
Technical Report: GIT-GVU-05-13

An Empirical Evaluation of Context-Sensitive Pose

Estimators in an Urban Outdoor Environment*

Yoichiro Endo Patrick D. Ulam Ronald C. Arkin Tucker R. Balch Matthew D. Powers

Georgia Tech Mobile Robot Laboratory

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332, USA

{endo, pulam, arkin, tucker, mpowers}@cc.gatech.edu

*
 This research is funded under DARPA/DOI contract #NBCH1020012 as part of the MARS 2020 program.

 Abstract – When a mobile robot is executing a navigational

task in an urban outdoor environment, accurate localization

information is often essential. The difficulty of this task is

compounded by sensor drop-out and the presence of non-linear

error sources over the span of the mission. We have observed that

certain motions of the robot and environmental conditions affect

pose sensors in different ways. In this paper, we propose a

computational method for localization that systematically

integrates and evaluates contextual information that affects the

quality of sensors, and utilize the information in order to improve

the output of sensor fusion. Our method was evaluated in

comparison with conventional probabilistic localization methods

(namely, the extended Kalman filter and Monte Carlo

localization) in a set of outdoor experiments. The results of the

experiment are also reported in this paper.

 Index Terms – Sensor Fusion, Context-Sensitive Perception,

Localization, Extended Kalman Filter, Particle Filter

I. INTRODUCTION

 Execution of an autonomous mobile robot mission in an

urban outdoor environment, such as a reconnaissance mission,

often requires a waypoint-following capability (e.g. [1, 2]).

Since waypoints are generally specified in a world coordinate

system, localizing the robot relative to the world coordinate

system is vital in such applications. Furthermore, depending on

the urgency of the mission, the localization may have to be

accomplished as rapidly as possible. Today, in a typical well-

structured indoor environment, laser-based and vision-based

SLAM approaches have proven to be useful for localization

[3-6]. However, objects in an outdoor environment are less

structured, and the lasers or vision systems are vulnerable to

severe and dynamic variations in lighting. For outdoor

applications, the global positioning system (GPS), compass,

gyro-based inertial measurement unit (IMU), and shaft-

encoder are standard sensors used to measure where the robot

is and what direction it is heading. On the other hand, these

sensors are still not perfect, each having its own peculiar

strengths and weaknesses. For example in the case of a

differential GPS, if satellite signals and/or differential signals

are disrupted by the surrounding environment, the positional

accuracy provided by the GPS severely degrades. However,

our supposition here is that the robot should be able to

dynamically assess the qualities of the sensors by monitoring

parameters that are known to affect them (e.g., RT-20 value

[7] of the GPS, speed of the robot, etc.). We refer to such

parameters as contextual information. The contextual

information is translated into some quantities that convey the

qualities of the sensors by applying some domain knowledge

(rules).

The objective of this paper is twofold: (1) To propose a

computational scheme that can systematically incorporate

contextual information and domain knowledge in order to

gauge the robot’s best current pose when measurements from

multiple sensors are available; and (2) to empirically evaluate

whether incorporation of such information/knowledge is

indeed useful or not.

It should be noted that, in this paper, the term “pose” we

are referring to is a six-dimensional vector (X), whose

components include x, y, z, φ, θ, and ψ (Equation 1):

 T][ψθφzyxX = (1)

The values of x, y, and z describe the location of a body in the

world coordinate system, and their units are in meters. The x-

axis points to East, and the y-axis points to North. The value z

describes an altitude. On the other hand, rotations φ, θ, and ψ

are yaw, pitch, and roll of the body, respectively, in degrees.

 The process of collecting data from multiple sensors in

order to produce an integrated perceptual output is known as

sensor fusion. Murphy [8], for example, proposed a perceptual

architecture (SFX) for action-oriented sensor fusion. In the

SFX, one of three fusion states is selected based on behavioral

needs. In the first fusion state, contributions from all sensors

are integrated in order to produce a single perceptual output

since no conflict among different sensors is expected. In the

second fusion state, a conflict (discordance) among the sensors

is expected, and calibration of weak (unreliable) sensors is

performed before generating the overall output. The third type

is a greedy method. The discordance among the sensors is

resolved by suppressing the contributions from all sensors

except the most reliable one. In our three proposed fusing

methods (Section II.B): two of them (the EKF and Particle

Filter) relate to Murphy’s first fusion state (cooperative); and

one of them (the Maximum Confidence) relates to the third

Technical Report: GIT-GVU-05-13

fusion state (suppressive). Furthermore, our cooperative fusing

methods incorporate probabilities, as the employment of

probabilities in the context of sensor fusion for mobile robots

has proven useful for more than a decade [9]. In fact, Thrun

[10] reports in his survey paper that all of the successful

approaches to robotics localization today employ probabilistic

techniques.

 The organization of this paper is as follows. An overview

of the context-sensitive pose computation is represented in

Section II. The implementation details of the computational

scheme are described in Section III. Empirical evaluation via

outdoor experimentation is presented in Section IV. Finally,

conclusions and future work are discussed in Section V.

II. CONTEXT-SENSITIVE POSE COMPUTATION

A. Computational Steps

Suppose that a mobile robot is equipped with multiple

pose sensors (e.g., GPS, compass, IMU, shaft-encoder, etc.).

