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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01374857


UNIVERSITÉ PARIS-SUD
ECOLE DOCTORALE NO. 422 :

STITS-SCIENCES ET TECHNOLOGIES DE L’INFORMATION DES

TÉLÉCOMMUNICATIONS ET DES SYSTÈMES

LABORATOIRE DES SIGNAUX ET SYSTÈMES, UMR8506
(CNRS-CENTRALESUPÉLEC-UNIVERSITÉ PARIS-SUD)

DISCIPLINE : PHYSIQUE

THÈSE DE DOCTORAT

Soutenue le 28 Septembre 2015 par

Changyou Li

Modélisation et simulation de la diffraction

électromagnétique par des laminés plans

renforcés par des fibres cylindriques

arrangées périodiquement

Directeur de thèse : Dominique Lesselier Directeur de recherche CNRS

Composition du jury :

Président du jury : Jean-Jacques Greffet Professeur, Université Paris Sud

Rapporteurs : Olivier Dazel Professeur, Université du Maine
André Nicolet Professeur, Aix-Marseille Université

Examinateurs : Jean-Jacques Greffet Professeur, Université Paris Sud
Patrick Joly Directeur de recherche INRIA
Christophe Reboud Ingénieur Chercheur CEA





❯◆■❱❊❘❙■❚➱ P❆❘■❙✲�✁❉

✂❈❖▲✂ ✄❖❈☎❖✆✝▲✂ ✞✟✳ ✹✷✷✿
✠☎✡☎✠☛✠☞✌✍✎☞✍✏ ✍✑ ☎✍☞❍✎✟✒✟●✌✍✏ ✓✍ ✒✬✡✎❋✟✔▼✕✑✌✟✎ ✓✍✏

☎✖✒✖☞✟▼▼✗✎✌☞✕✑✌✟✎✏ ✍✑ ✓✍✏ ✠❨✏✑➮▼✍✏

✘✙❇✚✛✙✜✚✢✛✣ ✤✣✥ ✦✢✧★✙✩❳ ✣✜ ✦✪✥✜✫✭✣✥✱ ✮✯✰✽✺✵✻
✴✶✸✰✦✼✶✣★✜✛✙✾✣✦✩❀❁✾✣❂✼✮★✢❃✣✛✥✢✜❁ ❄✙✛✢✥✼✦✩✤❅

✄✌✏☞✌❏✒✌✎✍✿ ❑❍❨✏✌☞✏

◗❲❊❙■❙ ❩❬ ❭❩❪❚❩❘❆❚❊

❫❡❢❡♥❞❡❞ ✦❡♣t❡♠❜❡r ❴✽✱ ❴✵❵✺ ❜②

❛❤❝❣✐❥♦✉ ❦❧

qs✈✇①③④⑤⑥⑦⑧✈①⑨✇ ⑤④⑩✈s⑨⑧⑦ ⑥⑧⑩ ❶⑨⑤❷s⑥①⑨④⑧

④❸ ❹❺✈③❻③✈⑨⑧❸④③✇✈⑩ ❼✈③⑨④⑩⑨✇⑥ss❽❻❶①③❷✇①❷③✈⑩

❼s⑥⑧⑥③ s⑥⑤⑨⑧⑥①✈❶

❾❿➀➁➂➃➄➀ ➄➅ ➃➆➁ ➃➆➁➇❿➇➈ ➉➊➋➌➍➌➎➏➐ ➑➐➒➒➐➓➌➐➔ ➉➌➔➐→➣➐➏➔ ↔➐ ➔➐→↕➐➔→↕➐ ➙➛➜➝

➞➄➟➠➄➇❿➃❿➄➡ ➄➅ ➢➤➀➥➈
➦➔➐➒➌↔➐➍➣ ➊➧ ➨➏➔➩➫ ➭➐➯➍➲➭➯→➎➏➐➒ ➳➔➐➧➧➐➣ ➦➔➊➧➐➒➒➐➏➔➵ ➸➍➌➺➐➔➒➌➣é ➦➯➔➌➒ ➝➏↔

➜➐➻➊➔➣➐➔➒➫ ➼➓➌➺➌➐➔ ➉➯➽➐➓ ➦➔➊➧➐➒➒➐➏➔➵ ➸➍➌➺➐➔➒➌➣é ↔➏ ➾➯➌➍➐
➚➍↔➔é ➛➌→➊➓➐➣ ➦➔➊➧➐➒➒➐➏➔➵ ➚➌➪➲➾➯➔➒➐➌➓➓➐ ➸➍➌➺➐➔➒➌➣é

➶➪➯➋➌➍➐➔➒➫ ➭➐➯➍➲➭➯→➎➏➐➒ ➳➔➐➧➧➐➣ ➦➔➊➧➐➒➒➐➏➔➵ ➸➍➌➺➐➔➒➌➣é ➦➯➔➌➒ ➝➏↔
➦➯➣➔➌→➹ ➭➊➓➩ ➉➌➔➐→➣➐➏➔ ↔➐ ➔➐→↕➐➔→↕➐ ➘➛➜➘➚
➙↕➔➌➒➣➊➻↕➐ ➜➐➴➊➏↔ ➘➍➷é➍➌➐➏➔ ➙↕➐➔→↕➐➏➔ ➙➶➚





Acknowledgements

Sincere thanks and gratitude are first given to my supervisor Dr. Dominique Lesselier, Di-

recteur de Recherche, Centre National de la Recherche Scientifique (CNRS), for providing

me this great opportunity to study the theory of electromagnetic waves and fields, for

sharing his expertise and for giving his valuable guidance during the three years.

I wish also to express my warm thanks to Dr. Yu Zhong, who is now working in the

Institute of High Performance in Singapore, for the helpful discussions and for carefully

reviewing various manuscripts. My appreciation also goes to Dr. Vincent Lescarret, who

is working in Laboratoire des Signaux et Systèmes (L2S), for helping me in my work on

homogenization of the structure. Many thanks are also given to Dr. Marc Lambert, Chargé

de Recherche CNRS, for providing me good advices whenever needed.

This three-year life in L2S offered me a valuable opportunity to encounter many friends

and nice colleagues. I express my warm thanks to Giacomo Rodeghiero, Panagiotis Piteros

and Henri Vallon for helping me from the very beginning and sharing with me their hap-

piness. I am grateful to Christophe Conessa for explaining so many interesting things to

me during the three years, from the name of a special fruits to the cultural background of

monuments and places.

I also wish to express my thanks to my Chinese friends Fan Huang, Xi Cheng, Pingping

Ding and Zicheng Liu in L2S, Xusheng Wang in Université Paris-Sud, Ming Xu in Génie

électrique et électronique de Paris (GEPS), and Yan Tang in Université Pierre et Marie

CURIE. They helped and accompanied me through the three years.

I would also like to thank my jury members, Professor Olivier Dazel, Professor André

Nicolet, Professor Jean-Jacques Greffet, Professor Patrick Joly, and Dr. Christophe Reboud

for serving as my jury members of the thesis defense and referees for the first two.

I am very grateful to my parents for their great support and confidence. I am also deeply

indebted to my adorable wife Jinxiu Wang. Her great support, warm encouragements and

firm confidence are the key of the success of this adventure. Gratitude is also given to

my brothers and sisters for carefully looking after our parents and supporting me all these

years with never-ending loves. Thanks to all the people who has helped me in the work

and has brought me the colorful life in the three years.





Summary

English: The contribution corresponds to the electromagnetic modeling of fiber-reinforced

periodically organized composites. The final goal is to gain a good understanding of their

electromagnetic behavior as well as to acquire images that should exhibit the location

of possibly damaged zones, and provide some quantification of these zones. The thesis

focuses on the scattering of well-organized periodic structures and building up an effi-

cient full-wave computational model for multilayered composites, wherein each layer is

reinforced by a periodic array of fibers, which is the first step for further study of the

disorganized one.

The work firstly considered the scattering problem of a slab in which infinite circular

fibers, with the same radius, are periodically embedded with the same orientation of their

axes and the same center-to-center distance. A 2-dimensional problem with normally and

obliquely incident E- and H-polarized plane waves as well as Gaussian beams is firstly

considered for understanding the principles and philosophies of the used mode-matching

method and multipole expansion. Then the work is extended to the investigation of the

scattering of the slab to a conically incident 3-dimensional electromagnetic wave, which

shows the potential of the work for obtaining the response of the structure to a point

source.

A more practical but complicated multilayered composite, constructed by stacking up

the slabs one over the other, is further investigated. Two different composites are taken

into account. To study the first composite, with fibers in different layers having the same

orientations, T-matrix- and S-matrix-based methods are introduced into the work for solv-

ing the linear system produced by mode-matching at the boundaries between two adjacent

layers. Then, further investigation of the second kind of composite, wherein the fibers

within different layers are orientated into different directions, is carried out by extending

the approach properly. Some attention is also given to homogenization issues, so as to link

small-scale approaches as developed in the thesis with large-scale ones as often considered

in non-destructive testing of composite laminates.

Extensive numerical simulations are proposed, validated with results existing in the lit-

erature (notably the ones of photonic crystals) and by using brute-force solvers. Emphasis

is also on special cases of composites (glass-fiber- and graphite-fiber-based ones) as most

often faced in practical applications, with appropriate frequency bands chosen in harmony

with the dielectric or conductive aspect of the reinforcing fibers.



vi

Français: La thèse porte sur la modélisation électromagnétique et la simulation de

composites stratifiés plans (laminés), renforcés par des fibres organisées périodiquement.

L’objectif est d’acquérir une bonne compréhension du comportement électromagnétique de

telles structures, en première et étape de ce que pourrait ultérieurement être la production

d’images mettant en évidence la localisation de zones éventuellement endommagées, et

fournissant une certaine quantification de celles-ci.

La thèse proprement dite se concentre donc sur la construction et l’évaluation de mod-

èles de la diffraction électromagnétique par des composites multicouches tels que chaque

couche est renforcée par des fibres disposées périodiquement. Est d’abord investiguée la

diffraction par une plaque diélectrique (mono-couche) au sein de laquelle des fibres cylin-

driques de section circulaire de même rayon sont incorporées périodiquement, ces fibres

ayant la même orientation de leurs axes et la même distance de centre à centre.

Un cas bidimensionnel impliquant des ondes planes E ou H-polarisées, ainsi que des

faisceaux gaussiens, normalement ou obliquement incidents, est d’abord pris en consid-

ération afin de mieux comprendre principes et philosophies des méthodes de choix, le

couplage de mode et l’expansion multipolaire. Puis le travail est étendu, la diffraction de

la plaque sous un éclairement tridimensionnel (conique) étant alors traitée en détail, ce

qui montre aussi le potentiel de la méthodologie mise en œuvre si l’on souhaite obtenir la

réponse électromagnétique de la structure à une source ponctuelle.

Un composite multicouche, plus courant, mais plus complexe, qui est fait d’un empile-

ment de plaques l’une sur l’autre, est alors étudié. Deux différentes espèces de composites

sont ici prises en compte. Pour étudier la première, dont les fibres dans les différentes

couches possèdent les mêmes orientations, des méthodes à base de matrices dites S ou

dites T sont introduites, impliquant entre autre de s’intéresser à une résolution convenable

du système linéaire produit selon le couplage de mode à la transition entre deux couches

adjacentes. Une investigation de la deuxième espèce de composites suit alors, pour lequel

les fibres au sein des différentes couches sont orientées dans des directions différentes

quelconques, ce que permet une extension précautionneuse des approches précédentes.

Une certaine attention est également portée au problème de l’homogénéisation des

composites, de manière à lier les démarches à petite échelle telles que développées dans

la thèse à celles à grande échelle souvent les seules prises en compte dans le contrôle non

destructif et l’imagerie des composites stratifiés.

De nombreux résultats de simulations numériques sont proposés et validés autant que

possible par des résultats de référence de la littérature (notamment dans le cas de cristaux

photoniques) et l’utilisation de solveurs «brute-force». L’accent est aussi mis sur des cas

particuliers de matériaux composites (ceux à base de fibres de verre et ceux à base de
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fibres de carbone) qui sont le plus souvent rencontrés dans les applications pratiques, avec

des bandes de fréquences appropriées choisies en accord avec le comportement des fibres,

principalement diélectrique ou principalement conducteur.
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Chapter 1

Introduction

1.1 Background

Laminated composite materials are increasingly used in aerospace, naval and automotive

industries as a replacement of traditional metal materials due to their light weight, high

stiffness and good corrosion resistance properties, etc. For fabrication, two or more con-

stituent materials are always combined together to produce desired characteristics which

cannot be easily provided by either of the individual materials.

An example of the laminated composite material is composed of two parts, the matrix

and the reinforcement. The reinforcements are embedded inside the background matrix

and periodically arranged to provide strength and stiffness while the matrix is used to bind

the reinforcements together. Taking one epoxy or polyester slab, reinforced by embedding

a periodic array of infinite glass or carbon fibers orientated to the same direction, as a

building block, a stack can be fabricated by piling up the slabs one over the other with

the fibers in different slabs orientated into different directions, hence providing the stack

strength and stiffness in all directions. Piling up the resulting stacks produces a periodically

laminated composite [5, 6].

For the aforementioned composite laminates, damages caused by impact, fiber rup-

ture and cracks, etc., might appear during manufacturing and/or in-service time, which

impacts mechanical properties or shortens the service life, and especially in the area of

aerospace, these subsurface defects might have catastrophic consequences. The damages

as micro-cracks and small delaminations buried inside the composites are generally invisi-

ble for visual inspection. Hence, non-destructive testing methods are needed for effective

inspection.

Ultrasonic methods are the most widely used non-destructive testing (NdT) method in

industry, though mainly for characterization of metals and alloys, and it remains challeng-
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ing to apply them to this kind of complex-structured composite with ensuring good reso-

lution [7]. However, ultrasonic waves are significantly attenuated when the measurement

is made in near field [8] or with relative high frequency [9], which can cause faulty detec-

tion of the damaged area. Infrared thermography is another method, but detection can be

impaired by low conductivity of the fibers [10]. Using other traditional NdT methods to

detect these damages remains challenging or high-cost, too. All the mentioned traditional

non-destructive methods have also some other difficulties to be applied to fiber-reinforced

components [11], hence development of novel non-destructive testing methods becomes

important [12, 13]. Testing with electromagnetic waves is one of the alternative meth-

ods, which already shows good potential for inspecting low-energy impact damages [14]

at eddy-current [11] and microwave [15, 16] frequencies for dielectric and conductive

fibers.

But effective imaging requires good understanding of electromagnetic behavior, the one

of the undamaged laminates in the first step. For a low-frequency range with assumption

of time-harmonic inspection, when the center-to-center distance between fibers is much

smaller than the electrical wavelength for dielectric cases or skin-depth for conductive

cases, uniaxial anisotropic homogeneous layers are usually hypothesized with equivalent-

layer model [17], involving effective permittivity or conductivity tensors, the laminate

simply being a superposition of such layers [18–20]. Reflection/transmission coefficients

of the laminate can be computed with classical approaches for planarly-layered media,

general scattering situations possibly requiring more sophisticated approaches, refer to

[21]. Asymptotic model has also been proposed for periodic structures, refer to [22, 23].

For a high-frequency range, when the distance between fibers is of the order of the

wavelength or skin-depth, the above homogenization usually fails. The investigation can

be carried out with periodic surface integral formulation [24, 25] which represents the

unknown electric and magnetic fields with related equivalent currents on the boundary

interfaces and handles the needed Green’s function by applying the Poisson summation

formula and the periodicity of the structure. The surface integral equation is formulated

over one unit cell and solved with method of moments [26].

However, existing investigations appear to be limited to two-dimensional (2D) scat-

tering cases involving TE- or TM-polarized plane or beam waves and one-dimensional

(1D) periodicity. For the more practical 2.5D case, in which the incident wave impinges

conically onto the structure of 1D periodicity with non-zero azimuth and elevation an-

gles for the wave vector in the defined coordinate system, or the more complicated 3D

case, conically incident waves on a composite with several directions of periodicity of the

embedded fibers, the field of investigation is wide open. Although FDTD [27] or FEM
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[28] could deal with composites with complex cross-section profile of the fibers, but these

brute-force methods could only manage 3D scattering situations with a limited level of

structural complexities, such as the so-called woodpile structure [4, 29–31] constructed

with a 2-layer stack in which fibers in the two layers are orientated into two orthogonal di-

rections [32]. But these numerical methods, in addition to be computationally demanding,

might fail to model complex laminates with arbitrary orientations between fibers in differ-

ent layers. Meanwhile, most of the imaging algorithms require full availability of dyadic

Green’s functions associated to the structure investigated, which brute-force numerical or

analytical-numerical methods do not easily provide.

In the past few decades, many efficient and accurate electromagnetic theoretical meth-

ods have been effectively applied for modeling photonic crystals with similar arrangement

of the fibers as the one inside the composite materials. In the studies, wide attention has

been given to Rayleigh methods [33] and plane wave expansions [34, 35] for their compu-

tational efficiency and accuracy as well as their analytic tractability. A typical investigation

on photonic crystals has been carried out by Yasumoto et al. [3]. The cylindrical harmonic

expansion method is brought to a simple and tractable formulation with transition matrix

for modeling the electromagnetic scattering of the periodically arranged dielectric cylin-

ders standing in air. The way of arranging the cylinders is similar to the one of the cases

considered in this thesis, hence this work provided good examples to compare with and to

be used to validate the approach. Multipole method and plane wave expansion are com-

bined together by Botten and coworkers [36–38] for studying photonic devices. Focus was

mainly on scattering of microstructured optical fibers or the Bloch mode analysis of optical

devices, thus a bit differing from the problems considered here. But the way of combining

the multipole method and plane wave expansion is quite interesting for investigating the

scattering characteristics of the composite laminates. Most of the reported works concen-

trate on the widely studied woodpile structure [3, 38, 39] standing in air for the attractive

optical gaps. But this kind of structure, even though structurally similar with laminated

composites, actually does not exist for real composite materials since, with only two fiber

orientations, it cannot provide sufficient strength and stiffness along all directions to fit

practical requirements.

In addition, the presence of the isotropic homogeneous background material in the

composites results in strong interactions between the waves reflected by the fiber arrays

and the slab interfaces, hence leading to much more complicated electromagnetic behavior.

This interaction becomes stronger with higher permittivity contrast. Arbitrary orientations

of the fibers in different layers bring another degree of complexity, especially in the case

involving tens of hundreds of layers. The dispersion brought into the system by differ-
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ently orientated fibers needs to be considered carefully with a proper decomposition of

the modes of plane-wave expansions. Some of the modes are propagating one, but some

of them become evanescent. In the calculation, all the propagating modes and a limited

number of the evanescent modes need to be considered to achieve a good convergence

of the field. Too many evanescent modes will slow down the speed of the calculation.

Arbitrarily orientating the fibers also complicates the procedure of separating propagat-

ing modes from the evanescent ones, so a proper number of evanescent modes need to

be chosen for balancing efficiency of the calculation and the speed of convergence. This

choosing procedure becomes tedious when more than three orientations of the fibers exist

in the structure. At the same time, mode-matching at the boundary between two adjacent

layers is necessary to produce a linear system for obtaining the reflection and transmission

coefficients, which must be done in the same reference system. Thus the corresponding

field expansions or matrices of the modes in the layers where the fibers are orientated

into different directions need to be carefully arranged and transformed into the same co-

ordinate system before mode-matching at the boundaries. Combining these complexities

with the conically incident waves produces a complicated electromagnetic scattering prob-

lem which must be solved for obtaining the dyadic Green’s function by investigating the

electromagnetic response of elementary sources.

The studies in this thesis give the fundamentals of investigating the electromagnetic

response of complex composite materials. Meanwhile, these investigations provide some

good techniques which can be applied straightforwardly to the case of disorganized peri-

odic structures. This disorganization can be caused by either missing and displacing some

fibers in the composites or by changing their physical parameters and shapes. All these

contributions are necessary for further researches corresponding to non-destructive testing

of damages with electromagnetic waves, being underlined that emphasis of this thesis is

on the above mentioned electromagnetic problem corresponding to several kinds of com-

posite materials. The final goal is to develop an efficient full-wave computational model

of multilayered composites.

As the first step, multipole method and plane-wave expansion, borrowing a good part

from earlier analyses [2, 40–42] and photonic ones [43], are applied together to study

the most simple composite structure which is produced by embedding a periodic array

of infinitely long circular cylindrical fibers into a dielectric slab. The focus is mainly on

carbon- or glass-fiber reinforced epoxy slabs illuminated by time harmonic waves. E- (TM)

and H-polarized (TE) incident waves are considered with the plane of incidence in the

plane of the common cross-section of the fibers. In this thesis, this case is called 2D case,

a 2D structure and 2D incident waves being involved. The field near each cylinder is natu-
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rally expanded into cylindrical harmonics involving Bessel functions. Then the cylindrical

functions are combined with the so-called lattice sums [44, 45] which renders their su-

perposition periodic to satisfy the required periodic boundary conditions along the line

connecting the center of the cylinders and also orthogonal to their axes. Integration along

the boundary of one periodic cell and the one of the cylinder included inside relates the

field in the vicinity of the central cylinder to the one above and below the grating, where

plane-wave expansion of the fields is involved to calculate the field in the upper or lower

half-space.

At the same time, mode-matching at the boundaries of circular cylinders reveals the

fine details of the structure and allows further calculating the field distribution within them.

Investigation of this case allows one to understand the preliminaries and basic principles

of the approaches, as well as to build a solid fundamental for further studies. Gaussian

beam is also considered by decomposing the beam into plane waves. The scattered field of

the beam is obtained by overlapping the one of all the plane waves. Besides, the homog-

enization theory is also considered and developed as a connection between the present

full-wave model and the one for low-frequency investigations.

Keeping the same 2D structure, the approaches applied to the 2D case are then ex-

tended for the scattering of a conically incident wave where the plane of incidence is out

of the plane of the cross-section of the fibers. This case is called 2.5D case. Since the wave

vector of the incident wave has longitudinal components, the electric and magnetic fields

are coupled together. This complicates the relations between the transverse and longitu-

dinal field components, which then leads to a more complicated field representation of

the transverse field components, hence to a more complicated relationship between the

expansion coefficients. Because of the simplicity of the single-layer composite structure,

the field expansion coefficients can still be obtained explicitly to avoid matrix inversions.

Once, based on a single-layer fiber-reinforced composite, the approach for the 2D and

2.5D scattering problems is well developed and understood, extension of the method is

carried out for investigating the scattering of a multilayered fiber-based composite. It is

constructed by stacking up the single-layer composite laminates one over the other, but

all the circular cylindrical fiber arrays in different layers are still orientated into the same

direction. Carbon and glass fibers are under consideration with their radii being the same

in the same layer but maybe different from layer to layer, keeping the same center-to-center

distances for every layer of the structure. The background materials and thicknesses of

different layers can also vary from one to the other.

Time-harmonic incident plane waves with plane of incidence differing from the cross-

section of the fibers, and Gaussian beam waves, via corresponding plane wave expansions,
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are considered here. Following the treatment for a single-layer composite, electric and

magnetic fields in regions of interest are first plane-wave expanded in view of the periodic-

ity of the fibers. Mode-matching at the boundary between any two layers yields the matrix

that links the field expansion coefficients at the two sides of the boundary. Rayleigh’s iden-

tity is established around the fibers to relate the fields within the same layer above and

below the fibers. Scattering matrices (S-matrices) or transfer matrices (T-matrix) for each

single layer easily follow. Cascading them layer by layer down to the one of the bottom

layer produces an S-matrix or a T-matrix which relates the reflection and transmission co-

efficients to the incident field, both for planar ones and Gaussian beams. For Gaussian

beam, the S-matrix is built for each of the plane waves on which the beam is expanded.

The schemes based on S-matrix and T-matrix are implemented individually. Numeri-

cal instability is then exhibited in the two schemes at different levels because of the ill-

conditioning of the matrices. This property brings some difficulties to invert the corre-

sponding matrices. Because of this limitation, the T-matrix method can only be applied to

investigate the characteristics of propagating modes. Once evanescent modes are involved

in the calculation, the method becomes quite unstable. This instability of the T-matrices is

heavily influenced by their exponentially increasing elements. Comparatively, the S-matrix

based scheme is much more stable. It exhibit instability for calculating field distribution

inside the structure, but that can be solved by rearranging the matrices so as to link the

field expansion coefficients in every layer to the incident field.

So far, all the basic techniques for characterizing complicated composite structures has

been made available. Hence one quite practical multilayered composite is taken into ac-

count. To fabricate these composites, a 4-layer stack is firstly constructed by piling up

single-layer composites, with the fibers in different layers orientated into different direc-

tions to provide the required strength and stiffness. Then, tens of the stacks are overlapped

to produce the multilayered composite. Before building the modeling for 4-layer stack, one

2-layer stack is used to explain and demonstrate the basic ideas. The S-matrix based ap-

proach is then further developed to investigate the scattering of this kind of composites.

A full-wave computational model of the practically used laminated composites is finally

given.

1.2 Overview of the manuscript

This thesis is divided into six chapters. Chapter 1 introduces the research background and

the contributions of the thesis. Chapter 2 and Chapter 3 introduce the basic principles

of the investigation by considering the electromagnetic behavior of single-layer composite
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reinforced by a periodic array of fibers, under illumination of plane waves or Gaussian

beams. These techniques are then extended in Chapter 4 for further studying the response

of multilayered composites where the fibers in different layers are all parallel to each

other. These investigations allow to understand the performance of the S-matrix and T-

matrix based approaches as well as giving the some knowledge about the behavior of

the multilayered structures. Then the S-matrix based recursive approach is extended in

Chapter 5 to exhibit the electromagnetic characteristics of multilayered structures where

fibers in different layers are now orientated into different directions. Chapter 6 presents

the conclusions and perspectives. Several appendices follow with corresponding material.





Chapter 2

Scattering of TM and TE wave by a

fiber-based slab

The first step in developing the full-wave computational model of multilayered composite is

made in this chapter. Multipole method and plane wave expansion are combined together

via evaluating the Green’s second identity with periodic Green’s functions. The scattering

of a single-layer composite is studied with illumination of an in-plane E-polarized (TM) or

H-polarized (TE) wave. The investigation of this scattering problem allows one to under-

stand the preliminaries and basic principles of the approaches, hence it provides a solid

fundamental for further building the more complicated model. The contribution also al-

lows to calculate scattering of a line source or beam wave in an easy way. To illustrate,

scattering of Gaussian beam is calculated by expanding the beam into plane waves. The

scattered field of a Gaussian beam is then produced by overlapping all the scattered fields

of the plane waves.

2.1 Wave propagation and preliminary formulation

The single-layer composite considered here is shown in Fig. 2.1, and a Cartesian coordinate

system x yz is introduced with x̂ , ŷ and ẑ as unit vectors along the corresponding axes.

The structure consists of a horizontal slab of thickness L = a − b sandwiched between

two homogeneous half-spaces with corresponding interfaces Γa (z = a) and Γb (z = b). A

set of circular fibers, which parallel with each other and directed into the y direction, is

embedded in the slab, which is infinite along both x and y axes. All fibers are arranged

periodically along the x direction with a center-to-center distance d. Their radii are all the

same and indicated as c. The structure divides the whole space into four regions named as
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Ω j, j = 0, 1, 2, 3, whereΩ0 andΩ3 denote the upper and lower half-spaces respectively. The

upper half-space is filled with air. The materials in all other regions are homogeneous and

isotropic, with their permittivities and permeabilities given as ε j = ε
( j)
r
ε0 and µ j = µ

( j)
r
µ0,

j = 1, 2, 3, where ε0 and µ0 are the ones for air.

Fig. 2.1 Sketch for the single layer composite structure with TM or TE polarized waves
impinging upon it obliquely.

Assuming an implicit time dependence e−iωt , the electric field E j(x , y, z) and the mag-

netic field H j(x , y, z) are therefore the solution of the time-harmonic Maxwell-equations,

∇× E = i

√√µ0

ε0
kµrH, (2.1a)

∇×H = −i

√√ ε0

µ0
kεrE, (2.1b)

∇ · E = 0, (2.1c)

∇ ·H = 0. (2.1d)

Here the index j is neglected since the equation is established in all regions. E = Ex x̂ +

Ey ŷ + Ez ẑ, and H= Hx x̂ +H y ŷ +Hz ẑ.

2.1.1 TM and TE wave illumination

Considering a plane wave incident from the upper space upon the slab with its plane of

incidence parallel with the x -z plane, field vectors will thus be independent of y, which
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leads to the wave equations for TM and TE waves

Hx = −
1

iωµ0µr

∂ Ey

∂ z
, (2.2a)

�
∂ 2

∂ x2
+
∂ 2

∂ z2
+ω2µ0µrε0εr

�
Ey = 0, (2.2b)

Ex =
1

iωε0εr

∂ H y

∂ z
, (2.2c)

�
∂ 2

∂ x2
+
∂ 2

∂ z2
+ω2µ0µrε0εr

�
H y = 0, (2.2d)

Allowing the wave vector of the TM or TE incident wave as ~kinc = kinc
x

x̂ − kinc
z

ẑ with

kinc
x

and kinc
z

being x - and z-components of ~kinc, then kinc
x
= kinc sinθ inc, kinc

z
= kinc cosθ inc,

where θ inc is the angle of incidence. Thus the incident wave can be written as

Vinc
y
(x , z) = ŷV inc

y
ei[kinc

x x−kinc
z (z−a)], (2.3)

where Vinc
y

denotes Einc
y

for the TM polarized wave or Hinc
y

for the TE polarized wave, with

V inc
y

being the corresponding amplitude.

With wave numbers k j corresponding to regions Ω j, then k j = ω
p
ε jµ j, j = 0, 1, 2, 3.

The related wave vector ~k j is defined as ~k j = α j x̂−β j ẑ with α j and β j indicating the x and

z components of ~k j, so α0 = kinc
x

. A particular feature of the problem is the transverse pe-

riodicity of these inclusions in the slab. According to the Floquet theorem, this periodicity

and the plane wave nature force the fields to satisfy

Vj y(x + d, z) = Vj y(x , z)eiα0d , (2.4)

where Vj y denotes either E j y for the TM case or H j y for the TE case in regionsΩ j. Allowing

U j(x , z) = Vj y(x , z)e−iα0x produces a periodic function U j(x , z) with the same period d as

the structure. Hence U j(x , z) can be expanded into a Fourier series

U j(x , z) =
∑

p∈Z
vp(z)e

i
2πp

d
x (2.5)

where Z is the set of all integers, p ∈ Z. Then the field Vj y(x , z) can be written as

Vj y(x , z) =
∑

p∈Z
vp(z)e

iαp x (2.6)

with αp = α0 +
2πp

d
and vp(z) as the expansion coefficients.
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2.1.2 Scattering of TM and TE wave by single cylinder

First, TM or TE incident wave is considered. The relation between Vy and Vθ in the cylin-

drical coordinate system can be obtained from equation (2.1), which is given as

Hθ =
1

iωµ

∂ Ey

∂ r
, TM wave (2.7a)

Eθ =−
1

iωε

∂ H y

∂ r
, TE wave. (2.7b)

Here, µ = µrµ0, ε = εrε0. Index j is not introduced since they establish in the whole

space.

Considering a circular cylinder as sketched in Fig. 2.2, the field outside the cylinder

can be expanded into cylindrical harmonics [46], and it reads as

V1y =
∑

n∈Z

�
BnH(1)

n
(k1c) + AnJn(k1c)

�
einθ (2.8)

where Jn is the first kind Bessel function of the n-th order, and H(1)
n

is the first kind Hankel

function of the n-th order. c is the radius of the cylinder, k1 is the wave number in the

space excluding the cylinder. If the cylinder is filled with isotropic dielectric material, then

the field inside the cylinder is

V2y =
∑

n∈Z
CnJn(k2r)einθ , (2.9)

where Cn are the expansion coefficients. The corresponding field components Vjθ are eas-

Fig. 2.2 Sketch of single cylinder

ily obtained with (2.7a) and (2.7b). Matching the field at the boundary of the cylinder

produces the relation between Bn and An, which is written as

Bn = LnAn, (2.10)
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where

Ln =





η1 J̇n(k2c)Jn(k1c)−η2Jn(k2c)J̇n(k1c)

η2Ḣ
(1)
n (k1c)Jn(k2c)−η1 J̇n(k2c)H

(1)
n (k1c)

for TM

η2 J̇n(k2c)Jn(k1c)−η1Jn(k2c)J̇n(k1c)

η1Ḣ
(1)
n (k1c)Jn(k2c)−η2 J̇n(k2c)H

(1)
n (k1c)

for TE.

