
Towards Efficient Delivery of Dynamic Web Content

A Thesis
Presented to

The Academic Faculty

by

Lakshmish Macheeri Ramaswamy

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

December 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4678085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Efficient Delivery of Dynamic Web Content

Approved by:

Dr. Ling Liu, Advisor Dr. Mustaque Ahamad

College of Computing College of Computing

Georgia Institute of Technology Georgia Institute of Technology

Dr. Calton Pu Dr. H. Venkateswaran

College of Computing College of Computing

Georgia Institute of Technology Georgia Institute of Technology

Dr. Arun Iyengar

IBM T.J. Watson Research Center Date approved: August 24, 2005

Dedicated to my parents, my wife and my sister for their constant love and support

iii

ACKNOWLEDGEMENTS

It is a matter of great joy, besides being my duty, to thank various people without whose

help and support the research presented in this thesis would not have been possible. First

and foremost, my advisor Prof. Ling Liu has been a constant source of inspiration, encour-

agement and support over the past five years. In addition to the most valuable guidance

and help that I have received from her, she also gave me enough freedom to explore various

research ideas. She was always there when I needed her. I cannot thank her enough for all

the advice, support, and encouragement that I received from her.

My Ph.D. thesis committee members, Dr. Arun Iyengar, Prof. Calton Pu, Prof. Mus-

taque Ahamad and Prof. H. Venkateswaran gave very useful and insightful comments, which

have enhanced the quality of this dissertation. I want to express my heartfelt gratitude to

all of them.

The distributed data-intensive systems lab (DiSL) has been a great place to do research.

Apart from the many stimulating academic discussions, I also had countless enjoyable ex-

periences whose sweet memories I will cherish for the rest of my life. I thank the former

and the current DiSL group members for making my stay at Georgia Tech a memorable

one. Many thanks to the CERCS staff members Jennifer Chisholm, Deborah Mitchell, and

Susie McClain for their help with various administrative issues. I thank my many friends

at Georgia Tech whose company has added color and joy to my life as a Ph.D. student at

Georgia Tech. I thank Prabir Mehta for being a great roommate during the first three and

half years of my stay in Atlanta.

My parents have sacrificed a lot in every conceivable way to see me succeed in life. I

owe every bit of what I am today to their selfless sacrifices over the years. No words can

adequately express the depths of my gratitude towards them. My wife Seema has been

extremely supportive in this endeavor apart from being a great life-partner. I thank her

with all my heart for her constant love and support. Last, but certainly not the least,

iv

I would like to thank my extended family including my sister Shubha, my aunts, uncles,

cousins, and parents-in-law for their encouragement and best wishes.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 Dynamic Web Content . 2

1.2 Caching-based Strategies for Dynamic Content Delivery 4

1.2.1 Challenges for Caching Dynamic Web Content 4

1.2.2 State of the Art in Dynamic Content Caching 9

1.3 Contributions of the Thesis . 9

1.3.1 Cooperative Edge Cache Grid . 10

1.3.2 Automatic Fragment Detection in Dynamic Web Pages 13

1.4 Organization of Thesis . 15

II COOPERATIVE EDGE CACHE GRID 16

2.1 Need for Cooperation in Edge Cache Networks 17

2.2 Challenges for Constructing Cooperative Edge Networks 18

2.3 Cooperative Edge Cache Grid . 20

2.4 Comparison with Other Architectures . 22

2.5 Conclusions . 28

III CACHE CLOUDS FORMATION IN COOPERATIVE EC GRID . . 29

3.1 Problem Formulation . 30

3.2 Selective Landmarks Scheme . 33

3.2.1 Choosing High Quality Landmark set 34

3.2.2 Probing Landmarks and Constructing Feature Vectors 38

3.2.3 Creating Clouds through Clustering 38

3.2.4 Drawbacks of the SL Scheme . 41

3.3 The SDS Scheme . 46

vi

3.4 Experiments and Results . 49

3.4.1 Experimental Setup . 50

3.4.2 Evaluating the Accuracy of Selective Landmarks 51

3.4.3 Evaluating Feature Vector Representation 53

3.4.4 Effect of Number of Landmarks on Clustering Accuracy 56

3.4.5 Comparing SDS Scheme and SL Scheme 57

3.5 Conclusions . 59

IV DESIGN OF CACHE CLOUDS . 60

4.1 Design of Dynamic Hashing Scheme . 63

4.2 Determining the Beacon Point Sub-Ranges 65

4.2.1 Providing Resilience to Beacon Point Failures 69

4.3 Utility-based Document Placement in Cooperative EC Grid 72

4.3.1 Comparing Document Placement and Document Replacement . . . 78

4.4 Experiments and Results . 80

4.4.1 Evaluating the Effectiveness of Beacon Rings 81

4.4.2 Evaluating Failure Resilience Properties 83

4.4.3 Evaluating Utility-based Placement Scheme 90

4.5 Conclusion . 95

V AUTOMATIC FRAGMENTDETECTION IN DYNAMICWEB PAGES

96

5.1 Candidate Fragments . 99

5.2 Framework for Automatic Fragment Detection 102

5.2.1 System Overview . 102

5.2.2 Augmented Fragment Trees with Shingles Encoding 104

5.2.3 Efficient Shingles Encoding - The HiSh Algorithm 107

5.3 Detecting Shared Fragments . 109

5.3.1 Algorithm for Shared Fragment Detection 109

5.3.2 Illustration on Real Web Data . 114

5.4 Detecting L-P Fragments . 116

5.4.1 Algorithm for L-P Fragment Detection 116

5.4.2 Illustration of L-P Fragment Detection on Real Web Data 121

vii

5.5 Experimental Evaluation . 123

5.5.1 Detecting Shared Fragments . 123

5.5.2 Detecting L-P Fragments . 126

5.5.3 Impact on Caching . 129

5.5.4 Improving Fragment Detection Efficiency 134

5.6 Conclusion . 136

VI RELATED WORK . 137

6.1 Architectures and Systems for Dynamic Web Content Caching 137

6.2 Data Freshness Issues in Dynamic Content Caching 141

6.3 Policies for Cache Management . 144

6.3.1 Document Replacement Policies . 144

6.3.2 Document Placement Policies . 145

6.4 Caching on the Edge of the Internet . 145

6.5 Cooperative Web Caching . 147

6.6 Fragment-based Caching of Dynamic Web Content 151

6.7 Conclusions . 153

VII CONCLUSIONS . 155

7.1 Open Problems and Future Work . 157

APPENDIX A — ANALYTICAL STUDY OF THE DYNAMIC HASH-

ING MECHANISM . 160

APPENDIX B —ANALYTICAL STUDYOF FRAGMENT-BASED CACHING

164

REFERENCES . 170

VITA . 178

LOOKING BACK . 179

viii

LIST OF TABLES

1 Performance of Various Architectures for Cooperative Edge Networks . . . 27

2 Sum of Sizes of Shared Fragments Detected in the BBC Data Set 126

3 Statistics for L-P Fragment Detection . 127

ix

LIST OF FIGURES

1 Architecture of Cooperative Edge Cache Grid 22

2 Hierarchical Cooperation Architecture . 23

3 Choosing Landmarks for Cloud Constructions 37

4 Feature Vector Determination and K-Means Cache Clustering 39

5 Effect of Cloud Size on Hit Rates . 42

6 Effect of Cloud Size on Interaction Costs . 43

7 Effect of Cloud Size on Latency . 44

8 Comparing SL and SDS Schemes . 49

9 Accuracy of Cloud Creation Techniques . 52

10 Effect of Number Clouds on Accuracy . 53

11 Effect of Euclidean Space Mapping on Accuracy 55

12 Impact of Number of Landmarks on Accuracy 56

13 Performance of SDS Scheme on Latency . 57

14 Effect of Distance SDS Scheme on the Nearest and the Farthest Caches . . 58

15 Architecture of Edge Cache Cloud . 63

16 Illustration of Sub-Range Determination . 67

17 Load Distribution among Beacon Points for Zipf-0.9 Data Set 81

18 Load Distribution among Beacon Points for Sydney Data Set 82

19 Impact of Beacon Ring Size on Load Balancing 83

20 Impact of Zipf parameter on load balancing 84

21 Improvement in Beacon Information Availability 86

22 Network Load with Various Failure Resilience Schemes (10 Caches Per Cloud) 87

23 Network Load with Various Failure Resilience Schemes (10 Caches Per Cloud) 88

24 Staleness of Beacon Information in Periodic Replication (10 Caches in Cloud) 89

25 Staleness of Beacon Information in Periodic Replication (6 Caches in Cloud) 89

26 Percentage of Documents Stored (DsCC Turned Off) 90

27 Network Load Under Various Placement Schemes (DsCC Turned Off) . . . 91

28 Hit Rates of Ad-hoc, Beacon Point and Utility Placement Schemes (DsCC
Turned Off) . 92

x

29 Network Load Under Various Placement Schemes (DsCC Turned On) . . . 93

30 Hit Rates of Ad-hoc, Beacon Point and Utility Placement Schemes (DsCC
Turned On) . 94

31 Fragments in a Web Page . 97

32 Fragment Detection System Architecture . 103

33 Example of Shingles versus MD5 . 105

34 HiSh Algorithm . 108

35 Shared Fragment Detection Algorithm . 111

36 Illustration of Shared Fragment Detection on BBC Website 114

37 L-P Fragment Detection Algorithm . 118

38 Illustration of L-P Fragment Detection . 122

39 Number of Fragments Detected in BBC Data Set 124

40 Maximum Size of the Detected Fragments 125

41 Distribution of Fragment Sharing in BBC Data Set 125

42 Fragment Lifetime Characteristics . 128

43 Cumulative Distribution of Fragment Lifetimes 128

44 Total Storage Requirements . 129

45 Bytes Transferred between Server and Cache 131

46 Compulsory Byte Miss Rate . 131

47 Server Load with Constant Fragment Generation Cost 132

48 Server Load with Weighted Fragment Generation Cost 133

49 Number of Hashes Computed . 134

50 Total Shingle Computation Time . 134

51 Number of Nodes in DOM and AF Trees . 135

52 Comparing Load Balancing Properties of Static and Dynamic Hashing Schemes162

53 Server Load Patterns in Whole Page and Fragment Caching 168

xi

SUMMARY

In recent years the dynamic content on the World Wide Web has grown at a rapid

pace, introducing new challenges to the scalability and performance of web-based services.

Traditional web caching technologies that have been successful for efficient delivery of static

web pages, have not been very effective for delivering dynamic web content due to their

frequent changing nature and their diversified freshness requirements. Hence, there is a

growing demand for scalable and efficient mechanisms for delivering dynamic web content

to the end users.

This dissertation is devoted to exploring novel architectures, techniques, and mecha-

nisms for enhancing the scalability and the performance of dynamic web content delivery.

In this thesis we study the challenges to efficient dynamic content delivery, and propose var-

ious schemes and techniques to address the challenges. This dissertation makes two main

technical contributions.

As the first major technical contribution we design cooperative edge cache grid (co-

operative EC grid, for short) - a large-scale edge cache network that supports low-cost

cooperation among its caches. The cooperative EC grid is, to our knowledge, the first

cooperative edge cache network for efficiently delivering highly dynamic web content with

varying server update frequencies, whose design focuses on the reliability and scalability of

dynamic content delivery in addition to cache hit rates.

Motivated by the philosophy of placing data and possibly parts of application closer

to the clients, caching on the edge of the Internet has emerged as a popular mechanism

for delivering dynamic content. However, many of the present-day edge cache networks

do not provide adequate support for cooperation among the edge caches. The few edge

cache networks that incorporate some kind of cooperation among their caches do not sup-

port server-driven stronger document consistency mechanisms. Hence these edge networks

cannot effectively cache highly dynamic documents that are updated frequently. It is our

xii

contention that cooperation among the individual edge caches coupled with scalable server-

driven document consistency mechanisms can significantly enhance the benefits provided

by the edge cache network.

In this thesis we study the major challenges involved in designing a cooperative edge

cache network. Our design of the cooperative EC grid includes several unique techniques

and algorithms that have been specifically designed to address these challenges.

1. We introduce the concept of cache clouds as the fundamental framework of cooperation

in the Cooperative EC grid. A cache cloud is a group of edge caches located in close

vicinity within the Internet, which cooperate among one another for maintaining

document freshness and for serving client requests.

2. The cooperative EC grid scheme incorporates a novel technique for cache cloud for-

mation called the selective landmarks-based distance sensitive clustering mechanism.

This technique utilizes the concept of Internet landmarks for creating cache clouds

such that the cooperation in the EC grid is both efficient and effective.

3. The architectural design of cache clouds includes distributed and failure resilient mech-

anism called the dynamic hashing scheme for object lookups and updates. This tech-

nique balances the lookup and update loads among the caches belonging to a cloud,

and can gracefully tolerate the failures of individual caches.

4. A utility-based scheme has been designed for placing documents within the cache

clouds. This scheme ensures optimal utilization of the available resources by estimat-

ing the costs and benefits of storing a document in a particular edge cache, and storing

the document at that cache only if the benefit to cost ratio is favorable.

The second main contribution of this dissertation is an automatic scheme for detecting

cache-effective fragments in dynamic web pages. This is the first automatic fragment de-

tection scheme reported in the literature. The objective of our scheme is to detect and flag

fragments that maximize the benefits of fragment-based caching and delivery of dynamic

web content.

xiii

Constructing dynamic web pages from fragments has been shown to provide significant

benefits to the delivery of dynamic web content. It has also been successfully commercialized

in recent years. However, for a web site to harness the complete benefits of fragment-based

schemes, good methods are needed for fragmenting the web pages. Most fragment-based

dynamic content delivery techniques rely upon manual fragmentation of web pages, which

is expensive, error prone and does not scale well.

The automatic fragment detection scheme presented in this thesis analyses the dynamic

web pages with respect to their information sharing behavior, personalization characteris-

tics and change patterns, and detects fragments that are cost-effective cache units. Our

automatic fragment detection scheme has several novel features:

• The automatic fragment detection framework includes a hierarchical and fragment-

aware model for dynamic web pages and a compact and effective data structure, called

the augmented fragment tree (AF tree) for fragment detection.

• Second, we present an efficient algorithm to detect maximal fragments that are shared

among multiple documents.

• Third, we develop a practical algorithm that effectively detects fragments based on

their lifetime and personalization characteristics.

The fragments detected through our scheme can be utilized in any fragment-based

scheme for dynamic content delivery.

This dissertation reports the extensive experiments that we have conducted to study

the benefits and costs of the proposed techniques, and their effects on the dynamic content

delivery process. The results of the experiments show that the proposed schemes can sig-

nificantly enhance the scalability and performance of the dynamic content delivery process.

While the specific focus of this thesis is the efficient delivery of dynamic web content,

many of the techniques and mechanisms that we have explored in this thesis have wider

applicability, and they can also be applied to improve scalability and performance in various

types of distributed systems.

xiv

CHAPTER I

INTRODUCTION

The Internet and the World Wide Web continue to grow at a tremendous pace, both in terms

of the user populations, and the amounts and the varieties of the contents and services being

offered to their users. Several periodic surveys have clearly demonstrated the phenomenal

growth of the Internet and its diffusion into modern-day societies [8, 9, 10, 11]. The survey

from Internet World Statistics [9] estimates that the number of Internet users increased

from 361 million in the year 2000 to more than 682 million in 2003, which amounts to a

growth of 89% over a period of three years.

The content and the services available on the Web have also experienced a tremendous

growth. A survey from the Zooknic Internet geography project [15] shows that the total

number of top level domains grew more than 10 times from 3.2 million in 1998 to 37.5

million in 2001.

In addition to the growths in user population and content/service providers, the Web

has also grown in terms of the variety of the contents and services being offered through

it. In contrast to the early days, when the contents available on the Web were limited to

simple texts and images, today’s Web is a source of multimedia-rich information. Further,

during the initial years, most Web applications were information-dissemination in nature.

Today, the World Wide Web forms the foundation on which advanced applications such as

E-commerce and Online games are hosted.

An important technological development that has tremendously contributed to the

growth and popularity of the Web was the advent of Dynamic Web Content. It has trans-

formed the Web from being a passive information dissemination medium to a platform for

applications that can not only react to user actions, but also can adapt to the profile of the

user utilizing their services.

1

1.1 Dynamic Web Content

The web pages that are generated on the fly when a user request arrives at the web server

infrastructure are known as dynamic web pages. In contrast to static HTML documents

(static web pages), the dynamic web pages are not pre-composed. When the request for a

dynamic web page arrives at the service provider infrastructure an appropriate application

program is invoked which generates the document to be sent to the client. The appli-

cation programs are also referred to as scripts. These application-programs may access

various resources at the origin site such as back-end databases, html segments and text

files. The framework within which the application programs are executed is known as the

application server. Several application servers are available in the market including Oracle’s

10g-application server [12], IBM’s Websphere [6], and BEA’s WebLogic [2].

Ever since its advent, the dynamic content on the web is experiencing a tremendous

growth in popularity. Today, many web content providers publish their content through

dynamic web pages. The popularity of dynamic web pages can be attributed to its three

distinguishing features. First, the programs generating the dynamic web pages can be de-

signed to take-in user specified query parameters, and to generate web pages based on these

input parameters. Second, the generated web pages may incorporate results of queries to

back-end databases, or other data sources. Therefore, the application programs can gen-

erate web pages that reflect the current state of back-end information sources. Third, the

application programs can also incorporate organization-specific business logic into the web

page composition process. These three features of the dynamic web pages empower a web

site to provide personalized and up-to-date information to its clients. As an example, let us

consider the web page from a weather service website such as http://www.weather.com.

Here, the user specifies the Zip code and the date for which he needs the weather infor-

mation. Depending upon the parameters, the application program retrieves appropriate

weather information from one or more databases and composes the web page. Further, the

application programs might place appropriate advertisements depending on the business

policies of the website. It would have been virtually impossible to host a service of this

nature using only pre-composed static web pages.

2

While dynamic web content has enabled various services on the web, it has also intro-

duced new challenges to the efficiency and the scalability of Web-based services. Further,

the very features of the dynamic web pages that have made them popular are also at the

root of the challenges involved in efficiently delivering them to the clients.

As mentioned earlier, the dynamic web pages are generated on the fly when the user

request arrives at the origin server, in contrast to the static web pages, which are pre-

composed and stored at the origin server. The process of generating a dynamic web page

usually involves multiple costs. First, when the client-request arrives at the origin web site,

the application server has to invoke the corresponding application program, which has an

associated cost commonly referred to as application invocation cost. Second, the application

server might need to query one or more back-end databases, which would result in additional

costs known as the database access costs. Further, there are costs associated with operations

such as parsing URL to retrieve the query parameters, communication across different tiers

of the website infrastructure, web page composition, and object creation and destruction.

Notice that in contrast to the web page generation process, serving static content is simple

and significantly cheaper.

Due to the multiple costs, the process of dynamic web page generation places significant

loads on the system resources such as CPU, memory, hard disks, and I/O bus, which

results in two specific problems. First, the throughput of the web server - application server

infrastructure, in terms of the number of client requests processed per unit time, is adversely

impacted. Second, the average time required to process client requests increases. Mendes

and Almeida [70] study the effect of dynamic content on these two key parameters. Their

results show that the latencies of requests to dynamic web pages might be 2.5 to 3 times the

latencies of requests to static web pages of similar sizes, and a web server handling dynamic

content experiences 50% - 78% reduction in the number of maximum connections they can

handle per unit time, in comparison with their counterparts which serve pure static content.

Researchers have explored various approaches to address the performance and scalability

challenges caused by the dynamic web content. These approaches can be broadly classi-

fied into two categories: (1) efficient dynamic content generation; and (2) efficient caching

3

of dynamic content. The first category include approaches such as improving inter-tier

communication process, distributed and parallel application server architectures, smarter

request-scheduling techniques, and admission control policies. The work presented in this

thesis focuses on the second approach, which is to cache the dynamic content in order to

ensure its efficient and timely delivery.

1.2 Caching-based Strategies for Dynamic Content Deliv-

ery

Encouraged by the success of proxy caching in improving the performance of static content

delivery, researchers began exploring caching as a technique for efficient delivery of dynamic

web content. The fundamental idea of caching is to re-use the generated content. This

mitigates the need for re-generation of the same content, thereby reducing the load on the

origin site infrastructure. Further, depending upon where the caches are located, it can

also reduce load on the network. Hence, caching dynamic content can improve both the

scalability and the efficiency of dynamic content delivery.

However, it was soon realized that the traditional proxy caching techniques are not

very effective for delivering dynamic web pages. Their dynamic nature introduces new

challenges that have to be addressed satisfactorily in order to make caching an effective tool

for dynamic content delivery.

1.2.1 Challenges for Caching Dynamic Web Content

Dynamic web content exhibits many unique characteristics, which introduce additional com-

plexities and challenges to designing effective cache strategies. In this section we discuss

some of the important challenges for designing dynamic content caches.

