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Moore‘s law predicted that it will take two years to step from a technological node to the next one. 

Even though this pace has been kept until recently, the trend starts to slow down as declared by Intel 

CEO in 2015 [1]. Thus, pursuing MOSFET scaling trend becomes harder as the time passes. This loss 

of speed is due to many factors. First, the length associated with the technological node is supposed to 

reflect the average half-pitch of a memory cell, which is the size of a pattern in an array of transistor 

used to build memory cells. In fact, what it has been observed between the 90 and the 30 nm nodes is 

that each time a node is crossed, the area of the chip is scaled by ½, but the gate pitch is actually scaled 

by 0.7 and the physical gate length by only 0.9. In the meantime, source-drain junction optimization 

succeeded to reduce sufficiently the overlap distance so that the effective channel length did not 

change at all between the 90 nm down to the 30 nm technology node as shown in Figure 1-1 [2]. 

 
Figure 1-1: Transistor Size Evolution: ITRS 2009 

So by reducing the gate pitch and the gate length with a proper source drain junction engineering, it 

has been possible to keep the same effective length (Leff) down to the 30 nm node. However, in order 

to go forward, this condition could not hold and Leff had to be reduced, inducing new challenges such 

as increased short channel effect due to the loss of control of channel‘s electrostatic. These challenges 

are part of the reason why the development time is longer.  

In addition variability is increasing and becomes a greater challenge. Indeed, the number of variability 

sources and their impact increase as shown by R. Sitte comparing 1.5 µm and 0.1 µm bulk MOSFETs 

[3][4], by Fu-Liang Yang comparing 45, 32, 22 and 16 nm technology node [5] and by Samar K. Saha 

using ITRS roadmap [6][21]. However performance uniformity of elementary devices like transistors 

is a priority for microelectronic manufacturers. Indeed, any dispersion in this performance will be 

propagated on the next circuit level (e.g. SRAM). From one circuit level to the other the impact of 

performance dispersion is often increased. As a consequence, a small dispersion of performance at the 

lowest architecture level can jeopardize the highest circuit level functionality. Large dispersions lead 

to large yield loss and an increase in the circuit production cost. This is why huge effort is done to 

bring MOSFET performance dispersion down to a reasonable range.  
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Considering variability, its sources are differentiated depending on their autocorrelation length and 

their statistical nature [14][15]. In particular we distinguish global from local variability (considering 

the autocorrelation length) [16][17][25] and statistical from systematic variability (considering the 

statistical nature) [18]: 

 Global variability encompasses every sources of variability that has a larger autocorrelation 

length than die dimension. Hence, it comprises within-wafer, wafer-to-wafer, lot-to-lot and 

across-factory variability (e.g. deposited insulating layer thickness across the wafer, anneal 

temperature …). 

 Local variability only encompasses within-die variability sources (e.g. Random Discrete 

Dopant (RDD), Line Edge Roughness (LER), transistor orientation with respect to 

crystalline orientation, well proximity effect)… 

 Systematic variability arises from sources that can be predicted (e.g. transistor orientation 

with respect to crystalline orientation, well proximity effect …). 

 Statistical variability, in contrast with systematic variability, is characterized by its 

stochastic nature. It can only be comprehended using statistical modeling (e.g. anneal 

temperature, Random Discrete Dopant, Line Edge Roughness…). 

Typical source of local random variability are RDD, LER, polysilicon and metal gate granularity 

(PSG/MGG), Trapped Interface Charges (TIC) and interface roughness. Local random variability can 

hardly be controlled by process adjustment because of its stochastic nature. Indeed corresponding 

sources are stochastic phenomena that impact each device independently one from another at the 

atomistic scale. Since these phenomena are random, it is neither possible to accurately predict their 

impact at the device level nor to counteract them by process optimization. Only stochastic variability 

model can be used to predict the dispersion of the transistor‘s performance. Even though a lot of work 

has been done to limit its impact by circuit design optimization [19][20], this source is intrinsic to the 

technology used. This is why it is considered as the bottom line in terms of variability. Thus, adopting 

new architectures or using advanced process techniques like extreme UV are the only ways to reduce 

local random variability. Consequently, a large amount of work has been dedicated to systematically 

investigate local random variability sources for every technology node [21]-[29].  

 

Figure 1-2: Comparison between Bulk and FD-SOI architecture. 

In order to meet both local random variability and gate length reduction requirement, new 

architectures and techniques have been introduced like Fully Depleted Silicon on Insulator (FD-SOI) 

[10], FinFet [11], double gate [12] or Gate All-Around (GAA) MOSFETs [13], extreme UV etching, 
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SiGe and III-V components. As an example, we show the case of FD-SOI MOSFET in Figure 1-2 

comparing the FD-SOI and bulk architecture. 

This architecture meets the gate length reduction requirement by improving significantly the 

electrostatic control of the channel thanks to the buried oxide layer (BOx) beneath the channel. To 

another extend, it enables controlling the threshold voltage by tuning the back interface voltage, 

enabling low power applications. FD-SOI technology addresses local random variability issue using 

intrinsic channel. In addition, it has been shown to be less sensitive to Line Edge Roughness (LER) 

[21]. So this technology enables reducing significantly the impact of local random variability. Due to 

these advantages, it has been chosen by STMicroelectronics for the 28 nm technological node and 

beyond. 

Global variability also limits the yield. Indeed, large process dispersion at wafer or lot scale can 

compromise the functionality of a large number of die. Thus process and device performance should 

be monitored at the die scale. In order to fulfill this task, performance indicators have been 

determined. These indicators are continuously controlled with in-line measurements called Parametric 

Tests (PT). A reasonable dispersion of performance is then obtained if every one of these indicators lie 

within predetermined boundaries called Statistical Process Control (SPC). Performance indicators are 

chosen as critical quantities that will limit the next circuit level performance. For example cell current 

is a performance indicator for SRAM circuits. This cell current is directly related to the saturation 

current of the transfer (access) transistor and pull-down (driver) transistor [7][8]. This is why SPC 

have been created for the saturation drain current (IDsat). Another example is the frequency of ring 

oscillator at operating voltage. This frequency is linked to the switching speed of CMOS inverters that 

are themselves related to the peak current obtained during inverter switching, commonly defined as the 

average between IH and IL, where IH=ID(VG=VDD, VD=0.5VDD)  and  IL = ID(VG=0.5VDD, VD=VDD) [9]. 

VG, VD and VDD are the gate, drain and operating voltage respectively. ID is the drain current. 

Consequently SPC includes IH and IL as well. Similarly to performance control, process control is 

carried continuously using Fault Detection and Classification (FDC). This technique continuously 

monitors equipment parameters against preconfigured limits using statistical analysis techniques to 

provide proactive and rapid feedback on equipment health. 

However new architectures and techniques are more complex solutions. It requires more process steps 

and thus more photo-lithography masks. Extreme UV lithography requires specific tools that are more 

expensive. These options are very different from the tradition way used to build transistors. Increased 

process complexity also induces larger global variability. For example, the SOI thickness variability, 

absent in bulk architecture, is a new contribution to the global variability. All these facts tend to 

increase the time and investment required to develop and optimize the next generation of device. In 

order to limit the development cost and ensure the profitability and competitiveness of these new 

devices it is mandatory to rely on more efficient approach for the device development and 

optimization at industrial stage. This thesis aims at offering a determinist and robust approach able to 

meet these expectations. 

Indeed its goal is to demonstrate how it is possible to model the relationships between process 

parameters (accessible to tool engineers) and the transistor performances. Such a model is called 

Process Compact Model (PCM). A sufficiently robust and predictive PCM can be used for optimizing 

the performance and global variability of the transistor thanks to an appropriate optimization 

algorithm. This approach is different from traditional methods that heavily rely on expert knowledge 

and successive trials in order to improve the device since it brings a deterministic and robust 

mathematical frame to the problem.  
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The task is not trivial and faces many constraints. First, there are hundreds of process steps required 

only for the front-end-of-line and at least as much process parameters can be distinguished from this. 

This implies dealing with a large amount of data. Thus robust and adapted statistical tools are required 

to manage this issue. Second, the physical relation between process and electrical parameters are 

complex. Many models describing the MOSFET electrical parameters exist in the literature, but since 

we deal with a large amount of data and intend to use it for optimization, only simple compact 

analytical model can be used.  

The PCM investigated in this thesis copes with these constraints. It is composed of two stages. Starting 

from process parameters, the first stage is formed of multiple polynomial formulas that relate process 

with the model parameters of a typical threshold based compact model. The second stage is the 

compact model. Using model parameters as inputs, it yields electrical parameters as output. An 

input/output scheme of this two-stage PCM is presented in Figure 1-3.   

 
Figure 1-3: Scheme of the two-stage PCM 

This manuscript starts by introducing the compact model used. Analytical formulation of linear and 

saturation drain currents are drawn from the physics of semiconductors. This stage aims at splitting a 

complicated global parameter that is drain current into simpler and physically meaningful sub 

parameters such as access resistance, threshold voltage, carrier mobility and so on. Theoretical 

derivation of the model is done in chapter 2 where the physics of the transistor is developed with an 

emphasis on the specificity of FD-SOI technology.  

Using a compact model for drain current implies to rely on an extraction procedure in order to get 

model parameters and calibrate the model. An extraction procedure is proposed in chapter 3, based on 

a nonlinear optimization algorithm. The method robustness is tested against data sample size and 

range as well as the effect of noise. Then, in the same chapter, the extraction procedure is tested on a 

TCAD simulated Design Of Experiment (DOE). This DOE exhibits process parameters variations in 

order to investigate their effects on extracted model parameters. This is a first approach to examine the 

link that we miss yet to model the process and electrical parameters relations. The physical relevance 

of the model parameters sensitivity to process variation is demonstrated to ensure that model 

parameters are physically meaningful and that extraction procedure is robust.  

Extractions are then performed on silicon (using 28 nm FD-SOI and 14 nm FD-SOI technologies) in 

chapter 4. Lots have been processed with various kinds on process variations. These lots have been 

measured and from these measurements, model parameters have been extracted. It is then shown how 

results can be interpreted to give insights into the device characteristics. While being a simple 

approach, this method can already produce valuable results and indicate how to optimize the device 

efficiently.  

In order to complete the PCM construction, a map of the process and model parameters relationships 

are required. This topic is investigated in chapter 5. Model parameters are much more elementary than 

drain current. This advantage enables us to build simple model such as empirical polynomial model. 

However, process parameters are numerous and all of them have not necessarily a significant impact 
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on model parameters. Moreover, the impact of noise in measurements and local stochastic variability 

in devices induces an increased uncertainty in model parameters. This is why statistical methods are 

introduced in order to efficiently build polynomial model dealing with ill-posed problem and noisy 

observables. These methods are tested against synthetic data and applied on TCAD extractions to 

build PCMs. The impact of noise and local stochastic variability is discussed and solutions to deal 

with those issues are investigated.     

Finally, based on this PCM, a methodology to optimize both electrical performances and variability is 

suggested. It has been applied using TCAD simulation to indicate how to reduce drain current global 

variability efficiently. 
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This chapter is devoted to detail the compact model used for the PCM. It derives the drain current 

equations, starting with the derivation of inversion carrier concentration and threshold voltage of 

Metal Oxide Semiconductor (MOS) capacitance in §2.1. Carrier mobility is investigated in §2.2. 

Paragraphs 2.3 and 2.4 introduce the linear and saturation drain current approach respectively. Access 

resistance effect is introduced in §2.5. The drain current equations derived here will be reused for the 

model extraction procedure detailed in Chapter 3. 

2.1 The MOS capacitance and its electrostatics  

In this section we derive the MOS capacitance equations of the inversion carrier charge    and the 

threshold voltage (Vt) in the case of the Bulk structure. Then we discuss the case of Fully Depleted 

Silicon On Insulator (FD-SOI) with doped and undoped channel and show to which extent the same 

compact equations for    can be used. Only the threshold voltage dependence should be adapted and 

we will show how and why. Notice that in further derivation, interface and oxide charges are 

neglected. However considering it would add only small corrections and the derivation would still 

hold. 

2.1.1 Inversion in bulk MOS transistors 

The MOS capacitance is first treated in order to derive the inversion charge density in the long channel 

bulk transistor. The corresponding band diagram is shown in Figure 2-1 where elements are isolated: 

 
Figure 2-1: Energy band diagram of a classical MOS structure with a P doped silicon layer. Shaded area represents 

the electron populated energy levels. 

Left part of the MOS structure in this figure is the metal gate. It is separated from the p-doped silicon 

bulk (right part) by an insulating layer (gate oxide). In Figure 2-1,         ,           ,   ,   ,    and 

        are respectively the metal and silicon Fermi energy, the intrinsic, conduction band, valence 

band and vacuum energies for isolated parts. Eg is the semiconductor gap energy (  -  ).    and    

are the silicon and metal work functions. The gate and bulk biases are    and VB. Every voltage are 

referenced to a hypothetical unbiased neutral body where there is no band bending. This reference 

potential is               and, in this case, is equal to VB. Later we will see that in the case of transistor, 

this potential reference depends on the position in the channel and is no longer equal to VB. This 

diagram shows that, when taken separately, Fermi levels of metal and semiconductor are not matched.  

Thus when building a MOS structure, charges (holes for p-doped silicon) will be repealed at the 

Si/SiO2 interface, creating a potential drop across the insulator and a space charge region in the silicon 
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channel in order to reach the equilibrium state where Fermi levels of metal and silicon are aligned (see 

Figure 2-2). 

 
Figure 2-2: Energy band diagram of a classical MOS structure at equilibrium for grounded electrodes (metal and silicon) 

Thus without applying any bias between the gate and the back electrode (       ), there already 

is a potential drop across the MOS structure that is equal to work function difference between metal 

and silicon (          ). Space charge region in silicon contains no free carrier but ionized 

dopants. The total charge density in this case is called the depletion charge density.  

If now, for the case of p-doped silicon, a positive bias    between gate and bulk is applied, then 

         decreases and the bands bend even more until a certain point where minority carrier 

concentration equals majority carrier concentration at the         interface. This point characterizes 

the beginning of the inversion regime where free carriers appear at the         interface (see Figure 

2-3 left). In that case the total charge density is the sum of inversion and depletion charge (     

  ). 

On the contrary if a negative bias is applied to the gate,    tends to compensate the built-in voltage 

across the oxide capacitance     and the silicon bands bend less. If        then the MOS structure 

reaches the flat band condition (see Figure 2-3 right), no potential drop occurs across the structure and 

the channel is electrostatically neutral.   

  
Figure 2-3: MOS band diagram in inversion (left) and flat band (right) regime 
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Driving further    toward negative values will accumulate holes at the         interface. This is the 

accumulation regime. This qualitative approach enables a global understanding of the relationship 

between    and carrier concentration in the channel. The quantitative and rigorous derivation of the 

carrier density depending on gate voltage and doping concentration in the channel has been done by R. 

H. Kingston and S. F. Neustadter [30]. However, here, we will use an alternative approach sufficiently 

accurate for our purpose. First the potential drop in the structure is the sum of the potential drop in the 

oxide     plus the potential drop in the silicon [31]: 

               (1) 

 

where     is the flat band voltage,    is the surface potential at the         interface referenced to a 

hypothetical unbiased neutral body where there is no band bending (as depicted in Figure 2-2 Figure 

2-3). The electric field in the oxide     is constant because there is no  charge in the oxide: 

     
   

   
 (2) 

where tox is the insulating layer thickness. At the Si/SiO2 interface, in the silicon but before reaching 

any charge, the displacement field is constant and the electrical field Es, at the silicon interface is: 

    
      

  
 (3) 

Then we can write    as a function of   : 

         

   

   
                (4) 

where     
   

   
 is the gate oxide capacitance. In absence of any interfacial charges, using Gauss 

theorem over an area going from Si/SiO2 interface up to     in the silicon bulk where the reference 

is taken, we get the following relation: 

             (5) 

Thus the inversion carrier density reads: 

                       (6) 

The threshold is reached when the minority carrier concentration equals the majority carrier one. This 

is achieved when the band bending    reaches 2   [32] where    is the difference between the 

intrinsic silicon Fermi level and quasi Fermi level of doped silicon. From this we can deduce Vt from 

(6) where Qi = 0: 

 
        |  |  

 

   
√      |  | 

(7) 

Then    above threshold is deduced from equation (6) where        and becomes: 

                 |  |  √      |  | (8) 
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It can be expressed in terms of Vt as: 

                (9) 

2.1.2 Inversion in FD-SOI MOS transistors 

FD-SOI denomination is employed for transistors built on SOI substrate and that has a fully depleted 

channel at operating condition. This is the kind of structure that is used by STMicroelectronics for 

their 28 and 14 nm technological nodes. In this structure the simple MOS capacitance cannot be used 

to calculate the charge density in the channel since the Buried Oxide (BOx) adds another capacitance 

contribution that shall be taken into account when applying gauss law. The following paragraph 

explains the SOI structure and derives the necessary conditions to have a FD-SOI structure. Then we 

will adapt previous derivation of inversion charge and threshold voltage to FD-SOI structure. The 

results will depend on the characteristics of the device. First, for the derivation of bulk MOS 

capacitance we consider a doped channel but state-of-the-art industrial FD-SOI devices have intrinsic 

channel. It implies that the surface potential is no longer clamped to 2   in strong inversion regime 

and that Qd can be neglected. Second, FD-SOI devices built by STMicroelectronics are made of ultra-

thin substrates and BOx. We will see that ultra-thin SOI induces front to back super coupling effect 

that does not allow inversion at one interface along with accumulation at the other. Finally, with ultra-

thin BOx, we will see that the ground plane regime also affects the threshold voltage, depending on its 

doping concentration.  

2.1.2.1 Structure presentation  

The capacitance structure we consider is a cross section of the FD-SOI MOSFET in the middle of the 

channel. This structure is shown in Figure 2-4: 

 
Figure 2-4: MOS SOI capacitance structure considered for inversion carrier concentration derivation. Esf and Esb are 

front and back Si/SiO2 interfaces electric field respectively. 

Basically we see that SOI capacitance is no more than one MOS and one semiconductor-oxide-

semiconductor capacitance (assuming that gate and BOx oxide thicknesses can be different) assembled 

head to tail sharing the same FD substrate. Thus in the following we will talk about front and back 

interface to designate the gate oxide/SOI and the SOI/BOx interface respectively. Considering a thick 

SOI layer for the channel, corresponding band diagram is shown in Figure 2-5. 
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Figure 2-5: Band diagram of a partially depleted SOI MOSFET at equilibrium.     and     are the front and back 

interface potential respectively. 

This is the case of Partially Depleted Silicon On Insulator (PD-SOI) MOSFET. In Figure 2-5 tdep Ox 

and tdep BOx are the maximum depletion thickness at the front and back gate. The difference between 

PD-SOI and FD-SOI lies in the silicon channel thickness. Indeed, in order to have a fully depleted 

silicon channel the silicon channel thickness (Tsi) should be lower than tdep-Ox+tdep-BOx. Thereafter, we 

derive the critical channel thickness that differentiates PD-SOI from FD-SOI structure. tdep Ox and tdep 

BOx quantities are derived from the expression of the depletion charge [33]: 

     √         (10) 

where Na is the acceptor concentration. Let‘s focus on the front gate depletion thickness (tdep Ox). From 

equation (2) to (6) we have the following relationship between Vox and tdep at onset of strong inversion 

(where Qi=0): 

      
  

   
 

√        

   
 

          

   
 (11) 

 
   

          
  

    
 

(12) 

and between    and tdep: 

                (13) 

where             is the flat band voltage of the MOS capacitance. On the other hand, the flat 

band voltage of BOx capacitance will be labeled VFBB. Then replacing Vox and    in (13) by their 

expression in (10) and (11), tdep is deduced as a function of    and the doping concentration: 

         
  

   
(√

             
 

      
    ) (14) 
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tdep-BOx formulation is identical to (14) except that    ,    and      should be replaced by CBOx,    and 

    . If tsi<                  , the unbiased region in the middle of the channel disappear and the 

device becomes fully depleted. Critical silicon thickness to have a fully depleted device is calculated 

from the following formula: 

 

                          

         
   

   
(√

             
 

     
    )  

   

    
(√

              
 

     
    ) 

(15) 

   -     ranges from 3.1 µm down to 51 nm for                 ,         ,           , 

TBOx=25 nm,              and             at room temperature. The ground plan doping has 

been set to          . Below this thickness, the back and front interfaces become coupled and the 

band diagram becomes more complex. Figure 2-6 shows the band diagram at         and    

         .  

  
(a) (b) 

 
(c) 

Figure 2-6: MOS SOI band diagram for         and        (a),       (b) and       (c). Band diagram 

has been generated using UTOXPP Poisson-Schrödinger solver [34]. 

We see from this plot that the back interface goes from depletion to inversion depending on VB. Figure 

2-7 shows the minority carrier concentration depending on the position in the SOI for many VB 
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ranging from -10 up to 10V. In this case the SOI is lightly p-doped (5.10
15

 atoms/cm
3
) and the BOx is 

25 nm thick.    is still set to 1.5V.  

 

Figure 2-7: Minority carrier concentration in the SOI for    going from -10 up to 10V at        . Charge 

concentration has been calculated using UTOXPP Poisson-Schrödinger solver [34]. 

This figure shows that the inversion layer is not concentrated at the front interface as it was the case 

for bulk devices. Now we have to consider the possibility of having a back interface inversion layer 

induced by VB. In any case we see that the electrostatics of one interface is influenced by the other one 

through back to front interface coupling. 

2.1.2.2 Inversion charge density and threshold voltage derivation 

In the following paragraph we will investigate the expression of Qi and Vt for the case of back 

interface accumulation, depletion and inversion. Following derivations assume the delta-depletion 

approximation, that is, any inverted charge is at the Si surface in a Dirac delta function as depicted in 

Figure 2-4. In order to adapt bulk inversion charge density and threshold voltage derivation to FD-SOI 

structure, we consider a doped channel FD-SOI structure with thick SOI (but thin enough to deal with 

FD-SOI structure, that is SOI thickness <         as mentioned in (14)) and BOx. We will see in the 

next paragraphs the effect of thin BOx and channel and intrinsic channel. This investigation has been 

conducted by H-K Lim and J. G. Fossum [35]. Following the same approach as for bulk MOS 

capacitance we can derive the potential drop across both front and back oxide (as in (1)): 

                 (16) 

                  (17) 

 where      and      are the flat band voltages of front and back gates respectively.      and     are 

the surface potentials at the front and back Si/SiO2 interfaces respectively, referenced to a hypothetical 

unbiased neutral body. Solving the Poisson equation across the silicon film yields: 

 
   

   
     

      

    
 (18) 
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where              is the potential drop across the SOI film,     is the field at the front interface 

of the SOI,     is the silicon film thickness,     is silicon dielectric permittivity, NA is the doping 

concentration in the channel. The field in the front oxide is: 

     
           

   
 (19) 

Then, applying Gauss theorem across the front oxide, taking the inversion charge into account, yields: 

                     (20) 

where     is the inversion layer at the front side. Equation (18) to (20) can be adapted for the back 

interface. To sum up, the four following equations are available (following Lundström [36]): 

     
   

   

           

   
 

   

   
  (21) 

 
    

   

   

            

    
 

   

   
 

(22) 

 
    

       

   
 

      

    
 

(23) 

 
    

       

   
 

      

    
 

(24) 

where     is the inversion layer at the back side. Combining (21) with (23) and (22) with (24) yields 

the general equations that rule the electrostatic of the SOI capacitance with doped SOI: 

             
    

  
 

   
 

   

   
          

(25) 

 

            
    

  
 

    
 

   

    
          

(26) 

where     
   

   
 and            is the depletion-region areal charge density. Combining these two 

equations yields the back and front coupling equation. Then the total inversion carrier concentration is 

simply the sum of     and    : 

              (           )                           (27) 

Replacing     and     by their expression (23)(24) yields: 

        (           )                       (28) 
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Let‘s now discuss the expression of the threshold voltage. In order to derive it we need a clear 

definition of this threshold voltage. The subtlety we are facing here is that there are two gates. Thus 

considering one electrode with a fixed bias, the threshold voltage is the other electrode voltage 

required to switch the transistor from off to on state (or from on to off). Notice that this is not the 

definition used by Lim and Fossum [35]. Instead they defined the threshold voltage as    for which 

        no matter the back interface regime. This definition fails to match ours when the back 

interface is inverted. However our definition reflects the threshold voltage that is extracted by most of 

the extraction procedure, which is not the case of Lim and Fossum definition.  

A consequence of this definition is that at threshold, Qi = 0. Thus considering VB fixed, the threshold 

voltage can be deduced from    expression (25), depending on     and    , where Qi = 0.   

             
  

     
 

   

   
          (29) 

From this definition, Qi expression can be simplified using Vt.  

                 (30) 

So we see that    expression is similar to bulk one (9) except for the definition of Vt and is valid 

whatever the value of     and    , hence whatever VB value. Next, Vt expression is developed, 

clarifying     and    , depending on VB and whether the back interface is accumulated, depleted or 

inverted. 

 Threshold voltage when the back interface is accumulated 

In the case of an accumulated back interface, accumulated charges screen the back bias and     is 

virtually pinned at 0. Threshold at front interface is then reached when         as in bulk case. 

Then     is small and Vt is deduced from (25): 

      
       (  

   

   
*     

  

    
 (31) 

Vt does not depend on the back potential in this case. 

 Threshold voltage when the back interface is inverted 

If the back interface is assumed inverted, then     equals     and a conducting back channel exists. 

The current flows if     . Thus Vt is the required gate bias to suppress the back channel inversion. 

If when      , the front interface is depleted,     is deduced from (26): 

        (  
    

   
*  

    

   

          
  

    
  (32) 

Then Vt is deduced from (25): 
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  (33) 

If, when    equals   , the front interface is accumulated, then       and Vt  is clamped to: 

         
   

   
    (34) 

 Threshold voltage when the back interface is depleted 

In the case of a depleted back interface,     depends on VB and ranges from 0 up to     

corresponding to the limit case of back interface accumulation and inversion respectively as we have 

seen previously. Isolating     from (26) and introducing it in (25), letting       and      , we 

get: 

 
            

       

             
              

  

 

         

             
   

(35) 

 Threshold voltage summary depending on back bias 

To conclude there are four cases to consider as reported by F. Andrieu [37] (see Figure 2-8): 

 
Figure 2-8: Theoretical Vt-VB curve with the different channel regimes. 

When the back interface is accumulated, Vt does not depend on VB and is expressed as (31). When the 

back interface is depleted, Vt-VB slope is  
       

             
 (see equation (35)). When the back interface 

is inverted, there are two options: i) either the front interface is depleted, then Vt is expressed as (33) 

and the Vt-VB slopes shift to  
             

      
 or ii) the front interface accumulated and then Vt does not 

depend on VB (as expressed in (34)). 
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2.1.2.3 Effect of intrinsic instead of doped channel 

In order to reduce random dopant fluctuations and enable a better scalability of FD-SOI technology 

[38], intrinsic channel has been preferred and is the actual option used by STMicroelectronics. The 

main difference is that the depletion charge    is now almost zero and the depletion approximation 

that implies       is not valid anymore. V. P. Trivedi et al. [39] have refined H-K Lim and J. G. 

Fossum [35] approach (developed in §2.1.2.2) and made it suitable for undoped channel. In particular, 

they showed that for subthreshold condition 
|  |

   
 is smaller than |   | and the influence  of 

subthreshold or weak inversion charge on     can be neglected irrespective of the channel doping 

condition. Thus, simplification used thanks to depletion approximation still holds for intrinsic 

channels. The master equations (25) and (26) are identical except that    and    becomes negligible in 

weak inversion. 

Another consequence of the lack of impurity in the channel is that the quasi Fermi level in silicon is 

close to the intrinsic Fermi level, dropping    to 0. Thus at threshold,         is substantially 

greater than      and a better definition of     should be found. Lee and Young [40] and V. P. 

Trivedi et al. [39] have adapted  Lim and Fossum [35] approach by defining a critical surface electron 

concentration    needed for the channel to be conductive. Then     yields: 

           (36) 

 Where        if       and    
  

 
  (

  

  
) otherwise. While being simple and efficient, this 

approach requires to arbitrarily set    to a specific value. This approach is similar to the constant 

current threshold voltage definition and has been reported by Q. Chen et al. [41]. Another approach 

similar to maximum of transconductance criterion has been suggested by J. Lacord et al. [42] and 

yields: 

     
  

 
  (

  

       
   * (37) 

if the inversion layer thickness is equal to the silicon film thickness. Here are two examples of 

threshold surface potential definition but many others have been published. 

Beside the fact that     should be replaced by     and that    can be neglected, Trivedi et al. [39] 

showed that the general Vt expression is similar to the case of doped channel for depleted back 

interface.  

2.1.2.4 BOx and channel thickness limiting effects: the case of Ultra-Thin Body and 

BOx (UTBB) structure. 

Previous derivations hold if the back to front coupling is weak enough to enable inversion at one 

interface and accumulation at the other. However S. Eminente [43] showed that for ultra-thin tsi, due to 

the strong back to front electrostatic coupling, the required electric field in the BOx to induce 

accumulated charges at the back interface while having the front interface inverted would not be 

supported by the BOx oxide. Thus the back accumulation regime is not worth investigating. Figure 

2-9a shows that even for thick BOx (that sustains higher voltage), considering front channel at 

threshold, back interface accumulation is reached only when VB<-40V and back interface inversion 
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(with front interface accumulation) when VB>60V. These voltages are very far from the operating 

voltage, making it unusable.  

 

Figure 2-9: Threshold voltage extracted for different gate lengths as a function of the substrate bias voltage and for 

two BOX thicknesses: (a) for UTB and (b) for UTBB . VB is varying from -3 V to +3 V for UTBB and from -80 V to 

+80 V for UTB.[44] 

2.1.2.5 Effect of substrate depletion on threshold voltage 

Another difference in the case of Ultra-Thin Body and BOx (UTBB) is the influence of substrate 

regime. In the case of ultra-thin BOx, it appears that the BOx/substrate interface regime has a 

noticeable influence on the threshold voltage. S. Burignat [44] showed this effect using double 

derivative method to extract Vt  depending on VB on both Ultra-Thin Body (UTB) and UTBB devices. 

Result is shown in Figure 2-9b. From this figure we see that Vt is almost constant when the substrate is 

depleted. In this case the back bias sweep is partially compensated by the variation of the potential 

drop in the substrate depletion region, flattening the Vt-VB curve.  

2.1.3 Inversion charge summary 

After deriving Qi and Vt for the bulk case, we have then adapted the approach for the case of FD-SOI. 

We showed in all cases that we can model Qi according to the equation below in strong inversion: 

                (38) 

We have investigate the impact of using intrinsic or doped channel, the effect of BOx and channel 

thickness as well as the substrate depletion for the case of UTBB devices. The Vt-VB behavior of FD-

SOI UTBB structure with intrinsic channel has five different regimes with two that are not physically 

reachable (only mathematical derivation and numerical simulations can assess it). These are the case 
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of front inversion with back accumulation and front accumulation with back inversion. Regimes that 

are physically feasible are depicted by S. Burignat [44] equivalent capacitance model in Figure 2-10: 

 

Figure 2-10: Schematic presenting the effective capacitances for the three main substrate regimes.[44] 

In this figure, the three regimes are distinguished by the position of the inversion layer in the silicon 

channel. The charge centroïd moves from the front to back side when VB goes from negative to 

positive values. This is modeled by considering the charge centroïd Ymean in the channel and the silicon 

capacitance film on both sides of it (     and     ). Thereafter we summarize Vt equation depending 

on these regimes.  

 Front channel, back interface depletion, substrate inversion. 

In this case the inversion layer is confined at the front interface and the back interface is depleted. This 

situation is depicted in Figure 2-10 (left side) and Vt is deduced from (35) where     is replaced by 

    and    is neglected: 

                           
       

             
 (39) 

 

 Channel in the middle of the silicon film, back and front interface depletion, substrate 

depletion 

When the substrate is depleted,     and      are replaced by equivalent capacitance. The equivalent 

BOx capacitance yields: 

       
 

        

         
 (40) 

and the equivalent oxide capacitance yields: 
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 (41) 

Where               . Csub is the substrate depletion. Vt equation is deduced from (39) where Cox 

and CBOx are replaced by their equivalent formulation and                    :  

                           
                     

                                 
 (42) 

 Back channel, front interface depletion, substrate accumulation 

In this case the inversion layer is confined at the back interface and the front interface is depleted. This 

situation is depicted in Figure 2-10 (right side) and Vt is deduced from (33) where     is replaced by 

    and    is neglected: 

                          
             

      
 (43) 

To conclude, expected dependence of threshold voltage on back bias for UTBB devices is shown in 

Figure 2-11: 

 
Figure 2-11: Theoretical Vt-VB curve with the different channel regimes for UTBB devices. 

This figure represents the three physically common regimes (white areas) and the two physically 

unreachable regimes (shaded areas).  

2.2 Channel carrier mobility 

In previous section we have investigated the inversion layer carrier concentration in both bulk and FD-

SOI transistors. It will be the basis for drain current formulation. But before, this section is devoted to 

the effective mobility experienced by inversion layer carriers. We will go through the main physical 

phenomenon that limit the mobility and then propose a compact model to address it, which will be 

used for the drain current formulation in section 2.3 and 2.4.   
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2.2.1 The effective mobility 

Carrier mobility is limited by scattering phenomenon of different natures. Each phenomenon is 

characterized by a scattering time   and can be written under the form:          where    is the 

effective mass. Resulting effective mobility of all these scattering mechanisms is expressed following 

the Mathiessen rule: 

   
 

      
 ∑

 

  
 

  (44) 

The three main scattering mechanisms are phonon, Coulomb scattering and surface roughness limited 

mobility. The limiting scattering mechanism is the one that has the smallest intrinsic mobility and each 

of them depends on the effective transversal field and/or on the inversion charge density. This 

formulation leads to the well-known universal mobility as illustrated in Figure 2-12: 

 

Figure 2-12: Universal mobility depending on effective field strength. 

Phonon limited mobility has the following formulation [45]: 

             
         (45) 

where T is the temperature and Eeff the effective transversal electric field and           . 

Surface roughness limited mobility has the following formulation [45]: 

             
  

 (46) 

A and B are experimental fitting parameters and          . Finally Coulomb limited mobility is 

usually experimentally extracted from measured effective mobility and universal mobility that 

accounts for surface roughness and phonon scattering, following [45]:   

        
       

             
   (47) 

There are two types of Coulomb scattering to be considered: scattering with ionized dopants located in 

the channel and scattering with charges located in the gate stack or at the interface between materials, 

also called Remote Coulomb Scattering (RCS). Since we are working with undoped SOI MOSFET, 

we expect the first mechanism to be of little importance. However UTBB devices involve thin silicon 
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channel and thus increase the effect of RCS limited mobility as shown by D. Esseni [46] and C. 

Fenouillet-Beranger [47]. In these publications, the carrier mobility is almost only impacted by remote 

Coulomb scattering. A compact formulation for RCS limited mobility has been proposed by G. Hiblot 

[48] that is a trade-off between J. Koga [49] and F. Boeuf [46] approaches: 

   
     

     
  

√      √| |   

   √| |   

 (48) 

where       is the RCS mobility due to interface charge, Dit is the surface density of interface charges, 

and      
  is the unscreened interface traps mobility.  

To conclude, the mobility can be expressed as a function of the effective field following Matthiessen 

rule and neglecting Coulomb limited mobility: 

     
 

        
                  

          
     (49) 

where   
         

    √| |   
        is a fitting parameter.  

2.2.2 Mobility compact modeling 

As we are considering the FD-SOI transistors, effective field is expressed as [50]: 

      
      

   
     (50) 

   can be neglected considering undoped channel.   equals 1/2 for electrons and 1/3 for holes [51]. 

