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Abstract

Robot navigation using vision is a classic example of a
scene understanding problem. We describe a novel ap-
proach to estimating thetraversabilityof an unknown en-
vironment based on modern object recognition methods.
Traversability is an example of an affordance jointly de-
termined by the environment and the physical characteris-
tics of a robot vehicle, whose definition is clear in context.
However, it is extremely difficult to estimate the traversabil-
ity of a given terrain structure in general, or to find rules
which work for a wide variety of terrain types. However,
by learning to recognize similar terrain structures, it is pos-
sible to leverage a limited amount of interaction between
the robot and its environment into global statements about
the traversability of the scene. We describe a novel on-line
learning algorithm that learns to recognize terrain features
from images and aggregate the traversability information
acquired by a navigating robot. An important property of
our method, which is desirable for any learning-based ap-
proach to object recognition, is the ability to autonomously
acquire arbitrary amounts of training data as needed with-
out any human intervention. Tests of our algorithm on a real
robot in complicated unknown natural environments sug-
gest that it is both robust and efficient.

1 Introduction

Robot navigation using vision is a classic example of a
scene understanding problem, requiring inference beyond
pure geometric reasoning. In particular, successful navi-
gation requires the robust assessment of theaffordanceof
traversability. As originally conceived by Gibson, an affor-
dance is not just a property of the environment, but is jointly
determined by the environment and the organism [8]. The
problem domain for this paper is an outdoor autonomous
robot. In this case, the affordance of traversability is deter-
mined by whether the robot can successfully move over a
particular ground location. In this paper we present a novel
method of learning to infer the affordance of traversability
from appearance of terrain in an outdoor environment.

Typically, in constrained environments, is it is known a
priori that a particular affordance can be directly inferred
from a measurable physical property. For example, robot
navigation in an indoor office environment relies heavily
on geometry [3, 15]. The assumption employed is that if
the world geometry in front of the robot is a flat plane,
then that area is traversable. This methodology has been
actively pursued precisely because, in fact, many indoor
robot applications are situated in contexts where this as-
sumption is valid. In other domains, such as convention-
ally marked automobile highways, different mappings can
be exploited [4]. Special sensors, such as stereo pairs and
range sensors certainly help navigation [1, 16, 11, 13, 2], yet
they do not fundamentally solve the obstacle detection prob-
lem, because geometry does not directly encode traversabil-
ity.

2 Learning to Map from Appear-
ances to Affordance

Our approach to inferring traversability is premised on two
key assumptions. The first of these is the assumption that
image appearance and geometry contain information about
traversability affordance. More specifically, two terrainlo-
cations which have similar appearances across viewpoints
will have the same traversability properties (which we de-
fine to beobstacle or not-obstacle). We exploit
this assumption by asserting that if a particular terrain lo-
cation is similar in appearance to locations predominantly
known to be traversable, then it also should be traversable.
Notice this does not imply that all traversable terrain loca-
tions look similar — there is no simple appearance or geo-
metric description of traversable regions.

The informal basis of this assumption is that in a given
environment there will be a variety of terrain structures.
For example, an area may consist of grassy slopes, gravel
roads, dirt paths, woven thickets, and trees. At each point of
time the robot can measure both the photometric appearance
with a standard camera and the geometric structure from a
stereo pair. An example of the imagery is shown in Fig-
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ure 1. On occasion the geometry is such that the robot can
make a direct inference of traversability, e.g. a broad verti-
cal wall. But more importantly, the robot will assume that
currently viewed location will behave similarly with respect
to traversability as a previously sampled structures that have
a similar appearance.

A key element of our approach with respect to this as-
sumption is that the robot often views the same terrain loca-
tion multiple times, from varying distances and viewpoints.
Our method is designed to integrate this information by uti-
lizing all observations and comparing them to previously
sampled observations from similar distances. In this man-
ner, the confidence that a terrain region is not an obstacle is
reinforced through accumulated evidence.

The notion of previously sampled locations invokes our
second key assumption: in general it will not be possi-
ble in complex vegetative domains to specify a priori a
“traversability detector”, an algorithm that reliably com-
pute whether a terrain area will support robot traversal.
Rather the system will need tolearn which structures are
traversable and which are not.

