration). Instead, FastPD
constructs these binary problems by performing a Linear Programming Relaxation
(LPR) of the integer program that represents the discrete MRF formulation. It
builds upon principles drawn from the duality theory of linear programming, ap-
plying the well known primal-dual schema to the relaxed version of the MRF integer
programming formulation.

For the sake of clarity, let us explicitly show how we can cast a standard MAP
inference problem on a pairwise MRF as an integer program [Komodakis 2005].
Given, for example, the MAP formulation for the image registration problem pre-
sented in equation 2.15, we define the following integer program:

min
∑
i∈V

∑
α∈L gi(α)xi(α) +

∑
i∈V

∑
j∈N (i)

∑
αβ∈L

fij(α, β)xij(α, β), (2.20)

s.t.
∑
α∈L xi(α) = 1 ∀i ∈ V, (2.21)∑

α∈L xij(α, β) = xj(β) ∀β ∈ L,∀i ∈ V ∧ j ∈ N (i), (2.22)∑
β∈L xij(α, β) = xi(α) ∀α ∈ L,∀i ∈ V ∧ j ∈ N (i), (2.23)
xi(·), xij(·, ·) ∈ {0, 1} (2.24)

In this formulation xi(·) and xij(·, ·) are indicators for the discrete labels li
assigned to each node i, used to linearize the MRF energy. A binary variable xi(α)
is equal to 1 when node i chooses label α. The same holds for the pairwise case
xij(·, ·). Equation 2.21 guarantees that every variable is labeled with only one label
at a time, while equations 2.22 and 2.23 keep consistency between variables xi(·)
and xj(·). This integer formulation is still an NP-hard problem, given the integrality
constraint expressed in equation 2.24. Therefore, this integer program becomes a
standard linear program when this constraint is relaxed, by allowing variables xi(·)
and xij(·, ·) to take continuous positive values.
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The aforementioned linear program task is used by FastPD as the primal prob-
lem, while the dual of the resulting LP is used as the FastPD dual problem. Then,
the primal-dual schema is iteratively applied. At every iteration, a max-flow min-
cut problem is solved, improving both primal optimality and dual feasibility.

Given that FastPD can be applied to a wide range of pairwise energies (it only
requires the pairwise potentials to be positive) providing good balance between
efficiency and accuracy, it is used in chapter 4 where both models introducing
context specific information to the registration process are conceived as pairwise
MRFs.

2.5 Why Discrete Methods?

Discrete methods have several advantages when compared with continuous ap-
proaches for image registration. First, discrete algorithms are inherently gradient-
free, while most part of continuous methods require the objective function to be
differentiable. Gradient-free methods do not require computation of the energy
derivative. Therefore, it may be applied to any complex energy function (allowing
the user to define its own similarity measures in case of registration problems). The
only requirement is that this function must be evaluable in a variety of possible
discrete labelings. Second, continuous methods are quite often prone to be stuck in
local minima when the functions are not convex. In case of discrete methods, even
complicated functions could potentially be optimized using large neighbor search
methods. The main limitation is the discretization of the continuous space; however,
as suggested by [Glocker 2010], ’the optimality is bounded by the discretization,
but with intelligent refinement strategy the accuracy of continuous methods can
be achieved’. Third, parallel architectures can be used to perform non-sequential
tasks required by several discrete algorithms (such as message calculation in LBP)
leading to more efficient implementations. Fourth, by using a discrete label space
we can explicitly control its range and resolution (it can be useful to introduce
prior information, as it will be shown in chapter 3), while in continuous models it
is not clear how this type of information can be used to constraint the solution.
Last but not least, discrete frameworks such as discrete MRF provide a modular
and principled way to combine prior knowledge with data likelihood, what makes
it applicable to a wide range of vision tasks [Wang 2013].



Chapter 3

Slice-to-Volume Registration

In this chapter we investigate the use of graphical models in the context of slice-to-
volume registration. We start with a comprehensive literature review, that presents
most of the methods that have been proposed to deal with this challenging problem.
Then, we introduce a scalable, modular and flexible formulation which can accom-
modate low-rank and high-order terms, that simultaneously selects the plane and
estimates the in-plane deformation through a single shot optimization approach.
The proposed framework is instantiated into different variants seeking either a
compromise between computational efficiency (soft plane selection constraints and
approximate definition of the data similarity terms through pairwise components)
or exact definition of the data terms and the constraints on the plane selection.
Simulated and real data in the context of US and MRI registration (where both
framework instantiations as well as different optimization strategies are considered)
demonstrate the potentials of our method.
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3.1 Literature Review

Image registration is the process of aligning and combining data coming from more
than one image source into a unique coordinate system. During the last decades,
image registration has become one of the pillars of computer vision and medical
imaging. In medical imaging, the problem of slice-to-volume registration has re-
ceived further attention during the last decade. In this case, instead of registering
images which same dimension, we seek to determine the slice (corresponding to an
arbitrary plane) from a given 3D volume that corresponds to an input 2D image.

Several applications requiring slice-to-volume mapping have emerged and pushed
the community towards developing more accurate and efficient strategies. Such
medical imaging tasks can be classified in two main categories: those related to
image fusion for image guided interventions; and those related to motion correc-
tion and volume reconstruction. In the first category, pre-operative 3D images and
intra-operative 2D images need to be fused to guide surgeons during medical in-
terventions. Slice-to-volume registration plays a key role in this process, allowing
the physicians to navigate 3D pre-operative high-resolution annotated data using
low-resolution 2D images acquired in real-time during surgery. In the second cat-
egory, the goal is to correct for misaligned slices when reconstructing a volume
of a certain modality. A typical approach to solve this task consists in mapping
individual slices onto a reference volume in order to correct for inter-slice misalign-
ment. Again, the development of accurate slice-to-volume registration algorithms
is crucial to successfully tackle this problem.

Slice-to-volume registration is also known as 2D/3D registration, due to the di-
mension of the images involved in the registration process. However, this term is am-
biguous since it describes two different problems depending on the technology used
to capture the 2D image: it may be a projective (e.g. x-ray) or sliced/tomographic
(e.g. US) image. Even if both problems share similarities in terms of image dimen-
sionality, every formulation requires a different strategy to estimate the solution.
The lack of perspective and different image geometry [Birkfellner 2007] inherent
to both modalities, make it necessary to come up with distinct strategies to solve
these registration problems. Moreover, a pixel in any 2D projective image does not
correspond to only one voxel from the volume (this is the case for slice-to-volume),
but to a projection of a set of them in certain perspective. Therefore, the type of
functions used to measure similarities between the images is necessarily different
in every case. While most of the projective 2D/3D image registration methods re-
quire to bring the images into dimensional correspondence (by different strategies
like projection, back-projection or reconstruction [Markelj 2010]), in case of slice-to-
volume registration, pixels from the 2D image can be directly compared with voxels
from the volume. In this introduction we focus on the latter case, while a more
comprehensive overview about projective 2D to 3D image registration is presented
in [Markelj 2010]

Slice-to-volume registration could be considered as an extreme case of 3D-3D
registration, where one of the 3D images contains only one slice. Even if theoreti-
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cally true, 3D-3D registration methods can not be extrapolated in a straightforward
way to the slice-to-volume scenario. This holds, particularly, for registration meth-
ods based on image information, since the descriptors used to quantify similarities
between images, normally assume that the amount of information available from
both images is balanced. The fact that a single slice (or even a few sparse slices)
provides less information than an entire volume, should be explicitly considered in
the problem formulation. Moreover, specific geometrical constraints like planarity
satisfaction and in-plane deformation restrictions, arise in the case of slice-to-volume
registration, which are not applicable in the setting of dimensional correspondence.

In this introduction, we discuss the literature of this emerging field, offering a
comprehensive survey of the articles based on slice-to-volume registration, proposing
a categorical study of the related algorithms according to a taxonomy and analyz-
ing the advantages and disadvantages of each category. We propose a taxonomy
based on previous surveys on image registration [Markelj 2010, Sotiras 2013], and
adapted to the particular slice-to-volume case. We classified the related work ac-
cording to several principles: (i) matching criterion (section 3.1.2), which specifies
the strategies to define similarities between the images; (ii) transformation model
(section 3.1.3), indicating the nature of the models used to bring images into spa-
tial correspondence; (iii) optimization (section 3.1.4), differentiating the approaches
according to the strategy used to infer the optimal transformation model; (iv) num-
ber of slices (section 3.1.5), which splits the methods in two groups, according to
whether they require a single or multiple source image slices; and finally the (v)
applications (section 3.1.6), where we identify the main clinical scenarios that have
motivated research in the field.

3.1.1 Definition of Slice-to-Volume Registration

Let us start by giving a formal definition of slice-to-volume registration. Given a 2D
image I and a 3D volume J , we seek a mapping function Θ̂ which optimally aligns
the tomographic slice I to the 3D coordinate space of J , through the minimization
of the following objective function:

Θ̂ = arg min
Θ

M(I, J ;Θ) +R(Θ), (3.1)

where M represents the image similarity term (the so called matching criterion)
and R the regularization term. Note that this mapping may be rigid or non-rigid,
depending on whether we allow image I (or its corresponding reformatted slice from
J) to be deformed or not. If we estimate only a rigid mapping (i.e. we calculate a
6 degrees of freedom rigid transformation or even a more restrictive one), we name
the problem rigid slice-to-volume registration. In case we also infer some sort of
deformation model or we consider more expressive linear transformations (such as
affine transformations), we call it non-rigid registration. We refer the reader to
section 3.1.3 for more information about different transformation models.

Matching criterion M measures the similarity between the 2D image and its
corresponding mapping (slice) to the 3D volume. Usually, it is defined using inten-
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sity information or salient structures from I and J . A complete discussion about
matching criteria in the context of slice-to-volume registration (where we also con-
sider methods that do not use any image information but rely on external sensors)
is presented in section 3.1.2.

The regularization term R imposes constraints on the solution that can be used
to render the problem well posed. It also may encode geometric properties on the
extended (plane selection and plane deformation in case of non-rigid registration)
transformation model. The choice of regularizer depends on the transformation
model. While simple models like rigid body transformations can be explicitly es-
timated even without regularizer, the term R becomes crucial in more complex
non-rigid scenarios to ensure realistic results.

We aim at optimizing the energy defined in equation 3.1, by choosing the best
Θ̂ that aligns the 2D and 3D images. Depending on the variables we are trying to
infer, and their optimality guarantees, they can be classified in different categories.
A full study of this topic is included in section 3.1.4.

The general definition given in equation 3.1 considers a single slice as the input
to the registration process. However, for the sake of completeness, in this survey we
also consider the so called multi slice-to-volume registration approaches, for which
several (but sparse) slices are registered to a full 3D volume. It is worth noting that
we do not include methods that perform a prior 3D reconstruction from the input 2D
slices before registration (see, for example, the work by [Arbel 2001,Arbel 2004]),
since these methods reduce the problem to the classic 3D-3D scenario, which is
not within the scope of our work. On the contrary, we consider those methods that
directly register the subset of 2D slices (which can be orthogonal, parallel, arbitrary
or even without an a-priori known spatial relation), rather than reconstructing a
volume. Discussion and classification of the approaches according to this criterion
is presented in section 3.1.5.

3.1.2 Matching Criterion

The matching criterion (also known as (dis)similarity measure, merit function or
distance function) quantifies the level of alignment between the images, and it is
typically used to guide the optimization process of the transformation model. De-
pending on the nature of information exploited in the matching process, registration
methods can be classified as iconic -we use voxel intensities to quantify similarity-,
geometric -we use a sparse set of salient image locations to guide the registration-
or hybrid methods -we combine both strategies-. In the particular case of slice-to-
volume registration, there are also some approaches which instead of using image
information, they rely on other non-image technologies; we will refer to them as
sensor based methods.

Slice-to-volume registration excluding medical imaging-based methods is mainly
performed using two different technologies: optical (OTS) and electromagnetic
(EMTS) tracking systems [Birkfellner 2008]. Optical systems employ different types
of cameras (such as infrared (IR), standard RGB or laser cameras) to track markers
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which help to identify the current position of the objects. Electromagnetic position-
ing systems perform tracking based on a system of transmitter, sensors and process-
ing unit that localizes the position and orientation of a target object by measuring
electromagnetic field properties. Both methods inherit constraints on the nature
of transformation that they can estimate, since only rigid transformations can be
obtained through these technologies. Moreover, accurate initial calibration is usu-
ally required at the beginning, due to the fact that positioning is done through the
estimation of the relative displacement from the previous one and therefore errors
can be propagated and accumulated through all the process. Instead, registration
algorithms exploiting image based information -iconic or geometric- can deal with
elastic anatomical changes and they are less sensitive to initial errors (since it is
simple to correct them iteratively during the registration process). On the negative
side, such methods can be more sensitive to image noise, which is frequently present
in intra-operative, real-time and low-quality modalities, normally corresponding to
the input 2D image. In addition, the amount of information of an image slice is
sparse when compared to a volumetric image, resulting on ambiguities in terms of
image matching that render the registration problem ill-posed. Different strategies
have been developed to deal with these problems depending on the choice of the
matching criterion.

Image registration can be monomodal -when the slice and the volume are cap-
tured with the same type of image technology- or multimodal -when slice and vol-
ume refer to different modalities, e.g. US slice and MRI or CT volume-. In the
former case, the task of measuring the similarity between the images is simpler,
since pixel/voxel intensity values corresponding to the same anatomical structure
are highly correlated, or even identical, in both images. Therefore, iconic methods
may perform better since the main issue associated to them -the difficulty to explain
image similarities using pixel/voxel correspondences- is already solved. In case of
multimodality, where the relation between pixel intensities is not obvious, there are
two major alternatives: to continue using the iconic matching criterion but defining
more complex similarity measures, or to adopt a geometric or sensor based strategy
which appears to be more robust when dealing with different image modalities.

3.1.2.1 Iconic

Iconic matching criteria are defined using image intensity information. Similarity
between images is measured using functions that act on the pixel/voxel intensity
level. Standard signal processing tools, information theoretical approaches or even
similarity measures defined for particular image modalities can be considered. The
challenge lies in describing both images on a common space where they can be
compared, in particular in the context of multimodal setting, where voxel intensi-
ties corresponding to the same anatomical or functional structures are dissimilar.
There are two desirable properties sought at the definition of any iconic similarity
measure: (i) to be convex, since it simplifies the optimization process and (ii) to
be discriminative, in the sense that it assigns distinct values to different tissues or
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anatomical structures.
Typically, in the context of slice-to-volume registration, an iconic matching cri-

terion δ(I1, I2) : Ω1 × Ω2 → < is defined to quantify the similarity between two
slices (or patches, according to whether we specify a global or local function). Such
a similarity measure varies depending on the modalities we are trying to register. In
a monomodal scenario, simple similarity measures such as the sum of absolute dif-
ferences (SAD) [Ferrante 2013,Ferrante 2015a,Ferrante 2015b,Leung 2010], sum of
square sifferences (SSD) [Fogtmann 2014,Heldmann 2009,Leung 2010,Marami 2011,
Miao 2014a, Osechinskiy 2011b, Po Su 2013, Seshamani 2013, Xu 2008, Yu 2008,
Yu 2011] or even mean of square differences [Fogtmann 2014, Gholipour 2010,
Gholipour 2009,Honal 2010,Kim 2008b,Kim 2010a,Tadayyon 2010a,Tadayyon 2010b]
of the intensity values can be used. In vector notation, SAD can be also seen as
the L1 norm of vectorized image, whereas SSD would correspond to the L2 norm.
These metrics assume that there is a straightforward correspondence between the
intensity values in both images, which is not necessarily the case.

More complex metrics, exploiting statistical properties of the observed inten-
sity values in both images, have also been proposed. These methods, on top of
handling identity transformations, can cope with piece-wise linear relationships be-
tween the intensities in the images to be registered. In these cases, image pix-
els in both images are seen as entries of two random vectors X and Y. Cross-
correlation (CC) is a well known function widely used in the fields of signal process-
ing and statistics, also applied in several slice-to-volume registration studies [Birk-
fellner 2007,Elen 2010,Fei 2002,Fei 2003a,Fei 2003b,Fei 2004b,Frühwald 2009,Hum-
mel 2008,Jiang 2007a,Jiang 2007b,Jiang 2009,Kainz 2015,Kim 2005,Miao 2014a,No-
ble 2005,Osechinskiy 2009,Osechinskiy 2011b,Xu 2008,Yan 2012,Zarow 2004]. CC
measures the correlation between the entries of X and Y. It is simple to compute
and, more importantly, invariant to shifts and scaling in the intensity domain. An-
other metric is the correlation ratio (CR), which has shown promising results even
in multimodal image registration [Roche 1998]. It measures functional dependen-
cies between X and Y, taking values between 0 (no functional dependence) and
1 (purely deterministic dependence). CR is intrinsically asymmetrical, since the
two variables (images) do not play the same role in the functional relationship. In
other words, unlike CC, CR offers different values depending on the order that im-
ages were considered. CR has been used as an iconic criterion for slice-to-volume
registration in [Marami 2011,Osechinskiy 2011b,Smolíková-Wachowiak 2005].

Information theoretic similarity measures are usually the choice of preference for
multimodal registration, and slice-to-volume registration is not an exception. The
most popular is mutual information (MI), which measures the statistical dependence
or information redundancy between the image intensities of corresponding distribu-
tions in both images, that is assumed to be maximal if the images are geometrically
aligned [Maes 1997]. It requires an estimation of joint and marginal probability den-
sity functions (PDFs) of the intensities in every image. Given the information sparse
nature of slice-to-volume registration when compared to the volume-to-volume sce-
nario, the estimation of these joint PDFs for every slice -especially in slices of low im-
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age resolution/number of samples- is a hard task and may redound to poor MI-based
registration results. An alternative approach to improve MI-based slice-to-volume
registration was developed by incorporating informative PDF priors in the context
of fMRI time-series registration [Bhagalia 2009]. First, it was shown that slices lo-
cated near the middle of the head scans give more reliable PDFs and MI estimations
because they refer to a richer information space than the end slices (top or bot-
tom). End-slices registration is then guided by a joint PDF prior based on intensity
counts from registered center-slices. Alternatively, a better MI calculation in slice-
to-volume registration can be achieved by using a PDF estimate that retains as much
information about voxel intensities as possible from the higher resolution anatomi-
cal data set, when registering 2D MR scout scan to a complete 3D MR brain vol-
ume [Chandler 2004]. MI is a widely used similarity measure for slice-to-volume reg-
istration, adopted in an important number of methods in the last decades (e.g. [Birk-
fellner 2007, Brooks 2008, Eresen 2014, Fei 2002, Ferrante 2015b, Fogtmann 2014,
Gill 2008, Huang 2009, Kim 1999, Museyko 2014, Park 2004, Rousseau 2006, Se-
shamani 2013, Smolíková-Wachowiak 2005, Tadayyon 2010a, Xiao 2011, Xu 2014a,
Yeo 2004, Zakkaroff 2012, Zarow 2004]). One of the main drawbacks of MI, is
that it varies when the overlapping area between the images changes, i.e. it is
not invariant to changes in the overlap region throughout registration. It could
happen that while estimating the transformation model, some potential solutions
lie out of the volume. In such cases, an overlap invariant function would be of
choice. To this end, a modified version of MI, the normalized mutual information
(NMI), can be applied, which is simply the ratio of the sum of the marginal en-
tropies and the joint entropy [Studholme 1999]. Another advantage of NMI with
respect to MI is its range: it conveniently takes values between 0 and 1. NMI
has been used as well for slice-to-volume registration [Chandler 2006, Elen 2010,
Gefen 2008,Hummel 2008,Jiang 2007a,Kainz 2015,Kuklisova-Murgasova 2012,Le-
ung 2010,Marami 2011,Miao 2014a,Rousseau 2005].

Using prior knowledge like segmentation masks during the iconic registration
process can be useful. These approaches, also known as region-based methods, em-
ploy intensities information or statistics to describe a pre-segmented region. Chan-
Vese metric [Chan 2001] for instance, aims to minimize the intensity variances
on the regions inside and outside a given segmentation contour. Nir and cowork-
ers [Nir 2011,Nir 2014] applied this matching criterion to the problem of aligning
multiple slices of histological images to in vivo MR images of the prostate.

Border information is another low level visual cue that was exploited by iconic
methods. It is usually determined from the intensity gradient of the images, which
gives an idea of the image structure defined by intensity changes, independently
of their actual value. MI as well as SAD or SSD can be applied on top of the
gradient magnitudes of both images. In [Brooks 2008], for example, MI between
the gradient magnitudes of an US slice and MRI volume is used. [Po Su 2013]
applies SSD on both image intensities and gradients, combining them in a unique
similarity measure. In [Xu 2014b], the matching criterion is defined using the
normalized gradient field of the images, while CC of both intensity and gradient
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magnitude was adopted in [Xu 2008].
More robust similarity measures have been introduced more recently to deal

with problems in medical image registration, and in the slice-to-volume case in par-
ticular. Remarkable contributions have been made by [Wein 2008a,Fuerst 2014] to
this field. They propose different similarity measures based on the simulation of US
images from MRI and from CT, which can deal with these challenging multimodal
registration problems. In [Wein 2007,Wein 2008a], novel methods for simulation of
ultrasonic effects from CT data are presented, together with a new similarity mea-
sure entitled Linear Correlation of Linear Combination (LC2), which is invariant
to missing simulation details, yielding smooth properties and a global optimal cor-
responding to the correct alignment. Since they simulate US imaging effects with
respect to the probe geometry, the original B-mode scan planes of the sweep are
used instead of 3D reconstruction, making it suitable for multi slice-to-volume reg-
istration. LC2 was used by [Fuerst 2014], although without the simulation process:
the similarity measure is defined by locally matching US intensities to both MRI
intensity and gradient magnitude.

Another robust similarity measure, the modality independent neighborhood de-
scriptor (MIND) was proposed by [Heinrich 2012] for multimodal rigid and de-
formable registration. It is based on the concept of local self-similarity at the patch
level in order to create a multi-dimensional descriptor through ranking of the local
intensity distribution of the two images, therefore providing a very good represen-
tation of the local shape of an image feature. It can be computed in a dense fashion
across all the pixels (or voxels) of the images; once it is computed, the SSD of the
MIND representations can be used as a similarity measure. Thanks to its point-wise
(pixel or voxel-wise) calculation nature, it can be adapted to almost any registra-
tion algorithm. An extension to MIND, named Self Similarity Context (SSC) is
also estimated using patch-based self-similarities [Heinrich 2013]. In [Cifor 2013b],
MIND is successfully used in a multi slice-to-volume registration framework to align
untracked freehand 2D US sweeps to CT volumes.

A last family of robust similarity measures was introduced by [Rivaz 2014c,Ri-
vaz 2014b,Rivaz 2014a] in the context of mutlimodal US/MRI image registration.
In [Rivaz 2014c], a metric called Contextual Conditioned Mutual Information (Co-
CoMI) was proposed. The metric aims at tackling one of the main drawbacks of
classic MI based methods, that is taking into account the intensity values of cor-
responding pixels and not of neighbor. Images are treated as “bag of words” and
consequently contextual information is ignored. CoCoMI overcomes this limitation
by conditioning the MI estimation on contextual information. In [Rivaz 2014b],
Self Similarity α-MI (SeSaMI) -another MI based matching criterion- is proposed.
α-MI is usually calculated on multiple features like intensities and their gradients,
as opposed to standard MI which is usually calculated on intensities only. SeSaMI
combines this multi-feature α-MI formulation with self-similarities in a kNN α-MI
registration framework by penalizing clusters (i.e. the nearest neighbors) that are
not self-similar. Finally, in [Rivaz 2014a], a CR similarity measure is introduced.
Robust Patch Based Correlation Radio (RaPTOR) computes local CR values on
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small patches and adds them to form a global cost function. Authors claim a
property that makes suitable such methods: their metric is invariant to important
spatial intensity inhomogenity, what is especially useful when dealing with US im-
ages due to wave attenuation, shadowing and enhancement artifacts. One of the
main advantages of these Rivaz’s metrics (CoCoMI, SeSaMI and RaPTOR) is that
their gradient can be derived analytically, and therefore the cost function can be
efficiently optimized using stochastic gradient descent methods.

3.1.2.2 Geometric

Geometric registration finds correspondences between meaningful anatomical lo-
cations or salient landmarks [Joshi 2000, Glocker 2011]. These methods aim at
minimizing an energy function that, for a given transformation, measures the dis-
crepancy between the key-points detected in both, the 2D slice and the volumetric
image. Simplicity of the registration process once the landmarks are appropriately
determined, no sensitivity to initializations and a wider capture range in terms of
deformation are the main strengths of such approaches. On the other hand, the
landmark detection and matching processes are not that trivial, and errors on their
position compromise the accuracy of the registration process. Moreover, due to the
sparsity of the key-points, the quality of the deformations may become insufficient
(due to the limited support on the interpolation).

The early work by [Gourdon 1994] presents a geometric method to perform
slice-to-volume registration between a curve and a surface. In this work, Gourdon
and Ayache exploited the knowledge about the differential properties computed on
both, the curve and the surface, to constrain the rigid matching problem. The
most relevant contribution of this work is their discussion about how differential
constraints can be used to register rigidly a curve on a surface. However, they used
the basic Marching Cubes algorithm [Lorensen 1987] to extract them from simulated
and medical data. The extraction of these structures remains an arduous task for
images with low resolution, a scenario often valid in slice-to-volume registration.

Extracting distinctive features becomes even more complicated for medical im-
ages (opposed to natural ones), since the first ones are usually not as discriminative
(lack of texture) as the last ones. Invariance to scaling, rotation and changes in il-
lumination or brightness constitute useful properties for methods seeking to extract
salient points. Highly distinctive features (in both spatial and frequency domains)
simplify the matching task since it is likely that they are correctly matched. Clas-
sical examples of such descriptors successfully applied in different computer vision
tasks are the Scale-invariant feature transform (SIFT) [Lowe 1999], the Harris de-
tector [Harris 1988], the Histogram of Oriented Gradients (HOG) [Dalal 2005],
Speeded Up Robust Features (SURF) [Bay 2008], etc. More recently, features
learned using deep learning have been successfully applied for scenarios involving
massive amount of annotated data for training [Long 2014]. These features are used
to extract the salient landmarks that will guide the geometric registration process.
Once the landmarks are established in both slice and volumetric images, there are
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two choices. First, we can perform a matching process which results in establish-
ing correspondences between pairs of points from the two sets. Once the matching
process is finished, correspondences can be used to estimate the desired -rigid or
non-rigid- transformation models. Alternatively, methods directly estimating the
transformation model without inferring any correspondence could also be applied.
Sometimes, both correspondences and transformation model can be inferred at the
same time, like in case of Iterative Closest Point (ICP) [Besl 1992] algorithm. ICP
is an algorithm subsequently improving the matching of point pairs. It minimizes
the sum of geometric distances between the transformed set of source image land-
marks and the closest detected landmarks in the target one. It is a simple and fast
method that follows the closest neighbor principle to perform the matching task,
which often converges to local minimum though.

