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Abstract

Streaming applications such as video-based surveil-
lance, habitat monitoring, and emergency response are
good candidates for executing on high-performance com-
puting (HPC) resources, due to their high computation and
communication needs. Such an application can be repre-
sented as a coarse-grain dataflow graph, each node cor-
responding to a stage of the pipeline of transformations
that may be applied to the data as it continuously streams
through. Mapping such applications to HPC resources
has to be sensitive to the computation and communication
needs of each stage of the pipeline to ensure QoS criteria
such as latency and throughput. Due to the dynamic na-
ture of such applications, they are ideal candidates for us-
ing ambient HPC resources made available via the grid.
Since grid has evolved out of traditional high-performance
computing, the tools available, especially for scheduling,
tend to be more appropriate for batch-oriented applica-
tions. We have developed a scheduler, called Streamline,
that takes into account dynamic nature of the grid and runs
periodically to adapt scheduling decisions using applica-
tion requirements (per-stage computation and communica-
tion needs), application constraints (such as co-location of
stages on the same node), and current resource availability.
The scheduler is designed to be integrated with the exist-
ing grid framework using Globus Toolkit. The performance
of Streamline is compared with an Optimal placement for
small number of resources and approximation algorithms
using Simulated Annealing for large resources and dataflow
graphs. We have also compared Streamline with a baseline
grid scheduler, E-Condor, built on top of Condor for stream-
ing applications. For kernels of such streaming applica-
tions, we show that our heuristic performs close to Optimal,
and can be nearly an order of magnitude better than the E-
Condor under non-uniform load conditions. We considered
two Simulated Annealing algorithms with different execu-
tion times, and show that neighbor-selection and annealing
schedule have a relatively larger impact on the performance
of Simulated Annealing for communication-intensive ker-

nels than for computation intensive kernels. We have also
conducted scalability studies and show that our scheduler
is more effective than E-Condor, and performs close to Sim-
ulated Annealing algorithms, with smaller scheduling time,
in allocating resources for a large streaming application.

1 Introduction

Advances in sensing capabilities, and computing and
communication infrastructures are paving the way for new
and demanding applications. Video-based surveillance,
emergency response, disaster recovery, habitat monitor-
ing, and telepresence are all examples of such applications.
These applications in their full form are capable of stress-
ing the available computing and communication infrastruc-
tures to their limits. Streaming applications, as we refer to
such applications in this paper, have the following charac-
teristics: (1) they are continuous in nature, (2) they require
efficient transport of data from/to distributed sources/sinks,
and (3) they require the efficient use of high-performance
computing resources to carry out compute-intensive tasks
in a timely manner.

The focus of this work is in addressing the third com-
ponent of the above characteristics, namely, the use of
high-performance computing (HPC) resources to carry out
compute-intensive tasks. Consider for example, a video-
based surveillance application. The compute intensive part
of such an application may consist of analyzing multiple
camera feeds from a region to extract higher level infor-
mation such as “motion”, “presence or absence of a hu-
man face”, or “presence or absence of any kind of suspi-
cious activity”. Such an application can be represented as
a coarse-grain dataflow graph, wherein the nodes represent
increasing sophistication of computations that may need to
be performed on the data stream to facilitate the extraction
of high-level information.

At some level such coarse-grain dataflow graphs resem-
ble task-graphs that have been the focus of multiprocessor
scheduling work from the 70’s [2, 11, 23, 17, 24, 16, 20, 26].



However, there are several crucial differences. In multipro-
cessor scheduling, a task-graph (a directed acyclic graph)
is used as an ordering mechanism to show the dependen-
cies among the individual tasks of a parallel computation.
These dependencies are respected and exploited in arriv-
ing at a mapping heuristic (since the scheduling problem
is known to be NP-Complete) that maximizes the utiliza-
tion of the computational resources and reduces the com-
pletion time of the application. The coarse-grain dataflow
graph of a streaming application, on the other hand, is a
representation of the processing that is carried out on the
data during its passage through the pipeline of stages. In
the steady state, all the stages of the pipeline are working
on different snapshots of the stream data. For example in
a video-based surveillance application, when the n-th stage
is working on the (hitherto transformed results of the) i*"
frame of video, the first stage of the pipeline is working on
the (n + 4)*" frame. So the scheduling of such streaming
applications is not an ordering issue; rather, it is a matter of
mapping the different stages of the pipeline to the available
resources respecting the computation and communication
requirements of each stage with a view to optimizing the
latency and throughput metrics of the entire pipeline.

An interesting aspect of this emerging class of streaming
applications is that they are ubiquitous and dynamic. Thus,
HPC resources are needed in a distributed manner to ad-
dress the dynamic needs of an application. For example,
in a video-based surveillance application the video feeds
from the northwest corner of a campus may need to be an-
alyzed due to some suspicious activity detected there. Grid
computing offers the ability to harness the ambient HPC
resources for a compute intensive problem. Grid comput-
ing has its roots in traditional high-performance comput-
ing, with initial efforts focused on scientific and engineer-
ing applications. While there have been efforts to expand
the reach of the grid to support interactive [25] and stream-
ing applications [9], the scheduling infrastructure available
in the grid is largely geared to support batch-oriented appli-
cations.

In this paper, we study the problem of scheduling stream-
ing applications on the grid. The scheduling heuristic,
called Streamline, is designed specifically to adapt to the dy-
namic nature of grid environment and varying demands of a
streaming application. It runs periodically and takes into ac-
count (a) computation and communication requirements of
the various stages of the dataflow graph, (b) any application-
specified constraints, and (c) the current resource (process-
ing and bandwidth) availability. The output of the schedul-
ing heuristic is a placement of the stages of the pipeline
on the available HPC resources such that the latency and
throughput of the application are optimized. Streamline is
evaluated as a placement algorithm to measure the quality
of the generated solutions so that proper dynamic task mi-

gration decisions can be taken in a grid deployment without
degrading the overall performance of a streaming applica-
tion.

