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Résumé: Cette thèse expose de nouvelles méth-

odes pour l’application de la prédiction struc-

turée en vision numérique et en imagerie médi-

cale. Nos nouvelles contributions suivent quatre

axes majeurs. Premièrement, nous introduisons

une nouvelle famille de potentiels d’ordre élevé

qui encourage la parcimonie des étiquettes, et dé-

montrons sa pertinence via l’introduction d’un

algorithme précis de type graph-cuts pour la

minimisation de l’énergie associée. Deuxième-

ment, nous montrons comment la formulation en

SVM de la précision moyenne peut être étendue

pour incorporer de l’information d’ordre supérieur

dans les problèmes de classement. Troisième-

ment, nous proposons un nouvel algorithme de

chemin de régularisation pour les SVM struc-

turés. Enfin, nous montrons comment le cadre

de l’apprentissage semi-supervisé des SVM à vari-

ables latentes peut être employé pour apprendre

les paramètres d’un problème complexe de re-

calage déformable.

Plus en détail, la première partie de cette thèse

étudie le problème d’inférence d’ordre supérieur.

En particulier, nous présentons une nouvelle

famille de problèmes de minimisation d’énergie

discrète, que nous nommons étiquetage parci-

monieux. C’est une extension naturelle aux

potentiels d’ordre élevé des problèmes connus

d’étiquetage de métriques. Similairement à

l’étiquetage de métriques, les potentiels unaires de

l’étiquetage parcimonieux sont arbitraires. Cepen-

dant, les potentiels des cliques sont définis à l’aide

de la notion récente de diversité [18], définie

sur l’ensemble des étiquettes uniques assignées

aux variables aléatoires de la clique. Intuitive-

ment, les diversités favorisent la parcimonie en

diminuant le potentiel des ensembles avec un

nombre moins élevés d’étiquettes. Nous pro-

posons par ailleurs une généralisation du mod-

èle Pn-Potts [66], que nous nommons modèle

Pn-Potts hiérarchique. Nous montrons comment

l’étiquetage parcimonieux peut être représenté

comme un mélange de modèles Pn-Potts hiérar-

chiques. Enfin, nous proposons un algorithme par-

allélisable à proposition de mouvements avec de

fortes bornes multiplicatives pour l’optimisation

du modèle Pn-Potts hiérarchique et l’étiquetage

parcimonieux. Nous démontrons l’efficacité de

l’étiquetage parcimonieux dans les tâches de

débruitage d’images et de mise en correspondance

stéréo.

La seconde partie de cette thèse explore le prob-

lème de classement en utilisant de l’information

d’ordre élevé. En l’occurrence, nous introduisons

deux cadres différents pour l’incorporation

d’information d’ordre élevé dans le problème de

classement. Le premier modèle, que nous nom-

mons SVM binaire d’ordre supérieur (HOB-SVM),

s’inspire des SVM standards. Pour un ensemble

d’exemples donné, ce modèle optimise une borne
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supérieure convexe sur l’erreur 0-1 pondérée. Le

vecteur de caractéristiques joint de HOB-SVM

dépend non seulement des caractéristiques des

exemples individuels, mais également des carac-

téristiques de sous-ensembles d’exemples. Ceci

nous permet d’incorporer de l’information d’ordre

supérieur. La difficulté d’utilisation de HOB-SVM

réside dans le fait qu’un seul score correspond

à l’étiquetage de tout le jeu de données, alors

que nous nécessitons des scores pour chaque ex-

emple pour déterminer le classement. Pour ré-

soudre cette difficulté, nous proposons de classer

les exemples en utilisant la différence entre la

max-marginales de l’affectation d’un exemple à la

classe associée et la max-marginale de son affec-

tation à la classe complémentaire. Nous démon-

trons empiriquement que la différence de max-

marginales traduit un classement pertinent. À

l’instar d’un SVM, le principal désavantage de

HOB-SVM est que le modèle optimise une fonc-

tion d’erreur de substitution, et non la métrique

de précision moyenne (AP). Afin d’apporter une

solution à ce problème, nous proposons un second

modèle, appelé AP-SVM d’ordre supérieur (HOAP-

SVM). Ce modèle s’inspire d’AP-SVM [137] et

de notre premier modèle, HOB-SVM. À l’instar

d’AP-SVM, HOAP-SVM prend en entrée une collec-

tion d’exemples, et produit un classement de ces

exemples, sa fonction d’erreur étant l’erreur AP.

Cependant, au contraire d’AP-SVM, le score d’un

classement est égal à la moyenne pondérée des de

la différence des max-marginales des exemples in-

dividuels. Comme les max-marginales capturent

l’information d’ordre supérieur, et les fonctions

d’erreur dépendent de l’AP, HOAP-SVM apporte

une solution aux deux limitations susmentionnées

des classificateurs traditionnels tels qu’SVM. Le

principal désavantage de HOAP-SVM réside en le

fait que l’estimation de ses paramètres nécessite la

résolution d’un programme de différences de fonc-

tions convexes [55]. Nous montrons comment

un optimum local de l’apprentissage d’un HOAP-

SVM peut être déterminé efficacement grâce à

la procédure concave-convexe [138]. En util-

isant des jeux de données standards, nous mon-

trons empiriquement que HOAP-SVM dépasse les

modèles de référence en utilisant efficacement

l’information d’ordre supérieur tout en optimisant

la fonction d’erreur appropriée.

Dans la troisième partie de la thèse, nous pro-

posons un nouvel algorithme, SSVM-RP, pour

obtenir un chemin de régularisation ε-optimal

pour les SVM structurés. Par définition, un chemin

de régularisation est l’ensemble des solutions pour

toutes les valeurs possibles du paramètre de régu-

larisation dans l’espace des paramètres [29]. Cela

nous permet d’obtenir le meilleur modèle en ex-

plorant efficacement l’espace du paramètre de

régularisation. Nous proposons également des

variantes intuitives de l’algorithme Frank-Wolfe

de descente de coordonnées par blocs (BCFW)

pour l’optimisation accélérée de l’algorithme

SSVM-RP. De surcroît, nous proposons une ap-

proche systématique d’optimisation des SSVM

avec des contraintes additionnelles de boîte en

utilisant BCFW et ses variantes. Ces contraintes

additionnelles sont utiles dans de nombreux prob-

lèmes importants pour résoudre exactement le

problème d’inférence. Par exemple, pour un prob-

lème à deux étiquettes dont la sortie possède

une structure de graphe cyclique, si les poten-

tiels binaires sont sous-modulaires, l’algorithme

graph-cuts [74] permet de résoudre exactement

le problème d’inférence. Pour imposer la sous-

modularité des potentiels binaires, des contraintes

additionnelles, tels que la positivité/négativité,

sont employées dans la fonction objective du

SSVM. Enfin, nous proposons un algorithme de
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chemin de régularisation pour SSVM avec des con-

traintes additionnelles de positivité/negativité.

Dans la quatrième et dernière partie de la thèse

(Appendice A), nous proposons un nouvel al-

gorithme discriminatif semi-supervisé pour ap-

prendre des métriques de recalage spécifiques au

contexte comme une combinaison linéaire des

métriques conventionnelles. Nous adoptons un

cadre de modèle graphique populaire [48] pour

formuler le recalage déformable comme un prob-

lème d’inférence discrète. Ceci implique des ter-

mes unaires de vérité terrain et des termes de

régularité. Le terme unaire est une mesure de

similarité ou métrique spécifique à l’application,

tels que l’information mutuelle, la corrélation

croisée normalisée, la somme des différences ab-

solues, et les coefficients d’ondelettes discrets.

Selon l’application, les métriques traditionnelles

sont seulement partiellement sensibles aux pro-

priétés anatomiques des tissus. L’apprentissage

de métriques est une alternative cherchant à

déterminer une mise en correspondance entre

un volume source et un volume cible dans la

tâche de recalage. Dans ce travail, nous cher-

chons à déterminer des métriques spécifiques à

l’anatomie et aux tissus, par agrégation linéaire

de métriques connues. Nous proposons un al-

gorithme d’apprentissage semi-supervisé pour

estimer ces paramètres conditionnellement aux

classes sémantiques des données, en utilisant un

jeu de données faiblement annoté. La fonction

objective de notre formulation se trouve être un

cas spécial d’un programme de différence de fonc-

tions convexes. Nous utilisons l’algorithme connu

de différence de fonctions concave-convexe pour

obtenir le minimum ou un point critique du prob-

lème d’optimisation. Afin d’estimer la vérité ter-

rain inconnue des vecteurs de déformations, que

nous traitons comme des variables latentes, nous

utilisons une inférence « fidèle à la segmentation »

munie d’une fonction de coût. Nous démontrons

l’efficacité de notre approche sur trois jeux de don-

nées particulièrement difficiles dans le domaine de

l’imagerie médicale, variables en terme de struc-

tures anatomiques et de modalités d’imagerie.
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Abstract: This thesis develops novel methods to

enable the use of structured prediction in com-

puter vision and medical imaging. Specifically,

our contributions are four fold. First, we propose

a new family of high-order potentials that encour-

age parsimony in the labeling, and enable its use

by designing an accurate graph cut based algo-

rithm to minimize the corresponding energy func-

tion. Second, we show how the average precision

SVM formulation can be extended to incorporate

high-order information for ranking. Third, we

propose a novel regularization path algorithm for

structured SVM. Fourth, we show how the weakly

supervised framework of latent SVM can be em-

ployed to learn the parameters for the challenging

deformable registration problem.

In more detail, the first part of the thesis investi-

gates the high-order inference problem. Specifi-

cally, we present a novel family of discrete energy

minimization problems, which we call parsimo-

nious labeling. It is a natural generalization of the

well known metric labeling method for high-order

potentials. Similar to metric labeling, the unary

potentials of parsimonious labeling are arbitrary.

However, the clique potentials are defined using

the recently proposed notion of diversity [18], de-

fined over the set of unique labels assigned to

the random variables in the clique. Intuitively,

diversity enforces parsimony by assigning lower

potential to sets with fewer labels. In addition to

this, we propose a generalization of the Pn-Potts

model [66], which we call Hierarchical Pn-Potts.

We show how parsimonious labeling can be repre-

sented as a mixture of hierarchical Pn-Potts mod-

els. In the end, we propose parallelizable move

making algorithms with very strong multiplica-

tive bounds for the optimization of hierarchical

Pn-Potts models and parsimonious labeling. We

show the efficacy of parsimonious labeling in im-

age denoising and stereo matching tasks.

Second part of the thesis investigates the rank-

ing problem while using high-order information.

Specifically, we introduce two alternate frame-

works to incorporate high-order information for

ranking tasks. The first framework, which we call

high-order binary SVM (HOB-SVM), takes its in-

spiration from the standard SVM. For a given set

of samples, it optimizes a convex upper bound

on weighted 0-1 loss. The joint feature vector of

HOB-SVM depends not only on the feature vectors

of the individual samples, but also on the feature

vectors of subsets of samples. It allows us to incor-

porate high-order information. The difficulty with

employing HOB-SVM is that it provides a single

score for the entire labeling of a dataset, whereas

we need scores corresponding to each sample in

order to find the ranking. To address this diffi-

culty, we propose to rank the samples using the

difference between the max-marginal cost for as-

signing a sample to the relevant class and the max-

marginal cost for assigning it to the non-relevant

class. Empirically, we show that the difference of



vi

max-marginal costs provides an accurate ranking.

The main disadvantage of HOB-SVM is that, simi-

larly to SVM, it optimizes a surrogate loss function

instead of the average precision (AP) based loss.

In order to alleviate this problem we propose a

second framework, which we call high-order AP-

SVM (HOAP-SVM). It takes its inspiration from

AP-SVM [137] and HOB-SVM (our first frame-

work). Similarly to AP-SVM, the input of HOAP-

SVM is a set of samples, its output is a ranking of

the samples, and its loss function is the AP loss.

However, unlike AP-SVM, the score of a ranking

is equal to the weighted sum of the difference

of max-marginal costs of the individual samples.

Since the max-marginal costs capture high-order

information, and the loss function depends on the

AP, HOAP-SVM addresses both of the aforemen-

tioned deficiencies of traditional classifiers such

as SVM. The main disadvantage of HOAP-SVM is

that estimating its parameters requires solving a

difference-of-convex program [55]. We show how

a local optimum of the HOAP-SVM cost can be

computed efficiently by the concave-convex pro-

cedure [138]. Using standard datasets, we empir-

ically demonstrate that HOAP-SVM outperforms

the baselines by effectively utilizing high-order in-

formation while optimizing the correct loss func-

tion.

In the third part of the thesis, we propose a new

algorithm (SSVM-RP) to obtain the ε-optimal reg-

ularization path of structured SVM. By definition,

the regularization path is the set of solutions for

all possible values of the regularization param-

eter in the parameter space [29]. It allows us

to obtain the best model by efficiently searching

the entire regularization parameter space. We also

propose intuitive variants of the Block-Coordinate

Frank-Wolfe algorithm for faster optimization of

the SSVM-RP algorithm. In addition to this, we

propose a principled approach to optimize the

SSVM with additional box constraints using BCFW

and its variants. These additional constraints are

useful in many important problems in order to

solve the inference problem exactly. For example,

if there are two labels and the output structure

forms a graph with loops, then if pairwise po-

tentials are submodular, graph cuts [74] can be

used to solve the inference problem exactly. In

order to ensure that the pairwise potentials are

submodular, additional constraints (for example,

positivity/negativity) are normally used in the ob-

jective function of the SSVM. In the end, we pro-

pose regularization path algorithm for SSVM with

additional positivity/negativity constraints.

In the fourth and the last part of the thesis (Ap-

pendix A), we propose a novel weakly super-

vised discriminative algorithm for learning con-

text specific registration metrics as a linear com-

bination of conventional metrics. We adopt a

popular graphical model framework [48] to cast

deformable registration as a discrete inference

problem. It involves data terms and smoothness

terms. The data term is an application specific

similarity measure or metric, such as mutual infor-

mation, normalized cross correlation, sum of ab-

solute difference, or discrete wavelet coefficients.

Conventional metrics can cope only partially –

depending on the clinical context – with tissue

anatomical properties. Metric learning is an al-

ternative that seeks to determine a mapping be-

tween the source and the target volumes in the

registration task. In this work we seek to deter-

mine anatomy/tissue specific metrics as a context-

specific aggregation/linear combination of known

metrics. We propose a weakly supervised learn-

ing algorithm for estimating these parameters con-

ditionally to the data semantic classes, using a

weak training dataset. The objective function of
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our formulation turns out to be a special kind of

non-convex program, known as the difference of

convex program. We use the well known concave

convex procedure to obtain the minima or saddle

points of the optimization problem. In order to

estimate the unknown ground truth deformation

vectors, which we treat as latent variables, we use

‘segmentation consistent’ inference endowed with

a loss function. We show the efficacy of our ap-

proach on three highly challenging datasets in the

field of medical imaging, which vary in terms of

anatomical structures and image modalities.
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Chapter 1

Introduction

The main focus of this thesis is to develop high-order inference and machine learning

algorithms to process visual and medical data in order to extract useful information. We

begin with two challenging tasks in order to develop intuition about the need for inference

and learning algorithms. The first task that we consider is image denoising and inpainting as

shown in the Figure 1.1. Given an image with added noise and obscured regions (regions

with missing pixels) as shown in Figure 1.1a, the problem is to automatically denoise the

image and fill the obscured regions such that it is consistent with the surrounding. Another

task under consideration is ‘learning to rank’. We give an example of the learning to rank

task in the context of action classification as shown in Figure 1.2. Given a set of bounding

boxes (refer Figure 1.2a), the task is to find an ordering of the bounding boxes based on their

relevance with respect to a given action class such as ‘jumping’.

(a) Given Input. (b) Expected Output.

Figure 1.1: Image denoising and inpainting.

Let us first try to understand the complexity of the first task. Assume that the input image

is gray scale of resolution m× n. Therefore, each pixel in the image can be assigned any

integer value in the range [0,255]. In the simplest possible case, we assume that each pixel

is independent of any other pixel in the image. Therefore, the denoising task can be solved
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(a) Given Input.

(b) Expected output (a sorted list) based on the relevance to the action
class ‘jumping’.

Figure 1.2: An example of action classification problem for the action class ‘jumping’. The
‘input’ is a set of bounding boxes. The desired ‘ouput’ is the sorted list in which all the
bounding boxes with jumping action are ranked ahead of all the bounding boxes with non
jumping action. Figure 1.2b shows one of the many possible outputs.

by processing each pixel independently. For example, thresholding based on some criterion

such as average intensity value of the image pixels. This approach is computationally

highly efficient as it requires only N = m× n operations. However, it is of little practical

value for the following two reasons: (i) individually processing each pixel will not lead to

a contextually meaningful output; and (ii) local information is not sufficient to solve the

inpainting problem. Therefore, in order to get a meaningful solution, we must take into

account the interdependencies between the pixels. Since each pixel can be assigned 256

possible values (also called labels), considering the interdependencies leads to a problem

with (256)N possible combinations (or solutions), a much harder problem to solve. Finding

the best solution out of these exponentially many possible combinations is known as the

inference problem. In the case of vision related problems, inference involves thousands or

sometimes millions of interdependent variables, which makes it very hard to solve. Normally,

possible solutions are evaluated using a mathematical energy function that assigns a score to

each possible solution. The solution corresponding to the minimum score is considered to

be the optimal solution. In general, energy minimization problem is NP-HARD. However,

careful modeling of the situation allows us to solve the problem in polynomial time using
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specialized and highly efficient algorithms. Some successful examples of such inference

algorithms are graph cuts [74], belief propagation [105], and α-expansion [128]. A detailed

discussion of these algorithms is given in chapter 2. They are very useful in many tasks such

as semantic segmentation, pose estimation, stereo reconstruction, image inpainting, image

registration, and many more. In this thesis, we develop a new family of high-order inference

problems which we call parsimonious labeling, and propose very efficient algorithms for

their optimization along with strong theoretical guarantees.

Now consider the ‘learning to rank’ task (Figure 1.2). Given a set of bounding boxes, the task

is to rank them based on their relevance with respect to an action class such as ‘jumping’. The

quality of the ranking is evaluated based on a user defined metric such as average precision (a

standard measure of the quality of a ranking). Let us assume that we are given a parametric

energy function (similar to the previous example) which assigns a score to each bounding

box. Given such scores, ranking reduces to sorting the bounding boxes based on their scores.

Hence, the quality of the ranking depends entirely on the scores assigned to the bounding

boxes by the energy function, which in turn depend on the parameters of the energy function.

So in order to obtain scores that lead to high average precision, the parameters of the energy

function must be chosen carefully. Normally, the energy function contains thousands of

parameters and hand tuning these parameters is practically infeasible. In order to circumvent

this problem, the standard approach is to learn the parameters values using sophisticated

machine learning techniques1. In this thesis, we develop new machine learning methods for

solving tasks that produce rankings as their final outcome. On top of this, we develop a new

algorithm for the regularization path for structured SVM, that allows us to obtain the best

possible mapping function in tasks that can be modeled using the well known structured SVM

framework.

In the following sections, we briefly discuss the importance, complexity, and challenges of

inference, machine learning (for ranking), and regularization path algorithms, then provide

an outline of the thesis followed by the list of publications where the work in this thesis has

previously appeared.

1Machine learning is the field of study that allows computers to learn from experiences. It evolved with
time as a highly useful and effective blend of different fields such as computational statistics, mathematical
optimization, and graph theory. More precisely, machine learning is the task of estimating a mapping function
of the objects that we want to predict. In general supervised setting, a training data for which the prediction
is known is used to learn this mapping. Few examples of highly successful applications of machine learning
are search engines, character/voice recognition, spam filtering, news clustering, recommender systems, object
classification, automatic language translation, and many more.
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1.1 High-Order Inference

As discussed earlier, inference problem can involve thousands or millions of interdependent

variables with solution spaces that are exponentially large in this number. To encode the

semantics of the problem, we define a mathematical function known as the energy function

that quantifies the quality of each possible solution. The solution with the lowest energy is

the optimal choice. Mathematically, consider a random field defined over a set of random

variables y = {y1, · · · ,yN}, each of which can take a value from a discrete label set L =

{l1, · · · , lH}. Furthermore, let C denote the set of maximal cliques that characterize the

interactions between these variables. Each clique consists of a set of random variables that

are connected to each other in the lattice. For example, in case of image denoising problem,

the set of random variables are the pixels in the image, N = m× n, and the label set is

L = {0, · · · ,255}. To assess the quality of each output (or labeling) y we define an energy

function as:

E(y) = ∑
i∈V

θi(yi)+ ∑
c∈C

θc(yc). (1.1)

where θi(yi) is the unary potential for assigning a label yi to the i-th variable, and θc(yc)

is the clique potential for assigning the labels yc to the variables in the clique c. Once we

have such a function, we need a method to evaluate each possible assignment in order to find

the best one. The exhaustive search is practically infeasible. For example, in case of image

denoising, if m = n = 100, then there are (256)10,000 possible outcomes. One approach

to solve this task is to use inference algorithms where we need to model the problem in a

restricted yet useful setting to which a computationally efficient algorithm can be devised

to find the optimal assignment among the exponentially many. Broadly speaking, there are

two major steps to solving such inference problems: (i) modeling – selecting a suitable but

tractable energy function (discussed in detail in chapter 2); (ii) optimization – finding the

solution corresponding to the minimum energy (inference algorithm). The two steps goes

hand-in-hand. Normally, we model the problem in such a manner that an algorithm can be

devised to optimize it in polynomial time. Modeling defines restrictions on the potentials,

interactions among the random variables (pixels in case of images), and optimality conditions

for the inference algorithm. There are several situations in which careful modeling allows

us to optimize the problem very efficiently. Let us have a quick look into some of these

modeling strategies and their corresponding optimization algorithms.

• Restricting the potentials: In case the clique potentials are restricted to be submod-

ular distance functions over the labels [1, 47], an optimal solution of the inference
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problem can be computed in polynomial time by solving an equivalent Graph cut

problem [112]. A special case of this with two labels is well addressed in the seminal

work [74]. Of course, restricting the potentials limits our modeling capabilities. How-

ever, submodular potential functions provide smoothness which is a desired property

for many important tasks such as binary image restoration [14, 15, 51, 57], foreground

background segmentation [13], medical image segmentation [11, 12], stereo depth

recovery [14, 15, 56], and many other tasks.

• Restricting the structure: If the interactions between the random variables are re-

stricted to form a tree (graph with no cycles), then the well known belief propagation

method [105] can be used to obtain the globally optimal solution of the inference

problem in polynomial time. Tree structures can still encode rich interactions useful to

many vision tasks such as ‘pose estimation’ [134] and ‘object detection’ [34].

• Compromising on optimality: Sometimes it is not possible to obtain the globally

optimal solution to the problem. In such situations, algorithms are designed to obtain a

good local minimum with theoretical guarantees (multiplicative bounds). One example

of such algorithm is the well known α−expansion [15, 128] which obtains good local

minima for problems in which the clique potential is a metric distance function over

the labels.

The above mentioned algorithms are known to work well for pairwise interactions. However,

higher order cliques (ones with more than two random variables) can model richer and more

meaningful context, and have proven to be very useful in many vision tasks. one example

representing the advantages of higher order interactions is shown in the Figure 1.3. However

as the size of the cliques increases, the complexity of inference increases. Modeling and

optimizing higher order energy functions is a highly challenging task. Technical restrictions

on the clique potentials allows us to devise efficient algorithms for many high order problems.

For example, the Pn-Potts model [66], label-cost based potential functions [28], and Co-

occurrence statistics based potential functions [87]. Below we highlight two main challenges

for devising inference problems over graphs with high order cliques.

Challenges.

• Defining new family of higher order clique potentials: The known families of higher

order clique potentials are either too restrictive with limited modeling capabilities or

their optimization algorithms are inefficient and do not provide good local minima

with theoretical guarantees. Therefore, it is challenging to define new sets of clique
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potentials with higher modeling capabilities that are useful for vision tasks and that

support efficient optimization algorithms. For example, parsimony is a desirable

property for many vision tasks. Parsimony refers to using fewer labels, which in turn

provides smoothness. On one hand, the Pn-Potts model provides parsimony but it is

too rigid and sometimes gives over-smooth results. On the other hand, Co-occurrence

statistic based potential functions [87] are much more expressive but their optimization

algorithm does not provide any theoretical guarantees.

• Proposing efficient algorithms with theoretical guarantees: As discussed earlier, for a

given family of high order clique potential functions, it is a challenging task to provide

efficient algorithms for the optimization. For example, the SoSPD [40] allows us to

use arbitrary clique potentials, but its optimization algorithm is practically inefficient

and is not advisable to use beyond cliques of size ten. Similarly, Co-occurrence

statistic based potential functions [87] allow us to use clique potentials that encode

parsimony and their optimization is efficient, allowing larger cliques (beyond clique

size of 1200). However, the optimization algorithm of [87] does not provide any

theoretical guarantees, thus, the local minima obtained may or may not be useful.

(a) Input (b) Pairwise (c) High Order

(d) Input (e) Pairwise (f) High Order

Figure 1.3: An illustration of the value of high-order interactions in solving segmentation
problems. Image source [67].

1.2 Learning to Rank

Many computer vision tasks require the development of automatic methods that sort or rank

a given set of visual samples according to their relevance to a query. For example, consider
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the problem of action classification (or more precisely action ranking). The input is a set

of samples corresponding to bounding boxes of persons, and an action such as ‘jumping’.

The desired output is a ranking where a sample representing a jumping person is ranked

higher than a sample representing a person performing a different action. An example of

such problem is shown in the Figure 1.2. Other related problems include image classification

(sorting images according to their relevance to a user query) and object detection (sorting all

the windows in a set of images according to their relevance to an object category). Once the

ranking is obtained, it can be evaluated using average precision (AP), which is a widely used

measure of the quality of a ranking. The most common approach of solving this problem

is to train a binary classifier (often a support vector machine (SVM)). SVM optimizes an

upper bound on an accuracy based loss function to learn a parameter vector. At test time,

the learned parameter vector is used to assign scores (confidence of being relevant) to each

sample. The samples are then sorted based on these scores to get the final ranking. However,

this approach suffers from following two drawbacks. First, average precision and accuracy

are not the same measures. Figure 1.4 shows some examples where AP and accuracy are

different. It is clear from these examples that a classifier that provides high accuracy may not

give high average precision. In another words, optimizing accuracy may result in suboptimal

average precision. Therefore, in a situation where the desired result is a ranked list, it is

better to optimize an average precision based loss function (a measure of the quality of the

ranking). Unfortunately, unlike accuracy based loss function, as used in SVM, the average

precision is non decomposable and thus hard to optimize. AP-SVM [137] poses the problem

as a special case of structured SVM and provides efficient algorithm for optimizing an upper

bound on average precision based loss function. The second drawback is that SVM can use

only first order information. Whereas there is a great deal of high order information in many

vision related tasks (and other tasks as well). For example, in action classification, people in

the image are often performing same action (see Figure 1.5 for a few examples). In object

detection, objects of the same category tend to have similar aspect ratios. In pose estimation,

people in the same scene tend to have similar poses (e.g. sitting down to watch a movie). In

document retrieval, documents containing the same or similar words are more likely belong

to the same class. Therefore, we need to use richer machine learning frameworks such as

structured SVM, that are capable of encoding the high order interactions.

Challenge. The challenge lies in developing a framework capable of optimizing average

precision while using high order information. On the one hand, a special case of the structured

SVM (AP-SVM) can optimize average precision based loss functions, but it does not allow us

to use high order information. On the other hand, when structured SVM is used to encode high
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(a) AP/Acc = 1.0/1.0

(b) AP/Acc = 1.0/0.83

(c) AP/Acc = 0.55/0.66

Figure 1.4: Differences between AP and accuracy. The relevant class here is ‘jumping’.
The scores shown are obtained from the classifier. A positive score implies a relevant class
(‘jumping’) and a negative score implies an irrelevant class (‘non jumping’). The bounding
boxes are sorted based on the scores to obtain the ranking. An ideal ranking would have all
the positive (or relevant) examples ahead of all the negative (irrelevant) ones. Notice that the
accuracy is nothing but the fraction of misclassifications.

order information, it only allows us to optimize accuracy based (or similar but decomposible)

loss functions.

1.3 Regularization Path

In the previous section we talked about Structured SVM type frameworks for learning tasks.

The objective function of an SSVM is parametric, depends on a particular regularization

parameter λ (also referred as C, inversely proportional to λ ), which controls the trade-

off between the model complexity and an upper bound on the empirical risk (detailed

in chapter 2). The value of the regularization parameter has a significant impact on the

performance and the generalization of the learning method. Thus, we must choose it very

carefully in order to obtain the best model. Finding an appropriate value for the regularization

parameter often requires us to tune it, but lack of knowledge about the structure of the

regularization problem compels us to cross validate it over the entire parameter space, which
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Figure 1.5: The example of high-order information in case of action classification. Notice that
people in the same image often perform the same action. This can be one of the hypotheses
that encode meaningful high-order interactions.

is practically infeasible owing to its computational cost. To circumvent this, the standard

approach is to resort to a sub optimal solution by cross validating a small set of regularization

parameter values on a given training dataset. Doing this is tedious and quickly becomes

infeasible as we increase the number of regularization values tested. Therefore, we need

an efficient algorithm to obtain the entire regularization path of SSVM. By definition the

regularization path is the set of solutions for all possible values of the regularization parameter

in the parameter space [29]. Obtaining the regularization path for any parametric model

implies exploring the whole regularization parameter space in a highly efficient manner

to provide the optimal learned model for any given value of λ ∈ [0,∞]. This allows us to

efficiently obtain the best possible model. The key idea behind the algorithm is to break the

regularization parameter space into segments such that learning an ε-optimal model for any

value of λ in a given segment guarantees that the same learned model is ε-optimal for all

values of λ in the segment.

Challenges.

• Finding the segments (or the breakpoints): As mentioned earlier, the idea behind

regularization path is to break the regularization parameter space λ ∈ [0,∞] into

segments. This can be achieved by finding breakpoints or kinks such that if the learned

model is ε-optimal for any λ ∈ [λk,λk−1), then it is ε-optimal for all λ ∈ [λk,λk−1).

One of the challenge is to find these breakpoints in an efficient manner. The other

challenge is to reduce the needed number of breakpoints.

• Efficiently optimizing at each breakpoint: Each breakpoint defines a new segment.

Therefore, at each breakpoint we need to update (optimize) the learned model so that

it is ε-optimal for the given segment. In order to make this practically feasible, we

must devise an algorithm that can be warm-started using the solution of the previous

segment for faster convergence.
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1.4 Thesis Outline

Chapter 2 is a review of structured SVM and related inference algorithms. Specifically, we

discuss the SSVM algorithm with examples, various inference algorithms such as graph cuts,

α-expansion, metric labeling, and Pn-Potts model, and different optimization algorithms for

SSVM. Finally, we talk about latent SSVM and the corresponding concave-convex procedure

for the problems related to the weakly supervised settings.

In chapter 3, we describe a new family of inference problems that we call parsimonious

labeling, which handle all the challenges discussed in section 1.1. Parsimonious labeling can

be seen as a high order extension of the famous metric labeling problem. We also propose

the hierarchical Pn-Potts model and show how parsimonious labeling can be modeled as a

mixture of hierarchical Pn-Potts models. Finally, we propose an efficient algorithm with

strong theoretical guarantees for the optimization of parsimonious labelings and show its

efficacy on the challenging tasks of stereo matching and image in-painting.

In chapter 4, we propose a new learning framework, High-Order Average Precision SVM

(HOAP-SVM), capable of optimizing average precision while using high-order information

(see the challenges discussed in section 1.2). We show the efficacy of HOAP-SVM on the task

of action classification.

In chapter 5, we present a new algorithm (SSVM-RP) to obtain ε-optimal regularization paths

for SSVM. We propose intuitive variants of the Block-Coordinate Frank-Wolfe algorithm for

the faster optimization of SSVM-RP. In addition to this, we propose a principled algorithm

for optimizing SSVM with additional box constraints. Finally, we propose a regularization

path algorithm for SSVM with additional positivity/negativity constraints. All the research

presented in this chapter were conducted under the supervision of Dr. Simon Lacoste-Julien

at the SIERRA Team of INRIA (Paris) during my visit from 15th June 2015 to 15th September

2015.

Finally, in appendix A, we present a novel weakly supervised algorithm for learning context

specific metric aggregations for the challenging task of 3D-3D deformable registration. We

demonstrate the efficacy of our framework using three challenging datasets related to medical

imaging.



1.5 List of publications 11

1.5 List of publications

Published in International Conferences and Journals

1. Learning-Based Approach for Online Lane Change Intention Prediction; Puneet

Kumar, M. Perrollaz, S. Lefevre, C. Laugier; In IEEE Intelligent Vehicle Symposium

(IV) 2013.

2. Discriminative parameter estimation for random walks segmentation; P. Y. Baudin, D.

Goodman, P. K. Dokania , N. Azzabou, P. G. Carlier, N. Paragios, M. Pawan Kumar;

In MICCAI 2013.

3. Learning to Rank using High-Order Information; P. K. Dokania, A. Behl, C. V.

Jawahar, M. P. Kumar; In ECCV 2014.

4. Parsimonious Labeling; P. K. Dokania, M. P. Kumar; In ICCV 2015.

5. Partial Linearization based Optimization for Multi-class SVM; P. Mohapatra, P. K.

Dokania, C. V. Jawahar, M. P. Kumar; In ECCV 2016.

6. Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs; A. Osokin,

JB Alayrac, I. Lukasewitz, P. K. Dokania, S. Lacoste-Julien; In ICML 2016.

7. Rounding-based Moves for Semi-Metric Labeling; M. P. Kumar, P. K. Dokania; In

JMLR 2016.

Under Submission

1. Deformable Registration through Learning of Context-Specific Metric Aggregation; E.

Ferrante, P. K. Dokania2, N. Paragios.

2Joint first author with E. Ferrante.





Chapter 2

Review of Structured SVM and related

Inference Algorithms

2.1 Motivation

Structured output prediction [88, 122, 126] is one of the key problems in the machine learning

and computer vision community. It deals with learning a function f that maps the input space

X (patterns or vectors) to a complex output space Y (graphs, trees, strings, or sequences).

In other words, structured prediction is the problem of learning prediction functions that take

into account the interdependencies among the output variables. In order to give better insight

into the problem of structured prediction, we consider the task of recognizing handwritten

words [63]. An example is shown in Figure 2.1. The problem is to predict the word given

bounding boxes around letters. Below we discuss two possible solutions to this problem

(from a discriminative classification point of view) and progressively build intuition to

understand the complexity and importance of structured prediction. Before discussing the

solutions, we define some notation for the purpose of clarity. We denote the number of

letters in the word as p. In our example, p = 4. The input, which in this case is a collection

of segmented bounding boxes in an image, is represented as x = {x1,x2,x3,x4}, where xi

denotes the i-th box. Similarly, we define the output, which is a word, as a collection of

letters y = {y1,y2,y3,y4} ∈ Y . Here each output variable can be assigned any letter from the

alphabet. In other words, yi ∈ L = {a, · · · ,z,A, · · · ,Z} for all i ∈ {1,2,3,4}. Thus, the final

output space is Y = L p, where p = 4. For example, for the input image in the Figure 2.1,

the ground truth output is ‘ROSE’, therefore, y1 = R, y2 = O, y3 = S, and y4 = E. Using this

notation we discuss two possible solutions.
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Figure 2.1: An example of handwritten word recognition. The input is an image of a
handwritten word x= {x1,x2,x3,x4}, where each xi is the bounding box around each character
of the word. The task is to predict the correct word, which in this case is ‘ROSE’.

Figure 2.2: Solution 1:Each bounding box is classified separately. The set of classes (or labels)
is {a, · · · ,z,A, · · · ,Z}. The final solution is the collection of the predictions corresponding to
each bounding box. The number of classifiers required is |L |(= 52), therefore, the solution
is practically very efficient. However, it does not take account of the interdependencies
between the output variables.

• Solution 1: One possible way to solve the above problem is to learn different prediction

functions fi for each letter i ∈ Y = {a, · · · ,z,A, · · · ,Z}. This requires us to learn

|L |(= 52) different prediction functions. Given these functions and the input image x,

the prediction task reduces to independently classifying each letter (refer Figure 2.2).

Thus, the predicted word ŷ = {ŷ1, ŷ2, ŷ3, ŷ4} is the collection of the different predicted

letters where each predicted letter is ŷ j = argmaxi∈L fi(x j),∀ j. The method is very

simple and computationally efficient. However, in effect, it reduces the search space

from L p to pL . In other words, it does not take into account the interdependencies

between the different letter predictions (the variables in the output space). For example,

in English language, the likelihood of the letter ‘F’ occurring next to ‘C’ is very low

while the likelihood of the letter ‘S’ occurring next to ‘O’ is high. Considering the

interdependencies between the letters of words seems very promising to improve the
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Figure 2.3: Solution 2:Each word is classified separately. The set of classes (or labels) is
{aaaa, · · · ,zzzz,AAAA, · · · ,ZZZZ}. Note that the number of prediction functions required is
(52)4 ≈ 7 Million. Therefore, this solution is practically infeasible even for moderate length
words.

prediction accuracy. However, it may lead to a computationally expensive task, as

discussed in the next approach.

• Solution 2: In order to explicitly take the interdependencies between the output

variables into account, we can learn a prediction function fw for each possible word

w ∈ W , where W = {aaaa,baaa, · · · ,ZZZZ} denotes the set of all possible words

of length p = 4. Given all these prediction functions, the task reduces to finding

the function that best describes the input x (refer to Figure 2.3). In other words, the

predicted word is ŷ = argmaxw∈W fw(x). At first glance this method seem reasonable.

However, a closer look reveals that the size of the set W is |L |p, which in this case is

(52)p (total number of words of length p that can be formed using 52 letters). Another

difficulty is to get a dataset for each word in order to train the corresponding classifier.

Therefore, this approach leaves us with exponential numbers of prediction functions

and the need for huge datasets to learn them all. Thus, it quickly becomes infeasible

even for moderate length words. For example, p = 4 requires us to test almost 7 million

different functions for prediction.

Clearly, solution 1 is computationally feasible but can not incorporate the interactions

between the output variables, while solution 2 can incorporate interactions but it becomes

computationally infeasible for even a small number of output variables. In this chapter, we

discuss a third solution, Structured SVM (SSVM) [126], which is a compromise between the

two aforementioned ones.
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2.2 Structured Output SVM

A structured output SVM (SSVM), parametrized by w, provides a linear prediction rule

to obtain a structured output y ∈ Y (strings, graphs, trees, or sequences) for a given input

x∈X (patterns or vectors). In order to learn the parameters w, SSVM minimizes an objective

function that models the trade-off between the model complexity and the empirical risk. This

section gives an overview of these two tasks of prediction and parameter learning for SSVM.

The latter sections discuss them in detail.

In order to understand the prediction and learning tasks, we require a mapping function

Φ(x,y) : X ×Y → R
d , known as the joint feature map. In some works it is also referred

as the combined feature representation or the joint feature vector. The joint feature map

maps the input-output pair into a new d dimensional discriminative space that encodes the

relationships between the output variables. More precisely, given an input x, we get a d

dimensional feature vector for each y ∈ Y . The joint feature map can also be seen as a

virtual machine for feature generation where the discrimination between different inputs is

encoded based on the interactions between the output variables. Given the mapping function,

the prediction and learning tasks are performed in the new feature space. However, as will be

seen shortly, we seek a special type of joint feature map that is restricted (discussed shortly)

in order to allow us to perform the prediction and learning in a computationally efficient

manner. Of course, by restricting the joint feature map we lose some modeling capabilities

(discussed in detail in section 2.3). However, the restrictions still allow us to use SSVM

practically for several vision related tasks.

Let us now discuss the restrictions on the joint feature map. Recall that each output y is

a structured object consisting of the output variables. For SSVM, the types of interactions

foreseen between the output variables need to be known a priori. Let us represent the

interactions between the output variables by the graph G = (V,C ), where V = {1, · · · ,N} is

the set of nodes and C is the set of maximal cliques in the structured output object y. In the

case of the above handwritten word recognition example, N = p = 4. Using a ‘Markovian’

style argument [7], the joint feature map is assumed to decompose over the nodes and

the cliques of the output structure represented by the graph G. Thus, Φi(xi,yi) ∈ R
di and

Φc(xc,yc) ∈ R
dc denotes the joint feature map corresponding to the node i and the clique c,

respectively. The final joint feature map Φ(x,y) is formed using the node feature maps Φi

and the clique feature maps Φc. In this work we will assume that Φ is a concatenation of

Φi and Φc for all i ∈V and c ∈ C , so d = ∑i∈V di +∑c∈C dc. However, it is also possible to

define the joint feature map in other ways. In order to further clarify the construction of the

joint feature map, consider the following example.
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(a) Interaction 1 (b) Interaction 2 (c) Interaction 3

Figure 2.4: Few examples of the different possible interactions between the output variables.
Variables in the edges with same colors form a clique. For example, in case of Figure 2.4c,
set of cliques is: C = {c1,c2}, where c1 = {y1,y2,y3} and c2 = {y3,y4}. Many other types
of interactions are also possible.

An example joint feature map. We now give an example of a joint feature map for the

handwritten word recognition problem discussed in the section 2.1. Figure 2.4 shows three

different types of possible interactions between the output variables. Many others are also

possible. However, the interactions have to be known a priori, and should be decided based

on the task under consideration. In our example, we focus on the case shown in Figure 2.4c

but the same concepts can be applied to get the joint feature map for any given interactions.

Recall that each output variable yi is associated with the input bounding box xi corresponding

to a letter in the word. Let φ : xi →R
h be a function that maps the given input xi corresponding

to the i-th bounding box (or node) into an h dimensional feature vector. A few examples of

well known feature vectors are GIST [101], HOG [25], and BOW [26], but normally a task

specific feature vector is chosen. Each output variable can be assigned to any of the following

|L | classes (or labels) yi ∈ L = {a, · · · ,z,A, · · · ,Z}. For clarity we denote each class by its

corresponding index in the label set. Therefore, without loss of generality, we can represent

the classes as yi ∈ L = {1, · · · ,26,27, · · · ,52}. Let ei be the i-th canonical basis element of

|L | dimensional Euclidean space. In another words, the vector ei has i-th entry of one and

all of the remaining entries are zeros. Under this setting, one way of defining the joint feature

map corresponding to the nodes is as follows:

Φi(xi,yi) = eyi
⊗φ(xi) ∈ R

di ,di = h|L |,∀i ∈V,∀yi ∈ L . (2.1)

where, ⊗ is the Kronecker product. As an example, if e = (0,1) and φ(x) = (7,4,9), then

e ⊗ φ(x) = (0,0,0,7,4,9). Notice that, for a particular xi, Φi(xi,yi) for all yi ∈ L are

perpendicular to each other. Thus, this particular form of the Φi(xi,yi) is discriminative with

respect to the classes. One can come up with other criteria depending on the task. We now

proceed to design a discriminative joint feature map corresponding to the cliques. We again
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take an intuitive route and define the joint feature map as follows:

Φc(xc,yc) =







0h×1 if yi = l ∈ L ,∀i ∈ c,

var({φ(xi)}∀i∈c) ∈ R
h otherwise.