[Dalvi 2008] proposed a slice-to-volume registration approach which uses ICP.
First, it extracts phase congruency information from the slices/volume using ori-
ented 2D Gabor wavelets. Then, using local non maximum suppression, a robust
and accurate set of feature points is automatically obtained, which are subsequently
matched by ICP inferring a rigid body transformation. [Nir 2014] presented a parti-
cle filtering framework using a geometric matching criteria where the closest point
principle is applied (they use the SSD between pairs of closest points in the two
sets). In their proposal, the inferred transformation model involves 9-DOF (affine)
matrices instead of 6-DOF transformations (rigid body). Nir’s method was applied
by [Moradi 2013] as a pre-processing step in a tumor detection learning based frame-
work, to register US to whole-mount histopathology references of prostate images,
mapping the location of tumors to the US image domain. Another method that uses
ICP was proposed by [Yavariabdi 2015] for deformable registration. They register
2D transvaginal US (TVUS) images with 3D MRI volumes to localize endometrial
implants. They use contour to surface correspondences through a novel variational
one-step deformable ICP method, finding a smooth deformation field while estab-
lishing point correspondences automatically. The main drawback of this approach
is that it relies on the user to segment the organs. Manual pelvic organ segmenta-
tion is a laborious and time consuming task, and consequently the applicability of
the approach in real scenarios is limited. Note that in the three papers discussed
in this paragraph, different types of transformation models where estimated based
on the closest point principle, showing the flexibility of such approach.

Signed distance functions (or signed distance maps) can be used to avoid the
landmark matching step when performing non-rigid registration of shapes and
points. In this case, the landmarks or shapes are assigned to zero distance, while
the rest of the pixels of the image are labeled with the distance to the nearest
geometrical primitive (landmark or boundary). Once the distance map is cre-
ated, the optimal transformation model can be estimated by means of standard
iconic registration (e.g. using SSD on the distance maps) [Paragios 2003, Xiaolei
Huang 2006, Taron 2009]. In [Boer 2007], signed distance functions are used to
register slices of histological images with a pre-reconstructed 3D model. Authors
proposed to use a naive brute force approach for optimization, which incurs in
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extremely high computational cost.

3.1.2.3 Sensor Based Methods

Sensor based systems are an alternative to image-based methods (even if images
are often used for their initialization). Slice position and orientation are continu-
ously updated from the current one. Such information can be used to extract the
corresponding slice from a given volume assuming an initial correspondence. Opti-
cal (OTS) and electromagnetic (ETMS) tracking systems are the most widely used
technologies to perform this task. OTS systems determine in real-time the position
of an object by tracking the positions of either active or passive markers attached
to the object. It requires a line-of-sight to be maintained between the tracking
device and the instrument to be tracked. This might cause an inconvenience to
the physician -especially in image guided interventions- during his work, resulting
highly inconvenient. EMTS systems usually consist of three basic components: the
electromagnetic field generator, a system control unit that interfaces with a PC,
and tracked sensor coils together with their interfaces to the system control unit.
By measuring the behavior of each coil, the position and orientation of the object
can be determined. EMTS do not inherit the same constraints as the line-of-sight
requirements but it is sensitive to distortion from nearby metal sources and exhibits
limited accuracy compared to optical tracking [Birkfellner 2008]. Moreover, neither
OTS nor EMTS can deal with elastic deformations between volume and slice. In
general, one can claim that sensor based methods are usually more reliable (when
they are calibrated correctly) than image based methods since they are not affected
by ambiguities that arise during the image interpretation process.

In [Gholipour 2011], a three-dimensional magnetic field sensor is used to track
the motion of a subject during MRI scanning. It allows estimating the location of
the slices for volume reconstruction. The rigid 6-DOF transformation of the sen-
sor in three dimensions (6-DOF) is calculated in real-time using the native gradient
fields of the MRI scanner. The relative 3D location of each slice is computed through
the sensor motion parameters at the time of slice acquisition. Other works exploit-
ing EMTS systems can be found here [Hummel 2008,Olesch 2011a,Olesch 2011b,
Xu 2008].

Optical tracking systems can also replace classical image based slice-to-volume
registration algorithms. In [Schulz 2014] a slice-by-slice motion correction for fMRI
image reconstruction (see section 3.1.6.2 for a complete discussion about this prob-
lem) is achieved thanks to an optical tracking system. Authors proposed to use three
tracking cameras with embedded image processing, to track the position of the three
optical markers attached to the skull using goggles. Tracking information is then
used to replace the classical slice-to-volume registration step [Kim 1999] necessary
to account for motion correction during fMRI image reconstruction. In [Bao 2005],
optical tracking is used to register laparoscopic US to CT images of a phantom
liver, where an an infrared camera was used to localize the US probe. The advan-
tage of infrared cameras is that the position sensor does not pick up interference
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from reflections and ambient light. However, the line-of-sight requirement still holds
and therefore sensor must not be blocked. Other papers using OTS to track the
position of image slices when registering them with volumetric images can be found
here [Huang 2009,Penney 2006,Penney 2004,Schulz 2014].

More recently [Eresen 2014], smartphone tracking technology was considered
as a navigation tool to initialize a slice-to-volume registration process between a
histological 2D slice and a MR volume. The Inertial Measurement Unit (IMU)
of the smartphone (also available as standalone components) is used to define the
orientation of the slice. Given the orientation and position data of an IMU sensor,
one can then interpolate the corresponding slice from the MR volume. This in-
teractive alignment is applied to determine initial orientation for the 2D slice, and
is refined using an iconic MI based registration process optimized via brute force.
IMU tracking systems use a combination of accelerometers and gyroscopes to mea-
sure acceleration and angular velocity, respectively. Since acceleration is the second
derivative of position with respect to time, and angular velocity is the first deriva-
tive, angular changes integrated over time from a known starting position yield
translation and rotation (i.e. a 6-DOF transformation) [Birkfellner 2008]. These
sensors are cheap and widely available. However, a major issue of using IMUs for
tracking refers to accumulation of errors (either systematic or statistical), leading
to degradation estimation over time. Kalman filters [Kalman 1960] can be used
to deal with this type of issues and have been often adopted from the scientific
community.

Note that, as described in the next section, several papers that propose sensor-
based methods, are actually a combination of this technology with some image-
based registration technique, resulting in what we call a hybrid method.

3.1.2.4 Hybrid

[Sotiras 2010b] states that the hybrid matching criteria take advantage of both,
iconic and geometric approaches, in an effort to get the best of both worlds. This
category can be extended by including sensor based technologies as it can also be
combined with iconic or geometric methods.

[Mitra 2012b,Mitra 2012a] proposed a hybrid slice-to-volume registration ap-
proach, combining geometric and iconic matching criteria in a probabilistic frame-
work to register transrectal US (TRUS) with MR images of the prostate. The geo-
metric component is based on shape-context [Belongie 2002] representations of the
segmented prostate contours; Bhattacharyya distance [Bhattachayya 1943] between
the shape-context histograms of the two shapes is used to find point to point corre-
spondence in every axial MR image. The Chi-square distances between the TRUS
slice and each of the MR slices are calculated and used to determine the match-
ing slice. Once the TRUS-MR slice pair with the minimum Chi-square distance
is determined, it is used to retrieve a 2D rigid transformation (in-plane rotation
and translation) between them. This transformation is applied to the remaining
MR slices to ensure similar 2D in-plane rigid alignment with the 2D TRUS slice.
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The iconic step is performed by measuring the similarity (NMI and CC are used
as metric) between the TRUS image and every rotated axial slice of the MRI. Fi-
nally, shape and image similarity measures are transformed into probability density
functions and mapped into a statistical similartity framework towards retrieving
the MR slice that resembles the TRUS image. Two issues limit the applicability of
such an approach in clinical practice. First, the registration is determined by the
manual segmentations of the prostate on both images. Second, the method assumes
that the TRUS slices are parallel to the MR axial planes; therefore, the result of
the registration does not consider any out-of-plane rotation, which could occur in
a realistic scenario.

Tracking information (coming from a EMTS or OTS system) can be combined
in a hybrid approach with iconic or geometric criteria to perform slice-to-volume
registration. In this case, the tracking signal is used to calculate the additive posi-
tion of a new 2D slice with respect to the previous one, bringing them to the same
coordinate system. Iconic or geometric registration is used to calculate the initial
transformation that relates this unique coordinate system with the volumetric im-
age. This approach was used by [Penney 2004] to register intra-operative US images
to a pre-operative MR volume. The algorithm was extended in [Penney 2006] to
deal with 2D US to volumetric CT registration. [San José Estépar 2009] refines the
rigid tracking information provided by an EM system attached to a laparoscopic
or endoscopic probe. The refinement is made in terms of translation parameters,
using an edge-based iconic registration method combined with a phase correlation
technique. In [Xu 2008], EM tracking and intra-operative iconic image registra-
tion are used to superimpose MRI data on TRUS images of the prostate. To this
end, a three-step algorithm is applied, with the intermediate one corresponding to
slice-to-volume registration. At the beginning of the TRUS procedure, the operator
performs a 2D tracked axial sweep from the prostate’s base to its apex, which is
used to produce a volumetric US reconstruction of the prostate volume. The recon-
structed US volume and the MRI are manually aligned. Thus, 2D TRUS slices are
registered to the US reconstructed volume (reducing the MRI/US multimodality
problem to US/US monomodality) while the estimated transformation can still be
used to recover the corresponding MRI slice. During the intervention, out-of-plane
motion compensation is achieved using intermittent multi slice-to-volume registra-
tions between nearly real-time 2D US images and the 3D US image. This rigid
body registration is based on minimizing SSD with a Simplex algorithm. The final
step refers to a 2D-2D registration of US (using CC and gradient based similarity
measures) and it seeks to account for in-plane misalignment. In this workflow, EM
tracking information is used to simplify the problem from multi to monomodality
registration, and combined with iconic slice-to-volume registration to account for
motion compensation. Other hybrid methods that combine tracking information
with iconic or geometric registration approaches are [Sun 2007,Yan 2012]

In [Ghanavati 2010] a method that combines the information from a tracked
freehand 2D US transducer with an iconic matching criterion based on US image
simulation was proposed, in the context of Total Hip Replacement (THR) surgeries.
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They use a statistical shape model (SSM) of the pelvis, constructed from several
CT images. They developed a multi-slice to volume registration method, to register
multiple 2D US slices to a statistical atlas of the pelvis. The mean shape of the
atlas is first registered rigidly to the freehand 2D US images, based on an US
simulation method [Wein 2008a]. Then, the atlas is instantiated by measuring the
iconic similarity between the actual US and the US images simulated from the
instance of the atlas. This two-step algorithm estimating the rigid transformation
and followed by the optimization of the deformable parameters, was turned into a
one-shot optimized approach in [Ghanavati 2011].

In [Wein 2008b], a position sensor attached to the patient’s skin was used to ex-
tract a scalar surrogate measurement, which represents an anterior-posterior trans-
lation used to detect and compensate for respiratory movements of the liver. This
information is combined with an iconic criterion to estimate an affine 12-DOF trans-
formation model which maps pre-operative plans and imaging into the interven-
tional scenario.

[Huang 2009] proposed a hybrid slice-to-volume registration strategy exploit-
ing multiple temporal frames. A multimodality image navigation system was in-
troduced that integrates 2D US images with pre-operative cardiac CT volumes,
using electrocardigram (ECG) information, optical tracking and iconic MI based
registration. The ECG is used to synchronize the US images to the correspond-
ing pre-operative dynamic 3D CT, depending on the cardiac phase indicated by
the ECG. Spatial information given by the optical tracker is used to produce a
near-optimal starting point for every slice, that is refined by maximizing the MI
similarity measure. Such an approach works in real-time, making it applicable to
real interventional scenarios. A different combination of sensors to solve the regis-
tration problem was proposed in [Hummel 2008], where EM and OTS sensors are
combined with iconic registration to register endoscopic US to CT data.

3.1.3 Transformation Model

Transformation models explain the relation between the slice and the volume be-
ing registered, and are the outcome of the registration process. They are often
classified according to their degrees of freedom. Rigid transformations deal with
global rotations and translations, while deformable models -the complex case- can
produce local in-plane and out-of-plane deformations. The richness of the deforma-
tion model is proportional to the number of parameters we need to specify it, and
therefore the trade-off is to be found between the model complexity and power of
expression.

3.1.3.1 Rigid

The simplest transformation model accounts for rotation and translation param-
eters. It is usually expressed as a 6 degrees of freedom (6-DOF) transformation
ΘR composed by 3 rotation and 3 translation parameters. Such a basic model is



3.1. Literature Review 37

the most common choice in the literature for slice-to-volume registration. Rigid
transformations are expressive enough to explain simple slice-to-volume relations.
They can deal with in-plane and out-of-plane translations and rotations. Clinical
scenarios that do not inherit image distortion -like simple inter-slice motion correc-
tion [Jiang 2007b,Kim 2008b,Rousseau 2005,Smolíková-Wachowiak 2005] or basic
nature image guided surgeries [San José Estépar 2009,Birkfellner 2007,Gill 2008]-
can be modeled with rigid transformations.

When out-of-plane motion is avoided, even simpler models can be used. [Za-
kkaroff 2012] proposed to recover in-plane slice rotations in cardiac MR series, using
the stack alignment transform. In-plane translation along X and Y and rotation
around a user-supplied center of rotation for the individual slices were parameter-
ized independently. It also includes a parameter for global translation along the Z
direction. Hence, it combines the individual slice transforms into a unique space of
parameters -that contains 3-DOF per slice instead of 6- so that all of them can be
optimized simultaneously. This type of models has been largely criticized suggesting
that (especially in the context of volume reconstruction) the exact corresponding
slice can only be found through a slice-to-volume registration which considers out-
of-plane rotation and translations as well. In [Xiao 2011], authors considered a
slice-to-slice matching initial step, where every 2D image from a histological vol-
ume is matched to one axial MRI slice, via a group-wise MI based comparison.
It implies a restricted transformation model involving simple slice correspondences
(1-DOF). Subsequently, they correct the out-of-plane misalignment applying 2D-
2D affine registration for each pair of matched slices, and a posterior 3D-3D affine
registration between the histology pseudo-volume (reconstructed after transforming
every 2D slice) and the MRI volume. Restricted rigid body transformations can
be a convenient initialization component of a complete slice-to-volume registration
pipeline.

6-DOF rigid body transformations are part of nearly all slice-to-volume regis-
tration algorithms. Literature seeking deformable registration [Xu 2014a], often
initially employs rigid alignment to account for big range displacements. The stan-
dard way to estimate 6-DOF rigid transformations, consists in minimizing an energy
functional (based on an iconic or geometric matching criterion) often with a con-
tinuous optimization algorithm (see section 3.1.4.1) where the search space is part
of the Euclidean group SE(3) of rigid transformations. Sensors as described in
section 3.1.2.3 can be used as well for rigid alignment as proposed in a number of
papers [Chandler 2008b,Elen 2010,Fei 2002,Fei 2003a,Frühwald 2009,Fuerst 2014,
Gholipour 2010,Huang 2009,Jiang 2007a,Kainz 2015,Kim 1999,Kim 2010a,Nir 2011,
Penney 2004,Rousseau 2006,Smolíková-Wachowiak 2005,Xu 2014b,Yeo 2004,Yu 2011].

3.1.3.2 Non-Rigid

In this review, we call non-rigid transformations to those models which perform
-at some extent- changes in the structure of the images. These changes vary from
simple operations -which can still be modeled using linear transformations, such as
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scale, flip or shear- to more complex models that produce local deformations.

Linear Models

Linear transformations are the first step towards non-rigid registration. In [Wein 2008a],
authors suggested that affine models can eliminate most of the large-scale defor-
mations when registering intra-operative 2D US slices to CT images. These defor-
mations are particularly observed between CT and US exams in different respira-
tory configurations, and could be handled with affine transformations. However,
in a different scenario where histological slices of the prostate are registered to a
MRI volume, Nir and coworkers [Nir 2014] concluded that the affine transformation
model was unable to capture deformations, especially in the rectum area. This
is due to the fact that local deformations cannot be expressed from global affine
models. In such cases, deformable registration is required (further described in the
next section).

Recently, affine models were used for registering 2D slices and 3D images of the
bones [Hoerth 2015]. Their proposal includes a novel way to initiate the registration
between 2D slices and 3D images of the bones. The method uses the Generalized
Hough Transform (GHT) [Ballard 1981] to identify suitable starting positions. They
create a template version of the 2D slice by thresholding its gradient vector field,
used to explore the 3D volume trough a GHT shape-detection process, providing a
set of initial positions. Standard affine registration process is then used to deform
images according to the initial configurations of the GHT space and updated using a
MI based criterion. Such a principle could be considered to handle alternative trans-
formation models. Other papers that estimate affine models to solve slice-to-volume
registration are [Gefen 2008,Micu 2006,Museyko 2014,Wein 2008b,Xiao 2011].

Deformable Models

Elastic deformations are powerful transformations with strong adoption in slice-to-
volume mapping. The expressive power of these models depends on the number
of parameters used to define them. An extensive description of different types
and categories of deformable models used for non-rigid registration is presented
in [Sotiras 2013] and [Holden 2008]. Here, we focus on models applied for slice-to-
volume mapping.

Thin-Plate Splines (TPS) are frequently used to generate a dense deformation
field from a sparse set of control points. These methods involve a set of control
points that can be located in arbitrary positions, which are usually obtained by
detecting salient structures. Radial basis function (RBF) -where the value at any
interpolation point is given as a function of its distance from the control points-
are centered at the control points and combined with affine terms to define an
interpolation function. TPS minimize a bending energy based on this interpolation
function, which gives a closed-form solution whose uniqueness is guaranteed in
most cases. TPS can be decomposed into an affine and a local component. In
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[Osechinskiy 2011a,Osechinskiy 2011b], TPS are used to parametrize a smooth 3D
deformation of a 2D surface (slice). Control points are placed in a regular grid on the
2D image domain, and a 3D warp is defined using three independent TPS functions.
Similarly, in [Miao 2014a], several regular 2D grids of control points define one
TPS deformation model per slice in a multi slice-to-volume registration scenario.
[Kim 2000] also applied TPS to a single slice-to-volume registration problem, and
compared two variants of the elastic mapping (involving different number of control
points to support the TPS model) with a rigid body registration algorithm. Authors
extracted two main conclusions: (i) TPS based registration outperformed rigid body
registration, at least in their multi slice fMRI scenario where local deformations are
encountered due to the local field induced deformations or localized out-of-plane
motion artifacts; and (ii) the number and location of the control points have a
significant impact on the final results.

Free-form deformation (FFD) models are also widely applied for medical image
registration. Originated in computer graphics [Sederberg 1986], they became pop-
ular thanks to the seminal work by [Rueckert 1999]. In this model, the weighting
functions are cubic B-splines. The control points, have limited local support (in
contrast to TPS where the control points influence the complete domain during
interpolation) and are uniformly distributed over the image domain in a grid-like
manner [Glocker 2011]. FFDs were presented in section 2.3 of this thesis since
they have been used when casting deformable image registration as a discrete prob-
lem [Glocker 2008]. In [Ferrante 2013,Ferrante 2015a,Ferrante 2015b], FFDs were
used in a graph-based discrete optimization framework to perform slice-to-volume
deformable mapping. In this model, a 2D grid-like graph encodes at the same time
the plane position (rigid body transformation) and the in-plane deformation of a
slice with respect to its corresponding position at the 3D. The in-plane deformation
is obtained through a FFD interpolation, where the nodes of the graph play the role
of control points. Similarly, but in a continuous setting, [Osechinskiy 2011b] opti-
mizes the position of the control points defined on a 2D grid, with unknown variables
corresponding to 3D displacements. In a different scenario, [Fuerst 2014] proposed
the use of a 3D grid based FFD within the bounding box of a tracked US sweep.
Therefore, they estimated a single 3D deformation field out of a 3D grid, which can
be used to deform all the slices contained in the US sweep. The main advantage of
the FFD over TPS, is that it does not require solving a linear system for computing
weights from displacements. However, FFD imposes constraints in terms of model-
ing, since the control points must be placed in a regular grid and must enclose the
domain boundaries, whereas for TPS, control points can -in principle- be arbitrarily
placed in the domain [Osechinskiy 2011b]. Other interesting works combining B-
splines to model a deformable transformation in the context of slice-to-volume reg-
istration can be found here [Brooks 2008,Honal 2010,Museyko 2014,Po Su 2013,Ri-
vaz 2014c,Rivaz 2014b,Rivaz 2014a,Tadayyon 2010a,Tadayyon 2011,Xu 2014a].

An alternative model based on finite-element (FE) meshes has been used in
[Marami 2011] to model a dynamic linear elastic deformation field. It imposes a
regularization constraint on permissible volume transformations based on an iconic
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image similarity criterion. The advantage of FE models is that they allow incor-
porating the dynamic behavior of tissue deformation into the registration process,
through physically meaningful constraints.

3.1.4 Optimization Method

Optimization methods aim to determine the instance of the transformation model
that minimizes a function based on the aforementioned matching criterion (see sec-
tion 3.1.2). Depending on the nature of the variables being involved, those methods
can be classified to continuous or discrete. The continuous approaches exploit the
entire space of parameters, while the discrete ones a discretized/quantized version
of the admissible solutions.

Numerous problems in computer vision and medical imaging are inherently dis-
crete (like semantic segmentation); however, this is not the case of slice-to-volume
image registration, where the search space is continuous. Most of the published
methods about slice-to-volume registration adopt a continuous formulation. Nev-
ertheless, recent works on image registration have focused on discrete formula-
tions [Glocker 2011,Glocker 2008], both for projective and sliced 2D/3D registra-
tion [Zikic 2010b,Zikic 2010a,Ferrante 2013,Ferrante 2015a,Ferrante 2015b]. The
next subsections present existing work and discuss the limitations of continuous and
discrete inference methods in the context of slice-to-volume registration. We also
consider a third category of heuristic methods, which are independent of the nature
of the variables and can be applied to a wider range of problems at the expense of
not providing optimality warranty. These methods are usually applied when finding
an optimal solution is impossible or impractical given the nature of the problem
objective function.

3.1.4.1 Continuous

Continuous optimization algorithms are usually iterative methods. They infer the
best value for a set of parameters by iteratively updating them. A common math-
ematical formulation for this strategy is given by:

Θt+1 = Θt + ωdt t = 0, 1, 2, 3.... (3.2)

where Θ is the vector of parameters, dt is the search direction at iteration t and ω
is the step size or gain factor. The search direction can be calculated using different
strategies.

Continuous optimization methods can be classified according to different crite-
ria (e.g. convex or concave minimization, solvers for linear or non-linear functions,
smooth or non smooth problems, etc.). Here we simply classify them depending on
whether they perform gradient- or non-gradient-based optimization, i.e., whether
they exploit first (or higher order) derivatives of the energy function to compute the
search direction, or they rely on other strategies. An interesting comparative anal-
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ysis where methods coming from both classes are used to solve slice-to-volume reg-
istration of histological slices with MR images is presented by [Osechinskiy 2011b].

Gradient-based Methods

Gradient-driven methods use the derivative of the objective function to guide the
optimization process. In case of convex and differentiable functions, these methods
are endowed with optimality guarantees. Otherwise, convergence to local minima
is possible, and they could be sensible to initialization. Their main drawback is the
requirement of analytical derivation or numerical estimation of the energy function
derivatives, reducing their applicability since it is usually complicated.

Gradient descent is the simplest strategy in this category, where the search di-
rection dt is given by the negative gradient of the energy function. It refers to
the standard continuous optimization method, and it has been widely applied to
the problem of slice-to-volume registration [Rousseau 2005, Rousseau 2006, Bha-
galia 2009,Huang 2009,Tadayyon 2010a,Tadayyon 2011,Kim 2010b,Marami 2011,
Yu 2011,Zakkaroff 2012,Miao 2014a,Xu 2014a].

Conjugate gradient methods use conjugate directions instead of the local gradi-
ent to estimate dt. Energy function with the shape of a long and narrow valley, can
be optimized using fewer steps than standard gradient descent approach, resulting
in faster convergence. [Elen 2010,Osechinskiy 2011b] have applied this strategy to
estimate rigid and non-rigid slice-to-volume mapping functions, respectively.

Quasi-Newton optimization strategies are used when the Jacobian or Hessian
of the energy function cannot be calculated or it is too expensive to be computed.
In this case, the search direction at time t is computed based on an estimation
of the Hessian, calculated using information provided by the previous iteration
t − 1. Quasi-Newton optimization was applied to perform deformable registration
of brain slices to MR images in [Kim 2005], using several similarity measures. It
was also used to register 2D intra-operative US images with pre-operative volumes
in [Brooks 2008]. One of the most popular quasi-Newton methods is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm used in [Honal 2010] to correct for
breathing motion artifacts during MRI acquisitions. A limited-memory version
of BFGS (L-BFGS) is particularly suited for problems involving large numbers
of variables and was applied to solve multi-slice to volume registration in [Fogt-
mann 2014,Xu 2014a].

Gauss-Newton methods can deal with non-linear least squares functions. An
approximation of the Hessian matrix is used which, once combined with the gradi-
ent, provides a good estimate of the search direction for such functions. Thus,
it only requires computing first order derivatives (in contrast to the standard
Newton method where the actual Hessian matrix must be computed). In [Held-
mann 2010,Olesch 2011a,Olesch 2011b], Gauss-Newton method is used for multi-
modal registration, where 2D US slices of the liver were registered to a pre-operative
CT volume. Their matching criterion computes the Sum of Squared Differences
(SSD) on the segmentation of the liver vessel structure in both, 3D and 2D slices.
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SSD is a least square function and therefore, Gauss-Newton method can be effi-
ciently applied. This method was also used in [Lasowski 2008], solving an Iteratively
Reweighter Least Squares (IRLS) process in order to estimate a rigid transforma-
tion between fluoroCT and CT images. The Levenberg-Marquardt algorithm is an
alternative approach to solve non-linear least squares problems, that requires also
only first order derivatives. For well-behaved smooth functions, this algorithm can
take more time than standard Gauss-Newton method. However, the method is more
robust than the standard Gauss-Newton, meaning that it could find a solution even
with bad initializations. To the best of our knowledge, this optimization algorithm
was only applied to estimate rigid body transformations; however, it has been used
to optimize several iconic matching criteria in a variety of domains such as recon-
struction of 3D cell images [Yu 2011], endoscopic interventions [Hummel 2008] and
fetal brain imaging [Kim 2008b,Kim 2010a].

Non-Gradient based Methods

Derivative free methods eliminate the differentiability condition of the objective
function. They are applicable to a wider range of functions, including noisy, non-
differentiable or even unknown functions, where we only have a black-box that
returns an output value given a set of input parameters. These are cases that
frequently arise when dealing with medical image registration.

The simplest non-gradient based method that has been used to solve slice-to-
volume registration is the local search or best neighbor method. In this case, each
parameter to be estimated is perturbed in turn using the stepsize ω, and the value
of the objective function is calculated. The search direction dt is then estimated
as the one that produced the greatest improvement in the objective function. The
main drawback of this approach is its dependency from the choice of the initial
stepsize ω. A big stepsize can result in an algorithm moving outside its capture
range. On the other hand, for stepsizes that are too small, the optimization may
become trapped in a local optimum [Penney 2004]. Such a greedy algorithm has
been applied to estimate rigid body and affine transformations mapping slice-to-
volume, which have less DOF than deformable models. Different image modalities
like US to MRI [Penney 2004] or CT [Penney 2006, Sun 2007] images, as well as
fluoroCT images [Micu 2006] were considered in the clinical setting.