Each sensor provides pose information that may be computed

in different coordinate systems and generally updated at a

different time rate from others. Given these sensors, the

objective here is to compute the best pose at any given time in

the common world coordinate system.

 The first step in the process is to transform the original

sensor readings measured by each sensor into the common

world coordinate system. Since different sensors operate with

different coordinate systems, the transformation function is

unique to the sensor type. It should be noted that some sensors,

such as shaft-encoders and IMU, compute their poses based on

dead-reckoning. While such sensors are prone to cumulative

errors, their incremental readings from previous measurement

are reasonably accurate. The other types of sensors, such as

compass and GPS, compute poses with the absolute location

and orientation. Equation 2 expresses this operation

mathematically:



 ∆

=
=−

otherwise

basedreckoningdead if

)(

) ,(

T

1T

sts

ststs

st
rf

rXf
X

--s
 (2)

where Xs is the converted pose for sensor s, t is the current

instant, fTs is the transformation function for the sensor, ∆rs is

the increment from the previous measurement, and rs is the

measurement itself.

Once a pose from each sensor is computed, the next step is

to compute estimated accuracy of the pose; in this paper, we

refer to the estimated accuracy as grade, denoted with letter G.

More specifically, suppose we define vectors Φ and Σ as

shown in Equations 3 and 4, respectively:

T][ψθφ αααααα zyxΦ = (3)

where αx is a confidence value that is a scalar value ranging

from 0 to 1 to quantify how certain the value x is, and:

T222222][ψθφ σσσσσσ zyxΣ = (4)

where σx
2
 is a variance of x. The grade is then defined as a

matrix (6×2) that contains both vectors (Equation 5):

][ΣΦG = (5)

Both confidence values and variance are adjusted depending

on status of the sensor and/or robot. For example, as

mentioned earlier, when the differential signals are disrupted,

the pose computed by the GPS should be considered

inaccurate; hence, the confidence values should be degraded,

and the variances should be increased, accordingly. Indeed,

assigning these values requires some real-time information that

measures status of the sensor and/or robot. Furthermore, it also

requires some rule-based knowledge that translates the

sensor/robot status into the grade of the pose. We refer to the

real-time information of the sensor/robot as contextual

information (vector C) and the rule-based knowledge as

domain knowledge (function fD). G for sensor s is hence

computed by Equation 6:

)(D sss CfG = (6)

Different sensors require different types of contextual

information and domain knowledge to compute the grades.

Thus, the contents of C and the rules in fD are unique to the

sensor type (s). Specific values/rules of C and fD employed

during the experiment conducted for this paper is shown in

Section IV.C.

 At this point, we have Xs (pose) and Gs (grade) for all

available sensors. The next step is to adjust the confidence

values (α) in Gs based on the types of sensors. Our assumption

here is that even when a particular sensor is operating at its

best condition (hence 100% confidence value), this sensor may

be known to be unreliable if compared with other sensors.

Discounting of the α value in Gs can be done by Equation 7:

 sss GG Γ=′ (7)

where G′s is the discounted grade, and Γs is an weighting

matrix that includes predefined discount factor γs ranging from

0 to 1 (Equation 8):

10

0
 








=Γ s

s

γ
 (8)

(See Section IV.C. for specific values used for γ in our

experiment.)

 Given Xs and Gs′ for n pose sensors that have updated their

measurements since the previous time cycle, the last step here

is to compute the best estimate of the current pose from those.

We refer to this step as fusing, and it is described by:

),, ... ,,,,(2211F sntsnttstststst GXGXGXfX ′′′= ζζ (9)

where Xζt is a fused pose (the best estimate of the current pose)

for the current instant (t); and fFζ is a function that computes

the fused pose using fusing method ζ. Currently, we have

implemented three types of fusing methods, which are

explained in the following section.

It should be noted that our computational method here

supports asynchrony of sensor measurements. In other words,

different sensors may have different update frequencies (e.g.,

the GPS usually updates less frequently than the IMU does).

Thus, n in Equation 9 can be different from one cycle to

Technical Report: GIT-GVU-05-13

another. Furthermore, it should be also noted that dynamically

adjusting the contents of G-matrix (Equation 6) is our

definition of context-sensitive pose computation. In order to

determine how effective it is to incorporate dynamically

changing contextual information upon pose estimation, we

evaluated the computational scheme where the G-matrix was

dynamically computed through Equation 6 against a control

scheme where the G-matrix was statically specified (Section

IV).

B. Fusing Methods

 As mentioned above, function fFζ computes the output

pose (Xζ) given the input poses from different sensors and their

associated grades using fusing method ζ (Equation 9). In this

section, we describe how the fusing function can be

constructed in this framework by showing how the three types

of our fusing methods (Maximum Confidence, Extended

Kalman Filter, and Particle Filter) are implemented.