We have designed our scheduling heuristic over the ex-
isting grid framework, using Globus Toolkit [14]. In our
experimental study, we compare Streamline with the Op-
timal placement for small dataflow graphs and with Sim-
ulated Annealing algorithms otherwise. We also analyze
how existing batch schedulers in grid can be enhanced to
support streaming applications using Condor[4] as an ex-
ample. Condor, a well studied resource allocator for grid,
uses DAGMan[15] for task graph based applications. DAG-
Man is designed for batch jobs with control-flow dependen-
cies and ensures that jobs are submitted in proper order,
whereas different stages of a streaming application work
concurrently on a snapshot of data. Thus, we have extended
Condor to meet the particular streaming requirements, re-
sulting in a baseline scheduler called E-Condor. We com-
pare the performance of Streamline with Optimal, Simu-
lated Annealing, and E-Condor for “kernels” of streaming
applications. The results show that our heuristic performs
close to Optiman and Simulated Annealing, and is better
than E-Condor by nearly an order of magnitude when there
is non-uniform CPU resource availability, and by a factor
of four when there is non-uniform communication resource
availability. We have considered two variants of Simu-
lated Annealing algorithm with different execution times
and observe that neighbor-selection and annealing sched-
ule in an Simulated Annealing algorithm have a relatively
larger impact on the performance of generated schedule for
communication-intensive kernels than for computation in-
tensive kernels. We have also conducted scalability studies
and demonstate the scalability of our heuristic for handling
large-scale streaming applications. The results show that
our scheduler is more effective than E-Condor in handling
large dataflow graphs, and performs close to Simulated An-
nealing algorithms, with smaller scheduling time.

The rest of the paper is organized as follows. In Section
2, we define the scheduling problem. Section 3 describes
our Streamline scheduling heuristic. We present the overall
system architecture that integrates Streamline into the grid
computing framework in Section 4. The experimental setup,
performance evaluation and results are presented in Section
5. We put our work in the context of other related works in
Section 6 and present our conclusions in Section 7.

2 Problem Definition

A scheduling system model in the grid environment con-
sists of an application, available resources, application spe-
cific constraints, resource specific constraints, and a perfor-
mance criteria for scheduling. The streaming application
is represented by a coarse-grain directed acyclic dataflow



graph, G = (V, E), where V is the set of v stages and E is the
set of € edges. Each node s; of the dataflow graph represents
a continuously running application stage with the direction
of dataflow denoted by the edges. In our application model,
each node of the dataflow graph continuously receives data
items from the preceding stage, performs computation, and
sends data item to the subsequent stages. Each edge (i,))
€ E represents the direction of dataflow such that stage s;
waits for data to arrive from stage s; before execution. Ecy-
cleis av x 1 matrix of computation data, where ecycle; is
an estimate of the average amount of CPU cycles required
by stage s; for each streaming data item produced. Ecomm
is a vV x vV matrix of communication, where ecomm_; is
the amount of data required to be transmitted from stage
s; to stage s;. These processing and communication esti-
mates can be provided by the application for each stage of
the dataflow graph. Alternatively, these estimates can be
derived by application profiling as we have done in [28].

Static information (such as machine architecture, CPU
speed, amount of memory, and hardware configuration)
about the available resources is obtained by querying the
information service [12]. Dynamic information (such as es-
timate of available processing cycles and end to end net-
work bandwidth) are obtained from Network Weather Ser-
vice (NWS) [29]. Our target computing environment con-
sists of a set Q of g resources. B is a  x  communication
matrix in which b; ; gives an estimate of available network
bandwidth between node n; and node n;. Similarly, Proc
is a q x 1 computation matrix in which proc; gives an esti-
mate of available CPU cycles on node n;.

Before scheduling, each stage in the dataflow graph is
labeled with an average execution cost (w;), and each edge
is labeled with an average data transmission cost (¢; ;). The
average execution cost (w;) of stage s; is measured as a
ratio of the required average CPU cycles ecycle; and av-
erage available CPU cycles across the available resources.
The average data transmission cost for edge (i,j), (¢; ;). is
defined as the ratio of the estimated data transmission re-
quired, ecomm; ;, and the average available data transfer
across all resource pairs. The scheduler also takes as input
a set of application constraints and a set of constraints for
available resources. The resource specific constraints are
gathered by querying the information service [12]. Each of
the constraints specify various site specific policies that may
affect the resources allocated to a streaming application.

In a dataflow graph, a stage without any parent is called
an input stage and a stage without any child is called an out-
put stage. After all stages in a dataflow graph are scheduled,
the throughput of the application is the actual rate at which
data items are produced by the output stage s,,¢. The ob-
jective function of the scheduling problem is to determine
the assignments of a streaming application dataflow graph
to available resources such that the resource and applica-

tion specific constraints are satisfied and throughput is max-
imized.

3 The Streamline Scheduler

We have developed a grid scheduling algorithm, called
Streamline, for placement of coarse-grain dataflow graph
of a streaming application using available grid resources.
Streamline makes the scheduling decision taking into con-
sideration static information of available resources, dy-
namic information of available processing and communi-
cation capabilities in the target environment and different
application and resource specific policies. The schedul-
ing heuristic expects to maximize throughput of the appli-
cation by assigning the best resources to the most needy
stage in terms of computation and communication require-
ments. Streamline works in three phases: stage prioriti-
zation phase where the stages of the dataflow graphs are
prioritized depending on their computation and communi-
cation criteria, resource filtering phase for filtering avail-
able resources based on application and resource specific
policies, resource selection phase for selecting the “best”
resource that maximizes the throughput of the entire graph.
Streamline belongs to the general class of list scheduling
algorithms [2, 11, 17, 23, 18]. We differ from traditional
algorithms in (i) stage selection where we take computa-
tion and communication into account, (ii) estimating the re-
quired computation and communication cost for a stage in
the dataflow graph, (iii) taking into account the resource and
application specific policies, and (iv) taking into consider-
ation the dynamic information about available processing
and communication capabilities in the target environment.

3.1 Stage Prioritization Phase

This phase considers the computation and communica-
tion cost of the dataflow graph in assigning priorities to dif-
ferent stages. The computation and communication inten-
sive tasks get higher priorities over the other tasks. Also the
remaining execution time to process a particular data item
by all subsequent stages is taken into account where a stage
with the highest cost path to the output stage gets priority.