Recently, machine learning has been successfully ap-
plied in both the vision based navigation [9, 7, 10] and ob-
ject detection/recognition [12, 17]. However, such learning
approaches involve a large amount of manual work in la-
belling and collecting training data. The object categoriza-
tion work in [5] requires few learning instances for each
class, yet manual data collection for a great number of
classes is still a problem.

Our approach to learning is different in two significant
respects. First, we take advantage of the robot being able
to directly perform experiments in the environment. Given
a potentially traversable terrain location, the robot can pro-
ceed (cautiously!) using its bumper and motor state sensors
to determine whether its forward motion is being impeded.
This gives the learning system the ability to collect arbitrary
amounts of training data as needed through this independent
channel.

The second difference is that the robot will receive an
unbalanced number of samples of the two categories of
obstacle andnon-obstacle. Most of the time (one
hopes) the system will be proceeding through appropriately
planned trajectories such that the terrain structures it vis-
its are usually not obstacles. It is thus not feasible to learn
either the prior probability of obstaclesP (O) or any proba-
bilities conditioned on obstacles reliably due to lack of ob-
servational data. Thus we model the likelihood of obser-
vations associated with non-obstacles. If a particular ap-
pearance has been observed numerous times when viewing
non-obstacles in the past, then it is unlikely that this appear-
ance actually arises from an obstacle. This likelihood is up-
dated whenever new traversability information is obtained.
Repeated sampling of this appearance when observing non-

(a) (b)

Figure 1: Input from one stereo pair. (a)RGB image from
one camera; (b)Height map from stereo.

obstacles strengthens the robot’s expectation that such ap-
pearance is linked with “traversable”. On the other hand,
encountering an actual obstacle greatly reduces the likeli-
hood of all the appearances associated with this obstacle to
be views of non-obstacles.

3 Feature Space Representation

As an index over which to integrate our observations, we
carve the terrain into a two-dimensional cartesian grid of
cells, with each cell representing a0.2m× 0.2m square el-
ement of terrain [14]. Over time, traversability about a cell
location is being made based on observations of it at differ-
ent distances. In this section we describe the feature space
that we design to represent all of the observations associated
with a cell location.

We represent one observation by a pair consisting of the
appearancebi and the distancedi at which the cell is viewed
(bi, di). Distancedi can be reliably measured by the stereo
system, and we designbi to be a fixed size image patch cor-
responding to that cell. With the assumption that similar
observations do infer similar traversability, we want to map
the appearancebi in a feature space that reflects visual simi-
larity. To handle the large variation of the lighting condition
and the terrain structure reflectance, we use the orientation
histogram representation. For each image patch, its gradient
in the image intensity domain is calculated, and a histogram
of the gradient orientations is calculated [6]. Orientational
histogram is robust against the change of lighting condition
because although intensity values change, the orientations
of intensity derivatives do not change. It also works if the
image patch is completely in a shadow. In practise, we cal-
culate the orientation histogram in 8 bins, 45 degrees each.
Since for each pixel, stereo gives its corresponding 3D posi-
tion and height, we can also take advantage of the geometry
information. Thus we calculate a 5 bin histogram of the cor-
responding height for each pixel, with the bin division based
on the obstacle height range with respect to the robot size.
The appearancebi is thus in a 13 dimensional space[pvpz],
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which is a cartesian product of the 8 dimensional visual fea-
ture space of orientation histogram (pv) and a 5 dimensional
geometry feature space of height distribution (pz). Note that
the appearance vectors are intrinsically in a 11 dimensional
space, because
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The weightwv weights visual feature more than geome-

try feature, with the assumption that visually similar image
patches usually have similar geometry. However, this com-
binatory feature also prevents clustering visually similar but
geometrically distinct pathes together. In the following sec-
tion, we describe a procedure for mapping the appearance
bi to a set of class labelsai. With this feature space for one
observation, the feature of a cell over time is represented by
the powerset of these features(A, D) = {(ai, di)}. In the
next section, we show how to group similar observations
together, so as to associate with traversability information.

