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 Abstract – When a mobile robot is executing a navigational 

task in an urban outdoor environment, accurate localization 

information is often essential. The difficulty of this task is 

compounded by sensor drop-out and the presence of non-linear 

error sources over the span of the mission. We have observed that 

certain motions of the robot and environmental conditions affect 

pose sensors in different ways. In this paper, we propose a 

computational method for localization that systematically 

integrates and evaluates contextual information that affects the 

quality of sensors, and utilize the information in order to improve 

the output of sensor fusion. Our method was evaluated in 

comparison with conventional probabilistic localization methods 

(namely, the extended Kalman filter and Monte Carlo 

localization) in a set of outdoor experiments. The results of the 

experiment are also reported in this paper. 

 Index Terms – Sensor Fusion, Context-Sensitive Perception, 

Localization, Extended Kalman Filter, Particle Filter 

I. INTRODUCTION 

 Execution of an autonomous mobile robot mission in an 

urban outdoor environment, such as a reconnaissance mission, 

often requires a waypoint-following capability (e.g. [1, 2]). 

Since waypoints are generally specified in a world coordinate 

system, localizing the robot relative to the world coordinate 

system is vital in such applications. Furthermore, depending on 

the urgency of the mission, the localization may have to be 

accomplished as rapidly as possible. Today, in a typical well-

structured indoor environment, laser-based and vision-based 

SLAM approaches have proven to be useful for localization 

[3-6]. However, objects in an outdoor environment are less 

structured, and the lasers or vision systems are vulnerable to 

severe and dynamic variations in lighting. For outdoor 

applications, the global positioning system (GPS), compass, 

gyro-based inertial measurement unit (IMU), and shaft-

encoder are standard sensors used to measure where the robot 

is and what direction it is heading. On the other hand, these 

sensors are still not perfect, each having its own peculiar 

strengths and weaknesses. For example in the case of a 

differential GPS, if satellite signals and/or differential signals 

are disrupted by the surrounding environment, the positional 

accuracy provided by the GPS severely degrades. However, 

our supposition here is that the robot should be able to 

dynamically assess the qualities of the sensors by monitoring 

parameters that are known to affect them (e.g., RT-20 value 

[7] of the GPS, speed of the robot, etc.). We refer to such 

parameters as contextual information. The contextual 

information is translated into some quantities that convey the 

qualities of the sensors by applying some domain knowledge 

(rules). 

The objective of this paper is twofold: (1) To propose a 

computational scheme that can systematically incorporate 

contextual information and domain knowledge in order to 

gauge the robot’s best current pose when measurements from 

multiple sensors are available; and (2) to empirically evaluate 

whether incorporation of such information/knowledge is 

indeed useful or not. 

It should be noted that, in this paper, the term “pose” we 

are referring to is a six-dimensional vector (X), whose 

components include x, y, z, φ, θ, and ψ (Equation 1): 

 T][ ψθφzyxX =  (1) 

The values of x, y, and z describe the location of a body in the 

world coordinate system, and their units are in meters. The x-

axis points to East, and the y-axis points to North. The value z 

describes an altitude. On the other hand, rotations φ, θ, and ψ 

are yaw, pitch, and roll of the body, respectively, in degrees. 

 The process of collecting data from multiple sensors in 

order to produce an integrated perceptual output is known as 

sensor fusion. Murphy [8], for example, proposed a perceptual 

architecture (SFX) for action-oriented sensor fusion. In the 

SFX, one of three fusion states is selected based on behavioral 

needs. In the first fusion state, contributions from all sensors 

are integrated in order to produce a single perceptual output 

since no conflict among different sensors is expected. In the 

second fusion state, a conflict (discordance) among the sensors 

is expected, and calibration of weak (unreliable) sensors is 

performed before generating the overall output. The third type 

is a greedy method. The discordance among the sensors is 

resolved by suppressing the contributions from all sensors 

except the most reliable one. In our three proposed fusing 

methods (Section II.B): two of them (the EKF and Particle 

Filter) relate to Murphy’s first fusion state (cooperative); and 

one of them (the Maximum Confidence) relates to the third 
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fusion state (suppressive). Furthermore, our cooperative fusing 

methods incorporate probabilities, as the employment of 

probabilities in the context of sensor fusion for mobile robots 

has proven useful for more than a decade [9]. In fact, Thrun 

[10] reports in his survey paper that all of the successful 

approaches to robotics localization today employ probabilistic 

techniques. 