Personalized Content in Dynamic Pages

Many application programs are designed to generate web pages that are personalized to

the clients issuing the requests. For example, the web pages generated by a news web site

may contain a welcome bar indicating the login-name of the person accessing the web site.

These web pages contain varying amounts of personalized information in them. This raises

4

the issues of privacy and security of the data when stored at caches, thereby prompting the

web page designers to mark the web pages as uncacheable. Further, even when the web

pages are not marked as uncacheable, their personalized nature might forbid the caches

from re-using them for serving future requests from other users. This has not only caused

a drastic reduction in the web content that can be stored at caches, but has also affected

the utility of cached content for serving future requests.

Reusability of Cached Dynamic Content

Generally, the contents of dynamic web pages are dependent on one or more user-specified

query parameters. Therefore, a single base URL could lead to many different web pages

based on the parameters. Thus a caching scheme storing the web pages indexed by its

URL and parameter values is not likely to have high content reusability. However, studies

have shown that the web pages that are generated by the same application program, but

with different parameter values are likely to share significant amount of content. Also the

web pages from the same web site often have a common template and hence are likely to

share content as well [43, 42]. Therefore, in order to improve the reusability of dynamic

content, smarter caching schemes that can exploit the information-sharing characteristics

of dynamic web pages need to be designed.

Document Freshness and Consistency

One of the most challenging problems for caching dynamic content is to ensure the freshness

and consistency of the data stored at various caches. This is a very important problem

involving several key issues. Dynamic web pages often contain results of queries to back-

end databases, or other information sources. Therefore, the freshness of a dynamic web page

is dependent on the state of the databases whose query-results were used to generate the

page. For example, if a tuple T in a database D is updated, then all the web pages which

were generated by incorporating the results of a query containing the tuple T would no

longer be fresh. The backend databases of an origin website may undergo frequent changes.

Further, it is very hard to accurately predict when a database would be updated. Hence,

5

not only are the dynamic web pages likely to undergo frequent changes, but it is also very

difficult to estimate how long they are likely to remain fresh.

The frequent and unpredictable change patterns of dynamic web pages have many im-

portant implications. First, the caches that store dynamic web content have to support

stronger consistency schemes than the traditional time-to-live mechanism. Most client-side

caches still rely upon the time-to-live mechanism for maintaining freshness of cached docu-

ments, which prevents them from effectively caching dynamic web content. Thus the utility

of client-side caches for efficiently delivering dynamic content is further reduced.

Second, the consistency requirements of the dynamic web pages can vary widely based on

the semantics of the application program generating them. For example, some applications

might require that any change to a dynamic web page be immediately reflected at all

caches, whereas other applications might tolerate some relaxation in consistency, but may

need guarantees with respect to worst-case staleness.

Third, stronger consistency mechanisms require active support from the origin site, and

hence, they are commonly referred to as server-driven consistency mechanisms. Further,

these mechanisms also require close interaction between the caches and the origin server.

Implementing stronger consistency mechanisms entails significant costs in terms of the loads

imposed on the origin servers, the caches, and the network.

• When a database table is modified, the origin server has to compute the web pages that

are affected by the modification. Dynamic web pages might include results of complex

queries that involve multiple database tables. In these scenarios, accurately computing

the set of web pages that are affected by a database update is computationally hard.

Further, in order to compute the set of web pages affected by an update, the origin

server has to maintain the mapping between query instances and the generated web

pages, which imposes additional load on the origin server.

• After computing the set of web pages that are affected by a database update, the origin

server has to send update/invalidate messages to the caches that are currently storing

copies of those web pages. There are two possible solutions to the update/invalidate

6

message propagation problem. The server might send update/invalidate messages to

all the caches in the system irrespective of whether they are currently storing a copy of

the particular document, or the server might send update/invalidate messages to only

those caches that contain are currently storing a copy of the document. While the

first solution involves unnecessary message communication and processing overheads,

the second solution requires the origin server to maintain the information about the

documents stored in various caches. When the documents are modified frequently,

both solutions impose heavy loads on the server, network and the caches. If documents

are updated at the rate of UpdRate per unit time and each document is stored at

CCount caches on average, then the origin server has to send out UpdRate×CCount

messages per unit time. Hence, we note that server-driven consistency mechanisms

do not scale well either with respect to the number of caches or with respect to the

update rates of documents.

Due to the above costs, the server-driven consistency mechanisms do not scale well both

with respect to the number of caches in the system as well as the rate at which the dynamic

content is modified.

Failure Resilience and Recovery

In addition to the loads placed on the servers, caches and the network, stronger consis-

tency requirements of dynamic web content impacts other aspects of caching. An example

would be the failure resilience and crash recovery mechanisms for caches. In static docu-

ment caching scenario, wherein time-to-live mechanism suffices for maintaining document

consistency, the failure resilience and recovery process are simple. If a cache fails, all the

client-requests are redirected to other caches, or to the server. When the cache recovers, it

checks whether any the TTL of any documents have expired. If so, those documents are

refreshed either immediately, or when requested by clients. Similarly if the server becomes

un-reachable, the cache checks whether the document requested by a client has expired

TTL. If so the cache sends appropriate error messages to the clients, else the cache supplied

the requested documents.

7

In dynamic content caches supporting server-driven consistency schemes, the problem

becomes complicated. First, a reliable communication mechanism is needed to ensure that

either the update/invalidate messages reach all the intended caches, or the server knows

which caches did not receive the messages, so that it can attempt to re-send the message.

Second, suppose a cache recovers from a crash, it does not know whether any of the docu-

ments were updated in the time duration when it had crashed. Hence, all the documents

in the cache have to be validated with the server, which imposes heavy loads on the server

as well as the cache. Similarly, if the server becomes unreachable due to network partitions

and the cache receives a client-request for a document that is locally available, there is not

straightforward way for the cache to determine whether the locally available copy is still

fresh, or whether it has been updated at the server.

Additional Challenges

In addition to the above challenges, which are specific to dynamic web pages, dynamic

content cache designers also encounter problems that are general to both static and dynamic

web content. Some such problems are:

1. Designing document placement and replacement schemes: When a document

is cached, the cache pays a cost in terms of the resources utilized to retrieve and store

the document locally. Examples of resources include disk-space and bandwidth. It

is important to design document placement and replacement strategies which can

maximize the benefits while the costs are kept low.

2. Reducing the message processing overheads at the caches: The web caches have to

process large numbers of messages from the server and the clients. Hence, it is impor-

tant to optimize the communication stack, so that the overheads of processing each

message are minimized.

3. Reducing the disk I/O costs: Caches read from and write documents into disks fre-

quently. Therefore, it is necessary to optimize the disk I/O operations.

8

1.2.2 State of the Art in Dynamic Content Caching

Researchers have investigated various mechanisms to address the challenges of caching dy-

namic content. Research efforts in this area include augmenting proxy caching schemes

to support dynamic content, designing new caching architectures for delivering dynamic

content, techniques for increasing cacheable web content, fragment-based web content pub-

lication, improving the re-usability of cached content, and engineering low-cost mechanisms

for supporting stronger consistency requirements.

Many schemes have been proposed to cache dynamic data at different stages of its

generation and delivery process. While browser caches and client caches are located at

each end-client, large organizations employ dedicated proxy caches to serve requests from

multiple clients. Motivated by the idea of moving the data closer to the clients, edge

caching or content delivery network caching (CDN caching) schemes store the contents at

various geographically distributed caches. The reverse proxy caches or front-end caches are

typically located within an origin site’s infrastructure. These caches store dynamic web

pages (or parts of web pages) that were dispatched from the web server. The mid-tier

caches are logically located between the application servers and the database servers, and

they store the results produced by the database servers in response to the queries issued

by the application server. Aiming to increase the quantity of cacheable web content and

to improve the reuse of cached data, researchers have also explored caching dynamic web

content at various granularities such as whole-page caching, fragment caching, and query

caching.

1.3 Contributions of the Thesis

Although the field of dynamic web content delivery has received considerable attention from

the research community, there are several open problems that are yet to be addressed sat-

isfactorily. This thesis is devoted to exploring novel cache-based architectures, techniques,

and mechanisms for enhancing the scalability and the performance of dynamic web content

delivery. The contributions of this thesis are epitomized by the following two innovations:

9

• We design a novel cooperative edge cache architecture, called cooperative edge cache

grid (cooperative EC grid, for short), for scalable and efficient dynamic web content

delivery. The cooperative EC grid is distinguished by its two unique features. First,

it incorporates scalable server-driven document consistency mechanisms, thereby en-

suring efficient delivery of highly dynamic web content with varying server update

frequencies. Second, the design of the cooperative EC grid focuses on the scalability

and reliability of dynamic content delivery in addition to cache hit rates. Through

the cooperative EC grid we demonstrate that low-cost cooperation can considerably

enhance the benefits provided by the edge cache networks.

• We develop a novel framework for automatically detecting cache-effective fragments

in dynamic web pages. Our automatic fragment detection scheme has three unique

features. First, we identify two kinds of fragments, namely shared fragments and

lifetime-personalization-based fragments, which benefit dynamic content delivery in

two very distinct ways. Second, we design a novel fragment-aware data structure for

representing dynamic web pages. Third, we provide two algorithms that can effectively

detect the two kinds of fragments. Through this work we demonstrate the feasibility

of designing automatic schemes for accurately fragmenting dynamic web pages.

These two major contributions encapsulate several techniques and algorithms, which we

discuss briefly in the next two sections.

While the central focus of this dissertation is the efficient delivery of dynamic web con-

tent, many of the techniques and mechanisms explored in this thesis have wider applicability,

and they can be used to improve scalability and performance in various kinds of distributed

systems.

1.3.1 Cooperative Edge Cache Grid

Caching on the edge of the Internet has been a very popular technique for dynamic web

content delivery. The fundamental philosophy of edge computing is to move data, and

possibly parts of application closer to the clients. Motivated by this philosophy compa-

nies like Akamai [1] and Speedera [13] have designed and implemented massive edge cache

10

networks. These networks have large numbers of geographically distributed edge caches.

Unlike proxy caching, the origin server has the knowledge about the edge caches. Hence,

the edge cache networks can support stronger consistency requirements and can implement

origin site-specific policies to achieve optimal performance.

Although the edge caching technology has been successfully commercialized, most of the

current systems do not harness the capabilities of the edge caching technique completely.

Many commercial edge cache networks [1, 13] still find the cost of server-driven consis-

tency mechanisms to be very high, and they use the traditional time-to-live mechanism for

maintaining document freshness. Hence, the edge caches in these systems cannot effectively

cache highly dynamic documents that are updated frequently. We contend that cooperation

among the individual edge caches can considerably reduce the overheads of server-driven

consistency mechanisms, and can significantly enhance the benefits provided by the edge

cache network. However, supporting effective low-cost cooperation in edge cache networks

poses many problems. In this thesis we have identified four major challenges involved in

designing a cooperative edge cache network.

These challenges motivate us to design the cooperative edge cache grid (or cooperative

EC grid, for short) - a large-scale cooperative edge cache network based on the concept of

cache clouds [89]. The cooperative EC grid is, to our knowledge, the first cooperative edge

cache network for efficiently delivering dynamic web content with varying server update fre-

quencies, whose design focuses on the reliability and scalability of dynamic content delivery

in addition to cache hit rates. The goal of our research is to utilize the power of flexible and

low cost cooperation in designing techniques and system level facilities for efficient delivery

of dynamic web content in large-scale edge cache networks.

While the previous works on cooperative web caching utilize the concept of cache co-

operation mainly for handling misses of caches, the edge caches of the cooperative EC grid

cooperate for multiple purposes, such as:

1. Cooperative miss handling: When a cache in the cooperative EC grid suffers a

miss, it tries to retrieve the document from a nearby cache rather than immediately

contacting the origin server.

11

2. Cooperative document consistency maintenance: The edge caches cooperate

with one another to reduce the overheads of server-driven document consistency main-

tenance mechanisms. In the cooperative EC grid, the server is communicate document

updates to a few caches. The caches cooperatively distribute the update message to

all the appropriate caches. item Cooperative cache management: The cache

management policies adopted by an individual cache such as the document placement

and the document replacement schemes are not only sensitive to the statuses of the

other caches with which it is cooperating, but also to the utility of the documents to

the other cooperating caches.

3. Cooperative failure resilience and recovery: The failures of individual caches are

gracefully handled, with other caches sharing the load of the failed cache. Similarly,

the caches in the EC grid aid in the recovery of failed caches, so that the cache

that is recovering from its failure need not repeatedly contact the origin server for

re-validating its documents.

Our design of the cooperative EC grid is based on a careful analysis of the various costs

involved in delivering dynamic web content to the clients. The unique features of our work

can be summarized as follows:

1. We introduce the concept of cache clouds, which forms the fundamental framework for

cooperation in the cooperative EC grid. Cache clouds are a group of caches located in

close network proximity which cooperate among one another to serve client requests

and to maintain consistency of documents.

2. We have designed an Internet landmarks-based mechanism called the selective landmarks-

based server distance sensitive clustering scheme (SDS scheme for short) for creating

cache clouds in a cooperative edge cache grid such that the cooperation is both efficient

and effective.

3. We present the architectural design of cache clouds, including a distributed and failure

12

resilient mechanism called the dynamic hashing scheme for object lookups and up-

dates. The dynamic hashing technique balances the lookup and update loads among

the caches belonging to a cloud, and can gracefully handle the failures of individual

caches. The central idea of dynamic hashing has wider applicability. It can be utilized

to design distributed, efficient, and failure-resilient lookup and update mechanisms in

many large-scale distributed systems such as peer-to-peer networks.

4. We have developed a utility-based scheme for placing documents within the cache

clouds, so that the available resources within the clouds are optimally utilized. This

document placement scheme estimates the costs and benefits of storing a document in

a particular edge cache, and stores the document at that cache only if the benefit to

cost ratio is favorable. This document placement scheme consists of four components,

each of which quantifies one aspect of the interplay between the benefits and costs.

The performance of the proposed architecture and techniques are studied both through

analytical modeling and by experimental evaluation. Our study shows that the cache clouds-

based architecture supports low-cost cooperation among the caches of the cooperative edge

cache grid. Our experiments indicate that the SDS clustering scheme accurately clusters

edge caches of the EC grid into cooperative clouds, thereby improving the performance

of the EC grid. The experiments also demonstrate that the dynamic hashing scheme for

distributed lookup and update protocols ensures high availability of the lookup information

at low message costs. The dynamic hashing scheme also achieves good balancing of the

lookup and the update loads among the caches belonging to the cloud. Further, we also

show that the utility-based document placement scheme contributes positively towards the

performance of the cooperative EC grid, by reducing the network load, and improving the

hit rates of the cache clouds.

1.3.2 Automatic Fragment Detection in Dynamic Web Pages

Fragment-based publishing and caching of dynamic web pages is another popular technique

for efficient delivery of dynamic web content. Several research groups have explored this

area from different perspectives. It has also been successfully commercialized in recent

13

years. A fragment is a portion of a web page which has a distinct theme or functionality.

The central idea of fragment-based techniques is to store the fragments independently at

the server and at the caches. The web pages are composed on the fly using these fragments.

Publishing and caching dynamic content at the granularity of fragments provides several

advantages. It increases the cacheable content of the web sites, reduces the amount of data

that gets invalidated at caches, and improves the disk-space utilization at the caches.

Most fragment-based dynamic content delivery techniques rely upon web pages that have

been manually fragmented at their respective web sites. However, manual fragmentation

of web pages is expensive, error prone, and unscalable. In this thesis we propose a novel

scheme to automatically detect and flag fragments that are cost-effective cache units in web

sites serving dynamic content [85, 86, 87]. Our approach analyzes web pages with respect

to their information sharing behavior, personalization characteristics and change patterns,

and detects fragments which are shared among multiple documents, or which have distinct

lifetime or personalization characteristics. The proposed scheme has three unique features.

1. First, we propose a framework for fragment detection, which includes a hierarchical

and fragment-aware model for dynamic web pages and a compact data structure for

fragment detection.

2. Second, we present an efficient algorithm to detect maximal fragments that are shared

among multiple documents.

3. Third, we develop a practical algorithm that effectively detects fragments based on

their lifetime and personalization characteristics.

We have evaluated the proposed scheme through a series of experiments, showing the

benefits and costs of the algorithms. Further, we also study the impact of using the frag-

ments detected by our system on key parameters such as disk space utilization, network

bandwidth consumption, and load on the origin servers. The experiments show that the

fragments detected through the proposed scheme substantially improves the performance of

the dynamic content delivery by effectively reducing data invalidations at the caches, and

by improving their disk-space utilization.

14

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the need for cooperation

in edge cache networks and the challenges in designing large-scale edge cache networks. We

also present a high-level architecture of the cooperative EC grid, and explain its design

rationale by comparing it with other possible architectures.

In Chapter 3 we discuss the process of cache cloud formation in the cooperative EC

grid. We explain the concept of Internet landmarks for quantifying the relative positions of

the nodes in the Internet, and motivate the need for taking server distance into consider-

ation while forming cache clouds. We then outline the selective landmarks-based distance

sensitive clustering scheme (SDS scheme) for creating cache clouds. We also discuss a set

of experiments that measure the accuracy of the SDS scheme, and its impact on the overall

performance of the cooperative EC grid.

Chapter 4 describes the design architecture of individual cache clouds in detail. We

explain the dynamic hashing-based mechanisms for document lookups and updates in cache

clouds, and two techniques for making the lookups and updates resilient to failures of

individual caches. Further, we also discuss the utility-based scheme for placing documents

in cache clouds. We report several experiments to quantify the costs and benefits of the

proposed techniques.

Chapter 5 describes our scheme for automatic fragment detection. We present a novel,

fragment-aware data structure for modeling dynamic web pages called augmented fragment

tree (AF tree for short). We explain two fragment detection algorithms, one for detecting

fragments that are shared among multiple pages, and the other for detecting fragments hav-

ing distinct lifetime and personalization characteristics. We also present the experimental

evaluation of the proposed fragment detection scheme and discuss the impact of detected

fragments on the performance of fragment-based web caches.

Chapter 6 discusses the prior related work in the area of dynamic web content delivery.

We conclude the thesis in Chapter 7 by presenting an overview of the future work that we

intend to pursue.

15

CHAPTER II

COOPERATIVE EDGE CACHE GRID

In recent years edge computing has emerged as a popular technique to address the challenges

posed by the tremendous growth of dynamic web content to the scalability and performance

of the World Wide Web. In addition to the various research projects being pursued in this

area, edge computing has also been successfully commercialized.

The motivating philosophy of edge computing is to move data, and possibly some parts of

the application, closer to the user. The vision of edge computing is to place the data/service

such that any client request can reach the document or service it needs by traversing very

few hops within the Internet. Towards realizing this vision, large content providers would

maintain several caches at various locations on the edge of the Internet. Along with these

edge caches the content providers also have one or more origin servers. The origin servers

offload data and parts of the application to these edge caches. At the most basic-level the

caches hold copies of documents generated by the origin servers. In more sophisticated

implementations, parts of applications are also offloaded to these edge caches. An exam-

ple of application offloading is fragment-based edge caching, wherein the functionality of

composing the web pages from the fragments is offloaded to the edge caches.

Although the caches of edge cache network are geographically distributed, the origin

servers have knowledge about the individual caches and they may maintain various kinds

of information about the caches. This enables the content provider to serve dynamic web

content from these edge caches while ensuring that any stringent freshness requirements on

them are met. For example, the cached copies of a document may be explicitly invalidated

or updated by the origin server when the document is modified at the origin site. Thus

edge caching can support stronger consistency requirements than the traditional time-to-

live mechanism. Further, the edge caches can adopt origin site-specific policies and schemes

to optimize the performance of content delivery.

16

Edge computing provides significant performance and scalability benefits. First, as

most client requests are serviced at the edge of the network, it reduces the load on the core

backbone of the Internet. Second, the load on the origin server is substantially reduced in

two distinct ways. The caches reuse the dynamic data generated by the origin server to

serve future client requests, thus decreasing the amount of duplicate computations at the

origin server. If parts of applications are offloaded to the edge caches, the load on the origin

server is further reduced. Finally, the latencies experienced by the clients are also reduced

since most requests are served at nearby caches.

2.1 Need for Cooperation in Edge Cache Networks

Many edge-caching schemes treat individual edge caches as independent entities. In these

schemes the edge caches rarely communicate with one another, and they may not even be

aware of other edge caches in the network.

Inspired by the work on cooperative proxy caching, a few edge cache networks like Aka-

mai [1] have attempted to support cooperation among its caches. However, the cooperation

in these edge cache networks is limited to serving client requests. Further, these systems em-

ploy the traditional time-to-live mechanism for maintaining consistency of documents, and

they do not support server-driven consistency schemes that can provide stronger document

consistency guarantees.

Designing efficient cache cooperation mechanisms in edge cache networks employing

server-driven document consistency schemes is very attractive considering the potential

benefits it can provide.

