
Direct multiphase mesh generation from 3D images

using anisotropic mesh adaptation and a redistancing

equation

Jiaxin Zhao

To cite this version:

Jiaxin Zhao. Direct multiphase mesh generation from 3D images using anisotropic mesh adap-
tation and a redistancing equation. Image Processing. PSL Research University, 2016. English.
<NNT : 2016PSLEM004>. <tel-01354290>

HAL Id: tel-01354290

https://pastel.archives-ouvertes.fr/tel-01354290

Submitted on 18 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://pastel.archives-ouvertes.fr/tel-01354290

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à MINES ParisTech

Direct multiphase mesh generation from 3D images using anisotropic

mesh adaptation and a redistancing equation

Génération de maillage à partir d’images 3D en utilisant l’adaptation de

maillage anisotrope et une équation de réinitialisation

COMPOSITION DU JURY :

Mme. PEROTTO Simona
Politecnico di Milano, Rapporteur 

M. REMACLE Jean-François
Université Catholique de Louvain, Rapporteur 

M. MOES Nicolas
Ecole Centrale de Nantes, Président du jury

M. ORGEAS Laurent
Laboratoire 3SR, Membre du jury

M. JEULIN Dominique

MINES ParisTech, Membre du jury

M. BERNACKI Marc
MINES ParisTech, Membre du jury

M. DECENCIERE Etienne

MINES ParisTech, Membre du jury

M. COUPEZ Thierry
Ecole Centrale de Nantes, Directeur de thèse

Soutenue par JIAXIN ZHAO
le 3 Mars 2016
h

Ecole doctorale n°364

SCIENCES FONDAMENTALES ET APPLIQUEES

Spécialité MECANIQUE NUMERIQUE ET MATERIAUX

Dirigée par THIERRY COUPEZ et
LUISA SILVA

h

Acknowledgments

Firstly, I would like to thank the director of my Ph.D., Thierry Coupez. It is a great
honor to be his first Chinese Ph.D student. His ideas, knowledge, creativity and
sense of humor, inspires everyone’s potential.

I also thank Etienne Decencière, my co-supervisor, his patience and politeness is
very impressive, and helped and guided me during my stay in Fontainebleau.

Moreover, I thank Luisa and Hugues, they take care of not only me and my work,
but also my wife and my newborn baby. Their support is very special, especially
for me, a new father, giving me the strength to complete my thesis and take care of
my family.

I gratefully acknowledge the support from Institut Mines-Télécom and the project
”De l’Image Au Maillage”.

I also thank all the members of CEMEF, CMM and ICI: Marc, Rudy, Elie,
François Bay, Patrick, Dominique, Catherine, Beatriz, Matthieu, François Willot,
Fernand, Oliver, Patrice, Isabelle, Florence, Richard ... I want to specially thank
Marie-Françoise. Since my master program, she always took care of me.

I thank all my colleagues, Jose, Abbass, Yasmina, Carole, Ghina, Jérémy, Ahmed,
Nadine, Ghazza, Cyprien, Meriem, Valentine, Lucas, JF, Stephanie, Vaia, Andres,
JB, Janni, Simon, Lynda, Zineb, ... and also Fuyang, Shijia, Qingxiao, Zhipeng,
Yunhui and his family, Xiwei, Haisheng and Wangfang. I cannot forget my special
friend Jinyuan, his words ”Stay Curious for the Unknown” have always inspires me.

Finally, to my wife, my son, my parents and my family.

Abstract

Imaging techniques have well improved in the last decades. They may accurately
provide numerical descriptions from 2D or 3D images, opening perspectives to-
wards inner information, not seen otherwise, with applications in different fields,
like medicine studies, material science or urban environments.

In this work, a technique to build a numerical description under the mesh format
has been implemented and used in numerical simulations when coupled to finite el-
ement solvers. Firstly, mathematical morphology techniques have been introduced
to handle image information, providing the specific features of interest for the sim-
ulation. The immersed image method was then proposed to interpolate the image
information on a mesh. Then, an iterative anisotropic mesh adaptation operator
was developed to construct the optimal mesh, based on the estimated error concern-
ing the image interpolation. The mesh is thus directly constructed from the image
information.

We have also proposed a new methodology to build a regularized phase func-
tion, corresponding to the objects we wish to distinguish from the image, using a
redistancing method. Two main advantages of having such function are: the gradi-
ent of the regularized function performs better for mesh adaptation; the regularized
function may be directly used for the finite element solver. Stabilized finite element
flow and advection solvers were coupled to the constructed anisotropic mesh and
the redistancing function, allowing its application to multiphase flow numerical sim-
ulations. All these developments have been extended in a massively parallel context.

An important objective of this work is the simplification of the image based
computations, through a modified way to segment the image and by coupling all to
an automatic way to construct the mesh used in the finite element simulations.

Résumé

Ces dernières années, les techniques d’imagerie ont fait l’objet de beaucoup d’améliorations.
Elles permettent de fournir des images numériques 2D ou 3D précises de zones par-
fois invisibles l’oeil nu. Ces techniques s’appliquent dans de nombreux domaines
comme l’industrie cinématographique, la photographie ou l’imagerie médicale...

Dans cette thèse, l’imagerie sera utilisée pour effectuer des simulations numériques
en la couplant avec un solveur éléments finis. Nous présenterons, en premier lieu, la
morphologie mathématique et la méthode d’immersion d’image. Elles permettront
l’extraction d’informations permettant la transformation d’une image dans un mail-
lage exploitable. Puis, une méthode itérative d’adaptation de maillage basée sur un
estimateur d’erreur sera utilisée afin de construire un maillage optimal. Ainsi, un
maillage sera construit uniquement avec les données d’une image.

Nous proposerons également une nouvelle méthodologie pour construire une
fonction régulière à l’aide d’une méthode de réinitialisation de la distance signée.
Deux avantages sont à noter : l’utilisation de la fonction régularisée permet une
bonne adaptation de maillage. De plus, elle est directement utilisable par le solveur
éléments finis. Les simulations numériques sont donc réalisées en couplant éléments
finis stabilisés, adaptation de maillage anisotrope et réinitialisation.

L’objectif de cette thèse est donc de simplifier le calcul numérique à partir
d’image, d’améliorer la précision numérique, la construction d’un maillage automa-
tique et de réaliser des calculs numériques parallèles efficaces. Les applications
envisagées peuvent être dans le domaine médical, de la physique des matériaux ou
du design industriel.

Contents

1 General introduction 1
1.1 Introduction to image-based meshing 2
1.2 Literature review . 3

1.2.1 Image characteristics . 3
1.2.2 Image segmentation techniques 5

1.2.2.1 Explicit techniques 5
1.2.2.2 Implicit techniques 7

1.2.3 Image compression . 12
1.2.3.1 Lossy compression 12
1.2.3.2 Lossless compression 12

1.2.4 Mesh adaptation . 13
1.2.4.1 Topological optimization mesh generator 13
1.2.4.2 Criteria of optimal local mesh topology 14
1.2.4.3 Mesh generation algorithm 16
1.2.4.4 H-refinement method 16
1.2.4.5 Transfer of data between meshes 17

1.2.5 Finite element method . 18
1.3 Objective of the thesis . 18
1.4 Framework of the thesis . 18
1.5 Layout of the thesis . 19
1.6 Résumé en français . 19

2 The immersed image method 20
2.1 Introduction . 21
2.2 Interpolation of the image Pixel/Voxel values on the mesh 21
2.3 Image construction and compression based on the mesh 27
2.4 Automatic anisotropic mesh construction 28

2.4.1 Mesh adaptation based on a metrics field 28
2.4.2 Edge based error estimation 33
2.4.3 Metric construction with control of the number of nodes . . . 35
2.4.4 Extension to multiphase field adaptation 37
2.4.5 MTC mesh generator . 38
2.4.6 Numerical tests . 39

2.4.6.1 Application to “Lena” image 40
2.4.6.2 Application to 2D/3D head MRIs 42
2.4.6.3 Application to 2D color images 47

i

2.5 Dynamic parallel adaptation . 48
2.5.1 Parallel anisotropic mesh adaptation 49
2.5.2 Parallel image immersion and mesh adaptation 49

2.6 Conclusion . 54
2.7 Résumé français . 54

3 Redistancing coupled to anisotropic mesh adaptation 55
3.1 Introduction . 56
3.2 Construction of a regularized function using a redistancing method . 57

3.2.1 Level-set approach . 57
3.2.2 Redistancing a modified level-set function 57
3.2.3 Stabilized finite-element resolution 59

3.2.3.1 Variational formulation 59
3.2.3.2 Time integration scheme 61
3.2.3.3 Stabilized methods 61
3.2.3.4 Numerical examples 64

3.2.4 Redistancing method coupled to automatic anisotropic mesh
adaptation . 68

3.3 Image processing using mathematical morphology 71
3.3.1 Introduction to Mathematical Morphology 71
3.3.2 Regularized function construction 74
3.3.3 Image gradient computation 74

3.4 Numerical examples . 75
3.4.1 2D color images . 75
3.4.2 2D Head MRI-Brain . 79
3.4.3 Sensitivity to the initial solution 79
3.4.4 3D head MRI . 83
3.4.5 3D Fiber image . 90

3.5 Conclusion . 93
3.6 Résumé français . 93

4 A monolithic approach for multiphase computational flow simula-
tion 94
4.1 Introduction . 95
4.2 Navier-Stokes equations . 95
4.3 Monolithic approach and Eulerian formulation 96

4.3.1 Full Eulerian formulation . 96
4.3.2 Monolithic approach . 97
4.3.3 Mixture laws . 98

4.4 Variation MultiScale method . 99
4.5 Convective level-set method . 103
4.6 Numerical examples . 105

4.6.1 Flow around a cylinder . 106
4.6.2 Fluid buckling . 112

4.7 Numerical simulations based on real images 115
4.7.1 2D picture based simulations 115
4.7.2 3D image based simulation . 120

4.7.3 2D flow simulations on Paint and Phone images 125
4.7.3.1 Fluid-structure interaction flow simulation 125
4.7.3.2 Moving interfaces and flow simulation 128

4.8 Conclusion . 130
4.9 Résumé français . 130

5 Conclusions and Perspectives 131

Chapter 1

General introduction

Contents
1.1 Introduction to image-based meshing 2

1.2 Literature review . 3

1.2.1 Image characteristics . 3

1.2.2 Image segmentation techniques 5

1.2.2.1 Explicit techniques 5

1.2.2.2 Implicit techniques 7

1.2.3 Image compression . 12

1.2.3.1 Lossy compression 12

1.2.3.2 Lossless compression 12

1.2.4 Mesh adaptation . 13

1.2.4.1 Topological optimization mesh generator 13

1.2.4.2 Criteria of optimal local mesh topology 14

1.2.4.3 Mesh generation algorithm 16

1.2.4.4 H-refinement method 16

1.2.4.5 Transfer of data between meshes 17

1.2.5 Finite element method . 18

1.3 Objective of the thesis . 18

1.4 Framework of the thesis 18

1.5 Layout of the thesis . 19

1.6 Résumé en français . 19

1

2 1. General introduction

1.1 Introduction to image-based meshing

Image acquisition is an everyday operation, in particular thanks to devices like
Smartphones which have digital cameras. Taking photos allows to save memories,
to capture exciting moments, ... However, classical digital cameras provide only
2D images, directly seen by our naked eyes. 3D imaging techniques exist and open
new doors, offering perspectives and sometimes inner information for a better com-
prehension of physical phenomena. In different scientific domains, examples of 3D
techniques that provide volume images are: MRI (Magnetic Resonance Imaging),
X-ray CT (Computed Tomography), or nanotomography. MRI is based on the at-
tenuation of energy released in different structures, by applying a gradient magnetic
field detection of electromagnetic waves emitted. Then, one may detect the location
and species composition of the nucleus of the object and draw an image of the in-
ternal structure. During the past few decades, research on the magnetic resonance
field led six times to a Nobel Prize (Chemistry, Physics, Physiology or Medicine),
illustrating the importance of this technology. X-ray CT scans and X-ray micro
and nano tomography use X-ray to create cross-sections of a physical object which
may provide a virtual model without destroying the original object. This technology
has applications, for example, in both medical imaging and material science.

(a) (b) (c)

Figure 1.1: 3D techniques:(a) MRI-scanner;(b) X-ray CT scan;(c) X-ray Microto-
mography

On one hand, digital cameras, MRI, X-ray, CT scan, X-ray microtomogra-
phy and other imaging techniques provide very accurate digital descriptions. On
the other hand, numerical simulations based on a mesh discretization have become
powerful tools in engineering designing, physical research, medical studies, ... How-
ever, an accurate geometrical representation of an object is of prime importance for
this type of numerical modeling.

For all these reasons, an image-based meshing and simulation method is proposed
in this work. An automatic process to create a discretization, under the mesh
format, for numerical modeling and from the image data was developed. Two major
techniques involved in the generation of the models are, image processing and
mesh generation by adaptation of an initial coarse mesh. These techniques are
also fully coupled to a finite element solver.

Image processing techniques can be used to handle the image concern, for ex-
ample, image segmentation, image filtering, ... Mesh generation is also an open
research field and many approaches have been used to mesh from image data, dis-
tinguished often in CAD (Computer Aided Design) and image based approaches.
The CAD-based approach uses the image data to define the surface of the object

1.2 Literature review 3

and then creates the surface elements corresponding to its boundary with traditional
CAD-based meshing algorithms [1]. After that, the volume mesh is built from this
surface mesh. On the other hand, an image-based approach combines the surface
data and the mesh construction, creating the surface mesh directly. One example
is the Marching Cubes algorithm [2, 3], widely used. From that, a volume mesh is
created from the surface mesh with a mesh generator. In the following, a review
of the techniques associated to classical image processing, like image segmentation
and compression, and also related to mesh adaptation are presented.

1.2 Literature review

In this section, image characteristics and techniques on image processing are recalled.
After, image compression and mesh adaptation (related to imaging) state of the art
and basic notations are given.

1.2.1 Image characteristics

Here, an image is a tabular representation of some spatial phenomenon. It may be
two-dimensional, such as a photograph or a screen display. With the development
of imaging techniques over the last decades, three-dimensional images became very
popular and used in different areas such as video games, cartoons, engineering design
or medical research. There is a huge potential to find other applications in the future.

The basis of both 2D and 3D images is its digital information. It consists of
a series of the smallest controllable element, the pixel for 2D images or the voxel
for 3D ones. Each element contains one or several values, arranged in a particular
order. Indeed, this digital information is an ”image” for visualization, but is also a
data array. For example, Figure 1.2 shows a popular image, ”Lena” [4], which is a
8-bit grey-scale one, containing 256 different grey.

Figure 1.2: ”Lena”’s image [4], and a part of it represented both as the image as it
is seen and as the corresponding data array.

4 1. General introduction

In color images, the primary colors often used are Red, Green and Blue, which
correspond to trichromatic human vision. The combination of any two or three of
these primary colors may create a new color. For this reason, 24-bit color images
have three channels, RGB, and each channel has values within a range of (0, 255),
so that the number of possible colors is 16777216 (256× 256× 256 = 224).

To identify an object in color images, the general way to process is to decompose
the image into three (RGB) channels. However, the RGB channels may not satisfy
fully the demand on image processing, and is not the only way to represent the color
image. Two other common representations of an RGB color model are the HSL
(Hue, Saturation, Luminance) and HSV (Hue, Saturation, Value) models. Both
of these two representations are widely used in computer graphics, since they are
similar to the human perception of color (a strong one), but more intuitive, which
may be more convenient than a RGB representation.

The Hue is used to perceive the dominant wavelength, to observe the wavelength
of a pure color in a signal, to discern red, green, blue. Eyes may distinguish around
400 hues. In what concerns Saturation, it can be seen as the degree of dilution,
or the inverse of the quantity of ”white” in a signal. For example, a pure color is
100% saturated and may be identified as red and pink, marine blue and indigo, ...
Luminance is related to the intensity of light in the signal and is used to discern the
grey levels. Human eyes can perceive around 100 levels.

Thus, using different polar color spaces, with variables of intensity such as Sat-
uration or Luminance, one may provide more options available for an appropriate
representation than when using RGB channels.

As an example, let us consider a color image (Figure 1.3(a)), used to test color
vision deficiencies, where people with healthy eyes can identify the number ”5”. This
image may be decomposed into the Red-Green-Blue channels (Figures 1.3(b)(c)(d)).

(a) Original image (b) Red channel (c) Green channel (d) Blue channel

Figure 1.3: RGB color image and the corresponding Red, Green and Blue channels.

The Red channel approximately represents the sign ”5”, but the remaining ones
do not easily identify it. For the second option, the original image can be decomposed
into its Hue, Saturation and Luminance values, shown in Figure 1.4. In the Hue one,
the number ”5” is very well identified and is the best between all the decomposition
results.

This decomposition of a color image into different channels under several ways
can then provide more options and we may choose the best one according to the
objective. The usage of color image simulations will be presented in following chap-
ters.

1.2 Literature review 5

(a) Hue (b) Saturation (c) Luminance

Figure 1.4: HSV color image and its Hue, Saturation and Luminance values.

In computer science, image processing uses mathematical operations for handling
an input image to provide an output one that preserves required characteristics,
namely to satisfy visual or psychological aspects while improving other features. In
addition, these techniques have a close relationship with optical theory, computer
graphics and artificial intelligence and include, in particular, measurements like noise
reduction, filtering, segmentation or compression.

1.2.2 Image segmentation techniques

Image segmentation is one of the fundamental tasks in image processing and com-
puter vision. Its goal is to partition a given image into regions that contain distinct
objects, with applications in medical imaging, object localization in satellite images,
machine vision and others.

This section recalls the most used algorithms and techniques. In general, they
may be distinguished as explicit or implicit methods. For explicit techniques, seg-
mentation is directly based on the image data, whereas image segmentation per-
formed with moving curves and level-set functions is often called an implicit tech-
nique.

1.2.2.1 Explicit techniques

1.2.2.1.1 Thresholding

Thresholding is the simplest method for image segmentation and is used to cre-
ate, from a grey-scale image, a binary one. During the thresholding process, indi-
vidual pixels/voxels in an image are marked as the object’s pixels/voxels, if their
value is greater than a threshold value. Typically, and according to each technique,
a pixel/voxel belonging to an object is given a value of 1, while other pixels/voxels
have values of 0. After that, a binary image is created by coloring each pixel/voxel
is white or black, depending on the pixels/voxels’ value. An example is shown in
Figure 1.5, for a 2D grey-scale image, which, after application of a thresholding
operation, becomes a binary image. The main drawback of this technique is that
in most cases even the best possible threshold value will not lead to a convenient
segmentation of the image.

6 1. General introduction

Figure 1.5: Original image and resulting one, after the threshold used on this image

1.2.2.1.2 Edge detection

Edge detection is another fundamental tool in image processing, machine vision
and computer vision, particularly in the areas of feature extraction, which aims
at identifying points in an image at which the image intensity changes sharply or
shows discontinuities [5, 6]. The purpose of edge detection is to generate an edge map
based on the distribution of the intensity discontinuity of the original image. One
may then define the homogeneous regions (that have the same pixel/voxel values)
if the edginess measure is small enough, when compared to a given value. Classical
methods of edge detection imply building an operator perceptive to large gradients
in the image, and returning values of zero in uniform regions [7]. A 2D example of
edge detection applied to the logo image of MINES ParisTech is shown in Figure
1.6.

Figure 1.6: Edge detection applied on the logo image of MINES ParisTech.

However, edge detection is a difficult task in noisy images, since both the edges
and noise hold high frequency content. Most usually, efforts to reduce the noise
result in unclear and distorted edges. In noisy images, techniques used involve
considering larger regions, to gather enough data to avoid localized noisy pixels,
even if it results in a less perfect localization of the detected edges [7].

1.2 Literature review 7

1.2.2.1.3 Region-growing methods

Region growing is a simple region-based image segmentation method, firstly pro-
posed by [8], involving a selection of initial seed points on each region to be seg-
mented. Regions are then iteratively grown by examining the pixel neighbors of the
initial points defining the seed of a region, and by determining whether they should
be added or not to the region. The difference between the pixel value or intensity
and the mean value defining the region is used to allocate the pixel to the respective
zone.

A suitable selection of seed points is very important, and generally depends on the
user. For example, in a grey-scale image, we may examine the image histogram and
choose the seed points from it, or use the connectivity or pixel adjacent information
to determine the threshold and seed points. Also, by using this algorithm, noise in
the image may cause a poor placement of the seeds, and is generally solved by using
a mask to filter.

1.2.2.2 Implicit techniques

1.2.2.2.1 The active contour model

Active contour models were firstly proposed by Kass [9], and became very popular
since: they can achieve sub-pixel accuracy of the object boundaries; various prior
knowledge can be easily incorporated for robust image segmentation; the resultant
contours and surfaces obtained are always are quite regular, which may be important
for the use that we wish to give to the image. The fundamental idea of an active
contour model is to start with a curve around the detected object, Figure 1.7. The
curve moves then towards its interior normal and stops on the true boundary of the
object, basing the whole procedure on an energy-minimizing model.

Let us consider a contour C, a parametrized curve, and the Mumford-Shah func-
tional [10] restricted to the edge functional, F (C), positive inside an homogeneous
region, strictly zero on the boundary and negative outside. In classical active con-
tour models, an edge (or boundary) detector is used, depending on the gradient of
the initial image, û. Starting with the curve C around the object to be detected,
the curve moves towards its interior normal and has to stop on the boundary of the
object. For that, we compute the minimization functional as inf F (C), being

F (C) = α

∫
C

|C ′|2 + β

∫
C

|C”|2 − λ
∫
C

g(|∇û(C)|)2 (1.1)

where α, β and λ are positive parameters. The first two terms control the
smoothness of the contour and the third term attracts the contour towards the
object. In this expression, g is an edge-detection function, positive and decreasing,
such that lim

t→∞
g(t) = 0.

1.2.2.2.2 Chan-Vese active contour model

The Chan-Vese model [11] segments the image without using the edge detection
function. Let us define the evolving curve, C0, in the original image, û, which is the

8 1. General introduction

Figure 1.7: Edge or boundary detection of an object in an image using, iteratively,
the classical Active Contour model.

boundary of an object. We suppose that the entire domain consists of an inside and
an outside of C0. Let us also consider the following functional, sum of two others,

F1(C) + F2(C) =

∫
inside(C)

(û− c1)2 +

∫
outside(C)

(û− c2)2 (1.2)

where C is any other variable curve, and the constants c1, c2, depending on C, are
the averages of û inside(C) and outside(C). Thus, C0, the boundary of the object,
is the minimizer of this functional, obtained by computing inf

C=C0

(F1(C) + F2(C)).

Figure 1.8 shows an example of different curves C, with the one in Figure 1.8(d)
particularly minimizing the functional and detecting the boundary.

(a) (b) (c) (d)

Figure 1.8: All possible cases in the position of the curve in the Chan-Vese model:
(a) the curve C is outside the object, then F1(C) > 0 and F2(C) ≈ 0; (b) the curve
C is inside the object, then F1(C) ≈ 0 but F2 > 0; (c) the curve C is both inside and
outside the object, then F1(C) > 0 and F1(C) > 0;(d) the functional is minimized
if C = C0, the curve C is on the boundary of the object [11].

1.2.2.2.3 Level-set formulation of Chan-Vese active contour model

Spline curves may be used to model the boundary of an object, but one of the
most successful active contour models is the level-set method [12], presented also in
[11]. In this case, the curve is represented by the zero level-set of a smooth function,
which is called the level-set function. Moving the curves can be done by evolving the
level-set functions instead of directly moving the curves, by solving a time-dependent
PDE (particle differential equation) where the so-called velocity term reflects the
image features characterizing the object to be segmented. Chan-Vese proposed a

1.2 Literature review 9

variant of their model using a level-set function. In this case, the moving curve C
is represented implicitly via a Lipschitz function ud, such that

ûd

> 0 inside(C) ∈ Ω

= 0 C ∈ ∂Ω

< 0 outside(C) /∈ Ω

(1.3)

Let us consider the smooth Heaviside function H(ûd), regularized as

H(ûd) =

1 if ûd > ε
1

2

(
1 +

ûd
ε

+
1

π
sin

(
πûd
ε

))
if |ûd| ≤ ε

0 if ûd < −ε

(1.4)

The segmented image, ûseg, can simply be written by using the level-set formu-
lation as:

ûseg = c1H(ûd) + c2(1−H(ûd)) (1.5)

The energy functional, F (c1, c2, ûd), is given by:

F (c1, c2, ûd) = µ

∫
Ω

δ(ûd)|∇ûd|︸ ︷︷ ︸
µ·Length(C)

+ υ

∫
Ω

H(ûd)︸ ︷︷ ︸
υ·Area(C)

+λ1

∫
Ω

(û−c1)2H(ûd)+λ2

∫
Ω

(û−c2)2(1−H(ûd))

(1.6)
where δ(ûd) = ∂H

∂ûd
. By keeping ûd fixed and minimizing the F (c1, c2, ûd) with

respect to the constants c1 and c2, it is easy to express these constants, as a function
of ûd by

c1(ûd) =

∫
Ω
û ·H(ûd)∫
Ω
H(ûd)

= average(û) in ûd ≥ 0

c2(ûd) =

∫
Ω
û · (1−H(ûd))∫
Ω

(1−H(ûd))
= average(û) in ûd < 0

(1.7)

The descent direction is parametrized using an artificial time τ , and the equation
in ûd(τ) with the initial contour condition ûd(0) = û0

d, is

∂ûd
∂τ

= δ(ûd)

[
µdiv(

∇ûd
|∇ûd|

)− υ − λ1(û− c1)2 + λ2(û− c2)2

]
= 0 in (0,∞)× Ω

ûd(x, y, τ = 0) = û0
d(x, y) in Ω

δ(ûd)

|∇ûd|
∂ûd
∂~n

= 0 on ∂Ω

(1.8)

10 1. General introduction

where n is the outwards normal to the boundary and ∂ûd
∂n

the normal derivative
of ûd at the boundary. Figure 1.9 presents the evolution of the moving curve on
an original noisy image û on the top line and the corresponding segmentation, ûseg,
piecewise-constant, on the bottom line.

Figure 1.9: Detection of the different objects on a noisy image, with different shapes
and with an interior contour. In the first line, û and the contour, the zero of the level-
set at different τ iterations; on the second line, the piecewise-constant approximation
of ûseg [11].

1.2.2.2.4 Multiphase Chan-Vese model

Chan and Vese extended their model to the case where we wish to segment mul-
tiple objects or phases [13]. Let us consider m = log2 n level-set functions, ûdi, with
i = 1, . . . ,m, and let us consider the vector level-set function ûd = (ûd1, · · · , ûdm),
and the vector Heaviside function H(ûd) = (H(ûd1), · · · , H(ûdm)). The union of
the zero-level-sets of ûdi will represent the edges in the segmented image. We can
define that two pixels x1 and x2 in Ω will belong to the same phase, if and only if
H(ûd(x1)) = H(ûd(x2)). There are n = 2m possibilities for the vector values in the
image of H(ûd) or n = 2m phases, as illustrated in Figure 1.10.