Considering 
     

   
 constant, a second order expansion of 1/µ as a function of Qi yields: 

   
 

 
            

  (51) 

where D, E and F are factors that depend on Esb   and    . Then knowing that           , µ 

yields: 

     
  

                     
 
 (52) 

where    is the low field mobility and    and    account for effective field dependent mobility 

correction. These parameters depend on Cox, Esb,   and    . This formulation will be kept for later 

model since it is compact and handy. However a rigorous derivation of this effective mobility can be 

performes analytically. Replacing    by (38),     by (22), the transverse electric field reduces to: 

      
    

   

        
    

   
              (53) 
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Then     is replaced by its expression derived from (26) at threshold (Qi=0 and Qd is neglected): 

     
    

        
(        

   

    
   * (54) 

   can be expressed as a function of Vt following (39) and (43).  

    
 

 
                       (55) 

Where   
       

             
 when the channel is at the front interface and the back interface is depleted 

and   
             

      
 when the back interface is inverted and the front is depleted. Finally inserting 

(55) and (54) into (53),      reduces to: 

      
    

   
(     (

 

 
  *+    (56) 

where r depends on capacitances and the back interface regime. r formulas are written below 

depending on the back interface regime: 

(back 

interface 

depleted) 
  

     

   
   (57) 

(back 

interface 

inverted) 
  

              

                   
 (58) 

and s depends on flatband voltages,     and the back channel regime: 

(back 

interface 

depleted) 
  (          

        

   
*                    (59) 

(back 

interface 

inverted) 

  (
     

          

   
 

     
 

   
 

              

   
)        

            
(60) 

To conclude, the effective mobility depends on Eeff that is proportional to    (
 

 
  )Vt as shown in 

(56) and Qi that is proportional to      . This conclusion has been verified by simulation [52] where 

we can see a universal behavior of mobility depending on Qi (on Eeff) only where Coulomb scattering 

dominates (is negligible). So, the compact model for µ in (52) is a rough approximation and 

considering Eeff expression (56) and the mobility expression (49), it can be shown that   ,    and µ0 

fitting parameters in expression (52) depend on Cox, Csi, Cbox, VFBF and Vt. Thus    and    have neither 

universal behavior nor physical meaning. 

 

 



Chapter 2: Transistor‘s drain current compact modeling 

31 

 

2.2.3 Mobility degradation for short channel devices 

Mobility degradation of short channel devices has been widely investigated in literature. Multiple 

explanations have been proposed for that phenomenon. First, Ghibaudo [53], Barral [54], Pappas [55] 

and Guarnay [56] investigated the effect of ballistic transport on the effective mobility in linear 

regime. Carriers experience ballistic transport if no scattering mechanism affects their transport. It 

occurs in very short channel devices. Indeed, considering that scattering events occur periodically, if 

time needed for the carriers to cross the channel is smaller or comparable to the relaxation time of 

scattering mechanisms, then carriers can experience no scattering. Ghibaudo [53] addresses ballistic 

transport using quantum mechanics. His ballistic drain formulation yields: 

      
 

 

 
               

   

  
  (61) 

where 

      √           (62) 

     is the injection velocity.    is the transverse electron mass (          where    is the free 

electron mass),    is the Boltzmann constant and T the temperature. In this case, equivalent mobility 

formulation yields: 

     
      

    
 (63) 

where L is the channel length. Equation (63) shows that     is proportional to L, thus the shorter is the 

channel, the lower is the apparent mobility. However Ghibaudo [53], Fleury [57], Barral[54], 

Pappas[55] and Shin [58] showed that the proportion of ballistic transport is rather low even for the 

shortest devices and ballistic mobility cannot explain the entire apparent mobility degradation. Finally 

recent Monte-Carlo studies [56], [59] and [60] suggested that ballistic transport contribution could be 

underestimated depending on the extraction method used for the backscattering coefficient extraction 

from mobility measurements. 

The second explanation for mobility degradation is saturation velocity. It limits the mobility at high 

lateral field (thus more important for short channel devices). Carrier may reach the saturation velocity 

vsat if the lateral field is high enough (Elat>Ecrit=10
4
V/cm). Indeed, when the carrier reaches vsat it has 

sufficient energy to generate a phonon. The energy required to create the phonon is taken from the 

carrier, reducing its velocity. Average carriers velocity is then clamped to vsat. Experimental saturation 

velocity measurements have first been done by Ryder [61]. Further investigations to reach vsat have 

been done on P-N junctions by Norris and Gibbons [62], Duh, Moll [63] and Rodriguez, Ruegg and 

Nicolet [64]. Average values are vsat=10
7
cm/s for electrons and 6.10

6 
cm/s for holes in silicon crystal.  

However this phenomenon appears at equilibrium state. Indeed, the carrier velocity is only constant 

when averaged over a time much longer than the scattering time ( ). In short devices, the time required 

for an electron to cross the channel is comparable to  . Thus the carrier can cross the channel in a 

transient state enabling a velocity larger than vsat, this phenomenon is called velocity overshoot. Ruch 

[65] used Monte Carlo simulations to demonstrate this effect on GaAs transistors. Recent 

investigations done by Kim et al. [66] showed experimental observations of carrier reaching velocity 

overshoot.  
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Lundstrom [67] suggested that drain saturation current can be modeled easily using barrier scattering 

theory. Moreover he suggests that velocity overshoot should not be the prominent effect in ultimately 

scaled MOSFET since carrier are cold injected at the source and may only overshoot vsat if the channel 

is sufficiently long. His drain current formulation yields: 

 
        

    

 
    

 
 

       
   

        
(64) 

where       is the maximum potential barrier height at the virtual source and       √            

His interpretation is close to Natori‘s one in (61) that addresses ballistic transport. Thus distinguishing 

ballistic transport and velocity saturation is not easy. The relevance of these approaches is discussed 

by Yang et al. [68]. They showed some contradictions with experiments in particular about 

temperature dependencies. To overcome this, they investigated which saturation effect intervenes 

depending on the device geometries and the operating conditions and proposed a unified model for 

saturation velocity and ballistic transport, mixing Lundstrom [67] (64) and Natori‘s one [69] (61) that 

yields: 
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(65) 

Where    is the product of the lowest valley degeneracy and the reciprocal of the fraction of the 

carrier population in the lowest energy level. In their study it is shown that determining whether the 

drain current is vinj, vsat, velocity overshoot or pinch off limited is a tricky task and requires 

comprehensive characterization including temperature dependence.  

In order to meet our goal we only need phenomenological approach. Thus saturation velocity effect is 

accounted for by introducing it through the mobility such as: 

 
       

 

 
  

    
  

 
(66) 

where   is the mobility as formulated in (52) and      is the lateral field. This approach has been 

reported in many compact models as in [70]-[72]. As mentioned previously, ballistic and velocity 

saturation limited currents have the same form, thus    can account for both      and      as 

suggested by Fleury [57]. 

Another effect involves extra scattering mechanisms induced by neutral or charged defects at the S/D 

channel junction. These defects are induced by S/D dopants implantation. For long channel devices, 

most of the channel is defect free but for short channel devices, S/D junction is a significant part of the 

transport region thus apparent mobility is driven by neutral defects scattering mechanism. Ghibaudo 

[53] used temperature dependent mobility extraction on FD-SOI, double gate and gate-all-around 

MOSFET as well as FinFET transistors. This approach enables distinguishing the contribution of 

neutral defects scattering from other scattering mechanisms, revealing its dominant effect. Pham-

Nguyen [73] confirmed these results using different gate stacks, Cassé [74] and Chaisantikulwat [75], 

Shin [76][58] confirmed it using magnetoresistance measurements. Finally, Barral [54] and Pappas 

[55] confirmed it by extracting the backscattering coefficient from mobility measurements. It should 

be noted that recent extraction done on 14 nm FD-SOI MOSFETs with in situ doped raised source 
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drain technology showed the same gate length mobility roll-down [77][78]. However, in situ doping is 

expected to reduce the formation of neutral defect since there is no implantation during the process. 

Thus the mobility reduction cannot be explained only by the presence of neutral defects.  

As a conclusion, quantifying precisely the contribution of each physical mechanism to the channel 

length mobility roll down is a tricky task. However Shin [58] showed that the apparent mobility 

degradation measured using magnetoresistance can be modeled as: 

 
       

 

  
  
 

 
(67) 

Where   is expressed as in (52) and    is the critical length at which        is half the long channel 

mobility  . This empirical model fit well the apparent mobility. Combining (52), (67) and (66) yields 

the effective mobility accounting for remote Coulomb and phonon scattering, surface roughness, 

velocity saturation, ballistic transport and neutral defects: 
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(68) 

2.3 Linear regime model 

In this section we derive the linear drain current equation based on previously investigated quantities 

like Vt, Qi and µeff. The transistor structure is depicted in Figure 2-13.  

 
Figure 2-13: Basic element of FD-SOI MOSFET architecture. 

In our case the transistor is in strong inversion regime (     ). An inversion layer is created in SOI. 

Considering the case of nMOS where     , if     , electrons start to drift toward the drain end 

with a mobility as described in §2.2. A current flows through the MOS. The total current is constant 

along the y direction. Then at a point y in the channel, the inversion charge is       and the mobility 

is µeff(y). The potential drop across an infinitesimal section dy induces a current expressed as: 

                    (69) 

with             being the electric field in the y direction. The current is conserved along the 

channel, thus, integrating the expression along the width direction, the drain current yields: 
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 (70) 

where W is the width of the transistor, µeff is the effective carrier mobility reported in (68) and    is 

the inversion layer carrier density and dVc is the potential drop across the channel section, Vc being the 

quasi Fermi potential along the channel. If we assume that    and      do not explicitly depend on y 

but only on Vc, then y and Vc variables can be separated following: 

                                (71) 

This assumption is valid if      is constant along the channel, that is true in linear regime. The drain 

current is then obtained by integrating (71) from the source to the drain: 

 ∫      

 

 

     ∫                  
  

  

 (72) 

Equation (72) shows that    calculation requires the inversion carrier concentration   . To use 

previously derived equation for    in §2.1, a variable change should be operated. Indeed    and     

biases were referred to a hypothetical unbiased neutral body that was Ef/q=VB in the case of MOS 

capacitor. Here Ef/q=Vc is no longer equal to the back bias but is driven by the source-drain bias and 

goes linearly (for the case of strong inversion) from VS up to VD. From now on, we will use VS as the 

reference potential. Thus     shall become        and    become       . Depending on whether 

we consider or not    and    parameters,       yields the formulas listed in Table 2-1.  

 
Table 2-1: IDlin formulation for long channel devices with and without θ1 and θ2 parameters. 

Notice that IDlin formulation when    and    are not null, yields only real values if        
 .  

              
           

       
(      

  

 
* (73) 

     

     
      

        

         
 (  (  

    

           
*         * (74) 

     

           
        

           
  (

               

         
   

)  (75) 

     

     

                            

          
        

    
 (             

  

   

 √
 

  
      

 
 

   

             , 

          
  

   

 (
  

 

   

   )√ 
 

        
    

          
  

   

 (
  

 

   

   )√ 
 

        
    

(76) 

 In above formulas     
     

    (77) 
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In order to simplify these expressions, µeff can be assumed independent of the position along the 

channel and replaced by its average value in the channel [32]. Initially, µeff is expressed as in (68), 

including the variable change for   : 
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(78) 

A good approximation of the average mobility along the channel is obtained by replacing    by VDS/2. 

It can then be taken out from the integral (72) and the drain current yields: 

       
     

 
∫                  

  

  

 (79) 

Integrating (79) yields: 
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*    (80) 

In this formula the effective mobility has been replaced by (68) where       has been replaced by 

       
   

 
. The potential drop 

   

 
 is the average of    along the channel. The lateral electric field 

Elat in (68) has been replaced by its average Elat=VDS/L.  

This equation is valid in strong inversion regime (      ) and a second order high field mobility 

reduction formulation is assumed here. This equation does not take into account the effect of access 

resistance. This restriction will be discussed in §2.5.  

We shall see later for the parameters extraction that the linearized formulation of IDlin (80) is more 

convenient and will be preferred over (76). The error between IDlin approximated in (80) and not 

approximated in (76) is shown in Figure 2-14 against    with different channel lengths. We see that 

the error in the right plot is low (below 0.1%) and depends slightly on L. 

 
 

(a) (b) 
Figure 2-14: IDlin against    using the approximated (72) and the not approximated (76) formula for            µm. 

For the calculation, the following parameters have been used: µ=200 cm²/V/s, Cox=3*10-6 F/cm², Vt = 0.3 V,    
     ,         . VDS=0.05V. 
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Notice that saturation velocity effect is driven by the lateral field. Thus its effect will only be 

significant at high VDS, in saturation regime. Hence,    contribution is neglected in linear regime. To 

conclude, the general formulation for the linear drain current we will use is: 
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(81) 

This formulation is derived using simplification but these are fully justified, as shown in Figure 2-14. 

2.4 Saturation regime model  

In this section we will introduce the saturation mechanism that occurs at high VD. We will show that in 

the case of long channel devices, the saturation is caused by pinch-off phenomenon. From the linear 

drain current model we will derive a saturation drain voltage VDsat and deduce the saturation drain 

current.  

2.4.1 Effect of high drain voltage: pinch off saturation 

In the case of long channel transistors, the saturation mechanism that occurs is called pinch-off [79]. 

This phenomenon can be explained with the help of Figure 2-15. In linear (           ) and 

strong inversion (      ) regimes, the inversion layer is uniform in the channel. The channel acts as 

a resistor and the drain current verifies equation (81). Then, as the drain voltage rises, the depletion 

area around the drain increases, reducing Qinv at the drain end. When VDS = VDsat the inversion charge 

is null at the channel drain junction. This is the pinch off point. Then if VDS is even more increased, 

the inversion layer continues to shrink and the pinch off point drifts from the drain channel junction 

toward the source side. Any increase in drain voltage is compensated by a voltage drop across the 

depletion region at the drain end and not by an increase of the current. This is why the current 

saturates beyond the pinch off point. 

 

Figure 2-15: NMOS transistor operating in (a) the linear model, (b) the onset of saturation, and (c) beyond saturation 

where the effective channel length      is reduced.         and         are the linear threshold voltage and the saturation 

threshold voltage, respectively.      is the inversion charge. [68] 

Mathematical formulation of the saturation drain current is derived from the linear one (72) where    

is accounted in the effective mobility since VDS and Elat are high in this case. IDlin reaches a maximum 

at          as shown in Figure 2-16. Thus, a common practice to derive       is to calculate 

    
      

   
 and find VD where      . Using IDlin equation (76), no analytical formula for VDsat and 
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the saturation drain current can be found. A first approximation consists in replacing      by 
   

 
. Then 

IDsat formulation can be found by taking IDlin formula in Table 2-1 and replacing VDS by VDsat derived 

from      . This yield: 

        
 

 
∫                  

     

  

 (82) 

 

 

Figure 2-16: Width normalized ID-VD curves from equation (81) with       . L=[0.024, 0.031, 0.078, 0.105, 0.267, 

0.897] µm.         ,       
  

   
 ,            . Effects of    and Lc are neglected here. 

However VDsat formulation is not analytical making IDsat time consuming to compute, thus we shall 

find an analytical approximation. This is done following the same approach but starting with the 

simplified IDlin expression as expressed in equation (81) instead of (76). If         and    and Lc 

effects are neglected (long transistors),              and the saturation drain current IDsat yields: 

       
   

   
             

  (83) 

For the general case, VDsat yields: 
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where                              
  and       is the threshold voltage at the operating 

voltage VDS =VDD.  

To conclude the general formulation for the saturation drain current yields: 
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*      (85) 

This equation is valid in strong inversion regime (      ) with no access resistance. This restriction 

will be discussed in §2.5. 
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Notice that if saturation velocity, ballistic transport and neutral defects effects are small (long 

transistors), then       tends to have quadratic dependence with        as in (83) (pinch off 

saturation mechanism). However if saturation velocity limits the current, then       has a linear 

dependence with       . This agrees with theory, following equations (64)-(65) for velocity 

saturation and ballistic transport and (83) for pinch off saturation. Hence, expression (85) is suited for 

saturation. Lc account for neutral defects and    accounts for velocity saturation and ballistic transport. 

2.5 Effect of access resistance… 

2.5.1 …in linear regime 

In the previous paragraph, the drain current equation has been derived considering no effect of source 

drain (S/D) and contacts region. This assumption is valid for long channel devices (case where the 

access resistance is small compared to channel resistance). In this section we will investigate the 

impact of access resistance in short channel devices and include it into our model. 

The first studies used to consider constant access resistance [80]-[82]. Including a constant access 

resistance in the drain formulation is done by substituting     and     respectively by           

and                where    and    are the S/D resistance. Considering equation (81) for the 

access resistance free linear drain current,       with access resistance yields: 
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With   
 

 
      and          . In terms of resistance, the width normalized total MOS 

resistance is: 
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 (87) 

 

Figure 2-17: TCAD simulated MOS scheme with dopant concentration in silicon regions 
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Other studies have claimed that access resistance has a           dependence [83]-[87][88]. The 

subtlety between these two hypotheses mostly lay in the definition of channel and access region. In 

order to demonstrate it, let‘s consider two cases. One case is where the channel is the region that 

encompasses all silicon regions where          where       is the maximum inversion carrier 

density that could be induced by electric field.                [84]. The other case is where the 

channel is considered to be the intrinsic region of the channel that lies below the gate. These two 

situations are illustrated in Figure 2-17 and Figure 2-18. 

 

Figure 2-18: Local resistivity variation w.r.t     against the position along the current path. Sq refers to the W/L 

normalization of the resistance.  

Let‘s consider the first limit case. Here the access region carrier concentration can‘t be modulated by 

the gate bias and the access resistance is constant. In this case, the channel region can spread much 

beyond the physical gate length, encompassing lightly doped regions (LDR) and the average mobility 

in the channel will depend on the channel length due to Coulomb scattering at both ends of the 

channel. 

In the second case the lightly doped regions are part of the access resistance where carriers will be 

accumulated as     increases, reducing its resistivity. Thus in this case the access region is modulated 

by the gate voltage.  

Figure 2-18 shows the local resistivity variation of the silicon at position y along the current path with 

respect to a small gate voltage variation (left axis). This curve shows where the silicon electrostatic is 

modulated by the gate potential. Obviously the silicon electrostatic is strongly dependent on the gate 

potential wherever the doping concentration is lower than 10
19

 atoms/cm
3
. Doping concentration is 

shown in dark, referenced on the right vertical axis. This figure also shows that the physical gate 

extension, the intrinsic channel and the region under the gate electrostatic influence are not of the same 

size because the junctions are not perfectly sharp and aligned with the gate. Thus depending on the 

channel length that is considered, the access resistance will depend or not on the gate voltage. If we 

consider that L is smaller than the region under the gate electrostatic influence, then the access 

resistance is made of three contributions. The contact resistance, the highly doped source and drain 

resistance and the LDR resistance. Only the last contribution depends on   . Kim [89] and Taur [90] 

showed that the carriers in this region are accumulated and their concentration can be expressed as: 

             
            (88) 



Chapter 2: Transistor‘s drain current compact modeling 

40 

 

      is null if we are considering that carriers are ideally accumulated. However in the LDR, the 

doping concentration is not constant and depending on the position along the conduction path this 

      will range from 0 (close to the highly doped region) up to Vt (close to the channel), as explained 

by Taur [90] and Sheu [88]. Nevertheless, this conclusion can be shaded. Indeed, this is true if we 

consider that the gate electrostatic field is uniforme along the conduction path up to the highy doped 

region. However in practical cases, lightly doped region can spread away from the gate (if the 

transistor is underlaped). In this configuration, LDR becomes hard to invert since it benefits from a 

weaker gate field. Consequently VtLDR can becomes higher than Vt. While Hu [83] considers       

   when extracting     and      depending on     (what was justified considering the technology 

used at this time), Kim [91] showed that for more recent technologies, this simplification does not hold 

anymore. The consequence is that Leff calculated using Rtot-Lpoly curves gives unphysical effective 

channel length. This emphasizes the necessity to use           for the extraction. Thus the width 

normalized access resistance yields: 

        
    

                     
 (89) 

with R0 the width normalized contact resistance, LLDR and      the extension and the average carrier 

mobility of the LDR. Here       is the LDR average threshold voltage. For our study we consider that 

L is the physical gate length, thus the width normalized total resistance yield: 

 

        
 

         

 
 (  

  
 )

 
(

 

(      
   
 )

      (      
   

 
*, 

(90) 

To simplify the equation we used    
    

          
 averaged over the lightly doped region.   is small if 

the MOS is overlapped and large otherwise. This access resistance formulation has been reported and 

justified using TCAD simulation by Monsieur [86].  

2.5.2 …in saturation regime 

In order to derive IDsat rigorously, we consider IDsat formula (82). Then    and    are accounted for by 

substituting     by              in       equation (82).       is then found by solving this complex 

equation. Here          , thus we do not add access resistance through    but instead     is 

substituted by              in       expression.  

There is no analytical expression for      , making it time consuming to compute. However it can be 

simplified by assuming equation (85) for the intrinsic saturation drain current      . Then    effect is 

added using a first order expansion following: 

       
     
 

       
 (91) 

Where      
  is the expression of intrinsic saturation drain current (see equation (85)) and    

      

    
. 

Analytical formulation of    yields: 
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where      is the effective mobility as described in (78) and     
      

   . VDsat is used in    

expression instead of VDS in order to get IDsat expression (91).   

      and VDsat values from (91) have been compared with the numerical solution of       using 

formula (72) with access resistances. Results are shown in Figure 2-19. A good match is obtained 

using realistic model parameters. This comparison shows that approximating the effect of access 

resistance using (91) and considering a constant mobility along the channel are suited approximations.     

  

 
 

(a) (b) 

Rs=Rd      

µ0 100 cm²/V/s 

vsat 10
7
 cm/s 

VD 1 V 

W 1 µm 

L [1, 0.3, 0.12, 0.09, 0.038, 0.028] µm 

Vt 0.3V 

   -0.5 V 

   0.5 V 
 

(c) 

Figure 2-19: IDsat (a) calculated numerically using equation (85) with access resistance against simplified analytical 

expression (91). Model error in percentage is shown in (b). Model parameters used to compute IDsat are gathered in 

Table (c). 

2.6 Conclusion 

This chapter has provided an introduction to the basic equations that describe the drain current of 

MOSFET transistors. These equations will be used for further parameters extraction of our compact 

model.  
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Firstly, the MOS capacitance structure has been investigated to derive the inversion carrier 

concentration as well as the threshold voltage for the case of bulk devices. Then these equations have 

been adapted for the case of UTBB devices. The effects of channel doping concentration, ultra-thin 

channel and box on    and inversion charge density have been treated. A compact model for carrier 

mobility has been suggested, where surface roughness, remote Coulomb and phonon scattering as well 

as neutral defects, ballistic transport and saturation velocity are accounted for. Then linear drain 

current formulation has been introduced, based upon proposed mobility, threshold voltage and 

inversion carrier concentration formulations. We have then reviewed the major saturation effects, as 

pinch off for long channel transistor and velocity saturation, injection velocity and ballistic transport 

for short channel devices. A compact model of saturation drain current that accounts for theses 

phenomena has been proposed afterward. In real devices, compact models have to account for access 

resistance. Hence this aspect has been treated and analytical compact models for linear and saturation 

regimes have been adapted. Further extraction will thus be based on the following formulation for 

linear drain current: 

       
   

    
 (93) 

where the width normalized total transistor resistance      is: 
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(94) 

The total resistance is simply the sum of contact and source-drain resistance represented by R0 term, 

the LDR resistance and the channel resistance.  

Saturation drain current is expressed as: 

       
     

 

       
 (95) 

where    
   

 

         

 
,      

  is the intrinsic saturation drain current:  
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Gm is the    derivative of      
 : 
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where     
 

 
(
        

  ) and      is the effective mobility as described in (78), accounting for 

scattering mechanisms, velocity saturation and ballistic transport: 
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and VDsat is the drain saturation voltage and is derived as            
        

    
   where        is the 

intrinsic linear drain current.       yields: 
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where                              
 . These formulations are valid in strong inversion 

regime. Advantages of this formulation are that it is analytical and fast to compute. This is required to 

make it applicable at industrial scale and to extract parameters on a large amount of devices with very 

limited measured data. However, simplifications have been required in order to meet these constraints. 

Impacts of these simplifications have been shown to be acceptable compared to numerical 

calculations.  

Previous formulations of drain current are reformulated here without the contribution of    and   : 

 For linear regime (from (94)): 
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 For saturation regime (from (95), (97) and (99)): 
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Compact modeling: Extraction procedure 

and application to TCAD simulations 
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The aim of the compact model developed in previous chapter is to model the drain current in order to 

investigate device properties and their relationships with process parameters. To do so, the model will 

be used to fit silicon measurements and TCAD simulations in chapter 4. This step requires a method to 

extract model parameters. This method is detailed in paragraph §3.1. It will be applied on both TCAD 

simulations (in order to validate the model and the extraction method) and silicon measurements (in 

order to investigate devices properties). Different types of measurements are regularly performed on 

silicon. Modeling team performs comprehensive characterizations of transistors in order to calibrate 

their model. Since these measurements are time consuming, they are performed on few lots only. 

These characterizations include full ID-VG measurements on devices with different gate lengths. In the 

meantime, Parametric Tests (PT) are performed in line for every wafer of every lot, each wafer being 

measured on 17 sites. These parametric tests consist in a reduced number of measurements (few drain 

current measurements) in order to reduce the measurement time down to a reasonable threshold.  

In order to ensure that the extraction method is robust and reliable, we use full ID-VG measured on 

silicon. Accuracy of the extraction method is check considering the fitting quality and the uncertainty 

about model parameters. This is the purpose of paragraph §3.2. 

Monitoring process fluctuations using parameter extraction requires measurements that include all 

wafer and all lots. Thus full ID-VG characterizations from modeling team cannot be used for this 

purpose. Instead we will use PT. Extraction method being validated using full ID-VG, the influence of 

data sample size and range is then tested before any application on PT data. These tests are gathered in 

§3.3. They include tests about the influence of noise on measurements as well. Their purpose is to 

evaluate the uncertainty about extracted parameters depending on the considered sample size, range 

and noise level. It brings insights into the data amount and quality required to ensure a proper 

extraction.     

The extraction method being set, it is then applied on TCAD simulations in §3.4. A design of 

experiment has been simulated in order to investigate the influence of critical process parameters on 

model parameters. To this end, simulation results are used for model parameters extraction. Model 

parameters responses to process variations are investigated and we will see if they are consistent with 

the physics underlying model parameters, as introduced in chapter 2.     

3.1 Model parameter extraction method  

In the previous chapter we have derived the linear drain current equation and we have seen that there 

are a limited number of model parameters that are to be extracted (R0,  ,       ,   ,   ,    and      , 

Lc). Linear drain current equation is recalled here for convenience: 
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With Rtot expressed as: 
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Model parameters will be extracted based on drain current data. This section describes the extraction 

method that will be used. In term of model parameter extraction, two different approaches exist: direct 



Chapter 3: Compact modeling: Extraction procedure and application to TCAD simulations 

47 

 

extraction (involving linear regression, derivation or integration of electrical characteristics such as 

CG-VG and ID-VG) and nonlinear optimization algorithms where an objective function, that is the error 

between model and measurements, is being minimized as the model parameters converge toward there 

optimal value through an iterative procedure. Our approach relies first on linear least square fit in 

order to get a first approximation of model parameters. Then these values are used as input to a 

nonlinear optimization algorithm to refine their value. §3.1.1 and §3.1.2 explain the procedure to 

extract Vtlin and the other linear parameters respectively, using least square regression. §3.1.3 and 

§3.1.4 details the nonlinear optimization algorithm used to finalize the extraction in linear and 

saturation regime respectively. 

3.1.1 Threshold voltage 

In literature, the threshold voltage definition is quite ambiguous and there are at least as many 

extraction methods as definitions of Vt available. Most common ones are Hamer‘s method [92], 

constant current or constant charge method [93], ID-VG linear extrapolation [94], maximum of 

transconductance derivative [95] that is equivalent to the maximum of capacitance derivative [96] and 

the Y function [97]. A comprehensive study of extraction methods has been done by Ortiz-Conde [98]. 

For our purpose we will choose a method that is suitable considering linear drain current equations 

(104)-(105) and that requires as less measurement points as possible. Every method mentioned above 

requires full ID-VG or CG-VG measurements in order to extract the threshold voltage (making them 

unsuitable for process monitoring at industrial scale) except Hamer‘s method. Thus, in the following 

section, we will adapt Hamer‘s method to extract the threshold voltage that suits equations (104)-

(105).    

Hamer‘s method brings the solution of a, b and c considering the following equation: 

     
    

    
 (106) 

where    are the drain currents and       are the gate voltages with        . If we consider the 

case where Rsd is constant and      , then IDlin (104) can be rearranged to match (106): 
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Then   
     

       
,      

   

 
, and      

   

 
 

 

       
. Knowing b we can then deduce Vt. The 

other parameters cannot be extracted though since there are 4 unknowns (  ,   ,     and  ) and only 3 

equations provided by Hamer‘s method. If now we consider that     depends on     with          

then IDlin equation (104)-(105) can be rearranged to match (106) as: 
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and   
     

      
,      

   

 
, and      

   

 
 

    

      
. Then knowing b, Vt can be easily deduced. 

Although this adaptation of Hamer‘s method is not the state-of-the-art method to extract threshold 

voltage, this approach is perfectly consistent with our formulation of drain current if    is neglected 
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and VtLDR equals Vtlin. This consistency is the critical point for this kind of task as discussed by 

McAndrew and Layman [99].  

If          and     , Hamer‘s method cannot be used to extract accurately Vtlin but it can be used 

to have an approximation of its value. In order to get an accurate value of Vtlin and      , a nonlinear 

optimization algorithm will be used as a successive step of linear least square regression.   

3.1.2 Access resistance, effective channel length and mobility extraction 

In this section, a review of published extraction method based on the same linear drain equation as 

(104)-(105), knowing Vtlin, is reported. Their differences will be analyzed in order to determine the 

method to be used for our purpose. 

In our model, the concept of access resistance is linked to parameters R0 and  . In contrast,       , 

  ,   , and Lc are related to channel conductivity. In order to extract these parameters we review the 

different methods published in the literature. Brews [100] and McAndrew [101] made a review of the 

main characterization methods (up to eleven of them) to extract               and   . Among them 

we find Suciu and Johnston [102], peak gm [103][104],    , Rlin-L [105][106] (that is similar to TMC 

[107][108]), De La Moneda [109], Peng [110], Sheu [88], Peng and Afromowitz [112], Whitfield 

[113] and Chang and Berg [114] methods. To that list we can add Ghibaudo‘s Y function [115]-[120], 

Taur‘s shift and ratio [121], Biesemans [122], Sanchez [123] and Jeppson and Karlsson‘s [124][125] 

methods. All these methods are direct extraction methods based on derivatives and linear regression of 

ID-VG characteristics. The difference between them lies in the assumptions made beforehand and the 

regression they use to extract parameters, but drain current equations are equivalent. Table 3-1 

provides a summary in term of assumptions and extracted parameters.  

Table 3-1: Model parameter extraction method summary 

Method Assumptions Extracted parameters 

         , µ constant with L µ(  ),    

Chang and Berg [114]      ,   constant µ,    

Suciu and Johnston [102] 

Jeppson and Karlsson‘s method 

[124][125] 

Sanchez [123] 

peak gm [103][104] 

De La Moneda [109] 

            ,   
  

           
 

µ0 constant with L 
   , µ0,   ,    

Rlin-L [105][106] 

Sheu [88] 

       
 

     
 

   
  

           
  

µ constant with L,  

  constant with VG. 

 ,   ,    

Hu [106]   constant        ,      

TMC [107][108] 
            , µ constant with 

L 
             ,   ,     

Peng [110] 
            , µ constant with 

L 
     ,     ,     

Peng and Afromowitz [112]             , ID.RSD << VDS,    ,    
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µ constant with L 

Whitfield [113] 
            , µ constant with 

L 
  ,     

Y function [115]-[120] 

    is constant in the first 

papers. Generalization of the 

method canceled this 

assumption. 

       ,         ,   ,   . 

Taur‘s shift and ratio [121] 
            ,      

independent of VGS 
   ,      

Brut [126], Yamaguchi[127], 

Biesemans[122]  
µ constant with L        ,          

The two first methods of Table 1-1 have inappropriate assumptions since nowadays, access resistance 

represents up to 70% of the total resistance for shortest devices [128]. In line 3, all the proposed 

methods assume a constant access resistance and extract    whereas line 4 (to which our approach 

belongs to if it is assumed that VtLDR=Vtlin and     ) assumes        
 

     
 and L constant. 

However, these formulations are equivalent. Indeed, in linear regime, the width normalized total 

resistance formula yields: 

         
 

         
 

    

     
(

 

(      
   
 )

      (      
   

 
*, (109) 

In this expression,    is not distinguishable from   . So even if their physical meaning is different, 

these parameters are the same considering extraction. In the particular case where              and 

   is neglected,   cannot be distinguished from Lc either. Indeed, Rlin expression (109) where Lc=0 

and      can be rearranged as: 

               
        

     
(

 

(       
   
 )

   ) (110) 

In this expression        is similar to the constant access resistance term and          . Thus, 

extracting Rsd and    using method of line 3 is equivalent to extract        and        using 

methods of line 4. Thus these methods only differ from the extraction method used. This equivalence 

of   and    makes simultaneous extraction of RSD(VGS) and          , as proposed by Hu [106], Brut 

[126] and Yamaguchi [127] meaningless unless a clear and physical definition of the channel length is 

provided (involving for example critical carrier density as mentioned by Biesemans [122] or the 

metallurgical junction as mentioned by Lou [129]). In other words, if VtLDR=Vtlin, using linear 

regression, these parameters can‘t be distinguished mathematically and any workaround would yield 

highly correlated parameter values as demonstrated by Brut [126]. TMC [107][108], Peng and 

Afromowitz [112], Taur‘s shift and ratio [121] and Whitfield [113] methods at least assumes that RSD 

is constant, thus their model are equivalent to ours. 

More recent publications have proposed iterative procedures in order to extract both Rsd(VGS) and 

µ(VGS) (Fleury [118][119] and Subramanian [120]) or Rsd(VGS) and         (Kim [91]). However we 

have seen that Lc accounts for both    and µ(L) roll down. Moreover, there is an equivalence between 

Lc and   if Vtlin=VtLDR and     . Thus extracting both     and µ (or   ) depending on the gate 
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voltage, without alleviating the ambiguity about the access/channel region splitting, leads to results 

that are strongly dependent on the initial guess (that will determine the access/channel region 

splitting).  

Thus for our extraction we will test whether Lc and   can be distinguished (depending on the 

discrepancy between VtLDR and Vtlin). If they are, equation (105) will be used for parameter extraction. 

If not, the equation will be simplified (by either using only   or Lc or even removing both of these 

terms if access resistance is constant and Lc close to 0).  

3.1.3 Linear model parameter extraction method 

Let us now introduce the method of our own [105][128][131]. The extraction procedure is based on 

the linear drain current equation (105). This formulation does not allow any linearization for a direct 

extraction procedure and Hamer‘s method cannot be used ―as is‖ as discussed in §3.1.1. In order to 

alleviate this difficulty, we first consider                  and      and extract Vtlin using 

Hamer‘s method. Then every other parameter is extracted at once using the following system of linear 

equation [131]: 

            ( 
 

   

 

   
      )  

(

 
 
 
 
 
 

  

 
 

      

  

      

  

      )

 
 
 
 
 
 

 (111) 

This first step yields an initial guess for the model parameters. Then we use it as input to a nonlinear 

optimization method to extract the suited values of   ,  ,   ,   ,       ,      , Lc and      . 