4 Online Appearance Quantization

The traversability information is to be associated with a
group of similar observations rather than to individuals. It
is important to further reduce the dimensionality such that
a reasonable number of groups can to be maintained. It is
easy to discretize the distancedi into a fixed number of bins,
so here we concentrate on grouping visually similar patches
together.

Our algorithm represents each cluster as a hypersphere of
constant radiusr in the 11 dimensional vector space. The
radius is predefined so as to control the maximum number
of clusters that can possibly be formed. Since the terrain
structures in a natural environment are usually not arbitrar-
ily distributed, a certain number of clusters do reliably cover
the majority of terrain structure views. We start with the first
frame using a K-means clustering algorithm with a small
value ofK. Later observed patches are compared to ex-
isting cluster centers and one of the following actions are
performed:

1. If the patch is within radiusr (as measured by Chi-
square distance) to a particular clusterCi with mean
µi, we label this patch as belonging to classCi, and
update the cluster meanµi.

2. If all existingn cluster means are further than radiusr

away, we construct a new classCn+1, using the feature
vector of the image patch as the class meanµn+1

This clustering algorithm serves as an online appearance
quantization method, that each single appearance will be
assigned to one of the clusters based on the similarity be-
tween this single appearance and the cluster mean. Note
that we don’t require the clusters to have semantic mean-
ing, such as a cluster that corresponds to “grass”. With this
representation, observations are recorded as “an instanceof
appearance classCj at a distancedi” (ai = Cj , di). Con-
sider a typical example of the robot moving to a particular
location. If most single observations(ai, di) of the location
on the way are frequently encountered when the robot in the
past moved to non-obstacles, it is very likely that the desti-
nation is also a non-obstacle. On the other hand, if the ob-
servations on the way rarely appeared before when the robot
was moving to a non-obstacle, then conservatively suspect-
ing the destination being an obstacle is a wise choice. This
goes back to our assumption that there are no instances in
the environment which look like non-obstacles from most
view points, but are in fact obstacles. This online clustering
algorithm is fast, and it reduces the dimensionality of patch
feature vectors significantly. Experiments suggest that even
in a very complicated natural environment, fewer than 1000
clusters suffice.

Later when image patches are observed, they are clas-
sified to the nearest cluster center, and the height distribu-
tion of that cluster is used instead of the output from stereo,
for the purpose of classifying traversability. This addresses
the noisy stereo output, which is often the case in an out-
door unconstrained environment (figure 1(b)). One impor-
tant point in clustering is that we don’t prune small clusters,
because obstacles are usually rare, so it is very likely that
the small clusters are from image patches on obstacles. The
fact of greatly reduced dimensionality has enable us to keep
all the likelihood information as associated with every pos-
sible observation.

5 Learning Traversability with Au-
tonomous Data Collection

Here we describe two key mechanisms in our overall learn-
ing framework: an ensemble classification rule for predict-
ing the traversability of a grid location in world coordinates
based on a set of observations obtained by the robot, and
a learning rule for updating the ensemble rule over time to
reflect the experience of the robot. The interaction between
these two components allows the robot to make increasingly
accurate predictions about the traversability of regions of its
environment based on its navigation experience.
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5.1 Ensemble Classifier for Traversability

We assume that we haven observations of a given cell loca-
tion x, y. The observations make up the composite feature
(A, D) = {(ai, di)}

n
i=1, where for eachi, ai is the class

label observed by the robot at a distancedi away. We also
assume that we have access to a base classifierh(ai, di),
which predicts whether locationx, y is traversable given a
single observation. A simple choice forh(ai, di) is to take
the center of the cluster corresponding to the labelai and
count the percentage of times the height distribution ex-
ceeds a threshold above the ground plane. The threshold
is chosen to identify obstacles based on their height above
the ground plane. Note that if the base classifier made con-
sistently good predictions, then there would be no need to
use learning methods to achieve successful navigation. In
practice, however, it is very difficult to make accurate pre-
dictions about traversability based solely on the image and
stereo data obtained over a small window of pixels. Note
also that more sophisticated and powerful base classifiers
could be employed without changing our basic approach to
ensemble classification.