(2.2)

where, var({φ(xi)}∀i∈c) is the variance of the set of feature vectors corresponding the nodes

(or bounding boxes) in the clique c. Equation (2.2) states that Φc(xc,yc) is a zero vector if

all of the nodes in the clique are assigned the same label, otherwise, it is the variance of

the feature vectors. Using the variance captures the spread of the node’s features. If all of

them are similar, the variance and thus the entries of Φc(xc,yc), will be small. Depending

on requirements, we can enforce either smoothness or diverse labels by modifying the joint

feature map parameters. The final joint feature map Φ(x,y) ∈ R
d is the concatenation of the

node and the clique joint feature maps:

Φ(x,y) = [Φ1(x1,y1);Φ2(x2,y2);Φ3(x3,y3);Φ4(x4,y4);

Φc1(xc1,yc1);Φc2(xc2,yc2)] ∈ R
d. (2.3)

where, d = (4h|L |+2h) = 210h.

Now that we have a notion of the design and properties of joint feature maps, we discuss the

prediction and parameter learning of SSVM with a given joint feature map.

2.2.1 Prediction for the SSVM

The SSVM prediction for a given input x is obtained by maximizing a linear function pa-

rameterized by w on the joint feature map of x. So, the predicted output ŷ is obtained as

follows:

ŷ = fw(x) = argmax
y∈Y

w⊤Φ(x,y). (2.4)

Note that the output space is exponentially large, Y ∈ |L |N . For example, for our handwrit-

ten word recognition example, |L |= 52 and N = p = 4. So, the number of possible outputs

is (52)4. Below we will see how the decomposability of the joint feature map Φ helps us to

efficiently predict an output. Recall that Φi(xi,yi) ∈R
di ,∀i ∈V and Φc(xc,yc) ∈R

dc ,∀c ∈ C

represent the joint feature maps decomposed over the nodes V and the cliques C of the graph

G that encodes the interdependencies between the output variables. Associated with each

decomposed joint feature map we have parameter vectors wi ∈ R
di and wc ∈ R

dc . Therefore
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under this setting, the SSVM prediction problem can be written as:

ŷ = argmax
y∈Y

w⊤Φ(x,y) = argmax
y∈Y

�

∑
i

w⊤
i Φi(xi,yi)+∑

c

w⊤
c Φc(xc,yc)

�

= argmax
y∈Y

�

∑
i

θ̄i(xi,yi)+∑
c

θ̄c(xc,yc)
�

. (2.5)

where, θ̄i(xi,yi) = w⊤
i Φi(xi,yi) and θ̄c(xc,yc) = w⊤

c Φc(xc,yc) are known as the potential

functions. The prediction problem in equation (2.5) is a combinatorial optimization problem

popularly known as the inference problem. The inference problem is NP-HARD in general [74].

However, restricting the graph structure or the potentials (or both) leads to some specific

forms of the inference problem that can be solved very efficiently in polynomial time. For

example, restricting the graph structure to a tree allows us to use the well known belief

propagation algorithm [105] to solve the inference problem in polynomial time. Similarly,

restricting the potentials to be pairwise and submodular allows us to use Graph cuts [74] to

solve the inference problem in polynomial time. A detailed discussion of different types

of restrictions on the potentials, the graph structure, and their corresponding inference

algorithms is given in the section 2.3. For now let us assume that the SSVM prediction is the

solution of the inference problem.

2.2.2 Learning parameters for the SSVM

In the previous sections we talked about designing the joint feature map Φ(., .) and saw how

a decomposable joint feature map allows us to solve the prediction problem efficiently in

polynomial time by modeling it as an inference problem. However, we assumed that the

parameter vector w was known. We now discuss learning the parameter vector w from a

given training dataset.

Let ρ(x,y) be the unknown joint probability distribution of the input and output pairs x ∈ X

and y ∈ Y . Furthermore, let ∆(y, ȳ) ∈ R≥0 be a loss function (also known as the ‘cost’

function) between any two outputs y and ȳ. We assume that ∆(y,y) = 0. It quantitatively

measures the difference between the two given arguments. The goal is to learn a prediction

function fw : x → ŷ such that the prediction ŷ is as close as possible to the ground truth label

y for any input x. In another words, the prediction function should minimize the expected

risk (or expected prediction loss) over the entire joint distribution ρ(x,y), where the expected

risk for any given parameter w is defined as follows:

R(w) = E(x,y)∼ρ(x,y)∆(y, fw(x)) =
Z

X ×Y

∆(y, fw(x))dρ(x,y) (2.6)
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Note that the distribution ρ(x,y) is unknown. So there is no way to minimize the true

expected risk R(w). However, we can approximate the expected risk by the empirical risk

over the training set. Given a sufficiently large training dataset of n input-output pairs,

D = {(xi,yi)}i={1,··· ,n}, drawn i.i.d. from the distribution ρ , the average empirical risk is

defined as [127]:

Remp(w) =
1
n

n

∑
i=1

∆(yi, fw(xi)) (2.7)

Notice that the empirical risk can be calculated without the knowledge of the distribution

ρ . Therefore, it is robust to the lack of information about the data distribution. There is

a classic theory generalizing the law of large numbers that tells us the conditions under

which approximating expected risk by the empirical risk is useful for learning the parameters

w [127]. Finally, the objective function that minimizes the approximate empirical risk to

learn the parameters can be written as:

w∗ = argmin
w

Remp(w) = argmin
w

1
n

n

∑
i=1

∆(yi, fw(xi)) (2.8)

In section 2.4, we talk about the difficulty of directly optimizing the above objective function

and discuss the possible solutions.

2.3 The Inference Problem

As shown in the equation (2.5), given the SSVM parameters w and an input x, the prediction

can be obtained by solving an inference problem. In this section, we discuss different types

of inference algorithms, focusing on those that will be used throughout the rest of the thesis.

Hereafter, we will interchangeably use the terms ‘prediction’ and ‘inference’. Before moving

ahead, let us first define a function E(y;x), known as the energy function:

E(y;x) = ∑
i

θ(yi;xi)+∑
c

θ(yc;xc). (2.9)

where, θ(yi;xi) = −θ̄i(xi,yi),∀i ∈ V and θ(yc;xc) = −θ̄c(xc,yc),∀c ∈ C . Therefore, the

inference problem (2.5) can be equivalently written as follows:

ŷ = argmin
y∈Y

E(y;x) = argmin
y∈Y

�

∑
i

θ(yi;xi)+∑
c

θ(yc;xc)
�

. (2.10)
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Each y ∈ Y is also known as a labeling. In this context, the inference problem is also

known as the labeling problem where the objective is to find the labeling that corresponds

to the minimum energy with respect to the energy function E(y;x). Note that if yi ∈ L ,

|Y |= |L |N , which is exponential in the size of the label set or the number of classes. This

indicates that the inference problem may be computationally challenging. Indeed, in general

settings, the inference problem is NP-HARD [74]. However, for some restricted classes of

potential functions and restricted graph structures, approximate or exact inferences can be

obtained in polynomial time [15, 74, 105, 128]. Before delving into the details of this, we

briefly discuss the effects of the necessary compromises or restrictions on graph structure

and potentials, and of any approximate minimization on the applicability of the SSVM.

Restricting the structure. If the interactions between output variables are restricted to

form a tree (a graph with no cycles), then the well known belief propagation algorithm [105]

can be used to obtain the globally optimal solution of the prediction problem (2.10) in

polynomial time. Of course, restricting the structure limits our modeling capabilities as we

can not explore all of the possible interactions between the output variables. However, tree

structure can still encode quite rich interactions that are useful for many vision tasks such as

‘pose estimation’ [134] and ‘object detection’ [34].

Restricting the potentials. If the cliques are restricted to size 2 (edges only) and the clique

potentials are restricted to be submodular distance functions over the labels [1, 47], an optimal

solution of the prediction problem (2.10) can computed in polynomial time by solving an

equivalent Graph cut problem [112]. A special case of this with two labels is well addressed

in the seminal work [74]. Again restricting the potentials limits our modeling capabilities.

However, submodular potential functions are proven to be very useful in many computer

vision tasks. They can encourage smoothness, which is a desirable property for tasks such

as binary image restoration [14, 15, 51, 57], foreground background segmentation [13],

medical imaging [11, 12], stereo and motion [14, 15, 56], and many others. So even with

such restrictions on potentials SSVM is still useful for many important vision tasks.

Compromising on optimality. If the cliques are of size 2 (edges only) and the clique

potential function is a metric distance function over the labels L , then the well known

α−expansion algorithm [15, 128] can be used to obtain a locally optimal solution of the

prediction problem (2.10) in polynomial time. Such restrictions on the potentials are very

useful for tasks such as image denoising and stereo matching. However, compromising on

global optimality may lead to poor results in some cases.
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We now discuss several inference algorithms in detail. In order to separate pairwise inter-

actions (maximum clique size two) from the higher-order interactions (maximal cliques of

size more than two), we define the pairwise energy function as follows (for the purpose of

clarity):

E(y;x) = ∑
i

θi(yi)+ ∑
i j∈E

θi j(yi,y j). (2.11)

where, E is the set of edges, θi(yi) := θ(yi;xi), and θi j(yi,y j) := θi j({yi,y j};{xi,x j}). There-

fore, θi(0) denotes the potential θi(0;xi) when the i-th node is assigned the label 0. Similarly,

for any edge i j ∈ E , θi j(0,1) denotes the pairwise potential θi j({0,1};{xi,x j}) between

nodes i and j when the node i is assigned the label 0 and the node j is assigned the label 1.

In the following section, these short hand notations will be used to avoid clutter.

2.3.1 Graph cuts for submodular pairwise potential

Graph cut is a combinatorial optimization algorithm that can be used to solve the inference

problem exactly (find globally minimum energy) if the potential function is a pairwise

submodular distance function defined over the labels (discussed in section (2.3.1.1)) [74, 112].

Graph cuts have proven to be a very useful tool for optimizing energy functions that enforce

piecewise smoothness [74]. They have been used widely in many computer vision tasks

such as binary image restoration [14, 15, 51, 57], foreground background segmentation [13],

scene reconstruction [73], medical imaging [11, 12], stereo and motion [14, 15, 56, 72], and

many others.

In this section, we discuss graph cuts in the context of computer vision applications. However,

the same concepts are valid for other fields as well. We focus on the following aspects —

(i) submodular pairwise energy functions, (ii) the s-t cut, (iii) the relationship between s-t

MINCUT and the inference problem, and (iv) graph constructions for solving the inference

problem.

2.3.1.1 Binary submodular pairwise energy functions

Even though Graph cuts can be used to optimize pairwise submodular distance functions

defined over multivalued labels [112], in this thesis we mainly focus on the special case of

binary labels [74]. Before formally defining the binary submodular pairwise energy functions

in the context of Graph cuts, let us first have a brief look at submodular set functions and

their connections with sumodular pseudo-boolean functions.
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Submodular set functions. Submodular set functions [1, 47] play an important role in

disparate domains such as computer vision [74], operations research [54], machine learning

and graphical models [64, 79, 81]. They are discrete analogues of convex functions that exist

on vector spaces. Mathematically, for a given set S = {s1, · · · ,sn}, a set function f : 2S → R

is submodular if and only if the following property is satisfied:

f (A)+ f (B)≥ f (A∪B)+ f (A∩B),∀A,B ⊂ S. (2.12)

Note that the domain of f is the subsets of the set S. Several functions that are commonly

used in real world applications satisfy the above inequality either directly or in some restricted

settings. Examples include, ‘cut functions’, ‘entropy’, ‘mutual information’, and the ‘rank

function’ [1, 80].

Submodular pseudo-boolean functions. Every set function can be written as a Psuedo-

Boolean Function (PBF) fb : {0,1}n → R, where fb is a function of binary vectors. For

example, if S = {s1,s2,s3}, A = {s1,s2}, and B = {s3}, then the binary vectors corresponding

to the subsets A and B are bA = (1,1,0) and bB = (0,0,1). For pseudo-boolean functions the

submodularity property (2.12) can be equivalently written as:

fb(bA)+ fb(bB)≥ fb(bA ∨bB)+ fb(bA ∧bB),∀bA,bB ∈ {0,1}n. (2.13)

where, ∧ and ∨ are componentwise logical AND and OR operations. In the above mentioned

example, the inequality (2.13) reduces to fb(1,1,0)+ fb(0,0,1)≥ fb(0,0,0)+ fb(1,1,1). If

the set size is fixed to two (n = 2), all of the inequalities in (2.13) are satisfied trivially except

for the following one:

fb(1,0)+ fb(0,1)≥ fb(0,0)+ fb(1,1). (2.14)

Therefore, any pseudo-boolean function fb of binary vectors of length 2 (pairwise) is sub-

modular if and only if the inequality (2.14) is satisfied.

The energy function. The energy function (2.11) is binary submodular if the label set

contains two labels L ∈ {0,1}, the maximum clique size is two, and the clique potential

functions are the pseudo-boolean functions θi j : {0,1}2 → R,∀{i, j} ∈ E satisfying the

following inequality (submodularity):

θi j(1,0)+θi j(0,1)≥ θi j(0,0)+θi j(1,1),∀{i, j} ∈ E . (2.15)
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Notice that (2.15) enforces label smoothness by decreasing the energy if the nodes sharing

an edge are assigned the same label. This type of potential function is of great importance

in many tasks such as binary image restoration [14, 15, 51, 57], foreground background

segmentation [13], medical imaging [11, 12], stereo and motion [14, 15, 56], and many

others.

(a) s-t Graph (b) Example of cuts

Figure 2.5: The directed graph shown in Figure 2.5a is an example of an s-t Graph. All of the
arc weights are assumed to be positive. In Figure 2.5b, the cost of Cut-1 is (w1+w6+w4), Vs

is {s,v2}, Vt is {t,v1}, and the labeling is y = {1,0}. Similarly, the cost of Cut-2 is (w1+w3),
Vs is {s}, Vt is {t,v1,v2}, and the labeling is y = {1,1}.

2.3.1.2 The s-t Graph and the s-t MINCUT problem

An s-t graph is a non-negatively weighted directed graph Gd = (V ∪{s, t},Ad,w). Here V

denotes the set of vertices and Ad denotes the set of arcs. The graph Gd contains two special

vertices s and t, called ‘source’ and ‘sink’ respectively. These are called special vertices

because the ‘source’ can have only outgoing arcs (no incoming arcs) and the ‘sink’ can have

only incoming arcs. All of other vertices can have both incoming and outgoing arcs. The

function w : Ad → R
+ gives the weight of a given arc. An example of such a graph is shown

in Figure 2.5a.

Under this setting, an s-t cut (also referred as the ‘cut’) is a partitioning of the graph vertices

into two disjoint subsets Vs and Vt such that s ∈Vs, t ∈Vt , and V ∪{s, t}=Vs ∪Vt . The cost

of a cut is the sum of the weights of the arcs that go from the subset Vs to the subset Vt .

Figure 2.5b shows some examples of cuts and their corresponding costs. Formally, the cost

of the cut partitioning the vertices into subsets Vs and Vt is:

C(Vs,Vt) = ∑
vi∈Vs,v j∈Vt

w(vi,v j). (2.16)
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In this context, the s-t MINCUT problem is to find the s-t cut that incurs the minimum cost

out of all possible s-t cuts. According to the Ford-Fulkerson theorem [41], the s-t MINCUT

problem can be solved by finding the maximum flow from the source to the sink. Thus,

solving the s-t MINCUT problem is equivalent to solving the ‘max-flow’ problem, which

is a classical combinatorial optimization problem. However this algorithm converges to

the global minimum if and only if the edge weights of the directed graph are positive. In

what follows, we show how an inference problem with binary pairwise submodular clique

potentials is related to an s-t MINCUT problem.

2.3.1.3 The s-t MINCUT and the inference problem

We begin with an example to show the relationship between an s-t cut and a labeling y ∈ Y .

We use the simplest possible case of the interaction between two connected nodes. The

Figure 2.5a shows the s-t graph, where vertices v1 and v2 represents the random variables

associated with the inference problem. Let us assign the labels (or classes) 0 and 1 to the

vertices s and t respectively. Therefore, for a given cut, all of the vertices that belong to the

set Vs are assigned the label 0 and all of the vertices that belong to the set Vt are assigned

the label 1. For example, the Cut-1 in the Figure 2.5b assigns the label 1 to the node v1 and

the label 0 to the node v2. Furthermore, let us define the weights (assumed to be positive for

now) of the arcs as follows:

w1 = θ1(1)+θ12(1,1) (2.17)

w2 = θ1(0) (2.18)

w3 = θ2(1) (2.19)

w4 = θ2(0)+θ12(0,0) (2.20)

w5 = θ12(0,1) (2.21)

w6 = θ12(1,0)−θ12(1,1)−θ12(0,0) (2.22)

where, θi(.) and θi j(., .) represents the unary and pairwise potentials. Now, for the cut (Cut-1)

shown in the Figure 2.5b, the cost is C = w1 +w6 +w4 = θ1(1)+θ12(1,0)+θ2(0) (recall

that the cost of the cut is the sum of the weights of the edges going from Vs to Vt , thus

ignoring the edge weight w5). The labeling corresponding to this cut is y1 = 1 and y2 = 0,

which has energy E(y;x) = θ1(1)+θ12(1,0)+θ2(0) = C. Thus, the cost of the s-t cut is

exactly the same as the energy corresponding to the labeling obtained using the cut. This

turns out to be true for any cut.
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This example shows the relationship between the cost of an s-t cut and the energy cor-

responding to the labeling obtained. Hence, the inference problem, which is to find the

labeling corresponding to the minimum energy, is exactly the same as finding the labeling

corresponding to the minimum cost cut, i.e. solving the s-t MINCUT problem. However,

as previously stated, the s-t MINCUT problem can be solved efficiently using ‘max-flow’ if

and only if the arcs of the s-t graph have positive weights. In what follows we show how to

construct such a graph with positive arc weights when the energy function is binary pairwise

submodular.

2.3.1.4 The s-t graph construction

In this section we discuss the construction of an s-t graph for a given pairwise submodular

energy function. We first consider construction for the unary potentials, then we move

to the construction for pairwise submodular potentials, then finally we merge these two

graphs (using the additivity theorem [74]) to build the final s-t graph. We also show how the

submodularity condition ensures that we can always construct an s-t graph with positive arc

weights.

(a) Initial (b) θ1(1)≥ θ1(0) (c) θ1(1)≤ θ1(0)

Figure 2.6: The s-t graph construction for arbitrary unary potentials. Figure 2.6b shows
the s-t graph when the unary potential for label 1 is higher than that of label 0. Similarly,
Figure 2.6b shows the s-t graph for the opposite case. Recall that a node in the set Vs and Vt

is assigned the labels 0 and 1, respectively.

Arbitrary unary potentials. The graph construction for any given unary potential is

shown in Figure 2.6. The initial graph shown in Figure 2.6a may or may not have positive

edge weights. If θ1(1)≥ θ1(0), Figure 2.6b shows a modified graph that has all of its edge

weights non negative. Hence, it is an s-t graph. The idea is to modify the weights such
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that all of the weights of the graph are non negative and the labeling corresponding to the

s-t MINCUT remains the same. In this case, the labeling corresponding to the s-t MINCUT

(obtained by cutting the zero weight edge v1−t) is y1 = 0. This is correct since θ1(1)≥ θ1(0).

However, since we have created a new graph, the relationship between the cost of the s-t

MINCUT (which is 0 in this case) and the minimum energy (which is θ1(0)) follows a new

rule: E(y;x) =C(Vs,Vt)+ k, where, C(Vs,Vt) is the cost of the cut and k is a constant. In the

case θ1(1)≥ θ1(0), k = θ1(0), otherwise, k = θ1(1). Below we present simple rules, based

on the above discussion, to create an s-t graph for arbitrary unary potentials.

• Rules for the s-t graph construction for arbitrary unary potentials: If θi(1) >

θi(0), then create an edge s− vi with weight θi(1)−θi(0) and k = θi(0). Otherwise,

create an edge vi − t with weight θi(0)−θi(1) and k = θi(1).

(a) Unary (b) Unary (c) Pairwise (d) Final

Figure 2.7: Graph construction for a given pairwise submodular energy for the case when
A ≥ C and D ≥ C. Figures 2.7a and 2.7b are the graph constructions for θ1(0) = A−C

and θ2(1) = D −C respectively. Figure 2.7c is the graph construction for θ12(0,1) =
B+C−A−D. Figure 2.7d uses the additivity theorem to construct the final graph.

Pairwise submodular potentials. Recall that the edge weights of the directed graph for

the graph cuts must be non-negative. For example, consider the following pairwise potentials:

θ12(0,0) = 3 θ12(0,1) = 10

θ12(1,0) =−2 θ12(1,1) =−1

If we construct the s-t graph with the edge weights as mentioned in the section 2.3.1.3 (assum-

ing all the unary potentials to be zero), we get w1 =−1 (please refer to the equation (2.17)).

However, we can decompose the above pairwise potential as follows:
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A B

C D
=

A−C A−C

0 0
+

0 D−C

0 D−C
+

0 B+C−A−D

0 0
+ C

where θ12(0,0) = A, θ12(0,1) = B, θ12(1,0) = C, and θ12(1,1) = D. Note that in the

above decomposition, all of the entries in the decomposed matrices are non-negative since

A >C, D >C, and B+C−A−D ≥ 0 (the given potential is submodular, thus, θ12(0,1)+

θ12(1,0)≥ θ12(0,0)+θ12(1,1)). Therefore, constructing s-t graphs for these decomposed

potentials will always have positive edge weights. The potentials in the first table are

independent of node v2. Therefore, they can be treated as a unary potential θ1(0). Similarly,

the potentials in the second table can be treated as θ2(1). The potential in the third table

is θ12(0,1). The graph construction for these potentials is shown in the Figure 2.7. Note

that the above decomposition does not change the energy of the labeling. For example,

θ12(1,1) = 0+1+0−2 =−1. However, it allows us to create a directed graph with positive

edge weights. Similar decompositions are always possible if the given potential is submodular

because B+C−A−D ≥ 0 is always satisfied. Again, the energy and the cost of the cut are

different but follow the relationship: E(y;x) = C(Vs,Vt)+ k. In the above discussed case,

k =C. Below we present rules that create s-t graph for any pairwise submodular potentials.

• Rules for the pairwise potential:

1. create an edge vi − v j with weight (B+C−A−D). See Figure 2.7c.

2. if A−C ≥ 0 create an edge vi − t with weight A−C. Otherwise, create an edge

s− vi with weight C−A. See Figure 2.7a.

3. if C−D ≥ 0 create an edge v j − t with weight C−D. Otherwise, create an edge

s− v j with weight D−C. See Figure 2.7b.

4. Update k: This falls into the following three cases — (i) if A >C, k = min(C,D);

(ii) if A <C and C < D, k = A; and (iii) if A <C and C > D, k = A+D−C.

The rules above are for a given pairwise clique. However, the additivity theorem [74] allows

us to construct an s-t graph representing for the whole input graph by combining the s-t

graphs from each unary and pairwise potential. Roughly speaking, if an arc (vi,v j) has

weights wk(vi,v j) in the k-th s-t graph, then it will have the weight ∑k wk(vi,v j) in the final

s-t graph. An example is shown the Figure 2.7d.

2.3.2 The α−expansion algorithm for metric labeling

In section 2.3.1 we discussed graph cuts where labels was binary and the clique potentials

were pairwise submodular. In this section, we talk about a more general inference algorithm
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called α-expansion [15, 128] which approximately solves the inference problem when the

number of labels is more than two. If the clique potentials are pairwise metric distance func-

tions defined over the labels (also known as the metric labeling problem), the α-expansion

algorithm provides strong theoretical guarantees. In the following section, we first talk about

the metric labeling problem and then provide details on α-expansion and how it can be used

to efficiently optimize metric labeling problems.

2.3.2.1 Metric labeling problem

Metric labeling is an important special case of labeling or inference problems, which has been

extensively studied in computer vision [15, 84] and theoretical computer science [20, 65].

In metric labeling, the unary potentials remain arbitrary while the clique potentials are

decomposable as the sum of pairwise potentials specified by user-defined metric distance

functions defined over the label space. Before formally defining the energy function for

metric labeling, we first define a metric distance function.

Metric distance function. A function θi j(yi,y j) : L ×L → R+ is a metric distance

function if and only if the following four conditions are satisfied:

• Non Negativity: θi j(yi,y j)≥ 0,∀yi,y j ∈ L .

• Identity of indiscernibles: θi j(yi,y j) = 0 if and only if yi = y j.

• Symmetry: θi j(yi,y j) = θi j(y j,yi),∀yi,y j ∈ L .

• Triangle inequality: θi j(yi,y j)+θi j(y j,yk)≥ θi j(yi,yk),∀yi,y j,yk ∈ L .

A few examples of metric distance functions are — (1) Truncated Linear: θ(yi,y j) =

min(M, |yi − y j|),M ≥ 0; (2)Uniform Metric: a truncated linear metric with M = 1; (3)

Shortest Path: if {yi}i={1,··· ,N} represents the set nodes in a weighted graph then θ(yi,y j) =

d(yi,y j) is a metric if d(yi,y j) is the length of the shortest path between nodes yi and y j; and

(4) Minkowski Metric: θ(yi,y j) = lp(|yi − y j|), p ≥ 1, where lp(.) is the p−norm.

The energy function. The pairwise energy function (2.11) defines a metric labeling prob-

lem if the pairwise clique potential functions for all the edges θi j(., .),∀{i, j} ∈ E are metric

distance functions defined over the label set L . Metric labeling has been used to formulate

several problems in low-level and high-level computer vision tasks. For example, for image

denoising and stereo matching the truncated linear metric shows very promising results [118].

Similarly, for pose estimation the Minkowski Metric has been used extensively [35].
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(a) Initial Labeling (b) α = ‘Green’

Figure 2.8: An example of the move space for α−expansion with only four nodes in the
graph. Figure 2.8a shows the initial labeling from where the expansion move will take place.
Figure 2.8b shows the possible labelings when α is the ‘Green’ label. Let the numbering
of the nodes be in the clockwise manner starting from the top left corner. Then different
binary vectors for all possible labelings are as follows: ta = {0,0,0,0}, tb = {1,0,0,0},
tc = {0,0,1,0}, and td = {1,0,0,1}.

2.3.2.2 The α−expansion algorithm

Let us now talk about the general form of the well known α-expansion algorithm and see

how it can be used for the metric labeling problem. α-expansion [15, 128] is a general frame-

work designed to approximately solve the multilabel inference problem (see Algorithm 1).

Intuitively, for a given α ∈ L , step 2 of the algorithm finds the best labeling within the

expansion move space. An expansion move space consists of the set of labelings produced

when the nodes can either retain their current label or switch to a given label α ∈ L (see

Figure 2.8 for a visualization). The α-expansion algorithm cycles through the α ∈ L in

some predefined order repeatedly minimizing the energy within the given α-expansion move

space until the energy of the solution can not be decreased further. This produces a local

minima of the global cost function. Notice that the expansion move spaces can be very large.

They contain 2P possible labelings, where P ≤ N is the number of nodes whose current label

is not α .

Mathematically, an α-expansion move can be represented using a vector of binary variables

t = {ti,∀i ∈V}, where ti = 0 implies that the i-th node retained its original label and ti = 1

implies that it moved to the new label alpha (see Figure 2.8 for an example). Given the current

labeling y and the binary vector t, the new labeling can be obtained using the following

transformation function Tα(y, t):

Tα(yi, ti) =







yi, if ti = 0

α, if ti = 1
(2.23)
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It remains to see how to obtain the optimal binary vector t̂ which is the move corresponding

Algorithm 1 The α-expansion algorithm.

input Initial labeling y; Label set in some predefined order L .
1: Set success:=0
2: for each label α ∈ L do

3: Find optimal expansion move

t̂ = argmin
t∈{0,1}N

Eα(t) (2.24)

4: if E(Tα(y, t̂))< E(y) then

5: y = Tα(y, t̂)
6: success:=1
7: end if

8: end for

9: if success:=1 then

10: go to 1.
11: end if

12: return y.

to the minimum energy for a given α . Recall that each node has two options, either to retain

its current label yi, represented as ti = 0, or, to move to a new label α , represented as ti = 1.

Therefore, the task of obtaining the optimal binary vector t̂ can be posed as the following

optimization problem:

t̂ = argmin
t∈{0,1}N

Eα(t) (2.25)

where, Eα = ∑i θ α
i (ti)+∑i j θ α

i j (ti, t j), is a new energy function with the following unary and

the pairwise potentials:

θ α
i (0)

θ α
i (1)

=
θi(yi)

θi(α)

θ α
i j (0,0) θ α

i j (0,1)

θ α
i j (1,0) θ α

i j (1,1)
=

θi j(yi,y j) θi j(yi,α)

θi j(α,y j) θi j(α,α)

Note that α-expansion can only be used in practice if the optimization problem (equa-

tion (2.25)), which amounts to finding the best expansion move, can be solved efficiently in

polynomial time.

For metric labeling the new pairwise potentials θ α
i j (., .) are pairwise submodular functions

(as will be proven shortly). Therefore, the expansion move optimization problem can be

solved globally and efficiently using Graph cuts [74] (as discussed in section 2.3.1). The

graph for the new potentials θ α
i (.) and θ α

i j (., .) can be easily constructed using the rules
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Figure 2.9: An example of the costs assigned by the Pn-Potts model. Let γr, γb, and γg be the
costs for the colors ‘red’, ‘blue’, and ‘green’, respectively. γmax > max(γr,γg,γb). Then the
costs for the cases (a), (b), and (c) are all the same, which is γmax. The cost for the case (d) is
γg.

discussed in section 2.3.1.4. It remains to prove that the new pairwise potentials θ α
i j (., .) are

submodular for all {i, j} ∈ E . Since θi j(., .) is a metric distance function defined over the

labels, using the triangular inequality and the fact that θi j(α,α) = 0,∀i, j ∈ E , we get:

θi j(yi,α)+θi j(α,y j)≥ θi j(yi,y j)+θi j(α,α),∀yi,y j ∈ L ,∀i, j ∈ E . (2.26)

Inequality (2.26) is sufficient to prove that θ α
i j (., .) satisfy the submodularity condition

θ α
i j (0,1) + θ α

i j (1,0) ≥ θ α
i j (0,0) + θ α

i j (1,1),∀i, j ∈ E . Hence, graph cuts can be used to

obtain the globally optimal α-expansion move.

2.3.3 α-expansion for the Pn Potts model

In sections 2.3.1 and 2.3.2 we talked about Graph cuts for binary pairwise submodular

energy functions and the α-expansion algorithm for the metric labeling problem. In both

cases the maximal clique size is assumed to be two, which encodes only pairwise interactions.

However higher-order interactions have been shown to be very useful in many vision tasks

including object segmentation [28, 30, 67, 87, 121, 129], disparity estimation [62, 131], and

image restoration [89]. There are several known energy functions (or models) that allows us

to encode higher-order interactions for which efficient inference algorithms is still available,

such as the Pn-Potts model [66], the Robust Pn-Potts model [67], the Label cost based

model [28], and the Co-occurrence statistics based model [87]. In this section we discuss the

Pn-Potts model which will play a key role in chapter 3.
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Figure 2.10: Graph construction for the Pn Potts model. Ms and Mt are two auxiliary nodes.
The weights are wd = γ + k and we = γα + k, where, k = γmax − γα − γ . Figure reproduced
from [66].

2.3.3.1 Pn-Potts model

An important special case of the labeling problem with higher-order cliques is the Pn-Potts

model [66]. This generalizes the well known Potts model [106] to higher-order energy

functions. As opposed to the previous two models, submodular pairwise binary labels and

metric labeling, the cliques in the Pn-Potts model can be of arbitrary sizes. The energy

function defined in equation (2.9) represents a Pn Potts model if the clique potential functions

are defined as (θc(yc) := θc(yc;xc)):

θc(yc) ∝







γk, if yi = lk,∀i ∈ c,

γmax, otherwise,
(2.27)

where γk is the cost of assigning all nodes of the clique to label lk ∈L , and γmax > γk,∀lk ∈L .

Intuitively, the Pn-Potts model enforces rigid label consistency by assigning a larger cost

γmax whenever there is more than one label in the given clique. Figure 2.9 shows an example

of the costs assigned by Pn-Potts for four different labelings.
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2.3.3.2 Optimization algorithm for the Pn-Potts model

We now discuss α-expansion for the optimization of energy functions defined using the

Pn-Potts model [66]. As described in section 2.3.2, our goal is to find the optimal move t̂ that

minimizes the cost shown in equation (2.25). As we are dealing with higher-order cliques,

the energy function Eα has a more general form: Eα = ∑i θ α
i (ti)+∑cC ∈ θ α

c (tc), where, tc

is the binary move vector for all of the nodes in the clique c. Recall that, ti = 0 implies that

the ith node retains its original label, and ti = 1 implies that it moves to the new label alpha.

Therefore, the transformation function Tα(yi, ti) is the same as defined in equation (2.23).

Using above definitions and the fact that the clique potentials have the Pn Potts form (2.27),

the potentials after the move tc can be computed as follows:

θc(Tα(yc, tc)) =



















γ, if ti = 0,∀i ∈ c,

γα , if ti = 1,∀i ∈ c,

γmax, otherwise,

(2.28)

where,

γ =







γl, if yi = l ∈ L ,∀i ∈ c,

γmax, otherwise,
(2.29)

The optimal move t̂ for the above potential can be obtained by solving the s-t MINCUT

problem in the graph shown in Figure 2.10. Figure 2.10 shows the graph construction for

a particular clique c, but additivity theorem [74] allows us to construct the global graph by

addition.

2.4 Learning Algorithms for the SSVM

In section 2.3, we talked about different inference algorithms useful for the SSVM prediction

task. We assumed that the SSVM parameters w were already known. In this section, we talk

about learning these parameters in a supervised fashion when a labelled training set is given.

Broadly speaking, learning parameters for a task involves two major steps – (1) designing an

objective function with desirable properties; and (2) optimizing the objective function. The

design of the objective function is highly dependent on our capacity to optimize it: functions

that encodes all of the desired properties may not yield to efficient optimization. This

constraint limit us a few specific types of objective functions. As will be seen in section 2.4.1,
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for SSVM we upper bound the empirical loss in such a way that the final objective function

becomes convex, and thus can be efficiently optimized using many known algorithms. In

what follows we discuss about the design and optimization of the SSVM objective function in

detail.

The objective function of SSVM can be derived using several interrelated approaches such

as – (i) a probabilistic approach (minimizing the posterior expected loss), (ii) a geometric

approach based on margin maximization (hyperplanes), (iii) a linear feasibility problem

based approach, and (iv) a regularized risk minimization based approach (minimizing an

upper bound on the empirical loss). In this chapter we focus on the risk minimization point

of view, as briefly discussed in section 2.2.2, because this is simple and intuitive. We also

talk about the geometric view point whenever it is useful for better understanding of the

objective function. Finally, we talk about different algorithms for the optimization of the

objective function. All of the notation is as described in section 2.2.

2.4.1 Convex upperbound of empirical loss

As discussed in section 2.2.2, given a sufficiently large dataset of n input-output pairs,

D = {(xi,yi)}i={1,··· ,n} drawn i.i.d. from an unknown distribution ρ , the optimized parameter

vector w∗ can be obtained by minimizing the following approximate empirical risk [127]:

w∗ = argmin
w

Remp(w) = argmin
w

1
n

n

∑
i=1

∆(yi, fw(xi)) (2.30)

The loss function ∆(., .) is normally piece wise linear and non-convex with respect to w, so it

is non-differentiable at many hinge points and its gradient is zero in many flat regions. Thus,

direct optimization of the above function is prone to troublesome local minima. In order to

alleviate this problem we optimize a convex upper bound for the loss function. For a given w

and the predicted labeling ŷi = argmaxȳi∈Yi
w⊤Φ(xi, ȳi), the loss can be upper bounded as

follows:

∆(yi, ŷi) = ∆(yi, ŷi)+w⊤Φ(xi, ŷi)−w⊤Φ(xi, ŷi) (2.31)

≤ ∆(yi, ŷi)+w⊤Φ(x, ŷi)−w⊤Φ(xi,yi) (2.32)

≤ max
ȳi∈Yi

(∆(yi, ȳi)+w⊤Φ(xi, ȳi)−w⊤Φ(xi,yi)) (2.33)

= max
ȳi∈Yi

(∆(yi, ȳi)−w⊤Ψ(xi, ȳi)
| {z }

Hi(ȳi;w)

)

| {z }

H̃i(w)

(2.34)



36 Review of Structured SVM and related Inference Algorithms

where Ψ(xi, ȳi) = Φ(xi,yi)−Φ(xi, ȳi) and H̃i(w) is the hinge loss. Expression (2.32) follows

from the fact that the predicted labeling ŷi is the argmax over the label set Yi which already

contains the ground truth labeling yi, so w⊤Φ(xi, ŷi)≥ w⊤Φ(xi,yi). Notice that the upper

bounded loss H̃i(w) is convex in w because it is a maximum over affine functions in w.

Minimizing this upper bound on the loss over the entire dataset with the L2 regularization

leads to the following objective function:

min
w

λ

2
∥w∥2 +

1
n
∑

i

max
ȳi∈Yi

(∆(yi, ȳi)−w⊤Ψ(xi, ȳi)). (2.35)

Broadly speaking, the regularization term ∥w∥2 provides two benefits – (1) it makes the

objective function smoother; and (2) it reduces overfitting. This objective function can be

written in constrained form as follows:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (2.36)

s.t. ξi ≥ ∆(yi, ȳi)−w⊤Ψ(xi, ȳi), ∀i, ∀ȳi ∈ Yi. (2.37)

The constraints (2.37) ensure that ξi ≥ maxȳi∈Yi
(∆(yi, ȳi)−w⊤Ψ(xi, ȳi)) and the objective

function minimizes ξi under them. Therefore, the constrained and the unconstrained ob-

jective functions of SSVM serves the same purpose of minimizing the upper bound on the

loss. The unconstrained objective function is non-smooth owing to the ‘max’ over affine

functions, whereas although constrained objective function is smooth, it has exponentially

many constraints. As will be seen shortly, the different characteristics of the constrained and

unconstrained forms allow us to use different algorithms to optimize them.

Intuitive Interpretation. We have seen that the unconstrained objective function for SSVM

directly optimizes an upper bound on the empirical loss. We now develop an intuitive

interpretation of constrained form for the SSVM objective function. The function can be

rewritten as:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (2.38)

s.t. w⊤Ψ(xi, ȳi)≥ ∆(yi, ȳi)−ξi, ∀i, ∀ȳi ∈ Yi. (2.39)

or

s.t. w⊤Φ(xi,yi)≥ w⊤Φ(xi, ȳi)+∆(yi, ȳi)−ξi, ∀i, ∀ȳi ∈ Yi. (2.40)
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For a given w, let us denote s(xi, ȳi;w) = w⊤Φ(xi, ȳi) as the score of assigning labeling ȳi

to the input xi. Therefore, the constraints (2.40) force us to learn a w such that the score

of the ground truth labeling is higher than the score for any other labeling, with a margin

proportional to the loss function. This make sense because our prediction is based on a

maximization over Yi and we would like our classifier to award the maximum score to the

correct labeling. These constraints, however, may lead to overfitting of the training dataset if

the regularization hyperparameter λ is not chosen properly. In order to avoid this, one way is

to set λ by cross-validating it on the training set.

2.4.2 Lagrange dual of SSVM

For the sake of completeness we have given a brief introduction to the Lagrange theory [6, 10]

in Appendix B.1. The constrained primal problem of SSVM (2.36) can be written in the

standard form of equation (B.1) as follows:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (2.41)

s.t. ∆(yi,y)−w⊤Ψ(xi,y)−ξi ≤ 0, ∀i, ∀y ∈ Yi. (2.42)

There are no equality constraints. Note that we are using the notation y instead of ȳi in order

to avoid clutter. The primal variables of the problem are w and ξi and Lagrangian is:

L(w,ξ ,α) =
λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi + ∑
i∈[n],y∈Yi

1
n

αi(y)
�

−ξi −w⊤Ψ(xi,y)+∆(yi,y)
�

(2.43)

where αi(y) is the dual variable associated with the constraint for the i-th input when the

labeling y ∈ Yi is assigned to it. We have scaled the dual variables αi(y) by 1
n
. This does

not change any optimality conditions and it leads to a cleaner formulation. Let αi ∈ R
|Yi|

be the dual variable vector corresponding to all of the constraints associated with the i-th

sample. Then the final dual variable vector for all of the samples can be written as α =

(α1, · · · ,αn) ∈R
|Y1|×·· ·R|Yn| ∈R

m, where m = ∑
n
i=1 |Yi| is the total number of constraints,

which is exponentially large. Using the first order KKT condition (see Appendix B.1.5 for

all four KKT conditions), which specify the optimal values of the primal variables of the

Lagrangian, we obtain:

∇wL(w,ξ ,α) = 0 =⇒ w = ∑
i∈[n],y∈Yi

1
nλ

αi(y)Ψ(xi,y), (2.44)
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and

∇ξi
L(w,ξ ,α) = 0 =⇒ ∑

y∈Yi

αi(y) = 1. (2.45)

Plugging these optimality conditions into the SSVM Lagrangian (equation (2.43)) we obtain

the following Lagrange dual problem (a concave maximization):

max
α

g(α) :=−
λ

2
















∑
i∈[n],y∈Yi

1
nλ

αi(y)Ψ(xi,y)
















2

+ ∑
i∈[n],y∈Yi

1
n

αi(y)∆(yi,y) (2.46)

s.t. ∑
y∈Yi

αi(y) = 1,∀i ∈ [n], (2.47)

αi(y)≥ 0,∀i ∈ [n],∀y ∈ Yi. (2.48)

The additional positivity constraints (2.48) ensure that the dual objective is always a lower

bound on the primal objective (see Theorem 5 in Appendix B.1.2). The dual problem can be

equivalently written as a convex minimization:

min
α

f (α) :=
λ

2
∥Aα∥2 −b⊤α (2.49)

s.t. ∑
y∈Yi

αi(y) = 1,∀i ∈ [n], (2.50)

αi(y)≥ 0,∀i ∈ [n],∀y ∈ Yi. (2.51)

where, f (α) =−g(α), A ∈ R
d×m is a matrix with column entries as Ψ(xi,y)

λn
, and b ∈ R

m is a

vector with elements as ∆(yi,y)
n

, as shown below:

A =
1

λn







|

· · · Ψ(xi,y) · · ·

|






∈ R

d×m, b =
1
n









...