 The organization of this paper is as follows. An overview 

of the context-sensitive pose computation is represented in 

Section II. The implementation details of the computational 

scheme are described in Section III. Empirical evaluation via 

outdoor experimentation is presented in Section IV. Finally, 

conclusions and future work are discussed in Section V. 

II. CONTEXT-SENSITIVE POSE COMPUTATION 

A. Computational Steps 

Suppose that a mobile robot is equipped with multiple 

pose sensors (e.g., GPS, compass, IMU, shaft-encoder, etc.). 

Each sensor provides pose information that may be computed 

in different coordinate systems and generally updated at a 

different time rate from others. Given these sensors, the 

objective here is to compute the best pose at any given time in 

the common world coordinate system. 

 The first step in the process is to transform the original 

sensor readings measured by each sensor into the common 

world coordinate system. Since different sensors operate with 

different coordinate systems, the transformation function is 

unique to the sensor type. It should be noted that some sensors, 

such as shaft-encoders and IMU, compute their poses based on 

dead-reckoning. While such sensors are prone to cumulative 

errors, their incremental readings from previous measurement 

are reasonably accurate. The other types of sensors, such as 

compass and GPS, compute poses with the absolute location 

and orientation. Equation 2 expresses this operation 

mathematically: 

 


 ∆

=
=−

otherwise

basedreckoningdead   if

)(

) ,(

T

1T

sts

ststs

st
rf

rXf
X

--s
 (2) 

where Xs is the converted pose for sensor s,  t is the current 

instant, fTs is the transformation function for the sensor, ∆rs is 

the increment from the previous measurement, and rs is the 

measurement itself. 

Once a pose from each sensor is computed, the next step is 

to compute estimated accuracy of the pose; in this paper, we 

refer to the estimated accuracy as grade, denoted with letter G. 

More specifically, suppose we define vectors Φ and Σ as 

shown in Equations 3 and 4, respectively: 

 
T][ ψθφ αααααα zyxΦ =  (3) 

where αx is a confidence value that is a scalar value ranging 

from 0 to 1 to quantify how certain the value x is, and: 

 
T222222 ][ ψθφ σσσσσσ zyxΣ =  (4) 

where σx
2
 is a variance of x. The grade is then defined as a 

matrix (6×2) that contains both vectors (Equation 5): 

 ][ ΣΦG =  (5) 

Both confidence values and variance are adjusted depending 

on status of the sensor and/or robot. For example, as 

mentioned earlier, when the differential signals are disrupted, 

the pose computed by the GPS should be considered 

inaccurate; hence, the confidence values should be degraded, 

and the variances should be increased, accordingly. Indeed, 

assigning these values requires some real-time information that 

measures status of the sensor and/or robot. Furthermore, it also 

requires some rule-based knowledge that translates the 

sensor/robot status into the grade of the pose. We refer to the 

real-time information of the sensor/robot as contextual 

information (vector C) and the rule-based knowledge as 

domain knowledge (function fD). G for sensor s is hence 

computed by Equation 6: 

  )(D sss CfG =  (6) 

Different sensors require different types of contextual 

information and domain knowledge to compute the grades. 

Thus, the contents of C and the rules in fD are unique to the 

sensor type (s). Specific values/rules of C and  fD employed 

during the experiment conducted for this paper is shown in 

Section IV.C. 

 At this point, we have Xs (pose) and Gs (grade) for all 

available sensors. The next step is to adjust the confidence 

values (α) in Gs based on the types of sensors. Our assumption 

here is that even when a particular sensor is operating at its 

best condition (hence 100% confidence value), this sensor may 

be known to be unreliable if compared with other sensors. 

Discounting of the α value in Gs can be done by Equation 7: 

   sss GG Γ=′  (7) 

where G′s is the discounted grade, and Γs is an weighting 

matrix that includes predefined discount factor γs ranging from 

0 to 1 (Equation 8): 
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(See Section IV.C. for specific values used for γ in our 

experiment.)  