Nelder-Mead [Nelder 1965] (also known as downhill simplex method or amoeba
method) is the most popular derivative-free method. It relies on the notion of
simplex (a n + 1 polytope living in a n-dimensional space) to explore the space of
solutions in a systematic way. At every iteration, the method constructs a simplex
over the search surface, and the objective function is evaluated on its vertices. The
algorithm moves across the surface by replacing, at every iteration, the worst vertex
of the current set by a point reflected through the centroid of the remaining n points.
The method can converge to a local optimum for objective functions that are smooth
and unimodal. However, it exhibits more robust behavior for complex parameter
space compared to standard gradient-based methods, providing a good compromise



3.1. Literature Review 43

between robustness and convergence time [Leung 2010]. It has been widely used for
slice-to-volume registration applications [Fei 2002, Fei 2003a, Fei 2003b, Fei 2004b,
Frühwald 2009,Gill 2008,Hummel 2008,Kim 1999,Kim 2000,Leung 2010,Noble 2005,
Osechinskiy 2011b,Park 2004,Wein 2008a,Xiao 2011,Xu 2014b,Yeo 2006,Yeo 2004].

Another popular non-gradient based method is the well-known Powell’s method.
It explores the search space by performing bi-directional searches along N dif-
ferent vectors. Usually, these vectors initially refer to the canoninc directions.
Then, the search directions are updated using linear combinations of the earlier
ones. The algorithm iterates until no significant improvement is made. [Smolíková-
Wachowiak 2005] applied Powell’s method to register two dimensional cardiac im-
ages to preoperative 3D images. Authors claim that similarly to all local techniques,
Powell’s method converge to local minima, but it is generally robust and accurate,
and exhibits fast convergence. [Wein 2008b] takes advantage of the fact that Powell’s
method performs line search in specific directions. They apply Principal Compo-
nent Analysis (PCA) on the 12 parameters of an affine transformation, reducing
the search space to the 3 most significant PCA modes. Therefore, Powell direction
search is initilized with the most significant PCA modes, which assures good perfor-
mance and robustness. Other papers applying Powell’s method to our problem can
be found here [Fei 2003a,Gholipour 2010,Gholipour 2009,Jiang 2007a,Jiang 2007b,
Jiang 2009,Micu 2006,Osechinskiy 2011b].

3.1.4.2 Discrete

In a discrete scenario, slice-to-volume registration is expressed as a discrete labeling
problem over a graphical model. This is, indeed, the approach considered in this
thesis. For the sake of completeness, in this section we are briefly reviewing our
own publications, which are (to the best of our knowledge) the only discrete based
slice-to-volume registration algorithms proposed to date.

Graphical models and discrete optimization are powerful formalisms that have
been successfully used during the past years in the field of computer vision [Wang 2013].
Image registration can be formulated as a minimal cost graph problem where the
nodes of the graph correspond to the control points of a deformation grid and the
graph connectivity imposes regularization constraints. Even if this technique has
been applied mainly to mono-dimensional cases (2D-2D or 3D-3D) [Glocker 2011],
our works were focused on extending this theory to the case of slice-to-volume
registration [Ferrante 2013, Ferrante 2015a, Ferrante 2015b]. In section 2.3, we
showed how monodimensional deformable image registration can be formulated
within the discrete MRFs framework, as proposed by [Glocker 2008,Glocker 2009c,
Glocker 2011]. We refer to [Wang 2013] for a complete discussion about discrete
methods in computer vision.

[Ferrante 2013] addressed deformable slice-to-volume registration using graph-
ical models and discrete optimization in the so-called overparameterized approach
(see section 3.2.1). Grid nodes encode at the same time the plane location and
the in-plane deformations. A pairwise model which combines linear and deformable
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parameters within a coupled formulation on a 5-dimensional label space was used.
FastPD was adopted as the optimization algorithm given the properties of the en-
ergy function (pairwise terms and non-submodularity). Motivated by the work of
[Shekhovtsov 2008], in an effort to reduce the dimensionality of the label space, [Fer-
rante 2015b] presented a different model (the so called decoupled model, see section
3.2.2 for a complete description) where linear and deformable parameters are now
separated into two interconnected subgraphs which refer to lower dimensional label
spaces. It reduces the dimensionality of the label space by increasing the number of
edges and vertices, while keeping a pairwise graph that was optimized using loopy
belief propagation. Finally, in [Ferrante 2015a], a high-order approach is presented
(see section 3.2.3), where the label space dimensionality reduction is achieved by
augmenting the order of the graphical model, using third-order cliques which exploit
the expression power of this type of variable interactions. Such a model provides
better satisfaction of the global deformation constraints at the expense of complex
inference. Loopy belief propagation was also used as the optimization algorithm in
this case.

3.1.4.3 Miscellaneous

Independently of whether the variables are continuous or discrete, different strate-
gies can be used to explore the space of solutions. Heuristic or metaheuristic can
be used to obtain acceptable solutions especially in cases where we deal with non-
linear, non-convex or black-box optimization problems, even if we know that no
optimality guarantee is provided. In some cases (e.g. initializing a more complex
registration procedure) having an approximately good solution is enough; in these
scenarios, different strategies can be envisioned.

Evolutionary algorithms are among the most popular bio-inspired metaheuris-
tics. In evolutionary computation, the concept of biological evolution is used to
explore the search space. The individuals of a given population are the candidate
solutions to our problem and they evolve according to different laws (such as muta-
tion, recombination and selection). Evaluation of the quality for a given solution is
performed through a fitness function, which is in fact our objective function. The
idea is that, over the generation sequence, individuals with better and better fitness
are generated, leading to a good solution. These algorithms are usually stochastic.
If this is the case, new candidate solutions might be sampled according to a multi-
variate normal distribution in the space of parameters. One evolutionary algorithm
applied in slice-to-volume registration problems is the covariance matrix adaptation
evolutionary strategy (CMA-ES) [Ghanavati 2010,Tadayyon 2010a,Tadayyon 2011].
This method updates the covariance matrix of the aforementioned distribution, by
estimating a second order model of the underlying objective function similar to the
approximation of the inverse Hessian matrix. Another case based on genetic algo-
rithms to solve our problem of interest was proposed by [Gefen 2005,Gefen 2008].
Different optimization strategies may be combined as well depending on the pa-
rameter space. In [Tadayyon 2010a,Tadayyon 2011], for example, the CMA-ES was
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applied to optimize the translation parameters of the rigid transformation model,
while rotation and deformable ones were estimated using a standard gradient de-
scent approach. In their application to prostate MR images, the CMA-ES was not
able to optimize a 6-DOF search space as it diverged on rotations regardless of
scaling.

Another popular metaheuristic is the well known simulated annealing (SA)
method. It mimics the physical process that metal atoms suffer when the material
is heated and then slowly cooled. In order to avoid local minima, the algorithm
explores new directions which lower the objective function, but also, with a certain
probability, those that raise the objective. This probability decreases with the num-
ber of iterations, so that it stays away from local minima in early iterations and is
able to explore globally for better solutions. [Birkfellner 2007] used this method to
register fluroCT slice to CT volumes optimizing several standard iconic matching
criteria, while [Cifor 2013b] applied it to a multi-slice to volume registration case
where a robust modality-independent similarity measure was optimized.

3.1.5 Number of Slices

In this review we include single and multi slice-to-volume registration methods.
While in the first case the estimated slice-to-volume mapping function considers
just a single 2D slice, in the second case several slices are mapped to the 3D volume.

A trivial extension of any single slice-to-volume registration method to the multi-
slice case could be achieved by simply applying the algorithm to every input slice in-
dependently. It would allow parallelizing the process -since every registration could
be performed in parallel- but, at the same time, contextual information would be
lost since no relation among the input slices would be considered. Several methods
of this type have been proposed. We can cite [Fei 2003a,Ferrante 2015a,Osechin-
skiy 2011b,Yavariabdi 2015] among others.

Different strategies can be adopted to register multiple slices to a given volume.
Here we only review methods that perform a consistent transformation to the set
of input slices, but still conceive the process as slice-based without seeing them as
a complete and unique volume. Methods that reconstruct a new volume using the
input slices, and then perform a standard 3D-3D registration process, are not taken
into account. Note that, in some works like [Brooks 2008, Yan 2012, Xu 2014a],
experiments have been performed to compare the performance of multi slice-to-
volume versus volume-to-volume registration. In [Xu 2014a], the comparison was
done in the context of MR prostate images, in order to show that multi slice-to-
volume registration is sufficient in capturing prostate motion intra-operatively. The
conclusion was that multi slice-to-volume registration was able to produce results
that were close enough to volume-to-volume registration. This is an encouraging
result, considering the data computation reduction archived when using only a few
slices instead of a complete volume. [Brooks 2008] and [Yan 2012] arrived at similar
conclusions in different medical scenarios. This consensus indicates the reliability of
using sparse slices instead of the full volume when possible. Several advantages are
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associated to this strategy: (i) the computational requirements are lower thanks
to the reduction in the amount of data to be processed (only a few slices vs a
complete volume), (ii) the omission of the potentially complex reconstruction step,
(iii) greater adaptability of the similarity measures and (iv) easier parallelization
[Brooks 2008].

In the presence of multiple slices, multi slice-to-volume procedure -as opposed
to single slice procedure- greatly increases the quality of the matching leading to
more robust registration methods [Yu 2011]. This is even more interesting when the
relative position between the slices is known. In [Chandler 2006,Chandler 2008b],
for example, multi slice-to-volume registration was used to correct for misaligned
cardiac anatomy in Short Axis (SA) images by registering stacks of two parallel
slices (which are supposed to be aligned between them) to a high-resolution 3D
MR axial cardiac volume. In other cases, different configurations like orthogonal
slices [Gill 2008,Leung 2010,Tadayyon 2011,Miao 2014b,Xu 2014a], slices aligned in
arbitrary positions (obtained using a tracking system) [Wein 2008a,Heldmann 2009,
Heldmann 2010,Olesch 2011a,Olesch 2011b,Cifor 2013b] or even temporal sequences
of slices [Miao 2014a], are registered to a volume. Another case is [Yu 2008,Yu 2011],
where a bi-protocol was proposed to reconstruct a microscopic volume of a cell. The
bi-protocol is composed by two sets of multiple slices imaging the same cell, which
are captured with two different geometries. Both sets of slices are then registered to
each other and a final volume is reconstructed using a simple interpolation strategy.

Let us recall that multi slice-to-volume registration involves lower computational
complexity compared to 3D-3D registration methods. Furthermore, when compared
to single slice methods, multi slice-to-volume registration certainly improves the ro-
bustness of the registration process by augmenting the image support. Dealing with
several slices requires more computing power than the single slice case; however,
on occasions like freehand US sweeps, slices contain redundant information that
could be avoided. In that sense, as the complexity of the scheme is proportional to
the number of input slices, [Wein 2008a] proposed a strategy which starts out by
selecting only a few key-slices. These are used to estimate a rigid or affine transfor-
mation model, mapping the US slices to a CT volume. Since neighboring frames of
the freehand US sweep contain overlapping information, only a few key slices are
selected. They chose the most informative slices by selecting those with the highest
image entropy. [Olesch 2011a] applied the same key-slice selection technique to the
variational deformable registration framework proposed by [Heldmann 2009]. To
this end, well distributed slices throughout the volume were considered, contain-
ing meaningful information in terms of entropy. In another work, [Olesch 2011b]
extended this key-slice selection technique by introducing a focused registration
strategy that only considers slices which are in a given region of interest (ROI).

In [Jiang 2007b], a multi slice-to-volume registration method -entitled Snapshot
magnetic resonance imaging (MRI) with Volume Reconstruction (SVR)- is proposed
to deal with reconstruction of MRI of moving subjectss. After imaging the target
object of interest repeatedly (producing multiple overlapped stacks of slices of the
same moving object) to guarantee sufficient sampling, one of the stacks is chosen.
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Then, an iterative mutli slice-to-volume registration strategy is applied where the
stacks are subsequently registered (in a rigid way) to the reference. Once all the
stacks are registered, they are averaged to produce a new reference. Then, the
number of temporally contiguous slices in every stack is reduced so that the data
is divided into subpackages that are temporally contiguous although the slices in
each subpackage may not be spatially adjacent. The process is then repeated: the
subpackages are registered to the average image, which is again updated, and the
number of slice per stack is once more decreased; this process is repeated until
each slice is treated in isolation (reducing to the single slice-to-volume case) and
the final average volume is reconstructed. In [Jiang 2007a, Jiang 2009] the idea
was extended to allow the reconstruction of diffusion tensor images in the same
scenario. In the same work, [Jiang 2007b] tested the benefit of using both, parallel
and orthogonally acquired slices with prospectively acquired data and simulated
cases as well. More recently, a fast multi-GPU accelerated framework to perform
SVR was presented [Kainz 2015]. They proposed a fully parallel SVR approach for
the reconstruction of high-resolution volumetric data from motion corrupted stacks
of images. Parallelization is performed at two levels: (i) at the slice level, multiple
slices are treated separately for large parts of the reconstruction process and (ii)
since pixel/voxel based operations are independent of each other, they can be also
executed in parallel. Authors claimed that their approach is five to ten times faster
than the fastest currently available multi-CPU frameworks.

[Rousseau 2005,Rousseau 2006] proposed the registration of multiple sets of or-
thogonal 2DMRI slices into a high resolution MRI volume. The work of [Jiang 2007b]
shares similarities some with them where, instead of reducing the number of slices
per subpackage until each slice is treated in isolation, a two-step approach is per-
formed. In this setting, a global alignment of the low resolution images was per-
formed first and then each slice of the low resolution images was registered to the
reconstructed high resolution volume. Only orthogonal sets of slices were considered
for reconstruction.

The work by [Kim 2008b,Kim 2010a], built on top of [Rousseau 2005,Rousseau 2006],
proposed a new approach entitled Slice Intersection Motion Correction (SIMC). It
considers the registration process directly in terms of the intersections of each pair of
slices in the stacks, avoiding the intermediate volume estimation process. Indepen-
dent per-slice rigid transformations are estimated by minimizing a global energy
function defined by the sum of dissimilarity measures of all intersection profiles
between any two orthogonal slices. SIMC can be used in this scenario, consider-
ing intersecting lines of voxels instead of standard patch or global based calcula-
tion. [Kim 2008b,Kim 2010a] applied SIMC to the problem of reconstructing MR
images of a moving human fetal brain. Since then, several extensions to this work
have been published, like for example the work presented in [Kim 2010b] expanding
the method to the case of Diffusion Tensor Images and [Kio Kim 2010,Kim 2011]
which modified it in order to account for bias field inconsistency correction on fetal
brain MR images.

An approach based on particle filtering (PF) was considered in [Nir 2011,Nir 2013,
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Nir 2014] to deal with multi slice-to-volume registration of histological images to
MR or US volumes. PF framework derives an optimal estimation of the parameters
in a Bayesian fashion, tackling two of the main issues that arise from multimodal
registration, such as susceptibility to initialization and optimal solutions.

3.1.6 Applications

A broad number of clinical settings and applications can benefit from slice-to-volume
registration. In this review we classify them in two main categories.

3.1.6.1 Image Fusion and Image Guided Interventions (IGI)

Several medical procedures such as image guided surgeries and therapies [Fei 2002],
biopsies [Xu 2014a], radio frequency ablation [Xu 2013], tracking of particular or-
gans [Gill 2008] and minimally-invasive procedures [Liao 2013,Huang 2009] belong
to this category. In this context, slice-to-volume registration brings high resolution
annotated data into the operating room. Generally, pre-operative 3D images such
as computed tomography (CT) or magnetic resonance images (MRI) are acquired
for diagnosis and manually annotated by expert physicians. During the surgical
procedure, 2D real time images are generated using different technologies (e.g. flu-
oroCT, US or interventional MRI slices). The alignment of intra-operative images
with pre-operative volumes augments the information that physicians have access
to, and allows them to navigate the volumetric annotation while performing the
operation. These intra-operative images inherit lower resolution and quality than
the pre-operative ones. Moreover, tissue shift collapse as well as breathing and
heart motion during the procedure, cause elastic deformation in the images, what
makes slice-to-volume registration an extremely challenging task. A statistically
significant improvement in alignment has been demonstrated when comparing au-
tomatic methods to manual (human) results, showing the importance of automatic
slice-to-volume registration algorithms in the context of image fusion and IGI [Früh-
wald 2009].

The pioneering work of [Fei 2001, Fei 2002, Fei 2003a, Fei 2004a, Fei 2004b] in-
troduced iconic slice-to-volume registration to the problem of image fusion in the
context of image guided surgeries. The motivation was that low-resolution Single
Photon Emission Computed Tomography (SPECT) can be brought to operating by
pre-registering it with a high-resolution MRI volume, which could be subsequently
fused with live-time iMRI. That is how, by registering the high-resolution MR image
with live-time iMRI acquisitions, Fei and coworkers could map the functional data
and high-resolution anatomic information to live-time iMRI images for improved
tumor targeting during thermal ablation.

[Birkfellner 2007] used slice-to-volume registration to fuse 2D fluoroCT with
volumetric CT, which is a well know tool for image-guided biopsies in interventional
radiology. In this case, the pre-interventional diagnostic high resolution CT with
contrast agent is used to localize a lesion in the liver. However, during the inter-
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vention, the lesion is no longer visible. Thus, localizing the slice of the CT that
corresponds to the intra-operative fluoroCT allows doctors to find the lesions during
the biopsy. This approach only considers rigid transformations. However, interven-
tional procedures like radio frequency ablation (RFA) or image-guided biopsies,
which use fluoroCT as image guiding technology, are performed while the patient is
breathing continuously. Therefore, deformations should also be taken into account
when registering with the pre-operative static CT image. The influence of such de-
formations and the reliability of performing non-rigid registration in such scenario
was discussed in [Micu 2006,Lasowski 2008]. It was claimed that a 2D-3D non-rigid
registration solution -based on the single low quality fluoroCT- cannot be precise
as required to performed medical procedures. This is mainly due to the poor sup-
port in terms of liver anatomical features (mainly vessels) provided by the fluoroCT
slices. They proposed to overcome this limitation by providing an adaptive visu-
alization [Lasowski 2008] of the volume area surrounding the minimum estimated
pose. This approach copes with the uncertainty in estimating the deformation and
brings more information than a single registered slice. Their method performs rigid
slice-to-volume registration, and includes views of the CT-Volume determined along
flat directions of the out-of-plane motion parameters next to the minimum pose.
Laparoscopic and endoscopic interventional procedures also exploit slice-to-volume
registration. [San José Estépar 2009], proposed a method to register endoscopic and
laparoscopic US images with pre-operative computed tomography volumes in real
time. It is based on a new phase correlation technique called LEPART account-
ing for rigid registration. Other methods applying slice-to-volume registration on
minimally invasive procedures can be found here [Heldmann 2010,Bao 2005].

3.1.6.2 Motion Correction / Volume Reconstruction

The second category is motion correction and volume reconstruction. Here, the goal
is to correct misaligned slices when reconstructing a volume of a certain modal-
ity. A typical approach to solve this task consists in mapping individual slices
within a volume onto another reference volume in order to correct the inter-slice
misalignment. The popular map-slice-to-volume (MSV) method introduced this
idea [Kim 1999]. More recently, applications of slice-to-volume registration to the
same problem in different contexts like cardiac magnetic resonance (CMR) [Chan-
dler 2008a,Elen 2010], fetal images [Seshamani 2013] and diffusion tensor imaging
(DTI) [Jiang 2009] have shown promising results. In these problems, it is usually
assumed that a single slice is coherent, in the sense that spatial inconsistency only
happens at the inter-slice level.

Slice motion correction in the context of volume reconstruction, typically in-
volves iterative registration of slices to a target volume. The target volume may be
an anatomical reference or it could be reconstructed at each iteration using current
estimates of slice motion, considering all possible views of the subject.

[Kim 1999] introduced the map-slice-to-volume (MSV) approach for inter-slice
motion correction in time series of fMRI image. In such cases, head motion rep-
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resents the major source of error in measuring intensity changes related to given
stimuli in fMRI time series [Yeo 2004]. The aim of MSV is to retrospectively
remap slices that are shifted by head motion to their spatially correct location us-
ing an anatomical MRI volume as reference. The MSV approach estimates 6-DOF
rigid transformations independently for every fMRI slice, by minimizing the en-
ergy based on mutual information, using a Nelder-Mead downhill simplex method
for optimization. This method was presented as an alternative to the slice-stack
approach. Instead of considering slice-wise registration, it assumes stacks of slices
being already registered among them, and ignores the inter-slice motion inherent
to multi slice echo planar imaging (EPI) acquisition sequence (since each slice is
excited at a sequential time interval). The MSV showed better performance than
previous volume-to-volume registration methods, but the reliability of the estimated
position parameters for the end cap slices was low due to the limited information
support of smaller regions (less textured area and more background). [Park 2004]
proposed to overcome this limitation using Joint Mapping of Slices into Volume
(JMSV). JMSV is a multi-slice registration method that jointly estimates a rigid
body transformations per slice, while penalizing the implied acceleration in the
motion trajectory of the subject -i.e. abrupt changes in the motion parameters
of sequentially acquired slices. Other extensions to the standard MSV include
(i) accounting for deformable registration [Kim 2000] through TPS transformation
models; (ii) improving motion correction capability of MSV with concurrent iter-
ative field-corrected reconstruction [Yeo 2004,Yeo 2008]; (iii) extensive evaluation
of the activation detection performance of MSV and effects of temporal filtering of
motion parameter estimates [Yeo 2006] and spin saturation effect [Kim 2008a]; (iv)
improving the MI matching criterion estimation in the low-complexity end-slices
(slices near top or bottom of the head scans, presenting poorer information) by in-
corporating joint probability density functions of image intensities estimated from
successfully registered center-slices in the same time-series.

After the fundamental work of [Kim 1999] and its extensions (most of them
related to fMRI image reconstruction), another problem requiring to correct for
inter-slice motion started to attract attention from the community: fetal brain MR
imaging. In this case, there is no anatomical reference available to be used as a
target volume; therefore, a reference volume is calculated during the registration
process using the current estimate of the slices. [Jiang 2007a] and [Rousseau 2006]
established the basis of a new family of methods which rely on iterations of slice-
to-volume registration and scattered data interpolation (SDI) to perform super-
resolution reconstruction of moving objects -in particular, fetal brain MRI-. Both
approaches share a similar and iterative slice-to-volume registration scheme, but
differ on the SDI method: while [Rousseau 2006] use Gaussian kernel-based SDI,
[Jiang 2007a] relied on a regular grid of control-points that acts as a cubic B-
spline to perform SDI. In a more recent work, [Gholipour 2009, Gholipour 2010]
criticized SDI-based approaches stating that none of these techniques can guarantee
the convergence of the reconstruction to, at least, a local optimal solution. Thus,
they proposed the use of a maximum likelihood (ML) error minimization approach,
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which guarantees the convergence of the reconstructed image to match the motion-
corrected slices through steepest descent error minimization. An extension to this
method was presented in [Gholipour 2011], using a real-time sensor based tracking
(i.e. a non-image based approach) to estimate an initial position of every slice,
which is then refined through a retrospective slice-to-volume registration approach
based on ML error minimization.

3.2 Graph-based Slice-to-Volume Deformable Registra-
tion

In the previous section, we presented a literature review about slice-to-volume reg-
istration of biomedical images. In the current section, we introduce a novel slice-
to-volume registration framework, which models this challenging task as a discrete
labeling problem. As mentioned, our work is pioneer in using discrete methods to
solve this problem. We already discussed how image registration can (in general)
be formulated using MRFs and discrete inference in section 2.3. Here we extend
this approach to the particular case of slice-to-volume registration, and we propose
three different derivations that can solve this problem.

In section 3.1.1 we give a general definition of slice-to-volume registration, which
is reflected in equation 3.1. This definition contains a generic transformation model
Θ that maps the 2D input image I to the corresponding slice from volume J . In our
non-rigid discrete setting, that function includes a 2D-2D in-plane local deformation
field T̂D and a plane π̂[J ] (i.e. a rigid transformation that specifies a bi-dimensional
slice from the volume J). The general optimization problem defined in equation 3.1
is therefore reformulated as:

T̂D, π̂ = arg min
TD,π

M(I ◦ TD(x), π[J ](x)) +R(TD, π), (3.3)

where M represents the data similarity term and R the regularization term. The
data termMmeasures the matching quality between the deformed 2D source image
and the corresponding 3D slice. The regularization term R imposes certain con-
straints on the solution that can be used to render the problem well posed. It also
imposes certain expected geometric properties on the extended (plane selection and
plane deformation) deformation field. The plane π̂, that minimizes the equation,
indicates the location of the 3D volume slice that best matches the deformed source
image. The deformation field T̂D represents the in-plane deformations that must
be applied to the source image in order to minimize the energy function.

The fundamental idea behind our approaches is quite intuitive: we aim at de-
forming a planar 2D grid in the 3D space, which encodes both the deformation field
T̂D and the plane π̂ at the same time. This grid is super-imposed to the 2D source
image and consists of control points that jointly represent the in-plane deformation
and the current position of the 2D image into the 3D volume. The source image
is positioned within the volume by applying different displacement vectors with
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Figure 3.1: Basic workflow to perform slice-to-volume registration based on graph-
ical models. (1) A 2D input image I and a 3D target volume J are given as input
data. (2) A grid is superimposed to image I. The process is initialized using a
6-DOF rigid transformation T0 that specifies the initial position of the grid within
the volume J . (3) The grid is deformed by optimizing an energy function. (4) The
plane π̂ and the deformation field T̂D are reconstructed from the final state of the
optimized grid. (5) T̂D is used to deform image I, and it is provided as output
together with the corresponding slice π̂[J ].

respect to the control points of the superimposed grid. These displacements are
chosen such that a given energy (see Eq. 3.3) is minimized to best fit the matching
criterionM. Since they can be moved without any restriction, geometric constraints
are imposed through the regularization term R in order to keep a smooth defor-
mation field and a planar grid. Given that we impose a soft planar constraint, the
resulting grid is approximately planar. Therefore, we reconstruct the final solution
by projecting all the points into a regression plane which is estimated out of the
current position of the points. The rigid transformation that indicates the position
of the regression plane is considered as π̂. Finally, the projected grid is interpreted
as a 2D Free Form Deformation model (FFD) [Rueckert 1999] where each control
point has local influence on the deformation and is used to approximate the dense
deformation field T̂D (see Figure 3.2). Having said that, alternative control point
interpolation models can be used as well. Figure 3.1 illustrates this workflow.

This general formulation can be expressed through different discrete labeling
problems on a graph by changing its topology, the label space definition and the
energy terms. As we mentioned, in this work we propose three different ap-
proaches to derive slice-to-volume registration as a discrete graph labeling problem.
First, we propose the so-called overparameterized method, which combines linear
and deformable parameters within a coupled formulation on a 5-dimensional label
space [Ferrante 2013]. The main advantage of such a model is the simplicity pro-
vided by its pairwise structure, while the main disadvantage is the dimensionality of
the label space which makes inference computationally inefficient and approximate
(limited sampling of search space). Motivated by the work of [Shekhovtsov 2008],
we present a decoupled model where linear and deformable parameters are sep-
arated into two interconnected subgraphs which refer to lower dimensional label
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Figure 3.2: Recovering the rigid and deformable parameters. Since the resulting grid
after inference is approximately planar, we recover the final solution by projecting
all the points into a regression plane which is estimated out of the current position
of the points. The rigid transformation π̂ indicates the position of the regression
plane. The projected grid is interpreted as a 2D FFD, used to approximate the
dense deformation field T̂D.

spaces [Ferrante 2015b]. It allows us to reduce the dimensionality of the label space
by increasing the number of edges and vertices, while keeping a pairwise graph.
Finally, in the high-order approach [Ferrante 2015a], we achieve this dimensional-
ity reduction by augmenting the order of the graphical model, using third-order
cliques which exploits the expression power of this type of variable interactions.
Such a model provides better satisfaction of the global deformation constraints at
the expense of quite challenging inference.