Nonlinear optimization algorithms have been first used by McAndrew [101] who showed that this 

approach is more robust than typical direct extraction method. It is nowadays widely spread and used 

for complex compact model parameter extraction such as BSIM4 [132] or PSP [133]-[135]. Nonlinear 

optimizer we use is a built-in Matlab function based on trust-region-reflective and conjugate-gradient 

algorithm [136]-[138]. An excerpt of the code is available in Appendix A. 

The strength of nonlinear optimization method compared with direct extraction methods (apart from 

being able to handle nonlinear problem) is that they are less sensitive to ill-conditioned problems. In 

our case, depending on the chosen VGS and L values, column two, three and four of equation (111) 

matrix can be more or less correlated. For extreme cases, this can lead to singularity of the matrix and 

make (111) unsolvable. The other drawback of linear least square problem (111) is that it minimizes 

the square of the difference between measured and modeled Rlin and this resistance is larger for long 

transistors than short ones. Thus, extracted parameters will advantageously fit long transistors at the 

expense of the short ones (that are actually the one of interest), biasing the extraction. On the contrary, 

nonlinear optimization methods can either optimize the drain current model error or the resistance 

model error. It can even be used to optimize the normalized error between model and measurements, 

leading to a uniform model error across the whole range of VG and L data. 
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3.1.4 Saturation model parameter extraction method 

This section explains the method used to extract model parameters in saturation regime. Saturation 

drain current introduced in chapter 2 is recalled here: 

       
     

 

       
 (112) 

where    
   

 

         

 
 and      

  is the intrinsic saturation drain current:  
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*      (113) 

Gm is the VG derivative of      
 : 
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where     
      

    and      is the effective mobility, accounting for scattering mechanisms and 

velocity saturation: 
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and VDsat is the drain saturation voltage and is derived  as the                  
        

    
   where 

       is the intrinsic linear drain current. VDsat yields: 

        
  √  (    

  
     

          *

   
   
                  

 (116) 

where                              
 . 

Saturation drain current equation is not linearizable. Thus nonlinear optimization is used as the only 

step for extracting saturation parameters. Saturation parameters are        and Vtsat. Hopefully    is a 

fairly stable parameter and its value is close to saturation velocity or injection velocity. Both of these 

quantities have been accurately measured and reported in literature and are very close to each other. 

Thus we can safely use it as first guess for the optimizer. First guess for    is set to    cm/s for 

nMOS and       cm/s for pMOS. Cox is calculated knowing the equivalent gate oxide thickness 

deposited during the process. For nMOS,                    and for pMOS          

         . Vtlin is chosen as the first guess for Vtsat extraction.  

3.1.5 Summary of the extraction method 

To sum up, the extraction procedure starts with linear regime measurements. R0,  ,       ,   ,    and 

Vtlin parameters are first approximated using a linear least square regression and Hamer‘s method. 
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Then these values are used as a first guess of a nonlinear optimizer to refine these model parameters 

and extract Lc, VtLDR. Based on these extracted parameters, saturation model parameters    and Vtsat 

are extracted using the same nonlinear optimizer. Values from literature and Vtlin are taken as first 

guess of    and Vtsat respectively.  

3.2 Extraction on full ID-VG curves measured on silicon 

In order to assess the functionality of the extraction method as well as the validity of the model, in this 

paragraph we perform extraction on silicon measurements of 28 and 14 nm FD-SOI devices. Here, 

extraction is performed using full ID-VG in strong inversion regime. Extraction method efficiency is 

assessed by the fitting quality and the uncertainty about extracted parameters. Depending on each 

device type, different gate length as well as gate biases are used to measure drain current. Data 

samples are detailed in Table 3-2.  

Extraction results are detailed for 28 nm FD-SOI nMOS devices. Figure 3-1 shows the measured and 

modeled ID-VG curves in linear and saturation regime for every gate lengths. Extracted parameters are 

gathered in Figure 3-2 and Table 3-3. 

Gate length [µm] 

28 FD-SOI 

(Silicon) 

14 FD-SOI 

(Silicon) 

nMOS pMOS nMOS pMOS 

0.024 0.024 0.022 0.022 

0.0276 0.0276 0.024 0.024 

0.0312 0.0312 0.026 0.026 

0.078 0.078 0.028 0.028 

0.105 0.105 0.03 0.03 

0.447 0.447 0.032 0.032 

0.897 0.897 0.034 0.034 

8.997 8.997 0.038 0.038 

 

0.042 0.042 

0.064 0.064 

0.104 0.104 

0.154 0.154 

0.164 0.164 

0.504 0.504 

1.004 1.004 

2.004 2.004 

3.004 3.004 
 

 Gate voltage [V] 

28 FD-SOI 

(Silicon) 

14 FD-SOI 

(Silicon) 

nMOS pMOS nMOS pMOS 

Min [V] 0.55 0.7 0.614 0.614 

Step [mV] 27.5 20 26 26 

Max [V] 1.1 1.1 0.9 0.9 
 

(a) (b) 
Table 3-2: Gate length and biases used to measure IDlin and IDsat depending on the device type considered.  
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(a) (b) 

Figure 3-1: Modeled and measured 28 nm FD-SOI nMOS IDlin (a) and IDsat (b) against gate voltage for different gate 

length. 

Parameters Values 

              

              ] 

                 [
 

   
] 

             ] 

            ] 

            V 

   12.6 [nm] 

                 [F/µm/s] 
 

 

Table 3-3: Extracted model parameters for 28 

nm FD-SOI nMOS transistors measured on 

silicon. 

Figure 3-2: Extracted Vtlin and Vtsat against gate length for 28 nm 

FD-SOI nMOS devices measured on silicon. 

The quality of fit is appropriate. In order to estimate the uncertainty about extracted parameters and the 

robustness of extracted parameters, a cross validation method is applied. This method consists in 

withdrawing few measurements from the data sample and performing the extraction procedure again. 

The higher the discrepancy between the two results, the more uncertain the extraction results are. The 

last step can be repeated many times, each time withdrawing a different subset of data, in order to 

estimate this uncertainty (see chapter 5 for more information about cross validation methods). In the 

current case, full data sample consist in 224 measurements in linear and saturation regime. The 

extraction procedure is repeated 500 times, each time withdrawing a different data subset of 20 

measurements. Data subsets are chosen randomly among the measurements. Histograms of extracted 

parameters distributions are shown in Figure 3-3.      
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(a) (b) 

   
(c) (d) 

   
(e) (f) 
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(g) (h) 

Figure 3-3: Histograms of extracted parameter distribution using cross validation method.  

Along with histograms, the root mean square model error is plotted in Figure 3-3. This error is 

calculated using equation (117) where            is the synthetized drain current and            is the 

modeled one. 

This error is calculated over the full data sample (including withdrawn data subset for extraction). It 

evaluates the predictability of the model depending on the parameter value. Error bars represents the 

standard deviation of the model error. In each plot, the green line represents the value extracted using 

the whole data set. Studying carefully the different plots we see that results are gathered around 2 

distinct solutions. The most observed solution yields           and             whereas the 

most accurate solution (with the lowest model error) is the one found using the whole dataset for 

extraction and has non zeros   and       with a lower R0. Thus we see that in the first case the VG 

dependent access resistance has been substituted by a constant access resistance. However this results 

is less accurate than the second where access resistance depends on the gate voltage. This VG 

dependent access resistance seems touchy to extract properly. This is partly due to the fact that its 

influence on model error is limited since it only drops it from     µA/µm down to     µA/µm. 

Moreover the error is located on the short channel devices drain current at low VG. Thus removing one 

measurement point from these devices can easily bias the extraction and steer the nonlinear solver to 

converge toward the local minimum where access resistance does not depend on gate voltage. This 

extraction issue will be investigated in §3.3.    

As a counterexample, the case of 28 nm FD-SOI pMOS devices is studied and results shows that the 

access resistance does not depends on VG and the results are robust. Measurements against model are 

shown in Figure 3-4 for linear and saturation regime. A good fit is obtained. Model parameters are 

gathered in Figure 3-5 and Table 3-4.           

     √∑∑[          (      )            (      )]
 

  

 (117) 
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(a) (b) 

Figure 3-4: Modeled and measured 28 nm FD-SOI pMOS IDlin (a) and IDsat (b) against gate voltage for different gate 

lengths. 

Parameters Values 

              

            ] 

                 [
 

   
] 

             ] 

           ] 

         [V] 

   3.9 [nm] 

                 
 

 

Table 3-4: Extracted model parameters for 28 

nm FD-SOI pMOS transistors measured on 

silicon. 

Figure 3-5: Extracted Vtlin and Vtsat against gate length for 28 nm 

FD-SOI pMOS devices measured on silicon. 

Cross validation test results are shown in Figure 3-6. Extracted parameters are all regrouped around 

the solution found using the whole dataset. Model error also shows that the best solution is close to the 

one extracted using the whole dataset.  

The reason why nMOS has an access resistance that depends on VG contrary to the pMOS is that 

pMOS is overlapped and nMOS underlapped in the considered devices. This point is confirmed by 

TCAD simulation calibrated on 28 nm FD-SOI devices (see Figure 3-24 in §3.4). The VG dependent 

access resistance region lies at both channel ends. In overlapped devices, these ends are highly doped, 

thus the corresponding resistance is low. This is the case of pMOS. The contrary occurs for nMOS.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 
Figure 3-6: Histograms of extracted parameter distribution using cross validation method.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3-7: Extracted model parameters using measured full ID-VG for nMOS and pMOS, 28 and 14 nm FD-SOI 

technologies. 

A summary of model parameters extracted on 28 and 14 nm FD-SOI devices using full ID-VG 

measurements is shown in Figure 3-7. In this figure, the error bars represent the parameter dispersion 

calculated using cross validation test. These results emphasize the fact that model parameters depend 

on the technology used. An enhanced mobility with lower   parameters has been found for 14 nm FD-

SOI devices. This can be due to the in-situ doped epitaxial raised source drain that induces fewer 

defects compared with sputtering implanted dopant used for 28 nm FD-SOI devices. It can also be due 

to SiGe mobility booster for the case of pMOS devices. R0 is higher for pMOS than nMOS since 

hole‘s mobility is lower than electron‘s mobility and source drain are less doped for pMOS devices 

because of silicon solubility limit. For 14 nm FD-SOI technology, physical gate length is estimated 

using the drawn gate length corrected by systematic effect like OPC enabling the most accurate 

estimation of the physical gate length. Moreover, for 14 nm FD-SOI technology, in situ doped source 

drain technology prevents neutral defects formation. This is why Lc is globally close to 0. An 
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exception is to be noticed for 14 nm FD-SOI pMOS technology where Lc is significant. This is due to 

the presence of SiGe source drain boosters that induces stress in the channel. This stress is not uniform 

in the channel due to stress relaxation mechanisms and the average stress over the channel depends on 

the channel length [139][140]. Finally, as it has been discussed previously, pMOS 28 nm FD-SOI 

devices have no VG dependent access resistance since they are overlapped. 

    To conclude we have extracted model parameters on different technologies. The model has shown 

its accuracy. Model parameters are dependent on the technology considered. In some cases, model 

parameters can be neglected. In addition, the extraction has also shown to be robust against cross 

validation test for the case of 28 nm FD-SOI pMOS device. However nMOS device extraction is quite 

unstable and two distinct solutions are found. Cross validation is required in order to discriminate the 

most accurate solution.  

3.3 Test for extraction procedure robustness depending on data 

sampling 

In order to monitor model parameters sensitivity to process variations, the extraction procedure should 

be applied on every wafer of every lot that includes process variations, using PT (spotted data) instead 

of full ID-VG curves in order to reduce measurement time. Before doing so, we must verify that the 

extraction procedure is still adapted using a limited amount of measurements. In this section we test 

the ability of the code to extract the proper model parameters values based on synthetic data depending 

on the data sampling. Synthetic data are artificial data created using the drain current equation and 

arbitrary model parameter values. This procedure is trivial but required in order to verify that: 

 The method is properly implemented (no bug) 

 Parameters are extractible (no redundant parameters and data sample size and range are large 

enough) 

 The nonlinear algorithm converges properly. That is to say, it enables verifying if the 

termination tolerance is small enough to enable an accurate extraction of model parameters. 

There are two termination criterions: the minimum change in the value of the objective 

function during a step and the minimum size of a step in the model parameters space. 

One of the major constraints of the work is that data sample size is small since PT only includes few 

points per curves. Data sampling is defined in §3.3.1. Thus the ability of the method to properly 

extract model parameters with the data sample size and range available in PT is tested in §3.3.2. Then 

the extraction procedure robustness is tested against artificial noise following the work done by 

McAndrew [101] in §3.3.3. 

3.3.1 Definition of data sampling 

Table 3-5 gathers the device gate lengths for which data are available depending on the technology 

considered. TCAD simulations have been designed such that data sample is comparable to available 

silicon data sample. For each of these gate lengths, drain currents has been measured in linear and 

saturation regimes at different gate voltages. These gate voltages are summarized in Table 3-6. The 

smallest data sample is available for 28 nm FD-SOI technologies where linear and saturation drain 

currents are measured on 6 devices with different gate lengths, each devices being measured at 3 

different gate voltages. It will be refered to as ―silicon data sample‖. 
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Technology 28 nm FD-SOI 14nm FD-SOI TCAD 

 

0.028 0.02 0.030 

0.030 0.024 0.034 

0.034 0.03 0.038 

0.12 0.06 0.090 

0.3 0.1 0.1 

1 0.3 0.12 

 1 0.15 

  0.3 

  1 

Table 3-5: Device gate lengths for which data are available (for nMOS and pMOS).  

Technology 28 nm FD-SOI 14nm FD-SOI TCAD 

Drain bias VDlin VDsat VDlin VDsat VDlin VDsat 

Gate 

voltages for 

which data are 

available [V] 

0.7 0.7 Vtlin+0.3 0.4 0.7 0.7 

1 1 Vtlin+0.5 0.8 1 1 

1.1 1.1 0.8  1.1 1.1 

  Vtlin+0.7    

Table 3-6: Absolute device gate voltages for which data are available (for nMOS and pMOS). 

3.3.2 Influence of data sampling 

This section focuses on the influence of data sampling. We demonstrate the requirements about the 

model and data sample to be used in order to ensure an accurate extraction. It will be demonstrated 

that model extraction using synthetic data with a large data sample works. However extraction is not 

robust against sample range variations. We will show how to discriminate redundant parameters that 

can be fixed in order to improve significantly the extraction robustness without compromising the 

model accuracy. 

3.3.2.1 Influence of data sample size and range 

In order to illustrate the influence of data sample size and range, we first focus on 14 nm FD-SOI 

nMOS case. Results will be generalized to other technologies afterward. Synthetic data are generated 

using parameters close to those found for 14 nm FD-SOI nMOS devices. Values are regrouped in 

Table 3-7 and Figure 3-8. Parameter extraction is tested using a large data sample, similar to the one 

provided by full ID-VG measurements, harnessed in §3.2. 

Synthetic data generation and model parameter extraction have been done using IDlin calculated for 20 

gate lengths ranging from 22 nm up to 3 µm and 20 gate biases for each gate length (            V). 

First guess for nonlinear extraction is provided by linear extraction as described in §3.1 for parameters 

R0,  , µ0.Cox,   ,    and Vtlin. First guess for VtLDR and Lc are arbitrarily set to 1 mV and 1 nm. Figure 

3-9 shows synthetic data and model against gate voltage. A perfect match is obtained and errors on 

model parameters are small. Thus in this case, data sample size is sufficient for extraction, model 

parameters are not redundant and the nonlinear algorithm converges properly. 
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Parameters Values 
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Table 3-7: Model parameters values for 

synthetic data generation. L is the gate 

length in nm. 

Figure 3-8: Vtlin and Vtsat as extracted on measurements along with those 

used for synthetic data generation. 

 

 

 

Model 

parameters 

Relative error 

from extraction 

[%] 

              

             

                   

              

              

                  

               

                 

Figure 3-9: Idlin modeled and synthetized against gate length, 

using Table 3-7 model parameters.  

Table 3-8: Relative error made on model 

parameters from extraction. 

In order to investigate the influence of the sample size and which one is required to extract properly 

model parameters, a test has been performed. It consists in running extraction using different sample 

size with a fixed range (the range used above). The size goes from the 800 data points (corresponding 

to 20 gate lengths and 20 gate biases in linear and saturation regimes) down to 24 data points (4 gate 

lengths measures at 3 different gate biases in both regimes). Figure 3-10 (a) shows the root mean 

square (RMS) error made on extracted model parameters against L and VG ranges. RMS error on 

model parameters is calculated following (118) where Para is the vector of model parameters.       

and       subscripts stand for model parameters used as input to synthetized data and extracted 

model parameters respectively. 
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(a) (b) 
Figure 3-10: Error on extracted model parameters depending on the data sampling size (a) and range (b). 

In order to test whether silicon data sample range is large enough to ensure a proper extraction, 

extraction is performed with various sample ranges. For each sample range, the sample size is constant 

(20 VG and 20 L). Results in Figure 3-10 show that the extraction is unstable and depending on the 

data sample considered two solutions can be found. This problem is similar to the one revealed in §3.2 

when performing cross validation tests on 28 nm nMOS device extractions.  

The problem mainly stems from       and Lc parameters. In fact, if       is in the range of Vtlin, 

then it can be difficult to distinguish one from another, leading to noisy extractions. Moreover, in this 

case, Lc becomes hardly distinguishable from sigma as well, making them redundant (see §3.1.2 and 

equation (110)). Thus, in this condition, extracting  , VtLDR and Lc leads to unstable results. To 

demonstrate that numerically, Figure 3-11 shows the extraction accuracy depending on the value of 

      chosen for synthetic data generation. In this case Vtlin has been set to 0.35V for all gate lengths. 

Figures shows that, considering this synthetic dataset, when       reaches Vtlin, the error rises and   , 

Lc and       cannot be extracted anymore if            . 

 

 

Figure 3-11: Extracted model parameters using synthetic data, depending on VtLDR. 

This case study does not prove that extraction will systematically fail if VtLDR is greater or equal to 

Vtlin but in some case, this can pose problems and cause extraction to fail. In these cases, the problem 

that is faced is that some parameters are partially redundant. The best way to cope with this issue is to 
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      (118) 

VtLDR = Vtlin 

[V] 
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remove or fix the redundant parameters. However, simplifying the model leads to make 

approximations. In order to minimize the error created, the importance of each parameter in the model 

is evaluated by running test on synthetic data. The test consists in reducing the model complexity by 

removing each parameter one by one and calculating each time the discrepancy between the full and 

the reduced model. Based on model parameters obtained applying extraction on full ID-VG 

measurements on every technology, the root mean square error between full and reduced models is 

shown in Figure 3-12: 

  
(a) (b) 

Figure 3-12: RMS error between reduced and full model, removing one parameter at a time. 

Depending on the technology, model parameters are more or less important. However we see that  , 

  , VtLDR and Lc are the least important one considering both linear and saturation regime. Thus fixing 

some of these parameters will improve the robustness of the extraction procedure while inducing a 

minimum bias in the result. Considering the silicon data sample size and range, extractions have been 

performed using 5 different cases. In the first case, all parameters are considered. This is the model as 

described in chapter 2. In the second case, Lc has been set to 0 and is not extracted. In the third case, 

we assume that access resistance is constant and thus   is set to 0. In the fourth case, access resistance 

is considered inversely proportional to       
   

 
 as suggested by Hu [106], thus VtLDR is replaced 

by    
   

 
 and is not extracted. Lc is set to 0 as well. In the last case access resistance is considered 

constant and Lc=0.  

    
Figure 3-13: Error on extracted model parameter, using synthetic data, depending on the model used 
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Figure 3-13 shows the error made on extracted model parameters considering the 5 cases. Each case 

has been treated for each technology, using model parameters found after extraction on full ID-VG 

curves for synthetic data generation. We see that the extraction perform poorly only if every model 

parameters are taken into account. In addition, 28 nm FD-SOI pMOS technology is also badly 

extracted if only Lc is set to 0. 28 nm nMOS FD-SOI model parameters are well extracted no matter 

the technology considered. Thus, depending on the technology considered it may be mandatory to 

remove one or two parameters in order to ensure a proper extraction.  

As an example, we show in Figure 3-14 the impact of sample range and size on 14 nm FD-SOI nMOS 

model parameters extraction, as it has been shown in Figure 3-10. However this time, Lc has been set 

to 0. In addition, the effect of the sample rang has been tested with only 3 gate lengths measured at 3 

VG. We see that now the error is in range of numerical noise. Thus withdrawing only one parameter 

can fix the problem. 

  
(a) (b) 

Figure 3-14: Error on extracted model parameters depending on the data sampling size (a) and range (b). 

However, since the extraction stability depends on the technology considered, we suggeste the 

following procedure to ensure the extraction robustness. Every time an extraction is performed, this 

test with synthetic data should be run, based on extracted model parameters. A good result assesses the 

stability and reliability of the results. 

3.3.3 Robustness against artificial noise 

Conditions about the minimum data sample range and size required for a proper extraction have been 

set in previous paragraph. Now, considering a proper data sample for extraction, we investigate here 

the effect of artificial noise. To illustrate this test, we use synthetic data generated thanks to the 

compact model with Lc=0 and          
   

 
  and with model parameters extracted on 14 nm FD-

SOI nMOS technology. These parameters are regrouped in Table 3-7 and Figure 3-8. A generalization 

of the method to other technologies is done afterward. In order to model noise, the drain current values 

are modulated by a normally distributed random amount (the noise) with dispersion (3 ) 

corresponding to the noise level. Model parameters are then extracted and error between the modeled 

and the synthetized current is calculated as well as the error between extracted model parameters and 

the one used as input for synthetic data generation. The extraction is performed using silicon data 

sample. 

In practical situation, noise can arise from different sources. One source is directly linked to the 

measurement setup. PT uses short time measurements (few milliseconds). It means that the measure is 
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averaged over this period of time. Thus every high frequency noises (F > 1 MHz) are deleted. Low 

frequency noise (LFN) [141] only remains. In our setup and considering our technology, measurement 

noise does not exceed 1% of the measure. Another source that can be assimilated to ―noise‖ is the 

local variability. Indeed, in our extraction, we assume that every model parameters are common for all 

transistors of the same die (except threshold voltage). This is only true if the local variability is 

neglected. In this paragraph we only focus on measurement noise. Impact of local variability effect 

will be treated in chapter 4 and 5.   

 
Figure 3-15: (a) RMS error against artificial noise induced in the synthetized data.  

Figure 3-15 (a) shows IDlin RMS error against the noise level for each extraction. We see that the error 

rarely exceeds 20% with noise level up to 1%. Figure 3-15 (b) shows the worst fit obtained with 1% 

noise on synthetic data. This error is large and can lead to build strongly biased compact model. This 

is due to the limited size and range of the sample (the silicon data sample). The uncertainty about 

model parameter extraction mainly arises from the mobility reduction factors  . Indeed, in linear 

regime (where velocity saturation and ballistic transport is neglected), the mobility compact model 

used is expressed as a second order expansion of          
  

 
. The inverse of the mobility is thus 

fitted as a second order polynomial expression following: 
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) (119) 

In order to illustrate the extraction robustness of such a compact model, we simulate the mobility 

against gate voltage using TCAD tool on nMOS FD-SOI device. Figure 3-16 shows the inverse of the 

electron mobility half way between source and drain, against the gate overdrive. TCAD simulated 

mobility has been averaged across the SOI layer thickness, weighted by the inversion carrier density in 

order to get the effective mobility. Equation used to calculate this mobility is shown below: 

                
∫         

   

 

∫   
   

 
  

 (120) 
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Figure 3-16: Inverse of the mobility half way between source and drain, TCAD simulated and modeled using first and 

second order model. 

Considering the whole gate bias range of strong inversion regime, we see that the mobility has a 

square dependence with respect to       
     

 
. This conclusion is obvious considering the whole 

range of gate bias in strong inversion. However extraction will only benefit from a reduced gate bias 

range (0.4V) and a reduce sample size. Thus depending on the position of this range, Figure 3-16 

shows that effective mobility model can be simplified using only either    or   . Moreover there are 3 

model parameters to be extracted and 3 drain currents measured. The problem is square but extraction 

results can be very noisy. Thus, considering a second order model involves too many parameters. It 

shall be reduced to 2 model parameters, removing either    or   .  

 
Figure 3-17: Effective mobility simulated and modeled using first and second order approximation. 

Figure 3-17 shows first and second order effective mobility model along with the simulated one 

against gate overdrive. The range of gate overdrive is restricted to the extraction range. The best fit 

against the mobility curve is used to decide which parameter to remove. Model with only    is slightly 

better considering the fitting quality but very close to the model with only   . Values of extracted   , 

   and    are regrouped in Table 3-9 depending on the extraction range.  
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Parameters 

Extraction using 

the whole Vg 

range 

Extraction with 

0.7<Vg<1.1 V 

using    and     

Extraction with 

0.7<Vg<1.1 V 

using     

Extraction with 

0.7<Vg<1.1 V 

using    

     
       173 225 440 333 

    
    -1.88 -1.26 1.3 0 

     
    2.16 1.76 0 0.92 

Table 3-9: Extracted parameters for mobility compact model, using first and second order, depending on the 

extraction range. 

It should be noted that even if the fitting accuracy is acceptable, respective values of   ,    and    

strongly depend on the model used. It emphasizes the fact that these parameters are only fitting 

parameters. Thus removing either    or    would make the model extraction more robust without 

making the parameter less meaningful. It should be noted that the limited range used for extraction 

also induces a correlation between µ0 and   parameters. Figure 3-18 show the correlation plot between 

µ0 and   , extracted with 20 different data samples. A correlation is observed between them.  

 

Figure 3-18: Correlation plot of µ0 and   , extracted using different data samples. 

 

Figure 3-19: RMS error against artificial noise induced in the synthetized data.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3-20: RMS error on (a) R0, (b) sigma, (c) µ0.Cox, (d)    (e) Vtlin, (f) Vtsat against artificial noise level. 

Figure 3-12 show that    has less impact on the model than   . Removing    in the model, the effect 

of noise on extraction accuracy using synthetic data has been investigated and shows reduced impact 

on noise compared to the model with    and    as shown in Figure 3-19, Figure 3-20 and Figure 3-21. 
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Figure 3-21: RMS error on        against artificial noise. 

The error made on the modeled drain current remains now below 7%. The improvement brought by 

removing    in the model is important. This emphasizes the need to remove   . Error on extracted 

model parameter is also well controlled.  

In order to generalize these results, we have run the same test considering model parameters extracted 

on all technologies and considering four different models. These models are those considered in 

previous paragraph. Errors on model parameters are gathered in Figure 3-22. In these plots, we show 

the standard deviation of the error. Considered noise level is set to 1% and    is set to 0.  

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3-22: Standard deviation of error on extracted model parameters with 1% noise in measurements, depending 

on the model and technology considered. 
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Results show that generally speaking, the more complex the model is, the noisier results are. Serious 

issues arises, when considering the first model (Lc=0) used to extract 14 nm pMOS FD-SOI model 

parameters. In this case,        extraction diverges and yields unphysical results due to the noise. 

Otherwise, noise results remain reasonable. 

3.3.4 Conclusion about model parameter extraction method 

The study of extraction robustness against synthetic data has revealed that the full model proposed in 

previous chapter cannot be used as is, considering redundant parameters and the limited amount of 

data measured in line. Redundant parameters like VtLDR and Vtlin or Lc and   have been found to be 

tricky to extract.  

It has been shown on silicon model that fixing these parameters leads to a minimum increase of the 

model error on silicon extraction. This extraction test has been run considering model parameters 

extracted on full ID-VG of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies. It has 

revealed that the model cannot be extracted if all parameters are considered. However as soon as a one 

parameter is removed, the extraction works fine. An exception must be mentioned for 28 nm pMOS 

FD-SOI technology where model parameters are badly extracted if only Lc is fixed.  

Following that study the effect of artificial noise has been investigated. It revealed that, a small 

amount of noise can lead to strong error in model extraction. TCAD investigation of the mobility 

compact model showed that using both    and    in the model can lead to a high uncertainty about 

extraction results. Removing    allow more robust extractions against noise without making the 

parameter less meaningful. Noise test has been conducted considering model parameters extracted on 

full ID-VG of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting    to 0. 

Results showed reasonable level of noise in extracted model parameters considering 1% of noise in 

electrical parameters.  

To sum up, attention must be paid to the model used for extraction. If available data for extraction is 

those of the silicon data sample, we first suggest setting   to 0 in order to reduce the impact of noise 

in measurements. Then, depending on the device, one or two parameters must be removed. In order to 

verify the validity of such simplifications, extraction results must be checked. Extraction robustness 

can be assessed by running the sample size and range test with synthetique data, as it has been done in 

§3.3.2.1. Then, performing extraction on TCAD simulations, the physical coherence of the results will 

be checked against the process variations. This will be done in next paragraph. Considering silicon 

extraction, since many dies are extracted on the same wafer, correlation plots will be performed. 

Uncorrelated extracted parameters ensure the robustness of the extraction and enable drawing 

inferences of model parameter‘s variation impact on drain current. This approach will be used in 

Chapter 4.     

Finally, in order to improve the robustness of the approach, we recommand using a larger data sample 

size, using more gate biases. This will reduce the effect of noise measurements. 

3.4 Application to TCAD simulations 

In this paragraph, extractions have been applied on TCAD simulated IDlin and IDsat where different 

process variations have been considered. Results are discussed. The aim of this study is to illustrate, 

using simulations, how a process variation impacts model parameters. We will demonstrate that model 

parameters variations can be explained by their physical meaning. 
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3.4.1 Simulation setup and DOE presentation 

TCAD simulations deck is calibrated on 28 nm FD-SOI MOS technology provided by 

STMicroelectronics. The geometry of the Process Of Reference (POR) is shown in Figure 3-23.  

 
Figure 3-23: Simulated structure using TCAD tools with dimensions in nm 

The doping profile for pMOS and nMOS devices is plotted in Figure 3-24. In this plot we see that 

nMOS device is rather underlapped in contrast with pMOS that is overlapped. We will see later the 

consequence on extracted model parameters. 

 
Figure 3-24: Absolute doping level depending on the position along the current path for nMOS and pMOS simulated 

devices. 

Based on this geometry, other simulations have been run with small process parameters variations 

including: 

 Raised source drain epitaxial height  (Tepi) [12, 14, 16] nm 

 SOI thickness    (Tsi) [5, 6, 6.6, 8] nm 

 Spacer width    (Wsp)   [8, 10.35, 12] nm 

 Implanted dopant dose   (f dose) [0.5, 0.7, 1, 1.2, 1.5] (All source-drain 

and LDD implant are multiplied by this factor) 
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 Interfacial layer (IL) thickness   (Til) [0.8, 1.05, 1.2, 1.8, 2.5, 4] nm 

 IL/High K interfacial charges    (Qhk) [10
10

, 10
11

, 10
12

, 3.10
12

, 10
13

] cm
-2

 

 Contact resistance    (Rext) [20, reference, 200, 500, 2000] Ω 

(Reference values are 90 and 212 Ω for nMOS and pMOS respectively) 

 Spike anneal     (Tspike) [800, 1000, 1052, 1100] 

TCAD data sampling used for extraction is gathered in Table 3-5 and Table 3-6 in §3.3.1. This choice 

of bias conditions is based on available silicon data, in order to keep coherence between both silicon 

measurements and simulations conclusions. In these simulations, Philips unified model proposed by 

Klaassen [142] is used for the mobility in combination with high field saturation and thin layer 

Lombardi model [143]. Neither ballistic transport nor velocity overshoot is simulated here. However 

mobility model accounts for velocity saturation. 

3.4.2 Influence of process variation on extracted model parameters 

In this paragraph we present the result of the extraction routine for all experiments of the DOE 

presented in §3.4.1. We will show that process related model parameters variations are expected based 

on physical reasoning. Then we will be able to quantify these dependencies using extraction results.   

3.4.2.1 Case of nMOS 

For the case of nMOS devices VtLDR, Lc and    are not considered for data extraction. This model has 

been chosen for extraction since it yields the most physically coherent results regarding process 

variations. Using data sample exposed in Table 3-5 and Table 3-6, extraction has been performed on 

simulated nMOS devices drain current. Results of R0 extraction are gathered in Figure 3-25 for each 

experiment of the DOE. Extraction has been performed using silicon data sample. Red dots are the 

reference experiments. Blue dots are simulated experiments with one process variation with respect to 

the reference process flow. White and shaded strips gather experiment according to their common 

variable process parameter.  

  

(a) (b) 

Figure 3-25: (a) R0 extracted on TCAD simulated ID-VG including experiment with process variations. (b) Extracted 

R0 against added external resistances on TCAD simulations. 

In Figure 3-25 (a), we see that, as expected, R0 is mostly sensitive to external resistance. Quantitative 

variations of R0 against added external resistance are shown in Figure 3-25 (b). It is shown that 
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extracted parameters track well the implemented one. From the linear extrapolation of that scatter plot, 

we can deduce the highly doped source-drain region resistance that is 44.4     . Results of   

extraction depending on the process variation of the DOE presented beforehand are gathered in Figure 

3-26. 

 
Figure 3-26:   extracted on TCAD simulated ID-VG including experiment with process variations. 

  parameter is related to the VG dependent part of the access resistance. It is shown in that plot that   

depends on every parameter except the external resistance. In chapter 2 we have seen that gate voltage 

dependent access resistance depends on LDR doping level. Consequently, the more the transistor is 

underlapped, the greater  . Thus when Tepi or Wsp is large, the junction is moved away from the gate. 

The transistor becomes underlapped and   rises. Tsi influences   as well. The dopant dose used for 

implant (f dose) acts directly on the LDR doping concentration thus the lower the dose, the higher  . 

Thick Til reduces the field from the gate. Thus the higher is Til, the higher is  . When the anneal 

temperature is increased, dopants migrate farther. Thus LDR becomes more doped and   diminishes. 

However   does not depend on external resistance since this resistance does not impact the LDR. This 

enphasises the robustness of the extraction and is a validation about   physical interpretation. It 

validates its implementation. 

  

(a) (b) 

Figure 3-27:        (a) and    (b) extracted on TCAD simulated ID-VG including experiment with process variations. 
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Figure 3-27 presents µ0.Cox and    extracted for all the simulated experiments. As it has been 

discussed in Chapter 2, µ0 and    are complex functions that depend on Cox, Csi (and thus on VB and 

Tbox). Consequently µ0.Cox and    depend on Tsi and Til. In addition    and        depend on Qhk 

that are the charged defect at the high K interface. This is the effect of remote Coulomb that could be 

captured through    and/or   . The most influent process parameter is Til, that is inversely 

proportional to Cox, thus to µ0.Cox. 

 Figure 3-28 (a) and Figure 3-28 (b) represent Vtlin for short and long channel transistors respectively. 

These two parameters essentially depend on channel related process parameters (Tsi, Til and Qhk). In 

contrast with long channel Vtlin, short channel Vtlin is slightly impacted by access related process 

parameters. Indeed, since the access plays a major role in the current drain characteristics of short 

channel devices, it induces parasitic effects in the extraction. 

  

(a) (b) 

Figure 3-28:       for short (a) and long (b) channel devices extracted on TCAD simulation against process variations. 

Figure 3-37 shows Vtlin against process variations for long channel devices as well as Short Channel 

Effect (SCE) coefficient. SCE coefficient is calculated according to the following equation. 

                                (121) 

SCE reflects the loss of electrostatic control on the channel with decreasing gate length. It depends on 

the source-drain junction position. If the transistor is overlapped, electrostatic control will be lost more 

quickly with decreasing gate length. Indeed in this case, the distance between the junctions is shorter. 