We further assume that the base classifier is tuned con-
servatively, meaning that it’s false negative rate is very low
(it will rarely miss an obstacle when one is present) but as
a consequence its false alarm rate is fairly high (it often re-
ports obstacles in locations where no obstacle is actually
present). This is a reasonable choice given our assump-
tion that non-traversable regions are fairly rare. Many real-
world robot navigation systems take a similar conservative
approach.

Under the given conditions, the primary goal of the en-
semble classifier to learn an effective discount factorβi for
each base classifier. The purpose of the discount factor is
to ignore the votes of the base classifiers in cases where the
likelihood that the feature values come from a traversable
region are high. LetH(A, D) where0 ≤ H ≤ 1 be the
ensemble prediction, corresponding to the likelihood of an
obstacle being present. WhenH(A, D) = 0 the region is
traversable. We use the following form for the ensemble
rule:

H(A, D) =

∑

βiwdi
h(ai, di)

∑

wdi

βi =

{

1 if L(ai|O, di) < T

0 if L(ai|O, di) ≥ T
(2)

wherewdi
are the weights associated with the discrete bins

of di andT is a pre-defined threshold. Thewdi
are chosen

to weight close-by observations more heavily than far-off
ones.

The factorL(ai|O, di) measures the likelihood of ob-
serving a particular class labelai at a distancedi given
that the cell is traversable. The higher this likelihood is

for a particular feature(ai, di), the less attention should
be paid to the vote by the corresponding base classifier at
that particular location. Although we could allowβi to be
a continuously-varying weight, we have found that we get
better results if we threshold it and obtain a zero-one en-
semble weight. Only in cases where we have not observed
a particular feature as being traversable a significant number
of times will we rely upon the (conservative) base classifier.

Note that other classification approaches are possible.
Perhaps the most straight-forward approach would be to
model the probability of traversability,P (O|A, D), directly
and obtain an expression for it using Bayes rule:

P (O|A, D) = P (A|O,D)P (O|D)

P (A|O,D)P (O|D)+P (A|O,D)P (O|D)

= P (A|O,D)P (O)

P (A|O,D)P (O)+P (A|O,D)P (O)

(3)

One difficulty in this approach is the complex structure of
the joint observation densityP (A|O, D). This is a distri-
bution over the power set of combinations of observations.
Another difficulty is the fact that it is very hard to determine
the prior distribution over traversability,P (O). This prior
probability will change dramatically with the characteristics
of the site and can even change significantly for different re-
gions within a site.

5.2 Autonomous Learning of Traversability

The robot obtains high quality traversability informationas
it explores its environment. Each cell which the robot can
successfully pass through can be labelled as traversable,
otherwise it is labelled as untraversable. Bumper and IR
sensors mounted at the front of the robot, as well sensor
data on the state of the robot’s motors, can be used to col-
lect evidence of the lack of forward progress by the robot
which is associated with an untraversable cell. A key point
about this data collection process is that an essentially arbi-
trary amount of high-quality labelled data can be obtained
without any human intervention. The process for inferring
traversability is extremely robust and accurate. Through
learning we leverage this high-quality information obtained
for a sparse number of map locations into a substantial in-
crease in the overall (global) accuracy of the map.

Let O(x, y) denote the traversability of a ground cell
with center(x, y). O(x, y) = 1 if the cell is occupied by
an obstacle,O(x, y) = 0 if it is not. Initially all O(x, y)
are set to−1 throughout the occupancy grid. The main data
structure for traversability learning is the list of observation
likelihoods{L(ai|O, di)}

n
i=1 corresponding to each possi-

ble feature value. These likelihoods are initialized to zero
and then updated according to the navigation experience of
the robot. The update rule goes as follows:

1. If the ground cell is traversable, setO(x, y) = 0; up-
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date class likelihoods:

Count(Cj |O, di) = Count(Cj |O, di) + 1 (4)

for each evidence(Cj , di) associated with this cell
(x, y), where1 ≤ j ≤ n are quantized appearance
clusters, and1 ≤ i ≤ 6 are the6 distance bins. Essen-
tially, we have estimates of:

L(Cj |O, di) =
Count(Cj |O, di)

∑

j

Count(Cj |O, di)
(5)

2. Else, the ground cell is occupied by an obstacle, set
O(x, y) = 1; update observation likelihoods:

Count(Cj |O, di) = λ × Count(Cj |O, di) (6)

where0 < λ < 1 is a penalization factor (we use
λ = 0.5).