3.2.1 Overparameterized Approach

Let us consider an undirected pairwise graph GO = 〈V,E〉 super-imposed to the
2D image domain with a set of nodes V and a set of cliques E. The nodes V (a
regular lattice) are interpreted as control points of the bi-dimensional quasi-planar
grid that we defined in the previous section. The set of edges E is formed by
regular 4-neighbors grid connections and some extra edges introduced to improve
the propagation of the geometrical constraints (see figure 3.3.a). The vertices vi ∈ V



54 Chapter 3. Slice-to-Volume Registration

Figure 3.3: (a) Connectivity structure of the graph for a grid of size 5x5. The
gray edges are standard 4-neighbor connections while the orange ones correspond
to the extra cliques introduced to improve the geometrical constraints propagation.
(b) Displacement vectors corresponding to the first three elements of a label from
the overparameterized approach dli = (dx, dy, dz). (c) Unit vectors in spherical
coordinates corresponding to the last two coordinates of a label from the overpa-
rameterized approach Nli = (φ, θ). (d) Displacement of the control points pi and
pj when the corresponding labels li associated to (dli ,Nli) and lj associated to
(dlj ,Nlj ) are applied. The planes πi and πj are those that contain the control
points pi + dli ,pj + dlj and whose normals are Nli ,Nlj respectively.

are moved by assigning them different labels li ∈ L (where L corresponds to the
label space) until an optimal position is found. ΓO represents a complete labeling
that assigns one label to each variable (control point).

In order to deform the graph, we define a label space describing the inplane
deformations and the plane selection variables. To this end, we consider a label
space L where every label li is associated to 5-tuples (dx, dy, dz, φ, θ), where the
first three parameters (dx, dy, dz) define a displacement vector dli in the cartesian
coordinate system (see figure 3.3.b), and the angles (φ, θ) define a vector Nli on
a unit sphere, expressed using spherical coordinates (see figure 3.3.c). Let us say
we have a control point pi = (pxi, pyi, pzi) and we assign to this point the label li,
associated to the 5-tuple (dxi, dyi, dzi, φi, θi). So, the new point position p′

i after
assigning the label is calculated using the displacement vector as given by the
following equation:

p′
i = (pxi + dxi,pyi + dyi,pzi + dzi). (3.4)

Additionally, we define a plane πi containing the displaced control point p′
i and

whose unit normal vector (expressed in spherical coordinates and with constant
radius r = 1) is Nli = (φi, θi). One of the most important constraints to be con-
sidered is that our transformed graph should have a quasi-planar structure, i.e. it
should be similar to a plane; the plane πi associated with every control point pi is
used by the energy term to take into account this constraint. Figure 3.3.d shows
how to interpret the labels for two given points pi and pj .
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The energy to be optimized is formed by data terms G = {gi(·)} (or unary po-
tentials) associated with each graph vertex and regularization terms F = {fij(·, ·)}
(or pairwise potentials) associated with the edges. As it was mentioned, the first
ones are typically used for encoding some sort of data likelihood, whereas the later
ones act as regularizers and thus play an important role in obtaining high-quality
results [Glocker 2011]. The energy associated to the overparameterized formulation
is defined as:

PO(ΓO;G,F ) =
∑
i∈V

gi(li) + γ
∑

(i,j)∈E
fij(li, lj), (3.5)

where li, lj ∈ L are the labels assigned to the vertices vi, vj ∈ V respectively. Then,
we can define slice-to-volume registration as a MAP inference problem using the
overparameterized formulation as:

Γ̂O = arg min
ΓO

PO(ΓO;G,F ), (3.6)

where Γ̂O is the optimal labeling used to recover the rigid transformation and dense
deformation field as explained in the previous section.

The formulation of the unary potentials that we propose is independent of the
similarity measure. It is calculated for each control point given any intensity based
metric δ capable of measuring the similarity between two 2D images (e.g sum of
absolute differences, mutual information, normalized cross correlation). This calcu-
lation is done for each control point pi, using its associated plane πi in the target
image J and the source 2D image I. An oriented patch Ωli over the plane πi (cen-
tered at pi) is extracted from the volume J , so that the metric δ can be calculated
between that patch and the corresponding area from the source 2D image (see
Figure 3.4):

gi(li) =
∫

Ωli

δ(I(x), πi[J ](x))dx. (3.7)

One of the simplest and commonly used similarity measures is the Sum of Ab-
solute Differences (SAD) of the pixel intensity values. It is useful in the monomodal
scenario, where two images of the same modality are compared and, therefore, the
grey intensity level itself is discriminant enough to determine how related are the
two images. Its formulation in our framework is:

gSAD,i(li) =
∫

Ωli

| I(x)− πi[J ](x) | dx. (3.8)

In multimodal scenarios, where different modalities are compared (e.g. CT with
US images), statistical similarity measures such as Mutual Information (MI) are
generally used since we can not assume that corresponding objects have the same
intensities in the two images. MI is defined using the joint intensity distribution
p(i, j) and the marginal intensity distribution p(i) and p(j) of the images as:

gMI ,i(li) = −
∫

Ωli

log p(I(x), πi[J ](x))
p(I(x))p(πi[J ](x)))dx. (3.9)
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Figure 3.4: Data term formulation for the overparameterized approach. The points
x ∈ Ωli are used to calculate the unary potential. π[J ](x) returns the intensity of
the point in the 2D slice corresponding to the plane πi in the 3D image, whereas
I(x) returns the 2D image intensity. δ represents the similarity measure.

As we can see in the previous examples, our framework can encode any local
similarity measure defined over two two-dimensional images.

Let us now proceed with the definition of the regularization term. Generally,
these terms are used to impose smoothness on the displacement field. In our formu-
lation, the pairwise potentials are defined using a linear combination of two terms:
the first (F1) controls the grid deformation assuming that it is a plane, whereas the
second (F2) maintains the plane structure of the mesh. They are weighted by a
coefficient α as indicates the following equation:

fij(li, lj) = αF1i,j(li, lj) + (1− α)F2i,j(li, lj). (3.10)

The in-plane deformation is controlled using a distance preserving approach: it
tries to preserve the original distance between the control points of the grid. Since
this metric is based on the euclidean distance between the points, it assumes that
they are coplanar. We use a distance that is symmetric, based on the ratio between
the current position of the control points pi,pj and their original position po,i,po,j :

ψi,j(dli ,dlj ) =
|| (pi + dli)− (pj + dlj ) ||
|| (po,i)− (po,j) || . (3.11)

Once we have defined ψij , the regularizer should fulfill two conditions: (i) it has
to be symmetric with respect to the displacement of the points, i.e. it must penalize
equally whenever the control points are closer or more distant; (ii) the energy has
to be zero when the points are preserving distances and monotonically increasing
with respect to the violation of the constraint. The following regularization term
fulfills both conditions for a couple of nodes i, j ∈ V labeled with labels li, lj :

F1i,j(li, lj) = (1− ψi,j(dli ,dlj ))2 + (1− ψi,j(dli ,dlj )−1)2, (3.12)
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Figure 3.5: (a) In plane regularization term: the dotted line represents the distance
used in F1, i.e. the distance between the points assuming they are coplanar. (b)
Plane structure regularization term: the dotted line represents the distance be-
tween one of the control points and the plane corresponding to the other one. This
information is used to compute the term F2.

The plane preservation term is based on the average distance between a given
control point and the plane defined from the neighboring ones (see Figure 3.5.b).
The aim is to maintain the quasi-planar structure of the grid. Given that the
distance between a point and a plane is zero when the point lies on the plane, this
term will be minimum when both of the control points are on the same plane.

The distance between a point p = (px, py, pz) and a plane π defined by the
normal vector N = (nx, ny, nz) and the point q = (qx, qy, qz) is calculated as:

Dπ(p) = | nx(px − qx) + ny(py − qy) + nz(pz − qz) |√
n2
x + n2

y + n2
z

. (3.13)

F2 is defined using this distance (equation 3.13) and corresponds to the average
of Dπj (pi + dli) and Dπi(pj + dlj ):

F2i,j(li, lj) = 1
2(Dπj (pi + dli) +Dπi(pj + dlj )). (3.14)

Recall that normal vectors in our label space are expressed using spherical co-
ordinates with a fixed radius r = 1 (unit sphere). However, the formulation that
we presented uses cartesian coordinates. Therefore, the mapping from one space to
another is done as follows:

x = r sin(θ) cos(φ), y = s sin(θ) sin(φ), z = r cos(θ). (3.15)

Note that such pairwise terms are non submodular since we include the current
position of the points (which can be arbitrary) in their formulation and therefore
the submodularity constraint is not fulfilled. In this context, even if there is no en-
ergy bounding that guarantees certain quality for the solution of the optimization
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problem, good empirical solutions are feasible since we are in a pairwise scenario.
Still, two issues do arise: (i) high dimensionality of the label space and conse-
quently high computational cost, (ii) insufficient sampling of the search space and
therefore suboptimal solutions. In order to address these issues while maintain-
ing the pairwise nature of the methods, we propose the decoupled method inspired
by [Shekhovtsov 2008]. We consider decoupling the label space into two different
ones and redefining the topology of the graph, so that we can still capture rigid
plane displacements and in-plane deformation.

3.2.2 Decoupled Approach

We propose to overcome the limitations of the overparameterized method by de-
coupling every node of the previous approach in two different ones: one modeling
the in-plane deformation and another the position of the plane. This is somewhat
analogous to creating two separated graphs of the same size and topology corre-
sponding to different random variables and label spaces. Once spaces have been
decoupled, different sampling strategies can be used for them. Another advantage
of this approach is that we can define distinct regularization terms for edges con-
necting deformation nodes or plane position nodes. It allows to regularize in a
different way the deformation and the plane position, imposing alternative geomet-
rical constraints for every case.

Since data term computation requires the exact location of the node, both po-
sition and deformation labels are necessary. Both graphs can thus be connected
through a pairwise edge between every pair of corresponding nodes. Therefore, new
pairwise potentials are associated with these edges in order to encode the matching
measure.

Formally, the decoupled formulation consists of an undirected pairwise graph
GD = 〈V,E〉 with a set of nodes V = VI ∪ VP and a set of cliques E = EI ∪ EP ∪
ED. VI and VP have the same cardinality and 4-neighbor grid structure. Nodes
in VI are labeled with labels that model in-plane deformation, while labels used
in VP model the plane position. Edges from EI and EP correspond to classical
grid connections for nodes in VI and VP respectively; they are associated with
regularization terms. Edges in ED link every node from VI with its corresponding
node from VP , creating a graph with a three dimensional structure; those terms
encode the matching similarity measure. Note that EI and EP can be extended with
the same type of extra edges defined in section 3.2.1 (see figure 3.3.a) to improve the
satisfaction of the desired geometrical constraints. The proposed graphical model is
depicted in figure 3.6 and corresponds to a pairwise MRF, without unary potentials.

We define two different label spaces, one associated with VI and one associated
with VP . The first label space, LI , is a bidimensional space that models in-plane
deformation using displacement vectors dlI = (dx, dy) associated to labels lI . The
second label space, LP , indicates the plane in which the corresponding control point
is located and consists of labels lP representing different planes. In order to specify
the plane and the orientation of the grid on it, we consider an orthonormal basis



3.2. Graph-based Slice-to-Volume Deformable Registration 59

Figure 3.6: Structure of the decoupled graph. The green nodes are included in VI
while the orange ones in VP , modeling in-plane deformations and plane position
respectively. Edges connecting VI nodes are part of EI and those connecting VP
nodes are part of EP ; they are associated with regularization terms. Dotted lines
represent cliques in ED that encode the matching similarity measure. Using this
information we can reconstruct an imaginary grid similar to the one presented in
section 3.2.1. In the image we can appreciate how we associate two nodes of the
graph with one control point of the grid.

acting on a reference point in this plane. Using this information, we can reconstruct
the position of the control points of the grid. The planes parametrization is given
by vectors (φ, θ, λ) associated to labels lP , where angles φ and θ define a vector N

over a unit sphere, expressed through its spherical coordinates (see figure 3.3.c).
This value, together with parameter λ, defines the position of the plane associated
with the given control point. This is an important advantage of our method: we
could use prior knowledge to improve the way we explore the plane space, just by
changing the plane space sampling method.

As it concerns the considered plane sampling method, the final position of every
control point pk of the grid is determined using the pairwise term between two graph
nodes (vIk ∈ VI and vPk ∈ VP ) and their respective labels (lIk ∈ LI and lPk ∈ LP ).
Imagine we have a plane πk with normal vector N that contains the displaced con-
trol point pk+dlI

k
. Parameter λ indicates the magnitude of the translation we apply

to πk in the direction given by N in order to determine the plane’s final position
(see figure 3.7 for a complete explanation). Given that we can associate different
planes to different control points (by assigning them different labels lP ), we need
to impose constraints that will force the final solution to refer to a unique plane.

The energy that guides the optimization process involves three different pairwise
terms, which encode data consistency between the source and the target, smooth-
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ness of the deformation and unique plane selection:

PD(ΓD; I, P,D) = α
∑

(i,j)∈EI

eIi,j(lIi , lIj ) + β
∑

(i,j)∈EP

ePi,j(lPi , lPj ) +
∑

(i,j)∈ED

eDi,j(lIi , lPj ),

(3.16)
where α, β are scaling factors, eIi,j ∈ I are in-plane deformation regularizers (asso-
ciated to edges in EI), ePi,j ∈ P are plane consistency constraints (associated with
edges in EP ) and eDi,j ∈ D are data terms (associated with edges in ED). lIi , lPi are
labels from label spaces LI and LP respectively, while ΓD is a complete labeling
that assigns one label to every variable. Thus, we aim at solving the following MAP
inference problem:

Γ̂D = arg min
ΓD

PD(ΓD; I, P,D). (3.17)

Note that, in this case, we reconstruct the final position of the control points pk

as a combination of the labels lIk and lPk assigned by the optimal labeling Γ̂D. Once
the grid is reconstructed, we can apply the same strategy (projecting the control
points to the regression plane) to extract both, the ridig transformation and the
dense deformation field, as explained at the beggining of section 3.2.

The data term is defined for every control point of the imaginary grid pk using
the information provided by two associated graph nodes. It is encoded in the
pairwise term eD ∈ ED. To this end, we extract an oriented patch ΩlI

k
,lP

k
over the

plane πk (centered at pk) from the volume J , so that the similarity measure δ can
be calculated between that patch and the corresponding area over the source 2D
image (see figure 3.7):

eDi,j(lIi , lPj ) =
∫

Ω
lI
i

,lP
j

δ(I(x), πk[J ](x))dx. (3.18)

We define two different regularization terms. The first controls the in-plane
deformation; it is defined on VI and corresponds to a symmetric distance preserving
penalty:

eIi,j(lIi , lIj ) = (1− ψi,j(dlI
i
,dlI

j
))2 + (1− ψi,j(dlI

i
,dlI

j
)−1)2, (3.19)

where ψi,j is the distance defined in equation 3.11.
The second term penalizes inconsistencies in terms of plane selection, and is

defined on VP . We use the earlier defined (at is concerns the overparameterized
model, in equation 3.14) point-to-plane distance:

ePi,j(lPi , lPj ) = 1
2(Dπj (pi

′) +Dπi(pj
′)). (3.20)

where pi
′ and pj

′ are the positions after applying label lPi , lPj to pi, pj respectively.
Note that these terms are similar to the ones of the former approach. How-

ever, there is an important difference regarding the parameters they use. In case
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Figure 3.7: Data term formulation for the decoupled approach. It is similar to
the formulation shown in figure 3.4, but it combines labels from different label
spaces. The points x ∈ ΩlI

k
,lP

k
are used to calculate the unary potential. πk[J ](x)

returns the intensity of the point in the 2D slice corresponding to the plane πk
in the 3D image, whereas I(x) returns the 2D image intensity. δ represents the
similarity measure. In order to compute the final position of the sampled patch in
the volume, the displacement dlI

k
= (dx, dy) associated to the in-plane deformation

label lIk is applied to the corresponding imaginary grid point pk. Then, label tuple
(N,λ) associated to the plane selection label lPk is used: the point is translated
in the direction given by vector N as indicates scalar λ. Finally, the patch ΩlI

k
,lP

k

is sampled from plane πk with normal N , centered at the displaced point pk (in
orange).

of the overparameterized approach, parameters are always 5-dimensional labels.
In the current approach, parameters are at most 3-dimensional, thus reducing the
complexity of the optimization process while also allowing a denser sampling of
the solution space. Conventional pairwise inference algorithms could be used to
optimize the objective function corresponding to the previously defined decoupled
model. Such a model offers a good compromise between expression power and com-
putational efficiency. However, the pairwise nature of such an approach introduces
limited expression power in terms of energy potentials. The smoothness (regular-
ization) terms with second order cliques are not invariant to linear transformations
such as rotation and scaling [Glocker 2009c], while being approximate in the sense
that plane consistency is imposed in a rather soft manner. These concerns could
be partially addressed through a higher order formulation acting directly on the
displacements of the 2D grid with 3D deformation labels. Furthermore, the data
term is just a local approximation of the real matching score between the deformed
source 2D image and the corresponding target plane; by introducing high-order
terms we could define it more accurately.
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3.2.3 High-Order Approach

The new formulation consists of an undirected graph GH = 〈V,E〉 with a set of
nodes V and a set of third-order potentials E = ED ∪ ER. The nodes are control
points of our two-dimensional quasi-planar grid and they are displaced using 3D
vectors dli = (dx, dy, dz) associated to labels li ∈ LH . We define two types of
cliques in E. Cliques in ED are triplets of vertices with a triangular shape and they
are associated with data terms. Those in ER, are collinear horizontal and vertical
third-order cliques associated with regularization terms.

Unlike the previous methods, which require extra labels to explicitly model the
plane selection, high-order potentials explicitly encode them. Furthermore, third-
order triangular cliques can also explicitly encode data terms, since the correspond-
ing plane can be precisely determined using the position of these 3 vertices. We
use triplets of collinear points for regularization terms. According to [Kwon 2008],
this allows us to encode a smoothness prior based on the discrete approximation of
the second-order derivatives using only the vertices’ position. Therefore, we define
a simple three dimensional label space of displacement vectors which is sampled as
shown in figure 3.3.b.

The energy to be minimized consists of data terms Dijk associated with triangu-
lar triplets of graph vertices (i, j, k) ∈ ED and regularization terms Rijk associated
with collinear horizontal and vertical triplets (i, j, k) ∈ ER. It is defined in the
following equation:

PH(ΓH ;D,R) =
∑

(i,j,k)∈ED

Dijk(li, lj , lk) + γ
∑

(i,j,k)∈ER

Rijk(li, lj , lk), (3.21)

where γ is a scaling factor and li is a label associated to a displacement vector dli =
(dx, dy, dz) assigned to the node i. ΓH is a labeling that assigns one label to every
variable used to reconstruct the final rigid transformation and dense deformation
field. Slice-to-volume registration is thus posed as a MAP inference problem on a
high-order graph following:

Γ̂H = arg min
ΓH

PH(ΓO;D,R). (3.22)

The data term is defined over a disjoint set of triangular cliques, covering the
entire 2D domain, as shown in figure 3.8.a. Its formulation is independent of the
similarity measure δ and it is calculated for each clique c = (i, j, k) ∈ ED using
the source 2D image I and the corresponding plane πd[J ] extracted from the target
volume J , defined by the three control points of the clique. For a given similarity
measure δ, the data term associated with the clique c is thus defined as:

Dijk(li, lj , lk) =
∫

Ωli,lj ,lk

δ(I(x), πd[J ](x))dx, (3.23)

where x ∈ Ωli,lj ,lk , and Ωli,lj ,lk corresponds to the triangular area defined by the
control points of clique c = (i, j, k) over the plane πd[J ], after applying the corre-
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Figure 3.8: Different types of cliques used in the formulation. (a) Example of a
triangular clique used for data term computation. The green patch Ω corresponds
to the clique (i, j, k) and it is used to calculate the data term. (b) Examples of
vertical (i1, j1, k1) and horizontal (i2, j2, k2) collinear third-order cliques used to
regularize the grid structure.

sponding labels li, lj , lk to the vertices.

Smoothness and plane consistency are also imposed using higher order cliques.
We define a clique for every set of three collinear and contiguous grid nodes (in
horizontal and vertical directions as depicts figure 3.8.b). We also introduce ex-
tra cliques formed by nodes that are collinear but not contiguous. The aim is to
propagate the regularization so that the planar structure is conserved. The regu-
larization term, as previously, seeks to satisfy the plane structure of the grid and
the smoothness nature of the in-plane deformations.

Planar consistency can be easily enforced by propagating a null second-derivative
constraint among collinear triplets of points. In fact, a null second-derivative for
these cliques does not impose just a planarity constraint but it also aims at reg-
ularizing the grid structure. Thanks to the third-order cliques, we can accurately
approximate a discrete version of the second-order derivative [Kwon 2008]. Given
three contiguous control points pi,pj ,pk and their corresponding displacement vec-
tors dli ,dlj ,dlk associated to the labels li, lj , lk, it can be approximated as follows:
|| (pi + dli) + (pk + dlk)− 2 · (pj + dlj ) ||.

Based on this idea, we define the following energy term that is proportional to
the second derivative, and normalized with the original distance between the control
points, d:

RAijk(li, lj , lk) =
|| (pi + dli) + (pk + dlk)− 2 · (pj + dlj ) ||

d2

2
, (3.24)

In-plane deformation smoothness is reinforced in the same manner as the pre-
vious models, through a symmetric distance preserving approach. For the sake
of clarity, we redefine equation 3.12 as Ψij(li, lj) = (1 − ψi,j(dli ,dlj ))2 + (1 −
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ψi,j(dli ,dlj )−1)2, and we apply it to both pairs of contiguous points that form
the clique (i, j, k):

RBijk(li, lj , lk) =
Ψij(dli ,dlj ) + Ψjk(dlj ,dlk)

2 . (3.25)

The equation that regularizes the grid is a weighted combination of both terms
RAijk and RBijk:

Rijk(li, lj , lk) = (1− α)RAijk(li, lj , lk) + αRBijk(li, lj , lk), (3.26)

where α represents a weighting factor used to calibrate the regularization term.

3.3 Results and Discussion

Let us now proceed with a systematic evaluation of the proposed methods. One of
the main aspects shared across methods is the inference algorithms used to produce
the desired solution.

3.3.1 Inference Methods

Depending on their cardinality and regularity, objective functions can be optimized
using a variety of discrete optimization algorithms which offer different guaranties.
It must be noted that the regularization terms presented in our three models are
non submodular, since we include the current position of the points (which can
be arbitrary) in their formulation. Therefore, submodularity constraint is fulfilled
neither in the pairwise nor in the high-order terms (for a clear definition of sub-
modularity in pairwise and high-order energies, we refer the reader to the work
of [Ramalingam 2008]).

In [Ferrante 2013], the overparameterized approach was optimized using the
FastPD algorithm [Komodakis 2007b] while for the decoupled [Ferrante 2015b] and
the higher order models [Ferrante 2015a], we consider loopy belief propagation net-
works. For the sake of fairness, in order to improve the confidence of the comparison
among the three methods, in this work we reimplement it to be optimized with the
same algorithms. Therefore, results in this work can not be directly compared with
our previous works.

Given the variety of models presented in this work, we choose two different in-
ference methods that can deal with arbitrary graph topologies and clique orders,
coming from two standard inference algorithm classes: (i) Loopy Belief Propa-
gation (LBP), a well know message passing algorithm that has been extensively
used in the literature; and (ii) the Lazy Flipper (LF) by [Andres 2012], a move-
making algorithm which is a generalization of the classical Iterated Conditional
Modes (ICM) [Besag 1986] and has provided good approximations for several non-
submodular models in different benchmarks . Both are approximate inference meth-
ods that can accommodate arbitrary energy functions, graph topologies and label
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Figure 3.9: Factor graph derivation and labels spaces corresponding to the over-
parameterized, decoupled and high-order approaches. It shows the equivalence
between cliques ci in the first column (unary, pairwise and high-order, depending
on the model) and the corresponding factors fi in the second column. In red, we
observe the cliques and factors associated with data terms, while in green and or-
ange we represent those associated with regularization terms. In the third column,
we include a figure representing the label space associated to every model (orange
vectors and planes are associated to different labels). Note that the overparam-
eterized approach is defined as the Cartesian product between the displacements
and plane selection labels, while in the decoupled approach these label spaces are
independent.

spaces, and allow us to show how the three proposed approaches perform under
different optimization strategies. We refer the reader to sections 2.4.1 and 2.4.2 for
a brief description about LBP and LF, respectively.

We adopt the OpenGM2 library [Kappes 2013] which implements both inference
methods, and makes it possible to perform fair comparisons. It requires construction
of a factor graph for every scheme (we refer the reader to the appendix in section
A.1 for a complete definition of factor graphs). Figure 3.9 shows a comparison
between the three models and the derivation of the corresponding factor graph in
each case.



66 Chapter 3. Slice-to-Volume Registration

Algorithm 1 Pseudo-code corresponding to the pyramidal approach based slice-
to-volume registration
1: procedure 2D3DRegistration(I: Source,J :Target,T0:Initial guess)
2: G← initializeGraph(T0) . Initialize the graph in the position indicated

by T0
3: bestEnergy ←∞
4: for i=1 to gridLevels do
5: L← updateLabelSpace(L, i) . Update the label space for the given

level
6: for j = 1 to iterationSteps do
7: newEnergy, newLabeling ← optimizeGraphicalModel(G,L)
8: if newEnergy < bestEnergy then
9: applyLabeling(G, newLabeling)
10: bestEnergy = newEnergy
11: end if
12: refineLabelSpace()
13: end for
14: end for
15: return bestEnergy, G
16: end procedure

3.3.2 Experimental Validation

We compute results on two different datasets for the three methods, using the two
inference algorithms (LBP and LF) in order to validate both the resulting 2D-2D
deformation field and the final plane estimation. The first dataset is a monomodal
MRI heart dataset while the second one corresponds to multimodal US-MRI brain
images.

We also run the same experiments using a continuous approach to estimate a
rigid transformation model that serves as baseline for comparison. The continuous
optimization is performed using the Simplex algorithm [Nelder 1965], which is a
gradient-free method that has been successfully used to deal with continuous for-
mulations of slice-to-volume registration, as discussed in section 3.1.4.1. We run
the continuous optimization until convergence, which was always achieved in a few
seconds. We optimized a global energy where the similarity measure was computed
for the complete image, since no local deformation model is considered.