• First, when an edge cache receives a request for a document that is not available locally

(i.e. the request is a local miss), it can try to retrieve the document from nearby caches

rather than immediately contacting the remote server. Retrieving document from a

nearby cache can significantly reduce the latency of a local miss. It also reduces the

number of requests reaching the remote servers, thereby reducing the load on them.

• The second benefit of cooperation among edge caches is the reduction in the load

induced by the document consistency maintenance on the origin servers. When the

17

edge caches are treated as independent entities, the origin server has to communicate

document updates/

invalidations to each edge cache. In contrast, when the caches are organized as co-

operative groups, the server can communicate the update message to a few caches,

which in turn distribute the message to other edge caches that are currently holding

a copy of the document.

• Third, when the caches of an edge network cooperate with one another, smarter

cache management policies, which are sensitive to the cooperation among the edge

caches, can be designed such that the performance of the edge cache network is fur-

ther enhanced. An example of these cache management policies would be document

placement and replacement schemes which consider the availability of the documents

in other nearby caches.

Considering these performance benefits, in this thesis, we study the problem of designing

cooperative edge cache networks that can support server-driven consistency mechanisms.

2.2 Challenges for Constructing Cooperative Edge Networks

Designing efficient cooperative edge networks poses several research challenges. In this

section we discuss a few important challenges.

1. First, an effective mechanism is needed to decide the appropriate number of edge

caches needed for the edge network. Further, it is also necessary to decide where

these edge caches have to be located. In this thesis, we use the term cache placement

problems to refer to these two related challenges. Having too few edge caches increases

the load on each edge cache, as well as the average latency experienced by clients.

On the other, increasing the number of caches increases both the infrastructure setup

costs and the management costs of the system. The challenge is to optimize the setup

and maintenance costs of the network, while ensuring that the client latency is within

desirable limits. Similarly, the locations of the edge caches are likely to have profound

impact on the overall performance of the edge cache network, since the locations of

18

the caches determine the number of Internet hops the client requests have to traverse

in order to access the required data or service.

2. The second challenge in constructing a cooperative edge cache network is to decide

the caches that should cooperate with one another. In other words how to group the

caches into cooperative structures? On one end of the spectrum, we can design an

edge cache network, wherein all the caches of the network cooperate with one another.

At the other end of the spectrum, would be the scenario where none of the caches

cooperate with one another, in which case the scheme is reduced to the edge cache

network with no cooperation among the caches. The primary criterion that guides

the decision in this regard would be optimize the both effectiveness and the efficiency

of cooperation.

3. The third challenge is to design the architecture of the cooperative cache groups. In

other words, the caches belonging to a cooperative group needs to be organized into

logical structures. Further, highly efficient and failure-resilient mechanisms have to be

designed for cooperation among the caches of a cooperative group. Two crucial com-

ponents of cooperation are (a) document lookup protocol and (b) document update

protocol. A cache suffering a miss on a client-request tries to locate a document copy

within the cache-group. Similarly, when a document has to be updated all the copies

of the document within the cache group have to be located. Therefore, edge cache

networks serving frequently changing information requires highly efficient document

lookup and update protocols.

4. The fourth challenge for edge cache network is to design cache management policies

such that various resources of the cache group are optimally utilized. Two such

cache management policies are the document placement policy and the document

replacement policy. Most schemes only consider factors that are local to the cache

and are oblivious to the fact that the caches are in a cooperative group. However,

designing policies that are sensitive towards the cooperation in addition to considering

the local factors can further enhance the performance of the edge cache network.

19

In this thesis we present the design of cooperative edge cache grid (Cooperative EC Grid

for short), through which we attempt to address the second, third and fourth challenges

listed above.

In this work, we assume that the scale of the network in terms of the number of caches

it contains, and the appropriate locations of these edge caches are pre-decided. Previously,

researchers in the area of content delivery networks (CDN) have proposed techniques to

address similar cache placement problems. Most proposed approaches in the CDN area

view the Internet as an undirected graph, where the data storage/access points (such as

routers, servers, clients, edge caches, etc.) form the vertices of the graph, and the physical

network connections form its edges. The cache placement problem itself is modeled as that

of computing appropriate vertices for placing the caches, such that the cumulative sum of

the access costs to all the cached data items is minimized. . Qiu et al. [81] and Jamin et

al. [56] show that the cache placement problem is actually a variant of the minimum K-

median problem in graphs, which has been proven to be NP-complete. These papers propose

approximation algorithms based on techniques such as greedy strategy and heuristics to

address the cache placement problems.

Although, the cache placement problems in edge cache network appear to be similar to

the analogous problems in the area of CDNs, we think that a detailed study is required

in order to determine whether the proposed solutions, or their variants, can adequately

address the cache placement problem in edge cache networks, or whether it is necessary to

explore very different approaches. We intend to undertake this study as a part of our future

work.

2.3 Cooperative Edge Cache Grid

In this section we give a broad overview of the design architecture of the cooperative edge

cache grid (cooperative EC grid), and discuss the salient features of our design. As we have

mentioned before, the cooperative EC grid is a large-scale cooperative edge cache network.

Our design of the cooperative EC grid is based on the concept of cache clouds, which

forms the fundamental framework of cooperation among the edge caches. Conceptually,

20

a cache cloud is a group of edge caches that are located in close network proximity. The

caches belonging to a cache cloud cooperate with one another for three basic purposes.

• Cooperative Freshness Maintenance: When a documents that is cached in one or more

caches of a cache cloud is modified at the origin site, the origin server is required to

send a single update message to the cache cloud. The caches of the cloud cooperate

to ensure that the update message reaches all the caches that are holding a copy of

the document.

• Collaborative miss handling: When an edge cache within a cloud suffers a local miss,

it attempts to retrieve the document from another cache in its cache cloud, rather

than immediately contacting the origin site.

• Cooperative cache management: The management policies adopted by a cache, such as

document placement and document replacement schemes, are sensitive to the state of

the other caches in its cache cloud in terms of the resource and document availabilities

at these caches.

The cooperative EC grid typically contains several cache clouds. The appropriate num-

ber of cache cloud within a cooperative EC grid, and the average size of each cloud depend

on various factors including the scale of the edge cache grid, the capacity of the origin server,

and the document request and update patterns. In addition to the edge caches which are

organized into cache clouds, cooperative edge cache grid also contains an origin site which

hosts the infrastructure for generating the dynamic web pages such as the web server,

the application server, and the back-end databases. The origin site is also responsible for

initiating the updates/invalidation messages when the documents undergo modifications.

Figure 1 illustrates the high-level design architecture of the cooperative edge cache grid.

The cooperative EC grid indicated in the figure has 22 edge caches, which are organized

into 4 cache clouds.

The caches within a cache cloud interact with one another in a peer-to-peer fashion.

In other words, the individual cache clouds have a flat structure with no hierarchy. In our

cache cloud-design, all the caches belonging to a cloud share the responsibilities of lookups

21

CACHE
CLOUD

Ec0
0

Ec0
1Ec1

0

Ec0
1

Ec2
1

Ec2
0

CACHE
CLOUD

Edge
Cache

Edge
Cache

Cooperative Edge Cache Grid

ORIGIN
SERVER

ORIGIN
SERVER

ORIGIN
SERVER

Figure 1: Architecture of Cooperative Edge Cache Grid

and updates of documents that are cached in the cloud. A cache may communicate with

any other cache in its cloud, or with the origin server. Similarly the origin server may send

messages directly to any cache in any cache cloud. The design of individual cache clouds

are explained in detail in Chapter 4.

2.4 Comparison with Other Architectures

In this section we explain the rationale of our cooperative EC grid by comparing with

two possible alternatives, namely the hierarchical architecture [37] and the completely dis-

tributed architecture [98]. First, we give a brief overview of these architectures.

As the name suggests, the hierarchical architecture for cooperation organizes the caches

into hierarchical structures. The most commonly adopted hierarchical structure is the tree

structure. Here, each cache is placed at a certain level of the tree-hierarchy, and is assigned

a parent, and possibly one or more children. The origin server forms the root of the tree.

Generally, the caches that are located closer to the origin server are placed at higher levels

of the tree-hierarchy and vice-versa. The depth and the width of the trees may be varied,

22

ORIGIN
SERVER

Ec1 Ec2 Ec3

Ec4 Ec5 Ec6 Ec7 Ec8 Ec9 Ec10

Edge
Cache

Hierarchical Cooperation Architecture

Figure 2: Hierarchical Cooperation Architecture

according to the needs. Figure 2 illustrates a tree-based hierarchical organization of 10

caches, with the tree-depth being 3.

In the hierarchical cooperation architecture, each cache communicates only with its

parent and its children. Only the caches at the highest level of hierarchy can communicate

with the origin server. In this architecture, the cache-miss and the document-update are

handled as follows. When a cache Ecl suffers a miss, it contacts it parent cache as well as its

children caches. These caches check whether they or their descendants have the requested

document. If the document is available at one of these caches, it is sent to Ecl. Otherwise,

the request is propagated to the cache located in the next higher-level of hierarchy. This

process of request-propagation continues until the document is found in one of the caches

receiving the request, or until the request reaches the origin server.

When a document is modified at the origin site, the origin server sends the update/invalidate

message to the caches at the highest level of the tree-hierarchy. These caches in-turn com-

municate the message to their children and so on, until the message reaches all the caches

holding a copy of the document.

The architecture that can be regarded as being diametrically opposite to the hierar-

chical organization is the pure distributed architecture. Here the cooperative structure is

completely flat. An edge cache can communicate with any other edge cache in the edge

23

cache network, and with the origin server. In this architecture, when a cache Ecl suffers a

miss, it sends a message to all the caches in the edge cache network to check whether any

of them have the document. If any of the caches have the required document, Ecl retrieves

the document from them. Otherwise, the cache Ecl contacts the origin server to obtain the

document. When a document is modified at the origin site, the origin server sends update

message to all the caches in the edge cache network, or those caches that are currently

holding a copy of the document.

A minor variant of the distributed architecture would be the scheme wherein the doc-

ument lookup information is maintained within the edge cache network. In this variant,

which we call as the distributed architecture with lookup information, each cache main-

tains the lookup information of a set of documents. The lookup information of a document

indicates which caches in the entire edge cache network have a copy of the document. A

cache Ecl suffering a miss for a document, contacts the cache maintaining the document’s

lookup information, obtains the list of caches currently holding a copy of the document, and

retrieves the document from one of those caches, or from the origin server, if none of the

caches in the edge cache network has the document. Similarly, if a document is modified

at the origin site, the origin server sends a single update message to the cache maintaining

the document’s lookup information, which communicates the message to all the caches in

the edge cache network that are currently holding a copy of the document. We note that

this variant is actually a special case of the cooperative EC grid architecture proposed by

us, in which the cache grid always contains a single cache cloud.

We will now discuss why these alternative architectures are not very well suited for

designing a large-scale cooperative caching scheme for dynamic content delivery. The hi-

erarchical architecture has two major disadvantages. When a cache experiences a miss,

the request to resolve the miss might have to traverse multiple hops, reaching the cache’s

ancestors at multiple levels of the hierarchy. Hence, in the hierarchical scheme the latency

of handling a local miss is likely to be very high. The second disadvantage of the hierarchi-

cal scheme is that the caches located at higher levels of the hierarchy encounter very high

document update loads. The caches located at the top most level of the tree hierarchy have

24

to handle every update message sent by the origin server. A related disadvantage is the

load imbalance among the caches that are situated at different tree levels.

The distributed architecture is also not a suitable design choice. In the distributed

architecture, processing a local miss is very costly in terms of the number of lookup messages

circulated in the edge cache network. If the edge cache network has CacheCount number

of edge caches, each local miss at any of the edge caches causes CacheCount − 1 lookup

messages to be circulated within the cache cloud. Similarly, when a document is modified at

the origin site, the origin server has to send update messages to each cache that is currently

holding the document, which places a heavy load on the origin server. Further, in the

distributed architecture, an edge cache might have to frequently communicate with caches

that are located far away in terms of their network distances. All these factors undermine

the benefits of cooperation, and negatively impact the performance of the entire edge cache

network.

Although, the distributed architecture with lookup information alleviates the first prob-

lem of high costs of miss processing, it fails to address the other two drawbacks of the

distributed architecture. When a document undergoes modification at the origin server, the

cache maintaining the document’s lookup information has to potentially send CacheCount−

1 messages. Hence, document updates are costly in this variant too. Finally, as in the dis-

tributed architecture, the edge caches may have to frequently communicate with other

caches which might be situated quite far-off, thus affecting the efficiency of cooperation.

The cooperative EC grid architecture proposed by us does not suffer from the above

drawbacks. First, the process of handling local miss is very efficient. When a cache Ecl

suffers a local miss, it contacts the document’s beacon point to obtain the lookup infor-

mation. Depending upon the response from the beacon point, Ecl retrieves the document

either from another cache within the cache cloud, or from the origin server. Therefore, the

number of lookup messages circulated to handle a local miss is always 2. Further, unlike

the hierarchical architecture the lookup message in the cooperative EC grid, has to traverse

a single hop, which makes the lookup operations very efficient. Second, the number of

messages sent-out by the origin server when a document is updated is never greater than

25

the number of clouds in the grid. Hence, the document update load on the origin server is

very low. Third, as we explain in Chapter 4, all the caches in the cloud share the document

update and the lookup costs. Therefore, any single cache in the cooperative EC grid is not

overloaded with update and lookup operations. Finally, the edge caches in any cache cloud

are located in close network proximity. Therefore, the communications among the caches

belonging to a cloud are cheap, thus enhancing the efficiency of cooperation in EC grid.

We validate the above arguments through simulation-based experiments. For this pur-

pose we consider an edge cache network consisting of an origin server, and 120 caches, which

is simulated on top of an Internet topology generated through GT-ITM. GT-ITM is a net-

work topology simulator developed at Georgia Tech. In our experiments the topologies were

generated according to the hierarchical transit-stub model with 10 transit domains at the

top level, each containing 5 routers on average. The transit routers have 10 stub domains

attached to them on average. The stub domains in turn have an average of 10 routers

each. The configuration-settings that we have used for generating the topologies has been

adopted by several previous research project [31, 111]. The origin server and the caches are

attached to randomly selected routers in the generated network topologies.

Using the caches of the edge network, we have simulated hierarchical cooperation ar-

chitecture, distributed cooperation architecture, distributed cooperation architecture with

lookup information, and the cooperative EC grid architecture. The caches and the origin

server in each of the architectures are driven by request and update traces derived from a

major IBM sporting event website 1(henceforth referred to as Sydney). The request logs

contained client requests received in a 24 hour time period during the event and the update

logs contained updates generated at the origin server during the same time period. The

logs contained 52527 unique documents with the average size of each document being 65.3

Kilobytes. The requests were segregated based on their client-ids, and the requests from a

few clients were combined to generate the request-logs, which were used to drive the edge

caches. Clients were randomly assigned to the edge caches. In case the number of caches

in the simulation exceeded the number of traces, extra traces were generated such that the

1The Sydney 2000 Olympic Games Website

26

statistical properties of the new traces are identical to one of the original traces.

The configuration details of the simulated architectures are as follows. For the hierar-

chical architecture, we construct a tree of depth 4, with origin server as the root of the tree.

Each internal node in tree including the root has three children. We simulate the distributed

architecture by organizing all the 120 caches in a single flat structure. In this architecture

a flooding-based approach such as Internet Cache Protocol (ICP) [53] is adopted for doc-

ument lookups and updates. In the distributed architecture with lookup information, the

lookup data is distributed among all the caches, which share the document lookup and

update loads. Finally, we also simulate a cooperative EC grid architecture with 10 clouds,

wherein each cloud contains 12 caches. In the experiments reported in this chapter the

disk-space at each cache in the simulation is set to 10% of the sum of sizes of all documents

in the respective trace.

Table 1: Performance of Various Architectures for Cooperative Edge Networks

Performance Hierarchical Distributed Distributed with Cooperative
Parameter Architecture Architecture Lookup Information EC Grid
Max Hops 7 2 2 2

of Lookup Msgs.
Avg Hops 5.77 2.00 2.00 2.00

of Lookup Msgs.
Max Msgs Circulated 39 120 3.00 3.00

per Lookup
Avg Msgs Circulated 21.42 120.00 2.68 2.42

Per Lookup
Max Msgs Circulated 120.00 120.00 120.00 120.00

per Update
Avg Msgs Circulated 120.00 120.00 63.44 68.06

per Update
Update Msgs Sent by 585.00 23400 195.00 1950.00
Server per Unit Time
Max Update Msgs Sent 585.00 0.00 182.52 114.77
by Cache per Unit Time
Max Comm Cost between 1127.6 1829.97 1127.6 683.3

Cooperating Caches
Avg Comm Cost between 576.4 689.4 689.4 262.1

Cooperating Caches

We provide a synopsis of the results of the experiments in Table 1. The experimental

27

results indicate that the average number of hops a lookup message traverses, and the average

number of messages needed per lookup is the lowest for the cooperative EC grid architecture.

Similarly, the number of messages circulated per object update in the cooperative EC grid,

although slightly higher than that of the distributed architecture with lookup information,

is still very low. The load induced by the update operations on individual caches is also the

lowest for the cooperative EC grid. Finally, the cooperative EC grid yields the lowest values

for both maximum and average communication costs between cooperating caches. The

communication cost between cooperating caches is a very important factor which determines

the overall benefits of cooperation. Hence, we note that cooperative EC grid architecture

supports efficient cooperation among the caches of an edge network, and has the potential

to harness the maximum benefits of cooperative caching of dynamic documents.

In summary, we note that the results in the Table 1 substantiate our discussions regard-

ing the merits and demerits of each architecture.

2.5 Conclusions

Caching on the edge of the Internet has been a popular mechanism for serving dynamic

web content to the end users. Most edge caching schemes to-date regard individual caches

of the edge cache network as completely independent entities. However, cooperation among

the edge caches can significantly enhance the performance and scalability of edge cache

networks.

In this chapter we have studied the important research challenges in designing efficient

cooperative edge networks. We have presented the architecture of cooperative EC grid,

which has been designed with the objective of promoting low-cost cooperation among the

caches of an edge cache network. The proposed cooperative EC grid architecture is based

on the concept of cache clouds, which forms the basic framework of cooperation among

the edge caches. We have compared the design of cooperative EC grid with other possible

architectures, discussing the pros and cons of each approach. Our study indicates that

the proposed cooperative EC grid architecture is very well suited for designing large-scale

cooperative edge cache networks.

28

CHAPTER III

CACHE CLOUDS FORMATION IN COOPERATIVE EC

GRID

In this chapter we address the problem of cache cloud formation in the cooperative EC grid.

In other words, the problem we consider in this chapter is that of deciding which caches in

the cooperative EC grid should cooperate with one another. As we discussed in Chapter 2,

the caches belonging to a cache cloud are likely to interact with one another very frequently

for the purposes of cooperatively serving misses and for maintaining consistency of cached

documents. Therefore, the issue of cache cloud formation is a crucial one, and the manner

in which the cache clouds are constructed can have profound implications on the overall

performance of EC grid.

Although it is very commonly believed in the caching community that caches that are

cooperating with one another should be located in close network proximity, the problem

of accurately constructing cache clouds has not received much attention from the research

community. To our knowledge, there are no techniques available for the system designers

to group the caches in an edge cache network into cooperative clusters. Most cooperative

caching solutions to-date relies upon network-administrators’ sense of geographical vicin-

ity for forming cooperative cache groups. We contend that this ad-hoc way of forming

cache clouds adversely affects the cooperation efficiency, thereby leading to sub-optimal

performance of the edge cache network.

In this chapter we systematically study the various aspects of this problem, and we

present selective landmarks-based server distance sensitive clustering scheme (SDS scheme

for short), which is a novel technique that we have designed to address this vital challenge.

Our technique uses the concept of Internet landmarks to accurately quantify the relative

positions of the caches within the Internet, and constructs cache clouds based on the network

proximity among the caches, and the network distances between caches and the origin server.

29

The main technical contributions of this chapter are along three directions:

• First, we show how the concept of landmarks can be utilized for cache-cloud formation

in cooperative edge cache grid, and present an efficient strategy for selecting high

quality landmarks such that the relative positions of the caches and the server are

accurately quantified.

• Second, it is widely believed in the caching community that the caches that cooperate

with one another should be in close network proximity. However, we experimentally

illustrate the drawbacks of the strategies which exclusively consider the network dis-

tances between the caches as the sole factor for cache cloud creation. We discuss

the reasons for these drawbacks, and thereby motivate the need for incorporating the

network distances between the server and the caches as a factor in creating cache

clouds.

• Third, we present the design of the SDS clustering scheme, which incorporates the

distances between caches and the server together with the network proximities among

the caches in creating cache clouds, thereby overcoming the drawbacks.