∆(yi,y)
...









∈ R
m. (2.52)

Notice that, from the KKT conditions

w = ∑
i∈[n],y∈Yi

1
nλ

αi(y)Ψ(xi,y) = Aα. (2.53)

The above equation gives the relationship between the primal and the dual variables which

will be useful when we discuss about the Block-Coordinate Frank-Wolfe algorithm for the

optimization of the dual of the SSVM.
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2.4.3 Optimization

For SSVM, the optimization of the primal problem (2.36) or its dual (2.49) both lead to

the same solution. This is because the objective function is convex and strong duality

holds. However as we have discussed, both the primal and the dual objectives contain

exponentially many constraints so neither can be optimized directly using off-the-shelf

quadratic program solvers. In this section we discuss three algorithms that can handle these

issues: (1) Subgradient descent; (2) Cutting plane; and (3) Block-Coordinate Frank-Wolfe

(BCFW). The subgradient descent algorithm works on the unconstrained primal objective

function of SSVM (2.35). The cutting plane algorithm can be used with either the constrained

primal or the dual objective functions. Lastly, the BCFW algorithm can only be used on the

dual formulation of the SSVM but as will be seen shortly all of its updates are associated with

primal variables.

Before delving into the details of these algorithms, let us first talk about the ‘max-oracle’

problem, which is a useful ingredient of all these methods.

The max-oracle problem. The ‘max-oracle’ problem at a given w is defined as:

y∗i = argmax
y∈Yi

(∆(yi,y)−w⊤Ψ(xi,y)
| {z }

Hi(y,w)

) : ‘max-oracle’ or ‘loss augmented inference’

(2.54)

This finds the labeling that maximizes the augmented loss Hi(y,w) (cf. equation (2.33)) for

the i-th sample. The problem can be rewritten as:

y∗i = argmax
y∈Yi

(∆(yi,y)−w⊤Ψ(xi,y)

= argmax
y∈Yi

(∆(yi,y)−w⊤Φ(xi,yi)+w⊤Φ(xi,y))

= argmax
y∈Yi

(∆(yi,y)+w⊤Φ(xi,y)) (2.55)

The equality (2.55) comes from the fact that the term w⊤Φ(xi,yi) is constant. Notice that the

extra loss term ∆(., .) is the only difference between the ‘max-oracle’ problem (2.55) and

the prediction or the inference problem (2.4). Because of this ‘max-oracle’ is also known

as the loss augmented inference problem. If the loss function is decomposable over the

nodes of the output structure, the unary potentials of the standard inference problem can be

trivially modified so that solving the above problem is equivalent to solving an inference

problem. It can thus be optimized using the algorithms discussed in section 2.3. Few
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examples of decomposable loss functions are – (1) the zero-one loss (2) the Hamming loss;

and (3) the area under curve loss. These loss functions are very useful in many applications

related to computer vision and medical imaging. However, even for some non-decomposable

loss functions the ‘max-oracle’ problem can be solved efficiently in polynomial time. One

example is the average precision based loss [137].

In what follows, we discuss the optimization algorithms in detail.

2.4.3.1 Subgradient descent algorithm

Subgradient descent is the simplest and easiest to implement algorithm for optimizing the

SSVM [23, 108, 113, 114]. It uses the unconstrained SSVM objective function (2.35). As

already discussed, this is a ‘max’ over an exponential number of affine functions, so it is

non-smooth with many hinges. As the gradient is not defined at the hinge points we need to

use a suitable ‘subgradient’ such as:

∇w f (w) = λw−
1
n

n

∑
i

Ψ(xi,y
∗
i ) (2.56)

where,

y∗i = argmax
y∈Yi

(∆(yi,y)−w⊤Ψ(xi,y)) (2.57)

This is exactly the ‘max-oracle’ problem (2.54) so it can be solved efficiently using the

methods discussed at the beginning of this section. The resulting subgradient descent

algorithm for SSVM is shown in Algorithm 2. The learning rate η can be any convergent

series. Note that for each update of w we need to compute the subgradient which requires

us to solve the ‘max-oracle’ problem for all of the samples. This makes the algorithm

computationally inefficient. However, the gradient can be approximated using just few

samples, known as online (sometimes batch) subgradient descent. Doing this decreases the

cost of each step although the total number of steps needed for the convergence increases.

2.4.3.2 The cutting plane algorithm

The cutting plane algorithm [61] can be used to optimize either the primal or dual constrained

form of the SSVM objective both having exponentially many constraints. The idea behind

the cutting plane method is rather simple. Instead of solving the problem with all of the

constraints active at once, the algorithm iteratively adds constraints that are violated (known

as the most violated constraint) to a constraint set and re-optimizes the cost over this small
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Algorithm 2 Subgradient descent algorithm for SSVM.

input D , w0, λ , the tolerance ε .
1: t = 0, wt = w0, the learning rate η = 1.
2: repeat

3: Compute y∗i at wt for each sample by solving the ‘max-oracle’ problem defined in
equation (2.54).

4: Compute the subgradient ∇wt
f (w) at wt using equation (2.56).

5: Update wt+1

wt+1 = wt −η∇wt
f (w) (2.58)

6: t = t +1 and η = 2
t+1

7: until f (wt)− f (wt+1)≤ ε .

but growing subset of the constraints. In particular, the process can repeatedly add the

most violated constraint and re-optimize until no violated constraint can found to add to

the constraint set. In spite of the fact that the original problem contains exponentially many

constraints, the cutting plane algorithm guarantees convergence when a polynomial number

of violated constraints have been added to the working set.

Notice that the objective function (2.38) has only one slack variable ξi for each sample,

shared across all labelings from the output set Yi. Therefore it has n slacks in total, which

makes the problem size dependent on the size of the dataset. However, we can convert this to

a ‘1-slack’ formulation with a number of variables independent of the size of the dataset, as

follows [61]:

min
w,ξ

λ

2
∥w∥2 +ξ (2.59)

s.t. w⊤1
n

n

∑
i=1

Ψ(xi, ȳi)≥
1
n

n

∑
i=1

∆(yi, ȳi)−ξ , ∀(ȳ1, · · · , ȳn) ∈ Y
n. (2.60)

where Y n = Y1 × ·· · ×Yn. While the n-slack optimization problem (2.38) has ∑i |Yi|

constraints, the 1-slack optimization problem (2.59) has |Y n|= ∏i |Yi| constraints, far more

than the n-slack formulation. However, the 1-slack formulation has only one slack variable

shared across all |Y n| constraints. In order to find the most violated constraint for a given w

we need to solve the following problem:

(ŷ1, · · · , ŷn) = argmax
∀(ȳ1,··· ,ȳn)∈Y n

ξ :=
1
n

n

∑
i=1

∆(yi, ȳi)−w⊤1
n

n

∑
i=1

Ψ(xi, ȳi). (2.61)
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Algorithm 3 Cutting plane algorithm for 1-slack SSVM.

input D , λ , tolerance ε .
1: t = 0, W ← /0.
2: repeat

3: Optimize the convex problem:

(w,ξ )← argmin
w,ξ

λ

2
∥w∥2 +ξ (2.63)

s.t. w⊤1
n

n

∑
i=1

Ψ(xi, ŷi)≥
1
n

n

∑
i=1

∆(yi, ŷi)−ξ , ∀(ŷ1, · · · , ŷn) ∈ W .

4: Find the most violated constraint for each sample:
5: for i = 1, · · · ,n do

6: get ŷi by solving problem (2.62).
7: end for

8: Update the constraint set (or working set): W ← W ∪ (ŷ1, · · · , ŷn).
9: Compute the slack corresponding to the new most violated constraints (for the conver-

gence criteria):

ξ̂ =
1
n

n

∑
i=1

∆(yi, ŷi)−w⊤1
n

n

∑
i=1

Ψ(xi, ŷi). (2.64)

10: until ξ̂ ≤ ξ + ε .
11: return (w,ξ )

This finds the set labelings, jointly, such that the slack variable (which is the upper bound

on the empirical loss) is maximized for a given w. In general, the joint maximization of

this problem is very difficult. However, the problem is linear in yi so it decomposes over yi.

Hence, the joint maximization can be achieved by maximizing independently over each yi as

follows:

ŷi ← argmax
∀ȳi∈Yi

�

∆(yi, ȳi)−w⊤Ψ(xi, ȳi)
�

. : ‘most violated constraint’ (2.62)

Notice that this is again the ‘max-oracle’ problem (2.54) so it can be solved efficiently using

the inference algorithms discussed in section 2.3. The complete cutting plane algorithm for

optimizing the 1-slack formulation of SSVM is shown in the Algorithm 3. Upon convergence,

the algorithm guarantees that the learned w has a duality gap of at most ε
λ .
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2.4.3.3 Frank-Wolfe and Block-Coordinate Frank-Wolfe algorithm for SSVM

An overview of the Frank-Wolfe (FW) algorithm [43, 59, 60] is given in Appendix B.3

(see Algorithm 19 there). To summarize, the FW algorithm is optimizes a continuously

differentiable convex function over a convex and compact domain. In the context of the

optimization of SSVM, the FW approach can be divided into following four steps: (1) solving

the linearization problem; (2) convex combination to update the variables; (3) obtaining

the optimal step size; and (4) computing the duality gap. Recall that in the FW algorithm,

the linearization duality gap (or Fenchel duality gap) is obtained as a by-product without

additional computation. In the case of SSVM, the linearization duality gap and the Lagrange

duality gap turn out to be exactly the same, and thus can be used as the convergence criterion.

The FW and BCFW algorithms for optimizing SSVM [86] are given in Algorithm 4 and

Algorithm 5, respectively. Recall that the dual objective function of SSVM (2.49) is:

min
α

f (α) :=
λ

2
∥Aα∥2 −b⊤α (2.65)

s.t. ∑
y∈Yi

αi(y) = 1,∀i ∈ [n],

αi(y)≥ 0,∀i ∈ [n],∀y ∈ Yi.

The function f (α) is convex and smooth as it is the negative of the dual function which is

concave and smooth (does not contain any ‘max’ terms). For each sample the constraints

∑y∈Yi
αi(y) = 1 and αi(y)≥ 0,∀y ∈ Yi, together form a probability simplex Mi, which is

known to be convex and compact. Since the dual variable vector α is the concatenation of αi

for all i ∈ [n], the combined constraints form a Cartesian product of n probability simplices

denoted as M = M1 ×·· ·×Mn, which is a compact and convex polyhedral. Hence, the

FW algorithm can be applied to the dual formulation of SSVM. However, for the primal

formulation of SSVM (equation (2.36)), there is no guarantee of the compactness of the

domain formed by the constraints, so the FW algorithm can not be used.

Briefly, the BCFW algorithm is an online and faster version of FW algorithm. As we have

seen in the dual form of SSVM that each sample forms a simplex. These simplices are

independent of one another. Based on this insight, the BCFW algorithm stores wth
i equal

contribution (2.53) to the overall parameter vector w and the loss ℓi for each i-th sample and

updates them individually. The final parameter vector w and the loss ℓ are approximately

updated using wi and loss li respectively. Thus, requires only one ‘max-oracle’ call for each

update of the parameter vector. This is a much cheaper operation than the parameter updates

of the non-block FW algorithm, which requires ‘max-oracle’ calls for all n samples in the

dataset.
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In what follows, we describe the above mentioned four steps of the FW and BCFW algorithms

for dual SSVM optimization in detail.

Solving the linearization problem. The linearization problem at a given α is defined as

(refer to equation (B.22) in Appendix for details):

s = argmin
p∈M

⟨p,∇α f (α)⟩ (2.66)

where,

∇α f (α) = λA⊤Aα −b (2.67)

Using the relation w = Aα (from the KKT condition), we obtain ∇ f (α) = λA⊤w−b. Recall

that, A ∈ R
d×m is a matrix with column entries Ψ(xi,y)

λn
, and b ∈ R

m is a vector with elements
∆(yi,y)

n
. Therefore,

∇ f (α) := λA⊤w−b =
1
n























...

w⊤Ψ(xi,y)−∆(yi,y)
| {z }

−Hi(y,w)

...























∈ R
m. (2.68)

where, Hi is the augmented loss. As (2.66) is equivalent to solving a linear program with

respect to p over the polyhedron M , it is guaranteed that at least one optimal solution lies on

a vertex of the polyhedron. Notice that the problem minp∈M ⟨∇ f (α),p⟩ splits linearly over

pi ∈ Mi, so it can be solved separately over each simplex pi leading to the decomposition

∑i minpi∈Mi
⟨∇ fi(α),pi⟩. Here, the vector ∇ fi(α) ∈ R

|Yi| contains the entries corresponding

to the i-th sample (or block) in the vector ∇ f (α) ∈ R
m:

∇ fi(α) =−
1
n







Hi(y1,w)
...

Hi(y|Yi|,w)






∈ R

|Yi|. (2.69)
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Therefore, the minimization over the product of simplices decomposes into separate mini-

mizations over the simplices, which can be written as:

si = argmin
pi∈Mi

⟨∇ fi(αi),pi⟩. (2.70)

As we only need to search over the corners, the problem further reduces to finding the corner

corresponding to the labeling y for which −Hi(y,w) attains its minimum value. This is

precisely the ‘max-oracle’ problem y∗i = argmaxy∈Yi
Hi(y,w) discussed in section 2.4.3. So,

the FW linearization step is exactly the same as solving the ‘max-oracle’ problem for each

sample. For BCFW, instead of solving max-oracle for all of the samples, it is solved only for

one block in order to update the corresponding weight contribution, as will be seen shortly.

Convex combination. Let γ be the optimal step size, αk be the current solution, and s be

the corner obtained by solving the linearization problem. In the case of FW, the dual variables

and the parameter vector can be updated as follows:

αk+1 = γs+(1− γ)αk

Aαk+1 = γAs+(1− γ)Aαk

wk+1 = γws +(1− γ)wk (2.71)

Notice that instead of updating the very high dimensional dual variable vector, we can directly

update the primal variables. Thus, even though the algorithm works in the dual, it suffices to

dealing with the low dimensional primal variables. Similarly, for FW the loss can be updated

as follows:

ℓ
k+1 =b⊤αk+1 = b⊤(γs+(1− γ)αk)

=γℓs +(1− γ)ℓk (2.72)

where ℓ
s = 1

n ∑
n
i ∆(y∗i ,yi). For BCFW, as we update only one block the variables correspond-

ing to the other blocks remain unchanged. Hence, (α − s) = (α[i]− s[i]), where, a[i] denotes

the vector with zero everywhere except for the i-th block. Therefore, the dual update can be

written as:

αk+1 = αk + γ(s[i]−αk
[i]),

Aαk+1 = Aαk + γ(As[i]−Aαk
[i]),

wk+1 = wk + γ(ws
i −wk

i ). (2.73)
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Again, instead of working with the high dimensional dual variables, we can work only with the

low dimensional primal ones. Since αk+1
[i]

=αk
[i]+γ(s[i]−αk

[i]), using wk+1
i =wk

i +γ(ws
i −wk

i )

in the above equation we obtain

wk+1 = wk +wk+1
i −wk

i (2.74)

Similarly, the loss can be updated as

ℓ
k+1 = ℓ

k + ℓ
k+1
i − ℓ

k
i (2.75)

where, ℓk+1
i = ℓ

k
i + γ(ℓs

i − ℓ
k
i ) and ℓ

s
i =

1
n
∆(y∗i ,yi). Note that for BCFW the update depends

on only one block, so it is much cheaper than an FW update.

Lagrange duality gap and linearization duality gap. Let us first derive the expression for

the linearization duality gap. The FW linearization duality gap is defined as (see Appendix B.3

for details):

glin(α;λ ) := max
p∈M

⟨α −p,∇α f (α)⟩= ⟨α − s,∇α f (α)⟩ (2.76)

where s = argminp∈M ⟨p,∇α f (α)⟩. Recall that obtaining s is exactly the same as solving

the linearlization problem, which we have already discussed. Using the gradient (2.67) we

obtain the following expression for the linearization duality gap:

glin(α;λ ) = λ
�

A(α − s)
�⊤

Aα − (α − s)⊤b (2.77)

For FW algorithm the final expression can be written as:

glin(α;λ ) = λ (w−ws)⊤w− (ℓ− ℓ
s) (2.78)

For BCFW, using (α − s) = (α[i]− s[i]), the linearization gap for the i-th block (known as the

block-wise linearization gap) can be written as:

gi
lin(α;λ ) = λ (wi −ws

i )
⊤w− (ℓi − ℓ

s
i ) (2.79)

Notice that glin(α;λ ) = ∑i gi
lin(α;λ ). Another useful form of the block-wise duality gap can

be obtained by using equation (2.68) into the block-wise form of equation (2.76) as follows:

gi
lin(α;λ ) = ⟨α[i]− s[i],∇α[i]

f (α)⟩= max
y∈Yi

Hi(y;w)− ∑
y∈Yi

αi(y)Hi(y;w). (2.80)
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Similarly,

glin(α;λ ) =
1
n
∑

i

�

max
y∈Yi

Hi(y;w)− ∑
y∈Yi

αi(y)Hi(y;w)
�

(2.81)

The above forms of the duality gaps will used in chapter 5 for the derivation of the regu-

larization path of SSVM. For the convergence criterion, we are interested in the Lagrange

duality gap. The Lagrange duality gap is the difference between the primal and dual objective

functions:

gLag(α,w;λ ) =
λ

2
∥w∥2 +

1
n

n

∑
i=1

max
y∈Yi

Hi(y;w)−
�

b⊤α −
λ

2
∥w∥2

�

(2.82)

Using the fact that maxy∈Yi
Hi(y;w) = maxp∈M ⟨p,−∇α f (α)⟩ we obtain

gLag(α,w;λ ) = ⟨α − s,∇α f (α)⟩= glin(α;λ ) (2.83)

So for SSVM, the linearization duality gap and the Lagrange duality gap are exactly the

same [86].

Optimal step size. Obtaining the optimal step size for the FW line search is equivalent to

solving the problem γopt := argminγ∈[0,1] f (α + γ(s−α)), where

f (α + γ(s−α)) =
λ

2
∥A(α + γ(s−α))∥2 −b⊤(α + γ(s−α)) (2.84)

For the dual of SSVM this is a quadratic function in α , so the optimal step size can be obtained

analytically by setting ∇γ f (α + γ(s−α)) = 0. This leads to the following optimal step size:

γopt =
λ
�

A(α − s)
�⊤

Aα − (α − s)⊤b

λ ∥Aα −As∥2 (2.85)

Notice that the numerator of this equation is the linearization duality gap shown in equa-

tion (2.77). Therefore, for FW γopt =
glin(α;λ )

λ∥wk−ws∥
2 and for BCFW γopt =

gi
lin(α;λ )

λ∥wk
i −ws

i∥
2 .

2.5 Weakly Supervised SSVM

In many tasks related to structured prediction, it is difficult and very expensive to obtain

a fully supervised dataset. For example, in the case of object detection where the task it

to locate instances of the object in a given image, it is comparatively easy to get a training
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Algorithm 4 The Frank-Wolfe algorithm for SSVM.

input D , K, tolerance ε .
1: w0 = 0, l0 = 0.
2: repeat

3: Solve the ‘max-oracle’ problem for all the samples:
4: for i = 1, · · · ,n do

5: y∗i := argmaxy∈Yi
Hi(y;wk).

6: end for

7: ws = ∑
n
i

1
λn

Ψ(xi,y
∗
i ) and ls =

1
n ∑

n
i ∆(yi,y

∗
i ).

8: Find the optimal step size γ using equation (2.85) and clip to [0,1].
9: Update: wk+1 = γws +(1− γ)wk, and lk+1 = γls +(1− γ)lk.

10: Convergence criterion – (1) use upper limit (K) on the number of iterations (k); or (2)
use linearization duality gap g(αk;λ ) obtained using equation (2.78); or (3) use both.

11: until Converged.
12: return wk+1

Algorithm 5 The Block-Coordinate Frank-Wolfe algorithm for SSVM.

input D , K.
1: w0 = w0

i = 0, l0 = l0
i = 0.

2: for k = 0, · · · ,K do

3: Pick i at random in {1, · · · ,n}
4: Solve the ‘max-oracle’ problem for the i-th sample: y∗i := argmaxy∈Yi

Hi(y;wk).

5: ws = 1
λn

Ψ(xi,y
∗
i ) and ls = 1

n
∆(yi,y

∗
i ).

6: Find the optimal step size γ using equation (2.85) and clip to [0,1].
7: Update: wk+1

i = γws +(1− γ)wk
i , and lk+1

i = γls +(1− γ)lk
i .

8: Update: wk+1 = wk +wk+1
i −wk

i , and lk+1 = lk + lk+1
i − lk

i .
9: end for

10: return wk+1
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dataset with millions of images with labels indicating the presence or the absence of the

object in the image but much more expensive to supply bounding box information for each

object in each image. There are many similar situations in which useful modeling annotations

are missing from the dataset. We call this ‘latent or missing or hidden’ information and such

datasets are called ‘weakly labelled datasets’. Given such a dataset, a common practice is to

introduce latent variables to represent the missing modeling information so that inference

must recover the values of these. In the context of SSVM, such problems fall into the category

of weakly supervised learning and can be formulated as latent structured SVM (LSSVM)

ones [135].

2.5.1 Latent SSVM

Latent SSVM is an extension of SSVM that includes latent variables. Suppose we are given a

weak labelled training set D . Let us denote the missing (or hidden) modeling information

as h ∈ H . In order to enrich the modeling using the missing information, the SSVM joint

feature map Φ(x,y) is further extended to include the latent variable h, Φ(x,y,h).

Given the parameter vector w, LSSVM prediction (or inference) is performed jointly over the

output space and the latent space as follows:

(ŷ, ĥ) = argmax
(y,h)∈Y ×H

w⊤Φ(x,y,h). (2.86)

2.5.2 Difference of convex upper bounds of the empirical loss

For a given w, ground truth lableling y, predicted labeling ŷ, and predicted latent variable ĥ,

the LSSVM loss function ∆(y, ŷ, ĥ) can be upper bounded as follows:

∆(y, ŷ, ĥ)≤ ∆(y, ŷ, ĥ)+max(ȳ,h̄)∈Y ×H w⊤Φ(x, ȳ, h̄)−maxh̄∈H w⊤Φ(x,y, h̄)

≤ max(ȳ,h̄)∈Y ×H

�

∆(y, ȳ, h̄)+w⊤Φ(x, ȳ, h̄)
�

−maxh̄∈H w⊤Φ(x,y, h̄)

(2.87)

Minimizing this bounded loss over the entire dataset under L2 regularization leads to the

following learning problem:

min
w

�

λ

2
∥w∥2 +

1
n
∑

i

max
(ȳi,h̄i)∈Yi×Hi

�

∆(yi, ȳi, h̄i)+w⊤Φ(xi, ȳi, h̄i)
�

−
1
n

n

∑
i

max
h̄i∈Hi

w⊤Φ(xi,yi, h̄i)

�

(2.88)
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(a) Difference of Convex (b) Convex plus concave (c) Convex plus affine

Figure 2.11: Pictorial representation of one iteration of the CCCP algorithm [138]. Fig-
ure 2.11a shows the given difference of convex functions, which can be written as a sum
of convex and concave functions. Figure 2.11b shows the linear upper bound for the con-
cave function (−v(w)) at a given point, which results in an affine function v̄(w). Finally,
Figure 2.11c shows the resulting convex function as a sum of convex u(w) and affine v̄(w)
ones.

Similarly to SSVM as discussed in section 2.4.1, the above learning problem can be written

in constrained form as follows:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (2.89)

s.t. max
hi∈Hi

w⊤Φ(xi,yi,hi)≥ w⊤Φ(xi, ȳi, h̄i)+∆(yi, ȳi, h̄i)−ξi, (2.90)

∀i, ∀ȳi ∈ Yi, ∀h̄i ∈ Hi.

Let s(xi,yi,hi;w) = w⊤Φ(xi,yi,hi) be the score for a given w when input xi is assigned the

output yi and the latent variable hi. The constraints (2.90) introduce a margin between the

score of the ground truth output together with the best corresponding value of the latent

variable, and any other pair of output and latent variables, with the margin required being

proportional to the loss.

2.5.3 Optimization of LSSVM using CCCP algorithm

The objective (2.88) optimizes an upper bound on the empirical risk but it is a non-convex

program so it can not be optimized efficiently to obtain the optimal set of parameters.

However, the objective belongs to a special family of non-convex functions known as

difference of convex functions [55, 98], with u(w) and v(w) below as the two convex
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components:

f (w) :=
λ

2
∥w∥2 +

1
n

n

∑
i=1

max
(ȳi,h̄i)∈Yi×Hi

�

∆(yi, ȳi, h̄i)+w⊤Φ(xi, ȳi, h̄i)
�

| {z }

u(w)

−

1
n

n

∑
i=1

max
h̄i∈Hi

w⊤Φ(xi,yi, h̄i)

| {z }

v(w)

(2.91)

For such families, the well known CCCP algorithm [138] can be used to obtain a local

minimum or a saddle point. Broadly speaking, the CCCP algorithm consists of three steps —

(1) upper bounding the concave part (−v(w)) at a given w, which produces an affine function

in w; (2) optimizing the resulting convex function (a sum of convex and affine functions

being convex), which in the case of LSSVM is the objective function of SSVM; (3) repeating

the above steps until the objective can no longer be decreased by more than a given tolerance

of ε . A pictorial representation of the above mentioned steps is shown in Figure 2.11.

The complete CCCP algorithm for the optimization of LSSVM is shown in Algorithm 6. The

first step of upper bounding the concave functions (Algorithm 6, Line 3) is called the latent

imputation step. The second step is the optimization of the resulting convex subproblem

(Algorithm 6, Line 4), which in this case is the optimization of SSVM and leads to the

parameter update.

Algorithm 6 The CCCP algorithm for the optimization of LSSVM.

input D , w0, λ , tolerance ε .
1: t ← 0
2: repeat

3: Impute Latent Variables h∗
i = argmaxh∈Hi

w⊤Φ(xi,yi,h), for all i ∈ [n].
4: Update wt+1 by fixing the latent variables for the output yi to h∗

i and solving the
corresponding SSVM problem.

5: t ← t +1
6: until f (wt)− f (wt+1)≤ ε .
7: return wt+1





Chapter 3

Parsimonious Labeling

3.1 Introduction

The labeling problem, also called the inference problem (chapter 2, section 2.3), provides an

intuitive formulation for several tasks in computer vision and related areas. In this chapter,

we talk about a new family of labeling problems, which we call parsimonious labeling, and

propose move making algorithms with theoretical guarantees for the optimization.

Briefly, the labeling problem is defined using a set of random variables, each of which can

take a value from a finite and discrete label set. The assignment of values to all the variables

is referred to as a labeling. In order to quantitatively distinguish between the large number of

putative labelings, we are provided with an energy function that maps a labeling to a real

number. The energy function consists of two types of terms: (i) the unary potential, which

depends on the label assigned to one random variable; and (ii) the clique potential, which

depends on the labels assigned to a subset of random variables. The goal of the labeling

problem is to obtain the labeling that minimizes the energy. A well-studied special case

of the labeling problem is metric labeling [15, 65]. Here, the unary potentials are arbitrary.

However, the clique potentials are specified by a user-defined metric distance function of the

label space. Specifically, the clique potentials satisfy the following two properties: (i) each

clique potential depends on two random variables; and (ii) the value of the clique potential

(also referred to as the pairwise potential) is proportional to the metric distance between the

labels assigned to the two random variables. Metric labeling has been used to formulate

several problems in low-level computer vision, where the random variables correspond

to image pixels. In such scenarios, it is natural to encourage two random variables that

correspond to two nearby pixels in the image to take similar labels. However, by restricting

the size of the cliques to two, metric labeling fails to capture more informative high-order
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cues. For example, it cannot encourage an arbitrary sized set of similar pixels (such as pixels

that define a homogeneous superpixel) to take similar labels.

We propose a new family of discrete energy minimization problems, which we call parsi-

monious labeling. Parsimonious labeling is a natural generalization of the metric labeling

problem for high-order potentials. The energy function of parsimonious labeling consists

of unary potentials and high-order clique potentials. Similar to metric labeling, the unary

potentials are arbitrary. However, the clique potentials can be defined on any subset of

random variables, and their value depends on the set of unique labels assigned to the random

variables in the clique. In more detail, the clique potential is defined using the recently

proposed notion of a diversity [18, 19], which generalizes metric distance functions to all

subsets of the label set. By minimizing the diversity, our energy function encourages the

labeling to be parsimonious, that is, use as few labels as possible. This in turn allows us

to capture useful cues for important low-level computer vision applications such as stereo

correspondence and image denoising. Furthermore, in order to be practically useful, we

propose an efficient graph-cuts based algorithm for the parsimonious labeling problem that

provides strong theoretical guarantees on the quality of the solution. Our algorithm consists

of three steps. First, we approximate a given diversity using a mixture of a novel hierarchical

Pn Potts model (a generalization of the Pn Potts model [66]). Second, we use a divide-and-

conquer approach for each mixture component, where each subproblem is solved using an

efficient α-expansion algorithm. This provides us with a small number of putative labelings,

one for each mixture component. Third, we choose the best putative labeling in terms of the

energy value. Using both synthetic and standard real datasets, we show that our algorithm

significantly outperforms other graph-cuts based approaches.

Summary of Contributions.

• Extension of metric labeling to high order cliques which we call parsimonious labeling.

• Hierarchical Pn-Potts model, which is a generalization of the Pn-Potts model defined

over a given hierarchy of labels.

• Move making algorithm for the optimization of the hierarchical Pn-Potts model.

• Parsimonious labeling as a mixture of hierarchical Pn-Potts model, thus the above

mentioned move making algorithm can be used for the optimization of the parsimonious

labeling.

• Strong multiplicative bounds for the proposed move making algorithms for the opti-

mization of hierarchical Pn-Potts model and parsimonious labeling.
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3.2 Related Work

In last few years the research community has witnessed many successful applications of high-

order random fields to solve low level vision related problems such as object segmentation [28,

30, 67, 87, 121, 129], disparity estimation [62, 131], and image restoration [89]. In this work,

our focus is on methods that (i) rely on efficient move-making algorithms based on graph

cuts; (ii) provide a theoretical guarantee on the quality of the solution. Below, we discuss the

work most closely related to ours in more detail.

Kohli et al. [66] proposed the Pn Potts model, which enforces label consistency over a set of

random variables. In [67], they presented a robust version of the Pn Potts model that takes

into account the number of random variables that have been assigned an inconsistent label.

Both the Pn Potts model and its robust version lend themselves to the efficient α−expansion

algorithm [66, 67]. Furthermore, the α−expansion algorithm also provides a multiplicative

bound on the energy of the estimated labeling with respect to the optimal labeling. While

the robust Pn Potts model has been shown to be very useful for semantic segmentation, our

generalization of the Pn Potts model offers a natural extension of the metric labeling problem

and is therefore more widely applicable to several low-level vision tasks.

Delong et al. [28] proposed a global clique potential (label cost) that is based on the cost

of using a label or a subset of labels in the labeling of the random variables. Similar to the

Pn Potts model, the label cost based potential can also be minimized using α−expansion.

However, the theoretical guarantee provided by α−expansion is an additive bound, which is

not invariant to reparameterization of the energy function. Delong et al. [27] also proposed

an extension of their work to hierarchical costs. However, the assumption of a given hierarchy

over the label set limits its applications.

Ladicky et al. [87] proposed a global co-occurrence cost based high order model for a much

wider class of energies that encourage the use of a small set of labels in the estimated labeling.

Theoretically, the only constraint that [87] enforces in high order clique potential is that it

should be monotonic in the label set. In other words, [87] can be regarded as a generalization

of parsimonious labeling. However, they approximately optimize an upperbound on the

actual energy function, which does not provide any optimality guarantees. In our experiments,

we demonstrate that our move-making algorithm significantly outperforms their approach for

the special case of parsimonious labeling.

Fix et al. [40] proposed an algorithm (SoSPD) for high-order random fields with arbitrary

clique potentials. Each move of this algorithm requires us to approximately upperbound the

clique potential into a sum of submodular functions and then optimize it using the submodular

max-flow algorithm [71]. We show that our move making algorithm for parsimonious labeling

has a much stronger multiplicative bound and better time complexity compared to [40].
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3.3 Preliminaries

3.3.1 The labeling problem

As discussed in section 2.3, the labeling problem is to find the labeling that minimizes a given

objective function, also known as the energy function. Hence, in this context, the inference

problem and the labeling problems are the same. For a complete overview of the labeling

problems please refer to the section 2.3. For the sake of completeness, below we give a brief

description of the labeling problem. Consider a random field defined over a set of random

variables y = {y1, · · · ,yN} arranged in a predefined lattice V = {1, · · · ,N}. Each random

variable can take a value from a discrete label set L = {l1, · · · , lH}. Furthermore, let C

denote the set of maximal cliques. Each maximal clique consists of a set of random variables

that are all connected to each other in the lattice. A labeling is defined as the assignment or

mapping of random variables to the labels. To assess the quality of each labeling y we define

an energy function as:

E(y) = ∑
i∈V

θi(yi)+ ∑
c∈C

θc(yc). (3.1)

where θi(yi) is the unary potential of assigning a label yi to the variable i, and θc(yc) is the

clique potential for assigning the labels yc to the variables in the clique c. Clique potentials

are assumed to be non-negative. As will be seen shortly, this assumption is satisfied by

the new family of energy functions proposed in this chapter. The total number of putative

labelings is HN , each of which can be assessed using its corresponding energy value. Within

this setting, the labeling problem is to find the labeling corresponding to the minimum energy

according to the function (3.1). Formally, the labeling problem is:

y∗ = argmin
y

E(y). (3.2)

As already discussed in the section 2.3, the restrictions over the potentials, interactions among

the random variables (structure), and compromise with the optimality guarantees leads to

different models and their corresponding optimization algorithms. In this chapter, the most

frequently used model is the Pn Potts model and the corresponding α-expansion algorithm for

the optimization (discussed in section 2.3.3). For the sake of completeness, below we briefly

define the Pn Potts model and give an idea of the corresponding α−expansion algorithm for

the optimization. For better understanding refer to the section 2.3.
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Pn Potts model. An important special case of the labeling problem, which will be used

throughout this paper, is defined by the Pn Potts model [66]. The Pn Potts model is a

generalization of of the well known Potts model [106] for high-order energy functions

(cliques can be of arbitrary sizes). For a given clique, the Pn Potts model is defined as:

θc(yc) ∝







γk, if yi = lk,∀i ∈ c,

γmax, otherwise,
(3.3)

where γk is the cost of assigning all the nodes to the label lk ∈ L , and γmax > γk,∀lk ∈ L .

Intuitively, the Pn Potts model enforces label consistency by assigning the cost of γmax if

there are more than one label in the given clique.

α-expansion for Pn Potts model. In order to solve the labeling problem corresponding

to the Pn Potts model, Kohli et al. [66] proposed to use the α−expansion algorithm [128].

The α−expansion algorithm starts with an initial labeling, for example, by assigning each

random variable to the label l1. At each iteration, the algorithm moves to a new labeling by

searching over a large move space. Here, the move space is defined as the set of labelings

where each random variable is either assigned its current label or the label α . The key result

that makes α−expansion a computationally feasible algorithm for the Pn Potts model is that

the minimum energy labeling within a move-space can be obtained using a single minimum

st-cut operation on a graph that consists of a small number (linear in the size of the variables

and the cliques) of vertices and arcs. The algorithm terminates when the energy cannot be

reduced further for any choice of the label α . We refer the reader to [66] for further details.

3.3.2 Multiplicative Bound

An intuitive and commonly used measure of the accuracy of an approximation algorithm is

the multiplicative bound. Formally, the multiplicative bound of a given algorithm is said to

be B if the following condition is satisfied for all possible values of unary potential θi(.), and

clique potentials θc(yc):

∑
i∈V

θi(ŷi)+ ∑
c∈C

θc(ŷc)≤ ∑
i∈V

θi(y
∗
i )+B ∑

c∈C

θc(y
∗
c). (3.4)

Here, ŷ is the labeling estimated by the algorithm and y∗ is the globally optimal labeling.

By definition of an optimal labeling (one that has the minimum energy), the multiplicative

bound will always be greater than or equal to one [83]. One interesting question that arise

is what is the best multiplicative bound an α-expansion type move making algorithm can
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provide for any arbitrary energy function? Before answering to this question, let us first

define λ as follows [50]:

λ = max
yc:|yc|>1

 

maxyc
θc(yc)

minyc:θc(yc)̸=0 θc(yc)

!

. (3.5)

Using the above defined λ , the following theorem answers the above posed question.

Theorem 1. Given a labeling problem defined using the energy function (3.1) over any

arbitrary unary potentials, and arbitrary clique potentials defined over cliques of arbitrary

sizes. Any α-expansion type move making algorithm with optimal expansion moves provide

the multiplicative bound of B = λ min(M , |L |) for the labeling problem (3.2), where, M

is the size of the largest maximal clique in the graph, |L | is the number of labels, and λ is

defined in equation (3.5). Mathematically,

∑
i∈V

θi(ŷi)+ ∑
c∈C

θc(ŷc)≤ ∑
i∈V

θi(y
∗
i )+λ min(M , |L |) ∑

c∈C

θc(y
∗
c), (3.6)

where, ŷ is the labeling corresponding to the local minima in the exansion move space

obtained using the α-expansion and y∗ is the labeling corresponding to the global minima.

Proof. The proof is mainly along the lines of thought of [50] and [128]. In [128], the

multiplicative bound is provided for the energy function with pairwise clique potentials,

specially in case of metric labeling. In [50], the proof is for the general high-order clique

potentials. A small observation allows us to provide a stronger bound than [50]. The complete

proof is as follows.

Let ŷ be the local minima. Let us define Yα = {yi : y∗i = α} as the set of nodes having global

minimum label as α . Therefore, we can define a labeling yα , one α-expansion away from

the local minima ŷ as follows:

yα =
n y∗i if yi ∈ Yα

ŷi otherwise.
(3.7)

Since ŷ is the local minima, therefore, E(y∗) ≤ E(ŷ) ≤ E(yα). Let us define some set of

cliques and nodes based on their relation with Yα . Let Iα = {c : yc ⊆ Yα} be the set

of interior cliques such that all the nodes in each clique are assigned the global optimal

label of α . The set of boundary cliques Bα = {c : yc ∩Yα ̸= /0,yc ⊈ Yα} such that in each

clique there exist atleast one node having the optimal assignment of α and at least one

node having optimal assignment from the label set L \ {α}. The set of outside cliques

Oα = {c : yc ∩Yα = /0}. Similarly, we define V I
α = {i : yi ∈ Yα} and V O

α = {i : yi ̸∈ Yα} as
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the set of interior and outside nodes. Since, {Iα ,Bα ,Oα ,V
I
α ,V

O
α } covers all the cliques and

the nodes in the given MRF, therefore, the energy can be decomposed over them as follows:

E(yα) = ∑
i∈V I

α

θi(yi)+ ∑
i∈V O

α

θi(yi)+ ∑
c∈Iα

θc(yc)+ ∑
c∈Bα

θc(yc)+ ∑
c∈Oα

θc(yc). (3.8)

Now, using the definition of yα from (3.7), we can say that:

∑
i∈V I

α

θi(y
α
i ) = ∑

i∈V I
α

θi(y
∗
i ). (3.9)

∑
i∈V O

α

θi(y
α
i ) = ∑

i∈V O
α

θi(ŷi). (3.10)

∑
c∈Iα

θc(y
α
c ) = ∑

c∈Iα

θc(y
∗
c). (3.11)

∑
c∈Oα

θc(y
α
c ) = ∑

c∈Oα

θc(ŷc). (3.12)

∑
c∈Bα

θc(y
α
c )≤ λ ∑

c∈Bα

θc(y
∗
c). (3.13)

The first four equality are obvious from the definition (3.7), the proof of the last inequality

is as follows. Let yα
B
= ∪c∈Bα

yc be the joint variable vector representing the set of nodes

formed by taking the union of all the cliques in the set of boundary cliques. Thus,

∑
c∈Bα

θc(y
α
c )≤ max

yα
B

( ∑
c∈Bα

θc(yc))

≤ ∑
c∈Bα

max
yc

θc(yc) (3.14)

= ∑
c∈Bα

� maxyc
θc(yc)

minyc:θc(yc)̸=0 θc(yc)

�

min
yc:θc(yc)̸=0

θc(yc) (3.15)

≤ λ ∑
c∈Bα

min
yc:θc(yc)̸=0

θc(yc) (3.16)

≤ λ ∑
c∈Bα

θc(y
∗
c). (3.17)

The first inequality is because of the fact that maximization is over the joint variable vec-

tor. The second inequality is because of the fact that maxx(g(x)+ f (x)) ≤ (maxx g(x)+

maxx f (x)). The last inequality is because of the fact that θc(yc) ̸= 0 for boundary cliques

because the labeling for each clique contains more than one label. Since E(ŷ) ≤ E(yα),

therefore, expanding the corresponding energy terms similar to the equation (3.8) and using
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the inequalities (3.9)-(3.13) we get

∑
i∈V I

α

θi(ŷi)+ ∑
c∈Iα

θc(ŷc)+ ∑
c∈Bα

θc(ŷc)≤ ∑
i∈V I

α

θi(y
∗
i )+ ∑

c∈Iα

θc(y
∗
c)+λ ∑

c∈Bα

θc(y
∗
c) (3.18)

In order to get the bound over total energy we sum the above equation over all α ∈ L .

∑
α

�

∑
i∈V I

α

θi(ŷi)+ ∑
c∈Iα

θc(ŷc)+ ∑
c∈Bα

θc(ŷc)
�

≤ ∑
α

�

∑
i∈V I

α

θi(y
∗
i )+ ∑

c∈Iα

θc(y
∗
c)+λ ∑

c∈Bα

θc(y
∗
c)
�

(3.19)

Let us have a look into the left and the right sides of the inequality (3.19) separately. The

l.h.s can be written as:

∑
α

�

∑
i∈V I

α

θi(ŷi)+ ∑
c∈Iα

θc(ŷc)+ ∑
c∈Bα

θc(ŷc)
�

= ∑
i∈V

θi(ŷi)+∑
α

∑
c∈Iα

θc(ŷc)+∑
α

∑
c∈Bα

θc(ŷc)

≥ ∑
i∈V

θi(ŷi)+ ∑
c∈∪α{Iα∪Bα}

θc(ŷc) (3.20)

= ∑
i∈V

θi(ŷi)+ ∑
c∈C

θc(ŷc). (3.21)

The inequality in the equation (3.20) is due to the fact that ∩α∈L I α = /0, ∩α∈L Bα is not

necessarily an empty set, and θc(yc)≥ 0. The equality in the equation (3.21) is due to the

fact that ∪α{Iα ∪Bα} is the union of interior cliques and the boundary cliques over all the

α ∈ L , therefore, it is the set of all the cliques in the entire graph. Now let us have a look

into the last term of the r.h.s of the inequality (3.19).