Thus, considering the same gate length, an overlapped transistor will have less electrostatic control 

than a transistor with junctions well aligned with the gate. As a consequence, narrow spacers induce 

greater negative SCE by overlapping the transistor. SCE also depends on Til and and Qhk. Indeed, a 

thick Til reduces the gate electrostatic field in the channel, thus the electrostatic control of the channel 

is weaker. Interfacial charges Qhk shield the gate electrostatic and increase SCE as well. 
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(a) (b) 

 
(c)  

Figure 3-29:                             extracted on TCAD simulated ID-VG including experiment with process 

variations. 

Figure 3-29 (a), (b) and (c) show the variations of v
*
.Cox, Vtsat and Drain Induced Barrier Lowering 

(DIBL) respectively. DIBL has been calculated following: 

      
           

         
 (122) 

v
*
.Cox should only depend on Til through     parameter. However it is also slightly sensitive to other 

parameters. This inconsistency could be due to the fact the self-heating is not taken into account in our 

model while it is simulated in TCAD. The same consideration holds for Vtsat and DIBL. v
*
.Cox could 

not be extracted when Rext is greater than 500     . Indeed when                , the external 

resistance drives the saturation drain current and    has no significant impact anymore and cannot be 

extracted properly. 

In order to investigate the self heating effect, POR has been simulated with and without self-heating. 

Extraction has then been performed for both cases. The difference between model parameters without 

and with self heat has been calculated. Results shown in Figure 3-30 reveal that self-heating mostly 

reduces        and       by a non-negligible amount. Thus self-heating does not impact linear model 

parameters extraction but only saturation model parameters.  
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Figure 3-30: Discrepancies between model parameters extracted with and without self-heating (SH)  

Figure 3-31 shows modeled and simulated saturation drain current against VG for different gate length 

with and without self heating. We see that self-heating tends to reduce drain current at high VG. In 

presence of self-heating, the second derivative of IDsat with respect to VG is negative but the model 

cannot account for such a behavior. Thus self-heating effect is accounted for though        and Vtsat 

parameters.   

  
(a) (b) 

Figure 3-31: Saturation drain current simulated and modeled with (a) and without (b) self-heating (SH).  

Figure 3-32 (a) and Figure 3-32 (b) show simulated and modeled linear and saturation drain current 

respectively. A good fit is obtained. Linear drain current is slightly overestimated for short channel 

devices at high gate voltage. This is due to the simplification of the model (no VtLDR, no Lc and no 

  ). 

Figure 3-33 plots the relative error made by the model depending on the experiment considered. Even 

though the error is experiment dependent, it remains relatively low, assessing the robustness of the 

approach. 
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(a) (b) 

Figure 3-32: Linear (a) and saturation (b) drain current modeled and simulated against L for different VG.  

  
(a) (b) 

Figure 3-33: Model error on linear (a) and saturation (b) drain current 

3.4.2.2 Case of pMOS 

In this paragraph we expose the results of model parameters extraction on pMOS devices. The main 

difference between nMOS and pMOS devices is the carrier mobility (that is lower for pMOS since 

holes effective mass is greater than electrons) and the doping profile (for our case); see Figure 3-24. 

We will see how these differences affect model parameters. 

The equation used to model pMOS TCAD simulation is the same than nMOS. Thus VtLDR, Lc and    

are not considered for data extraction. Using data sample exposed in Table 3-5 and Table 3-6, 

extraction has been performed on simulated pMOS devices drain current. First of all, Figure 3-34 (a) 

shows the extracted R0. Again here we see that Rext drives R0 value, and the highly doped source-drain 

resistance can be extrapolated from R0 against Rext plot. This resistance is much higher than the one of 

nMOS devices (147.7      compared to 44.4     ). Indeed we can see from Figure 3-24 that 

doping concentration in this region is lower in pMOS than nMOS (          for pMOS compared to 

              for nMOS). Moreover, hole mobility is lower than electron ones. 

Increasing V
G
 

Increasing V
G
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(a) (b) 

Figure 3-34: (a) R0 extracted on TCAD simulated ID-VG including experiment with process variations. (b) Extracted 

R0 against added external resistances on TCAD simulations. 

R0 is also sensitive to some other parameters. Increasing implant dose or increasing the annealing 

temperature reduces R0 since it increases the amount of active dopants in the highly doped source-

drain regions. Increasing Tepi or Wsp increases R0 since it lengthen the path from the silicide contact 

point to the entry of the channel.  

  
(a) (b) 

Figure 3-35:   and equivalent Lc extracted on TCAD simulated ID-VG including experiment with process variations. 
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(a) (b) 

Figure 3-36:        (a) and    (b) extracted on TCAD simulated ID-VG including experiment with process variations. 

Figure 3-35 (a) shows extracted   against process variations. pMOS is much more overlapped that 

nMOS, thus LDR is more sensitive to the gate properties. This explains the strong dependence on Til 

compared to other parameters. However Rext does not influence   value as expected. As it has been 

explained previously, in linear regime, there is a perfect equivalence between   and Lc if       

      
  

 
. 

       and    variations are shown in Figure 3-36. Process dependence is similar to the case of 

nMOS: Til, Tsi and Qhk are the only parameters that impact    and        as expected. 

  

(a) (b) 

Figure 3-37:       for short (a) and long (b) channel devices extracted on TCAD simulation against process variations. 

Figure 3-37 shows Vtlin against process variation for long channel devices as well as SCE coefficient. 

SCE is weaker in nMOS (            ) than pMOS (             ). Indeed, pMOS is more 

overlapped than nMOS. Considering long channel threshold voltage, channel related process 

parameters (Til, Tsi and Qhk) are by far the most influent process parameters. 

 

(a) 

 

(b) 
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Figure 3-38

 shows         , Vtsat and the DIBL against process variations. Again,         , Vtsat and DIBL 

depends on access parameters due to self-heating that is not accounted for in the model. However Til 

remains the most influent parameter on        since it has a direct impact on Cox. pMOS is half 

nMOS one due to different position of the junction. 

(a) 

 

(b) 

 

 

 
Figure 3-38:          (a), Vtsat (b) and DIBL extracted on TCAD simulated ID-VG including experiment with process 

variations. 

(c) 
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(a) (b) 

Figure 3-39: pMOS linear drain current modeled and simulated against L for different VG. Plotted L and VG are the 

one used for the extraction procedure. 

Figure 3-39 shows modeled and simulated drain currents against channel length for reference 

experiment. We see a very good fit. The model simplifications does not impact the fitting accuracy, 

thus Lc and VtLDR are not influent model parameters in this case. 

  
(a) (b) 

Figure 3-40: Model error on linear (a) and saturation (b) drain current 

Figure 3-40 shows the linear and saturation drain current RMS error against process variations. We see 

that this error remains low no matter the experiment, confirming the robustness of the model and the 

extraction method. 

3.5 Conclusion  

Following the introduction of the compact model in chapter 2, a method to extract model parameters 

has been introduced in this chapter. The method is decomposed into 3 steps. First step consists in 

extracting linear model parameters using linear least square fit. Then these values are used as a first 

guess for a nonlinear optimizer that refines parameters value. Finally, saturation model parameters are 

extracted using nonlinear least square fit. 

This method has been tested to assess its robustness before applying it on PT silicon measurements. 

Tests have been conducted on synthetized data against sample size and range considering model 

parameters extracted on full ID-VG of nMOS and pMOS devices of 28 and 14 nm FD-SOI 
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technologies. We have seen that data sample ranges and sizes available in silicon measurements are 

too small to properly extract all model parameters. Removing successively each parameters from the 

model showed that   , VtLDR and Lc are the least significant model parameters. Extraction test has 

been run once again considering cases where some of these parameters have been fixed. It showed that 

as soon as one parameter is removed, the extraction works fine. An exception must be mentioned for 

28 nm pMOS FD-SOI technology where model parameters are badly extracted if Lc is the only fixed 

parameter. Thus removing one parameter allows robust extraction with a minimum error in the model.  

Following that study, the effect of artificial noise has been investigated. It revealed that, a small 

amount of noise can lead to strong errors in model extraction. TCAD investigation of the mobility 

compact model showed that using both    and    in the model can lead to a high uncertainty about 

extraction results. Removing    allows more robust extractions against noise without making the 

parameter meaningless. Noise test has been conducted considering model parameters extracted on full 

ID-VG of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting    to 0. Results 

showed reasonable level of noise in extracted model parameters considering 1% of noise in electrical 

parameters.  

To sum up, attention must be paid to the model used for extraction. First we suggest setting   to 0 in 

order to reduce the impact of noise in measurements. Then, depending on the device, one or two 

parameters must be removed. In order to verify the validity of such simplifications, extraction results 

must be checked. Considering TCAD simulations, the physical coherence of the results will be 

checked against the process variations. Considering silicon extraction, since many dies are extracted 

on the same wafer, correlation plots will be performed. Uncorrelated extracted parameters ensure the 

robustness of the extraction and enable drawing inferences of model parameter‘s variation impact on 

drain current.   

The extraction procedure has been run on a TCAD simulated DOE. The DOE account for different 

process parameters (External resistance, epitaxial thickness, SOI thickness, spacer width, implanted 

dose, annealing temperature, insulating layer thickness and defects at the high K interface). We have 

shown that model parameters response to process variations is physically coherent, testifying on model 

parameters physical meaning and extraction robustness. Extractions have been run for nMOS and 

pMOS enabling a quantification of the impact of active dopant dose in the source-drain region as well 

as the junction profile on the drain current and model parameters.  
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In this chapter, the extraction method developed in previous chapter is applied to 28 and 14 nm FD-

SOI silicon devices measurements. Model parameters variations with process variations are 

investigated and we will see how model extraction helps getting more insights into the device 

characteristics and help interpreting the relation between process parameters and device performances. 

The chapter starts with extraction on 28 nm FD-SOI technology in § 4.1. Effect of Dynamic Surface 

Anneal (DSA) and source drain implant dose and energy are studied. In the same trend, in §4.2, we 

apply extraction method on 14 nm FD-SOI silicon data. Effect of source-drain dopant concentration, 

HF clean before epitaxy and epitaxial thickness are investigated. In addition, within-wafer variability 

is addressed in §4.3. Forward and backward propagation of variance as well as Monte Carlo draws are 

used to model this variability.      

4.1 Application to 28 nm FD-SOI technology 

In this paragraph, we show the results of extraction applied to 28 nm FD-SOI devices measurements. 

Extractions are carried on several wafers with process variations. Details of the DOE and experimental 

setup is discussed in §4.1.1. In §4.1.2 the extraction accuracy will be assessed and we will see how the 

extraction enables a clear quantification of the process impact on device characteristics. We will then 

bring a physical interpretation of the variations and we will see that model parameters variations 

depending on process variations are well correlated with extraction results based on TCAD 

simulations. 

In order to model the device drain current we use equations developed in chapter 2 where Lc and 

   have been set to zero. Contrary to extractions performed on TCAD simulations, here we extract 

      parameter as well. We will show that extraction performe well using this model thanks to 

correlation plots of model parameters. The extraction robustness using this equation will be tested 

using correlation plots of extracted model parameters. As a reminder, we recall here the model that 

will be used in further extraction for linear drain current: 

       
   

    
 (123) 

where the total width normalized transistor resistance      is: 
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The total resistance is simply the sum of contact and source-drain resistance represented by R0 term, 

the LDR resistance and the channel resistance.  

Saturation drain current is expressed as: 

       
     

 

       
 (125) 

where    
   

 

         

 
,      

  is the intrinsic saturation drain current:  
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Gm is the VG derivative of      : 
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where     
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  ) and      is the effective mobility, accounting for scattering mechanisms, 

velocity saturation and ballistic transport: 
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and VDsat is the drain saturation voltage and is derived as             
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where                 
 . 

4.1.1 Process flow and design of experiment 

For this work, 2 lots have been studied. They all carry different process variations. Process flow of 28 

nm FD-SOI technology is detailed in Figure 4-1. 

 
Figure 4-1: Schematic process flow of tested devices 

Experiments focus on source-drain implant and anneal temperature. DOE summary is given in Figure 

4-1: 

Lot A B 

Process Low S-D implant POR (800°C) 
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variations POR DSA 840°C 

High S-D implant DSA 880°C 

Table 4-1: Lot name related with process parameters modulation from POR 

In Figure 4-1 POR stands for Process Of Reference. There is one POR for each lot. PORs are not 

identical since they belong to different lots that have not been treated at the same time. Thus, a POR is 

to be compared with process variation within the same lot. S-D implant stands for source-drain 

implant dose and energy. It refers to the last step in Figure 4-1 schematic when the dopants are 

implanted in the source and drain region. DSA stands for Dynamic Surface Anneal and is a rapid laser 

annealing treatment done after dopant implant [144]. Its aim is to activate implanted dopants without 

diffusing them. POR is exempted of this step. 

Every process variation has been tested on several wafers (between one and three) and each wafer has 

been probed at least on 17 dies. Each site embeds many devices with different gate lengths. Each 

device drain current is probed a different gate biases. Gate length and probing biases of each device 

are summarized in Table 4-2 and Table 4-3.  

Technology 28 nm FD-SOI 14 nm FD-SOI 

 

0.028 0.02 

0.030 0.024 

0.034 0.03 

0.12 0.06 

0.3 0.1 

1 0.3 

 1 
Table 4-2: Device gate length for which data are available.  

For each of these gate lengths, drain currents have been measured in linear and saturation regimes at 

different gate voltages. These gate voltages are gathered in Table 4-3. 

Technology 28 nm FD-SOI 14 nm FD-SOI 

Drain bias 0.05 V 1 V 0.05 V 1 V 

Gate 

voltages for 

which data are 

available [V] 

0.7 0.7 Vtlin+0.3 0.4 

1 1 Vtlin+0.5 0.8 

1.1 1.1 0.8  

  Vtlin+0.7  
Table 4-3: Device gate voltages for which data are available. 

Extraction is performed site by site. Thus we obtain for each wafer a distribution of model parameter. 

This dispersion gives an idea about the model parameters uncertainty at wafer scale. 

4.1.2 Inference on process parameters effects on performance variations 

4.1.2.1 Impact of source-drain implant energy and dose 

Here we investigate the effect of source-drain implant energy and dose variations, focusing on the 

results yield by lot A for nMOS devices. Changing the dose and energy of source-drain implant should 

only influence access region. Indeed, since transistor are built with a gate first process, implant only 

reaches the source and drain region. We might see a shift in the threshold voltage and in the carrier 

mobility if the dopants penetrate the metal gate as shown in [145]. These hypotheses will be discussed 

along with the extraction results.  
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(a) (b) 

Figure 4-2: nMOS linear drain current against gate length (a) and gate voltage (b). 

First, in order to assess the extraction robustness, Figure 4-2 shows the linear drain current model error 

(error bars) as a function of gate voltage (a) and channel length (b). For this figure, extraction has been 

performed on each site. Each point represents the median drain current value observed over the whole 

POR wafer and each error bar represents the standard deviation of the model error. A good adequacy 

is found. 

  
(a) (b) 

 
(c) 

Figure 4-3: Distribution of channel resistance (a), access resistance (b) and short channel device linear drain current 

at VG = Vdd (c) for each wafer of lot A. 
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Figure 4-3 shows the box plot of access resistance, channel resistance and linear drain current for each 

wafer of lot A. Channel resistance is the length dependent part of the total resistance whereas access 

resistance is what remains. This splitting of the total resistance is illustrated in (130) 

           
 

         
 

 

     
(

 

(      
   

 
)
   (      

   

 
)) (130) 

 

Isolated dots are outliers. Data is spot as outlier if its distance to the median is larger than        

   –   , where q1 and q3 are the 25
th
 and 75

th
 percentiles, respectively. Figure 4-3 (c) shows a clear 

impact of process variation on linear drain current. This process variation affects only access and not 

channel resistance as shown in Figure 4-3 (a) and (b) as expected. 

  
(a) (b) 

Figure 4-4: R0 (a) and   (b) distribution for each wafer of lot A. 

In order to go deeper in the understanding of the impact of this process parameters, Figure 4-4 shows 

the distribution of R0 and   for each wafer. As expected, R0 is clearly impacted by source-drain 

implantation and varies from 270      for lightly doped source-drain, down to 200      for heavily 

doped source-drain region.   is impacted as well (from about 30        down to          ).  

Figure 4-5 shows distribution of       ,     long and short channel Vtlin for each wafer. As suggested 

by Figure 4-3 (a), channel model parameters are not affected by the process variation. Especially, 

Figure 4-5 (c) shows that long channel Vtlin does not vary with process varaitions. Thus, dopants don‘t 

go through the gate to reach the channel. 

Access resistance Channel resistance 
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(a) (b) 

  
(c) (d) 

Figure 4-5:        (a),    (b), long channel Vtlin (c) and SCE (d) distribution for each wafer of lot A. 

VtLDR distribution for each wafer is presented in Figure 4-6. We see that it slightly depends on process 

variation, indicating that the LDR doping concentration has changed. This is coherent with process 

variation, thus for this case VtLDR extraction seems working. 

 
Figure 4-6: VtLDR distribution for each wafer of lot A. 

Figure 4-7 shows the correlation between linear model parameters. The strong correlation between    

and        implies that we cannot distinguish their contribution to electrical parameters variations. 

This correlation has been explained by the extraction range in §3.3.3. Since these parameters are not 
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implicated in above conclusions, the analysis still holds. On the contrary, other parameters are 

uncorrelated, confirming the robustness of the extraction and the reinforcing previous conclusions.  

 

   
Figure 4-7: Linear model parameters correlation plot extracted over lot A. 

4.1.2.2 Impact of DSA 

In this section we investigate the effect of DSA on model parameters. DSA is aimed at activating 

dopants, avoiding migration. Thus R0 should be lowered. LDR might be impacted by DSA through 

dopants activation but since no dopant migration is expected, this impact should be relatively low. 

Here we use the same equation to model the drain current than the one used previously. To verify the 

extraction robustness for this new lot, Figure 4-8 shows the correlation plot for model parameters. 

 

 

Figure 4-8: Model parameters correlation plot extracted over lot B. 
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Again we see that parameters are uncorrelated except for µ0.Cox and   . Thus these parameters will not 

be distinguished in later analysis. Figure 4-9 shows IDlin variations against process variations. DSA 

tend to increase linear drain current. 

 

Figure 4-9: Short channel linear drain current distribution for each wafer of lot B.  

  
(a) (b) 

  
(c) (d) 

Figure 4-10: R0 (a),   (b),        (c) and    (d), dispersion for each wafer of lot B. 
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Figure 4-10 shows   , σ,        and    variation against process variation. R0 is significantly reduced 

thanks to DSA meaning that all implanted dopant have not been activated during regular anneal steps. 

DSA helps activating them significantly.   is not sensitive to DSA meaning that the junction did not 

move as expected and LDR dopants are already activated. Channel parameters are not sensitive to 

DSA either. 

Figure 4-11 shows VtLDR distribution for each wafer. VtLDR is steady confirming the hypothesis that 

the junction has not moved. Since DSA does not induce dopant migration, it is expected. This is to be 

compared with Figure 4-6 where VtLDR changed due to higher implant does and energy. 

 
Figure 4-11: VtLDR distribution for each wafer of lot B. 

Figure 4-12 shows the results of IDsat and        extraction for each wafer. IDsat is only slightly 

impacted by DSA.        seems to not be impact by DSA and there is no physical reason for    or 

    to depend on the DSA. R0 has a limited impact on IDsat but since it strongly depends on the DSA, it 

can explain the small IDsat dependence on DSA. 

  
(a) (b) 

Figure 4-12: Short channel saturation drain current and        distribution for each wafer. 

4.1.3 Conclusions about extraction on 28 nm FD-SOI devices measurements 

In paragraph 4.1.2, we have applied the extraction procedure using 28 nm FD-SOI silicon devices 

measurements including variation of source-drain implant dose and energy as well as DSA. We have 

seen that extractions yield physically coherent results. R0 is lowered by higher dose and energy 
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implant and by DSA. Both of these process parameters directly influence the active dopant 

concentration.   only depends on dose and energy implant. If the dose is increased, the LDR is more 

doped. Moreover higher energy might have moved down the pic concentration of implanted dopants in 

the source drain region. This pic becomes then closer to the channel and dopants diffuse farther under 

the spacer and gate considering the same anneal treatment. VtLDR extraction has evidenced that the 

junction position is sensitive to implant energy and dose. On the contrary, DSA does not change the 

junction position and LDR doping concentration. This has been evidenced showing constant   and 

VtLDR no matter if a DSA has been applied or not. Finaly, we can notice in both cases that VtLDR>Vtlin. 

This suggests that LDR requires higher gate voltage to be inverted as discussed in §2.5.1. Thus the 

transistor could be underlapped. 

4.2 Application to 14 nm FD-SOI technology 

In this section, the extraction method is applied on 14 nm FD-SOI technology. For this work, a 16-

wafers lot has been investigated. Process Of Reference (POR) wafer has been probed on 68 sites and 

the others are probed on 17 sites. First the model accuracy is assessed with correlation plots and model 

error evaluation in §4.2.1. The DOE along with the experimental setup are detailed in §4.2.2 along 

with the results and their interpretation. 

4.2.1 Extraction accuracy assessment  

In order to validate the capability of the extraction method to properly extract model parameters 

independently of each other, Figure 4-13 shows correlation plot of model parameters as well as access 

and channel resistance. In this figure, only the most strongly correlated couple of parameters are 

shown. Low correlation coefficients are found, emphasizing the robustness of the approach. 

 
Figure 4-13: Correlation plot between channel and access resistance on POR wafer. 
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(a) (b) 
Figure 4-14: nMOS linear (a) and saturation (b) drain current against gate length. Symbols and lines represent measurements 

averaged over the POR wafer and error bars represent 3.  of model error. 

Figure 4-14 (a) shows the linear drain current model accuracy over the POR wafer for nMOS devices. 

Measured drain current is plotted against gate length for all VG. Error bars show the standard deviation 

of the model error calculated over the 68 dies. In the same way as Figure 4-14 (a), Figure 4-14 (b) 

shows the saturation drain current model accuracy over the POR wafer for nMOS devices. Error is 

small confirming the ability of the model to predict measurements.  

  
(a) (b) 

Figure 4-15: (a) Extracted linear and saturation threshold voltage averaged over the POR wafer. (b) Corresponding 

DIBL against gate length. 

Figure 4-15 (a) shows the threshold voltage against the gate length, averaged over the POR wafer. A 

rough approximation of drain induced barrier lowering has been calculated using the following 

equation. 

      
           

         
 (131) 

Values for DIBL against gate length are shown in Figure 4-15 (b). These values are close to the one 

found in literature for FD-SOI technologies [146]. 

Table 4-4 regroups the average model parameters extracted over the POR wafer. v
*
 value is close to 

vsat value found in literature [147]. A good mobility value is found as well. 
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Parameters Values 

          103 

           37.4 

     
           

     
    0.46 

                   
Table 4-4: Extracted model parameters averaged over the POR wafer. 

4.2.2 Process flow and design of experiment 

Process parameters have been varied from wafer to wafer. Figure 4-16 (a) shows the common process 

flow used to build devices under test. Process variations are localized at the end of the flow, during HF 

treatment and source drain epitaxial step. Modulated process parameters are the HF clean before 

source-drain epitaxy, epitaxial thickness, carbon and phosphorous dose injected during the epitaxial 

growth. Figure 4-16 (b) relates the wafer number with the process parameters modulation. 

 

k 

1 
POR (reference) 

2 

3 HF- 

HF treatment before source drain 

epitaxy is shortened 
4 

5 

HF- - 

HF treatment before source drain 

epitaxy is more shortened 

6 SICP C+ 

Carbon is added during source drain 

epitaxy 

7 

8 

9 SICP C&P+ 

Carbon and extra Ph dose is added 

during source drain epitaxy 
10 

11 SiCP C&Pmax 

Carbon and maximum Ph dose is 

added during source drain epitaxy 

12 

13 

14 SICP thick 

source drain epitaxy is thicker 15 

16 
SiCP thin 

source drain epitaxy is thinner 

(a) (b) 
Figure 4-16: (a) Schematic process flow of tested devices [148]. (b) Wafer number related with process parameters 

modulation from POR 

4.2.3 Inference on process parameters effects on performance variations  

The impact of some specific process parameters on device performance is investigated here. To do so 

we use the extraction method introduced previously. Figure 4-17 (a) shows that drain current is rather 

sensitive to carbon and phosphorous dose. HF clean may induce a decrease in device performance but 

the effect is limited. Epitaxial thickness shows no major impact on drain current. Figure 4-17 (b) and 
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Figure 4-17 (c) focus on access resistance response with parameters R0 and  . Figure 4-17 (d) and 

Figure 4-17 (e) focus on channel resistance. We clearly see that R0 is by far the first parameter that 

drives Idlin wafer-to-wafer variation. Channel resistance is not much sensitive to process variations as 

expected since all process variations affect mainly the access region. Observed variations are in the 

range of wafer-to-wafer variability extraction accuracy. However the trend is clear for access 

resistance. Carbon raises R0 since it slows down the dopant migration, whereas phosphorous dose 

reduces it by increasing the carrier concentration in the access region.   seems only correlated to HF 

clean, indicating that it influences the junction position and the under spacer region. Short HF clean 

tends to degrade the contact quality between SOI and epitaxial raised source drain [149] creating 

silicon-oxide residues at the SOI/epitaxial interface. These residues act as defect sinks and can fix a 

large number of dopant and may induce cluster creation. Since these defects are fixed, they do not 

induce TED. Thus we expect dopants migration to be degraded. In our case, we see that shorter HF 

clean increases  . TCAD extraction has shown that an increase of   is due to a displacement of the 

junction away from the gate. Thus, it seems that shorter HF clean tends to move the junction away 

from the gate. This agrees with the hypothesis of enhanced cluster formation or sink for dopants, 

preventing them to diffuse toward the channel. 

 

 
 

(a) (b) 

  
(c) (d) 

88 % 

46% 5.9% 

44 % 
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(e) 

Figure 4-17: Drain current box plot (a), mean channel resistance (b) and mean access resistance (c) over each wafer 

for nMOS devices. Sq refers to an L/W normalization of the channel resistance. Only L=20nm shown. 

  
(a) (b) 
Figure 4-18: Wafer-to-wafer        (a) and IDsat (b) variations. 

Figure 4-18 shows that        and IDsat variations are different depending on the process. In addition 

IDsat response to process variations is really close to IDlin response and v
*
Cox is not correlated to Rsd as 

shown in Figure 4-13. Thus IDsat, as well as IDlin variations are mostly driven by R0 variations. 

4.2.4 Conclusion about 14 nm FD-SOI technology extraction 

The model has been used to evaluate the impact of process variations on average MOS performance 

(Ron) over 16 wafers. A good fitting quality, as well as uncorrelated and physically relevant model 

parameter values, validates the model accuracy. Process variations considered are HF clean before 

epitaxial, carbon and phosphorous dose in source-drain region and epitaxial height. We have seen that 

considered process variations mainly affect R0 and   parameters (i.e. access resistance). Poor HF clean 

tends to act as a dopant sink, preventing them from migrating toward the channel. Thus it tends to 

make underlapped transistors and raises   parameter. Carbon raises R0 since it slows down the dopant 

migration, whereas phosphorous dose reduces it by increasing the carrier concentration in the access 

region.  

 

 

 

45.8 % 42.1 % 

17% 
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4.3 Within-wafer variability modeling 

In this section, we attempt to understand the relation between electrical and model parameters within-

wafer variability. In order to address the within-wafer variability challenge, we will investigate three 

approaches: Monte Carlo draws, Forward and Backward Propagation of Variance (MC, FPV and BPV 

respectively). The last two methods have been widely investigated by McAndrew et al. [150]-[151] on 

BJT devices and MOSFET using PSP SPICE model [152]. We here apply them to model the transistor 

total resistance standard deviation on the POR wafer based on previously introduced device model. 

Results yield by different methods will then be compared. 

4.3.1 Definition 

4.3.1.1 Monte Carlo 

In previous paragraph, we have introduced the analytical model and calibrated it on silicon based on 

the results yield by parameter extraction. Knowing the variability of model parameters, Monte Carlo 

method predicts the variability of electrical parameters (i.e. drain currents) by successively drawing 

normally distributed random sets of model parameters and computing electrical parameters using the 

analytical model. If the normality assumption is verified and the model parameters statistics is 

sufficiently accurate, electrical parameters statistics obtained by Monte Carlo should match silicon 

data.    

4.3.1.2 Forward propagation of variance 

Using Monte Carlo, the standard error of electrical parameters statistics is inversely proportional to the 

square root of the number of experiments. In other words, the larger the number of experiments, the 

more accurate the results is. This can lead to time consuming calculations. On the contrary, FPV 

formalizes Monte Carlo approach, giving the mathematical expression of electrical parameters 

statistics, knowing the model parameters statistics. We recall the basic equation of variance 

propagation here. Let‘s first call ej the linear drain current (with j going over the 7 different channel 

lengths measured at 4 different gate voltages) and mi the model parameters (with i going from 1 to 11 

accounting for parameters R0, σ, µ0.Cox, θ2 and the 7 Vtlin of each channel length). Equation (132) 

relates model parameters covariance matrix   
  to electrical parameters covariance matrix   

 : 

   
       

    (132) 

 

 

where J is the sensitivity matrix of e with respect to m: 

      
   

   
 (133) 

This method propagates model parameters standard deviation using a first order expansion of the 

model. Thus model parameters variations should be small enough so that the model can be linearly 

approximated around the model parameters average. In addition, this limitation can be overcome by 

using second order sensitivity matrix. This approach has been investigated by McAndrew et al. 

[153][154], however we will see that, in our case, a first order approximation is sufficient by 

comparing it with Monte Carlo which do not suffer from this drawback. 
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4.3.1.3 Backward propagation of variance 

The two previous methods assumed that model parameters statistics are known with sufficient 

accuracy. Indeed, it can be accessed using extraction procedure introduced previously, based on full 

wafer electrical measurements. However, extracted statistics can be biased by the imperfection of 

extraction procedure. BPV is an alternative solution to estimate the statistic distributions of model 

parameters based on electrical parameters statistics without relying on extraction procedure. BPV 

provides   
  by mean of least square fit following (134): 

   
               

                    (134) 

 

This equation is simply the inverse function of (132), thus BPV require the same assumptions than 

FPV. This calculation is straight forward but depending on the size and condition number of J, the 

results can be numerically unstable. Thus, the results will be checked against Monte Carlo that does 

not suffer from such a problem. 

4.3.2 Results of Monte Carlo vs FPV vs BPV vs silicon  

4.3.2.1 Linear regime 

In this section we compare the results yield by previously introduced methods in linear regime. Results 

are regrouped in Figure 4-19, where measurements are shown in blue. First, Monte Carlo method is 

applied using 10
5
 draws of model parameter set. Random draws are based on model parameters 

statistics extracted using nonlinear extraction method (red symbols), using BPV (green symbols) and 

using linear least square fit (avoiding the second step of the extraction procedure: dark symbols). 

Statistics includes cross correlation between model parameters. Then FPV is applied with parameters 

statistics obtained using nonlinear extraction (red line), and using BPV (green line). Error bars 

represents the standard error about Rlin standard deviation. 

 
Figure 4-19: Rlin nMOS standard deviation over the POR wafer against gate length. Results include Monte Carlo, 

FPV based on parameters statistics extracted with nonlinear and linear least square fit and BPV. 

First we see that nonlinear least square fit improves the results significantly compared to linear least 

square fit. It illustrates the bias that a poor extraction method can induce. Then Monte Carlo yields the 

same results than FPV. This means that model parameters dispersion is small enough to enable the 

first order approximation of the model done by FPV and BPV and the computational complexity is 

well handled. Figure 4-20 shows discrepancies between extracted model parameters using nonlinear 

and linear least square fit and BPV. Results don‘t match and BPV tend to yield larger model parameter 
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variability than direct extraction except for Vtlin. Thus these three approaches are different even though 

BPV and nonlinear regression give close results for Rlin standard deviation. 

 

 

Extracted 

standard 

deviation 

BPV 

results 

Discrepancy 

(%) 

R0 [    ] 9.86 20.4 69.7 

  [      ] 689 14.3 70.2 

µ0.Cox [F/V/s]           
    

      
-3.27 

   [   ]           
    

      
14.2 

       

         
1.61 1.61 0.1 

 
(a) (b) 

Figure 4-20: Model parameters standard deviation extracted using nonlinear optimization method and BPV. 

Comparing modeled and measured Rlin variability shows that the model makes systematical 

underestimation. Indeed the whole variability is not taken into account with this method. First the 

channel length is assumed to not suffer from any variability source. Second, using extraction 

procedure, within-die variability is not accounted for because all model parameters except Vt are 

unique and fixed for every devices of each site. The second point is not relevant for BPV because it 

does not rely on extraction procedure.  

4.3.2.2 Saturation regime 

Previous method has been applied here with measured saturation drain current to model Ron 

variability. In this case, BPV has been applied using Rlin and Ron measurements in   
        in order 

to compute   
  that includes       . The system is poorly conditioned compared with the case of 

linear regime. Indeed, singular value decomposition had to be applied to solve (134) because      

becomes singular.  

  
(a) (b) 

Figure 4-21: Ron (a) and Vtsat (b) standard deviation depending on channel length using Monte Carlo and FPV and 

BPV against measurements.  

Ron variability model results are shown in Figure 4-21 (a) where error bars represents the standard 

error of measured Ron standard deviation. We see here that the fit between model and measurements is 
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much better, suggesting a reduced impact of local variability on the saturation resistance. BPV yields 

poorer results compared to MC. This discrepancy arises from the calculation complexity. 

Vtsat standard deviation is plotted against gate length in Figure 4-21 (b). We see that again BPV 

method is not equivalent to extraction method. 

4.3.3 Addressing channel length and local variability  

In this section we investigate the influence of channel length and local variability on the different 

methods using synthetic data. To do so, three dataset of synthetic Rlin are randomly generated based on 

model parameters statistics found using nonlinear extraction over the POR wafer. The first set 

considers neither channel length nor local variability. The second considers channel length die-to-die 

variability (        ) and the last consider both intra-die variability for all model parameters 

except Vtlin and die-to-die channel length variability. For intra die variability, device to device model 

parameters have been modulated by 100% of the within-wafer variability.  

  
(a) (b) 

 
(c) 

Figure 4-22: Synthetic Rlin variability against channel length. Synthetic data are generated with, (a) neither local nor 

gate length variability, (b) die-to-die gate length variability and (c) local and gate length variability. 

Figure 4-22 shows synthetics Rlin variability against L along with the predicted variability using MC, 

FPV and BPV methods as in Figure 4-19. Figure 4-23 shows Vtlin variability used as input to the 

synthetic data generation along with the one predicted by extraction and the one predicted by BPV 
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method. Plots have been done based on the three synthetic data sets. We see that if there is no local 

variability, every method works fine and model parameters are well extracted. However when gate 

length and local variability is introduced, methods fail to track Rlin and Vtlin variability properly. 

  
(a) (b) 

 
(c) 

Figure 4-23: Synthetic Vtlin variability against channel length. Synthetic data are generated with, (a) neither local nor 

gate length variability, (b) die-to-die gate length variability and (c) local and gate length variability. 

Figure 4-24 shows the error on extracted model parameters using the three set of synthetic data. We 

see that without variability, model parameters are perfectly extracted as expected. Gate length 

variability only biases extraction of R0,   and Vtlin. Local variability biases extraction of all model 

parameters. Thus local and gate length variability along with the simplicity of the model can explain 

the small discrepancies observed between measurements and model in Figure 4-19 and Figure 4-21 

(a).  



Chapter 4: Compact modeling: application to 28 nm and 14 nm FD-SOI technologies 

 

105 

 

 
Figure 4-24: Root mean square error on extracted model parameters using synthetic data. Error is plotted in 

percentage of the input model parameters. 