In the three methods, we adopt a pyramidal approach, using different grid res-
olution levels, from coarse to fine spacing between the control points. For each grid
resolution, some iterations of the registration algorithm are performed, choosing the
optimal set for each one and updating the control point positions with this infor-
mation. During the inner iterations of one grid level, the size of the displacement
vectors that form the deformation label space as well as the parameter variation of
the plane label space are reduced in order to improve the search space sampling. A
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pseudocode of the algorithm is shown in Algorithm 1. For every registration case,
we run the inference algorithm several times (more precisely, the inference method
is executed a number of times equal to the product between grid refinement levels
and label refinement levels). For a single execution of both discrete inference meth-
ods, we use the same compound stopping criterion based on the energy gap between
iterations and maximum running time. The algorithms run until the energy im-
provement between two iterations is smaller than a fraction of the current energy
(we use ε = 0.01%) or until a timeout is reached (we use 60 seconds as timeout).
For LF we use a maximum depth of 2 (for details about LF, we refer the reader to
section 2.4.2 or to [Kappes 2013]).

In the following subsections we describe the datasets and present quantitative
results.

Monomodal Dataset Experiment

The monomodal dataset is derived from a temporal series of 3D heart MRI volumes.
It consists of 10 sequences of 19 MRI slices which have to be registered with an
initial volume. The slices are extracted from random positions in the volumes
while satisfying spatio-temporal consistency. The ground truth associated with
this dataset refers to the rigid transformation used to extract every 2D slice of
every sequence (it is used to validate the plane estimation or rigid registration)
and a segmentation mask of the left endocardium, that can be used to validate the
quality of the estimated deformation field.

The dataset is generated from a temporal series of 3D heart MRI volumes Mi

as shown in figure 3.10. For a given sequence in the heart dataset, every 2D slice Ii
is extracted from the corresponding volume Mi at a position which is calculated as
follows. Starting from a random initial translation T0 = (Tx0 , Ty0 , Tz0) and rotation
R0 = (Rx0 , Ry0 , Rz0), we extract the first 2D slice I0 from the initial volume M0.
Then, gaussian noise is added to every parameter of the transformation in order
to generate the position of the next slice at the next volume. We use σr = 3◦
as rotation and σt = 5mm as translation parameters. Those parameters generate
maximum distances of about 25mm between the current and the succeeding plane.
In this way, we generate 2D sequences that correspond to trajectories inside the
volumes. Since the initial 3D series consists of temporally spaced volumes of the
heart, there are local deformations between them due to the heartbeat; therefore,
extracted slices are also deformed.

The resolution of the MRI volume is 192 × 192 × 11 voxels and the voxel size
is 1.25mm × 1.25mm × 8mm. The slices of the 2D sequences are 120 × 120 pixels
with a voxel size of 1.25mm× 1.25mm.

Experiments for the 3 methods were performed using equivalent configurations.
In all of them we used 3 grid refinement levels, 4 steps of label refinement per grid
level, initial grid size of 40mm and minimum patch size (for similarity measure
calculation) of 20mm. In case of the overparameterized approach we used α = 0.8,
γ = 1 and 342 labels; for the decoupled approach we used α = 0.8, β = 0.2, 25
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Figure 3.10: Heart dataset construction. Given a series of 3D MRI volumes of a
beating heart (A), we extract ten different random trajectories (B). Every trajectory
is composed of twenty different positions from which we extract the 2D slices (C).

labels in the 2D deformation space and 91 in the plane selection space; and finally,
for the high-order approach we used α = 0.5, γ = 1.10 and 19 labels. Parameters
α, β, γ were chosen using cross-validation. The number of labels in every label space
was chosen to make the search spaces as similar as possible.

Results are reported (for every approach and every inference method) for 10
sequences of 19 images, giving a total of 190 registration cases. We use SAD as
similarity measure since we are dealing with monomodal registration. The idea is
to register every 2D slice Ii (which plays the role of an intra-operative image) to
the same initial volume M0 (which acts as the pre-operative image). The resulting
position of the slice Ii is used to initialize the registration of slice Ii+1.

Figure 3.13 shows results in terms of rigid transformation estimation. We mea-
sured the distance between the transformation parameters, and reported the average
of the 190 registration cases. It resulted in less than 0.02rad (1.14◦) for rotation
and less than 1.5mm for translation parameters in all the discrete approaches and
optimization methods. The decoupled method outperforms the others by orders of
magnitude in terms of reduction of the standard deviation and the mean error.

To measure the influence of the deformation in the final results, we use the
dataset annotations. We compute statistics for the segmentation overlapping at
three different stages: before registration (i.e. between the source image and the
target volume slice corresponding to the initial transformation), after rigid regis-
tration (i.e. between the source image and the target volume slice corresponding to
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Figure 3.11: Slices extracted from three different sequences of the heart dataset
before and after registration. Input slice (a) is initialized in a position specified by
a rigid transformation within the volume, whose slice corresponds to (b). After de-
formable registration, a deformation field (c) is estimated. (d) shows the difference
between initial images (a) and (b), while (e) shows the difference between (a) and
the corresponding slice extracted after rigid registration. Finally, (f) corresponds to
the results after deformable registration (i.e., the difference between the deformed
version of slice (a) and the slice corresponding to the estimated transformation).
Red indicates bigger differences between the images. Note how these values are
changing before (d), after rigid (e) and after deformable (f) registration.

the estimated transformation) and after deformable registration (i.e. between the
deformed source image and the target volume slice corresponding to the estimated
transformation). We evaluate accuracy computing DICE coefficient, Hausdorff dis-
tance and Contour Mean Distance (CMD). We also provide sensitivity (which mea-
sures how many pixels from the reference image are correctly segmented in test
image) and specificity (which measures how many pixels outside the reference im-
age are correctly excluded from the test image) coefficients to complete the analysis.
Results presented in figure 3.14 show the mean and standard deviation of the indi-
cators at the three stages, for the three approaches and the two inference methods.
Observe that results improve at each stage, achieving DICE coefficient of around
0.9 after deformation. Hausdorff distance and CMD decrease at each stage until
a total reduction of around 66%. Decoupled method still outperforms the others
after deformation in all the indicators, and presents a substantial improvement in
terms of standard deviation reduction with respect to them (it is consistent with
the results we showed in figure 3.13 for the rigid parameters). All the three discrete
methods outperform the continuous rigid baseline. Figure 3.15 complements these
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Figure 3.12: 12 registration cases of the same sequence, before and after deformable
registration. The overlapping images (in light blue we show the source image and
in red the target) showed before registration corresponds to the source image and a
slice taken from the volume at the initial position. The overlapping after registration
corresponds to the deformed source image and the slice taken from the volume at
the estimated plane position.

results by showing DICE values disaggregated per sequence, while figures 3.11 and
3.12 shows some qualitative results before and after registration.

Finally, in terms of running time, figure 3.16 presents the average value for the
three approaches and the two inference methods, together with the distribution
with respect to data cost computation and optimization time. As we can see, the
decoupled method again outperforms the other two when inference is performed
using LBP. We run all the experiments (brain and heart datasets) on an Intel Xeon
W3670 with 6 Cores, 64bits and 16GB of RAM.

Multimodal Experiment

Another dataset was used to test our approaches on multimodal image registra-
tion. The dataset consists of a preoperative brain MRI volume (voxel size of
0.5mm× 0.5mm× 0.5mm and resolution of 394× 466× 378 voxels) and 6 series of
9 US images extracted from the patient 01 of the database MNI BITE presented
in [Mercier 2012]. The intra-operative US images were acquired using the prototype
neuronavigation system IBIS NeuroNav. We generated 6 different sequences of 9
2D US images of the brain ventricles, with resolution around 161× 126 pixels and
pixel size of 0.3mm×0.3mm. The brain ventricles were manually segmented in both
modalities. The estimated position of the slice n was used to initialize the registra-
tion process of slice n+1. Slice 0 was initialized in a position near the ground truth
using the rigid transformation provided together with the dataset. We computed
statistics as we did in the previous experiment, but in this case based on the overlap
between ventricle segmentations. Since we registered different modalities, we used
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Figure 3.13: Rigid transformation estimation error for the heart dataset. We mea-
sured the distance for every one of the 6 rigid parameters, for the three approaches
using LF and LBP as inference methods and for the continuous rigid approach.
The discrete methods outperform the results obtained using the baseline. Indepen-
dently of the discrete inference method, the decoupled approach outperforms the
other two in terms of average and standard deviation of the estimated error, for all
the 6 parameters.

Mutual Information as similarity measure instead of SAD.

Figure 3.14 summarizes the average DICE, specificity, sensibility, Hausdorff dis-
tance and Contour Mean Distance coefficients for all the series, while figure 3.16
reports the running times. Figure 3.15 complements these results by showing DICE
values disaggregated per sequence. Figure 3.19 show some qualitative results. While
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Figure 3.14: Segmentation overlapping statistics computed before, after rigid and
after deformable registration for both datasets (190 registration cases for the heart
dataset and 54 for the brain dataset). In the case of deformable registration, the
source segmentation mask was deformed using the estimated deformation field.
Results are reported for the continuous approach that only estimates rigid parame-
ters using the Simplex method, and for three discrete methods (overparameterized,
high-order and decoupled) using both inference strategies (LBP and LF).

the decoupled method does better in terms of computational time (independently
of the inference method), the high-order method achieves better results in terms of
segmentation statistics. It must be noted that, in this case, we are dealing with a
more complex problem than in the case of monomodal registration; consequently,
the increment obtained in terms of accuracy for both, rigid and deformable regis-
tration, is smaller. Given that we are dealing with highly challenging images of low
resolution being heavily corrupted from speckle, those results are extremely promis-
ing. It is known to the medical imaging community that explaining correspondences
between different modalities is a difficult task (see section 3.1.2).

In all brain experiments we use initial grid size of 8mm, minimum patch size of
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Figure 3.15: Final DICE (after deformation) comparison for every sequence (10
sequences in the heart dataset and 6 sequences in the brain dataset). Results are
reported for the continuous approach that only estimates rigid parameters using
the Simplex method, and for three discrete methods (overparameterized, high-order
and decoupled) using both inference strategies (LBP and LF). In case of the heart
dataset, decoupled method outperforms the other two in most part of the sequences.
In the brain dataset, the high-order approach shows better performance in most
cases. This is coherent with the aggregated results shown in Figure 3.14.

13mm, 16 bins to construct the mutual information histograms, 3 grid levels and 4
steps of label refinement per grid level. In case of the overparameterized approach
we used α = 0.9, γ = 0.1 and 342 labels; for the decoupled approach α = 0.015,
β = 0.135, 25 labels in the 2D deformation space and 91 in the plane selection space;
finally, for the high-order approach α = 0.7, γ = 0.05 and 19 labels. Parameters
are chosen similarly as in the heart experiments.

3.3.3 Comparative Analysis

In this section, we aim at comparing different aspects of the three approaches we
present in this paper, namely label spaces, graph topology and computational time.
Without loss of generality, some assumptions are made regarding the models. First,
we consider only square grids where N is the number of control points and conse-
quently

√
N is the number of nodes per side. Second, for the sake of simplicity we
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Figure 3.16: Average running time expressed in seconds, for one registration case,
for the three approaches running on the heart dataset (a) and the brain dataset
(b), using LF and LBP. Blue part corresponds to data cost computation while
orange part corresponds to the optimization time. As we can observe, data cost
computation represents a bigger portion of the total time in the brain dataset than
in the heart dataset. This is due to the similarity measure: while in the monomodal
case (heart) we use a simple SAD, in the multimodal case (brain) we need a more
complex measure like mutual information. Note that data cost computation time
remains constant when we vary the inference method (with small fluctuations due to
operating system routines which ran during the experiment) but not across different
models. Note that we do not compare with the rigid estimation using Simplex
methods, since it estimates only 6 parameters (in a few seconds) while the discrete
methods deal with hundreds.

do not consider the extra cliques introduced to improve the geometrical constraints
propagation, since they are contemplated as an alternative strategy which may or
may not be adopted.

Figure 3.17 shows a comparative analysis between the three approaches, using
the two proposed inference methods, in terms of optimization time and final energy.
Table 3.1 presents a compendium of the most critical parameters related to the
proposed methods. Let us start with the label spaces. We divide them into two
types: displacement space (LD) and plane selection space (LP ). The first one
contains the displacement vectors (2D or 3D, depending on the model) applied to
the control points, while the second one contains the set of planes that can be chosen.
In terms of cardinality of the label spaces, the overparameterized approach has the
highest complexity, given by the cartesian product between the displacements and
all the possible planes, |LD × LP |. The decoupled model is dominated by the
maximum of the cardinality of both label spaces, max(|LD|, |LP |). Finally, for
the high-order model it depends only on |LD| since it is not necessary anymore to
explicitly model which planes can be chosen - the triangles defined by the triplets
of points describe a plane (and even more, a patch on this plane) by themselves.
It clearly illustrates how we can reduce the complexity of a given label space by
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Figure 3.17: Comparison between total optimization time and final energy using
two different optimizers (LBP corresponds to circles and LF to crosses). Results are
shown for the overparameterized approach (in blue), the high-order approach (in
orange) and the decoupled approach (in green). The gray lines connect data points
corresponding to the same registration case. As it can be observed with respect to
the final energy, both methods are equivalent in general (without considering the
outliers). However, there are more important differences in terms of computational
time. In the high-order approach, where the label space is small, LF outperforms
LBP since convergence is achieved in a few seconds, independently of the dataset.
For bigger label spaces (like decoupled and overparameterized approaches), LBP
converges faster in case of the heart dataset, where SAD is used as similarity measure
and therefore the energy is smooth. The last case is when we use MI as similarity
measure (brain dataset) and we have big label spaces: there is no clear pattern in
this case. Note that we do not compare with the rigid estimation using Simplex
methods, since it estimates only 6 parameters (in a few seconds) while the discrete
methods deal with hundreds.

making smart decisions in terms of energy definition and graph topology.
However, there is always a trade-off. This strong reduction in the size of the

label space, has an effect on other parameters like number of cliques and number of
variables. In case of the decoupled model, the main advantage is related to the fact
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Figure 3.18: Comparison between total optimization time and results accuracy
(measured using DICE coefficient) using two different optimizers (LBP corresponds
to circles and LF to crosses). Results are shown for the overparameterized approach
(in blue), the high-order approach (in orange) and the decoupled approach (in
green). The gray lines connect data points corresponding to the same registration
case. Note that these results are consistent with those shown in figure 3.17. Indeed,
one can observe that graphs in figure 3.17 are essentially a flipped version (over the
X axis) of graphs included in this figure. This evidences a high correlation between
low energy values and high accuracy of the results, proving that the energy is
appropriately modeled.

that while the number of variables and edges augment linearly (it goes from N to
2N in case of variables, and from 2N−2

√
N to 5N−4

√
N in case of pairwise edges),

the number of labels decreases quadratically (from |LD × LP | to max(|LD|, |LP |)).
It results in better performance for the decoupled method as can be observed in
figure 3.16. A consequence of the third-order cliques in the high-order method is
higher computation costs. Even then, judging from the running times reported in
figure 3.16, we achieve good experimental computation time because of the smaller
label space.

Finally, we include a comparison in terms of memory footprints (see table 3.2)
among the three methods, using two different optimizers. We reported the maxi-
mum amount of memory that a process consumed while running one registration
case for the heart dataset. As expected, the overparemterized model requires more
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Figure 3.19: Results for one slice from four of the six brain sequences (each row
correspond to a different sequence). (a) Source 2D US image. (b) Slice extracted
from the MRI corresponding to the initial position of the plane. (c) Deformed
source image overlapped with the estimated deformation field. (d) Blending between
initial images (US and corresponding MRI slice). (e) Blending between final images
(Deformed US image and estimated MRI slice). (f) Overlapping between initial
segmentations. (g) Overlapping between segmentations after registration.

Parameter Overparameterized Decoupled High-order
Label space |LD × LP | max(|LD|, |LP |) |LD|
# variables N 2N N

# 1st order cliques N - -
# 2nd order cliques 2N − 2

√
N 5N − 4

√
N -

# 3rd order cliques - - 4N − 6
√
N + 2

Table 3.1: Comparison among the three methods in terms of label space and graph
topology.

memory than the other two approaches. Results also suggest that LF is more ef-
ficient in terms of memory consumption than LBP, since given the same graphical
model, LF always outperforms LBP in terms of memory consumption.
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Overparameterized Decoupled High-order
LBP 362 MB 37.9 MB 65.4 MB
LF 342 MB 34.9 MB 44.7 MB

Table 3.2: Memory footprint comparison among the three methods, using two dif-
ferent optimizers. The reported value corresponds to the maximum amount of
memory that the process used while running in every case.

3.4 Conclusions and Further Ideas

We derive three new models from the standard graph-based deformable registration
theory for slice-to-volume registration. We show promising results in a monomodal
and a multimodal case, using different inference methods, and we compare them
with a baseline rigid approach were inference is performed using continuous op-
timization. The proposed framework inherits the advantages of graph-based reg-
istration theory: modularity with respect to the similarity measure, flexibility to
incorporate new types of prior knowledge within the registration process (through
new energy terms) and scalability given by its parallelization potential.

The three methods we present aim at optimizing different types of energy func-
tions in order to get both, rigid and deformable transformations that can be applied
independently, according to the problem we are trying to solve. An extensive eval-
uation in terms of different statistical indicators is presented, together with a com-
parative analysis of the algorithmic and computational complexity of each model.
This work constitutes a clear example of the modeling power of graphical models,
and it pushes the limits of the state-of-the-art by showing how a new problem can
be solved not just in one, but in three different ways.

Numerous future developments built upon the proposed framework can be imag-
ined. Alternative optimization methods and in particular second order methods in
the context of higher order inference could improve the quality of the obtained
solution while decreasing the computational complexity. The integration of ge-
ometric information (landmark correspondences) combined with iconic similarity
measures [Sotiras 2010b] could also be an interesting additional component of the
registration criterion. Moreover, sensor based technologies (like the ones described
in section 3.1.2.3) could be combined with our iconic method to improve its stability
when image occlusions or abrupt changes occur. Domain/problem specific parame-
ter learning [Baudin 2013,Komodakis 2015] towards improving the proposed models
could have a positive influence on the obtained results. The learning framework that
will be presented in section 4.3 follows this direction.

The applications explored in this chapter are mainly related to pre and intra-
operative image fusion. However, as it was mentioned in section 3.1.6, other scenar-
ios related to motion correction and volume reconstruction require slice-to-volume
registration methods. It would be interesting to explore how our approaches per-
form in these cases.

The three models we proposed aim at finding the optimal deformation field
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that relates a 2D slice to a 3D volume. From this deformation field, we extract
rigid and deformable parameters as explained in section 3.2. However, it was men-
tioned that in some specific problems, rigid models are enough since deformations
are not considered (see section 3.1.3.1). If we would like to apply our method to
these cases, unnecessary efforts would be done to infer the deformation field and
then extract the rigid parameters. Therefore, rigid (only) slice-to-volume registra-
tion using discrete models constitutes an open research direction. In this regard,
the work of [Zikic 2010b] about linear image registration using MRF and discrete
methods could be extended to the case of rigid slice-to-volume registration.





Chapter 4

Context Specific Registration
Methods

In this chapter we explore how semantic information can be used to improve the
registration process. Existing methods for medical image registration rely on a
single metric function explaining the similarity between the source and target im-
ages. We argue that incorporating semantic information to guide the registration
process, will further improve the accuracy of the results. To this end, we consider
two different scenarios. In the first scenario, we are given a set of unlabeled input
images and pre-trained classifiers. These classifiers can estimate semantic prob-
ability maps indicating how likely every voxel corresponds to a given anatomical
structure. This information is incorporated within a co-registration and segmenta-
tion algorithm that jointly maps all the input volumes to a common reference space
while generating a semantic segmentation mask per image. In the second scenario,
we consider the case where hard semantic segmentation masks are available for a
training dataset. We use them towards learning context-specific aggregations of
standard similarity measures. The learned matching criterion is integrated to the
standard graph based image registration formulation, resulting in a multi-metric
algorithm endowed with a spatially varying similarity metric function conditioned
on the anatomical structures.
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4.1 Literature Review

Medical images are n-dimensional vectors of intensity values. Context specific/semantic
information can augment the expressive power of such images. This information
may be encoded in different ways such as data tags (e.g age, gender, weight, dis-
ease, etc), anatomical or functional annotations, landmarks, etc. In this chapter,
we discuss how such context specific or semantic information can be exploited to
improve registration.

Various approaches were envisioned to incorporate priors into the registration
process. Without being exhaustive, let us present the most commonly adopted ap-
proaches towards incorporating context information to the registration process: (i)
knowledge-based transformations, where the information is encoded within the de-
formation model (ii) modality-specific similarity measures, adopted when we know
a priori the type of images we want to register (iii) metric learning, where we aim
at learning more accurate matching criteria from examples and (iv) segmentation-
aware strategies, which directly incorporate segmentation priors to the registration
process.

Knowledge-based Transformations

Prior knowledge as it concerns the elastic mapping within deformable registra-
tion can be achieved either by learning a high dimensional statistical model of
deformations or by exploiting biomechanical/biophysical properties of tissues [Soti-
ras 2013]. In the first case, statistical deformation models are used to capture
information about deformation across a population of subjects. Principal Compo-
nent Analysis (PCA) was used in several studies (e.g [Wang 2000,Tang 2009]) to
represent such statistical models. Then, registration can be performed estimating
the linear combination of the PCA modes of variation that optimize a given cri-
terion. In [Wouters 2006] the PCA parameters were estimated by minimizing the
mutual information similarity criterion. The advantage of such models is that they
constrain the set of admissible deformations to be a linear combination of a basis
learned from examples. Such methods are manifold constrained since only "observ-
able" mappings can be reproduced. Manifold enhanced methods is an alternative
that seek to minimize the distance of the mapping from the space of admissible
solutions. One can refer to the work presented in [Glocker 2009b] where the de-
formation was expressed through a graph-based control-driven method and relative
constraints on the deformation of control points were learned. Such constraints
were used in the form of costs during the inference of the deformations in new data.

The second alternative, exploiting the same principle, uses biomechanical or
biophysical inspired models. Building such models is a challenging task since not
only the material properties but also the geometry and boundary conditions of the
organs must be considered. Tumor growth models, for example, have been suc-
cessfully used to guide the estimation of the deformation field [Clatz 2005] through
such biphysical constraints. Breast simulation based on Finite Elements Model
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(FEM) was used by [del Palomar 2008] to accurately predict real deformations of
the breast. Other organs like the prostate have also been considered. In [Mo-
hamed 2002] a biomechanical model was used to produce admissible simulations of
the deformations generated by the TRUS probe insertion. This information is then
considered when performing registration between pre-operative and intra-operative
prostate images.

The advantage of such approaches relates to the DOF used to represent the
transformation. The aforementioned models decrease the number of transforma-
tion parameters when compared to the standard dense deformation field. Thus,
exploring the search space becomes simpler, leading to improved efficiency and
lower computational complexity at the expense of decreasing the expressive power
of the mapping through constraints on the admissible transformations.

Modality-Specific Similarity Measure

The use of context-specific metric functions is an alternative constraint to the defor-
mation priors. Clinical settings/applications usually involve known image modali-
ties to be registered. Therefore, an effort was invested to design modality specific
similarity measures adapted to them. The simplest approach consists in simulating
the target modality from the source (through either a physical simulation system
or a machine learning approach), reducing the problem to a monomodal scenario.
Simulating one modality from another can be achieved considering the physical
properties of the imaging device [Sotiras 2013]. In [Wein 2007,Wein 2008a] a novel
method to generate simulated US images from CT data was proposed. They intro-
duce a new similarity measure entitled Linear Correlation of Linear Combination
(LC2), which is invariant to missing simulation details, yielding smooth proper-
ties and a global maximum at the correct alignment. The same LC2 was used
in [Fuerst 2014] for registering US to MRI images. The similarity measure was
defined by locally matching US intensities to both MRI intensity and gradient
magnitude. These techniques exploit knowledge relative to specific types of image
modalities. Therefore, they achieve accurate results when the underlying physical
principles are known and allow the simulation of new modalities. However, such
methods fail when generalizing to arbitrary image technologies.

Distance Metric Learning

Metric learning is an alternative way to incorporate context specific and prior infor-
mation to the similarity measure. It seeks to determine a mapping that will bring
samples from similar classes close (corresponding anatomical structures in the dif-
ferent modalities) and far apart the data from different classes [Boukouvalas 2011].
This concept can be applied to different fields using distance metrics, such as clas-
sification, clustering and retrieval tasks. A complete survey about distance metric
learning was presented in [Yang 2006]. From this general definition, the meaning
of metric learning in the context of image registration can be simply interpreted as
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learning a domain specific matching criterion that allows the comparison of any two
given image modalities. Hence, instead of using single universal similarity measures
such as MI, SAD or NCC, we learn specific matching criteria optimally adapted for
a given task.

In [Yang 2006] methods were classified as supervised or unsupervised. Super-
vised methods require a set of annotated data (i.e. some sort of similarity infor-
mation, either in the form of a full scalar distance between samples, a ranking or
some proximity of some samples to others or just a separation between samples
that are deemed similar and dissimilar [Michel 2014]). Metric learning consists in
determining a mapping that will bring all data points within the same classes close,
while separating all the data points from different classes. In unsupervised meth-
ods (referred as manifold learning approaches in [Yang 2006]) the main idea is to
learn an underlying low-dimensional manifold where geometric relationships (e.g.
distance) between most of the observed data are preserved. Then, we can map the
original data into this simpler representation endowed with a metric that correctly
represents the data similarity [Bronstein 2010].

Several image registration methods using supervised metric learning can be
found in the recent literature. [Lee 2009] derived a rigid multi-modality registration
algorithm where the similarity measure is learned in a discriminative manner, such
that the target and correctly deformed source image receive high similarity scores.
The learning was performed using a max-margin approach known as structured pre-
diction. The structured prediction approach of [Lee 2009] uses pairs of pre-aligned
images as training data. They assume that the similarity of two images decomposes
into the similarities of local regions (patches). Therefore, the learning is performed
at the patch level. In a different but still supervised setting, [Bronstein 2010] pro-
posed the use of sensitive hashing to learn a multi-modality distance metric, that
can be applied to data coming from two different spaces. The idea is to embed
the input data from two arbitrary spaces into the binary space where Hamming
distance is minimum for corresponding patches and high for the non correspond-
ing ones. This mapping is expressed as a binary classification problem and can
be efficiently learned using boosting algorithms. The authors applied this method
to perform multimodal non-rigid registration. The training set involved pairs of
perfectly aligned images and consisted on a collection of positive and negative pairs
of patches. Such a metric learning approach was plugged into the standard graph-
based deformable registration framework in [Michel 2011]. In [Toga 2008], instead
of requiring pre-aligned images, the training set consisted of non-aligned images
with manually annotated patch pairs (landmarks). Coarse-to-fine strategies were
adopted where a global similarity measure was learned first, followed by a fine sim-
ilarity measure that can capture correspondences at the higher resolution image
level. Learning was performed by selecting and fusing a large number of image
features. More recently, approaches based on deep learning have started to gain
popularity. An interesting discussion about this topic was presented in [Long 2014],
suggesting that features learned using convnets are at least as useful (and some-
times considerably more useful) than conventional ones when performing alignment
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of elements of the same class.
Unsupervised learning methods for image registration have also been stud-

ied. [Wachinger 2010] proposed to apply manifold learning (through Laplacian
eigenmaps) to learn structural representations of multimodal images. The idea
was to calculate dense descriptors that represent the structural information of im-
age patches which do not depend on the intensity values of the images but on the
structures in the patch. Once the original images were projected to the learned
manifold, standard L1 or L2 norm were used for the registration of the structural
images. In [Ou 2011] the notion of mutual saliency was considered to locally adapt
the metric function involving a weighted sum over a large space of features. A dif-
ferent approach based on unsupervised deep learning was proposed by [Wu 2013].
The composition of a basis of filters was learned to effectively represent the ob-
served image patches. These features were then incorporated in state-of-the-art
registration methods and tested on MR images of the brain.