∑
α

∑
c∈Bα

θc(y
∗
c)≤ ∑

c∈∪αBα

min(|yc|, |L |)θc(y
∗
c) (3.22)

≤ min(M , |L |) ∑
c∈∪αBα

θc(y
∗
c) (3.23)

where, M = maxc |yc|. Notice that ∪αBα is the union of all the boundary cliques over all

the labels α ∈ L . Since a given MRF can be divided into maximum of L unique partitions

(uniqueness is in terms of the labels assigned to the nodes), therefore, if |yc| ≥ |L |, the

clique yc can not be shared in more than |L | unique partitions. Similarly, if |yc|< |L |, the

clique yc can not be part of more than |yc| unique partitions at a time. Hence, min(|yc|, |L |)

is the maximum possible times a clique yc can be counted while summing over all the α ∈L .

This leads to the inequality (3.22). The inequality (3.23) is obvious as M = maxc∈C |yc|

is the size of the largest maximal clique. For example, in case of multilabel pairwise MRF,
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M = 2 and |L | ≥ 2, therefore, min(M , |L |) = 2, which is the same factor as shown in

[128]. Using (3.23) into the r.h.s of the inequality (3.19):

∑
α

�

∑
i∈V I

α

θi(y
∗
i )+ ∑

c∈Iα

θc(y
∗
c)+λ ∑

c∈Bα

θc(y
∗
c)
�

≤ ∑
i∈V

θi(y
∗
i )+ ∑

c∈∪αI α

θc(y
∗
c)+λ min(M , |L |) ∑

c∈∪αBα

θc(y
∗
c) (3.24)

≤ ∑
i∈V

θi(y
∗
i )+λ min(M , |L |)

�

∑
c∈∪αI α

θc(y
∗
c)+ ∑

c∈∪αBα

θc(y
∗
c)
�

(3.25)

= ∑
i∈V

θi(y
∗
i )+λ min(M , |L |) ∑

c∈C

θc(y
∗
c) (3.26)

The inequality (3.24) is due to the inequality (3.23). The inequality (3.25) is due to the fact

that λ min(M , |L |)≥ 1 and θc(yc)≥ 0. Using the inequalities (3.21) and (3.26) in (3.19)

we obtain the following multiplicative bound:

∑
i∈V

θi(ŷi)+ ∑
c∈C

θc(ŷc)≤ ∑
i∈V

θi(y
∗
i )+λ min(M , |L |) ∑

c∈C

θc(y
∗
c). (3.27)

Note that the bound given in the Theorem 1 is practically useful if and only if the algorithm

allows us to compute the optimal expansion move in polynomial time. However, there is no

known algorithm that guarantees optimal expansion move in polynomial time for any arbitrary

clique potential. In a restricted setting with arbitrary unary and pairwise clique potentials

of the form of the Potts model (λ = 1), Theorem 1 provides the multiplicative bound of

2, which is a very well known result [128]. Under this setting, the expansion move can be

computed in polynomial time using well known Graph-Cuts algorithm [74]. Similarly, in

case of metric labeling, the multiplicative bound is 2λ . In case of the α-expansion algorithm

for the Pn Potts model, the optimal expansion move can be computed in polynomial time.

Therefore, it provides a multiplicative bound of λ min(M , |L |).

3.4 Parsimonious Labeling

The parsimonious labeling problem is defined using an energy function that consists of

unary potentials and clique potentials defined over cliques of arbitrary sizes. While the

parsimonious labeling problem places no restrictions on the unary potentials, the clique

potentials are specified using a diversity function [18]. Before describing the parsimonious

labeling problem in detail, we briefly define the diversity function for the sake of completion.
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Definition 1. A diversity is a pair (L ,δ ), where L is the label set and δ is a non-negative

function defined on subsets of L , δ : Γ → R,∀Γ ⊆ L , satisfying

• Non Negativity: δ (Γ)≥ 0, and δ (Γ) = 0, if and only if, |Γ|≤ 1.

• Triangular Inequality: if Γ2 ̸= /0, δ (Γ1∪Γ2)+δ (Γ2∪Γ3)≥ δ (Γ1∪Γ3),∀Γ1,Γ2,Γ3 ⊆

L .

• Monotonicity: Γ1 ⊆ Γ2 implies δ (Γ1)≤ δ (Γ2).

Using a diversity function, we can define a clique potential as follows. We denote by Γ(yc)

the set of unique labels in the labeling of the clique c. Then, θc(yc) = wcδ (Γ(yc)), where

δ is a diversity function and wc is the non-negative weight corresponding to the clique c.

Formally, the parsimonious labeling problem amounts to minimizing the following energy

function:

E(y) = ∑
i∈V

θi(yi)+ ∑
c∈C

wcδ (Γ(yc)). (3.28)

Therefore, given a clique yc and the set of unique labels Γ(yc) assigned to the random

variables in the clique, the clique potential function for the parsimonious labeling problem is

defined using δ (Γ(yc)), where δ : Γ(yc)→ R is a diversity function.

Intuitively, because of the monotonicity property diversities enforces parsimony by choosing

a solution with fewer unique labels from a set of equally likely solutions. This is an essential

property in many vision problems, for example, in the case of image segmentation, we would

like to see label consistency within superpixels in order to preserve discontinuity. Unlike

the Pn Potts model the diversity does not enforce the label consistency very rigidly. It gives

monotonic rise to the cost based on the number of labels assigned to the given clique.

Metric labeling as Parsimonious labeling. An important special case of the parsimonious

labeling problem is the metric labeling problem, as discussed in section 2.3.2. Metric

labeling has been extensively studied in computer vision [15, 84] and theoretical computer

science [20, 65]. In metric labeling, the maximal cliques are of size two (pairwise) and

the clique potential function is a metric distance function defined over the labels. Recall

that a distance function d : L ×L → R is a metric if and only if: (i) d(., .) ≥ 0; (ii)

d(i, j)+d( j,k)≥ d(i,k),∀i, j,k; and (iii) d(i, j) = 0 if and only if i = j. Notice that there is

a direct link between the metric distance function and the diversities. Specifically, metric

distance functions are diversities defined on subsets of size 2. In other words, diversities are

the generalization of the metric distance function and boil down to a metric distance function
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if the input set is restricted to the subsets with cardinality of at most two. Another way of

understanding the connection between metrics and diversities is that every diversity induces

a metric. In other words, consider d(li, li) = δ (li) = 0 and d(li, l j) = δ ({li, l j}). Using the

properties of diversities, it can be shown that d(·, ·) is a metric distance function. Hence, in

case of energy function defined over pairwise cliques, the parsimonious labeling problem

reduces to the metric labeling problem.

In the remaining part of this section we talk about a specific type of diversity called the

diameter diversity. We show its relation with the well known Pn Potts model. Furthermore,

we propose a hierarchical Pn Potts model based on the diameter diversity defined over a

hierarchical clustering (defined shortly). However, note that our approach is applicable to

any general parsimonious labeling problem.

Diameter Diversity. In this work, we are primarily interested in the diameter diversity [18].

Let (L ,δ ) be a diversity and (L ,d) be the induced metric of (L ,δ ), where d : L ×L →R

and d(li, l j) = δ ({li, l j}),∀li, l j ∈ L , then for all Γ ⊆ L , the diameter diversity is defined as:

δ dia(Γ) = max
li,l j∈Γ

d(li, l j). (3.29)

Clearly, given the induced metric function defined over a set of labels, diameter diversity

over any subset of labels gives the measure of the dissimilarity (or diversity) of the labels.

More the dissimilarity, based on the induced metric function, higher is the diameter diversity.

Therefore, using diameter diversity as clique potentials enforces the similar labels to be

together. Thus, a special case of parsimonious labeling in which the clique potentials are of

the form of diameter diversity can be defined as below:

E(y) = ∑
i∈V

θi(yi)+ ∑
c∈C

wcδ dia(Γ(yc)). (3.30)

Notice that the diameter diversity defined over uniform metric is nothing but the Pn Potts

model where γi = 0. In what follows we define a generalization of the Pn Potts model, the

hierarchical Pn Potts model, which will play a key role in the rest of the paper.

The Hierarchical Pn Potts Model. The hierarchical Pn Potts model is a diameter diversity

defined over a special type of metric known as the r-HST metric. A rooted tree, as shown

in Figure 3.1, is said to be an r-HST, or r-hierarchically well separated [3] if it satisfy the

following properties: (i) all the leaf nodes are the labels; (ii) all edge weights are positive;

(iii) the edge lengths from any node to all of its children are the same; and (iv) on any root to
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Figure 3.1: An example of r-HST for r = 2. The cluster associated with root p contains all

the labels. As we go down, the cluster splits into subclusters and finally we get the singletons,

the leaf nodes (labels). The root is at depth of 1 (τ = 1) and leaf nodes at τ = 3. The

metric defined over the r-HST is denoted as dt(., .), the shortest path between the inputs. For

example, dt(l1, l3) = 18 and dt(l1, l2) = 6. The diameter diversity for the subset of labels at

cluster p is max{li,l j}∈{l1,l2,l3,l4} dt(li, l j) = 18. Similarly, the diameter diversity at p2 and p3

are 6 and 0, respectively.

leaf path the edge weight decrease by a factor of at least r > 1. We can think of a r-HST as a

hierarchical clustering of the given label set L . The root node is the cluster at the top level

of the hierarchy and contains all the labels. As we go down in the hierarchy, the clusters

break down into smaller clusters until we get as many leaf nodes as the number of labels

in the given label set. The metric distance function defined on this tree dt(., .) is known as

the r-HST metric. In other words, the distance dt(·, ·) between any two nodes in the given

r-HST is the length of the unique path between these nodes in the tree. The diameter diversity

defined over dt(., .) is called the hierarchical Pn Potts model. Figure 3.1 shows an example

of diameter diversity defined over an r-HST.

We will shortly talk about the algorithm to generate an r-HST for a given metric d(., .). Notice

that, a node in r-HST can have any number of child between 0 to |L |, and the leaf nodes can

be at any depth greater than one.

3.5 The Hierarchical Move Making Algorithm

In the first part of this section we propose a move making algorithm for the hierarchical

Pn Potts model (defined in the previous section). In the second part, we show how our

hierarchical move making algorithm can be used to address the general parsimonious labeling

problem with optimality guarantees (strong multiplicative bound).
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(a) Subproblems at each leaf node. (b) Trivial labelings at each subproblem.

Figure 3.2: An example of solving the labeling problems at leaf nodes. Consider a clique
with three nodes which we intend to label. Figure 3.2a shows the subprobelms at each leaf
node. Notice that each leaf node contains only one label, therefore, we have only one choice
for the labeling. Figure 3.2b shows the corresponding trivial labelings (notice the colors).

3.5.1 The Hierarchical Move Making Algorithm for the Hierarchical

Pn Potts Model

In the hierarchical Pn Potts model the clique potentials are of the form of the diameter

diversity defined over a given r-HST metric function. The move making algorithm proposed

in this section to minimize such an energy function is a divide-and-conquer based approach,

inspired by the work of [84]. Instead of solving the actual problem, we divide the problem

into smaller subproblems where each subproblem is a Pn Potts model, which can be solved

efficiently using α−expansion [66]. More precisely, given an r-HST, each node of the r-

HST corresponds to a subproblem. We start with the bottom node of the r-HST, which is a

leaf node, and go up in the hierarchy solving each subproblem associated with the nodes

encountered.

In more detail, consider a node p of the given r-HST. Recall that any node p in the r-HST is

a cluster of labels denoted as L p ⊆ L (Figure 3.1). In other words, the leaf nodes of the

subtree rooted at p belongs to the subset L p. For example, in case of node p1 in Figure 3.1,

L p1 = {l1, l2}. Thus, the subproblem defined at any node p is to find the labeling yp where

the label set is restricted to L p, as defined below.

yp = argmin
y∈(L p)N

�

∑
i∈V

θi(yi)+ ∑
c∈C

wcδ dia(Γ(yc))
�

. (3.31)



66 Parsimonious Labeling

Figure 3.3: An example of solving the labeling problem at non-leaf node (p) by combining

the solutions of its child nodes {p1, p2}, given clique c and the labelings that it has obtained

at the child nodes. The labeling fusion instance shown in this figure is the top two levels

of the r-HST in the Figure 3.1. Note that the labelings shown at nodes p1 and p2 are an

assumption. It could get different labelings as well but the algorithm for the fusion remains

the same. The diameter diversity of the labeling of clique c at node p1 is 0 as it contains only

one unique label l1. The diameter diversity of the labeling at p2 is dt(l3, l4) = 6 and at p is

max{li,l j}∈{l1,l3,l4} dt(li, l j) = 18. Please notice the colors.

If p is the root node, then the above problem (equation (3.31)) is as difficult as the original

labeling problem defined in equation (3.30), since L p = L . However, if p is the leaf node

then the solution of the problem associated with p is trivial, y
p
i = p for all i ∈ V , that is,

assign the label p to all the random variables. An example of the labeling at leaf node is

shown in the Figure 3.2. This insight leads to the design of our approximation algorithm,

where we start by solving the simple problems corresponding to the leaf nodes, and use the

labelings obtained to address the more difficult problem further up the hierarchy. In what

follows, we describe how the labeling of the problem associated with the node p, when p is a

non-leaf node, is obtained using the labelings of its child nodes.

Solving the Parent Labeling Problem. Before delving into the details, let us define some

notations for the purpose of clarity. Let T be the depth (or the number of levels) of the given

r-HST and N (τ) be the set of nodes at level τ . The root node is at the top level (τ = 1). Let

η(p) denotes the set of child nodes associated with a non-leaf node p and η(p,k) denotes

its kth child node. Recall that our approach is bottom up. Therefore, for each child node

of p we already have an associated labeling. We denote the labeling associated with the

kth child of the node p as yη(p,k). Thus, y
η(p,k)
i denotes the label assigned to the ith random

variable by the labeling of the kth child of the node p. We also define an N dimensional

vector tp ∈ {1, · · · , |η(p)|}N , where |η(p)| is the number of child nodes of node p. More
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Algorithm 7 The Move Making Algorithm for the Hierarchical Pn Potts Model.

input r-HST Metric; wc,∀c ∈ C ; and θi(yi),∀i ∈V

1: τ = T , the leaf nodes
2: repeat

3: for each p ∈ N (τ) do

4: if |η(p)|= 0, leaf node then

5: y
p
i = p,∀i ∈V

6: else

7: Fusion Move
t̂p = argmin

tp∈{1,··· ,|η(p)|}N

E(tp) (3.34)

8: y
p
i = y

η(p,t̂
p
i )

i .
9: end if

10: end for

11: τ ← τ −1
12: until τ > 0.

precisely, for a given tp, t
p
i = k denotes that the label for the ith random variable comes from

the kth child of the node p. Therefore, the labeling problem at node p reduces to finding the

optimal tp. Thus, the labeling problem at node p amounts to finding the best child index

k ∈ {1, · · · , |η(p)|} for each random variable i ∈V so that the label assigned to the random

variable comes from the labeling of the kth child (step 7, Algorithm 7).

Using the above notations, associated with a tp we define a new energy function as:

E(tp) = ∑
i∈V

θ̄i(t
p
i )+ ∑

c∈C

wcθ̄c(t
p
c ). (3.32)

where

θ̄i(t
p
i ) = θi(y

η(p,k)
i ) if t

p
i = k. (3.33)

In other words, the unary potential for t
p
i = k is the unary potential associated to the ith

random variable corresponding to the label y
η(p,k)
i .

The new clique potential θ̄c(t
p
c ) is as defined below:

θ̄c(t
p
c ) =







γ
p
k , if t

p
i = k,∀i ∈ c,

γ
p
max, otherwise,

(3.35)
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where γ
p
k = δdia(Γ(y

η(p,k)
c )) is the diameter diversity of the set of unique labels associated

with y
η(p,k)
c and γ

p
max = δdia(L̄

p). The set L̄ p =∪k∈η(p)Γ(y
η(p,k)
c ) is the union of the unique

labels associated with the child nodes of p. Recall that, because of the construction of the

r-HST, L q ⊂ L̄ p ⊆ L p for all q ∈ η(p). Hence, the monotonicity property of the diameter

diversity (Definition 1) ensures that γ
p
max > γ

p
k ,∀k ∈ η(p). This is the sufficient criterion to

prove that the potential function defined by equation (3.35) is a Pn Potts model. Therefore, the

α−expansion algorithm can be used to obtain the locally optimal tp for the energy function

(3.32). Given the locally optimal t̂p, the labeling yp at node p can be trivially obtained as

follows: y
p
i = y

η(p,t̂
p
i )

i . In other words, the final label of the ith random variable is the one

assigned to it by the (t̂ p
i )

th child of node p.

Figure 3.3 shows an instance of the above mentioned algorithm to combine the labelings of

the child nodes to obtain the labeling of the parent node. The complete hierarchical move

making algorithm for the hierarchical Pn Potts model is shown in the Algorithm 7.

Multiplicative Bound. Theorem 2 gives the multiplicative bound for the move making

algorithm for the hierarchical Pn Potts model.

Theorem 2. The move making algorithm for the hierarchical Pn Potts model, Algorithm 7,

gives the multiplicative bound of
�

r
r−1

�

min(M , |L |) with respect to the global minima.

Here, M is the size of the largest maximal-clique, |L | is the number of labels, and r > 1 is

the parameter of the r-HST.

Proof. Briefly, the factor of min(M , |L |) comes from the fact that each subproblem amounts

to solving α−expansion for the Pn Potts models. The factor of
�

r
r−1

�

comes from the fact that

the edge lengths of the r-HST forms a geometric progression (refer to Figure 3.1), therefore,

the distance between any two leaf node is upperbounded by emax
�

r
r−1

�

, where emax is the

length of the longest edge. The detailed proof is given below.

Let y∗ be the optimal labeling of the given hierarchical Pn Potts model based labeling

problem. Recall that any node p in the underlying r-HST represents a cluster (subset) of

labels. For each node p in the r-HST we define following sets using y∗:

L
p = {li|li ∈ L , i ∈ p},

V
p

I = {yi : y∗i ∈ L
p},

V
p

O = {yi : y∗i ̸∈ L
p},

I
p = {c : yc ⊆V p},

B
p = {c : yc ∩V p ̸= /0,yc ⊈V p},

O
p = {c : yc ∩V p = /0}. (3.36)
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In other words, L p is the set of labels in the cluster at pth node, V
p

I is the set of nodes

whose optimal label lies in the subtree rooted at p, V
p

O is the set of nodes whose optimal label

does not lie in the subtree rooted at p, I p is the set of interior cliques such that the optimal

labeling lies in the subtree rooted at p, Bp is the set of cliques (boundary cliques) such that

∀yc ∈ Bp,∃{yi,y j} ∈ yc : y∗i ∈ L p,y∗j /∈ L p, and O p is the set of outside cliques such that

the optimal assignment for all the nodes belongs to the set L \L p. Let’s define yp as the

labeling at node p. We prove the following lemma relating y∗ and yp.

Lemma 1. Let yp be the labeling at node p, y∗ be the optimal labeling of the given hier-

archical Pn Potts model, and δ dia(Γ(yp
c )) be the diameter diversity based clique potential

defined as maxli,l j∈L p dt(li, l j),∀p, where dt(., .) is the tree metric defined over the given

r-HST. Then the following bound holds true at any node p of the r-HST.

∑
i∈V

p
I

θi(y
p
i )+ ∑

c∈I p

δ dia(Γ(yp
c ))≤ ∑

i∈V
p

I

θi(y
∗
i )+

�

r

r−1

�

min(M , |L |) ∑
c∈I p

δ dia(Γ(y∗c)).

(3.37)

Proof. We prove the above lemma by mathematical induction. Clearly, when p is a leaf node,

yi = p,∀i ∈V . For a non-leaf node p, we assume that the lemma holds true for the labeling

yq and all its children q. Given the labeling yp and yq, we define a new labeling ypq such that

ypq =
n y

q
i if y∗i ∈ L q,

y
p
i otherwise.

(3.38)

Note that ypq lies within one α-expansion iteration away from yp. Since yp is the local

minima, therefore, E(yp)≤ E(ypq). Using the energy decomposition similar to the one in

equation (3.8) we can write:

∑
i∈V

q
I

θi(y
p
i )+ ∑

i∈V
q
O

θi(y
p
i )+ ∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

c∈Bq

δ dia(Γ(yp
c ))+ ∑

c∈Oq

δ dia(Γ(yp
c ))≤

∑
i∈V

q
I

θi(y
pq
i )+ ∑

i∈V
q
O

θi(y
pq
i )+ ∑

c∈I q

δ dia(Γ(ypq
c ))+ ∑

c∈Bq

δ dia(Γ(ypq
c ))+ ∑

c∈Oq

δ dia(Γ(ypq
c ))
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Using the definition (3.38) and the fact that θi(y
pq
i ) = θi(y

q
i ),∀i ∈V

q
I in the above inequality

we get:

∑
i∈V

q
I

θi(y
p
i )+ ∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

c∈Bq

δ dia(Γ(yp
c ))

≤ ∑
i∈V

q
I

θi(y
q
i )+ ∑

c∈I q

δ dia(Γ(yq
c))+ ∑

c∈Bq

δ dia(Γ(ypq
c )) (3.39)

≤ ∑
i∈V

q
I

θi(y
∗
i )+

�

r

r−1

�

min(M , |L |) ∑
c∈I q

δ dia(Γ(y∗c))+ ∑
c∈Bq

δ dia(Γ(ypq
c ))

(3.40)

The inequality (3.40) comes from the assumption that the lemma holds true for the labeling

yq and all its children q. Now consider a clique c ∈ Bq. Let ep be the length of edges from

node p to its children q. Since c ∈ Bq, there must exist atleast two nodes yi and y j in yc such

that y∗i ∈ L q and y∗j /∈ L q, therefore, by construction of r-HST

δ dia(Γ(y∗c))≥ 2ep (3.41)

Furthermore, by the construction of ypq, L pq ⊆ L p, therefore, in worst case (leaf nodes),

we can write

δ dia(Γ(ypq
c )) = maxli,l j∈L pqdt(li, l j)≤ 2ep

�

1+
1
r
+

1
r2 + · · ·

�

= 2ep

�

r

r−1

�

≤ δ dia(Γ(y∗c))

�

r

r−1

�

. (3.42)

Plugging inequality (3.42) into (3.40) we get:

∑
i∈V

q
I

θi(y
p
i )+ ∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

c∈Bq

δ dia(Γ(yp
c ))≤

∑
i∈V

q
I

θi(y
∗
i )+

�

r

r−1

�

min(M , |L |) ∑
c∈I q

δ dia(Γ(y∗c))+

�

r

r−1

�

∑
c∈Bq

δ dia(Γ(y∗c)).

(3.43)
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In order to get the bound over the total energy we sum over all the children q of p, denoted

as η(p). Therefore, summing the inequality (3.43) over η(p) we get

∑
q∈η(p)

∑
i∈V

q
I

θi(y
p
i )+ ∑

q∈η(p)
∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

q∈η(p)
∑

c∈Bq

δ dia(Γ(yp
c ))≤ ∑

q∈η(p)
∑

i∈V
q
I

θi(y
∗
i )

+min(M , |L |)

�

r

r−1

�

∑
q∈η(p)

∑
c∈I q

δ dia(Γ(y∗c))+

�

r

r−1

�

∑
q∈η(p)

∑
c∈Bq

δ dia(Γ(y∗c)).

(3.44)

The l.h.s of the above inequality can be written as

∑
q∈η(p)

∑
i∈V

q
I

θi(y
p
i )+ ∑

q∈η(p)
∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

q∈η(p)
∑

c∈Bq

δ dia(Γ(yp
c ))

= ∑
i∈V

p
I

θi(y
p
i )+ ∑

q∈η(p)
∑

c∈I q

δ dia(Γ(yp
c ))+ ∑

q∈η(p)
∑

c∈Bq

δ dia(Γ(yp
c )) (3.45)

≥ ∑
i∈V

p
I

θi(y
p
i )+ ∑

c∈∪q∈η(p)I
q

δ dia(Γ(yp
c ))+ ∑

c∈∪q∈η(p)B
q

δ dia(Γ(yp
c )) (3.46)

= ∑
i∈V

p
I

θi(y
p
i )+ ∑

c∈I p

δ dia(Γ(yp
c )) (3.47)

The equality (3.45) is because of the fact that summing over all the interior nodes of all

the child nodes of p is the same as summing over all the interior nodes of p. The in-

equality (3.46) is due to the fact that ∩q∈η(p)I
q = /0 but ∩q∈η(p)B

q is not necessarily

an empty set, and δ dia(Γ(yc)) ≥ 0. The equality (3.47) is due to the fact that I p =

{∪q∈η(p)I
q}∪ {∪q∈η(p)B

q}. Now let us have a look into the last term of the r.h.s of

the inequality (3.44)

∑
q∈η(p)

∑
c∈Bq

δ dia(Γ(y∗c))≤ ∑
c∈∪q∈η(p)B

q

min(|η(p)|, |yc|)δ
dia(Γ(y∗c)) (3.48)

≤ min

�

max
p∈η(p)

|η(q)|,max
c

|yc|

�

∑
c∈∪q∈η(p)B

q

δ dia(Γ(y∗c))

= min(L , |M |) ∑
c∈∪q∈η(p)B

q

δ dia(Γ(y∗c)). (3.49)

The inequality (3.48) is due to the fact that ∪q∈η(p)B
q can not count a clique more than

min(|η(p)|, |yc|) times. Therefore, using the inequality (3.49) the r.h.s of the inequality (3.44)
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Algorithm 8 The Move Making Algorithm for the Parsimonious Labeling Problem.

input Diversity (L ,δ ); wc,∀c ∈ C ; θi(xi),∀i ∈V ; L ; k

1: Approximate the given diversity as the mixture of k hierarchical Pn Potts model using
Algorithm 9.

2: for each hierarchical Pn Potts model in the mixture do

3: Use the hierarchical move making algorithm defined in the Algorithm 7.
4: Compute the corresponding energy.
5: end for

6: Choose the solution with the minimum energy.

can be written as:

∑
q∈η(p)



 ∑
i∈V

q
I

θi(y
∗
i )+min(M , |L |)

�

r

r−1

�

∑
c∈I q

δ dia(Γ(y∗c))+

�

r

r−1

�

∑
c∈Bq

δ dia(Γ(y∗c))





≤ ∑
i∈V

p
I

θi(y
∗
i )+min(M , |L |)

�

r

r−1

�



 ∑
c∈∪q∈η(p)I

q

δ dia(Γ(y∗c))+ ∑
c∈∪q∈η(p)B

q

δ dia(Γ(y∗c))





(3.50)

= ∑
i∈V

p
I

θi(y
∗
i )+min(M , |L |)

�

r

r−1

�

∑
c∈I p

δ dia(Γ(y∗c)). (3.51)

Finally, using inequalities (3.44), (3.47) and (3.51) we get

∑
i∈V

p
I

θi(y
p
i )+ ∑

c∈I p

δ dia(Γ(yp
c ))≤ ∑

i∈V
p

I

θi(y
∗
i )+min(M , |L |)

�

r

r−1

�

∑
c∈I p

δ dia(Γ(y∗c)).

(3.52)

Applying the above lemma to the root node proves the theorem.

3.5.2 The Move Making Algorithm for the Parsimonious Labeling

In the previous subsection, we proposed a hierarchical move making algorithm for the

hierarchical Pn Potts model (Algorithm 7). This restricted us to a small class of clique

potentials. In this section, we generalize our approach to the much more general parsimonious

labeling problem defined using the energy function (3.28).

The move making algorithm for the parsimonious labeling problem is shown in Algorithm 8.

Given diversity based clique potentials, non-negative clique weights, and arbitrary unary
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Algorithm 9 Diversity to Mixture of Hierarchical Pn Potts Model.

input Diversity (L ,δ ), k

1: Compute the induced metric, d(., .), where d(li, l j) = δ ({li, l j}),∀li, l j ∈ L .
2: Approximate d(., .) into mixture of k r-HST metrics dt(., .) using the algorithm proposed

in [32].
3: for each r-HST metrics dt(., .) do

4: Obtain the corresponding hierarchical Pn Potts model by defining the diameter diver-
sity over dt(., .)

5: end for

potentials, Algorithm 8 approximates the diversity into a mixture of hierarchical Pn Potts

models (using Algorithm 9) and then use the previously defined Algorithm 7 on each of the

hierarchical Pn Potts models.

The algorithm for approximating a given diversity into a mixture of hierarchical Pn Potts

models is shown in Algorithm 9. The first and the third steps of the Algorithm 9 have

already been discussed in the previous sections. The second step, which amounts to finding

the mixture of r-HST metrics for a given metric, can be solved using the randomized algo-

rithm proposed in [32]. We refer the reader to [32] for further details of the algorithm for

approximating a metric using a mixture of r-HST metrics.

Multiplicative Bound. Theorem 3 gives the multiplicative bound for the parsimonious

labeling problem, when the clique potentials are any general diversity. Notice that the

multiplicative bound of our algorithm is significantly better than the multiplicative bound of

SoSPD [40], which is M
maxc δ (Γ(yc)
minc δ (Γ(yc)

.

Theorem 3. The move making algorithm defined in Algorithm 8 gives the multiplicative

bound of
�

r
r−1

�

(|L |−1)O(log |L |)min(M , |L |) for the parsimonious labeling problem

(equation (3.28)). Here, M is the size of the largest maximal-clique, |L | is the number of

labels, and r > 1 is the parameter of the r-HST.

Proof. Briefly, the additional factor of (|L |−1) and O(log |L |) comes from the inequalities

δ (L ) ≤ (|L |−1)δ dia(L ) [19] and d(., .) ≤ O(log |L |)dt(., .) [32], respectively. Mathe-

matically, let us say that d(., .) is the induced metric of the given diversity (δ ,L ) and δ dia

be it’s diameter diversity. We first approximate d(., .) as a mixture of r-HST metrics dt(., .).

Using Theorem 4 we get the following relationship

d(., .)≤ O(log |L |)dt(., .). (3.53)
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For a given clique yc, using Proposition 1 we get the following relationship

δ dia(Γ(yc))≤ δ (Γ(yc))≤ (|Γ(yc)|−1)δ dia(Γ(yc)). (3.54)

Therefore, using equations (3.54) and (3.53), we get the following inequality

δ dia(Γ(yc))≤ δ (Γ(yc))≤ (|Γ(yc)|−1)δ dia(Γ(yc))

≤ O(log |Γ(yc)|)(|Γ(yc)|−1)δ dia
t (Γ(yc)). (3.55)

where, δ dia
t (Γ(yc)) is the diameter diversity defined over the tree metric dt(., .) which is

obtained using the randomized algorithm [32] on the induced metric d(., .). Notice that

δ dia
t (Γ(yc)) is the hierarchical Pn Potts model. Hence, combing the inequality (3.55) and the

previously proved Theorem 2 proves Theorem 3. In case the clique potential is the diameter

diversity, we do not need the inequality (3.54). Therefore, the multiplicative bound reduces

to
�

r
r−1

�

O(log |L |)min(M , |L |).

Theorem 4. Given any distance metric function d(., .) defined over a set of labels L , the

randomized algorithm given in [32] produces a mixture of r-HST tree metrics dt(., .) such

that d(., .)≤ O(log |L |)dt(., .).

Proof: Please see the reference [32].

Proposition 1. Let (L ,δ ) be a diversity with induced metric space (L ,d), then the follow-

ing inequality holds ∀Γ ⊆ L .

δ dia(Γ)≤ δ (Γ)≤ (|Γ|−1)δ dia(Γ). (3.56)

Proof: Please see the reference [19].

Time Complexity. Each expansion move of our Algorithm 8 amounts to solving a graph-

cut on a graph with 2|C | auxiliary variables and |C |(2M +2) edges (in worst case), therefore,

the time complexity is O((|V |+ |C |)2|C |M ). In addition, each subproblem in our algorithm

is defined over a much smaller label set (number of child nodes). Furthermore, Algorithm 8

can be parallelized over the trees and over the subproblems at any level of the hierarchy. In

contrast, each expansion move of SoSPD [40] amounts to solving submodular max-flow,

which is O(|V |2|C |2M ) [39], exponential in the size of the largest clique. Furthermore,

each expansion move of Ladicky et al. [87] amounts to solving a graph-cut on a graph with

|C ||L | auxiliary nodes and |C |(2M + |L |) edges having a time complexity of O((|V |+

|C ||L |)2|C |(M + |L |)) [49]. As can be seen from the above discussion, our move-making

algorithm is significantly more efficient for the parsimonious labeling problem.
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3.6 Experiments

We demonstrate the utility of parsimonious labeling on both synthetic and real data. In the

case of synthetic data, we perform experiments on a large number of grid lattices and evaluate

our method based on the energy and the time taken. We show the modeling capabilities of the

parsimonious labeling by applying it on two challenging real problems: (i) stereo matching,

and (ii) image inpainting. We use the move-making algorithm for the co-occurrence based

energy function proposed by Ladicky et al. [87] as our baseline. Based on the synthetic and

the real data results, supported by the theoretical guarantees, we show that the move making

algorithm proposed in our work outperforms [87].

Recall that the energy function we are interested in minimizing is defined in the equation

(3.28). In our experiments, we frequently use the truncated linear metric. We define it below

for the sake of completeness.

θi, j(la, lb) = ν min(|la − lb|,M),∀la, lb ∈ L . (3.57)

where ν is the weight associated with the metric and M is the truncation constant.

3.6.1 Synthetic Data

We consider following two cases: (i) given the hierarchical Pn Potts model, and (ii) given

a general diversity based clique potential. In each of the two cases, we generate lattices of

size 100×100, 20 labels, and use ν = 1. The cliques are generated using a window of size

10×10 in a sliding window fashion. The unary potentials are randomly sampled from the

uniform distribution defined over the interval [0,100]. In the first case, we randomly generate

100 lattices and random r-HST trees associated with each lattice, ensuring that they satisfy

the properties of the r-HST. Each r-HST is then converted into hierarchical Pn Potts model

by defining diameter diversity over each of them. The hierarchical Pn Potts model is then

used as the actual clique potential. We performed 100 such experiments. On the other hand,

in the second case, for a given value of the truncation M, we generate a truncated linear

metric and 100 lattices. We treat this metric as the induced metric of a diameter diversity

and apply Algorithm 7 for the energy minimization. We used four different values of the

truncation factor M ∈ {1,5,10,20}. For both the experiments, we used 7 different values of

wc: wc ∈ {0,1,2,3,4,5,100}.

The average energy and the time taken for both the methods and both the cases are shown in

the Figure 3.4. It is evident from the figures that our method outperforms [87] both in terms
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of time and the energy. In case (ii), despite the fact that our method first approximates the

given diversity into mixture of hierarchical Pn Potts models, it outperforms [87]. This can be

best supported by the fact that our algorithm has a strong multiplicative bound.

(a) Energy (b) Time (in seconds)

(c) Energy (d) Time (in seconds)

Figure 3.4: Synthetic (Blue: Our, Red: Co-occ [87]). The x-axis of all the figures is the weight

associated with the cliques (wc). Figures (a) and (b) are the plots when the hierarchical Pn

Potts model is known. Figures (c) and (d) are the plots when a diversity (diameter diversity

over truncated linear metric) is given as the clique potentials which is then approximated

using the mixture of hierarchical Pn Potts model. Notice that in both the cases our method

outperforms the baseline [87] both in terms of energy and time. Also, for very high value of

wc = 100, both the methods converges to the same labeling. This is expected as a very high

value of wc enforces rigid smoothness by assigning everything to the same label.

3.6.2 Real Data

In case of real data, the high-order cliques are the superpixels obtained using the mean-

shift method [24], the clique potentials are the diameter diversity of the truncated linear

metric (equation (3.57)). A truncated linear metric enforces smoothness in the pairwise

setting, therefore, its diameter diversity will naturally enforce smoothness in the high-order

cliques, which is a desired cue for the two applications we are dealing with. In both the real

experiments we use wc = exp−
ρ(yc)

σ2 (for high order cliques), where ρ(yc) is the variance of

the intensities of the pixels in the clique yc and σ is a hyperparameter.
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3.6.2.1 Stereo Matching

Given two rectified stereo pair of images, the problem of stereo matching is to find the

disparity (gives the notion of depth) of each pixel in the reference image [118, 120]. We

extend the standard setting of the stereo matching [118] to high-order cliques and test our

method to the images, ‘tsukuba’ and ‘teddy’, from the widely used Middlebury stereo data

set [111]. The unaries are the L1−norm of the difference in the RGB values of the left and

the right image pixels. Notice that the index for the right image pixel is the index for the

left image pixel minus the disparity, where disparity is the label. For ‘tsukuba’ and ‘teddy’

we used 16 and 60 labels respectively. In case of ‘teddy’ the unaries are trucated at 16.

The weights wc for the pairwise cliques are set to be proportional to the L1−norm of the

gradient of the intensities of the neighboring pixels ∥∇∥1. In case of ‘tsukuba’, if ∥∇∥1 < 8,

wc = 2, otherwise wc = 1. In case of ‘teddy’, if ∥∇∥1 < 10, wc = 3, otherwise wc = 1. As

mentioned earlier, wc for the high-order cliques is set to be proportional to the variance. We

used different values of σ , ν , and M. We are showing results for the following setting: for

‘tsukuba’, ν = 20, σ = 100, and M = 5; for ‘teddy’, ν = 20, σ = 100, and M = 1. Figure 3.5

shows the results obtained. Notice that our method significantly outperforms [87] in terms

of energy and the visual quality for both ‘tsukuba’ and ‘teddy’.

In order to further validate our results, we visually compare our method with other well

known methods in Figures 3.6 and 3.7. Notice that the energy function used in the α-

expansion and the TRWS based optimization is the pairwise energy function. Therefore, the

comparison is not very fair. Still we show these results in order to highlight the importance

of using high order cliques and suitable optimization algorithm. It can be clearly seen that

the parsimonious labeling gives better visual results compared to all the other three methods.

Effect of cliques and their weights. The parameter wc is the weight associated with each

clique. As we increase the weight, the algorithm emphasizes more in decreasing the clique

potential corresponding to the clique which results in over smoothing. Thus, finding the best

setting of wc is very important. The effects of the parameter wc, achieved by changing σ , is

shown in the Figure 3.8. Similarly, the cliques have great impact on the overall result. Large

cliques and high value of wc will result in over smoothing. We show the effect of clique size

in Figure 3.9.

3.6.2.2 Image Inpainting and Denoising

Given an image with added noise and obscured regions (regions with missing pixels), the

problem is to denoise the image and fill the obscured regions such that it is consistent with the
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(a) Tsukuba
(Energy, Time (sec))

(b) Our
(1387300,773)

(c) Co-occ [87]
(2117804,306)

(d) Teddy
(Energy, Time (sec))

(e) Our
(3196400,2918)

(f) Co-occ [87]
(3256200,1392)

Figure 3.5: Stereo Matching Results. Figures (a) and (d) are the ground truth disparity for

the ‘tsukuba’ and ‘teddy’ respectively. Our method significantly outperforms the baseline

Co-ooc [87] in both the cases in terms of energy. Our results are visually more appealing

also. Figures (b) and (e) clearly shows the influence of ‘parsimonious labeling’ as the regions

are smooth and the discontinuity is preserved. Recall that we use super-pixels obtained using

the mean-shift as the cliques.

(a) Gnd Truth (b) α− exp (c) TRWS (d) Co-occ (e) Our Method

Figure 3.6: Comparison of all the methods for the stereo matching of ‘teddy’. We used the

optimal setting of the parameters proposed in the well known Middlebury webpage and [118].

The above results are obtained using σ = 102 for the Co-occ and our method. Clearly, our

method gives much smooth results while keeping the underlying shape intact. This is because

of the cliques and the corresponding potentials (diversities) used. The diversities enforces

smoothness over the cliques while σ controls this smoothness in order to avoid over smooth

results.

surroundings. We perform this experiment on the images, ‘penguin’ and ‘house’, from the

widely used Middlebury data set. The images under consideration are gray scale, therefore,

there are 256 labels in the interval [0,255], each representing an intensity value. The unaries

for each pixel (or node) corresponding to a particular label is the squared difference between

the label and the intensity value at that pixel. The weights wc for the pairwise cliques are all



3.6 Experiments 79

(a) Gnd Truth (b) α− exp (c) TRWS (d) Co-occ (e) Our Method

Figure 3.7: Comparison of all the methods for the stereo matching of ‘tsukuba’. We used

the optimal setting of the parameters proposed in the well known Middlebury webpage and

[118]. The above results are obtained using σ = 102 for the Co-occ and our method. We

can see that the disparity obtained using our method is closest to the ground truth compared

to all other methods. In our method, the background is uniform (under the table also), the

camera shape is closest to the ground truth camera, and the face disparity is also closest to

the ground truth compared to other methods.

(a) σ = 102 (b) σ = 103 (c) σ = 104

Figure 3.8: Effect of σ in the parsimonious labeling. All the parameters are same except

for the σ . Note that as we increase the σ , the wc increases, which in turn results in over

smoothing.

Figure 3.9: Effect of clique size (superpixels). The top row shows the cliques (superpixels)

used and the bottom row shows the stereo matching using these cliques. As we go from left to

right, the minimum number of pixels that a superpixel must contain increases. All the other

parameters are the same. In order to increase the weight wc, we use high value of σ , which

is σ = 105 in all the above cases.

set to one. We used different values of σ , ν , and the truncation M and showing results for the

following setting: ‘penguin’, the ν = 40, σ = 10000 and M = 40; for ‘house’, the ν = 50,

σ = 1000 and M = 50. Notice that our method (Figure 3.10) significantly outperforms [87]

in terms of energy and visual quality for both ‘penguin’ and ‘house’.
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(a) Penguin
(Energy, Time (sec))

(b) Our
(12547000,1964)

(c) Co-occ [87]
(14710302,358)

(d) House
(Energy, Time (sec))

(e) Our
(36840076,2838)

(f) Co-occ [87]
(41980784,912)

Figure 3.10: Image inpainting results. Figures (a) and (d) are the input images of ‘penguin’

and ‘house’ with added noise and obscured regions. Our method, (b) and (e), significantly

outperforms the baseline [87] in both the cases in terms of energy. Visually, our method

gives much more appealing results. We use super-pixels obtained using the mean-shift as the

cliques.

In order to further validate our results, we visually compare our method with other well known

methods in Figures 3.11 and 3.12 for the ‘penguin’ and the ‘house’ examples, respectively. It

can be clearly seen that the parsimonious labeling gives visually highly promising results

compared to all other methods.

(a) Original (b) Input (c) α− exp (d) TRWS (e) Co-occ (f) Our

Figure 3.11: Comparison of all the methods for the image inpainting and denoising problem

of the ‘penguin’. Notice that our method recovers the hand of the penguin very smoothly.