Phases are labelled with I, for 1 ≤ I ≤ 2m = n, and the constant vector of
averages is c = (c1, . . . , cn), where cI = mean(û) corresponds to phase I, and the
characteristic function for each phase I is χI . The Mumford-Shah functional FMS

n

can be written as:

FMS
n (c, ûd) =

∑
1≤I≤n=2m

∫
Ω

(û− cI)2χI + µ
∑

1≤i≤m

∫
Ω

|∇H(ûdi)| (1.9)

leading to an evolution equation per level-set of the following type: given ûdi(0) =
ûdi

1.2 Literature review 11

Figure 1.10: On the left, the two curves {ûd1 = 0} ∪ {ûd2 = 0} that partition the
domain into 4 regions: {ûd1 > 0, ûd2 > 0}, {ûd1 > 0, ûd2 < 0}, {ûd1 < 0, ûd2 > 0},
{ûd1 < 0, ûd2 < 0}. On the right, three curves {ûd1 = 0} ∪ {ûd2 = 0} ∪ {ûd3 = 0}
partition the domain into 8 regions: {ûd1 > 0, ûd2 > 0, ûd3 > 0}, {ûd1 > 0, ûd2 >
0, ûd3 < 0}, {ûd1 > 0, ûd2 < 0, ûd3 > 0}, {ûd1 > 0, ûd2 < 0, ûd3 < 0}, {ûd1 <
0, ûd2 > 0, ûd3 > 0}, {ûd1 < 0, ûd2 > 0, ûd3 < 0}, {ûd1 < 0, ûd2 < 0, ûd3 > 0},
{ûd1 < 0, ûd2 < 0, ûd3 < 0}[13]. In the image, φ is the level-set function, ûd.

∂ûdi
∂τ

= δ(ûdi)µdiv(
∇ûdi
|∇ûdi|

)−
∑

1≤I≤n=2m

(û− cI)2χI (1.10)

Figure 1.11 illustrates this with an example of [13], using two curves to segment
four-phases on a noisy synthetic image.

Figure 1.11: Segmentation of a noisy synthetic image, using the 4-phase piecewise
constant mode. The first line represents the evolving contours overlay on the original
image and the second line gives the computed averages of the four segments c11, c10,
c01, c00 [13].

The authors proposed also an extension to multichannel-multiphase segmenta-
tion for color RGB images, û = (û1, ..., ûN), with N = 3 channels. For each channel

12 1. General introduction

i = 1, . . . , n, we have the constants cI = (cI,1, . . . , cI,N) and the built functional is

Fn(cI , ûd) =
∑

1≤I≤n=2m

N∑
i=1

∫
Ω

(ûi − cI,i)2χI +
∑

1≤I≤n=2m

µ

∫
Ω

|∇H(ûdi)| (1.11)

1.2.3 Image compression

The purpose of image compression is to reduce the redundant information to have
more efficient data storage and transmission formats. Image compression can be dis-
tinguished in lossy compression and lossless compression. When lossless compression
is used then, after compression, the information is not lost and may be fully restored
to its original status. On the other hand, when little perceptible loss is acceptable
(and sometimes imperceptible) but also allows an approximate reconstruction of the
original data, one has lossy compression, greatly reducing the bit rate and achieving
a better compression ratio. In a high bit rate image compressed into a low bit rate,
the definition of the compression ratio is:

Compression Ratio =
Uncompressed Size

Compressed Size
(1.12)

1.2.3.1 Lossy compression

In this method, the color palette index representing the selected color is defined in
the image header compression palette firstly. Then, each pixel references the index,
which may reduce the common color space in the image.

An extension, the chroma subsampling method, takes advantage of the human
eye sensitivity to changes in brightness much larger than the color change, so that
the color image information can be reduced by half or more [14].

Transform coding is the most commonly used method [15], employing Fourier-
related transforms, such as the DCT (Discrete Cosine Transform) or quantized
and entropy coding compression methods like JPEG (Joint Photographic Experts
Group) compression [16]. This may achieve 10 : 1 compression ratios with little loss
in the image quality.

Fractal compression was firstly realized in [17], by compressing the image to suit
for textures and natural images. Some pictures seem very complicated for human
eyes, but which may only contain capture a very low amount of information. Frac-
tal algorithms convert these data through ”fractal coding”, and compress common
features by self-similarity compression.

1.2.3.2 Lossless compression

Run-length encoding is the simplest way for data compression. It can be explained
with a simple example: the data list ”AAAAABBBBCCCDDE”, 15 characters, can
be replaced by the ”5A4B3C2DE” one with 9 characters. This method is well suited
for already images, but not for continuous ones. It has been applied to the BMP
(bitmap) or TIFF (Tagged image file format) image formats [18].

1.2 Literature review 13

Other methods concern adaptive dictionary algorithms, such as the Lempel-Ziv-
Welch one, proposed in [19, 20] and used for GIF (Graphics Interchange Format)
image formats, with a fixed length code editor to store different lengths of strings.
The advantage is that requires a small storage table and is highly efficient, without
any data analysis.

1.2.4 Mesh adaptation

Over the last decades, numerical simulation played a very import role in the indus-
trial development. It has reduced the experimental costs and provided a solution for
design, avoiding potential risks. The basic idea of numerical simulation is to replace
the continuous domain into a set of discrete sub-domains (elements of a mesh, for
example), couple it to a numerical solver (Navier-Stokes, thermal solver, ...), to have
an approximate solution in the discretization domain.

However, considering the computational cost and time to have very accurate so-
lutions, development of optimal meshing techniques is a field undergoing continuous
improvement. Mesh adaptation techniques are thus efficient solutions, providing
dynamic meshes adapted to the solution fields, based on the interpolation error
estimation.

1.2.4.1 Topological optimization mesh generator

Let us first recall some classically mesh generation algorithms and go more deeply on
the description of the topological optimization mesh generator, used in this thesis.

For mesh generation, the Delaunay triangulation D algorithm is a very popular
one[21]. Let us consider a set of points X in the Euclidean space R, so that a De-
launay triangulation is noted as D(X), for X inside the circumcircle of each triangle
in D(X). This method [22, 23] then creates elements from the boundary of domain.
The mesh is then refined inside of the domain by inserting nodes, but always main-
taining the Delaunay triangulation property. Extension with a Quadtree-Octree
algorithm has been proposed [24], and applied in many commercial numerical simu-
lation softwares. This algorithm has also been widely used in digital image process-
ing [25], and elements of the mesh may not only be triangle/tetrahedron, but also
rectangles/cubes, providing more options than classical Delaunay meshing. There
are also some other mesh techniques like, for example, the advancing front method
[26].

In this work, a topological optimization mesh generator is used, developed by
Coupez [27, 28, 29]. It is based on the iterative improvement of an initial unsatis-
factory mesh by performing local operations. Before detailing the methodology, let
us present some notations, properties and definitions on mesh topologies.

Let us note the mesh, H, of a computational domain Ω ⊂ Rd. K is an element
of this mesh, being a d-simplex with the convex hull of d + 1 vertices, and K is a
the set of elements. For example, a 1D-segment has 2 vertices, a 2D-triangle has 3
vertices and the 3D-tetrahedron has 4 vertices. Let F(K) be the set of faces of K’s
elements, being a face designated by F . A basic property is

1 ≤ card(K(F)) ≤ 2, ∀F ∈ F (1.13)

14 1. General introduction

and the faces belonging to the boundary of K are:

∂K = {F ∈ F , card(K(F)) = 1} (1.14)

Each face F ∈ F(K) shares no more than two elements, and only the boundary
faces have one element.

The operation of local modification of the mesh topology is done by replacing
the chosen sub-set Ka by another sub-set Kb, where Ka ⊂ K and ∂Ka = ∂Kb. In
other words, the new sub-set Kb has the same boundary as the replaced sub-set Ka,
and a node Xa connects to the boundary faces that do not contain it. Let us denote
the set of nodes and faces of Ka by N (Ka) and F(Ka), in the mesh topology Ka,
and by C(Ka) the centroid of the nodes of ∂Ka. A cut/paste operation, designated

θ, is performed. Let Xa ∈ N (Ka) ∪ C(Ka) then the new optimal mesh topology, K̃,
is given by (Figure 1.12):

K̃ = θ(K) = K −Ka + Kb︸︷︷︸
K(Xa,∂Ka)

(1.15)

Figure 1.12: Example of sub-set Ka replaced by Kb, by adding the new nodes with
the boundary or around the centroid C .

The algorithm can only handle the nodes inside of domain, but not the nodes
of the boundary. To overcome this drawback, the author [28] proposed to insert a
virtual node 0, which connects to all the nodes along the boundary (as illustrated
in Figure 1.13). Then, each node becomes an “inside” one and can be handled by
the presented local modification operation. More details are given in [27, 28, 29].
Indeed, the operation θ may iteratively modify the local mesh, until no significant
improvement is necessary.

1.2.4.2 Criteria of optimal local mesh topology

The previous section has presented the based idea of optimization of local mesh
topology. In this process, two criteria are enforced in a compulsory way:

1.2 Literature review 15

Figure 1.13: Virtual node connected to boundary nodes, generating the virtual
elements.

• the minimal volume principle, which ensures the conformity of mesh, with
no element overlaps. If K denotes the set of elements filling the domain Ω, we
choose an optimal sub-set Kb which improves Ka and is given by:

Kb = arg min
K

∑
K⊂K

|Volume(K)| (1.16)

where |Volume(K)| means the volume of the element K, |Volume(K)| =∫
K
dK. As shown in Figure 1.14(a), four nodes may construct two possi-

ble mesh topologies. The left one satisfies the minimal volume criteria, but
not the right one since:

|Volume(KA′)|+|Volume(KB′)| > |
∫

1 → 2
↑ ↓
4 ← 3

dK| = |Volume(KA)|+|Volume(KB)|

(1.17)

However, the mesh topology satisfies the minimal volume property, which may
not be unique, as illustrated in Figure 1.14(b). The following criteria may
overcome this problem, and choose the best mesh topology.

• the geometrical quality principle, which picks the one with the highest
geometrical quality of the elements among all possible triangulations, which
involved shift, destruction and creation of nodes. The evaluation of the quality
of each element of the mesh topologies is done by computing:

Q(K) =
|Volume(K)|

hdK
(1.18)

16 1. General introduction

(a) (b)

Figure 1.14: Criteria of optimal local mesh: (a) minimal volume criteria; (b) possible
triangulations of elements for the same minimal volume.

where h is the space dimension and hK represents the mean of the edge lengths.
The geometrical quality varies between 0 and 1, with 1 being the best quality.

1.2.4.3 Mesh generation algorithm

The definition of mesh optimization and the criteria have been well presented are
summarized in the following algorithm. Firstly, we suppose an initial mesh of Ω, with
a connected boundary, ∂Ω. Then, the recursive local mesh optimization algorithm
is as follows:

Algorithm 1: Algorithm of local mesh topology optimization

Input: (N , ∂K), a mesh topology of domain Ω
Output: (Nopt, ∂Kopt), the optimal mesh topology

1 while the mesh topology K has to be improved do
2 for each node and edge of the mesh topology do
3 Cut the local topology Ka, associated with nodes or edges.
4 Paste it to a new local mesh topology, Kb = K(Xa, ∂Ka), which

minimizes the volume and maximizes the element’s qualities among all
the candidates, to obtain (Nopt, ∂Kopt)

1.2.4.4 H-refinement method

In this section, the adaptive mesh refinement method will be presented in a general
way. It provides a dynamic mesh during the simulation, adapted to the computed
solution. The ”sensitive” sub-domain targeted is always indicated with an interpo-
lation error estimator, related to the high solution gradient areas.

The error is given by the difference between the exact solution and the one com-
puted on the discretized domain. However, we do not know the exact solution, and
the error may be the result of physical or mathematical errors, of the discretization
(mesh size), of data inputs,... Different factors may affect this error and a priori
error estimators have been introduced. They estimate the size of a solution or its

1.2 Literature review 17

derivatives of a partial differential equation [30] and also provide the discretization
error in a current mesh, instead of the actual error.

The H-refinement method is the one applied to modify the topology of mesh in
this work. Based on the current mesh, the interpolation error estimator indicates the
error estimate over the whole computation domain. The presented mesh generator
may improve the mesh size by inserting or removing nodes to reduce or balance this
error estimate. The way of computing this estimate will be described in Chapter 2.

1.2.4.5 Transfer of data between meshes

Let us suppose that mesh adaptation has been done, the new improved mesh re-
placing the old one. The data transfer from the old mesh to the new one without
loosing information is of prime important. In our case, two types of information are
stored within the mesh, such as nodal or element variables and parameters, allowing
the construction of the field through P1 or P0 interpolations.

To transfer P1 data, a method called ”P1 to P1” is used. Figure 1.15 illustrates
the element K of the old mesh and the element K̃ of the new mesh, as well as element
node and its value denoted, respectively, as X and and u(X). Firstly, we identify the

new node X̃ inside the old element K and its barycentric coordinate in K, named
as coord(X̃)K . The value of node X̃ is computed using a linear interpolation from

the nodal values of K and coord(X̃)K , as

u(X̃) =
d+1∑
i=1

coord(X̃)K · u(Xi) (1.19)

(a) (b)

Figure 1.15: (a) Transfer of P1 data: ”P1 to P1” procedure; (b) Transfer of P0 data
to P1, with a Superconvergent Patch Recovery method.

To transfer P0 data, the method is also called ”P0-P1-P0”. Using a Supercon-
vergent Patch Recovery procedure [31], the values at the elements are distributed
on the nodes, as seen in Figure 1.15. Then, applying the ”P1 to P1” procedure,
data at all the nodes is obtained for the new mesh. Finally, the Gaussian integral
rule may compute the value at the element through its d+ 1 nodal data.

18 1. General introduction

1.2.5 Finite element method

Computational modeling starts with a representation of the physical phenomena us-
ing a mathematical model and the governing equations of the problem to be solved.
The equations to be solved are often described by PDEs (partial differential equa-
tions) and the numerical solutions of these mathematical models approximate the
exact solutions. In general, three classical methods are widely used and developed to
solve the PDEs: finite difference method, finite volume method and finite element
methods.

The finite difference method is based on Taylor series to approximate the PDEs.
However, this method has a limit on handling complex geometries, since several
layers of discretization nodes are asked, increasing the computational cost.

The finite volume method is used to integrate over a cell (volume), respecting
the conservation laws and assuming piecewise constant approximation spaces. The
values of the conserved variables are located within the volume element, and not at
the nodes or surfaces, which are calculated using the mesh geometry. It has been
applied in many commercial simulation softwares.

In this work, we have used the finite element method to solve the PDEs. Based
on a Galerkin formulation, it provides the solutions of many small sub-domains by
integral forms that approximate the equations over the entire domain. Furthermore,
to avoid oscillations with convective-dominated terms and stabilize mixed-finite ele-
ment methods, specific stabilization methods are also applied, such as the streamline
upwind Petrov-Galerkin method, proposed by [32, 33] and the Residual Free Bubble
approach [34, 35] or the Variational MultiScale method [36].

1.3 Objective of the thesis

In this thesis, we propose a new technique for image-based meshing, an alterna-
tive and innovative way to skip surface mesh construction by directly using image
data. Then, volume mesh is built with an automatic topological optimization mesh
generator, coupled to an estimation error procedure. Additionally, mathematical
morphology methods are used to handle image data, to ensure that they are suit-
able for mesh adaptation and numerical simulation. On the other hand, a newly
proposed redistancing level-set approach is implemented to rebuild a phase function
for object to be identified in an image, a ”smooth” segmentation, and the rebuilt
level-set function will be used in numerical simulations. Finally, flow computations
on the images are performed, with a dynamic coupling between image-mesh-flow
solver.

1.4 Framework of the thesis

This thesis work is a part of the project ”De l’Image au Maillage”, supported by
Institut Mines-Télécom, a collaboration between several researchers from five Écoles
des Mines (Paris, Saint-Etienne, Albi-Carmaux, Douai, Alès). The first part of
this work was performed at the Center for Material Forming, ”CEntre de Mise En
Forme des matriau” (CEMEF) at Sophia Antipolis, to handle the mapping of the

1.5 Layout of the thesis 19

image data to the mesh structure. The second part was achieved at the Center
for Mathematical Morphology, ”Centre de Morphologie Mathématique” (CMM),
at Fontainebleau, to interface our implementations with Morph-M, a powerful tool
for image processing, based on mathematical morphology techniques. Finally, at
the Institute of High Performance Computing, ”Institut de Calcul Intensif” (ICI)
of École Centrale de Nantes, implementations have been extended to a massively
parallel context, using the ICITech library and numerical simulations based on real
images have been performed.

1.5 Layout of the thesis

This thesis is divided into six chapters. Chapter 1 is the general introduction of
this work. Chapter 2 introduces a new methodology to create anisotropic meshes
based on image data. Anisotropic mesh adaptation is constructed using metric ten-
sors, which are computed from the interpolation error estimate of the image data on
the mesh. The interpolation of the data on the mesh and its adaptation have also
been parallelized. Chapter 3 gives a new methodology to build a continuous phase
function per object of a segmented image, by a redistancing procedure, coupled to
mesh adaptation. Image processing techniques were implemented to improve and
accelerate this redistancing-adaptation procedure. Chapter 4 describes the numer-
ical approach used for multiphase flow problems, the Variational Multiscale Navier
Stokes solver, based on a stabilized finite element method. Then, numerical simula-
tions on real images are illustrated, including fluid-structure interactions or object’s
interfaces dynamics. Finally, conclusions and perspectives are presented.

1.6 Résumé en français

Ce chapitre introduit les travaux réalisés dans cette thèse. Premièrement, nous
rappelons les techniques de traitement d’image, comme la segmentation ou la com-
pression. Deuxièmement, une brève étude des différentes méthodes de géneration
et d’adaptation sont présentées, avec un intêret particulier pour les techniques avec
optimisation de topologie de maillage. Ensuite, nous décrivons les objectifs pour-
suivis, avec la réalisation de simulations numériques par la méthode des éléments
finis et directement sur des images. La morphologie mathématique est utilisée pour
traiter les données de l’image, afin de s’assurer qu’ils sont mieux exploitables par
les outils d’adaptation de maillage et la simulation numérique. D’autre part, une
méthode de reinitialisation des fonctions de phase est proposée pour reconstruire une
fonction continue par objet à identifier dans une image, nécessaire aux simulations
d’écoulements multiphasiques.

Chapter 2

The immersed image method

Contents
2.1 Introduction . 21

2.2 Interpolation of the image Pixel/Voxel values on the
mesh . 21

2.3 Image construction and compression based on the mesh 27

2.4 Automatic anisotropic mesh construction 28

2.4.1 Mesh adaptation based on a metrics field 28

2.4.2 Edge based error estimation 33

2.4.3 Metric construction with control of the number of nodes . 35

2.4.4 Extension to multiphase field adaptation 37

2.4.5 MTC mesh generator . 38

2.4.6 Numerical tests . 39

2.4.6.1 Application to “Lena” image 40

2.4.6.2 Application to 2D/3D head MRIs 42

2.4.6.3 Application to 2D color images 47

2.5 Dynamic parallel adaptation 48

2.5.1 Parallel anisotropic mesh adaptation 49

2.5.2 Parallel image immersion and mesh adaptation 49

2.6 Conclusion . 54

2.7 Résumé français . 54

20

2.1 Introduction 21

2.1 Introduction

In this section, the Immersed Image Method is introduced, consisting mainly in
the interpolation of an image onto a given mesh. Coupled to anisotropic adapta-
tion, it allows a very good representation of the original image, with fewer number
of nodes than the number of pixels/voxels and creates simultaneously an adapted
anisotropic mesh. The previous Chapter has presented the definition behind an
image and a mesh. The main idea of the Immersed Image Method is to map the
pixels (2D)/voxels (3D) value of the image onto an existing 2D/3D mesh, allowing
us to build a function within it. In classical methods, from this function we recog-
nize N phases by building N − 1 phase functions, being N − 1 surface meshes then
extracted. In image-based approaches for mesh generation, the most used method
to create a surface mesh is the Marching Cubes [2, 3], building after the volume
one. Here, we propose an alternative way, by skipping these two steps, and directly
construct the mesh. This is specially interesting in the case where computations
will be performed on the adapted mesh, constituted of all the phases. For that, we
propose to use directly the image data and to minimize the a posteriori immersed
image interpolation error by adapting anisotropically the mesh [27, 28, 37, 38].

2.2 Interpolation of the image Pixel/Voxel values

on the mesh

A new method to transform the image information in a mesh is presented in this
section. In general, a pixel/voxel is the smallest controllable surface/volume element
of a two/three dimensional image, arranged in this latter in a specific order. The

image, noted as û, can be in two (L̂ × Ĥ) or three dimensions (L̂ × Ĥ × Ŵ), with

T̂ pixels/voxels (T̂ = L̂ × Ĥ or T̂ = L̂ × Ĥ × Ŵ), where L̂, Ĥ, Ŵ are the length,
height and width of the image. Therefore, the set of pixels/voxels in the image û is
defined as:

Pixel = {Pixelk ∈ R2, ∀k = 1, . . . , T̂}

V oxel = {V oxelk ∈ R3, ∀k = 1, . . . , T̂}
(2.1)

Let Ûk be the value and (l̂k, ĥk)/(l̂k, ĥk, ŵk) the coordinates of û at Pixelk/V oxelk,

such that: û(Pixelk) = Ûk or û(V oxelk) = Ûk, ∀ l̂k = 1, . . . , L̂, ĥk = 1, . . . , L̂ and

ŵk = 1, . . . , Ŵ .

û =

T̂∑
i

û(Pixelk) =
T̂∑
i

Ûk

T̂∑
i

û(V oxelk) =
T̂∑
i

Ûk

∀ k = 1, . . . , T̂ (2.2)

The relation between the k-th pixel/voxel and its coordinate (l̂k, ĥk, ŵk) is:

22 2. The immersed image method

k = l̂k + ĥk ∗ L̂+ŵk ∗ Ĥ ∗ L̂︸ ︷︷ ︸
only for voxel

(2.3)

Like referred previously, for a 8-bit grey-scale image, there are only 28 = 256

possible levels and the value of Ûk varies between 0 (black color) and 255 (white
color). However, for color images, like a RGB (Red, Green, Blue), a three channels
are usually used, each channel with 256 levels, so that there are 224 = 16777216
possible colors.

Let us recall the definition of a 2D/3D mesh, which is a collection of nodes, edges
and elements (for example, triangular or quadrilateral for a 2D mesh, tetrahedron or
pyramidal for a 3D mesh). The mesh support is widely used to discretize geometries
in finite element or finite volume methods. For an initial 2D/3D mesh of a domain
of size ([0,X]× [0,Y]) or ([0,X]× [0,Y]× [0,Z]) with N nodes, we define:

N = {Xi ∈ Rd,∀i = 1, . . . , N} (2.4)

as the set of nodes of the mesh and d its spatial dimension. We denote U i = u(Xi)
as the nodal value of u at node Xi, with the coordinate of node Xi being (xi, yi) or
(xi, yi, zi) for a 2D or 3D mesh, with xi ∈ [0,X], yi ∈ [0,Y], zi ∈ [0,Z].

During image to mesh processing, the image, under one of different possible
formats, is firstly read and associated to a data array. Then, this data array of
pixel/voxel values from the image û is interpolated into the mesh, providing a dis-
tributed field, named here u. The interpolation equations are as follows, obtained

using the coordinates of the pixel/voxel (l̂k, ĥk, ŵk) and of the nodes (xi, yi, zi):

u(Xi) = û(Pixelk/V oxelk), where l̂k = int(x
i

X
· (L̂− 1) + 1),

ĥk = int(y
i

Y
· (Ĥ − 1) + 1), ŵk = int(

zi

Z
· (Ŵ − 1) + 1)︸ ︷︷ ︸

only in the 3D case

∀ i = 1, . . . , N (2.5)

In fact, the solution u ∈ C2(Ω) = V . The discretized functional space cor-
responding to V , Vh, is a simple P 1 finite element approximation space with a
piecewise constant field, such that:

Vh =
{
uh ∈ C0(Ω), uh|K ∈ P 1(K), K ∈ K

}
(2.6)

where Ω =
⋃
K∈K

K is the computational domain, K is the element, in our case a

simplex (segment, triangle, tetrahedron) and K is the set of elements of the mesh,
H. Let Πh be the Lagrange interpolation operator from V to Vh, so that:

Πhu(Xi) = u(Xi) = U i, ∀ i, . . . , N (2.7)

More generally, we will designate the continuous form represented as the interpo-
lation solution, uh. Figure 2.1 presents a simple interpolation example, of an image
û with 25 pixels (L̂ × Ĥ = 5 × 5) on a single triangle element K, with 3 nodes
X1,X2,X3. As given by Equation (2.5), the three nodes can directly be mapped

2.2 Interpolation of the image Pixel/Voxel values on the mesh 23

on the image and will have the values of the pixels û(Pixel1), û(Pixel2), û(Pixel3),
as illustrated in Figures 2.1(a)(b). Since the values of the three pixels have been
interpolated on the mesh nodes, the Lagrange interpolation solution on element K
is computed with the operator Πhu(Xi) from the three nodal values, as shown in
Figure 2.1(c).

(a) Image map (b) u(Xi) (c) uh

Figure 2.1: Illustration of the interpolation of a 2D image on a single triangular
element: (a) image mapping; (b) nodal values, u(Xi); (c) Lagrange interpolation on
the element, uh.

Using this approach and enough elements, the mesh may approximately represent
the original image. To outline our purpose, let us consider one other example, the 2D
8-bits image Lena [4], which is presented in Figure 2.2(a). This image is very popular

in the image processing domain, containing T̂ = 262144 pixels (L̂× Ĥ = 512×512).
Firstly, we immerse this image into an uniform mesh, shown in Figure 2.2(b)),
containing N = 140 nodes on a square of dimensions ([0, 1] × [0, 1]). The result
provides a rather coarse mesh size.

(a) Lena image, T̂ = 262144 (b) Initial mesh, N = 140

Figure 2.2: ”Lena” image [4] and initial mesh.

24 2. The immersed image method

Like previously, the mesh nodes find the corresponding pixels, mapping the im-
age, as seen in Figure 2.3(a). Therefore, the image information is stored in the nodes,
Figure 2.3(b). The Lagrange interpolation solution of elements uh is computed with
the interpolation operator, from the nodes’ value, also shown in Figure 2.3(c).