1. Maximum Confidence

The first fusing method, called Maximum Confidence, is

essentially a greedy method. Each element in the fused pose is

copied from the one whose confidence value is the highest

among all candidates. Expressing mathematically, let us first

define vector a
m
 as an n-length vector that contains the m

th

element of confidence values stored in the discounted G-

matrices (Equation 7) for all n sensors:

 T

21])1 ,()1 ,()1 ,([mGmGmGa snss

m ′′′= L (10)

For example, a
1
 is a vector that contains confidence values of x

for all n sensors, and a
4
 is the same for φ. The process of

fusing via the Maximum Confidence can be then computed by

Equation 11:

T

)IMax()IMax()IMax(
])()2()1([21 dXXXX daaa

L=ζ (11)

where IMax is a function that takes a vector and returns the

index of the element that has the largest value; d is the

dimension of X (d = 6 in our case). In the context-sensitive

pose computation, dynamic adjustment of the G-matrix

(Equation 6) affects the values of a
m
, and thus it influences the

selection of Xζ pose-components.

2. Extended Kalman Filter

 The second type of fusing methods incorporates the

Extended Kalman Filter (EKF) as means to estimate the

current pose probabilistically. The EKF, an extension of the

simple Kalman filter used to handle nonlinearities, is a

recursive filter that estimates the current state of a system.

Because sensor fusion can be suitably handled by its

mathematical formulation [9], both the simple Kalman filter

and EKF have been a popular choice in mobile robot

localization [11-14]. The pose computation via the EKF has

two distinct phases (prediction and update), which are

explained below. (See [15] for more details including the

theoretical background.)

 In the prediction phase, the estimated pose (Xp) at the

current instant t based on the process (motion) model is first

projected (Equation 12):

) , ,(11PE −−= tttpt wuXfX ζ (12)

fPE is a function that implements the process model; the

function takes the fused pose computed in the previous cycle

(Xζt-1), control input (ut), and estimated process noise (wt-1). ut

is estimated using shaft-encoder readings (∆rshatf) since the

shaft-encoder is a standard sensor that is installed on most of

the mobile robots in our laboratory. From simple kinematics,

the process model can be described by the following equation

(Equation 13):

ptX
1

1

11

11

1)
2

sin(

)
2

sin()
2

cos(

)
2

cos()
2

cos(

−
−

−−

−−

− +































∆

∆

∆

∆
+∆

∆
+

∆
+∆

∆
+

∆
+∆

+= t

t

t

t

t
t

t
t

t
t

t
t

t
t

t wl

l

l

X

ψ

θ

φ

θ
θ

φ
φ

θ
θ

φ
φ

θ
θ

ζ

ζζ

ζζ

ζ (13)

where ∆l is the Euclidean norm of ∆rshaft (Equation 14); ∆φ,

∆θ, and ∆ψ are φ, θ, and ψ components of ∆rshaft, respectively.

The values of w are all approximated as zero in this phase:

 222
zyxl ∆+∆+∆=∆ (14)

 In the prediction phase, the estimated error covariance

matrix (P) is also projected (Equation 15):

 TT

1 WQWAPAP tt += − (15)

where A is the Jacobian of fPE with respect to X; W is the

Jacobian of fPE in relation to w; and Q is the process noise

covariance. It should be noted that the P-matrix is recursively

computed using values from the previous cycle. More

specifically, suppose we split up fPE in terms of the elements of

the pose to be computed (Equation 16):

T

PEPEPEPE][φffff yx L= (16)

By the definition of the Jacobian matrix, the A-matrix in

Equation 15 can be then expressed as:





















∂

∂

∂

∂

∂

∂

∂

∂

=

φ

φ

φφ PEPE

PEPE

f

x

f

f

x

f

A

xx

L

MOM

L

 (17)

Because of Equation 13, the W-matrix in Equation 15 is a 6×6

identity matrix in this case. The Q-matrix is computed by

Equation 18:

))2 (:,Diag()Diag(shaftshaft GΣQ ′== (18)

where Diag is a function that returns a square matrix whose

diagonal elements are copies of elements in the input vector

Technical Report: GIT-GVU-05-13

(other elements are set to be zero); and Σshaft is the variances of

shaft-encoder readings stored in the second column of the

discounted G-matrix (the colon indicates that all elements are

taken into account).

In the update phase of the EKF, the Kalman gain (K) and

final estimates of the current pose (Xζ) and the error

covariance (P) are computed based on the latest measurements

(Xs calculated by Equation 2 and arrived to the fuser via

Equation 9).

Let us define a function (fHs) that computes an estimated

sensor measurement (Xh) for sensor s from an input pose (X)

and its estimated error (v):

),(H vXfX shs = (20)

Assuming the coordinate systems of Xh and X are the same,

Equation 20 can be replaced with a simple linear equation

(Equation 21):

 vXvXf s +=),(H (21)

Given fHs and P (from Equation 15), the Kalman gain for

sensor s is then computed by Equation 22:

 TT

T

sssss

s
s

VRVHPH

HP
K

+
= (22)

where H is the Jacobian of fH with respect to X (i.e., an identity

matrix in our case because of Equation 21), V is the Jacobian

of fH with respect to v (also an identity matrix), and R is the

sensor noise covariance for the sensor (Equation 23):

))2 (:,Diag()Diag(sss GΣR ′== (23)

Finally, given the Kalman gains for all n sensors, the fused

pose (the final estimate of the current pose) of the EKF is

computed by the following equation:

 ∑
≠∩∈

−+=
shaftsSs

spsssp vXfXKXX

H)) ,((ζ
(24)

where S is a set of all n sensors that have updated their

measurements since the previous cycle. Substituting fHs with

Equation 21, Equation 24 can be simplified as Equation 25 in

our implementation:

 ∑
≠∩∈

−−+=
shaftsSs

spssp vXXKXX

)(ζ
(25)

Practically, the values of vS are approximated as zero in this

calculation. The error covariance matrix (P) for the next cycle

is then updated with Equation 26:

 PHKIP
shaftsSs

ssnext) (

∑
≠∩∈

−=
(26)

It should be noted that, in the context-sensitive pose

computation, dynamic adjustment of the G-matrix affects

matrices Q (Equation 18) and R (Equation 23).