In other methods, except Co-oc, the ground is over-smooth while our method recovers the

ground quite well compared to others.
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(a) Original (b) Input (c) α− exp (d) TRWS (e) Co-occ (f) Our

Figure 3.12: Comparison of all the methods for the image inpainting and denoising problem

of the ‘house’.

3.7 Discussion

We proposed a new family of labeling problems, called parsimonious labeling, where the

energy function is defined using a diversity measure. Our energy function includes the novel

hierarchical Pn Potts model, which allows us to design an efficient and accurate move-making

algorithm based on iteratively solving the minimum st-cut problem. The large class of energy

functions covered by parsimonious labeling can be used for various computer vision tasks

such as semantic segmentation (where diversity function can be used to favor certain subsets

of semantic classes), or 3D reconstruction (where diversity function can be used to favor

certain subsets of depth values). An interesting direction for future research would be to

explore different diversities and propose specific algorithms for them, which may provide

better theoretical guarantees. Another interesting work would be to directly approximate

diversities into a mixture of hierarchical Pn Potts model, without the use of the intermediate

r-HST metrics. This may also lead to better multiplicative bounds.

In general, the models related to the inference problems, for example the model of the

parsimonious labeling as shown in the equation 3.28, contains hyperparameters (wc in case

of parsimonious labeling). As evident from the Figures 3.4 and 3.8, these hyperparameters

greatly influence the outcome of an inference algorithm. The standard approach is to hand

tune them in order to obtain the best results. This is exactly what we did in this chapter as

there were very few hyperparameters. However, hand tuning quickly becomes infeasible

as the number of hyperparameters increases. In order to circumvent this problem, a risk

minimization based approach, structured SVM (SSVM), can be used to automatically learn

these hyperparameters using a training dataset. In the following chapter, we propose a new

SSVM framework which we call HOAP-SVM to learn these parameters. The risk function

used in HOAP-SVM is based on an upperbound on the average precision, which is a very

frequently used performance measure in many vision related tasks.





Chapter 4

Learning to Rank using High-Order

Information

4.1 Introduction

In chapter 3 we talked about a new family of high-order inference problem which we call

parsimonious labeling. We saw that, in general, the models related to inference problems

contains hyperparameters which greatly influences the outcome of the inference algorithm.

Normally, these hyperparameters are hand tuned which quickly becomes infeasible as

the number of hyperparameters increases. In this chapter, we talk about an empirical

risk minimization based framework, structured SVM (SSVM), to automatically learn these

parameters given a training dataset. The standard approach is to minimize an accuracy based

risk in order to learn these parameters. However, many tasks in computer vision are evaluated

based on average precision which is a measure of ranking. Motivated by this fact, in this

chapter, we propose a new learning framework HOAP-SVM that can optimize an average

precision based risk function while using high-order information. In what follows, we talk

about the HOAP-SVM in details.

Many tasks in computer vision require the development of automatic methods that sort (or

rank) a given set of visual samples according to their relevance to a query. For example,

consider the problem of action classification (or more precisely action ranking). The input is

a set of samples corresponding to bounding boxes of persons, and an action such as ‘jumping’.

The desired output is a ranking where a sample representing a jumping person is ranked

higher than a sample representing a person performing a different action. Other related

problems include image classification (sorting images according to their relevance to a user

query) and object detection (sorting all the windows in a set of images according to their
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relevance to an object category). As the desired output of the aforementioned problems is a

ranking, the accuracy of an approach is typically reported using a ranking-based measure

such as the average precision (AP).

A popular way of solving a problem that requires us to rank a set of samples is to train a

binary classifier. The positive class of the classifier corresponds to the relevant samples

and the negative class corresponds to the non-relevant samples. Once a classifier is learned

on a training set, a new set of samples is sorted according to the scores assigned to the

samples by the classifier. Perhaps the most commonly used classifier is the support vector

machine (SVM) [127]. However, the SVM framework has two main drawbacks. First, an SVM

minimizes an upper bound on the 0-1 loss function (that is, the fraction of misclassifications)

instead of a ranking-based loss function that depends on the quantitative measure of the

quality of the ranking (for example, average precision (AP)). Second, an SVM only uses

first-order information to classify a sample, that is, the score of a sample depends only on

itself and not on other samples in the dataset. In other words, an SVM does not explicitly

incorporate a priori high-order information, which can be very useful in improving the

accuracy of ranking. For example, in action classification, most of the persons present in the

same image tend to perform the same action. In object detection, two objects of the same

category tend to have the similar aspect ratio. In pose estimation, people in the same scene

tend to have similar poses (sitting down to watch movie). In document retrieval, documents

containing same or similar words are more likely to belong to the same class.

At first glance, the two drawbacks seem to be easily fixable using a generalization of the

SVM framework, known as structured output support vector machines (SSVM) [122, 126].

Given a structured input, the SSVM framework provides a linear prediction rule to obtain

a structured output. Specifically, the score of a putative output is the inner product of

the parameters of an SSVM with the joint feature vector of the input and the output. The

prediction requires us to maximize the score over all possible outputs for an input. Given

a training dataset, the parameters of an SSVM are learned by minimizing a regularized

convex upper bound on a user-specified loss function. In the past decade, several customized

algorithms have been developed to solve the optimization problem that learns the SSVM

parameters [42, 61, 75, 122, 126]. While the optimization algorithms for SSVM differ

significantly in their details, they share the common characteristic of iteratively performing

loss-augmented inference. In other words, given the current estimate of the parameters,

they compute the output that jointly maximizes the sum of the score and the loss function.

Loss-augmented inference can be viewed as the optimal cutting-plane or the subgradient of

the learning objective, which exploits its central role in the optimization.
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The SSVM framework places no restriction on the form of the loss function and on the

structure of the input and the output. Thus, it appears the ideal framework to (i) optimize the

loss based on AP (AP loss); and (ii) incorporate high-order information. However, in order to

successfully employ an SSVM, we need an efficient algorithm for loss-augmented inference.

In that regard, the first drawback can be addressed using AP-SVM [137], which is a special

form of SSVM. In the AP-SVM framework, the input is a set of samples and the output is

a ranking. The loss value for a putative output is one minus the AP of the corresponding

ranking with respect to the ground truth ranking. The joint feature vector of the input and

the output is a weighted sum of the feature vectors for all samples, where the weights are

governed by the ranking. Yue et al. [137] showed that, for this choice of joint feature vector,

loss-augmented inference can be performed optimally using an efficient greedy algorithm.

Furthermore, they showed that the prediction of AP-SVM is exactly the same as the prediction

of the standard SVM, that is, to sort the samples according to their individual scores. Since the

joint feature vector of AP-SVM depends only on the feature vectors of the individual samples,

AP-SVM does not incorporate high-order information. A straightforward way to address this

deficiency would be to modify the joint feature vector such that it depends on feature vectors

of pairs of samples, or more generally, on feature vectors of subsets of samples. For example,

Rosenfeld et al. [109] recently proposed a framework to optimize the area under curve

(AUC) while considering the high-order information. However, a similar approach cannot be

used for optimizing AP based loss function since it does not decompose over single variable.

Therefore, such a modification can not be introduced trivially into the AP-SVM formulation.

We present two alternate frameworks to incorporate high-order information for ranking. The

first framework, which we call high-order binary SVM (HOB-SVM), takes its inspiration

from the standard SVM. The input of HOB-SVM is a set of samples. The output is a binary

label for each sample, where the label 1 indicates that the sample is relevant and 0 indicates

that the sample is not relevant. The joint feature vector of HOB-SVM depends not only on

the feature vectors of the individual samples, but also on the feature vectors of subsets of

samples. In this work, we restrict the subsets to be of size two, but our frameworks can

easily be generalized to other subset sizes. The loss function of HOB-SVM is a weighted 0-1

loss, which allows us to efficiently perform loss-augmented inference using graph cuts [74].

Practically speaking, the difficulty with employing HOB-SVM is that it provides a single

score for the entire labeling of a dataset, whereas we need scores corresponding to each

sample in order to find the ranking. To address this difficulty, we propose to rank the samples

using the difference between the max-marginal for assigning a sample to the relevant class

and the max-marginal for assigning it to the non-relevant class. Intuitively, difference of

max-marginals measure the positivity of a particular sample while capturing high-order
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information. Empirically, we show that the difference of max-marginals provides an accurate

ranking. The main advantage of HOB-SVM is that its parameters can be estimated efficiently

by solving a convex optimization problem. However, its main disadvantage is that, similar to

SVM, it optimizes a surrogate loss function instead of the AP loss.

The second framework, which we call high-order AP-SVM (HOAP-SVM), takes its inspiration

from AP-SVM and HOB-SVM. Similar to AP-SVM, the input of HOAP-SVM is a set of samples,

its output is a ranking of the samples, and its loss function is the AP loss. However, unlike AP-

SVM, the score of a ranking is equal to the weighted sum of the difference of max-marginals

of the individual samples. Since the max-marginals capture high-order information, and the

loss function depends on the AP, HOAP-SVM addresses both the aforementioned deficiencies

of traditional classifiers such as SVM. The main disadvantage of HOAP-SVM is that estimating

its parameters requires solving a difference-of-convex program [55]. While we cannot obtain

an optimal set of parameters for HOAP-SVM, we show how a local optimum of the HOAP-

SVM learning problem can be computed efficiently by the concave-convex procedure [138].

Using standard, publicly available datasets, we empirically demonstrate that HOAP-SVM

outperforms the baselines by effectively utilizing high-order information while optimizing

the correct loss function.

Contributions.

• In this chapter we propose HOB-SVM that can incorporate high-order information

and allow us to rank the samples based on difference of max-marginal scores. The

HOB-SVM optimizes upperbound on accuracy based loss function which leads to a

convex objective function.

• We propose another novel framework, HOAP-SVM, which can optimize average preci-

sion based loss function while incorporating high-order information. The ranking, in

the end, is obtained by sorting the scores based on the difference of max-marginals.

However, the objective function of HOAP-SVM is a special type of non-convex function

known as the difference of convex function. Local minima of such functions can be

obtained using the well known concave-convex procedure (CCCP algorithm).

4.2 Preliminaries

4.2.1 Structured Output SVM

A detailed introduction to SSVM is given in the chapter 2. For the sake of completeness,

below we give a brief introduction to SSVM.
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An SSVM, parameterized by w, provides a linear prediction rule to obtain a structured output

y ∈ Y from a structured input x ∈ X . Formally, let Φ(x,y) denote the joint feature vector

of the input x and the output y. The prediction for a given input x is obtained by maximizing

the score over all possible outputs, that is, ŷ = argmaxy∈Y w⊤Φ(x,y).

Given a dataset that consists of n samples, that is, D = {(xi,y
∗
i ), i = 1, · · · ,n}, the parameters

of an SSVM are estimated by minimizing a regularized upper bound on the empirical risk. The

risk is measured using a user-specified loss function ∆(·, ·). In more detail, the parameters

are estimated by solving the following convex optimization problem:

min
w,ξ

1
2
∥w∥2 +

C

n

n

∑
i=1

ξi (4.1)

s.t. w⊤Φ(xi,y
∗
i )≥ w⊤Φ(xi,yi)+∆(yi,y

∗
i )−ξi, ∀i, ∀yi ∈ Yi. (4.2)

Intuitively, the above problem encourages a margin (proportional to ∆(yi,y
∗
i )) between the

score of the ground-truth output y∗i and all other outputs yi. The hyperparameter C controls

the trade-off between the training error and the model complexity. Notice that the hyper-

parameter λ defined in equation (2.38) is inversely proportional to the the hyperparameter

C. Inspite very large number of constraints, it has been shown that the above problem

can be optimized efficiently using cutting-plane algorithm [61] which requires iteratively

solving the loss-augmented inference problem (to find the most-violated constraint), that is,

ŷi = argmaxyi
w⊤Φ(xi,yi)+∆(y∗i ,yi).

4.2.2 AP-SVM

The AP-SVM (or Average Precision SVM) classifier [137] optimizes an upperbound on the

ranking loss. The ranking loss in this case depends on the average precision. The AP based

loss function is non decomposable over the samples. This makes the loss-augmented problem

hard to solve. However, using the powerful SSVM formulation to encode the structure in the

loss function allows us to solve the loss-augmented problem efficiently [96, 137]. This makes

the AP-SVM classifier a special case of SSVM. In what follows we give a brief mathematical

introduction to AP-SVM.

The input of an AP-SVM is a set of n samples, which we denote by x = {xi, i = 1, · · · ,n}.

Each sample can either belong to the positive class (that is, the sample is relevant) or the

negative class (that is, the sample is not relevant). The indices for the positive and negative

samples are denoted by the sets P and N respectively. In other words, if i ∈ P and j ∈ N

then xi belongs to positive class and x j belongs to the negative class. The desired output

is a ranking matrix R of size n×n, such that (i) Ri j = 1 if xi is ranked higher than x j; (ii)
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Ri j = −1 if xi is ranked lower than x j; and (iii) Ri j = 0 if xi and x j are assigned the same

rank. During training, the ground-truth ranking matrix R∗ is defined as: (i) R∗
i j = 1 and

R∗
ji =−1 for all i ∈ P and j ∈ N ; (ii) R∗

ii′ = 0 and R∗
j j′ = 0 for all i, i′ ∈ P and j, j′ ∈ N .

Joint Feature Vector. For a sample xi, let φ(xi) denote its feature vector. For example, in

action classification, φ(xi) can represent poselet [9] or bag-of-visual-words [26]. Similar

to [137], we specify a joint feature vector as

Φ(x,R) = γ ∑
i∈P

∑
j∈N

Ri j(φ(xi)−φ(x j)),γ =
1

|P||N |
(4.3)

In other words, the joint feature vector is the scaled sum of the difference between the features

of all pairs of samples having different classes.

Parameters and Prediction. The parameter vector of the classifier is denoted by w. Given

the parameters w, the ranking of an input x is predicted by maximizing the score, that

is, R = argmaxR w⊤Φ(x,R). Yue et al. [137] showed that the above optimization can be

performed efficiently by sorting the samples xk in descending order of the score w⊤φ(xk).

Loss Function. Given a training dataset, our aim is to learn a classifier that provides a high

AP measure. Let AP(R∗,R) denote the AP of the ranking matrix R with respect to the ground

truth ranking R∗. The AP(R∗,R) is defined as: AP(R,R∗) = 1
|P| ∑k Prec(k)δ (Rec(k)),

where |P| is the number of positive samples in the ground truth R∗, Prec(k) is the precision

upto top k samples given by R, and δ (Rec(k)) is the change in recall when moving from

(k−1)th to kth sample. The value of the AP(·, ·) lies between 0 and 1, where 0 corresponds

to a completely incorrect ranking −R∗ and 1 corresponds to the correct ranking R∗. In order

to maximize the AP, we will minimize a loss function defined as ∆(R∗,R) = 1−AP(R∗,R).

Parameter Estimation. Given the input x and the ground-truth ranking matrix R∗, we

would like to learn the parameters of the classifier such that regularized upper bound on the

empirical AP loss is minimized. Specifically, the model parameters are obtained by solving

the following convex optimization problem:

min
w

1
2
||w||2 +Cξ , (4.4)

w⊤Φ(x,R∗)−w⊤Φ(x,R)≥ ∆(R∗,R)−ξ ,∀R
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Problem (4.4) is specified over an exponential number of R. Nonetheless, Yue et al. [137]

showed that it can be optimized efficiently by providing an optimal greedy algorithm to solve

the corresponding loss-augmented inference problem, that is, R̂ = argmaxR w⊤Φ(x,R)+

∆(R∗,R).

4.3 High-Order Binary SVM (HOB-SVM)

We now describe our two frameworks for ranking while incorporating high-order information.

As mentioned earlier, we will restrict our description to second-order information. However,

extending our frameworks to general high-order information is trivial. We start with the

simpler framework, which we call High-Order Binary SVM (HOB-SVM). This will allow us

to define the terminology necessary to develop a more principled framework (HOAP-SVM) in

the next section.

The input of a HOB-SVM is a set of n samples x = {xi|i = 1, · · · ,n}. Similar to the AP-SVM,

a sample can either belong to the positive class or a negative class. However, the output of

HOB-SVM is not a ranking, but an assignment of a class for each sample. In other words, the

output is a list y = {yi|i = 1, · · · ,n} where yi ∈ {0,1}. The label ‘0’ implies that the sample

has been assigned to the negative class, whereas the label ‘1’ implies that the sample has

been assigned to the positive class. During training, the ground-truth output y∗ assigns all

relevant samples to the positive class and all non-relevant samples to the negative class. Once

again, given y∗, we denote the indices of the positive and the negative samples as P and N

respectively.

Joint Feature Vector. The joint feature vector of the input x and the output y consists

of two parts. The first part Φ1(x,y) captures first-order information, and is henceforth

referred to as the unary joint feature vector. The second part Φ2(x,y) captures second-order

information, and is henceforth referred to as the pairwise joint feature vector. In more detail,

let φ(xi) ∈ R
d denote the feature vector of the sample xi. The unary joint feature vector is

defined as follows:

Φ1(x,y) =

 

∑i,yi=1 φ(xi)

∑i,yi=0 φ(xi)

!

. (4.5)

The unary joint feature vector is of dimensionality 2d. The first d dimensions correspond

to the sum of the feature vectors of the samples belonging to the positive class. The last d

dimensions correspond to the sum of the feature vectors of the samples belonging to the

negative class. Clearly, Φ1(x,y) only captures the first-order information.
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As mentioned earlier, our aim is to use second-order information to improve ranking. In

other words, if we know a priori that two samples xi and x j are more likely to belong to the

same class (henceforth referred to as similar samples), then we would like to encourage them

to either both be labeled as relevant or as non-relevant. Let E denote the set of all pairs of

similar samples. In other words, if samples xi and x j are similar, then (i, j) ∈ E . We define

the pairwise joint feature vector as follows:

Φ2(x,y) = η



 ∑
(i, j)∈E ,yi ̸=y j

θ(φ(xi),φ(x j))



 (4.6)

where θ(φ(xi),φ(x j)) is a vector such that each of its elements is inversely proportional to

the difference between the corresponding elements of its two input vectors and η controls

the trade-off between the first-order and high-order information. In our work, we define

θ(zi,z j) = exp(−(zi − z j)
2). All the operations are performed in an element-wise manner.

In other words, Φ2(x,y) is a d dimensional vector that is the sum of pairwise feature vectors

over all pairs of similar samples having different classes.

Notice that the E represents the underlying structure or the interaction between the variables

in the output space, which otherwise is missing in the AP-SVM formulation. Obtaining E

is part of the modeling of the task in hand. For example, while solving semantic segmenta-

tion problem in images, a four neighborhood connectivity models the problem quite well.

Therefore, the four neighborhood connectivity hypothesis leads to a promising set of E for

the semantic segmentation problem. In the experiment section we talk about the hypothesis

we used to generate the E for the action classification problem.

Parameters and Prediction. Similar to the joint feature vector, the parameters of a HOB-

SVM consist of two parts: the unary parameters w1 ∈ R
2d and the pairwise parameters

w2 ∈ R
d . Given an input x, the output y is predicted by maximizing the score, that is,

y = argmax
y

w⊤Φ(x,y),w =

 

w1

w2

!

,Φ(x,y) =

 

Φ1(x,y)

Φ2(x,y)

!

. (4.7)

Note that, in general, the problem in the equation (4.7), which is the inference problem,

is NP-hard. A description of such problems is given the section 2.2.1. However, when

w2 ≤ 0, it can be optimized efficiently using graph cuts [74] (please refer to the section 2.3

for detailed explanation). This follows from the fact that each element of the pairwise joint

feature vector is non-negative (see equation (4.6)), and hence the score of an output y is

a supermodular (negative of submodular) function of y. In what follows, we will always
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estimate the parameters of a HOB-SVM under the constraint that w2 ≤ 0. Moreover, our

approaches can also be used without this constraint by employing approximate inference

algorithms such as [70, 76, 105].

Loss Function. Although we would ideally like to optimize the AP loss, as mentioned

earlier, this results in a difficult loss-augmented inference problem when the joint feature

vector captures high-order information. Hence, inspired by the success of SVM for ranking,

we use a surrogate loss function defined as follows:

∆(y∗,y) =
J ∑i,y∗i =1 δ (yi = 0)+∑ j,y∗j=0 δ (y j = 1)

J|P|+ |N |
, (4.8)

where δ (·) is 1 if its argument is true and 0 otherwise. The terms |P| and |N | are the total

number of positive and negative samples (as specified by the ground-truth assignment y∗)

respectively. The hyperparameter J is set to |N |/|P|. This helps in data balancing. In other

words, ∆(y∗,y) is the weighted fraction of misclassifications.

Parameter Estimation. Given the dataset (x,y∗), the parameters of HOB-SVM are obtained

by solving the following convex optimization problem:

min
w

1
2
||w||2 +Cξ , (4.9)

w⊤Φ(x,y∗)−w⊤Φ(x,y)≥ ∆(y∗,y)−ξ ,∀y ∈ Y ,w2 ≤ 0.

Even though the number of constraints in the above problem are exponential in the number of

samples n, it can be optimized efficiently by iteratively solving the loss-augmented inference

problem, that is, ŷ = argmaxy(w
⊤Φ(x,y)+∆(y∗,y)). The restriction w2 ≤ 0 allows us to

solve the above problem efficiently using graph cuts [74]. The problem (4.9) is similar to

training graphical models with approximate inference [37, 42, 82, 123].

Using HOB-SVM for Ranking. From a theoretical point of view, the main disadvantage

of HOB-SVM is that it optimizes a surrogate loss function instead of the AP loss. In the

next section, we will describe a novel framework that addresses this disadvantage. From

a practical point of view, the main disadvantage of HOB-SVM is that it provides a single

score for the entire assignment y. In other words, instead of assigning an individual score

for each sample xk, it assigns one score w⊤Φ(x,y) for all the samples taken together. This

prevents us from specifying a ranking of the samples. To address this issue, we propose

a simple yet intuitive solution: (i) compute the difference between the max-marginal of a
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sample being assigned to the positive class and the max-marginal of it being assigned to

the negative class; and (ii) sort the samples according to the difference in max-marginals.

Max-marginal captures high-order information and the difference of max-marginals measures

our confidence on a particular sample belonging to the positive class. Formally, we define

the max-marginal of a sample xi belonging to the positive class m+
i (w) and negative class

m−
i (w) as:

m+
i (w) = w⊤Φ(x,y+i ),y

+
i = argmax

y,yi=1
w⊤Φ(x,y). (4.10)

m−
i (w) = w⊤Φ(x,y−i ),y

−
i = argmax

y,yi=0
w⊤Φ(x,y). (4.11)

The max-marginals for all the samples can be computed efficiently using the dynamic graph

cuts algorithm [68, 69]. Given the max-marginals m+
i (w) and m−

i (w), the score of a sample

xi is defined as

si(w) = m+
i (w)−m−

i (w). (4.12)

Note that, if the two labelings y+i and y−i defined in equations (4.10)-(4.11) respectively differ

only in the label assigned to the sample xi, this implies that the sample xi has no influence

in determining the labels of the other samples in the dataset. In this case, the difference

in max-marginals does not depend on the feature vectors of any other samples except the

sample xi. However, if the sample xi does influence the labels of the other samples (that is,

y+i and y−i differ significantly), then the difference in the max-marginals depends on several

samples in the dataset. The ranking is obtained by sorting the samples in descending order of

their scores si(w). As will be seen in the experiments section, this intuitive way of scoring a

sample provides an improved ranking over the baselines.

4.4 High-Order Average Precision SVM (HOAP-SVM)

While HOB-SVM allows us to incorporate high-order information via the pairwise joint

feature vector, it suffers from the deficiency of using a surrogate loss function. Specifically,

instead of optimizing the AP loss in order to estimate the parameters, it optimizes a weighted

0-1 loss. However, the way that HOB-SVM obtains a ranking points us to the direction of

resolving this deficiency. We begin by presenting the high-level overview of our approach.

We observe that the score of a ranking according to an AP-SVM is the weighted sum of

the scores of the individual samples. The reason why AP-SVM fails to capture high-order

information is that the score of the individual sample depends on no other sample in the

dataset. This is in contrast to the score employed by HOB-SVM (see equation (4.12)). Hence,
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it would be desirable to extend AP-SVM such that the score of the ranking is the weighted

sum of the difference of max-marginals of individual samples. This is precisely our next

learning framework, which we call High-Order AP-SVM (HOAP-SVM). In what follows, we

describe HOAP-SVM in detail.

The input of HOAP-SVM is a set of n samples x = {xi, i = 1, · · · ,n}. Similar to AP-SVM, a

sample can belong to the positive class or the negative class. The output of HOAP-SVM is

a ranking matrix R, defined in a similar manner to AP-SVM. During training, the ground-

truth ranking matrix R∗ assigns each positive sample to a higher rank than all negative

samples. Once again, the indices of positive and negative samples is represented as P and

N respectively.

Score of a Ranking. The parameters of HOAP-SVM are denoted by w. Given an input x

and a ranking R, the score for the ranking specified by HOAP-SVM is defined as follows:

S(x,R;w) = γ ∑
i∈P

∑
j∈N

Ri j(si(w)− s j(w)),γ =
1

|P||N |
, (4.13)

where si(w) is as specified in equation (4.12). In other words, the score of a ranking is the

weighted sum of the difference of max-marginals for each sample, where the weights are

specified by the ranking.

Prediction. Given an input x, the ranking R is predicted by maximizing the score over all

possible rankings, that is,

R = argmax
R

S(x,R;w). (4.14)

Proposition 2. Problem (4.14) can be solved efficiently by sorting the samples in descending

order of their scores si(w).

Proof. Predicting ranking is basically picking each Ri j to maximize S(x,R;w). Since

Ri j = sign(si(w)− s j(w)), therefore, maximizing S(x,R;w) w.r.t. R is basically reshuffling

the scores such that sign(si(w)− s j(w))> 0, which can be achieved by sorting the scores.

Refer to [58] for more details.

In other words, the prediction for HOAP-SVM is the same as the prediction for HOB-SVM.

Recall that the score si(w) can be computed efficiently using dynamic graph cuts [68, 69].

Parameter Estimation. Given the input x and the ground-truth ranking R∗, the parameters

of HOAP-SVM are learned by optimizing the AP loss. To this end, we propose to estimate w
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by solving the following optimization problem:

min
w

1
2
||w||2 +Cξ , (4.15)

S(x,R∗;w)−S(x,R;w)≥ ∆(R∗,R)−ξ ,∀R,w2 ≤ 0.

Here, ∆(R∗,R) is the AP loss (discussed in section 4.2.2), that is, one minus the AP of the

ranking R with respect to R∗. The following proposition establishes the suitability of the

above problem for learning an HOAP-SVM.

Proposition 3. Problem (4.15) minimizes a regularized upper bound on the AP loss of the

predicted ranking

Proof. The proof is similar to the derivation of the convex upperbound of empirical loss as

discussed in the section 2.4. For a given w and predicted ranking R(w) (see equation 4.14),

the AP loss can be upperbounded as follows:

∆(R(w),R∗) = ∆(R(w),R∗)+S(x,R(w);w)−S(x,R(w);w) (4.16)

≤ ∆(R(w),R∗)+S(x,R(w);w)−S(x,R∗;w) (4.17)

≤ max
R

(∆(R,R∗)+S(x,R;w))−S(x,R∗;w) (4.18)

In expression (4.16) we add and subtract the same term, therefore, it is valid. Expression

(4.17) follows from the fact that the score for the ground truth ranking R∗ must be less than

or equal to the score corresponding to the predicted ranking R(w) (see equation (4.14)).

Expression (4.18) follows from the fact that the first two terms of the expression (4.18)

are always greater than or equal to the first two terms of the expression (4.17). Using this

upperbound on the AP loss (4.18), the regularized objective function of HOAP-SVM can be

written as:

min
w

1
2
||w||2 +C

�

max
R

�

S(x,R;w)+∆(R∗,R)
�

−S(x,R;w)

�

,w2 ≤ 0. (4.19)

Note that the objective function (4.15) is the constrained form of the objective function (4.19),

therefore, they represent exactly the same optimization problem.

Optimization. While problem (4.15) provides a valid upper bound on the AP loss, it is

not a convex program. Hence, it cannot be optimized efficiently to obtain an optimal set

of parameters for HOAP-SVM. However, in what follows, we show that problem (4.15)

is a difference-of-convex program. By identifying the convex and the concave part of

problem (4.15), we show how a locally optimal set of parameters can be obtained efficiently

using the concave-convex procedure (CCCP) [138].
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We begin by specifying the following shorthand notation that will be useful in simplifying

problem (4.15). Given a ranking R we define functions f (w;R) and g(w;R) of the parameters

w as

f (w;R) = γ ∑
i∈P

m−
i (w)

 

∑
j∈N

(R∗
i j −Ri j)

!

+γ ∑
j∈N

m+
j (w)

 

∑
i∈P

(R∗
i j −Ri j)

!

. (4.20)

g(w;R) = γ ∑
i∈P

m+
i (w)

 

∑
j∈N

(R∗
i j −Ri j)

!

+γ ∑
j∈N

m−
j (w)

 

∑
i∈P

(R∗
i j −Ri j)

!

. (4.21)

Using our shorthand notation problem (4.15) can be rewritten as follows:

min
w

1
2
||w||2 +Cξ , (4.22)

ξ ≥ ∆(R∗,R)+ f (w;R)−g(w;R),∀R.

Proposition 4. For any valid ranking matrix R, the functions f (w;R) and g(w;R) are convex

in w. Therefore, the problem (4.22) represents a difference of convex program.

Proof. Substituting different terms (e.g. m+
i (w), m−

j (w)) in the objective function (4.15)

leads to the following form:

min
w

1
2
||w||2 +Cξ ,

s.t.
1

|P||N | ∑
i∈P

∑
j∈N

R∗
i j{(m

+
i (w)−m−

i (w))− (m+
j (w)−m−

j (w))}

−
1

|P||N | ∑
i∈P

∑
j∈N

Ri j{(m
+
i (w)−m−

i (w))− (m+
j (w)−m−

j (w))}

≥ ∆(R,R∗)−ξ , ξ ≥ 0,∀R. (4.23)

Rearranging different terms:

min
w

1
2
||w||2 +Cξ ,

ξ ≥
1

|P||N | ∑
i∈P

∑
j∈N

(R∗
i j −Ri j)(m

−
i (w)+m+

j (w))+∆(R,R∗)

−
1

|P||N | ∑
i∈P

∑
j∈N

(R∗
i j −Ri j)(m

+
i (w)+m−

j (w)),∀R. (4.24)

Using shorthand notations, the objective function (4.24) can be further written as:

min
w

1
2
||w||2 +Cξ , (4.25)

ξ ≥ ∆(R∗,R)+ f (w;R)−g(w;R),∀R.
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Algorithm 10 The CCCP algorithm for learning HOAP-SVM parameters.

input Samples x, ranking R∗, tolerance ε , initial parameters w0.
1: t ← 0.
2: repeat

3: For all R, find a linear lower bound l(w;R) tight at wt using Proposition 5.
4: Update the parameters by solving the following convex optimization problem (Algo-

rithm 11):

wt+1 = argmin
w

1
2
||w||2 +Cξ , (4.29)

ξ ≥ ∆(R∗,R)+ f (w;R)− l(w;R),∀R.
The loss-augmented inference can be solved efficiently using Proposition 6.

5: t ← t +1.
6: until Objective of problem (4.22) does not decrease more than ε .

where,

f (w;R) = γ ∑
i∈P

m−
i (w)

 

∑
j∈N

(R∗
i j −Ri j)

!

+γ ∑
j∈N

m+
j (w)

 

∑
i∈P

(R∗
i j −Ri j)

!

, (4.26)

g(w;R) = γ ∑
i∈P

m+
i (w)

 

∑
j∈N

(R∗
i j −Ri j)

!

+γ ∑
j∈N

m−
j (w)

 

∑
i∈P

(R∗
i j −Ri j)

!

, (4.27)

γ =
1

|P||N |
. (4.28)

Since max-marginals in itself are convex (maxy,yi=+1 w⊤Φ(x,y) is the max over affine

functions which is convex) and the summation of convex functions with positive coefficients

is also convex, therefore, the convexity or concavity of the terms in (4.26) and (4.27) depends

on the sign of ∑i(R
∗
i j −Ri j) and ∑ j(R

∗
i j −Ri j). We can observe that for the fixed values of

i, 0 ≤ ∑ j Ri j ≤ |N |, similarly, 0 ≤ ∑i Ri j ≤ |P|. Also, since R∗ is the true ranking matrix,

therefore, ∑ j R∗
i j = |N | and ∑i R∗

i j = |P|. Hence, we can conclude that ∑ j(R
∗
i j −Ri j)≥ 0

and ∑i(R
∗
i j −Ri j) ≥ 0. Therefore, for any valid R, the constraints of the optimization

problem (4.22) clearly represents a difference-of-convex functions [55, 138] with f (w;R)

and −g(w;R) as the the convex and concave functions respectively.

Using proposition 4, it follows that problem (4.22) is a difference-of-convex program. This

allows us to obtain a locally optimal set of parameters for the HOAP-SVM formulation using

the CCCP approach outlined in Algorithm 10. The CCCP algorithm (also discussed in

section 2.5.3) consists of two steps. In the first step, given the current set of parameters

wt , we obtain a linear approximation l(w;R) of the function g(w;R) such that l(wt ;R) =

g(wt ;R), l(w;R)≤ g(w;R),∀w. In other words, the linear function l(w;R) is a lower bound

on the function g(w;R) (or upperbound on −g(w;R) which is concave) such that the lower
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bound is tight at the current parameters wt . While at first sight the problem of obtaining

the linear approximation for each ranking matrix R may appear to be highly expensive, the

following proposition shows how this step can be performed in a computationally efficient

manner.

Proposition 5. Given the current set of parameters wt , let

ȳ+i = argmax
y,yi=1

w⊤
t Φ(x,y), ȳ−j = argmax

y,y j=−1
w⊤

t Φ(x,y). (4.30)

The following linear function is a lower bound on g(w;R) that is tight at wt:

l(w;R)=γ ∑
i∈P

w⊤Φ(x, ȳ+i )

 

∑
j∈N

(R∗
i j−Ri j)

!

+γ ∑
j∈N

w⊤Φ(x, ȳ−j )

 

∑
i∈P

(R∗
i j−Ri j)

!

Proof. Upperbounding the concave function −g is equivalent to lower bounding the convex

function g. Given the current set of parameters wt , we obtain a linear approximation l(w;R)

of the function g(w;R) such that

l(wt ;R) = g(wt ;R), l(w;R)≤ g(w;R),∀w. (4.31)

In other words, the linear function l(w;R) is a lower bound on the function g(w;R) such

that the lower bound is tight at the current parameters wt . Since g(w;R) is a convex function,

therefore, the linear approximation of g at a given wt lowerbounds g. Mathematically,

(w−wt)
⊤∂g(w;R)

∂w

�

�

�

wt

+g(wt ;R)
| {z }

l(w;R)

≤ g(w;R),∀w (4.32)

Note that, g(w;R) is the linear combination of max-marginals with positive coefficients. Also,

max-marginals are the functions of w, therefore, finding gradient of g(w;R) is equivalent to

finding gradients of max-marginals independently and summing them up with their respective

coefficients. Gradients for the max-marginals are not defined as max-marginals are the max

over affine functions, therefore, non-smooth. Instead, we compute the subgradients. One

way to define the subgradient of the max-marginal at wt is:

∂ (m+
i (w))

∂w

�

�

�

wt

=
∂ (argmaxy,yi=1 w⊤Φ(x,y))

∂w

�

�

�

wt

,

= Φ(x, ȳ+i ), ȳ
+
i = argmax

y,yi=1
w⊤

t Φ(x,y). (4.33)
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Similarly, subgradient of m−
j (w) can be defined. From equations (4.21) and (4.33) it is clear

that:

g(wt ;R) = (wt)
⊤∂g(w;R)

∂w

�

�

�

wt

(4.34)

Combining equations (4.34) and (4.32), the lower bound can be defined as:

l(wt ;R) = w⊤∂g(w;R)

∂w

�

�

�

wt

(4.35)

≤ g(w;R),∀w. (4.36)

Also from equation (4.34) it is clear that l(wt ;R) = g(wt ;R). Therefore, combining equations

(4.35), (4.33) and (4.21) leads to the following form of l(w;R):

l(w;R) =
1

|P||N | ∑
i∈P

w⊤Φ(x, ȳ+i )

 

∑
j∈N

(R∗
i j −Ri j)

!

+
1

|P||N | ∑
j∈N

w⊤Φ(x, ȳ−j )

 

∑
i∈P

(R∗
i j −Ri j)

!

. (4.37)

While at first sight the problem of obtaining the linear approximation for each ranking matrix

R may appear to be highly expensive, but a little insight to the function g(w;R) reveals that

each constraint corresponding to each R has exactly the same convex terms, m+
i (w) and

m−
j (w), independent of R. Therefore, we do not have to lower bound g(w;R) again and

again for each R. Also, lowerbounding g(w;R) at a given wt is equivalent to finding the

max-marginal labelings of the entire dataset at wt such that each sample is marginalized to

get its ground truth label (see equation 4.33)). Each labeling problem can be solved using

graph cut [15]. Solving graph cuts n times naively would be computationally expensive,

therefore, in order to improve the efficiency, we use dynamic graph cuts [69]. In the case

of max-marginals, the structure of the graph remains the same for all the samples, and only

unary potentials change. Therefore, the time complexity of the dynamic graph cuts is mainly

dominated by the time complexity of the graph construction for the first time and the first cut

in the graph, which is computationally very efficient [68].

An upshot of the above proposition is that the linear lower bound of g(w;R) can be computed

efficiently for any R by pre-computing the labelings ȳ+i and ȳ−j , which are independent of R.

The labelings ȳ+i and ȳ−j can be obtained efficiently using dynamic graph cuts [68, 69].

In the second step of CCCP, we obtain a convex optimization problem by substituting

the linear approximation l(w;R) in place of the convex function g(w;R). We update the

parameters by solving the resulting convex optimization problem. To this end, we use the

cutting-plane algorithm [61] (Algorithm 11), discussed in details in section 2.4.3, in order to

handle exponentially many constraints. Cutting-plane algorithm requires us to iteratively find
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Algorithm 11 The Cutting Plane algorithm for optimizing the resulting convex function of
HOAP-SVM.
input Samples x, ranking R∗, tolerance ε , initial parameters w0.

1: t ← 0.
2: Start with empty constraint set: C ← {}.
3: repeat

4: Find the most violated constraint using following equation:

R̂ ← argmax
R

n

η ∑
i∈P

∑
j∈N

Ri j(s̄i(w)− s̄ j(w))+∆(R,R∗)

− η ∑
i∈P

∑
j∈N

R∗
i j(s̄i(w)− s̄ j(w))

o

(4.38)

5: Update the constraint set with the new most violated constraint.
6: Update the parameters w by solving the following convex optimization problem with

all the constraints in the constraint set C :

wt+1 = argmin
w

1
2
||w||2 +Cξ , (4.39)

7: until No additional constraint can be added.

the most-violated ranking R̂. The following proposition makes the cutting-plane algorithm

efficient.

Proposition 6. Given the upperbounded scores m̄+
i (w)=w⊤Φ(x, ȳ+i ), m̄−

j (w)=w⊤Φ(x, ȳ−j ),

and the scores for the current parameters m+
i (w) = w⊤Φ(x,y+i ), m−

j (w) = w⊤Φ(x,y−j ), the

following problem gives the most violated ranking.

R̂←argmax
R

n

η ∑
i∈P, j∈N

Ri j(s̄i(w)− s̄ j(w))+∆(R,R∗)−η ∑
i∈P, j∈N

R∗
i j(s̄i(w)− s̄ j(w))

o

where, s̄i(w) = (m̄+
i (w)−m−

i (w)) and s̄ j(w) = (m+
j (w)− m̄−

j (w)). The greedy algorithm

of [137] can be used to find the R̂ efficiently.

Proof. In the second step of the CCCP algorithm (Algorithm 10), we obtain a convex opti-

mization problem by substituting the linear approximation l(w;R) in place of the convex

function g(w;R). We update the parameters by solving the convex optimization problem.

Since the space of R is very large, therefore, in order to handle exponentially many constraints

we use the cutting plane algorithm (Algorithm 11) to optimize the resulting convex objective

function [61] . The algorithm iteratively introduces most violated constraints until we have

solved the original problem within a desired tolerance ε . In case of bounded joint feature

map and bounded loss function, the number of iterations to solve this convex optimization is

independent of the number of training samples and is linear in the desired precision (ε) and

the regularization parameter (C) [61]. Let us define some short hand notations in order to
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derive the final formulation for finding the most violated constraint. For given ȳ+i and ȳ−j
(see equation 4.33), the scores for the lower bounded functions corresponding to the current

w can be defined as:

m̄+
i (w) = w⊤Φ(x, ȳ+i ), m̄

−
j (w) = w⊤Φ(x, ȳ−j ). (4.40)

Substituting the upper bounded scores (4.40) into (4.24) in order to obtain the convex problem

leads to the following objective function:

min
w

1
2
||w||2 +Cξ ,

s.t. η ∑
i∈P

∑
j∈N

R∗
i j{(m̄

+
i (w)−m−

i (w))− (m+
j (w)− m̄−

j (w))}

− η ∑
i∈P

∑
j∈N

Ri j{(m̄
+
i (w)−m−

i (w))− (m+
j (w)− m̄−

j (w))}

≥ ∆(R,R∗)−ξ , ξ ≥ 0,∀R. (4.41)

Therefore, finding the most violated constraint problem can be defined as:

R̂ ← argmax
R

n

η ∑
i∈P

∑
j∈N

Ri j(s̄i(w)− s̄ j(w))+∆(R,R∗)

− η ∑
i∈P

∑
j∈N

R∗
i j(s̄i(w)− s̄ j(w))

o

(4.42)

where, s̄i(w) = (m̄+
i (w)−m−

i (w)) and s̄ j(w) = (m+
j (w)− m̄−

j (w)). Note that the problem

(4.42) is equivalent to the standard problem of finding the most violated constraint as defined

in [137], therefore, the most violated constraint R̂ can be computed using the optimal greedy

procedure proposed in [137]. This step is mainly dominated by the sorting of the scores s̄i(w)

and s̄ j(w), which has the time complexity of O(n logn).

Upon convergence, the CCCP algorithm provides a locally optimal set of parameters for the

HOAP-SVM framework.

4.5 Experiments

We now demonstrate the efficacy of our learning frameworks on the challenging problem

of action classification [26, 93]. The input for action classification is an action class such

as ‘jumping’ or ‘running’ and a set of samples x = {xi = (Ii,bi), i = 1, · · · ,n}. Here, Ii is

the image corresponding to the i-th sample, and bi is a tight bounding box around a person

present in the image. The desired output is a ranking of the samples according to their

relevance to the action. Recall that our main hypothesis is that high-order information can
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Table 4.1: The AP over five folds for the best setting of the hyperparameters obtained using

the cross-validation. Our frameworks outperforms SVM and AP-SVM in all the 10 action

classes. Note that HOAP-SVM is initialized with HOB-SVM.