Two terms rank and blevel are introduced here. Rank cal-
culates the average computation and communication cost of
a stage and blevel estimates the overall remaining execution
time of a data item after being processed by a stage. The
blevel of a stage s; is the cost of the longest path from from
s; to an exit node and is recursively defined by

blevel(s;) =w; + max
sj€succ(s;)

(Gij + blevel(s;)) (1)

where succ(s;) is the set of immediate successors of stage



s;, W; is the average computation cost of stage s; and ¢; ; is
the average communication cost of edge (i,j).

The rank of a stage is the sum of communication and
computation cost for a particular stage, and gives a rough
estimate of total computation and communication time re-
quired by the stage to fetch all input data items, process
them, and send the result to successive stages. The rank
is used in relative ordering of the stages based on their re-
quirements before an actual assignment is made. Therefore,
this simple model suffices in giving higher rank to a more
needy stage. We assign a rank to each stage s;, taking into
account the average computation and communication cost
as

rank(s;) = w; + Z

sjEpred(s;)

git Y, @r (@

sk Esuce(s;)

where pred(s;) is the set of immediate predecessors of stage
Si.

We assign higher priority to a stage with higher rank
value and consider blevel to break ties. The stages are con-
sidered in the order of their priority and are allocated the
“best” available resources.

3.2 Resource Filtering Phase

In this phase of the scheduling algorithm, we filter out
available resources that may not be permissible by the ap-
plication or resource policies and obtain a set R of r can-
didate resources. We take into account the application spe-
cific static resource requirements as well as resource spe-
cific policies. Even though there may be a large number of
available resources, the candidate resource set may be small
after this step, depending on how restrictive the application
and resource policies are. Some examples of application
specific constraints are (i) collocating stages of a stream-
ing application on the same resource to reduce communica-
tion latency, (ii) any special requirements of a stage such as
a graphics co-processor, (iii) QoS requirements specifying
desired throughput and latency, and (iv) application defined
priorities among different choices such as image and audio
quality degradation for application adaptation.

3.3 Resource Selection Phase

In this phase the appropriate resources are picked from
the set of candidate resources obtained in the resources fil-
tering phase. Unlike most of the task graph schedulers that
take only the computation capability to select resources,
Streamline considers available CPU as well as end-to-end
bandwidth. Streamline evaluates a particular resource us-
ing a cost function that computes the cost of assigning a
stage to a resource node. The cost function estimates the

computation and communication time for a particular as-
signment of a stage and picks a resource which gives the
least cummulative time. Since the stages are considered
in the order of their resource requirements, represented by
rank, which may not be consistent with the dataflow order,
Streamline uses estimates of average input and output band-
width availability for each resource in calculating the cost of
an assignment. By using information gathered from NWS
([29]), Streamline algorithm estimates the average incom-
ing (b;, (7)) and average outgoing bandwidth (b, (7)) for
each resource node n; as

bin(i) = Y bji/r 3)

n;jeR

bout (i) = > bik/7 ©)

nL€R

where R is the candidate resource set of r resources and b; ;
is an estimate of available end to end network bandwidth
between node n; and node n;. The cost (A (n;, s;)) of al-
locating resource node n; € R to stage s; is computed by
summing up the estimated computation and communication
cost for this particular assignment and is represented as

A(nj,s;) = ecycles;/proc;

DY

sk Epred(s;)

DY

sk Esuce(s;)

ecommy ; /bin(J)

ecomm; i /bout(7)  (5)

where ecycle; is an estimate of the average amount of CPU
cycles required by stage s;, proc; is an estimate of avail-
able CPU cycles on node n; and ecomm, j, is the average
amount of data transfered from stage s; to stage si. To each
stage s; of the dataflow graph, we assign a resource n; that
has the minimum cost (A (nj, s;)) as calculated by Equa-
tion 6. Since we consider end-to-end network bandwidth
available between each pair of resources in the candidate
set, the Streamline algorithm has O(v x r?2) time complex-
ity where v is the number of stages in the dataflow graph and
r is the number of resources in the candidate set R. Even in
the presence of large number of resources, we expect that
the candidate set for each stage will be small and the time
complexity is admissible.

To eliminate any ambiguity, the algorithm also takes into
account the following points: (i) When multiple stages get
assigned to the same resource, distribute the available band-
width and CPU resources equally between all the stages in



I/ Input: dataflow graph G(S,E), resource set R
/I Output: assign stages s; € S to resources n; € R
/* Initialize the dataflow graph */
for (stage s; € S, edge e; ;€ E in dataflow graph G(S,E))
$i=w; /lw;: avg execution cost
€;,;= ¢ j /lc; j: avg transmission cost
[* Set priority to stages */
for (every stage s;in the dataflow graph G(S,E))
blevel(s;) = Wi+ max;, e suce(s,) (Ci,j+blevel(s;))
rank (s;) =w; +ZSJ' epred(s;) Cjit Zsk€succ(si) Cik
/* Select the neediest stage */
Sort stages list S in list SLIST in decreasing order of rank,
use blevel to break ties.
* Choose the best resource */
while (there are unscheduled stages in SLIST )
Select the first stage s; from SLIST
Construct candidate set R by filtering out permissible
available resources by application or resource policies.
for (each resource ny € R) // A: Assignment cost
(a)A(ny, s;)=ecycles; [ proc;+
Zsk Epred(s;) ecommkﬂi/bin (J) +
Zsk €suce(s;) ecommiqk/bOUt (])
(b) s;= ny, with min(A(ng, s;))

Table 1. Streamline Scheduling Algorithm

calculating the cost of the assignment!. (ii) In case there are
multiple remaining candidate nodes, pick a node among the
remaining candidate nodes at random. By randomly pick-
ing a node, the scheduler expects to distribute load among
the equally desirable resources for a particular stage.

Since our scheduling heuristic works by picking best re-
source for each stage of the dataflow graph, additional poli-
cies concerning resources, applications, and local sched-
ulers can be easily incorporated in calculating the cost of
a particular assignment. In the next section, we present our
system architecture that integrates the Streamline schedul-
ing heuristic into grid computing framework.