3. Particle Filter

The third type of the fusing methods implements the

Monte Carlo localization (MCL) method, another probabilistic

approach; we call this fuser the Particle Filter. Recently, the

MCL has been used extensively in the robotics community to

fuse sensor readings and represent likelihood distributions

over localization space [5, 16-18]. As in the EKF, the Particle

Filter computes the current pose (Xζ) using both the prediction

and update phases. (A good review of the MCL method

including the theoretical justification can be found in [5, 19].)

To carry out the computation, the Particle Filter utilizes a

concept called “particle”, which is essentially a six-

dimensional pose (o) obtained from sampling methods

described below. As a fuser, the Particle Filter retains a large

number (N) of particles to compute the final pose. Here, we

use O, a 6×N matrix, to denote the set of N particles (Equation

27):

][21 NoooO L= (27)

The first step in the prediction phase is to project the pose

of each particle based on the process model (Equation 28):

) , ,(11PP −−= tttt wuofo (28)

Similar to fPE in Equation 12, fPP is the process model for the

Particle Filter, u is the control input (approximated with

∆rshaft), and w is the estimated process noise. fPP can be

described by the following equation (Equation 29):































∆

∆

∆

∆
+′∆

∆
+

∆
+′∆

∆
+

∆
+′∆

+=
−

−−

−−

−

t

t

t

t
ot

t
ot

t
ot

t
ot

t
ot

tt l

l

l

oo

ψ

θ

φ

θ
θ

φ
φ

θ
θ

φ
φ

θ
θ

)
2

sin(

)
2

sin()
2

cos(

)
2

cos()
2

cos(

1

11

11

1 (29)

where ∆φ, ∆θ, and ∆ψ are φ, θ, and ψ components of ∆rshaft,

respectively; ∆l′ is the Euclidean norm of ∆rshaft with the

process noise being taken account. More specifically, ∆l′ can

be obtained from this equation (Equation 30):

))Mean(,e(GaussSampl shaftΣll ∆=′∆ (30)

where GaussSample is a function that draws a sample from the

normal density having the mean and standard deviation

specified in its first and second input parameters, respectively;

∆l is the Euclidean norm of ∆rshaft (Equation 14); Mean is a

function that returns an average value of its input vector; and

Σshaft is the variances stored in the second column of the

discounted G-matrix for the shaft-encoder. Notice that fPE in

the EKF (Equation 13) and fPP in the Particle Filter (Equation

29) are similar. However, the difference is that, while the

process noise (w) is linearly added to fPE, the process noise in

fPP is already taken into account when computing the Euclidean

norm of ∆rshaft (i.e., ∆l′).

 In the update phase of the Particle Filter, the pose of each

particle is refined based on the sensor measurements. It is done

by first calculating weight (ωo) for each particle using

Equation 31:

Technical Report: GIT-GVU-05-13

 ∏ ∏
≠∩∈ =









=

shaftsSs

d

i
sso iΣiXiof

 1
L))(),(),((ω (31)

where S is a set of all n sensors that have updated their

measurements since the previous cycle; d is the dimension of o

(which is six); and fL is a function that returns the likelihood of

a sample (specified in the first input parameter) given a

measurement (specified in the second input parameter); our fL

assumes the normal density, and hence its standard deviation is

specified by the third input parameter. Once the weights are

computed for all N particles, they are normalized (ω′o) and

combined as a vector (Ω) as shown in Equation 32:

][21 oNoo ωωω ′′′=Ω L (32)

The next step is re-sampling; a new particle (onew) is drawn

from set O using Equation 33:

))IRandom((:, Ω= Oonew (33)

where IRandom is a function that returns the index of an

element that was picked by weighted random sampling from

the input vector where the values of the input vector are

sampling weights. Equation 33 is repeated N times to form a

new set of N particles (Onew).

 Finally, each component of the final pose (Xζ) for the

Particle Filter is computed by taking the average of the

appropriate element in all new particles (Equation 34):



















=

:)) ,(Mean(

:)) ,2(Mean(

:)) ,1(Mean(

dO

O

O

X

new

new

new

M
ζ (35)

where d is the dimension of Xζ (which is six).

It should be noted that, in the context-sensitive pose

computation, dynamic adjustment of the G-matrix affects the

value of ∆l′ (Equation 30) and ωo (Equation 31).

III. IMPLEMENTATION

The context-sensitive pose computation described above,

including the three fusing methods, was implemented within

HServer (Figure 1), one of the components of MissionLab [20,

21]. HServer is a UNIX process that communicates with

attached hardware devices via serial ports or TCP/IP socket

connections. For example, HServer can control a physical

robot by executing commands that are issued from Robot

Executable, another MissionLab process where behaviors are

computed.