(2.11)

Here, an isotropic dielectric material for the cylinder is assumed. η j =
r
µ j

ε j
, j = 1, 2. J̇n(x)

and Ḣ(1)
n
(x) are the first order derivative of Jn(x) and H(1)

n
(x) with respect to x . When a

metal (perfect conducting) cylinder is considered, then the relation (2.10) simply becomes

Ln =






− Jn(k1c)

H
(1)
n (k1c)

for TM

− J̇n(k1c)

Ḣ
(1)
n (k1c)

for TE.
(2.12)

2.2 Scattering of TM or TE wave

Now, scattering of TM or TE polarized incident wave by a single layer slab reinforced by

an infinite number of fibers arranged periodically is investigated. Plane-wave field expan-

sion in regions Ω0 and Ω3 are easily obtained with equation (2.6), but to obtain the one

in regions Ω1 and Ω2, periodic Green’s functions defined in both Cartesian and cylindri-

cal coordinates are needed. Then the integration along the boundary of one periodic cell

and the one of the central cylinder is performed to combine the plane-wave and multi-

pole expansion coefficients. Mode-matching at boundaries Γa and Γb produces the relation

between reflection/transmission coefficients and multiple expansion coefficients which is

achieved by establishing Rayleigh’s identity at the boundary of the central cylinder. The

power reflection/transmission coefficients follow with application of Poynting theorem.

2.2.1 Fields representations in Ω0 and Ω3

In the upper half-space, both incident and reflected fields exist. Expanding the reflected

field with (2.6) and adding it to the incident field produce the total field in Ω0,

V0y(x , z) =
∑

p∈Z
(V ince−iβ0p(z−a)δp0 + Rpeiβ0p(z−a))eiαp x , (2.13)

where Rp, depending on V0y(x , z) for E0y(x , z) and H0y(x , z), stands for the reflection

coefficients of the plane wave indexed by p, and Re
p

for TM wave or Rh
p

for TE wave. δp0
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is the Kronecker symbol which is required to generate a matrix. αp = α0 + 2pπ/d, since

the tangential components of ~k j cross the boundaries Γa and Γb continuously, αp is used in

the equations instead of α jp. Meanwhile β jp is defined as β jp =
q

k2
j
−α2

p
, j = 0, 1, 2, 3.

Since p ∈ Z and varies from −∞ to +∞, αp varies dramatically between −∞ and +∞.

So β jp is properly defined as

β jp =






Ç
k2

j
−α2

p
, k2

j
> αp

i
Ç
α2

p
− k2

j
, k2

j
< αp

, (2.14)

where the modes for β2
jp
> 0 are propagating modes, and the ones for β2

jp
< 0 are evanes-

cent modes. The propagating modes carry all the energy of the wave. But, enough evanes-

cent modes are needed in the calculation for good convergence of the field expansions.

In the lower half-space, only transmitted field exists. The field is expanded with (2.6),

which reads as

V3y(x , z) =
∑

p∈Z
Tpei(αp x−β3p(z−b)) (2.15)

where Tp represents the transmission coefficients of the plane wave indexed by p, T e
p

for

the TM wave or T h
p

for the TE wave.

2.2.2 Fields representations in Ω1 and Ω2

In order to get the field representation in region Ω1 and Ω2, the corresponding periodic

Green’s functions which satisfy

(∇2+ k2)G(~r) =

+∞∑

n=−∞
δ(~r − nd x̂)eiα0nd (2.16)

are first introduced within both Cartesian and cylindrical coordinate systems. In cylindrical

form, ~r = (r,θ ), one has

G(~r) = − i

4

+∞∑

n=−∞
eiα0ndH

(1)
0 (k1|~r − nd x̂ |). (2.17)

Applying Graf’s addition theorem [47], as detailed in appendix A, to the right hand side

of equation (2.17) produces a second form of the periodic Green’s function

G(~r) = − i

4
H
(1)
0 (k1r)− i

4

+∞∑

l=−∞
Sl Jl(k1r)eilθ (2.18)
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with the hypothesis that r < d. Jm is the first kind Bessel function of the m-th order.

The first term in equation (2.18) refers to outgoing waves, and the second one represents

in-going waves. Sl is called lattice sums which is defined as

Sl =

+∞∑

n=1

H
(1)
l
(k1nd)[eiα0nd + (−1)le−iα0nd]. (2.19)

Lattice sums arise naturally for investigating the scattering of periodic structures. They

actually superpose the contribution of the cylindrical wave functions in a way satisfying

the periodic conditions along the x axis. But the lattice sums have a problem of bad

convergence, and further discussion will be given in section 2.2.6.

The plane wave form of the periodic Green’s function (2.18) is given as

G(x , z) =
1

2id

+∞∑

p=−∞

1
βp

ei(αp x+βp|z|). (2.20)

It can be proven by using Fourier transformation that the two forms of periodic Green’s

function (2.18) and (2.20) are equivalent to each other.

Define a primary cell as shown in Fig. 2.3, which includes only one circular cylinder

inside and has a width d and height L. Two paths, C and D, are defined here. C denotes

the boundary of the central cylinder, and D denotes the outside boundary of the primary

cell. Meanwhile, the surface of the area between C and D is denoted as S. To obtain the

Fig. 2.3 Integration path

field within region Ω1, Green’s second identity is necessary, which reads as

∫

S

V1y(~r1)∇2G(~r − ~r1)−G(~r − ~r1)∇2V1y(~r1)ds

=

∮

C+D

V1y(~r1)∇G(~r − ~r1)− G(~r − ~r1)∇V1y(~r1)d~r1. (2.21)

Here, the vector ~r is a field point located in the vicinity of the cylinder, |~r|> c but stays in

the region Ω1. Similarly, the source point associated with contributions from the central
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cylinder is written as ~r1. The fields in any region should satisfy the Helmholtz equation

(∇2 + k2
j
)Vj y = 0. (2.22)

Substituting equations (2.16) and (2.22) into the left hand side of equation (2.21) pro-

duces
∫

S

V1y(~r1)∇2G(~r − ~r1)− G(~r − ~r1)∇2V1y(~r1)ds

=

∫

S

�
V1y(~r1)[

+∞∑

n=−∞
δ(~r − ~r1 − nd x̂)eiα0nd − k2G(~r − ~r1)] + G(~r − ~r1)k

2V1y(~r1)
�
ds

= V1y(~r). (2.23)

then, the Green’s second identity (2.21) can be simplified as V1y(~r) = IC + ID where

IC =

∮

C

�
G(~r − ~r1)

∂ V1y(~r1)

∂ ~n1
− V1y(~r1)

∂ G(~r − ~r1)

∂ ~n1

�
d~r1, (2.24a)

ID =

∮

D

�
V1y(~r1)

∂ G(~r − ~r1)

∂ ~n1
− G(~r − ~r1)

∂ V1y(~r1)

∂ ~n1

�
d~r1. (2.24b)

Here IC and ID represent the field scattered by the embedded circular cylinders and the

slab. The expression for G(~r − ~r1) is directly obtained from equation (2.18), it reads as

G(~r − ~r1) = −
i

4
H
(1)
0 (k1|~r − ~r1|)−

i

4

+∞∑

l=−∞
SlJl(k1|~r − ~r1|)eilθ ′, (2.25)

where ~r = (r,θ ), ~r1 = (r1,θ1) and ~r − ~r1 = (|~r − ~r1|,θ ′). According to Graf’s addition,

H
(1)
0 (k1|~r − ~r1|) =

∑

m∈Z
Hm(k1r)Jm(k1r1)e

im(θ−θ1), (2.26a)

Jl(k1|~r − ~r1|)eilθ ′ =
∑

m∈Z
Jm(k1r1)Jm+l(k1r)ei(m+l)θ−imθ1. (2.26b)

Refer to appendix A for details. Applying equations (2.26) to (2.25) yields

G(~r − ~r1) =−
i

4

∑

m∈Z
Jm(k1r1)H

(1)
m
(k1r)eim(θ−θ1)

− i

4

∑

m∈Z
Sm

∑

n∈Z
Jn+m(k1r)Jn(k1r1)e

i(n+m)θ−inθ1, (2.27)
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which is rearranged as

G(~r − ~r1) =−
i

4

∑

m∈Z
Jm(k1r1)H

(1)
m
(k1r)eim(θ−θ1)

− i

4

∑

m∈Z
Jm(k1r)eimθ
∑

n∈Z
Sm−nJn(k1r1)e

−inθ1 . (2.28)

Substituting equation (2.28) and V1y(~r1) into equation (2.24a) produces

IC =

∮

C

�
G(~r − ~r1)

∂ V1y(~r1)

∂ ~n1
− V1y(~r1)

∂ G(~r − ~r1)

∂ ~n1

�
d~r1,

=
∑

m∈Z
BmH(1)

m
(k1r)eimθ +
∑

m∈Z
Jm(k1r)eimθ
∑

n∈Z
Sm−nBn, (2.29)

which represents the field diffracted by the central cylinder. The coefficients Bm are

Bm = −
i

4

∮

C

�
Jm(k1r1)e

−imθ1
∂ V1y(~r1)

∂ ~n1
− V1y(~r1)

∂

∂ ~n1
(Jm(k1r1)e

−imθ1)
�
d~r1. (2.30)

Hence, the cylindrical form of IC is finally obtained, but in the analysis the expression of

IC in Cartesian coordinate system is also needed, which is derived from the plane wave

form of the periodic Green’s function (2.20). In the Cartesian coordinate system, G(~r−~r1)

reads as

G(~r − ~r1) =
1

2id

+∞∑

p=−∞

1
β1p

ei(αp(x−x1)+βp |z−z1|), (2.31)

which is further written as

G(~r − ~r1) =






1
2id

+∞∑

p=−∞

1
β1p

ei(αp x−βpz)e−ik1r1 cos(−θ1−θp), z − z1 < 0,

1
2id

+∞∑

p=−∞

1
β1p

ei(αp x+βpz)e−ik1r1cos(θp−θ1), z − z1 > 0.

(2.32)

Here, θp satisfy k1eiθp = αp+ iβ1p. Careful computation of θp is required here to make sure

that their real partℜ(θp)> 0 for the propagating modes and the imaginary part ℑ(θp) > 0

for the evanescent modes which attenuate as they propagate in the+z direction. Following

the discussion in [1], if |αp/k1| < 1, then 0 < θp < π and sinθp =
q

1−α2
p
/k2

1 > 0.

When |αp/k1| > 1, then θp is no longer real and has two possible values corresponding

to αp/k1 > 1 and αp/k1 < −1. For αp/k1 > 1, θp = iarccosh(|αp/k1|), where arccoshx =

ln(x +
p

x2 − 1). If αp/k1 < −1, then θp = π− iarccosh(|αp/k1|).
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Here, eik1r1 cos(θ ) can be expanded into cylindrical harmonics as

e−ik1r1 cos(θ ) =

∞∑

m=−∞
imJm(−k1r1)e

imθ =

∞∑

m=−∞
(−i)mJm(k1r1)e

imθ (2.33)

with the property of Bessel function Jm(−x) = (−1)mJm(x). Keeping the field dependence

of ~r = (x , z) in equation (2.32) in Cartesian exponential form and transforming the terms

corresponding to source point ~r1 = (x1, z1) into cylindrical harmonics with (2.33) yields

G(~r−~r1) =





1
2id

+∞∑

p=−∞

1
β1p

ei(αp x−β1pz)

∞∑

m=−∞
(−i)mJm(k1r1)e

im(−θ1−θp), z − z1 < 0,

1
2id

+∞∑

p=−∞

1
β1p

ei(αp x+β1pz)

∞∑

m=−∞
(−i)mJm(k1r1)e

im(θp−θ1), z − z1 > 0.

(2.34)

Substituting (2.33) and V1y(~r1) into (2.24a) produces

IC =
1

2id

+∞∑

p=−∞

1
β1p

ei(αp x−β1pz)

×
∞∑

m=−∞
(−i)me−imθp

∮

C

�
Jm(k1r1)e

−imθ1
∂ V1y(~r1)

∂ ~n1
− V1(~r1)

∂

∂ ~n1
(Jm(k1r1)e

−imθ1)
�
d~r1

(2.35)

for z − z1 < 0, and

IC =
1

2id

+∞∑

p=−∞

1
β1p

ei(αp x+β1pz)

×
∞∑

m=−∞
(−i)meimθp

∮

C

�
Jm(k1r1)e

−imθ1
∂ V1y(~r1)

∂ ~n1
− V1(~r1)

∂

∂ ~n1
(Jm(k1r1)e

−imθ1)
�
d~r1

(2.36)

for z − z1 > 0. Allowing Q±
pm
=

2(−i)me±imθp

dβ1p
, equations (2.35) and (2.36) are combined

together into a unified form

IC =
∑

p∈Z

∑

m∈Z
BmQ±

pm
ei(αp x±β1pz), (2.37)

where + corresponds to z − z1 > 0 and − relates to z − z1 < 0. As it will be illustrated, Bm

are the field expansion coefficients of cylindrical harmonics around the central cylinder.
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The field in the region Ω1 but above and below the cylinders are immediately plane-

wave expanded as

V±1y
=
∑

p∈Z
( f ±

p
e−iβ1pz + g±

p
eiβ1pz)eiαp x (2.38)

where the expansion coefficients f ±
p

and g±
p

depending on V1y for E1y and H1y represent

f ±
ep

and g±
ep

for TM wave or f ±
hp

and g±
hp

for TE wave. + signifies c < z < a which is above

the cylinders, and − corresponds to b < z < c for the region below. Evaluating the integral

(2.24a) over D with equation (2.38) produces

ID =
∑

p∈Z
( f +

p
e−iβ1pz + g−

p
eiβ1pz)eiαp x (2.39)

So the field in region Ω1 is given as

V±1y
(x , z) = IC + ID =

∑

p∈Z
( f +

p
e−iβ1pz + g−

p
eiβ1pz)eiαp x +
∑

p∈Z

∑

m∈Z
BmQ±

pm
ei(αp x±β1pz). (2.40)

Comparing it with equation (2.38) produces

f −
p
= f +

p
+
∑

m∈Z
BmQ−

pm
, (2.41a)

g+
p
=g−

p
+
∑

m∈Z
BmQ+

pm
, (2.41b)

which is a rather important relation and will be used in the whole thesis. The field Vj x are

obtained by applying equations (2.2a) and (2.2c) to the field representations of Vj y .

2.2.3 Mode-matching at the boundary Γa and Γb

Matching the modes at boundaries is necessary to produce a linear system taking Rp, Tp,

f +
p

and g−
p

as unknowns. These unknowns will be expressed as a function of Bm which is

finally solved by building Rayleigh’s identity on the boundary of the central fiber. Mode-

matching at the boundaries Γa and Γb with equations (2.13), (2.15), (2.40) and the corre-

sponding x components of the fields produces a linear system, and applying the property∫ d/2
−d/2

ei(αm−αn)x d x = dδmn, m, n ∈ Z, to the linear system yields

V incδp0 + Rp − f −
p

e−iβ1pa − g−
p

eiβ1pa −
∑

m∈Z
BmQ+

pm
eiβ1p a = 0, (2.42a)

χ0p(V
incδp0 − Rp)−χ1p

�
( f +

p
e−iβ1pa − g−

p
eiβ1pa)−
∑

m∈Z
BmQ+

pm
eiβ1p a
�
= 0, (2.42b)
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Tp − f +
p

e−iβ1p b − g−
p

eiβ1p b −
∑

m∈Z
BmQ−

pm
e−iβ1p b = 0, (2.42c)

χ3p Tp − χ1p

�
( f +

p
e−iβ1p b − g−

p
eiβ1p b) +
∑

m∈Z
BmQ−

pm
e−iβ1p b
�
= 0, (2.42d)

where χ jp = β jp/µ j for TM polarization and χ jp = β jp/ε j for TE polarization, j = 0, 1, 2, 3.

Solving this linear system yields Rp, Tp, f +
p

and g−
p
, which read as

Tp =−
1
Dp

�
4χ1pχ0pV incδ0p

+
∑

m∈Z

8(−i)mχ1pBm

dβ1p

[χ1p cos(β1pa+mθp)− iχ0p sin(β1pa+mθp)]

�
, (2.43a)

Rp =−
1
Dp

��
2(χ1pχ0p − χ1pχ3p) cos(β1p L) + 2i(χ2

1p
− χ0pχ3p) sin(β1p L)

�
V incδ0p

+
∑

m∈Z

8(−i)mχ1pBm

dβ1p

[χ1p cos(mθp + β1p b) + iχ3p sin(mθp + β1p b)]

�
, (2.43b)

and

f +
p
=− 1

Dp

�
2V incδ0pχ0p(χ1p + χ3p)e

iβ1p b

+ (χ1p − χ0p)(χ1p + χ3p)
∑

m∈Z
BmK+

pm
eiβ1p(a+b)

+ (χ1p − χ0p)(χ1p − χ3p)
∑

m∈Z
BmK−

pm
eiβ1p(a−b)
�
, (2.44a)

g−
p
=− 1

Dp

�
2V incδ0pχ0p(χ1p − χ3p)e

−iβ1p b

+ (χ1p − χ0p)(χ1p − χ3p)
∑

m∈Z
BmK+

pm
eiβ1p(a−b)

+ (χ1p + χ0p)(χ1p − χ3p)
∑

m∈Z
BmK−

pm
e−iβ1p(a+b)
�
, (2.44b)

where Dp = 2i(χ0pχ3p + χ
2
1p
) sin(β1p L)− 2(χ1pχ3p + χ1pχ0p) cos(β1p L) and L = a− b.

2.2.4 Rayleigh’s identity

Substituting equation (2.44) into (2.39) produces a Cartesian form of ID, which is trans-

formed into cylindrical harmonic form with x = r cosθ , z = r sinθ , α1p = k1 cosθp,

β1p = k1 sinθp and eikr cosθ =
∑

m∈Z imJm(kr)eimθ , then the cylindrical form of ID is ob-
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tained. Combining it with the cylindrical form of IC yields

V1y(x , z) =
∑

n∈Z

�
BnH(1)

n
(k1r) +

�∑

m∈Z
MnmBm + Fn

�
Jn(k1r)

�
einθ , (2.45)

where Mnm = Qnm+ Pnm + Sn−m with Qnm, Pnm and Fn being defined as

Qnm =
∑

p∈Z
−4(−i)m−n

dβ1p Dp

�
iχ1p(χ3p − χ0p) sin(β1p(a+ b) + (m+ n)θp)

+ (χ2
1p
− χ0pχ3p) cos(β1p(a+ b) + (n+m)θp)

�
(2.46a)

Pnm =
∑

p∈Z
−

4(−i)m−n(χ1p − χ0p)(χ1p − χ3p)

dβ1p Dp

eiβ1p L cos((n−m)θp) (2.46b)

Fn =
∑

p∈Z
−

2inV incδp0χ0p

Dp

�
(χ1p +χ3p)e

i(β1p b+nθp) + (χ1p −χ3p)e
−i(β1p b+nθp)
�
, (2.46c)

At the same time, Sn−m is a lattice sum. As been discussed in section 2.1.2, in the annular

region around the central cylinder of the primary cell but excluding all other fibers, the field

is expanded into the form of (2.8), and comparing it with (2.45) yields An =
∑

m∈ZMnmBm+

Fn which is combined with equation (2.10) to produce the Rayleigh’s identity. One has

Bn =
∑

m∈Z
LnMnmBm + LnFn. (2.47)

Solving it produces the value of Bn which is then introduced into (2.43) and (2.44) to

obtain the coefficients Rp, Tp, f +
p

and g−
p
. With these coefficients, the field distribution

within or without the slab is easily obtained via the field representations.

2.2.5 The power reflection and transmission coefficients

The time-average Poynting vector power density indicates the power density of the wave

with units of W m−2. It is

〈~S〉 = 1
2
ℜ
�
~E × ~H∗
	

, (2.48)

where ~S = ~E × ~H∗ is the complex Poynting vector, and ~H∗ denotes the complex conjugate

of ~H field. With an incident TM wave, the reflected field in the upper half-space is

~E r(x , z) = ŷ
∑

p∈Z
Rpeiβ0p(z−a)eiαp x , (2.49)
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of which the p-th mode is
~E r

p
(x , z) = Rpeiβ0p(z−a)eiαp x . (2.50)

Then, the Hx and Hz components of the p-th mode are written as

H r
px
(x , z) =−

β0pRp

ωµ0
eiβ0p(z−a), (2.51a)

H r
pz
(x , z) =

αpRp

ωµ0
eiβ0p(z−a). (2.51b)

With the magnetic field defined as ~H r
p
= x̂H r

px
+ ẑH r

pz
, the complex Poynting vector of the

p-th mode of the reflected field is obtained,

~S r
p
=~E r

p
× ~H r∗

p

= x̂ E r
p y

H r∗
pz
− ẑE r

p y
H r∗

px

= x̂
α∗

p
R∗

p
Rp

ωµ0
+ ẑ
β∗0p

R∗
p
Rp

ωµ0
.

(2.52)

The complex Poynting vectors of the incident and the p-th mode of transmitted field are

~S i = x̂
α0Einc2

ωµ0
− ẑ
β0Einc2

ωµ0
, (2.53a)

~S t
p
= x̂
α∗

p
T ∗

p
Tp

ωµ3
− ẑ
β∗3p

T ∗
p
Tp

ωµ3
, (2.53b)

The power reflection and transmission coefficients of each mode are then given as

rp =ℜ
¨

ẑ · 〈~S r
p
〉

−ẑ · 〈~S i〉

«
=ℜ
�
β∗0p

R∗
p
Rp

β0Einc2

�
, (2.54a)

tp =ℜ
¨−ẑ · 〈~S t

p
〉

−ẑ · 〈~S i〉

«
=ℜ
�
µ0β

∗
3p

T ∗
p
Tp

µ3β0Einc2

�
. (2.54b)

Allowing

ξ =
β∗0p

β0Einc2 ζ =
µ0β

∗
3p

µ3β0Einc2 , (2.55)

then rp and tp are written as

rp =ℜ
¦
ξR∗

p
Rp

©
, tp =ℜ
¦
ζT ∗

p
Tp

©
. (2.56a)
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Therefore, the power reflection, transmission and absorption coefficients are defined as

R=
∑

p∈Z
rp, (2.57a)

T =
∑

p∈Z
tp, (2.57b)

Hence, the absorption coefficients for lossy materials can be defined as A= 1−R−T . The

power reflection and transmission coefficients of TE waves are derived in a similar manner.

One obtains the power reflection and transmission coefficients for TE waves having the

same form of (2.57) with ξ and ζ in (2.56) being replaced by

ξ=
β0p

β0H inc2 ζ=
ε0β3p

ε3β0H inc2 , (2.58)

2.2.6 Numerical investigation

Lattice sums

Lattice sums are a class of Schlömilch series which arise naturally in the investigation of

the scattering problems involving periodic structures. For 1D periodicity, 2D scattering

case, they are defined as

Sm =

∞∑

n=1

H(1)
m
(knd)[eiα0 nd + (−1)me−iα0nd]. (2.59)

where H(1)
m
(x) is the first-kind Hankel function of m-th order. k is the wave number of

the media where the sums are evaluated. α0 = k0 sinθ inc with k0 and θ inc being the wave

number and incident angle of the incident wave. d is the period of the structure.

Lattice sums play the role of superposing the contribution of the cylindrical wave func-

tions in a proper way which satisfies the required periodic conditions. The sums suffers

from a problem of bad convergence, which can not be easily overcome. Meanwhile the

lattice sums cannot be simply avoided in the problems involving periodic structures. Com-

putation of lattice sums seriously influences the speed of calculating the field and also the

accuracy of the results.

As seen from (2.59), lattice sums Sm can be written into a function of wave vector k,

incident angle θ and period of the structure d. Hence, the convergence of lattice sums is

mainly influenced by the frequency of the incident wave, the considered material, the ob-

servation points and the period of the structure. Much literature exists for accelerating the
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corresponding calculations [1, 45, 48–51]. In this thesis, one of the most recent method,

presented in [1], is used for the calculation. This method actually combined the new re-

sults [50–52] derived from integral representations and the Poisson summation formula

and then introduced some new expressions in terms of some elementary functions which

enable the series to be computed accurately and efficiently.

With definition of partial sums S±
m
=
∑∞

n=1 H(1)
m
(k1nd)e±iα0nd , the numerical results

shown in [1] are reproduced by implementing the approach, which illustrates that the

present implementation works well, as shown in figure 2.4 and 2.5.

0 1 2 3 4 5
1.23

1.235

1.24

1.245

steps (×105)

ℜ
S
+ 1

lattice sums

exact value

Fig. 2.4 Computed values of ℜ S+1 with k1d = 0.7, α0/k1 = 0.5. The horizontal line
represents the exact value 1.23746 calculated with the approach given in [1]. The partial
sums of S+

m
are computed in steps of 1000, up to 106.

Considering an incident wave with low frequency f = 5 MHz, which normally impinges

upon a glass-fiber-reinforced epoxy composite (epoxy εr = 3.6), letting L = d = 0.1mm,

the exact values of corresponding lattice sums are computed with the approach given in

[1]. Numerical results with relative error below 10−6 are achieved in only 0.0286s on a

computer with 4 CPU cores, 2.0 GHz each, and 8 G memories. Direct calculation with

the definition of lattice sums is carried out for comparison, and the convergence is much

slower. At the higher frequency 5 GHz, the convergence is also not good, and the results

keep oscillating around the exact value. Hence, the calculation with the definition of lattice

sums is too slow to satisfy the requirement of efficient calculation. Results for 5 MHz and

5 GHz are shown in Fig. 2.6 and Fig. 2.7.
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lattice sums

exact value

Fig. 2.5 Computed values of ℑ S−2 with kd = 1.7, α0/d = 1.5. The horizontal line represents
the exact value 0.639421 calculated with the approach presented in [1]. The partial sums
of S−

m
are computed in steps of 1000, up to 106.
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0
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)
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exact value

Fig. 2.6 Computed values of the real part of S0 for f = 5 MHz, θi = 0, L = d = 0.1 mm.
Slow convergence is observed.

Scattering by fiber-array-based slab

The infinite sums
∑

p∈Z for plane-wave expansions and
∑

m∈Z for multipole expansions are

truncated as
∑P

p=−P
and
∑M

m=−M
in the calculation with P = Int (d/2π(3ℜ(k1)−α0)) and

M = Int
�
ℜ(4.05× (k1c)1/3) + k1c

�
. With the definition of relative error |Rn+1 −Rn|, n

the truncation order P or M , convergence of the results is shown in Fig. 2.8 for increasing

values of M and P. It is observed that the results converge quickly with increase of P or
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Fig. 2.7 Computed values of the real part of S0 for f = 5GHz, θi = 0, L = d = 0.1 mm.
Fast oscillation show up, but it converges slowly.

M . In the following calculation, the sums are truncated at M = 11 and P = 5 to obtain a

relative error less than 10−6.
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Fig. 2.8 Relative error versus M or P for glass fibers (ε(2)
r
= 6.0) embedded in an epoxy

matrix (ε(1)
r
= 3.6). d = λi = 0.1mm, L = 2d, c = 0.4d.

In order to verify the approach, the results of power reflection coefficients for an inci-

dent plane wave are compared with those given in reference [2] and [53]. In the calcula-

tion, the structure has a period of d = 0.2µm and a height of L = 0.95d.

The numerical results for an array of cylinders standing in air is first carried out with

both TM and TE incident waves, as shown in Fig. 2.9. The radius of each cylinder c =

0.25d for TM case and c = 0.375d for TE case. Cylinders are filled with a material with
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relative permittivity ε(2)
r
= 2. As seen in Fig. 2.9, good matches are observed in both TM

and TE cases.

Then, power reflection coefficients are calculated for a periodic array of cylinders

(ε(2)
r
= 2) embedded in a single-layer slab (ε(1)

r
= 4). A TE wave is incident upon the

slab normally. Results are shown in Fig. 2.10, and good matches are observed.
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Present results, TE

Reference, TE

Present results, TM

Reference, TM

Fig. 2.9 Comparing the present results to the ones of reference [2] for TM wave with
c = 0.25d and TE wave with c = 0.375d. d = 0.2µm, L = 0.95d, ε(1)

r
= 1, and ε(2)

r
= 2.
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Fig. 2.10 Comparing the present results to the ones of [2] for TM wave with c = 0.375d,
and fibers (ε(2)

r
= 2) are embedded into a slab (ε(1)

r
= 4) with d = 0.2µm and L = 0.95d.

For lossy fibers within a dielectric matrix, an epoxy slab including an array of carbon

fibers is considered with d = λinc = 0.1 mm, L = 2d and c = 0.4d. The power reflection
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coefficients for both TM and TE waves are computed with P = 0, which is the 0-th mode.

Results are compared with the one obtained with COMSOL FEM code, which is shown

in Fig. 2.11. A good match is observed for incident angle varying from 0° to 90°. Slight

difference appears when the incident angle is close to 90° because the absorption efficiency

of the employed Perfectly Matched Layer in COMSOL FEM code is not very good at large

incident angle close to 90°.

At the same time, the reflection of the periodically arranged conductive fiber array

with several different conductivities of fibers is calculated, and numerical results of power

reflection coefficients are given in Fig. 2.12. Obviously, increasing the conductivity of the

fibers make the behavior of the structure becomes close to the one of a periodic fiber array

with perfectly conducting fibers, and the power reflection coefficients of the array with

higher conductive fibers is closer to the one of the array with metal fibers. The results

of perfectly conducting metal fibers are obtained from reference [53] for comparison. As

seen in Fig. 2.12, power reflection coefficients of high conductive fibers smoothly vary with

frequency, and higher transmission coefficients are observed at higher frequency points.
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Present results, TM

COMSOL, TM

Present results, TE

COMSOL, TE

Fig. 2.11 Comparing the present results to the one from COMSOL for TM and TE cases,
only the 0-th mode being under consideration. d = λi = 0.1mm, L = 2d and c = 0.4d.
ε(1)

r
= 3.6, ε(2)

r
= 12, σ2 = 3.3× 102 S/m.

The proposed approach is now focused onto power reflection and transmission prop-

erties of carbon or glass-fiber-reinforced polymers. Epoxy resin is the most common ma-

trix material, its relative permittivity being taken as 3.6 and its conductivity as zero (be-

low 10−10 S/m in practice). For glass fiber, relative permittivity ranges between ≈ 3.7

and 10, and its conductivity is close to zero. For carbon fiber, its relative permittivity

ranges between ≈ 10 and 15, and its conductivity is high along its axial direction (≈
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Fig. 2.12 Power reflection coefficients of a periodic array of carbon fibers with multiple
conductivities. ε(1)

r
= 1, ε(2)

r
= 12, c = 0.15d. d = 0.2µm, L = 0.95d, TM incident wave.

2.5× 106 S/m) [54–56], yet in the plane of its cross-section, the conductivity is much lower

(≈ 3.3× 102 S/m) [57, 58], as now considered. In this chapter, a fiber-reinforced slab will

be considered with d = 0.1mm, L = d and c = 0.25d. Epoxy (ε(1)
r
= 3.6) is taken for the

material of the slab. The fibers inside could be filled with either glass (ε(2)
r
= 6) or graphite

(ε(2)
r
= 12, σ = 3.3× 102 S/m).

Power reflection and transmission coefficients of a glass-fiber reinforced slab is first

computed with the proposed approach. Results are given in Fig. 2.13 for TM wave and Fig.

2.14 for TE wave. The angle of incidence is θ inc = 45°. As can be seen, the variation of R

is quite smooth at low frequency since only one or several propagating modes exist at low

frequency and the 0-th mode dominates the electromagnetic behavior of the structure. On

the other hand, the incident low-frequency TE wave can transmit the structure easier than

TM wave. So higher reflection is observed with incident TM wave for 0< d/λinc < 0.3.

Several peaks, some of which corresponding to total reflection, are observed at relative

higher frequency, which is mainly caused by the strong interaction between the scattered

field of the slab and the cylinder array, and multiple propagating modes are involved in

these interactions. As seen from Fig. 2.13 and Fig. 2.14 that, the interaction appears to

be stronger for TM incident wave.