(a) Image map (b) u(Xi), N = 140 (c) uh, N = 140

Figure 2.3: Illustration of the interpolation of a 2D grey-scale image, ”Lena” [4], on
a mesh with 140 nodes: (a) node location on the image Lena; (b) nodal value, u(xi);
(c) Lagrange interpolation on the elements, uh

We observe that, even if we recognize the global pattern, coarseness of the mesh
results in a poor representation of the original image. Therefore, the simplest way
to improve the representation is to increase the number of nodes or to reduce the
size of the elements. Figure 2.4 shows the image interpolated on the mesh for an
increasing number of nodes. The last one is very close to the original image, for a
number of nodes still smaller than the number of pixels (N = 50372, T̂ = 262144),
reducing also the size of the storage of the information.

The Image Immersion method has also be extended to 3D image applications. To
illustrate it, we have used a MRI of the human head from the BrainWeb Database
[39], treated in [40, 41]. The 3D image corresponds to a healthy subject scanned
with a T1-weighted contrast on a 1.5T magnetic field, with a 30o flip angle, 22ms
of repeat time, 9.2ms of echo time, and a 1mm isotropic voxel size, resulting in a
256×256×181-sized volume. Additionally, ground-truth regions were also provided
for the skin, skull, cerebrospinal fluid, grey and white matter tissues. To have a
clearer visualization of the results, we have interpolated a sub-volume of (91×212×
181), with T̂ = 3491852 voxels, as shown in Figure 2.5(a). The (sub)image contains
half the human head regions referred before. The interpolation of the image on a
3D uniform mesh is drawn in Figures 2.5(b),(c) and (d) for different and increasing
number of nodes.

2.2 Interpolation of the image Pixel/Voxel values on the mesh 25

(a) uh, N = 531 (b) uh, N = 3216

(c) uh, N = 7695 (d) uh, N = 12595

(e) uh, N = 38003 (f) uh, N = 50372

Figure 2.4: Interpolation of the image ”Lena” on a 2D mesh, using uniform meshes
but with an increasing number of nodes.

26 2. The immersed image method

(a) Original image û (b) uh, N = 100000

(c) uh, N = 600000 (d) uh, N = 1900000

Figure 2.5: Application of the interpolation of the image on a 3D mesh, using
uniform meshes and an increasing number of nodes.

2.3 Image construction and compression based on the mesh 27

2.3 Image construction and compression based on

the mesh

The previous examples show that the Lagrange interpolation solution on the mesh
may approximately represent the original image, often with fewer number of nodes
than the number of pixels/voxels. It may help reducing the stored information, as
in lossy image compression methods. To demonstrate this point and quantify the
results, let us construct a new image, ûh, based on the resulting interpolation on
the mesh, uh, with the same number of pixels/voxels and dimension of the original

image, T̂ . This image construction procedure can be considered as the opposite
operation of the previous methodology. Figure 2.6(a) shows again the interpolation
solution on element K, with nodes X1,X2,X3. Firstly, the three nodes of element
can directly create the three pixels, as given by Equation (2.8) and illustrated in
Figure 2.6(b).

ûh(Pixel
k/V oxelk) = uh(X

i), where l̂k = int(x
i

X
· (L̂− 1) + 1),

ĥk = int(y
i

Y
· (Ĥ − 1) + 1), ŵk = int(

zi

Z
· (Ŵ − 1) + 1)︸ ︷︷ ︸

only for 3D

∀ i, . . . , N (2.8)

(a) (b) (c)

Figure 2.6: Illustration of the image construction from the interpolation solution
on the mesh: (a) interpolation on the element, uh; (b) identification of the pixels’
centers; (c) resulting image.

For the remaining pixels, their centers are identified in the element. If they are
inside or along an edge, they are given by the values of the interpolation solution, uh,
in this center. The new created pixels construct the new image and are represented
in Figure 2.6(c).

In the new image, ûh, with T̂ pixels/voxels, there are N pixels/voxels directly
created from the nodes of the mesh, which are the same as the original image.
For N < T̂ , the created pixels/voxels may be different from the original ones. To
research the quality of the results and the lossy image compression, we introduce
the indicators MSE (Mean Square Error) and D (Density) as follows:

28 2. The immersed image method

MSE =

1

T̂

T̂∑
k=1

(ûkh − ûk)
2

D =
Mesh size

Original image size
=

Number of nodes

Number of pixels/voxels
=
N

T̂

(2.9)

They will allow, in the following, a comparison between the original and the
created image, pixel by pixel or voxel by voxel.

2.4 Automatic anisotropic mesh construction

The other advanced way to improve the image representation, in particular for a
constrained number of nodes, is to use an anisotropic mesh instead of an uniform one.
Compared to uniform meshes, elements of anisotropic ones have different shapes,
sizes and orientations, which may improve the accuracy of the numerical simulation
solution, especially in the case where there are discontinuities or high gradients of
the solution. It enables to capture physical phenomena such as boundary layers,
shock waves or moving interfaces [42, 29, 43, 44, 37]. In our application, anisotropic
meshes may also improve the interpolation solution with fewer number of nodes.

In this section, we have improved and applied the methodology presented in
[28, 37, 38], which is based on a topological mesh generator that has as input a
nodal metric map, being the metric tensor constructed from an edge based a pos-
teriori error estimator. This error estimate is computed by building the length
distribution tensor and the detail of this error analysis has been presented in [37].
For this remeshing procedure, a stretching factor is applied on each edge to obtain
the corresponding metric tensor, with a constrained number of nodes. Furthermore,
the interpolation error computation can be applied and extended to other compo-
nents or multi-component situations such as color images, velocity or pressure fields,
...

2.4.1 Mesh adaptation based on a metrics field

Anisotropic mesh generation techniques based on metric tensors have been developed
in the last decade [28, 45, 44]. The metric-based method is not established on the
Euclidean space, but on the Riemannian metric space and on the unit mesh (for
example, equilateral triangles in a 2D mesh or regular tetrahedron in 3D meshes).
In other words, the mesh can be composed of elements of any shape (unit or not)
in the Euclidean space, which will be transformed into unit elements in the given
metric tensor space.

We note the Riemannian metric tensor as M in Rn and is a n × n symmetric
positive matrix. It is diagonalizable and its associated eigenvectors are R (as a
rotation vector), being Λ the metric of its eigenvalues, as follows:

2.4 Automatic anisotropic mesh construction 29

M = tRΛR = tR

 |λ1| 0 0
0 |λ2| 0
0 0 |λ3|

R, in a 3D mesh (2.10)

The metric tensor may be represented by an ellipse (in 2D) or an ellipsoid in 3D,
as seen in Figure 2.7, where h1, h2, . . . , hn are the local sizes in each direction of the
metric tensor M.

(a)

(b)

Figure 2.7: Representation of the ellipse (2D) and ellipsoid (3D) transformation into
unit circle and unit ball from the Euclidean space to the metric space.

The scalar product of two vectors in the Euclidean space and in the Riemannian

30 2. The immersed image method

metric space are written:

(~u, ~v) = tuv and (~u, ~v)M = tuMv ∈ Rn (2.11)

For this reason, the norm of the vector ~u in the Riemannian metric space is:

‖~u‖M =
√

(~u, ~u)M =
√
tuMu (2.12)

It means that, for each edge of the mesh, its length in the Riemannian metric
space is always equal to the unit length. The definitions of the Euclidean distance
and of the Riemannian distance, corresponding to vector Xij between nodes Xi and
Xj, are given as:

d(Xij,Xij) =
√

tXijXij and d(Xij,Xij)M =
√

tXijMXij = 1 (2.13)

The metric is continuous along the edge. The tensor may be defined along the
vector Xij, as a function of the position of a point x, such that Xij(x) = Xi+tXij, t ∈
[0, 1]. Thus,

d(Xij(x),Xij(x))M =

∫ 1

0

√
tXijM

(
Xi + tXij

)
Xijdt (2.14)

For the anisotropic mesh construction, the metric field may be associated with
the mesh elements. For example, a triangle or a tetrahedron becomes an equilateral
triangle or regular tetrahedron in the metric space, as seen in as Figure 2.8.

Figure 2.8: Unit metric for a 2D and a 3D elements.

In this way, the metric tensor is stored at the element, and is piecewise constant
along the edge (Equation (2.14)), but discontinuous from element to element. For
the iterative mesh adaptation procedure, using the metric tensor at the element,
as seen in Figure 2.9(a), is not the best choice to obtain the new metric tensor

M̃ at the new element, since it involves four parts of four different metric tensors,
M1,M2,M3,M4.

Indeed, the nodal metric tensors computation has been most widely used [29,

44, 37]. The metric tensor in the new point X̃, which is the isobarycenter of{
X1, . . . ,Xn

}
, is given by:

M̃ =
1

n

n∑
i=1

Mi (2.15)

2.4 Automatic anisotropic mesh construction 31

(a) Metric on elements

(b) Metric on nodes

Figure 2.9: Illustration of mesh adaptation with a metric field defined at the elements
and at the nodes.

where n is the number of nodes around the new node. One way to build this
nodal value is also to perform a metric intersection method proposed and applied
in the literature [46, 42, 47, 44], for the case where we have several meshes. Let us
consider the two metric M1-M2 intersection and the matrix M12 =M−1

1 M2 with
the normalized eigenvectors e1, e2, e3. This latter are a basis of the Riemannian
space R3. If we define P = (e1 e2 e3), then M1 and M2 are

M1 = tP−1

 λ1 0 0
0 λ2 0
0 0 λ3

P−1 and M2 = tP−1

 µ1 0 0
0 µ2 0
0 0 µ3

P−1 (2.16)

The final intersected metric M1∩2 =M1 ∩M2 is:

M1∩2 = tP−1

 max(λ1, µ1) 0 0
0 max(λ2, µ2) 0
0 0 max(λ3, µ3)

P−1 (2.17)

32 2. The immersed image method

For more than two metric tensors intersection, authors consider generally metrics
that are intersected two by two.

M∩iMi
= (((M1 ∩M2) ∩M3) . . .) ∩Mk (2.18)

This intersection method requires firstly all metric tensors construction to then
obtain the final intersected metric tensor, which may require high computation
resources. One other method to compute only one metric tensor at the node
is proposed by [37], by skipping intersection computation and will be applied in
the following anisotropic mesh adaptation procedure. Firstly, let us recall that
Xi ∈ Rd, i = 1, · · · , N is the set of nodes of the mesh and that the vector Xij

connects nodes i and j, Xij = Xj −Xi, as illustrated in Figure 2.10.

Figure 2.10: Illustration of the edge vector Xij of the edge joining nodes i and j,
and the edge solution, U ij, joining the solution at the nodes i and j.

In the mesh, one node can be shared by several edges. The set of nodes connected
to node i is Γ(i), given by:

Γ(i) =
{
j , ∃K ∈ K , Xi,Xj are nodes of K

}
(2.19)

Let each edge vector connected to node Xij be transformed in an unit length
vector in the Riemannian space. One may have different element metric tensors that
satisfy the required conditions, since the edges are shared by the latter. In fact,

d(Xij,Xij)Mij =
(
MijXij,Xij

)
= 1 for j ∈ Γ(i) (2.20)

However, we intend to build one new metric tensor, Mi, at node i instead of
these several metric tensors, where each transformed edge vector is almost equal to
1, so that the sum of the transformed edge vectors in Γ(i) is:∑

j∈Γ(i)

(
MiXij,Xij

)
=
∑
j∈Γ(i)

1 = |Γ(i)| (2.21)

In the following, we use the tensor scalar product notation:

A⊗ B =

(
A11B11 A12B12

A21B21 A22B22

)
(2.22)

Equation (2.21) can be written as:

2.4 Automatic anisotropic mesh construction 33

Mi :

∑
j∈Γ(i)

Xij ⊗Xij

 = |Γ(i)| (2.23)

In fact, it is very difficult to find a metric tensor, which guarantees that each
edge may be transformed to one with unit length. However, we may accept a
compromised way by computing

Mi = argmin
Mi∈Rd×d

∑
j∈Γ(i)

(∥∥Xij
∥∥2

Mi − 1
)2

 (2.24)

In [37], the author proposed a new definition called the length distribution tensor
at node i, written as

X i =
1

|Γ(i)|
∑
j∈Γ(i)

Xij ⊗Xij (2.25)

It will be used to find the optimized metric tensor because the latter, evaluated
at node i, may be constructed as a function of X i, as follows:

Mi =
1

d
(X i)−1 (2.26)

where d is the spatial dimension. In addition, the length distribution tensor will
be further used, for example in gradient recovery procedures, as we will see later.

2.4.2 Edge based error estimation

The objective of mesh adaptation is to construct a mesh which is optimal for the
simulations to be performed. In other words, it should ensure that the estimated
error between the exact solution and the approximate one is minimal.

First, let us recall the classical method to compute the interpolation error esti-
mate. u denotes the regular scalar field, U i being its value at node Xi, and uh is
the interpolation result on the given mesh, with N nodes and using the Lagrange
interpolation operator from V to Vh.

Even if the gradient of uh is a piecewise constant vector field, ∇u ∈ C1(Ω). The
projection of uh along the edges is continuous and one may write:

U j = U i +∇uh ·Xij and ∇uh ·Xij = U ij (2.27)

Using the analysis carried out in [37], we can set that the norm of the difference
between the projection of the gradient along the edges and the interpolated value
of the gradient can be upper bounded by:∥∥∇uh ·Xij −∇u(Xi) ·Xij

∥∥ ≤ max
y∈[Xi,Xj]

∣∣H(u)(y)Xij ·Xij
∣∣ (2.28)

where H(u) = ∇2u is the associated Hessian of u. For that, the second derivative
of u is necessary and its projected value can be established using Equation (2.27)
and the interpolation operator, to write a second order derivation as:

34 2. The immersed image method

[
∇(∇uh)Xij

]
·Xij = ∇u(Xij) ·Xij (2.29)

The Taylor series of the gradient of u is:

∇u(Xj) = ∇u(Xi) + H(u)(Xi)Xij (2.30)

Then, projecting onto Xij gives:(
∇u(Xj)−∇u(Xi)

)
·Xij = H(u)(Xi)Xij ·Xij (2.31)

We use this result to approximate the error along the edge as

eij =
∣∣[∇u(Xj)−∇u(Xi)

]
·Xij

∣∣ (2.32)

However, a node is always shared by different edges and elements, and the gra-
dient value of u at the node may be different when computed from different edges
separately. Inspired from the length distribution tensor presented in the previous
section, we find a recovered gradient value of u at node Xi, noted Gi, proposed by
[37] and satisfying the following condition:

Gi = argmin
G

∑
j∈Γ(i)

∣∣(G−∇u(Xij)
)
·Xij

∣∣2 = argmin
G

∑
j∈Γ(i)

∣∣G ·Xij −Uij
∣∣2

(2.33)
so that,

0 =
∑
j∈Γ(i)

(
Gi
(
Xij ⊗Xij

)
−UijXij

)
(2.34)

According to the previous definition of the length distribution tensor X i, the
recovered gradient Gi at node Xi is given by:

Gi =
(
X i
)−1 U i and U i =

1

Γ(i)

∑
j∈Γ(i)

UijXij (2.35)

We set Gij = Gj −Gi as the gradient vector along the edge Xij, which follows

Gij ·Xij = H(u)(Xi)Xij ·Xij (2.36)

According to Equation (2.32), the new estimated error is then a function of the
recovered gradient G as

eij =
∣∣Gij ·Xij

∣∣ =
∣∣H(u)(Xi)Xij ·Xij

∣∣ (2.37)

The error tensor E i at node Xi can be written as:

E i = argmin
i

∑
j∈Γ(i)

∣∣E i ·Xij − eijXij
∣∣2 (2.38)

2.4 Automatic anisotropic mesh construction 35

Finally, the nodal error Ei is a function of the length distribution tensor X i as
follows:

Ei = det(E i) = det

(X i
)−1

∑
j∈Γ(i)

eijXij ⊗Xij

 (2.39)

2.4.3 Metric construction with control of the number of
nodes

In this section, we explain how to link this estimated error to the new anisotropic
metric field construction. In order to re-generate the mesh properly based on an
existing one, it is necessary to compute the new length for each edge, by applying a
stretching factor sij to the edge, so that

X̃ij = sijXij (2.40)

The stretch factor of each edge, sij, will then depend on the estimated error eij

and the target error eij, wanted on the edgeij, such that:

(sij)2 =
eij

eij
(2.41)

If the estimation error is larger than the target error then the edge length needs
to be shrinked, sij < 1. At the opposite, if the estimated error is smaller than the
target one, the edge length is stretched and sij > 1.

However, during the mesh adaptation procedure, controlling the number of nodes
of the mesh is required to avoid reaching too fine meshes and to be optimal in terms
of the computational cost. The stretch factor sij used to scale the edge changes
quadratically, Equation (2.41). Hence, let nij be the number of created nodes. Its
relation with the stretching factor sij is given by:

nij = (sij)−1 =

(
eij

eij

)− 1
2

(2.42)

This allows us to control the number of created nodes along the different edge
directions at node i. By processing in a similar way as for the length distribution
tensor, [38] gives a distribution of nodes tensor, N i, at the node Xi, which is the
solution of an optimization problem:

N i = argmin
i

∑
j∈Γ(i)

∣∣N i ·Xij − nijXij
∣∣2 (2.43)

so that,

0 = N i :
∑
j∈Γ(i)

Xij ⊗Xij −
∑
j∈Γ(i)

nijXij ⊗Xij (2.44)

The total number of created nodes per node i is then Ni = det(N i),

36 2. The immersed image method

Ni = det(N i) = det

(X i
)−1

∑
j∈Γ(i)

nijXij ⊗Xij

 (2.45)

By considering an averaging process of the number of nodes distribution function,
the total given number of nodes N in the adapted mesh will be

N =
∑
i

Ni (2.46)

Assuming that we will impose an uniform totally balanced error along the edges
eij = e = constant, the number of created nodes per edge is:

nij(e) = (sij(e))−1 = (
e

eij
)−

1
2 (2.47)

The equation of the total number of created nodes at node i is:

Ni(e) = det

(X i
)−1

∑
j∈Γ(i)

(
e

eij
)−

1
2 Xij ⊗Xij

 (2.48)

Treatment of this equation gives:

Ni(e) = e−
d
2 det

(X i
)−1

∑
j∈Γ(i)

(
1

eij
)−

1
2 Xij ⊗Xij

 (2.49)

Let us consider Ni(1) as:

Ni(1) = det

(X i
)−1

∑
j∈Γ(i)

(
1

eij
)−

1
2 Xij ⊗Xij

 (2.50)

then,

Ni(e) = e−
d
2 Ni(1) (2.51)

The total number of nodes in the new mesh is

N = e−
d
2

∑
i

Ni(1). (2.52)

Therefore, the global induced error for a given fixed number of nodes N can be
written as:

e(N) =

 N∑
i

Ni

− 2
d

(2.53)

The target error of edge eij can be replaced by e(N) using this approach. The
stretching factors to be computed in order to obtain the new metric field, under the

2.4 Automatic anisotropic mesh construction 37

constraint of a fixed number of nodes N and an uniform balanced error along the
edges, e, is thus given by

sij =

(
e(N)

eij

) 1
2

(2.54)

The new metric tensor only depends now of the given fixed number of nodes N ,
the estimation error eij and the length distribution tensor X i.

One may simply define the new length distribution tensor as

X̃ i =
1

|Γ(i)|
∑
j∈Γ(i)

X̃ij ⊗ X̃ij =
1

|Γ(i)|
∑
j∈Γ(i)

(sij)2Xij ⊗Xij (2.55)

as well as the new metric to give to the mesher:

M̃i =
1

d
(X̃ i)−1 (2.56)

2.4.4 Extension to multiphase field adaptation

A new way to construct a unique metric from a multi-component vector field has
been introduced in [38] and used instead of classical intersection techniques. This
vector can be composed of the velocity, pressure, multi-level-set functions or other
fields composing ~u = {u1, u2, . . . , un}. We may then define the error vector for all

these components,
−→
eij =

{
eij1 , e

ij
2 , . . . , e

ij
n

}
. Then, the stretch factor is

sij =

∥∥∥ẽij∥∥∥∥∥∥−→eij∥∥∥

1
2

(2.57)

where the error norm can be L2 or L∞, to give

∥∥eij∥∥ =

(
n∑
k=1

(
eijk
)2

) 1
2

︸ ︷︷ ︸
L2

or
∥∥eij∥∥ = max

k=1,...,n
eijk︸ ︷︷ ︸

L∞

(2.58)

To illustrate this point, let us suppose vh the finite element solution of a multi-

phase Navier-Stokes problem, which needs the velocity vector field
−→
V and a phase

function α. Let vh(X
i) = V i and we introduce the vector field Y =

(
V
|V | , |V | , α

)
.

We obtain, for each node i,

ΠhY(Xi) =

{
V i

|V i|
,
∣∣V i
∣∣ , α} = Y i (2.59)

The particular case of |v| = 0 is accounted using V i

max(|V i|,ε) , with ε = 10−6 being

a small value, so that Y ik = 0 when |V i| = 0. In our case, we have focused mainly
on the change of direction rather than on the intensity of the velocity.

38 2. The immersed image method

2.4.5 MTC mesh generator

The topological mesh generator ”MTC” [27, 48, 28, 29] has been presented in the
previous chapter, showing that an initial mesh is thus iteratively modified until a
local optimized mesh enforces two main criteria: the minimal volume and the
geometrical quality.

In anisotropic adaptation, the second criterion, the geometrical quality qK , is
evaluated for each element using the metric field.

As an example, let us consider an initial mesh and a given metric field, M ∈
Rd×d, which may be computed by the presented metric tensor construction method
with an estimated error. Therefore, the quality q(K) of the element measured in
the metric M is defined as the minimum of two subcriteria: the quality, Cq(K),
and the size, Cs(K).

q(K) = min (Cq(K), Cs(K)) (2.60)

The quality criterion, Cq(K), is computed as:

Cq(K) = c0
Volume(K)MK

hdMK

(2.61)

where d is the spatial dimension and the matrixMK of the metric of the element
K is calculated as the average of the nodal metric matrix on the nodes of element
K:

MK =
1

d+ 1

∑
i∈K

Mi (2.62)

Volume(K)MK
is the volume of the transformed element K in the metric space

MK , given by:

Volume(K)MK
= Volume(K)

√
det(MK) =

∫
KMK

dKMK
(2.63)

and c0 is the normalization factor, to ensure that Equation (2.61) gives a quality
equal to 1 when the element K is equilateral in the metric tensor space,MK . Also,

c0 =
d!√
d+ 1

2d/2 (2.64)

so that c0 = 4/
√

3 for a 2D equilateral triangle, and c0 = 6
√

2 for a 3D regular
tetrahedron. hMK

is the average of the lengths of the edges of elementK transformed
in the metric tensor MK :

hMK
=

 2

d(d+ 1)

∑
(i,j)∈K

(MKXij,Xij)

1/2

(2.65)

The value of Cq(K) varies from 0 to 1. Then, the second factor, the size criterion
Cs(K) controls the size of the element in the metric MK , as:

2.4 Automatic anisotropic mesh construction 39

Cs(K) = min

(
1

hMK

, hMK

)d
(2.66)

which also varies between 0 and 1. Under the definition of the quality of the
elements q(K), we need to compare the different sets (like in Figure 1.12) in order
to choose the best local cavity with the highest quality.

In conclusion, the minimal volume assures the conformity of the mesh, if the
initial mesh was conforming, the latter handles improvements of element shape, size,
connectivity, etc, depending on the quality function qK , function of the geometry
of the element K and of the prescribed background metric, which give together a
measure for the element size and shape (aspect ratio) based on the computed metric
tensor field.

2.4.6 Numerical tests

In this section, the image to mesh interpolation procedure is coupled to automatic
anisotropic mesh adaptation with the constraint of a given number of nodes. At
each iteration, the original image û is interpolated in the current mesh, to build u.
Then, an error estimator computes the estimated error along each edge, eij. On
the other hand, a target error, e(N), is defined as a function of an imposed number
of nodes. Finally, computation of a stretch factor for each edge, sij, is performed.
From this, a new metric tensor field M̃ is established, which is used to construct
the new adapted anisotropic mesh. In this process, the mesh generator only needs
the wanted number of nodes. The initial mesh does not influence the final results,
and may be a very coarse mesh. The different steps of the whole Immersed Image
Method are summarized in the algorithm presented below.

Input: Initial image û, initial mesh H and wanted number of nodes N
Output: Adapted anisotropic mesh H̃ with N nodes, solution interpolated

uh on this mesh.
1 while the adapted anisotropic mesh is not achieved do
2 Interpolate the image û on the current mesh, to obtain uh.

3 Compute the recovered gradient G on each node Gi.

4 Estimate the error, eij, for the each edge Xij.
5 Compute the target error as a function of the given number of nodes,

e(N).
6 Build the stretch factor, sij, using the estimated error, eij and the target

error, e(N).

7 Construct the new metric tensor field, M̃.

8 Generate the optimal mesh, H̃, using M̃, and following the minimal
volume and the geometrical quality criteria.

9 Update the mesh.

40 2. The immersed image method

2.4.6.1 Application to “Lena” image

In a previous example, the “Lena” image (Figure 2.2(a)) has been used to illustrate
the image interpolation procedure. Now, this procedure has been coupled to au-
tomatic anisotropic adaptation. Let us consider different number of wanted nodes,
N : 3200, 13000, 35000. After 15 iterations on one core (3.5GHz,16 Gb RAM), the
anisotropic mesh adaptation reaches convergence (the mesh no longer evolves). The
CPU time (s) for each case is given in Table 2.1.

N 3200 13000 35000
Time (s) 35 99 251

Table 2.1: CPU time (s) for image interpolation coupled to mesh adaptation, for an
increasing number of nodes and 15 iterations, runs performed on one core.

Figure 2.11 illustrates the nodal estimation error field, E, and the obtained
anisotropic mesh. Higher errors are associated to higher gradients, which will be
enriched with more local nodes. Increasing the total number of nodes gives lower
maximum values of the estimated error.

(a) N = 3200 (b) N = 13000 (c) N = 35000

Figure 2.11: Computed nodal estimated error field, E, and adapted anisotropic
mesh, for three given number of nodes, N , of 3200, 13000 and 35000.

Figure 2.12 shows the solution of the interpolation, uh, on these meshes, after
the 15 performed iterations. One observes that it approximates better the initial
image than the equivalent number of nodes isotropic mesh.

2.4 Automatic anisotropic mesh construction 41

(a) uh, N = 3200 (b) uh, N = 13000 (c) uh, N = 35000

Figure 2.12: Solution of the interpolation, uh, for three adapted meshes with different
increasing number of nodes, N , of 3200, 13000 and 35000.

It also shows the potential of anisotropic adaptation to reduce the stored infor-
mation and perform image compression. As introduced in Section 2.3, let us build
a new image, ûh, with the same number of nodes T̂ as the original image, but based
on the result of the interpolation on a mesh with N nodes (N < T̂), with or without
adaptation iterations. To analyze the quality of the results, we plot the MSE (Mean
Square Error) as a function of density D. Figure 2.13 shows the influence of the
density on the computed MSE for ”Lena”’s image, using uniform and anisotropic
meshes. We observe that, for the same density, the anisotropic adapted meshes
provide less error than uniform ones, as expected, since nodal placement is, in this
case, optimized.

