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SUMMARY

The techniques of surface deformation and mapping are useful tools for the

visualization of medical surfaces, especially for highly undulated or branched sur-

faces. In this thesis, two algorithms are presented for flattened visualizations of

multi-branched medical surfaces, such as vessels. The first algorithm is an angle pre-

serving approach, which is based on conformal analysis. The mapping function is

obtained by minimizing two Dirichlet functionals. On a triangulated representation

of vessel surfaces, this algorithm can be implemented efficiently using a finite element

method. The second algorithm adjusts the result from conformal mapping to produce

a flattened representation of the original surface while preserving areas. It employs

the theory of optimal mass transport via a gradient descent approach.

A new class of image morphing algorithms is also considered based on the theory

of optimal mass transport. The mass moving energy functional is revised by adding

an intensity penalizing term, in order to reduce the undesired “fading” effects. It is

a parameter free approach. This technique has been applied on several natural and

medical images to generate in-between image sequences.
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CHAPTER 1

INTRODUCTION

In this thesis, we discuss two surface mapping approaches for visualizing multi-

branched surfaces. The first algorithm is based on conformal analysis and the second

one is based on the theory of optimal mass transportation. Both of them involve

using partial differential equations (PDEs). We will also describe several other re-

lated interesting applications, including image morphing, flying-through for tubular

structures, and harmonic parametrization.

During the past a few years, many three dimensional visualization techniques

have been applied in surgical planning, noninvasive diagnosis and treatment, and

image-guided surgery. Among them, the techniques of surface deformation and map-

ping can be useful tools for the visualization of surfaces, especially for those surfaces

which are highly undulated or branched. For example, the brain cortical surface can

be extracted from magnetic resonance images (MRI) [50] and flattened for better

visualization of neural activity deep within the folds or sulci of the brain [3]. Virtual

colonoscopy provides radiologists a minimally invasive screening method for the de-

tection of small polys. However, it has a fundamental problem that some areas are

not inspected at all, leading to incomplete examinations. An alternative approach is

to simulate the action by pathologists to cut open the tube represented by a colon and

lay it out for a comprehensive inspection [36]. A flattened representation of the colon

surface can provide an unobstructed view of the entire surface. Recently, there has

been a demand for evaluation of atherosclerosis diagnosis method using CT images,

by comparing with traditional catheter method. We believe that flattened presenta-

tions of cardiac vessels can be helpful in these evaluations. There have been many
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approaches for flattening representations of medical surfaces. Paik et al. [69] proposed

a visualization technique, which uses cylindrical and planar map projections. Among

others, methods based on quasi-isometric and quasi-conformal flattening of brain sur-

faces have been considered [17, 79]. Typically, these methods can distort the shape

or do not guarantee bijectivity (one-to-one) of the mappings. Wang et al. [89, 88]

present an algorithm for unravelling colon surfaces based on an artificial electromag-

netic field. This algorithm requires a central line as an input and sometimes needs to

make compromises between large distortions and bijectivity.

In this introductory chapter, we briefly review some of the related topics in com-

puter vision and image processing.

1.1 Texture Mapping and Surface Flattening

Texture mapping is a computer visualization technique that maps a 2D image, either

synthesized or digitized, onto a given 3D object to make the object look more natural

or to achieve some special effects. This process is similar to applying wall-paper on

a wall. Texture mapping can be used to define many surface parameters besides

color. These include the perturbation of surface normal vectors to simulate bumpy

surface (bump mapping), the opacity of a translucent surface (transparency mapping),

glossiness of a surface (specularity mapping), and the distribution of incoming light

in all directions (illumination mapping) [44, 45, 37].

No matter what kind of image mapping is used, the parametrization function that

relates the geometry of an object to the image plane must be determined, i.e. the

association of a coordinate on the image plane with a location on the surface of the

geometric object. For complex objects, finding a usable parametrization function

can be a very difficult task. Lévy and Mallet proposed an algorithm for nondistorted

mappings on triangle meshes, which can be made continuous through cuts [61]. Lee et

al. [62] have developed a multiresolution approach based on loop subdivision. Haker et
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al. [37] proposed an explicit method based on conformal mapping for parametrization

on a genus zeros surface. Gu et al. [34] extended this conformal parameterization

method to nonzero genus closed surfaces.

Another closely related technique is surface flattening (or surface warping), e.g.

flattening the surface of a globe to be the map of the world. Once a reasonable

parametrization of the object surface is given, it is very straightforward to generate

a flattened presentation of the surface of original object.

1.2 Optical Flow

Optical flow is the apparent motion of brightness pattern in a series of images [49].

It can be used to approximate the velocity field since the motion of the brightness

pattern will be the same as the motion of the object in most cases. It can also be used

for tracking targets and has been applied to medical images as a tool for segmentation.

The Optical Flow Constraint (OFC) is defined as

Exu+ Eyv + Et = 0, (1)

where Ex, Ey and Et are the intensity gradients in the x, y, and the temporal direction,

respectively. u and v are the two components of the apparent motion of brightness

pattern. Equation (1) is based on a constant intensity assumption. However, there

is only one function but two unknowns for each pixel. Additional constraints, such

as a smoothness constraint, must be added to the OFC in order to find a unique

solution. Hence an energy functional is defined to be the sum of two parts as shown

in equation (2):

e = λ
[∫ ∫

(Exu+ Eyv + Et)
2
]

+
[
(u2

x + u2
y) + (v2

x + v2
y)
]
. (2)

The first term comes from the OFC and the second term is the smoothness constraint.

After applying the calculus of variation, the corresponding Euler equations are

�u = λ(Exu+ Eyv + Et)Ex (3)
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�v = λ(Exu+ Eyv + Et)Ey (4)

where λ is a positive constant,

An L1 constraint can also be applied as the smoothing term [60, 59, 23], which

has the inherent advantages of not smoothing the flow velocity across the edges and

hence preserving edge information. Various of other methods for solving this problem

can be found in [7].

OFC assumes that the pixel intensity does not change during the movement, which

is very restrictive. A weakened constraint, called the Extend Optical Flow Constraint

(EOFC), will give a more accurate computation in some cases [11, 12]. In EOFC, the

intensity preserving constraint is replaced by a mass preserving constraint as shown

in equation (5):

Exu+ Eyv + Eux + Evy + Et = 0, (5)

if we regard the intensity image as a mass density map.

Multi-grid methods can be used to speed up the calculation of optical flow with

both OFC and EOFC [23, 16].

1.3 Image Registration

Image registration is a process of aligning images so that corresponding features can

be easily related [35, 66]. The images may come from different modalities or from

the same modality at different times. Sometimes, the term of “registration” is also

used to indicate aligning images with a computer model or an atlas. It is common

now for a patient to be imaged several times, either by repeated imaging using a

single modality (e.g., before the surgery and during the surgery), or by imaging

with different modalities (e.g., PET and MRI). In either case, there exists a task

for physicians to mentally combine or “fuse” all the information to make diagnoses.

This procedure requires visual compensation for changes in subject positions. The

process of “fusing” is tedious and time consuming if done manually. Automatic
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image registration algorithms align the images and show the correspondence between

features seen on different images (which may or may not be from the same modality).

Registration of an image to an atlas or a computer model aids in the delineation of

anatomical and pathological structures, making it a useful tool for detailed analysis.

Automatic registration methods are not yet fully developed, and they are a major

goal of current research.

Basically, image registration can be divided into two categories, intensity-driven

or model-driven, depending on the types of features that drive the mapping of one

image onto the other. In intensity-driven approaches, parameters of the mapping

are successively adjusted until the value of similarity measure is maximized (or min-

imized). The applied similarity measures include normalized cross-correlation [6],

squared difference [20], mutual information [57], etc. In model-driven approaches,

explicit geometric models are built corresponding to identifiable anatomic elements

in the original image (volume in 3D case). These models typically include point land-

marks [14], curves and surfaces [85]. And there are also some hybrid models, which

combine the advantages of both intensity-driven and model-driven algorithms.

Image registration can also be classified as rigid, affine, projective, and non-rigid.

This classification is based on the nature of the transformation, more specifically the

degrees of freedom of the transformation. 3D rigid registration has six degrees of

freedom, i.e. three translations and three rotations. 3D affine registration has 12 de-

grees of freedom. Nonrigid registration has an infinite number of degrees of freedom.

Point-based rigid registration is also know as the Procrustes problem, which can be

solved by Singular Value Decomposition (SVD) [53, 71]. Surface-based rigid regis-

tration can be solved by Head and Hat algorithm [70], distance transforms algorithm

and iterative closest point algorithm [10]. Splines are commonly used for point-based

nonrigid registration. Thin-plate splines, which were initially formulated for the sur-

face interpolation of scattered data, have been widely used for image registration in
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recent years [14, 33]. In algorithms using thin-plates splines, radial basis functions

have infinite support, which is sometimes undesirable since it becomes difficult to

model local deformations. Another type of splines, B-splines, are used to model local

deformations [26, 77]. The landmarks (often called control points) for thin-plates

splines can be selected arbitrarily, which are often anatomical or geometrical land-

marks that can be identified on both images. In contrast, B-splines require a regular

mesh of control points with uniform spacing.

The elastic registration technique models the deformation of the source image as a

physical process which resembles the stretching of an elastic material. The movement

of the rubber-like material is governed by two forces. The first force is the internal

force which is caused by the deformation of elastic material (i.e., stress). This internal

force counteracts any force that deforms the elastic body from its equilibrium shape.

The second force is the external force that acts on the elastic body. The deformation

of the elastic body is the result of the equilibrium between the internal force and

the external force. The behavior of an elastic material is described by the Navier

equation.

µ∇2u+ (λ+ µ)∇(∇ · u) + f) = 0 (6)

where u is the displacement field, f is the external force acting on the elastic body,

λ and µ are Lame’s elasticity constants. The external force can be chosen as the

gradient of local correlation measure based on intensities [6], intensity differences,

or intensity features such as edges and curvatures [32]. An alternative choice is the

displacements of control points on the corresponding curves and surfaces between two

images (volumes) [25]. Registration based on the elastic model usually cannot model

highly localized deformations, since the deformation energy increases proportionally

to the strength of the deformation.

Optical flow technique can also be used for solving the registration problem [42].
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In an early registration algorithm by Bajcsy et al. [6], normalized local cross-

correlation measure is used as the comparison terms. Intensity neighborhoods to be

correlated in each volume are first projected onto a truncated three dimensional Her-

mite polynomial basis [21]. The normalized cross-correlation value is then calculated

based on the calculated coefficients. This procedure enhances the response of edge

features and accelerates computation. Interestingly, correlation can also be carried

in spatial frequency domain (k-space) [55]. In particular, a translation in spatial do-

main becomes a phase change in k-space and a rotation in spatial domain is a rotation

by the same angle in k-space. In an algorithm proposed by Christensen et al. [20],

squared differences in pixel intensities are used as measure of similarity. Informational

theoretic techniques are also widely used in registration algorithm. Joint entropy [80]

measures the amount of information in the combined image. The goal of registration is

to minimize the information contained in the combined image. A mutual information

metric is also used to measure the statistical dependency between intensity patterns

in the original and target images. In Kim et al.’s work [57], mutual information is cal-

culated from a two-dimensional gray scale histogram of an image pair and its negative

value provided a matching cost function. Combined with a thin-plate-spline warping

method, autoradiographic image slices of a rat brain are registered with video refer-

ence images of the uncut block face. In Maes et al.’s work [65], normalized mutual

information is also proposed as a measure of similarity.

1.4 Image Morphing (Image Interpolation in Time Domain)

Image interpolation in time domain, which is also called image morphing, deals with

the metamorphosis of one image to another [63]. This technique has been widely

used in television commercials, music videos and movies such as Willow [91]. It is

also important for facial recognition [96]. When a starting image I0 and an ending

image I1 are given, the goal of image interpolation problem is to find a sequence of
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in-between images I(t) such that I(0) = I0 and I(1) = I1. As t varies from 0 to 1

the starting image continuously changes to the ending image. The key problem in

this technique is to find a reasonable warping function from the starting image to

the ending image. It is closely related to the task of image registration, although

the requirement for a good warping is slightly different. In registration, the quality

of the warping is evaluated by the mapping error of corresponding features, while in

image morphing the transient images should appear natural. There have been many

algorithms proposed to find the warping function.

The first category of warping is mesh warping [92], where features are specified by

a nonuniform control mesh, and the warp is usually generated by a spline interpola-

tion. The mesh warping method shows a good distortion behavior but has a critical

drawback in specifying features since the features on the control mesh may have an

arbitrary structure. Also, using a user interface to define the feature correspondence is

very difficult and time consuming. The second category is field morphing [8], where

a pair of corresponding lines in the starting and ending image define a coordinate

mapping between the two images. The mapping of a point in the vicinity of a line

can be determined by its distance from the line. Since there are multiple line pairs,

the mapping of a point is given by a weighted sum of the mappings due to all the

line pairs. This method gives an easy-to-use and expressive method in specifying

features. However, unexpected distortions appear (referred to as “ghosts”) which

means a part of the image shows up in some unrelated regions in the interpolated im-

ages. The reason for this undesired result is caused by possibly wrong combinations

of the specified line segments. The last category of morphing is energy-minimization

based warpings. This type of technique usually guarantees the one-to-one property

of the warp function, which prevents the warped image from folding back upon itself.