4.4 Conclusion  

Following the introduction of model parameter extraction procedure in chapter 3, we have applied it 

on silicon measurements. 28 nm FD-SOI and 14 nm FD-SOI technologies have been investigated. It 

has been shown that model parameters variations depending on process variations are coherent and 

have been physically interpreted. A clear quantification of the impact of process variations has been 

enabled, showing that the method is efficient and robust while requiring only few measurements, 

making it suitable for industrial application.  

Studying 28 nm FD-SOI using model parameter extraction enabled quantifying the impact of source 

drain implant dose and energy as well as DSA step. We have seen that extractions yield physically 

coherent results. Highly doped source-drain region resistance R0 is lowered by higher implant dose 

and energy and by DSA. Both of these process parameters directly influence the active dopant 

concentration. This means that highly doped source-drain region has remaining inactivated dopant 

before DSA. DSA activates them successfully. On the contrary LDR resistivity represented by   is 

only dependent on implant dose and energy. Indeed DSA does not induce dopant migration and thus 

doesn‘t move the junction further toward the channel. Moreover this means that LDR dopants are 

already well activated before DSA and DSA has no activation effect. However VtLDR extraction has 

evidenced that the junction position is sensitive to implant energy and dose.       ,    and Vtlin have 

been shown to be constant, meaning that dopant does not penetrate into the metal gate or channel. All 

these sensitivities can be quantified easily using this technique, bringing valuable information in terms 

of device optimization. 

Studying 14 nm FD-SOI technology, it has been possible to evaluated the impact of HF cleaning time 

before epitaxy, carbon and phosphorous dose during in situ doped raised source-drain epitaxial as well 

as epitaxial thickness. Carbon has shown to increase R0 by reducing dopant migration whereas 

increased phosphorous dose decreases R0 by raising the active dopant in the highly doped source drain 

region. Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the 

channel. Thus it tends to make underlapped transistors and raises   parameter       

In a second step, within-wafer variability has been investigated on 14 nm FD-SOI technology. Monte 

Carlo, forward and backward propagation of variance have been conducted in order to model this 

variability. It has been shown that linear model linear drain current variability is slightly 

underestimated. BPV and direct extraction showed close results in term of linear drain current 

variability however corresponding model parameters variability yield different results. It has thus been 
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suggested that local variability and channel length variability are responsible for these discrepancies 

(that are not properly taken into account using direct extraction or BPV). This interpretation has been 

reinforced by the fact Monte Carlo draws used to forward propagate the model parameters variability 

extracted using BPV and direct extraction gives the same results than FPV. This leads to infer that the 

discrepancy does not come from a violation of normality and linear local approximation hypothesis. In 

order to verify that channel length and local variability are responsible for observed discrepancies 

between measurements and model, their impact on the model has been assed using synthetic data and 

showing that it induces errors and can thus explain it.  
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In the previous chapter we have successfully built the required tools to map the relation between 

model parameters and electrical performances. We have shown how to draw all the benefits of these 

tools. In particular it has been possible to get valuable insights into the device characteristics and 

understanding of process variations impact on the device functionalities. One last step is required in 

order to complete the model construction that relates electrical and process parameters. Indeed we 

miss the link between model parameters and process parameters (see the first stage of the PCM 

diagram in the introduction chapter of this manuscript Figure 1-3). The aim of this chapter is to show 

how to build this kind of model that is called Process Compact Model (PCM) in our context. Three 

methods to build PCM will be tackled: i) stepwise regression, ii) LASSO and iii) LARS. PCM 

construction is a thorny task and should be carried out cautiously. A misuse of these methods can lead 

to strongly biased and unreliable PCM. Indeed, in order to ensure a proper output, each of these 

methods requires to be calibrated before use. In order to calibrate and test the model efficiency, we 

will use cross validation tests. We have kept three variants of this kind of test: k-fold Cross-Validation 

(k-fold CV), Leave-One-Out Cross-Validation (LOOCV) and bootstrap. These methods give an 

estimate of the PCM accuracy and propensity to be predictive. Thus calibrating stepwise regression, 

LARS or LASSO consists in running these tests using different calibrations. The best calibration is the 

one that optimizes both accuracy and the propensity to be predictive. PCM construction process is 

depicted in Figure 5-1. 

 

Figure 5-1: PCM construction process flow 

PCM will first be defined in §5.1. We will see in which context this tool can be useful. Strategies to 

calibrate and test the robustness of PCM such as K-fold CV, LOOCV and bootstrap are introduced in 

§5.2. PCM construction methods like stepwise regression, LASSO and LARS will be detailed in §5.3. 

In §5.4 we will build PCM to link extracted model parameters using TCAD, introduced in previous 

chapter, with process parameters. In this paragraph we will show that using the PCM construction 

process flow (see Figure 5-1) is mandatory for silicon applications. Simpler approach would fail in this 

task because it implies dealing with ill-posed problem that requires variable selection and dealing with 

noise and variability. Using this PCM construction procedure, in §5.5, we will construct a PCM at the 

wafer scale and show that it can model efficiently within-wafer variability. This model will be used 

afterward in order to give guidelines to optimize within-wafer variability. We will see that wafer scale 

PCM can only account for process parameters that exhibit large dispersion at wafer scale. In order to 
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build PCM that includes larger process variations, the same procedure will be carried on a full DOE, 

in §5.6, with process parameters variations. The impact of local random variability, within wafer 

variability and measurement noise will be investigated using synthetic data. Recommendations will be 

given about the experimental setup required in order to build PCM with sufficient robustness and 

minimum error. A summary of this chapter is proposed in §5.7. 

5.1 Process compact model (PCM) definition and context of use 

5.1.1 Definition 

Traditionally, definition of PCMs are models that relate process and device electrical parameters 

through a set of analytical functions, allowing manufacturing engineers to gain insights into device 

electrical parameters sensitivity to process variability in an extremely fast and robust manner [155]. 

This is agreement with the aim of this thesis. However, in the context of this chapter, ―PCM‖ will also 

be used to designate the model that maps the relationships between process and model parameters. The 

simpler concept of PCM is illustrated in Figure 5-2: 

 
Figure 5-2: Illustration of the basic concept of PCM 

As depicted, this PCM relates process and model parameters through analytical functions. This is not 

to be confused with compact model that relates electrical parameters with model parameters, where 

model parameters are not necessarily process parameters. Indeed compact models often relie on model 

parameters such as threshold voltage, DIBL, or subthreshold slopes that can have complex 

relationships with process. On the contrary, process parameters are geometrical or physical quantities 

that can be straightforwardly accessed through process adjustment (i.e. the epitaxial layer thickness 

Tepi can be modulated simply by varying the deposition time during the process). As well, PCM 

should not be confused with process and electrical simulation tool such as TCAD which use finite 

element algorithm to compute the physics and the electrical properties of the device. These 

simulations rely on numerical computation of complex physical models whereas PCM only use 

analytical fast computing models.  

This kind of model (its construction and application) belongs to a mathematical field called data 

mining or statistical learning. In order to introduce properly the different mathematical tools used in 

this work, we provide some definitions here.  

 Observations (noted  ̂): They are what we want to model. Depending on the model 

considered, it can be either electrical measurements or simulations or quantities issued by 

extraction procedure (e.g. R0,  ,       , Vt,…). These quantities are not known unless 

measured, simulated or extracted. In our case observations are extracted model parameters. 
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 Responses (noted  ): They are outputs of the model. They are the same quantities as 

observations and supposed to be as close as possible to them.  

 Variables or predictors (noted P): They are inputs of the model (i.e. process parameters). They 

are known beforehand and set by the user. 

 PCM coefficients (noted  ): Fixed parameters used to calibrate the PCM in order to fit 

observations. These parameters are determined during the PCM building phase.   

Following the mathematical formalism, parameters to be modeled called ―observations‖ (noted  ̂) and 

process parameters called ―predictors‖ (noted P) are related via the PCM (noted f) that satisfies: 

  ̂           (135) 

And          (136) 

where e is the residual between responses and observations. Residual can be due to model deficiency 

or noise induced by measurements  ̂. 

5.1.2 Applications and benefits 

PCM have not been extensively used in literature. Thus it can be difficult to understand its benefits 

and applications. In order to illustrate this, two studies found in literature are developed here. They use 

different kind of PCM in order to model electrical parameters.  

Considering the complexity of physical and electrical mechanisms underlying state-of-the-arts 

MOSFETs, simple analytical functions are not suited for PCM. Literature reports the use of Feed-

Forward Neural Network (FFNN) to overcome this complexity and build suitable PCM for emerging 

devices [156]. This study was based on TCAD simulations and aimed at investigating process 

variability in nanowire FinFets. The technology being not mature enough, only TCAD simulations can 

provide a good prediction of electrical and process relationships for this kind of device. However 

statistical investigations require a large amount of experiments and TCAD simulations are too much 

time consuming to give timely answers. In this context PCM has been used since they can meet the 

expectations. Their PCM could predict full ID-VG‘s starting from model parameters such as channel 

length, gate length and oxide thickness. 

In another context, Kakehi et al. [157] have applied PCM to model the relationship between gate 

length, halo dose, RTA spike and the threshold voltage. Although they did not explain precisely how 

the PCM is built, it might be simpler than FFNN since it only relates 4 parameters. Moreover Vt is 

simpler to model that full ID-VG. They used it in combination with feed-forward process control in 

order to reduce die-to-die, wafer-to-wafer and lot-to-lot Vt variability. In Feed-Forward Process 

Control [158][159], process conditions at n+1 step are varied so that the impact of the n
th
 step 

variability is minimized. Determining process variation at n+1 step is done using PCM. 

To conclude, PCM provides a powerful tool for statistical analysis and process optimization. These 

two cases introduced above showed that, depending on the context and which parameters are supposed 

to be related, the strategy to build the PCM changes. In the first case the PCM is able to predict the full 

ID-VG but is based on model parameters that cannot be straightforwardly accessed through process 

adjustment (like electrical channel length). In the second case, PCM‘s input parameters are truly 

process parameters but its capability is limited to Vt prediction. In our study we will see how we can 

combine the efficiency of our compact model with a user friendly PCM that relates process and model 

parameters to get the full mapping of the device, from process to electrical parameters.  
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5.2 Methods to evaluate the accuracy of a model 

Different methods to build PCMs will be introduced further. These methods need to be calibrated and 

will not lead to the same results in most cases. Thus a method should be determined to select the best 

model. Efficiency of the model is evaluated using two criterions: the mean square error (MSE) 

between model and observations and the model variance (that is the variance on extracted model 

coefficients  ). This paragraph introduces some basic methods to evaluate the model efficiency. 

5.2.1 Validation test 

Considering a set of observations  ̂ composed of n elements, the most straight forward way to evaluate 

model error is to build the model using  ̂ and then calculate the model error following: 

     
 

 
∑(     ̂)

 
 

   

 (137) 

where Y is the model response and n the number of observations. However, using this technique, the 

same observation set is used to build the model and to calculate the model error. Thus model error 

does not reflect the ability of the model to predict observations not used to build the model within the 

observation domain. Model efficiency estimation is thus strongly biased using only MSE as indicator. 

The alternative is to split the observation set into a training dataset and a validation dataset. The model 

is then built on the training dataset and the model error is calculated on the validation dataset, which is 

different from the training dataset. This approach is called validation test. The training dataset domain 

is similar to the test dataset domain in order to ensure a proper coherence of test with the model. The 

respective size of training and validation dataset is set by the user. This choice leads to a tradeoff. 

Indeed if the validation set is small then, the model is built upon almost all the observation set, 

minimizing the model variability but model error estimation is subject to a large uncertainty. On the 

other hand, if the validation test is large, the uncertainty about model error is minimized but model 

variance increases.   

5.2.2 Cross-validation [160] 

Cross validation is an alternative to validation test. It consists in splitting the observation dataset into a 

training and validation dataset many times to improve the estimation of model error and allow 

estimation of model variance. 

There are two common way to proceed. The first method is called Leave-One-Out Cross-Validation 

(LOOCV) and the other is k-fold Cross-Validation (k-fold CV). These methods are explained in the 

following paragraphs. 

5.2.2.1 Leave-One-Out Cross-Validation (LOOCV) [160] 

Considering n observations, LOOCV method assigns all but one observation to the training dataset. 

Test dataset is composed of only one observable. This method ensures building the best model out of 

available observations but leads to high uncertainty on model error since it is calculated on only one 

observation. In order to get the most accurate model error estimate, the procedure is repeated n times, 

each time choosing a different observation for the test dataset. The LOOCV estimates for the mean 

square error is the average of these n error estimates, n being the number of observations: 
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 (138) 

Although the first aim of LOOCV is not to evaluate the model variance, it can be used to do so. 

Indeed, at each iteration, the training test is different thus the method yields n models. It is then 

possible to evaluate the model variance on this set of n models. To do so, the total model variance is 

calculated as the average of each coefficient variance as: 
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 (139) 

where Var stands for variance. LOOCV MSE and LOOCV Model Variance are not used to build a 

model by estimating    values but they are used to evaluate the model accuracy and variance. The 

lower they are, the more accurate and less variable the model is.  

5.2.2.2 K-fold Cross-Validation (k-fold CV) [160] 

An alternative for LOOCV is k-fold CV. In this approach, the entire observation dataset is split into k 

subset of the same size. One of them, called   , is taken as the test dataset and the other are regrouped 

to form the training dataset. As LOOCV method, this procedure is repeated k times, each time using a 

different subset for test dataset. The k-fold CV estimate of the mean square error is the average of 

these k error estimates:  

 k-fold        
 

 
∑ (     ̂)

  
    (140) 

 

If k=n then this method is perfectly identical to LOOCV, however choosing     ensure less 

uncertainty in model error estimation. Meanwhile the model variance might increase significantly if k 

becomes very small. In practice k-fold CV is applied using k=5 or k=10.   

Model variance can be estimated using k-fold CV as well, following the same approach than LOOCV. 

Here there are only k model generated thus, the model variance estimate is less accurate. The model 

variance formula yields: 

 k-fold                   
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    (141) 

5.2.3 Bootstrapping [161] 

Bootstrapping is a resampling method that aims at estimating properties of an estimator (e.g. mean, 

variance, confidence interval, standard error …) without assumption about the distribution. 

Considering a sample  ̂ of n observations, the method consists in resampling many times  ̂ by 

successively drawing n elements in  ̂ with replacement. Bootstrap sample can have the same element 

more than once. Thus every bootstrap sample can be different. For each new sample generated, the 

estimator is calculated. This operation yields an empirical distribution for the estimator whose 

properties can be estimated. For example, population mean can be estimated as the average of the 
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bootstrap samples means, and standard error about population mean can be estimated as the standard 

deviation of the bootstrap samples means. 

If the population has a normal distribution, then bootstrap is just a more complicated way to derive 

properties of the estimator distribution. However bootstrapping provides results that hold even if the 

distribution is unknown.  

In the context of building a PCM, bootstrap method will provide estimation about the model variance. 

To do so let‘s consider a dataset of k predictors P and n observations  ̂: 

      ̂             (142) 

with i going from 1 up to n and k the number of different predictors. Model parameters   can be 

estimated building the PCM using z. Following bootstrap method, the observation            can be 

resampled B times. Bootstrap samples are collected and named    
     

       
  with b going from 1 up 

to B. Model coefficients are then computed for each of the bootstrap samples, producing B set of 

bootstrap model parameters, named   . Using the model parameters distribution we can evaluate their 

standard error. 

However, directly resampling z implicitly treats the model parameters P as random rather than fixed. 

We may want to treat it as fixed since we choose it beforehand and it is not subject to any uncertainty. 

To do so the method consists in: 

 Estimating the model parameters and calculate the response Y and residual Ei for each 

observation. 

     ̂     (143) 

 Generating bootstrap samples of residual    
 ,    

 ,..,    
 . 

 Calculating the bootstrap observation    
  subtracting    

  to  ̂ . 

 Extracting the bootstrap model parameters    from    
  and P. 

Standard errors on model parameters are then calculated from    distributions. This alternative is valid 

only if the functional form of the model is correct and if residues are identically distributed over P. 

5.3 Methods to build PCM 

In this paragraph, different approaches to build PCM are introduced. These methods consist in two 

steps, first selecting the relevant predictors that will enter the model, second the model is created by 

fitting observations with these predictors. The global approach is detailed in §5.3.1, then two 

categories of methods are investigated, first subset selection in §5.3.2 and then shrinkage method in 

§5.3.3. More recently developed approach using hybridization of the two previous methods are 

introduced in §5.3.4. These methods are systematically tested against synthetic data in order to 

investigate their different behavior, strengths and weaknesses. 

5.3.1 Global approach 

Building a PCM consists in finding a model that relates output parameters with process parameters. 

The most straightforward way to build empirical linear model based on observation is ordinary least 

square fit. This approach is adapted only if predictors are all relevant (i.e. they are actually correlated 
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with the observation) and not correlated between each other, the problem is not ill-posed (i.e. there are 

much more observations than predictors) and observations are not subject to significant amount of 

noise or uncertainty. However this is not our case since there are more than 300 process steps for the 

Front-End-Of-Line (and thus at least as much process parameters). Moreover not all of these steps 

have an impact on electrical properties. For example, different dopant implantations are used for 

nMOS and pMOS devices. When pMOS source-drain implant is processed, nMOS devices are 

protected. Thus considering the pMOS source-drain doping implantation energy or dose as an input 

process parameter for nMOS device PCM is a mistake. This kind of selection is based on expert 

knowledge and is the first selection that should be made. Then, if we consider only relevant process 

parameters (those that actually play a part in the considered device building process), only a few of 

them will have a significant impact on the output parameters. Considering that the amount of 

observation is very limited the problem is ill-posed and ordinary least square is not an appropriate 

method. Thus variable selection must be performed. There are different methods to achieve this kind 

of task. Among them we distinguish two main categories: subset selection and shrinkage method. 

These methods are introduced in the next paragraphs. 

In order to test their ability to successfully find relevant predictor despite the presence of noise and 

correlated parameters in an ill-posed problem, we build a predictor matrix P composed of 50 randomly 

generated predictors and 25 observations. The polynomial formula that links P and Y is arbitrarily set 

to: 

 
                           

                                               

(144) 

Only 5 predictors are used to generate the observation. The others are fake predictors. Noise is then 

simulated by adding a normally distributed amount to the observation. The noise level (i.e. the 

standard deviation of noise signal) is set to 10% of the observation. All of these PCM construction 

methods will be used on synthetic observations in order to check if they are able to find back the 

polynomial formula. These methods rely on user defined parameters that must be calibrated. To do so 

we will use cross validation and bootstrap methods introduced previously. It will also be used to 

compare the efficiencies of each method. 

5.3.2 Subset selection [162] 

This approach consists in determining the minimum set of predictor that explains the observation 

variance. Following approaches will be introduced: best subset selection, forward and backward 

selection as well as a hybrid method that relies on both backward and forward selection. 

5.3.2.1 Best subset selection [162] 

Considering that our problem is to build the best PCM composed of p predictors, the most 

straightforward way to do so is to compute every possible model and compare their efficiency. The 

most efficient model will contain only relevant predictors. This technique is called best subset 

selection. If the investigation is limited to linear model only, then the number of possible model 

depending on p is given by the following formula: 

         ∑(
 
 
)

 

   

 (145) 
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In this formula i is the number of parameters included in the model. Considering all cases, i ranges 

from 1 parameter (a constant for example) up to p parameters (the complete model that includes every 

parameters). Then, if the model has i parameters, there are (
 
 
) possible combinations and as much 

possible model. Thus, for 10 predictors (including the constant) there are 1023 possible models. This 

is already large if the model is time consuming to compute and test. If we want to consider second 

order polynomial models, then the possible number of models increases drastically and yields: 

         ∑ (    

 
*

    

   

 (146) 

where      is the sum of the linear (p) and quadratic (p²) parameters. Again, if p=10, there are 

         possible models. The problem is too large to be treated in a reasonable amount of time. This 

is why this method will not be used in practice. 

5.3.2.2 Forward stepwise regression [162] 

In order to alleviate this problem, the stepwise regression has been proposed in the 60‘s. We 

distinguish forward and backward stepwise regression. Forward stepwise regression starts by the 

simplest possible model that is a constant. Then predictors are added one by one, each time selecting 

the one among the remaining predictors that best explains the residue (in other words that gives the 

greatest additional improvement to the fit). There are many ways to determine the best predictors to be 

included in the model. Usually, this takes the form of a sequence of F-tests or t-tests, but other 

techniques are possible, such as adjusted R-square, Akaike information criterion, Bayesian 

information criterion, Mallows's Cp, PRESS, or false discovery rate [163]. In our case we will use F-

test.  

In order to compute F-test, three quantities related to the model are required: the Sum of Square Error 

(SSE), the Sum of Square Regression (SSR) and the degree of freedom (df): 
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        (149) 

In (147) and (148), n is the number of observations and p the number of predictors. At the i
th 

step of 

the model construction, there are i predictors included in the model and p-i predictors not yet included. 

SEE, SSR and df are calculated for the model with i parameters and for the model with i+1 

parameters. The model with i+1 parameters is the model with i parameters to which we added a 

selected predictor among the one not yet included in the model. These quantities are called SSE1, 

SSR1, SSE2, SSR2, df1, df2. Subscripted indices 1 and 2 stand for the model with i and i+1 parameters 

respectively. Then the F value is calculated as  

   
         

    
    (150) 
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This F value is calculated p-i times, each time using a different predictor for the model with i+1 

parameters. This is how a F value can be associated with each parameter not in the model. The 

predictor to be added for the next step is the one that yields the smallest F value.  

A criterion is needed in order to determine whether the next predictor to be added is relevant or not. 

This is the stopping criterion. The simplest stopping criterion consists in comparing the smallest F 

value with a critical F value Fcrit. Fcrit is calculated as the inverse cumulative probability distribution of 

Fisher statistic for a probability set by the user. Usually the probability is taken between 0.85 and 0.95. 

if F<Fcrit the algorithm can continue otherwise it stops because the predictor does not significantly 

improve the model prediction. This probability threshold can be set using cross-validation method. 

5.3.2.3 Backward stepwise regression [162] 

As an alternative, F-test can be applied to decide which parameter to remove instead of being added. 

This is called backward stepwise regression. This method starts by creating the most complete model 

(that includes all the p predictors). Then for each predictor of the model, F-test is calculated 

considering the full model and the one where the predictor under consideration is removed. The larger 

F value designates the predictor to be removed.  

In this case stopping criterion is reached if F<Fcrit (where Fcrit is calculated with a probability chosen 

between 0.05 and 0.15). Alternatively it can be also checked using cross-validation. 

5.3.2.4 Hybrid approach between forward and backward stepwise regression [162] 

The main flaw of forward stepwise regression is that, adding a predictor to the model changes the F 

value of every predictor already in the model. Thus, at the n
th
 step, a predictor that has been previously 

added to the model can, at this step, yield an F value larger than Fcrit. Even though this predictor used 

to be the one that best explained the observation variance (at the step i < n), it might not explain it 

anymore.  

To overcome this kind of problem, based on forward stepwise regression, hybrid approach consists in 

checking the F value of every predictor (including the one already in the model) at each step and 

deciding whether to add or remove predictor depending on their respective F values. Different 

approaches have been proposed to formalize this decision process. In our case, the predictor which has 

the larger difference between its F value and Fcrit is chosen to be either removed (if F> Fcrit) or added 

(if F<Fcrit).  

Matlab implemented stepwise algorithm [164][165] has been used to perform stepwise regression on 

synthetic data, using the whole dataset as a training dataset. In order to illustrate the behavior of this 

method, Figure 5-3 shows the estimated predictor coefficient   depending on parameter Fcrit. 
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Figure 5-3:   values depending on chosen Fcrit value for stepwise regression algorithm 

In this picture, lines with marker represent   coefficients of predictor that have been used to generate 

synthetic data. Other   coefficients are represented with black line. Dotted and solid lines with 

markers represent the true and extracted   values respectively. We see that for small values of Fcrit 

(below 0.07) only relevant predictors are selected. Thus Fcrit should lies in the interval ]0;0.07]. If Fcrit 

is above 0.07 the method starts to extract non zero coefficient for predictor that are not in the model. 

Using a suitable value for Fcrit doesn‘t lead to extract the correct   coefficients since we see 

discrepancies between doted and solid lines. This is due the artificial noise added to the response 

before performing stepwise regression. Bias in   values due to noise depends on the noise level and 

the model itself. Figure 5-4 shows the k-fold CV MSE and model variance depending on parameter 

Fcrit. 

  
(a) (b) 

Figure 5-4: MSE (a) and model variance (b) extracted using k-fold CV test 

K-fold CV test shows an optimal point for            . This optimal point minimizes both model 

variance and MSE. This is a good result in view of Figure 5-3. K-fold CV test shows also that using 

            increases the average MSE and model variance. This implies that the method fails more 

often in distinguishing relevant from irrelevant predictors. The result is more dependent on the training 

test used. If             (especially if Fcrit > 0.07), MSE does not rise significantly but model error 

does. It suggests that relevant predictors are included in the model but as Fcrit rises, the probability to 

include an irrelevant predictor in the model rises as well, leading to overfit.   
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Figure 5-5 shows the LOOCV MSE and model variance depending on parameter Fcrit. 

  
(a) (b) 

Figure 5-5: MSE (a) and model variance (b) extracted using LOOCV test 

Optimal value for Fcrit is found to be 0.003, minimizing both MSE and model variance. This value lies 

within the correct range of Fcrit. The same interpretations as for k-fold CV holds for LOOCV. The shift 

in the minimum of Fcrit between these two methods is only due to the respective size of training and 

test dataset used. Both of these results are relevant. 

Figure 5-6 shows the bootstrap MSE and model variance depending on parameter Fcrit. 

  
(a) (b) 

Figure 5-6: Model variance against Fcrit using bootstrap method 

It can be noticed that bootstrap yields noisier results that LOOCV and k-fold CV. This can be 

explained by the fact that bootstrap method randomly draws the bootstrap samples. Indeed, there are 

too much possible bootstrap samples to compute all of them within a reasonable amount of time. With 

25 observations, the number of different bootstrap combinations is          . We have limited the 

computation to 150 bootstrap samples. However this noise also comes from the fact that stepwise 

regression is a bit cumbersome as a method, making it strongly dependent on the training set used to 

build the model. Thus for this method bootstrap is not suited to determine Fcrit value.  
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To conclude, stepwise regression has been successfully calibrated using LOOCV, k-fold CV and 

bootstrap. Using the calibration, stepwise regression found the five relevant predictors among the 50 

ones with only 25 observations impacted by 10% of noise. 

5.3.2.5 Conclusion about stepwise regression 

Compared to best subset selection, stepwise regression offers an easy way to find a good model within 

a reasonable amount of time. Indeed if the final model totalizes p-1 predictors among the p available, 

then the number of model to be calculated is: 

          
      

 
 (151) 

Thus for p=50, the algorithm will test 1327 models instead of            if we used best subset 

selection. 

The main drawback of this method is that the final model is not guaranteed to be optimal in any 

specified sense. Moreover the procedure yields a single final model, although in practice there are 

often several equally good models. Many alternatives have been proposed involving a mixture of 

forward and backward stepwise regression but there are no convincing solutions since they yield 

different results without bringing more confidence on the result accuracy. Moreover this technique has 

been highly criticized in literature [166][167]. Thus this method should be used with care.  

5.3.3 Shrinkage method [162] 

As explained in previous paragraph, subset selection has drawbacks. In order to provide more robust 

methods, another approach called shrinkage method has been developed. Instead of adding or 

withdrawing successively variables from the model, this approach gradually reduces model 

coefficients value of least significant predictors. The approach is more robust because the results does 

not depends on any strategy chosen for the method (unlike stepwise regression) and is fast computed 

since only a limited amount of model construction is needed (unlike best subset selection).  

5.3.3.1 Ridge regression [162] 

Ridge regression has been introduced by A. N. Tikhonov [168]. This method is directly derived from 

ordinary least square regression. In least square regression, the solution minimizes the sum of square 

error between model and observations, that is, it finds the set of predictor coefficients that minimizes 

SSE, recalled here for convenience:  

     ∑(      ∑       

 

   

)

 
 

   

 (152) 

In above equation, x are the predictors.    is the intercept.  

To that equation, ridge regression adds a second constrain that forces the   coefficients to be as small 

as possible. This constraint is introduced as a penalty called shrinkage penalty, calculated as the sum 

of square   times a constant   that is set by the user. The ridge regression coefficient estimates    are 

the values that minimize 
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      ∑  
 

 

   

 (153) 

Thus, if   is set to 0, ridge regression is perfectly equivalent to ordinary least square. As   increases, 

coefficients reduce and ultimately, if    , then     . Since equation (153) is no more a linear 

problem, it is usually minimized using Levenberg-Markard algorithm [169][170].  

This method is probably one of the most widely used for ill-posed problems. However, even if 

irrelevant predictor coefficients are quickly shrunk toward zero, these values cannot reach exactly 

zero. Thus it does not perform a practical variable selection, thus its investigation is out of the scope of 

this work.  

5.3.3.2 Least Absolute Shrinkage and Selection method (LASSO) 

This method has been introduced by R. Tibshirani [171]. It proposes an alternative to ridge regression 

that enables setting irrelevant predictor coefficient to exactly zero. The principle of LASSO is the 

same as ridge. The difference lies in the equation to be minimized. In this method the penalty is 

calculated using    norm instead of    norm of predictor coefficient. The function to be minimized 

becomes then: 

      ∑|  |

 

   

 (154) 

Again, in this method,   coefficient has to be chosen by the user. Typically this parameter is 

determined using cross-validation or bootstrap methods. 

In this work we used the Matlab implemented LASSO method [172][173]. In order to illustrate the 

behavior of this method, Figure 5-7 shows the estimated predictor coefficient   depending on 

parameter  . 

 

Figure 5-7:   values depending on chosen   value for LASSO algorithm. 

Using LASSO, the number of eliminated predictor is proportional to  . We see that for        , 

the model succeed to only select the relevant predictors. However including   also biases the 

extraction of   coefficient, reducing their values. Thus, the method provides a powerful way to select 
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predictor but   coefficient should be carefully chosen in order to optimize variable selection and 

minimize coefficient bias.  

  
(a) (b) 

Figure 5-8: MSE (a) and model variance (b) extracted using k-fold CV test 

Figure 5-8 shows the k-fold CV MSE and model variance depending on parameter  . This figure 

shows that a good tradeoff between MSE and model variance leads to an optimal   value of 1.5 that a 

correct value since it would lead to select only relevant parameters. 

  
(a) (b) 

Figure 5-9: MSE (a) and model variance (b) extracted using LOOCV test 

Figure 5-9 shows the LOOCV MSE and model variance depending on parameter  . In the same trend 

that k-fold CV, LOOCV shows that a good tradeoff between model variance and MSE would lead to 

an optimal   value of 1. It is slightly low and choosing this value might lead to a model that includes 

irrelevant predictor (depending on the training set) but anyway, there will be only few of them and 

their corresponding   coefficient would be very low compared to the others. 
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(a) (b) 
Figure 5-10: Model variance against Fcrit using bootstrap method. 

Figure 5-10 shows the MSE and model variance calculated bootstrap depending on parameter  . 

Again, the optimal   can be deduced from a tradeoff between MSE and model variance. However this 

time, the optimum is not obvious and strongly depends on the chosen tradeoff. Thus in this case k-fold 

CV and LOOCV would be preferred over bootstrap.    

To conclude, it has been possible, using LASSO, k-fold CV and LOOCV, to extract only the 5 

relevant predictors among the 50 ones. Using the average of the optimal   value found using k-fold 

CV and LOOCV leads to a reasonable choice.  

5.3.4 Hybrid approaches 

The two previous approaches that are subset selection and shrinkage method are very different at first 

glance but there is actually a bond between them. Some hybrid algorithm have been developed that are 

able (with a slight modification) to perform both these approaches. In this paragraph we introduce two 

of them called stagewise and least angle regression.  

5.3.4.1 Forward stagewise regression [174] 

Forward stagewise regression is based on the same principle as forward stepwise regression. It starts 

with all coefficients equal to zero, and iteratively updates the coefficient of the variable that achieves 

the maximal absolute inner product with the current residual by a small amount  . This variable is 

called ―best candidate‖. Thus the main difference with stepwise regression is that, at each step, 

variable coefficients that are in the model are not calculated by OLS but instead the method only 

increases one coefficient (making the approach continuous). It makes the approach less cumbersome 

and avoids biased decision about variable inclusion and deletion. This procedure has an interesting 

connection to the LASSO: under  some  conditions,  it  is  known  that  the  sequence  of  forward  

stagewise  estimates  exactly coincide with the lasso path, as the step size   goes to zero. This method, 

also being more robust than stepwise regression, needs much more step to yield the final results. 

Moreover since it is identical to LASSO method if    , advantages of this approach are limited, thus 

its investigation is out of the scope of this thesis. 
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5.3.4.2 Least angle regression [175] 

Least Angle Regression (LARS, S suggesting LASSO) is based on forward stagewise regression. In 

stagewise regression the   amount to be added to the best candidate is fixed. It is necessary to fix   

small in order to detect precisely when the best candidate changes. In LARS algorithm, the sum of 

increment that should be added to the best candidate, before the best candidate shifts, is calculated at 

once. This strongly reduces the computation time and makes it as efficient as stepwise regression. 

Applying a simple modification of the algorithm enables LARS to perform either stagewise regression 

or LASSO. LARS is thus an intermediate approach between LASSO and stagewise regression.  

In this work we used the Matlab implemented LARS method [175][176] by Xiaohui Chen. In order to 

illustrate the behavior of this method, Figure 5-11 shows the estimated predictor coefficient   

depending on the number of step  . 

Using LARS, the more steps the algorithm makes, the more predictors enter the model. If not stopping 

criterion is set, then the algorithm yield a model that comprises every predictors. Hopefully it is 

possible to set a maximum limit for the L1 norm of predictor coefficients. This criterion is the 

calibration parameter and it is quite similar to the inverse of LARS   parameter. Figure 5-11 shows 

that the L1 norm of predictor coefficients is a critical parameter and should be calibrated in order to 

determine which model comprises only the relevant predictors. In this particular case, a correct 

number of steps (that leads to only select relevant predictors) should be comprised between 13 and 22. 

In this case even if the correct predictors are selected to enter the model, we see that their coefficients 

are far from the exact value. This is due to the ―least angle approach‖ that does not calculate   using 

least square fit but instead it increments them gradually. However it is suited to perform variable 

selection.   can then be calculated using least square fit after variable selection. 

 

Figure 5-11:   values depending on chosen L1 norm value for LARS algorithm. 

L1 norm of predictor coefficients 
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(a) (b) 
Figure 5-12: MSE (a) and model variance (b) extracted using k-fold CV test  

Figure 5-12 shows the k-fold CV MSE and model variance depending on number of step  . From this 

figure, we see that enabling more or less 25 steps leads to a good trade of between MSE and model 

variability. It is a bit too much in order to select only relevant predictors. But at this step, the selected 

irrelevant predictors have very small coefficient. Thus their impact in the model is limited. 

Figure 5-13 shows the LOOCV MSE and model variance depending on number the L1 norm of 

predictor coefficients. Using LOOCV the same kind of trend is obtained compared to k-fold CV 

method. Here the optimal value is rather around 22, what is satisfying since it would lead to select 

only relevant predictors.  

Figure 5-14 shows the bootstrap calculated model variance depending on the L1 norm of predictor 

coefficients. This figure shows that bootstrap can be used to determine the optimal the L1 norm value 

through a tradeoff between MSE and model dispersion. However, as in the case of LASSO, the results 

will strongly depend on the chosen tradeoff. Thus it is safer to rely on k-fold CV and LOOCV. 

To conclude about LARS algorithm, it has been successfully applied to extract the relevant predictors 

as LASSO and stepwise regression. 

  
(a) (b) 

Figure 5-13: MSE (a) and model variance (b) extracted using LOOCV test. 