Figure 2.13: “Lena”’s image MSE as a function of the density, for uniform and
anisotropic adapted meshes.

42 2. The immersed image method

2.4.6.2 Application to 2D/3D head MRIs

The proposed methodology can be potentially used in medical applications. Figure
2.14(a) is a 2D grey-scale MRI of the human head given by the Optima* MR450w

with GEM Suite MRI system [49]. It contains 490000 pixels (L̂ × Ĥ = 700 ×
700). This image has been firstly interpolated on an initial uniform mesh. The
interpolation results, for different number of fixed nodes, is shown in Figure 2.14.

By increasing the number of nodes, the skull and the brain regions become bet-
ter and brain wrinkles appear clearly. In fact, results for a mesh with 127518 nodes
compares very well with the initial image, which has 490000 pixels. Furthermore,
image interpolation coupled to the automatic anisotropic mesh adaptation proce-
dure improves the results, using less nodes. Figure 2.15 illustrates the resulting
interpolation of a 2D cut of the MRI head on an adapted anisotropic mesh, for dif-
ferent number of nodes. For runs on one core and different number of fixed nodes,
the CPU times (s) are presented in Table 2.2.

N 3600 13000 32000 53000
Time (s) 50 107 202 331

Table 2.2: CPU time (s) for interpolation and mesh adaptation for different number
of nodes and 15 mesh iterations, runs performed on one core.

We observe that, using only 13000 nodes, the interpolation coupled to an adapted
anisotropic mesh performs very well. In addition, for 53000 nodes, the final mesh
clearly describes details like the brain wrinkles and other important features which
may be used to improve final purpose computations.

The 3D case, presented in Figure 2.5(a) and interpolated in uniform meshes, has
also been considered. The same algorithm was run on 4 cores, also imposing a larger
number of nodes. Figure 2.16 shows the results obtained by coupling interpolation
and adaptation in this case. 3D anisotropic mesh adaptation requires more iterations
than 2D to attain the same mesh quality. CPU time (min), for different number of
imposed nodes and 25 iterations is presented in Table 2.3.

N 100000 200000 300000 400000
Time (min) 66.5 115.5 189.9 227.7

Table 2.3: CPU time (min) for image interpolation and mesh adaptation in 3D, with
different number of nodes and for 25 iterations, runs performed on 4 cores.

Quantitative comparison, is terms of MSE, is given in Figure 2.17, by plotting
it as a function of the density D, for both the 2D and 3D cases. We observe that, for
the same density, anisotropic adapted meshes provides less error than uniform ones,
in particular for the 3D images, where mesh compression gains are more relevant.

2.4 Automatic anisotropic mesh construction 43

(a) Original image, û (b) uh, N = 3216

(c) uh, N = 8078 (d) uh, N = 12595

(e) uh, N = 50372 (f) uh, N = 127518

Figure 2.14: Original 2D MRI cut of the scan of the head, and application of the
interpolation of the image in 2D uniform meshes with different number of nodes N .

44 2. The immersed image method

(a) N = 3600 (b) N = 13000

(c) N = 32000 (d) N = 53000

Figure 2.15: Final anisotropic mesh for different imposed number of nodes N and
resulting interpolation for a 2D MRI scan of the human head.

2.4 Automatic anisotropic mesh construction 45

(a) N = 100000 (b) N = 200000

(c) N = 300000 (d) N = 400000

Figure 2.16: Final anisotropic mesh with different imposed number, for a nodes N
and resulting interpolation for 3D a MRI scan of the human head.

46 2. The immersed image method

(a) 2D MSE

(b) 3D MSE

Figure 2.17: Mean Square Error (MSE) on 2D and 3D MRIs of the human head
as a function of the density for different sized uniform and anisotropic meshes.

2.4 Automatic anisotropic mesh construction 47

2.4.6.3 Application to 2D color images

Figure 2.18 is a RGB color image of a cut on a steel polycrystal, ûRGB, 24-bits, and
of dimension (1000× 1000). During the cooling this type of material, orientation of
crystallites may be rather random, presenting different directions, each represented
by a different color.

Figure 2.18: Color image of a steel polycristal, ûRGB.

This color image, ûRGB, may be decomposed into three sub-images, in three
channels. Figures 2.19(a),(b) and (c) show the value of the Red, Green and Blue
channels, ûred, ûgreen, ûblue, each channel varying from 0 to 255.

(a) Red channel ûred (b) Green channel ûgreen (c) Blue channel ûblue

Figure 2.19: Three channels, red, green and blue, result of the decomposition of the
24-bits steel polycrystal color image.

Firstly, we have used the immersed image method to adapt these three images
in an independent way, fixing N = 40000. The computed estimated error and the

48 2. The immersed image method

obtained adapted anisotropic mesh for this case are shown in Figures 2.20(a),(b)
and (c). Each mesh is well adapted for the corresponding image, but none of them
are well adapted for the original RGB image.

(a) Adapted R channel (b) Adapted G channel (c) Adapted B channel

Figure 2.20: Computed estimated error and adapted anisotropic mesh for each chan-
nel, fixing 40000 nodes for the adaptation procedure.

Therefore, we combine the values of the three channels to create the vector
field ~u = {ured, ugreen, ublue}. As introduced in Section 2.3.4, the estimated error is

computed for each component, generating the error vector,
−→
eij = {eijred, eijgreen, e

ij
blue}.

Then, the L2 norm of this vector is determined and is the one used to construct the
metric M̃. Figure 2.21 shows the computed nodal estimated error, ‖eij‖L2

and the
obtained anisotropic mesh. We observe that the final mesh is well adapted to all of
these three channels.

2.5 Dynamic parallel adaptation

Nowadays, computer capabilities are guided, not by the improvement of the pro-
cessors speed, but by generating multi-core systems. In this context, softwares
necessarily need to be adapted to such techniques and should be fully parallelized.
The principle of parallelization is to divide the whole problem into many small ones,
which are solved at the same time on the different cores. Parallelization methods
developed and employed for mesh adaptation and image immersion are described in
the following.

2.5 Dynamic parallel adaptation 49

Figure 2.21: Computed estimated error and adapted anisotropic mesh for the vector
compared of the three RGB channels, fixing N = 40000 nodes.

2.5.1 Parallel anisotropic mesh adaptation

The parallel method to handle mesh adaptation is introduced and has been fully
detailed in [50].

To illustrate the implemented technique, we consider again the case of ”Lena”’s
image (Figure 2.4(a)), this time adapted using a different number of cores, from 1
to 4. Let us suppose a fixed number of nodes, N = 100000. After 15 iterations
of immersion-adaptation, the mesh reaches convergence. The computing time as a
function of the number of cores is shown in Table 2.4.

Number of cores 1 2 3 4
Time (s) 667 374 284 248

Memory (number of ”total images”) per increment 1 2 3 4

Table 2.4: The computing time and in-charged image for an increasing number of
CPUs.

The whole image is charged by each core whereas the imposed 100000 nodes are
equally distributed between the cores. Each core constructs the anisotropic mesh of
its own region to adapt to the image information. This parallel method reduces the
computing time, but also increases the memory storage requirement because of the
need to give the whole image to all the cores.

2.5.2 Parallel image immersion and mesh adaptation

For larger images, the whole image load on each core is not an efficient option. To
overcome to this problem, we have implemented an image partitioning technique,
somehow related to the mesh partition so that the whole procedure is both time and
memory performant.

50 2. The immersed image method

To illustrate our approach, let us cut the whole Lena’s into equally dimensioned
sub-images. For example, we consider the 2× 2 case with 4 sub-images (4× (256×
256)), the 4× 4 case with 16 sub-images (16× (128× 128)), or the 8× 8 case with
64 sub-images (64× (64× 64)), as seen in Figure 2.22.

(a) 2× 2 sub-images (b) 4× 4 sub-images (c) 8× 8 sub-images

Figure 2.22: Lena’s image cut into 4, 16, 64 sub-images.

For this example, we suppose that the mesh will be generated using 4 cores,
being each sub-domain schematically represented in Figure 2.23(a). The first core
manages the red region, whereas the other cores (2, 3, 4) take into their charge the
remaining regions, which is illustrated in Figure 2.23(b). Since only the red region is
treated by the first core, information of the other parts is not necessary. Each core
will need to load the image information stored in the bounding box corresponding
to its color (Figures 2.23(b) and (c)).

Let us suppose the core where the image has been partitioned in 4 × 4 sub-
images (Figure 2.23(d)). Each core only charges the overlapping sub-images within
its bounding box reducing the memory required. At the end, 36 sub-images are
charged in this case, but with a memory reduction of 175%, when compared with
loading the whole image in each core.

The implemented overall algorithm is given below.

Input: Sub-images, initial mesh H and given number of nodes N
Output: Adapted anisotropic mesh H̃ with N nodes, interpolation solution

uh on this mesh.
1 while the adapted anisotropic mesh is not achieved do
2 Partition the current mesh for the given number of cores and provide

bounding boxes.
3 Select and charge the overlapping sub-images on the boundary box of

each core.
4 Interpolate the sub-images on the current mesh.

5 Generate the optimal mesh H̃ using parallel anisotropic mesh adaptation.
6 Update new mesh.

Since the charged domain per core may be modified after each iteration (when
mesh partition charges), it is necessary to recompute the bounding box of each mesh

2.5 Dynamic parallel adaptation 51

(a) (b)

(c) (d)

(e) (f)

Figure 2.23: Illustration of the correspondence between image and mesh partitions,
and on which image sub-domains are given to each mesh sub-domain.

52 2. The immersed image method

sub-domain and recharge the sub-images. As previously presented, let us consider
the image-immersion with parallel partitioning of mesh and image applied to Lena’s
case, supposing that the computation is done in one to four cores, but that the
image may be divided in 2× 2, 4× 4 and 8× 8 sub-images. For each case, after 15
iterations, we have counted the total number of charged sub-images, and computed
the equivalent number of ”total images” charged per iteration. Results are given in
Table 2.5.

2× 2 case
Nb of cores 1 2 3 4

CPU Time (s) 673 368 306 239
Nb of charged sub-images per iteration 4 8 10.5 11.8

Memory (number of “total image”) per iteration 1 2 2.63 2.96

4× 4 case
Nb of cores 1 2 3 4

CPU Time (s) 676 366 288 233
Nb of charged sub-images per iteration 16 30.4 35.3 37.4

Memory (number of “total image”) per iteration 1 1.90 2.20 2.33

8× 8 case
Nb of cores 1 2 3 4

CPU Time (s) 702 377 287 253
Nb of charged sub-images per iteration 64 116.8 130.1 135.0

Memory (number of “total image”) per iteration 1 1.82 2.03 2.11

Table 2.5: The CPU time (s), the number of charged sub-images and number of
equivalent charged total images per iteration for a total number of CPUs, for, 2×2,
4× 4 and 8× 8 sub-image case.

Figure 2.24 plots the computation time and the total memory required, per
increment, for the whole image, in the 2× 2, 4× 4 and 8× 8 sub-images cases, for
different number of cores.

Even if the computational time is rather equivalent for all the cases, charging a
higher number of sub-images leads to less memory requirements, as expected.

2.5 Dynamic parallel adaptation 53

(a) Computational time

(b) Charged memory per iteration

Figure 2.24: Comparison of the computational time and of the charged memory per
iteration when dealing with the whole image, 2× 2, 4× 4 and 8× 8 sub-images, for
different number of cores.

54 2. The immersed image method

2.6 Conclusion

In this chapter, a new method to directly construct anisotropic mesh based on image
data has been presented. Image interpolation on a mesh may directly transport the
information and provides discretization values on this mesh. An error estimation
operator allows the computation of the metric field, given to a topological optimiza-
tion mesh generator. This last iteratively improves the mesh to be adapted to the
image data, and its interpolation results approximate the image. This method can
handle grey-scale images but also color ones, by performing multi-component mesh
adaptation.

Mesh adaptation has been formerly parallelized, but some issues concerning im-
age arise. The major one is the huge memory storage requirement for larger images,
if the image is given to each core. To overcome to this drawback, image paralleliza-
tion has been proposed. The original image is partitioned into several sub-domains
and coupled to mesh partition, accelerating the adaptation procedure and reducing
the memory storage.

2.7 Résumé français

Dans ce chapitre, nous avons présenté une nouvelle méthode de construction de
maillage basée sur la simple donnée d’une image. L’interpolation de l’image sur un
maillage permet d’importer directement les informations de l’image et fourni directe-
ment des valeurs de discrétisation. Un estimateur d’erreur permet la construction
d’un champ de métrique et d’un maillage optimal. Cette méthode ne s’applique pas
seulement aux images en noir et blanc, mais aussi aux images couleur en utilisant
une adaptation de maillage à multi-composantes.

La méthode implementée pose néanmoins certains problèmes. Le plus contraig-
nant est celui de la mémoire pour les grandes images. La parallélisation de l’image
permet donc d’écarter ce problème. L’image et le maillage sont donc partitionnés en
plusieurs sous-domaines, accélérant l’adaptation et rduisant le stockage mémoire.

Chapter 3

Redistancing coupled to
anisotropic mesh adaptation

Contents
3.1 Introduction . 56

3.2 Construction of a regularized function using a redis-
tancing method . 57

3.2.1 Level-set approach . 57

3.2.2 Redistancing a modified level-set function 57

3.2.3 Stabilized finite-element resolution 59

3.2.3.1 Variational formulation 59

3.2.3.2 Time integration scheme 61

3.2.3.3 Stabilized methods 61

3.2.3.4 Numerical examples 64

3.2.4 Redistancing method coupled to automatic anisotropic
mesh adaptation . 68

3.3 Image processing using mathematical morphology . . . 71

3.3.1 Introduction to Mathematical Morphology 71

3.3.2 Regularized function construction 74

3.3.3 Image gradient computation 74

3.4 Numerical examples . 75

3.4.1 2D color images . 75

3.4.2 2D Head MRI-Brain . 79

3.4.3 Sensitivity to the initial solution 79

3.4.4 3D head MRI . 83

3.4.5 3D Fiber image . 90

3.5 Conclusion . 93

3.6 Résumé français . 93

55

56 3. Redistancing coupled to anisotropic mesh adaptation

3.1 Introduction

For numerical simulation reasons, it is often necessary to distinguish different objects
belonging to the image. For example, when the image presents zones with different
physical properties corresponding to different values of the pixel/voxel. Sometimes,
considering the limit of image acquisition techniques, this is difficult to identify in the
initial image, so that image processing is necessary and may provide distinguished
and homogenous zones. For that, segmentation algorithms have been proposed
and implemented like, for example, the thresholding method, the edge detection
method or the active contour model widely described in the previous chapter and
in references [51, 7, 6, 9, 11, 13, 52].

Basically, when using image processing the original image û becomes the seg-
mented one ûseg, with identified segmented zones. To illustrate this with a simple
example, let us consider a two phase system where the corresponding original image
has been segmented, providing ûseg (Figure 3.1(a)), supposing the pixel’s value equal
to 255 inside one phase and 0 elsewhere. If the segmented image ûseg is interpo-
lated on an existing uniform mesh, giving uh, one may observe than coupling mesh
adaptation directly on this useg using the previous presented methodologies may not
provide an acceptable anisotropic mesh, since the pixel value is discontinuous at the
boundary of the segmented region. Figure 3.1(b)(c) shows the interpolation solution
and the computed nodal estimated error E around the interface between the two
phases, drawn on the initial uniform mesh. We find that this error is high around
this interface and zero far away.

(a) ûseg (b) Interpolation solution, uh (c) Nodal estimated error, E

Figure 3.1: Illustration of the segmented image interpolation on an initial uniform
mesh.

As previously presented, new nodes will be created in the region with high error,
intending to reduce and equi-distribute it within the mesh. However, this result is
contrary to our expectations, where the new interpolation solution is computed as
previously (Figure 3.1(b)). For binary images, the nodal estimation error E is large
around the interface, since this type of segmentation introduces a discontinuity.

Then, an infinite number of nodes at the interface is required during the anisotropic
mesh adaptation procedure to be able to reach the target error.

For computational reasons [38, 53, 54, 55], mesh with such a density of nodes
at the interface will not be helpful for numerical simulation. The latter requires
smooth continuous functions around the phase’s boundary, which will be used to
define physical parameters distribution on the computational domain and to improve
the mesh adaptation procedure like, for example, in multiphase computational fluid

3.2 Construction of a regularized function using a redistancing method 57

dynamics simulations. Indeed, our primary goal is thus now to build a regularized
function around an image segmented object.

3.2 Construction of a regularized function using

a redistancing method

3.2.1 Level-set approach

To build a smooth phase function, the first candidate would be the level-set function.
In the last decades, many image segmentation techniques [11, 13] and simulation
methods were based on implicit functions (like the level-set one). Level-set methods
have been initially developed by Osher [12] and are now widely used for the anal-
ysis of surfaces and shapes, especially in multiphase representations, as well as for
capturing interfaces of different objects, between others. Let us note the level-set
function as ud, which may be the signed distance function to the boundary of the
object ω. Γ is this boundary of ω, which is given by the iso-zero value of ud (as seen
in Figure 3.2), such that:

ud =

d(x,Γ) if x ∈ ω
0 if x ∈ ∂ω
−d(x,Γ) if x ∈ Ω \ ω

(3.1)

Figure 3.2: Object ω and the signed distance function to its boundary, ud.

3.2.2 Redistancing a modified level-set function

Level-set functions for capturing moving interfaces have been developed for many
years. The interface is identified as the zero-level and the level-set function must be

58 3. Redistancing coupled to anisotropic mesh adaptation

as regular as possible to keep a good numerical accuracy. Level-set methods have
been improved through redistancing [56, 57] since, for non-homogeneous velocity
fields, metric properties of level-sets are not guaranteed. By fixing the zero-level,
Hamilton-Jacobi properties may be used to recreate level-sets.

Let us recall the classical level-set redistancing method. Firstly, we intend to
rebuild a signed distance function, ud, only based on the knowledge of its sign, S(u0

d).
The sign function is determined by the phase’s placement in the computational
domain and only depends on the zero-level of the initial function, u0

d(x ∈ ∂Ω).
Then,

S(u0
d) =

1 if x ∈ ω
0 if x ∈ ∂ω
−1 if x ∈ Ω \ ω

(3.2)

The main proprerty of the signed distance is that ‖∇ud‖2 = 1. Then, one
may solve a Hamilton-Jacobi equation [56, 57] to obtain a regular signed distance
function, when this is not the case, through

∂ud
∂τ

= S(u0
d)(1− ||∇ud||2)

ud(x, τ = 0) = u0
d(x)

(3.3)

The final redistanced function uτd is a signed distance and has the same boundary
Γ as the initial function u0

d. This function is also differentiable everywhere in the
domain and its gradient satisfies the Eikonal equation ‖∇ud‖ = 1. However, since
its gradient is of constant value, it will not be useful to enrich the mesh around
the interface. Therefore, one other solution is to use an hyperbolic tangent function
[37, 58] of the signed distance, with thickness ε:

uε(ε, ud) = ε tanh(
ud(x,Γ)

ε
) (3.4)

We prefer to use uε(ε, ud) instead of the level-set function, which is also smooth
and regularized around an object of interest. There are two important advantages
on using it:

• the second order gradient of the hyperbolic tangent function is the one directly
used to estimate the error in anisotropic mesh adaption, well posed for that;

• the hyperbolic tangent function may be directly applied in mixture laws [58]
to define the different physical parameters in the whole computing domain.

ε is a parameter that defines an ”interface thickness”, since uε varies between -ε
and ε over a thickness that is, approximately, 3ε. The gradient’s norm of uε is

||∇uε||2 = 1− (
uε
ε

)2 = g(uε) (3.5)

Inspired by the redistancing methodology [56, 57], this scalar field uτε(ε, S, τ) =
uε(ε, ud) is also the solution of the following Hamilton-Jacobi or Eikonal equation:

3.2 Construction of a regularized function using a redistancing method 59

∂uε
∂τ

+ S [||∇uε||2 − g(uε)] = 0

u0
ε = uε(ε, S, τ = 0)

(3.6)

where S is the sign function which depends, for our problems, on the initial
image and on the pixel/voxel values defining the boundary of the object for which
we wish to build uε. To have it, we can do a rather simple threshold:

S(Xi) =

1 if û(Pixelk/V oxelk) > threshold value

0 if û(Pixelk/V oxelk) = threshold value

−1 if û(Pixelk/V oxelk) < threshold value

(3.7)

For ∀ i = 1, . . . , N , at the mesh node Xi, the sign function S is the key of the
redistancing method and plays two important roles:

• it controls the direction of redistancing, starting around the zero-level, towards
the exterior;

• it is a corrector. If the sign of the solution of Equation (3.6) is not the same as
the sign computed from the image, a correction of uτε may be performed after
each resolution, by considering the following step:

uτε(X
i) = S(Xi)

∣∣uτε(Xi)
∣∣ (3.8)

Finally, Equation (3.6) may also be rewritten as an equation of the hyperbolic
type

∂uε
∂τ

+ vr · ∇uε = S(Xi)g(uε) (3.9)

where vr is the redistancing velocity, defined as

vr = S(Xi)
∇uε
||∇uε||2

(3.10)

3.2.3 Stabilized finite-element resolution

The redistancing method is stable, the equations are of a well defined type and
present no particular problems in two or three dimensions. They may be solved
using the finite element method, as described in the following.

3.2.3.1 Variational formulation

Let us recall the variational formulation of the given problem, and the application
of the standard Galerkin finite element method. Some important notations will be
firstly presented .

60 3. Redistancing coupled to anisotropic mesh adaptation

The Sobolev space of functions H1(Ω) has square integrable first order derivatives
in L2 and is a Hilbert vector space. We may define

V = H1(Ω) =
{
u ∈ L2(Ω), ‖∇u‖ ∈ L2(Ω)

}
Q = L2(Ω) =

{
u(x)|

∫
Ω

∣∣u2
∣∣ dx}

V0 = H1
0 (Ω) =

{
u ∈ H1(Ω)|u = 0, at ∂Ω

}
(3.11)

The subspace H1
0 (Ω) ⊂ H1(Ω) gives the set of functions vanishing on the bound-

ary of Ω. In L2(Ω), the scalar product (,) is defined as

(u, v) =

∫
Ω

|uv| dV (3.12)

The pure convective Equation (3.9) is written by considering an appropriate
function w ∈ W0 = H1

0 (Ω). The integral over the whole computed domain may be
written as: ∫

Ω

∂uε
∂τ
· w +

∫
Ω

∇uε · vr · w =

∫
Ω

F · w ∀w ∈ W0 (3.13)

or, in a scalar product (,) notation, as:

(
∂uε
∂τ

, w) + (vr∇uε, w) = (F,w) ∀w ∈ W0 (3.14)

where F = S(Xi)g(uε). To build the spatial discretization for the finite element
formulation, the entire computational domain Ω is discretized into simplex elements,
K. Using the above notations, V ⊂ H1(Ω) and V0 ⊂ H1

0 (Ω), the discrete spaces
are designated Vh = H1h(Ω) and V0

h = H1h
0 (Ω), and are spaces of piecewise linear

functions. The smaller the mesh size of the discretization, the more accurate the
approximation of the functional spaces:

lim
h→0
Vh = V and lim

h→0
V0
h = V0 (3.15)

The discretized formulation is as follows:

(
∂uεh
∂τ

, wh) + (vr∇uεh, wh)︸ ︷︷ ︸
B(uεh,wh)

= (Fh, wh)︸ ︷︷ ︸
F(wh)

∀wh ∈ W0
h (3.16)

Finally, the problem to be solved is a system of first order differential equations:

A
∂U

∂τ
+ B ·U = F (3.17)

3.2 Construction of a regularized function using a redistancing method 61

3.2.3.2 Time integration scheme

The temporal domain, ∆τ ∈ [0, τ], is separated into I regular intervals, so that:

∆τ =
τ

I
(3.18)

where ∆τ is a fictitious time step and the number of performed iterations is
n = 1, . . . , I. Using a general finite difference scheme, the temporal discretization
of the convection problem, Equation (3.17), is as follows:

A
UI −UI−1

∆τ
+ B(θUI + (1− θ)UI−1) = F (3.19)

where 0 ≤ θ ≤ 1. For θ = 0, we have the forward Euler scheme, if θ = 0.5 the
Crank-Nicholson one and when θ = 1 the backward Euler scheme. The used scheme
here has θ = 0.5, arising the following semi implicit formulation:

(
uIεh
∆τ

, wh

)
+

1

2

(
∇uIεh · vr, wh

)
=

(
uI−1
εh

∆τ
, wh

)
−1

2

(
∇uI−1

εh · vr, wh
)
+(Fh, wh) ∀wh ∈ W0

h

(3.20)

3.2.3.3 Stabilized methods

Classical Galerkin formulations are often not suitable for convection dominated
problems, when the Péclet number is Pe >> 1 and non-physical oscillations ap-
pear. Stabilization methods usually used are the SUPG (Streamline Upwind Petrov-
Galerkin), by adding weighted residual terms [32, 33], or RFB (Residual-Free Bub-
bles) [34, 35], which enriches the space of the solutions with a space of bubble
functions, defined at the element level.

3.2.3.3.1 Streamline Upwind Petrov-Galekin method

The SUPG technique was firstly proposed by [32, 33]. This method has been
developed from the standard Galerkin one, to avoid the oscillations, by introducing
a new additional weighting term, τSUPGK v · ∇wh to the standard Galerkin weighting
function wh, in the upwind direction. The modification of the weighting function is:

w̃h = wh + τSUPGK v · ∇wh (3.21)

The basic idea is that there is more weighting in the upstream direction and less
in the downstream one, as illustrated in Figure 3.3.

The stabilization parameter τSUPGK (constant per element) depends on the mesh
size and on the norm of the velocity parameter. In [32], it was defined as:

τSUPGK =
1

2

hK
|vK |

max{0, (1− 1

PeK
)} (3.22)

where vK is the constant velocity field on element K, given by the average nodal
velocity on element K, and the Péclet number, PeK .

The new variational formulation becomes:

62 3. Redistancing coupled to anisotropic mesh adaptation

Figure 3.3: Ilustration and comparison between the Streamline Upwind/Petrov-
Galerkin function and the Galerkin weighting one, for node A in a 1D mesh [32].