Note that there is a strong resemblance between the pre-
ceding update rule and reinforcement learning techniques
for navigation in grid-worlds. The primary difference is
our use of class labels based on the visual appearance of
image patches to bias the update strategy towards regions
with visual similarity. This reflects our hypothesis that re-
gions in the scene with similar appearance over distance
will have similar traversability characteristics. The efficacy
of our approach over standard temporal integration tech-
niques demonstrates the value of this additional source of
information.

5.3 Algorithm Implementation

Our algorithm consists of online learning and classification
of traversability. In the world frame, the ground is divided
into equal sized square cells, with(x, y) representing the
center of the cell. LetO(x, y) denote the traversability of
this ground cell,O(x, y) = 1 if it’s occupied by an obstacle,
O(x, y) = 0 if not. Initially all O(x, y) is set to−1. For
each frame, do the following:

1. Online appearance quantization.For each image
patch observed in the current frame:

(a) Classify this patch with a base class label, let
ai = Cj . Let di be the discretized distance from
the center of the image patch to the robot center.

(b) Record evidence(ai, di) associated with the
ground cell(x′, y′) where the image patch is lo-
cated in the world frame. Update the class mean
vector and construct new classes if necessary, as
described in section 4.

2. Learning traversability.Examine the traversability of
the current cell. IfO(x, y) = 0 or 1, the robot al-
ready has visited this location, no new information is
obtained. Otherwise,O(x, y) = −1 and the class like-
lihoods can be updated as in section 5.2.

3. Traversability classification.Use equation 2 in sec-
tion 5 to update the traversability belief of each ground
cell (x, y), given its observations(A, D) = {(ai, di)}.

One major focus of our algorithm is to learn the likeli-
hoods of observations about non-obstacles at certain dis-
tance, as represented byL(Cj |O, di). Since chances of
bumping into an obstacle are rare, especially when the al-
gorithm is working, we don’t modelL(Cj |O, di) directly.
Instead, we penalizeL(Cj |O, di) so as to reduce our belief
of a non-obstacle, when a patch of classCj is viewed about
an obstacle at distancedi. The novel aspect of this approach
is to strengthen the belief of a non-obstacle when evidence
are obtained, yet severely reduced the belief when obstacles
are encountered.

Figure 2 illustrates the information flow in our algo-
rithm. There are number of ground cells(x, y) which we
want to predict the likelihood of having an obstacle in the
cell. Each ground cell has a number of observations, and
cells share similar observations. We provide an example
to show how information flows for learning and classifica-
tion. Suppose the cells in the figure are not visited yet, thus
{O(xi, yi) = −1}p

i=1. Now a measurementM of (x1, y1)
is given. If there is no obstacle in this cell, meaningM = 0,
then the observation class likelihoods that are associated
with this cell are increased. These three observations, i.e.
(a1, d1),(a2, d2) and(a4, d4), get higher likelihood as be-
ing views of non-obstacles. They then affect the obstacle
classification for cells(x2, y2), (x3, y3) and(xk, yk), to re-
flect the newly obtained traversability data. The likelihoods
of having an obstacle in each of these three cells are de-
creased. On the other hand, if measurementM of (x1, y1)
is actually an obstacle, then the class likelihoods of the three
observations are greatly reduced (according to equation (6)
in section 5.2), thus causing(x2, y2), (x3, y3) and(xk, yk)
to be more likely an obstacle.