Segmentation-Aware Strategies

Segmentation labels can be an interesting alternative to encode prior information.
Given an image I (2D or 3D) and a finite set of semantic classes C, a hard segmenta-
tion mask assigns a label c ∈ C to every pixel (voxel) of I. Soft segmentation masks
(or probability maps) indicate how likely a given pixel (voxel) is to be associated
with a class c ∈ C. We will call segmentation-aware strategies to the methods that
incorporate -at some extent- these segmentation maps (hard or soft) directly to the
registration process.

A popular way to incorporate segmentation information into the registration
process is by performing both tasks at the same time. The idea is to exploit the
inter-dependencies between the two problems to improve both, registration and
segmentation results. This is known as co-registration and segmentation. A uni-
fied segmentation framework integrating tissue classification and image registration
within the same generative model was proposed in [Ashburner 2005]. Their model is
based on a mixture of Gaussians (MOG) incorporating smooth intensity variation,
non-linear registration and soft segmentations. Another example is given in [Maha-
patra 2012], where segmentation information was integrated to improve MRF-based
elastic image registration. They formulated the data term of the MRF energy as
a combination of image intensity and mutual dependence of registration and seg-
mentation information. Hence, the labels were defined as the joint occurrence of
displacement fields and segmentation class probability. The main disadvantage of
this approach is the manual intervention required to define a mask around the object
of interest. The area within this mask was considered to get the intensity distri-
butions of the object, which was then used to determine the mutual dependence
of the segmentation mask and the displacement vectors. [Wyatt 2003] also showed
that one can obtain more accurate and robust results by seeking a joint solution to
registration and segmentation. They used a MRF-based approach as well, inducing
spatial regularization into the registration process through a class-based entropy
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measure. Gaussian Mixture Models were coupled with an MRF prior to perform
the segmentation task, while the registration relied on the segmentation by mini-
mizing the joint class histogram between both images. In [Parisot 2014], an elegant
formulation seeking to take advantage of concurrent segmentation and registration
of brain tumor images was proposed. Such a framework used a data-driven adaptive
graphical model endowed with uncertainties and was used to adapt the registration
task to the presence of the tumor increasing also the segmentation quality. One can
also refer to early works like [Yezzi 2003], where a geometric, variational framework
that uses active contours to simultaneously segment and register features from two
or more images was proposed. They minimize a set of energy functionals, one for
each image. Similar work in the context of computer vision and motion analysis
and tracking was presented in [Paragios 2005].

Another alternative considering segmentation masks within the registration pro-
cess is the atlas-based method. In the context of medical image analysis, an at-
las is usually defined as the combination of an intensity image (template) and its
corresponding semantic annotations (the atlas labels). These annotations can be
expressed in the form of discrete segmentation labels or probability maps (prob-
abilistic atlas). The image segmentation problem can be solved using either a
single [Cabezas 2011] or multiple atlases [Iglesias 2015]. The idea is to register
the atlas(es) to the target image and, then, transfer the labels using the obtained
deformation field. In the multi-atlas setting, a label fusion strategy must be con-
sidered to generate the final (consensus) segmentation mask. Several works have
been presented where simultaneous registration and segmentation are performed,
leading to improvements in both tasks by exploiting the inter-dependencies be-
tween the two problems. [Gass 2014] introduced a novel MRF-based approach for
segmenting medical images while simultaneously registering an atlas non-rigidly.
Even if they modeled both type of variables (deformation vectors and segmentation
classes) they did it in a sum-label way, i.e. the solution label space is the union of
segmentation and registration label spaces and therefore the total number of labels
is the sum of the number of registration and segmentation labels (instead of the
product as in [Mahapatra 2012]). This strategy reduces the complexity of the label
space by using a two-layer model where variables in every layer take values from
different spaces. The solution of this pairwise model was efficiently found using
α-expansion [Boykov 2001]. A variational formulation that simultaneously register
an atlas shape to a novel brain image and segments it at the same time was pre-
sented in [Wang 2005]. They solved a coupled set of nonlinear PDEs using efficient
numerical schemes. The main disadvantage of this approach is that it is limited to
binary segmentation problems.

Methods mentioned in the previous paragraph make use of a single atlas. How-
ever, multi-atlas approaches where prior information is incorporated to the reg-
istration process have also been considered. In [Heckemann 2010], a hierarchical
multi-atlas approach was proposed. It introduced tissue-class information to im-
prove image registration and, consequently, segmentation results. The modification
used only tissue classification information (learned offline) to guide the three first
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hierarchy registration levels (using cross-correlation matching criterion to align the
tissue probability maps). The resulting transformation was then used as a start-
ing point for detailed registration using the gray intensity values and NMI as the
similarity measure. Another multi-atlas framework that incorporates soft segmen-
tation priors was proposed in [Alchatzidis 2014a]. The motivation was based on
the idea that prior segmentation probabilities can help registration to avoid local
minima, specially in areas of high anatomical variability like brain cortex. They
used a MRF-based formulation where each atlas is associated with a deformation
field (registration variables), while the target image is associated with a segmenta-
tion map (segmentation variables). Prior per voxel probabilities, produced through
learning of local features, are taken into account in the energy formulation. In-
tensity values, smoothness constraints and a coupling term imposing agreement
between the segmentation label and the segmentation hypotheses produced from
the deformed atlases are considered as well in the energy formulation.
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4.2 Prior-based Co-Registration and Segmentation

In this section we propose a modular and scalable framework for dense co-registration
and co-segmentation that incorporates (soft) prior information. The central idea of
this segmentation-aware method is to use estimated maps of semantic labels (pro-
vided by an arbitrary classifier) as a surrogate for unlabelled data, and combine
them with (population) deformable registration to improve both alignment and
segmentation. The method seeks to deform all volumes towards an arbitrary refer-
ence space where the transformed images exhibit consensus with respect to image
similarities (according to some arbitrary metric) and semantic labels. We employ an
approach sharing conceptual similarities with α-expansion, combined with efficient
linear programming.

4.2.1 Introduction

In recent years, multi-atlas segmentation methods have become one of the most
widely used segmentation techniques for biomedical applications. Multi-atlas based
segmentation principle employs an annotated dataset of atlases (images with their
corresponding ground truth segmentation), in order to segment an unseen image
(target). The atlases are registered to the target image and the resulting deformed
candidate segmentations are fused, generating the final segmentation mask. Nor-
mally, these approaches allow to segment one target image at a time. In this work,
we propose to boost the spatial transformation estimation process by integrating
learned soft priors on the structures of interest. To this end, we propose a popu-
lation deformable registration framework [Sotiras 2009] that, given a set of input
volumes, creates an optimal (unknown) reference space through their mutual de-
formation. We achieve this through a discrete groupwise co-registration process
endowed with segmentation consistency constraints which makes possible to seg-
ment not one, but multiple images at the same time. This gives rise to a ground
truth-free, data-driven registration process that leads to more accurate results than
standard multi-volume segmentation strategies.

Multi-atlas segmentation approaches involve two stages: registration and label
fusion. Different non-linear approaches have been proposed in the literature with
regards to registration [Sotiras 2013]. Methods differ in terms of the deformation
model (physical models, interpolation theory or based on specific knowledge of
the domain), matching criterion (geometric, iconic or hybrid) and optimization
technique (continuous or discrete).

Label fusion is a post processing step, that merges the candidate segmentations
obtained after wrapping the atlases to the target image. Such strategies may be
simple, like for example majority voting, or more complex involving probabilistic
frameworks [Rohlfing 2004,Sabuncu 2010]. An extensive review of multi-atlas seg-
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mentation methods can be found in [Iglesias 2015]. A comprehensive evaluation of
the accuracy of the atlas-based brain structure segmentation with several different
publicly available registration methods was provided in [Klein 2009].

Our method bears some similaries with a standard multi-atlas segmentation
algorithm, but targets a different objective. The segmentation results are a by-
product of the population registration where context labels are used to improve
the registration performance. Moreover, we aim at segmenting all input volumes
simultaneously, while standard approaches do it independently. In the literature,
concept similarities with the proposed framework can be found in [Heckemann 2010]
and [Alchatzidis 2014a]. These methods use probabilistic priors obtained through a
pre-trained classifier to improve segmentation and registration results. Here, oppo-
site to [Heckemann 2010], we do not perform independent prior and intensity based
registration steps, but we do it using a compound matching criterion that considers
both at the same time. Furthermore, in contrast to the work of [Alchatzidis 2014a]
where segmentation variables are explicitly modeled, here we only model registra-
tion variables, reducing the number of parameters to be estimated and making the
approach tractable and scalable. Moreover, both methods aim at segmenting a
single target image, whereas ours considers a population of images simultaneously.

Given a set of unseen images, our method infers the atlases on-the-fly by using
previously learned classifiers, and incorporates this information to the energy for-
mulation. We evaluate the effectiveness of our approach on the task of segmenting
challenging sub-cortical structures in two brain image datasets. We compare the
performance of the proposed method with the standard pairwise atlas-based seg-
mentation, and we evalute it using accurate as well as weak priors. Comparison
with ground truth driven co-registration and segmentation is also included for the
sake of completeness.

4.2.2 Prior-based Co-Registration and Segmentation

The co-registration and segmentation algorithm is formulated as an energy mini-
mization problem. The input is the set of 3D images DI = {I1, I2, ..., IN} (with
Ii : Ω ⊂ R3 → R) and their corresponding segmentation priors (soft or hard)
DS = {S1, S2, ..., SN} which are associated to the possible segmentation classes
c ∈ C = {0, ..., C−1} as Si : Ω × C → {0, 1}. The desired output is a set of final
multi-label segmentation masks D̂S =

{
Ŝ1, Ŝ2, ..., ŜN

}
together with the deforma-

tion fields T̂ =
{
T̂1, T̂2, ..., T̂N

}
which warp every image to a common coordinate

space. We optimize an objective function E based on a compound matching cri-
terion where both image similarities and learned priors are considered as well as
deformation smoothness for the deformation fields. Let us now, without loss of gen-
erality, proceed with a concept definition of our approach. The objective function
that could be used to solve such a problem involves three terms:

E(T ;DI , DS , δ, η,R) = EI (T ;DI , δ) + ES (T ;DS , η) + ER (T ;R) . (4.1)
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The first term, EI (T ;DI , δ), imposes compactness on appearance of the regis-
tered population at the pixel level. It depends on a similarity measure δ and the
image intensity of every volume in the input set DI . It is defined as:

EI(T ;DI , δ) =
∫

Ω
δ(I1 ◦ T1(x), I2 ◦ T2(x), . . . , IN ◦ TN (x))dx, (4.2)

where δ is a function measuring the coherence between equivalent pixels (or patches
centered at given positions, depending on the formulation) in every deformed image.
It is nothing more than the notion of similarity measure, which is extended so that
it accounts for more than one image at the same time. Such a term can be either
higher order (explicit modeling of global similarity between the deformed volumes),
or lower order (decomposition of the global term into a sum of local terms).

The second term, ES (T ;DS , η), measures the degree of agreement among the
deformed priors. It depends on the segmentation masks DS and it uses a function
η that quantifies this agreement. Hamming distance of the thresholded probability
maps or more complex functions could be used in this case. The term is defined as
follows:

ES (T ;DS , η) =
∑
c∈C

∫
Ω
η(S1 ◦ T1(x, c), S2 ◦ T2(x, c), . . . , SN ◦ TN (x, c))dx. (4.3)

Note that we sum over all possible semantic labels c ∈ C. If we have priors which
are more reliable than others, we could weight them according to the confidence
level.

Last but not least, we define a regularization term ER that introduces geometric
or anatomical constraints to the deformation fields. In medical image registration,
we usually assume that the deformation field is smooth. Different type of regular-
izers R could be used, which are commonly defined as a convex function acting on
the gradient of the deformation field. We apply this constraint independently to
every deformation field Ti as follows:

ER (T ;R) =
N∑
i=1

∫
Ω
R(Ti(x))dx. (4.4)

The estimation of the desired transformations can be formulated as a MAP
inference problem where we aim at minimizing the following:

T̂ = arg min
T

E(T ;DI , DS , δ, η,R). (4.5)

Once the optimal deformation fields T̂ are estimated, we can reconstruct the
final segmentation masks D̂S . To this end, we first propagate every original seg-
mentation prior from DS to the common space, generating warped segmentation
masks Si ◦ T̂i. Then, say we want to estimate the final segmentation mask for vol-
ume k, then we back propagate all the warped segmentation masks Si ◦ T̂i from
the common space, to the space of image k by using the inverse of the deformation
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Figure 4.1: Co-registration and segmentation workflow. The input consists of im-
ages (Ii) and their corresponding segmentation likelihoods Si. After running the
prior co-registration algorithm (which considers the priors in the energy formula-
tion through the semantic consistency term), the optimal deformation fields are
used to deform the maximum-a-posteriori of the segmentation likelihoods, which
are considered as segmentation hypothesis. A label fusion strategy is then applied
to generate the final segmentation mask. The example in this figure illustrates
the process to generate the final segmentation for image I1. The same strategy is
followed to generate the rest of the segmentation.

field. This results in the following equation with respect to the segmentation of the
k example:

Ŝk = fuse(S1 ◦ T̂1 ◦ T̂−1
k , S2 ◦ T̂2 ◦ T̂−1

k , . . . , Sk, . . . , SN ◦ T̂N ◦ T̂−1
k ). (4.6)

In an abuse of notation, S ◦ T indicates that the deformation field T is applied
to the initial domain with images intensities being replaced with semantic classes
c ∈ C.

The method is modular with respect to the fusion strategy applied to the back-
propagated priors to compute the final segmentation mask. We used a simple
majority voting, assigning to every voxel the class c ∈ {0, ..., C−1} with the highest
number of votes after back-propagation; although simple, this scheme proved to be
fairly effective. Figure 4.1 illustrates the complete process. Let us now proceed
with a formal definition of the approach in the context of graphical models.

Graphical models and discrete optimization techniques can address quite effec-
tively this type of vision problems. However, note that the energy to be minimized
in the MAP problem (defined in equation 4.1) involves high-order dependencies in
the data terms EI and ES since all the deformation fields must be considered at
the same time. A proper derivation of a discrete MRF using this formulation will
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produce high-order terms which are difficult to optimize and significantly increase
the computational complexity of the method. Alternative models can be derived for
this MAP problem, by doing a smarter choice in terms of graph topology, discrete
energy formulation and label space. We propose to follow the strategy adopted
by [Sotiras 2009], that involved an approximation of the global terms. It consists of
assuming that, when estimating a given deformation field Tk, the rest of the images
do not move within the current iteration. This is somehow analogous to the expan-
sion moves of the well known α-expansion [Boykov 2001], in the sense that we follow
the philosophy of the ’very large neighborhood search’ techniques [Ahuja 2002]: we
start with a feasible solution (in our case, the identity deformation fields) and it-
eratively try to obtain a better solution that improves the solution of a volumes
towards all "static" volumes.

4.2.2.1 Iterative Prior-based Co-Registration and Segmentation

The co-registration and segmentation algorithm presented in the previous section is
reformulated as an iterative process that solves several energy minimization prob-
lems defined on independent Markov Random Fields. The step-by-step procedure
is described in Algorithm 2. The energy terms EI , ES and ER (intensity matching,
semantic prior consistency and regularization terms, respectively) are replaced by
EI , ES and ER which consider a single transformation Tk at a time (at a given it-
eration), instead of considering the complete set T . The co-registration process is
performed iteratively: only one source image is chosen at each step and registered
considering all other images in the set (simultaneously) as targets. To this end,
we optimize an objective function E based on a compound criterion where image
similarities (EI), learned priors (ES) and deformation field regularization (ER) are
considered.

The matching component EI uses again an iconic similarity measure δ. It could
be Sum of Absolute Differences (SAD), Mutual Information (MI), Normalized Cross
Correlation (NCC) or any other metric that captures similarity between the two
images. It is defined as follows:

EI
(
Tk; Ī , Ik

)
=

N∑
i=0,i 6=k

∫
Ω
δ(Ĩi, Ik ◦ Tk(x))dx. (4.7)

Note that we refer to Ĩi as the latest deformed version of every original input image
Ii. Given C semantic classes C = {0, ..., C − 1}, the segmentation prior component
ES takes the following form:

ES
(
Tk; S̄, Sk

)
=

∑
c∈C

N∑
i=0,i 6=k

∫
Ω
η(S̃i, Sk ◦ Tk(x, c))dx, (4.8)

where η is the same function measuring the degree of agreement among the de-
formed segmentation masks (used to define ES in equation 4.3) and S̃i is the latest
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Algorithm 2 Iterative Co-registration Segmentation algorithm
1: procedure ICS(DI : {I1, I2, ..., IN}, DS : {S1, S2, ..., SN})
2: Initialize the deformation fields

{
T̂1, T̂2, ..., T̂N

}
as null (identity) deformation fields

3: repeat
4: repeat
5: Randomly select one image from DI as temporal target image Ik

6: Register Ik to the other images in the set Ī = {Ii}i∈{1,...,N},i 6=k, while optimizing E :

T̈k = arg min
Tk

EI

(
Tk; Ī , Ik

)
+ ES

(
Tk; S̄, Sk

)
+ ER (Tk) (4.10)

7: Update DI and DS as: Ik ← Ik ◦ Tk and Sk ← Sk ◦ Tk

8: Update deformation field T̂k ← T̂k ◦ T̈k

9: until All members of DI have been selected as target once
10: until No more changes in the transformation Ti or the maximum of iterations is reached
11: Obtain T̂ =

{
T̂1, T̂2, ..., T̂N

}
12: for each image Ik ∈ DI do
13: for each segmentation prior Si ∈ DS do
14: Deform Si to the native space of Ik:

S′i = Si ◦ T̂−1
k (4.11)

15: end for
16: Apply label fusion (e.g., Majority Voting) on {S′i}i∈{1,...,N} to obtain Ŝk

17: end for
18: Output: T̂ =

{
T̂1, T̂2, ..., T̂N

}
and D̂S =

{
Ŝ1, Ŝ2, ..., ŜN

}
19: end procedure

deformed version of the original input mask Si. S̄ is defined as {Si}i 6=k and Sk is
the segmentation prior for the target image.

Finally, the regularization term ER from equation 4.4 is redefined as ER follow-
ing:

ER(Tk) = (N − 1)
∫

Ω
R (Tk(x)) dx, (4.9)

where we scale the regularization term by (N − 1) for normalization purposes.
This iterative process is repeated until convergence, meaning that all images

are aligned in a common pose space. The same back-propagation and label fusion
strategy defined in equation 4.6 is used to produce the final segmentation masks.

4.2.2.2 Discrete Formulation

The non-rigid registration between each target image Ik and the rest of the images
Ī = {Ii}i∈{1,...,N},i 6=k is formulated as a discrete energy minimization problem. We
consider Free Form Deformation (FFD) [Rueckert 1999] as our discrete transforma-
tion model, which parametrizes the deformation fields Tk as a linear combination of
K control points. These are regularly placed forming a uniformly distributed grid.

We cast the energy minimization task as a discrete optimization problem of a
pairwise discrete MRF. As usual, it is modeled using an undirected graph G = 〈V,X〉
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superimposed to the 3D image Ik, where V and X denote the nodes and the edges
of the graph, respectively. The nodes are interpreted as random variables, while
the edges encode the interaction between the variables. The random variables of
the MRF model correspond to the displacements of the control points and edges
encode dependencies between them. The solution space that can be explored around
a control point is given by labels l living in a label space L, where every label l ∈ L is
associated to a displacement vector dl. Thus, in the context of discrete optimization,
the energy of equation 4.10 becomes:

EMRF (Γ;G,F ) =
∑
p∈V

gp (lp) + λ
∑

(p,q)∈X
fpq (lp, lq), (4.12)

where lp, lq are the labels assigned to the nodes p, q ∈ V, λ is a scaling factor and
Γ is a labeling that assigns a label li to every variable in the MRF. The data term
gp (lp) ∈ G is formulated as the combination of the matching and the segmentation
prior term:

gp(lp) =
∫

Ωp

δ(Ĩi, Ik ◦ T
dlp
k (x))dx+ β

∑
c∈C

∫
Ωp

η(S̃i, Sk ◦ T
dlp
k (x, c))dx, (4.13)

where Tdlp
k is the transformation induced by the movement of the control point p

when displacement vector dlp (associated to label lp) is applied. β is a coefficient,
which determines the influence of segmentation priors on the optimization problem.
The data term is defined for an image patch Ωp centered at control point p, as it was
discussed in section 2.3. Note that for β = 0, the problem reduces to the standard
approach; the only difference in this case is that it considers all images in the input
set, instead of considering just one target image like in the pairwise case.

The pairwise potentials are defined as the regularization of the deformation
field. A discrete approximation of the gradient of the spatial transformation can be
computed by taking the difference between the displacements of the neighbouring
nodes:

fpq (lp, lq) =
∥∥∥dlp − dlq

∥∥∥ . (4.14)

The method is modular with respect to the regularization term. Therefore,
different type of regularizers could be considered depending on the problem.

In order to infer the best possible labeling, we employ the Fast-PD [Komodakis 2008]
algorithm described in section 2.4.3. It is an efficient discrete optimization method
based on linear programming relaxation, that has shown promising results when
applied to multi-label problems with similar types of energies.

4.2.3 Experiments and Results

We evaluate the performance of our approach on two medical image datasets by
segmenting subcortical structures of the brain. These structures are located below
the cerebral cortex and refer to complex shapes difficult to segment. We tested
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Figure 4.2: Average Dice coefficient of subcortical structures in IBSR dataset.

Figure 4.3: Average Hausdorff distance of subcortical structures in IBSR dataset.

using two different types of priors: reliable priors generated using a convolutional
neural network (CNN) and weaker segmentations obtained through random forest
(RF) classification.

The first dataset is the publicly available Internet Brain Segmentation Reposi-
tory (IBSR) [Rohlfing 2012]. It includes 18 annotated 3D T1-weighted MR scans
with slice thickness of around 1.3 mm. We use the set of 16 subcortical annota-
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Figure 4.4: Standard pairwise multi-atlas registration approach. Given a set of
atlases (image + ground truth segmentation mask) and a target image to segment,
the pairwise multi-atlas registration strategy consists in registering (individually)
every atlas image to the target. Once all of them are registered, the resulting
deformation fields are used to warp the ground truth segmentation masks to the
target space. These deformed masks are considered as segmentation hypotheses. A
label fusion step is then applied to generate the final segmentation mask considering
the hypotheses.

tions, including left and right lateral ventricle, thalamus, caudate, putamen, pal-
lidum, hippocampus, amygdala, and accumbens. The second dataset involves pa-
tients with Rolandic Epilepsy (RE), and contains 17 children with epilepsy and 18
matched healthy individuals. T1-weighted magnetic resonance images (MRI) scans
were performed by a 3 T scanner (Philips Acheiva) with an in-plane resolution of
256× 256 and slice thickness of 1 mm. The left and right putamen structures were
manually annotated by an expert.

Pairwise Multi-Atlas Baseline. As a baseline, in the first experiment, we im-
plement the standard multi-atlas segmentation based on pairwise registration. In
the pairwise approach, all atlases are independently registered to the target image,
then the ground truth annotations are deformed to generate the segmentation on
the target space (see Figure 4.4). Pairwise registration has been conducted in a
discrete fashion using the standard formulation presented in section 2.3, without
any prior guidance. Figures 4.2- 4.5 show the values for Dice overlap coefficient,
Haussdorff distance (HD) and contour mean distance (CMD) between the output
segmentation of the pairwise approach and the ground truth on IBSR dataset.
Figure 4.6 illustrates the same measurements for the RE dataset. In both cases
our approach using CNN priors (Coreg+CNN) performs better than the pairwise
segmentation baseline.
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Figure 4.5: Average contour mean distance on sub-cortical structures of IBSR
dataset.

It should be noted though that the pairwise baseline has a clear advantage with
respect to the proposed approach: the segmentation masks that are deformed and
used to generate the final segmentation result are the actual ground truth. Instead,
the prior based methods (Coreg+CNN and Coreg+RF) do not use at any point the
ground truth masks; they only use the estimated probability maps.

CNN Priors (Coreg+CNN) We train a CNN classifier using the formulation
presented in Appendix A.2. To this end, we split the IBSR dataset into three sets.
Each time, we use two of the sets as training data and the third set as test data.
Similarly, we split RE into two subsets of equal size, using one for training and one
for testing, each time. We train on both datasets for 35 epochs starting with a learn-
ing rate of 0.01 and dropping it at a logarithmic rate until 0.0001. We train using
standard SGD with a momentum of 0.9 and a softmax loss. For all our experiments
we use MATLAB and the deep learning library MatConvNet [Vedaldi 2014]1.

RF Priors (Coreg+RF) In a second experiment, we compare the performance
of the proposed segmentation method using CNN priors, with an approach based
on less accurate priors obtained using Random Forest (RF) classification. The RF-
based probability maps are computed according to [Alchatzidis 2014b], and the
same co-registration process, as explained in 4.2.2, is applied to produce the final

1The source code of the classifier can be downloaded from https://github.com/tsogkas/
brainseg

https://github.com/tsogkas/brainseg
https://github.com/tsogkas/brainseg
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segmentation. Note that the quality of these priors is not as good as the one of the
CNN priors.

Thresholded Priors (CNN and RF) Figures 4.2- 4.6 show the average Dice
coefficient, HD and CMD for the co-registration-segmentation method based on RF
priors. To further demonstrate the interest of using the iterative co-registration pro-
cess on top of CNN/RF priors, we also report the results of the simple segmentation
methods based on taking the maximum probability given by CNN and RF without
co-registration. In this setting, given a CNN/RF prior, the segmentation class of
every voxel is simply chosen as the class with the highest probability. These results
show that the CNN priors (without any registration process) are more accurate
than the weak RF priors.

Ground Truth Based Oracle (Coreg+GT) So far we have highlighted the
positive effect of using priors in our proposed co-registration-segmentation method.
As mentioned before, the main idea is to use the probability maps as a surrogate
for the ground truth annotations to guide the co-registration process. In order to
assess the maximum potential of our approach, we implement an oracle variant that
can provide us with an upper-bound for the performance of our method. Hence,
we employ the ground truth segmentation masks for all 3D volumes, except for the
target image, for which we keep the priors computed by the CNN (this could be
considered as an almost-ideal case in which our classifier can generate extremely
accurate probability maps). We refer to this method as Coreg+GT in the figures.

Unsurprisingly, the results of Coreg+GT after running Algorithm 2 outperform
all other combinations (See Figures 4.2- 4.6). Nonetheless, performance of the
Coreg+CNN variant is close to Coreg+GT in most cases. This evidence solidifies
our original claim, that reliable priors can act as a practical substitute for gold
standard annotations for multi-atlas segmentation.