 Given Xs and Gs′ for n pose sensors that have updated their 

measurements since the previous time cycle, the last step here 

is to compute the best estimate of the current pose from those. 

We refer to this step as fusing, and it is described by: 

 ),, ... ,,,,( 2211F sntsnttstststst GXGXGXfX ′′′= ζζ  (9) 

where Xζt is a fused pose (the best estimate of the current pose) 

for the current instant (t); and fFζ  is a function that computes 

the fused pose using fusing method ζ. Currently, we have 

implemented three types of fusing methods, which are 

explained in the following section. 

It should be noted that our computational method here 

supports asynchrony of sensor measurements. In other words, 

different sensors may have different update frequencies (e.g., 

the GPS usually updates less frequently than the IMU does). 

Thus, n in Equation 9 can be different from one cycle to 
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another. Furthermore, it should be also noted that dynamically 

adjusting the contents of G-matrix (Equation 6) is our 

definition of context-sensitive pose computation. In order to 

determine how effective it is to incorporate dynamically 

changing contextual information upon pose estimation, we 

evaluated the computational scheme where the G-matrix was 

dynamically computed through Equation 6 against a control 

scheme where the G-matrix was statically specified (Section 

IV). 

B.  Fusing Methods 

 As mentioned above, function fFζ computes the output 

pose (Xζ) given the input poses from different sensors and their 

associated grades using fusing method ζ (Equation 9). In this 

section, we describe how the fusing function can be 

constructed in this framework by showing how the three types 

of our fusing methods (Maximum Confidence, Extended 

Kalman Filter, and Particle Filter) are implemented. 

1. Maximum Confidence 

The first fusing method, called Maximum Confidence, is 

essentially a greedy method. Each element in the fused pose is 

copied from the one whose confidence value is the highest 

among all candidates. Expressing mathematically, let us first 

define vector a
m
 as an n-length vector that contains the m

th
 

element of confidence values stored in the discounted G-

matrices (Equation 7) for all n sensors: 

 T

21 ])1 ,()1 ,()1 ,([ mGmGmGa snss

m ′′′= L  (10) 

For example, a
1
 is a vector that contains confidence values of x 

for all n sensors, and a
4
 is the same for φ. The process of 

fusing via the Maximum Confidence can be then computed by 

Equation 11: 

 
T

)IMax()IMax()IMax(
])()2()1([ 21 dXXXX daaa

L=ζ  (11) 

where IMax is a function that takes a vector and returns the 

index of the element that has the largest value; d is the 

dimension of X (d = 6 in our case). In the context-sensitive 

pose computation, dynamic adjustment of the G-matrix 

(Equation 6) affects the values of a
m
, and thus it influences the 

selection of Xζ pose-components. 

2. Extended Kalman Filter 

 The second type of fusing methods incorporates the 

Extended Kalman Filter (EKF) as means to estimate the 

current pose probabilistically. The EKF, an extension of the 

simple Kalman filter used to handle nonlinearities, is a 

recursive filter that estimates the current state of a system. 

Because sensor fusion can be suitably handled by its 

mathematical formulation [9], both the simple Kalman filter 

and EKF have been a popular choice in mobile robot 

localization [11-14]. The pose computation via the EKF has 

two distinct phases (prediction and update), which are 

explained below. (See [15] for more details including the 

theoretical background.) 

 In the prediction phase, the estimated pose (Xp) at the 

current instant t based on the process (motion) model is first 

projected (Equation 12): 

 ) , ,( 11PE −−= tttpt wuXfX ζ  (12) 

fPE is a function that implements the process model; the 

function takes the fused pose computed in the previous cycle 

(Xζt-1), control input (ut), and estimated process noise (wt-1). ut 

is estimated using shaft-encoder readings (∆rshatf) since the 

shaft-encoder is a standard sensor that is installed on most of 

the mobile robots in our laboratory. From simple kinematics, 

the process model can be described by the following equation 

(Equation 13): 
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where ∆l is the Euclidean norm of ∆rshaft (Equation 14); ∆φ, 

∆θ, and ∆ψ are φ, θ, and ψ components of ∆rshaft, respectively. 