We have performed a series of experiments to study the various aspects of accuracy

and performance of the techniques we have proposed. This chapter includes the description

of the experiments we have performed and a discussion about the results obtained. Our

experiments indicate that our techniques can significantly improve the clustering accuracy,

and the performance of the edge cache network.

3.1 Problem Formulation

Let us consider an edge cache grid with an origin server (represented asOs) and CacheCount

number of edge caches. Let the set of edge caches be represented as EcSet = {Ec0, Ec1, . . . ,

EcCacheCount−1}, where Ecl, 0 ≤ l < CacheCount denotes an arbitrary edge cache in the

grid. As mentioned in Chapter 2, we assume that the decisions regarding where to place

the edge caches have already been made, which means that the relative positions of the

origin server and the edge caches are known to us. Specifically, we assume that the network

30

distances between any two nodes may be determined, if necessary. Given such an edge

cache grid, the problem is to group the caches into CloudCount number of cooperative

cache clouds, represented as {CCloud0, CCloud2, . . . , CcloudCloudCount−1}, such that the

performance of the entire cache grid is optimized.

Before attempting to design a solution to this problem, we enlist the factors that can

influence the costs and benefits of cooperation, and hence need to be considered while

creating cache clouds. The first factor influencing cache cooperation is whether the clients

of the caches have overlapping interests, or in other words, whether there are any similarities

among the request patterns at various caches, and if so to what extents they are similar.

The second factor influencing the overheads of cooperation is the relative positions of the

caches within the Internet. Clearly, cooperation is not beneficial if the caches serve clients

with little commonality of interests, and hence have very different request patterns. In this

thesis we assume that the caches have statistically similar request patterns. The fact that

these edge caches belong to the same edge cache network implies that their clients have

common interests, and hence we believe that it is reasonable to assume that these caches

have statistically similar request patterns.

Let us now consider the performance criteria that need to be optimized while creating

cache clouds. Two important performance criteria of cooperation are:

• Effectiveness of Cooperation: When designing cooperative edge cache grid we

would want to reap the maximum possible benefits of cooperation in the sense that

most client requests are satisfied by the cache receiving the request, or at least within

the cloud to which the cache belongs, so that very few client requests need to be

sent to the origin server. One way to quantify the effectives of cooperation would be

in terms of the improvements in the hit rates of the individual caches achieved by

cooperating with other caches in the cache cloud. A larger improvement in hit rates

signifies higher effectiveness of cooperation, and vice-versa.

• Efficiency of Cooperation: One of the premises that motivates the idea of co-

operation among caches of an edge network is that it is significantly less costly to

31

retrieve documents from caches within the cloud rather than obtaining them from

the origin server. Efficiency of cooperation refers to cost savings obtained by fetching

the documents from other caches in the cloud rather than obtaining them from the

server. Therefore, an important parameter that has direct impact on the cooperation

efficiency is the average cost of obtaining a document from another cache within the

same cache cloud. One of the common ways to quantify cost is in terms of the la-

tency involved. We refer to the average cost (latency) of retrieving a document from

another cache in the same cache cloud as intra-cloud interaction cost. As the edge

caches belonging to a cache cloud interact with one another very frequently for the

purposes of document lookups, document retrievals, and document updates, the lower

the intra-cloud interaction costs, the better it is for the performance of the EC grid.

It is important to consider both these factors while constructing cooperative clouds

within an edge cache network. In other words, we have to create cache clouds such that

interaction cost between any two caches of a cache cloud is minimized, while ensuring that

the cumulative hit rates of all the cache clouds are reasonably high. However, the above

factors are not always complementary, and there is a tradeoff between the two factors.

Further, as we discuss later in the chapter this tradeoff affects the performance of cache

clouds in different ways and extents depending upon the network distances between the

clouds and the origin server.

As a first step towards the solution to cache cloud construction problem, we attempt to

design a scheme that exclusively considers the intra-cloud interaction costs when grouping

caches into cooperative clouds. An effective way of reducing the intra-cloud interaction cost

is to construct cache clouds in such a manner that the caches belonging to one cache cloud

are located in close vicinity within the Internet. This ensures that the network latencies

of the communications between the caches of a cloud are minimized, thereby reducing the

intra-cloud interaction costs. In other words, this scheme is based exclusively on the network

proximities of the caches in the grid.

32

3.2 Selective Landmarks Scheme

In this section we discuss a cache cloud formation scheme, called the selective landmarks

scheme (SL scheme) that is exclusively based on the network proximity of the caches. When

we want to design such a scheme, two key questions need to be addressed at the outset:

1. How can the network distance between two nodes in the Internet be precisely quan-

tified?

2. How can the network distance quantifications be utilized to accurately cluster the

caches of an edge cache grid into cooperative clouds?

We use roundtrip time values (RTT values) for quantifying network distances between

the nodes of an edge cache grid. RTT values have been utilized by many researchers in the

fields of network measurement and modeling for quantifying the network distance between

Internet nodes because it is easy to measure the RTT values between arbitrary pair of

Internet nodes, and they provide precise quantification of the network distance. However,

although we have used RTT values in our experiments, we believe that the techniques

proposed by us for construction of cache clouds would work equally well with any reasonable

measure of network distance (such as the minimum number of network hops between nodes).

We address the problem of utilizing the network proximity measurements to accurately

group the edge caches into cooperative clouds by adopting the concept of Internet land-

marks [40, 76, 96]. The concept of Internet landmarks originated to address the need for

a positioning system to specify the locations of nodes within the Internet. Conceptually,

Internet landmarks are a set of few key Internet hosts that serve as a frame of reference for

determining the relative position of any other node on the Internet. An arbitrary host Hi

measures the round trip time to each of these landmarks, and uses these values to determine

its relative location in the Internet. The idea of landmarks has been adopted by researchers

to assign coordinates to the nodes of wide area network (WAN) applications such as multi-

cast overlay networks and peer-to-peer systems in order to improve their performance and

scalability [111, 112]. For the purpose of brevity, in the rest of the thesis we refer to the

Internet landmarks as just landmarks.

33

The selective landmarks (SL) scheme that we have designed works in three phases:

1. Choosing high quality landmark set

2. Probing landmarks and constructing feature vectors

3. Creating clouds through clustering edge caches

Generally the origin server coordinates the execution of the above three phases. However,

any cache in the edge cache network might be entrusted with this responsibility. We refer to

the node that coordinates the execution of the scheme as the Cache Clustering-Coordinator

or the CC-Coordinator for short. We now explain each of these three phases of the SL

scheme.

3.2.1 Choosing High Quality Landmark set

The first step in constructing the cache clouds is to choose a set of nodes to serve as the

landmarks. These nodes serve as the frame of reference, and the nodes (caches and the

origin server) of the cooperative EC grid repeatedly measure their network distance to

these landmark nodes in order to determine their relative positions within the Internet.

One approach to choosing landmarks would be to use some of the popular Internet hosts

(such as machines hosting government or university web servers) as landmarks. However,

this approach might raise administrative issues, since the nodes of the EC grid repeatedly

send messages to the landmark nodes in order to determine their relative positions thus

generating significant traffic. Hence, we choose all the landmarks from the nodes belonging

to cache grid. Formally, if LmSet denotes the set of landmarks, then LmSet ⊆ (EcSet∪Os)

and Os ∈ LmSet (recall that ECSet represents the set of edge caches in the EC grid and

Os represents the origin server).

Since the nodes in the landmark set serve as the frame of reference for specifying the

locations of the server and the caches, the quality of the landmark set is likely to have a

significant impact on the quality of the clouds that are generated by the scheme. Therefore,

the edge caches that are included in the landmark set have to be chosen carefully. A simple

solution to this problem would be to randomly select a few caches from the edge cache

34

network and include them in the landmark set. However, this simple approach may not

always yield good quality landmarks set. Consider the case when two or more nodes that are

chosen as landmarks lie in very close vicinity of one another. In this scenario the network

distances from any other node to all of these landmarks would approximately be the same.

Therefore, the position information conveyed collectively by all of these landmarks would

not be significantly better than the position information conveyed by any one of them.

Before formulating an approach to address this problem, we first investigate the prop-

erties that the landmark set should satisfy in order to be considered as a high quality

landmark set. The most important property that a good landmark set has to satisfy is that

the landmarks have to be well dispersed among the set of nodes in the edge caches. If the

landmarks are well distributed, then the position information obtained by using them as

landmarks is better, hence improving the cluster quality.

The question that now arises is: how to ensure that the landmarks are well dispersed

within the edge cache grid? One approach would be to choose the landmarks such that the

distance between any two points in the landmarks-set is maximized. In other words, this

approach attempts to maximize the minimum distance between any two landmark nodes.

Formally, let MinRTT (LmSet) represent the minimum of the RTT values between any

two nodes in the landmark set, i.e. MinRTT (LmSet) =Min(RTT (Lpi, Lpj)) ∀{Lpi, Lpj} ∈

LmSet. Suppose we decide to have LandMarkCount landmark points, then

(LandMarkCount− 1) edge caches have to be chosen from the EcSet such that the Min-

RTT value of the landmark set formed by those (LandMarkCount−1) edge caches together

with the origin server Os is maximized.

However, constructing the LmSet that satisfies the above criterion of maximizing the

MinRTT value requires that we know the RTT values between every pair of edge caches,

which results in significant measurement overheads for edge cache networks, especially for

those networks with large number of edge caches. Further, even if the RTT values be-

tween every pair of edge caches were known, constructing the landmark set maximizing

the MinRTT value is equivalent to a discrete optimization problem, which is known to be

NP-complete. Hence, we need to devise a computationally efficient strategy that can yield

35

landmark sets with MinRTT values that are close to optimal

Considering the above requirements, we have designed an approximation-based greedy

strategy for building the LmSet. Our approach for selecting the landmark set works as

follows: First, the origin server is included in the LmSet. Therefore, we need to select

(LandMarkCount − 1) edge caches to be included in the landmark set. Initially, the

CC-coordinator randomly selects MFactor× (LandmarkCount− 1) edge caches as poten-

tial landmark points, where MFactor is a configurable parameter such that MFactor ×

(LandmarkCount − 1) ≤ CacheCount. We call this set of edge caches as potential land-

mark set, and denote it as PLSet. The CC-coordinator then sends a message to all potential

landmark points informing them about the nodes that are included in the PLSet. The po-

tential landmark points now probes the origin server and all the other caches in PLSet

multiple times, and determines its network distances to each of them.

Now we adopt a greedy strategy to choose (LandMarkCount− 1) edge caches from the

PLSet which along with the server forms the landmark set. Now we adopt a greedy strategy

to choose (LandMarkCount− 1) edge caches from the PLSet which along with the server

forms the landmark set. Specifically, for each cache Ecl in the PLSet, we examine the RTT

values between Ecl and the current members of LmSet, and assign the minimum of those

values as the Ecl’s inclusion potential for the current iteration. We choose the cache in the

PLSet that has the highest inclusion potential for the current iteration, and include it in

the LmSet. This cache is then removed from PLSet. At the end of (LandmarkCount− 1)

iterations we obtain a LmSet whose MinRTT value is close to the optimal MinRTT value

achievable for the set of edge caches in the edge cache network. At the end of this step, the

CC-Coordinator sends the LmSet to all the edge caches in the network.

Figure 3-C shows the execution of this phase of the algorithm. Here the LandMarkCount

is set to 3. Hence, the scheme has to select 2 edge caches, which along with the origin server

forms the 3 landmarks. In this example the parameter MFactor is set to 2. Therefore,

2 × (3 − 1) = 4 edge caches are randomly chosen to be included in the potential land-

mark set. In the example, the caches {Ec0, Ec1, Ec3, Ec4} form the potential landmark set.

These caches probe one another, and the origin server to obtain the RTT values between

36

Ec0

Ec1

Ec2

Ec3

Ec4 Ec5

Os

0.04.011.314.411.314.48.0Ec5

0.014.417.014.417.012.0Ec4

0.04.011.314.48.0Ec3

0.014.417.012.0Ec2

0.04.08.0Ec1

0.012.0Ec0

0.0OS

Ec5Ec4Ec3Ec2Ec1Ec0Os

C: Choosing the Landmarks
LandMarkCount= 3 m = 2 Potential Landmark Set = {Ec0, Ec1, Ec3, Ec4}

Initialization: LmSet= {Os}

Iteration 1: LmSet= {Os, Ec0} MinRTT(LmSet) = 12.0

Iteration 2: LmSet= {Os, Ec0, Ec4} MinRTT(LmSet) = 12.0

Chosen Landmarks = {Os, Ec0, Ec4}

A: Edge Cache Network B: RTT Matrix

Figure 3: Choosing Landmarks for Cloud Constructions

them. The greedy phase of the algorithm starts with LmSet = {Os}. In the first iteration

inclusion potentials of Ec0, Ec1, Ec3 and Ec4 are 12, 8, 8, 12 respectively. In this iteration

Ec0 is included into the LmSet, as it has one of the maximum inclusion potentials. For the

second iteration the inclusion potentials are 4, 8, 12 for caches Ec1, Ec3 and Ec4 respec-

tively. Therefore, in this iteration Ec4 is included in the LmSet. Now we have the final

LmSet consisting of Os, Ec1, and Ec4.

We now briefly analyze the worst-case complexity of this step of the cloud formation

scheme. At the jth iteration of the greedy scheme, the algorithm computes the net-

work distances between each of the (MFactor × LandMarkCountj + 1) remaining po-

tential landmark points and the new landmark node that selected in the previous itera-

tion. Hence the total number of distance computations in the jth iteration is MFactor ×

LandMarkCountj+1. The algorithm terminates in LandMarkCount−1 iterations. Hence,

the worst-case complexity of this phase of the algorithm isO(MFactor×LandMarkCount2).

37

3.2.2 Probing Landmarks and Constructing Feature Vectors

The second step of our scheme is to construct the feature vectors of the edge caches. The

feature vector of a cache Ecj , represented as FtV ectorEcj , specify the relative position of Ecj

within the edge cache network. The feature vectors can be constructed in a variety of ways

depending upon the specific information they contain. For example works such as Global

Network Positioning (GNP) [76] and Vivaldi [40] map the nodes into an N -dimensional

Euclidean space. In these systems the feature vectors are the coordinates of the nodes in

the N -dimensional space. Zhang et al. [111] used a binary string called landmark signature

to encode the relative ordering of the elements in a measured landmark feature vector. The

network proximities of nodes are captured by the similarity of their landmark identifiers.

In contrast to the above, our approach uses a simple and straightforward feature vector

representation wherein the feature vector of a cache Ecj contains the network distance values

between the cache Ecj and various landmark points. Specifically FtV ectorEcj [l] holds the

average network distance value between edge cache Ecj and the l
th landmark point. Our

experiments in Section 3.4 indicate that the cloud construction accuracy obtained by this

simple feature vector representation is very similar to, and in some cases better than, the

accuracy yielded by a more complex scheme such as GNP.

In order to construct the feature vectors, the caches probe the landmark points multiple

times, and measure the roundtrip times of each message. The cache Ecj builds its feature

vector FtV ectorEcj , by recording the average of the RTT values of its messages to the l
th

landmark point at FtV ectorEcj [l]. Figure 4-A shows this phase of the SL scheme. The

cache Ec1 is pinging the three landmarks Os, Ec0 and Ec4. Similarly all caches probe the

landmarks and build up their feature vectors. The figure also shows the feature vectors of

all the edge caches in our example network.

3.2.3 Creating Clouds through Clustering

In the third step of the SL scheme, the edge caches are clustered based on their feature

vectors to create the required number of cache clouds. Researchers in the fields of data

management and pattern analysis have proposed various algorithms for data clustering

38

Ec0

Ec1

Ec2

Ec3

Ec4 Ec5

Os
[12.0, 0.0, 17.0]

RTT Vector

[8.0, 4.0, 14.4]

[12.0, 17.0, 17.0]

[8.0, 14.4, 14.4]

[8.0, 14.4, 4.0][12.0, 17.0, 0.0]

L

L L

Probe

A: Probing Landmarks and Determining RTT Vectors

Initial Cluster Centers:{Ec1, Ec3, Ec5}

Iteration 1:
Clusters: {(Ec0, Ec1), (Ec2, Ec3), (Ec4, Ec5)}
Mean RTT Vectors (New Cluster Centers): {(10.0, 2.0,
15.7), (10.0 15.7, 15.7), (10.0, 15.7, 2.0)}

Iteration 2:
Clusters: {(Ec0, Ec1), (Ec2, Ec3), (Ec4, Ec5)}

Final Clusters:{(Ec0, Ec1), (Ec2, Ec3), (Ec4, Ec5)

Ec0Ec0

OsOs
Ec1Ec1

Ec2Ec2

Ec3Ec3

Ec4Ec4 Ec5Ec5

B: RTT Vector-based K-means Clustering

Final Clusters

L: Landmark Node

Figure 4: Feature Vector Determination and K-Means Cache Clustering

such as agglomerative clustering, K-means clustering, and nearest neighbor clustering [55].

In our work, we have used the K-means clustering algorithm, because it is known to yield

accurate clusters, and it is computationally efficient. However, the techniques described in

this paper are quite general, and can be adapted to any chosen clustering algorithm.

The K-means algorithm is a popular data-clustering scheme that clusters the data points

into pre-specified number of groups. The clustering is based on the dissimilarities of the

data-point feature vectors. The dissimilarity between two feature vectors may be quantified

through any reasonable metric such as L2 distance, L∞ distance, or the cosine distance.

In our scenario, each edge cache is represented by its feature vector (constructed in Step

2), and we use the L2 distance between two feature vectors to measure the dissimilarity

between the corresponding edge caches. If the feature vectors FTV1 and FTV2 are the

feature vectors of edge cache Ec1 and Ec2 respectively, then the L2 distance between them

represented as D2(Ec1, Ec2) is given by:

D2(Ec1, Ec2) = (
LandMarkCount−1

∑

l=0

(FTV1[l]− FTV2[l])
2)

1
2 (1)

39

Although we have not experimented with other dissimilarity measures, we believe that

substituting the L2 distance with L∞ distance, or the cosine distance does not adversely

affect the accuracy and performance of the scheme.

We will now briefly outline the K-means clustering algorithm as applied to the current

scenario. Suppose we decide to create CloudCount number of clouds from the caches of the

edge cache network. The K-means clustering scheme is an iterative algorithm, which works

as follows:

1. First, the algorithm randomly chooses CloudCount edge caches and designates them

as cluster centers.

2. In the second step, each edge cache is assigned to its closest cluster center. Here

the distance between an arbitrary edge cache and a cluster center is quantified as

the L2 distance between their feature vectors. At the end of this step we will have

CloudCount clusters with each cluster containing one or more edge caches.

3. In the third step , for each cluster, the algorithm computes the cluster’s mean vec-

tor. The mean vector of a cluster is computed as the mean of the feature vectors

of all caches belonging to that cluster. Suppose caches {Ec1, Ec2 . . . Ecp} belong to

cluster CCl1, then the mean vector of CCl1, represented as MV (CCl1) is calcu-

lated as MV (CCl1)[i] =
∑j=p

j=1 FTVj [i]

(p) , 0 ≤ i ≤ LandmarkCount− 1. We now have

CloudCount mean vectors. These mean vectors are designated as the new cluster

centers.

4. Now, for each edge cache the algorithm calculates its L2 distances from the new cluster

centers, and based on these distances checks whether the cache has to remain in the

same cluster, or should be re-assigned to a different cluster (whose mean vector would

be nearer than the mean vectors of all the other clusters including the cluster to which

the cache belongs). Similar to Step 3, the caches are assigned to their closest cluster

centers.

5. The process of cluster center computation (Step 3) and subsequent reassignment of

40

caches to clusters proceeds until the number of caches that are reassigned in the

current iteration becomes minimal. At this stage the generated clusters are regarded

as stable. Each cluster is assigned a cluster-ID. The algorithm outputs the cluster-IDs,

and the caches belonging to those clusters.

Figure 4-B demonstrates this phase of the algorithm. In this example the caches Ec1,

Ec3 and Ec5 are chosen as the initial cluster centers. In the first iteration, the caches

are assigned to their nearest cluster-centers. For example, the distances between the cache

Ec0 to the cluster centers Ec1, Ec3 and Ec5 are 6.23, 15.17 and 19.80 respectively. So

Ec0 is assigned to cluster center Ec1. At the end of this iteration we obtain the clus-

ters {(Ec1, Ec0), (Ec3, Ec2), (Ec5, Ec4)}. The mean RTT vectors of these clusters are

(10.0, 2.0, 15.7), (10.0, 15.7, 15.7), and (10.0, 15.7, 2.0) respectively. These mean RTT vec-

tors are used as the new cluster centers for iteration 2. In iteration 2, the distances between

the caches and the new cluster centers are computed. A cache is re-assigned to a different

cluster if that cluster’s center is closer to the cache than its current cluster’s center. In this

example, all the caches remain in the same clusters as in the previous iteration. Therefore,

the K-means clustering algorithm terminates with (Ec0, Ec1), (Ec2, Ec3) and (Ec4, Ec5) as

the final clusters.