4 System Architecture

We have designed a system that enables resource allo-
cation for streaming application using grid. Our system ar-
chitecture is guided by the following design goals: (i) For
quicker deployment, the system should make use of exist-
ing grid functionalities as much as possible so long as doing
so does not conflict with application performance require-
ments. (ii) The resource allocation system should function

! Assuming that the local scheduler equally allocates the available CPU
and network bandwidth, and that all the stages contend for CPU and net-
work usage simultaneously. Given any additional information, the cost
calculation can be accordingly adjusted.

in a dynamic environment where resource availability and
node connectivity change frequently. (iii) The scheduling
algorithm should take into account non-uniform resource
characteristics. Figure 1 shows the system which uses the
exisiting grid functionalities of Globus Toolkit[14], the Net-
work Weather Service[29] for current information and fu-
ture prediction of the resources, and some additional ser-
vices introduced to make the streaming scheduler function
properly. The services that are part of the present Globus

Streaming
Appication

i
Service Boundary

Resource
Information

Service

Application
Policies
Qos

Monitoring Scheduling

Service Service
Application

Information
Service

HPC HPC HPC
Resource Resource Resource

Figure 1. Resource Allocation System Archi-
tecture

Toolkit infrastructur are Authentication Service, which uses
Grid Security Infrastructure (GSI) for authentication to
the grid resources, the Resource Information Service[12],
which provides information about the grid resources and the
Grid Resource Allocation and Management(GRAM)[13]
service, which provides access to individual grid resources.
Our system also uses Network Weather Service for access-
ing estimates of dynamic information, such as CPU us-
age and end-to-end network bandwidth, about available re-
sources. Among the services we have integrated to the grid
are (i) Application Information Service that keeps track of
the streaming appication status and (ii) the QoS Monitoring
service that checks if the desired QoS is met. The Schedul-
ing Service makes all scheduling decisions by contacting
the QoS monitoring service, Network Weather Service and
Resource Information Service. It runs the scheduling algo-
rithm periodically to make sure the proper assignment of
resources is in place and if the QoS goes below a thresh-
old, a reallocation process takes place. The forecasts from
the Network Weather Service are used in the task migration.
The details of task migration process is outside the scope of



this paper since our focus is on the placement heuristic.

The whole system works in the following manner - the
user first authenticates to the grid using Grid Security In-
frastructure(GSI). Once authenticated, the user submits the
streaming application coarse-grain dataflow graph to the
scheduling service. The scheduling service takes into ac-
count the current resource availability (through resource in-
formation service [12, 29]) and existing applications run-
ning in the grid (through application information service)
in deciding whether to launch a new instance of the appli-
cation. Once resources have been allocated, the applica-
tion dataflow graph is instantiated on individual resources
using Grid Resource Allocation and Management(GRAM)
[13] system. After being instantiated, the input stages of
the application access data directly from the sources. The
QoS monitoring service is responsible for monitoring the
quality of service requirements of the application and dy-
namically adapting resource assignment by contacting the
scheduler. The QoS monitoring service infers the compu-
tational requirement of the running application by periodi-
cally contacting the application information service and the
resource information service and provides this information
to the scheduler.

5 Performance Evaluation

In this section, we study the performance of the
Streamline scheduler for supporting streaming applications.
Streamline provides a rich set of facilities that include: (i)
APIs for the user to specify the resource requirements of
each stage and the dependencies among the stages of the
streaming application; (ii) APIs for job submission that al-
low multiple applications to be submitted to the scheduler
at the same time; each application receives a distinguished
name; and (iii) APIs for querying job status using the dis-
tinguished name.

In our experimental study we focus on evaluating the
placement heuristic of Streamline. We compare the per-
formance of Streamline with an Optimal placement algo-
rithm. For large dataflow graphs and large number of re-
sources, the execution time of the Optimal placement al-
gorithm becomes computationally prohibitive. Therefore,
we have designed an approximation algorithm using Sim-
ulated Annealing and present performance comparisons of
Streamline with the Simulated Annealing approach for both
small and large dataflow graphs. Since our scheduling algo-
rithm is run periodically, the run-time of the scheduling al-
gorithm is also critical. Therefore, we have considered two
variants of Simulated Annealing algorithms, called SA1 and
SA2, with different execution times.

While it is possible to develop specialized application
specific schedulers, using an existing grid scheduler will re-
duce the development time of streaming applications sig-

nificantly in actual deployment. Therefore, we also analyze
how existing batch schedulers in grid can he enhanced to
support streaming applications. This has resulted in a base-
line stream scheduler called E-Condor.

Thus, our experimental study has four parts: (i) We
present an Optimal placement and approximation algo-
rithms using Simulated Annealing for comparison with
Streamline; (ii) We also investigate how existing grid sched-
ulers can be enhanced to deal with streaming applications;
this has resulted in a baseline stream scheduler called E-
Condor; (iii) We compare the performance of Stream-
line with Optimal placement, Simulated Annealing, and E-
Condor for executing “kernels” of streaming applications;
(iv) We evaluate the scalability of Streamline with respect
to Optimal, Simulated Annealing, and E-Condor algorithms

5.1 Optimal Placement Algorithm

The Optimal placement algorithm explores all possi-
ble assignments of resources to the individual stages of a
dataflow graph and selects an assignment with the minimum
cost. The cost of an assignment represents an estimate of
the time it takes to produce a single output item as data is
processed by the various stages of a dataflow graph. Since
we are interested in observing the relative costs of differ-
ent assignments, we use a simple model where this cost (F)
is estimated by summing up the estimated computation and
communication time of each stage of the dataflow graph for
a particular assignment as follows:

i=v

Z (ecycles;/proc;)

i=0

+ Z (ecommy;_; /b; ;) (6)

(i,5)EE

F([nO---nv], [30'--51;]) =

where resource node n; is allocated to stage s; in the assign-
ment under consideration, and (i,j) € E represents an edge
between stages s; and s; in the dataflow graph.

The above cost model makes a conservative assessment
by summing up the estimate of individual computation
and communication times, ignoring any parallelism. The
cost model also ignores networking and buffer management
overheads in transmission. However, since we are interested
only in the relative ordering of different assignments, use of
such a simple cost model is justified.

For v stages and r candidate resources, the computational
complexity of the Optimal algorithm is approximately equal
to the number of permutations of vV resources out of r
("P,). Thus, Optimal algorithm is computationally infea-
sible for large dataflow graphs. We have designed Sim-
ulated Annealing algorithms as comparison platform for
large dataflow graphs and large number of resources.