Scattering by a carbon-fiber reinforced slab is also calculated for both TM and TE waves

illuminating the slab with θ inc = 45°. Power reflection, transmission and absorption coeffi-

cients are shown in Fig. 2.15 for TM wave and the one in Fig. 2.16 for TE wave. Because

of carbon fibers are lossy, strong absorption is observed at high frequency. At the same

time, the total reflecting phenomenon disappears. Comparing the absorption coefficients
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Fig. 2.13 Reflection of glass-fiber reinforced slab under TM wave illumination. ε(1)
r
= 3.6,

ε(2)
r
= 6, c = 0.25d. d = 0.1 mm, L = d.
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Fig. 2.14 Reflection of glass-fiber reinforced slab under TE wave illumination. ε(1)
r
= 3.6,

ε(2)
r
= 6, c = 0.25d. d = 0.1 mm, L = d.

for TE and TM waves, it is observed that the structure has stronger absorption to incident

TE wave than TM wave at high frequency. Meanwhile, low frequency TE wave can trans-

mit the structure more freely than TM wave. Especially in the microwave frequency band

10 GHz< f < 60 GHz, quite strong transmission is observed for incident TE wave.
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Fig. 2.15 Reflection, transmission and absorption of carbon-fiber based slab under illumi-
nation of TM wave. ε(1)

r
= 3.6, ε(2)

r
= 12, σ = 3.3× 102 S/m, c = 0.25d. L = d = 0.1 mm.
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Fig. 2.16 Reflection, transmission and absorption of carbon-fiber based slab under illumi-
nation of TE wave. ε(1)

r
= 3.6, ε(2)

r
= 12, σ = 3.3× 102 S/m, c = 0.25d. L = d = 0.1mm.

2.3 Scattering of Gaussian beam

Plane wave expansion of Gaussian beam is first obtained by the technique of Fourier trans-

form. Then the expansion is discretized with quadrature scheme into a combination of

multiple plane waves with different amplitude and different wave vectors. These plane

waves are then taken as the wave incident upon the structure to produce the correspond-
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ing scattered fields with the approach introduced above. The scattering of the beam can

be obtained by superposing the scattered field of the corresponding plane waves. Enough

plane waves are need to obtain a good convergence of both of the incident and scattered

fields. Although the quadrature scheme used in this thesis is not the most efficient one,

but it is applied since it is simple and sufficient for considered calculation. If necessary,

Gaussian quadrature scheme is a good replacement for obtaining fast convergence of the

fields with small number of plane waves.

2.3.1 Plane-wave expansion of Gaussian beam

Without loss of generality, the scattering of a Gaussian beam with its plane of incidence

parallel with the x -z plane is considered in the thesis, which needs the two dimensions

(2D) Fourier transforms to calculate the plane wave expansion. Following the discussion

in Chapter 3 of [59], if the complex field distribution of a monochromatic disturbance is

Fourier-analyzed across any plane, the various spatial Fourier components can be identi-

fied as plane waves traveling in different directions away from that plane, and the field

amplitude at any other point (or across any other parallel plane) can be calculated by

adding the contributions of these plane waves, taking due account of the phase shifts they

have undergone during propagation.

Assuming that a plane wave E(x , y, z) incident upon a transverse (x , y) plane traveling

with a component of propagation in the positive z direction. Therefore, on the z = 0 plane,

the field can be represented with E(x , y, 0) which has a 2D Fourier transform given by

eE( fx , f y , 0) =

∫∫ +∞

−∞
E(x , y, 0)exp
�
−i2π( fx x + f y y)

�
d xd y. (2.60)

With (2.60), E(x , y, 0) is written as

E(x , y, 0) =

∫∫ +∞

−∞
eE( fx , f y , 0)exp
�
i2π( fx x + f y y)

�
d fx d f y , (2.61)

which is actually the inverse Fourier transform corresponding to equation (2.60). The field

E(x , y, z) at any point could be expressed as [59]

E(x , y, z) =

∫∫ +∞

−∞
eE( fx , f y , 0)exp (i2π fzz)exp

�
i2π( fx x + f y y)

�
d fx d f y , (2.62)

which is the relation between E(x , y, z) and E(x , y, 0). This will be used for expanding

Gaussian beams shown in Fig. 2.17, where a 2D Gaussian beam impinges upon a plane
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obliquely with an incident angle φ inc. Local and global coordinate system x ′ y ′z′ and x yz

are used. In the global coordinate system, the center of the beam is located at (x0, z0),

which is also the origin of the local coordinate system for describing the beam.

Fig. 2.17 A Gaussian beam incident upon a plane obliquely.

The beam is expressed in the following form in the local coordinate system x ′ y ′z′,

Ey′(x
′, z′) = E0

w0

w(z′)
exp

�
− x2

w2(z′)
− i

kx ′2

2R(z′)
− ikz′ + i arctan

z′

z′0

�
, (2.63)

where z′ is the distance propagated from the plane where the wave-front is flat (the beam

waist at z′ = 0), w0 is the radius of the 1/e2 irradiance contour at the beam waist (the spot

size at z′ = 0), z′0 = πw2
0/λ. R(z) and w(z) are the wave front radius of curvature and the

spot size after the beam propagating a distance z′, they are defined as

w(z′) = w0

�
1+

�
z′

z′0

�2� 12
, R(z′) = z′

�
1+

�
z′0
z′

�2�
. (2.64)

In the z′ = 0 plane,

Ey′(x
′, 0) = E0 exp

�
− x ′2

w2
0

�
. (2.65)

Applying the Fourier transform (2.60) to both sides of eq.(2.65) yields

eEy′( fx ′ , 0) =

∫ +∞

−∞
E0 exp

�
− x ′2

w2
0

�
exp
�
−2πi fx ′ x

′�d fx ′ . (2.66)
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According to the Gaussian function integral formula

∫ +∞

−∞
exp
�
−ax2 − 2bx
�
d x =

s
π

a
exp
�

b2

a

�
, a > 0, (2.67)

the integral result of equation (2.66) is easily obtained. It is read as

eEy′( fx ′ , 0) =
p
πw0E0 exp
�
−π2 f 2

x ‘w
2
0

�
. (2.68)

Hence, the field Ey′(x
′, z′) can be written into the following expression by using equation

(2.62),

Ey′(x
′, z′) =

p
πw0E0

∫ +∞

−∞
exp
�
−π2 f 2

x ′w
2
0

�
exp
�
2πi
�

fz′z
′ + fx ′ x

′��d fx ′ . (2.69)

If f = fx ′ x̂ + fz′ ẑ, and the wave vector k is defined as 2πf = k = kx ′ x̂ + kz′ ẑ = k(sinϑ x̂ +

cosϑ ŷ), where k = |k| and ϑ is the angle between k and the z′ axis, then equation (2.69)

takes the form

Ey′(x
′, z′) =

w0E0

2
p
π

∫ k

−k

exp

�
−

k2
x ‘w

2
0

4

�
exp
�
i
�
kx ′ x

′ + kz′z
′��dkx ′

=
kw0E0

2
p
π

∫ π/2

−π/2
exp

�
−

k2w2
0 sin2 ϑ

4

�
exp
�
ik
�
sinϑx ′ + cosϑz′

��
cosϑdϑ (2.70)

In equation (2.70) the limits of integration have been modified with respect to eq.(2.69)

to only account for the nonevanescent uniform plane waves, since evanescent plane waves

carry no energy away [59]. Applying the Gaussian quadrature scheme to equation (2.70),

then it is written into a discrete elementary plane wave spectrum [60], which reads as

Ey′(x
′, z′) =

kw0 E0

2
p
π

N∑

n=1

exp

�
−

k2w2
0 sin2 ϑn

4

�
exp
�
ik
�
sinϑnx ′ + cosϑnz′

��
cosϑn∆ϑ

=

N∑

n=1

A′(ϑn)exp
�
ik
�
sinϑn x ′ + cosϑnz′

��
, (2.71)

where

A′(ϑn) =
kw0 E0

2
p
π

exp

�
−

k2w2
0 sin2 ϑn

4

�
cosϑn∆ϑ. (2.72)
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The expression (2.71), which is valid in the local coordinate system x ′ y ′z′, is then trans-

formed into the global coordinate system x yz through the relation [61]

x ′ =(x − x0) cosφ inc + (z − a− z0) sinφ
inc

z′ =(x − x0) sinφ
inc − (z − a− z0) cosφ inc, (2.73)

where φ inc is the incident angle of the Gaussian beam wave as shown in Figure 2.17. So

the plane-wave expansion of Gaussian beam in the global coordinate system is

Ey(x , z) =

N∑

n=1

A(ϑn)exp
�
ik
�
x sin(ϑn +φ

inc)− (z − a) cos(ϑn +φ
inc)
��

, (2.74)

with A(ϑn) being defined as

A(ϑn) =
kw0 E0

2
p
π

exp

�−k2w2
0 sin2 ϑn

4

�

× exp
�
−ik
�
x0 sin(ϑn +φ

inc)− z0 cos(ϑn +φ
inc)
��

cosϑn∆ϑ.

(2.75)

With the plane-wave expansion of the Gaussian beam given in equation (2.74), the

n-th plane wave component can be treated as an incident wave, and it is written as

Ey,n(x , z) = A(ϑn)e
i(α0

n
x−β0

n
(z−a)), (2.76)

with α0
n
= k sin(ϑn +φ

inc) and β0
n
=
q

k2 −α0
n

2. The superscript 0 indicates that they are

the components of the wave vector in region Ω0.

Combining expansion (2.6) with the incident wave (2.76), the field representation in

region 0 is written as

E+0y
(x , z) =
∑

p∈Z

�
A(ϑn)e

−iβ0p(z−a)δ0p + Rpeiβ0p(z−a)
�

eiαp x , (2.77)

where Rp is the reflection coefficient of the plane wave indexed by p, δ0p is the Kronecker

symbol which is introduced to generate necessary matrices. αp and β0p are the components

of the wave vector k in the x and z directions respectively, αp = α
0
n
+ 2pπ/d, β0p =q

k2 −α2
p
.

With equation (2.77), the scattered field of each elementary plane wave in equation

(2.74) could be obtained by the method presented in section 2.2. The scattered field of the

incident Gaussian beam follows by superposing the scattered fields of all the elementary

plane waves [61].
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2.3.2 Numerical investigation

To accurately model a Gaussian beam, N in (2.74) must be properly chosen. One defines

a relative error

Error =
1
Np

Np∑

1

|Ẽy′ − Ey′ |2

|Ey′ |2
(2.78)

taking Ẽy′ as the approximate value of the plane wave expansion and Ey′ referring to

the exact value from (2.63). Np is the total number of field points computed. Fig. 2.18
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Fig. 2.18 Convergence of incident field with different values of N which is the number of
plane waves. λ= 0.1mm.

shows the relative error for region −4λ0 < x ′ < 4λ0 and −3λ0 < z′ < 3λ0, meshed into

Np = 200× 200, λ0 as the wavelength of the beam. When N > 60, in all cases shown, the

approximation works well, the largest error being below 10−6. Expanding the Gaussian

beam into 80 plane waves enables to achieve a relative error less than 10−6.

To verify the convergence of the scattered field, a glass-fiber (ε(2)
r
= 6) based epoxy

(ε(1)
r
= 3.6) slab is considered with d = λinc = 0.1mm, c = 0.25d, L = d. The beam

is incident upon the structure obliquely with θ inc = 45° and ω0 = 2λinc. A region of

−10λinc < x < 10λinc and −5λinc < z < 5λinc is divided into Np = 200× 100 grids. The

total and scattered field in this region are computed with different number of plane waves,

which is the value of N . The relative error is given in Fig. 2.19. It is observed that the

relative error decreases quickly with the increase of N . With N = 200, a good accuracy

with relative error less than 1× 10−6 is achieved. In the following calculations, 250 plane

waves are used to expand the beam which produces a relative error less than 1× 10−7.
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Fig. 2.19 Convergence of scattered field with different values of N as the number of plane-
wave components. λ = 0.1mm.

The above structure is used here to carry out the numerical examples, wherein carbon

(ε(2)
r
= 12, σ = 3.3× 102 S/m), glass and perfectly conducting metal fibers are considered.

The background materials are all epoxy (ε(2)
r
= 3.6). A Gaussian beam with λinc = 0.1mm,

ω0 = 2λinc and x0 = z0 = 0 impinges upon the structure obliquely with θ inc = 45°.

The region of −10λinc < x < 10λinc and −5λinc < z < 5λinc is meshed into Np =

500 × 250 grids to produce a fine resolution. Numerical results for carbon, glass, and

metal (perfectly conducting) fibers are given in Fig. 2.20, Fig. 2.21 and Fig. 2.22. Strong

scattering is observed in all the three results, fields are scattered into many directions, but

two strong beams show up along the direction of reflection and transmission.

For glass-fiber reinforced epoxy slab, fields are observed at the points located in the

slab but more than 4λinc away from the center of the beam. These fields might be a result

of the fact that the strong interaction between the boundaries of the slab and the fibers

produces some modes which can propagate along the direction of the periodicity. But at

the same location, no field is observed in the slab reinforced by perfectly conducting fibers.

2.4 Homogenized single-layer slab

The composite structure can be homogenized to produce an anisotropic homogeneous slab.

The original periodic structure with different permittivities of the slab and fibers is then

replaced by this slab which is characterized by a tensor of effective permittivity. In practice,

the calculations corresponding to low-frequency incident waves can then be carried out
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Fig. 2.20 Total field distribution of Gaussian beam scattered by carbon-fiber based slab,
N = 250, λ = 0.1mm.
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Fig. 2.21 Total field distribution of Gaussian beam scattered by glass-fiber based slab, N =

250, λ = 0.1mm.

approximately with that homogeneous single-layer slab. This homogenization will not help

for revealing some details of the structure, but this technique could simplify and accelerate

the corresponding calculations without losing accuracy, especially for the structures with

defects inside. Combining it with imaging techniques such as MUltiple SIgnal Classification

(MUSIC) method, some of the inverse problems can be solved efficiently.

In this thesis, the single-layer periodic composite is homogenized with the approach

given in Appendix C, and the corresponding effective permittivities are calculated with

the equations (C.17) and (C.25). Several numerical results are proposed to compare with

the ones obtained with multipole method and plane wave expansions. The efficacy and

accuracy of the method is verified.
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Fig. 2.22 Total field distribution of Gaussian beam scattered by metal-fiber based slab,
N = 250, λ = 0.1mm.

A glass-fiber (ε(2)
r
= 6) reinforced epoxy (ε(1)

r
= 3.6) slab is first considered for TM

(E-polarized) and TE (H-polarized) wave illumination. In the considered 2D cases, the

effective permittivities are all scalar and denoted as ε̄(tm)
r

and ε̄(te)
r

for TM and TE waves,

respectively. Since the current structure is lossless, ε̄(tm)
r

and ε̄(te)
r

are frequency indepen-

dent. Assuming that the slab is characterized with the parameters L = d = 0.1 mm and

c = 0.25d, then the effective permittivities are given as ε̄(tm)
r
= 4.0712 and ε̄(te)

r
= 3.9068.

With the obtained effective permittivity, power reflection coefficients for the considered

single-layer glass-fiber-based composite are calculated. The results are then compared

with the exact value, as shown in Fig. 2.23 for TM wave and Fig. 2.24 for TE wave. A

quite good agreement is obtained for TM wave at the frequency band 10 GHz to 60 GHz,

but an obvious deviation is observed between 30 GHz and 60 GHz for the reflection of TE

wave. For lower frequency, better agreement can be obtained.

Now, consider a carbon-fiber reinforced epoxy slab with L = d = 0.1 mm and c = 0.25d.

Since the fibers are lossy, the effective permittivity will vary with frequency.

Allow the real and imaginary parts of ε̄∗
r

to be ℜε̄∗
r

and ℑε̄∗
r
, where ∗ is te or tm in

according to TE or TM wave illumination. Fig. 2.25 shows the variance of ℜε̄(tm)
r

and

ℑε̄(tm)
r

with frequency. According to equation (C.17), ℜε̄tm
r

will not be influenced by the

imaginary part of the permittivity of the materials in slab and fibers, so ℜε̄tm
r

does not

change with frequency. ℑε̄tm
r

decreases quickly with the increase of frequency.

For TE wave illumination, the variance of ℜε̄te
r

and ℑε̄te
r

are given in Fig. 2.26 and

Fig. 2.27. According to equation (C.25), ℜε̄te
r

is influenced by the imaginary part of the

permittivity of the materials in slab and fibers, soℜε̄te
r

changes for different frequencies. As

seen in Fig. 2.27 that ℑε̄te
r

is much smaller than ℑε̄tm
r

. For TE wave, the electric components
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Fig. 2.23 Reflection coefficient of homogenized glass-fiber-based slab for normally incident
TM wave, L = d = 0.1mm, c = 0.25d.
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Fig. 2.24 Reflection coefficient of homogenized glass-fiber-based slab for normally incident
TE wave, L = d = 0.1 mm, c = 0.25d.

lie in the common cross section of the fibers, where the conductive fibers are isolated by

the non-conductive materials in the slab, which in fact leads to a much smaller ℑε̄te
r

.

With effective permittivities, power reflection and transmission coefficients are calcu-

lated for the homogenized slab. The results are compared with the exact values obtained

by using the approach given in this chapter, as shown in Fig. 2.28 for TM wave and Fig.

2.29 for TE wave. The results obtained with the homogenized slab match the exact values

quite well for TM wave. The biggest relative error is less than 0.3%. A good approximate

results are also obtained for TE wave, with biggest relative error of 4% at high frequency.
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Fig. 2.25 Real and imaginary parts of effective permittivity of a carbon fiber slab varying
with frequency, L = d = 0.1 mm, c = 0.25d, TM wave.
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Fig. 2.26 Real part of effective permittivity of a carbon fiber slab varying with frequency,
L = d = 0.1mm, c = 0.25d, TE wave.

For obliquely incident waves, reflection coefficients varying with the angle of incidence

are given in Fig. 2.30 and Fig. 2.31 for TM and TE waves impinging upon a glass-fiber

reinforced epoxy slab. The frequency of incident wave is 60 GHz. As seen that the exact

results and the ones obtained with homogenized slab match well, with the largest relative

error of 0.12% and 0.9% for TM and TE waves.
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Fig. 2.27 Imaginary parts of effective permittivity of a carbon fiber slab varying with fre-
quency, L = d = 0.1mm, c = 0.25d, TE wave.
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Fig. 2.28 Power reflection and transmission coefficients of a carbon-fiber reinforced slab,
L = d = 0.1mm, c = 0.25d, TM wave normal illumination.

For carbon-fiber reinforced epoxy slab, power reflection and transmission coefficients

varying with the angle of incidence are given in Fig. 2.32 and Fig. 2.33 for TM and TE

waves. The frequency of incident wave is 60GHz. As seen that good matches are observed

for TM wave. But obvious difference is observed in TE wave case, and the largest relative

error is less than 4%. According to Fig. 2.27, ℑε̄te
r

is very small, which leads to the small

absorption of TE wave, as seen in Fig. 2.33.
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Fig. 2.29 Power reflection and transmission coefficients of a carbon-fiber reinforced slab,
L = d = 0.1mm, c = 0.25d, TE wave normal illumination.
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Fig. 2.30 Power reflection coefficients of a glass-fiber reinforced slab, L = d = 0.1mm,
c = 0.25d, f = 60 GHz, TM wave oblique illumination.

In addition, the scattering of Gaussian beam is also calculated with the effective permit-

tivity of glass-fiber reinforced slab. Considering E-polarized beam wave with λinc = 5 mm,

the width of the beam is ω0 = 2λinc, and the center is located at x0 = z0 = 0. Field distri-

bution of normally incident beam is given in Fig. 2.34. Exact field is given in Fig. 2.35.

As seen, the field matches well, and the largest relative error is less than 0.2%.
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Fig. 2.31 Power reflection coefficients of a glass-fiber reinforced slab, L = d = 0.1mm,
c = 0.25d, f = 60 GHz, TE wave oblique illumination.
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Fig. 2.32 Power reflection and transmission coefficients of a carbon-fiber reinforced slab,
L = d = 0.1mm, c = 0.25d, f = 60 GHz, TM wave oblique illumination.

2.5 Summary

A theoretical and numerical investigation of the scattering of TM or TE incident wave by

a single layer slab reinforced by an periodic array of infinity long circular fibers is carried

out in this chapter, and the fundamental principles of the corresponding approaches are

introduced.
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Fig. 2.33 Power reflection and transmission coefficients of a carbon-fiber reinforced slab,
L = d = 0.1mm, c = 0.25d, f = 60 GHz, TE wave oblique illumination.
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Fig. 2.34 Total field distribution of an E-polarized Gaussian beam normally impinging upon
the homogenized slab, L = d = 0.1mm, c = 0.25d.

The periodic structure in fact divides the whole space into four regions with the bound-

aries of the fibers and the ones of slab as limits. According to the Floquet theorem, the

periodicity of the structure forces the fields in all these regions to be periodic, which then al-

lows these fields to be plane-wave expanded. Then both plane-wave and cylindrical forms

of periodic Green’s function are applied to evaluate an integration along the boundaries of

one unit cell with Green’s second identity, which yields the relations of the field expansion

coefficients in the slab. Mode-matching at the upper and lower boundaries of the slab
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Fig. 2.35 Total field distribution of an E-polarized Gaussian beam normally impinging upon
the glass-fiber based slab, L = d = 0.1mm, c = 0.25d.

produces a linear system which is combined with the relation between the field expansion

coefficients inside the slab to produce the final numerical solution of the reflection and

transmission coefficients of each mode used in the field expansion. The power reflection

and transmission coefficients are then produced by using Poynting theorem. The approach

is validated by comparing the present results with those existing in literature.

Since the homogenization technique is practically used for nondestructive testing of

defects in composites, the considered single-layer periodic structure is also approximately

investigated by replacing it with an homogeneous slab, which is characterized by effective

permittivities. Several numerical examples are given for verifying the efficacy and accuracy

of the homogenization technique.



Chapter 3

Scattering of conically incident plane

wave by a fiber-based slab

Scattering of electromagnetic wave impinging upon the structure conically is important for

investigating the response of the structure to an elementary point source. Here, the scatter-

ing of a conically incident plane wave is carried out with a similar method as the one used

for the 2D case. For the investigation, the fields are first split into transverse and longitu-

dinal components. The longitudinal components are first expanded into a plane-wave or

cylindrical harmonic series. The transverse components of the fields are obtained directly

with the corresponding relations. The method used for solving the 2D scattering problem

is then applied. In fact, the considered 2.5D problem has no much more complexity than

the 2D case, which actually makes the calculation cheap and efficient.

As it will be presented, the differences between the approach for 2D and for 2.5D cases

are the larger linear systems produced by mode-matching at the boundaries. Because of

the longitudinal components of the wave vector, the electric and magnetic field are coupled

together, which makes the relation between the transverse and longitudinal components

of fields becomes more complicated than the one used in the 2D case, which then leads to

a more complicated relation between the field expansion coefficients. But the solution of

the large linear system can still be obtained analytically, hence producing explicit mathe-

matical expressions for all the unknowns.

3.1 Preliminary formulation

Here, conically incident plane waves with the defined coordinate system are considered,

then the wave vector of the incident wave needs to be defined as ~kinc = kinc
x

x̂ + kinc
y

ŷ −
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kinc
z

ẑ, the angle between the z-axis and ~kinc is given as ϑ, and the one between the x -axis

and the projection of ~kinc in the longitudinal x -y plane is defined as ϕ, see Fig. 3.1a,

then kinc
x
= −kinc sinϑ cosϕ, kinc

y
= kinc sinϑ sinϕ, kinc

z
= kinc cosϑ. ~kinc

t
is defined as the

transverse component of ~kinc within the x -z plane. Thus, the incident fields are defined

as E(x , y, z) = Eincei(kinc
x x+kinc

y y−kinc
z z) and H(x , y, z) = Hincei(kinc

x x+kinc
y y−kinc

z z) with implicit time-

dependence e−iωt , where Einc = Einc
x

x̂ + Einc
y

ŷ + Einc
z

ẑ and Hinc = H inc
x

x̂ +H inc
y

ŷ +H inc
z

ẑ.

Denote the wave vector in the j-th region as ~k j = ~kt j + ky j ŷ , where ~kt j = kx j x̂ − kz j ẑ

and k2
t j
= k2

j
− k2

y j
. Assuming that α j = kx j and β j = kz j, then ~kt j = x̂α j − ẑβ j.

(a) The conically incident electromagnetic plane wave;

(b) Side view of the structure with transverse components of the incident wave;

Fig. 3.1 A slab including a periodic set of cylindrical fibers under illumination of conically
incident electromagnetic plane wave with an angle of ϑ and ϕ.

In all regions, each field mode is characterized by its propagation constant k j y in the y

direction and its transverse dependence of the fields lying in the x -z plane, which means

that E j(x , y, z) = E j(x , z)eik j y y , and H j(x , y, z) = H j(x , z)eik j y y , where E j and H j denote
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the electric and magnetic fields. Defining the scaled magnetic field as K j(x , z) = ZH j(x , z),

where Z is the impedance of free space, and Z =
p
µ0/ε0. Each such field satisfies the

Helmholtz equation

(∇2
t
+ k2

t j
)V j = 0, (3.1)

where V j denotes either E j or K j, and ∇2
t
= ∂ 2

∂ x2 +
∂ 2

∂ z2 .

The key feature to exploit here is still the periodicity of the cylinders, which forces the

field to be periodic along the direction x̂ . Allied with the plane wave nature of the field

and the Floquet theorem, it yields

V j(x + d, y, z) = V j(x , y, z)eiα0d . (3.2)

Each x- and y-component of V j is continuous across the planar interfaces Γa and Γb [62].

Decomposing the field E j and H j into longitudinal and transverse components, parallel to

and orthogonal with the cylinder axes, respectively, denoted by subscripts y and t , then

E =(Et + Ey ŷ)eik j y y , (3.3a)

H =(Ht +H y ŷ)eik j y y . (3.3b)

Index j is neglected here since the decomposition is established in all regions. Noticing

that V= (Vt + Vy ŷ) and Vt = Vx x̂ + Vz ẑ, its divergence and curl are read as

∇ · V=∇t · Vt + iky Vy (3.4)

and

∇×V=∇t × Vt + iky ŷ ×Vt − ŷ ×∇tVy , (3.5)

where ∇t is ∂
∂ x

x̂ + ∂
∂ z

ẑ in the Cartesian coordinate system and ∂
∂ r

r̂ + 1
r
∂
∂ θ
θ̂ in the polar

coordinate system. The index j is neglected here since the above holds in all regions.

Allowing k = ω
p
µ0ε0, which is the propagation constant in air, the transverse fields

are easily obtained from the longitudinal ones [42, 63]:

Et =
i

k2
t

[ky∇t Ey −
Æ
µ0/ε0kµr ŷ ×∇tH y], (3.6a)

Ht =
i

k2
t

[ky∇tH y +
Æ
ε0/µ0kεr ŷ ×∇t Ey]. (3.6b)
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In Cartesian coordinates, the tangential components Ex and Kx are obtained directly from

the above equations:

Ex(x , z) =
i

k2
t

�
ky

∂ Ey

∂ x
− kµr

∂ Ky

∂ z

�
, (3.7a)

Kx(x , z) =
i

k2
t

�
ky

∂ Ky

∂ x
+ kεr

∂ Ey

∂ z

�
. (3.7b)

Hence, the appearance of the y dependence of eiky y in the electric and magnetic fields

makes them coupled together, which complicates the calculation with conically incident

wave. In the thesis, the longitudinal components of the field, saying Vy , is always firstly

plane-wave expanded, then the field Vx is obtained from Vy with (2.2a) and (2.2c) in the

considered 2D case or (3.7) for the 2.5D or 3D cases.

3.1.1 Scattering of conically incident plane wave by single cylinder

Once a conically incident plane wave is under the consideration, the relation between

longitudinal fields and the transverse ones in cylindrical coordinates can be obtained from

(3.6),

Eθ =
i

k2
t

�
ky

r

∂ Ey

∂ θ
+ kµr

∂ Ky

∂ r

�
,

Kθ =
i

k2
t

�
ky

r

∂ Ky

∂ θ
− kεr

∂ Ey

∂ r

�
.

(3.8)

Here, kt is the absolute value of the transverse components of the wave vector.

The longitudinal fields exterior the cylinder are expanded with cylindrical harmonics

as

E1y =
∑

n∈Z

�
Be

n
H(1)

n
(k1t c) + Ae

n
Jn(k1t c)
�

einθ eiky y , (3.9a)

K1y =
∑

n∈Z

�
Bh

n
H(1)

n
(k1tc) +Ah

n
Jn(k1t c)
�

einθ eiky y . (3.9b)

In the cylinder, the electric and scaled magnetic fields E2y and K2y are expanded in the

same way, which gives

E2y =
∑

n∈Z
C e

n
Jn(k2t r)e

inθ eiky y , (3.10a)

K2y =
∑

n∈Z
Ch

n
Jn(k2t r)e

inθ eiky y . (3.10b)
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Continuity at the boundary of the cylinder gives

C e
n
Jn(k2t c) =Be

n
H(1)

n
(k1tc) +Ae

n
Jn(k1tc),

Ch
n
Jn(k2t c) =Bh

n
H(1)

n
(k1t c) + Ah

n
Jn(k1tc).

(3.11)

Substituting (3.9) and (3.10) into (3.8) to get the field expressions for Eθ and Kθ fields

exterior and interior of the cylinder, and matching them at the boundary gives

inky

k2
2t c

C e
n
Jn(k2t c)−

kµ2r

k2t

Ch
n
J ′

n
(k2t c)

=
inky

k2
1t c
[Be

n
H(1)

n
(k1t c) + Ae

n
Jn(k1t c)]−

kµ1r

k1t

[Bh
n
H ′(1)

n
(k1t c) + Ah

n
J ′

n
(k1t c)] (3.12a)

inky

k2
2t c

Ch
n
Jn(k2t c) +

kε2r

k2t

C e
n
J ′

n
(k2t c)]

=
inky

k2
1t c
[Bh

n
H(1)

n
(k1tc) +Ah

n
Jn(k1t c)] +

kε1r

k1t

[Be
n
H ′(1)

n
(k1tc) +Ae

n
J ′

n
(k1t c)]. (3.12b)

Eliminating C e
n

and Ch
n

from (3.11) and (3.12) produces

�
D1 D2

D5 D6

��
Ae

n

Ah
n

�
=

�
D3 D4

D7 D8

��
Be

n

Bh
n

�
, (3.13)

where the coefficients Di depend on n and are defined as

D1 =
inky

c
(

1

k2
2t

− 1

k2
1t

)Jn(k1t c), D2 =
kµ2r

k2t

J ′
n
(k2t c)

Jn(k2t c)
Jn(k1t c)−

kµ1r

k1t

J ′
n
(k1t c),

D3 =
inky

c
(

1

k2
1t

− 1

k2
2t

)H(1)
n
(k1tc), D4 = −

kµ2r

k2t

J ′
n
(k2t c)

Jn(k2t c)
H(1)

n
(k1t c) +

kµ1r

k1t

H ′(1)
n
(k1tc),

D5 =−
kε2r

k2t

J ′
n
(k2t c)

Jn(k2t c)
Jn(k1t c) +

kε1r

k1t

J ′
n
(k1t c), D6 =

inky

c
(

1

k2
2t

− 1

k2
1t

)Jn(k1tc),

D7 =
kε2r

k2t

J ′
n
(k2t c)

Jn(k2t c)
H(1)

n
(k1t c)−

kε1r

k1t

H ′(1)
n
(k1t c), D8 =

inky

c
(

1

k2
1t

− 1

k2
2t

)H(1)
n
(k1tc),

Transforming (3.13) into matrix form yields

B=LA, (3.15)

which will be widely used for studying the scattering of multilayered composites. In the

calculation the matrix L is quite important, which is actually the key to build the relation
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of the plane-wave expansion coefficients between layers. It is defined as

L=

�
diag
�

Lee
n

	
diag
�

Leh
n

	

diag
�

Lhe
n

	
diag
�

Lhh
n

	
�

, (3.16)

where diag{xn} represents a diagonal matrix with xn as its diagonal elements. The coeffi-

cients Lee
n

, Leh
n

, Lhe
n

and Lhh
n

are defined as

Lee
n
=

D8D1 − D4D5

D3D8 − D4D7
, Leh

n
=

D8D2 − D4D6

D3D8 − D4D7
,

Lhe
n
=

D3D5 − D1D7

D3D8 − D4D7
, Lhh

n
=

D3D6 − D2D7

D3D8 − D4D7
.