(∂uεh
∂τ
, wh) +

∑
K∈K

τSUPGK

(
∂u
∂τ
,v · ∇wh

)
K

+ (vr∇uεh, wh) +
∑
K∈K

τSUPGK (vr∇uεh,v · ∇wh)K︸ ︷︷ ︸
Bτ (uεh,wh)

= (Fh, wh) +
∑
K∈K

τSUPGK (Fh,v · ∇wh)K︸ ︷︷ ︸
Fτ (wh)

∀wh ∈ W0
h

(3.23)
Comparing Equations (3.16) and (3.23), we observe that the SUPG formula-

tion adds a local diffusion along the stream direction. Finally, Equation (3.23) can
be rewritten, like done for Equation (3.17), as a first order system of differential
equations:

Aτ
∂U

∂τ
+ Bτ ·U = Fτ (3.24)

Temporal discretization may then be performed on this system, like for the stan-
dard Galerkin formulation. Other expressions for the stabilization parameter τSUPGK

were also proposed in [33, 59, 60, 61]. The major drawback of the SUPG stabilized
method, is then the optimal choice of this parameter.

3.2.3.3.2 Residual-Free Bubble method

The basic principle of SUPG methods is the addition of a stabilization param-
eter. However, there is one other way to handle stabilization by enriching directly
the space functional, as is done in the RFB (Residual-Free Bubbles) method. This
approach has been firstly proposed by [35] and developed in [62]. In this case, the
space VRFB is constructed by enriching the old space Vh with a bubble one, Vb, so
that:

VRFB = Vh ⊕ Vb (3.25)

3.2 Construction of a regularized function using a redistancing method 63

where

Vb = ⊕
K∈K

H1
0 (K) (3.26)

Let bK be a bubble function defined in element K, as seen in Figure 3.4, where
the element is split in three sub-triangles or four sub-tetrahedra. The basic idea is
then to enrich it with continuous piecewise linear polynomials. For example, in our
equation, ũε ∈ VRFB can be decomposed into the linear part uεh ∈ Vh and into a
bubble bK , with uεb ∈ Vb:

Figure 3.4: Triangle and tetrahedron elements, with the representation of the sub-
domains and ”bubbles”.

ũε = uεh + uεb ∀ũε ∈ VRFB = Vh ⊕ Vb (3.27)

where

uεb =
∑
K∈K

bK · uεbK (3.28)

More details about bubble functions are given and discussed in [63].

In the same manner, the space of test functions wh can be split in two parts:
w̃ = wh + wb, with the linear part wh ∈ W0

h and the bubble function wb ∈ W0
b , so

that

w̃ = wh + wb, ∀wh ∈ WRFB =W0
h ⊕W0

b (3.29)

Indeed, Equation (3.16) can be decomposed in two parts, the large-scale equation
and the fine-scale one. The problem becomes: find uεh ∈ VRFB, such that

64 3. Redistancing coupled to anisotropic mesh adaptation

(
∂(uεh + uεb)

∂τ
, wh) + (vr∇(uεh + uεb), wh) = (Fh, wh)︸ ︷︷ ︸

Large-scale equation

∀wh ∈ W0
h

(
∂(uεh + uεb)

∂τ
, wb) + (vr∇(uεh + uεb), wb) = (Fh, wb)︸ ︷︷ ︸

Fine-scale equation

∀wb ∈ W0
b

(3.30)

Firstly, we wish to solve the fine-scale equation. Then, we may represent (uεb, wb)
as a function of bK and (uεh, wh). Then, substituting the results of the bubble part
(uεb, wb) in the large scale problem allows the determination of uεh.

3.2.3.4 Numerical examples

In this section, we present an example of the redistancing approach that has been
implemented by solving the Equation (3.6) with a stabilized SUPG finite element.
The different steps of the followed algorithm are given below:

Input: Segmented image ûseg, initial mesh H, thickness and fictitious time
step (ε,∆τ)

Output: Redistanced function uτε .
1 Interpolate the segmented image ûseg on an initial mesh to obtain uh. Then,

let uh be the initial distribution u0
ε.

2 while the redistanced function uτε has not converged do
3 Compute the sign function S from the original image, ûseg, and

interpolate it on the current mesh.
4 Solve the redistancing Equation (3.6), to obtain uτε(ε, S, τ).
5 Correct the sign of uτε(ε, S, τ), using the sign function S, as given by

Equation (3.8).
6 τ = τ + ∆τ , update the redistanced function uτε .

First, we create a segmented image, ûseg, as shown in Figure 3.5(a) representing

our example of size (L̂ × Ĥ = 500 × 250 = T̂). This image has been obtained by
drawing the values of the Lemniscate elliptic function:

û(Pixelk) =

{
255 if P̂ k < 0

0 if P̂ k ≥ 0

and P̂ k = ((l̂k − 250)2 + (ĥk − 125)2) + 2 · 1252 · ((l̂k − 250)2 − (ĥk − 125)2)
(3.31)

Zooming in the created image allows us to observe the hatched boundary, func-
tion of the pixel’s size.

3.2 Construction of a regularized function using a redistancing method 65

(a) Original image, ũseg

(b) Zoom 1 (c) Zoom 2

Figure 3.5: Drawn image of the Lemniscate elliptic function and two progressive
zooms, showing the pixel’s size and its influence in the observations.

We interpolate this image onto an initial uniform mesh of size ([0, 1]×[0, 0.5], N =
70000 < T), by considering

u(Xi) =
û(Pixelk)

255
− 0.5, (3.32)

where l̂k = int(x
i

X
· (L̂− 1) + 1), ĥk = int(y

i

Y
· (Ĥ − 1) + 1), ∀i = 1, . . . , N , being

the initial distribution defined as the initial interpolation, uh = u0
ε(ε, S, τ = 0). This

initial value will not influence the final result, being the latter only dependent on
the sign function S. Figure 3.6 shows the interpolation of the sign function on the
initial mesh, Sh, using the same Lagrange interpolation operator from V to Vh as
before:

Considering an uniform mesh and a P1 finite element approximation space, we
plot the zero-level of the interpolation of the sign function Sh, as well as the boundary
of the Lemniscate ellipse, computed from the segmented image ûseg in Figure 3.7.

The zero-level of the interpolation of the sign function is obviously not the same
as the object’s boundary and shows its discontinuous character, following also the
pixel’s discretization. Let us perform the redistancing procedure, supposing different
given thicknesses ε = 0.01, 0.02, 0.03 and without mesh adaptation. The fictitious
time step ∆τ necessary for the procedure depends on the thickness and follows:

∆τ ≈ cτ · ε (3.33)

where cτ ∈ [0, 1], giving ∆τ = 0.00025, 0.0005, 0.00075 for the chosen thickness.

66 3. Redistancing coupled to anisotropic mesh adaptation

(a) Sh

(b) Zoom 1 (c) Zoom 2

Figure 3.6: Interpolation of the sign function, Sh, based on an initial mesh with
N = 70000 and two progressive zooms, showing certain discontinuities.

(a) Zero-level of Sh and boundary

(b) Zoom 1 (c) Zoom 2 (d) Zoom 3

Figure 3.7: Comparison between the zero-level of Sh (red line) and the corresponding
level of the Lemniscate elliptic function (black line).

3.2 Construction of a regularized function using a redistancing method 67

After I ≈ 60 iterations, the redistanced function uτε(ε, S, τ) reaches convergence,
no longer evolving. The final results for the different thicknesses are illustrated in
Figure 3.8.

(a) uτε , ε = 0.01

(b) uτε , ε = 0.02

(c) uτε , ε = 0.03

Figure 3.8: Redistanced function solution when convergence is reached, uτε , for ε =
0.01, 0.02, 0.03.

As expected, the redistanced function distribution shows oscillations, both re-
lated with the mesh size and with the sign interpolated. To overcome with this
problem, we choose to reduce the mesh size, in particular to improve the zero-level

68 3. Redistancing coupled to anisotropic mesh adaptation

of Sh. Automatic anisotropic mesh adaptation will be used for this purpose.

3.2.4 Redistancing method coupled to automatic anisotropic
mesh adaptation

In this section, the redistancing procedure is coupled to anisotropic mesh adapta-
tion. It will ensure a better representation of the zero-level of Sh, since the shape of
the anisotropic elements may help capturing the gradient variation at lower compu-
tational cost, and the algorithm steps have been extended as follows:

Input: Segmented image ûseg, initial mesh H, given thickness and fictitious
time step (ε,∆τ), wanted number of nodes

Output: Redistanced function uτε and adapted anisotropic mesh
1 Interpolate the segmented image ûseg onto an initial mesh to obtain initial

values, u0
ε = uh.

2 while the redistanced function uτε has not converged do
3 Compute the sign function S of the original image ûseg on the current

mesh.
4 Solve the redistancing equation, Equation (3.6) to obtain uτε(ε, S, τ).
5 Correct the sign of uτε(ε, S, τ) with the sign function S.

6 Generate the optimal mesh H̃ adapted to the redistanced function,
uτε(ε, S, τ).

7 τ = τ + ∆τ , update uτε and the mesh H̃.

uτε is thus built simultaneously with its adequate mesh, by performing iterations
with both features until convergence. The mesh number of nodes is fixed, to N =
10000, but different values of ε =(0.01, 0.02, 0.03), and thus ∆τ =(0.00025, 0.0005,
0.00075) are considered. Figures 3.9(a), (b) and (c) illustrate the good enrichment
of the mesh around the object’s boundary, after I = 60 iterations.

Figure 3.10 presents a plot of the zero-level of the sign function Sh (in red), with
a zoom of the anisotropic mesh of the case ε = 0.01 shown in Figure 3.10.

One observes that oscillations are still reduced to the element size, but are much
lower because the mesh size in the gradient direction is also smaller. The segmented
image is drawn using Equation (3.31) and the signed distance function, ûd, can be
easily computed and is illustrated in Figure 3.11(a). Image size is (500× 250). This
distance function is interpolated in a mesh of size [0, 1] × [0, 0.5], using also the
relation ud = ûd

500
, as presented in Figure 3.11(b). The analytical hyperbolic tangent

function, uanalε (ud, ε), for three different thicknesses uanalε (ud, 0.01), uanalε (ud, 0.02),
uanalε (ud, 0.03) is given in Figure 3.11(c)(d)(e). This analytically computed values
will be used for comparison with the redistanced ones.

To study the convergence of the redistancing procedure, let us plot the MSE
between the analytical hyperbolic tangent function, uε(ud, ε), and the redistanced
one, uτε(ε, S, τ), as a function of the number of performed iterations, for different
thicknesses (Figure 3.12).

3.2 Construction of a regularized function using a redistancing method 69

(a) ε = 0.01

(b) ε = 0.02

(c) ε = 0.03

Figure 3.9: Illustration of redistancing coupled to anisotropic adaptation, by pre-
senting the final solution uτε and the corresponding mesh, for different values of ε:
(a) ε = 0.01, (b) ε = 0.02, (c) ε = 0.03.

Curves with mesh adaptation have been drawn, showing that convergence is
sooner attained after almost the same number of iterations. Smaller thicknesses
generate also smaller errors. This is related to the fact that the adaptation strategy
implies generating a fixed number of nodes on the thickness, ε, no matter what ε
is, if the number of constrained nodes is high enough. Thus, the smaller ε is, the
smaller mesh size and the smaller the error is. The number of iterations I to attain
convergence can be approximated as

I ≈ 1.5ε

∆τ
(3.34)

70 3. Redistancing coupled to anisotropic mesh adaptation

(a) Zoom 1 (b) Zoom 2

Figure 3.10: Zoom on the obtained anisotropic mesh and on the zero-level of Sh, for
the case ε = 0.01.

(a) ûd (b) ud on the mesh

(c) uε(ud, 0.01) (d) uε(ud, 0.02) (e) uε(ud, 0.03)

Figure 3.11: Image of the signed distance to the boundary of the segmented object,
computed from ûseg, its interpolation on the mesh and the analytical hyperbolic
tangent, with ε = 0.01, 0.02, 0.03, respectively in (c), (d) and (e).

The redistancing procedure starts from the zero-level, Γ, and progressively ad-
vances on both the positive and negative senses, until the contours reach 1.5ε and
the gradient is well computed everywhere.

3.3 Image processing using mathematical morphology 71

Figure 3.12: Illustration of the MSE as a function of the performed iterations,
coupled with anisotropic adaptation, for different values of ε = 0.01, 0.02, 0.03

3.3 Image processing using mathematical morphol-

ogy

The input image data is an important key to construct the mesh, whatever the image
type is, either grey-scale, segmented or color. Image processing is very important. In
this thesis, we have used an image processing tool, ”Morph-M” [64]. Morph-M is a
scientific library of image processing algorithms [65], developed by researchers at the
CMM (Center for Mathematical Morphology [66], MINES ParisTech). Morph-M
is implemented on C++ and contains most of the operators based on mathematical
morphology to perform basic operations, such as dilation, erosion, opening and
closing [67, 68], up to the most powerful operators, such as the hierarchical watershed
[69]. Morph-M can be used through a Python interface, and be combined with other
packages available through Python.

3.3.1 Introduction to Mathematical Morphology

Mathematical Morphology was first introduced in 1964 by Georges Matheron and
Jean Serra at MINES ParisTech. The first research center for Mathematical Mor-
phology [66] was founded in Fontainebleau.

Mathematical Morphology is a mathematical theory and technique, informa-
tional structure analysis, which is related with algebra, lattice theory, topology and
probabilities. The development of mathematical morphology is inspired by image
processing problems, and is mainly applied to digital images. This technique con-
sists of a set of operators that transform images according to the characterizations,
such as size, shape, convexity, connectivity, or geodesic distance.

Hence, let us introduce of several image processing techniques that have been

72 3. Redistancing coupled to anisotropic mesh adaptation

used in this work, such as image segmentation, construction of the distance function
or image gradient computation.

The basic operators of mathematical morphology are the erosion and the dilation,
denoted as ε and δ. Both of them have firstly been developed to handle binary images
and then extended to grey-scale ones.

Let us briefly introduce the idea behind the erosion and dilation algorithm. First,
we introduce a ”simplex” which is a pre-defined shape, used to fit or withdraw the
objects in the image. This ”simplex” is called the structuring element, noted as B.
Usual structuring elements present 4-connexity, 6-connexity and 8-connexity (Figure
3.13). Let us consider A, a binary image in the Euclidean space Rd, and consider the
structuring element B. The following simple example shows the erosion algorithm
on a binary image, centered at the origin O. A is of dimension (10 × 10) and is
illustrated in Figure 3.14(a), with a set of 4-connexity elements B (Figure 3.14(b)).
We go through all the pixels of A and check if they are coincident with the value of
the center of B. If yes, the pixel is retained, otherwise it becomes black. The first
and second erosion increments on the binary image are shown in Figures 3.14(c) and
(d).

(a) 4-connexity (b) 6-connexity (c) 8-connexity

Figure 3.13: Usual structuring elements.

(a) Binary image (b) 4-connexity ele-
ment

(c) 1st erosion step (d) 2nd erosion step

Figure 3.14: Illustration of erosion of a binary image with a 4-connexity structuring
element, as well as the obtained image in two erosion increments.[65]

On the other hand, the dilation algorithm uses a black set of element B to modify
the binary image, with the same idea as the erosion algorithm. For a grey-scale
image, let us represent images as space functions, f(x). The erosion and dilation of

3.3 Image processing using mathematical morphology 73

this function by a flat structuring element B is the dilation and erosion of each set
b(x) by B, as the plane. An example is given in Figure 3.15.

Figure 3.15: Illustration of erosion and dilation on a grey-scale image, represented
by a function f(x)

In other words, erosion shrinks the positive peaks and those thinner than the
structuring element disappear. It expands the valleys and the sinks, whereas dilation
produces the dual effect.

Opening and closing are other basic algorithms for morphological noise segmen-
tation. Opening segments small objects, whereas closing removes small holes. The
opening (γ) and closing (ϕ) couple to erosion and dilation by performing γ = δε and
ϕ = εδ. Furthermore, opening and closing are idempotent: γγ = γ and ϕϕ = ϕ.

As an example, processing of a binary and grey-scale image by erosion, dilation,
opening and closing is illustrated in Figures 3.16 and 3.17.

(a) Original
binary image A

(b) Erosion ε(A) (c) Dilation δ(A) (d) Opeing γ(A) (e) Closing ϕ(A)

Figure 3.16: Illustration of erosion, dilation, opening and closing of binary image A

These morphological techniques are thus efficient ways to process images.

74 3. Redistancing coupled to anisotropic mesh adaptation

(a) Original grey-
scale image A

(b) Erosion ε(A) (c) Dilation δ(A) (d) Opening γ(A) (e) Closing ϕ(A)

Figure 3.17: Illustration of erosion, dilation, opening and closing of a grey-scale
image A.

3.3.2 Regularized function construction

In the image redistancing procedure, we build a regularized level-set function, which
requires many iterations to attain convergence, in particular for 3D images. Instead,
one can directly compute a signed distance function, using mathematical morphology
operators. Such a distance, interpolated in the mesh, will still show the trace of the
pixelation/voxelation. Then, redistancing will be necessary but starting from this
morphologically modified image.

To illustrate this point, let us build the signed distance function of a binary
image û of dimensions (11 × 11)(Figure 3.18(a)), using the previously presented 4-
connexity element and an erosion/dilation algorithm. For example, the first erosion
step, from the original image, will find the most approximate pixels, like shown in
Figure 3.18(b). The second erosion step will find the adjacent layer, based on the
previous results, as given in Figure 3.18(c). In this case, the 7th erosion step will
cover the entire image (Figure 3.18(d)). On the other hand, the first dilation step
will find the complementary pixel region and, after two increments, the result is
the one shown in Figure 3.18(e). Finally, by combining the two results (both of
erosion and dilation), we may consider that the distance of the object coming from
the segmented image, ûd, is built.

3.3.3 Image gradient computation

Another application concerns the determination of morphological gradients. The
goal of using gradient transformations is to be able to highlight image contours.
Based on the erosion and dilation algorithms and by comparing the modified and
the original images, the residual values can be seen as contours, very easy to handle.
Figure 3.19 illustrates the basic idea and the interest behind the methodology.

This method is useful to obtain a description of the boundary of an object of the
image.

Later in this chapter, we will see that using these segmentation tools will allow
building the closest initial solution as possible for our redistancing procedure.

3.4 Numerical examples 75

(a) Original image A (b) 1st erosion (c) 2nd erosion

(d) 7th erosion (e) 2nd dilation (f) Distance ûd

Figure 3.18: Computation of the signed distance to an object in an original image.

Figure 3.19: Illustration of erosion and dilation use to detect image gradients.

3.4 Numerical examples

3.4.1 2D color images

To distinguish the phases, image segmentation is often a compulsory step. In the
previous chapter, we have presented adaptive anisotropic adaptation applied directly

76 3. Redistancing coupled to anisotropic mesh adaptation

to an RGB polycristal image, Figure 3.20(a), which does not accurately represent
the interfaces between the different crystals. Let us consider this example, based on
the three gradients of RGB channels. A segmented polycristal image containing 23
different colors, representing 23 different crystalline orientations need to be traced
(as seen in Figure 3.20(b)).

(a) Original polycristal image (b) Segmented polycristal image

Figure 3.20: Polycristal segmentation from the original polycristal image, using 23
colors.

If we decompose the color image into the three R, G and B channels, it will
not satisfy our query (identify adequately the phases and have an optimal mesh).
Therefore, we propose a new method, designated ”multi-pixel/voxel-channels”, dis-
tinguishing the object through its specific pixel/voxel’s values. Each Pixel has three
channels, Pixel = {Pixelred, P ixelgreen, P ixelblue}. We consider the three values of
the three channels to define the color we wish to map and if the images pixel corre-
spond to its value, we fix it as this color. For the example proposed in Figure 3.20,
let us suppose five Pixels, with the three channels’ values presented in Table 3.1.

Selected Pixels Red channel Green channel Blue channel Selected color
Pixel1 76 26 123 Color 3
Pixel2 204 239 173 Color 5
Pixel3 116 99 109 Color 16
Pixel4 190 219 185 Color 20
Pixel5 84 46 231 Color 23

Table 3.1: Selected colors and the three channels’ values.

Selected colors are shown in Figure 3.21(a) to (e), the total selected objects on
Figure 3.21(f).

These five colors are interpolated on an initial mesh, where they are represented
by five functions gathered in the vector −→uh = {uh(1), uh(2), uh(3), uh(4), uh(5)}. Then,

3.4 Numerical examples 77

(a) Color 3 (b) Color 5 (c) Color 16

(d) Color 20 (e) Color 23 (f) Total selected colors

Figure 3.21: Five selected colors.

the redistancing-adaptation procedure is applied in a multi-component context, to−→
uτε = {uτε(1), u

τ
ε(2), u

τ
ε(3), u

τ
ε(4), u

τ
ε(5)}. The algorithm steps followed are given below:

Input: Segmented color image data, ûseg, selected colors, through the
Pixels’ vector, initial mesh and the given number of nodes N for
mesh adaptation, (ε, τ) for the redistancing procedure.

Output: Redistanced function uτε(i) and adapted anisotropic mesh

1 for each Pixel(i) do
2 Distinguish the corresponding Pixel(i)’s value, interpolate the segmented

image ûseg onto an initial mesh to obtain the initial function u0
ε(i) = uh(i).

3 while the redistanced function uτε(i) does not converge do

4 for each Pixel(i) do
5 Compute the sign function S(i) from the original image ûseg on the

current mesh.
6 Solve the redistancing equation (3.6), to obtain uτε(i)(ε, S(i), τ).

7 Correct the sign of uτε(i)(ε, S(i), τ) using the sign function S(i).

8 Generate the optimal mesh, adapted to the components of
−→
uτε .

9 τ = τ + ∆τ , update the redistanced function uτε(i) and the new adapted
mesh.

Let us input a thickness ε = 0.01, a fictitious time step ∆τ = 0.00025 and

78 3. Redistancing coupled to anisotropic mesh adaptation

(a) Color 3, uε(1) (b) Color 5, uε(2) (c) Color 16, uε(3)

(d) Color 20, uε(4) (e) Color 23, uε(5) (f) Adapted anisotropic mesh

Figure 3.22: Illustration of the five redistanced functions uτε(i) and the final adapted
anisotropic mesh with N = 40000.

a number of nodes N = 40000. After about 60 iterations, the multi-redistanced

function
−→
uτε and the final adapted anisotropic mesh are shown in Figure 3.22.

Each redistanced function is independent from the others, which is the wanted
situation for physical parameters definition and the adapted anisotropic mesh is
well adapted the boundary of the chosen objects. In conclusion, using the proposed
multi-pixel-channels framework coupled to the redistancing-adaptation method to
handle color image performs better than the previous simple RGB-channel method,
which could not distinguish the objects. Also, our methodology provides multi-
redistanced functions on one adaptive anisotropic mesh, which may be used for
numerical simulations, keeping an accurate representation.

3.4 Numerical examples 79

3.4.2 2D Head MRI-Brain

To continue illustrating the usage of redistancing-adaptation, let us use the 2D head
MRI image, represented again in Figure 3.23(a). As an example, we consider that
we wish to segment the white matter of the brain region, identified in a non accurate
way by our naked eyes. Image processing is illustrated in Figure 3.23, by applying
closing, gradient and filtering operations, to obtain a segmented white matter in
ûseg.

After this image processing procedure, we have applied the redistancing-adaptation
operator. First, ûseg has been interpolated onto an initial mesh of dimensions
[0, 1] × [0, 1], by doing: u0

ε = ûseg/255 − 0.5. Since the segmented white matter
is extremely complex geometrically, only small thicknesses may capture the bound-
ary of this region. Therefore, we have input the thickness ε = 0.005 and the fictive
time step ∆τ = 0.00005, for a number of nodes N = 20000, to be able to accurately
describe the complexity of the boundary of the white matter without losing impor-
tant detail. The sign function S of this region is shown in Figure 3.24(a). After
approximately 150 iterations and 680 seconds of CPU time, the final results are
illustrated in Figures 3.24, by plotting the redistanced function uτε and the adapted
anisotropic mesh.

To quantitatively estimate the results, we plot a superposition of the object’s
boundary computed from the image (the 127.5-level of ûseg, blue line) and the zero-
level of uτε (red line) in Figure 3.24(d). One observes a very good agreement, showing
that the grey matter’s definition has been perfectly preserved.

3.4.3 Sensitivity to the initial solution

The redistancing-adaptation method may be also extended to 3D applications using
the same algorithm as in the 2D case. However, to converge to the redistanced
function, hundreds of redistancing iterations coupled to hundreds of mesh adapta-
tions may be required, which will cost extremely in terms of computing resources
and CPU time. Therefore, we have decided to try to accelerate the redistancing
procedure and reduce computing costs by attaining quickly the convergence using
an optimal initial solutiom.

When solving the redistancing equation, an initial value u0
ε(S, ε, τ = 0) does not

influence the final result, since only the sign function S is important, but it has an
impact on the number of performed iterations of the method and on the speed of
convergence.

To optimize this point, Morph-M may be used to provide the initial distance
or phase function as an image, based on Mathematical Morphology techniques. To
demonstrate our point, let us first compute the signed distance of the 2D head MRI
image (Figure 3.23(f)) in an image ûd of dimensions (700 × 700), shown in Figure
3.25(a), computation that run in 4 seconds using Morph-M. Then, this image is
interpolated on the initial mesh, of dimensions [0, 1]× [0, 1], to recompute the signed
distance in the mesh, ud:

ud(X
i) =

ûd(Pixel
k)

700
(3.35)

80 3. Redistancing coupled to anisotropic mesh adaptation

(a) Original image, û (b) Image closing

(c) Filtering noises (d) Image gradient

(e) Filtering noises (f) Final segmented white matter, ûseg

Figure 3.23: Image processing of the 2D head MRI image, to get the segmented
white matter.

3.4 Numerical examples 81

(a) Sign function, S (b) Redistanced function, uτε

(c) Adapted anisotropic mesh, N = 20000 (d) Zero-level of uε and 127.5-level of ûseg

Figure 3.24: Illustration of the redistancing-adaptation procedure on a 2D segmented
head MRI, building a smooth phase function corresponding to the brain’s white
matter.

where l̂k = int(x
i

X
· (L̂ − 1) + 1), ĥk = int(y

i

Y
· (Ĥ − 1) + 1), as seen in Figure

3.25(b).

Knowing the signed distance function on the mesh, ud (as seen in Figure 3.25(b)),
its hyperbolic tangent function uε(ε, ud) is easily given by considering, for example,
ε = 0.005, as drawn in Figure 3.25(c). This is the initial u0

ε.

We have performed two different test cases. For the first one, only mesh adap-
tation was launched with N = 20000, with a convergence after 15 iterations of 88
seconds CPU time. Test cases were driven on one core (3.5GHz,16 Gb RAM). Figure

82 3. Redistancing coupled to anisotropic mesh adaptation

(a) ûd (b) ud on the mesh

(c) u0ε = uε(ud, ε = 0.005) (d) Adapted uε(ud, ε = 0.005) anisotropic
mesh, N = 20000

Figure 3.25: Illustration of the distance computation on the image, initial computed
hyperbolic tangent function u0

ε = uε(ud, ε = 0.005), and adapted anisotropic mesh.