The values of w are all approximated as zero in this phase: 

 222
zyxl ∆+∆+∆=∆  (14) 

 In the prediction phase, the estimated error covariance 

matrix (P) is also projected (Equation 15): 

 TT

1     WQWAPAP tt += −  (15) 

where A is the Jacobian of fPE with respect to X; W is the 

Jacobian of fPE in relation to w; and Q is the process noise 

covariance. It should be noted that the P-matrix is recursively 

computed using values from the previous cycle. More 

specifically, suppose we split up fPE in terms of the elements of 

the pose to be computed (Equation 16): 

 
T

PEPEPEPE ][ φffff yx L=  (16) 

By the definition of the Jacobian matrix, the A-matrix in 

Equation 15 can be then expressed as: 
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Because of Equation 13, the W-matrix in Equation 15 is a 6×6 

identity matrix in this case. The Q-matrix is computed by 

Equation 18: 

 ))2 (:,Diag()Diag( shaftshaft GΣQ ′==  (18) 

where Diag is a function that returns a square matrix whose 

diagonal elements are copies of elements in the input vector 
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(other elements are set to be zero); and Σshaft is the variances of 

shaft-encoder readings stored in the second column of the 

discounted G-matrix (the colon indicates that all elements are 

taken into account). 

In the update phase of the EKF, the Kalman gain (K) and 

final estimates of the current pose (Xζ) and the error 

covariance (P) are computed based on the latest measurements 

(Xs calculated by Equation 2 and arrived to the fuser via 

Equation 9). 

Let us define a function (fHs) that computes an estimated 

sensor measurement (Xh) for sensor s from an input pose (X) 

and its estimated error (v): 

 ),(H vXfX shs =  (20) 

Assuming the coordinate systems of Xh and X are the same, 

Equation 20 can be replaced with a simple linear equation 

(Equation 21): 

 vXvXf s +=),(H  (21) 

Given fHs and P (from Equation 15), the Kalman gain for 

sensor s is then computed by Equation 22: 

 TT
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where H is the Jacobian of fH with respect to X (i.e., an identity 

matrix in our case because of Equation 21), V is the Jacobian 

of fH with respect to v (also an identity matrix), and R is the 

sensor noise covariance for the sensor (Equation 23): 

 ))2 (:,Diag()Diag( sss GΣR ′==  (23) 

Finally, given the Kalman gains for all n sensors, the fused 

pose (the final estimate of the current pose) of the EKF is 

computed by the following equation: 

 ∑
≠∩∈

−+=
shaftsSs

spsssp vXfXKXX
  

H )) ,(( ζ  
(24) 

where S is a set of all n sensors that have updated their 

measurements since the previous cycle. Substituting fHs with 

Equation 21, Equation 24 can be simplified as Equation 25 in 

our implementation: 

 ∑
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−−+=
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)( ζ  
(25) 

Practically, the values of vS are approximated as zero in this 

calculation. The error covariance matrix (P) for the next cycle 

is then updated with Equation 26: 

 PHKIP
shaftsSs

ssnext  ) (
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−=  
(26) 

It should be noted that, in the context-sensitive pose 

computation, dynamic adjustment of the G-matrix affects 

matrices Q (Equation 18) and R (Equation 23). 

3. Particle Filter  

The third type of the fusing methods implements the 

Monte Carlo localization (MCL) method, another probabilistic 

approach; we call this fuser the Particle Filter. Recently, the 

MCL has been used extensively in the robotics community to 

fuse sensor readings and represent likelihood distributions 

over localization space [5, 16-18]. As in the EKF, the Particle 

Filter computes the current pose (Xζ) using both the prediction 

and update phases. (A good review of the MCL method 

including the theoretical justification can be found in [5, 19].) 