5.2 Simulated Annealing Algorithms (SAL, SA2)

Simulated Annealing [21, 19] is a generalization of a
Monte Carlo method for statistically finding a global opti-
mum for multivariate function. The concept originated from
the way in which crystalline structures are brought to more
ordered state by an annealing process of repeated heating
and slowly cooling the structures. Analogy to Simulated
Annealing has been used in Operation Research to success-
fully solve a variety of optimization problems [19].

In simulated annealing, a system is initialized at temper-
ature T with some configuration whose cost (analogous to
energy in the original process) is evaluated to be Fj,. A new
configuration is constructed by applying a random pertur-
bation, and change in cost dF is computed. If the new con-
figuration lowers the cost of the system, it is uncondition-
ally accepted. If the cost of the system is increased by the
change, the new configuration is accepted with a probabil-
ity given by the Boltzmann factor exp(—dF/T) [19]. This
processes is repeated sufficient times at the current tempera-
ture to sample the search space by visiting neighbors of the
current configuration. Then, the temperature is decreased
as specified by a chosen annealing schedule and the entire
process is repeated at successive lower temperature until a
terminating condition (frozen state) is reached. This proce-
dure allows the system to move to a lower cost state, while
still getting out of local minima (especially at higher tem-
peratures) due to probabilistic acceptance of some upward
moves.

We designed Simulated Annealing algorithms for our
scheduling problem. The state space of our simulated an-
nealing algorithm is all possible assignments of candidate
resources to the stages of a dataflow graph. We used the
same cost function as in the Optimal algorithm (Equation 6)
and exp (—dF'/T) as transition probability for our problem.
Since running time of the scheduling algorithm is also crit-
ical in our problem, We have selected two different strate-
gies for neighbor selection and annealing schedule, leading
to two different simulated annealing schedulers (SAl and
SA2). SAT has run-time complexity comparable to Stream-
line whereas SA2 requires longer running time, thereby ex-
pecting to produce better schedules. At a fixed temperature,
SA1 considers v randomly selected neighbors whereas SA2
considers v? neighbors for a v stage dataflow graph. SAl
and SA2 also differ in the length of the annealing schedule
whereby SA1 considers at most 72 temperature reductions.
We have also employed simple optimization heuristic that
avoid repetitive transitions between the same two states at
a fixed temperature by considering the neighbors in a fixed
order. The details of the algorithms are presented in Table 2.

/I Input: dataflow graph G(S,E), resource set R
/I Output: assign stages s; € S to resources n; € R
Select v random resources from r eligible machines
Compute initial cost of assignment (Fp):
Fo([no---no], [s0.--50]) = Doip (ecycles; [proc;)
+ Z(i7j)eE(ecommi7j/bi7j)
Select initial temperature (7}):
Compute average increase in cost across neighbors (dFp)
X =0.8// average increase acceptance probability
To = —d—Fb/ 1H(X0)
repeat {at each temperature }
for v steps do— SA1
for v? steps do — SA2
swap assignments for two allocated machines
or remove a machine, add another machine
compute change in cost (dF)
if dF is negative
accept new schedule unconditionally
else
accept if a random number < exp (—dF/T)
decrease temperature by a factor of « (0.95)
until »2 steps or temperature is above threshold (0.001)
or cost does not change — SA1
temperature is above threshold (0.001) or
cost does not change — SA2

Table 2. Simulated Annealing Algorithms
(SA1 and SA2)




5.3 E-Condor Architecture

Most of the existing grid schedulers such as Condor [4],
Legion [7], and Nimrod-G [5] focus on allocating resources
for batch-oriented applications. We have selected Condor
[4], due to its maturity and flexibility, as a vehicle for com-
parison of an existing grid scheduler against Streamline.

Condor uses DAGMan[15] to launch applications that
are specified by a task-graph. DAGMan is designed for
task-graph based batch jobs with control-flow dependen-
cies and hence launches a stage s; of a task-graph only af-
ter all stages s; € pred(s;) have finished execution. How-
ever, as we have observed before, in a streaming applica-
tion, each stage of the dataflow graph is concurrently work-
ing on a snapshot of the continuous stream data. There-
fore, we have developed a simple stream scheduler on top of
Condor called E-Condor. E-Condor uses Condor to obtain
the resources necessary to launch the individual stages of
a streaming application. But prior to launching, E-Condor
takes care of setting up all the necessary coupling between
the stages commensurate with the dataflow graph of the ap-
plication.

E-Condor architecture, shown in Figure 2, has four com-
ponents: (i) A parser that automatically generates the entire
dataflow graph and the per-stage configuration files given
a high-level description of the streaming application; (ii) A
launcher that uses Condor to map the stages of the dataflow
graph to different computational nodes provided by Condor;
(iii) A registration and discovery service for establishing
the predecessor/successor relationships among the stages of
the dataflow graph after they are launched. The architec-
ture automatically generates wrapper code for each stage to
register itself with this service, determine its predecessors
and successors using the per-stage configuration file, and
establish the necessary connections to them; and (iv) A syn-
chronization protocol that ensures that all the stages have
established the necessary connections to one another be-
fore actually starting the application-supplied code for that
stage.

E-Condor serves as a baseline scheduler for streaming
applications on the grid that uses an existing grid scheduler.

5.4 Distributed Surveillance Application

We use a mock-up of a distributed video-based surveil-
lance application as an example streaming application for
the performance study. While the application itself may
be distributed, we focus on the compute-intensive part of
the application that performs hierarchical processing on
video streams produced by cameras. The scheduling of
this compute-intensive part is the focus of this experimen-
tal study. To arrive at a realistic model of the pipeline that
represents this application, we use the following represen-

Stage Specific
Parser |—— ) ) —> Launcher
Configurations

Description
D

Streaming Application

I Resources I Resources
< Regi stration and Di scovery >

Figure 2. E-Condor Architecture

tative image manipulation functions that may form part of
this hierarchical processing pipeline: (i) Collage: A simple
concatenation of two images to produce a composite output;
(ii) EdgeDetect: An algorithm to determine the boundaries
of objects in an image; (iii) MotionDetect: An algorithm
that computes the magnitude and centroid o f inter-frame
differences in images to derive inferences on motion; and
(iv) FD/FR: A compute-intensive algorithm to detect and
recognize faces in an image that is based on skin tone anal-
ysis.