3.4 Numerical examples 83

3.25(d) presents the obtained anisotropic mesh.
In the second, the redistancing-adaptation procedure was also performed for the

same number of nodes and iterations, with a CPU time of 93 seconds also on one
core, a little longer than when only mesh adaptation was performed, since the initial
function is very close to the expected solution. Results are the ones that illustrated
in Figure 3.24.

To compare the results of these two cases, a zoom was performed and drawn
in Figure 3.26 where, on the left, we plotted the phase function computed from
image, uε(ud, ε) (Figure 3.26(a)) and the redistancing-adaptation solution uτε (Figure
3.26(b)). We observe that the redistanced function, uτε , is more smooth than the
non-redistanced one, where we still find a trace of the pixels, less adapted for the
upcoming numerical simulations. Thus, for a very small increase on the computation
cost, we have decided to perform: (1) distance computation using Morph-M, ûd;(2)
interpolation of ûd on the mesh to get ud;(3) u0

ε(ud, ε) computation;(4) redistancing-
adaptation to obtain uε and anisotropic mesh.

(a) Zoom of uε(ud, ε) (b) Zoom of uτε (ε, S, τ)

Figure 3.26: Solution of uε obtained (a) by computing it directly from the image,
uε(ε, ûd); (b) by redistancing it uε(ε, S, τ).

Additionally, the most important conclusion is that it may significantly reduce
the redistancing time, especially in 3D cases.

3.4.4 3D head MRI

MRI scanning provides an inside image of the head, which is very important in
medical research and therapy. From the information contained in these images,
some may be used for different types of simulation. Skull can be the object of solid
mechanics studies, craniotomy operations or impact tests. One other example con-
cerns the study of the behavior of the Cerebrospinal fluid (CSF), where simulation
is also very relevant. CSF is the corporal fluid in the head, between the skull and
the brain, proving basic mechanical and immunological protection. Dynamic of the

84 3. Redistancing coupled to anisotropic mesh adaptation

CSF may be treated using classical computational fluid mechanics to obtain, for
example, the pressure in the brain, ... Grey matter and white matter are the cen-
tral nervous system of the human body, controlling all the human behavior, many
researches on them are still at the primary stage. Therefore, head image processing
is a very wide research field. On the other hand, simulation of on all of these topics
based on images and meshes may be helpful for medical knowledge improvement.

In this section, the image processing and redistancing-adaptation method de-
scribed before will show its potential in this field. Hence, a segmented 3D human
head MRI, ûseg, Figure 3.27, is studied and is composed of the following structures:
muscles/skin, skull, cerebrospinal fluid, grey matter and white matter. The 3D im-

age has been segmented by [40, 41], on an image of size (L̂×Ĥ×Ŵ = 255×255×180).
Representations of the voxels’ value in the segmented image is detailed in Table 3.2.

Value of ûseg(V oxel) Represented part of the head
0 Outer part
1 Skin, eyes, muscle
2 Skull
3 CSF
4 Grey matter
5 White matter

Table 3.2: Representation of the voxels’ value in the 3D human head MRI image.

Figure 3.27 shows the segmented image with the six different voxels’ values.

Figure 3.27: 3D segmented MRI of the human head.

We have decided to consider three regions: the whole head (1+2+3+4+5), the
skull (2) and the brain (4+5). A thresholding was done to segment the image and
obtain ûhead (the whole head), ûskull (the skull), ûbrain (the brain).

3.4 Numerical examples 85

ûhead(V oxel)

{
255 if ûseg(V oxel) > 0

0 if ûseg(V oxel) = 0

ûskull(V oxel)

{
255 if ûseg(V oxel) = 2

0 if ûseg(V oxel) 6= 0

ûbrain(V oxel)

{
255 if ûseg(V oxel) > 3

0 if ûseg(V oxel) ≤ 3

(3.36)

After the image processing step, where these three parts were easily segmented,
they were drawn in Figure 3.28.

Then, as presented in the previous section ,using the signed distance to the
boundary of the object segmented in these images, ûdhead , ûdskull , ûdbrain were ob-
tained using Morph-M, with a CPU time of only 8 seconds for each case. The final
result is shown in Figures 3.29(a)(b)(c). These three signed distance images were
interpolated onto an initial mesh with dimensions [2.55× 2.55× 1.79], by consider-
ing ud(X

i) = ûd(V oxel
k)/100, to obtain the distance functions on the mesh. For a

thickness ε = 0.02, the initial function u0
ε(ε, S, τ) = uε(ud, ε) was computed and is

plotted in Figure 3.29.
In fact, the more complex geometries ask for more nodes for a correct description,

so the imposed number of nodes for the head, skull and brain cases are, respectively,
N = 200000, 300000, 400000. After 25 redistancing-adaptation iterations, run on 6
cores, the obtained results are illustrated in Figures 3.30 and 3.31, representing the
redistanced function uτε , the adapted anisotropic volume mesh, the iso-zero surface
of uε and the surface mesh on this iso-zero surface. The CPU time for each case
was: 148.4, 183.6 and 233.9 minutes.

At the end, the results demonstrate that our approach was interestingly applied
to 3D head MRI scanned images, and provided accurate redistanced phase func-
tions; as well as the adapted anisotropic mesh. Consequently, the iso-zero surface
of the redistanced phase function should give the boundary of the segmented part,
even in a smoother way than if it was computed from the original image, by avoiding
the pixelation influence. On the other hand, an adapted anisotropic mesh provides
a good tool to perform efficient resolutions for medical simulations, by reducing the
number of degrees of freedom of the grid. Additionally, from a segmented image,
ûseg, the redistancing-adaptation procedure may require hundreds of iterations to
converge to the redistanced function, meaning weeks of computing time. The signed
distance computed on the image with processing techniques, ûd, may powerfully
reduce the computing time.

86 3. Redistancing coupled to anisotropic mesh adaptation

(a) Segmented head part

(b) Segmented skull part

(c) Segmented brain part

Figure 3.28: Segmented regions of the head image: whole head, skull and brain.

3.4 Numerical examples 87

(a) Distance image of the head (b) uε(ε, ud) of the head

(c) Distance image of the skull (d) uε(ε, ud) of the skull

(e) Distance image of the brain (f) uε(ε, ud) of the brain

Figure 3.29: Image of the computed signed distance from the original image for the
three regions: ûdhead , ûdskull , ûdbrain and computed hyperbolic tangent function, uε,
on mesh, from the interpolated distance, ud.

88 3. Redistancing coupled to anisotropic mesh adaptation

(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Redistanced function uτε , adapted anisotropic volume mesh for the
whole head, the skull and the brain.

3.4 Numerical examples 89

(a) (b)

(c) (d)

(e) (f)

Figure 3.31: Iso-zero surface of uτε and surface mesh for the whole head, the skull
and the brain.

90 3. Redistancing coupled to anisotropic mesh adaptation

3.4.5 3D Fiber image

This methodology may not only improve medical images, but can also be applied
in material science research. For example, let us present the 3D composite image
obtained by 3D X-ray micro-tomography [70], which has the dimensions (L̂× Ĥ ×
Ŵ = 900× 900× 100) and is illustrated in Figure 3.32.

(a)

(b)

Figure 3.32: Original 3D image and computed signed distance image (obtained using
Morph-M).

3.4 Numerical examples 91

The goal here is again to create the anisotropic mesh, adapted to the contour
of the fibers, which may be applied in many numerical simulations. With the help
of Morph-M, the signed distance image, ûd, was obtained. It was interpolated on
an initial mesh of dimensions [0, 8.99] × [0, 8.99] × [0, 0.99], obtaining, the signed
distance ud(X

i) = ûd(V oxel
k)/100. The initial hyperbolic function, u0

ε(ε, S, τ =
0) = uε(ud, ε), was determined and the redistancing-adaptation procedure launched
with (ε,N) = (0.01, 400000). After 25 iterations run on 6 cores and a CPU time
of 213.8 minutes, the redistanced function uτε and the adapted volume anisotropic
mesh were obtained and are presented in Figure 3.33.

The iso-zero surface of this redistanced function has also been drawn, which
accurately represents the geometry of the fibers, and may eventually be used to
extract a surface mesh of the fibers.

92 3. Redistancing coupled to anisotropic mesh adaptation

(a) Redistanced uτε

(b) Adapted volume mesh

(c) Iso-zero surface of uτε

(d) Surface mesh of the iso-zero surface of uτε

Figure 3.33: Illustration of the redistancing-adaptation on an image of a 3D com-
posite.

3.5 Conclusion 93

3.5 Conclusion

In this chapter, a new redistancing modified level-set method was proposed, by
building a hyperbolic tangent function with a given thickness ε from an initially dis-
continuous Heaviside. This redistanced function plays a very important role. Firstly,
anisotropic mesh adaptation may benefit from gradient variation, to obtained a more
dense and anisotropic mesh around the boundary of object. Secondly, the redis-
tanced function may be used to define the physical parameters everywhere in the
computational domain. Finally, this redistancing method builds directly a smoother
function, avoiding pixelation traces. The drawback of this method is the number of
required iterations to converge both in the mesh and in the function. Fortunately,
image processing software, like Morph-M, based on Mathematical Morphology tech-
niques, provide several interesting image processing operations, such as segmenta-
tion, filtering or distance computation. The construction of an image image close to
the function to be built may reduce the number of iterations and save computational
time. The introduced redistancing-adaptation method coupled to Morph-M may be
used in medical and material simulations, providing the constructed mesh directly
based on the 3D image.

3.6 Résumé français

Dans ce chapitre, nous proposons une nouvelle méthode de réinitialisation d’une
fonction type ”level-set” en construisant une fonction tangente hyperbolique avec
d’une épaisseur ε à partir d’une fonction Heaviside discontinue. Cette fonction
distance joue un rôle important dans cette méthode. Premièrement, l’adaptation
de maillage anisotrope se base sur la variation de cette fonction distance. Ainsi, le
maillage est plus dense autour de la frontière de l’objet. Deuxièmement, les fonctions
réinitialisées peuvent être utilisés pour définir les paramètres physiques du domaine.
Enfin, la méthode de réinitialisation permet de construire des fonctions régulières,
évitant la sur-pixelisation. Cependant, de nombreuses itérations sont nécessaires
à la convergence du maillage et de la fonction régularisée. Pour pallier ce probl
eme, de nombreux logiciels de traitement d’image comme Morph-M, basé sur des
techniques de morphologie mathématique, permettent de nombreuses opérations
comme la segmentation, le filtrage ou le calcul de la distance. La construction de
la fonction distance permet de réduire le nombre d’itérations et le temps de calcul.
Cette méthode, couplée à Morph-M peut être utilisée dans le domaine médical et
en physique des matériaux, par construction d’un maillage sur les données d’une
image.

Chapter 4

A monolithic approach for
multiphase computational flow
simulation

Contents
4.1 Introduction . 95

4.2 Navier-Stokes equations 95

4.3 Monolithic approach and Eulerian formulation 96

4.3.1 Full Eulerian formulation 96

4.3.2 Monolithic approach . 97

4.3.3 Mixture laws . 98

4.4 Variation MultiScale method 99

4.5 Convective level-set method 103

4.6 Numerical examples . 105

4.6.1 Flow around a cylinder 106

4.6.2 Fluid buckling . 112

4.7 Numerical simulations based on real images 115

4.7.1 2D picture based simulations 115

4.7.2 3D image based simulation 120

4.7.3 2D flow simulations on Paint and Phone images 125

4.7.3.1 Fluid-structure interaction flow simulation . . . 125

4.7.3.2 Moving interfaces and flow simulation 128

4.8 Conclusion . 130

4.9 Résumé français . 130

94

4.1 Introduction 95

4.1 Introduction

Multiphase flow studies are important in several industrial applications like, for
example, nuclear reactors, automotive manufacturing, aircraft design or biological
flows. In this context, the level-set method is often used to represent, in an implicit
way, the geometries and properties of the different phases. In addition, the pre-
viously presented anisotropic mesh adaptation technique may help capture details,
to perfectly describe the complex issues with the smallest computational cost and
computing time.

This chapter presents the numerical tools coupled to our image mesher coupled
and used to model and solve multiphase flows. Indeed, we have proposed an unique
constitutive set of equations, solved in the entire computational domain, combined
with the variation of the physical parameters, defined from the different phases’
properties. The overall computation procedure consists mainly in the resolution of
the Navier-Stokes equations using this monolithic approach and an Eulerian frame-
work, solved with a VMS (Variational MultiScale) finite element method [61, 71].
Some numerical simulations based on real images will be illustrated.

4.2 Navier-Stokes equations

Firstly, let us consider Ω ⊂ Rd as the whole computational domain, where d is
the space dimension, and ∂Ω is the boundary of Ω. To detail the multiphase flow
context, we consider the simplest case, of a fluid interacting with a solid. The fluid
and solid domains are respectively noted as Ωf , Ωs, and the interface between the
two domains is, Γim.

Ωf ∩ Ωs = Γim and Ωf ∪ Ωs = Ω (4.1)

The purpose is to obtain the velocity and pressure fields, ∀ x ∈ Ω. The clas-
sical incompressible Navier-Stokes equations for computing the flow dynamics of a
Newtonian fluid in Ωf are as follows: find (v, p) such thatρf (

∂v

∂t
+ v · ∇v)−∇ · σσσ = f in Ωf , t > 0

∇ · v = 0 in Ωf , t > 0
(4.2)

where the velocity v(x, t) is time dependent, ρf is the fluid density and the
Cauchy stress tensor for a Newtonian fluid is given by:

σσσ = 2ηfεεε(v)− pId (4.3)

Id is the d-dimension identity tensor, and ηf is the fluid viscosity. Let us introduce
the boundary and initial conditions in following equations:

v = vΓ,f on ∂Ωf \ Γim, t > 0

v = vim on Γim, t > 0

σσσ · n = tim on Γim, t > 0

v(., 0) = v0 in Ωf

(4.4)

96 4. A monolithic approach for multiphase computational flow simulation

where vΓ,f is the velocity boundary condition, vim is the velocity at the fluidsolid
interface, and the boundary of the immersed solid is Γim. n is the outward normal
at the solid surface, tim is designed as the normal stress on this boundary, and v0

is a given initial condition on the velocity field.
The solid domain is considered as a rigid body, the classical incompressible

Navier-Stokes equation are modified by adding an additional rigidity constraint as:
ρs(

∂v

∂t
+ v · ∇v)−∇ · σσσ = f in Ωs, t > 0

∇ · v = 0 in Ωs, t > 0

εεεs(v) = 0 in Ωs, t > 0

(4.5)

where ρs is the solid density. For the rigid body motion, the deformation of the
rigid object is zero, the deformation-rate tensor being εεε(v) = 0. We consider here a
rigidity constraint, using τττ s , and where this extra stress will represent the presence
of the structure in the fluid domain. Hence, one may establish

σσσ = τττ s − pId (4.6)

The boundary and initial conditions are given below, with the same meaning has
the ones described for the fluid domain.

v = vΓ,s on ∂Ωs \ Γim, t > 0

v = vim on Γim, t > 0

σσσ · n = −tim on Γim, t > 0

v(x, 0) = v0 in Ωs

(4.7)

4.3 Monolithic approach and Eulerian formula-

tion

4.3.1 Full Eulerian formulation

Different approaches exist to handle a FSI or a multiphase flow problem, which are
often distinguished between Lagrangian, Eulerian or ALE (Arbitrary Lagrangian-
Eulerian) formulations. We briefly recall these three approaches.

A Lagrangian formulation describes the motion of a body starting from a known
reference, and each particle of the body is attached to this reference system. When
using the finite element method, each node of the mesh is coincident with its cor-
responding material particle through the entire deformation and displacement pro-
cedure. More generally, this formulation is used to track moving boundaries of the
solid object and it often requires mesh adaptation because of the domain’s distortion,
otherwise we are lead to inaccurate results.

An Eulerian formulation in a finite element method context requires a fixed
mesh in the whole computed space, defining a constant computational domain over
the time. It is usually used for tracking the fluid motion in the space as time evolves.
However, it may be more difficult to establish it to study solid deformation and

4.3 Monolithic approach and Eulerian formulation 97

Figure 4.1: Schematic illustration of Lagrangian and Eulerian descriptions in an 1D
mesh and corresponding particle motion.

displacement, when several material particles leave at once their formerly occurred
state, leading to a loss of information.

Figure 4.2: ALE description in a 1D mesh and material particle motion description.

An ALE formulation [72] combines the advantages of both Lagrangian and Eu-
lerian formulations, being neither only fixed in space (Eulerian) or only attached to
the material (Lagrangian). The idea of this mixed formulation in Fluid-Structure
Interaction is often to use the Lagrangian formulation for the structure and an Eu-
lerian formulation for the incompressible fluid.

As introduced in the previous chapter, modified level-set functions may be used
to represent the different phases, coupled to anisotropic mesh adaptation, and there-
fore adequate for an Eulerian formulation to represent and capture the motion, for
both solid and liquid. That is the chosen approach in this work, to present both the
fluid and structural domains, throughout flow computations.

4.3.2 Monolithic approach

To solve multiphase flows, and in particular fluid-structure interaction problems,
there are also two main techniques: partitioned and monolithic.

The partitioned approach uses a specific solver for each domain. The global
problem is divided into smaller parts and solved independently. However, the dif-
ficulty happens when the exchanging information for one solver to the other after
each iteration and, to overcome these difficulties, coupling algorithms have been
proposed [73]. Sometimes, instability conditions on this coupling may lead to an
information loss and adds also a certain computation cost.

The monolithic approach is based on one single grid or set of equations to
describe the different phases’ mechanics and, unlike partitioned approaches where

98 4. A monolithic approach for multiphase computational flow simulation

different solvers handle different objects, only one global resolution is made. Some
examples to handle FSI problems using this approach are presented in [74, 75].

In this paper, we have used a monolithic approach in an Eulerian formulation to
handle multiphase flow problems. Different objects are represented by implicit con-
tinuous functions in the mesh, like the one described and computed in the previous
chapter. Multiphase Navier-Stokes equations are established coupling the previously
ones for fluid and rigid body motions, with specific boundary conditions. The set of
equations to be solved may be presented as:

ρ
∂v

∂t
+ ρv · ∇v− 2ηf∇ · εεε(v)−∇ · τττ +∇p = f in Ωf , t > 0

∇ · v = 0 in Ω, t > 0

εεεs(v) = 0 in Ω, t > 0

v = vΓ on ∂Ω, t > 0

v(x, 0) = v0 in Ω

(4.8)

where v = vΓ,f on ∂Ωf ∩ ∂Ω and v = vΓ,s on ∂Ωs ∩ ∂Ω, ρ, η, εεε and τττ are the
density, dynamic viscosity, deformation-rate and stress tensor fields on the whole
computational domain.

4.3.3 Mixture laws

The previously presented multiphase Navier-Stokes equations require the definition
of the mechanical properties in the whole domain. On the other hand, the geometry
of each object or phase in the image is defined at the mesh nodes using a modified
level-set function, such as the hyperbolic tangent one, uε. This distribution allows
us to compute the mechanical properties with, for example, mixing laws.

Let us define a discontinuous Heaviside function, computed from the level-set
one and noted H(uε), as:

H(uε) =

{
1 if uε ≥ 0

0 in uε < 0
(4.9)

In multiphase problems, several physical phenomena happen at the interface
between the different phases and, to model them one often prefers continuity of the
properties across this interface even if, in reality, they are discontinuous. Thus, a
smooth Heaviside function, Hε(uε), is built as follows:

Hε(uε) =

1 if uε > ε
1

2

(
1 +

uε
ε

+
1

π
sin
(πuε
ε

))
if |uε| ≤ ε

0 if uε < −ε

(4.10)

where ε is the wanted ”interface” thickness. Using this smooth function, prop-
erties like density and viscosity are determined through:

4.4 Variation MultiScale method 99

ρ = ρsHε(uε) + ρf (1−Hε(uε))

η = ηsHε(uε) + ηf (1−Hε(uε))

εεεs = Hε(uε)εεε

τττ = Hε(uε)τττ s

(4.11)

4.4 Variation MultiScale method

In this section, we present the resolution of the multiphase Navier-Stokes problem,
through the Variation MultiScale finite element method. Firstly, let us define the
following functional spaces:

V =
{

v,v ∈
(
H1(Ω)

)d}
P =

{
p, p ∈ L2(Ω)

}
T =

{
τττ , τττ ∈ L2(Ω)n×n

}
(4.12)

Then, the corresponding test functions will be denoted w ∈ V0 = H1
0 (Ω)d, q ∈ P0

and ξξξ ∈ T 0. The strong form of Equations (4.8) is associated to a standard weak
one by integrating over the whole computational domain. It may be written as:

ρ

(
∂v

∂t
,w

)
+ ρ (v · ∇v,w)− (p,∇ ·w) + (2ηεεε (v) , εεε (w)) + (τττ , εεεs (w)) = (f,w)

(q,∇ · v) = 0

− (ξξξ, εεεs (v)) = 0

(4.13)
where (v, p, τττ) ∈ (V ,P , T) and the test functions are (w, q, ξξξ) ∈ (V0,P0, T 0).

Based on the mesh discretization K of Ω, velocity v, pressure p and stress fields
τττ may be discretized using the finite dimensional spaces, leading to the interpo-
lated vh, ph and τττh. However, resolution of the Equations (4.13) using the standard
Galerkin finite element method may fail and lead to non-physical spurious oscilla-
tions. The first reason is related to the presence of convection terms, and the second
one concerns the loss of stability because the mixed finite element formulation does
not satisfy the inf-sup (Ladyzhenskaya-Brezzi-Babus̆ka) condition. To stabilize this
discrete formulation, and inspired from the previously presented SUPG and RFB
methods, the alternative VMS one was implemented and is described in this section
[36].

The basic idea behind the VMS method is to use the decomposition of the
velocity, pressure and stress fields into coarse-scale and fine-scale values. Then, one
solves the fine-scale and replaces its effect in the coarse-scale. Let us denote the

100 4. A monolithic approach for multiphase computational flow simulation

element interiors and boundaries by Ω′ and Γ′. The velocity v, pressure p and stress
τττ fields can be approximated as:

v = vh + v′ ∈ Vh ⊕ V ′

p = ph + p′ ∈ Ph ⊕ P ′

τττ = τττh + τττ ′ ∈ Th ⊕ T ′
(4.14)

where (vh+v′, ph+p′, τττh+τττ ′) ∈ (Vh⊕V ′×Ph⊕P ′×Th⊕T ′). For the fine-scale,
their values vanish over the element boundaries:

v′ = 0

p′ = 0

τττ ′ = 000

on Γ′ (4.15)

Assuming that the velocity, pressure and stress at the fine-scale are piecewise
polynomial and continuous in space, and the test functions may have the same
decomposition as w = wh + w′ ∈ V0

h ⊕ V
′,0, q = qh + q′ ∈ P0

h ⊕ P
′,0, ξξξ = ξξξh + ξξξ′ ∈

T 0
h + T ′,0. The mixed-finite element approximations of Equation (4.13) can be

written

ρ

(
∂(vh + v′)

∂t
,wh + w′

)
+ ρ ((vh + v′) · ∇(vh + v′),wh + w′)− (ph + p′,∇ · (wh + w′))

+ (2ηεεε (vh + v′) , εεε (wh + w′)) + (τττh + τττ ′, εεεs (wh + w′)) = (f,wh + w′)

(qh + q′,∇ · (vh + v′)) = 0

− (ξξξh + ξξξ′, εεεs (vh + v′))Ωs
= 0

(4.16)

Therefore, Equation (4.16) may be decomposed in two sub-ones:

(1) the coarse-scale problem

ρ

(
∂(vh + v′)

∂t
,wh

)
+ ρ (vh · ∇(vh + v′),wh)− (ph + p′,∇ ·wh)

+ (2ηεεε (vh + v′) , εεε (wh)) + (τττh + τττ ′, εεεs (wh)) = (f,wh)

(qh,∇(vh + v′)) = 0

− (ξhξhξh, εεεs (vh + v′))Ωs
= 0

(4.17)

(2) the fine-scale problem

4.4 Variation MultiScale method 101

ρ

(
∂(vh + v′)

∂t
,w′
)

+ ρ (vh · ∇(vh + v′),w′)− (ph + p′,∇ ·w′)

+ (2ηεεε (vh + v′) , εεε (w′)) + (τττh + τττ ′, εεεs (w′)) = (f,w′)

(q′,∇ · (vh + v′)) = 0

−
(
ξ′ξ′ξ′, εεεs (vh + v′)

)
= 0

(4.18)

Three important remarks and hypothesis need to be considered:

• when a linear interpolation is used, the second derivatives vanish as well as all
the terms involved is the integrals over the element interior boundaries;

• the fine-scale is not stored over the time, by considering the problem as quasi-
static for this scale;

• the convective velocity in the the non-linear term may be approximated using
only the coarse-scale values, in such a way that

(vh + v′)∇ · (vh + v′) ≈ vh · ∇ (vh + v′) (4.19)

The equations for the coarse scales are obtained taking the fine-scale test func-
tions equal to zero. With the previously described assumptions, Equation (4.17)
may be rewritten as:

ρ

(
∂vh
∂t

,wh

)
+ ρ (vh · ∇vh,wh)− (ph + p′,∇ ·wh) + (2ηεεε(vh), εεε(wh)) + (τττh + τττ ′, εεεs(wh))

+
∑
K∈K

(v′,−ρvh · ∇wh −∇ · (2ηεεε(wh)))K = (f,wh)

(qh,∇ · vh)−
∑
K∈K

(v′,∇qh)K = 0

−(εεεs(vh), ξξξh) +
∑
K∈K

(v′, χs∇ · ξξξh)K = 0

(4.20)
for all (wh, qh, ξξξh) ∈ V0

h × P0
h × T 0

h , where
∑
K∈K

means the summation over all

the elements of the finite set K. Let us consider now the fine-scale problem with
(wh, qh, ξξξh) = (0, 0,0). In [76], the finite element residuals are defined as:

Rv = f− ρ∂vh
∂t
− ρvh · ∇vh −∇ph + χs∇ · τττh +∇ · (2ηεεε(vh))

Rp = −∇ · vh

Rτττ = εεεs (vh)

(4.21)

102 4. A monolithic approach for multiphase computational flow simulation

Using a fine-scale definition like the one presented previously for the RFB
method, (v′, p′, τττ ′) may be written as bubble functions as:

v′ =
∑
K∈K

bvv
′
K

p′ =
∑
K∈K

bpp
′
K

τττ ′ =
∑
K∈K

bττττττ
′
K

(4.22)

where bv, bp, bτττ are the bubble functions [63], and v′K , p
′
K , τττ

′
K are the fine-scale

values on element K. Additionally, v′K , p
′
K , τττ

′
K may also be written as functions of

(av, ap, aτττ) and (vh, ph, τττh), where av, ap, aτττ are stabilization parameters, computed
within each element. More details are presented in [77, 78]. Finally,

v′ =
∑
K∈K

av(Rv)

p′ =
∑
K∈K

ap(Rp)

τττ ′ =
∑
K∈K

aτττ (Rτττ)

(4.23)

This provides us the expressions for the subscales, v′, p′, τττ ′. Then, we go back to
the coarse-scale problem, by substituting this fine-scale effects v′, p′, τττ ′. Applying
the integration by parts, we get:

4.5 Convective level-set method 103

ρ

(
∂vh
∂t

,wh

)
+ ρ (vh · ∇vh,wh)− (ph,∇ ·wh) + (2ηεεε (vh) , εεε (wh)) + (τττh, εεεs (wh))︸ ︷︷ ︸

Galerkin terms

+
∑
K∈K

av

(
ρ
∂vh
∂t

+ ρvh · ∇vh +∇ph − χs∇ · τττh −∇ · (2ηεεε (vh)) , ρvh · ∇wh +∇ · (2ηεεε (wh))

)
K︸ ︷︷ ︸

Upwind stabilization terms

+
∑
K∈K

ap (∇ · vh,∇ ·wh)K︸ ︷︷ ︸
grad-div stabilization term

+
∑
K∈K

aτττ (εεε (vh) , εεεs (wh))K

= (f,wh) +
∑
K∈K

av (f, ρvh · ∇wh + 2η∇ · εεεs (wh))K

(qh,∇ · vh) +
∑
K∈K

av

(
ρ
∂vh
∂t

+ ρvh · ∇vh +∇ph − χs∇ · τττh −∇ · (2ηεεε (vh)) ,∇qh
)
K︸ ︷︷ ︸

Pressure stabilization terms

=
∑
K∈K

av (f,∇qh)K

− (ξξξh, εεεs (vh)) +
∑
K∈K

av

(
ρ
∂vh
∂t

+ ρvh · ∇vh +∇ph − χs∇ · τττh −∇ · (2ηεεε (vh)) ,−χs∇ · ξh
)
K︸ ︷︷ ︸

Stress stabilization terms

=
∑
K∈K

av (f,−χs∇ · ξh)K

(4.24)

In this formulation, all the added terms provide the necessary stabilization for
convection-dominated problems, and also circumvent the inf-sup condition.