(3.17)

3.2 Field representations

The field representations of the longitudinal components in regions Ω0 and Ω3 are plane-

wave expanded as

E0y(x , z) =
∑

p∈Z
(Einc

y
e−iβ0p(z−a)δp0 + Re

p
eiβ0p(z−a))eiαp x , (3.18a)

K0y(x , z) =
∑

p∈Z
(K inc

y
e−iβ0p(z−a)δp0 + Rh

p
eiβ0p(z−a))eiαp x , (3.18b)

E3y(x , z) =
∑

p∈Z
T e

p
ei(αp x−β3p(z−b)), (3.18c)

K3y(x , z) =
∑

p∈Z
T h

p
ei(αp x−β3p(z−b)). (3.18d)

Re,h
p

and T e,h
p

are the reflection and transmission coefficients of the plane wave indexed by

p, superscripts e and h relate to electrical and scaled magnetic field respectively. δp0 the

Kronecker symbol, αp = α0 + 2pπ/d, β jp =
q

k2
t j
−α2

p
. αp is continuous across Γa and Γb.

To get the field representation in regionΩ1, the periodic Green’s function which satisfies

(∇2
t
+ k2

t1)G(r) =

+∞∑

n=−∞
δ(r− nd x̂)eiα0nd (3.19)

is needed. In cylindrical coordinates, r= (r,θ ), the periodic Green’s function is given as

G(r) = − i

4

+∞∑

n=−∞
eiα0ndH

(1)
0 (kt1|r− ndx̂|).x (3.20)
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Applying Graf’s addition theorem [47] to the right-hand side of equation (3.20) yields a

second form of G:

G(r) = − i

4
H
(1)
0 (kt1r)− i

4

+∞∑

l=−∞
SmJm(kt1r)eilθ , (3.21)

Sm is lattice sums which are defined as

Sm =

+∞∑

n=1

H(1)
m
(kt1nd)[eiα0nd + (−1)me−iα0nd]. (3.22)

The series and the corresponding approaches of calculation have been widely discussed

and introduced in section 2.2.6. The plane wave form of the periodic Green’s function

[37] (3.20) is also needed here, it is written as

G(r) =
1

2id

+∞∑

p=−∞

1
βp

ei(αp x+βp|z|). (3.23)

Allowing field V j to stand for either E j or K j which are defined as E j(x , y, z) = E j(x , z)eik j y y

and K j(x , y, z) = K j(x , z)eik j y y . Concentrating on the primary cell given in Fig. 3.1b, the

longitudinal fields V1y satisfy

V1y(r) =

∮

C+D

V1y(r1)∇G(r− r1)− G(r− r1)∇V1y(r1)dr1 (3.24)

Following the same treatment given in section 2.2, the field representations for c < z < a

and b < z < −c read as

E±1y
(x , z) =
∑

p∈Z
( f +

ep
e−iβ1pz + g−

ep
eiβ1pz)eiαp x +
∑

p∈Z

∑

m∈Z
Be

m
Q±

pm
ei(αp x±β1pz), (3.25a)

K±1y
(x , z) =
∑

p∈Z
( f +

hp
e−iβ1pz + g−

hp
eiβ1pz)eiαp x +
∑

p∈Z

∑

m∈Z
Bh

m
Q±

pm
ei(αp x±β1pz), (3.25b)

where the plane wave expansions in region Ω1 are the same as given in (2.38). Obviously,

the relation (2.41) also holds true here. The signs + and − correspond to z > c and z < −c.

Be
m

and Bh
m

are the multipole expansion coefficients, Q±
pm
=

2(−i)m

dβ1p
e±imθp . Transverse fields

Ex , Ez, Kx and Kz in both Cartesian and cylindrical coordinates are easily obtained from

equations (3.7a) and (3.7b).

Matching the modes at both boundaries Γa and Γb, the coefficients Re
p
, Rh

p
, T e

p
, T h

p
, f +

ep
,

g−
ep

, f +
hp

and g−
hp

are expressed with the unknown coefficients Be
m

and Bh
m

, as detailed in
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Appendix B. Coefficients Be
m

and Bh
m

are obtained by solving the Rayleigh’s identity estab-

lished by matching the fields at the boundary of the fibers [42]. The general idea of the

approach is illustrated in Fig. 3.2, which also shows the similarity between the methods

used for solving the 2D and 2.5D scattering problems.

Fig. 3.2 The general idea of the approach which is based on the mode-matching, plane-
wave expansion and multipole expansion methods.

3.3 Establishing Rayleigh’s identity

The essential feature of multipole methods is a clever field identity involving the non-

singular parts of a multipole expansion of the fields and the superposed effect of singular
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sources arising from other points in the array [3, 32, 42]. For Rayleigh’s identity, the

indispensable cylindrical harmonic form of the equation (3.25) is obtained by transforming

its Cartesian form by using x = r cosθ , z = r sinθ , α1p = k1t cosθp, β1p = k1t sinθp and

the identity eikr cosθ =
∑

m∈Z imJm(kr)eimθ . It is written as

V1y(x , z) =
∑

n∈Z

∑

p∈Z

�
einθp f −

p
+ e−inθp f +

p

�
inJn(k1t r)e

inθ

+
∑

n∈Z
Jn(k1r)einθ
∑

m∈Z
Sn−mBm +
∑

n∈Z
BnH(1)

n
(k1t r)e

inθ (3.26)

Substituting the coefficients (B.4) into (3.26) yields

E1y =
∑

n∈Z

�
Be

n
H(1)

n
(k1t r) +

�∑

m∈Z
(M e

nm
+Snm)B

e
m
+
∑

m∈Z
N e

nm
Bh

m
+ F e

n

�
Jn(k1t r)

�
einθ , (3.27a)

K1y =
∑

n∈Z

�
Bh

n
H(1)

n
(k1t r) +

�∑

m∈Z
(N h

nm
+Snm)B

h
m
+
∑

m∈Z
Mh

nm
Be

m
+ Fh

n

�
Jn(k1t r)

�
einθ , (3.27b)

where M e
nm

, N e
nm

, F e
n
, Mh

nm
, N h

nm
and Fh

n
are defined as

M e
nm
=
∑

p∈Z

in

Se
p
Qe

p
− P e

p
W e

p

��
U ee

mp
Qe

p
− V ee

mp
W e

p

�
einθp −
�
U ee

mp
P e

p
− V ee

mp
Se

p

�
e−inθp

�
, (3.28a)

N e
nm
=
∑

p∈Z

in

Se
p
Qe

p
− P e

p
W e

p

��
U eh

mp
Qe

p
− V eh

mp
W e

p

�
einθp −
�
U eh

mp
P e

p
− V eh

mp
Se

p

�
e−inθp

�
, (3.28b)

F e
n
=
∑

p∈Z

in

Se
p
Qe

p
− P e

p
W e

p

��
U ei

p
Qe

p
− V ei

p
W e

p

�
einθp −
�
U ei

p
P e

p
− V ei

p
Se

p

�
e−inθp

�
, (3.28c)

Mh
nm
=
∑

p∈Z

in

Sh
p
Qh

p
− Ph

p
W h

p

[(Uhe
mp

Qh
p
− V he

mp
W h

p
)einθp − (Uhe

mp
Ph

p
− V he

mp
Sh

p
)e−inθp], (3.28d)

N h
nm
=
∑

p∈Z

in

Sh
p
Qh

p
− Ph

p
W h

p

[(Uhh
mp

Qe
p
− V hh

mp
W h

p
)einθp − (Uhh

mp
Ph

p
− V hh

mp
Sh

p
)e−inθp], (3.28e)

Fh
n
=
∑

p∈Z

in

Sh
p
Qh

p
− Ph

p
W h

p

[(Uhi
p

Qh
p
− V hi

p
W h

p
)einθp − (Uhi

p
Ph

p
− V hi

p
Sh

p
)e−inθp]. (3.28f)

The field in the vicinity of the fiber in the primary cell is written as

V1y(x , z) =
∑

n∈Z
[BnH(1)

n
(k1t r) +AnJn(k1t r)]e

inθ , (3.29)

which is the multipole expansion of the longitudinal field around the cylinder. But obvi-

ously the y dependence of eiky y is neglected since it has no influence on the final results.
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Comparing it with (3.27), identities for Ae
n

and Ah
n

read as

Ae
n
=
∑

m∈Z

��
M e

nm
+Snm

�
Be

m
+ N e

nm
Bh

m

�
+ F e

n
, (3.30a)

Ah
n
=
∑

m∈Z

��
N h

nm
+Snm

�
Bh

m
+Mh

nm
Be

m

�
+ Fh

n
. (3.30b)

which can be put for convenience into matrix form as A =QB+F where A, B and F are

all column vectors defined as A = [[Ae
n
], [Ah

n
]]T , B = [[Be

n
], [Bh

n
]]T and F = [[F e

n
], [Fh

n
]]T ,

where [xn] is a row vector with xn as its elements. The superscript T denotes the transpose

of the indicated vector. Q is a 2n× 2m matrix expressed as

Q=

�
Me +S N e

Mh N h +S,

�
. (3.31)

where Me, N e, Mh, N h and S are all n×m square matrices whose (n, m)-th elements

are M e
nm

, N e
nm

, Mh
nm

, N h
nm

and Sn−m respectively.

Substituting (3.15) into equation (3.30) yields the required Rayleigh’s identity

B =LQB+LF . (3.32)

With this matrix identity, the value of B can be computed numerically. f ±
ep

and f ±
hp

are

obtained with (B.4). Then, substituting them into the equations in (B.1), transmission

and reflection coefficients Re
p
, Rh

p
, T e

p
and T h

p
can be obtained.

Here, it is interesting to point out, as analyzed in [40], the possible influence of mod-

ified plate modes that arise from complex interference between the matrix and the fiber

array embedded in it. To avoid the complication and without losing the generality, taking

the incident wave as TM polarized as an illustrative example, the wave vector of the inci-

dent wave being orthogonal to the axis of the fibers, Be
n

and Bh
n

decouple, so Leh
n

and Lhe
n

in

(3.15) vanish, and Be
n
= Lee

n
Ae

n
. Equation (3.30a) becomes Ae

n
=
∑

m∈Z
�
M e

nm
+Snm

�
Be

m
+F e

n
.

Then, Be
m

is such that

�
1− Ln

�
M e

nn
+S0

��
Be

n
= Lee

n

∑

m∈Z

�
M e

nm
+Snm

�
Be

m
(1− δmn) + Lee

n
F e

n
. (3.33)

This set of equations, as already discussed in the above, can be solved directly with inverse

of the coefficient matrix. Here, for the sake of analysis, an iterative solution is given as

Be(0)
n
=

Lee
n

F e
n

1− Lee
n
(M e

nn
+S0)

, (3.34a)
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Be(q)
n
=

Lee
n

�∑
m∈Z
�
M e

nm
+Snm

�
Be

m
(1− δmn) + F e

n

�

1− Lee
n
(M e

nn
+S0)

(3.34b)

for any order of approximation of Be(q)
n

. Allowing

Dn = 1− Lee
n
(M e

nn
+S0) (3.35)

and combining it with the expression ofM e
nn

yields

Dn = 1−




∑

p∈Z

in
�
U ee

mp
Qe

p
− V ee

mp
W e

p

�
einθp −
�
U ee

mp
P e

p
− V ee

mp
Se

p

�
e−inθp

Se
p
Qe

p
− P e

p
W e

p

−S0



 Lee
n

. (3.36)

It becomes clear that each n-th mode corresponds to an infinite set of (n, p) modified plate

modes. As a consequence, for certain couples of (αp,ω), the coefficients Bn can be large

and cause the scattered fields to be large since the values of Bn are closely related to R

and T .A numerical investigation is given in section 3.5.

3.4 Reflection and transmission coefficients

The time-averaged Poynting vector is defined as 〈S〉 = E ×H∗ [62], which indicates the

time-averaged power density. So the power reflection transmission coefficients for the p-th

mode are defined as

Rp =ℜ
§

ẑ · 〈Sr〉
−ẑ · 〈Sinc〉

ª
(3.37a)

Tp =ℜ
§ −ẑ · 〈St〉
−ẑ · 〈Sinc〉

ª
(3.37b)

where 〈Sinc,r,t〉 is the time-averaged Poynting vectors for the p-th mode of incident, reflected

and transmitted electromagnetic waves. Substituting the field expansions shown in (3.18),

(3.25) and the corresponding x and z field components into (3.37) produces

Rp =ℜ
¨

Re
p
ξr

p

∗ − Rh
p

∗
ζr

p

K inc
y

∗ξinc
p
− Einc

y
ζinc

p

∗

«
, (3.38a)

Tp =ℜ
¨

T h∗
p
ξt

p
− T e

p
ζt

p

∗

K inc
y

∗ξinc
p
− Einc

y
ζinc

p

∗

«
, (3.38b)
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where the coefficients are

ξinc
p
=

kyα0Einc
y
+ kµ0rβ0K inc

y

k2
0t

, ζinc
p
=

kyα0K inc
y
− kε0rβ0Einc

y

k2
0t

,

ξr
p
=

kyαpRh
p
+ kε0rβ0pRe

p

k2
0t

, ζr
p
=

kyαpRe
p
− kµ0rβ0pRh

p

k2
0t

,

ξt
p
=

kyαpT e
p
+ kµ3rβ3p T h

p

k2
3t

, ζt
p
=

kyαpT h
p
− kε3rβ3p T e

p

k2
3t

.

The power reflection, transmission and absorption coefficients of the fields are defined as

R=
∑

p∈ZRp, T =
∑

p∈ZTp and A= 1−R−T .

3.5 Numerical simulations

Before entering into the discussion of the numerical simulations, one item of importance

is that infinite sums
∑

p∈Z and
∑

m∈Z are computed as
∑P

p=−P
and
∑M

m=−M
, letting P =

Int (d/2π(3ℜ(k1)−α0)), M = Int
�
ℜ(4.05× (k1c)1/3) + k1c

�
[40] to achieve an approxi-

mation with error |Rn+1 −Rn|, n= P, M , less than 10−6, refer to Chapter 2 for details.

Now, to verify the proposed approach, its results are compared in Fig. 3.3 and Fig.

3.4 with those produced by the COMSOL FEM code with its solver for periodic structure.

Power reflection coefficients of the 0-th mode, when TM- and TE -polarized waves are

obliquely impinging on carbon-fiber (εr2 = 12, σ = 3.3× 102 Sm−1 [57, 58]) reinforced

composites (CFRC) with epoxy (εr1 = 3.6) matrices, are displayed in Fig. 3.3, which shows

a good match. The wavelength of the incident wave is λinc = 0.1mm, and ϕ = 0, while

Einc
y
= 1, K inc

y
= 0 and Einc

y
= 0, K inc

y
= 1, respectively. The laminated geometry is specified

by parameters d = L = λinc, c = 0.25d, and the parameters are used in this whole chapter

except otherwise specified.

Results given in Fig. 3.4 show the variation of power reflection coefficients with ϑ for

TM- and TE-polarized waves obliquely impinging on a periodic array of dielectric fibers

(εr2 = 3.6), with the wavelength of incident wave λinc = 2d and ϕ = 15o. A good match

is observed for −80° < ϑ < 80°.

To simulate the presented 2.5D case with COMSOL, Perfectly Matched Layers (PML)

and Floquet periodic boundary condition are required to build a full 3D model which

actually produces many unknowns for achieving a good accuracy, hence leading to a time-

and resource- consuming computation. The presented approach could be much lighter and

faster since it is actually a 2.5D approach which has no much more complexity compared
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to the 2D case. Moreover, PML, with an incident angle close to 90°, will reflect respectable

amount of waves back to the computation region which increases the reflection of the

waves. Hence, when 80° < |ϑ| < 90°, results of R obtained with COMSOL 3D model are

larger than that of present approach.
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Present results, TM

COMSOL, TM

Fig. 3.3 Validating the approach by comparing the results of TE and TM cases with those
from COMSOL FEM, ϕ = 0.
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Fig. 3.4 Validating the approach by comparing the results of TE and TM cases with those
from COMSOL FEM, ϕ = 15o.

In order to illustrate the broad applicability of the proposed method and possibly pro-

vide reference results for testing more brute-force approaches, a number of simulation
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results are shown in various cases of interest. The investigation is mainly given in the

context of non-destructive testing of fiber-reinforced composites to look at their expected

behavior and the consequences thereof.

The results of R for glass-fiber (εr2 = 6) reinforced composites (GFRC) are given in

Fig. 3.5 with L = d = λinc = 0.1mm; several peaks appear when ϑ varies from −90° to

90° and good symmetry is observed. When ϕ = 45°, the reflection is stronger than that of

ϕ = 90° except ϑ close to 0.

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

incident angle (degree)

R

Fig. 3.5 Variation of R with ϑ for ϕ = 45° (dash-dotted line) and ϕ = 90° (solid line),
glass fibers.

The variation of R with d/λinc for GFRC is given in Fig. 3.6 for different values of ϕ

with ϑ = 60°, which is also the essential situation for periodic structures used as frequency

and polarization selective components in microwave and optical regions. The power re-

flection coefficientR approaches zero when d/λinc is small, as shown in Fig. 3.6, hence, in

view of non-destructive testing of GFRC, a frequency band 10 GHz to 60 GHz is expected.

Several narrow peaks are observed, some associated to full reflection, all (if one zooms

into them via small steps of d/λinc) vary quite smoothly however. As discussed in section

3.3, this corresponds with the modified plate modes. It can be seen clearly from Fig.3.7

(normal illumination of TM wave) that the peaks on the curve of R appear when Bn is

large. Since Bn closely depends on the mode pair index by (n, p) and each n-th mode is

modified by an infinite number of p-th mode, for some pair of (n, p) mode, Bn becomes

large and cause large reflected field.

For CFRC, results for R and T as a function of d/λinc are given in Fig. 3.8 for different

values of ϕ, where ϑ = 60°. Strong absorption is observed when d/λinc approaches to 1,

while, for the long wavelength case, strong transmission is obtained. For the usual testing
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frequency band of CFRC, from 1 MHz to 1 GHz, R for ϕ = 45° and ϕ = 90° are about 0.2

and 0.1, and T in both cases are 0.6 and 0.8, respectively.

Influence of the period d and fibers’ radius c is exhibited in Fig. 3.9 and Fig. 3.10.

In the low-frequency band, decreasing d or increasing c increases the volume occupied

by the lossy carbon fibers, the power transmission coefficient T decreases and the power

reflection coefficient R increases slightly.
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Fig. 3.6 Variation of R with d/λinc, glass fibers, L = d = 0.1mm, c = 0.25d, ϑ = 60°.

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

d/λinc

n

0

1

2

3

R

Fig. 3.7 Comparison between the distribution of Bn and R for TM wave illuminating nor-
mally. Strong reflection is observed when Bn is large.
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Fig. 3.8 Variation of R and T with d/λinc for ϕ = 45° and ϕ = 90°, ϑ = 60°, carbon fibers.
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Fig. 3.9 Variation of R and T with d/λinc for different d, ϕ = 45°, ϑ = 60°, carbon fibers

3.6 Summary

The approach built in Chapter 2 is extended in this chapter for the scattering of a conically

incident plane wave by a single-layer composite panel reinforced by a periodic array of cir-

cular fibers. The method is intrinsically frequency-broad-band and valid for any isotropic

constitutive material. Its effectiveness and accuracy are illustrated by numerical results
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Fig. 3.10 Variation of R and T with d/λinc for different c, ϕ = 45°, ϑ = 60°, carbon fibers

for single-layer carbon or glass fiber-reinforced composites as used in aeronautic and au-

tomotive parts. One has also validated the approach via the COMSOL software.

The work as summarized is about the 2.5D scattering problems of single-layer compos-

ite, but it can be applied to analyze the electromagnetic characters of multilayer periodic

composites, which is constructed by stacking up the single-layer composite one over the

other. The fibers in different layers are either parallel to each other or orientated into an

arbitrary direction. Details are given in the following chapters.





Chapter 4

Scattering by composite laminates with

the same orientation of fibers

Following the discussion in [64] on the recursive matrix methods for simple layered struc-

ture, a scheme based on S-matrix is further developed here for investigating the considered

periodic composite which is more complicated, hence resulting in more complex field be-

havior. This approach is proved to be stable and also intrinsically broad-band. Though

some difficulties are still encountered for directly computing the field distribution inside

the structure with obtained reflection and transmission coefficients, they are easily over-

come by rearranging the corresponding matrices to relate the field expansion coefficients

inside the composite to the incident field.

Comparing to S-matrix based approach, the present problem can also be investigated

with another approach based on transfer matrices (T-matrices), which is more straightfor-

ward to implement and easier for understanding. But such type of method is known to

suffer from intractable numerical instability at high frequency as exemplified by [65, 66].

Some numerical investigations will be presented to further reveal the possible causes of

the instability, and referring to [67] for a possible approach to solve this problem.

4.1 Configurations and formulation

The laminate of interest is sketched in Fig. 4.1. A periodic array of homogeneous circular

cylinders is embedded inside each constitutive homogeneous planar layer indexed by l,

from 1 to n, with thickness hl , all such cylinders having the same orientation and the

same periodicity d (center-to-center distance between two adjacent fibers) throughout

the laminate, though the fibers in a given layer can be shifted by a distance sl along the
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direction of periodicity. The cylinder radius cl is constant in a given layer but can differ

between layers. Upper and lower interfaces of the l-th layer are denoted as z = t l−1

and z = t l , the laminate itself being sandwiched between two homogeneous half spaces

denoted with indexes l = 0 and l = n+ 1 for convenience.

A Cartesian coordinate system x yz with x̂ , ŷ and ẑ as unit vectors is defined, x̂ as

direction along the periodicity of the laminate, ŷ along the axis of the fibers, ẑ = x̂× ŷ. Of

interest in the analysis is the d-wide primary cell of the l-th layer, which can produce the

whole layer by repeating to infinity along positive or negative directions of periodicity.

The upper and lower spaces are filled with air here, but the approach works with any

isotropic homogeneous material in the lower space. Their electromagnetic parameters

accordingly are ε0 and µ0. All materials in the layered composite are linear isotropic with

layer-dependent complex-valued relative permittivity ε(v)
l

and relative permeability µ(v)
l

which are normalized with ε0 and µ0, l = 0, 1, 2, ..., n + 1, and v = 1, 2 denoting the

background material when v = 1 and the material in the cylinders when v = 2. One uses

an implicit time-harmonic dependence e−iωt .

Fig. 4.1 The local coordinate system and the transverse component of incident wave.

A conically incident wave as shown in Fig. 3.1a is considered, and the layers are num-

bered in the way shown in Fig. 4.2. For the wave within the l-th layer but outside the

embedded cylinders if any, the wave vector is ~kl and its transverse and longitudinal com-

ponents are ~kl t and ~kl y , where ~kl t = kl x x̂ − klz ẑ, l = 0, 1, 2, ..., n+ 1. Thus, k2
l t
= k2

l
− k2

l y
.

letting αl = kl x , βl = klz and ξl = kl y , then ~kl t = x̂αl − ẑβl . Because of the continuity of

αl and ξl across the boundaries, αl = α0 and ξl = ξ0, l = 1, 2, ..., n.

Here, the fields El and Kl are also decomposed into longitudinal and transverse com-

ponents, parallel with and orthogonal to the common cylinder axis, respectively, denoted

by subscripts y and t , where El = (El t+El y ŷ)eiky y and Kl = (Kl t+Ky ŷ)eiky y . The relation



4.2 Field expansion in different layers 67

Fig. 4.2 The way of numbering the layers.

between Vl y and Vl x is similar to (3.7), it reads

El x(x , z) =
i

k2
l t

�
ky

∂ El y

∂ x
− kµr

∂ Kl y

∂ z

�
, (4.1a)

Kl x(x , z) =
i

k2
l t

�
ky

∂ Kl y

∂ x
+ kεr

∂ El y

∂ z

�
, (4.1b)

where k is the wavenumber in vacuum.

4.2 Field expansion in different layers

Longitudinal components of the fields in both upper and lower half-spaces can be plane-

wave expanded as

E0y(x , z) =
∑

p∈Z

�
E inc

y
e−iβ0p(z−t0)δp0 + Re

p
eiβ0p(z−t0)
�

eiαp x , (4.2a)

K0y(x , z) =
∑

p∈Z

�
K inc

y
e−iβ0p(z−t0)δp0 + Rh

p
eiβ0p(z−t0)
�

eiαp x , (4.2b)

En′ y(x , z) =
∑

p∈Z
T e

p
ei(αp x−βn′p(z−tn)), (4.2c)

Kn′ y(x , z) =
∑

p∈Z
T h

p
ei(αp x−βn′p(z−tn)). (4.2d)

n′ = n+ 1, Re,h
p

and T e,h
p

are the reflection and transmission coefficients of the plane wave

indexed by p, δp0 the Kronecker symbol, αp = α0 + 2pπ/d, βl p =
q

k2
t l
−α2

p
.
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Define (sl , el) as the coordinates of the center of the primary cell characteristic of the

l-th layer, the field within the l-th layer outside the cylinders is plane-wave expanded as

V±
l y
=
∑

p∈Z

�
f ±
l p

e−iβlp(z−el ) + g±
l p

eiβlp(z−el)
�

eiαp(x−sl ), (4.3)

The coefficients f ±
l p

and g±
l p

depending on V±
l y

for El y and Kl y fields are common representa-

tions of f ±
l{e,h}p and g±

l{e,h}p. f ±
l p

represents the field propagating along the −z direction and

g±
l p

the one propagating along the +z direction. + and − indicate the slices of the layer

that are above and below the cylinders cl < z < a and b < z < cl , respectively.

4.3 Mode-matching at the boundaries

Mode-matching at the boundary between two adjacent layers produces a linear system

which links the expansion coefficient of the field at the two sides of the corresponding

boundary. Both of the T-matrix and S-matrix which relate to the considered boundary are

produced from this linear system according to their individual physical meanings. The T-

matrices of each boundary can be produced directly from the obtained linear system, but

to produce the S-matrices needs to reorganize the linear system to separate the input and

output corresponding to the considered boundary. These matrices are part of the build-

ing bricks for constructing the T-matrix or the S-matrix of one single layer. The detailed

procedures of constructing these matrices are presented in this section.

4.3.1 Mode-matching at boundaries for T-matrix

Allowing χl p = αpky/k
2
l1t

, ηl p = kµ
(1)
l
βl1p/k

2
l1t

, ρl p = kε
(1)
l
βl1p/k

2
l1t

and matching the fields

at the boundary between the l-th layer and the (l + 1)-th one yields

Pl p f −
l ep
+ Ul p g−

l ep
= Pl ′p f +

l ′ep
+ Ul ′p g+

l ′ep
, (4.4a)

Pl p f −
lhp
+ Ul p g−

lhp
= Pl ′p f +

l ′hp
+ Ul ′p g+

l ′hp
, (4.4b)

χl p

�
Pl p f −

l ep
+ Ul p g−

l ep

�
+ηl p

�
Pl p f −

lhp
− Ul p g−

lhp

�

= χl ′p

�
Pl ′p f +

l ′ep
+ Ul ′p g+

l ′ep

�
+ηl ′p

�
Pl ′p f +

l ′hp
− Ul ′p g+

l ′hp

�
, (4.4c)

χl p

�
Pl p f −

lhp
+ Ul p g−

lhp

�
−ρl p

�
Pl p f −

l ep
− Ul p g−

l ep

�

= χl ′p

�
Pl ′p f +

l ′hp
+ Ul ′p g+

l ′hp

�
−ρl ′p

�
Pl ′p f +

l ′ep
− Ul ′p g+

l ′ep

�
, (4.4d)
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where Pl p = e−i(αpsl+βlp(tl−el )) and Ul p = e−i(αpsl−βlp(tl−el)). Pl ′p and Ul ′p have similar definition

with t l ′. l ′ = l + 1 for the sake of convenience. This system can be written as

F−
l
=MlF

+
l

(4.5)

with column vectorsF−
l
=
�
[ f −

l ep
], [ f −

lhp
], [g−

l ep
], [g−

lhp
]
�T

, F+
l ′ =
�
[ f +

l ′ep
], [ f +

l ′hp
], [g+

l ′ep
], [g+

l ′hp
]
�T

and with Ml the matrix of coefficients. Assuming M
(i, j)
l

as the block matrix at i-th row

and j-th column of Ml with i, j = 1, 2, 3, 4, matrix M
(i j)

l
then is a diagonal matrix with

p-th element M
(i j)

l p
on the main diagonal, with the definitions given as

M
(11)
l p
=
(ρl ′p +ρl p)Pl ′p

2ρl pPl p

, M
(12)
l p
=
(χl p − χl ′p)Pl ′p

2ρl pPl p

,

M
(13)
l p
=
(ρl p −ρl ′p)Ul ′p

2ρl pPl p

, M
(14)
l p
=
(χl p − χl ′p)Ul ′p

2ρl pPl p

,

M
(21)
l p
=
(χl ′p − χl p)Pl ′p

2ηl pPl p

, M
(22)
l p
=
(ηl ′p +ηl p)Pl ′p

2ηl pPl p

,

M
(23)
l p
=
(χl ′p − χl p)Ul ′p

2ηl pPl p

, M
(24)
l p
=
(ηl p −ηl ′p)Ul ′p

2ηl pPl p

,

M
(31)
l p
=
(ρl p −ρl ′p)Pl ′p

2ρl pUl p

, M
(32)
l p
=
(χl ′p − χl p)Pl ′p

2ρl pUl p

,

M
(33)
l p
=
(ρl p +ρl ′p)Ul ′p

2ρl pUl p

, M
(34)
l p
=
(χl ′p − χl p)Ul ′p

2ρl pUl p

,

M
(41)
l p
=
(χl p − χl ′p)Pl ′p

2ηl pUl p

, M
(42)
l p
=
(ηl p −ηl ′p)Pl ′p

2ηl pUl p

,

M
(43)
l p
=
(χl p − χl ′p)Ul ′p

2ηl pUl p

, M
(44)
l p
=
(ηl p +ηl ′p)Ul ′p

2ηl pUl p

At z = t0, F−0 = [[E
inc
y
δ0p], [K

inc
y
δ0p], [R

e
p
], [Rh

p
]]T, and at z = tn F

+
n′ =
�
0, 0, [T e

p
], [T h

p
]
�T

.

4.3.2 Mode-matching at boundaries for S-matrix

Coefficients f+
l

and g−
l ′ represent the waves arriving at the boundary (input), and f−

l ′ and g+
l

those leaving it (output). Reorganizing the linear system (4.4) to link both, one has

�
f+
l ′

g−
l

�
=

�
M

(1)
l l ′ M

(2)
l l ′

M
(3)
l l ′ M

(4)
l l ′

��
f−
l

g+
l ′

�
; (4.6)
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M
(1)
l l ′ , M

(2)
l l ′ , M

(3)
l l ′ and M

(4)
l l ′ are four blocks of Ml l ′ calculated with Ml l ′ =M

(a)

l l ′
−1
M

(b)

l l ′ ,

M
(a)

l l ′ =





Pl ′p 0 −Ul p 0

0 Pl ′p 0 −Ul p

χl ′p Pl ′p ηl ′p Pl ′p −χl pUl p ηl pUl p

−ρl ′p Pl ′p χl ′p Pl ′p −ρl pUl p −χl pUl p



 (4.7)

M
(b)

l l ′ =




Pl p 0 −Ul ′p 0

0 Pl p 0 −Ul ′p

χl pPl p ηl pPl p −χl ′pUl ′p ηl ′pUl ′p

−ρl pPl p χl pPl p −ρl ′pUl ′p −χl ′pUl ′p


 (4.8)

Matrices M∗
l l ′ (S-matrix) and Ml (T-matrix) are easily distinguished from their indexing.

For M∗
l l ′, index l l ′ indicates that the matrix relates the field between the l-th and l ′-th

layers. Index l of Ml means that the field is matched at boundary t l. At z = t0, f−0 =

[[E inc
y
δ0p], [K

inc
y
δ0p]] and g−0 = [[R

e
p
], [Rh

p
]]. At z = tn, f+

n′ = [[T
e
p
], [T h

p
]] and g+

n′ = [0, 0].