L1 norm of predictor coefficients 
L1 norm of predictor coefficients 

L1 norm of predictor coefficients L1 norm of predictor coefficients 
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(a) (b) 

Figure 5-14: Model error (a) and variance (b) against L1 norme using bootstrap method. 

5.3.5 Conclusion about variable selection methods 

In this paragraph we have introduced and tested three methods to select relevant variables among a 

large number of irrelevant one using a limited amount of noisy observations. Application showed that 

k-fold CV and LOOCV method have been able to calibrate parameters for each method. The 5 

relevant predictors used in the model to compute synthetized data have been discriminated by the three 

methods among 50 variables using 25 observations impacted by 10% of artificial noise. This 

application addresses the 2 main issues that one can face when building a PCM: ill-posed problem and 

noise in the observable. It should be noted that even though predictor values have been randomly 

drawn, the limited number of observation leads to correlations between some predictors (up to 0.51 for 

the correlation factor between predictor    and    ). Thus the three models also deal with moderately 

correlated predictors. 

Every PCM construction method works fine in this case but the cross-validation methods can lead to 

slightly different results. The best practice is to use the three cross-validation tests to calibrate the 

PCM construction method, comparing their results. For example if k-fold CV test suggests the same 

calibration than LOOCV but a different calibration compared to bootstrap, then results drawn from k-

fold CV and LOOCV can be considered more reliable and should be used instead of bootstrap results. 

Considering PCM construction methods, there is no general rule in order to decide which one to use. 

However it can be noticed that stepwise is the fastest, followed by LASSO and then LARS. However, 

stepwise regression will fail more easily than LASSO and LARS if a large amount of noise is 

considered. Moreover LARS and LASSO give a continuous trend of   against the calibration 

parameter. Thus it is possible to rank predictors in term of relevance. This is not possible with 

stepwise regression since any predictor can enter or leave the model at any Fcrit increment. In practice 

every PCM construction method should be tested in order to find the best model. 

5.4 Application to TCAD simulations 

In previous paragraphs we have introduced all the required tools on order to model build PCM 

according to Figure 5-1. This paragraph aims at demonstrating that these tools are required in order to 

build robust PCM. Indeed, the strategy is to use a two-stage PCM, as it has been shown in the 

introduction (PCM scheme is recall in Figure 5-15 for convenience).  

L1 norm of predictor coefficients L1 norm of predictor coefficients 
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Figure 5-15: Scheme of the two-stage PCM 

First, one could think of a more simple approach that directly relates process and electrical parameters 

without using a compact model (avoiding stage two). We will show that this simplification is less 

advantageous than the two-stage PCM by comparing them in §5.4.1 and §5.4.2. In particular we will 

show that building PCM that directly links electrical and process parameters is not handy and efficient. 

Using the two-stage PCM in §5.4.2, we will be able to model the linear and saturation drain current 

over the whole strong inversion range of VG. In these two paragraph, every PCM will constructed 

using TCAD simulations DOE introduced in §3.4 and Ordinary Least Square (OLS). Moreover, within 

wafer variability, local variability and noise will not be considered. 

Thereafter will demonstrate that, in practical case, using OLS is not efficient at all and variable 

selection methods (stepwise regression, LASSO and LARS) should be used instead with the PCM 

construction flow as depicted in Figure 5-1. This will be shown with a set of TCAD simulations that 

mimics silicon measurements at die level across a wafer, including within-wafer process variability. 

PCM construction using OLS with these data will not work at all since it will not be able to select 

variables. Variable selection methods will be applied afterward on the same dataset, building proper 

PCM successfully.  

5.4.1 Building TCAD simulated IDlin and IDsat PCM using OLS 

In this paragraph, we investigate the simple approach that directly relates process and electrical 

parameters without using a compact model. We build a PCM for IDlin and IDsat using OLS and the 

TCAD simulated DOE introduced in chapter 3. The DOE is a factorial design. Details about the DOE 

are recalled here for convenience, listing each process parameter included in the DOE and their related 

experimental values: 

 Epitaxial height    (Tepi) [12, 14, 16] nm 

 Channel thickness   (Tsi) [5, 6, 6.6, 8] nm 

 Spacer width   (Wsp)   [8, 10.35, 12] nm 

 Implanted dopant dose  (f dose) [0.5, 0.7, 1, 1.2, 1.5] (All source-drain and 

LDD implant dose are multiplied by this factor) 

 Insulating layer (IL) thickness  (Til) [0.8, 1.05, 1.2, 1.8, 2.5, 4] nm 

 IL/High K interfacial charges   (Qhk) [10
10

, 10
11

, 10
12

, 3.10
12

, 10
13

] cm
-2

 

 Contact resistance   (Rext) [20, reference, 200, 500] Ω (Reference values 

are 90 and 212 Ω for nMOS and pMOS respectively) 

 Spike anneal    (Tspike) [800, 1000, 1052, 1100] 

To this factorial design we have added some cross terms. Corresponding experiments are detailed in 

Table 5-1. These experiences are referenced as ―Mixed‖ in Figure 5-17. This simulation setup does 

neither account for local or within-wafer variability nor for measurement noise. In order to model IDlin 

and IDsat dependence on process parameters we built their PCM upon simulation results using OLS. 

OLS only accounts for process parameters included in the DOE. Since there is no variability, other 
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process parameters are fixed and thus cannot play any role in IDlin and IDsat variations. Of course, in 

practical cases, these assumptions do not hold. We shall see later the consequences.  

 Process parameters 

Experience Wsp (nm) Tsi (nm) 

1 8 5 

2 8 8 

3 12 5 

4 12 8 

Table 5-1: Cross terms experiences simulated by TCAD 

Figure 5-16 shows the relations between process and electrical parameters depending if we are 

constructing the PCM or if we exploit it. 

 
Figure 5-16: Flow chart of process and electrical relations 

This figure shows that, in the current application, we directly relate process parameters thanks to 

polynomial formula. These polynomial formula are constructed using OLS. 

  
(a) (b) 

Figure 5-17: IDlin and IDsat simulated and model using OLS for transistor of nominal gate length with VG=VDD. 

IDlin and IDsat are sensitive to every process parameter included in the DOE. Thus, their PCM account 

for all of them. In Figure 5-17, results shows that the PCM is quite accurate although some process 

parameter dependences are not linear in the considered range (especially for Rext Tspike and Tsi). 

However this approach is not satisfying since it provides a PCM that is suited for only one gate and 

drain bias and one gate length. Thus, modeling the whole strong inversion regime in linear and 

saturation regime for every channel length would require a large number of PCM, making the global 

model discontinuous and not easy to handle. IDlin and IDsat PCM coefficients are gathered in Table 5-2. 
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Associated predictor 

with coefficient unit 
IDlin Coefficients IDsat Coefficients 

Constant         0.35 2.30 

              -9.03 -60.4 

             -12.9 -91.2 

             2.27 15.2 

             -12.1 -101 

f_dose [µA/µm] 3.68      0.228 

Tspike [µA/µm/°C] 6.63      4.22      

Qhk [µA.µm] -1.29      -7.41      

               -2.62      -8.37      
Table 5-2: IDlin and IDsat PCM coefficients.  

5.4.2 Building PCM  for TCAD simulated model parameters using OLS 

A solution to the issue raised in previous paragraph is to build a two-stage PCM as introduced in 

Figure 5-1. This alternative is investigated here, where analytical model is created for the model 

parameters introduced in chapter 2 (such as R0,  ,       ,   , Vtlin, Vtsat,  
     ) instead of drain 

current. Modeling these parameters would enable modeling the whole strong inversion regime in 

saturation and linear regime using only 7 PCMs.  

Figure 5-18 shows the relations between process and electrical parameters depending if we are 

constructing the PCM or if we exploit it. 

 
Figure 5-18: Flow chart of process and electrical relations 

This figure is to be compared with Figure 5-16. It shows that, in this current application, we relate 

process parameters via the compact model instead of relating them directly as we did in previous 

paragraph. Figure 5-19 shows the PCM obtained using OLS for model parameters R0,  ,       ,   , 

Vtlin, Vtsat and       .   
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               1.10 

                        

             -3.59 

             -9.31 

                       

         
              

                           

                        

                       
 

(d) 
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(g) 
Figure 5-19: PCM modeled and TCAD simulated R0 (a),   (b),        (c),    (d),       (e), Vtsat (f),  

      (g). 

An overview of Figure 5-19 plots shows that PCMs are accurate. It can be noted that Til and Tspike 

effects are not very well approximated with linear dependence. For example       ,   , and        

dependence on Til is not very accurate. As well       , Vtsat,  , and R0 dependence on Tspike is not 

very accurate.  

 
Figure 5-20:   extracted from simulations and modeled depending on anneal temperature. 

A closer look at the last example shows that model parameters have an exponential dependence on 

Tspike rather than a linear one. A empirical fit of   against Tspike with an exponential formulation is 

shown in Figure 5-20. 

                                     (155) 

Thus PCM built using OLS are accurate except for modeling the impact of anneal temperature and 

insulator layer thickness. However, impact of these two process parameters on model parameters can 

be corrected using nonlinear empirical formula and variable shift (i.e. using exp(0.021.Tspike) instead of 

Tspike as predictor for the PCM).  
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(a) (b) 
Figure 5-21: Comparison between IDlin and IDsat model with PCM straightforwardly build upon IDlin and IDsat or build 

upon model parameters. 

Figure 5-21 shows IDlin and IDsat modeled using OLS (same results have been shown in Figure 5-17) 

and modeled using the compact model and PCMs for model parameters. We see that both models are 

very close. IDlin PCM using the compact model is more accurate in the range of R0. Thus using a two-

stage PCM has two advantages: i) it is slightly more accurate, ii) it enable a continuous modeling of 

the full strong inversion regime in linear and strong inversion regime with only 7 PCM whereas a one 

stage PCM would require as much PCM as gate biases making the model cumbersome and 

discontinuous.  

Even though, this simple approach works fine using TCAD simulations, it is not able to select 

variables. And the constructed PCMs suggest some unphysical relationships. In order to get a more 

reliable model, variable selection should be applied.  

5.4.3 Building PCM in a silicon-like case, based on within wafer variability 

In this section we demonstrate that OLS used in previous approach are not suited to build PCM. 

Indeed, it has already shown limitations, as mentioned in previously. In addition, we will show that 

this technique is even more limited if we want to apply it on silicon measurements. Indeed, went 

processing an experiment on silicon, we have to face within wafer variability. This means that every 

process parameters fluctuates more or less depending on the position on the wafer. This variability 

strongly impact the drain current as it has been shown in chapter 4, where wafer level drain current 

box plot displayed large dispersion. Hence, using OLS to build PCM with process and electrical 

parameters averaged over each wafer would lead to a large uncertainty in the resulting PCM. Another 

solution consists in monitoring parameters (electrical and process ones) at die level. The uncertainty 

about monitored parameters will thus be limited to local variability. This leads to consider every 

process parameter for PCM construction. Since the number of process parameters is large and only a 

limited part of them are actually relevant, variable selection should be made. This is what we 

demonstrate here, using TCAD simulations that mimics a wafer measured a die level. Simulations 

include within-wafer variability for process parameters. Process parameters statistics are shown in 

Table 5-3.  

Process 

Parameters 
Tepi [nm] Wsp [nm] Tsi [nm] Til [nm] f_dose 

Tspike 

[°C] 
            Qhk 

Average 14 10.35 7 1.2 1 1050 22.5      

Standard 

deviation 
1.3 1.3 0.5 0.25 0.24 2 2.25        

Table 5-3: Process parameters average and dispersion over the set of simulations 
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The simulation setup consists in 100 sites simulated with random variations of Tepi, Wsp, Tsi, Til, 

fdose, Tspike, Rext and Qhk. Each site contains 5 channel lengths ranging from 30 nm up to 1 µm. 

Average values and standard deviations of process parameters are regrouped in Table 5-3. 

Before building PCM, ―fake‖ process parameters have been added to the predictor matrix in order to 

simulate a more realistic situation where a large number of process parameters are accounted for. Fake 

parameters represent process parameters that have no influence on drain current. Since they are as 

much process parameters (predictors) than observations, the problem becomes ill-posed. ―Fake‖ 

process parameters are simply randomly generated predictors. They are in no way related with the 

observation, but chance correlations can occur between them. 

We will first attempt to build PCM using OLS and show that the approach completely fails because of 

the issue mentioned before. Then we will build PCM using variable selection methods and show that 

the approach is more efficient.          

5.4.3.1 Using OLS 

PCM construction is first done using OLS, as we did in §5.4.2. The flow chart of process and electrical 

parameters relationship is shown in Figure 5-22. 

 
Figure 5-22: Flow chart of process and electrical relations 

One PCM is built for each model parameter. Figure 5-23 shows the value of the different PCM 

coefficients for each PCM. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 5-23: PCM coefficient of model parameters R0 (a),   (b),        (c),    (d),        (e), Vtlin (f) and Vtsat (g). 

Figure 5-23 shows that using OLS, every predictor are included in the model. Moreover, fake 

predictors are accounted for with non-negligible coefficients. It means that in this situation OLS 

solution leads to overfit. The predictability and interpretability of such a model is very poor. Thus we 

cannot use OLS to exploit measurements at die scale, accounting for a large number of process 

parameters.  
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5.4.3.2 Using stepwise, LASSO and LARS 

In response to OLS flaws, stepwise, LASSO and LARS methods are applied here to build model 

parameters PCM. Corresponding flow chart of process and electrical parameters relationships is 

shown in Figure 5-24. 

 
Figure 5-24: Flow chart of process and electrical relations 

Compared to previous approach, here we use variable selection methods instead of OLS. Since these 

methods can handle ill-posed problem and perform variable selection, it will be more suited to build 

PCM upon measurements at die level including a large amount of process parameters.  

  
(a) (b) 

 
(c) 

Figure 5-25: R0 PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 
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Figure 5-25 shows the result of R0 PCM construction. Each subplot represents the results of one 

method against its calibration parameter. The optimum value of calibration parameter is indicated by 

the blue shaded area. This area has been determined using K-fold CV and LOOCV. Related plots are 

available in Appendix B. We see that the three methods have selected Wsp, Tepi, Rext, Til and fdose as 

predictors for R0. LASSO has included also 2 non relevant predictors. So comparing the results of the 

three methods enable a clear distinction between the relevant and irrelevant predictors. It should be 

noted that Tspike does not appear in the model but Til does. Til is not physically related to R0 and we 

expect it to not enter the model. However we have seen in Figure 5-19 (a) that Til slightly impacts R0 

because of the flaws in the model related to its simplification (see chapter 3). The reason why Til is 

accounted in the model and no Tspike is because of the relative dispersion of these parameters. Indeed 

Til dispersion in these simulations represents 15.6% of the total dispersion simulated in TCAD DOE. 

This is large in comparison with Tspike dispersion that only represents 0.67% of Tspike total variation 

simulated in TCAD DOE. 

Figure 5-26 shows the results of   PCM construction. All 3 model includes Til, Wsp, Tepi and fdose. 

This is in agreement with the PCM built using the TCAD simulated DOE. Again Tspike is missing in 

the model because of its low dispersion. LASSO method includes 3 extra ‗fake‘ predictors to the 

model but their coefficients are very low compared to the others and these errors can be spotted by 

comparing this result with the other methods. 

  
(a) (b) 

 
(c) 

Figure 5-26:   PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 
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Figure 5-27 presents the results of        PCM construction. Stepwise regression and LARS method 

only includes Til predictor, that is by far the most influent parameter on        as shown in Figure 

5-19 (c). LASSO mistakenly includes Tepi. K-Fold CV and LOOCV indicate a large optimal area, 

such that Tsi can be justifiably included in the model whereas stepwise regression and LARS 

considered the effect of Tsi negligible. 

  
(a) (b) 

 
(c) 

Figure 5-27:        PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 

Figure 5-28 shows the result of    PCM building. It is very similar to µ0.Cox as suggested by the 

extraction of model parameters on the TCAD simulated DOE in Figure 5-19 (c) and (d). PCM only 

includes Til parameter. Compared to µ0.Cox,    extracted on TCAD simulated DOE strongly depends 

on Qhk. This dependence is not accounted for by the PCM here. This is because of the small variance 

of Qhk. Indeed in these simulations, Qhk dispersion represents only 2% of Qhk variation simulated in 

the DOE. 
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(a) (b) 

 
(c) 

Figure 5-28:    PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 

Vtlin PCM construction results for short channel device are shown in Figure 5-29. We have seen that 

Vtlin is strongly dependent on Til and Qhk. In addition, short channel Vtlin also slightly depends on 

Wsp. All these parameters are included in stepwise regression, LASSO and LARS PCMs. Tepi has 

been also included in the PCMs although its influence is limited regarding the results of TCAD 

simulated DOE. On the contrary, Tsi is not accounted in the model although its influence is not 

negligible as suggested by TCAD simulated DOE results. This is due to the very limited variance of 

Tsi in these simulations. LASSO and LARS may also mistakenly include fake predictors.   
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(a) (b) 

 
(c) 

Figure 5-29: Vtlin PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 

Figure 5-30 shows the results of Vtsat PCM construction. Vtsat depends more or less on every process 

parameters as discussed previously. Constructed PCMs only includes Tepi, Wsp, Qhk, fdose and Til. 

These are the most influent parameter as shown in Figure 5-19 (f). Again LASSO and LARS 

mistakenly includes fake predictors in the model with very low coefficients.   
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(a) (b) 

 
(c) 

Figure 5-30: Vtsat PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 

Similarly to Vtsat,  
      depends on every process parameters as shown in Figure 5-19 (g). In these 

simulations, only fdose, Tepi Wsp and Til have been included. These parameters are the most influent 

one. Although its influence is significant, Qhk is not present in the models because its dispersion is 

limited in these simulations. LASSO includes again fake predictors but with very low coefficients. 
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(a) (b) 

 
(c) 

Figure 5-31:        PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their 

respective calibration parameter. 

To conclude this studie about PCM construction using data gathered over a single wafer, we have seen 

that using stepwise regression, LASSO and LARS algorithm, it is in most cases possible to distinguish 

process parameters that actually influence the considered model parameters from those who don‘t. 

LASSO is more prone to mistakenly include fake process parameters compared to stepwise regression. 

However LASSO has the advantage to yield continuous results depending on   parameter. 

Consequently, predictors included in the model can be ranked from the most to the least likely related 

to observation variance. Considering this ranking and comparing the results of the three methods it is 

easy to find out if a predictor has been mistakenly introduced to the PCM. This likelihood ranking is 

not possible using stepwise regression. This is why it is recommended to compare the results of the 

three methods.  

Compared to OLS, variable selection methods are much more efficient in order to build PCM. Indeed, 

variable selection successfully removed fake predictors whereas OLS included all of them in the 

model. 

It should be noted that even if the variable selection works properly, PCM that results from 

observation at die scale over a wafer with small variation of process parameters across the wafer are 

different from those obtained from DOE observations. Indeed, the observation range being different, 

some process parameters have no significant impact on model parameters and are omitted in the PCM. 
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In order to be able to construct PCM that includes all relevant process parameters, PCM construction 

should be carried on using a DOE where each experiment are process on a wafer. Each wafer should 

then be measured at die scale. A full DOE processed with one wafer per experience would provide 

sufficient process parameter variance and die scale observations would limit the uncertainty about 

observations.  

5.5 Using PCM to model and optimize within-wafer variability 

In previous paragraph, we have seen that our PCM construction procedure is able to model process 

and electrical parameters relationships at wafer level. In this paragraph we will use PCM previously 

obtained in §5.4.3.2 to model within-wafer variability. We will show its accuracy against TCAD 

simulations and then exploit it in order to investigate the process origin of within-wafer variability and 

give guidelines for variability optimization.  

For the sake of demonstration, we have propagated process parameters variability using Monte Carlo 

draws and the constructed PCM in §5.4.3.2. The results are compared with drain current dispersion 

obtained by TCAD simulations following the simulation setup developed in §5.4.1. In order to 

propagate process parameters dispersion and model electrical variability we have used 1000 Monte-

Carlo draws. Considered process parameter dispersions are the one used in the simulation setup (see 

Table 5-3). Comparison between predicted and simulated IDlin and IDsat within-wafer variability is 

shown in Figure 5-32. A proper agreement is obtained, showing that the constructed PCM is able to 

model within-wafer variability. 

  
(a) (b) 

Figure 5-32: Within-wafer distribution of IDlin and IDsat modeled and simulated using TCAD  

Using this variability model, it is then possible to diagnose its process origins and optimize it. Indeed, 

following propagation of variance developed in Chapter 4, if the model can be locally linearized in the 

model parameters dispersion range, within-wafer variability yields: 

   
       

    (156) 

      
   

   
 (157) 

where e and m denote electrical and model parameters respectively. Index i and j go through the 

number of considered model and electrical parameters respectively.   
  and   

  stand for the 
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covariance matrix of electrical and model parameters respectively. J is the sensitivity matrix with 

respect to model parameters. This expression can be reformulated following: 

     
  ∑∑

   

   
            

   

   
  

 (158) 

Since model parameters are now modeled by their respective PCM,    
  can be further developed, 

replacing model parameters in (158) by process parameters: 

    
  ∑∑

   

   
            

   

   
  

 (159) 

In this expression, we can see that the total within-wafer variability depends on drain current 

sensitivity to process parameters and on the process parameters dispersions. Thus optimizing    
  

consists in either reducing process parameters variance or reducing 
   

   
. Reducing process parameters 

variance relies on process tool optimization. Consequently we need to rank process parameters 

according to their contribution to drain current variability, so that we can draw the best benefits with a 

minimum effort in tool optimization. In order to rank process parameters we have run a statistical test. 

The test consists in estimating the drain current variability with 1000 Monte Carlo shots while setting 

one process parameter variance to zero at a time. The test is repeated for each process parameter. 

Estimated drain current variability is then compared to the actual one (where all process parameters 

are variable). Figure 5-33 shows the reduction in drain current variability depending on the process 

parameter whose variability has been suppressed. We see that a large gain in variability can be 

obtained by reducing Tepi and Wsp variability for both IDlin and IDsat. On the contrary it is useless to 

work on Tsi, Tspike, Qhk or contact resistance (Rext) variability since their contributions are small.     

  
(a) (b) 

Figure 5-33: Expected drain current variability reduction by suppressing the variability of one process parameter at a 

time. 

A warning should be put while considering this plot. One should not deduce that drain current does not 

depend on Tsi, Tspike, Qhk or Rext. Actually it does but the considered variability for these 

parameters is so small that it does not impact significantly the drain current variability. 

However, studying and optimizing drain current sensitivity to process parameters can help reducing 

drain current variability as well. Indeed, this sensitivity is modeled by the term  
   

   
 in (132). Reducing 
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it relies on two options. Since it depends on the model and physics underlying the device, the first 

option is to investigate other technologies, with drain current less sensitive to process parameters. 

However it is a tedious option. The other option is to shift the device operating point by shifting 

process parameters values. Indeed  
   

   
 depends on considered average p values (the operating point). 

However, shifting process parameters values will change the average drain current value as well (and 

maybe not in a good way). In order to reconcile variability and performance targets, a two-objective 

optimization task should be carried out. To do so, the objectives function is the electrical parameter 

and its variability. Then SPC can be used in order to define a penalty function in order to run 

optimization algorithm [177].      

5.6 Effect of local random variability and measurement noise 

As it has been discussed in §5.4.3.2, so far we, have built PMC at the wafer level. In order to get a 

PCM that includes all relevant process parameters with significant dispersion, we suggested building 

PCM using a full DOE processed on silicon. Each experiment would be run on one wafer. Each wafer 

would be monitored at die scale in order to reduce uncertainties about process and electrical 

parameters. In this paragraph we investigate this application using synthetic data. The critical point 

that will limit the efficiency of the method, while applying it on silicon measurements, is the residual 

noise or uncertainty in the observations. Indeed, electrical measurements are impacted by local 

variability and noise. This uncertainty will first propagate through the model extraction procedure and 

then bias the PCM construction results. This noise should be low enough to ensure robust results. 

Here, we investigate this question using synthetic data where local variability, within-wafer variability 

and noise are simulated.   

 

Figure 5-34: Test flow used to check PCM construction procedure robustness to noise and variability 

The test method is described in Figure 5-34 as a flow chart. First it consists in generating synthetic 

data for process parameters. The dataset is constructed such that it mimics the kind of dataset that 

would be measured if experiments are run on silicon. In other words, process parameters values are 

generated following a specified DOE. Each experiment is run using one wafer and each wafer is 

composed of many sites. Then within-wafer variability is simulated by adding a random signal to these 

process parameters. This signal is centered on each experiment value and dispersed over dies of the 

corresponding wafer. Within-wafer dispersion is set at 2% of the averaged values of process 
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parameters. Since process parameters are known at die scale, within-wafer variability does not 

contribute as a source of uncertainty. 

Then, considering extracted PCM in §5.4.2, model parameters are calculated for each experiment. 

Local variability is simulated adding a random signal to these model parameters, according to values 

found in literature. Using the drain current model, IDlin and IDsat are then calculated. In order to simulate 

measurement noise, a random signal is added to IDlin and IDsat values according to predefined noise 

threshold.  

The second step consists in going backward using synthetized IDlin and IDsat to find the PCM used 

initially to create synthetic data. Using the extraction procedure, IDlin and IDsat model parameters are 

extracted for each experiment. Then PCM are built on these extracted model parameters. In order to 

test if variable selection is efficient, extra process parameters are added to the PCM building method 

input. These extra parameters are randomly drawn, independently to the other process parameters. If 

variable selection method is sufficiently robust, it will rule these extra parameters out of the PCM.  

In order to accurately reproduce the experimental conditions, the star points of a central composite 

DOE are considered for process parameters effect investigation. This design considers 3 levels for 

each process parameter and comprises 17 experiments. Noting the different level -1, 0 and 1, this DOE 

is represented in Table 5-4. Correspondence between the level and process parameters values are 

shown in Table 5-5.  

Experiment\Parameter Tepi Wsp Tsi Til Fdose Tspike Rext Qhk 

1(reference) 0 0 0 0 0 0 0 0 

2 -1 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 

4 0 -1 0 0 0 0 0 0 

5 0 1 0 0 0 0 0 0 

6 0 0 -1 0 0 0 0 0 

7 0 0 1 0 0 0 0 0 

8 0 0 0 -1 0 0 0 0 

9 0 0 0 1 0 0 0 0 

10 0 0 0 0 -1 0 0 0 

11 0 0 0 0 1 0 0 0 

12 0 0 0 0 0 -1 0 0 

13 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 -1 0 

15 0 0 0 0 0 0 1 0 

16 0 0 0 0 0 0 0 -1 

17 0 0 0 0 0 0 0 1 

Table 5-4: Face centered composite DOE with process parameters. 

Variable 

Level 
Tepi Wsp Tsi Til fdose Tspike Qhk Rext 

-1 12 8 5 0.8 0.5 900 10
10

 70 

0 14 10 6.5 1 1 1000 10
12

 100 

1 16 12 8 2 1.5 1100 10
13

 130 
Table 5-5: Process parameters values used in the DOE depending on the level. 

Considering that each experiment is run using one wafer, a lot would be sufficient to run this DOE. 

Each wafer contains many sites. In order to simulate their impact, we consider that 9 of them will be 
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monitored. Each of these dies is probed independently, so process and electrical parameters are known 

at die scale. Global variability is simulated with a normally distributed random signal with      

applied on process parameters. Then local variability contribution is accounted through model 

parameters. Local variability mostly impact Vt,   and Rsd variability. Considering devices studied 

here, an average value of      
 is 

 

√  
          

 

 
  

√  
    and     

  

    . These values 

have been found in recent publications [178]. Finally, measurement noise is added through IDlin and 

IDsat values. Noise in electrical measurements depends on the integration time used for measurements. 

Typical measurement time for in line parametric test is about few milliseconds. Associated noise does 

not exceed 1%. 

For each site we have one dataset of IDlin and IDsat values. Each of them is composed of drain currents 

synthetized at Vg = [0.7, 1, 1.1] V. 11 gate lengths have been considered for the extraction. The first 

test has been run considering no local variability and a noise level ranging from 0 up to 0.5%. Error 

made on constructed PCM is shown in Figure 5-35. 

  
(a) (b) 

Figure 5-35: RMS error made on drain current (a) build from synthetic data and error on selected variables (b). 

Figure 5-35 (a) shows the RMS error made on model parameters depending on the simulated noise 

level. Figure 5-35 (b) shows the number of variables mistakenly added or omitted in the PCM. We see 

that PCM for saturation regime, model parameters (     , and Vtsat) are fairly insensitive to noise. 

Variable selection works perfectly and error on PCM coefficient is rather low. However a small 

amount of noise already compromises PCM construction for linear model parameters. Error on 

variable selection stems from the inclusion of ―fake‖ predictors or omission or relevant predictor, if 

those have a negligible contribution to the PCM.  

There are two solutions in order to reduce the impact of noise in measurements: i) increasing the 

integration time during measurement, ii) increasing the number of measurement points (more L and/or 

more VG). 

The second test has been run considering no measurement noise but local variability going from 0 up 

to 100% of noise reported in recent publication [178]. Error made on constructed model parameters is 

shown in Figure 5-36. 



Chapter 5: Process compact model 

147 

 

  
(a) (b) 

Figure 5-36: RMS error made on PCM coefficient (a) build from synthetic data and error on selected variables (b). 

Impact of local variability on PCM RMS error is much stronger than the effect of noise in 

measurements but variable selection performance is similar. This is due to the fact that ―fake‖ 

predictor included in the PCM have much stronger coefficients and induce larger error. Again, 

saturation parameters are less sensitive than linear ones. In order to reduce the impact of local 

variability, the solution consists in measuring arrays of transistors instead of isolated transistors. 

Following this procedure, local variability is averaged over the whole array‘s area rather that a single 

transistor area. Generally speaking, local variability is proportional to   √   . This means that 

using a 20x20 array of transistors, the impact of local variability would be divided by 20. Moreover, 

measuring multiple transistor in the same time reduce the measurement noise significantly. Indeed, 

considering 400 transistors instead of one, the equivalent number of integration points for one 

measurement is multiplied by 400. Following the Standard Error (SE) of the mean formula (160), the 

noise level is inversely proportional to the square root of the measurement sample size (for a fixed 

integration time).  

        
 

√ 
 (160) 

In (160), s and n are the standard deviation and the size of the sample. Thus accounting for 400 

transistors would divide the noise by 20.   

Thus using array of transistor and increased number of measurements and integration time can 

significantly reduce the local variability and noise burden.  

To investigate this option we have run the same test as before considering this time an array of 20x20 

transistors. Measurement noise and local variability have been both accounted for, dividing their 

amplitude by 20. Results are shown in Figure 5-37. Performances are much better, reducing the 

maximum PCM error below 2%. Variable selection is improved but fake variable are still included in 

the PCM. However here, their coefficients are very low, limiting the PCM error. 
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(a) (b) 

Figure 5-37: RMS error made on PCM  (a) build from synthetic data and error on selected variables (b). 

5.7 Conclusion 

In this chapter, we have introduced the concept and benefits of PCM. Different approaches to build 

PCM have been investigated, namely stepwise regression, LASSO and LARS, along with method to 

test the predictability of the results and to calibrate the methods. These methods are K-fold CV, 

LOOCV and bootstrap. Stepwise regression, LASSO and LARS combined with K-fold CV, LOOCV 

and bootstrap methods have been tested against synthetic data. Their ability to perform variable 

selection and to find back the proper polynomial formula used to generate synthetic data has been 

tested against artificial noise with ill-posed problems. It has shown to be able to handle 5% of noise 

with only 25 observations against 50 predictors.  

Then we have applied stepwise regression, LASSO and LARS to build PCM based on simulation 

results. First we have seen that building a polynomial formula that directly link electrical parameters 

(IDlin and IDsat) with process parameters is not appropriate since it would require building one PCM per 

VG and gate length, making the model cumbersome. Moreover the model quality is not satisfying. 

As an alternative, PCM have been built for model parameters (R0,  ,       ,   , Vtlin, Vtsat,  
     ). 

Using this approach we only need one PCM per model parameter to be able to model linear and 

saturation drain current over the entire strong inversion regime. In addition to this advantage, PCMs 

have shown to be more accurate for these parameters. Indeed, these model parameters are more 

elementary compared with IDlin and IDsat and their dependence with process parameters are thus 

simpler. Using OLS, we have then shown that linear polynomial formulas are suited for those PCM 

except for Til and Tspike that have nonlinear relationships with model parameters. This problem can 

be solved either by considering a reduced range for process parameters or by using empirical nonlinear 

formula along with variable shift for the model. This has been exemplified modeling   and Tspike 

relationship with an exponential formula.   

However, OLS does not perform variable selection and obtained PCM included unphysical 

dependences. Moreover, it has been pointed out that dealing with silicon measurements induces two 

20x20 transistors 

array 

20x20 transistors 

array 
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extra issues. Frist, we have to deal with within-wafer variability and, second, there are a large number 

of uncontrolled process parameters. In order to improve the accuracy, process and electrical 

parameters should be monitored at the die level. However, this lead to deal with randomly distributed 

process parameters and ill-posed problems (since there can be more process parameters than 

observations) instead of a regular DOE. In order to test the applicability of PCM construction method 

on silicon measurements, we have simulated experiences with randomly distributed process 

parameters. Using OLS to build PCM has shown to be a poor solution since ―fake‖ predictors are 

included in the PCM and those could have non negligible coefficients. Alternatively, using stepwise 

regression, LASSO and LARS algorithm, we have seen that it is possible to obtain good results even 

in the presence of randomly drawn ―fake‖ predictors. Thus the method is efficient in selecting relevant 

process parameters to build PCM even if the problem is ill-posed. However we have seen that some 

process parameters are not sufficiently dispersed to have a significant impact and are not included in 

the final PCM. Thus we suggest using both DOE and die scale observation in order to build proper 

PCM. 

In order to assess the impact of local variability and measurement noise on PCM construction 

robustness, tests have been run using synthetic data. Starting with a DOE that includes different 

process parameters, model parameters and drain currents have been synthetized using the drain current 

model and PCMs built on TCAD results. Local variability and measurement noise have been 

simulated through a random signal added to the synthetic model parameters and drain current values. 

These synthetized data drain currents have then been used as input to the extraction method. Extracted 

model parameters have in turn been used to build PCMs. The error between PCM used as input and 

the one extracted revealed the impact of local variability and measurement noise. The PCM 

construction is compromised by the impact of noise and local variability considering a single transistor 

measured with short measurement time. However, we have shown that this problem can easily be 

bypassed using array of transistors. We recommend using 20x20 transistors array, without increasing 

the measurement time in order to reach a proper noise level. Of course increasing the measurement 

time would increase the PCM construction robustness as well. 

As a perspective I shall note that, although different methods to build PCM and to calibrate these 

methods have been investigated, this study is not comprehensive. Indeed, domain of variable selection 

and machine learning are highly active research area and many alternatives (probably more efficient 

one) can be found in literature. Methods developed here have been chosen because they are widely 

used, well documented and reliable. For information purpose only, other interesting work related to 

this area can be mentioned. In term of variable selection, one can found random forests method 

introduced by L. Brieman [179]. This method, as well as those investigated in this work, only deals 

with linear polynomial models. In case one wants to test nonlinear model, other methods are more 

appropriate [180]-[186]. In term of PCM, we have investigated the use of linear polynomial formula. 

However, more flexible and efficient alternatives can be mentioned like, Kernel Nearest Neighbor 

(KNN) [185], Feed-Forward Neural Network [186][187], Suport Vector Machine (SVM) [188]. 