Actions/ Jump Phone Play Read Ride Run Take Use Walk Ride Average
Methods inst bike photo comp horse

SVM 56.0 35.5 42.6 33.8 81.9 78.4 33.9 37.2 61.7 85.9 54.7
AP-SVM 57.5 34.4 46.3 35.5 83.0 79.3 33.3 42.7 63.1 86.6 56.2

HOB-SVM 60.9 36.1 48.1 35.7 84.1 81.5 35.1 45.8 63.0 87.9 57.8
HOAP-SVM 63.4 34.5 48.8 38.3 84.3 81.0 36.5 48.7 65.3 87.7 58.9

Table 4.2: The AP of all the four methods. The training is performed over the entire ‘trainval’

dataset of PASCAL VOC 2011 using the best hyperparameters obtained during 5-fold cross-

validation. The testing is performed on the ‘test’ dataset and evaluated on the PASCAL VOC

server. Note that HOAP-SVM is initialized using HOB-SVM.

Actions/ Jump Phone Play Read Ride Run Take Use Walk Ride Average
Methods inst bike photo comp horse

SVM 51.1 29.7 40.5 20.6 81.1 76.7 20.0 27.7 56.7 84.2 48.82
AP-SVM 54.0 33.8 42.3 26.5 82.5 76.7 23.7 32.8 57.7 84.2 51.42

HOB-SVM 56.3 33.8 42.8 24.3 82.5 80.5 27.7 32.8 53.6 84.5 51.88
HOAP-SVM 59.5 33.8 47.5 27.2 84.0 82.6 26.1 36.4 55.1 85.3 53.75

help improve the ranking accuracy. To test our hypothesis, we require a set of similar samples

such that samples xi and x j are more likely to belong to the same class (relevant or non-

relevant) if (i, j) ∈ E . In the action classification experiments, we define E = {(i, j),Ii = I j},

that is, the set of all pairs of bounding boxes that are present in the same image. Note that

one could use any other similarity criterion in the proposed frameworks. Below we describe

our experimental setup in detail.

Dataset. We use PASCAL VOC 2011 [31] action classification dataset, which consists of

4846 images depicting 10 action classes. The dataset is divided into two subsets: 2424

‘trainval’ images for which we are provided the bounding boxes of the person in the image

together with their action classes; and 2422 ‘test’ images for which we are only provided

with the person bounding boxes.

Features. Given a sample xi = (Ii,bi), we use the concatenation of standard poselet-based

feature vector [9] of the bounding box bi and GIST feature vector [101] of the image Ii to

specify the sample features φ(xi). The poselet feature consists of 2400 activation scores of

action-specific poselets and 4 object activation scores. The GIST feature is a 512 dimensional
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feature vector that captures the overall scene depicted in the image. This results in a sample

feature of size 2916. The sample features used to specify the unary and the pairwise joint

feature vectors are shown in equations (4.5) and (4.6). As each pair of similar samples comes

from the same image, we defined the joint pairwise feature vector using only the poselet

features. The size of the joint feature vector is therefore 8748.

Methods. We compare our proposed approaches, namely HOB-SVM and HOAP-SVM, with

the standard binary SVM (obtained by setting w2 = 0 in HOB-SVM) and AP-SVM (obtained

by setting w2 = 0 in HOAP-SVM) that ignore high-order information. The baselines, SVM

and AP-SVM requires one hyperparameter C, and HOB-SVM and HOAP-SVM requires two

hyperparameters C and η . The common hyperparameter C is the trade-off between the

regularization and the empirical loss, and η is the trade-off between the first order information

and the high-order information. Note that the ‘test’ dataset was not used for cross-validation.

We obtained the best setting of the hyperparameters for each method independently via a

5-fold cross-validation on the entire ‘trainval’ dataset. We consider the following putative

values: C ∈ {10−1,100, . . . ,104} and η ∈ {10−4,100, . . . ,104}. The J parameter in (4.8) is

fixed to |N |/|P|.

Results. Table 4.1 shows the average AP over all the five folds for the best hyperparameter

setting. By incorporating high-order information HOB-SVM provides an improvement in the

ranking compared to the commonly used SVM classifier for all 10 action classes. Furthermore,

even though HOB-SVM employs a surrogate loss function, it provides more accurate rankings

compared to AP-SVM for 9 action classes. By optimizing the AP loss function, while

incorpoating high-order information, HOAP-SVM outperforms SVM in 9 action classes, AP-

SVM in all 10 action classes, and HOB-SVM in 7 action classes. Table 4.2 shows the AP

values obtained for the ‘test’ set when the methods are trained using the best hyperparameter

setting over the entire ‘trainval’ set. Table 4.2 clearly shows that HOB-SVM outperforms

SVM classifier in 9 action classes and AP-SVM in 5 along with 3 ties. On the other hand,

HOAP-SVM outperforms SVM classifier in all the 10 classes, AP-SVM in 8 along with 1 tie,

and HOB-SVM in 8 along with 1 tie.

The paired t-test shows that: (a) HOB-SVM is statistically better than SVM for 6 action classes,

(b) HOB-SVM is not statistically better than AP-SVM, (c) HOAP-SVM is statistically better

than SVM for 6 action classes, and (d) HOAP-SVM is statistically better than AP-SVM for 4

action classes.
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Figure 4.1: Top 8 samples ranked by all the four methods for ‘reading’ action class. First

row – SVM, Second row – AP-SVM, Third row – HOB-SVM, and Fourth row – HOAP-SVM.

Note that, the first false positive is ranked 2nd in case of SVM (first row) and 3rd in case of

AP-SVM (second row), this shows the importance of optimizing the AP loss. On the other

hand, in case of HOB-SVM (third row), the first false positive is ranked 4th and the ‘similar

samples’ (2nd and 3rd) are assigned similar scores, this illustrates the importance of using

high-order information. Furthermore, HOAP-SVM (fourth row) has the best AP among all

the four methods, this shows the importance of using high-order information and optimizing

the correct loss. Note that, in case of HOAP-SVM, the 4th and 5th ranked samples are false

positives (underlying action is close to reading) and they both belong to the same image (our

similarity criterion). This indicates that high-order information sometimes may lead to poor

test AP in case of confusing classes (such as ‘playinginstrument’ vs ‘usingcomputer’) by

assigning all the connected samples to the wrong label. Same effect can be seen in HOB-SVM

for 7th and 8th ranked samples.

The effects of incorporating high-order information and optimizing the AP based loss function

is illustrated in Fig. 4.1. While high-order information can introduce errors in the ranking, in

general it provides boost in the overall performance.

4.6 Discussion

We proposed two new learning frameworks that incorporate high-order information to

improve the accuracy of ranking. The first framework, HOB-SVM, incorporates high-order

information while optimizing a surrogate loss function, which allows us to compute its

parameters by solving a convex optimization problem. The second framework, HOAP-SVM,

incorporates high-order information while optimizing an AP based loss function, which
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results in a difference-of-convex optimization problem. Both HOB-SVM and HOAP-SVM

outperform baseline methods that do not make use of high-order information. By minimizing

the correct loss function, HOAP-SVM outperforms HOB-SVM. An interesting direction for

future work would be to allow for weakly supervised learning by extending the recently

proposed latent AP-SVM [5] formulation to use high-order information. While such a learning

formulation can be easily obtained with the introduction of latent variables, it is not clear

whether the resulting optimization problem can be solved efficiently.

Another interesting direction of research work would be to explore the whole range of the

regularization parameter C in order to obtain the best model. In this chapter we chose few

putative values of the regularization parameter C ∈ {10−1,100, . . . ,104} and used five fold

cross validation based approach to find the best C among the chosen putative values. The

hope thus was that one of the C among the chosen putative values would lead to a robust

model which would perform well at the test time. However, there are infinitely possible

values of the regularization parameter which clearly is not reflected by the chosen putative

values. Therefore, the regularization parameter chosen using the cross validation may lead to

a suboptimal model. This is exactly the problem we talk about in the following chapter. We

propose new algorithm, regularization path for SSVM, that can efficiently explore the whole

range of the regularization parameter in order to obtain the best model.



Chapter 5

Regularization Path for SSVM using

BCFW and its variants

All the research presented in this chapter were conducted under the supervision of Dr. Simon

Lacoste-Julien at the SIERRA Team of INRIA (Paris) during my visit from 15th June 2015 to

15th September 2015.

5.1 Introduction

Structured output prediction [88, 122, 126] is one of the key problems in the machine learning

and computer vision community. As we have seen in chapter 2 and chapter 4, the objective

function of an SSVM is parametric and depends on the regularization parameter λ (also

referred as C which is inversely proportional to λ ), which controls the trade-off between

the model complexity and an upperbound on the empirical risk. It has been seen in various

experiments in chapter 4 that the value of the regularization parameter have a significant

impact on the performance or the generalization of the SSVM learning method. Thus, we

must choose it very carefully in order to obtain the best model. Finding an appropriate value

of the regularization parameter often requires us to tune it. However, lack of knowledge about

the structure of the regularization parameter compel us to cross validate it over the entire

parameter space, which is practically not feasible because there are infinitely many possible

values of λ . To circumvent this problem, the standard approach is to resort to a sub optimal

solution by cross validating a small set of regularization parameters on a given training dataset.

This is exactly what we did while performing experiments to find the best regularization

parameter for models discussed in the chapter 4. Doing this is tedious and quickly becomes

infeasible as we increase the number of regularization parameters. Therefore, in this chapter,
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we propose an algorithm which we call SSVM-RP, to obtain an ε-optimal regularization

path of SSVM. By definition, regularization path is the set of solutions for all possible

values of the regularization parameter in the parameter space [29]. In order to make the

SSVM-RP algorithm efficient, we propose different intuitive variants of the Block-Coordinate

Frank-Wolfe (BCFW) algorithm. As we have seen in chapter 4, it is sometimes necessary to

put additional constraints on the SSVM objective function (for example, positivity/negativity

constraints) in order to obtain the global optimum of the inference problem. Another such

example can be seen in [119]. Motivated by this fact, we also propose a principled approach

to optimize SSVM with general box constraints (SSVM-B) using BCFW algorithm. Lastly,

we propose regularization path algorithm of SSVM with positivity constraints, which can

be trivially modified to obtain the regularization path algorithm of SSVM with negativity

constraints. In what follows, we build the intuition behind the concept of the regularization

path and then talk about the algorithms in details.

As mentioned earlier, obtaining regularization path for any parametric model implies explor-

ing the whole space of the regularization parameter in an highly efficient manner to provide

optimal learned model for any given value of the regularization parameter λ ∈ [0,∞]. This

allows us to obtain the best possible model. We are interested in ε-optimal regularization

path for SSVM, which means that for any value of λ ∈ [0,∞], the algorithm must provide a

learned model which is guaranteed to have a maximum duality gap of ε . The key idea behind

the regularization path algorithm is to break the regularization parameter space into segments

such that learning an ε optimal model for any value of λ in a particular segment guarantees

that the same learned model is ε optimal for all the values of λ in that particular segment.

Mathematically, let us say that the model under consideration has the following form:

min
w∈Rn

fλ (w) := l(w)+λ r(w) (5.1)

s.t. fi(w)≤ 0,∀i ∈ [1, · · · ,m].

where, l(w) is the loss term, fi(w) are the constraints, and r(w) is the regularization term.

The regularization term r(w) can be L1 norm, L2 norm, or any other norm suitable for the

task under consideration. The Lagrange dual of the above problem can be written as:

Lλ (w,α) = l(w)+λ r(w)+
m

∑
i

αi fi(w). (5.2)

where, α ∈ R
m
≥0 is the dual variable vector. Let dλ (α) = minwLλ (w,α) be the dual prob-

lem of the above mentioned Lagrange dual. Therefore, the duality gap can be defined as

g(w,α;λ ) = fλ (w)− dλ (α), where w is the minimizer of the primal problem 5.1 and α
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is the maximizer of the dual problem dλ (α). A given pair of primal and dual solutions,

w and α , is ε-optimal at a predefined λ if g(w,α;λ ) ≤ ε . As mentioned earlier, the idea

behind the ε-optimal regularization path is to break the regularization parameter space

λ ∈ [0,∞] into segments. This can be achieved by finding breakpoints or kinks {λk,λk−1,λ1}

such that if the pair (w,α) is ε-optimal for any λ ∈ [λk,λk−1), then it is ε-optimal for

all λ ∈ [λk,λk−1). In another words, if ∃λ ∈ [λk,λk−1) such that g(w,α;λ ) ≤ ε , then

g(w,α;λ ) ≤ ε,∀λ ∈ [λk,λk−1). Now the challenge remains to find these breakpoints and

corresponding optimal models in an efficient manner. In this chapter we show how to

efficiently find these breakpoints for SSVM. We also show how BCFW algorithm and its

variants allow us to warm start the optimization process at each breakpoint in order to find

the complete regularization path highly efficiently.

Contributions

• ε-optimal regularization path algorithm for SSVM.

• Principled approach for the optimization of SSVM with additional box constraints.

• ε-optimal regularization path algorithm for SSVM with additional positivity/negativity

constraints.

5.2 Related Work

In the past, there have been many works for developing regularization path algorithms for

different useful learning methods such as LASSO [124] (model with squared errors and L1

regularization), grouped LASSO [136], graphical LASSO [44], elastic net [141] (regularization

with the combination of L1 and L2 norms), SVM [127], SVM with L1 norm, and multiple

kernel learning [2]. The work on regularization path primarily started with the seminal

work of [29] which proposed an algorithm popularly known as the least angle regression.

This work showed that the regularization path of LASSO [124] is piece wise linear. The

regularization path for elastic net was proposed by [141]. The work by [46, 104] can be

seen as the generalization of the previous two works in which the authors proposed the

regularization path algorithm for generalized linear model with L1, L2, or elastic net type

penalties. Furthermore, the work by [94, 136] and [45] proposed the regularization path

algorithms for grouped LASSO and graphical LASSO, respectively. The regularization path

for SVM was first proposed by [52], which was further revisited by [102]. On the other hand,

because of the useful intrinsic properties of the sparsity inducing L1 norm, the regularization
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path for SVM with L1 norm is proposed in the work by [140]. All the above mentioned works

provides regularization path algorithms for models with only one regularization parameter.

Recently, [8] proposed algorithm to obtain regularization path for models with more than

one regularization parameters.

5.3 Structured SVM

A detailed introduction to SSVM, related inference algorithms, and the optimization algo-

rithms is given in the chapter 2. In this chapter we mainly focus on the Frank Wolfe (FW) and

Block Coordinate Frank Wolfe (BCFW) algorithms for the optimization of the SSVM objective

function and show how these algorithms can be used to obtain the regularization path for

SSVM. We briefly define the objective function of SSVM, its dual, and the optimization

algorithms (FW and BCFW), in order to make the reader familiar with the notations and

terminologies which will be useful in the remaining sections of the chapter.

Notations. Let x ∈X (patterns or vectors) and y ∈Y (strings, graphs, trees, or sequences)

be the structured input and the structured output, respectively. The dataset D = {(xi,yi), i =

1, · · · ,n} represents n training samples, each with an input-output pair. The parameter

vector of the SSVM is represented as w and the joint feature map as Φ(x,y) ∈ R
d . The

loss function is represented as ∆(·, ·) ∈ R≥0. As seen in chapter 2, the dual variable vector

of the SSVM is the Cartesian product of the dual variable vector corresponding to each

input-output pair (or block). Thus, the dual variable vector can be represented as α =

(α1, · · · ,αn) ∈ R
|Y1|×·· ·R|Yn| ∈ R

m, where, αi ∈ R
|Yi| is the dual vector corresponding to

the i-th block (or i-th input-output pair). The term αi(y) represents a particular element

of the dual variable vector αi corresponding to the output y. Similarly, wi denotes the

learning parameter associated with the i-th block. The terms ℓ and ℓi represents the average

loss over the entire dataset and the loss corresponding to the i-th block, respectively. The

notation α[i] represents the dual variable vector with zeros everywhere except for the indices

corresponding to the i-th block. Notice that the vectors α and α[i] are of the same dimension.

5.3.1 Objective Function

An SSVM, parametrized by w, provides a linear prediction rule to obtain a structured output

y ∈Y for a given input x ∈X . The prediction for a given input x is obtained by maximizing

the score over all possible outputs, that is, ŷ = argmaxy∈Y w⊤Φ(x,y). In order to learn the

parameters w, SSVM minimizes an objective function that models the trade-off between the
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model complexity and an upperbound on the empirical risk. The risk is measured using a

user-specified loss function ∆(·, ·) ∈ R≥0. In more detail, given a training dataset D , the

parameters of SSVM are estimated by solving the following convex optimization problem:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (5.3)

s.t. w⊤Ψ(xi,y)≥ ∆(yi,y)−ξi, ∀i, ∀y ∈ Yi. (5.4)

where, Ψ(xi,y) = Φ(xi,yi)−Φ(xi,y), and ∆(yi,y) ∈ R≥0 is the loss function that quan-

titatively measures the difference between the prediction y and the ground truth yi. The

regularization parameter (or the hyperparameter) λ controls the trade-off between the training

error and the model complexity.

The Lagrange Dual. The derivation of the Lagrange dual of SSVM is shown in the sec-

tion 2.4 of chapter 2. Below we briefly talk about it for building the intuition. Notice that the

primal objective function (5.3) has |Yi| constraints per sample. In total there are m = ∑i |Yi|

constraints. Relaxing each constraint using the dual variable αi(y) leads to the following

form of the dual objective function:

min
α

f (α) :=
λ

2
∥Aα∥2 −b⊤α (5.5)

s.t. ∑
y∈Yi

αi(y) = 1,∀i ∈ [n],

αi(y)≥ 0,∀i ∈ [n],∀y ∈ Yi.

where, α = (α1, · · · ,αn) ∈ R
|Y1|×·· ·R|Yn| ∈ R

m is the dual variable vector, A ∈ R
d×m is

a matrix with column entries as Ψ(xi,y)
λn

, and b ∈ R
m is a vector with elements as ∆(yi,y)

n
, as

shown below:

A =
1

λn







|

· · · Ψ(xi,y) · · ·

|






∈ R

d×m, b =
1
n









...

∆(yi,y)
...









∈ R
m. (5.6)

From the first order KKT condition of the Lagrangian of the objective function (5.3) (please

refer to the section 2.4.2 for details) we obtain the following relationship between the primal
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and the dual variables:

w = ∑
i∈[n],y∈Yi

1
nλ

αi(y)Ψ(xi,y) = Aα. (5.7)

The above relationship between the primal and the dual variables is very important. It

allows us to work on the smooth dual objective with compact domain without explicitly

manipulating the very high dimensional dual variable vector α .

5.3.2 Optimization of SSVM using FW and BCFW

Different methods for the optimization of the SSVM have been discussed in the section 2.4.

In this chapter we are mainly interested in the FW and its variants for the optimization

of SSVM. An overview of the Frank-Wolfe (FW) algorithm [43, 59, 60] is given in the

Appendix B.3. The general FW algorithm is shown in the Algorithm 19 in the Appendix B.3.

The FW and BCFW algorithm for the optimization of SSVM have been discussed in detail in

section 2.4. To summarize, the FW algorithm is used to optimize a continuously differentiable

convex function over a convex and compact domain. In the context of the optimization of

the SSVM, the FW algorithm based optimization approach can be divided in to following

four steps: (1) solving the linearization problem; (2) convex combination to update the

variables; (3) obtaining the optimal step size; and (4) computing the duality gap. Recall

that in FW algorithm, the linearization duality gap (or the Fenchel duality gap) is obtained

as a by product without additional computation. In case of SSVM, the linearization duality

gap and the Lagrange duality gap turns out to be exactly the same, therefore, can be used

as the convergence criterion. The standard FW algorithm and the BCFW algorithm for the

optimization of SSVM is given in chapter 2, Algorithm 4 and Algorithm 5, respectively. In

this chapter we modify these algorithms from implementation point of view (no mathematical

modification) which will be useful in following sections. These modified and more general

algorithms are given in the Algorithm 12 and Algorithm 13.

Briefly, the BCFW algorithm is an online and faster variant of the FW algorithm. Recall that

each sample forms a simplex in the dual of the SSVM. These simplices are independent to

each other. Based on this insight, the BCFW algorithm stores the parameter vector wi and

the loss ℓi for each i-th sample and update them individually. The final parameter vector

w and the loss ℓ are approximately updated using the parameter vector wi and the loss li

corresponding to a single sample. Thus, it requires only one ‘max-oracle’ call for each

update of the parameter vector. This is much cheaper than the parameter updates of the FW
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algorithm which requires us to call the ‘max-oracle’ procedure for all the n samples in the

dataset.

Algorithm 12 The Frank-Wolfe algorithm for SSVM.

input D , K, λ , tolerance ε , initialization {w0, l0}, .
1: If no initialization is given w0 = 0, l0 = 0.
2: k ← 0
3: repeat

4: Solve the ‘max-oracle’ problem for all the samples:
5: for i = 1, · · · ,n do

6: y∗i := argmaxy∈Yi
Hi(y;wk), ws

i =
1

λn
Ψ(xi,y

∗
i ), ℓ

s
i =

1
n
∆(yi,y

∗
i )

7: end for

8: ws = ∑
n
i ws

i and ℓ
s = ∑

n
i ℓ

s
i .

9: Compute gap: g(αk;λ ) = λ (wk −ws)⊤wk − (ℓk − ℓ
s).

10: if g(αk;λ )≤ ε or k ≥ K then

11: Converged
12: else

13: Find the optimal step size γ = g(αk;λ )

λ∥wk−ws∥
2 and clip to [0,1].

14: Update: wk+1 = γws +(1− γ)wk, and ℓ
k+1 = γℓs +(1− γ)ℓk.

15: k ← k+1
16: end if

17: until Converged.
18: return wk, {ws

i}i∈[n], {ℓ
s
i}i∈[n], g(αk;λ )

5.4 Variants of BCFW Algorithm

In this section we talk about different variants of the BCFW algorithm. The variants are

intuitive yet faster compared to the standard BCFW algorithm for the optimization of the

SSVM dual objective function. The first variant is the non uniform sampling based BCFW.

More specifically, BCFW with gap based sampling [92] as shown in the Algorithm 13 (please

note the sampling step of the algorithm). Recall that the standard BCFW [86] uniformly picks

a block at each iteration. The block we choose decides the descent direction of the algorithm.

Thus, intuitively, choosing a good descent direction might result in faster convergence. Based

on this insight, different sampling methods for randomized algorithms were explored in some

recent works [99, 100, 139]. The main idea of those works is to use Lipschitz constants of

the gradients to pick more often functions for which gradients change quickly. This approach

presents two main drawbacks. First, Lipschitz constants are most of the time unknown

and one has to propose heuristic to estimate them. Second, such schemes are not adaptive.
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Algorithm 13 The general BCFW algorithm for SSVM.

input D , K, λ , p, tolerance ε , initialization {w0, l0,w0
i , l

0
i , g̃}, where g̃ ∈ R

n is the gap
vector and g̃(i) represents the gap corresponding to the i-th block.

1: If no initialization is given w0 = w0
i = 0, l0 = l0

i = 0, g̃(i) = ∞,∀i.
2: for k = 0, · · · ,K do

3: if gap based sampling then

4: Pick i at random in {1, · · · ,n} based on the probabilities proportional to the block-
wise gaps {g̃(1), · · · , g̃(n)}.

5: else

6: Pick i at random in {1, · · · ,n}
7: end if

8: Solve the ‘max-oracle’ problem for the i-th sample: y∗i := argmaxy∈Yi
Hi(y;wk).

9: ws
i =

1
λn

Ψ(xi,y
∗
i ) and ls

i =
1
n
∆(yi,y

∗
i ).

10: Update the gap for i-th block g̃(i) = gi(αk;λ ), where gi(αk;λ ) = λ (wk
i −ws

i )
⊤wk −

(ℓk
i − ℓ

s
i ).

11: Find the optimal step size γ = g̃(i)

λ∥wk
i −ws

i∥
2 and clip to [0,1].

12: Update: wk+1
i = γws

i +(1− γ)wk
i , and lk+1

i = γls
i +(1− γ)lk

i .
13: Update: wk+1 = wk +wk+1

i −wk
i , and lk+1 = lk + lk+1

i − lk
i .

14: Convergence criteria

• Iteration based: Use upper limit (K) on the number of iterations (k).

• Exact: Obtain the linearization duality gap g(αk;λ ) = λ (wk −ws)⊤wk − (ℓk −
ℓ

s) by making a full pass on the data (similar to the FW algorithm) after every p

updates of the parameter vector w.

• Heuristic: Use approximate duality gap gapp = ∑i g̃(i) for the convergence
criteria. This is possible after all the samples have been visited at least once.

15: end for

16: return wk+1, ℓk+1, {wk+1
i }i∈[n], {ℓ

k+1
i }i∈[n], g̃
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More precisely, the criterion for choosing a function to optimize does not change with the

optimization. Since our goal is to minimize the duality gap, therefore, it make sense to pick a

block with high value of the duality gap. The hope thus is that if we choose blocks with high

duality gaps, we may successfully reach the minima faster. This is exactly what a gap based

BCFW algorithm is based on. Instead of choosing the blocks uniformly in random, the blocks

are chosen based on the block wise duality gaps. Note the sampling step in Algorithm 13.

Another variant of the BCFW algorithm is the combination of the BCFW and FW algorithms.

We call it the hybrid BCFW algorithm, shown in the Algorithm 14. Recall that, in case of

BCFW, the block wise gaps can not lead to the exact duality gap since after each update of

the parameters based on the selected block, the block wise gaps of other blocks changes. In

order to guarantee duality gap based convergence of the BCFW algorithm, we must compute

the exact duality gap using the current set of parameters. Computing exact duality gap

requires us to call the ‘max-oracle’ procedure for all the samples in the dataset, which is

computationally expensive. However, computing the exact duality gap is similar to one pass

of the FW algorithm (Algorithm 12). Therefore, instead of using this step only to compute

the exact duality gap, as is done in the standard BCFW algorithm, we update the parameters

if the exact duality gap is higher than the given threshold. Thus, instead of wasting the

computation, the hybrid algorithm uses it to further update the parameters. Hence, it exploits

the best of both BCFW and FW algorithms.

The last variant that we talk about in this chapter is the BCFW algorithm with heuristic

based convergence. The idea is to use the approximate block wise duality gaps to decide

the convergence as shown in the convergence step of the Algorithm 13. This convergence

criterion does not guarantee optimality. However, in practice, approximate duality gap based

convergence of BCFW is much faster than the exact duality gap based convergence, and it

leads to highly promising results (will be seen in the experiments section).

5.5 SSVM with box constraints (SSVM-B)

There are several important problems in which additional inequality constraints are required

over w in order to solve the inference problem exactly. For example, if there are two

labels and the output structure forms a graph with loops, then if the pairwise potentials are

submodular, graph cuts [74] can be used to solve the inference problem exactly. In order

to ensure that the pairwise potentials are submodular, additional constraints (for example,

w ≤ 0, or w ≥ 0) are normally used in the objective function of the SSVM. One example of

such objective function can be seen in [119] where the parameters are learned for the task

of image segmentation. Below we present the SSVM objective function with additional box
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Algorithm 14 The hybrid BCFW algorithm for SSVM.

input D , K1, K2, λ , tolerance ε , initialization {w0, l0,w0
i , l

0
i , g̃}, where g̃ ∈ R

n is the gap
vector and g̃(i) represents the gap corresponding to the i-th block.

1: If no initialization is given w0 = w0
i = 0, l0 = l0

i = 0, g̃(i) = ∞,∀i.
2: k ← 0
3: repeat

4: (wk, wk
i , ℓk, ℓk

i ) ← BCFW ( D , λ , wk, wk
i , ℓk, ℓk

i , g̃, K = K2)
5: (wk, {ws

i}i∈[n], {ℓ
s
i}i∈[n], gap ) ← FW (D , wk, ℓk, K = 0)

6: if gap ≤ ε or k ≥ K2 then

7: Converged
8: else

9: Find the optimal step size γopt =
gap

λ∥wk−ws∥
2 and clip to [0,1].

10: Compute ws = ∑
n
i ws

i and ℓ
s = ∑

n
i ℓ

s
i .

11: Update gaps for all blocks: g̃(i) = gi(αk;λ ), where gi(αk;λ ) = λ (wk
i −ws

i )
⊤wk −

(ℓk
i − ℓ

s
i ).

12: Update: wk+1 = γws +(1− γ)wk, and ℓ
k+1 = γℓs +(1− γ)ℓk.

13: Update: wk+1
i = γws

i +(1− γ)wk
i , and lk+1

i = γls
i +(1− γ)lk

i , for all i ∈ [n].
14: k ← k+1
15: end if

16: until Converged.
17: return wk+1, ℓk+1, {wk+1

i }i∈[n], {ℓ
k+1
i }i∈[n], g̃

constraints (SSVM-B). We also present its dual and the corresponding optimization algorithm

using BCFW (Algorithm 15).

5.5.1 Objective Function

The primal objective function of SSVM with additional box constraints is:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (5.8)

s.t. w⊤Ψ(xi,y)≥ ∆(yi,y)−ξi, ∀i, ∀y ∈ Yi, (5.9)

l ⪯ w ⪯ u. (5.10)

where, u and l are the upper and lower bounds, respectively.
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The Lagrange Dual. The Lagrangian of the problem (5.8) is:

L(w,ξ ,α,βl,βu) =
λ

2
⟨w,w⟩+

1
n

n

∑
i=1

ξi + ∑
i∈[n],y∈Yi

1
n

αi(y)(−ξi + ⟨w,−Ψi(y)⟩+∆(y,yi))

λ ⟨βu,w−u⟩+λ ⟨βl,−w+ l⟩ (5.11)

where, βl and βu are the additional dual variables corresponding to the box constraints. Using

the first order KKT condition over w we get the following expression:

λw = ∑
i∈[n],y∈Yi

1
n

αi(y)Ψi(y)−λ (βu −βl)

=⇒ w =V (α)− (βu −βl). (5.12)

where, V (α)=Aα , A :=
�

1
λn

Ψi(y) ∈ R
d
�

� i ∈ [n],y ∈ Yi

	

. Similarly, using ∇ξi
L(w,ξξξ ,α,βl,βu)=

0, we get:

∑
y∈Yi

αi(y) = 1 ∀i ∈ [n] . (5.13)

Plugging equations (5.12) and (5.13) into the Lagrangian (5.11), we obtain the Lagrange

dual problem as follows:

max
α,βu,βl

−
λ

2
∥V (α)− (βu −βl)∥

2 +b⊤α −λ (β⊤
u u−β⊤

l l) (5.14)

s.t. ∑
y∈Y

αi(y) = 1 ∀i ∈ [n],

αi(y)≥ 0 ∀i ∈ [n], ∀y ∈ Yi

βu ≥ 0,βl ≥ 0.

where, b ∈ R
m is given by b :=

�

1
n
∆(y,yi)

�

i∈[n],y∈Yi
. This is equivalent to solving the

following minimization problem:

min
α,βu,βl

f (α,βl,βu) :=
λ

2
∥V (α)− (βu −βl)∥

2 −b⊤α +λ (β⊤
u u−β⊤

l l) (5.15)

s.t. ∑
y∈Y

αi(y) = 1 ∀i ∈ [n],

αi(y)≥ 0 ∀i ∈ [n], ∀y ∈ Yi

βu ≥ 0,βl ≥ 0.
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5.5.2 Optimization of SSVM-B

Ideally, we should optimize f (α,βl,βu) jointly over all the dual variables. This can be done

using the cutting plane algorithm [61] explained in section 2.4. However, FW or its variants

can not be used to optimize it jointly over all the dual variables. This is because of the fact

that the constraints of the problem (5.15) do not form a compact domain because of the

additional constraints over the dual variables corresponding to the box constraints (βl ≥ 0 and

βu ≥ 0). However, we have already seen that the domain is compact over the α . Therefore,

we resort to optimizing in a block-wise fashion where the blocks consists of α , βu, and βl ,

respectively.

5.5.2.1 Optimizing blocks βu and βl

While optimizing the objective function (5.15) with respect to βu, the variables βl and α

are kept constant. The optimization can be performed by putting ∇βu
f (α,βl,βu) = 0 and

projecting the solution in to feasible set of βu ≥ 0 as follows:

βu = [V (α)+βl −u]+ (5.16)

where, βu is the optimal solution and [.]+ is the truncation function. In case of scalar [a]+ = 0

if a < 0. In case of vector a, the operation [a]+ is the element wise truncation. Similarly, the

optimal βl can be obtained as follows:

βl = [−V (α)+βu + l]+ (5.17)

Let us say that βu(i) and βl(i) denotes the i-th index of the optimal dual variables βu and

βl respectively. Notice that, when both βu and βl are optimal, for any index i, βu(i) and

βl(i) can not be non-zero simultaneously. This is because of the fact that if any one of the

constraint is violated (either the upperbound or the lowerbound) for that particular index then

the other constraint must be satisfied. Hence, if βu(i) ̸= 0, it implies βl(i) = 0, vice versa.

Therefore, the final update equations can be written as:

βu =[V (α)−u]+ (5.18)

βl =[−V (α)+ l]+ (5.19)
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5.5.2.2 Optimizing block α

Given the optimal α , βu(i) and βl(i), the optimal primal variable can be obtained using the

KKT condition (equation 5.12) as follows:

w =V (α)− (βu −βl) =V (α)− ([V (α)−u]−− [−V (α)+ l]+) (5.20)

Notice that the above operation is simply the projection of the vector V (α) = Aα into the

feasible space corresponding to the box constraints. This projection can be performed very

cheaply as follows.

w(i) = [Vi(α)]B =



















l(i), if Vi(α)≤ l(i)

u(i), if Vi(α)≥ u(i)

Vi(α), otherwise.

(5.21)

where, w(i) and Vi(α) are the i-th index of the vectors V (α) and w respectively. The

projection of V (α) into the box constraint ([V (α)]B) is performed element wise in the similar

manner. In what follows, we talk about the algorithm to obtain the optimal α .

In order to optimize over the block α we use the FW and the BCFW algorithm. As discussed

previously, there are four major steps for the FW algorithm – (1) solving the linearization

problem; (2) convex combination to update the variables; (3) obtain the optimal step size;

and (4) compute the duality gap. Below we present these steps for the optimization of the

SSVM-B dual.

Solving the linearization problem. The linearization problem is defined as:

s = argmin
s′∈D

⟨s′,∇α f (α,βl,βu)⟩ (5.22)

where,

∇α f (α,βl,βu) = λA⊤(V (α)− (βu −βl))−b (5.23)

Following the similar arguments as given in the section 2.4.3.3, solving the linearization

problem in the dual is the same as solving the ‘max-oracle’ problem in the primal. The only

difference is that the primal variable in case of SSVM-B is w = [V (α)]B =V (α)− (βu −βl),

which is the projection of V (α) over the box constraints. Therefore, the linearization problem
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Algorithm 15 BCFW for SSVM-B

input Given u, l, K

1: Initialization V (α0) :=V (α0
[i]) := 0, ℓ

(0) := ℓi
(0) := 0 (Notice that, we assume that the

zero vector is a feasible solution.)
2: for k = 0 . . .K do

3: Pick i at random in {1, . . . ,n}
4: wk = [V (αk)]B.
5: Solve y∗i := argmax

y∈Yi

Hi(y;wk)

6: Let V (s[i]) := 1
λn

Ψi(y
∗
i ) and ℓ

(s)
i := 1

n
∆(y∗i ,yi)

7: Let gi
lin = λ

�

V (αk
[i])−V (s[i])

�⊤
wk − (ℓk

i − ℓ
(s)
i )

8: Let γ := gi
lin

λ








V (αk

[i]
)−V (s[i])










2 and clip to [0,1]

9: Update V (α
(k+1)
[i]

) := (1− γ)V (α
(k)
[i]

)+ γ V (αs
[i])

10: and ℓi
(k+1) := (1− γ)ℓi

(k)+ γ ℓs

11: Update V (α(k+1)) :=V (αk)+V (α
(k+1)
[i]

)−V (αk
[i])

12: and ℓ
(k+1) := ℓ

(k)+ ℓi
(k+1) − ℓi

(k)

13: end for

output wk = [V (αk)]B.

can be solved as follows:

y∗i = argmax
y

Hi(y;w) (5.24)

Convex combination. Let γ be the optimal step size, αk be the current solution, and s be

the corner obtained by solving the linearization problem. In case of FW algorithm, the dual

variable can be updated as follows:

αk+1 = γs+(1− γ)αk

Aαk+1 = γAs+(1− γ)Aαk

V (αk+1) = γV (s)+(1− γ)V (αk) (5.25)

Similarly, in case of FW algorithm, the loss can be updated as follows:

ℓ
k+1 =b⊤αk+1 = b⊤(γs+(1− γ)αk)

=γℓs +(1− γ)ℓk (5.26)

where, ℓs = 1
n ∑

n
i ∆(y∗i ,yi). In case of BCFW algorithm, since we update only one block,

therefore, the variables corresponding to the other blocks remains unchanged. Hence,
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(α − s) = (α[i]− s[i]), where, a[i] denotes the vector with zero everywhere except for the i-th

block. Therefore,

αk+1 = αk + γ(s[i]−αk
[i])

V (αk+1) =V (αk)+ γ(V (s[i])−V (αk
[i])) (5.27)

Now, since αk+1
[i]

= αk
[i] + γ(s[i] −αk

[i]), therefore, using V (αk+1
[i]

) = V (αk
[i]) + γ(V (s[i])−

V (αk
[i])) in the above equation we obtain

V (αk+1) =V (αk)+V (αk+1
[i] )−V (αk

[i]) (5.28)

Similarly, the loss can be updated as

ℓ
k+1 = ℓ

k + ℓ
k+1
i − ℓ

k
i (5.29)

where, ℓk+1
i = ℓ

k
i + γ(ℓs

i − ℓ
k
i ) and ℓ

s
i =

1
n
∆(y∗i ,yi).

Lagrange duality gap and the Linearization duality gap. Let us first derive the expres-

sion for the linearlization duality gap. The linearization duality gap is defined as (refer to

Appendix B.3 for details):

glin(α;λ ) := max
s′∈M

⟨α − s′,∇α f (α,βl,βu)⟩= ⟨α − s,∇α f (α,βl,βu)⟩ (5.30)

where, s = argmins′∈D⟨s′,∇α f (α,βl,βu)⟩. Recall that the problem of obtaining s is exactly

the same as solving the linearlization problem, which we have already discussed. Using

the expression for the gradient (equation (5.23)) we obtain the following expression for the

linearization duality gap:

glin(α;λ ) = λ
�

A(α − s)
�⊤�

V (α)− (βu −βl)
�

− (α − s)⊤b (5.31)

In case of FW algorithm, the final expression can be written as:

glin(α;λ ) = λ
�

V (α)−V (s)
�⊤

[V (α)]B − (ℓ− ℓ
s) (5.32)

In case of BCFW, using (α − s) = (α[i]− s[i]), the linearization gap for the i-th block can be

written as:

gi
lin(α;λ ) = λ

�

V (α[i])−V (s[i])
�⊤

[V (α)]B − (ℓi − ℓ
s
i ) (5.33)
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Notice that, glin(α;λ ) = ∑i gi
lin(α;λ ). For the convergence criterion, we are interested in the

Lagrange duality gap. As already discussed, in case of SSVM without the box constraints, the

Lagrange duality gap and the linearization duality gap turns out to be exactly the same [86].

In what follows, we show that the Lagrange and the linearization duality gaps are exactly the

same for the SSVM-B objective function also. The Lagrange duality gap for the SSVM-B is

defined as:

gLag(w,α,βu,βl;λ ) =
λ

2
∥w∥2 +

1
n

n

∑
i=1

max
y∈Yi

Hi(y;w)−
�

b⊤α −
λ

2
∥w∥2 −λ (β⊤

u u−β⊤
l l)

�

(5.34)

Using the fact that 1
n ∑

n
i=1 maxy∈Yi

Hi(y;w)=maxs′∈M ⟨α−s′,∇α f (α,βl,βu)⟩= ⟨α−s,∇α f (α,βl,βu)⟩

we obtain

gLag(w,α,βu,βl;λ ) = ⟨α − s,∇α f (α,βl,βu)⟩+λ (β⊤
u (u−w)−β⊤

l (l−w))

(5.35)

Noticing that at the optimal βu and βl with respect to α , β⊤
u (u−w) = 0 and β⊤

l (l−w) = 0,

we obtain the following expression:

gLag(w,α,βu,βl;λ ) = ⟨α − s,∇α f (α,βl,βu)⟩= glin(α;λ ) (5.36)

Therefore, similar to the SSVM, the Lagrange and the linearization duality gap of SSVM-B

are exactly the same. In what follows we always use the linearization duality gap.

Optimal step size. Obtaining the optimal step size for the line search is equivalent to

solving the problem γopt := argminγ∈[0,1] f (α + γ(s−α),βl,βu), where

f (α + γ(s−α),βl,βu) =
λ

2
∥A(α + γ(s−α))− (βu −βl)∥

2 −b⊤(α + γ(s−α))

+ λ (β⊤
u u−β⊤

l l) (5.37)

Since our aim is to optimize the block corresponding to α and the dual of the SSVM-B is

a quadratic function in α , therefore, the optimal step size can be obtained analytically by

setting ∇γ f (α + γ(s−α),βl,βu) = 0, which leads to the following form of the optimal step

size:

γopt =
λ
�

A(α − s)
�⊤�

V (α)− (βu −βl)
�

− (α − s)⊤b

λ ∥V (α)−V (s)∥2 (5.38)
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Notice that the numerator of the above equation is the same as the expression for the

linearization duality gap as shown in equation (5.31). Therefore, in case of FW algorithm

γopt =
glin(α;λ )

λ∥V (α)−V (s)∥2 and in case of BCFW algorithm γopt =
gi

lin(α;λ )

λ∥V (α[i])−V (s[i])∥
2 .

Algorithm 16 INITIALIZE-RP-SSVM: Initialization of the regularization path algorithm for
SSVM.
input D , A, tolerance ε

1: Initialization: w = wi = 0, ℓ= ℓi = 0,Ψ̃ = 0.
2: Compute the loss maximizer
3: for i = 1, · · · ,n do

4: ỹi := argmaxy∈Yi
Hi(y;w = 0), ℓi =

1
n
∆(yi, ỹi).

5: ℓ← ℓ+ ℓi.
6: Ψ̃ ← Ψ̃+ 1

n
Ψ(xi, ỹi)

7: end for

8: Compute θ for each sample (same as the inference problem)
9: for i = 1, · · · ,n do

10: θ(i) = maxy∈Yi

�

− Ψ̃⊤Ψ(xi,y)
�

11: end for

12: Compute λ =
∥Ψ̃∥

2
+∑i θ(i)

n

Aε

13: Compute the parameters: w = Ψ̃
λ , wi =

Ψ(xi,ỹi)
nλ .