4.4 The relation between f ±
lep

and g±
lep

In the l-th layer, following the treatment presented in section 3.3, the field in the vicinity

of the circular cylinder is given as

Vl y(x , z) =
∑

n∈Z

∑

p∈Z

�
f +
l p

einθlp + g−
l p

e−inθlp

�
inJn(kl t r)e

inθ

+
∑

n∈Z
Jn(kl t r)e

inθ
∑

m∈Z
SlnmBlm +
∑

n∈Z
BlnH(1)

n
(kl t r)e

inθ (4.9)

Here, Bln indicates either Be
ln

or Bh
ln

as multipole expansion coefficients. Slnm = Sl ,n−m,

are lattice sums or Schlömilch series. The field in the vicinity of the cylinder can also be

expanded as equation (2.8). Comparing equation (4.9) with equation (2.8) yields

Ae
ln
=
∑

p∈Z

�
ineinθlp f +

l ep
+ ine−inθlp g−

l ep

�
+
∑

m∈Z
Sn−mBe

lm
, (4.10a)

Ah
ln
=
∑

p∈Z

�
ineinθlp f +

lhp
+ ine−inθlp g−

lhp

�
+
∑

m∈Z
Sn−mBh

lm
, (4.10b)

which can be written as

Al =O1f+
l
+O2g−

l
+SlBl (4.11)
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with the vectors defined asAl =
��

Ae
ln

�
,
�
Ah

ln

��T
, Bl =
��

Be
lm

�
,
�
Bh

lm

��T
, f+

l
=
��

f +
l ep

�
,
�

f +
lhp

��T

and g−
l
=
��

g−
l ep

�
,
�
g−

lhp

��T
. The matrices are defined as

O1 =

�
diag
��

ineinθlp

�	
0

0 diag
��

ineinθlp

�	
�

, (4.12a)

O2 =

�
diag
��

ine−inθlp

�	
0

0 diag
��

ine−inθlp

�	
�

, (4.12b)

Sl =

�
[Slnm]nm 0

0 [Slnm]nm

�
. (4.12c)

Here,
�
xp

�
defines a row vector with xp as its elements, [xnm]nm stands for a matrix with

elements xnm. The relation betweenAl andBl is detailed in section 3.1.1, and summarized

into Bl =LlAl . Letting Wl = (I −LlSl)
−1 and eliminating Al from (4.11) yields

Bl =WlLlO1f+
l
+WlLlO2g−

l
(4.13)

In the l-th layer, the relationship between { f , g}+
l p

and { f , g}−
l p

can be obtained by

evaluating the Green’s second identity along the closed path defined by the boundary of

the primary cell and the one of the inside fiber. The procedure is the same as the one

detailed in sections 2.2.2 and 3.2. The relation is similar with the one given in equation

(2.41), it is

f −
l p
= f +

l p
+
∑

m∈Z
BlmQ−

l pm
, (4.14a)

g+
l p
=g−

l p
+
∑

m∈Z
BlmQ+

l pm
. (4.14b)

with Q±
l pm
=

2(−i)me
±imθlp

dβlp
. Writing it into matrix form yields

f−
l
= f+

l
+Q−

l
Bl, (4.15a)

g+
l
= g−

l
+Q+

l
Bl , (4.15b)

where Q±
l
= diag
n�

Q±
l pm

�
pm

,
�
Q±

l pm

�
pm

o
, f±

l
=
��

f ±
l ep

�
,
�

f ±
lhp

��T
and g±

l
=
��

g±
l ep

�
,
�
g±

lhp

��T
.

Substituting (4.13) into (4.15) and eliminating Bl produces

f−
l
= f+

l
+Q−

l
WlLlO1f+

l
+Q−

l
WlLlO2g−

l
, (4.16a)
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g+
l
= g−

l
+Q+

l
WlLlO1f+

l
+Q+

l
WlLlO2g−

l
, (4.16b)

4.5 T-matrix approach

Letting F−
l
=
�
f−
l
,g−

l

�T
and F+

l
=
�
f+
l
,g+

l

�T
, the relation between them is obtained by

reorganizing (4.16), which is written as

F+
l
= GlF

−
l

. (4.17)

The matrix Gl is calculated by Gl = G
(a)

l

−1
G
(b)

l
where G

(a)

l
and G

(b)

l
are defined as

G
(a)

l
=

�
I +Q−

l
WlLlO1 0

Q+
l
WlLlO1 −I

�
, G

(b)

l
=

�
I −Q−

l
WlLlO2

0 −(I +Q+
l
WlLlO2)

�
. (4.18a)

I denotes the identity matrix here. The relation between F−
l

and F+
l ′ is given in equation

(4.5) in section 4.3.1. Combining (4.5) with (4.17) yields

F+
l
= GlMlF

+
l ′ (4.19)

As illustrated in Fig. 4.3, there are two transfer matrices actually, Ml and Gl . Ml

transfers the field across the t l boundary and Gl transfers it across the cylinders in the

l-th layer. Combining the two matrices yields the iterative relation (4.19) which is used

from the top layer to the bottom one to produce the relation between transmission and

reflection coefficients,

F+
0 = (M0G1M1, ...,Gn)MnF

−
n′ , (4.20)

where F+
0 and F−

n′ are defined in section 4.3.1. The solution of R and T is obtained by

solving this equation.

Computationally speaking, the summation
∑

m∈Z related to multipole expansion and

the one
∑

p∈Z corresponding to plane-wave expansion are truncated as
∑M

m=−M
and
∑Pmax

m=−Pmin
,

respectively. Since some elements in Ml will be much larger for evanescent modes than

the values associated to propagating modes, Ml is ill-conditioned. So, the values of Pmin

and Pmax need to be carefully chosen to include all propagating modes but exclude all

evanescent modes, leading to potentially poor accuracy at high frequency. When the fre-

quency of the incident wave is low enough, the approach works properly since only one

propagating mode exists in this case where the electromagnetic behavior of the laminate

is similar to the one of a homogeneous slab. A more thorough discussion of this topic is in

section 4.7.
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Fig. 4.3 The procedure of calculation from layer to layer with scattering matrices.

4.6 S-matrix approach

In scattering theory, S-matrix which is short for scattering matrix relates the scattered

field to the incident field. For the concerned problem, two types of S-matrices exist. One

is called interface S-matrix, which relates the field scattered by the interfaces t l to the

field impinging on the interface. The other one is called layer S-matrix, which links the

scattered field and the incident field corresponding to the fibers in one single layer. For

the considered multilayered structure, all the interface and layer S-matrices are combined

in the order of the layers to produce the S-matrix of the whole structure.

In order to avoid the numerical problem above, another approach based on S-matrices

[64] is now proposed. Let G(1)
l

, G(2)
l

, G(3)
l

and G
(4)
l

be defined as

G
(1)
l
=I +Q−

l
WlLlO1, (4.21a)

G
(2)
l
=Q−

l
WlLlO2, (4.21b)

G
(3)
l
=Q+

l
WlLlO1, (4.21c)

G
(4)
l
=I +Q+

l
WlLlO2, (4.21d)

then the relation (4.16) for f±
l

and g±
l

is written as

�
f−
l

g+
l

�
=

�
G
(1)
l

G
(2)
l

G
(3)
l

G
(4)
l

��
f+
l

g−
l

�
. (4.22)

where, the superscript (∗) with ∗ = 1, 2, 3, 4 indicates the positions of the block matrices

G
(∗)
l

. Applying equation (4.6) on boundary t l−1 and combining it with (4.22) produces the
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relationship between {f,g}−
l−1 and {f,g}−

l
,

�
f−
l

g−
l−1

�
=

�
D
(1)
l−1,l D

(2)
l−1,l

D
(3)
l−1,l D

(4)
l−1,l

��
f−
l−1

g−
l

�
(4.23)

with matrices

D
(1)
l−1,l =G

(1)
l

�
I −M

(2)
l−1,lG

(3)
l

�−1
M

(1)
l−1,l, (4.24a)

D
(2)
l−1,l =G

(2)
l
+G

(1)
l

�
I −M

(2)
l−1,lG

(3)
l

�−1
M

(2)
l−1,lG

(4)
l

, (4.24b)

D
(3)
l−1,l =M

(3)
l−1,l +M

(4)
l−1,l

�
I −G

(3)
l
M

(2)
l−1,l

�−1
G
(3)
l
M

(1)
l−1,l, (4.24c)

D
(4)
l−1,l =M

(4)
l−1,l

�
I −G

(3)
l
M

(2)
l−1,l

�−1
G
(4)
l

(4.24d)

As shown in Fig. 4.4, two S-matrices M∗
l−1,l and G∗

l
are used here for relating input and

output on the boundary t l−1 and the fiber array respectively.

Fig. 4.4 The procedure of calculation from layer to layer with transfer matrices.

Applying (4.23) to all layers above the l-th layer and combining the produced matrices

yields the relation between incident field and the fields in the l-th layer, which reads

�
f−
l

g−0

�
=

�
D
(1)
0,l D

(2)
0,l

D
(3)
0,l D

(4)
0,l

��
f−0
g−

l

�
(4.25)

where f−0 = [[E
inc
y
δ0p], [K

inc
y
δ0p]] and g−0 = [[R

e
p
], [Rh

p
]] at z = t0. Applying (4.23) to the

(l+1)-th layer and combining it with (4.25) produces the relationship between {f,g}−0 and

{f,g}−
l ′ , which is read as �

f−
l ′

g−0,

�
=

�
D
(1)
0,l ′ D

(2)
0,l ′

D
(3)
0,l ′ D

(4)
0,l ′

��
f−0
g−

l ′

�
(4.26)
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within which the matrices are defined as

D
(1)
0,l ′ =D

(1)
l l ′ (I −D

(2)
0,l D

(3)
l l ′ )

−1D
(1)
0,l (4.27a)

D
(2)
0,l ′ =
�
D
(1)
l l ′ (I −D

(2)
0,l D

(3)
l l ′ )

−1D
(2)
0,l D

(4)
l l ′ +D

(2)
l l ′

�
, (4.27b)

D
(3)
0,l ′ =
�
D
(3)
0,l +D

(4)
0,l (I −D

(3)
l l ′ D

(2)
0,l )

−1D
(3)
l l ′ D

(1)
0,l

�
, (4.27c)

D
(4)
0,l ′ =D

(4)
0,l (I −D

(3)
l l ′ D

(2)
0,l )

−1D
(4)
l l ′ (4.27d)

Notice that equation (4.27) is a recursive relation, and equation (4.25) is actually a result

of applying (4.27) on all the layers above the l-th layer (include the l-th layer). Applying

the recursive relation (4.27) from the top layer to the bottom one produces

�
f−
n

g−0

�
=

�
D
(1)
0,n D

(2)
0,n

D
(3)
0,n D

(4)
0,n

��
f−0
g−

n

�
, (4.28)

Applying (4.6) on boundary tn and combining it with equation (4.28) through equation

(4.24) yields �
f+
n′

g−0

�
=

�
D
(1)
0,n′ D

(2)
0,n′

D
(3)
0,n′ D

(4)
0,n′

��
f−0
g+

n′

�
, (4.29)

which is the relation between the incident field and reflection/transmission coefficients

with f+
n′ = [[T

e
p
], [T h

p
]] and g+

n′ = [0, 0] at z = tn. Noticing that the S-matrix at the boundary

z = tn is finally included in (4.29) which is actually the S-matrix for the whole structure

and can be used straightforwardly to obtain reflection and transmission coefficients. Once

they are obtained, the coefficients {f,g}−
l

easily follow with (4.25),

f−
l
=D

(1)
0,l f
−
0 +D

(2)
0,l g

−
l

(4.30a)

g−
l
=D

(4)
0,l

−1 �
g−0 −D

(3)
0,l f
−
0

�
(4.30b)

Since the inversion of matrix D
(4)
0,l , which is ill-conditioned, is needed here, (4.30) is not

suitable for computing the field distribution inside the structure. Numerical investigation

is carried out in section 4.7. Another way for computing the field inside the structure is to

use f−
n′ , which avoids inverting D

(4)
0,l but requires to invert D(2)

0,l which is also ill-conditioned.

But with a low-frequency incident wave, (4.30) will be much more stable.

However, a full-wave solution is needed for calculating the field distribution inside the

composite. Here, an effective approach is proposed to solve this problem thoroughly by

rearranging the corresponding matrices to relate the expansion coefficients in the l-th layer

to the incident wave. Then the inversion of any ill-conditioned matrix is avoided naturally.
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According to (4.27), the relation between {f,g}−
l

and {f,g}+
n′ reads as

f+
n′ =D

(1)
l ,n′f

−
l
+D

(2)
l ,n′g

+
n′ (4.31a)

g−
l
=D

(3)
l ,n′f

−
l
+D

(4)
l ,n′g

+
n′ . (4.31b)

Since g+
n′ = [0, 0]T , (4.31b) is written as g−

l
=D

(3)
l ,n′f

−
l
, combining it with (4.30a) produces

g−
l
=D

(3)
l ,n′f

−
l

(4.32a)

f−
l
=
�
I −D

(2)
0,l D

(3)
l ,n′

�−1
D
(1)
0,l f
−
0 (4.32b)

which is stable for calculating f−
l

and g−
l
. f+

l
and g+

l
are obtained afterwards with (4.22).

4.7 Numerically investigating the stability of the approaches

As said in the above, some matrices used in the T- and S-matrix approaches become ill-

conditioned when the number of layers increases. T-matrices cause serious numerical in-

stability in the approach, which is not easily overcome by reformulating the equations or

reducing the thickness of the layers. Ill-conditioned S-matrices are exhibited also but their

direct inversion is naturally avoided when formulating the equations for computations.

Considering a laminate with same background layer material (epoxy, ε(1)
l
= 3.6), matri-

ces M
(i j)

l p
will all be null matrices save M

(11)
l

, M
(22)
l

, M
(33)
l

, and M
(44)
l

the elements of which

on the main diagonal are M
(11)
l p

, M
(22)
l p

, M
(33)
l p

, and M
(44)
l p

. Notice that el ′ < t l < el and

ℑβl p > 0, Pl ′p and Ul p exponentially increase with the order of the evanescent modes, but

Pl p and Ul ′p, at the denominator in M
(i j)

l p
, exponentially decrease. This means very large

values of matrices M
(11)
l

and M
(22)
l

but very small ones of matrices M
(33)
l

and M
(44)
l

, which

renders matrix Ml ill-conditioned.

Let as an example the period of the fiber arrays be d = 0.1mm, with constant layer

thickness hl = d and radius of fibers cl = 0.25d. Let the incident wave be with λinc = d,

ϑ = 60°, E inc
y
= 1 and K inc

y
= 1. Assuming

∑
p∈Z to be truncated as

∑P
m=−P

with P = P0+P ′,

where only 2P0 + 1 propagating modes and 2P ′ evanescent modes are counted and the

condition number of Ml being defined as C (m), the logarithm (base 10) of the condition

number of Ml is computed. Its maximum values are in Table 4.1 for different numbers of

evanescent modes and different numbers of layers. As seen, the T-matrix method works

fine for a single-layer laminate or a multi-layered laminate with only propagating modes.

Once evanescent modes included in the computation for the multilayered laminates, Ml

becomes ill-conditioned. At the same time, matrices Ml are multiplied together, as given
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in (4.20), which may amplify the error and can also cause data overflow, hence producing

inaccurate results.

1 layer 10 layers 20 layers

P = P0 1.2928 1.2928 1.2928
P = P0 + 1 6.2245 11.7210 18.1831
P = P0 + 2 9.6015 18.3828 27.7389
P = P0 + 3 12.6963 24.4549 35.6067

Table 4.1 log10 C (m) of matrix Ml for different numbers of layers and evanescent modes
associated with P ′. 2P0 denotes the total number of propagating modes.

In contrast, the S-matrix approach is much more stable for calculating the reflection

and transmission coefficients, although matricesD(1)
0,l , D(2)

0,l , and D
(4)
0,l are all ill-conditioned.

Since the elements of matricesD(∗)
0,l , where ∗= 1, 2, 3, 4, represent the contribution of input

f−0 and g−
l

to the output f−
l

and g−0 , the ill-condition of the matrices might be caused by the

exponentially decreasing elements which correspond to evanescent modes. But inversion

of these ill-conditioned matrix are avoided naturally in the calculation, which then leads

to a stable recursive algorithm for investigating the scattering of multilayered composite

structures. The difficulty met during calculating the field distribution in the composite is

easily overcome by rearranging the equation to link the field expansion coefficients in the

l-th layer to the incident field. Then the relationship given in equation (4.32) is produced,

and it can be used to calculate the field distribution stably. It is seen from equation (4.32)

that the inversion of the ill-conditioned matrices is avoided naturally.

Considering the same structure used for Table 4.1 with 10 layers, and defining C
(d)

j

the condition number of D( j)

0,l , where j = 1, 2, 3, 4, the values of log10 C
(d)

j
are in Table 4.2,

which shows that the matrix D
(2)
0,l has a relatively small condition number, and the matrix

D
(3)
0,l is well conditioned. But the condition numbers of the matrices D(1)

0,l and D
(4)
0,l are all

large except the one of the matrices in the top layer.

However, elements of matrices D(2)
0,l D

(3)
l l ′ and D

(3)
l l ′ D

(2)
0,l used in equation (4.27) are all

small, and most of their elements are close to zero. The values of elements in D
(2)
0,l D

(3)
l l ′

are displayed in Fig. 4.5 for l = 5 and l = 6; when l = 5, the elements are almost all null.

For l = 6, most are null as well, save several that are not larger than ten. The elements

in the matrices during calculation have values similar to the two sets shown in Fig. 4.5

alternatively with different l. For D
(3)
l l ′ D

(2)
0,l , a similar behavior is observed. Hence, the

identity matrix I ensures I −D(3)
l l ′ D

(2)
0,l and I −D

(2)
0,l D

(3)
l l ′ in equation (4.27) be invertible,

which renders the algorithm stable. So the performance of the S-matrix based scheme is
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much better than the one based on T-matrix, and S-matrix will be built in this chapter to

investigate the multilayered composites.

l log10 C
(d)

1 log10 C
(d)

2 log10 C
(d)

3 log10 C
(d)

4

1 9.6523 8.7496 1.8641 11.0357
2 18.9713 8.7338 1.8598 19.5416
3 23.8055 8.6902 1.8448 24.3109
4 25.2755 8.7180 1.8464 24.6378
5 24.2842 8.6944 1.8457 24.4984
6 24.3070 8.7183 1.8619 24.9091
7 24.8560 8.6647 1.8616 25.0637
8 24.7776 8.6317 1.8403 24.0852
9 24.5594 8.6771 1.8463 24.4174
10 24.5732 8.6808 1.8466 24.2384

Table 4.2 Values of log10 C
(d)

j for matrices D( j)

0,l of the l-th layer in a 10-layer laminate.

4.8 Scattering of the multi-layered laminate

Power reflection and transmission coefficients R and T for plane waves are calculated

with Poynting’s theorem, referring to section 3.4 for more detail. Let R(θn) and T (θn)

be related to the n-th plane-wave item in the expansion of the Gaussian beam, power

reflection/transmission coefficients of the Gaussian beam are

R(g) =

∑N
n∈ZR(θn)|A(θn)|2∑N

n∈Z |A(θn)|2
, (4.33a)

T (g) =

∑N
n∈ZT (θn)|A(θn)|2∑N

n∈Z |A(θn)|2
(4.33b)

where the superscript g means Gaussian, which distinguishes the reflection/transmission

coefficients of Gaussian beam from plane-wave ones.

The infinite summation
∑

m∈Z for the multiple expansion is truncated as
∑M

m=−M
, and∑

p∈Z for the plane-wave expansion is calculated with
∑Pmax

m=Pmin
. Here, M =max{Int(ℜ(4.05×

(kl tc)
1/3) + kl tc)} [40], which shows that the value of M depends on the material of the

l-th layer, the radius of the fiber and the frequency of the incident wave. At high frequency,

the value of M is around 10, but at low frequency, its value could be smaller. Pmin and Pmax
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Fig. 4.5 Values in matrix D
(2)
0,l D

(3)
l l ′ for (a) l = 5 and (b) l = 6.

are carefully selected to include all propagating modes (β2
l p
> 0) and at least 6 lowest-

order evanescent modes (β2
l p
< 0) for the plane-wave expansion used in the calculation to

achieve a relative error less than 10−6 for |R(n+1) −R(n)|, n truncation order P or M .

In the following simulations, the S-matrix approach is used. First, it is validated by

comparing its results with those in [3], as shown in Fig. 4.6. A multilayered structure

with six layers of periodic arrays of circular fibers standing in air is considered. The entire

structure is divided into slabs with in effect air as background material, and all have the

same thickness h= 0.7d. All fibers are of same radius c = 0.3d and aligned along their axis

from left to right and top to bottom. The fiber material has relative permittivity ε(2)
l
= 2.5.

Power reflection coefficients R of normally incident TM-polarized waves are computed by

allowing E inc
y
= 0 and K inc

y
= 1. Good match is observed except that the first peak in the

present results is much higher than the one of the results in [3], which is likely due to the

fact that dense sampling points are needed to catch the sharp peak.
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Fig. 4.6 Validating the approach by comparison of the present results (TM polarization)
with those of [3]. λinc is the wavelength of the incident wave.

To validate the approach for out-of-plane incidence, another 6-layer composite is con-

sidered here with epoxy ((ε(1)
l
= 3.6)) matrix and glass fiber with ε(2)

l
= 4.8. Period

d = 0.1mm, height hl = d and radius of all fibers cl = 0.25d. A plane wave with

Einc
y
= K inc

y
= 1 and d/λinc = 1 obliquely impinges on the composite with ϕ = 45° and

ϑ varying from −90° to 90°. Reflection coefficients are given in Fig. 4.7, and energy con-

servation is checked. It shows that the energy conservation law is satisfied for any incident

angle, and a good symmetry is observed.

Next, one considers an 8-layer glass-fiber (ε(2)
l
= 4.8) laminate involving two back-

ground materials, epoxy (ε(1)
l
= 3.6) and polyester (ε(1)

l
= 2.8). Glass-fiber reinforced

epoxy and polyester slabs are piled up alternatively, the epoxy slab being top layer. The

period of the fiber arrays is d = 0.1mm and the layer thicknesses are the same, hl = d.

The fibers in a given layer are of same radius, but it is increased from c1 = 0.1d for the

top layer to c8 = 0.45d for the bottom one, with 0.05d step. Within each even-numbered

layer, the fibers are shifted to the right by 0.5d. A broad frequency band, d/λinc varying

from 0 to 1, is considered with 1500 samples taken. Normal and oblique incident waves

are considered, with ϑ = 60° and ϕ = 45° for obliquely incident ones, E inc
y
= 1, K inc

y
= 1.

Numerical results are displayed in Fig. 4.8, where quite smooth curves are observed

at low frequency, in accord with the fact that only one propagating mode exists, and the

behavior of the laminate appears similar with the one of a homogeneous slab structure.

Rapid oscillations appear at high frequency with strong interaction as expected between
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Fig. 4.7 Validating the approach with energy conservation R + T = 1 for epoxy matrix
with glass fibers. λinc is the wavelength of the incident wave, and d/λinc = 1. Energy
conservation is checked, and results are shown as red circles.

multiple propagating modes and the laminate. The energy conservation law is also checked

for oblique incidence, which is satisfied well.
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0.6

0.8

1
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Fig. 4.8 Scattering of an 8-layer composite with alternative background materials and dif-
ferent radius of fibers in different layers, for normally (dashed red curve, ϑ = 0°, ϕ = 0°)
and obliquely (solid blue, ϑ = 60°, ϕ = 45°) incident plane waves. Energy conservation is
checked, and results are shown as straight line (red) for normal incidence while the circles
(blue) for oblique case.
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Another example in the same realm is the one of a 50-layer laminate with epoxy matrix

and glass fibers (ε(2)
l
= 4.8), with period d = 0.1mm, radius cl = 0.25d, and constant

thicknesses hl = d. Fibers in the even-numbered layers are right shifted by d/2. A plane

wave with E inc
y
= 1 and K inc

y
= 1 impinges on the structure normally or obliquely, then

with ϑ = 60° and ϕ = 45°. Numerical results are displayed in Fig. 4.9. Reflection and

transmission coefficients appear very sensitive to the variation of frequency. Some total

reflection peaks or gaps are exhibited in both normal and oblique incidence case. The

energy conservation law is satisfied well, too.
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Fig. 4.9 Scattering of a 50-layer composite with epoxy background material. Plane wave
incident normally (dashed, red) or obliquely (solid) with ϑ = 60° and ϕ = 45°. Energy
conservation is checked and results are shown as straight line (red) for normal incidence
and circles (blue) for oblique case.

Increasing the number of layers of the 50-layer composite to 100 constructs a 100-layer

composite, in which the horizontal shift is removed to align the fibers along their axes from

top to bottom. The reflection coefficients of the structure is given in Fig. 4.10 with the

incident wave being the same as the one for the 50-layer model. Very fast oscillation is

observed, and some total reflection gaps appear in both normal and oblique incident cases.

But at high frequency, gaps only show up for normal incidence. The energy conservation

is checked again, and it is satisfied well, except a slight difference at d/λinc = 0.84 and

d/λinc = 0.96 for oblique incidence. The accuracy is mainly influenced by the calculation

of lattice sums while the numerical errors are accumulated and amplified by cascading the

S-matrix through layers.

Now, let us consider Gaussian beam scattering. Convergence of its expansion is ap-

praised in section 2.3.2; here, θn varies from −90° to 90°, and 500 plane waves are used



4.8 Scattering of the multi-layered laminate 83

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d/λinc

R

Fig. 4.10 Scattering of a 100-layer composite with epoxy matrix and glass fibers. Plane
wave incident normally (dashed, red) or obliquely (solid) with ϑ = 60° and ϕ = 45°.
Energy conservation is checked, and results are shown as straight line (red) for normal
incidence and the circles (blue) for oblique case.

for the computation. First, a low-frequency incident wave with wavelength λinc = 10d is

obliquely impinging (ϑ = 60°, ϕ = 0) upon an 8-layer glass-fiber laminate with center of

the beam at (x0, z0) = (0, 0), where w0 = 2λinc. Only one propagating mode exists, and

the behavior of the laminate is close to the one of a homogeneous slab. In Fig. 4.11 the

total field is displayed. Here, the power reflection coefficient R(g) = 0.1880, so most of

the power is transmitted.

Replacing glass fibers with carbon fibers (ε(2)
l
= 12, σ = 3.3× 102 Sm−1 [57, 58]) pro-

duces a laminate which, though its total thickness is only 0.8 mm, exhibits strong absorp-

tion of incident waves with long wavelength λinc = 10d, as shown in Fig. 4.12. Very little

is transmitted, and the power reflection coefficients is 0.1276, so the absorption coefficient

of the material is 0.8724, offering electromagnetic shieldness already.

A high-frequency incident beam (λinc = d) is also considered here for the 8-layer model

with glass-fibers aligned from top layer to the bottom one, and the radii of the fibers are

all the same, cl = 0.25d. The total field distribution in the upper and lower half-spaces is

shown in Fig. 4.13, illustrating a strong interaction between the wave and the structure,

the wave being scattered in many directions even though two stronger beams along the

reflection and transmission directions show up, and negative reflection phenomenon is

observed. Here, power reflection and transmission are R(g) = 0.2270 and T (g) = 0.7730.

In Fig. 4.14, the total field for a Gaussian beam normally impinging on a 100-layer

glass-fiber laminate with epoxy matrix is displayed. The laminate is of period d = 0.1mm
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and the thickness of each slab is h = d. Fibers have same radius cl = 0.25d, and no shift

along the x direction. The wavelength of the incident wave is λinc = 10d. Reflection and

transmission are R(g) = 0.2893 and T (g) = 0.7107.
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Fig. 4.11 Total field distribution for a Gaussian beam obliquely impinging onto an 8-layer
glass-fiber laminate, with (0, 0) beam center and φ inc = 45°. λinc = 10d.
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Fig. 4.12 Total field distribution for a Gaussian beam obliquely impinging onto an 8-layer
carbon-fiber laminate, with (0, 0) beam center and φ inc = 30°. λinc = 10d.

At low enough frequency, the considered multilayered structure can be treated as a ho-

mogeneous structure with an effective permittivity which is calculated by the wave given in

Appendix C. Some numerical results and discussions on single-layer structure have been

given in section 2.4. Following all these works, the focus here is given to multilayered

structures. Two sets of numerical results are proposed to verify efficacy and accuracy of
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Fig. 4.13 Total field distribution for a Gaussian beam obliquely impinging onto an 8-layer
glass-fiber laminate with (0, 0) beam center, φ inc = 30°, λinc = d. w0 = 2λinc.

−10λinc −6λinc −2λinc
2λinc

6λinc
10λinc

−20λinc

−14λinc

−8λinc

−2λinc

4λinc

10λinc

0

0.2

0.4

0.6

0.8

1

Fig. 4.14 Total field distribution of a Gaussian beam impinging onto a 100-layer model
normally, with (0, 0) beam center and φ inc = 30°. λinc = 10d. w0 = 2λinc.

approximately investigating the scattering of multilayered structure with the homogenized

model. In the calculation, each of the layer is first homogenized, then the whole multilay-

ered periodic structure is considered as a stack of homogenized layers.

For glass-fiber reinforced composites, the effective permittivity ε̄r is independent of

the incident wave frequency. Consider a 100-layer glass-fiber (ε(2)
r
= 4.8) composite with

epoxy as background material (ε(1)
r
= 3.6), the effective permittivity is ε̄r = 3.8356 for

TM wave and ε̄r = 3.7858 for TE wave. With the effective permittivities, power reflection

coefficients of the homogenized multilayered structure are calculated and compared with

the exact values in a low frequency band. Results are given in Fig. 4.15 for TM wave and
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Fig. 4.16 for TE waves. As seen, good matches are observed between the exact results

and the one obtained with homogenized structure at low frequency. For TM wave illu-

mination, the scattering of the multilayered structure can be well approximated with the

homogenized structure as long as d/λinc < 0.15. But for TE wave illumination, the good

approximation can be only achieved for d/λinc < 0.1. Even though, in microwave band

10 GHz< f < 60 GHz, the homogenized model works well for both cases, as relative error

less than 0.1% can be achieved. For TM case, the homogenized model works better than

for the case of TE wave illumination.
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Fig. 4.15 Comparison of the results obtained with homogenized model and exact periodic
model under TM wave illumination, normal incidence. Glass-fiber with epoxy background
material. λinc = d = 0.1mm, c = 0.25d.

4.9 Summary

Recursive matrix schemes for modeling electromagnetic scattering of composites involving

periodic arrays of fibers has been investigated. Though the approach with transfer matrix

is more straightforward to put together and apply, the existence of exponentially increasing

elements in the matrices entails that it is not suitable at high frequency (it works well at

low frequency). In contrast, the more complicated scattering matrix method is far more

stable and intrinsically broad-band. However, calculating the field distributions within the

laminate at high frequency suffers from ill-conditioned matrices; one approach is proposed

to solve this problem thoroughly by rearranging the corresponding matrices to relate field

expansion coefficients in the structure to the incident wave.
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Fig. 4.16 Comparison of the results obtained with homogenized model and exact periodic
model under TE wave illumination, normal incidence. Glass-fiber with epoxy background
material. λinc = d = 0.1mm, c = 0.25d.

The main focus of the numerical experimentation has been on carbon- and glass-fiber-

reinforced epoxy and polyester composites, for obliquely incident plane waves and Gaus-

sian beams. Effectiveness and accuracy are exhibited for different composite models, with

different degree of complexities. One has also validated the approach by sucessfully com-

paring the present results with those in the literature on optical crystals. Numerical results

are also compared with the ones obtained with homogenized model of multilayered glass-

fiber reinforced epoxy composite, and good efficacy and accuracy is achieved by homoge-

nization technique.





Chapter 5

Scattering by laminates with arbitrary

orientation of fibers in different layers

Scattering by laminated composites with fibers in all layers parallel to each other has been

studied in the preceding chapters. These investigations provide the basic techniques which

are extended in this chapter for scattering by laminates in which the fibers in different

layers have arbitrary orientations. Two types of stratified organization are under consid-

eration, assuming two kinds of elementary building blocks. The first type is composed

from 2-layer fiber-reinforced blocks in which each layer is a single-layer composite. The

fibers in different layers could be orientated into different directions. Stacking up a num-

ber of 2-layer blocks produces the multilayered structure. The second type is constructed

in the same way, but the elementary building block has four layers in which the fibers are

orientated into different directions.

5.1 Scattering by the composite with 2-layer stack

For the 2-layer stack, a periodic array of circular fibers is embedded in each layer. The

fibers in the upper layer are arranged parallelly with their axes orientated into the same

direction. The second layer is constructed in the same way, but the fibers in this layer are

orientated into an arbitrary direction that can be different from the one of the fibers in

the upper layer. The way of arranging the fibers for the stack is sketched in Fig. 5.1. The

period and thickness of the l-th layer are dl and hl . The radii of the fibers are cl . The

cross-section of the primary cell is orthogonal to the axes of fibers in the l-th layer.