Another functionality of HServer is to marshal sensory

information from attached sensors and report it to Robot

Executable. Such sensory information includes the pose of the

robot. More specifically, pose computation is done in a

module called PoseCalculator in HServer. PoseCalculator

gathers the latest readings from the GPS, compass, IMU and

shaft-encoder (if they are enabled), and attempts to compute

the best estimate of the current pose based on those. Indeed,

PoseCalculator is where the proposed context-sensitive pose

computation scheme was integrated. Figure 2 depicts the

process of the context-sensitive pose computation in

PoseCalculator. As shown in the figure, a module called Pose

Manager implements Equations 2 and 6 in order to compute

the converted pose for the sensor (Xs) and its (initial) grade

(Gs), respectively. Discounting of the grade (G′s) is done in

Sensory Situational Context (Equation 7). All asynchronously

computed Xs and G′s from different sensors arrive at Sensory

Data Bus, from which Sensor Fuser grabs the latest values

every computational cycle. Sensor Fuser (Equation 9) is where

the fused pose (Xζ) is computed by employing one of the three

fuser methods (i.e., Maximum Confidence, EKF, and Particle

Filter).

Robot

Executable

HServer

Sensory Data
Repository

pose
PoseCalculator

Implementation of the context-

sensitive pose computation

CompassGPS
Shaft-

Encoder
IMU

pose

query
readings readingsreadings readings

Robot
Controller

Robot

behavioral
commands

Robot

Executable

HServer

Sensory Data
Repository

pose
PoseCalculator

Implementation of the context-

sensitive pose computation

CompassGPS
Shaft-

Encoder
IMU

pose

query
readings readingsreadings readings

Robot
Controller

Robot

behavioral
commands

Figure 1: HServer

Pose Manager n

Pose Manager 2

Pose Manager 1

fused pose (Xζζζζ)

readings (rs1)

Sensor 1

Sensor
Fuser output

feedback

Sensor 2

Sensor n

pose (Xs1)

Sensory
Situational

Context

Sensory
Data Bus

last pose (Xζζζζ t-1)

readings (rs2)

readings (rsn)

Equations 2 & 6

grade (G
s1

)

pose (X
s2

)

grade (Gs2)

pose (Xsn)

grade (G
sn

)

grade (G′
s1

)

grade (G′s2)

grade (G′
sn

)

Equation 7

Equation 9

Pose Manager n

Pose Manager 2

Pose Manager 1

fused pose (Xζζζζ)

readings (rs1)

Sensor 1

Sensor
Fuser output

feedback

Sensor 2

Sensor n

pose (Xs1)

Sensory
Situational

Context

Sensory
Data Bus

last pose (Xζζζζ t-1)

readings (rs2)

readings (rsn)

Equations 2 & 6

grade (G
s1

)

pose (X
s2

)

grade (Gs2)

pose (Xsn)

grade (G
sn

)

grade (G′
s1

)

grade (G′s2)

grade (G′
sn

)

Equation 7

Equation 9

Figure 2: PoseCalculator

IV. EVALUATION

A. Experimental Hypotheses

 An outdoor experiment was conducted in order to

determine whether incorporation of contextual information and

domain knowledge helps the accuracy of localization. More

specifically, the experiment was designed to assess the

following hypotheses:

Hypothesis 1:

If adequate real-time contextual information and domain

knowledge is incorporated, the robot’s pose computed by a

simple greedy fusing method can be as accurate as the one

computed by the conventional probabilistic localization

methods.

Technical Report: GIT-GVU-05-13

Hypothesis 2:

The conventional probabilistic localization methods can

improve their accuracy of the robot’s pose if real-time

contextual information and domain knowledge are

incorporated.

B. Experimental Area

 The outdoor experiment was conducted at the top level of

a parking deck in the Georgia Tech campus to test the above

hypotheses. As shown in Figure 3, the area was about 60

meters wide and about 90 meters long. Six waypoints were

selected in the area: Start Point <53.1, 37.4>, A <53.1, 63.3 >,

B <53.1, 97.7 >, C <23.3, 97.7>, D <23.3, 63.3>, and E <23.3,

37.4> (Note: the coordinates <x, y> are in meters).

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80

X (m)

Y
 (

m
)

Base
Station

Start Point

Point A

Wall L

Wall R

Point D

Point E

Point BPoint C

North

South

EastWest

Known areas of

distorted magnetic

fields (due to large

steel girders)

L
e

g
 6

L
e

g
 1

Leg 2

L
e
g

 3

L
e
g

 4

Leg 5

L
e

g
 6

L
e

g
1

L
e
g

 3

L
e
g

 4

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80

X (m)

Y
 (

m
)

Base
Station

Start Point

Point A

Wall L

Wall R

Point D

Point E

Point BPoint C

North

South

EastWest

Known areas of

distorted magnetic

fields (due to large

steel girders)

L
e

g
 6

L
e

g
 1

Leg 2

L
e
g

 3

L
e
g

 4

Leg 5

L
e

g
 6

L
e

g
1

L
e
g

 3

L
e
g

 4

Base
Station

Start Point

Point A

Wall L

Wall R

Point D

Point E

Point BPoint C

North

South

EastWest

Known areas of

distorted magnetic

fields (due to large

steel girders)