14: Compute gaps
15: for i = 1, · · · ,n do

16: g(i) = θ(i)
nλ +λw⊤

i w

17: Ω(i) = ℓi −λw⊤
i w

18: end for

19: return w, wi, ℓ, ℓi, g, Ω, λ

5.6 Regularization path for SSVM

As mentioned earlier, the key idea behind the regularization path algorithm is to break the

regularization parameter space into segments such that learning an ε-optimal model for any

value of the λ in a particular segment guarantees that the same learned model is ε-optimal

for all the values of the λ in that particular segment. The regularization path algorithm to

obtain the entire regularization path of SSVM is shown in Algorithm 17. Broadly speaking,

the algorithm has three main parts: (1) progressively finding the breakpoints starting from

λ = ∞, (2) warm starting the optimization for each segment using the solution of the previous

segment (for faster convergence); and (3) finding the initialization parameters of the algorithm

(Algorithm 16). Let us talk about these three parts of the algorithm in detail.
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Algorithm 17 SSVM-RP: The regularization path algorithm for SSVM.

input D , κ1, κ2, tolerance ε , λmin.
1: Get the initialization parameters using Algorithm 16.
2: {w0,w0

i ,ℓ
0,ℓ0

i ,g
0,Ω0,λ 0}← INITIALIZE-RP-SSVM (D ,A,ε)

3: k ← 0.
4: repeat

5: Compute excess gap: τ = (κ1 +κ2)ε −∑i gk(i).
6: Compute µ = ∑

n
i Ωk(i).

7: if µ > 0 then

8: Compute: ν = 1
1−η , where η = τ

µ

9: else

10: wk is κ1ε optimal for any ν > 1. Thus, we can trace the path from λ = λ k to λ = 0,
and still guarantee to be κ1ε optimal with the parameter wk. Therefore, there is no
further breakpoint. Hence converged.

11: end if

12: Update: λ k+1 = λ k

ν , ℓ
k+1 = ℓ

k

ν , ℓ
k+1
i =

ℓ
k
i

ν , gk+1(i) = gk(i)+
�

1− 1
ν

�

Ωk(i)

13: (wk+1, wk+1
i , ℓk+1, ℓk+1

i ,gk+1) ← SSVM-OPTIMIZER ( D , λ k+1, wk, wk
i , ℓk+1, ℓk+1

i ,
gk+1, κ1ε). The optimizer can be any optimizer that returns gaps also, for example,
BCFW hybrid. Notice that the optimality condition is κ1ε .

14: Update Ω as follows:
15: for i = 1, · · · ,n do

16: Ωk+1(i) = ℓ
k+1
i −λ k+1(wk+1

i )⊤wk+1

17: end for

18: k ← k+1.
19: until λ k+1 ≤ λmin.

5.6.1 Finding the breakpoints

The linearization duality gap, which in case of SSVM is the same as the Lagrange duality gap,

can be written as (refer chapter 2, equation (2.80) for proof):

g(α;λ ) =
1
n
∑

i

�

max
y∈Yi

Hi(y;w)− ∑
y∈Yi

αi(y)Hi(y;w)
�

(5.39)

where, Hi(y;w) = ∆(yi,y)−w⊤Ψi(y) is the hinge loss. From the KKT condition we obtain

the following relationship between the primal and the dual variables:

w = ∑
i∈[n],y∈Yi

1
λn

αi(y)Ψi(y) (5.40)

Let us assume that we are given a w which is κ1ε optimal for problem associated with λold ,

where, κ1 ∈ R>0 is a user defined parameter. The goal is to find λnew(< λold) such that
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w is at least (κ1 +κ2)ε optimal solution to the new problem associated with λnew, where,

κ2 ∈ R>0 is another user defined parameter. In order to obtain a complete ε optimal path

we must use κ1 and κ2 such that κ1 +κ2 = 1. Notice that, for ε optimal path, w is κ1ε(< ε)

optimal solution to the problem associated with λold . We will discuss about the effects of

choosing κ1 and κ2 in the later part of this section. Let us see how to decrease λold such that

w does not change and the duality gap does not increase beyond (κ1 +κ2)ε .

For the given λold , let us say that the dual variables are αold corresponding to the κ1ε

optimal w. Now we decrease λold such that αnew
i (y)
λnew

=
αold

i (y)
λold

,∀y ̸= yi. Therefore, αnew
i (y) =

αold
i (y)λnew

λold
< αold

i (y),∀y ̸= yi. Hence, the values of the dual variables corresponding to

the non ground truth labels decreases. This results in some extra mass since sum of the

dual variables must be one (KKT condition). This extra mass is completely shifted into

the dual variable corresponding to the ground truth label αnew
i (yi). Therefore, αnew

i (yi) =

1−∑y̸=yi
αnew

i (yi) increases. From the KKT condition (equation 5.40), we can clearly see

that this increase in mass does not change w since Ψi(yi) = 0. Now we need to bound the

decrease in λold so that the duality gap corresponding to the problem with λnew does not go

beyond (κ1 +κ2)ε . The new duality gap corresponding to λnew and αnew is:

g(αnew;λnew) =
1
n
∑

i

�

max
y∈Yi

Hi(y;w)−
λnew

λold
∑

y∈Yi

αold
i (y)Hi(y;w)

�

(5.41)

Let λnew = λold

ν ,ν > 1, then g(αnew;λnew) can be written as:

g(αnew;λnew) =
1
n
∑

i

�

max
y∈Yi

Hi(y;w)−
1
ν ∑

y∈Yi

αold
i (y)Hi(y;w)− ∑

y∈Yi

αold
i (y)Hi(y;w)

+ ∑
y∈Yi

αold
i (y)Hi(y;w)

�

= g(αold;λold)+
�

1−
1
ν

�

∑
i

∑
y∈Yi

αold
i (y)Hi(y;w)

n
| {z }

Ω(αold ,λold)

(5.42)

In order to obtain an (κ1 + κ2)ε optimal path the new gap must be less than or equal to

(κ1 +κ2)ε . Thus, using the shorthand notations, the above equation can be written as:

g(αnew;λnew) = g(αold;λold)
| {z }

≤κ1ε

+
�

1−
1
ν

�

Ω(αold,λold)≤ (κ1 +κ2)ε (5.43)
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The above inequality leads to the following inequality over ν :

1 ≤ ν ≤ η (5.44)

where,

η =
1

1− (κ1+κ2)ε−g(αold ;λold)
Ω(αold ,λold)

(5.45)

In another words, ν = max{1,η}. Let us have a closer into the equation (5.43). If

Ω(αold,λold) ≤ 0, it implies that for all values of ν > 1, the new gap is at least κ1ε op-

timal (g(αnew;λnew) ≤ κ1ε). Therefore, in this case, we can trace the path of the reg-

ularization parameter from λold to λnew = 0, and still guarantee that the optimal w at

λnew is at least κ1ε optimal for any value of λnew ∈ [λold,0]. Similarly, if the excess gap

(κ1 +κ2)ε −g(αold;λold)≤ 0, it implies that the w at λold is suboptimal.

In order to compute η , we should be able to compute Ω(αold,λold) efficiently. Notice that,

Ω(αold,λold) = ∑i ∑y∈Yi

αold
i (y)Hi(y;w)

n
= b⊤αold −λ oldw⊤w = ℓ

αold
−λ oldw⊤w. In case of

FW or its variants, ℓαold
is already known (without knowing αold) as it is being adaptively

updated in the algorithm itself, therefore, computing Ω(αold,λold) is highly efficient. Once

we have computed ν , we decrease the regularization parameter from λ old to λnew = λold

ν .

At this point we have a new problem with the regularization parameter as λnew and dual

variables as αnew. Recall that, we modify the dual variables and the regularization parameter

such that the weight vector w is not modified. Therefore, the parameter vector w, which

is κ1ε optimal for the problem associated with λold and αold , is (κ1 +κ2)ε optimal for the

new problem. We need to find κ1ε optimal solution to this new problem so that λnew can be

further decreased in order to trace the complete path upto λ = 0. For faster convergence of

this new problem, we can warm start the optimization algorithm with w, which already is

(κ1 +κ2)ε optimal solution to this problem. In order to warm start with w, we must have

the loss corresponding to the αnew (please refer to the FW algorithm to see the initialization

parameters), which can be computed as follows:

ℓ
αnew

= ∑
i

∑
y∈Yi

αnew
i (y)∆(yi,y)

n
=

ℓ
αold

ν
≤ ℓ

αold

. (5.46)

Effects of the parameters κ1 ∈ R>0 and κ2 ∈ R>0.

• If κ1 +κ2 = 1, we a regularization path which is throughout ε-optimal.
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• In order to obtain ε-optimal regularization path (κ1 +κ2 = 1), we must have κ1 < 1,

therefore, each time we are at a breakpoint (λ new), we have to get κ1ε(< ε) optimal

solution instead of ε-optimal solution. This requires more number of iterations to

converge. However, as will be seen in the experimental results, the warm start helps to

converge the algorithm very fast.

• If κ1 +κ2 > 1, we obtain an approximate regularization path which is not ε-optimal.

The approximation depends on the values of the κ1 and κ2.

5.6.2 Initialization

The algorithm for the initialization of the regularization path algorithm is shown in Al-

gorithm 16. In order to start the regularization path algorithm, we must find a λ and

corresponding optimal w such that for any regularization parameter less than or equal to λ ,

w is the κ1ε optimal solution. Let us start with λ = ∞. From the KKT condition, w = 0 is

one of the solutions for λ = ∞. Please note that we are not sure about the duality gap at this

point (refer to the equation (5.39)). However, in what follows, we start with this solution and

move to a new solution for which we can bound the regularization parameter such that the

duality gap is always less than or equal to κ1ε . In order to move to a new point (or solution)

we solve the linearization problem (the ‘max-oracle’ problem) at w = 0, which simply is the

loss-maximizer as shown below:

Ỹi = argmax
y∈Yi

Hi(y;w = 0) = argmax
y∈Yi

∆(y,yi) (5.47)

where, Ỹi is the set of possible outputs for which the loss can attain its maximum value,

therefore, |Ỹi|≥ 1,∀i. Let us say that ỹi ∈ Ỹi,∀i, is the randomly selected loss maximizer

label. Putting all the mass to this label, which means αi(ỹi) = 1, gives the new corner point

(or new solution) as follows (using the KKT condition):

w =
1
λ ∑

i

Ψi(ỹi)

n
=

Ψ̃

λ
. (5.48)

where, Ψ̃ = ∑i Ψi(ỹi)
n

. For this new solution we would like to bound the duality gap and find a

λ such that the w = Ψ̃
λ is κ1ε optimal. Let us assume that we know the dual variable vector α

which would lead to the primal variable vector w using the KKT condition. Thus, the duality

gap at this new solution using equation (5.39) can be defined as (notice that directly using
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equation (5.43) does not give a bound on λ ):

g(α;λ ) =
1
n
∑

i

�

max
y∈Yi

�

∆(y,yi)−w⊤Ψ(y)
�

−∆(ỹi,yi)+w⊤Ψ(ỹi)
�

(5.49)

Using the inequality maxx( f (x) + g(x)) ≤ maxx f (x) +maxx g(x), the gap can be upper-

bounded as follows:

g(α;λ )≤
1
n
∑

i

�

max
y∈Yi

∆(y,yi)+max
y∈Yi

(−w⊤Ψ(y))−∆(ỹi,yi)+w⊤Ψ(ỹi)
�

=
1
n
∑

i

�

max
y∈Yi

(−w⊤Ψ(y))+w⊤Ψ(ỹi)
�

=
1

nλ ∑
i

max
y∈Yi

(−Ψ̃⊤Ψ(y))+
1

nλ
Ψ̃⊤∑

i

Ψ(ỹi)

=
1

nλ ∑
i

θ(i)+
1
λ





Ψ̃






2
(5.50)

where, θ(i) = maxy∈Yi

�

− Ψ̃⊤Ψ(y)
�

. We want the gap to be always less than κ1ε , this leads

to the following bound over the regularization parameter:

1
nλ ∑

i

θ(i)+
1
λ





Ψ̃






2
≤ κ1ε

=⇒ λ ≥





Ψ̃






2
+ 1

n ∑i θ(i)

κ1ε
(5.51)

Hence, for any value of the regularization parameter satisfying the above inequality, w = Ψ̃
λ

is the κ1ε optimal solution. In order to compute λ , we should be able to compute θ(i)

efficiently. Computing θ(i) is equivalent to the ‘inference’ problem, which is very efficient

for many real world applications. In order to compute ν (defined in equation (5.44)) at

w = Ψ̃
λ , we can compute Ω(α,λ ) (defined in equation (5.43)) efficiently as follows:

Ω(α,λ ) = ∑
i

∑
y∈Yi

αi(y)Hi(y;w)

n

=
1
n
∑

i

∆(ỹi,y)−w⊤∑i Ψi(ỹi)

n

=
1
n
∑

i

∆(ỹi,y)−





Ψ̃






2

λ̄
(5.52)
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The above equalities comes from the fact that in order to compute w = Ψ̃
λ , we had put all the

mass on ỹi, which means αi(ỹi) = 1.

5.7 Regularization path for SSVM with positivity constraints

As already discussed in section 5.5, the SSVM with additional box constraints is very useful

in many vision tasks. In this section we provide regularization path algorithm for SSVM

with additional positivity constraints. However, the same procedure can be trivially modified

to obtain the regularization path algorithm for SSVM with negativity constraints. In case

of only positivity constraints, l = 0, u = ∞. Therefore, βu = 0. From the KKT condition

(equation (5.12)),

w = Aα +βl = ∑
i∈[n],y∈Yi

1
λn

αi(y)Ψi(y)+βl = [V (α)]+ (5.53)

where, βl = [−V (α)]+ (refer to the equation (5.19), and [V (α)]+ is the element wise trun-

cation of V (α) = Aα into the positive numbers. The linearization duality gap, which is

the same as the Lagrange duality gap (refer section 5.5), can be written as (refer chapter 2,

equation (2.80) for proof):

g(α;λ ) =
1
n
∑

i

�

max
y∈Yi

Hi(y;w)− ∑
y∈Yi

αi(y)Hi(y;w)
�

. (5.54)

where, Hi(y;w) = ∆(yi,y)−w⊤Ψi(y).

5.7.1 Finding the breakpoints

The derivation to find the breakpoints follows exactly the same as in section 5.6.1. The only

difference is that in this case the w is truncated. In another words, we use w = [V (α)]+ in

case of additional positivity constraints.

5.7.2 Initialization

We follow the same arguments as given in section 5.6.2. In order to move to a new point

(or solution) we solve the linearization problem (the ‘max-oracle’ problem) at w = 0, which

simply is the loss-maximizer as shown below:

Ỹi = argmax
y∈Yi

Hi(y;w = 0) = argmax
y∈Yi

∆(y,yi) (5.55)
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where, Ỹi is the set of possible outputs for which the loss can attain its maximum value,

therefore, |Ỹi|≥ 1,∀i. Let us say that ỹi ∈ Ỹi,∀i, is the randomly selected loss maximizer

label. Putting all the mass to this label, which means αi(ỹi) = 1, gives the new corner point

(or new solution) as follows (using the KKT condition):

w =V (α)+βl =
1
λ ∑

i

Ψi(ỹi)

n
+βl =

Ψ̃

λ
+βl (5.56)

where, Ψ̃ = ∑i Ψi(ỹi)
n

, V (α) = Aα , and βl = [−V (α)]+. For this new solution we would like

to bound the duality gap and find a λ such that the w is κ1ε optimal. Let us assume that

we know the dual variable vector α which would lead to the primal variable vector w using

the KKT condition. Thus, the duality gap at this new solution using equation (5.54) can be

defined as:

g(α;λ ) =
1
n
∑

i

�

max
y∈Yi

�

∆(y,yi)−w⊤Ψ(y)
�

−∆(ỹi,yi)+w⊤Ψ(ỹi)
�

(5.57)

Using the inequality maxx( f (x)+g(x))≤maxx f (x)+maxx g(x) and the fact that [ Ψ̃
λ ]+ = Ψ̃+

λ

(since λ is always positive), the gap can be upperbounded as follows:

g(α;λ )≤
1
n
∑

i

�

max
y∈Yi

∆(y,yi)+max
y∈Yi

(−w⊤Ψ(y))−∆(ỹi,yi)+w⊤Ψ(ỹi)
�

=
1
n
∑

i

�

max
y∈Yi

(−w⊤Ψ(y))+w⊤Ψ(ỹi)
�

=
1

nλ ∑
i

max
y∈Yi

(−Ψ̃⊤
+Ψ(y))+

1
nλ

Ψ̃⊤
+∑

i

Ψ(ỹi)

=
1

nλ ∑
i

θ(i)+
1
λ





Ψ̃+







2
(5.58)

where, θ(i) = maxy∈Yi

�

− Ψ̃⊤
+Ψ(y)

�

. We want the gap to be always less than κ1ε which

leads to the following bound over the regularization parameter:

1
nλ ∑

i

θ(i)+
1
λ





Ψ̃+







2
≤ κ1ε

=⇒ λ ≥





Ψ̃+







2
+ 1

n ∑i θ(i)

κ1ε
(5.59)

Hence, for any value of the regularization parameter satisfying the above inequality, w is the

κ1ε optimal solution. In order to compute λ , we should be able to compute θ(i) efficiently.
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Computing θ(i) is equivalent to the ‘inference’ problem, which is very efficient for many

real world applications. In order to compute ν (defined in equation (5.44)) at w = Ψ̃+
λ , we

can compute Ω(α,λ ) (defined in equation (5.43)) efficiently as follows:

Ω(α,λ ) = ∑
i

∑
y∈Yi

αi(y)Hi(y;w)

n

=
1
n
∑

i

∆(ỹi,y)−w⊤∑i Ψi(ỹi)

n

=
1
n
∑

i

∆(ỹi,y)−





Ψ̃+







2

λ̄
(5.60)

The above equalities comes from the fact that in order to compute w, we had put all the mass

on ỹi, which means αi(ỹi) = 1.

5.8 Experiments and Analysis

In this section we talk about the experiments we performed on the OCR dataset [122] with

6251 train samples and 626 test samples. The joint feature map is exactly the same as defined

in [122] which allows us to solve the ‘max-oracle’ problem very efficiently using dynamic

algorithm. Broadly speaking, this section is mainly divided into three parts. In the first

part, we use 20 different values of the regularization parameter equally spaced in the range

of [10−4, 103] and discuss about the number of passes taken for the training, and the test

losses. In the second part, we show results for the ε = 0.1 optimal regularization path using

different variants of the BCFW algorithm for κ1 = {0.1,0.3,0.5,0.7,0.9,0.95}. We discuss

the results in terms of duality gaps, number of passes, and test losses. In the third part, we

talk about computational feasible strategies to obtain the best model using the regularization

path algorithm. Notice that we only show results for ε optimal paths, therefore, κ2 = 1.0−κ1.

In order to avoid clutter we use short hand notations for different algorithms as follows:

• BCFW-STD-U and BCFW-STD-G: The BCFW-STD part represents the standard BCFW

algorithm [86] with w = 0 as the initialization. The parts U/G represents the sampling

methods, uniform and gap based, respectively (refer Algorithm 13). Notice that the

algorithm in [86] did not talk about the gap based sampling. We also trivially modify

the convergence criterion of [86]. Instead of running the BCFW for p complete passes

through the data before computing the exact duality gap, we rather keep on checking

the the approximate duality gap (by product of BCFW). If the approximate duality

gap is less than the ε , we compute the exact duality gap even before p passes. In our
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experiments we use p = 10. Notice that after computation of the exact duality gap, the

approximate duality gaps (per block) are updated accordingly. This helps in selecting

better blocks for the gap based sampling algorithm.

• BCFW-HYB-U and BCFW-HYB-G: It represents the hybrid version of the BCFW algo-

rithm with uniform/gap based sampling (refer Algorithm 14). Everything remains the

same as in BCFW-STD-U and BCFW-STD-G except for the fact that after computing

the exact duality gap, the weight vectors are also updated along with the approximate

duality gaps.

• RP-BCFW-STD-U and RP-BCFW-STD-G: The RP represents the regularization path.

Therefore, it represents the regularization path algorithm using BCFW-STD-U and

BCFW-STD-G as the SSVM-OPTIMIZER (refer to Algorithm 17).

• RP-BCFW-HEU-U and RP-BCFW-HEU-G: The RP represents the regularization path and

HEU represents the heuristic based convergence criterion (converged if approximate

duality gap is less than ε). Therefore, it represents the regularization path algorithm

using BCFW-HEU-U and BCFW-HEU-G as the SSVM-OPTIMIZER (refer Algorithm 17).

Notice that these two algorithms are approximate and does not guarantee exact conver-

gence.

No regularization path. In order to perform the experiments without regularization path,

we use 20 different values of λ equally spaced in the range of [10−4, 103] and four variants

of the BCFW algorithm (as shown in Table 5.1). It is clear from the table that the gap based

sampling outperforms the uniform sampling based algorithms. However, contrary to the

intuition, we see that the BCFW-STD-G marginally outperforms the BCFW-HYB-G. One

possible explanation is the fact that once we obtain gaps at a particular w, the gaps are exact

at that w. However, if we further update w at this step (in case of the hybrid algorithm), the

gaps no longer represents the true gaps corresponding to the updated w. Therefore, in case of

hybrid algorithm, the gap based sampling strategy may not pick the right samples.

Regularization path. In order to better understand the behavior of different variants of

BCFW algorithm and the effects of parameters κ1 and κ2 on the regularization path algorithm,

we performed several experiments using four variants of the BCFW algorithm and 6 different

combinations of κ1 and κ2. The variants of the BCFW algorithm used are BCFW-HEU-U/G

and BCFW-STD-U/G. Notice that, we do not use the hybrid variants of BCFW as it was

outperformed by the standard variants (refer to the Table 5.1).
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Table 5.1: No regularization path: Initialization with w = 0. We used 20 different values of
λ equally spaced in the range of [10−4, 103] and four variants of the BCFW algorithm. Total
passes represents the total number of passes through the entire dataset using all the 20 values
of λ . Min test loss represents the minimum value of the test loss obtained by using all the
20 trained models. Clearly, the gap based sampling method (BCFW-STD-G) requires less
number of passes to achieve the same generalization.

BCFW-HYB-U BCFW-HYB-G BCFW-STD-U BCFW-STD-G

Min test loss 0.121 0.121 0.122 0.121
Total passes 1646.786 1153.439 1614.769 1138.872

Table 5.2: Regularization path: κ1 vs total passes for four different variants of the BCFW

algorithm.The total passes represents the total number of passes through the entire dataset to
obtain the complete regularization path.

κ1 RP-BCFW-HEU-G RP-BCFW-HEU-U RP-BCFW-STD-G RP-BCFW-STD-U

0.1 2711.946 5102.513 4405.881 5487.914
0.3 1708.943 2939.686 2287.803 4078.553
0.5 1301.869 2485.238 2120.969 2649.019
0.7 1247.567 2109.278 1786.437 2306.304
0.9 1076.005 1874.513 2100.304 2122.717
0.95 1070.634 1851.846 2572.735 2174.990

Table 5.3: Regularization path: κ1 vs number of regularization parameters (λ ) for four
different variants of the BCFW algorithm. The number of regularization parameters is
basically the number of kinks that divide the complete regularization space into segments.

κ1 RP-BCFW-HEU-G RP-BCFW-HEU-U RP-BCFW-STD-G RP-BCFW-STD-U

0.1 142 142 133 132
0.3 168 168 135 134
0.5 225 226 153 148
0.7 364 365 193 182
0.9 1060 1065 349 306
0.95 2105 2115 501 420
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Table 5.4: Regularization path: κ1 vs minimum test loss. For a given regularization path,
the test losses are obtained for models corresponding to 20 different values of λ equally
spaced in the range of [10−4, 103] (same as in case of no regularization path experiments).
Notice that the models are trained using the regularization path algorithm. For each path, the
minimum test loss is the minimum over the 20 different values.

κ1 RP-BCFW-HEU-G RP-BCFW-HEU-U RP-BCFW-STD-G RP-BCFW-STD-U

0.1 0.113 0.113 0.114 0.113
0.3 0.118 0.113 0.115 0.116
0.5 0.121 0.116 0.118 0.119
0.7 0.120 0.120 0.120 0.120
0.9 0.125 0.123 0.118 0.122
0.95 0.125 0.121 0.120 0.121

Tables 5.2 and 5.3 shows the total number of passes and total number of regularization

parameters (kinks) to obtain the complete regularization path. As shown in the Table 5.3, as

we increase κ1, the gap corresponding to κ1ε increases, which in turn decreases the excess gap

(refer to the equation (5.45)). Therefore, the length of the segments in the regularization path

also decreases. This leads to higher number of kinks (thus segments) to obtain the complete

regularization path. However, increasing κ1 decreases κ2 (as κ1 +κ2 = 1). Therefore, each

time we are at a breakpoint (or kink) with ε optimal solution, the optimizer has to put very

less efforts, and thus less number of passes (because of the warm start), to reach κ1ε optimal

solution as κ1ε ≈ ε for κ1 closer to one. The effects of warm start is well captured in the

Figure 5.1. For example, in Figure 5.1f at λ = 10−4, the warm start with ε optimal solution

(RP algorithms) almost takes 90 passes through the data to converge to the κ1ε optimal

solution. However, BCFW-STD-G/U takes almost 590/820 passes to converge to the ε optimal

solution. As we decrease κ1, the warm start goes further away from the desired optimality

criterion, thus, leads to more number of passes to converge. Let us now have a look into the

optimality of the regularization path obtained using various variants of the BCFW algorithm

as the SSVM optimizer. Figure 5.2 shows duality gaps for different combinations of κ1 and

κ2. Recall that BCFW-HEU-U/G provides approximate duality gap. Therefore, in order to

see how far the approximate duality gap is compared to the true duality gap, we also show

the true duality for the purpose of analysis. Notice that, as shown in Figures 5.2b-5.2d, for

smaller values of κ1 (upto 0.5), the true duality gap for BCFW-HEU-U/G is always less than

the ε . Thus, the regularization path obtained is ε-optimal even if the convergence criterion

was based on approximate duality gap. However, as we increase κ1 (beyond 0.5), the true

duality gap for smaller values of λ is higher than the ε . Thus, the path obtained in this

region is suboptimal. Hence, for higher values of κ1, the regularization path obtained using

the heuristic algorithm as the SSVM optimizer is not entirely ε-optimal. In another words,
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using BCFW-HEU-U/G algorithms as the optimizer is not guaranteed to provide ε-optimal

regularization path. On the other hand, for all other algorithms, the entire path is ε-optimal

(as expected).

In order to better understand the generalization of the models obtained using the experiments,

we show the test losses in Figure 5.3. It is evident from the figure that models obtained using

all the algorithms provides almost the same test losses. However, for lower values of κ1, the

models obtained using the regularization path algorithm seems to provide better test losses

for lower values of λ . One of the possible explanation of this observation is that, in case of

lower values of κ1, the models obtained are closer to the global minima as the convergence

criterion is more strict (κ1ε ≪ ε). Thus provides better generalization. Table 5.4 shows the

minimum test loss obtained using all the methods. Notice that the test losses are obtained

only for 20 values of the regularization parameter. As explained earlier, the regularization

path algorithm for lower values of κ1 provides better minimum test loss compared to the

experiments without regularization path. Also, the optimizers RP-BCFW-HEU-U/G, even

being suboptimal, provides promising generalization in terms of the minimum test loss.

Obtaining the best model. In order to obtain the best model using the regularization path

algorithm, we have to test (solving ‘max-oracle’) the models at each breakpoint. If there

are many breakpoints, this task is computationally expensive. For example, as shown in

Tables 5.2 and 5.3, the RP-BCFW-HEU-G optimizer at κ1 = 0.95, even being the fastest

(nearly 1071 passes) gives 2105 breakpoints. Thus requires 2105 max-oracles to find the best

λ , which is highly expensive task to perform. On the other hand, the RP-BCFW-STD-U at

κ1 = 0.1 provides 132 breakpoints. However, obtaining the entire regularization at this setting

requires almost 5488 passes through the data, which is highly expensive compared to other

settings. A computationally affordable approach to obtain a highly promising model is to

use the fastest setting to obtain the entire regularization path. For example, RP-BCFW-STD-G

with κ1 = 0.7 to obtain the ε-optimal path, or RP-BCFW-HEU-G with κ1 = 0.95 to obtain a

suboptimal path. Once the path is obtained, use a grid of regularization parameters over this

path, store the corresponding models and perform testing. This is exactly what we do. We

choose 20 values of λ even spaced in the range of [10−4, 103]. Notice that, in this approach,

with each additional value of the λ , we perform only one extra ‘max-oracle’ for the testing.

However, without the regularization path, for each additional λ , we have to first train the

model (which is expensive) and then perform the ‘max-oracle’ for the testing.
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5.9 Discussion

We proposed an algorithm to obtain the entire regularization path, ε-optimal, for SSVM

and SSVM with additional positivity/negativity constraints. We also provided a principled

algorithm to optimize SSVM with additional box constraints using BCFW and its variants.

Obtaining the regularization path allows us to obtain the best model for the SSVM. On one

hand, if computational efficiency is the deciding factor, the heuristic variant of the BCFW with

gap based sampling outperforms all other variants of the BCFW and provide regularization

path (suboptimal) very efficiently. However, if optimality is the prime focus, the gap sampling

based BCFW algorithm outperforms all other variants and provide regularization path which

is ε-optimal. An interesting direction of future work would be to efficiently obtain the

exact regularization path for the SSVM and SSVM with additional box constraints. Another

interesting direction of research would be to devise some strategies to obtain less number of

breakpoints with the theoretical guarantees of being optimal.
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(a) κ1 = 0.1 and κ2 = 0.9 (b) κ1 = 0.3 and κ2 = 0.7

(c) κ1 = 0.5 and κ2 = 0.5 (d) κ1 = 0.7 and κ2 = 0.3

(e) κ1 = 0.9 and κ2 = 0.1 (f) κ1 = 0.95 and κ2 = 0.05

Figure 5.1: In each figure, x-axis is the λ and y-axis is the number of passes. In case of
regularization path algorithms (starting with RP), x-axis represents all the breakpoints for the
entire path, and y-axis represents the number of passes required to reach κ1ε optimal solution
at each breakpoint (warm start with ε optimal solution). In other two algorithms (no regular-
ization path), x-axis represents 20 values of λ evenly spaced in the range of [10−4, 103], and
y-axis represents the number of passes to reach ε optimal solution (initialization with w = 0).
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(a) Legend

(b) κ1 = 0.1 and κ2 = 0.9 (c) κ1 = 0.3 and κ2 = 0.7

(d) κ1 = 0.5 and κ2 = 0.5 (e) κ1 = 0.7 and κ2 = 0.3

(f) κ1 = 0.9 and κ2 = 0.1 (g) κ1 = 0.95 and κ2 = 0.05

Figure 5.2: Figure 5.2a shows the ‘legend’ for the purpose of clarity. In all other figures,
x-axis is the λ and y-axis is the duality gap. In case of regularization path algorithms (starting
with RP), x-axis represents all the breakpoints for the entire path. In other two algorithms
(no regularization path), x-axis represents 20 values of λ evenly spaced in the range of
[10−4, 103]. Recall that in case of regularization path algorithms the solution we seek must
be κ1ε optimal.
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(a) κ1 = 0.1 and κ2 = 0.9 (b) κ1 = 0.3 and κ2 = 0.7

(c) κ1 = 0.5 and κ2 = 0.5 (d) κ1 = 0.7 and κ2 = 0.3

(e) κ1 = 0.9 and κ2 = 0.1 (f) κ1 = 0.95 and κ2 = 0.05

Figure 5.3: In all figures, x-axis is the λ and y-axis is the test loss. In all the experiments, the
test losses are obtained for models corresponding to 20 different values of λ equally spaced
in the range of [10−4, 103].





Chapter 6

Discussion

6.1 Contributions of the Thesis

In this thesis we developed inference and machine learning algorithms several tasks related

to computer vision and medical imaging. The major contributions are:

• In chapter 3 we investigated a higher-order Markov field problem. Specifically, we

presented a novel family of discrete energy minimization problems, that we call par-

simonious labeling. It is a natural generalization of the well known metric labeling

problem to higher-order potentials. Similarly to metric labeling, the unary potentials

of parsimonious labeling can be arbitrary. The clique potentials are defined using the

recently proposed notion of a diversity [18], defined over the set of unique labels as-

signed to the random variables in the clique. Intuitively, diversities enforce parsimony

by assigning lower potentials to assignments with fewer distinct labels. In addition to

this we proposed a generalization of the Pn-Potts model [66], that we call Hierarchical

Pn-Potts. We showed how parsimonious labeling can be represented as a mixture of

hierarchical Pn-Potts models. Finally, we proposed parallelizable move-making algo-

rithms with strong multiplicative bounds for the optimization of both the hierarchical

Pn-Potts model and parsimonious labeling. We showed the efficacy of parsimonious

labeling in some challenging image denoising and stereo matching tasks, along with

synthetic experiments.

• In chapter 4 we introduced two alternate frameworks to incorporate higher-order

information into ranking. The first framework, which we call high-order binary SVM

(HOB-SVM), takes its inspiration from standard SVM. The input of HOB-SVM is a

set of samples. The output is a binary vector of labels for the samples, where the

label 1 indicates that the sample is relevant and 0 indicates that it is not relevant. The
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joint feature vector of HOB-SVM depends not only on the features of the individual

samples, but also on the feature vectors of subsets of them. In this work we restricted

the subsets to be of size two but our framework can easily be generalized to larger

subsets. The loss function of HOB-SVM is a weighted 0-1 loss, which allows us

to efficiently perform loss-augmented inference using graph cuts [74]. Practically

speaking, one difficulty with HOB-SVM is that it provides a single score for the entire

labeling of a dataset, whereas we need scores for each sample in order to find the

ranking. To address this, we proposed to rank the samples using the difference between

the max-marginal score for assigning the sample to the relevant class and the max-

marginal score for assigning it to the non-relevant class. Intuitively, the difference

of max-marginal scores measures the ‘positivity’ of a particular sample while still

capturing higher-order information. Empirically we showed that differences of max-

marginal scores provide accurate rankings. The main advantage of HOB-SVM is that

its parameters can be estimated efficiently by solving a convex optimization problem.

Its main disadvantage is that, similarly to SVM, it optimizes a surrogate loss function

instead of the average precision based loss (AP is one of the measures of ranking).

The second framework, which we call high-order AP-SVM (HOAP-SVM), takes its

inspiration from AP-SVM and HOB-SVM. Similarly to AP-SVM, the input of HOAP-

SVM is a set of samples, the output is a ranking of them, and the loss function is the AP

loss. However unlike AP-SVM, the score of a ranking is equal to a weighted sum of the

differences of max-marginal scores of the individual samples. As the max-marginal

scores capture higher-order information and the loss function depends on the AP,

HOAP-SVM addresses both of the aforementioned deficiencies of traditional classifiers

such as SVM. The main disadvantage of HOAP-SVM is that estimating its parameters

requires solving a difference-of-convex program [55]. While we cannot obtain a

globally optimal set of parameters for HOAP-SVM, we showed that a local optimum

can be computed efficiently using the concave-convex procedure [138]. Using standard

publicly available datasets we empirically demonstrated that HOAP-SVM out-performs

SVM, AP-SVM and HOB-SVM by effectively utilizing higher-order information while

optimizing a ranking based loss function.

• Notably, SSVM methods normally contain a regularization parameter that controls

the trade-off between the model complexity and an upper bound on the empirical

risk. The regularization value has a significant impact on the generalization of the

SSVM. However, lack of knowledge about the structure of the regularization parameter

compel us to cross validate it over the entire parameter space, which is practically

not feasible because of infinitely many possibilities. To circumvent this problem,



6.1 Contributions of the Thesis 141

the standard approach is to resort to a sub optimal solution by cross validating or

tuning a large number of possible values of regularization parameter on a validation

or cross-validation set. Doing this is tedious and it quickly becomes prohibitively

costly as we increase the number of regularization values tested. In order to handle

this issue, in chapter 5 we proposed a new algorithm (SSVM-RP) that obtains an ε-

optimal regularization path for SSVM. By definition, the regularization path is the set

of solutions w(λ ) for all possible values of the regularization parameter λ [29]. This

allows us to obtain the best model by efficiently searching the entire regularization

parameter space. We proposed several intuitive variants of the Block-Coordinate

Frank-Wolfe algorithm for the rapid solution of the SSVM-RP problem. In addition

to this we proposed a principled approach to solving the SSVM with additional box

constraints using BCFW and its variants. These additional constraints are useful in many

important problems in order to solve the corresponding inference problem exactly.

For example, for binary labels and an output structure that forms a graph with loops,

if the pairwise potentials are submodular graph cuts [74] can be used to solve the

inference problem exactly. However in order to ensure that the pairwise potentials

are submodular, additional positivity/negativity constraints are needed in the objective

function of SSVM. Finally, we proposed a regularization path algorithm for SSVM with

such additional positivity/negativity constraints.

• In Appendix A we proposed a novel weakly-supervised discriminative algorithm for

learning context specific registration metrics as a linear combination of conventional

metrics. We adopted a popular graphical model framework [48] to cast deformable

registration as a discrete inference problem. This involves data and smoothness terms.

The data term is an application-specific similarity measure or metric, such as mutual

information, normalized cross correlation, sum of absolute difference, or discrete

wavelet coefficients. Depending on the clinical context conventional metrics can only

cope partially with tissue anatomical properties. Metric learning representation seeks to

determine a mapping between the source and target representations in the registration

task. In this work our goal was to determine anatomy/tissue specific metrics as context-

specific aggregations (linear combinations) of known metrics. To achieve this, we

proposed a weakly-supervised learning algorithm for estimating these parameters

conditionally on the semantic data classes, using a weakly labelled training dataset.

The learning objective in our formulation was a special kind of non-convex program,

known as a difference of convex programs. We used the concave-convex procedure

to obtain a local minimum or saddle point of the optimization problem. In order to

estimate the unknown ground truth deformation vectors – which we treated as latent
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variables – we used ‘segmentation consistent’ inference endowed with a loss function.

We showed the efficacy of our approach on three challenging datasets from medical

imaging with different anatomical structures and image modalities.

6.2 Future Work

We now discuss some possible future directions that could extend the practical and theoretical

implications of our work.

High-Order Inference

• In parsimonious labeling we approximated a given diversity with a diameter diversity.

However, there exist many other diversities such as Steiner tree diversity, L1 diversity,

truncated diversity, etc [18].It would be interesting to explore these options and propose

specific algorithms for them.

• Another interesting direction would be to directly approximate diversities as mixtures

of hierarchical Pn-Potts models, without the use of intermediate r-HST metrics. This

might also lead to better multiplicative bounds.

• Parsimonious labeling assumes that the given clique potentials are diversities which

induces metrics. In order to apply it to problems in which the labels are symbolic, for

example semantic segmentation, it would be interesting to learn these metrics from the

data and then define diversities over them.

Structured SVM

• An interesting direction for future work would be to propose weakly-supervised

extension of HOAP-SVM. While such a learning objective can easily be formulated with

the introduction of latent variables, it is not clear whether the resulting optimization

problem can be solved efficiently.

• In general, in SSVM frameworks, the structure and interactions between the outputs are

assumed to be known a priori. However, experience shows that the underlying structure

has a considerable impact on the overall performance of the algorithm. Therefore, it

would interesting to design a framework that can simultaneously discover the most

suitable underlying structure and minimize an upper bounded loss over it.
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• The stochastic optimization algorithms for SSVM work by randomly picking samples

to optimize, where each sample has a structure. However, if the samples themselves

are complex, for example huge graphs with millions of edges and cliques, then solving

the ‘loss augmented inference’ problem even for one sample can be difficult. It would

be useful to devise stochastic algorithms that can decompose the samples into smaller

graphs for which the ‘loss augmented inference’ problem can be solved more easily,

then sample these smaller graphs to update the learning parameters. There are two

main challenges with this: (i) how to decompose the samples such that the context

encoded is not destroyed (or if it is then how to quantify that); and (ii) how to guarantee

that while doing this we can still obtain the global minimum of the actual problem.

• Normally, for latent SSVM [135] the joint feature map encodes the interactions among

the output variables. However, no such interactions are encoded between the latent

variables themselves. It would be interesting to devise frameworks that can encode

interactions between the latent variables as well as ones between the output variables.

Regularization path

• An interesting direction for future work would be to efficiently obtain the exact

regularization path for SSVM and SSVM with additional box constraints.

• Another interesting direction would be to devise strategies to reduce the number of

breakpoints while maintaining the same theoretical guarantees.





Appendix A

Deformable Registration through

Learning of Context-Specific Metric

Aggregation

A.1 Introduction

Registration [17, 115, 117] is a highly challenging problem frequently encountered in many

vision and medical imaging related tasks. Few examples of the applications of the registration

problems are – (1) registration between 2D and 3D point sets [38], (2) alignment of medical

acquisitions [33, 36, 115, 116], (3) range data integration [53], and (4) registration of 3D

points to 3D planes [107]. In general, the registration problem involves aligning a source

image (or source data) to a target image (or target data) such that a predefined energy function

(or model) is minimized. In other words, the registration task involves the estimation of

spatial transformation that establishes meaningful links between the source and the target

images. Broadly speaking, we can divide the registration problems into two categories – (1)

linear registration, and (2) deformable one. Linear registration involves transformation that

are global in nature (same for all the voxels in the source image). Deformable registration

adopts spatial transformation that is non-linear, which significantly increases the complexity

of this task [115]. In this work, we focus on the deformable registration problem. The energy

function related to this problem usually consist of the data terms and the smoothness terms.

Such energy functions can be optimized using off-the-shelf inference algorithms such as

the well known FastPD [77], Loopy belief propagation [97, 105], and Graph Cuts [74]. We

adopt a popular graphical model framework [48] to cast deformable registration as a discrete

inference problem. It is known that the data terms in the energy function has great influence on
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the accuracy of the solution of the registration problem. It refers to a function that measures

similarity/(dis)similarity between images such as the mutual information (MI), sum of

absolute differences (SAD), normalized cross correlation (NCC), and many other. A particular

data term is thus chosen based on the application. Metric learning [16, 21, 90, 91, 95, 125,

130] is an alternative that consists of determining from labeled visual correspondences the

most efficient means of image comparison. By metric we mean the similarity measures (for

example, MI and NCC) used as the data terms in the registration problem. In the context of

registration, metric learning can simply be interpreted as learning a domain specific matching

criterion that allows the comparison of any two given image modalities. Our approach can

be considered as a specific case of metric learning where the idea is to efficiently combine

existing/well known/well studied mono and multi-modal metrics to a single one depending

on the local context. In other words, we would like to learn the relative weights from a

given training dataset using a learning framework spatially conditioned on vague semantic

knowledge that we must have. We propose a novel discriminative learning framework, based

on the well known structured support vector machines (SSVM) [122, 126], to learn the relative

weights (or the parameters). The SSVM and its extension to latent models LSSVM [135] have

received considerable attention in the recent years for developing discriminative frameworks

for parameter learning [4, 85].