To carry out the computation, the Particle Filter utilizes a 

concept called “particle”, which is essentially a six-

dimensional pose (o) obtained from sampling methods 

described below. As a fuser, the Particle Filter retains a large 

number (N) of particles to compute the final pose. Here, we 

use O, a 6×N matrix, to denote the set of N particles (Equation 

27): 

 ][ 21 NoooO L=  (27) 

The first step in the prediction phase is to project the pose 

of each particle based on the process model (Equation 28): 

 ) , ,( 11PP −−= tttt wuofo  (28) 

Similar to fPE in Equation 12, fPP is the process model for the 

Particle Filter, u is the control input (approximated with 

∆rshaft), and w is the estimated process noise. fPP can be 

described by the following equation (Equation 29): 
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where ∆φ, ∆θ, and ∆ψ are φ, θ, and ψ components of ∆rshaft, 

respectively; ∆l′ is the Euclidean norm of ∆rshaft with the 

process noise being taken account. More specifically, ∆l′ can 

be obtained from this equation (Equation 30):  

 ))Mean( ,e(GaussSampl shaftΣll ∆=′∆  (30) 

where GaussSample is a function that draws a sample from the 

normal density having the mean and standard deviation 

specified in its first and second input parameters, respectively; 

∆l is the Euclidean norm of ∆rshaft (Equation 14); Mean is a 

function that returns an average value of its input vector; and 

Σshaft is the variances stored in the second column of the 

discounted G-matrix for the shaft-encoder. Notice that fPE in 

the EKF (Equation 13) and fPP in the Particle Filter (Equation 

29) are similar. However, the difference is that, while the 

process noise (w) is linearly added to fPE, the process noise in 

fPP is already taken into account when computing the Euclidean 

norm of ∆rshaft (i.e., ∆l′). 

 In the update phase of the Particle Filter, the pose of each 

particle is refined based on the sensor measurements. It is done 

by first calculating weight (ωo) for each particle using 

Equation 31: 
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where S is a set of all n sensors that have updated their 

measurements since the previous cycle; d is the dimension of o 

(which is six); and fL is a function that returns the likelihood of 

a sample (specified in the first input parameter) given a 

measurement (specified in the second input parameter); our fL 

assumes the normal density, and hence its standard deviation is 

specified by the third input parameter. Once the weights are 

computed for all N particles, they are normalized (ω′o) and 

combined as a vector (Ω) as shown in Equation 32: 

 ][ 21 oNoo ωωω ′′′=Ω L  (32) 

The next step is re-sampling; a new particle (onew) is drawn 

from set O using Equation 33: 

 ))IRandom( (:, Ω= Oonew  (33) 

where IRandom is a function that returns the index of an 

element that was picked by weighted random sampling from 

the input vector where the values of the input vector are 

sampling weights.  Equation 33 is repeated N times to form a 

new set of N particles (Onew). 

 Finally, each component of the final pose (Xζ) for the 

Particle Filter is computed by taking the average of the 

appropriate element in all new particles (Equation 34): 
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where d is the dimension of Xζ (which is six). 

It should be noted that, in the context-sensitive pose 

computation, dynamic adjustment of the G-matrix affects the 

value of ∆l′ (Equation 30) and ωo (Equation 31). 

III. IMPLEMENTATION 

The context-sensitive pose computation described above, 

including the three fusing methods, was implemented within 

HServer (Figure 1), one of the components of MissionLab [20, 

21]. HServer is a UNIX process that communicates with 

attached hardware devices via serial ports or TCP/IP socket 

connections. For example, HServer can control a physical 

robot by executing commands that are issued from Robot 

Executable, another MissionLab process where behaviors are 

computed. 

Another functionality of HServer is to marshal sensory 

information from attached sensors and report it to Robot 

Executable. Such sensory information includes the pose of the 

robot. More specifically, pose computation is done in a 

module called PoseCalculator in HServer. PoseCalculator 

gathers the latest readings from the GPS, compass, IMU and 

shaft-encoder (if they are enabled), and attempts to compute 

the best estimate of the current pose based on those. Indeed, 

PoseCalculator is where the proposed context-sensitive pose 

computation scheme was integrated. Figure 2 depicts the 

process of the context-sensitive pose computation in 

PoseCalculator. As shown in the figure, a module called Pose 

Manager implements Equations 2 and 6 in order to compute 

the converted pose for the sensor (Xs) and its (initial) grade 

(Gs), respectively. Discounting of the grade (G′s) is done in 

Sensory Situational Context (Equation 7). All asynchronously 

computed Xs and G′s from different sensors arrive at Sensory 

Data Bus, from which Sensor Fuser grabs the latest values 

every computational cycle. Sensor Fuser (Equation 9) is where 

the fused pose (Xζ) is computed by employing one of the three 

fuser methods (i.e., Maximum Confidence, EKF, and Particle 

Filter). 
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Figure 1: HServer 
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Figure 2: PoseCalculator 