4.5 Convective level-set method

Moving interfaces on multiphase flows are classical physical phenomena. In the
multiphase formulation previously presented, this motion is not explicit, but done
through the evolution of an implicit function. Many methods have been used to track
interfaces with such type of function, like the MAC (Marker And Cell) method
[79], the Volume Of Fluid method [80], or the Level-set method [12, 81, 57]. In
this section, we have used a modified Level-set approach coupled to a stabilized
convective redistancing equation to track the interface motion [82, 83].

In the following, we explain that this can be done as an extension of the previously
presented redistancing method. Let us recall that, each object being represented by
the hyperbolic phase function uε(ε, ud), function of the signed distance function ud
to the object’s boundary Γ and of a given thickness ε, such that :

104 4. A monolithic approach for multiphase computational flow simulation

uε(ε, ud) = ε tanh(
ud(x,Γ)

ε
)

||∇uε||2 = 1− (
uε
ε

)2 = g(uε)
(4.25)

The velocity field v is obtained by solving the multiphase Navier-Stokes equa-
tions, and the motion of the boundary may be obtained by solving the following
advection equation:

∂uε
∂t

+ v · ∇uε = 0

uε = u0
ε(t = 0)

(4.26)

with the appropriate boundary, solving this advection equation with the formerly
described stabilized finite element method, the result of utε may not always maintain
the metric property of the regularized hyperbolic tangent function, as the ||∇utε||2
computed may be different from (1−(u

t
ε

ε
)2). Inspired from the previous redistancing

method, we introduce a new redistancing function to rebuild, the wanted utε. We
introduce a fictitious time τ , and let us find α(ε, S, τ), that has the same zero value
as utε and is the result of

∂α

∂τ
+ S(utε) [||∇α||2 − g(α)] = 0

g(α) = 1− (
α

ε
)2

α0(ε, S, τ = 0) = utε(t) at τ = 0

(4.27)

where S(utε) is again the sign function, only dependent on uε(t):

S(utε) =

1 if utε > 0

0 if utε = 0

−1 if utε < 0

(4.28)

As previously, we may rewrite Equation (4.27) as a pure advection equation:
∂α

∂τ
+ U∇α = S(utε) · g(α)

α0(ε, S, τ = 0) = utε at τ = 0
(4.29)

being the velocity U given by:

U = S(utε)
∇α
||∇α||2

(4.30)

The standard algorithm for classically advecting rebuilding interfaces is given
below.

As suggested in [82, 83], a convective redistancing technique may be applied to
simultaneously advect and reinitialize uε. For that, a parameter λ is introduced:

λ =
∂τ

∂t
=

∆τ

∆t
(4.31)

4.6 Numerical examples 105

1 while the end of the computation has not been attained do
2 Solve the Navier-Stokes equation to obtain the velocity v.
3 Solve the advection equation (4.26) with ut−1

ε , to obtain utε.
4 Compute the sign function, S(utε), as given by equation (4.28).
5 Redistance by solving equation (4.27), with utε being the initial value of

α0 = utε to obtain ατ , for a fixed number of iterations.
6 Update the redistanced function, utε = ατ (ε, S, τ).

This last will allow us to define a relationship between the real and the fictitious
time step, since:

∂α

∂t
= λ

∂α

∂τ
(4.32)

Taking Equations (4.26) and (4.27), and using this last expression, one may
rewrite:

duε
dt

+ λS(utε) [||∇uε||2 − g(uε)] = 0

u0
ε = uε(t = 0) at t = 0

(4.33)

with:

duε
dt

=
∂uε
∂t

+ v · ∇uε (4.34)

Finally, the convected redistancing equation used to compute interface displace-
ment under a computed velocity field may be written as:

∂uε
∂t

+ (v + λU) · ∇uε = λS(utε)g(uε)

u0
ε = uε(t = 0) = at t = 0

(4.35)

This means that both the interface motion and the smooth and regularized hy-
perbolic tangent function are displaced and constructed at the same time, by solving
Equation (4.35).

4.6 Numerical examples

Before coupling the Navier-Stokes multiphase solver with the immersed image and
redistancing method, it is necessary to illustrate the type of performed computa-
tions, by simulating classical fluid-structure interaction and moving interfaces prob-
lem, which allow the validation of the incompressible Navier-Stokes solver and also
present the accuracy and advantages of using anisotropic mesh adaptation to build
simultaneously the mesh and the solution fields.

106 4. A monolithic approach for multiphase computational flow simulation

4.6.1 Flow around a cylinder

The first test is shown in Figure 4.3, for a computational rectangular domain of size
[32.5d, 10d], being d the cylinder of diameter, d = 0.1. The cylinder is located at
[12.5d, 5d], and is a rigid fixed body. The fluid flows crosses from the left side to the
right, with the boundary conditions detailed in the Figure. Changing the value of
the imposed velocity will modify the studied Reynolds number.

Figure 4.3: Size and geometry of the whole computational domain for the flow
around a cylinder test.

Our modified level-set function, uε, with ε = 0.0025d, represents the cylinder
through an implicit function allowing the distinction between the solid and fluid
phase functions, as shown in Figure 4.4.

Figure 4.4: Modified level-set function used to represent the cylinder and fluid
phases, and zoom of this function to better distinguish the solid-fluid transition
representation in the mesh.

The solid phase function may then be used to obtain the physical parameters.
The densities ρfluid, ρcylinder and the dynamic viscosities ηfluid, ηcylinder are used to
define ρ and η in the whole computational domain with the mixture law (Equation
(4.11)). The number of nodes in the mesh has been fixed at N = 10000 and the
estimated error will be computed to adapt this mesh on both uε and on the computed
velocity field, v. The algorithm followed to solve the whole FSI problem is given
below.

4.6 Numerical examples 107

Input: Input the initial mesh H, the geometry and the boundary conditions,
the thickness ε, number of nodes N , the physical parameters of each
phase, ρcylinder, ρflow, ηcylinder, ηflow, the initial velocity v0 and the
time step ∆t.

Output: The computed velocity field v and the adapted anisotropic mesh.
1 while t <total computing time do
2 Compute utε on the current mesh.
3 Compute the physical parameters distribution on the entire domain, ρ, η

using a mixture law method.
4 Solve the multiphase Navier-Stokes equations, to obtain v, using a VMS

finite element method.
5 Construct the adaptive anisotropic mesh, by estimating the error on both

utε and on v.
6 Update the new mesh, and the computed velocity field v.
7 t = t+ ∆t.

We have firstly considered Reynolds numbers in the permanent regimes (5 ≤
Re ≤ 49), where two stationary recirculations arise behind the cylinder. Then,
subsequent computations concerned the periodic regime (50 ≤ Re ≤ 190). Even if
still laminar, there are two periodic Von Kármán vortex formation.

For the permanent regime investigation, we have fixed the Re = 10, 20, 30, 40.
and have two computed parameters: the length of the recirculation zone, Lr, and
the drag coefficient, CD. Lr is defined as the downstream distance to the vortex
shedding, where the velocity is null, measured on the central line. On the other
hand, CD is defined by Equation (4.36).

CD =
FDrag

1/2ρv2
impd

(4.36)

where v∞ is the maximum inflow velocity, FDrag is the x-component of F, the
total force on the structural surface S, and S is the deviatoric stress tensor:

F =

∫
S

(−pI + S) · nds (4.37)

Figure 4.5 illustrates the stationary computed velocity field v, for a condition
without vortex formation, showing that mesh adaptation adapts well both on the
velocity field v and on uε. Steady-state velocity is just as expected for permanent
regimes.

Parameters Lr and CD were measured for Re = 10, 20, 30, 40, and are plotted in
Figure 4.6. Their results were compared with ones from [84, 85], where our approach
is very close to these references.

If the Reynolds number is increased to Re = 60, 80, 100, 120, theoretically two
rows of vortexes periodically will shed from the cylinder. This periodic shedding
may lead to oscillations on the aerodynamic parameters. In fact, it will reflect the
computation of the drag coefficient, CD, and of the lift coefficient, CL. The lift
coefficient CL is given by

108 4. A monolithic approach for multiphase computational flow simulation

(a) Velocity field v and adapted mesh (b) Zoom around the cylinder

Figure 4.5: Illustration of the computed velocity field v and of the adapted
anisotropic mesh at Re = 40.

(a) Adimentional recirculation length, Lr/d (b) Drag coefficient, CD

Figure 4.6: Comparison of the recirculation length Lr/d and of the drag coefficient
CD for the permanent regime (5 ≤ Re ≤ 49).

CL =
FLift

1/2ρv2
impd

(4.38)

where FLift is the y-component of F. We have plotted CD and CL as a function
of time in Figure 4.7 for Re = 120. We observe that the frequency of the drag
coefficient oscillations is twice the one of the oscillation of the lift coefficient. To
analyze this, one other parameter was introduced, the Strouhal number, St, which
is defined as:

St = fs
d

vx
(4.39)

where the Strouhal frequency fs is the lift coefficient frequency. Figure 4.8 il-
lustrates both the obtained velocity field v and the adapted anisotropic mesh over
one Strouhal period at Re = 120. In this case, we observe the periodic vortex
shedding formulation behind the cylinder, and the adapted anisotropic mesh en-
riches with more nodes this high velocity gradient area. To validate these periodic

4.6 Numerical examples 109

(a) Coefficient CD (b) Coefficient CL

Figure 4.7: Aerodynamic coefficients CD and CL at Re = 120.

investigation results, we use the maximum value of CL, the CL,max, since the av-
erage of this parameter is approximate null, but also the Strouhal number, St, at
Re = 60, 80, 100, 120. Figure 4.9 illustrates the comparison of our results with other
literature’s results [84] and with analytical ones [86].

These comparisons show that CL,max results are below the analytical ones, but
closer to them than other state of the art. To check on the reason of this difference,
one should do a reversibility analysis on the thickness ε and on the mesh number
of nodes to check what would be the best representation. This work has been done
with the tools developed in [71]. The Strouhal number, on the other hand, is closer
to the analytical one.

This approach can handle 2D tests, but also 3D situations. Let us extend the
2D geometry to a 3D volume, with a width size of 5d. Figures 4.10 and 4.11 show
the computed 3D velocity field and the adapted anisotropic mesh, for N = 100000
and at the Reynolds number Re = 40 and 100.

Obviously, the velocity attains the steady-state for this permanent regime, at
Re = 40, and vortex shedding is observed for the periodic regime, at Re = 100. One
observes also how the 3D mesh adapts anisotropically, both on the velocity and on
the hyperbolic tangent function fields.

110 4. A monolithic approach for multiphase computational flow simulation

(a) T (b) T + 1/4Ts

(c) T + 2/4Ts (d) T + 3/4Ts

Figure 4.8: Illustration of the computed velocity field v and of the corresponding
adapted anisotropic mesh at Re = 120 over one Strouhal period.

(a) Maximal lift coefficient, CL,max (b) Strouhal number of St

Figure 4.9: Comparison of the maximum lift coefficient, CL,max, and of the Strouhal
number, St, for the periodic regime (50 ≤ Re ≤ 190).

4.6 Numerical examples 111

(a) Computed velocity field, v (b) Streamlines of the velocity past
the cylinder

(c) Adapted anisotropic mesh (d) uε

Figure 4.10: Illustration of the computed velocity field v, uε, as well as the adapted
anisotropic mesh for Re = 40.

(a) Computed velocity field, v (b) Streamlines of velocity past the
cylinder

(c) Adapted anisotropic meshes (d) uε

Figure 4.11: Illustration of the computed velocity field v, uε, as well as the adapted
anisotropic mesh for Re = 100.

112 4. A monolithic approach for multiphase computational flow simulation

4.6.2 Fluid buckling

Let us now illustrate a case where there are also different phases, but that are
not spatially fixed. Two-fluid flow is thus considered, by simulating the jet of a
viscous fluid impacting a rigid plate. The geometry is given in Figure 4.12, with a
rectangular injector located at a height = 10d, in a box of size [10d × 12d], where
d = 0.1m.

Figure 4.12: Geometry used for fluid buckling simulation, where d = 0.1m.

In this case, the gravity effect is an important factor and we have considered g =
9.18m/s2. The moving convected level-set method has been used to compute utε and
capture the moving fluid. In our simulation, the thickness was supposed ε = 0.02d
and represents the separation between fluid and air domains and is obtained by
solving the convected redistancing equation (4.35). A small thickness ε may allow a
very good representation of the configuration of the moving fluid. Parameters were
defined as ρfluid = 1800kg/m3 and ηfluid = 500Pa · s, and the injection velocity is
vimp = (0, 0.25m/s), with the time step ∆t = 0.05. Figure 4.13 shows the fluid
buckling and the adapted anisotropic mesh throughout time.

We observe clearly the configuration of the moving liquid part, and its oscillations
after an initial stable jet, captured thanks to the anisotropic adaptation.

This application can also be extended to the 3D case, the rectangular injector
becoming a cylinder one. In 3D, more nodes have been required, with N fixed at
100000, for a higher computational cost, in a logical way. Final illustrations of this
last case are presented in Figure 4.14.

Detail of the validation on fluid buckling simulations using the followed method-
ology and performed by other co-workers has been well presented in [82, 83] and

4.6 Numerical examples 113

(a) t = 10s (200 increments) (b) t = 20s (400 increments)

(c) t = 30s (600 increments) (d) t = 40s (800 increments)

(e) t = 50s (1000 increments) (f) t = 60s (1200 increments)

Figure 4.13: Illustration of 2D fluid buckling simulation results, as a function of
time, with 10000 fixed nodes for the anisotropic adapted mesh.

were here given as simple illustrations of the presented numerical techniques.

114 4. A monolithic approach for multiphase computational flow simulation

(a) t = 10s (200 increments) (b) t = 20s (400 increments)

(c) t = 30s (600 increments) (d) t = 40s (800 increments)

(e) t = 50s (1000 increments) (f) t = 60s (1200 increments)

Figure 4.14: Illustration of 3D fluid buckling simulation, for a 100000 nodes
anisotropic mesh.

4.7 Numerical simulations based on real images 115

4.7 Numerical simulations based on real images

In this section, we will illustrate the usage of the developed numerical methods
through numerical simulations based on real images, which involve image process-
ing, interpolation of the image on mesh, redistancing a modified level-set function,
mesh adaptation and a multiphase Navier-Stokes solver. The image processing pro-
vides the geometry of the object of interest, interpolation of the image on the mesh
links the image information and the discretization of the studied phases on the
mesh. The redistancing method coupled to anisotropic adaptation allows an ac-
curate description of these phases and provides also regularized level-set functions
coupled to the mesh as input to the flow solver. Simulation results concern not only
flow but include the fact that the three features (flow, geometry, mesh) are built
simultaneously from the image and in an adapted way.

4.7.1 2D picture based simulations

In the industrial design domain, the first challenge is the numerical description of a
given object, the accuracy being the key for the performance. A second challenge
might be to be able to represent this object in the mesh format. To pursue both
objectives, too much time may be spent. CAD software is used to create numerically
the objects, followed by specific meshing tools to generate an adapted mesh. The
methodology proposed in this work may help to easily achieve this goal at a minimum
effort. For that, let us consider the example of a Formula 1 racing car, illustrated
in Figure 4.15.

Figure 4.15: Original Formula 1.

We intend to simulate the air flow at high velocity, surrounding the Formula
1 vehicle. The first step is to segment the racing car from the color image. The
original image has been convected with the three channels HSL (Hue, Saturation,
Lightness), which are presented in Figures 4.16(a), (c) and (e). From these three
channels, we have chosen specific thresholding values. For example, thresholding
values= (25, 30, 9) for (Hue, Saturation, Lightness) channels and have segmented
different parts from them. We assembled these segmented images to obtain the
overall vehicle description, Figure 4.16(g), which is very close to the description of

116 4. A monolithic approach for multiphase computational flow simulation

the racing car. To fill the empty domain and filter some noise, we have done Opening
and Closing operations, the final image being given in Figure 4.16(h), which well
describes the boundary of the racing car. Hence, this image data provides the
segmentation of the car in the original image, which will give us the sign function
for the redistancing procedure.

Let us now consider this final segmented racing car image, the white color rep-
resenting the racing car and the ground, ûseg, shown in Figure 4.17, being both
considered rigid solids. The black color is thus the region where air flows, from the
left to the right side with the illustrated imposed boundary conditions. The image
is of size (2000× 500).

Parameters for the redistancing resolution, the Navier-Stokes solver and the mesh
adaptation procedure are the following: the thickness ε and the fictitious time step
are, respectively, ε = 0.01,∆τ = 0.00025; the dynamic viscosity and the density
of the solid and the fluid are v, ρsolid ηsolid and ρflow ηflow; the time step is ∆t =
0.005 for the Navier-Stokes solver; the number of nodes is fixed at N = 10000 for
anisotropic mesh adaptation. The whole algorithm for this application is detailed
below as follows.

Input: Original color image û, initial mesh H in dimension [0, 4]× [0, 1],
(ε = 0.01,∆τ = 0.00025), inlet velocity v, physical parameters of each
phase, ρsolid ηsolid and ρflow ηflow, time step ∆t = 0.005, N = 10000.

Output: The computed velocity field v, the redistanced function uτε , and
adapted anisotropic mesh.

1 Image processing of the original color image û, to obtain the binary based
segmented image ûseg.

2 Interpolate the segmented image ûseg on the initial mesh, obtain the
discretization function as the initial function u0

ε = uh.
3 while t < total computing time do
4 Compute the sign function S(ûseg) from the segmented image ûseg on

currant mesh.
5 Solve the redistancing equation, to obtain uτε .
6 Correct the sign of computed redistanced function uτε .
7 Compute the physical parametesr ρ η of the whole computational domain

using a mixture law , by coupling the parameters of solid and fluid and
the redistanced function uτε .

8 Solve the multiphase Navier-Stokes equations, to obtain the computed
velocity field v of the flow, using a VMS finite element method

9 Construct the adaptive anisotropic mesh H̃, to adapt the convected
level-set function uτε and the computed velocity field v.

10 Update the new mesh, redistanced function uτε and computed velocity
field v.

11 t = t+ ∆t,

At each increment, the redistancing procedure, the multiphase Navier-Stokes
solver, and mesh adaptation are launched. After 60 increments, at t = 0.3, the re-

4.7 Numerical simulations based on real images 117

(a) H channel (b) Segmentation for the H channel

(c) S channel (d) Segmentation for the S channel

(e) L channel (f) Segmentation for the L channel

(g) Assembling of segmented images (h) Final segmented image

Figure 4.16: HSL channels built from the original image and their segmentation,
as well as the final segmented image.

118 4. A monolithic approach for multiphase computational flow simulation

Figure 4.17: Segmented racing car image, and implemented boundary conditions.

distancing function uτε has converged. Parameters of the whole computation domain
are stable, and the Navier-Stokes solver provides a velocity field that may still vary
due to turbulence and unsteady effects, accompanied by changes in the mesh. At
Re = 300 and t = 2.5s (500 increments), the redistanced level-set function uτε , the
computed velocity field v and the adapted anisotropic mesh (with N = 10000) are
illustrated in Figure 4.18. This computation run on 3 cores during 25 minutes.

We observe that the redistanced function well describes the boundary of the
solid part, generating an accurate distribution of the physical properties, generated
through the mixture law and used in the multiphase Navier-Stokes solver. The mesh
at the different increments, well converge stowards an adapted solution, both on uτε ,
but also on vt.

After this 2D illustration, which shows a direct application of our image to mesh
tools, a 3D case concerning a real sample will be detailed.

4.7 Numerical simulations based on real images 119

(a) t = 0.5 (100 increments)

(b) t = 1.5 (300 increments)

(c) t = 2.5 (500 increments)

Figure 4.18: Redistanced function, computed velocity field and adapted anisotropic
mesh, for Re = 300 at t = 0.5, 1.5, 2.5s

120 4. A monolithic approach for multiphase computational flow simulation

4.7.2 3D image based simulation

Let us introduce the 3D simulation of flow on an urban environment, where the
geometry is given by images issued from GIS (Geographic Information Systems)
data bases. These type of computation is often used for studies of urban climate,
air pollution or city planning. A very important and difficult issue concerns the
reconstruction of a 3D numerical sample that well contains all the geographic char-
acteristics. One solution is to build the 3D image, like an ”urban tomography”.
For that, we use the 2D image of the urban landscape and the height values corre-
sponding to each pixel (that is the data contained in the image) to generate the 3rd
dimension and the voxel value, as explained hereafter.

Figure 4.19, û, shows a 2D image of the Nantes urban description, obtained
through BDTopo and IRSTV, Institut des Sciences et Techniques de la Ville, where
the pixel grey-scale represents the distribution of the building’s height. Hence, the
relation between the pixel values and the height of the buildings is given by the
following equation:

height = −0.2257× û(Pixel) + 57.228 (4.40)

Figure 4.19: 2D image representing the urban (building) description of Nantes,
obtained using the GIS’s database of BDTopo, through IRSTV.

To illustrate the followed methodology, we have chosen a part of this large image,

4.7 Numerical simulations based on real images 121

named again, û2d, represented by a red rectangle in Figure 4.19, where Ecole Centrale
de Nantes is located, for which a photo is shown in 4.20(a). This sub-image is also
drawn in Figure 4.20(b), and has as dimensions (528 × 392) pixels. In reality, it
represents a 528× 392m2 real surface.

To perform a 3D simulation, we have first created a 3D image of dimensions
(528× 392× 50), by extending the 2D based image. For that, each building’s third
dimension is completed to its own height, given by Equation (4.40). The rest of the
voxels on this 3D image, belonging to the air, are given the 0 value. Finally, this
allows plotting the 3D buildings and a 3D new image, û, as shown in Figure 4.20(c).

After the image construction procedure has been done, we consider the building
parts as rigid bodies, in white color, the rest as the fluid flowing in black. The voxel
values û(V oxel) are defined as follows:{

û(V oxel) = 255 for the buildings

û(V oxel) = 0 for the surrounding environment
(4.41)

As previously presented, Morph-M directly provides us the distance function as
an image, ûd. Then, we have interpolated it on a mesh of dimensions [0, 5.27] ×
[0, 3.91] × [0, 0.49] to obtain: ud(X

i) = ûd(V oxel
k)/100. Finally, the initial hyper-

bolic tangent function, u0
ε = uε(ud, ε) has been computed in the mesh as follows:

uε = ε tanh(
ud
ε

) (4.42)

Figure 4.21(a) shows the image of the signed distance function to the build-
ings and air interface, ud, obtained using Morph-M. Below, Figure 4.21(b), we have
represented the computed hyperbolic tangent function, uε(ud, ε), after mesh inter-
polation.

Since the initial redistanced phase function is very close to the final solution, most
of the increments are spent for the multiphase Navier-Stokes equation resolution and
for mesh adaptation. For the redistancing scheme, we have input (ε = 0.01,∆τ =
0.00005) and an imposed number of nodes N of 400000. We have performed 25
redistancing-adaptations before solving the flow, to well capture only the geometry.
Following the previously introduced algorithm steps, we have launched the flow
solver increments, with a time step ∆t = 0.01. At T = 2.5s (250 increments), the
streamlines of the velocity field are illustrated in Figure 4.22, showing complex flow
patterns, like the vortexes around the buildings. This type of information may be
used to improve the design of buildings and city planning, even if here it remains
only an illustration of an image-mesh-simulation methodology.

122 4. A monolithic approach for multiphase computational flow simulation

(a) Photo of the studied area

(b) 2D BDTopo image

(c) 3D reconstruction of the studied area, the scale representing the height

Figure 4.20: 3D image created by extending a 2D GIS view.

4.7 Numerical simulations based on real images 123

(a) Image of the distance field, ûd

(b) Hyperbolic tangent function, computed on the mesh uε(ud, ε)

Figure 4.21: Image of the signed distance function, ûd, and computed hyperbolic
tangent function, interpolated on the mesh, uε.

124 4. A monolithic approach for multiphase computational flow simulation

(a) Computed velocity field and flow streamlines

(b) Adapted anisotropic mesh

(c) Computed velocity field and flow streamlines

(d) Adapted anisotropic mesh

Figure 4.22: Air flow on an urban environment, with a representation of the com-
puted velocity field and flow streamlines around the buildings represented in an
implicit way and the adapted anisotropic mesh.

4.7 Numerical simulations based on real images 125

4.7.3 2D flow simulations on Paint and Phone images

In this section, we introduce numerical simulations based on images, obtained in a
different way than the ones presented previously. Firstly, we have drawn an image
using Microsoft Paint, in an accurate and controllable way, with pixel values that are
fixed and easily define the different objects. Secondly, an image has been hand-made
on paper and has been photographed after using a SmartPhone, to produce the used
picture. The advantage of this method is that it is easily done, but a good quality
of the image is not guaranteed, often needing image treatment and processing.