L
e

g
 6

L
e

g
 1

Leg 2

L
e
g

 3

L
e
g

 4

Leg 5

L
e

g
 6

L
e

g
1

L
e
g

 3

L
e
g

 4

Figure 3: Experimental Area

C. Contextual Information and Domain Knowledge Used

 Tables 1 and 2 show the values/rules of contextual

information (C) and domain knowledge (function fD) being

used during the outdoor experiment when they were

dynamically adjusted. The values of the grade (G) when the G-

matrix is statically defined are shown in Table 3. Table 4

shows the values of discount factors (Equation 8). All these

values used here are determined based on hardware

specifications and through trial-and-error during the testing.

However, it should be noted that calibration of such

parameters is a delicate process, and we do not guarantee that

they are perfectly optimized. Nevertheless, they are, to the best

of our knowledge, adequately tuned.

Table 1: Real-Time Contextual Information (C)

GPS Shaft-Encoder

C1 = RT-20 value

C2 = translational speed of robot

C3 = angular speed of robot

C1 = translational speed of robot

C2 = angular speed of robot

Compass IMU

C1 = angular speed of robot C = ∅ (empty set)

Table 2: Dynamical Adjustment of Grades (G) via Domain Knowledge (fD)

GPS Compass

α{x,y,z} = 0, α{φ,θ,ψ} = 1

σ2
{x,y,z} = 1000000

if C1 = 0 then

 σ2
{φ,θ,ψ} = 360

else

 σ2
{φ,θ,ψ} = 129600

End

Shaft-Encoder

α{x,y,z} = 0, α{φ,θ,ψ} = 1

if C1 = 0 and C2 = 0 then

 σ2
{x,y,z} = 0.0001, σ2

{φ,θ,ψ} = 0.001

else

 σ2
{x,y,z} = 0.001, σ2

{φ,θ,ψ} = 1

End

IMU

if C1 = 0 then

 α{x,y,z} = 1, σ2
{x,y,z} = 0.2

 if C2 >= 0 and C3 = 0

 α{φ,θ,ψ} = 1, σ2
{φ,θ,ψ} = 1

 else

 α{φ,θ,ψ} = 0, σ2
{φ,θ,ψ} = 129600

 end

else if C1 = 1 then

 α{x,y,z} = 1.0, σ2
{x,y,z} = 0.3

 if C2 >= 0 and C3 = 0

 α{φ,θ,ψ} = 1, σ2
{φ,θ,ψ} = 4

 else

 α{φ,θ,ψ} = 0, σ2
{φ,θ,ψ} = 129600

 end

end

Note: GPS readings are ignored

when RT-20 is 2 or greater (same for

the static case).
α{x,y,z} = 0, α{φ,θ,ψ} = 1

σ2
{x,y,z} = 1000000, σ2

{φ,θ,ψ} = 1

Table 3: Static Grades (G)

GPS Shaft-Encoder

α{x,y,z} = 1, α{φ,θ,ψ} = 0

σ2
{x,y,z} = 0.25, σ2

{φ,θ,ψ} = 3600

α{x,y,z} = 1, α{φ,θ,ψ} = 1

σ2
{x,y,z} = 0.01, σ2

{φ,θ,ψ} = 1

Compass IMU

α{x,y,z} = 0, α{φ,θ,ψ} = 0

σ2
{x,y,z} = 1000000, σ2

{φ,θ,ψ} = 8100

α{x,y,z} = 0, α{φ,θ,ψ} = 1

σ2
{x,y,z} = 1000000, σ2

{φ,θ,ψ} = 1

Table 4: Discount Factors (γ) in the Weighting Matrix (Γ)

GPS Compass IMU Shaft-Encoder

γGPS = 0.9 γcompass = 0.8 γIMU = 0.75 γshaft = 0.5

D. Hardware

 Both HServer and Robot Executable ran on the onboard

dual processors (Pentium III, 1 GHz) of an ATRV-Jr (iRobot

Corporation) during execution. The ATRV-Jr was equipped

with a differential GPS (ProPak by NovAtel, Inc.), a compass

(3DM-G by MicroStrain, Inc.), an IMU (IMU400CC-200 by

Crossbow Technology, Inc.), and internal shaft-encoders. In

addition, two sets of onboard laser scanners (LMS 200-30106

by SICK, Inc.) were used to measure the ground truth of the

current pose (explained below). The base station for the

differential GPS was placed 8 meters south of Start Point.

E. Methods

 In order to test the above experimental hypotheses, an

autonomous waypoint-following mission was created and

executed by MissionLab. In this mission, the robot followed

the six points by the order of Start Point, A, B, C, D, E, D, C,

B, A, and then back to Start Point. Here, the segment from

Start Point to Point B is called Leg 1; the segments B → C, C

→ E, E → C, C → B, and B → Start Point are called Legs 2,

3, 4, 5, and 6, respectively. During the mission, the robot was

always commanded to run with its full-speed (approximately 2

m/s) unless making a point-turn at a waypoint.