For example, in Lee et al.,’s work [63], all primitives, including points, polylines and

curves, are sampled and reduced to a collection of points. These points are then used
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to generate a warp by minimizing an energy functional that is the sum of difference

penalty, elastic energy and “glue” energy. Each feature is distinguished by a set of

points in the image. Hassanien et al. [41] also proposed a similar method based on a

Navier elastic body spline.

1.5 Organization of the Thesis

We now briefly outline the contents for this thesis. In Chapter 2, a new technique

is developed for flattening multi-branched vessel surfaces in an angle-preserving way.

In this chapter, we also present a new algorithm for extracting central line from a

branched surface, based on harmonic analysis. In Chapter 3, we develop a new flatten-

ing algorithm that preserves area. This algorithm is based on the theory of optimal

mass transportation by making correction on the result from the angle-preserving

mapping. In Chapter 4, we describe another new technique for image interpolation

between image pairs (also called image morphing), also based on the theory of opti-

mal mass transportation. Finally, in Chapter 5, we conclude this thesis and outline

some possible future research directions.
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CHAPTER 2

CONFORMAL MAPPING OF BRANCHED SURFACES

This chapter is devoted to a conformal mapping technique that flattens tubular struc-

tures with multi-branches. The method is based on inverting a discrete Laplace-

Beltrami operator to flatten a branched tubular surface onto a planar polygonal re-

gion in an angle-preserving manner. The contents of this chapter is structured as

follows. Section 2.1 introduces related theories of analytic functions and conformal

mappings. Section 2.2 describes the algorithm of constructing a harmonic skeleton

and its applications. In Section 2.3 we present the construction of a conformal map-

ping of a Y-shaped open-ended surface, and in Section 2.4 we show how to extend

this algorithm to multi-branched surfaces. In Section 2.5 we discuss the numerical

details when applying this algorithm on a triangulated surface. Section 2.6 gives

some examples of this conformal flattening technique, as well as the applications of

harmonic skeletons.

2.1 Introduction to Conformal Mapping

Conformal mapping [68] is a very important concept in complex analysis, as well as

many areas of physics and engineering. A conformal mapping is a transformation

ω = f(z) in the complex domain, which preserves local angles and hence local geom-

etry. An analytic function is conformal at any point with nonzero derivative. And

any conformal mapping of a complex variable with continuous partial derivatives is

analytic.
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2.1.1 Harmonic Functions

In 2D case, a real function u(x, y) is said to be harmonic in a domain D if the first

order partial derivatives ∂u
∂x

, ∂u
∂y

, and second order partial derivatives ∂2u
∂x2 ,

∂2u
∂y2 exist

and are continuous, and if

�u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (7)

at all points of D. Equation (7) can be expressed as

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0 (8)

in polar coordinates. If another function v = v(x, y) can be associated with u by

means of the following system of partial differential equations:

∂u

∂x
=

∂v

∂y
(9)

∂u

∂y
= −∂v

∂x
, (10)

v is called the harmonic conjugate of u. This system of equations is known as the

Cauchy-Riemann equations. It plays a fundamental role in the theory of conformal

mapping. We can take the derivatives of equation (9) with respect to y and equation

(10) with respect to x. By adding them together, we obtain:

∂2v

∂x2
+
∂2v

∂y2
= 0, (11)

which indicates v is also a harmonic function. It can also be easily proved that if

two functions u(x, y) and v(x, y) both have two continuous derivatives and satisfy the

Cauchy-Riemann equations, u and v are both harmonic.

2.1.2 Analytic Function

A complex function f(z) is differentiable at point z0 ∈ D if

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)

h
(12)
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exists. Here h is an arbitrary complex parameter which tends to zero, and so z0 + h

tends to z0. By “exists”, we mean that the limit exists, and is the same, regardless

of the path along which h is approaching zero.

An analytic function is defined as a complex function which is single-valued in

some domain D of the complex plane, and which has a derivative in the sense of

equation (12) at each point of D. The analytic function f(z) is called regular in the

domain D if it is single-valued and has a derivative at each point of D; f(z) is called

regular at the point z0 if it is regular in a small neighborhood of z0 (i.e. |z − z0| < ε,

ε being a small positive number). For an analytic function, the following theorem

holds for its real part and imaginary part:

At a point at which an analytic function f(z)=u+iv is regular, its real part u=u(x,y)

and its imaginary part v=v(x,y) are connected by the Cauchy-Riemann differential

equations.

The converse statement also holds:

If u=u(x,y) is a harmonic function and v=v(x,y) is its harmonic conjugate, then

u(x,y)+iv(x,y) is an analytic function of the complex variable z=x+iy.

The proof of these theorems can be found in [68].

2.1.3 Conformal Mapping

In order to have a geometric representation of an analytic function ω = f(z), z and

ω can be regarded as points in two different planes – the z -plane and the ω-plane,

each being a complex plane. Hence, the function ω = f(z) can be interpreted as a

mapping of points in the z -plane onto points in the ω-plane.

A mapping is conformal if it preserves the angle between two differentiable arcs.

The conformality is a characteristic property of the mapping affected by regular ana-

lytic functions. If the associated analytic function f(z) is regular in the neighborhood

of a point z = z0 at which f ′(z0) �= 0, the mapping is conformal in the neighborhood
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of z = z0. And no continuously differentiable mapping of one plane onto another can

be conformal unless it is the mapping associated with a regular analytic function.

There is an important theorem on the conformal correspondence of two domains [68]:

Let C and C∗ be two simple closed contours in the z-plane and ω-plane, respec-

tively, and let ω = f(z) be regular on and within C. If ω = f(z) maps C onto C∗

in such a way that C∗ is traversed by ω exactly once in the positive sense. If z de-

scribes C in the positive sense, then ω = f(z) maps the domain bounded by C onto

the domain bounded by C∗.

2.2 Harmonic Skeleton

The skeleton, or medial axis, is defined as the set of centers of maximal balls in a

region [43]. The way of getting a skeleton, called skeletonization, is a process for

reducing foreground regions in a binary image to a one pixel width skeletal remnant.

The resulting skeleton should largely preserve the extent and connectivity of the

original region while throwing away most of the original foreground pixels. We can

imagine that a binary object is made of some slow-burning material and fire is lighted

simultaneously along the whole boundary of the object. The front of the fire moves

into the interior of the object at a uniform speed. At points where the fire front meets

another part of the fire front travelling from a different part, the fire will extinguish

and the those points form the skeleton.

The skeleton was first introduced for studying biological shape and later was found

having applications in pattern recognition and solid modeling [13]. More recently,

researchers have started to use skeleton as a tool for navigation of human organs,

such as virtual endoscopy of colons and vessels.

By definition, a skeleton is easy to imagine. But numerically, it is a very difficult

task to obtain a skeleton. There have been many algorithms proposed to address this

problem. Most of them can be divided into two classes. The first class is based on
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boundary peeling, where the basic idea is to iteratively peel off the boundary layer-

by-layer, identifying “simple points” (which means the removal of this point does

not affect the topology). For example, Siddiqi et al. [81] introduced a new algorithm

rooted in Hamiltonian physics and a very efficient algorithm for shock detection based

on the violation of energy conservation principle. This class of technique often faces

the problem of smoothness and connectivity. Post processing is usually necessary.

The second class is so called distance coding methods. A typical algorithm in this

category first does a distance transform, then detects all local maxima in terms of

distance value and finally reconnects the local maxima to generate a skeleton. The

typical problem involved in transform-based methods is still the connectivity. In [97],

Zhou et al. proposed a novel 3D voxel-coding-based skeletonization algorithm. Our

algorithm is similar to Zhou’s method. But our approach is based on the solution of

a Laplace equation instead of the single-seed-coding used in [97]. The skeleton thus

generated is named Harmonic Skeleton, which is connected, smooth and logically

structured. It can automatically provide a viewing vector when used as a central

line for fly-throughs. In addition, it can automatically provide boundary conditions

needed for the conformal flattening problem.

Now we describe in detail the steps for generating a harmonic skeleton of a multi-

branched surface [99]. Let Σ denote a closed embedded surface (no self-intersections),

which is topologically a tube with several branches. The first step of calculating

central line is to identify several boundaries on the surface according to the topology,

with one boundary on each branch. In our approach, we are considering PL(Σ), which

is a triangulated representation of Σ. A starting point (seed) is manually selected close

to the tip of the main branch. Then triangles close to this seed are removed to make

a boundary σ0, which is referred to as root in this section. The boundary values of

points on the root are set to be zero. We then perform the following region growing

algorithm on the surface on a triangulated mesh, in order to identify other boundaries
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and their values:

1. Mark the points on the root as “used” points;

2. Mark all the neighbors of “used” points as “used” points, and divide them into

several groups according to connectiveity;

3. stepNumber=stepNumber+1;

4. Repeat steps 2 & 3 until a group of “used” points cannot find any new neighbors,

which means the “tip” of a new branch is found;

5. Do a reverse region growing on the surface from this “tip” for m steps, record

a new boundary as the front of the reverse region growing;

6. Set the value of target boundary as stepNumber -m;

7. Continue to do region growing on the surface until all points are visited.

In summary, we do a region growing algorithm on the triangulated surface to discover

the remaining boundaries and set a boundary’s value to be the number of triangles

between this boundary and the root boundary.

The second step of calculating central line is to solve a Dirichlet problem ∆u = 0

on Σ\σi(i = 0...N), given the boundary condition determined in the first step. We

use a Finite Element Method (FEM) to solve it. Numerical details are explained in

Section 2.5.

The third step is to build a tree-like structure of the harmonic skeleton. For a

given u, we find all points on the surface with values equal to u (by interpolation).

Then these points are partitioned into several circles according to their connectivity

on the surface. The centroid of each circle corresponds to a point on the harmonic

skeleton. By increasing u from 0 to the maximal value, we can build a structured

tree. Each node on the tree keeps its own record of its ancestor and offspring(s). The
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locations of the bifurcations become obvious since it is easy to track where one node

has two or more offsprings.

The final step is to refine the harmonic skeleton. In the second step, the boundary

values are decided by triangle counts between the root and other boundaries, which

is a very coarse estimation. Now, we update those boundary values by measuring the

actual length of the harmonic skeleton obtained in the third step, which is a much

more reasonable way of deciding boundary conditions. Then the Dirichlet problem

∆u = 0 is solved again and the third step is repeated to get a refined harmonic

skeleton. An example of harmonic skeleton is shown in Figure 8.

In applications such as virtual endoscopy [48], we may also be interested in getting

a forward direction for the camera. One straightforward way is to use the position

differences of an ordered set of points on the skeleton. However, this often causes

troubles near bifurcations, where the direction vector changes rapidly. This problem

can be handled by using Singular Value Decomposition (SVD) [71]. In step two,

when calculating the centroid, we can also do an SVD for each circle and choose the

eigenvector associated with the smallest eigenvalue as the axis of the camera in fly-

through applications. The remaining two eigenvectors form a cutting plane, which is

useful in the application of vessel cross-area measure. The cross-sectional area of a

vessel is defined as the area of the cross section of this cutting plane and the vessel

surface.

2.3 Conformal Flattening of a Y-shaped surface

In this section, we present the outline of the conformal mapping algorithm on a Y-

shaped tubular structure. The relevant results from the theory of partial differential

equations (PDEs) can be found in [74].

Assume Σ ⊂ R3 represents an embedded surface (having no self-intersections),

which is a tube with two branches (Figure 1). The tube has three boundaries, which
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are circles in topology. We denote these boundaries as σ0, σ1 and σ2. We want to

construct a conformal mapping [68], f = u + iv : Σ → C, which maps Σ to a planar

polygonal-shaped region.

Figure 1: Mapping a Y-shaped vessel onto a plane

There is a well-known classical mathematical method for flattening a multiply-

connected surface; see [68] and [34]. The method involves solving a Dirichlet problem

for each boundary circle, and then solving a simple linear system of equations to find

the correct linear combination u of these functions, together with boundary conditions

for a conjugate harmonic function v. However, while mathematically elegant, we have

found that the resulting mapping induces extreme areal distortion. We have adjusted

this algorithm to provide a mapping which is more practical for the purposes of

medical visualization.

The construction begins by finding the real part of f = u + iv. This is done by

solving a Dirichlet problem ∆u = 0 on Σ(σ0 ∪ σ1 ∪ σ2), with appropriate boundary

conditions on σ0, σ1 and σ2.

Analytically, there is a saddle point (also called a branch point here) x0 on the

surface where u′(x0) = 0. We define three smooth curves C0, C1 and C2 running from

x0 to σ0, σ1, and σ2, respectively (see Figure 1), such that C1 and C2 are along the

gradient direction of u and C0 is opposite to the gradient direction of u (with the
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assumption that the boundary value of σ0 is smaller than σ1 and σ2). The curve Ci

meets the boundary σi at point yi(i = 0, 1, 2). Since u′(x0) = 0, we can make C1 and

C2 lie on a line in the neighborhood of x0, while C0 is perpendicular to the line.