IV. EVALUATION 

A. Experimental Hypotheses 

 An outdoor experiment was conducted in order to 

determine whether incorporation of contextual information and 

domain knowledge helps the accuracy of localization. More 

specifically, the experiment was designed to assess the 

following hypotheses: 

Hypothesis 1: 

If adequate real-time contextual information and domain 

knowledge is incorporated, the robot’s pose computed by a 

simple greedy fusing method can be as accurate as the one 

computed by the conventional probabilistic localization 

methods. 
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Hypothesis 2: 

The conventional probabilistic localization methods can 

improve their accuracy of the robot’s pose if real-time 

contextual information and domain knowledge are 

incorporated. 

B. Experimental Area 

 The outdoor experiment was conducted at the top level of 

a parking deck in the Georgia Tech campus to test the above 

hypotheses. As shown in Figure 3, the area was about 60 

meters wide and about 90 meters long. Six waypoints were 

selected in the area: Start Point <53.1, 37.4>, A <53.1, 63.3 >, 

B <53.1, 97.7 >, C <23.3, 97.7>, D <23.3, 63.3>, and E <23.3, 

37.4> (Note: the coordinates <x, y> are in meters).  
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Figure 3: Experimental Area 

C. Contextual Information and Domain Knowledge Used 

 Tables 1 and 2 show the values/rules of contextual 

information (C) and domain knowledge (function fD) being 

used during the outdoor experiment when they were 

dynamically adjusted. The values of the grade (G) when the G-

matrix is statically defined are shown in Table 3. Table 4 

shows the values of discount factors (Equation 8). All these 

values used here are determined based on hardware 

specifications and through trial-and-error during the testing. 

However, it should be noted that calibration of such 

parameters is a delicate process, and we do not guarantee that 

they are perfectly optimized. Nevertheless, they are, to the best 

of our knowledge, adequately tuned. 

Table 1: Real-Time Contextual Information (C) 

GPS Shaft-Encoder 

C1 = RT-20 value 

C2 = translational speed of robot 

C3 = angular speed of robot 

C1 = translational speed of robot 

C2 = angular speed of robot 

Compass IMU 

C1 = angular speed of robot C = ∅ (empty set) 

 

Table 2: Dynamical Adjustment of Grades (G) via Domain Knowledge (fD) 

GPS Compass 

α{x,y,z} = 0,   α{φ,θ,ψ} = 1 

σ2
{x,y,z} = 1000000 

if C1 = 0 then 

   σ2
{φ,θ,ψ} = 360 

else 

   σ2
{φ,θ,ψ} = 129600 

End 

Shaft-Encoder 

α{x,y,z} = 0,   α{φ,θ,ψ} = 1 

if C1 = 0 and C2 = 0 then 

   σ2
{x,y,z} = 0.0001,  σ2

{φ,θ,ψ} = 0.001 

else 

 σ2
{x,y,z} = 0.001,  σ2

{φ,θ,ψ} = 1 

End 

IMU 

if C1 = 0 then 

   α{x,y,z} = 1,   σ2
{x,y,z} = 0.2 

   if C2 >= 0 and C3 = 0  

      α{φ,θ,ψ} = 1,  σ2
{φ,θ,ψ} = 1 

   else 

      α{φ,θ,ψ} = 0,  σ2
{φ,θ,ψ} = 129600 

   end 

else if C1 = 1 then 

   α{x,y,z} = 1.0, σ2
{x,y,z} = 0.3 

   if C2 >= 0 and C3 = 0  

      α{φ,θ,ψ} = 1,  σ2
{φ,θ,ψ} = 4 

   else 

      α{φ,θ,ψ} = 0,  σ2
{φ,θ,ψ} = 129600 

   end 

end 

 

Note: GPS readings are ignored 

when RT-20 is 2 or greater (same for 

the static case). 
α{x,y,z} = 0,   α{φ,θ,ψ} = 1 

σ2
{x,y,z} = 1000000,  σ2

{φ,θ,ψ} = 1 

Table 3: Static Grades (G) 