4.7.3.1 Fluid-structure interaction flow simulation

Let us consider two images representing the same type of object: the Chinese writing
of the word ”flow”. The first image has been drawn with Microsoft Paint and is
represented in Figure 4.23(a), where the white color represents the rigid body. Due
to the good accuracy on the representation, this image does not need to be further
processed. The second image has been drawn on paper, and then photographed
with a SmartPhone, as illustrated in Figure 4.23(b). This image has very good
quality thanks to the camera of the SmartPhone and has been processed initially
by a thresholding technique. The final used image is shown in Figure 4.23(c).

(a) Image drawn with Paint
(600× 300)

(b) Photography of a hand-
made drawing (600× 300)

(c) Segmented image from pho-
tography (600× 300)

Figure 4.23: Images used on flow simulations directly from drawn images and pho-
tography.

In the flow simulation, we have imposed the same boundary conditions as the one
considered previously for the flow past cylinder simulations. Numerical parameters
chosen are: ε = 0.01; ∆τ = 0.00025; the number of nodes is fixed at N = 10000;
the physical parameters of each phase ρsolid, ηsolid and ρair ηair. Both images have
been interpolated in the initial mesh, of dimensions [0, 2] × [0, 1]. Redistancing-
Multiphase Navier-Stokes solver and mesh adaptation have been launched, to obtain
the redistanced phase function, uτε , the velocity field, v, and the mesh, at each
increment. The initial function u0

ε is given from a discontinuous Heaviside function
and the redistancing procedure converges after 60 increments. For Re = 300 with
a flow time step of ∆t = 0.01, the computed velocity field v and the adapted
anisotropic mesh are also illustrated in Figures 4.24 and 4.25.

Results obtained, even if qualitative, show an easy way for numerical simulation
through our proposed methodology. Paint image guarantees the accuracy and hand-
made with photo capture gives a certain flexibility.

126 4. A monolithic approach for multiphase computational flow simulation

(a) t = 0.5 (50 increments) (b) t = 1.0 (100 increments)

(c) t = 1.5 (150 increments) (d) t = 2.0 (200 increments)

Figure 4.24: Redistanced function, computed velocity field and adapted anisotropic
mesh, for Re = 300 at t = 0.5, 1, 1.5, 2s.

4.7 Numerical simulations based on real images 127

(a) t = 0.5 (50 increments) (b) t = 1.0 (100 increments)

(c) t = 1.5 (150 increments) (d) t = 2.0 (200 increments)

Figure 4.25: Redistanced function, computed velocity field and adapted anisotropic
mesh, for Re = 300 at t = 0.5, 1, 1.5, 2s.

128 4. A monolithic approach for multiphase computational flow simulation

4.7.3.2 Moving interfaces and flow simulation

In this section, flow involving moving interfaces, previously presented, will now be
done using a photo to describe the geometry. Figure 4.26(a) represents a drawn and
after photographed image, of dimensions (1270 × 720). Three identified colors are
visualized: blue, red and green. The blue color represents a cavity rigid region, the
red one is the fluid’s inlet and the green is the initial fluid filling already the cavity.
Here, we propose to simulate a fluid entering the cavity. Flow inlet controls the
injection flow rate and we observe the motion of the green part, representing the
fluid.

(a) Original photography (b) The rigid body

(c) Flow inlet (d) Initial filling part

Figure 4.26: Photographed image and its three segmented colors, generating three
treated images.

The first step is to segment the three colors using Opening/Closing operations
through Morph-M. The results obtained after this processing step are shown in
Figures 4.26(b),(c) and (d), where one observes a very good distinction between the
different regions.

The physical parameters of air, liquid and rigid parts are ρair = 1kg/m3, ρfluid =
1000kg/m3, ρsolid = 20000kg/m3 and ηair = 0.00002kg/(s·m), ηfluid = 0.1kg/(s·m),
ηsolid = 1000kg/(s ·m). The three segmented images are interpolated on an initial
mesh of dimensions ([0, 12.69]× [0, 7.19]). The thickness and the fictitious time step
are ε = 0.01 and ∆τ = 0.00025, respectively, and are used for redistancing and for
the convected moving interface coupled procedure. The algorithm steps are the same
as previously presented, where we have added an initial redistancing procedure.

Let this simulation run on 1 core during 528 minutes (for 5000 increments)
with the time step ∆t = 0.02. Figure 4.27 shows the results obtained at T =

4.7 Numerical simulations based on real images 129

25, 50, 75, 100s, namely the moving convected filling fluid and the adapted anisotropic
mesh.

(a) T = 25s (1250 increments) (b) T = 50s (2500 increments)

(c) T = 75s (3750 increments) (d) T = 100s (5000 increments)

Figure 4.27: The convected filling fluid and the adapted anisotropic mesh, at T =
25, 50, 75, 100s.

It illustrates the numerical capture of the filling fluid, where the initial and
the boundary conditions are given by drawings and photographs. Quality of the
drawn picture and camera may influence the results, but overall results are rather
interesting, since we manage to define the geometry features in a very simple and
easy way.

130 4. A monolithic approach for multiphase computational flow simulation

4.8 Conclusion

In this chapter, a multiphase Navier-Stokes solver has been introduced. It is based
on a resolution using a Variational MultiScale finite element method. Mixture laws
allow the definition of the physical properties everywhere in the computational do-
main, using our modified level-set function. This latter can be advected and re-
distanced simultaneously. Two test cases illustrated the proposed methodology.
Furthermore, this methodology based on images that may be issued from different
acquisition systems, 2D images or 3D ones, drawn with Paint or hand-made and
photographed. All these examples demonstrate the high ability of our methodology
to handle numerical simulation on real data, in an accurate, efficient and easy way.

4.9 Résumé français

Dans ce chapitre, nous avons présenté un solveur pour les équations de Navier
Stokes multiphasiques. Ce solveur utilise une méthode multi-échelles. Les lois de
mélange basées sur la fonction Heaviside régularisée, permettent la définition des
propriétés physiques dans tout le domaine de calcul. Cette dernière peut être ad-
vecté et réinitializé simultanment. Deux cas test ont illustrée cette méthodologie.
Les images utilisées proviennent de différents systémes d’acquisition (photographie,
image 2D ou 3D, dessinées à la main ...). Ces exemples montrent la robustesse de
la méthode et la facilité de réaliser des simulations numériques de manière simple
et précise.

Chapter 5

Conclusions and Perspectives

The main objective of this work aims at the simplification of numerical simula-
tions, by not using CAD software to create numerical geometries, or not creating
anisotropic meshes from surface definitions. The only requirement is an ”image”,
no matter in 2D or 3D, grey-scale or color, ... Then, we perform the numerical
simulations directly on these image data.

In this work, we have first shown mathematical morphology techniques to process
images, providing the segmented regions and distinguishing the phases necessary to
our computations. These techniques are efficient and accurate. Then, the immersed
image method was proposed to build a ”bridge” between the image and the mesh,
transforming image data to mesh discretizations.

Then, computing the estimation error for the mesh discretization, the metric
tensor field is constructed, which may be used to create the optimal anisotropic
mesh. Additionally, we have proposed a new methodology to build a regularized
function using the redistancing function. The main advantages are: (1) the rebuild
regularized function will be used later for numerical simulations; (2) the gradient of
the regularized function is helpful for the anisotropic mesh construction.

Finally, the constructed anisotropic mesh from image data and the redistanced
function were directly used in numerical simulations, by coupling it to stabilized
finite element solvers. The variation multiscale multiphase Navier-stokes solver was
implemented and the illustrated examples have demonstrated how efficient is this
methodology. The immersed image method, anisotropic mesh adaptation and the
finite element solver are all fully parallel, reducing the computation time, but with
a small increase on the memory requirement.

Consequently, this work showed applications of flow computations onMRI scans,
X-ray microtomographies, Smartphone photos and drawings and has proved to be
an efficient and powerful methodology in the areas covered by these acquisition
systems.

Perspectives of this work concern both the numerical techniques and their ap-
plications.

In what concerns numerical developments, further work should be done on adap-
tation on images. Firstly, extension to 4D images, like films, should be considered.
In particular, it would allow an efficient image storage of the space-time image in-
formation. Furthermore, the fact that the mesh format may be a way of performing

131

compression and superpixelisation must be studied in a deeper way and is a very
important subject. In whole resolution loop, solvers and adaptation are linked to an
error, fixed by the user and different according to the resolution. This error should
arise from a global adaptative model, by specifying only the CPU power and/or
time. This is something to be pursued in a near future. Tests cases for flow situ-
ations were mostly illustrative but on-going work validates the developments here
presented.

In terms of applications, efficient image based modelling opens wide perspectives,
for all the reasons cited above. The code developed is already used in the medical,
material science and urban domains. Comparisons with in-situ experiments should
also further validate our approach.

Bibliography

[1] M. Viceconti, C. Zannoni, L. Pierotti, Tri2solid: an application of reverse en-
gineering methods to the creation of cad models of bone segments, Computer
Methods and Programs in Biomedicine 56 (1998) 211–220.

[2] W. Lorensen, H. Cline, Marching cubes: A high resolution 3d surface construc-
tion algorithm, ACM SIGGRAPH Computer Graphic 21 (1987) 163–169.

[3] D. Rajon, W. Bolch, Marching cube algorithm: review and trilinear interpola-
tion adaptation for image-based dosimetric models, Computational Methods in
Image Graphics 27 (2003) 411–435.

[4] The Lenna story (1972).
URL http://www.lenna.org

[5] H. Barrow, J. Tenembaum, Interpreting line drawings as three-dimensional sur-
faces, Artificial Intelligence 17 (1981) 75–116.

[6] T. Lindeberg, Edge detection and ridge detection with automatic scale selection,
International Journal of Computer Vision 30 (1998) 117–154.

[7] D. Ziou, S. Tabonne, Edge detection techniques: an overview, International
Journal of Pattern Recognition and Image Analysis 8 (1998) 537–559.

[8] D. Ziou, S. Tabonne, Region growing: Childhood and adolescence, Computer
Graphics and Image Processing 5 (1976) 382–399.

[9] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contours model., Interna-
tional Journal of Computer Vision 1 (1988) 321–331.

[10] D. Mumford, J. Shah, Optimal approximation by piece-smooth functions and
associated variational problems, Communications on Pure and Applied Math-
ematics 42 (5) (1989) 577–685.

[11] D. Chan, J. Vese, Active contours without edges., IEEE Transactions on Image
Processing 10 (2001) 266–277.

[12] S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: Al-
gorithms based on hamilton-jacobi formulations, Journal of Computational
Physics 12-49 (1988) 146–159.

133

[13] L. Vese, T. Chan, A multiphase level set framework for image segmentation
using the mumford and shah model., International Journal of Computer Vision
50 (2002) 271–293.

[14] S. Winkler, C. van den Branden Lambrecht, M. Kunt, Vision models and appli-
cations to image and video processing, Springer, 2001, Ch. Vision and Video:
Models and Applications, p. 209.

[15] N. Ahmed, T. Natarajan, K. Rao, Discrete cosine transform, IEEE Transactions
on Computers C-23 (1974) 90–93.

[16] Official joint photographic experts group site (1994).
URL http://www.jpeg.org

[17] A. Jacquin, A fractal theory of iterated markov operators with applications to
digital image coding, Ph.D. thesis, Georgia Institute of Technology (1989).

[18] J. Murray, W. vanRyper, Encyclopedia of Graphics File Formats, 2nd Edition,
O’Reilly Media, 1996.

[19] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding,
IEEE Transactions on Information Theory 24 (5) (1978) 530.

[20] T. Welch, A technique for high-performance data compression, Computer 17 (6)
(1984) 8–19.

[21] B. Delaunay, Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdelenie Matematich-
eskii i Estestvennyka Nauk 7 (793-800) (1934) 1–2.

[22] W. Frey, Selective refinement: A new strategy for automatic node placement
in graded triangular meshes, International Journal for Numerical Methods in
Engineering 24 (11) (1987) 2183–2200.

[23] F. Hecht, Bidimensional anisotropic mesh generator, technical report, inria,
rocquencourt.
URL http://www.ann.jussieu.fr/hecht/ftp/bamg/bamg.pdf

[24] M. Yerri, M. Shephard, Automatic 3d mesh generation by the modified-octree
technique, International Journal for numerical methods in engineering 20 (1984)
1965–1990.

[25] B. Chaudhuri, Applications of quadtree, octree, and binary tree decomposition
techniques to shape analysis and patern recognition, IEEE Transactions on
pattern analysis and machine intelligence PAMI-7 (6) (1985) 652–661.

[26] P. George, E.Seveno, The advancing-front mesh genenration method revisited,
International Journal for numerical methods in engineering 37 (1994) 3605–
3619.

[27] T. Coupez, Grandes transformations et remaillage automatique, Ph.D. the-
sis, Ecole Nationale Superieure des Mines de Paris, CEMEF, Sophia Antipo-
lis,France (1991).

[28] T. Coupez, Génération de maillage et adaptation de maillage par optimisation
locale, Revue Europeenne d’Elements Finis 9 (4) (2000) 403–423.

[29] C. Gruau, T. Coupez, 3d tetrahedral unstructured and anisotropic mesh gener-
ation with adaptation to natural and multidomain metric, Computer Methods
in Applied Mechanics and Engineering 194 (2005) 4951–4976.

[30] I. Babus̆ka, W. Rheinboldt, A-posteriori error estimates for the finite element
method., International Journal for Numerical Methods in Engineering 12 (10)
(1978) 1597–1615.

[31] C. Zinekiewicz, J. Zhu, The supercovergent patch recovery and a posteriori
estimates. part 1: the recovery technique, International Journal for Numerical
Methods in Engineering 33 (1992) 1331–1364.

[32] T. Brooks, A. Hughes, Streamline upwind/petrov-galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible navier-
stokes equations, Computer Methods in Applied Mechanics and Engineering
32 (1) (1982) 199–259.

[33] T. Hughes, M. Mallet, A new finite element formulation for computational
fluid dynamics: Iii. the generalized streamline operator for multidimensional
advective-diffusive systems, Computer Methods in Applied Mechanics and En-
gineering 58 (3) (1986) 305–328.

[34] F. Brezzi, M. Bristeau, L. Franca, M. Mallet, G. Rogé, A relationship between
stabilized finite element methods and the galerkin method with bubble func-
tions, Computer Methods in Applied Mechanics and Engineering 96 (1) (1992)
117–129.

[35] F. Brezzi, A. Russo, Choosing bubbles for advection-diffusion problems, Math-
ematical Models and Methods in Applied Sciences 4 (4) (1994) 571–587.

[36] T. Hughes, G. Feijoo, L. Mazzei, J. Quincy, The variational multiscale method
a paradigm for computational mechanics, Computer Methods in Applied Me-
chanics and Engineering 166 (1998) 3–24.

[37] T. Coupez, Metric construction by length distribution tensor and edge based
error for anisotropic adaptive meshing, Journal of Computational Physics 230
(2011) 2391–2405.

[38] T. Coupez, G. Jannoun, N. Nassif, H. Nguyen, H. Digonnet, E. Hachem, Adap-
tive time-step with anisotropic meshing for incompressible flows, Journal of
Computational Physics 241 (2013) 195–211.

[39] Brainweb: Simulated brain database.
URL http://www.bic.mni.mcgill.ca/brainweb

[40] B. Aubert-Broche, M. Griffin, G. Pike, A. Evans, D. Collins, Twenty new digital
brain phantoms for creation of validation image data bases, IEEE Transactions
on Medical Imaging 25 (11).

[41] B. Aubert-Broche, A. Evans, D. Collins, A new improved version of the realistic
digital brain phantom, NeuroImage 32 (138-145).

[42] P. Frey, F. Alauzet, Anisotropic mesh adaptation for cfd computations, Com-
puter Methods in Applied Mechanics and Engineering 194 (2005) 5068–5082.

[43] O. Basset, Simulation numérique découlements multi-fluides sur grille de calcul.
mechanics, Ph.D. thesis, Ecole Nationale Superieure des Mines de Paris,France
(2006).

[44] F. Alauzet, Size gradation control of anisotropic meshes, Finite Element in
Analysis and Design 46 (2010) 181–202.

[45] H. Huang, Metric tensors for anisotropic mesh generation, Journal of Compu-
tational Physics 204 (2005) 633–665.

[46] F. Alauzet, Adaptation de maillage anisotrope en trois dimensions. application
aux simulations instationnaires en mécanique des fluides, Ph.D. thesis, Univer-
site Montpellier II, Montpellier, France (2003).

[47] A. Loseille, Adaptation de maillage anisotrope 3d multi-échelles et ciblé á une
fonctionnelle pour la mécanique des fluides. application á la prédiction haute-
fidélité du bang sonique, Ph.D. thesis, Université Pierre et Marie Curie, Paris
VI, Paris, France (2003).

[48] T. Coupez, A mesh improvement method for 3d automatic remeshing, numeri-
cal grid generation in computational fluid dynamics and related fields, Pineridge
Press (1994.) 615–626.

[49] Ge healthcare: Optima mr450w 1.5t with gem suite.
URL http://www3.gehealthcare.com

[50] T. Coupez, H. Digonnet, R. Ducloux, Parallel meshing and remeshing, Applied
Mathematical Modelling 25 (2000) 83–98.

[51] L. Shapiro, G. Stockman, Computer Vision, Prentice Hall, 2001.

[52] C. Li, C. Kao, J. Gore, Z. Ding, Implicit active contours driven by local bi-
nary fitting energy, in: IEEE: Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–7.

[53] T. Coupez, E. Hachem, Solution of high-reynolds incompressible flow with sta-
bilized finite element and adaptive anisotropic meshing, Computer Method in
Applied Mechanics and Engineering (2013) 65–85.

[54] E. Hachem, H. Digonnet, E. Massoni, T. Coupez, Immersed volume method
for solving natural convection, conduction and radiation of a hat-shaped disk
inside a 3d enclosure, International Journal of Numerical Methods for Heat and
Fluid Flow 22 (6) (2012) 2–2.

[55] E. Hachem, T. Kloczko, H. Digonnet, T. Coupez, Stabilized finite element
solution to handle complex heat and fluid flows in industrial furnaces using
the immersed volume method, International Journal for Numerical Methods in
Fluids 68 (1) (2012) 99–121.

[56] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions
to incompressible two-phase flow, Journal of Computational Physics 114 (1)
(1994) 146–159.

[57] M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing
algorithm and its application to interfacial incompressible fluid flow, SIAM
Journal on Scientific Computing 20 (4) (1999) 1165–1191.

[58] T. Coupez, L. Silva, E. Hachem, Implicit boundary and adaptive anisotropic
meshing, EMA SIMAI Springer Series.

[59] L. Franca, S. Frey, T. Hughes, Stabilized finite element methods: I. application
to the advective-diffusive model, Computer Methods in Applied Mechanics and
Engineering 95 (2) (1992) 253–276.

[60] R. Codina, Comparison of some finite element methods for solving the diffusion-
convection-reaction equation, Computer Methods in Applied Mechanics and
Engineering 156 (1-4) (1998) 185–210.

[61] E. Hachem, Stabilized finite element method for heat transfer and turbulent
ows inside industrial furnaces, Ph.D. thesis, Ecole Nationale Superieure des
Mines de Paris, CEMEF, Sophia Antipolis,France (2009).

[62] L. Franca, A. Russo, Deriving upwinding, mass lumping and selective reduced
integration by residual-free bubbles, Applied Mathematics Letters 9 (5) (1996)
83–88.

[63] A. Masud, R. A. Khurram, A multiscale/stabilized finite element method for
advection-diffusion equation, Computer Methods in Applied Mechanics and
Engineering 193 (2004) 1997–2018.

[64] Morph-m: Image processing library specialized in mathematical morphology.
URL http://cmm.ensmp.fr/Morph-M/

[65] Online course on mathematical morphology.
URL http://cmm.ensmp.fr/ serra/cours/index.htm

[66] Centre for mathematical morphology.
URL http://cmm.ensmp.fr

[67] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, Lon-
don, 1982, Ch. Volume 1, p. 600.

[68] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, Lon-
don, 1988, Ch. Volume 2: Theoretical Advances, p. 411.

[69] S. Beucher, Mathematical Morphology and its Applications to Image Process-
ing, Kluwer Academic Publishers, Fontainebleau, 1994, Ch. Watershed, hierar-
chical segmentation and waterfall algorithm, pp. 69–76.

[70] L. Orgéas, P. Dumont, J. Vassal, O. Guiraud, V. Michaud, D. Favier, In-plane
conduction of polymer composite plates reinforced with architectured networks
of copper fibres, Journal of Materials Science 47 (2932-2942).

[71] S. E. Feghali, Novel monolithic stabilized finite element method for fluid-
structure interaction, Ph.D. thesis, Ecole Nationale Superieure des Mines de
Paris, CEMEF, Sophia Antipolis,France (2012).

[72] J. Donea, S. Giuliani, J. P. Halleux, An arbitrary lagrangian-eulerian finite
element method for transient dynamic fluid-structure interactions, Computer
Methods in Applied Mechanics and Engineering 33 (1982) 689–723.

[73] W. A. Wall, S. Genkinger, E. Ramm, A strong coupling partitioned approach
for fluidstructure interaction with free surfaces, Computers and Fluids 36 (2007)
169–183.

[74] B. Hubner, E. Walhorn, D. Dinkler, A monolithic approach to fluid-structure
interaction using space-time finite elements, Computer Methods in Applied
Mechanics and Engineering 193 (23-26) (2004.) 2087–2104.

[75] E. Walhorn, A. Kolke, B. Hubner, D. Dinkler, Fluid-structure coupling within
a monolithic model involving free surface flows, Computers and structures 83
(2005) 2100–2111.

[76] R. Codina, Stabilized finite element approximation of transient incompressible
flows using orthogonal subscales, Computer Methods in Applied Mechanics and
Engineering 191 (2002) 4295–4321.

[77] R. Codina, Finite element approximation of the three field formulation of the
stokes problem using arbitrary interpolations, SIAM Journal on Numerical
Analysis 47 (2009) 699–718.

[78] S. Badia, R. Codina, Stabilized continuous and discontinuous galerkin tech-
niques for darcy flow, Computer Methods in Applied Mechanics and Engineer-
ing 199 (2010) 1654–1667.

[79] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set
method for improved interface capturing, Journal of Computational Physics
183 (2002) 83–116.

[80] J. Bruchon, T. Coupez, Etude de la formation dune structure de mousse poly-
mere par simulation de lexpansion anisotherme de bulles de gaz, Mecanique et
Industries 4 (2003) 331.

[81] D. Peng, B. Merriman, S. Osher, H. Zhao, , M. Kang, A pde-based fast local
level set method, Journal of Computational Physics 155 (1999) 410–438.

[82] L. Ville, L. Silva, T. Coupez, Convected level set method for the numerical
simulation of fluid buckling, International Journal for Numerical Methods in
Fluids 66 (3) (2011) 324–344.

[83] L. Ville, Modélisation multiphasique et calcul d’interface dans les procédés de
mise en oeuvre des propergols, Ph.D. thesis, Ecole Nationale Superieure des
Mines de Paris, CEMEF, Sophia Antipolis,France (2011).

[84] A. Placzek, J. Sigrist, A. Hamdouni, Numerical simulation of an oscillating
cylinder in a cross-flow at low reynolds number: Forced and free oscillations,
Computers and Fluids 38 (2009) 80–100.

[85] M. Gerouache, Etude numérique de l’instabilité de bénard-kármán derrière
un cylindre fixe ou en mouvement périodique. dynamique de l’écoulement
et advection chaotique., Ph.D. thesis, Ecole Polytechnique de l’Université de
Nantes,France (2000).

[86] C. Norberg, Fluctuating lift on a circular cylinder: review and new measure-
ments., Journal of Fluids and Structures 17 (1) (2003) 57–96.

Résumé

Ces dernières années, les techniques

d'imagerie ont fait l'objet de beaucoup

d'améliorations. Elles permettent de fournir

des images numériques 2D ou 3D précises

de zones parfois invisibles à l'oeil nu. Dans

cette thèse, l'imagerie sera utilisée pour

effectuer des simulations numériques en la

couplant avec un solveur éléments finis. Nous

présenterons, en premier lieu, la morphologie

mathématique et la méthode d'immersion

d'image. Elles permettront l'extraction

d'informations permettant la transformation

d'une image dans un maillage exploitable.

Puis, une méthode itérative d'adaptation de

maillage basée sur un estimateur d'erreur

sera utilisée afin de construire un maillage

optimal. Ainsi, un maillage sera construit

uniquement avec les données d'une image.

Nous proposerons également une nouvelle

méthodologie pour construire une fonction

régulière à l'aide d'une méthode de

réinitialisation de la distance signée. Deux

avantages sont à noter : l'utilisation de la

fonction régularisée permet une bonne

adaptation de maillage. De plus, elle est

directement utilisable par le solveur éléments

finis. Les simulations numériques sont donc

réalisées en couplant éléments finis

stabilisés, adaptation de maillage anisotrope

et réinitialisation. L'objectif de cette thèse est

donc de simplifier le calcul numérique à partir

d'image, d'améliorer la précision numérique,

la construction d'un maillage automatique et

de réaliser des calculs numériques parallèles

efficaces. Les applications envisagées

peuvent être dans le domaine médical, de la

physique des matériaux ou du design

industriel.

Mots Clés

Traitement de l'image, la fonction level-set, la

fonction de réinitialisation, anisotrope

adaptation de maillage, méthode des

éléments finis

Abstract

Imaging techniques have well improved in the

last decades. They may accurately provide

numerical descriptions from 2D or 3D images,

opening perspectives towards inner

information, not seen otherwise. In this work,

a technique to build a numerical description

under the mesh format has been implemented

and used in numerical simulations when

coupled to finite element solvers. Firstly,

mathematical morphology techniques have

been introduced to handle image information,

providing the specific features of interest for

the simulation. The immersed image method

was then proposed to interpolate the image

information on a mesh. Then, an iterative

anisotropic mesh adaptation operator was

developed to construct the optimal mesh,

based on the estimated error concerning the

image interpolation. The mesh is thus directly

constructed from the image information. We

have also proposed a new methodology to

build a regularized phase function,

corresponding to the objects we wish to

distinguish from the image, using a

redistancing method. Two main advantages

of having such function are: the gradient of

the regularized function performs better for

mesh adaptation; the regularized function

may be directly used for the finite element

solver. Stabilized finite element flow and

advection solvers were coupled to the

constructed anisotropic mesh and the

redistancing function, allowing its application

to multiphase flow numerical simulations. An

important objective of this work is the

simplification of the image based

computations, through a modified way to

segment the image and by coupling all to an

automatic way to construct the mesh used in

the finite element simulations.

Keywords

Image processing, level-set function,

redistancing function, anisotropic mesh

adaptation, finite element method