These curves define a cut on Σ. The cut and the original boundaries σ0, σ1 and

σ2 define an oriented boundary B of the cut surface:

B : y0
σ0→ y0

−C0→ x0
C1→ y1

σ1→ y1
−C1→ x0

C2→ y2
σ2→ y2

−C2→ x0
C0→ y0

where −Ci means running in the opposite direction of Ci.

The second step of constructing the mapping function is to calculate the harmonic

conjugate of u by solving another Dirichlet problem ∆v = 0. From Cauchy-Riemann

equations, we have

∂v

∂s
=
∂u

∂n
(13)

on B and so the boundary conditions of v satisfy

v(ζ) =
∫ ζ

ζ0

∂v

∂s
ds =

∫ ζ

ζ0

∂u

∂n
ds (14)

where ζ0 is a given starting point and ζ is any point on the boundary. By deciding

the boundary in this way, it is guaranteed that the mapping function transverse the

domain boundary only once after mapping.

2.4 Conformal Flattening of a Multi-branched Surface

When the harmonic skeleton is built in Section 2.2, the “tree” structure is constructed

from the root to the other branches. Each point on the tree has information for its

connected neighbors. Curve points, branch points and end points are thus easily

classified. Normal curve points are connected to two points (one ancestor and one

offspring), branch points are connected to three or more other points and end points

are connected to only one other point. This ”tree” is then cut into several segments,

each containing a Y-shaped structure. By using this partitioned skeleton as a refer-

ence, we can easily divide the whole vessel into several parts, each being a Y-shaped
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tube (hence one branch point) with three boundaries.

The harmonic function u on the whole surface has then been found when building

the harmonic skeleton. Next, cuts are made on each Y-shaped segment and v is solved

(see Section 2.3). Some modifications are made to cuts where two adjacent segments

meet in order to make the cut continuous through boundaries between two segments.

These modified cuts may not follow the gradient of u in some region, but they should

not void the monotonic (increasing or decreasing) property of u along the cuts. These

modifications guarantee that the mapping result is continuous on the whole surface.

2.5 Numerical Implementation

The Laplace equations in Section 2.2 and Section 2.3 are solved by a FEM numerically.

The theory of the finite element method can be found in [51]. In this section, we will

discuss the problem for solving a Laplace equation on a Y-shaped tube only. The

numerical method of solving the harmonic skeleton in Section 2.2 is very similar to

this, just by given more boundary conditions. More details can be found in [100].

In [3] and [38] there are similar methods for brain flattening and colon flattening,

respectively. However, due to the differences in topology, the boundary conditions

have to be changed.

In the previous section, a cut is found through a saddle point with u′(x) = 0.

However, when we are working with a triangulated surface, we may not find such a

point. And the point with minimum absolute value of derivative (min|u′(x)|) may

be far away from the real “branch point”. The algorithm applied here tries to find

a point with the difference of its value and its neighbors’ value changing sign for

multiple times. For example, in Figure 2, x0 has 8 neighbors with the difference of

value (between x0 and its neighbors) written beside. If a point is a saddle point,

the sign of the difference value will change 4 times around x0 as shown in figure 2.

Otherwise, it changes only twice.
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x0

+0.11

+0.08

−0.06
−0.14

+0.12

+0.09

−0.15

−0.17

Figure 2: The branch point and its neighbors

Now we will present the finite element method used in our algorithm. In this

section, Σ is assumed to be a triangulated surface of a Y-shaped tube with three

boundaries σ0, σ1 and σ2. Let PL(Σ) denote the finite dimensional space of piecewise

linear functions on Σ. Then we define a basis {φV } for PL(Σ). For each vertex, there

is a corresponding piecewise linear basis function which is 1 on this vertex and 0 on

all other vertices, i.e.

φV (V ) = 1,

φV (W ) = 0, W �= V,

φV is linear on each triangle.

(15)

Any function u ∈ PL(Σ) can be approximated as the linear combination of these

basis functions, in which the coefficients are the values on vertices:

u =
∑
V

uV φV . (16)

The u we are seeking is continuous on Σ and piecewise linear on each triangle.

From the theory of calculus of variations [28, 74], it is known that the solution of

the Laplace function ∆u = 0 is a harmonic function u which minimizes the Dirichlet

functional

D(u) =
1

2

∫ ∫
Σ
|∇u|2dS

u|∂u0 = α0, u|∂u1 = α1, u|∂u2 = α2 (17)

Let F = |∇u|2. The Eular equation of the energy functional (17) is

Fu − ∂

∂x
Fux −

∂

∂y
Fuy = 0 (18)
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Since Fu = 0 , ∂
∂x
Fux = uxx and ∂

∂y
Fuy = uyy, equation (18) is exactly the Laplace

equation

∆u = 0 (19)

According to FEM theory, u should satisfy

∫ ∫
∆u · v = 0 (20)

for any testing function v satisfying v = 0 on all boundaries. By doing integration by

parts, we have

−
∫ ∫

∇u · ∇v = 0 (21)

Since we have known the value of u on the boundaries, for any given point on the

domain, u can be written as

u =
∑

W∈Σ\(σ0∪σ1∪σ2)

uWφW +
∑

i=0,1,2

αi

∑
W∈σi

uW (22)

And v can be chosen to be φV with V ∈ Σ\(σ0 ∪ σ1 ∪ σ2). Hence, u is the minimizer

of the Dirichlet functional, if for each vertex Σ\(σ0 ∪ σ1 ∪ σ2),

∑
W∈Σ\(σ0∪σ1∪σ2)

DV WuW = − ∑
i=0,1,2

αi

∑
W∈σi

DV W (23)

DV W is defined as

DV W =
∫ ∫

∇φV · ∇φWdS (24)

for any pair of vertices V and W .

It is easy to see that DV W = 0 unless V and W are connected by an edge in the

triangulation. As shown in [3], assume VW is an edge belonging to two triangles

VWX and VWY . From the theory of finite element methods, we know that for

V �= W

DV W = −1

2
(cot � X + cot � Y ) (25)
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where � X is the angle at the vertex X in the triangle VWX and � Y is the angle at

the vertex Y in the triangle VWY , as shown in Figure 3. Moreover,

DV V = − ∑
W �=V

DV W (26)

for V = W .

What we are seeking is a flattening function f = u + iv. The computation for v

is similar to that of u, using the boundary conditions obtained from (14), which is

derived from the Cauchy-Riemann equations.

V

W

X
Y

Figure 3: Triangle geometry

2.6 Medical Examples

In this section, we show some medical examples based on the algorithms introduced

in this chapter. The first example is a coronary artery example. The dataset is a 3D

CT dataset provided by the Department of Radiology of Emory Hospital as shown in

Figure 4, which has an isotropic voxel size of 0.6mm×0.6mm×0.6mm. The left coro-

nary artery was segmented and the surface was triangulated, using method described

in [93], which is similar to the method by Hernandez el al. [47]. In the segmentation

algorithm, each voxel is assumed to belong to one of three classes. A priori knowl-

edge of each class is introduced by Bayes’ rule. Posterior probabilities obtained from

Bayes’ rule are anisotropically smoothed. And the segmentation is obtained via the

maximum a posteriori (MAP) classifications of the smoothed posteriors as shown in

Figure 5, in which all the voxels are classified into blood, myocardium and lung, with
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blood being the brightest. An active contour model [18, 56] is then applied to the

blood class and the coronary arteries are extracted with subvoxel accuracy as shown

in Figure 6. The Visualization Toolkit (VTK) [78] is used to generate a triangulated

surface. This surface is then smoothed by using a version of the mean curvature flow.

The vessel caps are removed to generate an open-ended vessel surface as shown in

Figure 7, in which boundary points are marked by blue stars. The vessel surface is

painted by the solution to the Laplace equation as described in section 2.2, given

appropriate boundary conditions. Figure 8 shows the harmonic skeleton extracted

from this coronary artery. Red stars indicate end points and blue stars indicate

branchpoints. There are 4 end points and 2 branchpoints in Figure 8. Figure 9 shows

the coronary artery and its harmonic skeleton together. And Figure 10 presents the

measure of vessel cross-area. Since the images are upsampled by a factor of 2 be-

fore segmentation, the LAD has a cross area of 130 × 0.6 × 0.6 × 1
4

= 11.7mm2 at

the indicated position (shown by the blue circle) and the LCX has a cross area of

105 × 0.6 × 0.6 = 9.5mm2 (shown by the red circle).

The harmonic skeleton is then divided into several parts, each containing a Y-

shaped structure. By using this partitioned skeleton as a reference, several sections

of Y-shaped tubes are obtained. (In this data set, the original vessel is partitioned

into two Y-shaped sections.) Then, as described in Section 2.3, the mapping function

is solved for each Y-shaped section. The mapping results of all segments are put

together to give a global view of the vessel surface. We made some corrections where

two Y-shaped sections meet as described in Section 2.4, in order to make the flattened

surface look continuous. Figure 11 shows the same coronary artery, but in a non-

transparent view. Figure 12 is the result from conformal mapping, whose points have

been assigned outward normals according to their original positions in Figure 11.
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Figure 4: The original gray scaled image (for coronary artery example).

Figure 5: Classification result with MAP labels (for coronary artery example).

Figure 6: Segmented left main coronary artery with marked boundaries.
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Figure 7: A segmented coronary artery

Figure 8: The harmonic skeleton for Figure 7
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Figure 9: A coronary artery and its harmonic skeleton

Figure 10: Cross-sectional area measurement
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Figure 11: A coronary artery (the same one as in Figure 7)

Figure 12: Conformal mapping of Figure 11
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The second dataset is a brain MRA imagery provided by the Surgical Planning

Lab of Brigham and Women’s Hospital. The dataset has a dimension of 256 × 256

× 47. By using a similar approach, we extracted the surface of the frontal cerebral

artery, as shown in Figure 13. Following the same procedure as we did on the previ-

ous example, a harmonic skeleton was constructed as shown in Figure 14. The whole

vessel was then cut into three pieces accordingly and conformally flattened onto a

plane as shown in Figure 15.

Figure 13: A frontal cerebral artery (the cerebral example).
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Figure 14: The harmonic skeleton of figure 13

Figure 15: Conformal mapping of figure 13
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The third dataset is a CT carotid artery dataset provided by the Department of

Radiology of Emory Hospital, which has a dimension of 512 × 512 × 91. In this

case, there is only one Y-shaped structure. Figure 16 shows the original 3D surface

and Figure 17 shows the result from conformal mapping. Again, the flattened surface

is shaded by outward normals from the original 3D surface. Figure 18 shows the

calculated harmonic skeleton, which can be used to define the path of the camera

in fly-through applications. The little green arrows indicate the directions of the

camera’s axis, calculated from the SVD algorithm described in Section 2.2. Figure 19

shows some views in a preliminary example for fly-through.

Figure 16: A carotid artery
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Figure 17: Conformally flattened carotid artery

Figure 18: Harmonic skeleton with camera direction for Figure 16
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Figure 19: Some views in fly-throughs of Figure 16
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CHAPTER 3

AREA-PRESERVING MAPPINGS: A CORRECTION OF

CONFORMAL MAPPINGS

The conformal mappings presented in Chapter 2 preserve angles and hence preserve

local geometry, but they are not area-preserving in general, since a flattening cannot

be both angle-preserving and area-preserving unless the original surface has zero

gaussian curvature. Some areas on the original surface may be greatly enlarged or

shrunk after flattening. This problem becomes particularly pronounced when we wish

to construct a flattened representation for a multi-branched surface. In a conformal

representation, each time a vessel passes a branch point, it approximately narrows

by a factor of two, as shown in Figure 1. In other words, the vessel at any point has

approximately narrowed by a factor of 2N , where N is the number of branch-points

from the root. Hence, it might be interesting and useful to consider another type of

one-to-one mapping that preserves area [99, 98].

In this chapter, we will present an algorithm for area correction based on the result

of conformal flattening. This algorithm used the theory of optimal mass transporta-

tion. Section 3.1 gives the introduction of optimal mass transportation and our gen-

eral approach to the problem by using a gradient descent method. Section 3.2 briefly

presents the algorithm of making area correction based on the results of conformal

mapping. And Section 3.3 shows area-corrected flattenings of the vessels presented

in Chapter 2.
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3.1 Optimal Mass Transportation

3.1.1 Introduction

The mass transport problem, which is also known as the Monge-Kantorovich Problem

(MKP), was first formulated by a French Mathematician Gaspar Monge in 1781 as

the following [73]:

Split two equally large volumes into infinitely small particles and then

associate them with each other so that the sum of products of these paths

of the particles to a volume is least. Along what paths must the particles

be transported and what is the smallest transportation cost?

It was given a modern formulation in the work of Kantorovich [54]. The original

problem is concerned with finding the optimal way, in the sense of minimal trans-

portation cost, of moving a pile of soil from one place to another. The total amount

of soil, or the mass, is conserved in the process.