The materials used for the fibers and the backgrounds could be different from one to

the other, but the upper and lower spaces are filled with air. The notations for distinguish-
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ing different materials are defined in the same fashion as in section 4.1. The layers are

numbered as shown in Fig. 5.2 with the boundaries z = t l, l = 0, 1, 2.

Fig. 5.1 Arranging the fibers for the 2-layer stack and coordinate systems with parameters
of the structure

Fig. 5.2 Numbering of the considered laminate and the upper and lower half-spaces;.

To describe the stack mathematically, two Cartesian coordinate systems x yz and x ′ y ′z′

are defined as shown in Fig. 5.1. Assigning the system x yz to the upper layer by setting the

x axis along the direction of fibers’ periodicity and the y axis along their orientation, then

the other coordinate system x ′ y ′z′ can be obtained by rotating the x yz system along the

z axis by an angle φ so as to align the y ′ axis with the axis of the fibers in the second layer,

noticing that there is no displacement along the z direction. Here, the x yz coordinate

system is taken as the global one.

Considering time-harmonic field with e−iωt , ω as the angular frequency, the incident

fields are defined as E(x , y, z) = E incei(kinc
x x+kinc

y y−kinc
z z) and H(x , y, z) =Hincei(kinc

x x+kinc
y y−kinc

z z).

The wave vector of the incident plane wave is defined as ~kinc = (α0,ξ0,−β0) in the global

coordinate system with α0 = kinc
x
= −kinc sinϑ cosϕ, ξ0 = kinc

y
= kinc sinϑ sinϕ, and β0 =

kinc
z
= kinc cosϑ, where the wavenumber is kinc =ω/c =

Æ
α2

0 +β
2
0 +ξ

2
0, c as speed of light
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in vacuum, ϑ the angle between the z-axis and ~kinc, ϕ the one between the x -axis and the

projection of ~kinc in the x -y plane. Allowing ~kinc
u

to be the projection of ~kinc in the x -y

plane, and ~kinc
t

be the one in the x -z plane, then the wave vector of the incident wave can

be decomposed as shown in Fig. 5.3, with ~kinc
u
= α0 x̂ +ξ0 ŷ , and ~kinc

t
= α0 x̂ − β0ẑ.

Fig. 5.3 Decomposition of incident wave vector ~kinc.

Denote the wave vector in the l-th layer and j-th region as ~kl j = ~kt l j + kyl j ŷ , where
~kt l j = kx l j x̂−kzl j ẑ and k2

t l j
= k2

l j
−k2

yl j
. Allow ~kul j = kx l j x̂+kyl j ŷ, then ~kul j = ~k

inc
u

since it is

continuous across all boundaries; here ~ku is used instead of ~kul j in all layers (l = 0, 1, 2, 3)

for convenience. In the following discussion, kl , kt l , αl and βl are used to replace kl1, kt l1,

αl1 and βl1 in order to avoid possible confusion.

5.2 Field representations

Dispersion introduced by the top layer is characterized by eiαp x , with αp = 2πp/d1, and

the one introduced by the bottom layer is characterized by eiαq x ′ in the coordinate system

x ′ y ′z′, with αq = 2πq/d2. In the global coordinate system, the dependence of eiαq x ′ is

rewritten as eiαq cosφx+iαq sinφ y . Therefore, the dispersion in the x direction is given as αs =

α0+αp+αq cosφ, and the one in the y direction is ξq = ξ0+αq sinφ, then the z dependence

of the fields in the l-th layer is given as e±iβlsz with βls =
q

k2
l
−α2

s
−ξ2

q
, where s is a pair

of p and q, denoted as s = (p, q). The values of βls correspond to propagating modes

satisfying β2
ls
> 0, and the ones satisfying β2

ls
< 0 are for evanescent modes.

Since there is an incident plane wave as down-going wave and a reflected one as up-

going wave in the upper half-space, the longitudinal field can be plane-wave expanded as
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E0y(x , z) =
∑

p∈Z

∑

q∈Z
(Einc

y
e−iβ0s(z−t0)δs0 + Re

s
eiβ0s(z−t0))eiαs x eiξq y , (5.1a)

K0y(x , z) =
∑

p∈Z

∑

q∈Z
(K inc

y
e−iβ0s(z−t0)δs0 + Rh

s
eiβ0s(z−t0))eiαs x eiξq y , (5.1b)

Here, K∗ is used to denote the scaled magnetic field, K∗ =
p
µ0/ε0H∗. δs0 is the Kronecker

symbol helping to form a matrix in the calculation. δs0 = 1 when p = q = 0, otherwise

δs0 = 0. Re
s

and Rh
s

are the reflection coefficients of the plane wave indexed by s = (p, q).

In the lower half-space, only down-going transmitted waves exists, which is written as

E3y(x , z) =
∑

p∈Z

∑

q∈Z
T e

s
ei(αs x−β3s(z−t2)+ξq y), (5.2a)

K3y(x , z) =
∑

p∈Z

∑

q∈Z
T h

s
ei(αs x−β3s(z−t2)+ξq y), (5.2b)

where T e
s

and T h
s

are transmission coefficients of the plane wave indexed by s = (p, q).

Assuming the center of fiber in the primary cell of the l-th layer to be located at z = el

in the global coordinate system, then the field between el+cl < z < t l−1 and t l < z < el−cl

is plane-wave expanded as

V±
l y
=
∑

p∈Z

∑

q∈Z

�
f ±
ls

e−iβls(z−el) + g±
ls

eiβls(z−el)
�

eiαs x eiξq y , (5.3)

where Vl y denotes either El y or Kl y . The coefficients f ±
ls

and g±
ls

are the expansion coeffi-

cients, where f ±
ls

represents the scattered fields propagating along the −z direction, which

are down-going waves, and f ±
ls

represents the ones propagating along the +z direction,

which are up-going waves. + and − indicate regions el + cl < z < t l−1 and t l < z < el − cl .

For conical diffraction of fields with a specified y dependence of eiξq y , the relations

between the x and y components of the electric and the scaled magnetic fields are given

as

El xq(x , z) =
i

k2
l tq

�
ξq

∂ El yq

∂ x
− kµl r

∂ Kl yq

∂ z

�
, (5.4a)

Kl xq(x , z) =
i

k2
l tq

�
ξq

∂ Kl yq

∂ x
+ kεl r

∂ El yq

∂ z

�
, (5.4b)
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where El xq and Kl xq are the fields with a specified ξq, and kl tq are the transverse com-

ponents of the wave vector related to the q-th mode. Allowing kl be the wavenumber

corresponding to the background material of the l-th layer, then kl tq =
q

k2
l
−ξ2

q
. k is the

wavenumber in the vacuum.

5.3 Mode-matching at the boundary between two layers

Without lost of any generality, the field matching at boundary t l is discussed here. In the

global coordinate system, considering the fields with a specific y dependence of eiξq y , the

x components of the fields in the l-th and (l + 1)-th layers are obtained by substituting

equation (5.3) into (5.4). Matching the fields at boundary t l produces

f −
l es

e−iβls(tl−el) + g−
l es

eiβls(tl−el) = f +
l ′es

e−iβl′s(tl−el′ ) + g+
l ′es

eiβl′s(tl−el′ ), (5.5a)

f −
lhs

e−iβls(tl−el) + g−
lhs

eiβls(tl−el) = f +
l ′hs

e−iβl′s(tl−el′ ) + g+
l ′hs

eiβl′ s(tl−el′ ), (5.5b)

χls

�
f −
l es

e−iβls(tl−el) + g−
l es

eiβls(tl−el)
�
+ηls

�
f −
lhs

e−iβls(tl−el) − g−
lhs

eiβls(tl−el)
�

=χl ′s

�
f +
l ′es

e−iβl′s(tl−el′ ) + g+
l ′es

eiβl′s(tl−el′ )
�
+ηl ′s

�
f +
l ′hs

e−iβl′p(tl−el′ ) − g+
l ′hs

eiβl′s(tl−el′ )
�

, (5.5c)

χls

�
f −
lhs

e−iβls(tl−el) + g−
lhs

eiβls(tl−el )
�
−ρls

�
f −
l es

e−iβls(tl−el) − g−
l es

eiβls(tl−el)
�

=χl ′s

�
f +
l ′hs

e−iβl′s(tl−el′ ) + g+
l ′hs

eiβl′s(tl−el′ )
�
−ρl ′s

�
f +
l ′es

e−iβl′s(tl−el′ ) − g+
l ′es

eiβl′ s(tl−el′ )
�

, (5.5d)

where l ′ = l + 1, χls =
αsξq

k2
l tq

, ηls =
kµl rβls

k2
l tq

, and ρls =
kεl rβls

k2
l tq

. Noticing that coefficients f −
l{e,h}s

and g+
l ′{e,h}s represent the field impinging on the boundary t l, f −

l{e,h}s and g+
l ′{e,h}s represent

the one scattered from t l, arranging the terms in equation (5.5) and moving the incident

and scattered fields to the right and left sides of the equations yields a linear system which

can be written as �
f+
l ′q

g−
lq

�
=

�
M

(1)
l l ′,q M

(2)
l l ′,q

M
(3)
l l ′,q M

(4)
l l ′,q

��
f−
lq

g+
l ′q

�
(5.6)

where M
(1)
l l ′,q, M(2)

l l ′,q, M(3)
l l ′,q and M

(4)
l l ′,q are four block matrices of the interface S-matrix

Ml l ′,q which is calculated by Ml l ′,q =M
(a)

l l ′,q

−1
M

(b)

l l ′,q, where the matrices M(a)

l l ′ and M
(b)

l l ′

are defined as

M
(a)

l l ′,q =





Pl ′s 0 −Uls 0

0 Pl ′s 0 −Uls

χl ′s Pl ′s ηl ′sPl ′s −χlsUls ηlsUls

−ρl ′s Pl ′s χl ′sPl ′s −ρlsUls −χlsUls



 (5.7)
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M
(b)

l l ′,q =





Pls 0 −Ul ′s 0

0 Pls 0 −Ul ′s

χlsPls ηlsPls −χl ′sUl ′s ηl ′sUl ′s

−ρlsPls χlsPls −ρl ′sUl ′s −χl ′sUl ′s



 (5.8)

where coefficients Pls = e−iβls(tl−el ) and Ul p = eiβls(tl−el). Pl ′p and Ul ′p have the similar defini-

tion except keeping t l instead of t l ′. At boundary z = t0, e0 = t0, f−0q
= [[Einc

y
δ0s], [K

inc
y
δ0s]]

and g−0q
= [[Re

s
], [Rh

s
]]T. At boundary z = tn, en = tn, f+

n′q = [[T
e
s
], [T h

s
]]T and g+

n′q = [0, 0].

5.4 Relations for f ±1s
and g±1s

The coefficients of f ±1s
and g±1s

account for the scattered field inside the first layer. Their

relations are established by building Rayleigh’s identity in the corresponding layer, in the

global coordinate system. Focusing on a specific y dependence of eiξq y again, the q-th

mode of the field (5.3) is expressed as

V±1yq
=
∑

p∈Z

�
f ±1s

e−iβ1sz + g±1s
eiβ1sz
�

eiαs x eiξq y (5.9)

where the relations between { f , g}+1s
and { f , g}−1s

are

f −1s
= f +1s

+
∑

m∈Z
Q−1sm

B1mq,

g+1s
=g−1s

+
∑

m∈Z
Q+1sm

B1mq,
(5.10)

with a specific value for q. Q±1sm
=

2(−i)me±imθ1s

dβ1s
, the angle θ1s is such as k1tqθ1s = α1s + iβ1s,

where k2
1tq
=
q

k2
1 − ξ2

q
. Writing equation (5.10) into a matrix form,

f−1q
=f+1q

+Q−
lq
B1q,

g+1q
=g−1q

+Q+
1q
B1q,

(5.11)

where B1q = [[B
e
1mq
], [Bh

1mq
]]T, f±1q

=
�
[ f ±1es
], [ f ±1hs

]
�T

, g±1q
=
�
[g±1es

], [g±1hs
]
�T

, and Q±
1q
=

diag{[Q±1sm
]pm, [Q±

lsm
]pm}. Following the same procedure as in section 4.4, one has

A1q =O
(1)
1q f+1q

+O
(2)
1q g−1q

+S1qB1q, (5.12)
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where A1q = [[A
e
1nq
], [Ah

1nq
]]T , B1q = [[B

e
1nq
], [Bh

1nq
]]T . The other matrices are given as

O
(1)
1q =

�
diag{
�
ineinθls

�
} 0

0 diag{
�
ineinθls

�
}

�
, (5.13a)

O
(2)
1q =

�
diag{
�
ine−inθls

�
} 0

0 diag{
�
ine−inθls

�
}

�
, (5.13b)

S1q =

��
S1nm,q

�
nm

0

0
�
S1nm,q

�
nm

�
, (5.13c)

with lattice sums defined as Sm,q =
∑+∞

n=1 H(1)
m
(k1tqnd)[eiα0nd1 + (−1)me−iα0nd1].

The relation between A1q and B1q is written as B1q = L1qA1q, where L1q is easily

obtained by following the same derivation as in section 3.1.1. So eliminating A1q from

equation (5.12) yields

B1q =WL1qO
(1)
1q f+1q

+WL1qO
(2)
1q g−1q

, (5.14)

where W = (I −L1qS1q)
−1, and I is the identity matrix. Substituting (5.14) into (5.11)

and eliminating B1q yields

f−1q
=f+1q

+Q−
1q
WL1qO

(1)
1q f+1q

+Q−
1q
WL1qO

(2)
1q g−1q

,

g+1q
=g−1q

+Q+
1q
WL1qO

(1)
1q f+1q

+Q+
1q
WL1qO

(2)
1q g−1q

,
(5.15)

5.5 S-matrix for the top and bottom layers

The relations between incident and scattered fields at boundary t l and the fiber array in

the l ′-th layer are shown in Fig. 5.4, where Ml l ′ is the interface S-matrix, and Gl ′ is the

layer S-matrix for the l ′-th layer.

Fig. 5.4 Illustration of interface and layer S-matrix
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Once the matrices Ml l ′ and Gl ′ are known, the relation for {f,g}−
l

and {f,g}−
l ′ can be

obtained easily, in which the S-matrix of the l ′-th layers is produced and named as Dl l ′.

Cascading Dl l ′ from the top layer of the stack to the bottom one and then combining with

the interface S-matrix of the boundary at the bottom produce the S-matrix which links the

reflected and transmitted fields to the incident field on the stack.

A multilayered composite laminate is usually fabricated by piling up the stacks one

over the other. The S-matrix for the n-th stack will be the same as the one of the first stack,

hence cascading the S-matrix of all stacks produces the S-matrix for the whole laminate,

then the reflection and transmission coefficients can be easily computed. Here, the method

for calculating the S-matrix of one 2-layer stack is illustrated in detail.

5.5.1 S-matrix for the upper layer

In the global coordinate system, the interface S-matrix at boundary t0 for a specified y

dependence of eiξq y , which is produced by matching the field at the boundary, is written

as �
f+1q

g−0q

�
=

�
M

(1)
01,q M

(2)
01,q

M
(3)
01,q M

(4)
01,q

��
f−0q

g+1q

�
. (5.16)

According to (5.15), the relation for f±1b
and g±1b

can be written as

�
f−1q

g+1q

�
=

�
G
(1)
1q G

(2)
1q

G
(3)
1q G

(4)
1q

��
f+1q

g−1q

�
, (5.17)

with matrices G(1)1q , G(2)1q , G(3)1q and G
(4)
1q defined as

G
(1)
1q =I +Q−

1q
W1qL1qO

(1)
1q , (5.18a)

G
(2)
1q =Q

−
1q
W1qL1qO

(2)
1q , (5.18b)

G
(3)
1q =Q

+
1q
W1qL1qO

(1)
1q , (5.18c)

G
(4)
1q =I +Q+

1q
W1qL1qO

(2)
1q . (5.18d)

Combining equations (5.16) and (5.17) to eliminate f+1q
and g+1q

produces

�
f−1q

g−0q

�
=

�
D
(1)
01,q D

(2)
01,q

D
(3)
01,q D

(4)
01,q

��
f−0q

g−1q

�
. (5.19)
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Here, D(1)
01,q, D(2)

01,q, D(3)
01,q and D

(4)
01,q are defined as

D
(1)
01,q =G

(1)
1q

�
I −M

(2)
01,qG

(3)
1q

�−1
M

(1)
01,q, (5.20a)

D
(2)
01,q =G

(2)
1q +G

(1)
1q

�
I −M

(2)
01,qG

(3)
1q

�−1
M

(2)
01,qG

(4)
1q , (5.20b)

D
(3)
01,q =M

(3)
01,q +M

(4)
01,q

�
I −G

(3)
1q M

(2)
01,q

�−1
G
(3)
1q M

(1)
01,q, (5.20c)

D
(4)
01,q =M

(4)
01,q

�
I −G

(3)
1q M

(2)
01,q

�−1
G
(4)
1q . (5.20d)

Assuming that Pmin < p < Pmax, then f±
lq

and g±
lq

are vectors with Pmax − Pmin + 1 elements.

Truncating q ∈ Z as Qmin < q <Qmax and putting the unknown coefficients into a vector as

f±
l
=
�
f±
l ,Qmin

, · · · , f±
l ,0, · · · , f±l ,Qmax

�T
, (5.21a)

g±
l
=
�
g±

l ,Qmin
, · · · ,g±

l ,0, · · · ,g±l ,Qmax

�T
, (5.21b)

then f±
l

and g±
l

are vectors with (Pmax−Pmin+1)×(Qmax−Qmin+1) elements. With equation

(5.19), the relation between f±
l

and g±
l

can be finally written as

�
f−1
g−0

�
=

�
D
(1)
01 D

(2)
01

D
(3)
01 D

(4)
01

��
f−0
g−1

�
, (5.22)

where matrices D(1)
01 , D(2)

01 , D(3)
01 and D

(4)
01 are defined as

D
(∗)
01 =




D
(∗)
01,Qmin

. . .

D
(∗)
01,0

. . .

D
(∗)
01,Qmax




(5.23)

with ∗ = 1, 2, 3, 4.

5.5.2 S-matrix for the lower layer

In the coordinate system x ′ y ′z′, the projection of the incident wave onto the x ′-y ′ plane

is read as ~kinc
u
= (α′0,ξ′0) with α′0 = kinc sinϑ cosγ, ξ′0 = kinc sinϑ sinγ, where γ is the angle

between ~kinc
u

and the x ′ direction, which is calculated with γ = π − ϕ − φ, as shown in

Fig. 5.1. Allow α′
s
= α′0 + αq + αp cosφ and ξ′

p
= ξ′0 − αp sinφ for the components of
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wavenumbers of the s-th mode along x ′ and y ′ directions. In a general way, the field

representation in the l-th layer is

eVl y′ =
∑

p∈Z

∑

q∈Z

�
f̃ ±
ls

e−iβ ′
ls
(z′−el) + g̃±

ls
eiβ ′

ls
(z′−el)
�

eiα′s x ′eiξ′p y′

(5.24)

where eVl y′ denotes either eEl y′ or eKl y′ , which are the fields in x ′ y ′z′ coordinate system. The

coefficients f̃ ±
ls

and g̃±
ls

are the expansion coefficients and have the same physical meanings

as f ±
ls

and g±
ls

. β ′
ls
=
q

k2
l
−α′

s
2. The transverse components of the fields are calculated

with equation (5.4) by defining k̃2
l tp
= k2

l
−ξ′2

p
.

The field representation (5.24) is transformed into the global coordinate system with

V±
l y
= sinφṼ±

l x ′ + cosφṼ±
l y′ . (5.25)

Here, Ṽ±
l x ′ is obtained by substituting (5.24) into (5.4). Comparing the field expression of

V±
l y

obtained from equation (5.25) with (5.9) yields

f̄ ±
l es
=(cosφ −χ ′

ls
sinφ) f̃ ±

l es
−η′

ls
sinφ f̃ ±

lhs
, (5.26a)

f̄ ±
lhs
=ρ′

ls
sinφ f̃ ±

l es′ + (cosφ − χ ′
ls

sinφ) f̃ ±
lhs′, (5.26b)

ḡ±
l es
=(cosφ −χ ′

ls
sinφ) g̃±

l es′ +η
′
ls

sinφ g̃±
lhs′, (5.26c)

ḡ±
lhs
=(cosφ −χ ′

ls
sinφ) g̃±

lhs′ −ρ′ls sinφ g̃±
l es′, (5.26d)

with which the transformation matrices are defined as

V
f

1p =

�
cosφ −χ2s′ sinφ −η2s′ sinφ

ρ2s′ sinφ cosφ − χ2s′ sinφ

�
, (5.27a)

V
g

1p =

�
cosφ −χ2s′ sinφ η2s′ sinφ

−ρ2s′ sinφ cosφ − χ2s′ sinφ

�
. (5.27b)

Allowing f̃±
l p
=
�

f̃ ±
l es

, f̃ ±
lhs

�
and g̃±

l p
=
�
g̃±

l es
, g̃±

lhs

�
, then the transforming relation reads

f̄±
l p
=V

f

l p
f̃±
l p

, (5.28a)

ḡ±
l p
=V

g

lp
g̃±

l p
, (5.28b)

where f̄±
l p

and ḡ±
l p

are counterparts of f̃±
l p

and g̃±
l p

in the global coordinate system. Field-

matching at t l with expansion (5.24) produces the same relation given in section 5.3, but

Pls and Ul p in equation (5.7) and (5.8) are replaced by ePls = e−iβ ′
ls
(tl−el ) and eUl p = eiβ ′

ls
(tl−el ).
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Others are defined as χ ′
ls
=
α′sξ

′
p

k̃2
l tp

, η′
ls
=

kµl rβ
′
ls

k̃2
l tp

, and ρ′
ls
=

kεl rβ
′
ls

k̃2
l tp

. At boundary t1 one has

�
f̃+2p

g̃−1p

�
=

� ÝM(1)
12,p
ÝM(2)

12,p
ÝM(3)

12′,p
ÝM(4)

12,p

��
f̃−1p

g̃+2p

�
. (5.29)

Applying the procedure given in section 5.4 to the bottom layer yields

�
f̃−2p

g̃+2p

�
=

� eG(1)2p
eG(2)2p

eG(3)2p
eG(4)2p

��
f̃+2p

g̃−2p

�
. (5.30)

Combining (5.29) and (5.30) with the recursive relation given in equation (5.20) yields

�
f̃−2p

g̃−1p

�
=

� eD(1)
12,p
eD(2)

12,p
eD(3)

12,p
eD(4)

12,p

��
f̃−1p

g̃−2p

�
. (5.31)

Applying (5.27) to (5.31) produces

�
f̄−2p

ḡ−1p

�
=

�
D̄
(1)
12,p D̄

(2)
12,p

D̄
(3)
12,p D̄

(4)
12,p

��
f̄−1p

ḡ−2p

�
. (5.32)

The matrices D̄(1)
12,p, D̄(2)

12,p, D̄(3)
12,p and D̄

(4)
12,p are given as

D̄
(1)
12,p =V

f

2p
eD(1)

12,pV
f

1p

−1
, D̄

(1)
12,p = V

f

2p
eD(1)

12,pV
g

2p

−1, (5.33a)

D̄
(1)
12,p =V

g

1p
eD(1)

12,pV
f

1p

−1
, D̄

(1)
12,p = V

g

1p
eD(1)

12,pV
g

2p

−1. (5.33b)

Allowing

f̄±
l
=
�̄
f±
l ,Pmin

, · · · , f̄±
l ,0, · · · , f̄±l ,Pmax

�T
, (5.34a)

ḡ±
l
=
�
ḡ±

l ,Pmin
, · · · , ḡ±

l ,0, · · · , ḡ±l ,Pmax

�T
, (5.34b)

then the field relation for f̄±
l

and ḡ±
l

is given as

�
f̄−2
ḡ−1

�
=

�
D̄
(1)
12 D̄

(2)
12

D̄
(3)
12 D̄

(4)
12

��
f̄−1
ḡ−2

�
, (5.35)
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with matrices D̄(1)
12 , D̄(2)

12 , D̄(3)
12 and D̄

(4)
12 defined as

D̄
(∗)
12 =




D̄
(∗)
12,Pmin

. . .

D̄
(∗)
12,0

. . .

D̄
(∗)
12,Pmax




. (5.36)

Notice that the order of elements in vectors f̄±
l

and ḡ±
l

is different from the one of f±
l

and g±
l
. For the calculation, the elements in f̄±

l
and ḡ±

l
need to be reordered to have the

same order as the one of f±
l

and g±
l
. The matrix for reordering these elements is defined

as U , which is obtained as detailed in Appendix D. With matrix U , the equation (5.35) is

re-written as �
f−2
g−1

�
=

�
D
(1)
12 D

(2)
12

D
(3)
12 D

(4)
12

��
f−1
g−2

�
, (5.37)

with D
(∗)
12 = UD̄

(∗)
12 U

−1.

In brief, the interface S-matrix at t0 and the layer S-matrix of the first layer are com-

bined to produce the equation (5.22) which involves the S-matrix of the first layer. The

interface S-matrix at t1 and the layer S-matrix of the second layer are combined to produce

(5.37) which involves the S-matrix of the second layer. Combining them yields

�
f−2
g−0

�
=

�
D
(1)
02 D

(2)
02

D
(3)
02 D

(4)
02

��
f−0
g−2

�
. (5.38)

Assuming that the interface S-matrix at t2 is given as

�
f+3
g−2

�
=

�
M

(1)
23 M

(2)
23

M
(3)
23 M

(4)
23

��
f−2
g+3

�
, (5.39)

then f−2 and g−2 can be eliminated from equation (5.38) and (5.39) to produce the S-matrix

of the whole 2-layer stack �
f+3
g−0

�
=

�
D
(1)
03 D

(2)
03

D
(3)
03 D

(4)
03

��
f−0
g+3

�
. (5.40)

This is a linear system which relates the reflected field g−0 and the transmitted field f+3
to the incident fields f−0 and g+3 . Since no wave is incident from the bottom of the stack,

g+3 = [0, 0]T . The reflection and transmission coefficient are easily obtained by solving this

linear system. For a composite laminate constructed with the 2-layer stack, the S-matrix
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of each stack can be obtained in a similar way. Cascading all S-matrices from the top stack

to the bottom one produces the S-matrix for the whole structure, then the reflection and

transmission coefficients easily follow.

5.6 Extension of the approach to 4-layer stack

The laminates constructed with the 2-layer stack can only provide the strength and stiffness

along two directions which cannot satisfy practical requirements, so the 4-layer stack as

shown in Fig. 5.5 is always used in practice to produce the laminated composites.

Here, the approach for the 2-layer stack is extended for investigating this practically

used multilayered composite. Yet the discussion will focus on a more general case in

which the fibers in different layers are orientated into an arbitrary direction instead of the

directions given in Fig. 5.5.

Fig. 5.5 A practical way of fabricating the stack for multilayered composites

The extension of the approach described above for the 2-layer stack is straightforwardly

made to investigate scattering by a structure composed of a 4-layer stack. Here, the di-

rections of the periodicity of the fibers in each layer are denoted with vectors ~vl , where

l = 1, 2, 3, 4 is the layer-number. A global coordinate system x yz located at the center of

the primary cell of the first layer is chosen, with its x axis directed to ~v1 and y-axis along

the axes of the fibers. Then the orientations of the fibers in other layers are defined by the

angle between the x axis and ~vl , as shown in Fig. 5.6. Accordingly, another three local co-
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ordinate systems x ′ y ′z′, x ′′ y ′′z′′ and x ′′′ y ′′′z′′′ are defined with their origin located at the

one of the x yz system but the axis x ′, x ′′ and x ′′′ directing into ~v2, ~v3 and ~v4 respectively.

Fig. 5.6 Fibers embedded in the 4-layer stack with fibers in different layers orientated to
different directions.

The dispersion introduced by different layers is signified with eiαp x , eiαq x ′ , eiαu x ′′ and

eiαv x ′′′ , where αp = 2πp/d1, αq = 2πq/d2, αu = 2πu/d3 and αv = 2πv/d4. Defining an

index s as a set of p, q, u and v, s = (p, q, u, v), then the x and y components of the s-th

mode are given in the global coordinate system,

αs =α0 +αp +αq cosφ1 +αu cosφ2 +αv cosφ3, (5.41a)

ξs =ξ0 +αq sinφ1 +αu sinφ2 +αv sinφ3. (5.41b)

Accordingly, the components projected on the direction of the periodicity and the one

along the axis of the fibers in other layers easily follow. Hence the field representations

in different layers are easily obtained by following the procedure shown in 5.2, and the

scattering problem corresponding to the 4-layer stack can easily be solved by following the

approach described above for the 2-layer stack.

Notice that the S-matrices for every layer are first built in their local coordinate system

and then transformed into the global coordinate system. The transformation matrix can

be obtained in the same way as discussed in section 5.5.2. Accordingly, the expansion

coefficients of the fields also need to be rearranged before cascading the corresponding

S-matrices. In the calculation, one assumes that Pmin < p < Pmax, Qmin < q < Qmax, Umin <

u < Umax, and Vmin < v < Vmax, where Vmin and Vmax can be easily distinguished from

the field variable Vl y with their indices. In the local coordinate system of each layer, the

expansion coefficients of the layers from top to bottom are indexed with the sequences
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s1 = (p, q, u, v), s2 = (q, p, u, v), s3 = (u, q, p, v) and s4 = (v, q, u, p), respectively. The

sequences s2, s3 and s4 need to be all reordered to have the same order of the sequence

s1 before cascading the S-matrices. In s∗, ∗ = 1, 2, 3, 4, the index in the left always varies

faster than the right one. The matrices for reordering the sequences used to index the

expansion coefficients of the second, third and fourth layers are all different from each

other. The algorithms of producing the reordering matrices are given in Appendix D.

5.7 Power reflection and transmission coefficients

Power reflection and transmission coefficients are defined with the time-averaged Poynting

vector, and the same procedure as in section 3.4 is applied. Here, the power reflection and

transmission coefficients are given directly as

Rs =ℜ
¨

Re
s
ξr

s

∗ − Rh
s

∗
ζr

s

K inc
y

∗ξinc
s
− Einc

y
ζinc

s

∗

«
, Ts =ℜ
¨

T h∗
s
ξt

s
− T e

s
ζt

s

∗

K inc
y

∗ξinc
s
− Einc

y
ζinc

s

∗

«
, (5.42a)

with the necessary coefficients

ξinc
s
=

kyα0Einc + kµ0rβ0Kinc

k2
0t

, ζinc
s
=

kyα0Kinc − kε0rβ0Einc

k2
0t

, (5.43)

ξr
s
=
ξqαsR

h
s
+ kε0rβ0sR

e
s

k2
0tq

, ζr
s
=
ξqαsR

e
s
− kµ0rβ0sR

h
s

k2
0tq

, (5.44)

ξt
s
=
ξqαsT

e
s
+ kµ3rβ3sT

h
s

k2
3tq

, ζt
s
=
ξqαsT

h
s
− kε3rβ3s T

e
s

k2
3tq

. (5.45)

The definition given here is suitable for different stacks. For the 2-layer stack and the

corresponding multilayered composite, the power reflection, transmission and absorption

coefficients of the fields are defined as R =
∑

p∈Z
∑

q∈ZRs, T =
∑

p∈Z
∑

q∈Z Ts and A =

1−R− T . The ones for the 4-layer stack and the related multilayered composite easily

follow.

5.8 Numerical investigations

In the numerical investigations, the infinite sums appearing in the plane-wave and mul-

tipole expansions need to be truncated. A 2-layer stack with d1 = d2 = d = 0.1mm,

h1 = h2 = h = 0.1mm, and cl = 0.25d is first considered. The wavelength of the inci-

dent wave λinc = d, the number of propagating modes for different rotation angles φ and
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different values of d/λinc are given in table 5.1, which shows that the larger the rotation

angle φ, the smaller the number of propagating modes. Meanwhile, a high frequency

corresponds with more propagating modes than a small one. Allowing φ = 30°, then the

distribution of the modes for plane wave illuminating the stack normally and obliquely is

given in Fig. 5.7 and Fig. 5.8, respectively. It is observed that the distribution for different

incident angles is different, and an obliquely incident wave produces more propagating

modes. In what follows, the sums
∑

p∈Z and
∑

q∈Z are truncated to
∑Pmax

p=Pmin
and
∑Qmax

q=Qmin
,

where a square area defined by Pmin < p < Pmax and Qmin < p < Qmax is chosen to count all

the propagating modes (β2
ls
> 0) in the calculation. At the same time, enough evanescent

modes (β2
ls
< 0) should be also included for ensuring the convergence of the computation.