In Figure 4.7 we show some qualitative results, while in 4.2.4 we report the aver-
age Dice coefficient, HD and CMD for all structures in the IBSR and RE datasets.
The oracle combination Coreg+GT performs best, as expected, with Coreg+CNN
a close second, outperforming the other approaches. However, Coreg+CNN has the
additional advantage of using learned priors instead of ground truth annotations,
which are not always available.

4.2.4 Discussion

In this section, we propose a generic co-registration-segmentation method that can
benefit from (soft) segmentation priors and produce results which are close to those
generated using ground-truth. Our method is not a multi-atlas segmentation algo-
rithm, since the segmentation results are a by-product of the co-registration where
context labels are used to improve the registration performance. We have shown
that, by using accurate segmentation priors (like CNN based segmentation maps)
we can obtain such results close to the ground truth. More importantly, we also



4.2. Prior-based Co-Registration and Segmentation 99

Figure 4.6: Average Dice coefficient, Hausdorff distance, and contour mean distance
for the left and right putamen structures in RE dataset.

Pairwise RF Coreg+RF CNN Coreg+CNN Coreg+GT
mean 0.70 0.64 0.65 0.75 0.76 0.78Dice std 0.12 0.15 0.14 0.13 0.10 0.09

IBSR mean 1.10 1.79 1.58 0.87 0.87 0.81CMD std 0.37 0.68 0.46 0.26 0.22 0.21
mean 6.80 16.40 9.80 9.70 6.48 6.09HD std 6.07 10.50 5.73 10.97 5.66 5.88
mean 0.82 0.65 0.65 0.88 0.88 0.89Dice std 0.05 0.04 0.03 0.03 0.02 0.03

RE mean 0.81 1.95 1.88 0.54 0.58 0.49CMD std 0.23 0.24 0.19 0.11 0.09 0.12
mean 3.69 11.71 7.70 4.93 4.18 2.80HD std 0.86 5.58 0.98 7.48 0.83 0.76

Table 4.1: Comparison of the average and standard deviation of the Dice coefficient,
HD and CMD on the ISBR and RE datasets. As we can observe, when we use
accurate priors (Coreg+CNN), we achieve results close to the ground truth after
co-registration and segmentation in the majority of the cases. Moreover, when
we use weak priors like (Coreg+RF), we improve the initial results given by the
thresholded priors, specially in terms of CMD and HD.

showed that by using less accurate priors (like those learned using RF), we also ob-
tain good results after co-registration-segmentation as shown in Figures 4.3, 4.2, 4.5
and 4.6. There, we observe significant improvements between RF and Coreg+RF,
especially in terms of Hausdorff and contour mean distances. This is due to our
formulation, which includes a novel energy term that enables any prior to help dur-
ing registration. Our method may be used in combination with weak priors learned
from weak annotations, such as bounding boxes, requiring less time to be produced
than accurate segmentation masks, yet delivering good results.

Our method has considerable advantages over standard multi-atlas segmenta-
tion. Given a set of target volumes, multi-atlas segmentation would repeatedly
register a set of ground-truth masks and perform label fusion individually for each
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test volume. Contrary to that, we compute the segmentation probabilities once, and
then segment all the volumes "simultaneously". If numerous ground-truth masks
were to be used for the registration step, our method benefits from substantial com-
putational gains, as complexity depends only on the number of input volumes we
want to segment. In case of large datasets, it removes the burden of selecting an ap-
propriate ground-truth subset to perform multi-atlas segmentation more efficiently;
one simply has to compute the probability masks on the input volumes. Another
difference is that, in classical multi-atlas, appearance features are used to compute
the deformation fields between source and target during the registration process,
while no prior on the target image is available. We exploit more sophisticated,
learned features to drive the co-registration process. These features are computed
for all volumes involved, and are directly related to the desired final output.
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Figure 4.7: Segmentation results for three different views (axial, coronal, and
sagittal). Coreg-CNN and Coreg-GT (oracle) generate more accurate segmenta-
tions compared to pairwise and RF-based approaches. Coreg-CNN can be used
as a reliable substitute for ground truth annotations in multi-atlas co-registration-
segmentation (better viewed in color and magnified).
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4.3 Deformable Registration through Learning of Context-
Specific Metric Aggregation

In this section we describe the second contribution of this chapter: a novel weakly
supervised discriminative algorithm for learning context specific registration met-
rics as a linear combination of conventional similarity measures. The advantage
of combining conventional metrics rather than performing actual metric learning is
computational efficiency. Such metrics have been well optimized over the past two
decades and therefore both their strengths and limitations are known while efficient
implementation strategies have been developed for them as well. The challenge
remains to find the optimal relative weighting (or parameters) of different metrics
forming the data term. Hand-tuning these parameters would result in sub optimal
solutions and quickly become infeasible as the number of metrics increases. Fur-
thermore such hand-crafted combination can only happen at global scale (entire
volume) and therefore will not be able to account for the different tissue properties
of the observed anatomy. In order to alleviate this problem, we propose a weakly
supervised learning algorithm for estimating these parameters locally, conditioned
to the data semantic classes. The objective function of our formulation turns out
to be a special case of non-convex function, known as the difference of convex func-
tion. We use the well known concave convex procedure to obtain the minima or
the saddle point of the optimization problem. We show the efficacy of our approach
on three highly challenging datasets in the field of medical imaging, for different
anatomical structures and image modalities.

4.3.1 Introduction

Deformable registration involves the definition of a similarity criterion that, once en-
dowed with a deformation model and a smoothness constraint, determines (through
an optimization strategy) the optimal transformation to align two given images.
The definition of this metric function is among the most critical components of
the registration process. In that spirit, recent efforts have been made towards
learning them from data. A discussion about metric learning for image regis-
tration was presented at the beginning of this chapter. As mentioned, machine
learning methods, like support vector machines [Lee 2009] or similarity sensitive
hashing [Bronstein 2010] have been considered to find mappings between different
image modalities. However, these methods rely on the existence of exact massive
correspondences at learning which are usually difficult to obtain. Instead, we focus
on cases where the ground-truth is given in the form of segmentation masks, which
is more common in real scenarios than availability of dense deformation fields or
pre-aligned images.

In a number of applications, segmentation maps might be available in one of
the volumes to be registered (e.g. adaptive radiotherapy, patient follow up exams
or multi-atlas segmentation). Human anatomy is domain specific (deformations
as well) and depending on the organ to be imaged one can expect different ade-
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quacy between the local structure and different mono or multimodal metrics (which
somehow reflect the observed tissue properties). Hence, the available segmentation
maps could be used to locally suggest efficient similarity measures depending on the
organ. The aim of this section is to propose a novel theoretical framework where
domain specific optimal combination of metrics is derived according to the clinical
task / observed images. The degrees of freedom of the learning procedure are the
class weight combination of the different metrics.

It has been empirically shown that the data terms in the energy function have
great influence on the accuracy of the solution to the registration problem. Nor-
mally, a data term is the function of a metric such as mutual information, sum of
absolute differences, normalized cross correlation, etc. A particular data term is
thus chosen based on the application. We argue that instead of using one metric,
the locally adaptive and content-specific combination of different metrics can fur-
ther improve the accuracy of the registration task, in particular, in the presence of
semantic labels which then make the registration a domain specific problem.

The idea of combining different similarity measures (not necessarily considering
them as domain or content-specific) has already been explored. In [Cifor 2012] it
was shown that multichannel registration produces more robust registration results
when compared to using the features individually. In this case, they used gray
intensity value, phase congruency and local phase as features. In a posterior work,
[Cifor 2013a] proposed a methodology that does not require to explicitly weight the
features, by estimating different deformation fields from each feature independently,
and then composing them into a final diffeomorphic transformation. Such a strategy
produces multiple deformation models (as many as the number of metrics) that in
general are locally inconsistent. Therefore, their combination will not be trivial
and, in the general case, not anatomical meaningful.

In deformable registration, it is crucial to choose the right relative weighting be-
tween the different metrics and the pairwise smoothness term. One naive way would
be to choose these relative weights by cross validation (or hand tuning) over the pa-
rameters. Clearly, this approach quickly becomes infeasible as the number of metrics
increases while it can be applied only at global scale and cannot accommodate local
anatomical differences. In order to circumvent the above mentioned problem, we
would like to learn the relative weights from a given training dataset using a learn-
ing framework. We propose a novel discriminative learning framework, based on
the well known structured support vector machines (ssvm) [Taskar 2003,Tsochan-
taridis 2004], to learn the relative weights (or the parameters). The ssvm and its
extension to latent models lssvm [Yu 2009] have received considerable attention in
the recent years for parameter learning. Few recent examples of such frameworks
are [Baudin 2013,Kumar 2015].

Our focus is mainly on the 3D to 3D deformable registration problem where the
input and the output images are 3D volumes. However, the same framework can
be trivially used for other registration problems as well, as 2D to 2D, or even for
slice-to-volume registration. One of the key issues we face in all these problems is
that the ground truth deformations are not known. This leads us to adopt a weakly
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supervised learning framework where we treat the ground truth deformations as
the latent variables. We model the latent variable imputation problem as the de-
formable registration problem with additional constraints. These constraints ensure
that when the latent deformations are applied to the source image, the deformed
source image is maximally aligned with the target image. The alignment accuracy
is measured based on a loss function.

Our learning framework, similar to the lssvm, is a special case of non-convex
optimization problems, known as the difference of convex functions. The local
optimum or the saddle point of such non-convex function can be obtained efficiently
using the well known cccp algorithm [Yuille 2003]. We demonstrate the efficacy of
our framework using three challenging medical imaging datasets.

4.3.2 Multi-Metric Deformable Registration

Let us assume that we are given a source 3D volume (or image) I, source 3D
segmentation mask SI , and the target 3D volume (or image) J . The size of the
segmentation mask is the same as that of the corresponding image. The segmenta-
tion mask is formed by the elements (or voxels) sk ∈ C, where C is the set of classes.
Without loss of generality, we assume that the elements in the class set C are the
discrete variables starting from one.

The problem is formulated using a MRF that consists of a regular grid graph
G = 〈V, E〉, where V is the set of nodes and E is the set of edges. Each node
i ∈ V corresponds to a control point pi. Each control point pi is allowed to
move in the 3D space, therefore, can be assigned a label li ∈ L associated to a
displacement vector dli ∈ <3 (in figure 2.2 we illustrate how this label space is built
as a discretization of the 3D space). Notice that each 3D displacement vector is a
tuple defined as dli = (dx, dy, dz), where dx, dy, and dz are the displacements in the
x, y, and z directions, respectively. A quantized version of the deformation field DΓ

is associated to a labeling Γ of the graph G. In another words, the labeling Γ ∈ L|V |
assigns to a each node i ∈ V a label li associated to a displacement vector dli . Note
that DΓ is a control point based representation of a dense deformation field, which
is interpreted as a FFD. We will call D̊Γ to the dense deformation field obtained
as an FFD interpolation of the control point based representation DΓ. We denote
the control point p′

i as the new control point when the displacement dli is applied
to the original control point pi. Let us define a patch Ω̄I

li
on the source image I

centered at the displaced control point p′
i (after applying label li). Similarly, we

define ΩJ
i as the patch on the target image J centered at the original control point

pi, and Ω̄SI

li
as the patch on the input segmentation mask centered at the displaced

control point p′
i.

Given the definition of these variables, let us define the unary feature vector cor-
responding to the ith node for a given label li as Ui(li; I, J) = (u1(Ω̄I

li
,ΩJ

i ), · · · , un(Ω̄I
li
,ΩJ

i )) ∈
Rn, where n is the number of metrics and uj(Ω̄I

li
,ΩJ

i ) is the unary feature corre-
sponding to the jth metric evaluated using the patches Ω̄I

li
and ΩJ

i . For exam-
ple, in case the jth metric is the mutual information (MI) then the unary feature



4.3. Deformable Registration through Learning of Context-Specific
Metric Aggregation 105

Figure 4.8: Context-specific metric aggregations. The multi-metric deformable reg-
istration algorithm uses a different aggregation of metrics depending on the context.
It is determined by the dominant class in the corresponding image support area.
In the example, we can observe that the liver (in yellow) and the kidney (in violet)
are the dominant classes for the two highlighted control points, respectively. Note
that source image (a) is annotated with semantic labels, while the target (b) is a
simple intensity image.

uMI(Ω̄I
li
,ΩJ

i ) is the mutual information between the patches Ω̄I
li
and ΩJ

i . In case
of single metric, then n is equal to 1. Recall that we have |C| number of classes.
Therefore, given a weight matrix W ∈ Rn×|C|, where W (i, j) denotes the weight for
the ith metric corresponding to the class j, the unary potential for the ith node for
a given label li is computed as follows:

Ūi(li; I, J, SI ,W ) = w(c̄)>Ui(li; I, J) ∈ R, (4.15)

where, w(c̄) ∈ Rn is the c̄th column of the weight matrix W and c̄ is the most
dominant class in the patch on the source segmentation mask Ω̄SI

li
. The dominant

class c̄ is obtained as follows:

c̄ = arg max
c∈C

f(Ω̄SI

li , c), (4.16)

where, f(Ω̄SI

li
, c) is the number of voxels of class c in the patch Ω̄SI

li
. Notice that

one can use other criteria to find the dominant class.
The pairwise clique potential between the control points pi and pj is defined as

f(li, lj), where f(·, ·) is the L1 norm between the two displacement vectors dli ,dlj

corresponding to the input labels (other regularizers could be used as well, as it
was mentioned in section 2.3). Under this setting, the multi-class energy function
corresponding to the deformable registration task is defined as:

E(Γ; I, J, SI ,W ) =
∑
i∈V
Ūi(li; I, J, SI ,W ) +

∑
(i,j)∈E

f(li, lj). (4.17)
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Therefore, we aim at finding the optimal labeling Γ̂ (associated to the quantized
version of the deformation field DΓ̂) by solving the following problem:

Γ̂ = arg min
Γ∈L|V |

E(Γ; I, J, SI ,W ). (4.18)

Approximate Inference Algorithm Similar to [Glocker 2008], we adopt a pyra-
midal approach that allows us to refine the search space at every level and, at the
same time, capture a big range of deformations. We use the well known FastPD [Ko-
modakis 2007a] (see section 2.4.3) as the inference algorithm at every level of the
pyramid. Notice that the energy function from equation 4.17 is defined over the
nodes and the edges of the sparse graph G which represents the deformation field,
and not over the dense voxels and the neighbourhood system defined over the input
image I. The reason being that the input images are too big and thus can not
be optimized efficiently. Once we obtain the optimal labeling Γ̂, we estimate the
dense deformation field D̊Γ̂ from its quantized representation DΓ̂ using the FFD
interpolation model [Rueckert 1999] in order to warp the input image, as it was
already mentioned.

4.3.3 Learning the parameters

In the previous section we assumed that the weight matrix W is given to us. How-
ever, this assumption becomes unrealistic quickly as the number of metrics and the
classes increases. In order to circumvent this problem, we propose an algorithm to
learn the weights using a given dataset. Our algorithm is based on the well known
latent structured svm framework [Taskar 2003,Tsochantaridis 2004,Yu 2009] which
optimizes an upperbound on the empirical risk. Instead of learning the complete
weight matrix at once, we learn the weights for each class c ∈ C individually. From
now onwards, the weight vector wc denotes a particular column of the weight matrix
W , which represents the weights corresponding to a particular class. We use the
words ‘parameters’ and ‘weights’ interchangeably. In what follows we talk about
the learning algorithm in details.

4.3.3.1 Preliminaries

Dataset We consider a dataset D = {(xi,yi)}i=1,··· ,N . Each xi is a pair repre-
sented as xi = (Ii, Ji), where Ii is the source volume (or the source image) and Ji
is the target volume (or the target image). Similarly, each yi is a pair represented
as yi = (SIi , SJi ), where SIi and SJi are the segmentation masks for the source and
target images, respectively. The size of each segmentation mask is the same as that
of the corresponding images. As stated earlier, the segmentation mask is formed
by the elements (or voxels) sk ∈ C, where C is the set of classes.

The Loss Function The loss function ∆(SI , SJ) ∈ R≥0 evaluates the similarity
between the two segmentation masks SI and SJ . Higher value of ∆(., .) implies
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stronger dissimilarity between the segmentations. Since our final evaluation is based
on the dice coeffcient, therefore, we use a dice based loss function. Note that we
follow the empirical risk minimization strategy, in which we should optimize the
risk over which the evaluation is performed. The loss is therefore defined as:

∆(SI , SJ) = 1−DICE(SI , SJ). (4.19)

We approximate the dice between the segmentation masks as defined below:

DICE(SI , SJ) = 2
∑
i∈V

|φ(pI
i ) ∩ φ(pJ

i )|
|φ(pI

i )|+ |φ(pJ
i )|

, (4.20)

where, φ(pI
i ) and φ(pJ

i ) are the patches at the control point pi on the segmentation
masks SI and SJ , respectively. The function |.| represents the cardinality of a given
set. The above approximation of the dice makes it decomposable over the nodes of
the graph G. As will be discussed shortly, this decomposition allows us to train our
algorithm very efficiently.

Joint Feature Map Given the parameters wc for a particular class, the labeling
Γ, and the input tuple x, the mutli-class energy function (4.17) can be trivially
converted into class based energy function as follows:

Ec(Γ; x,w) = w>c
∑
i∈V
Ui(li; x) + wp

∑
(i,j)∈E

f(li, lj). (4.21)

where, wp ∈ R≥0 is the parameter associated with the pairwise term. Let us denote
the parameter vector w ∈ Rn+1 as the concatenation of wc and wp. The energy
function (4.21) is linear in w and can be written as:

Ec(Γ; x,w) = w>Ψ(Γ; x). (4.22)

where, Ψ(Γ; x) ∈ Rn+1 is the joint feature map defined as:

Ψ(Γ; x) =



∑
i∈V U1

i (li; x)∑
i∈V U2

i (li; x)
...∑

i∈V Uni (li; x)∑
(i,j)∈E f(li, lj)


(4.23)

Notice that the energy function (4.21) does not depend on the source segmentation
mask SI . Source segmentation masks in the energy function (4.17) are used to ob-
tain the dominant class using the equation (4.16), which in this case is not required.
However, we will shortly see that the source segmentation mask SI plays a crucial
role in the learning algorithm to compute the loss function.
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Latent Variables Ideally, the dataset D must contain the ground truth defor-
mation labeling Γ corresponding to the source image I in order to compute the
energy term defined in the equation (4.21). Since annotating the dataset with the
ground truth deformation is non-trivial, we use them as the latent variables in our
algorithm. As will be seen shortly, we impute these deformations using the given
dataset ensuring that the loss (as defined in the equation (4.19)) between the source
segmentation mask when deformed using the imputed deformation field, and the
target segmentation mask is minimized. In what follows, we will refer to this step
indistinctly as ’latent assignment step’ or ’segmentation consistent registration’.

4.3.3.2 The Objective Function

Given the dataset D, we would like to learn the parameter vector w such that
minimizing the energy function (4.21) leads to a deformation field which when
applied to the source segmentation mask gives minimum loss with respect to the
target segmentation mask. Let us denote S ◦ D̊Γ the deformed segmentation when
the dense deformation D̊Γ is applied to the segmentation mask S. Therefore, ideally,
we would like to learn w such that:

w∗ = arg min
w

1
N

∑
i

∆(SIi ◦ D̊Γ̄, SJi ). (4.24)

where, Γ̄ = arg minΓ E(Γ; xi,w). The above objective function is the empirical
risk minimization based formulation. However, the objective function is highly
non-convex in w, therefore, minimizing it directly makes the algorithm sensitive in
terms of convergence to bad local minima. In order to circumvent this problem, we
optimize a regularized upper bound on the loss as follows:

min
w,{ξi}

1
2 ||w||

2 + α||w−w0||2 + C

N

∑
i

ξi, (4.25)

s.t. min
Γ,∆(SI

i ◦D̊Γ,SJ
i )=0

w>Ψ(xi,Γ) ≤ w>Ψ(xi, Γ̄)−∆(SIi ◦ D̊Γ̄, SJi ) + ξi,∀Γ̄,∀i

(4.26)
wp ≥ 0, ξi ≥ 0,∀i. (4.27)

The above objective function minimizes an upper bound on the dice based loss func-
tion denoted as the variable ξi, known as the slack. The first term in the objective
function ||w||2, is the regularization term used to avoid overfitting. The effect of
the regularization term is controlled by the hyper-parameter C. The second term
is the proximity term. This ensures that the learned w is close to the initialization
w0. The effect of the proximity term can be controlled by the hyperparameter α.

Intuitively, for a given input sample, the constraints of the above objective
function tries to enforce the condition that the energy corresponding to the best
possible deformation field (with minimum loss, additional constraint to enforce
coherence) must always be less than the energy corresponding to any other de-
formation field with a margin proportional to the loss. Notice that, the term
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Algorithm 3 The cccp Algorithm.
1: D, w0, C, α, η, the tolerance ε.
2: t = 0, wt = w0.
3: repeat
4: Segmentation consistent registration. For a given wt, impute the latent

variables Γ̂i for each sample by solving the problem (4.29).
5: Obtain the updated parameters wt+1 by solving the convex optimization

problem (4.30). The most violated constraint can be found by solving the
problem (4.31).

6: t = t+ 1
7: until The objective function of the problem (4.25) does not decrease more than
ε.

minΓ,∆(SI
i ◦D̊Γ,SJ

i )=0 w>Ψ(xi,Γ) in equation 4.26, makes the problem non convex.
Shortly we will see how to upperbound this term, also known as the latent variable
imputation step, in order to make the problem convex.

4.3.3.3 The Learning Algorithm

The objective function (4.25) that optimizes an upper bound on the empirical risk,
is non-convex. Hence, it can not be optimized efficiently to obtain the optimal set of
parameters. However, it can be shown that the objective function is a non-convex
function that can be re-written as the difference of convex functions, which can
be seen as the sum of the convex and the concave functions. For such family of
non-convex functions, the well known cccp algorithm [Yuille 2003]) can be used
to obtain efficiently a local minima or a saddle point (the cutting plane algorithm
can produce the optimal solution, but in practice this is not possible due to the
computational constraints associated with the dimension of the problem). Broadly
speaking, the cccp algorithm consist of three steps — (1) upperbounding the con-
cave part at a given w, which leads to an affine function in w; (2) optimizing the
resultant convex function (sum of convex and affine functions is convex); (3) re-
peating the above steps until the objective can not be decreased beyond a given
tolerance of ε.

The cccp algorithm for the optimization of the objective function (4.25) is
shown in the Algorithm 3 (a detailed version of the algorithm is presented in the
appendix A.3). The first step of upperbounding the concave functions (Algorithm 3,
Line 4) is the same as the latent imputation step, which we call the segmentation
consistent registration problem. The second step is the optimization of the resultant
convex problem (Algorithm 3, Line 5), which, in this case, is the optimization of
the ssvm. The optimization leads to updating the parameters. We use the well
known cutting plane algorithm [Joachims 2009] for this purpose. In what follows
we discuss these steps in detail.
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Segmentation Consistent Registration As already discussed, the ground truth
deformation is not known a priori. Thus, in this step, we generate the best possible
ground truth deformation field at a given w. This is same as the latent imputation
step of the cccp algorithm. Recall that we are interested in learning the parameters
w such that the upper bound on the loss function, defined in equation (4.19), is
minimized. This leads us to formulate the latent imputation step as an inference
problem with additional constraints. These additional constraints ensure that the
imputed deformation field deforms the input image such that the loss between the
deformed input image and the target image is minimized. Mathematically, for a
given parameter vector w, the latent deformation is imputed by solving the follow-
ing problem:

Γ̂i = arg min
Γ∈L|V |,∆(SI

i ◦D̊Γ,SJ
i )=0

w>Ψ(xi,Γ). (4.28)

The above problem is hard to solve and may not have unique solution. Thus, we
solve the relaxed version of the above problem as defined below:

Γ̂i = arg min
Γ∈L|V |

w>Ψ(xi,Γ) + η∆(SIi ◦ D̊Γ, SJi ). (4.29)

where, η controls the relaxation trade-off parameter. Since the loss function used is
decomposable, the above problem is equivalent to the inference of the deformable
registration with simple modifications on the unary potentials. Thus, it can be
solved efficiently using the FastPD inference algorithm discussed in the section 2.4.3.

Updating the Parameters Once the latent variables have been imputed or the
concave functions have been upperbounded, the resultant objective function can be
written as:

min
w,{ξi}

1
2 ||w||

2 + α||w−w0||2 + C

N

∑
i

ξi,

s.t. w>Ψ(xi, Γ̂i) ≤ w>Ψ(xi, Γ̄)−∆(SIi ◦ D̊Γ̄, SJi ) + ξi,∀Γ̄,∀i
wp ≥ 0, ξi ≥ 0,∀i. (4.30)

where, Γ̂i is the labeling associated to the quantized latent deformation field DΓ̂i

imputed by solving the problem (4.29). Intuitively, the above objective function
tries to learn the parameters w such that the energy corresponding to the imputed
deformation field is always less than the energy of any other deformation field with
a margin proportional to the loss function with some positive slack. Notice that
the above objective function has exponential number of constraints, one for each
possible labeling Γ̄ ∈ L|V |. In order to alleviate this problem we use the cutting
plane algorithm [Joachims 2009]. Let us briefly talk about the idea behind the
cutting plane algorithm. For a given w, each labeling Γ̄ gives a slack. Therefore,
instead of minimizing all the slacks for a particular sample at once, we rather find the
labeling that leads to the maximum value of the slack and store this in a set known
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as the working set. This is known as finding the most violated constraint. Therefore,
instead of using exponentially many constraints, we now optimize our algorithm over
the constraints stored in the working set. This process is repeated till no constraints
can be added to the working set. The main ingredient of the above discussed cutting
plane algorithm is finding the most violated constraint. As discussed earlier, the
most violated constraint for the ith sample is the deformation field associated to
the labeling that maximizes the slack corresponding to this sample. Rearranging
the terms in the constraints of the objective function (4.30) to obtain the slack,
ignoring the constant term w>Ψ(xi, Γ̂i), and maximizing it with respect to the
possible deformations (which is equivalent to minimizing the negative of it), leads
to the following problem solving which gives the most violated constraint:

Γ̄i = arg min
Γ∈L|V |

(
w>Ψ(xi, Γ̄)−∆(SIi ◦ D̊Γ̄, SJi )

)
. (4.31)

Since the loss function is decomposable, again, the above problem is equivalent to
the deformable registration with modifications on the unary potentials. Thus, it
can be solved efficiently using the FastPD based approximate inference algorithm
discussed in the section 2.4.3.

4.3.3.4 Prediction

Once we obtain the learned parameters wc for each class c ∈ C using the Algo-
rithm 3, we form the matrix W where each column of the matrix represents the
learned parameter for a specific class. This learned matrix is then used to solve the
registration problem defined in the equation 4.17 using the approximate inference
algorithm in a new setting where semantic labels are available in the source image
but not in the target (like for example, the scenario of atlas-based segmentation).