Optimal transport methods have appeared in econometrics, fluid dynamics, auto-

matic control, transportation, statistical physics, shape optimization, expert systems,

and meteorology [72]. They also naturally fit into certain problems in computer vi-

sion [29]. In particular, for tracking problem, a robust and reliable object and shape

recognition system is of major importance. A key way to carry this out is via template

matching, which is the matching of one object to another within a given category of

objects. Typically, the matching will not be exact and some shape metric is necessary

for measuring the similarity or “goodness of fit” between objects [40].

The optimal transport problem has also been studied within the context of certain

imaging applications, in particular for content-based image retrieval [75, 76, 64]. In

these works, pixels in an image are divided into several bins (called “signatures”)

according to their positions in color and/or spatial locations. The Earth Mover’s

Distance (EMD) is calculated between the signatures of two images and then used
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for image retrieval. However, the EMD method cannot give a warped grid defined

on every pixel, which is essential for image registration and image morphing. Some

interesting discrete computational techniques have also been proposed in [52] and

applied to images. Using the Kantorovich–Wasserstein distance for image registration

and warping has a number of advantages. First, it is parameter free. Second, it

utilizes all of the grayscale data in both images, and places the two images on equal

footing. It is thus symmetrical (if no comparison term is added), the optimal mapping

from image A to image B being the inverse of the optimal mapping from B to A.,

which is a desired property for registration [82]. Hence, it is not necessary to use an

extra constraint to guarantee the symmetrical property, as in [19]. Third, it does not

require landmarks to be specified. The minimizer of the distance functional involved

is unique; there are no other local minimizers. Finally, it is specifically designed to

take into account changes in density that result from changes in area or volume. This

last point is essential. In fact, as we will show this method leads to area-preserving

diffeomorphisms which have very nice regularity properties since they are naturally

derived from conformal angle-preserving ones.

3.1.2 Mathematical Formulation

Table 1: Notation used in Chapter 3.
Ω0 source domain
Ω1 target domain
µ0 a density map in domain Ω0, which is positive everywhere
µ1 a density map in domain Ω1, which is positive everywhere
u0 the initial mapping function
s−1 an MP mappings at given time t from (Ω0, µ0) to (Ω0, µ0); for simplicity we usually omit t
s the inverse function of s−1, which is also an MP mapping from (Ω0, µ0) to (Ω0, µ0)
s̃−1 the MP mappings from (Ω0, µ0) to (Ω0, µ0) at t → ∞, as well as its inverse function s̃
u u = u0 ◦ s−1 an MP mapping function at given time t; t is omitted for simplicity
ũ ũ = u0 ◦ s̃−1, the optimal mapping function, which is u at time t → ∞
w a scalar field
χ a divergence-free vector field, such that u = ∇w + χ
ζ a divergence-free vector field
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A modern formulation of Monge–Kantorovich problem is now given as follows:

assume Ω0 and Ω1 to be two subdomains of Rd, with smooth boundaries, each with

a positive density function, µ0 and µ1, respectively. A further assumption is made to

make both domains contain same total amount of mass:

∫
Ω0

µ0 =
∫
Ω1

µ1 (27)

If not, we can always scale one of them to make the total amount of mass equal.

We consider diffeomorphisms u from Ω0 to Ω1, which maps one density to the

other in the sense that

µ0 = |Du|µ1 ◦ u, (28)

which is called the mass preserving (MP) property, and written as u ∈ MP. Equa-

tion (28) is called the Jacobian equation. Here |Du| denotes the determinant of the

Jacobian Du, and ◦ denotes the composition of two functions. In particular, Equa-

tion (28) implies, for example, that if a small region in Ω0 is mapped to a larger region

in Ω1, there must be a corresponding decrease in density in order for the mass to be

preserved. A mapping u that satisfies this property thus defines a redistribution of a

mass of material from one distribution (Ω0, µ0) to another (Ω1, µ1).

There exist infinite number of such mappings. A criteria, or a metric, must be

defined first in order to solve an optimal mapping. A typical metric, called the Lp

Kantorovich–Wasserstein metric, is defined as follows:

dp(µ0, µ1) := inf
u ∈MP

∫
‖u(x) − x‖pµ0(x) dx. (29)

This metric can be seen as to place a penalty on the Lp of each bit of material

moved by the map u, weighted by the material’s mass. An optimal mass preserving

mapping ũ is the one that minimizes this functional, while satisfying equation (28).

From another point of view, the Kantorovich–Wasserstein metric defines the distance

between two mass densities, by computing the “cheapest” way to transport the mass

from one domain to the other with respect to equation (29).
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The optimal mass-preserving mapping places the two images on equal footing and

is symmetrical: the optimal MP mapping from (Ω0, µ0) to (Ω1, µ1) is the inverse of

the optimal mapping from (Ω1, µ1) to (Ω0, µ0).

Assume u be an MP mapping from (Ω0, µ0) to (Ω1, µ1) and y = u(x), we have

∫
Ω0

‖u(x) − x‖pµ0(x) dx =
∫
Ω1

‖u ◦ u−1(y) − u−1(y)‖pµ0 ◦ u−1(y) du−1(y)

=
∫
Ω1

‖y − u−1(y)‖pµ0 ◦ u−1(y)|Du−1(y)| dy

=
∫
Ω1

‖y − u−1(y)‖pµ1(y) dy,

Where we use the MP property of u−1: µ1 = |Du−1|µ0 ◦ u−1.

Noticing that this statement holds for any u ∈MP , we have

dp(µ0, µ1) = dp(µ1, µ0),

and that if ũ denotes the optimal mass-preserving map from Ω0 to Ω1 then the optimal

from Ω1 to Ω0 is precisely ũ−1., i.e. optimal mass preserving mapping is symmetrical.

The case p = 2 has been extensively studied and will be the one used here for

image morphing. The L2 Monge–Kantorovich problem has been studied in statistics,

functional analysis, and the atmospheric sciences [9]. A fundamental theoretical result

[15, 31, 58], shows that there is a unique optimal mapping ũ ∈MP transporting (Ω0,

µ0) to (Ω1, µ1), and that this ũ is characterized as the gradient of a convex function

w, i.e., ũ = ∇w. Note that from Equation (28), we have that w satisfies the Monge–

Ampère equation

|Hw|µ1 ◦ (∇w) = µ0, (30)

where |Hw| denotes the determinant of the Hessian of w. In 2D, the Hessian matrix

is

Hω =


 ωxx ωxy

ωyx ωyy


 (31)

There have been a number of algorithms considered for computing an optimal
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transport map. For example, methods have been proposed based on linear program-

ming [72], and on Lagrangian mechanics closely related to ideas from the study of

fluid dynamics [9]. An interesting geometric method has been formulated by Cullen

and Purser [22]. Among them the most common approach is to reduce the L2 optimal

transport to a linear programming problem. However, a fundamental difficulty for

doing so is the computational complexity. Even in 2D case, for a pair of 256 × 256

images we may have 2562 × 2562 possibilities, and the linear programming problem

can get to be quite unwieldy [52].

In our method, we will employ a natural solution to the optimal transport problem

based on the equivalent problem of polar factorization [15, 30, 67]. Assume we have an

initial mapping u0 : (Ω0, µ0) → (Ω1, µ1) with the mass preserving (MP) property (the

details for construction such an initial mapping will be described later). According

to the generalized results of [15, 30], u0 has a unique decomposition of the form

u0 = (∇w) ◦ s, (32)

where w is a convex function and s is an MP mapping s : (Ω0, µ0) → (Ω0, µ0). This

is called the polar factorization of u0 with respect to µ0.

We will find the polar factorization of the MP mapping u, in an iterative way.

We consider the family of MP mappings in the form of u = u0 ◦ s−1 as s varies over

diffeomorphic MP mappings from (Ω0, µ0) to itself. If we consider u as a vector field,

we can always find a function w and another vector field χ, with div(χ) = 0, such

that

u = ∇w + χ, (33)

which is called the Helmholtz decomposition, i.e., we can decompose u into the sum

of a curl-free and a divergence-free vector field [83]. Once the divergence-free part

is zero, the polar factorization is completed. Thus, what we try to do is to find a

mapping s̃ which will yield a ũ without any curl, such that ũ = ∇w. Once such an s̃

38



is found, we will have u0 = ũ◦ s̃ = (∇w)◦ s̃ and so we will find the polar factorization

as equation (30) of our given function u0.

As we have discussed above, the unique optimal solution of the L2 Monge–

Kantorovich problem has the form of ũ = ∇w, so the problem of finding the unique

polar factorization of u0 and finding the optimal Monge–Kantorovich mapping ũ are

equivalent. More mathematical details describing this connection can be found in

[1, 15, 31]. In essence, to solve the Monge–Kantorovich problem we create a rear-

rangement of an initial vector field u0 using an MP mapping s̃, so that the resulting

vector field ũ = u0 ◦ s̃−1 has no curl. ũ : Ω0 → Ω1 is an MP mapping of the form

ũ = ∇w, with w convex. Uniqueness follows from the theory of the Monge–Ampère

equation (30) (see [84], page 251). We can now give the technical details of our

construction.

In our following discussion, we intend to minimize a more general form of the

energy functional in the form of

M [u] =
∫
Ω0

Φ(u(x) − x)µ0(x)dx (34)

where Φ is a non-negative C1 function. In the case of Φ(x) = ‖x‖2, it is exactly the

L2 Kantorovich-Wasserstein functional. The algorithm is a two-step approach. The

first step is to find an initial MP mapping u0. And the sectond step is to minimize

the energy functional over u = u0 ◦ s−1 by varying s over MP mappings from Ω0 to

Ω0, starting with s equal to the identity map.

• Finding an initial mapping u0

For a general domain, this initial mapping can be solved using a method by Moser

[24]. Since we are working with regular domains (in 2D case, two rectangular domains

or in 3D case, two cubic domains), a simpler algorithm is implemented here. For

simplicity, assume we are working in R2 and Ω0 = Ω1 = [0, 1]2, the generalization

to higher dimensions being straightforward. The idea of this construction is that we
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solve a one-dimensional mass transport problem in one direction and then solve for

a family of one-dimensional mass transport problems in the other direction. In 1D,

the optimal transport map can be found by simple quadrature. We assume mass is

first transported along lines parallel to the x-axis, and then transported along lines

parallel to the y-axis.

Accordingly, we define a function a = a(x) by equation

∫ a(x)

0

∫ 1

0
µ1(η, y) dy dη =

∫ x

0

∫ 1

0
µ0(η, y) dy dη. (35)

By differentiation with respect to x, we have

a′(x)
∫ 1

0
µ1(a(x), y) dy =

∫ 1

0
µ0(x, y) dy. (36)

We may now define a function b = b(x, y) by equation

a′(x)
∫ b(x,y)

0
µ1(a(x), ρ) dρ =

∫ y

0
µ0(x, ρ) dρ, (37)

and set u0(x, y) = (a(x), b(x, y)). Since ay = 0, |Du| = axby = a′(x)by(x, y), by

differentiating (37) with respect to y we find

a′(x) by(x, y) µ1(a(x), b(x, y)) = µ0(x, y) (38)

|Du0| µ1 ◦ u0 = µ0, (39)

which is the MP property we need. In practice, a and b can be found with simple

numerical integration techniques. Given our assumption that µ0 and µ1 are positive

everywhere, a(x) is monotonically increasing from (35), and b(x, y) is also monoton-

ically increasing with respect to y from (37) since a′(x) is always positive. Hence,

there is no space folding problem with the initial mapping m0.

It should be pointed out that the energy functional to be minimized is not involved

when finding u0. Hence, this initial mapping approach is suitable for any energy

functional.
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• Finding the minimizer ũ

Once an initial MP u0 is found, we need to apply a process to minimize the energy

functional. Since u0 is an MP, while u = u0 ◦ s−1 we see that u is an MP mapping if

and only if s is an MP map from (Ω0, µ0) to itself, that is, if and only if

µ0 = |Ds|µ0 ◦ s. (40)

The same argument applies to s̃ (the optimal rearrangement of initial mapping) also.

Next, rather than working with s directly, we solve for the energy minimizing

problem iteratively via a gradient descend method. If the energy functional is the

L2 Kantorovich-Wasserstein metric, this process is equivalent to finding the polar

factorization and is guaranteed to converge to a global optimum [2]. We assume

that s is a function of time, initially being the identity map. Then the evolution of

s: st := d
dt
s should decrease the energy functional. This will give us an evolution

equation for st and in turn an equation for ut as well, the latter being the most

important for implementation. In what follows the t subscript denotes differentiation

with respect to time t, D and ∇ refer to spatial derivatives, and div is the spacial

divergence operator.

Since s is an MP mapping from (Ω0, µ0) to itself, we have that µ0 = |Ds|µ0 ◦ s.
By differentiating it with respect to time t, we get

0 = |Ds|t µ0 ◦ s+ |Ds| (µ0 ◦ s)t

0 = |Ds|
(
div

(
st ◦ s−1

)
◦ s
)
µ0 ◦ s+ |Ds| 〈(∇µ0) ◦ s, st〉 ,

0 =
(
µ0 div

(
st ◦ s−1

))
◦ s + 〈(∇µ0) ◦ s, st〉 ,

0 = µ0 div
(
st ◦ s−1

)
+
〈
∇µ0, st ◦ s−1

〉

0 = div(µ0 st ◦ s−1), (41)

Hence st should have the following form

st =

(
1

µ0

ζ

)
◦ s, (42)
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for some vector field ζ on Ω0, with div(ζ) = 0 and 〈ζ, 
n〉 = 0 on ∂Ω0, 
n being the

normal to the boundary of Ω0. Since u and s satisfy u◦s = u0, by taking the derivative

of it respective to t, we derive

(Du ◦ s) st + ut ◦ s = 0

ut ◦ s = −(Du ◦ s) st

ut = −Dust ◦ s−1.