The sum
∑

m∈Z, which is related to the multipole expansion, is truncated as
∑M

m=−M
with

a proper M for good convergence.

Table 5.1 The number of propagating modes.

d

λinc φ = 15° φ = 30° φ = 45° φ = 60° φ = 90°

0.2 3 1 1 1 1
0.4 5 3 1 1 1
0.6 17 9 7 7 5
0.8 27 13 11 7 9
1.0 39 19 15 13 9

Fig. 5.7 Distribution of the propagating modes (red blocks) for the 2-layer stack with φ =
30° and ϑ = ϕ = 0°. λinc = d.
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Fig. 5.8 Distribution of the propagating modes (red blocks) for the 2-layer stack with φ =
30°, ϑ = 60° and ϕ = 45°. λinc = d.

To validate the approach, a woodpile structure, originally investigated in [68], the same

results being also reproduced in [4] and [39], is considered. The multilayered woodpile is

composed of 32 layers which is equivalent to 16 stacks. In each stack, there are two layers

with orientation of the fibers in the top layer orthogonal to the one of the fibers in the

bottom layer. The whole stack is placed in air. One has εr12 = εr22 = 5, d1 = d2 = 0.1mm

and h1 = h2 = d. All fibers have the same radius c = 0.25d. An E-polarized (TM) incident

plane wave is considered, allowing Einc
y
= 1 and K inc

y
= 0 in the calculation. 2000 points

are used for sampling the frequency band 0 < d/λinc < 1, where λinc is the wavelength of

the incident wave. Numerical results are given in Fig. 5.9, which show a good agreement

between the present results and the ones of [4]. The sudden drop appearing near d/λinc =

0.97 in the results of [4] is not seen in the present results, which is likely caused by the

different sampling of the frequency band considered.

Furthermore, consider a 64-layer woodpile structure with epoxy (ε(1)
r
= 3.6) and glass

fibers (ε(2)
r
= 4.8). Periods of the fibers in different layers are all the same, dl = d = 0.1mm,

and one has the same thickness hl = d. The radii of fibers are c = 0.25d. The variation

of reflection coefficients with the incident angle ϑ is given in Fig. 5.10 for d/λinc = 0.5

and d/λinc = 1, an E-polarized wave being assumed. It is observed that the variation

is quite smooth with good symmetry. The energy conservation law is also checked, and

it is generally satisfied very well except some small notches at some specific frequencies

with a specific incident angle. This numerical error appears to be mainly caused by the

bad convergence of the 0-th order lattice sum S0 at high frequency as well as the strong

interactions between the fibers and the slab, and it is also influenced by the condition
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Fig. 5.9 Validating the approach by comparing the present results (blue solid line) of wood-
pile structure illuminated by a TM wave with those (red dashed line) given in [4] (curves
are easily identified with colors).

number of the matrices. Generally speaking, these errors are tolerable for a woodpile

structure, and the calculations are accurate enough when the relative error of the lattice

sums is smaller than 1× 10−6. Increasing the layers will not affect this error much. For

the composites constructed by stacks with 0° < φ < 90°, more modes are involved in the

calculation, related to stronger interactions between fibers and slab, then the numerical

error worsens at some specific high frequency with a specific incident angle, as shown in

Fig. 5.11 for a 4-layer composite at high frequency. This could become even worse with an

increasing number of layers since the errors are accumulated. This error become smaller

when the relative error of the lattice sums is decreased, but much more calculation time

is needed to achieve the required convergence.

Even though, the approach is always very stable at low frequency (d/λinc < 0.5), as

shown in Fig. 5.11 for a 32-layer composite, since less modes are involved in the calcula-

tion, meanwhile lattice sums converge very well and quite fast.

Consider the scattering by one 2-layer stack for φ = 30° and φ = 60°, illuminated by a

normally(ϑ = 0°, ϕ = 0°) incident E-polarized (Einc
y
= 1, K inc

y
= 0) plane wave. Numerical

results are shown in Fig. 5.12. The energy conservation law is very well satisfied since

there are only 2 layers. When the wave illuminates the structure normally, it is observed

that the reflection coefficients for φ = 30° and φ = 60° are almost the same at low fre-

quency, but difference shows up with the increase of the frequency. Significant difference

is observed at high frequency. The reason of this phenomenon is that when only one or a

few propagating modes exist for low frequency, as shown in table 5.1, the (0, 0)-th mode
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Fig. 5.10 Validating the approach by checking energy conservative law for composite wood-
pile with d/λinc = 0.5 (blue, dashed line) and d/λinc = 1 (red, solid line or circles).
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Fig. 5.11 Power reflection coefficients vary with different incident angle for composites
constructed with 2 stacks (blue, dashdotted) and 16 stacks (red, solid or circles). d/λinc =

1 for 2-stack composite, and d/λinc = 0.5 for the one with 16 stacks. Each stack has two
layers, φ = 60°

plays a dominant role for the response of the incident plane wave. The whole structure

behaves like a homogeneous plate. But at high frequency tens of propagating modes are

involved, and strong interaction between the wave scattered by plate and cylinders arises.

And obviously the rotation of the fibers will affect this interaction and then influence the

reflection and transmission of the wave.
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A normally and an obliquely (ϑ = 60°, ϕ = 45°) incident wave is also considered

for a 2-layer stack with the same rotation angle φ = 60°, as shown in Fig. 5.13, the

reflection of the normally incident wave is as expected lower than that for the oblique

illumination, but the oscillation at high frequency for normal incidence is faster than that

of oblique incidence, which means stronger interactions of the fields inside the slab for

normal incidence.
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φ = 30◦, ϑ = 0, ϕ = 0

φ = 60◦, ϑ = 0, ϕ = 0

Fig. 5.12 Comparison of results of 2-layer stack with rotation angle of φ = 30° and φ =
60°, for normal incident plane wave. Obliquely incident plane is also considered for ϑ =
60°, ϕ = 45°. d1 = d2 = d = 0.1mm, h1 = h2 = d and c1 = c2 = 0.25d.

Consider a 32-layer laminated composite constructed with 16 2-layer stacks. The peri-

ods are d1 = d2 = d = 0.1 mm, thicknesses are h1 = h2 = h= d, and cl = 0.25d. The power

reflection coefficients of normally and obliquely (ϑ = 60°, ϕ = 45°) incident E-polarized

plane waves impinging on the composite are given in Fig. 5.14. Strong reflection is ob-

served at some frequency band, and strong oscillations happen. A slight shift of the strong

reflection interval is also observed.

As observed from Fig. 5.12, Fig. 5.13 and Fig. 5.14, fast oscillations show up when the

frequency is high (d/λinc → 1). These oscillations will become stronger and faster when

the composite material has more layers or higher contrast between the background mate-

rial and the material of the embedded fibers. But these fast oscillations always happens at

frequencies out of the frequency band of non-destructive testing, and what is exhibited by

them is not very useful information.

Conclude the above discussions, the following calculation is carried out at low fre-

quency (d/λinc < 0.5) for a 100-layer composite with glass fibers and epoxy background

material. The frequency band is in harmony with the frequency band used in the non-
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Fig. 5.13 Comparison of results of 2-layer stack with rotation angle ofφ = 60°, for normally
and obliquely (ϑ = 60°, ϕ = 45°) incident plane wave. d1 = d2 = d = 0.1mm, h1 = h2 = d

and c1 = c2 = 0.25d.
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Fig. 5.14 Reflection coefficients of a 32-layer composite consisted of layered 2-layer stacks
is given with φ = 60° for a normally (blue, solid) and obliquely (red, dash dotted, ϑ =
60°, ϕ = 45°) incident E-polarized plane wave. d1 = d2 = d = 0.1mm, h1 = h2 = d and
c1 = c2 = 0.25d.

destructive testing. One has d1 = d2 = d = 0.1mm, h1 = h2 = d and c1 = c2 = 0.25d.

Variations of power reflection coefficients with different incident angles ϑ (ϕ = 45°) are

first given in Fig. 5.15 for d/λinc = 0.5 and f = 60 GHz (d/λinc = 0.02, in microwave

band). As seen, the energy conservation is well satisfied for both frequencies, and the

curve corresponding to f = 60GHz is quite smooth, which means that the interaction



110 Scattering by laminates with arbitrary orientation of fibers in different layers

between the fibers and the one between the fiber and slab become quite weak, and corre-

spondingly, less modes are involved in the calculation.
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Fig. 5.15 Reflection coefficients of a 100-layer composite made of 2-layer stacks with φ =
60° for different incident angles, with d/λinc = 0.5 (blue dashed line) and f = 60 GHz
(red solid line), E-polarized plane wave. d1 = d2 = d = 0.1mm, h1 = h2 = d and c1 = c2 =

0.25d.

The power reflection coefficients of E- and H-polarized incident wave are compared.

The waves impinge the structure conically with ϑ = 60° and ϕ = 45°, with d/λinc = 0.5.

The behaviors for the two polarized waves are quite different, especially in the region

−30° < ϑ < 30°. At normal incidence, the reflection of the E-polarized wave is much

stronger than the one of the H-polarized wave. Energy conservation is also checked, and

it is very well satisfied in both cases.

The reflection coefficients varying with different values of d/λinc are presented in Fig.

5.17. Strong oscillations are observed, and a total reflection interval shows up.

In practice, laminated composites are usually constructed with a 4-layer stack with

φ1 = 45°, φ2 = −45° and φ3 = 90°, as shown in Fig. 5.5. Allowing that P = Pmax−Pmin+1,

Q = Qmax−Qmin+1, U = Umax−Umin+1 and V = Vmax−Vmin+1, then P×Q×U×V modes

are needed to be considered in the calculation. If Pmin = Qmin = Umin = Vmin = −1 and

Pmax = Qmax = Umax = Vmax = 1, then 34 modes are needed in the calculation, which

cost in average about 20 minutes for the calculation at each frequency point. But if

Pmin = Qmin = Umin = Vmin = −2 and Pmax = Qmax = Umax = Vmax = 2, the total num-

ber of modes calculated is 54, which makes the average time cost at each frequency point

increasing to hours. In a practical calculation, more modes are needed at high frequency

for a good convergence. The efficiency of the calculation is mainly influenced by the un-
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Fig. 5.16 Reflection coefficients of a 100-layer composite consisting of 2-layer stacks with
φ = 60° for E-polarized (dashed, blue) and H-polarized (solid line, red) plane wave. En-
ergy conservation is checked, blue dashed line for E-polarized wave, and red circles for
H-polarized one. d1 = d2 = d = 0.1 mm, h1 = h2 = d and c1 = c2 = 0.25d.
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Fig. 5.17 Reflection coefficients of a 100-layer composite consisting of 2-layer stacks with
φ = 60° for E-polarized plane wave with different frequencies. Energy conservation is
checked (red solid line). d1 = d2 = d = 0.1 mm, h1 = h2 = d and c1 = c2 = 0.25d. ϑ = 60°,
and ϕ = 45°.

avoidable lattice sums and the increase of the number of propagating modes with the

increase of frequency. Accelerating the calculation is necessary for investigating reflection

and transmission of the structure at high frequency, which can be achieved by using a faster
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convergent approach for lattice sums or by applying parallel computing on a workstation

or cluster.
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Fig. 5.18 Reflection coefficients of a 100-layer composite constructed with 4-layer stacks
is given with φ1 = 45°, φ2 = −45° and φ3 = 90° for a normally incident E-polarized plane
wave. Energy conservation law is checked (red solid line). All layers have the same period
dl = d = 0.1mm, thickness hl = d and radius cl = 0.25d.

But for non-destructive testing, the wavelength is generally much larger than the period

of the structures, hence the calculation for composites constructed by 4-layer stacks are

carried out here with 0 < d/λinc < 0.5, where the mode of s = (0, 0, 0, 0) dominates

the electromagnetic behavior of the structure. The reflection coefficients of a 100-layer

composite constructed with 4-layer stacks are shown in Fig. 5.18 withφ1 = 45°,φ2 = −45°

and φ3 = 90° for a normally incident E-polarized plane wave. All layers have the same

period dl = d = 0.1mm, height hl = d and radius cl = 0.25d. It is observed that the

reflection coefficients are very sensitive to the variation of frequency, and fast oscillations

being observed in the concerned frequency band. Meanwhile, a total reflection interval

appears around d/λinc = 0.25. Comparing these results with the ones given in Fig. 5.17

for a 100-layer composite constructed with 2-layer stacks, a similar behavior is observed.

5.9 Summary

Currently, the approach combining plane-wave expansion and multipole method is success-

fully extended for investigation of multilayered composite with the fibers orientated into

different directions. Based on the work presented in Chapter 4, the approach is applied for

the composites constructed with two kinds of stacks. For the frequency band concerned for
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non-destructive testing, the approach works stably and efficiently. Numerical experiments

are also carried out for various cases concerning glass-fiber reinforced composites, and the

accuracy and efficiency are also discussed.





Chapter 6

Conclusion and Perspectives

Conclusion

In the present work, one has built an efficient computational model of multilayered com-

posite materials reinforced by periodically arranged fibers, such as carbon-/glass-fiber rein-

forced composites used in aerospace, naval and automotive industries. Good understand-

ing of the electromagnetic behavior of the composites has been acquired, which should

serve for non-destructive testing and imaging of disorganized periodic structures in particu-

lar so as to exhibit the location of possibly damaged zones and provide some quantification

of these zones.

The work started by considering a single-layer composite constructed by embedding a

periodic array of infinitely long circular cylindrical fibers into a dielectric slab. This first

step helped to understand the basic principles and related philosophy of the used approach,

which is a combination of multipole method and plane-wave expansion. Thus a solid basis

was made available for further investigating the scattering of multilayered structures as a

pile of many single-layer composites.

Two cases have been under consideration for a plane wave illuminating the single-layer

composite. The first one (2D case) concerned the E- or H-polarized incident wave with

the plane of incidence parallel to the plane of the cross-section of the fibers. The problems

corresponding to E- or H-polarized incident waves have been studied in an unified way,

which allows to carry out an unified program for the calculation. Then the scattering of

Gaussian beam was investigated by expanding the Gaussian beam properly into a plane-

wave distribution. The scattered field obtained for each plane wave was then overlapped

to produce the scattered field of the beam. Lattice sums have naturally arisen for suitably

combining the contribution of other circular fibers to the field in the region around the

considered one, so as to satisfy the required periodic boundary conditions.
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Based on the solution of this 2D case, a plane wave conically illuminating the single-

layer composite has then been considered. The plane of incidence was out of the plane

orthogonal with the axes of fibers. This considered problem is denoted as 2.5D case. The

solution for the 2D case was then applied straightforwardly to investigate this 2.5D case.

It actually has no many more complexities than the 2D case except some complicated

relations between longitudinal and transverse field components, since the longitudinal

electric and magnetic fields are coupled when the wave is impinging the structure conically.

Once the reflection and transmission coefficients of each modes has been obtained in

all considered cases, Poynting’s theorem has been applied to produce the power reflection

and transmission coefficients.

Investigation of the 2D and 2.5D cases provided the basic knowledge for producing the

Green’s functions of the single-layer structure by calculating the response of line or dipole

sources. The techniques introduced in detail in the above works has been extended to

solve the scattering problem of complex composites.

The first considered multilayered structure was constructed by piling up the single-layer

composite with the fibers in all layers parallel to each other. T-matrix and S-matrix based

recursive schemes have been proposed for making the calculation, but it was shown that

the S-matrix based approach is more stable. Instability of the T-matrix based approach

is caused by the exponentially decreasing or increasing elements corresponding to the

evanescent modes. This problem cannot be easily overcome since a proper number of

evanescent modes is needed in the calculation for obtaining a good convergence of the

field expansions.

Meanwhile, the S-matrix based approach naturally obviates the need of inverting the

ill-conditioned matrices in the calculation. Some difficulties met for directly calculating

the field distribution inside the structure were easily overcome by rearranging the matrices

to link the expansion coefficients to the incident field.

The stable recursive scheme based on S-matrices was then extended for investigating

multilayered composite with arbitrary orientations of the fibers in different layers. Atten-

tion was on two kinds of structures constructed with two kinds of stacks. The first was a

2-layer stack with the fibers in different layers orientated into an arbitrary direction. The

second was a more practical one where 4 layers are included in the stack with different

orientations of the fibers in different layers. The two kinds of multilayered structures have

been constructed by piling up the two kinds of stacks individually.

The S-matrix for one stack was established by cascading the S-matrices of all layers.

Then the S-matrices for all the stacks were combined to produce the S-matrix for the whole
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structure, which actually linked the reflection and transmission coefficients to the incident

field, which can then be used to get reflection and transmission coefficients.

Main focus of the numerical investigations was mainly on reflection and transmission

properties of the glass/carbon-fiber reinforced composites. Notice that in the case of fiber-

reinforced composites, the adequate frequency bands have been chosen for carrying out the

numerical experiments in harmony with those usually considered during non-destructive

testing of such composites.

Effectiveness and accuracy have been exhibited for different composite models, with

different degree of complexities. All the approaches proposed in the thesis were widely

validated by comparing the present results with those existing in the literature on pho-

tonic crystals. One has also compared some results of the presented approach with those

produced by the COMSOL software, and one successfully retrieved the same results.

So, the electromagnetic behaviors of multilayered composites, with fibers inside orien-

tated into arbitrary directions, have been investigated by combining the multipole method

and plane-wave expansion. The way of generalizing the approach and the difficulties met

during the procedure as well as the challenges faced were all presented in detail. In par-

allel, approximate models, replacing each layer by its homogenized counterpart, has also

been given in 2D case, for single- or multi-layer structures.

Perspectives

The present work mainly paid attention to well-organized structures. But there might be

one or several fibers missing or displaced inside a composites. Local damages might occur

also, leading to changes in shape or electromagnetic properties of one or more cylinders

in one or more layers. Randomness in the distribution of the inclusions might account for

uncertainties of positioning with respect to assumed geometries. Properly illuminating the

structures and collecting the resulting fields in the near-field hopefully and possibly in the

far-field should allow their imaging and concur to their diagnostics. So, a periodic structure

under interrogation is disorganized. One wishes to successfully image the structure while

taking care at best of prior information on periodicity and disorganization, on sensing

systems, and obviously of needs and limitations of the testing.

The coming contributions should focus on the disorganized structure, and the work

falls into two steps, accurate scattering modeling (forward problem) and high-resolution

imaging (inverse problem). With the work presented in this thesis, the response of the well-

organized periodic structure to an inner or outer elementary line or dipole sources could

be obtained through plane-wave expansion of the elementary sources, which then lead

to the dyadic Green’s function. At low frequency, the scattered field of the dis-organized
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structure could be easily obtained with Born approximation. High order approximation

techniques could also be applied if necessary.

To avoid the calculation of Green’s function and accurately compute the response of

dis-organized structure to electromagnetic waves, several analytic models could be built

for several different cases of disorganized structures. In the most simple case, a single-

layer disorganized periodic structure with one missing fiber should be considered. Multiple

scattering theory, “supercell” method and periodic Fourier transform should be the possible

useful strategies. Well establishing this electromagnetic model allows one to explore the

possible techniques and build a good basis. Finite Element Method and Finite-Difference

Time-Domain method could provide results for validations. Simple extension of the single-

layer model should allows one to investigate the periodic array with several missing fibers

cases. For more complicated disorganized structures, such as the one with defects and

with changes in shape or electromagnetic properties, the approach based on “supercell”

or periodic Fourier transform might also be useful. All these approaches could be further

developed to study multilayered disorganized periodic structure.

The equivalent layer model should be a good approximate solution to the above prob-

lems for low frequency incident wave, and it should be more applicable for the complicated

structures. In this model, the array of fibers is homogenized and replaced by an uniaxi-

ally anisotropic layer. Then the response of the structure to a line source is calculated to

produce the dyadic Green’s function, where the magnetic-electric Green’s function may be

better.

For imaging, one-shot or iterative imaging may be proposed, which is fully relevant to

the field of time-reversal (TR) seen “at large”. Full transient data might end up in being

time-harmonic frequency-diverse data, and carefully tailored back-propagation algorithms

might substitute to TR mirrors as usually thought of. These algorithms starting from first-

order models of electromagnetic phenomena, but increasing in complexity as/if necessary;

In brief, the work presented in this thesis gave the perspectives of building the forward

electromagnetic model of both well-organized and disorganized periodic structures. By

using these forward models, dyadic Green’s functions can be obtained via calculating the

response of an elementary dipole source. Then non-destructive testing and imaging of the

composite material could follow with multiple approaches.
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Graf’s addition theory

Addition theorems [47] arise in a number of solutions of multiple scattering problem by

cylinders, where the linear transformation of cylindrical wave functions from one coordi-

nate system to another one is needed. Here, the addition theorem in cylindrical coordi-

nates is given as

H
(1)
0 (kρ| ~ρ − ~ρ′|) =

∞∑

n=−∞
H(1)

n
(kρρ>)Jn(kρρ<)e

in(φ−φ′), (A.1)

where ρ< is the smaller one of ρ and ρ′, and ρ> is the larger one of ρ and ρ′, see Fig. A.1.

Fig. A.1 Translation in the cylindrical coordinate system.

Equation (A.1) can also be written as

H(1)
m
(kρ| ~ρ − ~ρ′|)eimφ′′ =






∞∑

n=−∞
Jn−m(kρρ

′)H(1)
n
(kρρ)e

inφ−i(n−m)φ′, ρ > ρ′,

∞∑

n=−∞
H(1)

n
(kρρ

′)Jn−m(kρρ)e
inφ−i(n−m)φ′, ρ < ρ′,

(A.2)
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Moreover, taking the regular part of (A.2) on both sides of the equation produces

Jm(kρ| ~ρ − ~ρ′|)eimφ” =

∞∑

n=−∞
Jn−m(kρρ

′)Jn(kρρ)e
inφ−i(n−m)φ′, (A.3)

which establishes the addition theorem for Bessel functions. It can be rewritten as

J−m(kρ| ~ρ − ~ρ′|)e−imφ” =

∞∑

n=−∞
Jn+m(kρρ

′)Jn(kρρ)e
inφ−i(n+m)φ′

=

∞∑

n=−∞
Jn(kρρ

′)Jn−m(kρρ)e
i(n−m)φ−inφ′ (A.4)

Another useful identity is written as

Jm(kρ| ~ρ − ~ρ′|)eimφ′′ =

∞∑

n=−∞
Jn(kρρ

′)Jn+m(kρρ)e
i(n+m)φ−inφ′ , (A.5)
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Mode-matching at boundaries Γa and Γb

Matching the fields represented by (3.18) and (3.25) on the boundaries Γa and Γb and

applying the property
∫ d/2
−d/2

ei(αm−αn)x d x = dδmn, m, n ∈ Z, to the obtained four equations

Eincδ0p + Re
p
− ( f +

ep
e−iβ1p a + g−

ep
eiβ1p a +
∑

m∈Z
Be

m
G+

pm
eiβ1pa) =0, (B.1a)

T e
p
− ( f +

ep
e−iβ1p b + g−

ep
eiβ1p b +
∑

m∈Z
Be

m
G−

pm
e−iβ1p b) =0, (B.1b)

Kincδ0p + Rh
p
− ( f +

hp
e−iβ1p a + g−

hp
eiβ1p a +
∑

m∈Z
Bh

m
G+

pm
eiβ1pa) =0, (B.1c)

T h
p
− ( f +

hp
e−iβ1p b + g−

hp
eiβ1p b +
∑

m∈Z
Bh

m
G−

pm
e−iβ1p b) =0. (B.1d)

With the x components of the fields obtained by substituting (3.18) and (3.25) into equa-

tions (3.7a) and (3.7b), the following four equations can be easily obtained in the same

way

k2
1t

k2
0t

[αpky(Eincδ0p + Re
p
) + kµ0rβ0p(Kincδ0p − Rh

p
)]
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+
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∑
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e−iβ1p b), (B.2b)
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k2
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Eliminating Re
p
, T e

p
, Rh

p
and T h

p
from (B.1) and (B.2) yields
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e−iβ1p b +
τ3ρ3 +ρ1

τ3 − 1
g−

hp
eiβ1p b

=−αpky

∑

m∈Z
Be

m
G−

pm
e−iβ1p b − τ3ρ3 −ρ1

τ3 − 1

∑

m∈Z
Bh

m
G−

pm
e−iβ1p b, (B.3b)

αpky f +
hp

e−iβ1pa +αpky g−
hp

eiβ1pa +
τ0η0 +η1

τ0 − 1
f +
ep

e−iβ1pa +
τ0η0 −η1

τ0 − 1
g−

ep
eiβ1p a

=−αpky

∑

m∈Z
Bh

m
G+

pm
eiβ1p a +

2τ0η0

τ0 − 1
Eincδ0p −

τ0η0 −η1

τ0 − 1

∑

m∈Z
Be

m
G+

pm
eiβ1pa, (B.3c)

αpky f +
hp

e−iβ1p b +αpky g−
hp

eiβ1p b − τ3η3 −η1

τ3 − 1
f +
ep

e−iβ1p b − τ3η3 +η1

τ3 − 1
g−

ep
eiβ1p b

=−αpky

∑

m∈Z
Bh

m
G−

pm
e−iβ1p b +

τ3η3 −η1

τ3 − 1

∑

m∈Z
Be

m
G−

pm
e−iβ1p b. (B.3d)

In the above, τ j =
k2

1t

k2
j t

, ρ j = kµ jrβ jp and η j = kε jrβ jp. Solving the linear system yields

f +
ep
=

M e
p
Qe

p
− N e

p
W e

p

Se
p
Qe

p
− P e

p
W e

p

, g−
ep
=

M e
p
P e

p
−N e

p
Se

p

W e
p

P e
p
−Qe

p
Se

p

, (B.4a)

f +
hp
=

Mh
p
Qh

p
− N h

p
W h

p

Sh
p
Qh

p
− Ph

p
W h

p

, g−
hp
=

Mh
p
Ph

p
−N h

p
Sh

p

W h
p

Ph
p
−Qh

p
Sh

p

, (B.4b)
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where f +
ep

, g−
ep

, f +
hp

and g−
hp

are expressed in terms of Bh
m

and Be
m

with coefficients Mh
p
, N h

p
,

M e
p

and N e
p

defined as

M e
p
=
∑

m∈Z
Be

m
U ee

mp
+
∑

m∈Z
Bh

m
U eh

mp
+ U ei

p
, N e

p
=
∑

m∈Z
Be

m
V ee

mp
+
∑

m∈Z
Bh

m
V eh

mp
+ V ei

p
, (B.5a)

Mh
p
=
∑

m∈Z
Be

m
Uhe

mp
+
∑

m∈Z
Bh

m
Uhh

mp
+ Uhi

p
, N h

p
=
∑

m∈Z
Be

m
V he

mp
+
∑

m∈Z
Bh

m
V hh

mp
+ V hi

p
, (B.5b)

Coefficients Se,h
p

, W e,h
p

, P e,h
p

and Qe,h
p

are given as

Se
p
=Υ− −Ξ+0 e−iβ1p(2a−b) +Λ−3 e−iβ1p b, W e

p
= Υ+ +Ξ−0 eiβ1p(2a−b) −Λ+3 eiβ1p b, (B.6)

P e
p
=Υ− +Ξ−3 e−iβ1p(a−2b) −Λ+0 e−iβ1pa, Qe

p
= Υ+ −Ξ+3 e−iβ1p(a−2b) +Λ−0 eiβ1pa, (B.7)

Sh
p
=Υ− −Ξ+0 e−iβ1p(2a−b) +Θ−3 e−iβ1p b, W h

p
= Υ+ +Ξ−0 eiβ1p(2a−b) −Θ+3 eiβ1p b, (B.8)

Ph
p
=Υ− +Ξ−3 eiβ1p(a−2b) −Θ+0 e−iβ1pa, Qh

p
= Υ+ −Ξ+3 e−iβ1p(a−2b) +Θ+0 eiβ1pa, (B.9)

where

Υ
± = e±iβ1pa(αpky)

2(τ0− 1)2(τ3 − 1)2, (B.10a)

Ξ
±
{0,3} =

τ{3,0} − 1

2i sin(β1p L)

�
(τ{0,3}ρ{0,3} +ρ1)× (τ{0,3}η{0,3} +η1)(τ{3,0} − 1)

�
, (B.10b)

Λ
±
{0,3} =

τ{0,3} − 1

2i sin(β1p L)

�
2ρ1(τ{0,3}η{0,3} ±η1)(τ{3,0} − 1)

± (τ{3,0}ρ{3,0} ±ρ1)(τ{3,0}η{3,0} ∓η1)(τ{0,3} − 1)
�
, (B.10c)

Θ
±
{0,3} =

τ{0,3} − 1

2i sin(β1p L)

�
2η1(τ{0,3}ρ{0,3} ±η1)(τ{3,0} − 1)

± (τ{3,0}η{3,0} ±η1)(τ{3,0}ρ{3,0} ∓ρ1)(τ{0,3} − 1)
�
. (B.10d)

The others are defined as

U eh
mp
=(αpky)(τ3 − 1)2(τ0 − 1)

�
(τ0ρ0 −ρ1)G

+
pm

eiβ1p a

− 1
2i sin(β1p L)

�
2ρ1G−

pm
e−iβ1p b − (τ0ρ0 +ρ1)

× G+
pm

eiβ1p b + (τ0ρ0 −ρ1)G
+
pm

eiβ1p(2a−b)
��

, (B.11)

V ei
p
=
−2τ0η0ρ1(τ3 − 1)(τ0 − 1)Einc

y
δp0

i sin(β1p L)
, (B.12)
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U ee
mp
=(τ3 − 1)
�
− G+

pm
eiβ1p a(αpky)

2(τ0 − 1)2(τ3 − 1)

+
1

2i sin(β1p L)

�
(τ0ρ0 +ρ1)(τ0η0 −η1)(τ3 − 1)

× G+
pm

eiβ1p b + 2ρ1(τ3η3 −η1)(τ0− 1)G−
pm

e−iβ1p b

− (τ0ρ0 −ρ1)(τ0η0 −η1)(τ3− 1)G+
pm

eiβ1p(2a−b)
��

, (B.13)

U ei
p
=(τ3 − 1)2
�
− 2τ0ρ0(αpky)(τ0− 1)K inc

y
δ0p

+
2τ0η0

�
iτ0ρ0 sin(β1p L)−ρ1 cos(β1p L)

�
Einc

y
δ0p

i sin(β1p L)

�
, (B.14)
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�
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+
1

2i sin(β1p L)

�
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��
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V ee
mp
=(τ0 − 1)
�
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2G−
pm

e−iβ1p b
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1

2i sin(β1p L)

�
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× G−
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��
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�
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�
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��

, (B.17)

Uhe
mp
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�
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1
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�
2η1G−
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× G+
pm

eiβ1p b + (τ0η0 −η1)G
+
pm

eiβ1p(2a−b)
��

, (B.18)

Uhi
p
=(τ3 − 1)2
�
2τ0η0(τ0 − 1)αpky Einc

y
δ0p

+
2τ0ρ0

�
iτ0η0 sin(β1p L)−η1 cos(β1p L)

�

i sin(β1p L)
K inc

y
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�
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V hh
mp
=(τ0 − 1)
�
− G−

pm
e−iβ1p b(αpky)

2(τ3 − 1)2(τ0 − 1)

+
1

2i sin(β1p L)

�
(τ3η3 +η1)(τ3ρ3 −ρ1)(τ0 − 1)

× G−
pm

e−iβ1p a + 2η1(τ0ρ0 −ρ1)(τ3− 1)G+
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V he
mp
=αpky(τ0 − 1)2(τ3− 1)

�
(τ3η3 −η1)G

−
pm
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+
1

2i sin(β1p L)

�
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−
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− (τ3η3 −η1)G
−
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V hi
p
=−

2τ0ρ0η1(τ3− 1)(τ0 − 1)K inc
y
δ0p

i sin(β1p(a− b))
. (B.22)

Once the B{e,h}
m

are obtained with the Rayleigh identity, f +{e,h},p and g−{e,h},p can be calculated

with equations (B.4), then R{e,h}
p

and T {e,h}
p

follow from equation (B.1).