Considering PCM evaluation and calibration of PCM construction method, we extensively used cross-

validation methods. Other approaches are available like Sp criterion, Akaike Information Criterion 

(AIC), Final Prediction Criterion (FPE), Cp criterion of Mallows or the small-sample corrected version 

of AIC. A more recent publication [189] briefly reviews these methods and proposes its own method 

inspired by Beran and Dümbgen [190]-[192]. 
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Conclusion 

 



 

 

Technological node succession has been slowing down recently [193] due to new technological 

challenges involved. Among these barriers we find an increased impact of process and local random 

variability due to the increased complexity of fabrication process and dimension scaling, in addition to 

the difficulty to reduce the channel length. Some of these challenges require the adoption of new 

architectures that are very different from the traditional one (bulk transistors). However these new 

architectures involve more efforts in order to be industrialized. Increase of complexity and 

development time imply larger financial investments. Even though the semiconductor market is large 

and its sales rising continuously as shown in Figure 6-1, the industry growth display less convincing 

trends, strongly dependent on global economic climate [194].   

 
Figure 6-1: International semiconductor market sales per year from 1988 up to 2015 [195][196][197]. 

Consequently, investment margin shortens and R&D sector (that requires large funding with long term 

payback period) will have to deal with this chance. A recent survey asked semiconductor executives 

around the world what they see as the biggest issues facing the semiconductor industry during the next 

three years. The first answer is the increase in R&D costs followed by technology breakthroughs and 

high cost for plant and equipment [198]. Thus there is a real need for improving development and 

optimization of device fabrication. This work gives some leads in order to meet these expectations. In 

order to develop and optimize new transistors, engineers heavily rely on successive trials and expert 

knowledge. This approach appeared to be the most efficient and reliable until now. However, with the 

increasing complexity of new architectures and higher variability, this approach tends to require more 

and more trials, increasing dramatically the development cost. In order to address this issue, the idea is 

to minimize the number of trial in order to find the optimal fabrication process. The optimal process is 

the one that would lead to a device whose electrical performances and dispersion match predefined 

targets.  

A way to find this optimal process without heavily relying on silicon processing is to use models and 

TCAD simulations. Indeed an accurate and fast-to-compute model that maps the relationships between 

process and electrical parameters can be used as an input to an optimization algorithm which in turn 

can find the optimal process. TCAD is a physically based and reliable tool. However each simulation 

is time consuming (in the order of magnitude of an hour). Since most of the optimization algorithms 

require a large number of evaluations (more than    ), relying only on TCAD would never yield 

timely answers. Moreover TCAD calibration is a tedious task, requiring large physical investigations. 

On the contrary, compact model (such as BSIM, PSP, …) are fast to compute and require only a full 

electrical characterization of the device to be calibrated. However most of model parameters are not 

directly linked to process parameters, per say, some parameters have a complex physical 

interpretation. For example, the physical interpretation of effective channel length (that is widely used 
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in compact model) has been the subject of many studies [50][83][91][99]-[101][106][114][127][130]. 

Thus, using compact model to optimize electrical performances cannot yield any accurate process 

flow.  

The idea that has been developed in this thesis is to combine both TCAD and compact model in order 

to build and calibrate what is called Process Compact Models (PCM). PCM is an analytical model that 

maps the relationships between MOSFET‘s process and electrical parameters. It draw the benefits of 

both TCAD (since it relates electrical and process parameters) and compact model (since it is analytic 

and thus fast-to-compute). Our PCM is decomposed in two stages. Starting from process parameters, 

the first stage is formed of multiple polynomial formulas that relate process with the model parameters 

of a typical threshold voltage based compact model. The second stage is the compact model, yielding 

electrical parameters as output. An input/output scheme of this two-stage PCM is presented in Figure 

6-2.   

 
Figure 6-2: Scheme of the two-stage PCM 

6.1 Summary of the thesis 

After a short introduction, this manuscript details in chapter 2 the compact model used in the second 

stage that split linear and saturation drain current into model parameters such as access resistance, 

carrier mobility, threshold voltage… Derivation and physical background related to this compact 

model has been developed. Firstly, the MOS capacitance structure has been investigated to derive the 

inversion carrier concentration as well as the threshold voltage for the case of bulk devices. Then these 

equations have been adapted to the case of UTBB devices. The effects of channel doping 

concentration, ultra-thin channel and box on Vt and inversion charge density have been treated. A 

compact model for carrier mobility has been suggested, where surface roughness, remote Coulomb 

and phonon scattering as well as neutral defects, ballistic transport, saturation and injection velocity 

are accounted for. Then linear and saturation drain current formulations have been introduced, based 

upon proposed mobility, threshold voltage and inversion carrier concentration formulation. In real 

devices, compact models have to account for access resistance. Hence this aspect has been treated and 

analytical compact models for linear and saturation regimes have been adapted.   

A large part of this thesis has been devoted to provide the right procedure to build and calibrate this 

PCM. It can be done using TCAD and/or silicon measurements. The procedure requires few drain 

current measured or simulated on transistors with different gate lengths, at different gate voltages. 

Using these data, model parameters are accessed using a specific extraction procedure developed in 

chapter 3. This method relies on few measurements for comprehensive monitoring of the production 

line. The method is decomposed into 3 steps. First step consists in extracting linear model parameters 

using linear least square fit. Then these values are used as a first guess for a nonlinear optimizer that 

refines parameters values. Finally, saturation model parameters are extracted using nonlinear least 

square fit. 

This method has been tested to assess its robustness. Tests have been conducted on synthetized data 

against sample size and range. We have seen that data sample ranges and sizes available in silicon 
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measurements are too small to properly extract all model parameters. Removing successively each 

parameters from the model showed that   , VtLDR and Lc are the least significant model parameters. 

Extraction test has been run once again considering cases where some of these parameters have been 

fixed. It showed that as soon as one parameter is removed, the extraction works fine. Thus removing 

one parameter allows robust extraction with a minimum bias in the model.  

Following that study, the effect of measurement noise in the extraction procedure has been 

investigated. It revealed that a small amount of noise can lead to strong errors in model extraction. 

TCAD investigation of the mobility compact model showed that using both    and    in the model 

can lead to a high uncertainty about extraction results. Removing    allow more robust extractions 

against noise without making the parameter less meaningful. Noise tests have been conducted 

considering model parameters extracted on full ID-VG of nMOS and pMOS devices of 28 and 14 nm 

FD-SOI technologies and setting    to 0. Results showed reasonable level of noise in extracted model 

parameters considering 1% of noise in electrical parameters.  

These test showed that attention must be paid to the model used for extraction. First we suggest setting 

  to 0 in order to reduce the impact of noise in measurements. Then, depending on the device, one or 

two parameters must be removed (VtLDR and/or Lc). In order to verify the validity of such 

simplifications, extraction results must be checked. Considering TCAD simulations, the physical 

coherence of the results has been checked against corresponding process variations. Considering 

silicon extraction, correlation plots have been performed, showing that model parameters are mostly 

uncorrelated. Uncorrelated parameters ensure the robustness of the extraction and enable drawing 

inferences of model parameter‘s variation impact on drain current.   

The extraction procedure has been run on a TCAD simulated DOE. The DOE account for different 

process parameters (External resistance, epitaxial thickness, SOI thickness, spacer width, implanted 

dose, annealing temperature, insulting layer thickness, high-K thickness). We have shown that model 

parameters response to process variations is physically coherent, testifying on model parameters 

physical meaning and extraction robustness. Extractions have been run for nMOS and pMOS enabling 

a quantification of the impact of active dopant dose in the source-drain region as well as the junction 

profile on the drain current and model parameters.   

Following the introduction of model parameter extraction procedure in chapter 3, we have applied it 

on silicon measurements in chapter 4 where 28 and 14 nm FD-SOI technologies have been 

investigated. It has been shown that model parameters variations depending on process variations are 

coherent and have been physically interpreted. A clear quantification of the impact of process 

variations has been enabled, showing that the method is efficient and robust while requiring only few 

measurements, making it suitable for industrial application.  

Studying 28 nm FD-SOI using model parameter extraction enabled quantifying the impact of source 

drain implant dose and energy as well as DSA step. We have seen that extractions yield physically 

coherent results. Highly doped source-drain region resistance R0 is lowered by higher implant dose 

and energy and by DSA. Both these process parameters directly influence the active dopant 

concentration. This means that highly doped source-drain region has remaining inactivated dopant 

before DSA. DSA activates them successfully. On the contrary LDR resistivity represented by   is 

only dependent on implant dose and energy. Indeed DSA does not induce dopant migration and thus 

doesn‘t move the junction further toward the channel. Moreover this means that LDR dopants are 

already well activated before DSA and DSA has no activation effect in this region. However VtLDR 

extraction has evidenced that the junction position is sensitive to implant energy and dose.       ,    

and Vtlin have been shown to be constant, meaning that dopant does not penetrate into the metal gate 
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or channel. All these sensitivities can be quantified easily using this technique, bringing valuable 

information in terms of device optimization. 

Studying 14 nm FD-SOI technology, it has been possible to evaluate the impact of HF cleaning time 

before epitaxy, carbon and phosphorous dose during in situ doped raised source-drain epitaxial as well 

as epitaxy thickness. Carbon has shown to increase R0 by reducing dopant migration whereas 

increased phosphorous dose decreases R0 by raising the active dopant in the highly doped source drain 

region. Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the 

channel. Thus it tends to make underlapped transistors and raises   parameter.       

In a second step, within-wafer variability has been investigated on 14 nm FD-SOI technology. Monte 

Carlo, forward and backward propagation of variance have been conducted in order to model this 

variability. It has been shown that linear drain current variability is slightly underestimated. BPV and 

direct extraction showed close results in term of linear drain current variability however corresponding 

model parameter variability yield different results. It has thus been suggested that local variability and 

channel length variability are responsible for these discrepancies (that are not properly taken into 

account using direct extraction or BPV). This interpretation has been reinforced by the fact that Monte 

Carlo draws used to forward propagate the model parameter variability extracted using BPV and direct 

extraction gives the same results than FPV. This leads to infer that the discrepancy does not come 

from a violation of normality and linear local approximation hypothesis. In order to verify that channel 

length and local variability are responsible for observed discrepancies between measurements and 

model, their impact on the model has been assessed using synthetic data and showing that it induces 

errors and can thus explain it.  

Chapter 5 introduces the procedure to build and calibrate polynomial formulas that relate process and 

model parameters (the first stage of our PCM depicted in Figure 6-2). Since process parameters are 

numerous and some of them are irrelevant depending on the considered model parameters, the task of 

building polynomial models faces two issues: i) the problem is ill-posed and ii) relevant variables 

should be selected. These issues are addressed using appropriate statistical method like stepwise 

regression, LASSO and LARS. It has been shown using synthetic data that these methods are able to 

perform variable selection with ill-posed problems and noisy observations.  

The procedure has been applied on TCAD simulated DOE in order to test its reliability. Accurate 

results have been obtained. TCAD simulated within-wafer variability has been modeled using the 

PCM, showing a good agreement. Process parameters have then been ranked regarding their 

contribution to drain current variability. The model showed that Tepi and Wsp are mainly responsible 

for IDlin and IDsat variability. Thus we suggested optimizing these parameters in order to draw the best 

benefits in term of drain current variability.  

In order to ensure the robustness of model building process, resources must meet specific requirements 

in term of amount and uncertainty of measurements. The limitations of the approach considering these 

requirements have been discussed. We have shown that the model construction is compromised by the 

impact of noise and local variability if only a single transistor is measured with short measurement 

time. However, we have shown that this problem can easily be overcome using array of transistors. 

We recommend using 20x20 transistors array, without increasing the measurement time in order to 

reach a proper noise level. Of course increasing the measurement time would increase the PCM 

construction robustness as well.     
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6.2 Application and perspectives 

To sum up, this work is a feasibility study about PCM construction and shows how to benefit from 

extensive model parameters extractions in order to speed up the development process. We have shown 

that, with very little investments, the approach yields valuable results. Indeed, only few measurement 

points have been used instead of full ID-VG traditionally used for model calibration and no specific test 

structure. Every algorithm has been run using a laptop with average processing power associated with 

the flexible but rather slow Matlab software. Based on that, inferences about process effect on 

electrical performance have been drawn and PCM have been build based on TCAD simulated DOE. 

The PCM has been able to provide guidelines in order to optimize drain current variability. 

The quality and quantity of drawn benefits are proportional to the amount of invested resources. In 

fact, there is a smooth trade-off between robustness and flexibility of the model and the required 

amount of resources to invest. In the following sections we investigate the potential benefits that could 

be drawn using PCM with some advanced features. 

6.2.1 Optimizing the process flow 

Variability optimization using PCM has been investigated on silicon, TCAD and synthetic data. 

However it has been suggested that this procedure can be applied to optimize performance and 

variability at the same time, provided that the model is well calibrated. In order to achieve this, we 

propose here, as an application, a general procedure aimed at optimizing performances and variability. 

This procedure also enables calibrating TCAD simulation tool. Description of the procedure is shown 

in Figure 6-3.       

 
Figure 6-3: Flow chart of performance and variability optimization procedure 

Figure 6-3 shows the flow chart of performance and variability optimization procedure. First, it 

consists in setting the target for the device in terms of electrical performance and variability. Then 



Chapter 6: Conclusion 

157 
 

TCAD simulations must be calibrated. This procedure can be done using the compact model and its 

extraction procedure. It is detailed in Figure 6-4. 

 

Figure 6-4: Flow chart of TCAD calibration procedure using compact model  

In this procedure, we extract model parameters using TCAD and silicon measurements. Comparing 

electrical and model parameters of TCAD and silicon devices enable assessing the accuracy of TCAD 

calibration. If TCAD is not properly calibrated, then the mismatch between TCAD and silicon model 

parameters can indicate how to re-calibrate TCAD properly. For example if there is a good match 

between every TCAD and silicon model parameters with the exception of µ0Cox, then TCAD mobility 

model and/or equivalent oxide thickness should be investigated for TCAD calibration. 

As soon as TCAD is calibrated, the PCM should be constructed (following Figure 6-3 flow chart). 

PCM construction procedure is detailed in Figure 6-5 flow chart. The procedure consists in simulating 

a DOE, extracting model parameters from simulated drain currents and building the PCM following 

instructions detailed in Chapter 5. Optimal process flow is then found using the PCM and an 

optimization algorithm. Relevance of the results must be checked just afterward. Indeed, if we 

considered the PCM build in Chapter 5, we can see that R0 is linearly proportional to the implant dose. 

Thus if we would like to optimize the process flow such that it maximizes the drain current, then the 

solution would suggest to increase implanted dose indefinitely such that R0 is minimized. In practice 

we know that there is a maximum dopant concentration above which no gain in access resistance can 

be expected, since there is a saturation effect in dopant concentration. In other words, the PCM 

domain of validity is too narrow and optimal solutions found are not bounded. 

In order to correct this flaw, the device must be investigated when process parameters reach extreme 

values. For this example, simulations must be run with high enough implant doses in order to capture 

the concentration saturation effect. When the new DOE is designed, the simulations and PCM 

construction procedure must be run before optimizing the process flow once again. This loop should 

be repeated until a physically relevant and bounded solution is found for the process flow.    
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Figure 6-5: Flow chart of PCM construction and calibration  

Following Figure 6-3 flow chart, a last check must be performed in order to determine if the process 

flow found by optimization is actually the optimal one. This test consists in running the optimal 

process flow on silicon. Results found using PCM and silicon measurements should be compared. If 

the model does not match silicon, it means that either TCAD is badly calibrated (considering this new 

process flow) or PCM is not predictive enough. The whole procedure should be run once again 

focusing now on this new process flow for model and TCAD calibration.  

The entire procedure as shown in Figure 6-3 is iterative and little iterations could be required in order 

to come up with a consistent model and optimal process flow. It only requires to process one wafer per 

iteration, making the approach very cost effective. Moreover, a fully automated procedure can make 

the iteration very quick (in the order of magnitude of few hours). The only step that cannot be 

automated is TCAD calibration since it requires expert knowledge. However insight provided by 

model parameter extraction can greatly ease this task.    

6.2.2 Advanced feature for future PCM studies 

As a perspective, we propose here some guidelines in order to improve the approach developed in this 

work and draw full benefits of the technique. Figure 6-6 shows the PCM scheme like the one 

presented in introduction (see Figure 1-3). However here we have added advanced features that could 

be investigated in future studies.  

Advanced features include a new type of model to link process and model parameters. It can be either 

Feed Forward Neural Network (FFNN) [156][186][187], Support Vector Machine (SVM) [188] or 

simply user defined nonlinear function. In this study we used linear polynomial formula, but we have 

seen that it has the drawback to not include second order and cross effects.  
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Figure 6-6: Flow chart of a three-stage PCM for standart cell 

Moreover, nonlinear process dependence like sigma vs Tspike (see Figure 5-20), where tricky to 

model with linear polynomial. Finally, in order to find the optimal process flow, we have seen that the 

PCM should be valid for large process parameters variations and thus account for nonlinear relations 

between model and process parameters (such as saturation of the doping concentration for very high 

implant doses). This cannot be accounted for using linear polynomial but nonlinear formulas can 

account for it.  

FFNN and SVM can also account for it. In addition these methods can deal with discontinuous 

parameters (e.g. Boolean variables). As a consequence it can deal with some shifts in the process flow 

(suppression or addition of steps, tool change). Considering FFNN, it should be noted that, even 

though this method is less transparent compared with polynomials, it is actually very easy to handle 

and to train. As well, it is very powerful in modeling complex systems, no matter its nature. This is 

why it is often called ―universal approximation method‖. Today, artificial neural network find an 

increasingly large number of application, going from facial or speech recognition to game-playing and 

decision making, to medical diagnosis, just to name a few. 

Aforementioned advanced features also includes a more flexible and accurate compact model. I 

suggested in Figure 6-6 using a charge based compact model but it can be surface potential based. The 

main guideline I would provide is to use a compact model with parameters that have a clear and 

elementary physical meaning. This asset would greatly simplify the PCM first stage and makes the 

whole PCM much more robust. In addition we can hope modeling the full ID-VG characteristic, even 

the CG-VG characteristic. Of course the main limitation is to have a limited number of model 

parameters (around 10) in order to be able to extract them with few measurements. 

Finally, the last feature to be investigated is to extend the model by adding a third stage. This stage 

would take the transistor and standard cell electrical characteristic as input and output respectively 

(e.g. SNM for SRAM or switching speed for ring oscillators). This third step can be extremely 

valuable. Indeed in this thesis we have focused on optimizing IDlin and IDsat performances and 

variability. Targets to be reached (in term of drain current) are set so that it ensures the circuit 

functionalities. However, with a PCM able to model standard cell performances, it would be possible 

to directly optimize standard cell performances. This approach would provide more freedom and a 

broader range of solutions in term of optimal process flow. To another extend, it would be also 

possible to consider the effect of layout with this kind PCM. Thus optimization would not be limited 

to find the optimal process flow but also the optimal circuit layout. This kind of global optimization 

procedure would yield highly value-added solutions.         

Figure 6-7 exposes a flow for PCM construction with advanced features that are worth investigating in 

future studies. 
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Figure 6-7: Simplified PCM construction flow with advanced feature 

In this figure, the construction flow starts by building a proper DOE aimed at investigating process 

parameters effects. Depending on the model we are trying to buit (especially for the PCM first stage), 

different type of DOE can be used. Techniques to build optimal designs have been widely 

investigated. Common criterions (based on Fisher Information Matrix) to build optimal designs have 

been introduced by Wald (1943), Elving (1952), Kiefer (1959) and Kiefer (1975). A large and 

comprehensive literature can be found on this subject [199]. Choosing the right DOE minimizes the 

chance to build inaccurate PCMs and increases its robustness. For example, in order to build a second 

order polynomial model, a central composite design of experiment would be preferred to the DOE 

exposed in Table 5-4, that was used for linear polynomial model. 

Another feature that would improve the technique is to use global optimization methods in order to 

improve the extraction procedure. In our approach we used a trust-reflective-region with conjugate 

gradient algorithm. It is very efficient considering our problem but it cannot ensure finding the global 

optimum of the problem, especially if the first guess is bad. In this work, we have circumvented this 

issue by using first guess found with linear least square fit. This approach ensures to have a first guess 

close enough to the global optimum. Moreover the extraction robustness has been tested in a great 

extent. So considering our case, the optimization method works fine. But if a more accurate compact 

model is used for which no first guess can be provided before running the optimization step, then a 

global optimization algorithm could be beneficial. A wide range of solutions exist and some of them 

have been investigated in literature for parameter extraction [133][134][200][201]. Different 

algorithms have been tested during this thesis (like genetic algorithm and levenberg-marquardt), and 

we recommend using derivative based optimization algorithm since compact models are continuous, 

derivable and fast-to-compute. These methods appear to be quicker and more accurate. In this 

perspective we can mention the Multi-levels Coordinate Search (MCS) as a global optimization 

alternative to our approach [202]. More information about global optimization can be found in 

literature [203].     

If one was to use FFNN, SVM or nonlinear analytical formula for the PCM first stage, then specific 

methods should be used for variable selection and model calibration. FFNN and SVM do not explicitly 

requires variable selection, but it can improve its efficiency for training and computing. Literature 

reports multiple methods to perform variable selection, in accordance with these methods [204]-[208]. 

In case one wants to test nonlinear model, other methods to perform variable selection are more 

appropriate [180]-[186]. These methods also serve at calibrating nonlinear functions. 
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6.2.3 Unexplored application 

In term of unexplored applications we have already mentioned the possibility to optimize standard cell 

instead of transistors performances. Some other application can be suggested. Up to now, we have 

described a technique to finding the optimal process flow. However, during the process, performance 

and variability can be impacted by calibration drift of processing tools. In other word, tools calibration 

can drift with time and slightly modify process parameters mean values over the wafer. In the end, 

there will be some discrepancies between the optimal process flow and the one that was actually 

processed. The same problem can be observed at die scale. Indeed, process parameters are not 

uniformly distributed over the wafer, due to within wafer variability. Often, there is a wafer signature 

(e.g. radial or linear gradient) of process parameters dispersion. Thus, the process observed at die scale 

can be different from the optimal process flow. In order to counteract this issue, a study has 

implemented in situ process adjustment, in order to reduce the effect of process drift [157]. The 

method consists in making real time, in line, process monitoring in order to estimate the process drift 

at die scale with respect to the optimal process flow. Then at some critical step of the flow, the process 

can be adjusted thanks to tool recalibration or wafer reorientation in order to counteract the effect of 

tool calibration drift and wafer signature of process parameters. This process requalification can be 

done using the PCM. At the critical process step, instead of optimizing the entire process flow as we 

suggested in previous application, only the remaining process steps would to be optimized, knowing 

the process history. This real time, in situ process optimization thanks to PCM would allow yield and 

performance maximization.   
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Appendices 

: Nonlinear optimization Matlab code excerpt Appendix A

The following code has been used for linear model parameter extraction. 

function guessopt = 

FitIdlin(Idlin,Vg,guess,L,MSshot,Vdlin,thetaswitch,u,v,Maxit,Tol,model) 
 

%Idlin is the linear drain current 

%Idsat is the saturation drain current 

%Vg is the list of linear gate voltages 

%L is the list of gate length 

%MSshot is the number of starting point used to find the global minima (in 

the %context of multi-start problem solver algorithm) 

%Vdlin is the linear drain current 

%thetaswitch is a parameter that enable switching between a model with 

either no %theta, theta 1 only theta 2 only or both theta 1 and theta2. 

%u is the lower boundaries for model parameter to be extracted 

%v is the upper boundaries for model parameter to be extracted 

%Maxit is the maximum number of function evaluation allowed for extraction. 

%Tol is the minimum variation of objective function and model parameter 

step size %tolerated. If variation of objective function and model 

parameter step size go %beyond this threshold, the optimizer stops, 

considering a local minimum reached.  

%model enable switching from different models (no sigma, Vtsp=Vtlin, no Lc 

or all %parameters included). 

% guess is the initial guess for linear model parameters 

 
%Below, all combination of L and Vg are stacked in a matrix. The matrix is 

called %“data”.  

ind=1; 

  
xx=zeros(1,size(Vg,1)*numel(L)); 
yy=zeros(1,size(Vg,1)*numel(L)); 
zz=zeros(1,size(Vg,1)*numel(L)); 
for i=1:size(Vg,1) 
    for j=1:numel(L) 
        xx(ind)=Vg(i,j); 
        yy(ind)=L(j); 
        zz(ind)=Idlin(i,j); 
        ind=ind+1; 
    end 
end 
data=[xx;yy]; 
 

%Below options are set for the extraction procedure 

opts=optimset('lsqcurvefit'); 
opts.TolX=Tol; 
opts.TolFun=Tol; 
opts.MaxIter=Maxit; 
opts.MaxFunEvals=Maxit; 
opts.Display='off'; 
 

%Mutlistart object is created below 

ms=MultiStart; 
ms.UseParallel='always'; 
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%Following line launch the nonlinear optimizer. The function to be 

optimized is %Rlinfun that takes (x,data,L,thetaswitch,model,Vdlin) as 

parameters where x is %the model parameter guess (it changes from one 

iteration to another). 

%xdata is the matrix of Vg-L combination called “data”. 

%ydata are the measurements 

%lower and upper bound are specified via parameter 'lb' and 'ub' 

%'options' specify the options chosen before and stored in the object 

called %“opts”. 

 
problem=createOptimProblem('lsqcurvefit','objective',@(x,data)Rlinfun(x,dat

a,L,thetaswitch,model,Vdlin),'xdata',data,'ydata',Vdlin./zz,'x0',guess,'lb'

,u,'ub',v,'options',opts); 
guessopt=run(ms, problem, MSshot); 
end 

 

: K-fold CV and LOOCV plots for model parameter PCM building  Appendix B

  
(a.1) (a.2) 

  
(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-1: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for R0 PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

  
(a.1) (a.2) 

  
(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-2: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for   PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

 

  
(a.1) (a.2) 

  
(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-3: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for        PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

 

  
(a.1) (a.2) 

 
 

(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-4: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for    PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

 

  
(a.1) (a.2) 

  
(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-5: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for       PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

 

  
(a.1) (a.2) 

  

(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-6: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for       PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 

 

  
(a.1) (a.2) 

  
(b.1) (b.2) 
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(c.1) (c.2) 

Figure 0-7: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for        PCM against the calibration 

parameter of stepwise regression (a), LASSO (b) and LARS (c) method. 
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: Résumé en Français Appendix D

La vitesse de succession des nœuds technologiques s‘est ralentie récemment [193] à cause des 

nouveaux défis technologiques rencontrés. Parmi ces obstacles, on trouve la part croissante de la 

variabilité du procédé et local stochastique, due à une complexité croissance du processus de 

fabrication et à la miniaturisation, en plus de la difficulté à réduire la longueur du canal. Certains de 

ces obstacles requièrent l‘adoption de nouvelles architectures, différente de celle traditionnelle (Bulk). 

Cependant, ces nouvelles architectures requièrent de plus lourds investissements pour être 

industrialisées. L‘augmentation de la complexité et du temps de développement induit une 

augmentation des investissements financiers. Bien que le marché du semi-conducteur soit large et que 

les ventes augmentent continument, comme montré dans la, la croissance de l‘industrie donne des 

tendances moins convaincantes, fortement dépendantes de la conjecture économique [194]. 

 

Figure 8 : Chiffre d’affaire du marcher du semi-conducteur international par an depuis 1988 à 2015 [195][196][197]. 

Par conséquent, les marges d‘investissement diminuent et le secteur de la R&D (qui requière de larges 

financements avec une durée de rentabilisation de l‘investissement long) devra faire face à ce 

problème. Une étude récente a demandé aux chefs d‘entreprise du secteur du semi-conducteur du 

monde entier, quel sera le plus gros problème auquel l‘industrie devra faire face pendant les 3 

prochaines années. La première réponse est l‘augmentation des coûts de R&D, suivit des ruptures 

technologiques puis le prix élevé des nouvelles installations et équipements [198]. De fait il y a un réel 

besoin d‘améliorer le développement et l‘optimisation de la fabrication des dispositifs. Ce travail 

donne quelques pistes pour atteindre ce but. Dans le but de développer et optimiser un dispositif, les 

ingénieurs font largement appel à des essais successifs et à l‘expertise scientifique. Cette approche est 

apparu être la plus efficace et fiable jusqu‘à maintenant. Cependant, avec l‘accroissement de la 

complexité des nouvelles architectures et de la variabilité stochastique, cette approche demande de 

plus en plus d‘essais, accroissant dramatiquement le coût de développement.  Dans le but de résoudre 

ce problème, l‘idée est de minimiser le nombre d‘essais nécessaire pour obtenir le du processus de 

fabrication optimal. Le du processus de fabrication optimal est celui qui permet d‘obtenir le dispositif 

dont les performances électriques et leur dispersion atteignent les objectifs prédéterminés.  

Un moyen de trouver le du procédé optimal, sans faire appel à de nombreux essaies sur silicium, est 

d‘utiliser des modèles compacts couplé à l‘outil de simulation TCAD. En effet, un model précis et 

rapide à calculer qui établit les relations entre les paramètres du procédé et électrique peut être utilisé 

en entré d‘un algorithme d‘optimisation qui, à son tour, peut trouver un du procédé optimal. L‘outil 

TCAD fait appel à une calibration physique précise et fiable. Cependant les simulations sont longues 

(de l‘ordre de quelques heures). Dans la mesure où la plupart des algorithmes de simulation requièrent 

un grand nombre d‘évaluations (plus de 1000), faire uniquement appel à la TCAD ne pourra pas 

donner de résultats dans un temps raisonnable. De plus, la calibration d‘une simulation TCA est une 

tâche difficile qui requière de larges études physiques. Au contraire, les modèles compacts (comme 
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BSIM, PSP, …) sont rapide à calculer et ne requière qu‘une caractérisation électrique complète du 

dispositif pour être calibré. Cependant la plupart des paramètres modèles ne sont pas directement reliés 

à un paramètre du procédé, c‘est-à-dire, quelques paramètres ont une interprétation physique 

complexe. Par exemple, l‘interprétation physique de la longueur de canal effective (qui est largement 

utilisé dans les modèles compacts) a été le sujet de nombreuses  investigations [50][83][91][99]-

[101][106][114][127][130]. De fait, utiliser un modèle compact pour optimiser les performances 

électriques ne pourra conduire à un du procédé optimal. 

L‘idée qui a été développé dans cette thèse est de combiner la TCAD avec un modèle compact dans le 

but de construire et calibrer ce qu‘on appelle un Du procédé Compact Model (PCM). Un PCM est 

modèle analytique qui lie les paramètres du procédé et électriques du MOSFET. Il tire les bénéfices à 

la fois de la TCAD (dans la mesure où il lie les paramètres électriques aux paramètres du procédé) et 

du modèle compact (puisque le modèle est analytique et rapide à calculer). Notre PCM est décomposé 

en étages. En commençant par les paramètres du procédé, le premier étage est formé de plusieurs 

polynômes qui relient les paramètres du procédé avec les paramètres modèles d‘un modèle compact 

typiquement basé sur la tension de seuil. Le second étage est le modèle compact, qui donne les 

paramètres électrique en sortie. Un schéma d‘entrée/sortie du PCM est présenté dans la Figure 9.  

 
Figure 9: Schéma du PCM à deux phases 

6.3 Résumé de la thèse 

Après une brève introduction, dans le chapitre 2, ce manuscrit détail le modèle compact utilisé pour le 

deuxième étage du PCM qui sépare le courant linéaire et saturé en paramètres modèle tels que la 

résistance d‘accès, la mobilité des porteurs, la tension de seuil… La démonstration issue des bases de 

la physique du semi-conducteur a été développée. Dans un premier temps, la capacité MOS a été 

considérée pour déterminer la formule de la charge d‘inversion de même que la tension de seuil pour 

le cas du MOS bulk. Cette équation a été adaptée au cas du dispositif UTBB (Ultra thin Body and 

Box). L‘effet de la concentration de dopant dans le canal, de l‘épaisseur réduite du canal et du BOx 

(Buried Oxide) sur la tension de seuil et la charge d‘inversion ont été traité. Un modèle compact pour 

la mobilité a été proposé, où la rugosité de surface, l‘interaction avec les charges Coulombienne et les 

phonons ainsi que les défauts neutres, le transport balistique, la vitesse de saturation et d‘injection des 

porteurs ont été pris en compte. Ensuite le courant de drain linéaire et en saturation ont été introduit, 

basée sur les formules de mobilité, de tension de seuil et de charge d‘inversion proposée 

précédemment. Dans les dispositifs réels, les modèles compacts doivent prendre en compte la 

résistance d‘accès. De fait, cet aspect a été traité et les modèles compacts analytiques pour les régimes 

linéaires (IDlin) et de saturation (IDsat) ont été adapté. Les équations correspondantes sont les suivantes : 

 

       
   

    
 (161) 

Où la résistance totale normalize par la largeure du transistor (notée     ) est donné par l‘équation 

suivante: 
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La résistance total est simplement la somme des résistances d‘accès constantes (noté R0), des 

résistances d‘accès dépendant de VG (représenté par le terme  ) et de la résistance canal.  

L‘expression du courant de drain en saturation est donnée comme suit: 

       
     

 

       
 (163) 

Où    
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  est le courant de drain intrinsèque en saturation:  
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Gm est la dérivée du courant de drain par rapport à VG et s‘exprime comme suit : 
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Dans cette expression,     
 

 
(
        

  ) et      est la mobilité effective prenant compte des 

mécanismes d‘interaction avec les porteurs (rugosité de surface, interaction Coulombiennes et 

interaction avec les phonons), la vitesse de saturation des porteurs ainsi que le transport balistique: 
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(166) 

De même, VDsat est la tension de drain en saturation et est déduit comme étant la tension VDS tel que 
        

    
   où        est le courant de drain linéaire intrinsèque. L‘expression de       est la suivante: 
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 (167) 

Où                              
 . Ces formulations sont valides en régime de  forte 

inversion. L‘avantage de ces formulation est qu‘elles sont analytiques et donc rapide à calculer. Ces 

atouts sont de rigueur pour permettre une application industrielle et pour extraire les paramètres sur 

une grande quantité de dispositifs mesurés avec un échantillon de tension très réduit. Cependant des 

simplifications ont été nécessaires pour atteindre ces objectifs. Il a été montré que l‘impact de ces 

simplifications est acceptable en comparaison avec des calculs numériques rigoureux.  

 

Une large partie de cette thèse est dévouée à la procédure de construction et de calibration de ce PCM. 

Cela peut être fait avec l‘aide de la TCAD et/ou des mesures silicium. La procédure requière quelques 



Appendices 

189 
 

valeurs de courant de drain mesurées ou simulées sur des transistors de différentes longueurs, à des 

tensions de grille différentes. Sur la base de ses données, les paramètres modèles sont accessibles via 

une procédure d‘extraction spécifique développée dans le chapitre 3. Cette méthode fait appel à un 

nombre limité de mesures, ce qui rend possible le contrôle continu et exhaustif de la ligne de 

production. La méthode est décomposée en en trois étapes. La première étape consiste à extraire les 

paramètres du modèle linéaire via un ajustement des moindres carrés linéaire. Ensuite, ces valeurs sont 

utilisées comme une première estimation en entrée d‘un optimiseur non linéaire qui affine les valeurs 

des paramètres. Enfin, les paramètres du modèle de saturation sont extraits via un ajustement des 

moindres carrés non linéaire.  

Cette méthode a été testée pour évaluer sa robustesse. Des tests ont été effectués avec des données 

synthétiques pour valider la taille et l‘étendue de l‘échantillon de mesure. Nous avons vu que l‘étendue 

et la taille de l‘échantillon de données disponibles dans les mesures silicium sont trop petites pour 

extraire correctement tous les paramètres du modèle. Les résultats sont donnés dans la Figure 3-10.  

   

(a) (b) 
Figure 10: Erreur sur les paramètres du modèle extrait à partir de données synthétiques avec différentes taille (a) et 

étendue (b) d’échantillon. La totalité des paramètres ont été considéré pour l’extraction. 