By equation (42) we have

ut = − 1

µ0

Duζ, (43)

Now let us recall the energy functional (34), which is repeated here for clarity.

M [u] =
∫
Ω0

Φ(u(x) − x)µ0(x)dx (44)

A change of variable is applied here by substituting x with y = s−1(x). Due to the

MP property of s and s−1, the following is obvious:

µ0(x)dx = µ0 ◦ s(y)ds(y) = µ0 ◦ s(y)|Ds(y)|dy = µ0(y)dy, (45)

and also u(x) = u ◦ s(y) = u0(y). Hence, functional (44) equals

M =
∫
Ω0

Φ(u0(y) − s(y))µ0(y)dy (46)

By taking the derivative of (46) respect to t, we get,

dM

dt
= −

∫
Ω0

〈∇Φ(u0(y) − s(y)),
∂s

∂t
(y)〉µ0(y) dy (47)

Then we do another change of variable by substituting y back with x = s(y) and

get

dM

dt
= −

∫
Ω0

〈∇Φ(u(x) − x), µ0(x) st ◦ s−1(x)〉 dx (48)

42



Clearly, were it not for the constraint div(µ0 st ◦ s−1) = 0, we could take µ0 st ◦
s−1 = ∇Φ(u(x) − x) to decrease energy. However, considering this mass-preserving

constraint, µ0 st ◦ s−1 should be a divergence-free vector field. Hence, we define

ζ = µ0 st ◦ s−1 (49)

Assume ∇Φ(u(x) − x) can be decomposed into a curl-free part and a divergence-

free part, i.e.

∇Φ(u(x) − x) = ∇w + χ., (50)

where div(χ) = 0 and 〈χ,
n〉 = 0 on ∂Ω0. Then equation (48) can be rewritten as,

−Mt =
∫
Ω0

〈∇w + χ, ζ〉

=
∫
Ω0

〈∇w, ζ〉 +
∫
Ω0

〈χ, ζ〉

=
∫
Ω0

(div(wζ) − w div(ζ)) +
∫
Ω0

〈χ, ζ〉

=
∫

∂Ω0

w 〈ζ, n〉 +
∫
Ω0

〈χ, ζ〉

=
∫
Ω0

〈χ, ζ〉 , (51)

where ζ is chosen to be χ, and can be found through Helmholtz decomposition.

Now we give the evolving equation for u in general Rd case, as well as in 2D case

which has a simpler expression and will be used in our algorithm.

Gradient Descent: Rd:

By taking the divergence of equation (50) on both sides, it is easy to see that w should

be a solution of the following Neumann-type boundary problem

div(∇Φ(u(x) − x)) = ∆w

〈∇w,
n〉 = 〈∇Φ(u(x) − x), 
n〉 on ∂Ω0, (52)

and we can set χ = ∇Φ(u(x) − x) − ∇w. It is then easily seen that χ satisfies the

necessary requirements. This PDE can be solved using a number of methods, e.g.
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finite volume as in [5]. Thus, by (43), we have the following evolution equation for u:

ut = − 1

µ0

Du
{
∇Φ(u(x) − x) −∇∆−1div [∇Φ(u(x) − x)]

}
, (53)

which is a first order non-local scheme for ut, if we count ∆−1 as minus 2 derivatives.

If Φ(u(x) − x) has the form of ‖u(x) − x‖2, which is the L2 Monge-Kantorovich

problem, equation (53) has the form of,

ut = − 2

µ0

Du
{
u(x) − x−∇∆−1div [u(x) − x]

}
. (54)

Note that this flow is consistent with the L2 Monge–Kantorovich theory in the follow-

ing sense. If ũ is the optimal MP mapping, then it is given as the gradient of a scalar

function. The divergence-free part of the Helmholtz decomposition with respect to ũ

is zero and the curl-free part is ũ itself. Hence,

ũ−∇∆−1div(ũ) = 0, (55)

Similarly,

x = ∇∆−1div(x). (56)

We get ũt = 0.

Gradient Descent: R2:

The situation is somewhat simpler in the R2 case, due to the fact that a divergence

free vector field ζ can in general be written as ζ = ∇⊥h for a scalar function h, where

⊥ represents rotation by π/2 counter clockwise, so that ∇⊥h = (−hy, hx). In this

case, equation (51) becomes

−Mt =
∫
Ω0

〈
∇⊥f,∇⊥h

〉
=
∫
Ω0

〈∇f,∇h〉 (57)

where the decomposition of ∇Φ(u(x)−x) is ∇Φ(u(x)−x) = ∇w+∇⊥f, and we can

let h equal f. Hence,

∇Φ(u(x) − x)⊥ = ∇⊥w −∇f. (58)
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Considering

div(∇⊥w) = div(−wy, wx) = −wyx + wxy = 0, (59)

the function f can be solved by the following Dirichlet-type boundary problem

− div(∇Φ(u(x) − x)⊥) = ∆f,

f = 0 on ∂Ω0, (60)

which gives us the evolution equation

ut =
1

µ0

Du∇⊥∆−1div(∇Φ(u(x) − x)⊥). (61)

In the L2 Monge-Kantorovich problem, equation (61) can be rewritten as,

ut =
2

µ0

Du∇⊥∆−1div((u− id)⊥) (62)

where id is an identity map.

3.2 Area-preserving Mappings Based on the L2 Monge-
Kantorovich Problem

It is assumed that there is a uniform mass density on the original 3D surface. After

conformal mapping f , the original uniform density is deformed to µ0, by assuming

that the mass is preserved during the mapping. If we can find another mapping u that

maps µ0 back to a uniform distribution and preserves mass, then the composition of

f and u will be an area-preserving mapping, i.e.

g = u ◦ f.

Since both f and u are one-to-one mappings, the resulting area-preserving mapping

g is also a one-to-one mapping.

Assume we have the result of the conformal mapping f , which has a range of

range(f) on the plane. We then define a pseudo-density µ0 on range(f) to be

µ0 = |Df |−1. (63)
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If a region is enlarged after the conformal mapping, |Df | will be a value greater than

unity and hence µ0 will be a value smaller than one. Numerically, µ0 can be defined

as the area of a triangle on the original surface divided by the area of the triangle

once flattened, and then µ0 is interpolated on a rectangular grid.

In order to solve the problem on a rectangular domain, µ0 is extended to a rectan-

gular region Ω0 surrounding range(f) by setting µ0 to a constant outside of range(f).

The constant can be the mean of µ0 inside range(f) or it can be several times of the

mean.

The target density map µ1 is one everywhere on another rectangular region Ω1,

such that ∫
Ω0

µ0 =
∫

Ω1

µ1 (64)

We are going to find an MP mapping function ũ from (Ω0, µ0) to (Ω1, µ1) such

that

µ0 = |Dũ|µ1 ◦ ũ (65)

And we want to find an optimal one in the L2 MKP sense, i.e. We minimize the

functional

d(µ0, µ1)
2 =

∫
‖ũ(x) − x‖2µ0(x)dx. (66)

As we have discussed in the previous section, the unique optimal solution ũ is

characterized as the gradient of a convex function w, i.e., ũ = ∇w.

Since µ1 = 1, the constraint equation (65) reduces to µ0 = |Dũ|. Considering

equation (63), we get

|Df | · |Dũ| = 1. (67)

Hence, the mapping ũ compensates exactly for the distortion in area that occurred

during conformal flattening. Further, since we minimize the functional (66) to find

the minimizing ũ, our solution differs minimally from the identity.
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The algorithm for finding the optimal mapping begins with finding an initial map-

ping u0 followed by removing the curl of u0. The details can be found in Section 3.1.

3.3 Medical Examples

Now we show some examples by using the same datasets as we used in Chapter 2.

Figure 20(a) shows the pseudo mass density µ0 for the cerebral artery example, defined

by equation 63. We get the mean of µ0 inside range(f) and multiple it by three to fill

the regions out of range(f), as shown in the light gray region surrounding the vessel.

A factor three is chosen here since it is desired to have enough space between different

branches in the constructed area-preserving mapping. The dark color represents

enlarged areas and the light color represents shrunk areas. Figure 20(b) is the initial

mapping u0 ◦ f for area correction, where f is the conformal mapping. Figure 20(c)

shows the optimal mapping ũ ◦ f . Both Figure 20(b) and (c) are painted by vessel’s

normal on the original 3D surface. Although corrected in the sense of area, surface

structures are still clearly discernible. The curl-free nature of the Monge-Kantorovich

mapping avoids distortion effects often associated with area preserving maps. The

area changing ratio in the conformal mapping can be calculated for each triangle.

Figure 21 shows the histogram of area-changing ratios in conformal mapping. It

can be clearly seen from Figure 21 that a conformal mapping can cause large area

distortions, especially for highly branched surfaces. Figure 22 shows the histogram

of area-changing ratio after area correction by using the L2 MKP. It can be clearly

seen that the area of triangles has been greatly corrected. The reason why the area

cannot be completely corrected is due to numerical errors. Remember we use the

area changing ratio of triangles to approximate |Df |−1 (and thus defines µ0), which

can cause some numerical errors. Further, there are two resamplings that will cause

more numerical errors. The first one is the resampling of µ0 on a rectangular grid for

easy computation. And the second one is to decide the final positions of vertices by
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interpolation on a deformed rectangular grid. There are also some numerical errors

which occor when solving for the L2 MKP.

(a) The pseudo density µ0. (b) The initial mapping u0 ◦ f . (c) The final mapping ũ ◦ f .

Figure 20: Area-preserving mapping for the front cerebral artery (cerebral example).

48



0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

Area changing ratio

N
u

m
b

er
 o

f 
tr

ia
n

g
le

s

Figure 21: The histogram for triangle area changing ratios in conformal mapping
(cerebral example).
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Figure 22: The histogram for triangle area changing ratios in area-preserving map-
ping (cerebral example).
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Figure 23 is the pseudo mass density defined for the coronary artery example.

The original 3D surface of the coronary artery is shown in Figure 11, whose conformal

flattened version is shown in Figure 12. Figure 24 is the final area-preserving mapping.

Figure 25 and Figure 26 show the histogram of area-changing ratios for all triangles

after conformal mapping and after area correction, respectively.

Figure 23: The pseudo mass density µ0 for the coronary example.
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Figure 24: The area-preserving flattening for the coronary example.
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Figure 25: The histogram for triangle area changing ratios in conformal mapping
(coronary example).

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

10000

12000

Area changing ratio

N
u

m
b

er
 o

f 
tr

ia
n

g
le

s

Figure 26: The histogram for triangle area changing ratios in area-preserving map-
ping (coronary example).
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Figure 27 through Figure 30 are the area corrections made for a carotid vessel as

shown in Figure 16, whose conformal flattening is shown in Figure 17. Figure 27 is

the pseudo mass density µ0. Figure 28 is the area-preserving flattening. Figure 29

and Figure 30 are the histograms of the area-changing ratios before and after area

correction, respectively.

Figure 27: The pseudo mass density µ0 for the carotid example.
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Figure 28: The area-preserving flattening for the carotid example.
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Figure 29: The histogram for triangle area changing ratios in conformal mapping
(carotid example).

54



0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

Area changing ratio

N
u

m
b

er
 o

f 
tr

ia
n

g
le

s

Figure 30: The histogram for triangle area changing ratios in area-preserving map-
ping (carotid example).

The last example is also a carotid artery dataset. Figure 31 shows the original 3D

surface, and Figure 32 shows the results from the two types of mappings. The surfaces

are shaded by the computed axial wall shear stress (WSS) in dyne/cm2. Regions

with dark blue colors (indicating low axial WSS) correlate with atherosclerosis [95].

Figure 33 is the histogram of area change in the conformal mapping and Figure 34

is the histogram of area changing after area corrections. Other geometric quantities,

such as the cross-sectional area of vessels or the level of calcification can also be

visualized in this manner.
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Figure 31: Original carotid artery shaded by wall shear stress.

left : Conformal mapping. right : Area-preserving mapping.

Figure 32: Flattened carotid artery shaded by wall shear stress.
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Figure 33: Statistics of area changing in conformal mapping for the second carotid
example.
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Figure 34: Statistics of area changing in area-preserving mapping for the second
carotid example.
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CHAPTER 4

IMAGE MORPHING BASED ON OPTIMAL MASS

TRANSPORTATION

Our interest in the optimal mass transportation problem originally arose in our work

in medical applications. As we show in Chapter 3 where it has applications on con-

structing volume or area preserving mappings. This chapter discusses the applications

of optimal mass transportation for image morphing (image interpolation in the time

domain) between a pair of related images [39]. The assumption or the constraint of

the two images is that they obey a mass preservation property. Thus, we will be

matching mass densities in the method, which may be thought of as density weighted

areas in 2D or density weighted volumes in 3D.