At the end of K-means clustering algorithm each edge cache is assigned to the cluster

whose center is closest to it in terms of the L2 distance metric. The feature vectors of the

caches belonging to the same cluster can be expected to be “similar” to one another in the

L2 distance sense, which means that the caches belonging to various clusters produced by

the K-means algorithm are in close network proximity, and the communication costs among

the caches belonging to a cloud can be expected to be minimal. Thus, the SL scheme

achieves the goal of constructing cache clouds such that the intra-cloud interaction costs

are minimized.

3.2.4 Drawbacks of the SL Scheme

Although the SL scheme successfully minimizes the intra-cloud interaction costs, creating

cache clouds purely based on the caches’ network proximity is not sufficient to ensure optimal

41

cooperation among the caches of an edge cache network. In order to better understand

why creating clouds just based on their mutual network proximity fails to yield optimal

performance, we performed some simple experiments to study the performance of the SL

scheme on critical parameters like intra-cloud interaction cost, cumulative hit rates of cache

clouds, and average client latencies.

Before we explain our observations regarding the results of the experiments, we briefly

outline the experimental setup and the evaluation methodology. Detailed discussion about

the experimental methodology is presented in Section 3.4. For our experiments we use GT-

ITM package [109] to generate the topology of the underlying wide area network. The value

settings that we use for the configurable parameters of the GT-ITM package are similar to

those used in the past by many researchers [31, 111], and are explained in Section 3.4. The

origin server and the edge caches are placed at random locations on the generated network

topology to yield the edge cache network. All the experiments reported in this section are

on an edge cache grid consisting of 500 caches.

The caches of the experimental edge cache network are clustered through SL scheme

to form cooperative cache clouds. The caches within a cloud cooperate with one another

for serving misses, and for maintaining consistency of documents. The number of clouds

in the edge cache network (represented as CloudCount) can be varied, and we study the

performance of the SL scheme at various CloudCount values.

2 2.5 4 5 6.67 10 20 50 100 500
10

15

20

25

30

35

40

45

50
Effect of Cloud Size on Hit Rate

Average Number of Caches in each Cloud

A
ve

ra
ge

 H
it

R
at

e

Average Hit Rate

Figure 5: Effect of Cloud Size on Hit Rates

42

The graph in Figure 5 indicates the average cumulative hit-rate of the cache clouds in

the edge cache network as the average size of the cache clouds in the edge cache network is

varied. As indicated in the graph, when the average number of caches in the cache clouds

increases, the cumulative hit rate also increases. This phenomenon can be explained as

follows: increase in the size of a cloud implies that any cache in the cloud has larger number

of peers with which it can cooperate. This leads to an increase in the cumulative resources

(such as the total disk-space) of the cache cloud together with an increase in the cloud’s

client population, resulting in higher hit rates.

2 2.5 3.3 4 5 6.7 10 20 50 100 500
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700
Effect of Cloud Size on Interaction Cost

Average Number of Caches in Cloud

A
ve

ra
ge

 In
tr

a−
C

lo
ud

 In
te

ra
ct

io
n

C
os

t (
m

s)

SL Scheme: Average Interaction Cost

Figure 6: Effect of Cloud Size on Interaction Costs

Based on the results in Figure 5, one might conclude that creating larger cache clouds

results in better performance of the edge cache network. To see why this is not always true,

let us now consider the effect of cache cloud size on the intra-cloud interaction cost. The

graph in Figure 6 shows the average cost of interaction between any two caches in the cache

cloud as the size of the cache cloud varies. It can be seen that as the clouds get bigger,

the average intra-cloud interaction cost increases. This is because, as a cache cloud grows

larger in size, the caches belonging to it are more spread out in the network. Therefore, a

cache in the cloud could now cooperate with a cache which may not be located very close

to itself (in network-proximity sense), thus causing an increase in the average intra-cloud

interaction cost.

43

From the graphs in Figures 5 and 6, we observe that larger cache clouds improve the

effectiveness of cooperation (as indicated by the higher hit rates), but at the same time they

also increase the cost of cooperation, thereby affecting the efficiency of cooperation. Thus,

we observe that there is a trade-off between the effectiveness of cooperation (aggregate hit

rates) and its efficiency (cooperation cost), with respect to the size of the cache cloud.

We study the effect of these counteracting phenomena on the performance of the edge

cache network from clients’ perspective by plotting the average client latency of the edge

cache network at various cache cloud sizes (Figure 7). In order to better explain the short-

comings of the SL scheme, along with the average client latency of the entire network, we

indicate the average client latency of the 50 caches that are nearest (in the network prox-

imity sense) to the origin server, and the average client latency of the 50 caches that are

located farthest from the origin server. Initially all the three latencies (entire network, 50

2 2.5 4 5 6.67 10 20 50 100 500
150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000
Effect of Cloud Size on Average Latency

Average Number of Caches in each Cloud

A
ve

ra
ge

 L
at

en
cy

 (M
ill

is
ec

on
ds

)

Average Latency of Entire Network
Average Latency of Nearest 50 Caches
Average Latency of Farthest 50 Caches

Figure 7: Effect of Cloud Size on Latency

nearest caches, and the 50 farthest caches) start decreasing as the cache clouds starts getting

bigger. However, after reaching minimum values, all the three latencies start to increase,

when the sizes of the cache clouds are further increased. This observation can be explained

as follows. In the initial phase, the increase in the hit rates of the cache clouds (due to

increasing cloud size) is the dominating factor influencing the average client latency. How-

ever, when the sizes of the cache clouds increases beyond a certain point the improvements

44

in the cumulative cloud hit rates start diminishing, and the growing intra-cloud interaction

costs become the dominating factor affecting the client latency, thereby leading to higher

average client latencies.

Another very important fact which emerges from the graph in Figure 7 is that the inter-

play between the cooperation efficiency (intra-cloud interaction costs) and the cooperation

effectiveness (cumulative hit rates) influences the average client latencies of the cache clouds

to different extents depending on their relative locations with respect to the origin server.

This is evident when we observe the minimum values of the average client latencies for the

entire edge cache network, 50 nearest caches to the origin server, and the 50 farthest caches

from the origin server. If we consider the average client latency of the entire network, its

minimum value occurs when the cache clouds contain around 20 edge caches on an aver-

age. On the other hand the average client latency of the 50 nearest caches to the origin

server reaches its minimum value when cache clouds contain around 5 caches on an average,

whereas the minimum value of the client latencies of the 50 farthest caches occurs when

clouds are much larger (containing about 25 caches on an average).

The main shortcoming of the SL scheme is that it cannot adapt these variations in the

interplay between the intra-cloud interaction costs and cumulative hit rates when clustering

the edge caches to form cache clouds. For example, if use K-means algorithm to cluster the

caches into 100 clouds (i.e. each cloud contains 5 cache on average), the 50 nearest caches

yield very good latency values, whereas the performance of the 50 farthest caches are far

from being optimal. Alternatively, if we create 20 clouds (with each containing 25 caches)

in order to optimize the latencies of the 50 farthest caches, the caches that are located closer

to the origin suffer in terms of their average latencies. Thus, irrespective of the number of

clouds created in the edge cache network using the SL scheme, a considerable fraction of

the caches in the network would be yielding sub-optimal performance.

Before attempting to overcome this drawback of the SL scheme, we need to locate

which aspect of the SL scheme is causing the drawback. Clearly, the first step (selecting

the landmarks) and the second step (determining the feature vectors) are just determining

the relative positions of the caches and the server of the edge cache network, and have

45

little influence on the trade-offs between the effectiveness and efficiency of cooperation.

Therefore, the shortcoming of the SL scheme is due to the K-means clustering algorithm

(Step 3), which clusters the caches into cooperative groups exclusively based on the network

proximity of the caches.

Next, we discuss why the interplay between the intra-cloud interaction costs and the

cumulative hit rates affects the performance of different clouds in different ways and to

different extents. The primary reason for this observed behavior is the variations in the

costs of processing cloud-wide misses at different edge caches. A cloud-wide miss occurs

when none of the caches in the cloud contain the requested document, in which case the

document has to be retrieved from the origin server. The cost of retrieving documents from

the server varies among caches depending upon their relative network distance from the

server. For caches that are located faraway from the origin server, the cost of a cloud-wide

miss is likely to be very high, whereas for the caches that are situated closer to the origin

server, this cost would be relatively low.

The K-means clustering algorithm used in the SL scheme does not consider these vari-

ations in the trade-off between the efficiency and effectiveness of cooperation at different

cache clouds, which results in the above drawback.

3.3 The SDS Scheme

In this section, we describe the selective landmarks-based server distance sensitive clustering

scheme (SDS scheme), which has been specifically designed to address the drawback of the

SL scheme. As we discussed in the preceding section, the drawback of the SL scheme was

caused by the K-means clustering algorithm used in the third step. Hence, the first and the

second steps of the SL scheme are incorporated into the SDS scheme without any changes.

We have suitably modified the K-means clustering algorithm to overcome the drawback

discussed in the previous section. We call this algorithm server distance sensitive clustering

(SDS clustering, for short), and it forms the third step of the SDS scheme.

The design of the SDS clustering scheme is based on the following observation. Since

the cost of processing of a cloud-wide miss would be very high for the caches that are

46

located far from the origin server, achieving very high cumulative hit rates would be crucial

for their performance. Therefore, in the tradeoff between the hit-rates and the intra-cloud

interaction costs, achieving higher hit rates should be given precedence for the faraway

clouds. In contrast, for the caches that are located near the origin server the costs of

reaching the origin server are low. Hence, for these caches cooperation is beneficial only

if the costs of interacting with other cooperating caches are minimal. So, for these caches

minimizing the intra-cloud interaction costs should be given higher priority in the tradeoff

between the hit-rates and the intra-cloud interaction costs.

Therefore, the problem now is to construct cache clouds such that maximizing the hit

rates is given priority for faraway clouds, and at the same time minimizing the intra-cloud

interaction costs is accorded higher precedence for clouds that are closer to the origin server.

In the previous section we observed that the hit rates of the clouds increase as the clouds

grow larger, and the intra-cloud interaction costs decrease as the clouds become smaller.

Therefore, in order to satisfy the above criteria we have to create small clouds (containing

fewer caches) near the origin server, and progressively increase the size of the clouds as we

move farther away from the origin server.

The next question that has to be answered is what strategies can be designed to im-

plement this key idea? In other words can we appropriately modify the existing clustering

schemes to incorporate this idea? In this thesis we limit our discussion to adopting the

K-means clustering algorithm for incorporating the above idea. However, any clustering

algorithm can be similarly modified.

Recall that in the K-means clustering algorithm, if CloudCount number of clouds were

needed, the algorithm randomly selects CloudCount caches as initial cluster centers. In

the K-means algorithm, any cache may be selected to an initial cluster center with equal

probability (which is equal to CloudCount
CacheCount

). The strategy we adopt to incorporate the above

idea (of creating smaller clouds nearer to the origin server and vice-versa) in the K-means

clustering would be to choose larger fraction of the originators closer to the origin server,

and select fewer originators as we move farther from it. In other words, in the SDS scheme,

the probability that an edge cache is chosen as an initial cluster center is made inversely

47

proportional to its distance from the origin server. Specifically if Pr(Ecl) represents the

probability of selecting the edge cache Ecl as an initial cluster center, and if Dist(Ecl, OS)

represents the network distance between the origin server and Ecl, then:

Pr(Ecl) ∝
1

Dist(Ecl, OS)θ
(2)

where θ is a configurable system parameter that controls the sensitivity of the SDS scheme

towards the distances of the clouds from the origin server. When θ is set to higher values,

the scheme is more sensitive to server distance, and vice-versa.

After selecting originators which satisfy Equation 2, the SDS scheme proceeds in a

similar fashion as the SL scheme. Specifically, at each step the caches are assigned to their

nearest cluster centers, and the cluster-centers are re-computed at the end of step. The

algorithm terminates when the number of caches that change clusters between any two

consecutive steps becomes minimal.

It may be noted that if θ is set to 0.0, then the SDS clustering scheme performs exactly

like the SL scheme. Thus, the SL scheme can be regarded as a special case of the SDS

scheme.

In Figure 8, we highlight the contrasts between the SDS scheme and the SL scheme by

providing a two dimensional illustration of the clouds yielded by each of them on an example

edge cache network. Recall that the only difference between the SL and SDS schemes is

the clustering algorithm they use to group the caches into clouds. Therefore, the contrasts

shown in Figure 8 are actually due to the different clustering algorithms used. In the figure

we see that while K-means clustering yields nearly equal-sized clouds, in the SDS clustering

scheme the clouds located near the origin server are small whereas the clouds located farther

away from the server are larger in sizes.

We now analyze the complexity of the clustering phase of the SDS scheme. At each

iteration of the clustering phase, the algorithm calculates the L2 distances between the

cluster centers and all the caches in the system. Therefore, the complexity of each iteration

is O(CacheCount×CloudCount). The total number of iterations required for the algorithm

to converge is dependent upon the actual dataset at hand. However, previous studies [55]

48

OS OS

SL Scheme (with Pure K-means Clustering) SDS Scheme

Comparing SDS Scheme with SL Scheme

Figure 8: Comparing SL and SDS Schemes

have shown that the K-means clustering algorithm, of which the SDS scheme is a variant,

converges reasonably fast.

3.4 Experiments and Results

We have performed a range of experiments to evaluate various aspects of the SL and the

SDS mechanisms for constructing cache clouds. The goals of these experiments are three

fold:

1. Evaluating the impact of selectively choosing the landmarks on the clustering accu-

racy.

2. Studying the effect of the feature vector representation used in the SL and the SDS

clustering schemes on the clustering accuracy.

3. Evaluating the effects of server distance sensitive clustering when constructing cache

clouds.

49

This section describes the experiments we performed and the results we obtained. We

begin by giving an overview of our experimental setup and the datasets we have used in

our experiments.

3.4.1 Experimental Setup

We have implemented a discrete event simulator that simulates a cooperative EC grid. The

caches receive requests repeatedly from their respective request-log files. If the requested

document is available within the cache it is recorded as a local hit. Otherwise, if the

document is available within the cache cloud, the request is a group hit. If the document

is not available in any of the caches in the cache cloud, then the request is a miss, in which

case the document has to be retrieved from the origin server.

The request-logs used in our experiments were derived from the publicly available proxy

server and client traces from Virginia Tech. These are a set of four traces each containing

between 13,127 and 227,210 requests. The total disk-space requirements for storing the

complete set of documents in the traces ranged between 0.159 GB and 2.30 GB. We have

used only the three largest traces to derive the logs for our experiments, since the smallest

trace had too few requests. The requests were segregated based on their client-ids, and

the requests from a few clients were combined to generate the request-logs, which were

used to drive the edge caches. Clients were randomly assigned to the edge caches. In case

the number of caches in the simulation exceeded the number of traces, extra traces were

generated such that the statistical properties of the new traces are identical to one of the

original traces.

The simulations were executed on different network topologies that were generated

through the GT-ITM network topology generator according to the hierarchical transit-

stub model [109]. The configuration that we used to generate the topologies had 10 transit

domains at the top level, each containing 5 routers on average. The transit routers have 10

stub domains attached to them on average. The stub domains in turn have an average of

10 routers each. The configuration-settings that we have used for generating the topologies

has been adopted by several previous research project [31, 111]. The origin server and the

50

caches are attached to randomly selected routers in the generated network topologies. The

disk-space at each cache in the simulation is set to 5% of the sum of sizes of all documents

in the respective trace.

3.4.2 Evaluating the Accuracy of Selective Landmarks

In this set of experiments we study the improvements in clustering accuracy gained by

choosing the landmarks selectively. For this purpose we consider edge cache grids of different

sizes (containing between 100 and 500 edge caches). We now create cache clouds using three

different techniques, and compare the accuracy of clouds obtained through them. The first

technique, which we call the random clustering, creates clouds by randomly clustering the

edge caches. In this technique each cache is randomly assigned to one of the clouds. In the

second technique, we randomly select landmarks, and construct the feature vectors of all the

edge caches using these randomly selected landmarks as frame of reference. We then use the

K-means clustering algorithm to group the caches into specified number of clouds. The third

technique is the SL scheme, wherein we use the selective landmarks-based greedy strategy

(discussed in Section 3.2.1) for choosing the landmarks. These landmarks form the frame

of reference for constructing feature vectors of the edge caches. The K-means clustering

algorithm is used to cluster the caches into clouds. The goal of these experiments is to

exclusively study the performance benefits obtained by adopting the selective landmarks

mechanism. Hence, the same feature vector representation is used in both the second and

the third techniques. Further, we use the pure K-means clustering algorithm in both of

them. The accuracy of the clusters obtained from the three schemes is quantified using

the average intra-cloud interaction cost (recall that average intra-cloud interaction cost is

defined as the mean latency of transferring an average-sized document between any two

caches belonging to the same cloud).

The graph in Figure 9 indicates the average intra-cloud interaction costs of the three

schemes (in milliseconds) as the number of caches in the edge cache network varies from 100

to 500. In this experiment the number of clouds is always set to be 10% of the total number

of caches in the grid (for example the number of clouds for edge cache grid with 100 caches

51

100 200 300 400 500

100

200

300

400

500

600

700
Accuracy of Landmark Clustering

Number of Caches

A
ve

ra
ge

 In
tr

a−
C

lo
ud

 In
te

ra
ct

io
n

C
os

t (
m

s)

Selective Landmarks Scheme
Landmark Clustering with Random Landmarks
Random Clustering

Figure 9: Accuracy of Cloud Creation Techniques

is set to 10, and so forth). In the graph we see that the random clustering always performs

poorly, yielding very high intra-cloud interaction costs. This is because random clustering

assigns caches to clusters without taking into account their relative positions within the

network. Hence, the costs of interaction between caches belonging to the same cluster are

likely to be very high. The intra-cloud interaction costs of both random landmarks scheme

and the selective landmarks scheme (SL scheme) decrease as the number of caches in the

network grows. This phenomenon can be explained as follows: As the edge cache network

grows in terms of the number of caches, the average network distance between any two

caches in the network decreases, thus reducing the costs of interaction between caches in

the same cluster.

The graph in Figure 9 also indicates that average intra-cloud interaction costs of the

selective landmarks scheme is always lesser than that of the random landmarks scheme.

The improvements provided by the selective landmarks scheme over the random landmarks

scheme range between 16% to 20% indicating that employing the landmarks scheme can

significantly improve the accuracy of clustering.

In the second experiment (Figure 10) , we study the effect of number of clouds on the

performance of random landmarks and selective landmarks clustering mechanisms. For this

experiment we consider a cache clouds consisting of 500 caches and vary the number of

52

10 20 40 50 60 80 100
0

50

100

150

200

250

300

350

400

450
Effect of Number of Clusters on Intra−Cloud Cost

Number of Clouds

A
ve

ra
ge

 In
tr

a−
C

lo
ud

 In
te

ra
ct

io
n

C
os

t (
m

s)

Selective Landmarks Scheme
Clustering with Random Landmarks

Figure 10: Effect of Number Clouds on Accuracy

clouds from 10 to 250. The intra-cloud interaction costs for both random and selective

landmarks scheme decrease as the number of clouds increases. As the number of clouds in

the edge cache grid increases, the individual clouds become smaller and hence, the intra-

cloud interaction costs decrease (please see the discussion in Section 3.3). Similar to the

previous experiment, the selective landmarks-based clustering always yields better intra-

cloud interaction costs than the random-landmarks clustering. Thus, from Figure 9 and

Figure 10 we conclude that employing our scheme for choosing landmarks improves the

clustering accuracies irrespective of the number of caches in the edge cache network or the

numbers of clouds being created, thereby providing considerable performance benefits.

3.4.3 Evaluating Feature Vector Representation

In both SL and the SDS schemes, the relative positions of the caches and the server within

the network are specified through their feature vectors. We have chosen a simple repre-

sentation scheme for these feature vectors, wherein the network distances from a cache to

various landmarks forms the components of the cache’s feature vector. The goal of our next

experiment is to evaluate this method of representing the feature vectors.

Recently, researchers have proposed various schemes to map the nodes of Internet into

an N -dimensional Euclidean space based on their relative distances to various landmarks.

In these schemes the coordinates of a cache in the N -dimensional space forms its feature

53

vector. The primary motivation for these works is to minimize the error between the actual

network distances between nodes and the corresponding L2 distances between their feature

vectors (or coordinates in the N -dimensional space). However, the process of mapping

the nodes into a Euclidean space is very computation intensive. For example, mapping

an edge cache grid containing 500 caches and 25 landmarks through the GNP takes about

2 hours and 27 minutes on a machine with Pentium-P3 900MHz processor and 512 MB

RAM, running Linux-2.4.20. In this experiment we compare the performance of our feature

vector representation method to one such Euclidean-space mapping scheme called the Global

Network Positioning, or GNP for short [76]. GNP has been a popular Euclidean-space

mapping technique. Its properties have been well studied, and it is known to generate

accurate Euclidean-space mappings.