For each of these functions, we use the computation
and communication numbers reported in a companion pa-
per [28], and summarized in Table 3. These numbers are
the result of profiling these functions on a StrongARM SA-
1110 processor. We construct a pipeline consisting of these
functions to serve as the workload for our scheduling exper-
iments?’.

CPU Cycles | Datasize(Bytes) (I/0)
Collage | 803.4K 112K/112K
EdgeD 2616.2K 56K/56K
MotionD | 1009K 56K/56K
FD/FR 1959M 30K/30K

Table 3. Computation, Communication Costs
of Basic Image Processing Functions

2Note: Although our experimental setup (see Section 5.5) uses an x-86
cluster, the use of these numbers is justified since we are only interested
in relative performance of the different schedulers on the same dataflow
graph.



5.5 Modeling Resource Contention

We define four control variables to model the contention
and non-uniformity of resource availability.

e Mean processing availability (,,): This is is the av-
erage CPU cycles available across all the nodes. We
normalize it by the maximum CPU availability so that
this is a number between 0 and 1.

e Mean network bandwidth availability (gp): This is
the average end-to-end network bandwidth available
across all pairs of nodes. We normalize it by the maxi-
mum network bandwidth availability between any two
nodes so that this is a number between 0 and 1.

e Variance in processing availability (012)): This is the
variance in CPU cycle availability across all the nodes.

e Variance in network bandwidth availability(agw): This
is the variance in end-to-end network bandwidth avail-
ability across all pairs of nodes.

ttp and Ly, are indicators of the amount of resource con-
tention in the system. 0127 and o7, are indicators of the non-
uniformity of the load distribution in the system. Higher
variance implies resources vary widely from one another in
their load characteristics. Clearly, the possible sets of val-
ues for these four control variables are quite large. Thus, to
keep the scope of the experimental study manageable, we
study the performance for a chosen subset of values. Fur-
ther, to keep the discussion simple as well as to understand
the effects of these control variables better, we separately
study CPU and network contention.

In the experimental study, we fix three of the control vari-
ables and study the effect of the fourth on the performance.
We assign the resource settings (i.e. CPU and network
bandwidth) to correspond to the desired value of the con-
trol variable. We experimented with 3 different values for
fixed variables in each study. Since more than one assign-
ment can yield the same value of the control variables, we
experimented with 3 resource assignments chosen at ran-
dom to minimize the effect of any particular choice. For
each experiment, we picked 7 data points for the control
variable under study. The experiments were performed for
each of the two “kernels” introduced below, for the 5 al-
gorithms (Streamline, Optimal, Simulated Annealing (SA1,
SA2), and E-Condor) with multiple runs corresponding to
each datapoint. Because of our controlled settings, we ob-
served variance across different runs to be negligible (<
0.01%). We present a representative subset of the results
to keep the presentation within limit.

Our experimental platform consists of a sixteen node
cluster with dual gigabit-Ethernet interconnects. Each node
consist of eight Pentium III 550MHz Xeon processors with

4GB RAM. The intent of the scheduling experiments is to
determine the quality of node selection by a scheduler com-
mensurate with the application requirements and available
resources. To model resource contention in a controlled
manner in our experiments we adopted the following strat-
egy. We introduce a synthetic delay in the code for a stage
commensurate with the (assumed) load on the node that it
is running on (parameterized by the assigned setting for that
node). This strategy helps simulate non-uniform processor
bandwidth availability in a controlled manner. Similarly, in
order to model non-uniform network bandwidth availability,
we inflate the data size of the data communication between
stages in proportion to the level of (assumed) network con-
tention (once again parameterized by the assigned setting).

5.6 Micro Measurements

For the micro measurements, we use 4 nodes of the clus-
ter (one processor in each node). We use two “kernels” of a
distributed surveillance application in these measurements.
There are two sets of measurements, one for a compute-
bound kernel and the other for a communication-bound ker-
nel.

5.6.1 Compute-Bound Kernel

2616K Cycles

EdgeD
‘ 56Kk8 800K Cycles
Collage

56KB

1959M Cycles

—_—
112KB Output

2616K Cycles

Figure 3. Kernel of Distributed Surveillance
Application (Compute Bound)

Figure 3 shows the compute-bound kernel. The sched-
uler maps the 4 stages of the pipeline to the 4 nodes of the
cluster. As we mentioned earlier, we assign the settings
(CPU load and network contention) on the processor and
the links commensurate with the control variable value for
a particular experiment. The metric for comparison of dif-
ferent scheduling algorithms is the average time taken per
output data item averaged over 100 data items.

Control variable: CPU Variance. Figure 4 shows the
performance of different schedulers when CPU load distri-
bution is non-uniform. It can be concluded from the graph
that: (i) Performance of Optimal and Simulated Annealing
algorithms (SA1, SA2) are comparable, except for one in-
stance where SA1 performance is close to E-Condor, (ii)
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Streamline performs close to Optimal and nearly an order
of magnitude better than E-Condor under highly non-even
load distribution, and (iii) for a given system load (1) the
performance of Streamline (like Optimal and Simulated An-
nealing) improves with increasing variance whereas that of
E-Condor degrades. E-Condor does not take into account
the resource requirements of each stage of a dataflow graph
but simply allocates resources to the stages in the order the
requests are submitted. On the other hand, Streamline is
able to match the variance in the computational require-
ments of the stages in the application dataflow graph with
the variance in the system load to get a better mapping of the
stages to the resources. The results were similar for other
values of 11, (0.4, 0.55) and 3 resource configurations for
each particular combination of control variables. The degra-
dation in performance of SA1 in one instance is attributed
to its neighbor selection policy, though we observed that
SA1 performed close to SA2 in other configurations for this
experiment.