We now briefly outline the structure of this chapter. Subsection 4.1.1 presents a

morphing algorithm by applying the Sum of Squared Differences (SSD) as the similar-

ity measure. Subsection 4.1.2 presents another variation of the algorithm by applying

Mutual Information (MI) measure as the comparison term [102]. Subsection 4.1.3 ad-

dresses the issue of solving the problem on a doubly-connected domain. Section 4.2

discusses numerical details in the above algorithms. Finally, Section 4.3 illustrates

our algorithms with some examples.

4.1 Image Morphing Based on the L2 Monge-Kantorovich
Problem

We can directly apply the optimal MP algorithm on two related images to generate

a deformed grid, and calculate the in-between images for image morphing. However,

a mapping that maps a small high intensity region to a large low intensity region

is not desirable. It will cause undesirable fade in and fade out effects when doing
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morphing. The Monge-Kantorovich metric has penalty only on the “work” spent

on moving mass from one shape to another, without concerning the change of mass

density. Hence, we add a comparison term to the energy functional to account for

the change of intensity.

The idea is to minimize a functional of the following form over MP mappings

u : Ω0 → Ω1:

Mα[u] :=
∫
C(I0, I1 ◦ u) dx+ α

∫
‖u(x) − x‖2µ0 dx, (68)

for a fixed positive number α ∈ R. Here the first term controls the “goodness of fit”

between the (intensity) images I0 : Ω0 → R and I1 ◦ u : Ω1 → R, and the second

Monge-Kantorovich term controls the the warping of the map. The function µ0 is

the mass density of the source image defined on Ω0, which could be the same as I0

or a smoothed version of I0. It could also be any scalar field that is appropriate for

the underlying physical model. Similarly, µ1 is assumed to be the mass density of the

target image defined on Ω1. By adjusting α, we control the tradeoff between minimal

mass transportation and minimal intensity change. In Section 4.3, we will show how

to adjust this parameter semi-automatically.

The comparison term C(I0, I1 ◦u) can be any metric that measures the similarity

between the transformed source and the target image, e.g. SSD, likelihood measure-

ment, correlation ratio, normalized correlation and MI. In this section, SSD and MI

are introduced as the similarity measures.

4.1.1 The Sum of Squared Difference as Comparison

If SSD is used as the similarity measure [101], we are minimizing the following energy

functional,

Mα[u] =
∫

(I1 ◦ u− I0)
2 dx+ α

∫
‖u(x) − x‖2µ0 dx, (69)

with the MP constraint µ0 = |Du|µ1 ◦u. Similar to pure MKP, there are two steps in

solving this problem. The first step is to build an initial MP mapping u0 which is the
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same as described in the previous chapter, since the construction of u0 is independent

of the energy functional. The second step is to iteratively evolve it to minimize the

energy functional.

We now rewrite the energy functional to be the sum of two terms,

Mα = M1 + αM2 (70)

with

M1 =
∫

(I1 ◦ u− I0)
2 dx, (71)

and

M2 =
∫
‖u(x) − x‖2µ0 dx. (72)

The M2 term is exactly the L2 MKP, whose derivative has been discussed in

Section 3.1. Now we consider the derivative of the first term M1 with respect to time

t. Before taking the derivative, we play a trick on M1 by multiplying it with µ0 and

then dividing it with µ0, i.e.

M1 =
∫ [

1

µ0

(I1 ◦ u− I0)
2

]
µ0dx. (73)

The purpose for doing so is to have a term µ0dx, which make the change of variables

easier. By setting y = s−1(x) and considering equation (45): µ0(x)dx = µ0(y)dy, we

get

M1 =
∫

(I1 ◦ u(x) − I0(x))
2dx

M1 =
∫

(
1

µ0(x)
(I1 ◦ u(x) − I0(x))

2µ0(x)dx

M1 =
∫

(
1

µ0 ◦ s(y)(I1 ◦ u
0(y) − I0 ◦ s(y))2µ0(y)dy

Then we take the derivative of M1 with respect to t and get

M1t =
∫
〈− 1

µ2
0 ◦ s(y)

(I1 ◦ u0(y) − I0 ◦ s(y))2∇µ0(y) ◦ s(y)

− 2

µ0 ◦ s(y)(I1 ◦ u
0(y) − I0 ◦ s(y))∇I0 ◦ s(y), ∂s

t

∂t
〉µ0(y)dy (74)
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−M1t =
∫
〈 1

µ2
0(x)

(I1 ◦ u(x) − I0(x))
2∇µ0(x) (75)

+
2

µ0(x)
(I1 ◦ u(x) − I0(x))∇I0(x), µ0

∂s

∂t
◦ s−1(x)〉dx (76)

From M2 term, we get

−M2t =
∫
〈2(u(x) − x), µ0

∂s

∂t
◦ s−1(x)〉dx (77)

We now set

P =
1

µ2
0

(I1 ◦ u− I0)
2∇µ0 +

2

µ0

(I1 ◦ u− I0)∇I0 + 2α (u− id) (78)

where id again denotes an identical mapping. Similar to L2 MKP, we use a gradient

descent algorithm to update the mapping function. In the case of subdomains of Rd,

the following Neumann-type Poisson equation needs to be solved.

div(P ) = �w (79)

〈∇w,
n〉 = 〈P,
n〉 on ∂Ω0. (80)

From the result in the previous chapter (equation (53)), the evolution of u should be

determined by

ut = − 1

µ0

Du (P −∇w) , (81)

or

ut = − 1

µ0

Du
(
P −∇�−1div(P )

)
. (82)

providing P is defined in equation (78).

In 2D case, a Dirichlet-type boundary problem is solved,

− div(P⊥) = ∆f, (83)

f = 0 on ∂Ω0. (84)

The evolution of u can be written as,

ut =
1

µ0

Du∇⊥f. (85)
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It may be expressed in a simpler form of

ut =
1

µ0

Du∇⊥�−1div(P⊥). (86)

4.1.2 Mutual Information as Comparison

The definition of a random variable makes no mention of how random the variable

is. Entropy is a statistic that measures the amount of “disorder” of a system (or a

random variable). The more random a variable is, the more entropy it will have. In

mathematics, the entropy of a variable X is defined as [80, 87, 86],

H(X) = −EX [log(P (X))] = − ∑
xi∈ΩX

log(P (X = xi))P (X = xi). (87)

The classic entropy definition can be extended to continuous variables as differential

entropy,

h(X) = −EX [log(P (X))] = −
∫ +∞

−∞
p(x)log(p(x))dx. (88)

Entropy by itself is not sufficient to provide an absolute measure of the randomness,

instead it only provides a relative measure of the randomness. Entropy can also be

used to relate the predictability of two random variables. Conditional entropy of Y

given X can be defined as,

H(Y |X) = EX [EY [log(p(Y |X))]]. (89)

which is a measure of the randomness of Y given knowledge of X. Joint entropy of

two random variables X and Y can be defined as,

H(Y,X) = EX [EY [log(p(Y,X))]]. (90)

Joint entropy and conditional entropy have the following relation:

H(Y |X) = H(X,Y ) −H(X) (91)

X and Y are considered to be independent if

H(Y |X) = H(Y ) (92)
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which means that knowing the knowledge of X does not help to predict Y . Consid-

ering log(p(Y,X)) = log(p(Y )) + log(p(X)), we have

H(X,Y ) = H(X) +H(Y ), (93)

if X and Y are independent of each other. When Y becomes more dependent on X,

H(Y |X) is smaller. However, a small value of H(Y |X) may happen when H(Y ) is

small, although X and Y are independent. Hence, it is more reasonable to measure

the decrease of randomness of Y given the knowledge of X. The Mutual Information

(MI) between these two random variables is thus given by

I(X,Y ) = H(Y ) −H(Y |X). (94)

By equation (91), MI has a symmetric expression:

I(X,Y ) = H(Y ) −H(Y |X)

= H(Y ) +H(X) −H(X,Y )

= H(X) −H(X|Y )

= I(Y,X) (95)

When the Mutual Information is used as the similarity measure, the energy func-

tional to be minimized has the form of

Mα : = −
∫

i0×i1
pI0,I1◦u

u (i0, i1)log
pI0,I1◦u

u (i0, i1)

pI0(i0)pI1◦u
u (i1)

di0di1

+α
∫
Ω0

‖u(x) − x‖2µ0(x) dx, (96)

Again, we can rewrite the functional to be the sum of two terms as Mα = M1 + αM2

with

M1 = −
∫

i0×i1
pI0,I1◦u

u (i0, i1)log
pI0,I1◦u

u (i0, i1)

pI0(i0)pI1◦u
u (i1)

di0di1 (97)

and

M2 =
∫
‖u(x) − x‖2µ0(x)dx. (98)
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TheM1 term measures the Mutual Information between the transformed source image

and the target image. There is a minus sign in front of the MI term, since the more

similar between the two images the larger the MI measure. It should also be pointed

out that the integral is taken on the domain of i0 × i1. And the M2 term is still the

L2 MKP.

To solve for the optimal MP mapping ũ, we use the same two step approach. The

first step is to find an initial MP mapping u0, which is exactly the same as described

in Section 3.1.2. And the second step is to evolve u iteratively by decreasing the

energy functional, starting with u = u0.

Now we take the derivative of equation (97) respect to t [46],

∂M1

∂t
= − ∂

∂t

∫
i0×i1

pI0,I1◦u
u (i0, i1)log

pI0,I1◦u
u (i0, i1)

pI0(i0)pI1◦u
u (i1)

di0di1

= −
∫

i0×i1
log

pI0,I1◦u
u (i0, i1)

pI0(i0)pI1◦u
u (i1)

∂pI0,I1◦u
u (i0, i1)

∂t
di0di1

−
∫

i0×i1

∂pI0,I1◦u
u (i0, i1)

∂t
di0di1

+
∫

i0×i1

pI0,I1◦u
u (i0, i1)

p
I1◦u(i1)
u

∂pI1◦u(i1)
u

∂t
di0di1 (99)

Considering ∫
i0
pI0,I1◦u

u (i0, i1)di0 = pI1◦u
u (i1) (100)

It is easy to see that the last term equals zero,

∫
i0×i1

pI0,I1◦u
u (i0, i1)

p
I1◦u(i1)
u

∂pI1◦u(i1)
u

∂t
di0di1

=
∫

i1

pI1◦u
u (i1)

p
I1◦u(i1)
u

∂pI1◦u(i1)
u

∂t
di1

=
∂

∂t

∫
i1
pI1◦u

u (i1)di1

=
∂

∂t
(1)

= 0 (101)
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Hence equation (99) can be written as the following,

∂M1

∂t
= −

∫
i0×i1

[
1 + log

pI0,I1◦u
u (i0, i1)

pI0(i0)pI1◦u
u (i1)

]
∂pI0,I1◦u

u (i0, i1)

∂t
di0di1 (102)

The probability density function (PDF) pI0(i0), p
I1◦u
u (i1) can be estimated by one

dimensional non-parametric Parzen-Rozenblatt density models [27]:

pI0(i0) =
1

V

∫
Ω0

ψ1D(I0(x) − i0)dx, (103)

and

pI1◦u
u (i1) =

1

V

∫
Ω0

ψ1D(I1(u(x) − i1)dx. (104)

Here ψ1D is a one dimensional Gaussian window, whose standard deviation can be

chosen to be 10% of the standard deviation of i0 or i1, respectively. V is the area

of Ω0 or number of pixels in Ω0 in discrete case. From another point of view, this

Parzen-window algorithm is equal to smoothing the histogram by a Gaussian filter.

In a similar way, pI0,I1◦u
u (i0, i1) can also be estimated using a two dimensional

non-parametric Parzen-Rozenblatt density model as the follows,

pI0,I1◦u
u (i0, i1) =

1

V

∫
Ω0

ψ2D(I0(x) − i0, I1(u(x)) − i1)dx. (105)

in which ψ2D is a two dimensional window whose covariance is decided by the covari-

ance matrix of the paired random variables (i0, i1). For simplicity, we write ψ2D as ψ

in the remaining part of this section.