4.3.4 Experiments and Results

We evaluated our registration algorithm and the learning framework on three dif-
ferent medical datasets – (1) RT Parotids, (2) RT Abdominal, and (3) IBSR. These
datasets involve several anatomical structures, different image modalities, and in-
ter/intra patient images, which makes the deformable registration task on these
dataset highly challenging. In all the experiments, we cross validate the hyper
parameters C and α, and use η = 50. We use four different metrics in all the ex-
periments: (1) sum of absolute differences (sad), (2) mutual information (mi), (3)
normalized cross correlation (ncc), and (4) discrete wavelet coefficients (dwt). In
all the experiments (single and multi-metric) we used the same set of parameters for
the pyramidal approach based inference algorithm (discussed in the section 4.3.2).
These parameters are as follows: 2 pyramid levels, 5 refinement steps per pyramid
level, 125 labels, and distance between control points of 25mm in the finer level.
The running time for each registration case is around 12 seconds. For the training,
we initialized w0 with the hand tuned values for each metric: w0 = (0.1, 10, 10, 10),
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Figure 4.9: Overlapping of the segmentation masks in different views for one reg-
istration case from RT Abdominal (first and second rows) and RT Parotids
(third and fourth rows) datasets. The first column corresponds to the overlapping
before registration between the source (in blue) and target (in red) segmentation
masks of the different anatomical structures of both datasets. From second to sixth
column, we observe the overlapping between the warped source (in green) and the
target (in red) segmentation masks, for the multiweight algorithm (MW) and for
the single metric algorithm using sum of absolute differences (SAD), mutual infor-
mation (MI), normalized cross correlation (NCC) and discrete wavelet transform
(DWT) as similarity measure. This is coherent with the numerical results reported
in Figures 2 and 3 from the main paper.

for sad, mi, ncc, and dwt, respectively. Below we give details about the different
datasets and discuss the results obtained in each of them.

RT Parotids The first dataset (RT Parotids) contains 8 CT volumes of head,
obtained from 4 different patients, 2 volumes per patient. The volumes are cap-
tured in two different stages of a radiotherapy treatment in order to estimate the
radiation dose. Right and left parotid glands were segmented by the specialists
in every volume. The dimensions of the volumes are 56 × 62 × 53 voxels with a
physical spacing of 3.45mm, 3.45mm, and 4mm, in x, y, and z axes, respectively.
We generated 8 pairs of source and target volumes using the given dataset. Notice
that, while generating the source and target pairs, we did not mix the volumes
coming from different patients. We splitted the dataset into train and test, and
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Figure 4.10: Qualitative results for one slice of one registration case from IBSR
dataset. In this case, since showing overlapped structures in the same image is too
ambiguous given that the segmentation masks almost cover the complete image,
we are showing the intensity difference between the two volumes. This is possible
since images are coming from the same modality and they are normalized. The
first column shows the difference of the original volumes before registration. From
second to sixth column we observe the difference between the warped source and the
target images, for the multiweight algorithm (MW) and the single metric algorithm
using sum of absolute differences (SAD), mutual information (MI), normalized cross
crorrelation (NCC) and discrete wavelet transform (DWT) as similarity measure.

cross validated the hyperparameters C and α on the train dataset. The average
result on the test dataset are shown in the Figure 4.11, while qualitative results can
be found in image 4.9.

RT Abdominal The second dataset (RT Abdominal) contains 5 CT volumes of
abdomen for a particular patient captured with a time window of about 7 days
during a radiotherapy treatment. Three organs have been manually segmented by
the specialists: (1) sigmoid, (2) rectum, and (3) bladder. The dimensions of the
volumes are 90 × 60 × 80 voxels with a physical spacing of 3.67mm, 3.67mm, and
4mm, in x, y, and z axes, respectively (there are small variations depending on the
volume). We generated a train dataset of 6 pairs and test dataset of 4 pairs. The
results on the test dataset are shown in the Figure 4.12, while qualitative results
can be found in image 4.9.

IBSR The third dataset (IBSR) is the well known Internet Brain Segmentation
Repository dataset, which consists of 18 brain mri volumes, coming from differ-
ent patients. Segmentations of three different brain structures are provided: white
mater (WM), gray mater (GM), and cerebrospinal fluid (CSF). We used a down-
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Figure 4.11: Results for the RT parotids dataset for the single-metric registration
(sad, mi, ncc, dwt) and the multi-metric registration (mw). The weights for the
multi-metric registration are learned using the framework proposed in this work.
‘Parotl’ and ‘Parotr’ are the left and the right organs. The red square is the mean
and the red bar is the median. It is evident from the results that using the learned
linear combination of the metrics outperforms the single-metric based registration.

sampled version of the dataset to reduce the computation. The dimension of the
volumes are 64 × 64 × 64 voxels with a physical spacing of 3.75mm, 3.75mm, and
3mm in x, y, and z axes, respectively. To perform the experiments, we divided the
18 volumes in 2 folds of 9 volumes on each fold. This gave a total of 72 pairs per
fold. We used an stochastic approach for the learning process, where we sample 10
different pairs from the training set, and we tested on the 72 pairs of the other fold.
We run this experiment 3 times per fold, giving a total of 6 different experiments,
with 72 testing samples and 10 training samples randomly chosen. The results on
the test dataset are shown in the Figure 4.13.

As evident from the Figures 4.11, 4.12 and 4.13, the linear combination of
similarity measures weighted using the learned coefficients outperforms the single
metric based registration. In all the cases the dice for the multi-metric is higher
than the dice for the single metric based registration, or it is as good as the best dice
obtained using the single metric registration (please refer to the Figure 4.12, ‘Parotr’
to see the case in which the multi-metric is at least as good as the best obtained
using the single metric). The results for the ‘Sigmoid’ organ in the Figure 4.12 show
that in some cases the multi-metric based registration can significantly outperform
the single metric based registration. Table 4.3.4 shows the average dice value per
organ for the three datasets, considering the single and multi-metric approaches.
The last column indicates the average dice improvement that our proposed method
provides when compared with the single metric version. We achieved maximum
average improvement of 0.033, 0.082 and 0.037 in terms of dice coefficient for RT
Parotids, RT Abdominal and IBSR respectively.

Figure 4.14 shows the examples of the slices from the 3D volumes corresponding
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Figure 4.12: Results for the RT abdominal dataset for the single-metric registration
(sad, mi, ncc, dwt) and the multi-metric registration (mw). The weights for the
multi-metric registration are learned using the framework proposed in this work.
‘Bladder’, ‘Sigmoid’, and ‘Rectum’ are the three organs on the dataset. The red
square is the mean and the red bar is the median. It is evident from the results that
using the learned linear combination of the metrics outperforms the single-metric
based registration.

to each dataset. In figures 4.9 and 4.10 we include some qualitative results on the
three challenging datasets in order to highlight the effects of learning the weights of
different metrics. In the first one (figure 4.9), we present the overlapping of the seg-
mentation masks in different views for one registration case from RT Abdominal
and RT Parotids datasets, using single and multi-metric approaches. The ob-
served results are coherent with the numerical results reported in figures 4.11,4.12.
We observe that multiweight algorithm gives a better fit between the deformed and
ground truth structures than the rest of the single similarity measures, which are
over segmenting most of the structures showing a poorer registration performance.
In the second graph (figure 4.10), we include results for the IBSR dataset. Ac-
cording to the scale in the bottom part of the image, extreme values (which mean
high differences between the images) correspond to blue and red colors, while green
indicates no difference in terms of intensity. Note how most of the big differences
observed in the first column (before registration) are reduced in the multiweight
algorithm, while some of them (specially in the peripheral area of the head) remain
when using single metrics.

4.3.5 Discussion

The main contribution presented in this section is a novel and sophisticated frame-
work for learning aggregations of image similarities in the context of deformable
image registration. We also proposed a multi-metric MRF based image registration
algorithm that incorporates such metric aggregations by weighting different simi-
larity measures depending on the anatomical regions. We showed that associating
different similarity criteria to anatomical regions yields results superior to the clas-
sic single metric approach. In order to learn this mapping in real scenarios where
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Figure 4.13: Results for the IBSR dataset for the single-metric registration (sad,
mi, ncc, dwt) and the multi-metric registration (mw). The weights for the multi-
metric registration are learned using the framework proposed in this work. ‘CSF’,
‘Grey Mater’, and ‘White Mater’ are different structures in the brain. The red
square is the mean and the red bar is the median. It is evident from the results
that using the learned linear combination of the metrics outperforms the single-
metric based deformable registration.

ground truth is generally given in the form of segmentation masks, we proposed to
conceive deformation fields as latent variables and implement our problem using the
lssvm framework. The main limitation of our method is the need of segmentation
masks for the source images in testing time. However, different real scenarios like
radiation therapy or atlas-based segmentation methods fulfill this condition and can
be improved through this technique.

Note that, at prediction (testing) time, the segmentation mask is simply consid-
ered to determine the metrics weights combination per control node (as indicated
in equation 4.16). The segmentation labels are not used explicitly at testing time
to guide the registration process that is purely image based. This is different from
the approach presented in section 4.2, where we discussed how segmentation priors
can be directly incorporated to registration process in a population-registration sce-
nario. However, as it was mentioned, the co-registration and segmentation method
requires a classifier able generate priors for both, source and target images. In
the multi-metric approach proposed in this section, segmentation masks are only
required (at testing time) for the source image and are only used to choose the best
learned metric aggregation. The idea could be further extended to unlabeled data
(as it concerns the source image) where the dominant label class per control node
is the output of such a classification/learning method.
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Dataset Organ SAD MI NCC DWT MW Average dice increment for MW
Parotl 0,756 0,760 0,750 0,757 0,788 0,033RT Parotids Parotr 0,813 0,798 0,783 0,774 0,811 0,019
Bladder 0,661 0,643 0,662 0,652 0,736 0,082
Sigmoid 0,429 0,423 0,432 0,426 0,497 0,070RT Abdominal
Rectum 0,613 0,606 0,620 0,617 0,660 0,046
CSF 0,447 0,520 0,543 0,527 0,546 0,037
GM 0,712 0,725 0,735 0,734 0,761 0,035IBSR
WM 0,629 0,658 0,669 0,661 0,682 0,028

Table 4.2: Average dice value per organ, for the single and multi-metric approaches,
are reported for the three datasets. The last column indicates the average dice
improvement that our proposed method provides when compared with the single
metric approaches. We can observe improvements of a maximum of 8% points in
terms of dice coefficient.

Figure 4.14: The top row represents the sample slices from three different volumes
of the RT Parotids dataset. The middle row represents the sample slices of the RT
Abdominal dataset, and the last row represents the sample slices from the IBSR
dataset.
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4.4 Conclusions and further ideas

In this chapter we explored two different strategies to incorporate prior knowl-
edge to the registration process. In section 4.2 we proposed a novel method for
co-registration and segmentation of a population of images, guided by semantic
label likelihoods. We evaluated two different types of priors: probability maps ob-
tained from a deep CNN and weaker annotations obtained with standard RF. Our
approach aimed to: i) infer deformations that are anatomically plausible (smooth-
ness constraints); ii) establish visual consistencies between all volumes according
to an arbitrary metric; iii) enforce segmentation consistencies among all volumes,
according to the predicted likelihoods. Experimental evaluation on conventionally
adopted benchmarks, as well as on an additional clinical problem, demonstrates the
effectiveness of our approach. Our experiments also show the importance of reliable
segmentation priors. Label likelihoods extracted with a deep CNN outperform al-
ternative methods and can replace ground truth annotations in co-registration with
minimum loss in performance. In this context, future research directions include
formulating the problem using high-order models to allow simultaneous estima-
tion of all the deformation fields and to avoid the iterative approach. The use
of decomposed optimization methods allowing efficient, one-shot optimization [Ko-
modakis 2011] is under investigation.

Our second contribution in this chapter was a novel, generic, context-specific
registration algorithm that is based on the principle of learning the combination
of different metrics. Rather than employing highly customized solutions that suf-
fer from scalability, portability and modularity, our approach relies on produc-
ing class-dependent metrics as linear combination of widely known and conven-
tional monomodal and multimodal metrics. Consequently, the proposed registra-
tion method is scalable and modular and can be adjusted in any setting by simply
changing the linear weights. These weights could be learned trivially offline using
partially annotated data or could easily integrate new metrics. Extensive exper-
imental validation on various challenging datasets demonstrated the potentials of
the proposed method. The registration weights were learned by minimizing an up-
perbound on the dice based loss function. Dice is conventionally used but does not
offer a very convincing picture as it concerns registration performance. The inte-
gration of alternative accuracy measures such as the Hausdorff distance between
surfaces or even real geometric distances for anatomical landmarks could further
enhance the performance and the robustness of the method. The use of alterna-
tive parameter learning mechanisms [Komodakis 2015] is also another interesting
approach to explore.

Last but not least, an important research direction that involves the two con-
tributions is testing the proposed methods on other real clinical problems, where
co-registration and segmentation as well as context specific metrics are of great
importance, such as adaptive radiotherapy.



Chapter 5

Conclusions and future
directions

5.1 Contributions

In this thesis we propose several contributions to the theory of graph-based de-
formable registration. The first one (presented in chapter 3), focuses on extending
it to a new application scenario not yet explored. We present three different mod-
els to deal with the challenging problem of slice-to-volume registration. We define
low-rank and high-order graphical models, that simultaneously select the plane and
estimates the in-plane deformation through a single shot optimization approach. We
discuss the peculiarities of each model in a comparative study, emphasizing the ro-
bustness of this theory and illustrating the always underlying compromise between
model complexity and power of expression. While exploring different approaches,
we transfer the complexity from the label space to the topology of the graph, and
we also experiment with high-order terms. Different types of discrete optimizers are
used to perform parameter inference on two different datasets of medical images.
We also compare the quality of our results with a standard rigid approach based on
Simplex optimization of a global similarity measure. The results show that, even in
a problem which is continuous by nature like slice-to-volume deformable registra-
tion, we can achieve equivalent performance by defining the label space in a smart
way and exploring it using iterative large neighborhood search strategies.

Two different strategies incorporating prior information to the standard graph-
based registration process are proposed in chapter 4. Both approaches demonstrate
that semantic and context specific information can boost the registration algorithms
by further improving the accuracy of the results. The first one (described in section
4.2) shows how prior information about the anatomical structures of a given set
of images, can be encompassed within the energy function of a discrete popula-
tion registration algorithm. We seek at performing joint registration/segmentation
of the input images while exploiting context information provided by pre-trained
classifiers. We experiment with both reliable as well as weaker priors. The first
were obtained using a CNN classifier, while for the second we used random forests.
The experimental validation shows that by using accurate segmentation priors we
can obtain results close to the ground truth. Moreover, we also show that less
accurate priors will also lead to acceptable results after performing co-registration-
segmentation. The second contribution (discussed in section 4.3), adapts the well
known lssvm framework to learn content specific aggregations of metrics from anno-
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tated data. We implemented this idea within a multi-metric version of the standard
graph-based deformable registration algorithm, and we evaluate its performance on
three datasets involving several organs, different image modalities, and inter/intra
patient images, which make the deformable registration task highly challenging. In
all these cases, the multi-metric approach produced more robust registration results
than using the features individually. One of the key issues we faced when design-
ing this approach, is that the ground truth deformations are not known a priori.
Instead, annotations usually come in the form of hard segmentation or probability
masks. This led us to adopt a weakly supervised learning framework where we treat
the ground truth deformations as the latent variables. In such a way, our proposal
is applicable to a wider range of problems than those methods requiring ground
truth deformations.

5.2 Future directions

The contributions presented in this dissertation push the limits of the state-of-the-
art methods concerning medical image registration. However, they are only small
steps towards improving this challenging task in different directions where research
has still to be done. To conclude this work, let us discuss some envisioned future
research directions.

Boosting context specific methods

The advent of accurate classifiers efficiently augmenting the information provided by
standard image modalities, rises a number of interesting questions regarding image
registration, which are only partially answered in this thesis. Can this information
be used to further improve registration results? Would it be possible to directly
learn the deformation fields from segmentation masks, instead of conceiving them
as latent variables in this process? Could we benefit from the results of the co-
registration and segmentation process to boost the classifiers used to create the
initial priors? All these open questions define new directions in which research can
be conducted.

Combining our two context specific strategies might be possible. If we think
about the co-registration and segmentation strategy, considering that we have the
inferred semantic labels at our disposal, the proposed approach can support class-
specific combinations of metrics that could be learned offline using the learning
approach from section 4.3. Once the metric aggregations are learned, incorporating
a multi-metric data term within the co-registration-segmentation approach would
be simple since the inferred priors could be used as part of equation 4.16 to find the
dominant classes. In such a way, having a classifier alleviates the main limitations
of our multi-metric registration algorithm, i.e. the requirement of segmentation
masks for the source image at testing time. The long-term goal would be to study
the gains of combining different metrics per class and using them as content-adaptive
potentials in the registration/segmentation energy.



5.2. Future directions 121

Developing novel high-order models

Other interesting open problem is related to the use of high-order graphs and infer-
ence methods especially adapted to these cases. As it was shown, the power of ex-
pression of graphical models grows together with their complexity. However, differ-
ent types of high-order models can be efficiently optimized [Komodakis 2009,Doka-
nia 2015]. In section 3.2.3 we present a high-order model to solve slice-to-volume
registration which is optimized using standard inference methods, whereas in sec-
tion 4.2 we formulate prior based co-registration and segmentation as a high-order
problem, which is then approximated through a pairwise formulation. In both cases
more accurate results could be obtained if proper high-order inference adapted to
the particular type of energies would be considered. Accordingly, dual decomposi-
tion methods [Komodakis 2009] could be contemplated as an alternative solution.

Extending and improving graph-based slice-to-volume registration

Numerous future developments built upon the proposed slice-to-volume registra-
tion framework can be envisioned. New hybrid data terms integrating geometric
information, iconic similarity measures [Sotiras 2010b] and sensor based technolo-
gies (like the ones described in section 3.1.2.3) may lead to improvements in terms
of accuracy and stability when image occlusions or abrupt changes occur. Do-
main/problem specific parameter learning [Baudin 2013,Komodakis 2015] towards
improving the proposed models could have a positive influence on the obtained re-
sults. The learning framework presented in section 4.3 could be simply adapted to
perform this task.

Slice-to-volume applications explored in this thesis are mainly related to pre
and intra-operative image fusion. However, as it was mentioned in section 3.1.6,
other scenarios like motion correction and volume reconstruction require slice-to-
volume registration methods. It would be interesting to explore how our approaches
performs in these cases. Moreover, a single slice at a time is considered in our for-
mulation. However, as discussed in section 3.1.5, employing a multi slice-to-volume
procedure -as opposed to single slice procedure- certainly improves the robustness
of the registration process by augmenting the image support. This is even more
interesting when the relative position between the slices is known a priori (e.g.
the works of [Gill 2008,Heldmann 2009,Cifor 2013b,Yu 2011]). Our single slice-to-
volume registration framework could be directly extended to the multi slice scenario
by performing independent registrations for each slice. However, the prior knowl-
edge about the relative positions or interaction dynamics among the slices as well
as the wider image support would be ignored. A possible extension considering one
grid-graph per slice (modeling in-plane deformations and plane selection parame-
ters) and inter-graph connections (encoding inter-slice dependencies) could do the
job.

Considering discrete rigid slice-to-volume registration where only 6-DOF are
estimated, could also be of interest. The three models we proposed aim at perform-
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ing deformable slice-to-volume registration finding the optimal dense deformation
field. From this deformation field, we extract rigid and deformable parameters
as explained in section 3.2. However, we mentioned that in some specific prob-
lems, rigid models are enough since deformations are not considered (see section
3.1.3.1). Unnecessary efforts are invested in exploring an immense parameter space
when applying our method to these cases, where only 6-DOF should be considered.
Therefore, rigid (only) slice-to-volume registration using discrete models constitutes
an open research direction. In this regard, the work of [Zikic 2010b] about linear
image registration using MRF and discrete methods could be extended to the case
of rigid slice-to-volume registration.
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A.1 Factor Graphs

In this appendix, we give a brief description of the factor graph data structure,
which was used in this thesis to implement the three graphical models proposed in
Chapter 2 that aim at solving the challenging slice-to-volume registration problem.

A factor graph G′ is a bipartite graph that factorizes a given global energy
function, expressing which variables are arguments of which local functions [Kschis-
chang 2001]. Given a graphical model of any order G = 〈V,E〉, we can derive a
factor graph G′ = 〈V ′, F ′, E′〉. Here, V ′ is the set of variable nodes formed by the
nodes of G, F ′ is a the set of all the factors f ∈ F ′ (where every f is associated
to one clique G), and the set E′ ⊂ V ′ × F ′ defines the relation between the nodes
and the factors. Every factor f has a function ϕf : V ′n → R associated with it,
that might correspond to one of the data or regularization terms defined in previous
sections. The energy function of a discrete labeling problem like the one presented
in 2.4 in the context of factor graphs is then given by:

E(x) =
∑
f∈F ′

ϕf (lf1 , ..., lfn), (A.1)

where x corresponds to a given labeling for the complete graph and lf1 ...lfn are labels
given to the variables in the neighborhood (or scope) of the factor f .

A.2 Convolutional Neural Networks for Brain Segmen-
tation

In this appendix, we give a short description of the Convolutional Neural Network
(CNN) based classifier used to learn the segmentation priors applied in section 4.2.
This classifier is part of our recent segmentation method that was presented in
[Shakeri 2016].

In the past few years, deep learning techniques, and particularly CNNs, have
rapidly become the tool of choice for tackling challenging computer vision tasks.
CNNs were popularized by Lecun, after delivering state of the art results on hand-
written digit recognition [LeCun 1998]. However, they fell out of favor in the fol-
lowing years, mostly due to hardware and training data limitations. Nowadays, the
availability of large-scale datasets (e.g. ImageNet), powerful GPUs and appropriate
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software libraries, have rekindled the interest in deep learning and have made it pos-
sible to harness their power. Krizhevsky et al. published [Krizhevsky 2012] results
demonstrating clear superiority of deep architectures over hand-crafted features or
shallow networks, for the task of image classification. Since then, CNNs have helped
set new performance records for many other tasks; object detection [Girshick 2014],
texture recognition [Cimpoi 2015] and object semantic segmentation [Chen 2014]
just to name a few.

The CNN used in this work is similar in spirit to [Prasoon 2013], but with
some notable differences. In [Prasoon 2013] the authors train one CNN for each
of the three orthogonal views of MRI scans, for knee cartilage segmentation, with
the loss being computed on the concatenated outputs of the three networks. The
inputs to each CNN are 28 × 28 image patches and the output is a softmax prob-
ability of the central pixel belonging to the tibial articular cartilage. In contrast,
our method operates on full 2D image slices, exploiting context information to
accurately segment regions of interest in the brain. In addition, we use fully con-
volutional CNNs [Long 2015] to construct dense segmentation maps for the whole
image, instead of classifying individual patches. Furthermore, our method handles
multiple class labels instead of delivering a foreground-background segmentation,
and it does that efficiently, performing a single forward pass in 5ms.

We build a CNN for semantic segmentation, using ideas that were recently
introduced for the Deeplab model by Chen et al [Chen 2014]. Deeplab is a fully
convolutional neural network that computes a dense labelling of the input image.
Compared to other systems, such as the one proposed by Long et al [Long 2015],
Deeplab avoids excessive downsampling of the feature maps by skipping the sub-
sampling steps in the last convolutional layers. In order to keep the same effective
receptive field size, the authors introduce holes in a spirit similar to the “atrous”
(with holes) algorithm [Mallat 1999]. For more details, we refer to [Chen 2014].

In our case we are interested in computing accurate priors for the location of
sub-cortical regions in the human brain. Employing the hole trick, allows us to
retain a reasonable output resolution, increasing the probability of capturing these
fine structures. For training, the straightforward way would be to simply fine-tune
the last three convolutional layers in the original Deeplab network, starting from the
VGG-16 initialization for the remaining weights. However, given the very different
nature of natural RGB images and MR image data (RGB vs grayscale, varying vs
black background), we decided to train a fully convolutional network from scratch.

Our choice is not free of technical hurdles. Medical image datasets are usually
smaller in size compared to natural image datasets, and high-quality ground truth
annotations for segmentation are hard and costly to obtain. In our case, we only
have a few 3D scans at our disposal, which increases the risk of overfitting. As
we mentioned, the repeated pooling and sub-sampling steps that are applied to
the input image, decrease the output resolution, making it difficult to detect and
segment finer structures in the human brain. We attempt to overcome these hurdles
through a series of design choices for the network. First, we use a shallow network,
compared to VGG-16/Deeplab, composed of five pairs of convolutional/max pooling
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Table A.1: Layers used in our architecture. One-pixel stride is used in all convolu-
tional layers. A hole stride of "1" means that we introduce no holes.
Block conv # filters hole stride pool(stride) dropout

1 7×7 64 1 3×3 (2) no
2 5×5 128 1 3×3 (2) no
3 3×3 256 2 3×3 (1) yes
4 3×3 512 2 3×3 (1) yes
5 3×3 512 2 3×3 (1) yes
6 4×4 1024 4 no pooling yes
7 1×1 39 1 no pooling no

layers. Sub-sampling takes place only in the first two max-pooling layers; in the
remaining layers we use a stride of 1 and introduce holes as in [Chen 2014]. A
256 × 256 input image gives as output a 64 × 64 × C array (sub-sampled by a
factor of 4), where C is the number of class labels. We use 1−pixel stride for all
convolutional layers and 0.5 activation probability for all dropout layers. In A.1 we
report the layer types and parameter values in detail.

At test time, our network processes 2D slices from a 3D volume. The output is
a three-dimensional array of probability maps (one for each class/brain structure),
obtained via a softmax operation. We can readily obtain a brain segmentation
at this stage, by simply resizing the output probability array to the input image
dimensions using bilinear interpolation and assigning at each pixel the label with the
highest probability. As we discuss in section 4.2, these segmentations can be used
by the co-registration-segmentation algorithm to guide the deformation process.
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A.3 cccp algorithm (detailed version)

Here we include a detailed version of the cccp algorithm used to solve the learning
problem of section 4.3 (see algorithm 3).

Algorithm 4 The cccp algorithm (detailed version).
1: D, w0, C, α, η, the tolerance ε.
2: t← 0.
3: wt ← w0
4: repeat
5: For a given wt, impute the latent variables Γ̂i for each sample by solving the

problem:

Γ̂i = arg min
Γ∈L|V |

(
w>t Ψ(xi,Γ) + η∆(SIi ◦ D̊Γ, SJi )

)
.

6: Initialize the constraint set for each sample: Wi ← ∅, ∀i.
7: repeat
8: Obtain the most violated constraint (compute Γ̄i for each sample):

Γ̄i = arg min
Γ̄∈L|V |

(
w>Ψ(xi, Γ̄)−∆(SIi ◦ D̊Γ̄i , SJi )

)
.

9: Update constraint set if Γ̄i is sufficiently violated.

Wi ←Wi ∪ Γ̄i,∀i.

10: Solve the following optimization problem to obtain w:

min
w,{ξi}

1
2 ||w||

2 + α||w−w0||2 + C

N

∑
i

ξi,

s.t. w>Ψ(xi, Γ̂i) ≤ w>Ψ(xi, Γ̄i)−∆(SIi ◦ D̊Γ̄, SJi ) + ξi,∀Γ̄i ∈ Wi,∀i
wp ≥ 0, ξi ≥ 0,∀i.

11: until No working set Wi can be further updated.
12: t← t+ 1
13: Update the parameters: wt ← w
14: until Objective of the problem does not decrease more than ε.
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