Control variable: CPU Availability. Figure 5 shows the
effect of mean CPU availability for a fixed variance. The
results show that performance of Streamline, Optimal, and
Simulated Annealing algorithms are indistinguishable. We
also observe that with increase in mean CPU availabil-
ity, the performance of both E-Condor and Streamline im-
proves. However, we see that like Optimal, and Simulated
Annealing, Streamline does not benefit as much with in-
crease in mean CPU availability as E-Condor does in some
cases. The reason is quite intuitive. Streamline takes advan-
tage of the variance in resource availability in its heuristic
when it allocates “best” resource to the most needy stage
as determined after stage prioritization; therefore, small in-
creases in the mean CPU availability has little impact in its
placement decision and hence in the overall performance.
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E-Condor, on the other hand, due to its first-fit approach,
has severe performance penalty when the mean CPU avail-
ability is low. Similar results were observed for other val-
ues of Jg (0.2, 0.38) and 3 resource configurations for each
combination of control variables.

Control variable: Network Bandwidth Variance. Just
for completeness, we also measure the effect of variance in
available bandwidth on the compute bound kernel. As the
results in Figure 6 show, none of the algorithms is affected
by the variation in available bandwidth, thereby confirm-
ing the computational nature of this kernel. We observed
similar results for other values of pp,, (0.34, 0.74) and all
3 resource configurations for each combination of control
variables.
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We also conducted experiments studying the effect of



network bandwidth availability for 3 different fixed values
of agw (0.32,0.58, 0.76). These results show (not presented
here) the performance of all algorithms to be equivalent for
the compute bound kernel, as we expected.

In summary, we observe that for the compute bound ker-
nel, performance of Streamline is close to Optimal and SA2,
and an order of magnitude better than E-Condor. More-
over, the performance of SA1 is close to Optimal in most
cases. This implies that for the compute bound kernel, even
a Simulated Annealing algorithm that examines fewer states
(SA1) performs close to Optimal. The reason for this is that
for the compute bound kernel, the performance of a particu-
lar stage is not dependent on the placement of other stages.
Therefore, even a simple random neighbor selection policy
performs well.

5.6.2 Communication-Bound Kernel
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Figure 7. Kernel of Distributed Surveillance
Application (Communication Bound)

Figure 7 shows the communication-bound kernel used
for this set of micro measurements. In this kernel, a syn-
thetic Filter function is used. The filter function receives
large amounts of data (video images plus their boundaries)
from two edge detectors. The filter function selects the sub-
set of the input to send on to a motion detector for higher
level inference.

Control variable: Network Bandwidth Variance. Fig-
ure 8 shows the effect of non-uniform bandwidth for the
five schedulers. We observe that performance of SA1 is
in between E-Condor and Optimal. This demonstrates that
for commmunication bound kernel, a Simulated Annealing
algorithm needs to explore a relatively larger part of the
search space in order for its performance comparable to Op-
timal as in SA2. In contrast, Streamline heuristic performs
close to Optimal and better than SA1. In addition, Stream-
line out-performs E-Condor by a factor of four under high
variance. We also note that Streamline’s performance im-
proves under non-uniform load condition due to efficient
placement of stages. We observed similar results for other
values of fip,, (0.34,0.74) and all 3 resource configurations
for each combination of control variables.
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Control variablee Network Bandwidth Availability. of neighbor selection and annealing schedule strategies for

Figure 9 shows the effect of network bandwidth availability communication intensive dataflow graphs.
on the performance of the five schedulers. The performance In the next subsection, we evaluate the scalability of
of all the algorithms improve in general with increase in Streamline scheduler in handling a large dataflow graph.

mean bandwidth. However, we observe that SA1 performs
worse than SA2 in many cases signifying the importance 5.7 Scalability
of neighbor selection and length of annealing schedule of
a Simulated Algorithm, particularly for communication in-
tensive dataflow graphs. Streamline, in contrast, performs
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Variance in CPU Availability (62,) tracking application where multiple camera feeds are ana-

lyzed to identify any suspicious activity. We build a rep-

Figure 10. Effect of CPU Availability Variance resentative dataflow graph for a video-based tracking ap-
on Communication Bound Kernel (y, = 0.4, plication by combining our basic building blocks, Collage,
=0, ppw =1) EdgeDetect, MotionDetect, and FD/FR as shown in Fig-

ure 11. The application represents a scenario where stream-
ing data from sensors are fed into an edge detector, merged
near the source and are processed through successive stages
of face detection, recognition and motion detection in order

Control variable: CPU Variance. Figure 10 shows that to derive some higher level hypothesis.
the communication bound kernel gives similar performance We measure the average time taken per output data item
under varying computational load conditions for all the al- for a 3 stage (2 EdgeD, 1 Collage), 4 stage (2 EdgeD, 1
gorithms, thus confirming its communication intensive na- Collage, 1 FD/FR), 7 stage (4 EdgeD, 2 Collage, 1 FD/FR)
ture. We observed similar results for other values of (i, and 15 stage (8 EdgeD, 4 Collage, 2 FD/FR, 1 MotionD)
(0.55, 0.65) and 3 resource configurations for each com- dataflow graph with different algorithms. We performed the
bination of control variables. We also observed that CPU experiments on 15 nodes (1 processor in each node) with a
availability has little effect on the relative performance of all particular choice of control parameters (i, = 0.55, 02, =
the algorithms for the communication bound kernel (graphs 0.49, pp, = 0.55, Jg = 0.27) that falls within the range used
not presented here). in the micro measurements, so as not to bias the experiment
Through these micro measurements we have established in favor of any one particular algorithm. Because of the
that Streamline performs significantly better than E-Condor computational complexity of the Optimal algorithm, we did
in general, and especially under non-uniform load condi- not evaluate it for the 15 stage dataflow graph.
tions. Moreover, performance of Streamline is compara- The results (see Figure 12) show that (i) because of the
ble to the Optimal and SA2 algorithms. We also establish introduction of a computation intensive stage FD/FR, all
that for a communication bound kernel, SA2 performance is algorithms show an increase in the average time per out-
better than SA1, thereby illustrating the relative importance put data item, when the number of stages increases from 3
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to 4; (ii) Streamline performs close to Optimal and about
12% better than SA1 and SA2 for 4 stage dataflow graph.
This degradation in Simulated Annealing performance is at-
tributed to our neighbor selection policy when the number
of resources is more than the number of stages; (iii) For
the 7 stage dataflow graph, E-Condor takes close to 50%
more time than Streamline; (iv) Streamline performs close
to Simulated Annealing algorithms even when number of
stages more than doubles from 7 to 15.