We consider an edge cache grids with the numbers of edge caches ranging from 100 to

500. The number of clouds is set to 10% of the total number of caches in the network. The

caches in the edge cache networks are grouped to form cache clouds using two schemes.

The first is the SL scheme, wherein we selectively choose 25 landmarks, and construct the

feature vectors of caches and origin server. Then K-means clustering algorithm is employed

to cluster the caches based on their feature vectors. In the second technique, we use the

selective landmarks scheme to choose 25 landmarks, and determine the network distance of

the origin server and the edge caches from these landmarks. Now the edge caches and the

origin server are mapped into a 8 dimensional space through the GNP software [76], using

standard settings. The K-means clustering algorithm is used to cluster the caches based on

their coordinates in the 8-dimensional Euclidean space.

The graph in Figure 11 indicates the average intra-cloud interaction costs of the two

techniques as the number of caches in the grid increases from 100 to 500. The performances

of both the SL and the Euclidean-space clustering schemes are very similar to each other for

all edge cache grids. However, the SL scheme performs slightly better than the Euclidean-

space clustering scheme for most edge cache networks. This result was unexpected, since

the primary motivation of mapping into Euclidean-space mapping is to minimize the error

between the actual network distances between the nodes and the L2 distances between their

54

100 200 300 400 500
100

150

200

250

300

350
Is Mapping to Euclidean Space Necessary?

Number of Caches

A
ve

ra
ge

 In
tr

a−
C

lo
ud

 In
te

ra
ct

io
n

C
os

t (
m

s)

Selective Landmarks Scheme
Clustering in Euclidean Space (with GNP)

Figure 11: Effect of Euclidean Space Mapping on Accuracy

co-ordinates (feature vectors).

In order to find out the reasons for this unexpected result, we carefully studied the GNP

software that was used for mapping the nodes into Euclidean space. We analyzed the mean

and the variance of the error between the actual network distances between each pair of

nodes, and the L2 distances of the feature vectors (co-ordinates) before and after mapping

into Euclidean-space. Our study supports the claim in [76], that mapping into Euclidean

space reduces the mean error between the actual network distance and the L2 distance

between their feature vectors. However, when we analyzed the variance of error, we found

out that variance of the error after Euclidean-space mapping was an order of magnitude

higher than the variance of the error before mapping into Euclidean-space. This observation

implies that although GNP scheme minimizes the mean error on a global scale, the error

distribution among the edge caches is skewed. Some edge caches experience very high error

values during the mapping, whereas others experience low error values. As the clustering

accuracy is influenced by the relative positions of the edge caches rather than their absolute

positions within the space, we hypothesize that some nodes having very high error values

adversely impacts the clustering accuracy, thereby resulting in higher average intra-cloud

interaction costs when the origin server and the edge caches are mapped to Euclidean space.

However, we think that this issue merits detailed experimentation and study.

55

From the results of this experiment, we conclude that for clustering application, the

simple feature vector representation we have used not only suffices, but in some case may

yield better clustering results than Euclidean-space mappings. Therefore, the costly process

of Euclidean-space mapping of caches can be avoided without any performance penalty.

3.4.4 Effect of Number of Landmarks on Clustering Accuracy

In this experiment we evaluate the effect of the number of landmarks on accuracy of cluster-

ing achieved by various scheme. The bar graph in Figure 12 indicates the average intra-cloud

interaction cost for the three schemes (random landmarks with K-means clustering, selective

landmarks with K-means clustering, and K-means clustering on Euclidean-space mappings)

for an edge cache network of 500 caches when the number of landmarks is set at 5, 10 and

25.

5 10 25
150

200

250

300

350

400
Effect of Number of Landmarks on Clustering Performance

Number of Landmarks

A
ve

ra
ge

 In
tr

a−
C

lo
ud

 In
te

ra
ct

io
n

C
os

t (
m

s)

Clustering with Random Landmarks
Selective Landmarks Scheme
Euclidean Clustering (GNP)

Figure 12: Impact of Number of Landmarks on Accuracy

The graph shows that the clustering accuracies of all the three schemes improve as the

number of landmarks increases. When the landmark set is small, increasing the number of

landmarks yields significant improvements in clustering accuracy of all the three schemes.

For example when the number of landmarks is increased from 5 to 10 the average intra-cloud

interactions costs of the random landmarks, selective landmarks and Euclidean clustering

improves by about 13%, 15%, and 17% respectively. However, when the number of land-

marks are increased beyond 20, the improvements in terms average intra-cloud interaction

56

costs of all three schemes are very minor, thus indicating that the around 20 landmarks are

sufficient of creating good-quality cache clouds. Also, the selective landmarks-based cluster-

ing scheme performs better than both random landmarks-based clustering and Euclidean-

space clustering irrespective of the number of landmarks. For example, the performance

achieved by random landmarks-based clustering with 25 landmarks is almost equal to se-

lective landmarks-based clustering scheme with just 10 landmarks.

3.4.5 Comparing SDS Scheme and SL Scheme

In the final set of experiments we experimentally evaluate the benefits of incorporating the

distances between the server and various caches as a parameter in constructing the edge

cache clouds. For this purpose we consider an edge cache grid with 500 caches. We construct

the cache clouds through both the SL and the SDS clustering schemes and compare their

performance at various CloudCount values. In both schemes the number of landmarks is

set to 25. We quantify the performance of the schemes by measuring the average client

latency of the cache clouds set generated by the two algorithms.

1 10 25 50 75 100 125 150 200 250
200

250

300

350

400

450

500

550

600

650
Performance of SDS Scheme on Latency

Number of Clouds

A
ve

ra
ge

 L
at

en
cy

 (M
ill

is
ec

on
ds

)

SL Scheme (Pure K−means Clustering)
 SDS Scheme

Figure 13: Performance of SDS Scheme on Latency

Figure 13 indicates the average client latency (in milliseconds) of the SL and SDS

schemes at various numbers of cache clouds. We see that at all cloud count values, the

clouds constructed through the SDS scheme yields lower latency values than those con-

structed through the SL scheme. For example, when CloudCount is set to 100, the SDS

57

scheme improves the average latency by around 22%, when compared with the SL scheme.

1 10 25 50 75 100 125 150 200 250
150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000
Performance of SDS Scheme

Number of Clouds

A
ve

ra
ge

 L
at

en
cy

 (M
ill

is
ec

on
ds

)

SL Scheme (50 Nearest Nodes)
SDS Scheme (50 Nearest Nodes)
SL Scheme (50 Farthest Nodes)
SDS Scheme (50 Farthest Nodes)

Figure 14: Effect of Distance SDS Scheme on the Nearest and the Farthest Caches

In Section 3.2.4 we had argued that as a consequence of the shortcomings of the K-

means clustering algorithm, irrespective of the number of clouds created through the SL

scheme, a considerable fraction of the caches in the network would be yielding sub-optimal

performance. In order to see whether the server distance sensitive clustering scheme can

successfully overcome this drawback, we plot the average latency values of the 50 caches

that are nearest to the origin server, and the 50 caches that are farthest to the origin server

at various CloudCount values. Figure 14 shows these latency values for both SL scheme

(which uses the K-mean clustering algorithm) and the SDS scheme (which uses the server

distance sensitive clustering algorithm).

The results lead to some very interesting observations. First, the server distance sensitive

algorithm significantly improves the average latency of the caches that are located farthest

from the server. For example, when CloudCount is set to 75, the server distance sensitive

clustering reduces the average latency of the 50 farthest caches by around 48%. Second, for

the caches that are situated closest to the origin server, the SDS scheme either improves the

average latency, or provides similar performance as that of SL scheme for most CloudCount

values. Only in a small region of the X-axis, when the CloudCount values are around 100,

the SL scheme provides slightly better performance (around 4%) than the SDS algorithm.

58

However, in the same region server distance sensitive clustering algorithm improves the

latency of the 50 farthest caches by around 44%. Third, as we discussed before, with the

K-means clustering algorithm, the CloudCount value that yields optimal performance for a

cache varies depending on its relative distance to the origin server. However, as the results

in Figure 14 show, with the server distance sensitive clustering scheme, the 50 nearest and

the 50 farthest caches both provide optimal performance when CloudCount is set around

25. Thus, we note that server distance sensitive clustering scheme can successfully overcome

the main drawback of pure k-means algorithm for constructing cache clouds.

3.5 Conclusions

An important challenge in designing the cooperative EC grid is to organize its caches into

cache clouds such that the cooperation is both effective and efficient. In this chapter we have

proposed selective landmarks-based distance sensitive clustering (SDS clustering) scheme -

a landmarks-based mechanism for organizing the edge caches into cache clouds. Our scheme

uses the concept of Internet landmarks for accurately quantifying the relative positions of

the server and the caches of the EC grid. It incorporates an efficient mechanism for selecting

high quality landmarks, and a simple feature vector representation scheme for specifying the

relative positions of the origin server and the edge caches. The SDS scheme also includes a

clustering technique that considers both the mutual network proximities of the caches and

the network distances between the origin server and the individual caches. The experiments

presented in this chapter indicate that organizing the caches into clouds through the SDS

scheme can significantly improve the performance of the cooperative EC grid.

59

CHAPTER IV

DESIGN OF CACHE CLOUDS

In this chapter we will describe the design of cache clouds in detail, and discuss the exper-

iments we have performed to evaluate our design.

As we have briefly outlined in Chapter 2, cache clouds form the fundamental frame-

work for cooperation in the cooperative EC grid. The caches belonging to a cache cloud

cooperate with one another in three distinct ways, namely, collaboratively serving misses,

cooperatively handling document updates, and optimally utilizing the resources within the

cache cloud. Therefore, the design of the cache clouds should incorporate efficient schemes

to support collaborative handling of misses and updates, and it should also be sensitive

towards the resource availability within the cloud.

In order to collaboratively handle misses, a cache that needs to retrieve a document

should be able to locate the copies of the document (if any) existing within the cache cloud.

We refer to the mechanism of locating the copies of a document within a cache cloud for the

purpose of retrieving it as the document lookup protocol. Similarly, the cache cloud design

should also incorporate a document update protocol through which updates to documents

are communicated to the caches in the cloud that are currently containing them.

Fundamentally, there are two approaches to cache cloud design, namely, centralized

and distributed. In centralized design, a single designated cache handles the lookups and

updates of all the documents. Contrastingly, in a distributed design, the document lookup

and update responsibilities are distributed among some or all of the caches in the cloud.

We have adopted a distributed approach to designing the cache cloud architecture, since it

provides better scalability, load-balancing, and failure resilience properties.

In our design all the caches in the cloud share the functionalities of lookups and up-

dates. Each cache is responsible for handling the lookup and update operations for a set of

documents assigned to it. In a cache cloud, if the cache Ecjl is responsible for the lookup

60

and update operations of a cached document Dc, then we call the cache Ecjl as the beacon

point of Dc. Each document cached in a cache cloud has an edge cache as its beacon point.

The beacon point of a document maintains the up-to-date lookup information, which in-

cludes a list of caches in the cloud that currently hold the document. A cache that needs

to serve a document Dc, contacts the Dc’s beacon point, and obtains its lookup informa-

tion. Then it retrieves the document by contacting one of the caches currently holding the

document. Similarly, if the server wants to update or invalidate document Dc, it sends an

update/invalidation message to its beacon point. The beacon point then distributes this

message to all the cache holders of the document. Thus, in our design each edge cache in

the cloud plays dual roles. As a cache it stores documents, and responds to client requests.

As a beacon point it provides lookup and update support for a subset of documents served

by its cache cloud.

An immediate question that needs to be addressed is how to decide which of the caches

in the cloud should act as the beacon point of a given document. We refer to this as the

beacon point assignment problem. In designing the Cache Cloud architecture, our goal is

to assign beacon points to documents in such a manner that the following properties are

satisfied:

• Both the caches within the cache cloud and the origin server can discover the beacon

point of a document efficiently.

• The document lookups and updates are resilient to failures of individual beacon points.

• The load due to document lookups and updates is well distributed among all beacon

points in the cache cloud.

• The beacon point assignment and its load balancing scheme should be dynamic and

adaptive to the lookup and the update patterns change over time.

A straightforward solution for the beacon point assignment problem would be to use a

random hash function. These hash functions uniquely hash the document’s URL to one of

the edge caches (beacon points) in the cache cloud, which acts as the document’s beacon

61

point. We refer to this scheme as the static hashing scheme. The static hashing scheme

has two significant drawbacks: First, the static hashing scheme provides no resilience to

failures of individual beacon points. In this scheme when an individual beacon point fails

the entire beacon information maintained by it is lost, and hence the only way to handle

the lookups and updates of the documents that were assigned to the failed beacon point

would be to flood the cache cloud with the respective messages. Second, although a good

hashing function can distribute the documents equally among the beacon points, it still

cannot ensure good load balancing among them. Lookup and update loads often follow the

highly skewed Zipf distribution, and random hashing cannot provide good load balancing

under such circumstances.

Consistent hashing [57] has been popular as a technique for providing good load balanc-

ing among a network of nodes. In this technique, the set of documents and the set of edge

caches are both mapped on to a unit circle in terms of document identifiers and cache node

identifiers. Each document is assigned to the cache node (its beacon point) that is nearest

to its identifier on this circle. While consistent hashing can provide good load balancing

properties, it significantly increases the lookup and the update costs, especially for those

documents that are hot or that are updated frequently. If a cloud contains N edge caches

(beacon points), with consistent hashing the beacon point discovery process might take up

to log(N) beacon point hops. This makes the consistent hashing scheme less attractive to

the scenarios where the performance of the lookups and updates is very crucial. Further,

in both simple hashing and consistent hashing mechanisms the assignment of documents to

beacon points is static. Therefore these schemes cannot preserve load balancing when the

update and lookup load patterns change over time.

Considering the shortcomings of the above schemes, we propose a dynamic hashing-

based mechanism for assigning the beacon point of a document. This mechanism supports

very efficient lookup and update protocols, provides good load balancing properties, and

can adapt to changing load patterns effectively.

62

CACHE
CLOUD

Ec0
0Ec0
0

Ec1
0Ec1
0

Ec0
1Ec0
1

Ec1
1Ec1
1

Ec0
2Ec0
2

Ec1
2Ec1
2

Ec0
3Ec0
3

Ec1
3Ec1
3

BEACON
RING 0

ORIGIN
SERVER

CACHE CLOUD ARCHITECTURE

(0, 499)

(500, 998)
(0, 449)

(450, 998)

(525, 998)

(0, 524)

(0, 554)

(555, 998)

IntraGen= 999

BEACON
RING 1

BEACON
RING 2

BEACON
RING 3

Figure 15: Architecture of Edge Cache Cloud

4.1 Design of Dynamic Hashing Scheme

Consider a cache cloud with N edge caches. Each of these caches maintains lookup in-

formation about a set of documents. In the dynamic hashing scheme, the assignment of

documents to beacon points can vary over time so that the load balance is maintained even

when the load patterns change.

In our scheme the edge caches of a cache cloud are organized into substructures called

beacon rings. A cache cloud contains one or more beacon rings, and each beacon ring has

two or more beacon points. Figure 15 shows a cache cloud with 4 beacon rings, where

each beacon ring has 2 beacon points. All the beacon points in a particular beacon ring are

collectively responsible for maintaining the lookup information of a set of documents. In our

scheme each document is uniquely mapped to a beacon ring. This mapping of documents

to beacon rings is done through a random hash function. Suppose the cache cloud has M

beacon rings numbered from 0 to M − 1. A document Dc is mapped to beacon ring j

where j = MD5(URL(Dc)) Mod M . Here MD5 represents the MD-5 hash function, and

63

URL(Dc) represents the unique identifier of the document Dc.

Suppose the document Dc is mapped to the beacon ring j, which has K caches in it.

One of the caches within the beacon ring j would be assigned to serve as the primary bea-

con point for the document Dc. The primary-beacon point of a document maintains the

up-to-date lookup information of the document, and is responsible for handling the lookup

and updates of the document. All the other caches in the beacon ring serve as backup nodes

for maintaining the document’s lookup information. When the primary beacon point of a

document fails, the lookup and update requests would be handled by one of the backup

nodes. Hence, the lookups and update operations on documents can proceed without in-

terruption even when some individual beacon points experience failures. There are two

basic approaches for replicating the lookup information on the backup nodes, namely, ea-

ger replication and periodic replication. We will explain these two replication schemes in

Section 4.2.1.

The question that has to be addressed is: how is the primary beacon point assignment

done? Or in other words for any document, say Dc which is mapped to beacon ring j,

how do we decide which of the K caches would acts as its primary beacon-point. A simple

and straightforward solution to this problem would be to designate one of the caches in

the beacon ring j to be the primary beacon point of all documents that are mapped to

that particular beacon ring. In this scheme all the other caches in the beacon ring act

as backup nodes. Although, this scheme is attractive due to its ease of implementation,

it has two major disadvantages. First, the cache that is assigned to serve as the primary

beacon point encounters the entire lookup and update loads of all the documents that are

mapped to the bacon ring, and hence can become a hotspot. Second, the scheme is not

adaptive to changing load patterns. In order to address these concerns we propose dynamic

hashing scheme, which not only balances the lookup and update loads among all the caches

belonging to a beacon ring, but is also designed to be adaptive to changing load patterns.

Let us suppose that the K caches belonging to the beacon ring j are represented as

{Ecj0, Ec
j
1, . . . , Ec

j
k−1}. The dynamic hashing technique uses intra-ring hash function for

distributing the documents to the K beacon points. The intra-ring hash is designed as

64

follows. An integer, which is relatively large compared to the number of beacon points

in the beacon ring is chosen and designated as the intra-ring hash generator (denoted as

IntraGen). The range of intra-ring hash values (0, IntraGen−1) is divided into K consecu-

tive non-overlapping sub-ranges represented as {(0,MaxIrH
j
0), (MinIrh

j
1,MaxIrh

j
1), . . . ,

(MinIrh
j
N−1, IntraGen − 1)}. Each edge cache within the beacon ring is assigned to be

responsible for one of such sub-ranges in the sense that this cache will be chosen as the

primary beacon point for all the documents hashed into that sub-range. For example, the

beacon point Ecjl is assigned to be responsible for the range (MinIrH
j
l ,MaxIrH

j
l). The

process of splitting the intra-ring hash value range into a collection of sub-ranges is dynamic.

The sub-ranges are updated periodically to adapt to load pattern changes. We explain the

sub-range determination process in Section 4.2.

The scheme also hashes each document’s URL to an integer value between 0 and

(IntraGen− 1). This value is called the document’s intra-ring hash value or IrH value for

short. For example, for a documentDc, the IrH value would be IrH(Dc) =MD5(URL(Dc))

Mod IntraGen, whereMD5 represents a MD5 hash function, URL(Dc) represents the URL

of the document Dc andMod represents the modulo function. Ecjl will serve as the primary

beacon point of a document Dc, if IrH(Dc) lies within the sub-range currently assigned to

it.

4.2 Determining the Beacon Point Sub-Ranges

In this section we explain the mechanism of dividing the intra-ring hash range into sub-

ranges such that the load due to document lookups and updates is balanced among the

beacon points of a beacon ring. This process is executed periodically (in cycles) within each

beacon ring, and it takes into account factors such as the beacon point capabilities, and

the current loads upon them. Any beacon point within the beacon ring may execute this

process. This beacon point collects the following information from all other beacon points

in the beacon ring.

• Capability: Denoted by Cpjl , it represents the power of machine hosting the cache

Ec
j
l . Various parameters such as CPU capacity or network bandwidth may be used

65

as measures of capability. We assume a more generic approach wherein each beacon

point is assigned a positive real value to indicate its capability.

• Current Sub-Range Assigment: Denoted by (CMinIrH
j
l , CMaxIrH

j
l), it repre-

sents the sub-range assigned to the beacon point Ecjl in the current cycle.

• Current Load Information: Represented by CAvgLoadjl , it indicates the cumula-

tive load due to document lookup and update propagation averaged over the duration

of the current period. The scheme can be made more accurate, if the beacon points

also collect load information at the granularity of individual IrH values, denoted by

CIrHLd
j
l (p), which indicates the load due to all documents whose IrH value is p.

However, the CIrHLd information is not mandatory for the scheme to work effec-

tively.

After obtaining this information the process of determining the sub-ranges for the next

cycle begins. The aim is to update the sub-ranges such that the load a beacon point is likely

to encounter in the next cycle is proportional to its capability. For each beacon point we

verify whether the fraction of the total load on the beacon ring that it is currently supporting

is commensurate with its capability. If the fraction of load currently being handled by a

beacon point exceeds its share then its sub-range shrinks for the next cycle, thus shedding

some of its load. On the other hand if a beacon point is handling a smaller fraction of load,

its sub-range expands increasing its load for the next cycle.