 To ensure GPS disruption, the differential signals from the

base station to the robot were physically cut off when the robot

Technical Report: GIT-GVU-05-13

was at Leg 2 (from Point B to Point C). This allowed the RT-

20 value [7] of the differential GPS to degrade gradually from

0 to 8, simulating realistic deterioration of the GPS accuracy.

During the return trip, the transmission of differential signals

was resumed at Leg 5 (from Point C to Point B). Furthermore,

during Legs 1, 3, 4, and 6, the robot had to go through the

areas where the magnetic fields were distorted by steel girders

laying underneath the floor, affecting the performance of the

compass in a nonlinear manner.

 In order to determine the accuracy of the pose computed

by the system with respect to the ground truth, the computed

pose and readings from laser scanners were recorded for every

second during Legs 1, 4, and 6. The set of the two lasers can

acquire 722 readings (covering 360°) with an update rate of

four times per second. As shown in Figure 3, during Legs 1, 4,

and 6, the robot moved along with the flat walls laying in the

North-South direction, namely, Wall R and Wall L. Since the

coordinates of those walls were known, one can calculate the

expected distance from the pose to the wall, and compare it

with the actual distance measured by the laser scanners. The

difference between the expected distance and the actual

distance is defined here as a distance error. Moreover, since

the angle of the direction of which the laser scanners found the

closest distance to the wall was known, one can also calculate

the actual heading of the robot with respect to the wall (i.e.,

with respect to the ground truth). The difference between the

actual heading and the expected heading computed by the

system is defined here as a heading error. In others words, in

this experiment, the accuracy of the pose computed by the

system was determined by the distance and heading errors.

Two conditions were tested for each of the three fusing

methods (the Maximum confidence, EKF, and Particle Filter);

the first condition is context-free, that is when the G-matrix

(Equation 5) is fixed; and the second condition is context-

sensitive, that is when the G-matrix is dynamically adjusted by

Equation 6 (explained in Section IV.C). In order to be

statistically significant, 20 runs of the waypoint-following

mission were recorded for every condition (i.e., the total of

120 runs were recorded for the six conditions). As a standard

practice, we consider a difference of two means to be

significant if the p-value of the associated ANOVA test is less

than 0.05 (5%).

F. Results

The average heading and distance errors for all conditions

are plotted against the leg number in Figures 4 and 5,

respectively. The error bars in the figures denote 95 percent

confidence intervals.

 Regarding Hypothesis 1, the greedy fusing method

(Maximum Confidence) with the context-sensitive condition

(dynamic G-matrix) was compared against the context-free

(fixed G-matrix) conventional probabilistic localization

methods: namely, the EKF and Particle Filter. At Leg 1, the

one-way ANOVA test showed that the context-sensitive

Maximum Confidence had significantly less heading error than

the context-free EKF (F = 4.167, p < 0.048; the error bars

slightly overlapped). However, there was no significant

difference if compared to the heading error produced by the

context-free Particle Filter. At Leg 4 (the GPS shadow), the

average heading error of the context-sensitive Maximum

Confidence was not significantly different from the context-

free EKF and Particle Filter. At Leg 6 (the final leg), the

context-sensitive Maximum Confidence produced significantly

less heading error compared to the context-free EKF (F =

9.845, p < 0.003) and the context-free Particle Filter (F =

6.961, p < 0.012; error bars slightly overlapped). However, the

context-sensitive Maximum Confidence had no significant

distance errors over the context-free EKF and Particle Filter at

all legs. Overall, these results support the first hypothesis and

indicate that with the addition of the proper contextual

information and domain knowledge, a simple greedy fusing

method can achieve accuracies meeting and in some cases

exceeding that of the two conventional probabilistic filters

used in these experiments.

 On the other hand, the second hypothesis was not

supported by the current data. In other words, in both

probabilistic filters, the heading and distance errors when

using contextual information in the form of dynamic variances

(context-sensitive) did not exhibit significant differences if

compared with the context-free ones.

Figure 4: Average Heading Error

Figure 5: Average Distance Error

Technical Report: GIT-GVU-05-13

V. CONCLUSIONS AND FUTURE WORK

 This work details context-sensitive pose computation and

empirically evaluates it within the framework of a localization

task in an urban environment. In this task, the robot must

provide accurate localization information even in the event of

sensor drop-out and in the presence of non-linear error sources

over the span of numerous waypoint-following missions. The

utility of the computational scheme is illustrated by the

performance of the Maximum Confidence, based purely on

this context-sensitive information, matches or even exceeds the

performance of the conventional probabilistic localization

methods (i.e., the EKF and Particle Filter). Further, it has been

shown to be robust under a wide variety of sensor noise such

as that produced by GPS dropout and the non-linear sensor

noise produced by the large steel girders present in the

experimental arena.

On the other hand, our evaluation determined that the

performances of the probabilistic filters are not affected

significantly by the utilization of the contextual information in

the form of dynamic variances. A few causes are speculated:

(1) The domain knowledge (i.e., adjustment of variances) was

not adequate; (2) the probabilistic filters were so efficiently

formulated that the extra information did not add any value; or

(3) the navigational task and/or environment was too simple.

An additional set of experiments should be conducted in order

to solve this predicament.