Finally, the most difficult part ∂
∂t
pI0,I1◦u

u (i0, i1) in equation (102) can be computed

as following. First, equation (105) can be rewritten as

pI0,I1◦u
u (i0, i1) =

1

V

∫
Ω0

1

µ0(x)
ψ(I0(x) − i0, I1(u(x) − i1))µ0(x)dx, (106)

where the same trick of multiplying and dividing µ0 has been applied. Then by setting

y = s−1(x) (s−1 is an MP mapping from Ω0 onto itself) and noticing u(x) = u0 ◦ s−1,

we get,

pI0,I1◦u
u (i0, i1) =

1

V

∫
Ω0

1

µ0 ◦ s(y)ψ(I0(s(y)) − i0, I1(u
0(y)) − i1))µ0(y)dy (107)
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The derivative of pI0,I1◦u
u (i0, i1) is given as,

∂pI0,I1◦u
u

∂t
(i0, i1) =

1

V

∫
Ω0

<
ψα(I0(s(y)) − i0, I1(u

0(y)) − i1)

µ0 ◦ s(y) ∇I0(s(y))

−ψ(I0(s(y)) − i0, I1(u
0(y)) − i1)

µ2
0 ◦ s(y)

∇µ0(s(y)),
∂s(y)

∂t
> µ0(y)dy,

(108)

in which ψα is the partial derivative of ψ with respect to its first component. Now,

we do change of variable again by substituting y with s−1(x) and get,

dpI0,I1◦u
u

dt
(i0, i1) =

1

V

∫
<
ψα(I0(x) − i0, I1(u(x)) − i1)

µ0(x)
∇I0(x)

−ψ(I0(x) − i0, I1(u(x)) − i1)

µ2
0(x)

∇µ0(x),
∂s

∂t
◦ s−1(x) > µ0(x)dx

(109)

Hence, the derivative of M1 with respect to t is given by,

∂M1

∂t
= −

∫
i0×i1

∫
Ω0

<
1

V

[
1 + log

pI0,I1◦u
u (i0, i1)

pI0(i0)pI1◦u
u (i1)

]
[
ψα(I0(x) − i0, I1(u(x)) − i1)

µ0(x)
∇I0(x) − ψ(I0(x) − i0, I1(u(x)) − i1)

µ2
0(x)

∇µ0(x)

]
,

∂s

∂t
◦ s−1(x) > µ0(x)dxdi0di1 (110)

Equation (110) is a quadruple integral, which could be rewritten in a concise format

by using convolution,

∂M1

∂t
=

∫
Ω0

< − 1

V
[(1 + log

pI0,I1◦u
u

pI0pI1◦u ) ∗ ψα(I0(x), I1 ◦ u(x))∇I0(x)
µ0(x)

−(1 + log
pI0,I1◦u

u

pI0pI1◦u ) ∗ ψ(I0(x), I1 ◦ u(x))∇µ0(x)

µ2
0(x)

],
∂s

∂t
◦ s−1(x) > µ0dx(111)

Now it looks like a double integral on Ω0 domain, and could be combined with the

derivative from M2 part. According to previous discussion for SSD as similarity

measure in Subsection 4.1.1, P can be chosen as

P = − 1

V
[(1 + log

pI0,I1◦u
u

pI0pI1◦u ) ∗ ψα(I0(x), I1 ◦ u(x))∇I0(x)
µ0(x)

−(1 + log
pI0,I1◦u

u

pI0pI1◦u ) ∗ ψ(I0(x), I1 ◦ u(x))∇µ0(x)

µ2
0(x)

] + 2α(u− id) (112)

66



And as before, the evolution of u is determined by

ut = − 1

µ0

Du
(
P −∇�−1div(P )

)
. (113)

In 2D case, the evolution of u can be simplified as,

ut =
1

µ0

Du∇⊥�−1div(P⊥). (114)

4.1.3 Image Morphing on a Doubly-connected Domain

The algorithms presented in the previous subsections are only capable of finding an

optimal warping function between two single-connected domains, or more specifically

two rectangular regions. Our assumption is that the mass is preserved on the whole

domain. However, this is not always the case. Sometimes, the mass-preserving as-

sumption is valid only between part of the two images. For example, we have two CT

images from the same position of a heart. The first is a diastolic phase image and the

other is a systolic phase image. During the cardiac cycle, the MP assumption is only

valid on myocardium but invalid on ventricles since the volume of the blood varies

from time to time. We may do image segmentation to separate the myocardium from

the rest part of the image, and then find a warping function between them using MP

assumption. Here we need to deal with the warping between two multi-connected

domains. In this subsection, we will present an algorithm based on a Finite Element

Method (FEM) to solve for the optimal MP mapping for a pair of doubly-connected

domains, i.e. a pair of images with a hole in each of them.

In the approach for finding a MP mapping on two rectangular regions, there

are two steps. The first step is to find an initial MP mapping u0 from (Ω0, µ0) to

(Ω1, µ1), and the second step is to update this initial mapping iteratively to minimize

an energy functional. For doubly-connected domains, once an initial MP mapping

u0 is found, the same updating algorithm (the second step) can be used to find the

optimal warping function. Hence, the remain task is how to construct an initial MP
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mapping that preserves mass between two doubly-connected domains. We cannot

use the approach of solving a 1D MKP along one axis followed by a family of 1D

MKPs in the other axis, as we did for rectangular domains. In this subsection, we

present an algorithm for constructing an initial MP mapping u0 by using the harmonic

parametrization. The initial MP mapping u0 is constructed by finding a 1D MKP

along one harmonic coordinates followed by a family of 1D MKPs along the other

harmonic coordinate.

• Harmonic Parametrization

In Chapter 2, we have presented an algorithm for flattening a multi-connected

domain onto a plane with the angle-preserving property. The same technique can be

applied here for generating a parametrization for a doubly-connected domain. The

only difference is that there is no need for finding a “branch point”. Here we will

only sketch the steps for construction an analytic function f c = uc + ivc for harmonic

parametrization. Similar techniques has been applied for measuring tissue thick-

ness [94]. For more details and numerical implementations, please read Section 2.5.

Assume we have a triangulated doubly-connected domain Σ, which has an inner

boundary of σ0 and an outer boundary of σ1 as shown in Figure 35.

First, we want to construct uc, which is the real part of f . It is assumed that u

satisfies

�uc = 0

with uc(σ0) = 0 and uc(σ1) = 1 (115)

The Laplace equation can be solved using an FEM presented in Section 2.5. And a

cut C is then defined from σ0 to σ1 from an arbitrary point x0 along the gradient of

uc to another point x1 on σ1. The cut C and two original boundaries σ0 and σ1 form

an oriented boundary B for the cut surface,

B : x0
σ0→ x0

C→ x1
σ1→ x1

−C→ x0
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Figure 35: A doubly-connected domain Σ with two boundaries.

The boundary condition of the imaginary part vc can be decided by equation (14),

vc(ζ) =
∫ ζ

ζ0

∂v

∂s
ds =

∫ ζ

ζ0

∂a

∂n
ds

according to the Cauchy-Riemann equations. And vc inside the cut surface is given

by the solution of �vc = 0.

Once the analytic function f c = uc + ivc is constructed, a harmonic coordinate

system can be defined by using uc as one axis and vc as the other axis. Figure 36

shows such a parametrization on a heart CT image without involving the ventricle

area.

• Finding the Initial Mapping u0

By doing the harmonic parametrization, the first doubly-connected domain (Ω0, µ0)

is cut and mapped onto a rectangle region (Ωc
0, µ

c
0) via a conformal mapping f c

0 =

uc
0 + ivc

0. µ
c
0 is given by

µc
0 = |Df c

0 |−1µ0, (116)

which guarantees the mapping from Ω0 to Ωc
0 is not only angle-preserving, but
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Figure 36: Harmonic parametrization of a heart image

also mass-preserving (which is not area-preserving). Similarly, the second doubly-

connected domain (Ω1, µ1) is mapped onto another rectangle region (Ωc
1, µ

c
1) via

f c
1 = uc

1 + ivc
1 . And µc

1 is given by

µc
1 = |Df c

1 |−1µ1. (117)

Then the remain task is to find an MP mapping from (Ωc
0, µ

c
0) to (Ωc

1, µ
c
1). Since

Ω0 and Ω1 are rectangles now, we can use the algorithm presented in Section 3.1 to

find an MP mapping uini between them. The whole process can be illustrated by

Figure 37.
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� � �(Ω0, µ0) (Ωc
0, µ

c
0) (Ωc

1, µ
c
1) (Ω1, µ1)

fc
0 = uc

0 + ivc
0 fc

1 = uc
1 + ivc

1uini

Figure 37: The diagram of constructing u0 between two doubly-connected domains.

And the resulting initial mapping u0 is the composition f c
0 , uini and (f c

1)
−1 such

that

u0 = (f c
1)

−1 ◦ uini ◦ f c
0 . (118)

Since f c
0 , f

c
1 and uini are all MP mapping, u0 is also an MP mapping, due to the facts

that the composition of two MP mappings is an MP mapping and the inverse of an

MP mapping is also an MP mapping.

• Finding the minimizer ũ

The equation for evolution of u is the same as for rectangular regions. An FEM is

used to solve the Poisson equation on an irregular domain. More numerical details

will be provided in the next section.

4.2 Numerical Implementation

In this section, we will discuss some numerical details in solving for the optimal

mass transportation problem. For 2D rectangular regions, a finite difference method

is applied. And for doubly-connected domains, a finite element based method is

applied.
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4.2.1 Rectangular Regions

In order to solve for the Poisson equation (83) on a rectangular region, we use Matlab

solver poicalc, which is a Fourier transform based algorithm. The solution is obtained

by sine transforms in one direction and tridiagonal matrix solution in the other di-

rection. For the evolution equation of u (equation (86)), we use an upwind scheme

for computing Du and standard centered differences for the other spatial derivatives.

The time step dt can be chosen to be less than

min
x,i

∣∣∣∣∣ 1

µ0

(∇⊥�−1div(P⊥))i

∣∣∣∣∣
−1

.

Once we have numerically solved the right hand side of equation (86), we can use the

result to update u. The optimal map is obtained as t → ∞. In practice, we iterate

until convergence with respect to a specified tolerance.

The complexity of the method during each iteration scales is Nlog2N , where N is

the number of pixels in the image, if fast sine transforms are used.

4.2.2 Doubly-connected Regions

We use an FEM method to solve for the Poisson equation (83) on an triangulated

irregular region PL(Σ) with an inner boundary σ0 and an outer boundary σ1. We

define a basis {φV } on the domain as we did in Section 2.5.

According to the FEM theory, f should satisfy

∫ ∫
�f · v =

∫ ∫
−div(P⊥) · v (119)

for any testing function v satisfying v = 0 on all boundaries. For convenience, basis

functions φV are used as testing function, for V ∈ Σ\(σ0 ∪ σ1). By doing integration

by parts, we have, ∫ ∫
∇f · ∇v =

∫ ∫
div(P⊥) · v. (120)

Considering the zero boundary condition of f , f can be approximated as

f =
∑

W∈Σ\(σ0∪σ1)

fWφW . (121)
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Then equation (120) can be written as

∑
W∈Σ\(σ0∪σ1)

DV WfW =
∑

W∈Σ\(σ0∪σ1)

QV W . (122)

Where DV W is decided by equation (24). According to the second order approxima-

tion [90], when V = W , QV W can be decided by

QWW =
1

6
div(P⊥

W )
∑

i

Ai, (123)

where A is the area of a triangle, and the sum is over all triangles containing W .

When V and W are neighbors, QV W is given by

QV W =
1

12
div(P⊥

V )(A1 + A2), (124)

where A1 and A2 are the area of two triangles containing both V and W . QV W = 0

if V and W are not neighbors.

In the evolution equation of u (equation (86)), we use an upwind scheme for

computing Du. For all other derivatives, we use a least mean square method for

deciding the spacial derivatives. For example, assume that a given point (x0, y0) has

N neighbors (xi, yi), i = 1...N , and a function f is defined such that f(xi, yi) = fi for

i = 0...N . It is easy to see that the derivatives of f should satisfy


f1 − f0

...

fN − f0




=




x1 − x0, y1 − y0

...

xN − x0, yN − y0





 fx

fy


 (125)

According to the least square method, the derivatives of f are given by


 fx

fy


 = (ATA)−1AT




f1 − f0

...

fN − f0



, (126)

where A is the position difference matrix given by

A =




x1 − x0, y1 − y0

...

xN − x0, yN − y0




(127)
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4.3 Examples

We now demonstrate our image interpolation method with some examples. These

examples can be divided into three categories: synthetic imagery, natural (color)

imagery, and medical imagery. In each example, we have two given images. One

of them is used as the starting image and the other as the ending image. Then an

optimal MP mapping minimizing the defined energy functional is found using the

gradient descent algorithm.

Once the optimal mapping ũ is solved, the remaining task for the image morphing

problem is to generate a sequence of in-between images I(t), such that I(0) = I0

and I(1) = I1. It is assumed that when the time t varies from 0 to 1, the starting

image I0 continuously changes to the ending image I1. We further require that the

same transition rate is applied to all points on the in-between images. Hence image

warping map at any time t (t ∈ [0, 1]) is simply given by

X t(x) = (1 − t)x+ t ũ(x), (128)

The corresponding cross-dissolved image at time t is given by

I t(X t(x)) = (1 − t) I0(x) + t I1(u(x)). (129)

I0 and I1 could also be color images and then equation (129) is applied to three color

components separately.

The warp function (128) guarantees the continuous transformation of the source

image to target image, and t is the transition rate. One can always guarantee that

the intermediate frames are mass-preserving simply by shading the pixels in the in-

between images according to |D(X t)−1| µ0 ◦ (X t)−1.

4.3.1 Circle to triangle example

The first example is based on a pair of synthetic images. The first image is a solid

white circle, as shown in Figure 38 (a). And the second image is a solid triangle, as
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shown in Figure 38 (f). Both of them are on a black background. Figure 38 (b) to (e)

show the in-between images from (a) to (f) at pseudo time t = 0.2, 0.4, 0.6 and 0.8,

respectively. The energy functional used is a pure L2 MKP, i.e. no comparison term

added.