Specifically, the scheme proceeds as follows. First, we calculate the total load being

experienced by the entire beacon ring (represented as BRingLdj), and the sum of the

capabilities of all the beacon points belonging to the ring (represented as TotCpj). Then

for each beacon point we calculate its appropriate share of the total load on the beacon ring

as AptLdjl =
Cp

j
l

TotCpj
×BRingLdj . Now, we examine all the beacon points in the beacon ring

starting from Ec
j
0, and compare their CAvgLd with their AptLd. If CAvgLd

j
l > AptLd

j
l ,

then Ecjl is currently supporting more load than its appropriate share. Hence, the scheme

decides to shrink the sub-range of the beacon point for the next cycle. This is done by

decreasing its CMaxIrH
j
l value. The amount by which the CMaxIrH

j
l is decreased is

66

A

B C

Pc0
0 Pc1

0

0 1 2 3 4 5 6 7 8 9

Cp0
0 = 1

Sub Range = (0, 2)
CAvgLoad= 410

Cp1
0 = 1

Sub Range = (3, 9)
CAvgLoad= 390

17
5

10
0

13
5

30

60

25

50

10
0

50

75

Sub-Range Assignment
for Cycle 1 with Complete

Load Information

Pc0
0 Pc1

0

0 1 2 3 4 5 6 7 8 9

Cp0
0 = 1

Sub Range = (0, 3)
CAvgLoad= 440

Cp1
0 = 1

Sub Range = (4, 9)
CAvgLoad= 360

17
5

10
0

13
5

30

60

25

50

10
0

50

75

Sub-Range Assignment
for Cycle 1 with Partial

Load Information

Pc0
0 Pc1

0

0 1 2 3 4 5 6 7 8 9

Cp0
0 = 1

Sub-Range = (0, 4)
CAvgLoad = 500

Cp1
0 = 1

Sub-Range = (5, 9)
CAvgLoad = 300

17
5

10
0

13
5

30

60

25

50

10
0

50

75

Sub-Range Assignment
for Cycle 0

Figure 16: Illustration of Sub-Range Determination

calculated using the CIrHLd information. CMaxIrH
j
l is decreased by a value t such that

∑CMaxIrH
j
l

p=CMaxIrH
j
l
−t
CIrHLd

j
l (p) ≈ (CAvgLd

j
l − AptLd

j
l). Therefore, the new MaxIrH value

represented as NMaxIrH
j
l would be equal to (CMaxIrH

j
l − t). When the sub range of a

beacon point Ecjl shrinks, some of its load would be pushed to the beacon point Ec
j
l+1. The

scheme takes into account this additional load on the beacon point Ecjl+1 when deciding

about its new sub-range.

We now illustrate the sub-range determination scheme with an example. Consider the

beacon ring with two beacon points Ec00 and Ec
0
1. Let both the beacon points have equal

capabilities, and let IntraGen be 10. Initially the range (0, 9) is divided equally between

the two beacon points. Figure 16-A illustrates this scenario. The vertical bars represent the

update and object lookup loads corresponding to each hash value. As we see equal division

of the intra-ring hash range does not ensure load balancing between the two beacon points

due to the skewness in the load. The total load experienced by the two beacon points in

67

cycle 0 are 500 and 300 respectively. At the end of cycle 0, the sub-ranges are updated

taking into account the current load patterns. Now we consider 2 scenarios. Figure 16-B

represents the first scenario, wherein the beacon points maintain CIrHLd for each hash

value. In this case, two hash values are moved from Ec00 to Ec
0
1. The loads on the two

beacon points would now be 410 and 390 respectively. In the second scenario, which is

represented in Figure 16-C, the beacon points do not maintain the CIrHLd information,

and hence they have to use CAvgLd0
l to approximate the CIrHLd value, which would be

100 for all hash values belonging to Ec00. We shift only one hash value between beacon

points. The loads on the two beacon points would be 440 and 360 thus showing that the

scheme is more accurate when the load information is available at the granularity of IrH

values.

On the other hand if CAvgLd0
l < AptLd0

l then the scheme expands the sub-range of

the beacon point Ec0l by increasing its CMaxIrH value. The amount by which CMaxIrH

is increased is determined in a very similar manner as the shrinking case discussed above.

Thus in this case, Ec0l acquires additional load from the beacon point Ec
0
l+1. In this manner

the sub-range assignments of all the beacon points in the beacon ring are updated. Some

beacon points might find it costly to maintain the CIrHLd information for each of the hash

value within its sub-range, in which case the CIrHLd0
l (p) for all hash values in the sub-

range of the beacon point Ec0l are approximated by averaging CAvgLd
0
l over its sub-range

of IrH values.

After determining the sub-range assignments for the next cycle, all the caches in the

cache ring and the origin server are informed about the new sub-range assignments. Beacon

points that have been assigned new IrH values obtain lookup records of the documents

belonging to the new IrH values from their current beacon points.

The origin server and the caches within a cloud can determine the beacon point of any

document by a simple and efficient two-step process. Suppose a cache cloud has K beacon

rings, and each beacon rings has M beacon points. In the first step, the beacon ring of the

document is determined by the random hash function. For example, if j =MD5(URL(Dc))

Mod K, then the ring-j would be the beacon ring of Dc. In the second step, out of the M

68

beacon points within the jth beacon ring, the beacon point of Dc is determined through the

intra-ring hash function as we discussed before. The beacon point whose current sub-range

contains IrH(Dc) would be the beacon point of Dc.

In our scheme, the document lookup and update protocols work as follows. When a

cache needs to locate a document Dc, it determines the document’s primary beacon point

using the two-step process described above. Then it contacts the document’s beacon point

and obtains the list of caches that hold the cached copies of the document within the given

cache cloud. When the server needs to communicate an update to the document Dc, it uses

the two-step process and determines the document’s beacon point for each cache cloud. It

sends a document update message to these beacon points (one for each cloud), which in

turn communicate it to the caches in their cache clouds, which are currently holding the

document.

4.2.1 Providing Resilience to Beacon Point Failures

As we explained previously, the lookup and the update information available at a document’s

primary beacon point is replicated at the other beacon points in the document’s beacon

ring for providing resilience to beacon-point failures. In this section we explain two different

strategies for replication of the beacon information, namely, eager replication scheme and

periodic replication scheme. In this discussion we refer to the lookup information that is

maintained at a document’s primary beacon point as the master-copy of document’s beacon

information, and the copies present at the other beacon points as backup-replicas.

In the eager replication scheme the backup-replicas of the beacon information are always

consistent with the information at the primary beacon point. This means that any changes

to the lookup and update information of a document are immediately reflected at all the

backup replicas. For example, when a cache within the cloud stores an additional copy

of a document, or evicts an existing document, all the replicas of the document’s lookup

information (available at the beacon points in the document’s beacon ring) are updated

immediately to reflect the change. When a beacon point fails, one of the other beacon points

within beacon ring assumes the lookup and update responsibilities of all the documents that

69

were being handled by the failed beacon point. As all the replicas of the lookup information

are consistent, the backup node has complete and up-to-date information to accurately

handle the lookups and updates of all the documents that were being handled by the failed

beacon point. When a failed beacon point is reactivated, it obtains the up-to-date lookup

information from any of the other beacon points that are currently alive, and then resumes

its normal operation.

In contrast to the eager replication scheme, the periodic replication does not enforce

strict consistency between the lookup information at the primary beacon point and its

backup copies. In other words, in the periodic replication scheme, there are brief durations

of time in which the backup copies of the lookup information may be slightly out of sync

when compared with the master lookup information available on the primary beacon point.

Periodic replication derives its name from the fact that in this scheme the backup replicas of

the lookup information are made consistent with the master copy available at the primary

beacon point periodically. For example, the backup replicas may be synchronized with the

master-copy at the end of each load balancing cycle.

The main observation that motivates the periodic replication is that the lookup infor-

mation of a document is a soft state, which can be recovered even when the primary beacon

point fails and no other available replica is completely up-to-date. We now briefly outline

the periodic replication mechanism. As we mentioned above, in the periodic replication

the backup replicas of the lookup information are synchronized with the master copy that

is available at the primary beacon point at the end of each pre-defined time period called

the beacon synchronization cycle. Within a beacon synchronization cycle any updates to

the lookup information of a document (such as caches storing additional copies or evicting

existing copies of the document) occurs only at the document’s primary beacon point if it

is alive, or at the backup node that is currently handling it lookup and update operations.

Let us now consider what happens when a document’s primary beacon point fails. Sup-

pose the cache Ecjl is the primary beacon point of an arbitrary document Dc. As in the

eager replication case, if Ecjl fails, one of the backup replicas take over the lookups and

update operations of all the documents (including Dc) that were being handled by the

70

failed cache. Without loss of generality, let us assume that the cache Ecjl+1 takes over the

lookup and update operations from Ec
j
l . However, it should be noted that due to periodic

replication, Ecjl+1 may not have the most up-to-date lookup information of the documents

which it takes over from the failed cache Ecjl . Hence the cache Ec
j
l+1 marks the lookup

information of these documents as out-of-sync.

We will now explain how the update and lookup operations of Dc are handled in the

periodic replication when Dc’s lookup information is marked as out-of-sync. First, let us

consider the update operation. On detecting the failure of Dc’s primary beacon point (Ecjl),

the origin server sends the update message to the backup node (Ecjl+1). The cache Ec
j
l+1

in turn sends the update message to all the caches in the cloud. However, this is a special

update message, wherein the cache Ecjl+1 notifies that the lookup information regarding the

document is out-of-sync, and asks all the caches that hold the document to re-register with

it. The caches within the cloud that contains the document re-register with Ecjl+1. Thus,

Ec
j
l+1 recovers the up-to-date lookup information of the document Dc, and hence removes

the out-of-sync tag from Dc’s lookup information.

Similarly, a cache that needs to retrieve Dc, on noticing that its primary beacon point

has failed contacts Ecjl+1. Now there are two cases to consider. In the first case the

lookup information of Dc has been recovered through a previous update operation on Dc.

In this scenario, Ecjl+1 just forwards the list of caches that currently hold a copy of the

document. In the second case the lookup information of Dc is marked as out-of-sync. In

this scenario, Ecjl+1 sends the lookup information it currently holds to the requesting cache,

but it explicitly states that the lookup information may not be up-to-date. In this case, there

is a small chance that the lookup information is slightly stale (the lookup information might

indicate that Dc is available at a cache, when it is actually not present, and vice-versa).

Our experiments show that the probability of a cache receiving stale lookup information is

very small. The requesting cache then decides whether to contact one of the caches that is

supposed to contain the document as per the lookup information it received, or to contact

the origin server directly.

When the primary beacon point of Dc (Ecjl) is reactivated it obtains the current lookup

71

information of all the documents that are assigned to it from (Ecjl+1) and resumes the

lookup and update functionalities and notifies the origin server and the other caches that

it has recovered from the failure. In the rare event of all the caches in a beacon ring

failing simultaneously, the lookups and updates of the documents are handled by sending

the appropriate messages to all the caches in the cloud.

We now briefly discuss the relative pros and cons of the eager and the periodic replication

schemes. The eager replication scheme maintains all the replicas of the lookup information

consistent and up-to-date. Hence, a cache trying to retrieve a document always receives

up-to-date lookup information. Further, with eager replication there is no need to flood the

network with lookup and update messages unless all the caches belonging to a beacon ring

have failed simultaneously. However, the disadvantage of the eager replication scheme is

that it entails significant message costs. Whenever a cache in the cloud stores an additional

copy of a document or evicts an existing copy, all the beacon points in the corresponding

beacon ring have to be informed. On the other hand, periodic replication requires a single

message each time a cache in the cloud stores or removes a document copy. Therefore, the

message costs of the periodic replication are considerably lower when compared with that of

the eager replication scheme. But, with periodic replication there is a small chance that a

cache trying to retrieve a document might receive lookup information that is slightly stale.

Our experiments show that the probability of a cache receiving stale beacon information is

very low. Therefore, we advocate the periodic replication, unless the rate of beacon point

failure is very high.

4.3 Utility-based Document Placement in Cooperative EC

Grid

In this section we consider the third aspect of cooperation in the EC grid, which is designing

effective cache management policies for caches in the EC grid. We are interested in design-

ing cache management policies that take into account the benefits and costs of caching

documents, and are sensitive to the on-going cooperation among the caches belonging to

a cache cloud. One such cache management scheme is the document placement in cache

72

clouds.

First, we will briefly describe the document placement problem. Let us consider a cache

cloud with N caches. Suppose the cache Ecjl receives a client request for document Dc,

which is not available locally (i.e., the request is a local miss). The document may be

available in one or more caches within the cloud, or it might have to be retrieved from the

origin server. Suppose, the document is available in the cloud, then should Ec
j
l make a

local copy of the document Dc. On the contrary, if the document is not available at any

of the caches in the cloud, should it be stored in one of the caches in the cloud, and if so,

where (in which cache) should it be stored? Another cache management policy that bears

resemblance to document placement is the document replacement policy. The problem here

is to decide which documents that are currently in the cache should be evicted in order

to create disk-space for an incoming document. We discuss more about the relationship

between these two mechanisms at the end of this section.

In this thesis, we have addressed the document placement problem by proposing a

document placement technique, called the utility-based document placement scheme. This

scheme takes into account the cooperation among the caches belonging to a cloud. Fur-

ther, as the name suggests, the caching decisions in our scheme rely upon the utility of a

document-copy to the cache storing it, and to the entire cache cloud. This value is termed

as the utility value of the document copy, and is represented as Utility(Dc) for document

copy Dc. When a cache retrieves a document it calculates the document’s utility value.

Based on this utility value the cache decides whether or not to store the document.

The utility of document copy Dc estimates the benefit-to-cost ratio of storing and main-

taining the new copy. A higher value of utility indicates that benefits outweigh the costs,

and vice-versa. The costs of caching dynamic documents are two fold, namely, the consis-

tency maintenance costs and the storage costs. Consistency maintenance costs correspond

to the overheads involved in maintaining the freshness of the cached copy of a document.

Storage costs correspond to physical storage space needed for storing the document copy.

On the other hand caching a document copy benefits the edge network by reducing the

server load, network load and the client latency. Our formulation of the utility function has

73

four components. Each of these components quantifies one aspect of the interplay between

benefits and the costs. We now briefly discuss each of these components. Throughout this

discussion we assume that a cache Ecjl has retrieved the document copy Dc, and is calcu-

lating its utility value to decide whether to store it locally.

Document Availability Component

Represented DAIC(Dc,Ecjl), this component quantifies the improvement in the avail-

ability of the document in the cache cloud achieved by storing the document copy at Ecjl .

Improving the availability of a document increases the probability that a future request for

the document would be served within the cache cloud. Let Rblty(Ecqp) denote the relia-

bility of the cache Ecqp. The current document availability of document Dc is computed

as CAvblty(Dc) =
∑

Ec
q
pcontainsDcRblty(Ec

q
p). We note that CAvblty(Dc) becomes 0 when

Dc is not currently stored at any cache in the cache cloud. If an additional copy of the

document is stored at the cache Ecjl , it improves the document availability by Rblty(Ec
j
l).

Document availability improvement component is now defined as:

DAIC(Dc,Ecj
l
) =

MaxV alue If CAvblty(Dc) = 0

Rblty(Ec
j
l
)

CAvblty(Dc)
Otherwise

Here MaxV alue denotes a large positive real number.

Disk-Space Contention Component

This component captures the storage costs of caching the document copy at Ecjl in terms

of the disk-space contention at Ecjl . The disk-space contention at the cache Ec
j
l determines

the time duration for which the document can be expected to reside in the cache Ecjl before

it is replaced. Suppose the cache cloud already contains a copy of the document at cache

Ec
q
p. If the disk space contention at that cache is lower than that of cache Ec

j
l , then even if

we were to make a new copy at the cache Ecjl , the new copy would removed earlier than the

existing copy. Hence, the benefits of storing the new copy are limited, whereas it adds to

the disk-space contention at Ecjl . On the other hand if the disk-space contention at Ec
j
l is

significantly lower than that of Ecqp, the new copy is expected to remain in the cache much

74

longer than the copy at Ecqp benefiting the cache cloud for a longer duration. We use the

concept of cache expiration age [88] to accurately quantify the disk space contention at edge

caches. Higher the cache expiration age of a cache, the lower is its disk space contention,

and vice versa.

If the cache Ecjl retrieves the document Dc from another cache in the cache cloud, say

Ec
q
p, then the disk-space component for documentDc is defined as the ratio of the expiration

age of Ecjl to the expiration age of Ec
q
p. However, if the document is not available in the

cache cloud, the disk-space component is assigned a large positive value, since it is always

advantageous to store a copy of Dc.

DsCC(Dc,Ecj
l
) =

CacheExpAge(Ec
j
l
)

CacheExpAge(Ec
q
p)

If Dc is retrieved fromEcqp

MaxV alue If Dc is retrieved from server

A higher value of DsCC(Dc,Ecjl) implies that the new document copy is likely to remain

in the cache cloud for a duration than the old one, and it is beneficial to store this copy.

Consistency Maintenance Component

Denoted by CMC(Dc,Ecjl) this component accounts for the costs incurred for main-

taining the consistency of the new document copy at Ecjl , and the advantages that are

obtained as a result of storing Dc at Ecjl by avoiding the cost of retrieving the document

from other caches on each access. Suppose we observe the access and the update patterns

of the document Dc at cache Ecjl for tw time units. Let there be AccCount accesses during

this time period. An access Av is termed as an updated-access if the document Dc is updated

between the accesses Av−1 and Av, and as nonupdated-access otherwise. Let NonUpCount

represent the number of nonupdated-accesses within the time duration tw. The consistency

maintenance component is obtained as:

CMC(Dc,Ecj
l
) =

NonUpCount

AccCount

A high value of CMC(Dc) indicates that the document Dc is accessed more frequently than

it is updated, and vice-versa

75

Access Frequency Component

The final component of our utility function quantifies how frequently the document Dc

is accessed in comparison to other documents in the cache. If access frequency of Dc at

the cache Ecjl is high when compared to other documents in the cache, it is advantageous

to store it. Let ReqCount(Dc,Ecjl , Tz) indicate the number of requests to the document

Dc at cache Ecjl in the past Tz time units, TotReqs(Ec
j
l , Tz) denote the total number

of client requests received at cache Ecjl in the past Tz time units, and let NumDocs(Ecjl)

represent the total number of documents currently cached at Ecjl . Therefore, the mean of the

number of requests received by the documents in the cache is given by MnReqs(Ecjl , Tz) =

TotReqs(Ecj
l
,Tz)

NumDocs(Ecj
l
)
. The access frequency component of the utility function is computed as

below.

AFC(Dc,Ecj
l
) =

ReqCount(Dc,Ecj
l
, Tz)

MnReqs(Ecj
l
, Tz)

The Utility Function

The above four components form the building blocks of the utility function. We observe

that for each component, a higher value implies that benefits of storing Dc are higher than

the overheads, and vice-versa. We define the Utility of storing the document Dc at cache

Ec
j
l , denoted as Utility(Dc,Ec

j
l), to be a weighted linear sum of the above four components.

Utility(Dc,Ecj
l
) = WDAIC ×DAIC(Dc,Ecj

l
) +WDsCC ×DsCC(Dc,Ecj

l
)

+WCMC × CMC(Dc,Ecj
l
) +WAFC ×AFC(Dc,Ecj

l
)

In the above equation WDAIC , WDsCC , WCMC , and WAFC are positive real constants

such that WDAIC +WDsCC +WCMC +WAFC = 1. These constants are assigned values

reflecting the relative importance of the corresponding component of the utility function

to the performance of the system. For example, if the documents in the system have high

update rates, then WCMC is assigned a high value. Similarly if disk-space availabilities at

the caches are limited WCMC would be set to a high value.

76

If the value of the utility function Utility(Dc,Ecjl) exceeds a threshold, represented as

UtlThreshold(Ecjl), then Dc is stored at cache Ec
j
l . Otherwise the edge cache Ec

j
l does not

store a local copy of Dc. Concretely, suppose a client-request for document Dc encounters

a local miss at cache Ecjl . Then Ec
j
l retrieves the document either from another cache in

the cache cloud, or from the origin server. If the document Dc does not currently exist

in the cache cloud, Ecjl stores the document Dc and registers it with the beacon point of

Dc. This is because, in this scenario the DAIC and the DsCC components of its utility

function assume very high values. If at least one cache in the cache cloud contains Dc,

then Ecjl does not decide immediately whether to store the document. Instead, it monitors

the pattern of requests and updates to the document for fixed time duration in order to

evaluate its utility value. At the end of this time duration, the cache evaluates the utility

function Utility(Dc,Ecjl). The cache stores the document Dc, only if Utility(Dc,Ec
j
l) ≥

UtlThreshold, in which case it registers the new copy with its beacon point. The pseudo-

code of the utility-based document placement is outlined in Algorithm 1.