GPS Shaft-Encoder 

α{x,y,z} = 1,   α{φ,θ,ψ} = 0 

σ2
{x,y,z} = 0.25, σ2

{φ,θ,ψ} = 3600 

α{x,y,z} = 1,   α{φ,θ,ψ} = 1 

σ2
{x,y,z} = 0.01, σ2

{φ,θ,ψ} = 1 

Compass IMU 

α{x,y,z} = 0,   α{φ,θ,ψ} = 0 

σ2
{x,y,z} = 1000000, σ2

{φ,θ,ψ} = 8100 

α{x,y,z} = 0,   α{φ,θ,ψ} = 1 

σ2
{x,y,z} = 1000000, σ2

{φ,θ,ψ} = 1 

Table 4: Discount Factors (γ) in the Weighting Matrix (Γ) 

GPS Compass IMU Shaft-Encoder 

γGPS = 0.9 γcompass = 0.8 γIMU = 0.75 γshaft = 0.5 

D. Hardware 

 Both HServer and Robot Executable ran on the onboard 

dual processors (Pentium III, 1 GHz) of an ATRV-Jr (iRobot 

Corporation) during execution. The ATRV-Jr was equipped 

with a differential GPS (ProPak by NovAtel, Inc.), a compass 

(3DM-G by MicroStrain, Inc.), an IMU (IMU400CC-200 by 

Crossbow Technology, Inc.), and internal shaft-encoders. In 

addition, two sets of onboard laser scanners (LMS 200-30106 

by SICK, Inc.) were used to measure the ground truth of the 

current pose (explained below). The base station for the 

differential GPS was placed 8 meters south of Start Point. 

E. Methods 

 In order to test the above experimental hypotheses, an 

autonomous waypoint-following mission was created and 

executed by MissionLab. In this mission, the robot followed 

the six points by the order of Start Point, A, B, C, D, E, D, C, 

B, A, and then back to Start Point. Here, the segment from 

Start Point to Point B is called Leg 1; the segments B → C, C 

→ E, E → C, C → B, and B → Start Point are called Legs 2, 

3, 4, 5, and 6, respectively. During the mission, the robot was 

always commanded to run with its full-speed (approximately 2 

m/s) unless making a point-turn at a waypoint. 

 To ensure GPS disruption, the differential signals from the 

base station to the robot were physically cut off when the robot 
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was at Leg 2 (from Point B to Point C). This allowed the RT-

20 value [7] of the differential GPS to degrade gradually from 

0 to 8, simulating realistic deterioration of the GPS accuracy. 

During the return trip, the transmission of differential signals 

was resumed at Leg 5 (from Point C to Point B). Furthermore, 

during Legs 1, 3, 4, and 6, the robot had to go through the 

areas where the magnetic fields were distorted by steel girders 

laying underneath the floor, affecting the performance of the 

compass in a nonlinear manner. 

 In order to determine the accuracy of the pose computed 

by the system with respect to the ground truth, the computed 

pose and readings from laser scanners were recorded for every 

second during Legs 1, 4, and 6. The set of the two lasers can 

acquire 722 readings (covering 360°) with an update rate of 

four times per second.  As shown in Figure 3, during Legs 1, 4, 

and 6, the robot moved along with the flat walls laying in the 

North-South direction, namely, Wall R and Wall L. Since the 

coordinates of those walls were known, one can calculate the 

expected distance from the pose to the wall, and compare it 

with the actual distance measured by the laser scanners. The 

difference between the expected distance and the actual 

distance is defined here as a distance error. Moreover, since 

the angle of the direction of which the laser scanners found the 

closest distance to the wall was known, one can also calculate 

the actual heading of the robot with respect to the wall (i.e., 

with respect to the ground truth). The difference between the 

actual heading and the expected heading computed by the 

system is defined here as a heading error. In others words, in 

this experiment, the accuracy of the pose computed by the 

system was determined by the distance and heading errors. 