Our focus is mainly on the 3D to 3D deformable registration problem where the input and

the output images are 3D volumes. However, the same framework can be used for other

registration problems as well. One of the key problem we face is that the ground truth

deformations are not known a priori. This leads us to design a weakly supervised learning

framework based on the latent structured support vector machines LSSVM. We treat the

ground truth deformations as the latent variables. We model the latent variable imputation

problem as the deformable registration problem with additional constraints. These additional

set of constraints ensures that when the imputed latent deformation vectors are applied to

the source image, the deformed source image is maximally aligned with the target image.

The alignment accuracy is measured based on a user defined loss function. Our learning

framework, similar to the LSSVM, is a special family of non-convex optimization problems,

known as the difference of convex functions. The local optimum or the saddle point of

such non-convex function can be obtained using the well known CCCP algorithm [138]. We

demonstrate the efficacy of our framework using three challenging datasets related to the

medical imaging.
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A.2 Related Work

Broadly speaking, metric learning methods can be classified as supervised or unsupervised.

Supervised methods require a set of annotated data to learn a distance metric function. Instead,

in unsupervised methods (also referred by [133] as manifold learning approaches), the main

idea is to learn an underlying low-dimensional manifold where geometric relationships (e.g.

distance) between most of the observed data are preserved. This allows us to map the original

data into a simpler representation endowed with a metric that correctly represents the data

similarity [16].

In supervised learning setting, Lee et al. [90] proposed a rigid multi-modality registration

algorithm where the similarity measure is learned in a discriminative manner such that the

target and the correctly deformed source image receive high similarity scores. The training

data consisted of pre-aligned images and the learning is performed at the patch level with an

assumption that the similarity measure of two images decompose over the patches. Another

work by Bronstein et al. [16] proposed the use of sensitive hashing to learn a multi-modality

distance metric that can be applied to data coming from two different spaces. The idea is to

embed the input data from two arbitrary spaces into the Hamming space. This mapping is

expressed as a binary classification problem and can be efficiently learned using boosting

algorithms. Similar to [90], Bronstein et al. adopted a patch-wise approach. The dataset

consisted of pairs of perfectly aligned images and a collection of positive and negative pairs

of patches. A detailed version of [16], plugged into the standard graph-based deformable

registration framework was presented in [95]. Another patch-based alternative was presented

by [125]. However, in [125], the training set consisted of non-aligned images with manually

annotated patch pairs (landmarks). [125] used a coarse-to-fine strategy where a global

similarity measure was learned followed by a fine similarity measure that captured the fine

level point correspondences. Recently, approaches based on deep learning have started to

gain popularity. An interesting discussion about this topic was presented in [91], suggesting

that features learned using convnets are at least as useful (sometimes more useful) as the

conventional ones when performing alignment of elements of the same class.

Unsupervised learning methods for image registration have also been well studied. Wa-

chinger and Navab [130] proposed to apply manifold learning (through Laplacian eigenmaps)

to learn structural representations of multi-modal images. The idea is to calculate dense

descriptors that represent the structural information of image patches, which does not depend

on the intensity values of the images but on the structures in the patch. Ou et al. [103]

proposed an online metric learning framework based on mutual saliency. The central idea

was to consider a voxel-based linear combination of metrics (SAD over filter responses) as

single metric and then locally adjust the coefficients based on the correspondence in terms of
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‘saliency’ expression between the source and the target image. A different approach based on

unsupervised deep learning was proposed by Wu et al. in [132]. The authors directly learned

the basis filters that can effectively represent the observed image patches.

In contrast to the aforementioned approaches that aim at learning a completely new similarity

measure, our method aggregates standard metrics in a domain specific and smart way. The

work by [21] showed, in fact, that using a multichannel registration method where a set

of features is considered instead of a single similarity measure, produced more robust

registration results when compared to using the features individually. However, they did

not discuss how these features should be weighted. In a posterior work, [22] proposed a

methodology, independent of the need of explicitly weighting the features, by estimating

different deformation fields from each feature independently, and then composing them into

a final diffeomorphic transformation. Such a strategy produces multiple deformation models

(as many as the number of metrics) which might be locally inconsistent. Therefore, their

combination will not be that trivial and in the general case not anatomical meaningful.

A.3 The Deformable Registration Problem

Let us assume that we are given a source 3D volume (or image) I, source 3D segmentation

mask SI , and the target 3D volume (or image) J. The size of the segmentation mask is the

same as that of the corresponding image. The segmentation mask is formed by the elements

(or voxels) sk ∈ C , where C is the set of classes. For example, in case of medical imaging,

C can be the set of organs. Without loss of generality, we assume that the elements in the

class set C are the natural numbers starting from one.

We model the deformable registration problem as an inference problem on an MRF [48]. A

deformation field is sparsely represented by a regular grid graph G = (V,E), where V is

the set of nodes and E is the set of edges. Each node i ∈V corresponds to a control point

pi. Each control point pi is allowed to move in the 3D space, therefore, can be assigned a

label dddiii from the set of the 3D displacement vectors L . Notice that each 3D displacement

vector is a tuple defined as dddiii = {dxi,dyi,dzi}, where dx, dy, and dz are the displacements

in the x, y, and z directions, respectively. The deformation, which is the labeling of the

graph G, is denoted as D. In another words, the deformation D ∈ L |V | represents a set of

nodes V where each node is assigned a displacement vector dddiii from the set of displacement

vectors L . We denote the control point p̄i as the new control point when the displacement

dddiii is applied to the original control point pi. Let us define a patch Ω̄I
i on the source image

I centered at the displaced control point p̄i. Similarly, we define ΩJ
i as the patch on the

target image J centered at the original control point pi, and Ω̄SI

i as the patch on the input
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segmentation mask centered at the displaced control point p̄i. Using the above notations, we

define the unary feature vector corresponding to the ith node for a given displacement vector

dddiii as Ui(dddiii, I,J) = (u1(Ω̄
I
i ,Ω

J
i ), · · · ,un(Ω̄

I,ΩJ
i )) ∈R

n, where n is the number of metrics and

u j(Ω̄
I
i ,Ω

J
i ) is the unary feature corresponding to the jth metric evaluated using the patches

Ω̄I
i and ΩJ

i . For example, in case the jth metric is the mutual information (MI) then the unary

feature uMI(Ω̄
I
i ,Ω

J
i ) is the mutual information between the patches Ω̄I

i and ΩJ
i . In case of

single metric, n = 1. Recall that we have |C | number of classes. Therefore, given a weight

matrix W ∈ R
n×|C |, where W (i, j) denote the weight for the ith metric corresponding to the

class j, the unary potential for the ith node for a given displacement vector dddiii is computed as

follows:

Ūi(dddiii, I,J,S
I;W ) = w(c̄)⊤Ui(dddiii, I,J) ∈ R. (A.1)

where, w(c̄) ∈ R
n is the c̄th column of the weight matrix W and c̄ is the most dominant class

in the patch on the source segmentation mask Ω̄SI

i . The dominant class c̄ is obtained as

follows:

c̄ = argmax
c∈C

f (Ω̄SI

i ,c). (A.2)

where, f (Ω̄SI

i ,c) is the number of voxels of class c in the patch Ω̄SI

i . Notice that one can use

any other criteria to find the dominant class.

We now begin to define the pairwise clique potentials. The pairwise clique potential between

the control points pi and p j is defined as V (dddiii,ddd jjj), where V (., .) is the L1 norm between

the two input arguments. Under this setting, the multi-class energy function corresponding to

the deformable registration task is defined as:

E (I,J,SI,D;W ) = ∑
i∈V

Ūi(dddiii, I,J,S
I;W )+ ∑

(i, j)∈E

V (dddiii,ddd jjj) (A.3)

Therefore, we aim at finding the optimal deformation D̂ by solving the following problem:

D̂ = argmin
D∈L |V |

E (I,J,SI,D;W ). (A.4)

The Approximate Inference Algorithm. Similar to [48], we adopt a pyramidal approach

that allows us to refine the search space at every level and, at the same time, capture a big

range of deformations. We use the well known FastPD [77] as the inference algorithm at

every level of the pyramid. Notice that the energy function (A.3) is defined over the nodes
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and the edges of the sparse graph G which represents the deformation field, and not over

the dense voxels and the neighbourhood system defined over the input image I. The reason

being that the input images are too big and thus can not be optimized efficiently. Once we

obtain the optimal deformation D̂, we estimate the dense deformation field using the free

form deformation interpolation model [110] in order to warp the input image.

A.4 Learning the Parameters

In the previous section we assumed that the weight matrix W is given to us. However,

knowing the weight matrix a priori is non-trivial and hand tuning it becomes infeasible

very quickly as the number of metrics and the classes increases. In order to circumvent this

problem, we propose an algorithm to learn the weights using a given dataset. Our algorithm is

based on the well known latent structured SVM framework [122, 126, 135] which optimizes

an upperbound on the empirical risk, discussed in detail in section 2.5. Instead of learning

the complete weight matrix at once, we learn the weights for each class c ∈ C individually.

From now onwards, the weight vector wc denotes a particular column of the weight matrix

W , which represents the weights corresponding to a particular class. We use the words

‘parameters’ and ‘weights’ interchangeably. In what follows we talk about the learning

algorithm in details.

A.4.1 Preliminaries

Dataset. We consider a dataset D = {(xi,yi)}i=1,··· ,N . Each xi is a pair represented as

xi = (Ii,Ji), where Ii is the source volume (or the source image) and Ji is the target volume

(or the target image). Similarly, each yi is a pair represented as yi = (SI
i ,S

J
i ), where SI

i and

SJ
i are the segmentation masks for the source and target images, respectively. The size of

each segmentation mask is the same as that of the corresponding images. As stated earlier,

the segmentation mask is formed by the elements (or voxels) sk ∈ C , where C is the set of

classes.

The Loss Function. The loss function ∆(SI,SJ) ∈ R≥0 evaluates the similarity between

the two segmentation masks SI and SJ . Higher value of ∆(., .) implies higher dissimilarity

between the segmentations. Since our final evaluation is based on the DICE, therefore, we

use a DICE based loss function as:

∆(SI,SJ) = 1−DICE(SI,SJ). (A.5)
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We approximate the dice between the segmentation masks as defined below:

DICE(SI,SJ) = 2 ∑
i∈V

|φ(pI
i )∩φ(pJ

i )|

|φ(pI
i )|+ |φ(pJ

i )|
, (A.6)

where, φ(pI
i ) and φ(pJ

i ) are the patches at the control point pi on the segmentation masks

SI and SJ , respectively. The function |.| represents the cardinality of a given set. The above

approximation of the dice makes it decomposable over the nodes of the graph G. As will be

discussed shortly, this decomposition allows us to train our algorithm very efficiently.

Joint Feature Map. Given the parameters wc for a particular class, the deformation D,

and the input tuple x, the mutli-class energy function (A.3) can be trivially converted into

class based energy function as follows:

Ec(x,D;w) = w⊤
c ∑

i∈V

Ui(dddiii,x)+wp ∑
(i, j)∈E

V (dddiii,ddd jjj). (A.7)

where, wp ∈R≥0 is the parameter associated with the pairwise term. Let us denote the param-

eter vector w ∈ R
n+1 as the concatenation of wc and wp. Clearly, the energy function (A.7)

is linear in w and can be written as:

Ec(x,D;w) = w⊤Ψ(x,D). (A.8)

where, Ψ(x,D) ∈ R
n+1 is the joint feature map defined as:

Ψ(x,D) =

















∑i∈V U 1
i (dddiii,x)

∑i∈V U 2
i (dddiii,x)
...

∑i∈V U n
i (dddiii,x)

∑(i, j)∈E V (dddiii,ddd jjj)

















(A.9)

Notice that the energy function (A.7) does not depend on the source segmentation mask

SI . The only use of source segmentation mask in the energy function (A.3) is to obtain the

dominant class using the equation (A.2), which in this case is not required. However, we will

shortly see that the source segmentation mask SI plays a crucial role in the learning algorithm

to compute the loss function.
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Latent Variables. Ideally, the dataset D must contain the ground truth deformations D

corresponding to the source image I in order to compute the energy term defined in the

equation (A.7). Since annotating the dataset with the ground truth deformation is non-trivial,

we use them as the latent variables in our algorithm. As will be seen shortly, we impute these

deformations using the given dataset ensuring that the loss (as defined in the equation (A.5))

between the source segmentation mask when deformed using the imputed deformation field,

and the target segmentation mask is minimized.

A.4.2 The Objective Function

Given the dataset D , we would like to learn the parameter vector w such that minimizing

the energy function (A.7) leads to a deformation field which when applied to the source

segmentation mask gives minimum loss with respect to the target segmentation mask. Let

us denote g(S,D) as the deformed segmentation when the deformation D is applied to the

segmentation mask S. Therefore, ideally, we would like to learn w such that:

w∗ = argmin
w

1
N

∑
i

∆(g(SI
i , D̄),SJ

i ). (A.10)

where, D̄ = argminD E (xi,D;w). The above objective function is the empirical risk mini-

mization based formulation. However, the objective function is highly non-convex in w,

therefore, minimizing it directly makes the algorithm prone to bad local minima. In order to

circumvent this problem, we optimize a regularized upper bound on the loss as follows:

min
w,{ξi}

1
2
||w||2 +α||w−w0||

2 +
C

N
∑

i

ξi,

s.t. min
D,∆(g(SI

i ,D),SJ
i )=0

w⊤Ψ(xi,D)≤ w⊤Ψ(xi, D̄)−∆(g(SI
i , D̄),SJ

i )+ξi,∀D̄,∀i

wp ≥ 0,ξi ≥ 0,∀i. (A.11)

The above objective function minimizes an upper bound on the dice based loss function

denoted as the variable ξi, known as the slack. The first term in the objective function ||w||2,

is the regularization term used to avoid overfitting. The effect of the regularization term is

controlled by the hyper-parameter C. The second term is the proximity term. This ensures

that the learned w is close to the initialization w0. The effect of the proximity term can be

controlled by the hyperparameter α . Intuitively, for a given input-output pair, the constraints

of the above objective function enforce that the energy corresponding to the best possible

deformation field, in terms of both energy and loss (in order to be semantically meaningful),
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must always be less than or equal to the energy corresponding to any other deformation field

with a margin proportional to the loss and some positive slack.

Notice that, the term minD,∆(g(SI
i ,D),SJ

i )=0 w⊤Ψ(xi,D), which is the minumum over affine

functions, is concave. Therefore, the above objective function can be easily shown to be the

sum of convex and concave functions, which is nothing but difference of convex functions.

Hence, non-convex. Shortly we will see how to upperbound the concave term, also known

as the latent variable imputation, in order to make the problem convex which allows us to

iteratively and efficiently optimize the above objective function.

A.4.3 The Learning Algorithm

While the objective function (A.11) optimizes an upper bound on the empirical risk, it is a

non-convex program. Hence, it can not be optimized efficiently to obtain the optimal set

of parameters. However, it can be shown that the objective function is a special family of

non-convex functions known as the difference of convex functions [98], which can be seen as

the sum of the convex and the concave functions. For such family of non-convex functions,

the well known CCCP algorithm [138] can be used to obtain a local minima or a saddle point,

discussed in detail in section 2.5. Broadly speaking, the CCCP algorithm consist of three

steps — (1) upperbounding the concave part at a given w, which leads to an affine function

in w; (2) optimizing the resultant convex function (sum of convex and affine functions is

convex); (3) repeating the above steps until the objective can not be decreased beyond a given

tolerance of ε .

The complete CCCP algorithm for the optimization of the objective function (A.11) is shown

in the Algorithm 18. The first step of upperbounding the concave functions (Algorithm 18,

Line 3) is the same as the latent imputation step, which we call the segmentation consistent

registration problem. The second step is the optimization of the resultant convex problem

(Algorithm 18, Line 4), which, in this case, is the optimization of the SSVM. The optimization

leads to updating the parameters. We use the well known cutting plane algorithm [61] for

this purpose. In what follows we discuss these steps in detail.

Segmentation Consistent Registration. As already discussed, the ground truth deforma-

tion is not known a priori. Thus, in this step, we generate the best possible ground truth

deformation field at a given w. This is same as the latent imputation step of the CCCP algo-

rithm. Recall that we are interested in learning the parameters w such that the upper bound

on the loss function, defined in equation (A.5), is minimized. This leads us to formulate the

latent imputation step as an inference problem with additional constraints. These additional

constraints ensure that the imputed deformation field deforms the input image such that the
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loss between the deformed input image and the target image is minimized. Mathematically,

for a given parameter vector w, the latent deformation is imputed by solving the following

problem:

D̂i = argmin
D∈L |V |,∆(g(SI

i ,D),SJ
i )=0

w⊤Ψ(xi,D). (A.12)

The above problem can be relaxed as follows:

D̂i = argmin
D∈L |V |

w⊤Ψ(xi,D)+η∆(g(SI
i ,D),SJ

i ). (A.13)

where, η controls the relaxation trade-off parameter. Since the loss function used is de-

composable, therefore, the above problem is equivalent to the inference problem for the

deformable registration with trivial modifications on the unary potentials. Thus, can be solved

efficiently in polynomial time using the FastPD based approximate inference algorithm briefly

discussed in the section A.3.

Updating the Parameters. Once the latent variables have been imputed or the concave

functions have been upperbounded, the resultant objective function can be written as:

min
w,{ξi}

1
2
||w||2 +α||w−w0||

2 +
C

N
∑

i

ξi,

s.t. w⊤Ψ(xi, D̂i)≤ w⊤Ψ(xi, D̄)−∆(g(SI
i , D̄),SJ

i )+ξi,∀D̄,∀i

wp ≥ 0,ξi ≥ 0,∀i. (A.14)

where, D̂i is the latent deformation field imputed by solving the problem (A.13). Intuitively,

the above objective function tries to learn the parameters w such that the energy corresponding

to the imputed deformation field is always less than the energy for any other deformation

field with a margin proportional to the loss function with some positive slack. Notice that

the above objective function has exponential number of constraints, one for each possible

deformation field D̄ ∈ L |V |. In order to alleviate this problem we use the well known

cutting plane algorithm [61]. Let us briefly talk about the idea behind the cutting plane

algorithm. For a given w, each deformation field D̄ gives a slack. Therefore, instead of

minimizing all the slacks for a particular sample at once, we rather find the deformation field

that leads to the maximum value of the slack and store this in a set known as the working

set. This is known as finding the most violated constraint. Therefore, instead of using

exponentially many constraints, we now optimize our algorithm over the constraints stored

in the working set. This process is repeated till no constraints can be added to the working
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Algorithm 18 The CCCP Algorithm.

input D , w0, C, α , η , the tolerance ε .
1: t = 0, wt = w0.
2: repeat

3: Segmentation consistent registration. For a given wt , impute the latent variables D̂i

for each sample by solving the problem (A.13).
4: Obtain the updated parameters wt+1 by solving the convex optimization prob-

lem (A.14). The most violated constraint can be found by solving the problem (A.15).
5: t = t +1
6: until The objective function of the problem (A.11) does not decrease more than ε .

set. The main ingredient of the above discussed cutting plane algorithm is finding the most

violated constraint. As discussed earlier, the most violated constraint for the ith sample is

the deformation field that maximizes the slack corresponding to this sample. Rearranging

the terms in the constraints of the objective function (A.14) to obtain the slack, ignoring

the constant term w⊤Ψ(xi, D̂i), and maximizing it with respect to the possible deformations

(which is equivalent to minimizing the negative of it), leads to the following problem solving

which gives the most violated constraint:

D̄i = argmin
D∈L |V |

�

w⊤Ψ(xi, D̄)−∆(g(SI
i , D̄),SJ

i )
�

. (A.15)

Since the loss function is decomposable, therefore, the above problem is equivalent to the

inference problem for the deformable registration with trivial modifications on the unary

potentials. Thus, can be solved efficiently in polynomial time using the FastPD based

approximate inference algorithm discussed in the section A.3.

A.4.4 Prediction

Once we obtain the learned parameters wc for each class c ∈ C using the Algorithm 18, we

form the matrix W where each column of the matrix represents the learned parameter for a

specific class. This learned matrix is then used to solve the registration problem defined in

the equation (A.3) using the approximate inference algorithm discussed in the section A.3.

A.5 Experiments and Results

We evaluated our registration algorithm and the learning framework on three different chal-

lenging medical datasets – (1) RT Parotids, (2) RT Abdominal, and (3) IBSR. These datasets
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Figure A.1: The top row represents the sample slices from three different volumes of the RT
Parotids dataset. The middle row represents the sample slices of the RT Abdominal dataset,
and the last row represents the sample slices from the IBSR dataset.

involve several anatomical structures, different image modalities, and inter/intra patient

images, which makes the deformable registration task on these dataset highly challenging.

Figure A.1 shows the examples of the slices from the 3D volumes corresponding to each

dataset. In all the experiments, we cross validate the hyper parameters C and α , and use

η = 50. We use four different metrics in all the experiments: (1) sum of absolute differences

(SAD), (2) mutual information (MI), (3) normalized cross correlation (NCC), and (4) discrete

wavelet coefficients (DWT). In all the experiments (single and multi-metric) we used the

same set of parameters for the pyramidal approach based inference algorithm (discussed

in the section A.3). These parameters are as follows: 2 pyramid levels, 5 refinement steps

per pyramid level, 125 labels, and distance between control points of 25mm in the finer

level. The running time for each registration case is around 12 seconds. For the training, we

initialized w0 with the hand tuned values for each metric: w0 = (0.1,10,10,10), for SAD,

MI, NCC, and DWT, respectively. Figures A.2 and A.3 show visual results on all the three

datasets. Below we give details about the different datasets and discuss the results obtained

in each of them.
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Figure A.2: Overlapping of the segmentation masks in different views for one registration
case from RT Abdominal (first and second rows) and RT Parotids (third and fourth rows)
datasets. The first column corresponds to the overlapping before registration between the
source (in blue) and target (in red) segmentation masks of the different anatomical structures.
From second to sixth column, we observe the overlapping between the warped source (in
green) and the target (in red) segmentation masks, for the multiweight algorithm (MW) and
the single metric algorithm using SAD, MI, NCC and DWT). We observe that MW gives a better
fit between the deformed and ground truth structures than the rest of the single similarity
measures, which are over segmenting most of the structures showing a poorer registration
performance.

RT Parotids. The first dataset (RT Parotids) contains 8 CT volumes of head, obtained from

4 different patients, 2 volumes per patient. The volumes are captured in two different stages

of a radiotherapy treatment in order to estimate the radiation dose. Right and left parotid

glands were segmented by the specialists in every volume. The dimensions of the volumes

are 56×62×53 voxels with a physical spacing of 3.45mm, 3.45mm, and 4mm, in x, y, and z

axes, respectively. We generated 8 pairs of source and target volumes using the given dataset.

Notice that, while generating the source and target pairs, we did not mix the volumes coming

from different patients. We splitted the dataset into train and test, and cross validated the

hyperparameters C and α on the train dataset. The average results on the test dataset are

shown in the Figure A.4.
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Figure A.3: Qualitative results for one slice of one registration case from IBSR dataset.
Since showing overlapped structures in the same image is too ambiguous given that the
segmentation masks almost cover the complete image, we are showing the intensity difference
between the two volumes. The first column shows the difference of the original volumes
before registration. From second to sixth column we observe the difference between the
warped source and the target images, for the MW and the single metric algorithm using SAD,
MI, NCC or DWT). According to the scale in the bottom part of the image, extreme values
(which mean high differences between the images) correspond to blue and red colors, while
green indicates no difference in terms of intensity. Note how most of the big differences
observed in the first column (before registration) are reduced by the MW algorithm, while
some of them (specially in the peripheral area of the head) remain when using single metrics.

RT Abdominal. The second dataset (RT Abdominal) contains 5 CT volumes of abdomen

for a particular patient captured with a time window of about 7 days during a radiotherapy

treatment. Three organs have been manually segmented by the specialists: (1) sigmoid, (2)

rectum, and (3) bladder. The dimensions of the volumes are 90× 60× 80 voxels with a

physical spacing of 3.67mm, 3.67mm, and 4mm, in x, y, and z axes, respectively (there are

small variations depending on the volume). We generated a train dataset of 6 pairs and test

dataset of 4 pairs. The results on the test dataset are shown in the Figure A.5.

IBSR. The third dataset (IBSR) is the well known Internet Brain Segmentation Repository

dataset, which consists of 18 brain MRI volumes, coming from different patients. Segmenta-

tions of three different brain structures are provided by the specialists: white mater (WM),

gray mater (GM), and cerebrospinal fluid (CSF). We used a downsampled version of the

dataset to reduce the computation. The dimension of the volumes are 64×64×64 voxels

with a physical spacing of 3.75mm, 3.75mm, and 3mm in x, y, and z axes, respectively. To
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Figure A.4: Results for the RT parotids dataset for the single-metric registration (SAD,
MI, NCC, DWT) and the multi-metric registration (MW). The weights for the multi-metric
registration are learned using the framework proposed in this work. ‘Parotl’ and ‘Parotr’ are
the left and the right organs. The red square is the mean and the red bar is the median. It is
evident from the results that using the learned linear combination of the metrics outperforms
the single-metric based deformable registration.

perform the experiments, we divided the 18 volumes in 2 folds of 9 volumes on each fold.

This gave a total of 72 pairs per fold. We used an stochastic approach for the learning process,

where we sample 10 different pairs from the training set, and we tested on the 72 pairs of the

other fold. We run this experiment 3 times per fold, giving a total of 6 different experiments,

with 72 testing samples and 10 training samples randomly chosen. The results on the test

dataset are shown in the Figure A.6.

Results. As evident from the Figures A.4, A.5, and A.6, the linear combination of simi-

larity measures weighted using the learned coefficients outperforms the single metric based

registration. In all the cases the dice for the multi-metric is higher than the dice for the single

metric based registration, or it is as good as the best dice obtained using the single metric

registration (please refer to the Figure A.5, ‘Parotr’ to see the case in which the multi-metric

is atleast as good as the best obtained using the single metric). The results for the ‘Sigmoid’

organ in the Figure A.5 show that in some cases the multi-metric based registration can

significantly outperform the single metric based registration.

A.6 Discussions and Conclusions

In this work we introduced a novel and sophisticated framework for learning aggregations of

image similarities in the context of deformable image registration. We also proposed a multi-

metric MRF based image registration algorithm that incorporates such metric aggregations

by weighting different similarity measures depending on the anatomical regions. We showed

that associating different similarity criteria to every anatomical region yields results superior
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Figure A.5: Results for the RT abdominal dataset for the single-metric registration (SAD,
MI, NCC, DWT) and the multi-metric registration (MW). The weights for the multi-metric
registration are learned using the framework proposed in this work. ‘Bladder’, ‘Sigmoid’,
and ‘Rectum’ are the three organs on the dataset. The red square is the mean and the red bar
is the median. It is evident from the results that using the learned linear combination of the
metrics outperforms the single-metric based deformable registration.

to the classic single metric approach. In order to learn this mapping in real scenarios

where ground truth is generally given in the form of segmentation masks, we proposed to

conceive deformation fields as latent variables and implement our problem using the LSSVM

framework. The main limitation of our method is the need of segmentation masks for the

source images in testing time. However, different real scenarios like radiation therapy or

atlas-based segmentation methods fulfill this condition and can be improved through this

technique. Note that, at prediction (testing) time, the segmentation mask is simply considered

to determine the metrics weights combination per control node (as indicated in equation A.2).

The segmentation labels are not used explicitly at testing time to guide the registration process

that is purely image based. In our multi-metric registration approach, segmentation masks

are only required (at testing time) for the source image and are only used to choose the

best learned metric aggregation. The idea could be further extended to unlabeled data (as it

concerns the source image at testing time) where the dominant label class per control node is

the output of a classification/learning method.

Rather than employing highly customized solutions that suffer from scalability, portability and

modularity, our approach relies on producing class-dependent metrics as linear combination

of widely known and conventional mono-modal and multi-modal metrics. Consequently,

the proposed registration method is scalable and modular and can be adjusted in any setting

by simply changing the linear weights. These weights could be learned trivially offline

using partially annotated data or could easily integrate new metrics. Extensive experimental

validation on various challenging datasets demonstrated the potentials of the proposed

method.
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Figure A.6: Results for the IBSR dataset for the single-metric registration (SAD, MI, NCC,
DWT) and the multi-metric registration (MW). The weights for the multi-metric registration
are learned using the framework proposed in this work. ‘CSF’, ‘Grey Mater’, and ‘White
Mater’ are different structures in the brain. The red square is the mean and the red bar is the
median. It is evident from the results that using the learned linear combination of the metrics
outperforms the single-metric based deformable registration.

The registration weights were learned by minimizing an upperbound on the DICE based

loss function. DICE is conventionally used but does not offer a very convincing picture as it

concerns registration performance. The integration of alternative accuracy measures such

as the Hausdorff distance between surfaces or even real geometric distances for anatomical

landmarks could further enhance the performance and the robustness of the method. The

use of alternative parameter learning mechanisms [78] is also another interesting approach

to explore. Last but not least, the use of the method on clinical applications where domain

knowledge is present (for example, radiotherapy) could be considered to improve existing

patient positioning practices.





Appendix B

Optimization

B.1 Brief Introduction to Lagrangian Theory

In case of unconstrained smooth convex optimization problem, the optimality condition can

be obtained by equating the first derivative of the objective function equal to zero. However,

in case of constrained convex optimization problems, this is not the case. We use the concept

of Lagrange dual [6, 10] to study the optimality conditions of the constrained optimization

problems (we talk about convex optimization problems) of the following form:

min
w∈Rd

f0(w) (B.1)

s.t. fi(w)≤ 0, i = 1, · · · ,m, (B.2)

hi(w) = 0, i = 1, · · · , p, (B.3)

where, w∈R
d is the optimization variable (or the primal variable), f0 :Rd →R and fi :Rd →

R are differentiable convex functions, and hi : Rd → R are the affine functions. Notice that

the equality constraints are not any general convex functions. They are the affine functions, a

special type of convex functions. The above problem is also called the primal problem. A

given primal variable w is said to be primal feasible if all the constraints are satisfied at this

point. Let p∗ be the optimal solution of the above problem.

B.1.1 Lagrangian

The Lagrangian L : Rd ×R
m ×R

p → R of the constrained problem (B.1) is defined as:

L(w,α,β ) = f0(w)+
m

∑
i

αi fi(w)+
p

∑
i

βihi(w) (B.4)
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where, α ∈ R
m and β ∈ R

p are called the dual variables or the Lagrange multipliers. Intu-

itively, the objective function (B.4) is the unconstrained form of the objective function (B.1).

In another words, it is the weighted sum of the objective and the constraints of the prob-

lem (B.1). The multipliers αi and βi are the costs assigned to the constraint gi(w)≤ 0 and

hi(w) = 0, respectively.

B.1.2 Lagrange dual objective

The function g : Rm ×R
p → R, defined below, is known as the Lagrange dual objective.

g(α,β ) = inf
w

L(w,α,β ) = inf
w

( f0(w)+
m

∑
i

αi fi(w)+
p

∑
i

βihi(w)) (B.5)

The above function is obtained by the minimization of the Lagrangian over the primal

variables. Notice that the dual objective is an affine function of the dual variables.

Theorem 5. (The Lower Bound Property:) If αi ≥ 0,∀i, then, g(α,β ) ≤ p∗. In another

words, if αi ≥ 0 then the primal objective is always lower bounded by the dual objective.

Proof. The proof is rather simple. Let w be primal feasible (satisfies all the constraints of

the primal problem), and α ≥ 0. Then,

f0(w)≥ f0(w)+
m

∑
i

αigi(w)+
p

∑
i

βihi(w) = L(w,α ,β ) (B.6)

≥ inf
w

L(w,α,β ) = g(α,β ). (B.7)

The inequality (B.6) comes from the fact that αi fi(w)≤ 0 (since αi ≥ 0 and fi(w)≤ 0) and

βihi(w) = 0 (since hi(w) = 0).

B.1.3 Lagrange dual problem

Theorem 5 states that the primal objective is always lower bounded by the dual objective.

Therefore, the goal of the dual problem is to find the best (or tightest possible) lower bound

of the primal by solving the following maximization problem:

max
α,β

g(α,β ) (B.8)

s.t. α ≥ 0. (B.9)
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B.1.4 Strong duality and complementary slackness

Let d∗ be the optimal solution of the dual problem (B.8). In case of convex optimization

problem, the strong duality (p∗ = d∗) holds if following constraint qualification condition

(also known as the feasibility condition) is satisfied:

∃w : fi(w)≤ 0,∀i = 1, · · · ,m, (B.10)

hi(w) = 0,∀i = 1, · · · , p. (B.11)

The above constraint qualification states that there must exist a primal variable such that

all the constraints in the primal problem are satisfied. Let us assume that the strong duality

holds with primal and dual optimal solutions as w∗, α∗, and β ∗, respectively. Thus,

f0(w
∗) = g(α∗,β ∗) = inf

w
L(w,α∗,β ∗)

= inf
w

( f (w)+
m

∑
i

α∗
i fi(w)+

p

∑
i

β ∗
i hi(w))

≤ f0(w
∗)+

m

∑
i

α∗
i fi(w

∗)+
p

∑
i

β ∗
i hi(w

∗) (B.12)

≤ f0(w
∗). (B.13)

The strong duality is possible if and only if the inequalities (B.12) and (B.13) satisfy with

equality. This is guaranteed by the following two conditions:

• First Order Condition: The inequality (B.12) is satisfied with equality if w∗ is the

optimal solution of L(w,α∗,β ∗). Therefore, ∇wL(w,α∗,β ∗) = 0 must be satisfied at

w∗.

• Complementary Slackness: The inequality (B.13) is satisfied with equality if α∗
i fi(w

∗)=

0,∀i. Notice that hi(w
∗) = 0 is already satisfied because of the fact that w∗ is assumed

to be primal feasible. The condition α∗
i fi(w

∗) = 0,∀i is known as the complementary

slackness. If αi > 0, then fi(w
∗) = 0, and if fi(w

∗)< 0, then αi = 0.

B.1.5 Karush-Kuhn-Tucker (KKT) conditions

Combining the feasibility conditions, first order condition, and the complementary slackness

condition leads to the well known KKT conditions. If strong duality holds and w, α , and β

are optimal, then following KKT conditions must be satisfied:

1. Primal Feasibility: fi(w)≤ 0,∀i = 1, · · · ,m and hi(w) = 0,∀i = 1, · · · , p.
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2. Dual Feasibility: α ≥ 0.

3. First Order Condition: ∇wL(w,α,β ) = 0.

4. Complementary Slackness: αi fi(w) = 0,∀i.

B.2 SSVM as quadratic program

In this section we present the SSVM primal and dual problems in the form of the standard

quadratic programs (QP). These forms are very helpful for using off-the-shelf QP solvers. A

standard quadratic program has the following form:

min
q

1
2

q⊤Pq+q⊤c (QP)

s.t. Gq ≤ h,

Hq = z. (B.14)

where, q is the variable and P (also known as the Gram matrix) is a positive semidefinite

matrix. Few solvers expect the matrix G to be full rank, however, this is not a necessary

condition for the problem (QP).

SSVM Primal as QP The primal objective function of SSVM (equation (2.36)) can be written

as:

min
w,ξ

λ

2
∥w∥2 +

1
n

n

∑
i=1

ξi (B.15)

s.t. −w⊤Ψ(xi,y)−ξi ≤−∆(yi,y),∀i, ∀y ∈ Yi.

The variables in this case are the concatenation of w and ξ , therefore, q = (w,ξ ) ∈ R
d+n.

The other terms of the QP are:

P= λ

 

1d×d 0d×n

0n×d 0n×n

!

, c=
1
n

 

0d×1

1n×1

!

, G=









...

G(xi,y)
...









∈R
m×(d+n),h=









...

−∆(yi,y)
...









where, G(xi,y) = (−Ψ(xi,y),−ei) ∈ R
d+n. The vector ei ∈ {0,1}n has i−th element as

one and all other elements are zeros. There are no equality constraints. In the above QP,

the dimension of the variable is d +n, however, the matrices G and h corresponding to the
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inequality constraints have m rows each, one row per constraint. Since m is exponentially

large, no off-the-shelf QP solver can be used to optimize the above QP.

SSVM dual as QP The dual problem of the SSVM (equation (2.49)) can be written as:

min
α

λ

2
α⊤A⊤Aα −b⊤α (B.16)

s.t. ∑
y∈Yi

αi(y) = 1,∀i ∈ [n], (B.17)

−αi(y)≤ 0,∀i ∈ [n],∀y ∈ Yi. (B.18)

Here, α is the variable of the QP. The other terms of the QP are:

P=A⊤A, c=−b, G=−Im,h= 0m×1, H =













11×|y1|,01×|y2|, · · · ,01×|yn|

01×|y1|,11×|y2|, · · · ,01×|yn|
...

01×|y1|,01×|y2|, · · · ,11×|yn|













n×m

, z= 1n×1,

where, Im is the identity matrix of size m×m. Notice that, in the above QP, the variable

α ∈ R
m and the constraint matrices are exponentially large, therefore, no off-the-shelf QP

solver can be used to optimize it.

B.3 Frank-Wolfe Algorithm

The well known Frank-Wolfe (FW) algorithm [43] is an iterative method for the optimization

of the general differentiable convex functions defined over convex and compact domain:

argmin
q∈D

f (q) (B.19)

where, f is a convex and continuously differentiable function, and the domain D is convex

and compact. The FW algorithm is also known as the conditional gradient method. This

algorithm is very simple yet very powerful and useful. The algorithm has following steps –

(1) at a given qk, find the strict lowerbound of the function f by linearizing it; (2) minimize

the linearized function over the compact domain to obtain a new point s (also called an

‘atom’); (3) obtain qk+1 as the linear combination of qk and s; (4) repeat the above processes

till convergence. The FW algorithm is shown in Algorithm 19 in this Appendix. For the
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purpose of better understanding, the steps of the FW algorithm are shown pictorially in the

Figure B.1.

(a) Solving the linearization prob-
lem at qk.

(b) Obtained new point qk+1 and
repeating the process.

Figure B.1: The blue curve shows the convex function and the black polygon shows the
convex compact domain. At a given qk, the Figure B.1a shows the linearization and the
minimization of the linearized function over the domain to obtain the atom sk. Figure B.1b
shows the new point qk+1 obtained using the linear combination of qk and sk. The green line
shows the linearization at the new point qk+1, and sk+1 is the new atom obtained as a result
of the minimization of this function.

Let us have a look into each step one by one. The linearization problem can be solved by

finding the first order Taylor series expansion of f at a given qk:

f (p)≥ f (qk)+ ⟨∇ f (qk),(p−qk)⟩ (B.20)

= f (qk)+ ⟨∇ f (qk),p⟩−⟨∇ f (qk),qk⟩
| {z }

fl(p)

(B.21)

where, fl(p) is the linearization (a strict under estimator) of the function f at qk. The

minimization of the linearized function over the domain D is:

s = argmin
p∈D

fl(p) := f (qk)+ ⟨∇ f (qk),p⟩−⟨∇ f (qk),qk⟩ (B.22)

= argmin
p∈D

⟨∇ f (qk),p⟩ (B.23)
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Figure B.2: Visualization of the linearization duality gap. The blue curve is the convex
function f . The red line is the linearization of f at qk, denoted as fl . The atom s is obtained as
the result of the minization of fl over the domain. The duality gap is g(qk) = f (qk)− fl(s).

The equality (B.23) comes from the fact that the quantities f (qk) and ⟨∇ f (qk),qk⟩ are

constants at a given qk. Notice that solving the problem (B.23) is equivalent to solving

a linear program over the compact domain D, which can be solved very efficiently using

many off-the-shelf LP solvers. Taking the convex combination of qk and s to obtain the new

point qk+1 is another crucial step. In order to ensure that the new point qk+1 is always an

improvement over the old point qk, the step size γ must be obtained using the well known

line-search based approach:

γ = argmin
γ∈[0,1]

f (γs+(1− γ)qk)) (B.24)

In [43] γ was chosen to be 2
k+2 . The last and the very important step is to decide when to

stop the algorithm, the convergence criteria. The easiest way is to decide based on an upper

limit on the number of iterations. However, this may lead to suboptimal results. To get the

certificate about the quality of the solution obtained, one must use the Lagrange duality gap

based criteria. Unfortunately, it may not be very efficient or simple to obtain the Lagrange

duality gap in many optimization problems. However, the Frank-Wolfe algorithm inherently

allows us to obtain the linearization duality gap, a special case of Fenchel duality gap, very

efficiently [60, 86]. The linearization duality gap, shown in the Figure B.2, can also be

used as a convergence criteria. In what follows we give an expression of the linearization

duality gap. Let s be the solution of the linearization problem (B.23) at a given qk. Then the
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Algorithm 19 The Frank-Wolfe Algorithm.

input K, tolerance ε , q0 ∈ D.
1: k = 0.
2: repeat

3: Solve the linearized problem (B.23) to obtain the atom s.
4: Find the step size γ – (1) either use γ = 2

k+2 ; or (2) find optimal step size by solving
the ‘line-search’ problem (B.24).

5: Update: qk+1 = γs+(1− γ)qk, k = k+1.
6: Convergence criteria – (1) use upper limit (K) on the number of iterations (k); or (2)

use linearization duality gap g(qk) obtained using equation (B.29); or (3) use both.
7: until Converged.
8: return qk+1

linearization duality gap g(qk) at point qk is f (qk)− fl(s), where fl is the linearlization of f

at qk (refer to the equation (B.21)). This gap can be obtained as follows:

g(qk) = f (qk)−min
p∈D

fl(p) (B.25)

= f (qk)−min
p∈D

�

f (qk)+ ⟨∇ f (qk),(p−qk)⟩
�

(B.26)

=−min
p∈D

⟨∇ f (qk),(p−qk)⟩ (B.27)

= ⟨∇ f (qk),qk⟩−min
p∈D

⟨∇ f (qk),p⟩ (B.28)

= ⟨∇ f (qk),(qk − s)⟩ (B.29)

where, s = argminp∈D⟨∇ f (qk),p⟩ is obtained by solving the linearlization problem (B.23),

which is the first step of the Frank-Wolfe algorithm (please refer to the Figure B.2). Therefore,

the linearization duality gap g(qk) can be obtained as the byproduct of the Frank-Wolfe

algorithm. Notice that, because of the fact that fl is an strict under estimator of the function f ,

the linearization duality gap g(qk) is always positive. Another important point to remember

is that g(qk) is the gap at point qk, not at qk+1 or s.
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