(a) The starting image at t=0. (b) In-between image at t=0.2.

(c) In-between image at t=0.4. (d) In-between image at t=0.6.

(e) In-between image at t=0.8. (f) The ending image at t=1.

Figure 38: Image morphing from a circle to a triangle
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4.3.2 Cloud example

The second example is an image morphing example between two cloud images. Fig-

ures 39 and 44 are the starting and ending images, respectively. Figures 40 to 43 are

generated in-between images by using SSD as the comparison term. Figure 45 shows

the optimal deformed grid between the two images.

Figure 39: The starting cloud image
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Figure 40: In-between cloud image at t=0.2.

Figure 41: In-between cloud image at t=0.4.
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Figure 42: In-between cloud image at t=0.6.

Figure 43: In-between cloud image at t=0.8.
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Figure 44: The ending cloud image.

Figure 45: The deformed grid in the cloud example.
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4.3.3 Flame example

The third example is the image morphing between two flame images. The starting

image (Figure 46(a)) and the ending image (Figure 46(b)) are from a flame video

sequence in the Artbeats Digital Film Library (www.artbeats.com). The two images

are the 24th and the 29th frames of the video, respectively. Considering the frame rate

of 30fps, there is about 0.2 second between the two frames in the original sequence.

We will use this example to show the effect of comparison term and how to choose

the parameter α which control the trade off between the intensity disparity and the

moving distance.

(a) starting image (b) ending image

Figure 46: Two given flame images
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Figure 47 shows the result of implementing pure L2 MKP without a comparison

term. Figures 48 and 49 are the results of SSD and MI as the comparison term,

respectively. All the figures are rotated by 90 degrees counter-clockwise. Actually,

the result from pure L2 MKP is used as the initial mapping u0 for Figures 48 and 49.

It has been pointed out before that adding a comparison term in the energy functional

leads to some curl remaining in the final deformed grid. If the algorithm starts with

an initial mapping as constructed by equations (35) through (37), the remaining

curl is mostly in the “bright” region of the image and it will cause unnatural effects

(including spacial folding) when we generate in-between images. By starting with a

curl-free initial mapping, the algorithm makes corrections mainly close to the edges

between high intensity regions and low intensity regions. Thus the remaining curl is

mostly in the “dark” region of the image and it is unnoticeable (since a small high

intensity region is mapped to a large low intensity region).
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(t=0, 0.2, 0.4, 0.6, 0.8 and 1)

Figure 47: Interpolation of flame images without comparison term.
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(t=0, 0.2, 0.4, 0.6, 0.8 and 1)

Figure 48: Interpolation of flame images using SSD as the comparison term.
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(t=0, 0.2, 0.4, 0.6, 0.8 and 1)

Figure 49: Interpolation of flame images using MI as the comparison term.
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Figure 50 shows the comparison of three different methods at time t = 0.5. In

pure L2 MKP algorithm (Figure 50(a)), some fade in and fade out effects can be seen.

These undesired effects are due to the mapping of some high intensity regions on low

intensity regions or vice versa. By adding a SSD comparison term , these undesired

effects have been reduced as seen in Figure 50(b), or in Figure 50(c), when MI is

used as the comparison term. Basically, the effects of SSD and MI as the comparison

terms are very similar, since both of the two images come from the same imaging

modality. The strength of SSD is that it can reduce the fade in and fade out effects

a little better than MI. However, it also causes some broken effects at some edges

between the bright and dark regions, due to the high value of curl remaining in these

regions. Hence, there is still a trade off between reducing fading effects and reducing

curl. These effects are more obvious if seen in dynamic. Figures 51 to 53 show the

deformed grid in these three cases.

(a) pure L2 MKP (b) SSD (c) MI

Figure 50: Comparison of pure L2 MKP, SSD, and MI at t = 0.5.
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Figure 51: The deformed grid in the flame example without comparison term.

Figure 52: The deformed grid in the flame example with SSD similarity measure.
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Figure 53: The deformed grid in the flame example with MI similarity measure.
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Finally in this example, we will discuss how to choose the parameter α that

controls the trade-off between preserving the intensity and minimizing mass moving.

Generally speaking, there are no specific rules for choosing α, and the best way is to

try different parameters and see which works the best. However, we find that it may

be useful to plot the initial “forces” from the two terms separately and make them

comparable before evolving u. For example, in the case of SSD as the comparison

term, we may define P1 as

P1 =
1

µ2
0

(I1 ◦ u− I0)
2∇µ0 +

2

µ0

(I1 ◦ u− I0)∇I0,

and P2 as

P2 = 2α (u− id).

Using the method presented in this chapter, f1 is solved as:

f1 = − 1

µ0

∇⊥�−1div(P⊥
1 ),

and f2 is solved as:

f2 = − 1

µ0

∇⊥�−1div(P⊥
2 ).

f1+f2 is the velocity vector field used to update u. The magnitude of f1 is plotted

as Figure 54(a), and its histogram is shown in Figure 54(b). We can see for most

pixels |f1| is below 100. If α is set to be 15, similar graph can be plotted for |f2| as

shown in Figure 54(c) and (d). From Figure 54(b) and (d), it is clear that by setting

α = 15, f1 and f2 has the same order of magnitude.
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(a) “Force” due to the SSD term. (b) Histogram of (a).
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(c) “Force” due to the distance penalty term. (d) Histogram of (c).

Figure 54: Decision of α.

4.3.4 The first brain example

This example is an image morphing between two T1 MRI brain images taken from a

patient at the same position but at different times. Figure 55 is taken before the open-

head surgery and Figure 60 is taken during the surgery after opening the head. Due

to the pressure change, the ventricles in the brain are compressed. The two arrows

in Figure 55 show the place where the brain has the largest deformation. Figures 56

to 59 show the synthetic process of the deformation. Figure 61 shows the deformed

grid by using SSD as the similarity measure.
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Figure 55: The starting T1 brain image (t = 0).

Figure 56: Interpolated T1 brain image (t = 0.2).
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Figure 57: Interpolated T1 brain image (t = 0.4).

Figure 58: Interpolated T1 brain image (t = 0.6).
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Figure 59: Interpolated T1 brain image (t = 0.8).

Figure 60: The ending T1 brain image (t = 1).
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Figure 61: The deformed grid in the brain example.
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4.3.5 The second brain example

This example is similar to the previous one. Figure 62 is a pre-operative T1 brain

MRI image, and Figure 67 is another T1 brain MRI image from the same patient

during surgery, after craniotomy and opening of the dura. Both of the two images are

from http:www.sop.inria.fr/epidaure/personnel/Olivier.Clatz. This example is similar

to the previous one. The only difference is that the skull is preserved in this example.

We first did segmentation on the images to separate the brain tissue from the skull.

Then we do image morphings on the brain and skull individually. Finally the two

sequences are put together as shown in Figures 63 to 66.

Figure 62: Second brain example (t = 0).
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Figure 63: Second brain example (t = 0.2).

Figure 64: Second brain example (t = 0.4).
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Figure 65: Second brain example (t = 0.6).

Figure 66: Second brain example (t = 0.8).
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Figure 67: Second brain example (t = 1.0).

4.3.6 Heart example

This last example is for image morphing on a doubly-connected domain. Two CT

images of a heart at the same position are given. Figure 71 is a diastolic image and

Figure 76 is a systolic image. The black regions in Figures 68 and 69 define two

multi-connected domains, corresponding to the heart muscle and other tissues that

satisfy the mass-preserving assumption. Harmonic parametrization is done on each

domain (as shown in Figure 36 for the diastolic image), and an FEM-based L2 MKP

is solved between the two domains to find the correspondence. Figures 70 shows the

deformed grid. Figures 72 to 75 show the in-between images generated.
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Figure 68: The mask for starting heart image

Figure 69: The mask for ending heart image
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Figure 70: The deformed grid on the systolic heart image.

Figure 71: The starting heart image (t = 0)
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Figure 72: In-between heart image (t = 0.2)

Figure 73: In-between heart image (t = 0.4)
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Figure 74: In-between heart image (t = 0.6)

Figure 75: In-between heart image (t = 0.8)
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Figure 76: The ending heart image (t = 1.0)
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

Conformal mappings are a type of angle preserving mapping. They are often de-

scribed as being similarities in the small, since the elements of the first fundamental

form (E,F,G) are transformed as (ρE, ρF, ρG) with ρ depending on the point on

the surface. When a conformal mapping is applied onto a brain surface, which topo-

logically is a genus zero surface without any holes or self intersections, the brain

surface can be mapped conformally onto a sphere and any local portion thereof onto

a disc [3]. When a conformal mapping is applied onto a colon surface, which is a

doubly connected domain or a half surface of a genus one surface, the colon surface

can be mapped conformally onto a rectangle region [36]. In this thesis, a conformal

mapping approach for flattening multi-branched medical surfaces has been presented.

A multi-branched open-ended surface, for example a vessel, can be flattened onto a

polygonal region while preserving angles on the surface except for a few branch-points.

The flattening function is obtained as the solution of two second-order elliptic partial

differential equations on the surface to be flattened. For triangulated surfaces, there

exists a powerful and reliable finite element approach to numerically approximate

the flattening function. We have applied this algorithm on several vessel datasets

coming from different parts of the body. We have also discussed the construction

of the harmonic skeleton and some useful applications of this method. The applica-

tions include the extraction of central line and camera directions for fly-throughs, and

cross-sectional area measurement. Conformal mapping also provides a useful tool for

parametrization as we demonstrated in Chapter 4 when finding the correspondence

between two doubly-connected regions.
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Optimal mass transportation is a well-studied theory in many fields and it has

recently been employed within the context of imaging applications, such as content-

based image retrieval [75, 76]. In this thesis, we applied it on the result of conformal

mapping to restore the area with minimum distortion of the shape, in the L2 mass

moving sense. The algorithm defines a pseudo-mass density µ0 according to the area

distortion in the conformal mapping and then flattens it to unity. We have also

applied the Monge-Kantorovich flow on the problem of image morphing by adding a

comparison term. This technique can also be applied to the problem of medical image

registration, if the underlining physics model satisfies the mass preserving assumption.

It will be more accurate if we can specify corresponding landmarks. In Chapter 4 we

have solved the L2 MKP on doubly-connected domains, in which the inner boundary

could be regarded as a single landmark if the radius of the boundary is small enough.

This technique can also be extended into multi-connected domains (corresponding to

multiple landmarks). As we have seen the main issue of extending the algorithm from

a single-connected domain into a doubly-connected domain is how to define an initial

MP mapping u0. The same problem arises here in finding an optimal MP mapping

on a multi-connected domain.

For example, assume we have two multi-connected domains (Ω0, µ0) and (Ω1, µ1)

with equal total mass. We may further assume there are two holes on each domain,

without loss of generality. Ω0 is divided into three regions, which are named P , Q

and R, respectively. P and Q share only one common point x0. Similarly, Ω1 is also

divided into three regions named as P ′, Q′ and R′, respectively. And P ′ and Q′ have

only one common point x1. It is further required that region P and P ′ have the same

total amount of mass, and the same rule applies to Q and Q′. Then we can define

initial MP mappings u0
P from P to P ′, u0

Q from Q to Q′, and u0
R from R to R′. u0

P , u0
Q

and u0
R are all MP mappings from a double connected domain onto another, and can

be constructed using the harmonic parametrization algorithm previously presented.
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Figure 77: Two multi-connected domains

Then the combination of these three mappings is an initial MP mapping from Ω0 to

Ω1.

In solving the MKP, we use a gradient descent algorithm, which involves solving

a Poisson equation in every iteration. This is a global approach, which is very time

consuming. We may use some local approaches to replace it. For example, we may

use a local flow in the form of

ut = − 1

µ0

Du∇⊥div(u⊥), (130)

in the R2 case.

The L2 mass moving penalty implemented in this thesis sometimes is too severe,

in that it tends to favor change in density over moving mass around. In fact, this is

the main reason for the fading effects we have seen in image morphing applications.

L1 type mass moving penalty is much less severe for large movement. However, the

problem for L1 MKP is that it can produce non-smooth results. In our future research,

we may use a L1+ε penalty instead, with ε being a value between 0 and 1. That is,
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we can minimize the following energy functional,

M1+ε =
∫
|u− x|1+εµ0 (131)

with the MP constraint.

The MP constraint is general and is not necessarily constricted to MKP. For

example, it can be combined with the concept of harmonic mapping to obtain a new

approach to MP diffeomorphisms. Assume we have two domains (Ω0, µ0) and (Ω1, µ1)

as previously defined, with µ0 and µ1 being positive densities. We can consider the

minimization of the Dirichlet integral over all MP maps

min
u∈MP

∫
Ω0

‖Du‖2. (132)

A minimizer (when existing) is called an MP mapping of minimal distortion [4].

Thus the Monge-Kantorovich flow and the MP constraint have a lot of possible

research topics related to them. We intend to explore in this area in the next few

years.
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