Appendix C

Homogenization of a single layer

fiber-based composite

The analytical model of one single-layer composite reinforced by a periodic array of circular

fibers has been given in Chapter 2 and Chapter 3. Here, an approximate model will be

presented, in which the fiber-reinforced slab will be replaced by its uniaxially anisotropic

counterpart with an effective permittivity tensor. But under illumination of a TE or TM

wave, only a scalar effective permittivity is needed. The tensor of effective permittivity for

the slab illuminated by conically incident plane wave is produced by properly combining

the scalar effective permittivity for the TM and TE cases. In order to verify the efficacy and

accuracy of the homogenized model, several numerical results have been given in section

2.4 for single-layer composite and section 4.8 for multilayered composite.

Preliminary formulation

In anisotropic homogeneous media, Maxwell equations for time-harmonic fields are

∇×E =iωµH, (C.1a)

∇×H=− iωεE, (C.1b)

where E and H are electric and magnetic fields. E = Ex ~x + Ey ~y + Ez~z, and H = Hx ~x +

H y ~y + Hz~z. µ is permeability where µ = µ0, µ0 the permeability of free space. ε is the

permittivity of the material, ε = εrε0. In our case, εr varies with x and z, writing as

εr(x , z). Assuming the plane of incidence to be parallel with the x -z plane and letting

k0 =ω
p
ε0µ0, the Maxwell equations are written into

(∇2 + k2
0εr)Ey = 0, (C.2a)
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∂

∂ x
(

1
εr

∂ H y

∂ x
) +
∂

∂ z
(

1
εr

∂ H y

∂ z
) + k2

0H y = 0. (C.2b)

With these two wave equations, the periodic composite can be homogenized at a low

enough frequency, meaning that the composite is replaced by a homogeneous slab which

has an effective permittivity ε̄r for the E-polarized incident wave (TM) case and the H-

polarized incident wave (TE) case. TE and TM cases can be investigated individually with

equation (C.2a) and (C.2b).

Assuming that the frequency ω of the incident wave is such that λ = 2πc0
ω
≫ d with

c0 the speed of light, the wavenumber of the incident wave defined as k0 = ω/c0 should

satisfy k0 ≪ 1. In order to obtain the effective permittivities for TE and TM waves, one

takes Ey(x , z) = Ẽy(x , z, x̃, z̃) and H y(x , z) = H̃ y(x , z, x̃, z̃), where x̃ = k0 x and z̃ = k0z.

Then, operations ∇ and ∇2 become

∇ =∇x ,z + k0∇ x̃ ,z̃, (C.3a)

∇2 =∇2
x ,z + k2

0∇2
x̃,z̃ + k0(∇x ,z · ∇ x̃ ,z̃ +∇ x̃ ,z̃ · ∇x ,z). (C.3b)

Here, ∇x ,z =
∂
∂ x
~x + ∂

∂ z
~z, and ∇2

x ,z =
∂ 2

∂ x2 +
∂ 2

∂ z2 . ∇ x̃,z̃ and ∇2
x̃ ,z̃ have similar definitions but

the operations are on variables x̃ and z̃. The decomposition of the two operators is then

reformed to rewrite equations (C.2) for both TM and TE waves.

Homogenization for incident TM wave

Considering an E-polarized wave and applying (C.3b) to equation (C.2a) produces

1

k2
0

∇2
x ,z Ẽy +

1
k0
(∇x ,z · ∇ x̃ ,z̃ +∇ x̃,z̃ · ∇x ,z)Ẽy +∇2

x̃ ,z̃ Ẽy + εr Ẽy = 0. (C.4)

The electric field Ẽy is then expanded as

Ẽy = Ẽ0y + k0 Ẽ1y + k2
0 Ẽ2y + · · · . (C.5)

Since k0 has been assumed small enough, the higher the order the terms, the less influence

expected on Ẽy . Here, the first three terms are considered and the resulting expansion is

substituted into equation (C.4). Then collecting the terms in which k0 is of the same integer
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power yields

1

k2
0

∇2
x ,z Ẽ0y +

1
k0

�
∇2

x ,z Ẽ1y + (∇x ,z · ∇ x̃ ,z̃ +∇ x̃ ,z̃ · ∇x ,z)Ẽ0y

�

+∇2
x ,z Ẽ2y + (∇x ,z · ∇ x̃ ,z̃ +∇ x̃,z̃ · ∇x ,z)Ẽ1y +∇2

x̃ ,z̃ Ẽ0y + εr Ẽ0y = 0
(C.6)

Setting the terms at each integer power of k0 equal to zero produces

∇2
x ,z Ẽ0y = 0, (C.7a)

∇2
x ,z Ẽ1y + (∇x ,z · ∇ x̃,z̃ +∇ x̃ ,z̃ · ∇x ,z)Ẽ0y = 0, (C.7b)

∇2
x ,z Ẽ2y + (∇x ,z · ∇ x̃,z̃ +∇ x̃ ,z̃ · ∇x ,z)Ẽ1y +∇2

x̃ ,z̃ Ẽ0y + εr Ẽ0y = 0 (C.7c)

Because of the periodicity of the structure, the field Ẽ0y can be expanded as

Ẽ0y =
∑

p∈Z
Cp(z)e

iαp x (C.8)

where αp = k0 sinθi + 2πp/d. Substituting equation (C.8) into (C.7a) produces

d2Cp

dz2
−α2

p
Cp = 0 (C.9)

If p 6= 0, Cp(z) = a1eαpz + a2 where a1 and a2 are all constant. If a1 6= 0, there are only

outgoing waves existing in both regions z > 0 and z < 0, which is not true, so Cp = a2.

Substituting it into equation (C.9), one gets that a2 = 0, so Cp = 0. If p = 0, C0 is constant.

So equation (C.7b) becomes

∇2
x ,z Ẽ1y = 0, (C.10)

which has the same solution as (C.7a). Simplifying the equation (C.7c) produces

∇2
x ,z Ẽ2y +∇2

x̃ ,z̃ Ẽ0y + εr Ẽ0y = 0. (C.11)

Expanding the field Ẽ2y as

Ẽ2y =
∑

p∈Z
Cp(z)e

iαp x , (C.12)

with which equation (C.11) is written as

d2Cp

dz2
−α2

p
Cp +∇2

x̃ ,z̃ Ẽ0y + εr(x , z)Ẽ0y = 0. (C.13)
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If p 6= 0, this equation has a solution Cp = a1eαpz + f , where f is a particular solution of

(C.13). If a1 6= 0, the field in space z > 0 is infinite and in z < 0 is evanescent. If p = 0,

(C.13) becomes
d2C0

dz2
+∇2

x̃ ,z̃ Ẽ0y + εr(x , z)Ẽ0y = 0. (C.14)

Here, we have a solution of C0 = a1z2 + a2z + a3. If a1 6= 0 and a2 6= 0, the field is infinite

when z =∞, so C0 is constant. Then equation (C.14) becomes

∇2
x̃ ,z̃ Ẽ0y + εr(x , z)Ẽ0y = 0. (C.15)

Integrating on both sides of (C.15), the left-hand side can be written as

∫ d/2

−d/2

∫ a

b

(∇2
x̃ ,z̃ Ẽ0y + εr(x , z)Ẽ0y)d xdz

=∇2
x̃,z̃ Ẽ0y +

∫ d/2

−d/2

∫ a

b

εr(x , z)d xdzẼ0y

=∇2
x̃,z̃ Ẽ0y + ε̄r Ẽ0y

(C.16)

Here, ε̄r is

ε̄r =

∫ d/2

−d/2

∫ a

b

εr(x , z)d xdz =
εr1S1 + εr2S2

S1 + S2
. (C.17)

Finally, a Helmholtz wave equation follows as

∇2
x̃,z̃ Ẽ0y + ε̄r Ẽ0y = 0. (C.18)

Since
∂ Ẽ0y

∂ x̃
= 1

k0

∂ Ẽ0y

∂ x
, equation (C.18) can be written as

∇2
x ,z Ẽ0y + ε̄rk

2
0 Ẽ0y = 0,

which indicates that ε̄r is the effective permittivity with which the scattering of a low fre-

quency TM wave by the periodic composite is assimilated with the one of a homogeneous

plate with permittivity ε̄r .
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Homogenization for incident TE wave

For the homogenization of the structure with an H-polarized incident wave, equation

(C.2b) is needed. Allowing ε−1
r
(x , z) = 1/εr(x , z), equation (C.2b) is expressed as

∂

∂ x

�
ε−1

r
(x , z)

∂H y

∂ x

�
+
∂

∂ z

�
ε−1

r
(x , z)

∂H y

∂ z

�
+ k2

0H y = 0. (C.19)

It can be expanded as

ε−1
r

∂ 2H y

∂ x2
+ ε−1

r

∂ 2H y

∂ z2
+
∂ H y

∂ x

∂ ε−1
r

∂ x
+
∂ H y

∂ z

∂ ε−1
r

∂ z
+ k2

0H y = 0. (C.20)

Noticing that ε−1
r
(x , z) in region R1 and R2 are all constant, so the derivative of ε−1

r
(x , z)

with respect to x or z equals zero. Now, equation (C.20) can be simplified as

ε−1
r
∇2H y + k2

0H y = 0. (C.21)

Letting H y(x , z) = H̃ y(x , z, x̃ , z̃), and expanding the magnetic field as

H̃ y = H̃0y + k0H̃1y + k2
0H̃2y + · · · . (C.22)

Then, following the same treatment for TM wave, it can be proven that

ε−1
r
∇2

x̃ ,z̃H̃0y + H̃0y = 0. (C.23)

Integrating on both sides yields

1
ε̄r

=
S1/εr1 + S2/εr2

S1 + S2
(C.24)

So the effective permittivity for the TE case is defined as

ε̄r =
S1 + S2

S1/εr1 + S2/εr2
(C.25)





Appendix D

Reordering matrix U

D.1 Reordering matrix for 2-layer stack

Assuming that Q total = Qmax −Qmin+ 1 and Ptotal = Pmax − Pmin + 1, where Pmax, Pmin, Qmax

and Qmin are defined in section 5.8. Q total and Ptotal are the total number of the modes for

truncating the infinite sums corresponding to q and p, then the elements of f̄±
l

and ḡ±
l

can

be reordered with a reordering matrix U which can be produced according to the following

algorithm, vec is a zero vector with Ptotal ×Q total elements. Matrix mat is initially empty.

Algorithm 1 Producing matrix for reordering f̄±
l

and ḡ±
l

for q = 1 to Q total do

counter_q← q

indicator_var ← 1
while indicator_var ≤ 2 do

posi t ion← counter_q

while posi t ion ≤ 2× Ptotal ×Q total do

tmp_vec(posi t ion)← vec

mat ← ver t icall y_concatenate(mat , tmp_vec)

posi t ion← posi t ion+ 2×Q total

end while

counter_q← counter_q +Q total

indicator_var ← indicator_var + 1
end while

end for
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D.2 Reordering matrix for 4-layer stack

The sequence which is used to indicate the order of the field expansion coefficients of

the second layer is defined as s2 = (q, p, u, v). Hence, for every pair of (u, v), there is a

complete set of combinations of (q, p). Here, the complete set indicates the combinations

produced with different values of q and p, and q varies faster than p. Hence, for a specific

pair of (u, v), the complete set of (q, p) is the same as the one for the second layer of the

2-layer stack. The expansion coefficients indexed by this set of combinations need to be

rearranged into the order defined by (p, q). Hence, the reordering matrix for the second

layer of the 4-layer stack is calculated with the following procedure: 1) calculating the

reordering matrix for a complete set of (q, p) with the algorithm 1; 2) treat the obtained

matrix as a block and put Utotal × Vtotal of them into one larger matrix with all the blocks

standing along the diagonal line. The produced larger matrix is then the needed reordering

matrix for the second layer of the structure.

For the third layer, the sequence is defined as s3 = (u, q, p, v) which shows that the

order of the coefficients indexed by (u, q, p) needs to be changed into the order defined

by (p, q, u), for each value of v. Hence, a matrix for ordering the coefficients indexed

by (u, q, p) is calculated first, then the matrix is treated as a block, and Vtotal of them

are put into a larger matrix within which these blocks stand on the diagonal line. The

algorithm for reordering (u, q, p) is given in Algorithm 2. Utotal = Umax − Umin + 1, and

Vtotal = Vmax−Vmin+1. tmp_vec is a vector with 2×Ptotal×Q total×Utotal×Vtotal elements

equal to zero.

For the fourth layer, the coefficients indexed by s4 = (v, q, u, p) need to be reordered

into the order defined by s1 = (p, q, u, v). The reordering matrix is produced with the

algorithm shown in 3.

These algorithms can be easily implemented. To verify them, a simple code is writ-

ten to produce the sequences of s1 = (p, q, u, v), s2 = (q, p, u, v), s3 = (u, q, p, v) and

s4 = (v, q, u, p). Then the sequences s2, s3 and s4 are transformed with the correspond-

ing reordering matrices. The resulting sequences should have the same order of s1.
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Algorithm 2 Reordering matrix for the coefficients of the third layer

for u = 1 to Utotal do

posi t ion = u

for q = 1 to Q total do

posi t ion = posi t ion + (q− 1)× Utotal × 2
indicator_var ← 1
while indicator_var ≤ 2 do

current_posi t ion← posi t ion

while current_posi t ion ≤ 2× Ptotal ×Q total × Utotal do

vec(current_posi t ion)← 1
reorder_mat rix ← ver t icall y_concatenate(reorder_mat rix , vec)

current_posi t ion← current_posi t ion+ 2×Q total × Utotal

vec← tmp_vec

end while

posi t ion← posi t ion+ Utotal

indicator_var ← indicator_var + 1
end while

end for

end for

Algorithm 3 Reordering matrix for the coefficients of the fourth layer

for v = 1 to Vtotal do

posi t ion = v

for u= 1 to Utotal do

posi t ion = posi t ion + (u− 1)×Q total × Vtotal × 2
for q = 1 to Q total do

posi t ion = posi t ion + (q− 1)× Vtotal × 2
indicator_var ← 1
while indicator_var ≤ 2 do

current_posi t ion← posi t ion

while current_posi t ion ≤ 2× Ptotal ×Q total × Utotal do

vec(current_posi t ion)← 1
reorder_mat rix ← ver t icall y_concatenate(reorder_mat rix , vec)

current_posi t ion← current_posi t ion + 2×Q total × Utotal × Vtotal

vec← tmp_vec

end while

posi t ion← posi t ion + Vtotal

indicator_var ← indicator_var + 1
end while

end for

end for

end for
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Résumé et introduction en Français

Résumé

La thèse porte sur la modélisation électromagnétique et la simulation de composites strat-

ifiés plans (laminés), renforcés par des fibres organisées périodiquement. L’objectif est

d’acquérir une bonne compréhension du comportement électromagnétique de telles struc-

tures, en première étape de ce que pourrait ultérieurement être la production d’images

mettant en évidence la localisation de zones éventuellement endommagées, et fournissant

une certaine quantification de celles-ci.

La thèse proprement dite se concentre donc sur la construction et l’évaluation de modèles

de la diffraction électromagnétique par des composites multicouches tels que chaque couche

est renforcée par des fibres disposées périodiquement. Est d’abord investiguée la diffrac-

tion par une plaque diélectrique (mono-couche) au sein de laquelle des fibres cylindriques

de section circulaire de même rayon sont incorporées périodiquement, ces fibres ayant la

même orientation de leurs axes et la même distance de centre à centre.

Un cas bidimensionnel impliquant des ondes planes E ou H-polarisées, ainsi que des

faisceaux gaussiens, normalement ou obliquement incidents, est d’abord pris en consid-

ération afin de mieux comprendre principes et philosophies des méthodes de choix, le

couplage de mode et l’expansion multipolaire. Puis le travail est étendu, la diffraction de

la plaque sous un éclairement tridimensionnel (conique) étant alors traitée en détail, ce

qui montre aussi le potentiel de la méthodologie mise en œuvre si l’on souhaite obtenir la

réponse électromagnétique de la structure à une source ponctuelle.

Un composite multicouche, plus courant, mais plus complexe, qui est fait d’un empile-

ment de plaques l’une sur l’autre, est alors étudié. Deux différentes espèces de composites

sont ici prises en compte. Pour étudier la première, dont les fibres dans les différentes

couches possèdent les mêmes orientations, des méthodes à base de matrices dites S ou

dites T sont introduites, impliquant entre autre de s’intéresser à une résolution convenable

du système linéaire produit selon le couplage de mode à la transition entre deux couches

adjacentes. Une investigation de la deuxième espèce de composites suit alors, pour lequel
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les fibres au sein des différentes couches sont orientées dans des directions différentes

quelconques, ce que permet une extension précautionneuse des approches précédentes.

Une certaine attention est également portée au problème de l’homogénéisation des

composites, de manière à lier les démarches à petite échelle telles que développées dans

la thèse à celles à grande échelle souvent les seules prises en compte dans le contrôle non

destructif et l’imagerie des composites stratifiés.

De nombreux résultats de simulations numériques sont proposés et validés autant que

possible par des résultats de référence de la littérature (notamment dans le cas de cristaux

photoniques) et l’utilisation de solveurs «brute-force». L’accent est aussi mis sur des cas

particuliers de matériaux composites (ceux à base de fibres de verre et ceux à base de

fibres de carbone) qui sont le plus souvent rencontrés dans les applications pratiques, avec

des bandes de fréquences appropriées choisies en accord avec le comportement des fibres,

principalement diélectrique ou principalement conducteur.

Introduction et contexte de recherche

Les matériaux composites stratifiés sont de plus en plus utilisés dans l’aérospatiale et

l’industrie automobile en remplacement de matériaux métalliques traditionnels en raison

de leur légèreté, rigidité élevée et de bonnes propriétés de résistance à la corrosion, etc.

Pour la fabrication, deux ou plusieurs constituants des matériaux sont toujours combinés

ensemble pour produire les caractéristiques souhaitées qui ne peuvent être facilement four-

nis par l’un des matériaux particuliers.

Un exemple de matériau composite stratifié est constitué de deux parties, la matrice

et le renfort. Les renforts sont incrustés périodiquement à l’intérieur de la matrice pour

fournir résistance et la rigidité tandis que la matrice est utilisée pour attacher les renforts

ensemble. Prenant, en tant que bloc de construction, une résine époxy ou polyester plaque

renforcée par l’incorporation d’un réseau périodique de fibres de verre ou de carbone orien-

tées dans la même direction, une pile peut être fabriquée en empilant des plaques l’une sur

l’autre avec les fibres dans les différentes plaques orientées dans des directions différentes,

offrant ainsi la résistance de la pile et la rigidité dans toutes les directions. Un composite

est produit en empilant des piles [5, 6].

Pour les stratifiés composites précités, les dommages causés par l’impact, la rupture

de la fibre et des fissures, etc., peuvent apparaître lors de la fabrication et/ou du temps

de service, ce qui affecte les propriétés mécaniques ou raccourcit la durée de vie. En

particulier dans le domaine aérospatial, des défauts sous la surface pourraient avoir des

conséquences catastrophiques. Les dommages tels que des microfissures et des petits dé-
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collements cachés dans les composites sont généralement invisibles lors d’une inspection

visuelle. Par conséquent, les méthodes de contrôle non destructif (CND) sont nécessaires

pour une inspection efficace.

Les méthodes ultrasonores sont les méthodes de contrôle non destructif le plus large-

ment utilisées dans l’industrie, mais surtout pour la caractérisation des métaux et alliages,

et il reste difficile de les appliquer à ce type de composite structuré complexe avec une

bonne résolution [7]. Cependant, les ondes ultrasonores sont sensiblement atténuées

lorsque la mesure est effectuée en champ proche [8] ou à haute fréquence relative [9],

ce qui peut provoquer une détection erronée de la zone endommagée. La thermogra-

phie infrarouge est une autre méthode, mais la détection peut être affectée par une faible

conductivité des fibres [10]. L’utilisation d’autres méthodes traditionnelles de CND pour

détecter ces dommages reste difficile ou de coût trop élevé. Toutes les méthodes non de-

structives traditionnelles mentionnées ont aussi quelques autres difficultés d’application

aux composants renforcés par fibres [11], d’où le développement de méthodes de CND

nouvelles devient important [12, 13]. Tester avec des ondes électromagnétiques est l’une

des méthodes alternatives, qui montre déjà un bon potentiel pour inspecter les dommages

d’impact à faible énergie [14] à des fréquences courants de Foucault [11] et micro-ondes

[15, 16] pour les fibres diélectriques et conductrices. Mais une imagerie efficace demande

une bonne compréhension du comportement électromagnétique, avec des stratifiés en bon

état dans la première étape. Pour une gamme basse fréquence avec prise en charge de

l’inspection en régime harmonique, lorsque la distance de centre à centre entre les fibres

est beaucoup plus petite que la longueur d’onde électrique pour les cas diélectriques ou de

profondeur de pénétration pour les cas conducteurs, les couches homogènes anisotropes

uniaxiales sont généralement traitées avec l’hypothèse de couche équivalente [17], impli-

quant tenseurs effective de permittivité ou de conductivité, le stratifié étant simplement

une superposition de ces couches [18–20]. Les coefficients de réflexion et de transmis-

sion du stratifié peuvent être calculés avec les approches classiques pour les milieux mul-

ticouches planes, des situations générales de diffraction pouvant nécessiter des approches

plus sophistiquées [21]. Un modèle asymptotique a également été proposé pour les struc-

tures périodiques [22, 23].

Pour une gamme haute fréquence, lorsque la distance entre les fibres est de l’ordre de

la longueur d’onde ou de l’épaisseur de peau, l’homogénéisation ci-dessus échoue souvent.

L’étude peut être réalisée avec une formulation d’intégrale surface périodique [24, 25] qui

représente les champs électriques et magnétiques inconnus avec des courants équivalents

apparentés sur les interfaces aux limites et gère la fonction de Green nécessaire en appli-

quant la formule de sommation de Poisson et la périodicité de la structure. L’équation
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intégrale de surface est formulée sur une cellule de l’unité et résolue avec la méthode des

moments [26].

Cependant, l’investigation actuelle semble être limitée au cas de deux dimensions (2D)

de diffraction impliquant des ondes planes TE ou TM-polarisées ou des faisceaux gaussiens

et une périodicité unidimensionnel (1D). Pour le cas plus pratique 2.5D, dans lequel l’onde

incidente frappe coniquement sur la structure avec un azimut non nul, ou le cas plus com-

pliqué 3D, avec ondes incidentes coniques sur un composite avec plusieurs directions de

périodicité des fibres, le champ d’investigation est grand ouvert. Bien que FDTD [27] ou

FEM [28] pourraient traiter des composites avec un profil complexe de section transver-

sale des fibres, mais ces méthodes “force-brutes” ne pourraient que gérer la situation de

diffraction 3D avec un niveau limité de complexités structurelles, telles que la structure

tas de bois [4, 29–31] construite avec une pile 2-couche dans laquelle les fibres dans les

deux couches sont orientées dans deux directions orthogonales [32]. Mais ces méthodes

numériques devrait échouer à modéliser des stratifiés complexes avec orientations arbi-

traires des fibres dans les différentes couches. Par ailleurs, la plupart des algorithmes

d’imagerie nécessitent la pleine disponibilité des fonctions de Green dyadique associées à

la structure étudiée, les méthodes numériques ou analytiques-numériques mentionées ne

fournissent pas facilement.

Au cours des dernières décennies, de nombreuses méthodes théoriques efficaces et

précises ont été effectivement appliquées pour la modélisation des cristaux photoniques

avec des fibres arrangées de façon similaire que celle à l’intérieur des matériaux composites.

Dans les études, une grande attention a été accordée aux méthodes de Rayleigh [33] et

développements en ondes planes [34, 35] pour leur efficacité de calcul et la précision ainsi

que leur traçabilité analytique. Une investigation typique de cristaux photoniques a été

réalisée par Yasumoto et al. [3]. Leur procédé d’expansion harmonique cylindrique amène

à une formulation simple et souple avec la matrice de transfert pour la modélisation de la

diffraction électromagnétique de cylindres diélectriques disposés périodiquement dans l’air.

La façon d’arranger les cylindres est similaire à l’un des cas étudiés dans cette thèse, donc

ce travail a fourni quelques bons exemples pour valider l’approche. La méthode multipôle

et le développements en ondes planes sont combinés par Botten et ses collègues [36–38]

pour étudier les dispositifs photoniques. L’accent a été principalement mis sur la diffraction

de fibres optiques microstructurées ou l’analyse de mode de Bloch de dispositifs optiques,

donc un peu différente que des problèmes considérés ici. Mais la façon de combiner le

développements en ondes planes et la méthode multipôle est très intéressante pour étudier

la diffraction de composites stratifiés. La plupart des travaux rapportés se concentrent

sur la structure de tas de bois qui a été largement étudiée [3, 38, 39] pour des fibres
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dans l’air pour leurs lacunes optiques attrayantes. Mais ce genre de structure, même si

structurellement similaire aux composites stratifiés, n’existe pas pour les vrais matériaux

composites puisque, avec seulement deux orientations des fibres, elle ne peut pas assurer

robuste et rigide le long de toutes les directions pour répondre aux demandes pratiques.

En outre, la présence de la plaque remplie par du matériau homogène isotrope ré-

sulte en de fortes interactions entre les ondes réfléchies par les réseaux de fibres et les

interfaces de la plaque, donc conduisant à un comportement électromagnétique beaucoup

plus compliqué. Cette interaction devient forte lorsque un grand contraste de permittivité

est consideré. Les orientations arbitraires des fibres dans différentes couches apportent

un autre degré de complexité, en particulier dans les composites impliquant des dizaines

voire centaines de couches. La dispersion introduite à le système par des fibres orien-

tées différemment doit être considérée soigneusement avec une bonne décomposition des

modes. Certains des modes se propagent, mais certains deviennent évanescents. Dans le

calcul, tous les modes de propagation et un nombre limité de modes évanescents doivent

être considérés pour parvenir à une bonne convergence du champ. Trop de modes évanes-

cents va ralentir la vitesse du calcul. Arbitrairement orienter les fibres complique aussi

la procédure de séparation de modes de propagation de ceux évanescents, donc un bon

nombre de modes évanescents doit être choisi pour équilibrer l’efficacité du calcul et de

la vitesse de convergence. Cette procédure est pénible lorsque il y a plus que trois orien-

tations de fibres dans la structure. Dans le même temps, le mode assortiment à la limite

entre deux couches adjacentes est nécessaire pour produire un système linéaire à obtenir

les coefficients de réflexion et de transmission, ce qui doit être fait dans le même système

de référence. Ainsi, le développement de champ ou des matrices correspondantes aux

modes dans les couches où les fibres sont orientées dans des directions différentes doivent

être soigneusement disposées et transformées en le même système de coordonnées avant

l’application des condition aux limites aux interfaces. La combinaison de ces complexités

avec les ondes incidentes conique produit un problème de diffraction électromagnétique

complexe qui doit être résolu pour l’obtention de la fonction de Green dyadique en exam-

inant la réponse électromagnétique de la structure aux des sources élémentaires.

Les études dans cette thèse fournissent les principes fondamentaux de l’investigation de

la réponse électromagnétique de matériaux composites complexes. Ces études fournissent

aussi quelques bonnes techniques qui peuvent être appliquées à étudier des structures

périodiques désorganisées. Cette désorganisation peut être causée soit par manque ou

déplacement des fibres dans les composites ou par changer leurs paramètres physiques et

de forme. Toutes ces contributions sont nécessaires pour de plus amples recherches corre-

spondantes au contrôle non destructif des dommages avec des ondes électromagnétiques.
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L’accent de cette thèse est cependant le problème électromagnétique mentionné ci-dessus

correspondant à plusieurs types de matériaux composites. L’objectif final est de développer

un modèle d’onde plane pour des composites multicouches de calcul efficace.

Comme première étape, la méthode multipôle et le développement en ondes planes,

en empruntant des analyses antérieures [2, 40–42] et de celles photoniques [43], sont

appliquées ensemble pour étudier la structure composite la plus simple, qui est produite

par l’insertion d’un réseau périodique de fibres cylindriques circulaires infiniment longues

dans une plaque diélectrique. L’accent est mis principalement sur les plaques époxy ren-

forcées par des fibres carbone ou fibres de verre illuminées par ondes planes. Des ondes

incidentes E- (TM) et H-polarisée (TE) sont considérées avec le plan d’incidence dans le

plan de la section transversale des fibres. Dans cette thèse, ce cas est appelé cas 2D. Le

champ au voisinage du cylindre est naturellement développé avec des fonctions de Bessel.

Puis les fonctions cylindriques sont combinées avec la série de Schlömilch (lattice sums)

[44, 45] à fin de satisfaire les conditions périodiques aux limites le long de la direction

de la périodicité. L’intégration le long de la frontière d’une cellule périodique et d’un des

cylindres inclus à l’intérieur concerne le domaine au voisinage du cylindre central, où le

développement en ondes planes est impliqué pour calculer le champ dans le demi-espace

supérieur ou inférieur.

Dans le même temps, l’accord de modes aux limites des cylindres circulaires révèle les

détails fins de la structure et permet en outre le calcul de la distribution de champ en leur

sein. L’investigation sur ce sujet permet de comprendre les préliminaires et les principes

de base des approches, ainsi que de construire de solides fondamentaux pour la suite des

études. Le faisceau gaussien est également considéré en décomposant le faisceau en ondes

planes. Le champ diffracté du faisceau est obtenu en sommant toutes les ondes planes. Par

ailleurs, la théorie de l’homogénéisation est également examinée et développée comme un

lien entre le modèle en onde complete actuel et celui des investigations à basse fréquence.

En gardant la même structure 2D, les approches appliquées au cas 2D sont ensuite éten-

dues pour la diffraction d’une onde incidente de manière conique où le plan d’incidence

est hors du plan de la section transversale des fibres. Ce cas est appelé cas 2.5D. Puisque

le vecteur d’onde de l’onde incidente a des composantes longitudinales, les champs élec-

triques et magnétiques sont couplés. Ceci complique les relations entre les composantes

longitudinale et transversale de champ, ce qui conduit alors à une représentation plus com-

plexe des composantes transversales des champs, et donc à une relation plus complexe

entre les coefficients des développements. En raison de la simplicité de la structure 2D,

les coefficients des développements des champs peuvent encore être obtenus de manière

explicite pour éviter les inversions de matrice.



6.2 Introduction et contexte de recherche 149

Une fois, basée sur une seule couche que l’approche pour les problèmes de 2D et 2.5D

est bien développée et comprise, l’extension de la méthode est effectuée pour étudier la

diffraction d’un composite multicouche. Il est construit par empilements des couches l’une

sur l’autre, tous les réseaux de fibres circulaires de différentes couches ayant la même direc-

tion. Les fibres de carbone et de verre sont étudées avec leurs rayons étant le même dans

la même couche mais peut-être différents d’une couche à l’autre, en gardant les mêmes

distances de centre à centre des fibres dans la même couche. Les matériaux de référence

et les épaisseurs des différentes couches peuvent également varier d’une à l’autre.

Les méthodes fondées sur la S-matrice et T-matrice sont appliquées. L’instabilité numérique

est ensuite exposée dans les deux cas à des niveaux différents en raison de mauvais condi-

tionnements des matrices. Cette propriété introduit quelques difficultés à inverser les ma-

trices correspondantes. En raison de cette limitation, la méthode T-matrice ne peut qu’être

appliquée à étudier les caractéristiques des modes de propagation. Une fois les modes

évanescents impliqués dans le calcul, la méthode devient très instable. Cette instabilité de

la T-matrice est fortement influencée par les éléments qui augmentent exponentiellement

avec l’ordre des modes evanescents. Comparativement, la solution à base de la S-matrice

est beaucoup plus stable. Elle présente une instabilité pour le calcul de la distribution de

champ à l’intérieur de la structure, qui peut être surmontée en réorganisant les matrices

de façon à relier les coefficients des développements des champs dans toutes les couches

au champ incident.

Au ce niveau, toutes les techniques fondamentales pour la caractérisation des struc-

tures composites ont été mises à disposition. Donc un composite multicouche pratique

peut être pris en compte. Un empilement de 4 couches est tout d’abord construit avec

des fibres dans les différentes couches orientées en des directions différentes. Ensuite,

des dizaines de piles se chevauchent pour produire le composite multicouche. Avant la

modélisation de la pile 4-couche, une pile 2-couche est utilisée pour expliquer les idées

de base. L’approche fondée sur la S-matrice est ensuite développée pour étudier la diffrac-

tion de ce type de matériaux composites. Un modèle électromagnétique pour le calcul des

composites stratifiés tels que pratiquement utilisés est finalement fourni.
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