This demonstrates that as the number of stages increase,
Streamline is able to allocate resources better by taking into
account non-uniform resource availability and the applica-
tion needs. We also observe that SA1 performs as good as
SA2 due to the computation intensive nature of the scala-
bility graph, in consistent with our findings from the micro
measurements.

Finally, we compare the relative time taken by the differ-
ent scheduling algorithms for the dataflow graph presented
above. We measured the scheduling time of Streamline,
SAT1 and SA2 for the 3, 4, 7, and 15 stage dataflow graph.
We also report the scheduling time for the Optimal algo-
rithm for 3, 4, and 7 stage dataflow graphs. The numbers
presented, in Figure 13, are an average over 15 consecutive
scheduling runs.

Frpm Figure 13, we observe that Streamline has very
small execution time (91 milliseconds for 15 stage dataflow
graph). The execution time scalability of SA1 is compa-
rable to Streamline, whereas SA2 takes much longer (88
seconds) for 15 stage dataflow graph. The variance in ex-
ecution time across different runs was observed to be very
small (< 3.5% for SA2, < 2.5 % for SA1, and < 0.01% in
case of Streamline and Optimal). We conclude that Stream-
line has performance comparable to SA2 with much smaller
execution time, making it suitable for dynamic environment
of the grid.
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6 Related Work

Scheduling in grid has primarily focused on providing
support for batch-oriented jobs (See Nabrzyski, et al. [22]
for a survey of current grid schedulers). A wide vari-
ety of meta-schedulers and resource brokers using Globus
Toolkit [14] have been developed by other research projects
such as Condor[4], Legion[7], and Nimrod-G [5]. Most of
these schedulers developed out of needs to support scien-
tific batch-oriented applications. As we mentioned earlier,
such schedulers do not address the needs of streaming ap-
plications. However, through the E-Condor architecture we
have shown how these batch schedulers can be used to al-
locate resources for streaming applications. We have used
E-Condor, in addition to Optimal and Simulated Annealing
algorithms, as a baseline scheduler in experimental evalua-
tion of Streamline.

Middleware efforts for streaming applications have
started gaining attention in the grid community only re-
cently. GATES [9] provides middleware-support for dy-
namically adapting a streaming application based on the ob-
served processing rates in individual stages. A companion
paper [8] describes a middleware for deploying the stages
of a generic application, processing stream data, to grid re-
sources. The middleware uses the available communication
bandwidth among the nodes to determine an assignment
that will result in the best use of the resources under the as-
sumption that earlier stages of the pipeline would need more
communication bandwidth. Streamline is a more compre-
hensive framework for scheduling a streaming application
to grid resources taking into account the application char-
acteristics as well as the computational resources available
from the grid.

At some level, coarse-grain dataflow graphs of streaming
applications resemble task-graphs that have been the focus
of multiprocessor scheduling work from the 70’s. The ob-



jective in task-graph scheduling is to minimize the total ex-
ecution time of the application (represented as a task-graph)
on a multiprocessor. The classical approach, called list
scheduling [2, 11], (and its variants [17, 23, 18]), creates an
ordered list of task-graph nodes by assigning them priorities
based on certain properties. These priorities are then used to
assign the tasks to processors such that each task is started
at the earliest possible time commensurate with its priority.
The specifics of the algorithms vary in the way priorities are
assigned to task-graph nodes including HLF (Highest Level
First), LP (Longest Path), LPT (Longest Processing Time),
and CP (Critical Path) [16, 24, 20]. The task-graph schedul-
ing problem has also been studied by some research groups
for systems with non-uniform resource availability [26, 27].
The scheduling of streaming applications on the grid differs
from task-graph schedulers in many ways. First, stream-
ing applications are continuous in nature; therefore, all the
stages of the application have to be scheduled to run concur-
rently. Second, the grid framework does not allow the level
of control over the individual resources (for e.g. the operat-
ing system scheduler on a node) as assumed by such multi-
processor scheduling work. Third, there could be significant
non-uniformity of computational resources (processing and
communication bandwidths) leading to additional complex-
ity in resource allocation on the grid.

Stream processing has also been the focus of recent
database research [10, 1, 3, 6]. Tools and techniques for the
efficient handling of “continuous queries” on stream data
are the objectives in such work, while our work focuses on
scheduling streaming applications on grid resources.

7 Conclusion

In this paper, we have presented a scheduling heuristic,
Streamline, that takes as input (a) computation and commu-
nication requirements of the various stages of a streaming
application represented as a coarse-grain dataflow graph,
(b) any application-specified constraints, and (c) the current
resource (processing and bandwidth) availability. We have
designed Streamline over an existing grid framework using
Globus Toolkit [14].

We have compared Streamline with an Optimal place-
ment and Simulated Annealing algorithms. In addition, to
serve as a baseline for a comparative study, we have also
developed a streaming application scheduler, E-Condor,
built using existing grid scheduler Condor[4]. We have
performed experimental studies and shown that Streamline
performs close to Optimal and outperforms E-Condor by
nearly an order of magnitude on compute-bound kernels un-
der non-uniform CPU availability, and by a factor four on
communication-bound kernels under non-uniform network
bandwidth availability. Through two different choices of
parameters for Simulated Annealing, we have also shown
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that the choice of neighbor selection and annealing schedule
of a Simulated Annealing algorithm has a relatively larger
impact for a communication intensive dataflow graph than
for a computation intensive dataflow graph. The study has
also shed light on the scalability of Streamline for large-
scale streaming applications and shows its performance to
be close to Simulated Annealing algorithm, with smaller
scheduling time.

While Streamline does the placement for such streaming
applications, it is clear that the application dynamics may
result in the computation and communication characteris-
tics of the application changing over time. Perhaps even the
dataflow graph of the application could change over time
with the addition and deletion of new stages to the pipeline.
If the application characteristics that are profiled and used in
the placement are considered the “typical” (for e.g. mean)
values for the respective stages, then the mapping given by
Streamline would result in an acceptable level of perfor-
mance despite this dynamism. Nevertheless, it is important
to consider the impact of the application dynamism and the
consequent adaptation of the scheduling heuristic. Such a
adaptive scheduling heuristic is part of our future work.
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