6 Experiments and Results

Our algorithm is tested on a real robot (figure 3). The robot
has two stereo pairs, each of them consisting of two cam-
eras, that give us both the images from the camera and the
stereo information. It also has an a GPS and an Inertial
Measurement Unit (IMU), that gives the global position and
pose of the robot. The bumper switch on the robot can give
control feedback whether it has hit an obstacle or not. Here
we present two test results, one in a parking deck and the
other in a forest.
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measurements

(a1,d1) (a3,d3)(a2,d2) (aj,dj) (aj+1,dj+1) (at,dt)(a4,d4)

Figure 2: Learning and classifying traversability. Blue ar-
rows: newly acquired traversability data updates the related
observation class (blue squares) likelihoods. Red arrows:
the change of observation class likelihoods is then reflected
in traversability classification for the cells that share similar
observations.

Figure 3: Robot for algorithm testing in outdoor natural
environment. It has a GPS system (red), two stereo pairs
(green) and a bumper (blue).

The parking deck experiment has 3 trash cans with cam-
ouflage cover as the only obstacles. Here we show two com-
parisons. The robot drives with the control of a simple algo-
rithm that only looks at the current frame to find obstacles
based on the stereo output. The robot turns whenever an
obstacle is observed within 2 meters range. The red curve
in figure 4 denotes the robot path, each sharp turn reflects a
close obstacle being seen by this algorithm. It is clear that
such algorithm, without taking advantage of temporal inte-
gration, suffers from significant false alarms. Figure 4(a)is
the obstacle evidence grid build from our algorithm. The
three blue circles denote the trash cans. During the experi-
ment, the robot never hit a trash can, but with the traversable
information collected about the ground, our algorithm fil-
tered the ground out nicely, and conservatively classified

(a) (b)

Figure 4: Obstacle evidence grid (size19m×33m with each
pixel corresponding to0.2m × 0.2m cell on the ground).
Red curve denotes the robot’s path from bottom to top, blue
circles denote ground truth where the obstacles are, green
pixels denote high likelihood of an obstacle in that cell. (a)
Output of our algorithm; (b) Output of standard temporal
integration.

the trash cans as obstacles.

Figure 4(b) is the result from the standard temporal inte-
gration for a comparison. Two major problems contribute
to the noisy result in this case. First, traversability evi-
dence is integrated over time so as to eliminate accidental
false alarms but not consistent ones. Consistently, parking
slot marking lines on the ground are reported by stereo as
having height above 50cm, thus these “obstacles” cannot
be filtered out by only temporal integration. Second, the
traversability belief of a cell location never gets updatedif
no new observations are made about the cell. Our approach
can solve both of these problems, because it associates visu-
ally similar appearances together, and infers about the class
traversability in general rather than doing it separately for
every single observation.

The second experiment is performed in a forest under
significant tree cover. We manually control the robot to
drive in a glade that has a variety of terrain structures.
Big trees sparsely distributed are the major obstacles in the
scene. There are also a number of saplings that the robot can
drive over 5(c)(d). The comparison result between our al-
gorithm and the standard temporal integration algorithm is
presented in figure 5(a)(b). The key observation here is that
saplings have 3D geometry structure resembling obstacles,
thus with temporal integration alone, they cannot be filtered
out as non-obstacles. Our algorithm learns the traversabil-
ity of similar saplings by driving over several of them. Fig-
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(a) (b)

(c) (d)

Figure 5: Obstacle evidence grid (size16m × 20m with
0.2m resolution). Trees of big size are marked with blue
circles. (a) Output of our algorithm; (b) Output of standard
temporal integration; (c) The robot drives over a sapling; (d)
Similar saplings in the environment that are traversable.

ure 5(a) suggests that our algorithm produces far less false
alarms while locating the major obstacles (big trees) accu-
rately.

7 Conclusions and Future Work

We have described a novel method for learning about the
traversability affordance of terrain locations. Based on the
assumption that terrain locations with similar appearancedo
have similar traversability, our method learns to integrate
evidence from appearances to predict traversability. Our
method has the desirable property of collecting arbitrary
amounts of training data as needed, and the performance
improves over time. The algorithm is being implemented on
a real robot as a part of the DARPA LAGR project, which
will be integrated with the robot planning module.
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