En supprimant successivement chacun des paramètres modèle a permis de montrer que   , 

                          et    sont les paramètres modèle les moins significatifs. Les tests d'extraction 

ont été exécutés de nouveau dans les cas où certain paramètres modèle ont été retirés. Il a été montré 

que dès lors qu'un paramètre est supprimé, l'extraction fonctionne très bien. Ainsi, la suppression d'un 

paramètre permet une extraction solide avec un biais minimal dans le modèle. 

 

  
(a) (b) 

[V] 



Appendices 

 

190 

 

Figure 11: Erreur sur les paramètres du modèle extrait à partir de données synthétiques avec différentes taille (a) et 

étendue (b) d’échantillon. Lc n’est pas extrait ici (Lc=0). 

À la suite de cette étude, l'effet du bruit de mesure dans le procédé d'extraction a été étudié. Il a révélé 

qu'une petite quantité de bruit peut conduire à de fortes erreurs dans l'extraction du modèle. Une étude 

TCAD du modèle compact de mobilité a montré que l'utilisation simultanée de    et    dans le modèle 

peut conduire à une forte incertitude sur les résultats de l'extraction. Retirer    rend les extractions 

plus robustes face au bruit. En fixant    à 0, des tests de bruit ont été effectuées sur la base de données 

synthétiques, construites à partir des paramètres modèle extraits sur des caractéristiques ID-VG en forte 

inversion, mesurées sur les dispositifs nMOS et pMOS des nœuds technologique 28 et 14 nm FD-SOI. 

Les résultats ont montré un niveau raisonnable de bruit dans les paramètres modèle extraits, avec 1% 

du bruit sur les paramètres électriques comme le montre la Figure 3-19. 

 

Figure 12: RMS error against artificial noise induced in the synthetized data.  

Ces tests ont montré qu‘une attention particulière doit être portée au modèle utilisé pour l'extraction. 

Nous suggérons d'abord la mise en   à 0 afin de réduire l'impact du bruit dans les mesures. Ensuite, en 

fonction de l'appareil, un ou deux paramètres doivent être enlevés (VtLDR et / ou Lc). Afin de vérifier la 

validité de ces simplifications, les résultats d'extraction doivent être vérifiés. Pour les simulations 

TCAD, la cohérence physique entre variation de paramètre modèle et du procédé a été vérifiée. Quant 

aux extractions sur données silicium, des courbe de corrélation ont été faites montrant que les 

paramètres du modèle sont la plupart du temps décorrélées. L‘absence de corrélation entre paramètre 

modèle assure la robustesse de l'extraction et permet de tirer des conclusions sur l'impact de la 

variation des paramètres modèle sur le courant de drain. 

La procédure d'extraction a été exécutée sur un plan d‘expériences simulé en TCAD. Le plan 

d‘expériences prend en compte différents paramètres du procédé (résistance externe, épaisseur 

d‘épitaxie, épaisseur du SOI, largeur des éspaceurs, la dose implantée, la température de recuit, 

l'épaisseur de la couche isolante, épaisseur de diélectrique à haute permittivité). Ce plan d‘expérience 

est donnée dans le Table 5-4 où les valeurs -1 0 et 1 correspondent à celles données dans le Table 5-5  

et   

Experiment\Parameter Tepi Wsp Tsi Til Fdose Tspike Rext Qhk 

1(reference) 0 0 0 0 0 0 0 0 

2 -1 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 

4 0 -1 0 0 0 0 0 0 

5 0 1 0 0 0 0 0 0 
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6 0 0 -1 0 0 0 0 0 

7 0 0 1 0 0 0 0 0 

8 0 0 0 -1 0 0 0 0 

9 0 0 0 1 0 0 0 0 

10 0 0 0 0 -1 0 0 0 

11 0 0 0 0 1 0 0 0 

12 0 0 0 0 0 -1 0 0 

13 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 -1 0 

15 0 0 0 0 0 0 1 0 

16 0 0 0 0 0 0 0 -1 

17 0 0 0 0 0 0 0 1 

Tableau 1: Plan d’expérience composite face centrée simulé en TCAD 

Variable 

Level 
Tepi Wsp Tsi Til fdose Tspike Qhk Rext 

-1 12 8 5 0.8 0.5 900 10
10

 70 

0 14 10 6.5 1 1 1000 10
12

 100 

1 16 12 8 2 1.5 1100 10
13

 130 
Tableau 2: Valeurs des paramètres utilisés pour le plan d’expérience en fonction du niveau considéré 

Nous avons montré que la réponse des paramètres modèle aux variations du procédé est physiquement 

cohérente, attestant du sens physique des paramètres modèle et de la robustesse de l‘extraction. Les 

extractions ont été exécutées pour des dispositifs nMOS et pMOS permettant une quantification de 

l'impact de la dose de dopant actif dans la région source-drain, ainsi que le profil de jonction, sur le 

courant de drain et les paramètres modèle.  

  
(a) (b) 

Figure 13: (a) R0 extrait sur le plan d’expérience simulé en TCAD sur le pMOS. (b) R0 extrait en fonction de la 

résistance Rext ajouté aux contacts. 
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(a) (b) 

Figure 14: Courant de drain linéaire (a) et saturé (b) simulé et modélisé pour le dispositif pMOS en fonction de L et 

VG. Les différentes longueurs et tension VG sont celles utilisées pour l’extraction. 

Après l'introduction de la procédure d'extraction des paramètres modèle et son application sur des 

simulations TCAD dans le chapitre 3, nous l‘avons appliqué sur des mesures sur silicium dans le 

chapitre 4, où les technologies 28 et 14 nm FD-SOI ont été étudiées. Il a été montré que les variations 

de paramètres modèles en fonction des variations du procédé sont cohérentes et ont été interprétées 

physiquement. Une quantification précise de l'impact des variations de du processus a été possible, ce 

qui montre que la méthode est efficace et robuste tout en ne nécessitant que peu de mesures, ce qui 

convient pour une application industrielle. 

L‘étude du 28 nm FD-SOI via l'extraction de paramètres du modèle a permis de quantifier l'impact de 

la dose implantée dans la région source-drain et de l'énergie d‘implantation (voir Figure 4-3) ainsi que 

l‘impact du DSA.  

 
(c) 

Figure 15: Distribution des courants de drain linéaire à VG = Vdd pour chaque wafer. Ici la dose et l’énergie 

d’implantation change 
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(a) (b) 

Figure 16: Distribution de R0 (a) et   (b) pour chaque wafer. Ici la dose et l’énergie d’implantation change. 

Nous avons vu que les extractions donnent des résultats physiquement cohérents. La résistance de la 

région source-drain fortement dopée R0 est abaissée par l‘augmentation de la dose et de l'énergie de 

l‘implant (voir Figure 4-4) ainsi que par l‘augmentation de température du DSA. Ces deux paramètres 

du procédé influent directement sur la concentration de dopant actif. Cela signifie qu‘il reste des 

dopants inactivés dans les régions source-drain avant le DSA. Le DSA les active avec succès. Au 

contraire, la résistance de la région faiblement dopée (sous l‘éspaceur), représentée par σ dans la 

formule de courant drain linéaire, ne dépend que de la dose de l'implant et de l'énergie (voir Figure 

4-4). En effet, le DSA ne fait pas migrer les dopants et donc ne déplace pas la position de la jonction. 

De plus, cela signifie que les dopants dans la région faiblement dopée sont déjà bien activés avant le 

DSA et le DSA n'a pas d'effet d'activation dans cette région. Toutefois, l'extraction de VtLDR a mis en 

évidence que la position de la jonction est sensible à l'énergie d'implantation et à la dose.       ,    et 

Vtlin se sont révélés être constant, ce qui signifie que le dopant ne pénètre pas dans la grille ou dans le 

canal. Toutes ces sensibilités peuvent être quantifiées facilement en utilisant cette technique, apportant 

des informations précieuses en termes d'optimisation de l'appareil. 

L‘étude de la technologie 14 nm FD-SOI a permis d'évaluer l'impact du temps de nettoyage HF avant 

épitaxie, la dose de carbone et de phosphore lors de l‘épitaxie des régions source-drain dopées in situ 

ainsi que l'épaisseur d'épitaxie. Le carbone a induit une augmentation de R0 en limitant la migration 

des dopants alors que l‘accroissement de la dose de phosphore diminue R0 en augmentant la dose de 

dopant actif dans la région source-drain fortement dopée. Un nettoyage court à l‘HF avant l‘épitaxie 

induit plus défauts qui agissent comme un puits de dopant, les empêchant de migrer vers le canal. La 

jonction est de fait éloignée du canal et la résistance de la région faiblement dopée augmente. 

Dans une deuxième étape, la variabilité intra-wafer a été étudiée sur la technologie 14 nm FD-SOI. La 

méthode Monte Carlo ainsi que la propagation de variance avant (FPV) et arrière (BPV) ont été 

menées afin de modéliser cette variabilité. Les résultats sont montrés dans la Figure 4-19. 
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Figure 17: Ecart type de la résistance linéaire Rlin du nMOS sur la plaque de référence en fonction de la longueur de 

grille. Les résultats incluent l’étude Monté-Carlo, la FPV basée sur la dispersion des paramètres extraits par la 

méthode des moindres carrés linéaire et non linéaire ainsi que la BPV. 

Il a été démontré que la variation de courant de drain linéaire est légèrement sous-estimée. La méthode 

BPV et l'extraction directe ont montré des résultats proches en termes de variabilité de courant de 

drain linéaire cependant la variabilité des paramètres modèle correspondants sont différents. Il a ainsi 

été suggéré que la variabilité locale et de la longueur du canal sont responsables de ces écarts (qui ne 

sont pas correctement pris en compte par extraction directe ou par BPV). Cette interprétation a été 

renforcée par le fait que la différence ne vient pas d'une violation des hypothèses normalité des 

distributions et de linéarité locale de la fonction. En effet, la méthode Monte Carlo a été utilisée pour 

propager la variabilité des paramètres modèle extrait en utilisant la méthode BPV et l'extraction 

directe, conduisant aux même résultats. Afin de vérifier que la longueur du canal et la variabilité locale 

sont responsables des écarts observés entre les mesures et le modèle, leur impact sur le modèle a été 

évalué à l'aide des données synthétiques, montrant qu'il induit des erreurs et peut donc expliquer ces 

écarts. Ces résultats sont montrés dans la Figure 4-22. 

  
(a) (b) 
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(c) 

Figure 18: Variabilité des données synthétiques de résistance linéaire. Les données sont générées avec (a) ni la 

variabilité locale ni la variabilité de la longueur de grille, (b) la variabilité intra plaque de la longueur de grille et (c) la 

variabilité locale et la variabilité de la longueur de grille. 

Le chapitre 5 présente la procédure pour construire et calibrer les polynômes qui lient les paramètres 

du procédé et modèle (la première étape de notre PCM, présentée sur la Figure 9). Dans le mesure où 

les paramètres du procédé sont nombreux et certains d'entre eux ne sont pas pertinents en fonction du 

paramètre modèle considéré, construire des modèles polynômiaux se confronte à deux problèmes: i) le 

problème est mal conditionnés et ii) il faut sélectionner les variables pertinentes. Ces problèmes sont 

adressés en utilisant des méthodes statistique appropriées, comme la régression pas à pas, la méthode 

LASSO ou LARS. Il a été démontré, en utilisant des données de synthèse, que ces méthodes sont en 

mesure d'effectuer la sélection de variables dans le cas de problèmes mal conditionnés et observations 

bruitées. L‘exemple de l‘application de la méthode LASSO est montrée sur la Figure 5-7: 

 

Figure 19: Valeurs de   extraites en fonction du paramètre   choisie pour la méthode LASSO 

L‘application de la méthode LASSO donne les résultats montrés sur la Figure 5-9: 
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(a) (b) 

Figure 20: Erreur moindre carré (a) et estimation de la variance (b) du modèle en fonction de la valeur du paramètre 

de calibration   de la méthode LASSO.  

L‘application de la méthode LASSO suggère une valeur de calibration pour le paramètre   de 1. Cette 

valeur est celle qui minimise à la fois l‘erreur et la variance du modèle. Elle permet à la fois de 

supprimer les prédicateurs factices tout en gardant les prédicteurs pertinents avec des valeurs de 

coefficients proches de celles exactes.  

La procédure a été appliquée sur les résultats d‘un plan d‘expériences simulé en TCAD afin de tester 

sa fiabilité. Les modèles obtenus donnent des résultats précis et fiables comme le montre la Figure 

5-21.  

  

(a) (b) 
Figure 21: Comparaison entre IDlin et IDsat modélisés par le PCM (avec et sans la phase modèle compact) et simulés en 

TCAD sur le plan d’expérience. 

Ensuite, la variabilité intra-wafer simulée en TCAD a été modélisée en utilisant le PCM, montrant un 

bon accord comme le montre la figure Figure 5-32. Ces résultats montrent que le PCM est capable de 

modéliser la dispersion intra-plaque. 
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(a) (b) 

Figure 22: Within-wafer distribution of IDlin and IDsat modeled and simulated using TCAD  

Les paramètres du procédé ont ensuite été classés en fonction de leur contribution sur la variabilité du 

courant de drain (voir Figure 5-33).  

  
(a) (b) 

Figure 23: Expected drain current variability reduction by suppressing the variability of one process parameter at a 

time. 

Le modèle a montré que les paramètres Tepi et Wsp sont principalement responsables de la variabilité 

de IDlin et IDsat. Ainsi nous avons suggéré de réduire autant que possible la variabilité de ces paramètres 

afin de tirer le maximum de bénéfice en termes de variabilité de courant de drain.  

Afin d'assurer la robustesse du processus de construction de PCM, les mesures électriques doivent 

répondre à des exigences spécifiques en termes de quantité et sur l‘incertitude des mesures. Les limites 

de cette approche vis-à-vis de ces exigences ont été discutées. Nous avons montré que la construction 

du modèle est compromise par les effets du bruit et des variations locales, si un seul transistor est 

mesuré avec un court temps de mesure. Ces résultats sont montrés sur la Figure 24 : 
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(a) (b) 

Tableau  

Figure 24: Erreur sur les paramètres modèles entre le PCM construit sur les données synthétiques et celui utilisé pour 

générer les données synthétiques en considérant (a) uniquement le bruit de mesure (b) uniquement la variabilité 

locale. 

Cependant, nous avons montré que ce problème peut être surmonté en utilisant facilement une matrice 

de transistors. Nous recommandons d'utiliser des matrices de transistors 20x20, afin d'atteindre un 

niveau de bruit approprié. Cette mesure à elle seule résout aussi le problème du bruit dans ce cas 

d‘étude. Il n‘y a donc pas besoin d‘augmenter la durée de la mesure. Bien entendu l'augmentation de la 

durée de la mesure renforcerait d‘autant plus la robustesse de la construction de PCM. Les résultats 

sont montrés sur la Figure 25 : 

 
Figure 25: Erreur sur les paramètres modèles entre le PCM construit sur les données synthétiques et celui utilisé pour 

générer les données synthétiques en considérant le bruit de mesure et la variabilité locale 

6.4 Applications et perspectives 

Pour résumer, ce travail est une étude de faisabilité sur la construction de PCM et montre comment 

tirer parti de l‘extraction à grande échelle des paramètres du modèle afin d'accélérer le du processus de 

développement. Nous avons montré que, avec très peu d'investissements, l'approche donne des 

résultats intéressants. En effet, seulement quelques points de mesure ont été utilisés à la place de 

caractérisation ID-VG complètes, traditionnellement utilisées pour la calibration du modèle et ceux sans 

aucune structure de test spécifique. Chaque algorithme a été exécuté à l'aide d'un ordinateur portable 

Matrice de transistor 

20x20 
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avec une puissance moyenne de traitement, associé avec le logiciel flexible, mais plutôt lent, Matlab. 

Sur cette base, des conclusions sur l'effet du processus de fabrication sur les performances électriques 

ont été établis et le PCM a été construits sur la base d‘un plan d‘expériences simulé en TCAD. Le 

PCM a été en mesure de fournir des lignes directrices afin d'optimiser la variabilité du courant de 

drain. 

La qualité et la quantité des bénéfices tirés sont proportionnelles à la quantité de ressources investies. 

En fait, il y a un compromis en graduel entre robustesse et flexibilité du modèle, et la quantité 

nécessaire de ressources à investir. Dans les sections suivantes, nous examinons les bénéfices 

potentiels qui pourraient être tirés en utilisant le PCM avec quelques fonctionnalités avancées. 

6.4.1  Optimiser le du processus de fabrication 

L'optimisation de la variabilité via le PCM a été étudiée sur le silicium, la TCAD et les données 

synthétiques. Cependant, il a été suggéré que cette procédure peut être appliquée pour optimiser la 

performance et la variabilité dans le même temps, à condition que le modèle soit bien calibré. Pour 

atteindre cet objectif, nous proposons ici, en guise d‘application, une procédure générale visant à 

optimiser les performances et la variabilité en même temps. Cette procédure permet également de 

calibrer l'outil de simulation TCAD. La description de la procédure est représentée sur la Figure 26. 

 
Figure 26: Organigramme de la procédure d’optimisation de la performance et de la variabilité 

La Figure 26 montre l‘organigramme de la procédure d‘optimisation de la performance et de la 

variabilité. Dans un premier temps, cette procédure consiste à définir des objectifs en termes de 

performance et de variabilité sur les paramètres électriques. Ensuite, les paramètres du simulateur 

TCAD doivent être calibrés. Cette procédure peut être faite en utilisant le modèle compact ainsi que sa 

procédure d‘extraction. Elle est détaillée dans la Figure 27. 
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Figure 27: Organigramme de la procédure de calibration de l’outil TCAD 

Dans ce mode opératoire, on extrait les paramètres du modèle à l'aide de la TCAD et de mesures sur 

silicium. La comparaison des paramètres électriques et modèles obtenus sur la TCAD et le silicium 

permet d‘évaluer la précision de la calibration TCAD. Si la TCAD n‘est pas correctement calibrée, le 

décalage entre les paramètres du modèle de la TCAD et du silicium donne des indications pour re-

calibrer la TCAD correctement. Par exemple, s'il y a une bonne adéquation entre tous les paramètres 

du modèle sur la TCAD et le silicium à l'exception de μ0.Cox, alors le modèle de mobilité de la TCAD 

et/ou l'épaisseur d'oxyde équivalente du dispositif devraient être étudiées pour la calibration de la 

TCAD. 

Lorsque la TCAD est calibré, le PCM doit être construit (suivant l‘organigramme de la Figure 26). La 

procédure de construction du PCM est détaillée sur l‘organigramme de la Figure 28. La procédure 

consiste à simuler un plan d‘expériences, extraire les paramètres du modèle à partir des courants de 

drain simulés et construire le PCM suivant les instructions détaillées au chapitre 5. Le procédé de 

fabrication optimal est alors trouvé grâce à un algorithme d'optimisation non linéaire se basant sur le 

PCM. La pertinence des résultats doit être vérifiée après coup. En effet, si l'on considère le PCM 

construire au chapitre 5, nous pouvons voir que R0 est linéairement proportionnel à la dose de 

l'implant. Ainsi, si nous tenons à optimiser le procédé de fabrication de tel sort qu'il maximise le 

courant de drain, alors la solution suggèrera d'augmenter la dose implantée indéfiniment de telle sorte 

que R0 est minimisée. En pratique, on sait qu'il y a une concentration de dopant maximale au-dessus 

de laquelle aucun gain en résistance d'accès n‘est attendu, car il y a un effet de saturation de la 

concentration en dopant. En d'autres termes, le domaine de validité du PCM est trop étroit et non 

convexe. De fait la solution optimale trouvée peut ne pas être bornée. 

Pour corriger ce défaut, le dispositif doit être étudié lorsque les paramètres du procédé atteignent des 

valeurs extrêmes. Pour cet exemple, les simulations doivent être exécutées avec des doses d'implants 

suffisamment élevées afin de capturer l'effet de saturation de la concentration de dopants actif. 

Lorsque le nouveau plan d‘expériences est conçu, la procédure de simulations et de construction du 

PCM doit être exécutée avant d'optimiser le procédé de fabrication une nouvelle fois. Cette boucle doit 

être répétée jusqu'à ce qu'une solution physiquement pertinente et bornée soit trouvée pour le procédé 

de fabrication. 
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Figure 28: Organigramme de construction et de calibration du PCM 

Suivant l‘organigramme de la Figure 26, une dernière vérification doit être effectuée de manière à 

déterminer si le du processus de fabrication trouvé par l'optimisation est en fait la solution optimale. 

Ce test consiste à exécuter le du processus de fabrication optimal sur silicium. Les résultats trouvés en 

utilisant le PCM et les mesures silicium doivent ensuite être comparées. Si le modèle ne correspond 

pas à silicium, cela signifie que, soit la TCAD est mal étalonnée (compte tenu de ce nouveau du 

processus de fabrication) ou le PCM n‘est pas suffisamment prédictif. Toute la procédure doit être 

exécutée une fois de plus en se concentrant maintenant sur ce nouveau du processus de fabrication 

pour l'étalonnage du modèle et de la TCAD. 

Toute la procédure, comme le montre la Figure 26, est itérative et quelques itérations pourraient être 

nécessaires afin d'arriver à un modèle cohérent et un du processus de fabrication optimal. Il n‘est 

nécessaire de traiter que quelques plaques par itération, ce qui rend l'approche très rentable. En outre, 

une procédure entièrement automatisée peut effectuer une itération très rapidement (de l'ordre de 

grandeur de quelques heures). La seule étape qui ne peut pas être automatisé est calibration TCAD car 

elle nécessite l‘expertise d‘ingénieurs qualifiés. Cependant les indications fournies par l‘extraction des 

paramètres du modèle peuvent grandement faciliter cette tâche. 

6.4.2  Fonctionnalités avancées pour les futures études basée sur l‘outil PCM 

En perspective, nous proposons ici quelques lignes directrices afin d'améliorer l'approche développée 

dans ce travail et de tirer pleinement profit de la technique. La Figure 29 représente le schéma du PCM 

comme celui présenté dans l'introduction. Cependant ici, nous avons ajouté des fonctionnalités 

avancées qui pourraient être étudiées dans les applications futures. 

Les fonctionnalités avancées incluent l‘utilisation de nouveaux types de modèle pour relier les 

paramètres du procédé aux paramètres modèle. Parmi ces nouveaux types on trouve, les réseaux de 

neurones (Feed Forward Neural Network) [156][186][187], le Support Vector Machine (SVM) [188] 

ou simplement un modèle physique (possiblement non-linéaire) défini par l'utilisateur. Ces nouvelles 
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approchent contrecarrent les limitations de l‘approche actuelle, basée sur des polynômes linéaires, qui 

n‘incluent pas de deuxième ordre et ni les effets croisés des paramètres du procédé. 

 
Figure 29: Organigramme du PCM pour cellules standard 

En outre, la dépendance non linéaire entre certains paramètres comme sigma vs Tspike, ou difficile à 

modéliser avec des polynômes linéaires. Enfin, afin de trouver le procédé de fabrication optimale, 

nous avons vu que le PCM doit être valable sur de larges variations de paramètres du procédé et doit 

donc prendre en compte les relations non linéaires entre le modèle et les paramètres du procédé (tels 

que la saturation de la concentration de dopants pour les doses d'implants très élevés). Cela ne peut pas 

être pris en compte par l'utilisation de polynômes linéaires mais des formules non linéaires peuvent 

prendre en compte ce genre de comportement. 

Les méthodes FFNN et SVM peuvent également prendre en compte ces non linéarités. En outre, ces 

méthodes peuvent travailler avec des paramètres du procédé discontinus (par exemple des variables 

booléennes). En conséquence, il peut gérer des changements dans le procédé de fabrication 

(suppression ou addition d'étapes, changement d'outil). Cependant, considérant la méthode FFNN, il 

convient de noter que cette méthode est moins transparente par rapport aux polynômes, bien qu‘elle 

soit très facile à manipuler et à former. De plus, c‘est une méthode très puissante capable de modéliser 

des systèmes complexe, de nature très variée. Voilà pourquoi elle est souvent appelée «méthode 

d‘approximation universel». Aujourd'hui, le réseau de neurones artificiel trouve un nombre croissant 

d'applications, allant de la reconnaissance faciale ou de la parole, au diagnostic médical, pour n‘en 

nommer que quelques-unes. 

Les fonctionnalités avancées citées précédemment incluent également l‘utilisation d‘un modèle 

compact plus souple et précis. Ceci est suggéré sur la Figure 29 en utilisant un modèle compact basé 

sur la charge ou sur le potentiel de surface. La principale ligne directrice que je fournirais est d'utiliser 

un modèle compact avec des paramètres qui ont une signification physique claire et la plus élémentaire 

possible. Cet atout simplifierait grandement la première étape du PCM et rend l'ensemble du PCM 

beaucoup plus robuste. En outre, nous pourrions espérer modéliser les caractéristiques ID-VG 

complètes, voir même les caractéristique CG-VG. Bien entendu, la limitation principale est d'avoir un 

nombre limité de paramètres modèle (environ 10), afin de pouvoir les extraire avec peu de mesures. 

Enfin, la dernière option à étudier est d'étendre le modèle en ajoutant une troisième étape. Cette étape 

modéliserait les caractéristiques électriques de cellules standards à l‘aide de celles du transistor isolé  

(par exemple la SNM pour la SRAM ou la vitesse de commutation pour un oscillateur en anneau). 

Cette troisième étape peut être extrêmement précieuse. En effet, dans cette thèse, nous avons mis 

l'accent sur l'optimisation des performances et de la variabilité des paramètres électriques IDlin et IDsat. 

Les cibles à atteindre (en termes de courant de drain) sont définies de sorte qu'il assure les 

fonctionnalités de circuit. Cependant, avec un PCM capable de modéliser les performances des 

cellules standards, il serait possible d'optimiser directement les performances de la cellule standard. 

Cette approche offrirait une plus grande liberté et une étendue plus large de solutions en termes de 

procédé de fabrication optimal. Dans une autre mesure, il serait également possible de considérer 

l'effet du tracé du circuit avec ce type PCM. Ainsi l'optimisation ne serait pas limitée à trouver le 
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procédé de fabrication optimal, mais aussi le tracée du circuit optimal. Ce type de procédure 

d'optimisation globale donnerait des solutions à forte valeur ajoutée. 

Figure 30 expose un du processus pour la construction de PCM avec des fonctionnalités avancées qui 

méritent d'être étudiées dans les travaux futures. 

 
Figure 30: Organigramme simplifié de la construction du PCM avec les fonctionnalités avancées  

Dans cette figure, le flux de construction commence par la construction d'un plan d‘expériences 

approprié visant à étudier les effets des paramètres du procédé. Selon le modèle que nous essayons de 

construire (en particulier pour la première étape PCM), différents type de plan d‘expériences peuvent 

être utilisés. Les méthodes de construction de plan d‘expériences optimal ont été largement étudiées. 

Les critères universels (basés sur la matrice d‘information de Fisher) pour construire des plans 

d‘expériences optimaux ont été introduites par Wald (1943), Elving (1952), Kiefer (1959) et Kiefer 

(1975). Une littérature vaste et complète peut être trouvée sur ce sujet [311]. Choisir le bon plan 

d‘expériences minimise la chance de construire des PCMs inexactes et augmente sa robustesse. Par 

exemple, afin de construire un modèle polynômial du second d'ordre, un plan d‘expériences composite 

centré serait préférable au plan d‘expériences qui a été utilisé pour les modèles polynômiaux linéaire. 

Une autre caractéristique qui permettrait d'améliorer la technique consiste à utiliser des méthodes 

d'optimisation globale afin d'améliorer la procédure d'extraction. Dans notre approche, nous avons 

utilisé la méthode dite « trust-reflective-region » avec l'algorithme du gradient conjugué. Il est très 

efficace compte tenu de notre problème, mais il ne peut pas assurer de trouver l'optimum global du 

problème, surtout si la première hypothèse est mauvaise. Dans ce travail, nous avons contourné ce 

problème en utilisant la première estimation trouvée avec un ajustement par moindres carrés linéaire. 

Cette approche garantit d'avoir une première estimation assez proche de l'optimum global. En outre, la 

robustesse de l'extraction a été largement testée et éprouvé. Donc, compte tenu de notre cas, la 

méthode d'optimisation fonctionne très bien. Mais si un modèle compact plus précis est utilisé pour 

lesquels aucune première estimation ne peut être fournie avant l'exécuter de l'étape d'optimisation, 

alors un algorithme d'optimisation globale pourrait être avantageux. Une large gamme de solutions 

existe et certains d'entre eux ont été étudiés dans la littérature pour l'extraction de paramètres 

[133][134][314][315]. Différents algorithmes ont été testés au cours de cette thèse (comme algorithme 

génétique et Levenberg-Marquardt), et nous vous recommandons d'utiliser les méthodes basées sur la 

dérivée de la fonction objective, car les modèles compacts sont continus, dérivables et rapide à 

calculer. Ces méthodes semblent être plus rapides et plus précises. Dans cette perspective, nous 

pouvons mentionner la méthode « Multi-levels coordinates search » (MCS) comme alternative à notre 

approche [317]. Plus d'informations sur l'optimisation globale peut être trouvée dans la littérature 

[318]. 

Si l'on devait utiliser les méthodes FFNN, SVM ou des formules analytiques non linéaires pour la 

première étape du PCM, alors des méthodes spécifiques doivent être utilisées pour la sélection de 

variables et l'étalonnage du modèle. Les méthodes FFNN et SVM n'exigent pas explicitement 
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l‘utilisation des méthodes de sélection des variables, mais elles peuvent améliorer leur efficacité pour 

la calibration et l‘utilisation des modèles. La littérature rapports de multiples méthodes pour effectuer 

cette sélection de variables conformément à ces méthodes [319] - [323]. Dans le cas où l'on veut 

utiliser des modèles non linéaire, d'autres méthodes sont plus appropriées pour effectuer la sélection de 

variables [180] - [330]. 

6.4.3 Fonctionnalités avancées pour les futures études basée sur l‘outil PCM 

En termes d'applications inexplorées nous avons déjà mentionné la possibilité d'optimiser les 

performances des cellules standards au lieu des transistors. Une autre application peut être suggérée. 

Jusqu'à présent, nous avons décrit une technique pour trouver le procédé de fabrication optimal. 

Cependant, au cours du processus, la performance et la variabilité peut être impacté par la dérive de 

l'étalonnage des outils. En d‘autres termes, l'étalonnage des outils peut dériver avec le temps et 

modifier légèrement la valeur moyenne des paramètres du procédé sur la plaque. En fin de compte, il y 

aura des divergences entre le procédé de fabrication optimal et celui qui a été effectivement effectué. 

Le même problème peut être observé à l'échelle de la puce. En effet, les paramètres du procédé ne sont 

pas répartis uniformément sur la plaque, en raison de la variabilité au sein de celle-ci. Souvent, il 

existe une signature de plaque (par exemple, un gradient radiale ou linéaire) de la dispersion de ces 

paramètres du procédé. Ainsi, le du processus observé à l'échelle de la puce peut être différent du 

processus de fabrication optimal. Pour contrecarré ce problème, une étude a été faite sur l‘ajustement 

du processus in situ, afin de réduire l'effet de la dérive du procédé [307]. La méthode consiste à faire, 

en temps réel et en ligne, la surveillance des du processus afin d'estimer leur dérive à l'échelle de la 

puce. Puis à une étape critique, le du processus de fabrication peut être réajusté grâce à un recalibrage 

de l'outil ou une réorientation de la plaque afin de contrebalancer l'effet de la dérive de l'étalonnage de 

l'outil ainsi que de signature de la dispersion des paramètres du procédé sur la plaque. Cette 

requalification du processus peut être faite en utilisant le PCM. En effet, à l'étape critique du 

processus, au lieu d'optimiser le procédé de fabrication entier comme nous le suggère l'application 

précédente, seules les étapes restantes seraient optimisées, connaissant l'historique du processus. Ce 

traitement in situ et en temps réel de l'optimisation du processus grâce au PCM permettrait la 

maximisation du rendement.  
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Abstract: 

Recently, the race for miniaturization has seen its growth slow because of technological challenges it 

entails. These barriers include the increasing impact of the local variability and processes from the 

increasing complexity of the manufacturing process and miniaturization, in addition to the difficult of 

reducing the channel length. To address these challenges, new architectures, very different from the 

traditional one (bulk), have been proposed. However these new architectures require more effort to be 

industrialized. Increasing complexity and development time require larger financial investments. In 

fact there is a real need to improve the development and optimization of devices. This work gives 

some tips in order to achieve these goals. The idea to address the problem is to reduce the number of 

trials required to find the optimal manufacturing process. The optimal process is one that results in a 

device whose performance and dispersion reach the predefined aims. The idea developed in this thesis 

is to combine TCAD tool and compact models in order to build and calibrate what is called PCM 

(Process Compact Model). PCM is an analytical model that establishes linkages between process and 

electrical parameters of the MOSFET. It takes both the benefits of TCAD (since it connects directly to 

the process parameters electrical parameters) and compact (since the model is analytic and therefore 

faster to calculate). A sufficiently robust predictive and PCM can be used to optimize performance and 

overall variability of the transistor through an appropriate optimization algorithm. This approach is 

different from traditional development methods that rely heavily on scientific expertise and successive 

tests in order to improve the system. Indeed this approach provides a deterministic and robust 

mathematical framework to the problem. The concept was developed, tested and applied to transistors 

28 and 14 nm FD-SOI and to TCAD simulations. The results are presented and recommendations to 

implement it at industrial scale are provided. Some perspectives and applications are likewise 

suggested. 

Résumé: 

Récemment, la course à la miniaturisation a vu sa progression ralentir à cause des défis technologiques 

qu‘elle implique. Parmi ces obstacles, on trouve l‘impact croissant de la variabilité local et process 

émanant de la complexité croissante du processus de fabrication et de la miniaturisation, en plus de la 

difficulté à réduire la longueur du canal. Afin de relever ces défis, de nouvelles architectures, très 

différentes de celle traditionnelle (bulk), ont été proposées. Cependant ces nouvelles architectures 

demandent plus d‘efforts pour être industrialisées. L‘augmentation de la complexité et du temps de 

développement requièrent de plus gros investissements financier. De fait il existe un besoin réel 

d‘améliorer le développement et l‘optimisation des dispositifs. Ce travail donne quelques pistes dans 

le but d‘atteindre ces objectifs. L‘idée, pour répondre au problème, est de réduire le nombre d‘essai 

nécessaire pour trouver le processus de fabrication optimal. Le processus optimal est celui qui conduit 

à un dispositif dont les performances et leur dispersion atteignent les objectifs prédéfinis. L‘idée 

développée dans cette thèse est de combiner l‘outil TCAD et les modèles compacts dans le but de 

construire et calibrer ce que l‘on appelle un PCM (Process Compact Model). Un PCM est un modèle 

analytique qui établit les liens entre les paramètres process et électriques du MOSFET. Il tire à la fois 

les bénéfices de la TCAD (puisqu‘il relie directement les paramètres process aux paramètres 

électriques) et du modèle compact (puisque le modèle est analytique et donc rapide à calculer). Un 

PCM suffisamment prédictif et robuste peut être utilisé pour optimiser les performances et la 

variabilité globale du transistor grâce à un algorithme d‘optimisation approprié. Cette approche est 

différente des méthodes de développement classiques qui font largement appel à l‘expertise 

scientifique et à des essais successifs dans le but d‘améliorer le dispositif. En effet cette approche 

apporte un cadre mathématique déterministe et robuste au problème. Le concept a été développé, testé 

et appliqué aux transistors 28 et 14 nm FD-SOI ainsi qu‘aux simulations TCAD. Les résultats sont 

exposés ainsi que les recommandations nécessaires pour implémenter la technique à échelle 

industrielle. Certaines perspectives et applications sont de même suggérées. 