 Furthermore, in this study, the performance of our

computational scheme was measured by the accuracy of the

output pose with respect to the ground truth. In a real urban

outdoor navigational task, however, how effectively the robot

can accomplish the assigned task is also important; such

effectiveness includes its ability to arrive to a waypoint quickly

or ability to overcome presence of static and/or dynamic

obstacles without being disoriented. In other words, the

computational scheme should be also evaluated in terms of

behavioral accuracies.

 A possible extension of this work relates to Murphy’s

action-oriented perceptual architecture [8] described in Section

I. By adding some high-level planning mechanism, dynamical

switching or even blending of the fusing methods themselves is

also possible, and such an extension may be advantageous in

more complex and/or dynamic environments.

ACKNOWLEDGMENT

 The authors would like to thank Alan Wagner, Yang Chen

and Alex Stoytchev for their support on the experiment.

REFERENCES

[1] T. R. Collins, R. C. Arkin, M. J. Cramer, and Y. Endo, "Field Results

for Tactical Mobile Robot Missions," presented at Unmanned Systems,

Orlando, Fla., Assoc. for Unmanned Vehicle Systems International,

2000.

[2] L. Chaimowicz, A. Cowley, D. Gomez-Ibanez, B. Grocholsky, M. A.

Hsieh, H. Hsu, J. F. Keller, V. Kumar, R. Swaminathan, and C. J.

Taylor, "Deploying Air-Ground Multirobot Teams in Urban

Environments," presented at Multirobot Workshop, Washington, D.C.,

2005.

[3] J. S. Gutmann and D. Fox, "An Experimental Comparison of

Localization Methods Continued," Proc. IEEE/RSJ Int'l Conf.

Intelligent Robots and System, 2002, pp. 454-459.

[4] S. Thrun, "Probabilistic Algorithms in Robotics," in AI Magazine, vol.

21, 2000, pp. 93-109.

[5] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, "Monte Carlo

Localization for Mobile Robots," Proc. IEEE Int'l Conf. Robotics and

Automation, 1999, pp. 1322-1328.

[6] S. Se, D. Lowe, and J. Little, "Mobile Robot Localization and Mapping

with Uncertainty Using Scale-Invariant Landmarks," Int'l J. Robotics

Research, vol. 21, 2002, pp. 305-360.

[7] T. J. Ford and J. Neumann, "NovAtel's RT-20TM - A Real Time Floating

Ambiquity Positioning System," presented at Int'l Technical Meeting of

the Satellite Division of the Institute of Navigation, Salt Lake City,

Utah, 1994.

[8] R. R. Murphy, An Architecture for Intelligent Robotics Sensor Fusion,

Ph.D. Thesis, College of Computing, Georgia Institute of Technology,

1992

[9] H. P. Moravec, "Sensor Fusion in Certainty Grids for Mobile Robots,"

in AI Magazine, 1988.

[10] S. Thrun, "Robotic Mapping: A Survey," in Exploring Artificial

Intelligence in the New Millenium, Morgan Kaufmann, 2002.

[11] S. I. Roumeliotis and G. A. Bekey, "Bayesian Estimation and Kalman

Filtering: a Unified Framework for Mobile Robot Localization," Proc.

IEEE Int'l Conf. Robotics and Automation, 2000, pp. 2985-2992.

[12] H. Chung, L. Ojeda, and J. Borenstein, "Sensor Fusion for Mobile

Robot Dead-Reckoning with a Precision-Calibrated Fiber Optic

Gyroscope," Proc. IEEE Int'l Conf. Robotics and Automation, 2001, pp.

3588-3599.

[13] R. R. Negenborn, "Robot Localization and Kalman Filters," Utrecht

Univ., Utrecht, Netherlands, Master's thesis INF/SCR-0309, 2003.

[14] D. Kurth, "Range-Only Robot Localization and SLAM with Radio,"

Robotics Institute, Carnegie Mellon Univ., Pittsburgh, Master's thesis

CMU-RI-TR-04-29, May 2004.

[15] G. Welch and G. Bishop, "An Introduction to the Kalman Filter,"

presented at SIGGRAPH 2001 Course 8, Los Angeles, ACM Press,

2001.

[16] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel Approach to

Nonlinear/non-Gaussian Bayesian State Estimation," Proc. IEE

Proceedings on Radar and Signal Processing, 1993, pp. 107-113.

[17] M. Isard and A. Blake, "Contour Tracking by Stochastic Propagation of

Conditional Density," Proc. European Conf. Computer Vision,

Cambridge, UK, 1996, pp. 343-356.

[18] J. Carpenter, P. Clifford, and P. Fernhead, "An Improved Particle Filter

for Non-Linear Problems," Department of Statistics, Univ. of Oxford,

Technical Report 1997.

[19] A. Doucet, "On Sequential Monte Carlo Sampling Methods for

Bayesian Filtering," Statistics and Computing, vol. 10, 2000, pp. 197-

208.

[20] D. C. MacKenzie, R. C. Arkin, and J. Cameron, "Multiagent Mission

Specification and Execution," Autonomous Robots, vol. 4, 1997, pp. 29-

57.

[21] MissionLab: User Manual for MissionLab 6.0. Georgia Tech Mobile

Robot Laboratory, College of Computing, Georgia Institute of

Technology, Atlanta, GA, 2003.