Two conditions were tested for each of the three fusing 

methods (the Maximum confidence, EKF, and Particle Filter); 

the first condition is context-free, that is when the G-matrix 

(Equation 5) is fixed; and the second condition is context-

sensitive, that is when the G-matrix is dynamically adjusted by 

Equation 6 (explained in Section IV.C). In order to be 

statistically significant, 20 runs of the waypoint-following 

mission were recorded for every condition (i.e., the total of 

120 runs were recorded for the six conditions). As a standard 

practice, we consider a difference of two means to be 

significant if the p-value of the associated ANOVA test is less 

than 0.05 (5%). 

F. Results 

The average heading and distance errors for all conditions 

are plotted against the leg number in Figures 4 and 5, 

respectively. The error bars in the figures denote 95 percent 

confidence intervals. 

 Regarding Hypothesis 1, the greedy fusing method 

(Maximum Confidence) with the context-sensitive condition 

(dynamic G-matrix) was compared against the context-free 

(fixed G-matrix) conventional probabilistic localization 

methods: namely, the EKF and Particle Filter. At Leg 1, the 

one-way ANOVA test showed that the context-sensitive 

Maximum Confidence had significantly less heading error than 

the context-free EKF (F = 4.167, p < 0.048; the error bars 

slightly overlapped). However, there was no significant 

difference if compared to the heading error produced by the 

context-free Particle Filter. At Leg 4 (the GPS shadow), the 

average heading error of the context-sensitive Maximum 

Confidence was not significantly different from the context-

free EKF and Particle Filter. At Leg 6 (the final leg), the 

context-sensitive Maximum Confidence produced significantly 

less heading error compared to the context-free EKF (F = 

9.845, p < 0.003) and the context-free Particle Filter (F = 

6.961, p < 0.012; error bars slightly overlapped). However, the 

context-sensitive Maximum Confidence had no significant 

distance errors over the context-free EKF and Particle Filter at 

all legs. Overall, these results support the first hypothesis and 

indicate that with the addition of the proper contextual 

information and domain knowledge, a simple greedy fusing 

method can achieve accuracies meeting and in some cases 

exceeding that of the two conventional probabilistic filters 

used in these experiments.  

 On the other hand, the second hypothesis was not 

supported by the current data. In other words, in both 

probabilistic filters, the heading and distance errors when 

using contextual information in the form of dynamic variances 

(context-sensitive) did not exhibit significant differences if 

compared with the context-free ones. 

 
Figure 4: Average Heading Error 

 
Figure 5: Average Distance Error 
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V. CONCLUSIONS AND FUTURE WORK 

 This work details context-sensitive pose computation and 

empirically evaluates it within the framework of a localization 

task in an urban environment. In this task, the robot must 

provide accurate localization information even in the event of 

sensor drop-out and in the presence of non-linear error sources 

over the span of numerous waypoint-following missions. The 

utility of the computational scheme is illustrated by the 

performance of the Maximum Confidence, based purely on 

this context-sensitive information, matches or even exceeds the 

performance of the conventional probabilistic localization 

methods (i.e., the EKF and Particle Filter). Further, it has been 

shown to be robust under a wide variety of sensor noise such 

as that produced by GPS dropout and the non-linear sensor 

noise produced by the large steel girders present in the 

experimental arena. 

On the other hand, our evaluation determined that the 

performances of the probabilistic filters are not affected 

significantly by the utilization of the contextual information in 

the form of dynamic variances. A few causes are speculated: 

(1) The domain knowledge (i.e., adjustment of variances) was 

not adequate; (2) the probabilistic filters were so efficiently 

formulated that the extra information did not add any value; or 

(3) the navigational task and/or environment was too simple. 

An additional set of experiments should be conducted in order 

to solve this predicament. 

 Furthermore, in this study, the performance of our 

computational scheme was measured by the accuracy of the 

output pose with respect to the ground truth. In a real urban 

outdoor navigational task, however, how effectively the robot 

can accomplish the assigned task is also important; such 

effectiveness includes its ability to arrive to a waypoint quickly 

or ability to overcome presence of static and/or dynamic 

obstacles without being disoriented. In other words, the 

computational scheme should be also evaluated in terms of 

behavioral accuracies.  

 A possible extension of this work relates to Murphy’s 

action-oriented perceptual architecture [8] described in Section 

I. By adding some high-level planning mechanism, dynamical 

switching or even blending of the fusing methods themselves is 

also possible, and such an extension may be advantageous in 

more complex and/or dynamic environments. 
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