Algorithm 1 Utility-based Document Scheme: Algorithm performed by a cache on receiv-
ing a request for document Dc

if Dc is available locally then

Serve request and update document statistics
else

Contact Dc’s beacon point and obtain lookup information
if Dc is not available within cache cloud then

Obtain Dc from the origin server
Store Dc locally
Register the new copy with beacon point

else

Obtain Dc from one of the caches currently holding Dc
Along with Dc obtain the responding cache’s Expiration Age
if A DocumentRecord for Dc exists in DocumentMonitorList then

Update the DocumentRecord
if DocumentRecord of Dc has resided in the DocumentMonitorList for more than
MonitorDurationThreshold then

Remove DocumentRecord of Dc
Compute the utility function Utility(Dc,Ecj

l
)

if Utility(Dc,Ecj
l
) ≥ UtlThreshold(Ecj

l
) then

Store Dc locally
Register the new copy with beacon point

else

Discard the DocumentRecord of Dc
end if

end if

else

Create a DocumentRecord for Dc and store it in DocumentMonitorList

end if

end if

end if

77

We note that the utility function accurately quantifies the costs and benefits of caching

dynamic documents, and it can also be adopted as the cost function in cost-based document

replacement policies such as the Greedy-dual size [29], Greedy-dual* [21] algorithms.

4.3.1 Comparing Document Placement and Document Replacement

In this section we compare and contrast two categories of cache management schemes,

namely, the document placement policies and document replacement policies. Before dis-

cussing the similarities and the differences between the two, we will briefly describe the

document placement and document replacement problems.

As we explained in the beginning of Section 4.3, the problem of document placement is

to decide whether a documentDc that has been retrieved by a cache Ecl, should be stored at

the cache Ecl, or whether it should be stored at a different cache in the cloud, or should just

be discarded after serving the user request. In contrast the document replacement problem

can be summarized as follows: Suppose the cache Ecl wants to store a document Dc locally,

but its storage-space is already full. Now the cache has to evict some of the documents

that are currently stored by it, so that the incoming document can be stored. In this

scenario, deciding which documents to evict is known as the document replacement problem.

While researchers have proposed many techniques to address the document replacement

problem [21, 29, 38, 80], the studies on the document placement problem are relatively few

in number [61, 88, 102].

Both document placement and document replacement problems are concerned with

managing the available resources such as disk-space and network bandwidth effectively.

The goal of both problems is to maximize the benefits of caching. The document placement

approach may be considered as a proactive approach to resource management, whereas

document replacement can be regarded as a reactive approach, since it is triggered when

the available resources such as disk-space become insufficient. We believe that caches need

to implement a good document placement as well as a good document replacement scheme

in order to effectively manage their resources.

In the context of cooperative EC grid, incorporating proactive approach through good

78

document placement schemes provides some unique benefits. First, utilizing resources ju-

diciously even when the resource consumption at individual caches have not reached their

respective limits is likely to benefit the performance of the cooperative cache group. For

example, suppose a cache Ecl retrieves a document Dc which is being modified very fre-

quently. If the cache stores this document, Dc’s beacon point would have to communicate

Dc’s updates to Ecl until it is replaced, which would place significant load on the beacon

point and on the network. This cost could have been avoided had the cache Ecl made the

placement decision judiciously. Similarly, suppose the cache Ecl retrieves a document Dc1,

which is available at many other caches in the cloud. Then making an additional copy

at Ecl blindly, could result in the replacement of one or more documents, which may not

available in any other caches within the cache cloud. This affects the cumulative hit rate of

the cache cloud.

The second advantage of document placement scheme is the ease and efficiency of its

implementation in a cooperative cache group setting. For cooperative cache groups, good

placement and replacement schemes have to take into account the availability of documents

in various caches of the cache group. In cooperative EC grid, this information is available

at the beacon point. When a cache contacts the beacon point in order to retrieve a docu-

ment, the document’s beacon point can also send this information along with lookup data.

Therefore, the cache can obtain all the information needed to make the placement deci-

sions at no extra-cost. In contrast, if a cache has to implement a cooperative replacement

scheme, it has to obtain the availability information for a subset of documents that would

be possible candidates for eviction. These documents may have been assigned to different

beacon points. Hence, for each document replacement decision, the cache might have to

contact various beacon points, which makes the cooperative replacement strategy expen-

sive to implement. Considering these factors, we have investigated the document placement

problem, and we have proposed the utility-based document placement scheme.

79

4.4 Experiments and Results

In this section we discuss the experiments we performed to evaluate our cache cloud design

architecture. We have evaluated the proposed schemes through trace-based simulations

of an edge cache network. The simulator can be configured to simulate different caching

architectures such as edge network without cooperation, cooperative caching with static

hashing, and cooperative cache clouds with dynamic hashing. Further, it can also simulate

different failure resilience mechanisms, namely, no failure resilience, failure resilience with

eager replication, and failure resilience with periodic replication.

Each cache in the cache cloud receives requests continuously according to a request-trace

file. If the requested document is available within the cache it is recorded as a local hit.

Otherwise, if the document is available within the cache cloud, the request is a group hit.

If the document is not available in any of the caches in the cache cloud, then the request

is a miss. In our simulation the server continuously reads from an update trace file. Upon

reading an update entry for a document Dc, the server sends the updated version of Dc to

its beacon points within each cache cloud, which is then distributed by the beacon points

to all the caches in their cache clouds, which are currently holding the document. The

document request rates, the document update rate, the number of caches and the number

of beacon rings in the cache cloud are system parameters, and can be varied.

We have used two datasets for our experiments. The first dataset, which we refer to

as the Sydney dataset is a real trace from a major IBM sporting and event web site 1.

Detailed description of this trace is given in Chapter 2. The second dataset is a synthetic

trace, wherein both access and follow the Zipf distribution with the Zipf parameter value

set to 0.9. This workload, called as the Zipf-0.9 dataset, contains request and update entries

corresponding to 25,000 unique documents. Each edge cache is configured to have 10% of

the total disk-space needed to store all the documents in the dataset. The standard LRU

algorithm is used for document replacements at all caches. All the measurements reported

in this thesis were taken when the system reached its steady state.

1The 2000 Sydney Olympic Games web site

80

4.4.1 Evaluating the Effectiveness of Beacon Rings

In the first set of experiments we study the load balancing properties of the dynamic hashing

mechanism. All the beacon points within the cache cloud are assumed to be of equal

capabilities, which implies that perfect load balancing is achieved when all the beacon

points encounters same amount of load. In all the experiments in this set, the intra-ring

hash generators (IntraGens) are set to 999 for all beacon rings in the cache cloud and the

cycle length of sub-range determination is set to 1 hour. We use the coefficient of variation

of the loads on the beacon points to quantify load balancing. Coefficient of variation is

defined as the ratio of the standard deviation of the load distribution to the mean load.

The lower the coefficient of variation, better is the load balancing.

1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

1800

2000
Loads at Various Beacon Points

Beacon Points in Decreasing Load Order

Lo
ad

 (N
um

. U
pd

at
es

 &
 L

oo
ku

ps
 p

er
 U

ni
t T

im
e)

Mean Load
Dynamic Hashing
Static Hashing

Figure 17: Load Distribution among Beacon Points for Zipf-0.9 Data Set

First, we compare the load balancing accomplished by the static and the dynamic hash-

ing schemes in a cache cloud with 10 caches. For the dynamic hashing scheme the cache

cloud is configured to contain 5 beacon rings, each with 2 beacon points. The bar-graphs

in Figure 17 and Figure 18 show the load distribution among the beacon points for the

static and the dynamic hashing schemes on the Zipf-0.9 synthetic data set and the Sydney

datasets respectively. On the X-axes of these graphs are the beacon points in the decreasing

order of their loads, and on the Y-axes are the loads in terms of the number of updates

and lookups being handled by the beacon points per unit time. The dashed-lines in the

81

two graphs indicate the mean value of the loads on the beacon points. The Zipf-0.9 dataset

induces a high degree of load imbalance in the cache cloud with static hashing. In this

case, the load on the most heavily loaded beacon point is 1.9 times the mean load of the

cache cloud. In the dynamic hashing scheme this ratio decreases to 1.2, thus providing 37%

improvement over static hashing scheme. The dynamic hashing scheme also provides a 63%

improvement on the coefficient of variation when compared with static hashing. On the

Sydney data set, the dynamic hashing scheme improves the ratio of the heaviest load to

the mean load by around 20%, and the coefficient of variation by 63%. For this dataset,

the ratio of heaviest load to mean load for the dynamic hashing scheme is just 1.06, thus

showing that this scheme achieves very good load balancing.

1 2 3 4 5 6 7 8 9 10
1000

1200

1400

1600

1800

2000

2200

2400
Loads at Various Beacon Points

Beacon Points in Decreasing Load Order

Lo
ad

 (N
um

. U
pd

at
es

 &
 L

oo
ku

ps
 p

er
 U

ni
t T

im
e)

Mean Load
Dynamic Hashing
Static Hashing

Figure 18: Load Distribution among Beacon Points for Sydney Data Set

The next experiment studies the effect of the size of the beacon rings on the load

balancing. We evaluate the dynamic hashing scheme on cache clouds consisting of 10, 20

and 50 caches. For each cache cloud we consider three configurations in which each beacon

ring contains 2, 5 and 10 beacon points. Figure 19 indicates the results of the experiment

on the Olympics dataset. The dynamic hashing scheme with 2 beacon points per ring

provides significantly better load balancing in comparison to static hashing. When the size

of the beacon rings is further increased we observe an incremental improvement in the load

balancing achieved by the dynamic hashing scheme. The observation that bigger beacon

82

rings yield better load balancing can be explained as follows: The beacon point sub-range

determination process tries to balance the load only among the beacon points within each

beacon ring. Larger beacon rings result in the load being balanced among larger number of

beacon points, and hence provide better load balancing.

10 20 50
0

0.1

0.2

0.3

0.4

0.5

0.6
Effect of Beacon Ring Size on Load Balancing

Number of Caches in Cache Cloud

C
oe

ff
ic

ie
nt

 o
f V

ar
ia

tio
n

Static Hashing
Dynamic Hashing: 2 Beacon Points in Ring
Dynamic Hashing: 5 Beacon Points in Ring
Dynamic Hashing: 10 Beacon Points in Ring

Figure 19: Impact of Beacon Ring Size on Load Balancing

In the third experiment, we study the impact of the dataset characteristics on the static

and the dynamic hashing schemes. For this experiment we consider several datasets all

of which follow the Zipf distribution with Zipf parameters ranging from 0.0 to 0.99. The

skewness of the load increases with increasing value of the Zipf parameter. Figure 20 shows

the coefficient of variation values at different Zipf parameters. At low Zipf values both

schemes yield low coefficient of variation values. As the skewness in the load increases

the coefficient of variation values also increase for both schemes. However, the increase is

more rapid for the static hashing scheme. At Zipf parameter value of 0.9, the coefficient of

variation for the static hashing scheme is 0.65, whereas it is 0.44 for the dynamic hashing

scheme.

4.4.2 Evaluating Failure Resilience Properties

One of the motivating reasons for organizing the caches in a cloud into beacon rings was

to provide resilience to failure of individual beacon points. In this set of experiments we

evaluate the performance of the two approaches for providing resilience to beacon point

83

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Effect of Dataset on Load Balancing

Zipf Paramter

C
oe

ff
ic

ie
nt

 o
f V

ar
ia

tio
n

Dynamic Hashing
Static Hashing

Figure 20: Impact of Zipf parameter on load balancing

failures, namely, the eager and the periodic replication mechanisms.

Similar to the previous set of experiments, we consider a cache cloud in which the caches

are organized into beacon rings. In this set of experiments the individual beacon points fail

at arbitrary points of time. We consider a simple, yet commonly occurring, failure mode

where in the beacon points stop responding to all document lookup requests from other peer

caches, and to the update messages from the server. There are other failure modes such

as beacon points, maliciously or otherwise, not responding to particular caches or server,

or not responding to particular type of requests, or sending out spurious update messages.

Providing resilience to these complex types of failures is beyond the scope of current work.

The failure pattern is modeled as a Weibull process. Weibull process is commonly used

by researchers in reliability engineering to model failure patterns of systems and system

components. The Weibull process is characterized by the probability distribution function

f(t) = κλκtκ−1e−(λt)κ , where λ is called the scale parameter and the κ is called the shape

parameter. The exponential process is a special case of the Weibull process, wherein κ =

1. When κ assumes values greater than 1.00, we obtain a class of distributions having

increasing failure rates (IFR). In IFR distributions, the probability of a component failing

during an arbitrary time period (T0 + Td) given that the component has not failed until

the time instant T0, grows with increasing values of T0. Analogously, the failure of a

84

component is said to follow decreasing failure rate (DFR) process if the probability of its

failure during the arbitrary time period (T0 + Td) given that it has not failed until time T0

decreases with increasing values of T0. When κ is set to values that are lesser than 1, the

Weibull process yields a class of distributions that demonstrate this behavior. It is widely

believed that the lifetime distributions of most practical systems/components demonstrate

IFR characteristics. Accordingly, in our experiments κ is set to various values all of which

are greater than 1.00. In our context, IFR lifetime distributions imply that a beacon point

that has not failed in the recent past has a higher probability of failure than a beacon

point that has failed and has been restored recently. With the Weibull failure model the

mean lifetime of a beacon point is given by the formula µ = 1
λ
Γ(1 + κ−1), and its standard

deviation is provided by σ2 = 1
λ2 [Γ(1 + 2κ

−1) − Γ2(1 + κ−1)]. Here Γ(z) represents the

Gamma function.

In our experiments the beacon are active for relatively long stretches of time. Compar-

atively, the time duration for which a failed beacon point remains non-functional is very

short, at the end of which it is reactivated, and begins the recovery process.

In our experiments the simulation prototype can be configured to support failure re-

silience through eager replication or periodic replication. It can also be configured to simu-

late the simple hashing scheme wherein cache clouds do not provide any resilience to failures

of individual beacon points. In the case that the cache clouds do not provide failure re-

silience, the lookups and updates of those documents that were assigned to the failed beacon

points are handled by flooding the cloud with the respective messages. We measure the

performance of the three schemes through the average number of messages circulated in the

cloud per unit time.

Figure 21 compares the dynamic hashing scheme (with failure resilience support through

eager or periodic replication) and the simple hashing scheme (with no failure resilience

support) with respect to their beacon information availability. In this experiment each

beacon ring is configured to have 2 beacon points. The X-axis of the graph indicates the

failure rate of the individual beacon points and the Y-axis shows the percentage of lookup

and update requests for which the beacon information was not available. It can be seen

85

0.01 0.0125 0.015 0.0175 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Effects of Failure Resilience on Availability

Beacon Point Failure Duration (%age)

B
ea

co
n

U
na

va
ila

bl
e

R
eq

ue
st

s
(%

ag
e)

Simple Hashing (10 Caches in Cloud)
Dynamic Hashing (10 Caches in Cloud)
Simple Hashing (6 Caches in Cloud)
Dynamic Hashing (6 Caches in Cloud

Figure 21: Improvement in Beacon Information Availability

from the graph that the dynamic hashing scheme with failure resilience support provides an

order of magnitude improvement in beacon information availability over the static hashing

scheme with no failure resilience. For example, when the failure rate is set to 0.0125 the

percentage of requests encountering unavailable beacon information is around 1.28% for the

simple hashing scheme, whereas it is 0.17% for the dynamic hashing scheme with failure

resilience support. The observed results can be explained as follows: In simple hashing

scheme, when a beacon point fails, the lookups and updates of all the documents mapped

to it encounter unavailable beacon information, whereas in the dynamic hashing scheme a

lookup or an update request for a document encounters the unavailable beacon information

condition only when all the beacon points belonging to the document’s beacon ring have

failed.

Next, we study the performance of the various failure resilience schemes with respect

to the message loads induced by them within the cache cloud. In Figure 22 we plot the

number of lookup/update messages circulated per unit time with each of the three schemes

in a cache cloud consisting of 5 beacon rings, and each beacon ring containing 2 beacon

points (the cloud contains 10 caches in total). The X-axis of the graph indicates the failure

rate of individual beacon points, and the Y-axis shows the number of messages circulated

in unit time.

86

0.01 0.0125 0.015 0.0175 0.02
2500

3000

3500

4000

4500

5000

5500

6000

6500

7000
Effect of Beacon−Ring Failure Resilience on Message Load

Beacon Point Failure Rate

N
um

be
r

of
 M

es
sa

ge
s

in
 U

ni
t P

er
io

d

Simple Hashing (No Failure Resilience)
Dynamic Hashing with Periodic Replication
Dynamic Hashing with Eager Replication

Figure 22: Network Load with Various Failure Resilience Schemes (10 Caches Per Cloud)

A few interesting observations emerge from the graph in Figure 22. First, as we men-

tioned in Section 4.2.1, eager replication scheme is costly in terms of the message cost.

The higher message cost of the eager replication is caused by the necessity to reflect any

changes in the lookup information of a document on all its backup replicas immediately. In

fact, when the failure rates of the beacon points are low, the no failure resilience scheme

(in which the lookups and updates of the documents that were assigned to a failed beacon

point are handled through flooding) better than the eager replication scheme. However, as

the failure rate increases, the number of message in the no resilience scheme grows at a fast

rate, and it overtakes the message cost of the eager replication scheme when the failure rate

is around 0.018. This phenomenon is due to the fact that as the failure rate increases, the

frequency of cloud-wide flooding in the no resilience scheme raises sharply.

The periodic replication scheme performs better than both the no failure resilience

approach and the eager replication scheme at all values of failure rates. For example, when

the failure rate is 0.010, the message cost of periodic replication scheme is around 36% less

than that of the no resilience approach, and it is 51% less than the eager replication scheme.

Figures 23 shows the performance of the three schemes on cache clouds having 6 caches.

From these results, we observe that the relative performance of the three schemes is similar

to that of the cache cloud with 10 caches, albeit on different scales.

87

0.01 0.0125 0.015 0.0175 0.02
1500

1750

2000

2250

2500

2750

3000

3250

3500

3750
Effect of Beacon−Ring Failure Resilience on Message Load

Beacon Point Failure Rate

N
um

be
r

of
 M

es
sa

ge
s

in
 U

ni
t P

er
io

d

Simple Hashing (No Failure Resilience)
Dynamic Hashing with Periodic Replication
Dynamic Hashing with Eager Replication

Figure 23: Network Load with Various Failure Resilience Schemes (10 Caches Per Cloud)

Although the periodic replication scheme provides significant performance benefits, it

suffers from the drawback that a cache trying to retrieve a document might receive stale

lookup information. In Section 4.2.1, we had mentioned that this would not be a severe

drawback as the probability of its occurrence is very low. In the next set of experiments

we show the validity of this argument by measuring the percentage of lookup requests that

receive stale information.

In Figure 24 and Figure 25, we plot the percentage of lookup request receiving stale

beacon information at various values of the synchronization cycle duration for a cache cloud

with 10 caches and 6 caches respectively. The duration of the synchronization cycle is likely

to have considerable impact on the percentage of lookups receiving stale beacon information,

because it determines how frequently the backup copies of the lookup information are made

consistent with the master copy.

We observe that the percentages of lookups receiving stale information are very small

at both cache cloud sizes. For a cache cloud with 10 caches, when the failure rate is

0.010, the percentage of stale lookups ranges between 0.03% and 0.08% as the duration

of the synchronization duration varies from 10 time units to 500 time units. For the same

cache cloud the percentage of lookups receiving stale beacon information range from 0.033%

to 0.095%, when the failure rate is 0.02%. Hence, we see that even the duration of the

88

10 20 50 200 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
Staleness Due to Periodic Replication

Synchronization Duration (# time units)

R
eq

ue
st

s
E

nc
ou

nt
er

in
g

S
ta

le
 B

ea
co

n
In

fo
rm

at
io

n
(%

ag
e)

Failure Rate: 0.010
Failure Rate: 0.015
Failure Rate: 0.020

Figure 24: Staleness of Beacon Information in Periodic Replication (10 Caches in Cloud)

synchronization cycle is significantly long, the percentage of stale lookups is very low. It

should also be noted that a stale lookup does not affect the correctness of the document

retrieval protocol. In the worst case, a cache receiving stale lookup information might

have to contact the origin server, although the document might already be available in the

cache cloud. Considering the low message overhead and the very small probability of stale

lookups, we conclude that periodic replication scheme is a very good choice for providing

resilience to beacon point failures.

10 20 50 200 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Staleness Due to Periodic Replication

Synchronization Duration (# time units)

R
eq

ue
st

s
E

nc
ou

nt
er

in
g

S
ta

le
 B

ea
co

n
In

fo
rm

at
io

n
(%

ag
e)

Failure Rate: 0.010
Failure Rate: 0.015
Failure Rate: 0.020

Figure 25: Staleness of Beacon Information in Periodic Replication (6 Caches in Cloud)

89

4.4.3 Evaluating Utility-based Placement Scheme

In this section we present the experimental evaluation of the utility-based document place-

ment scheme. We study the performance of the proposed scheme by comparing it 2 other

schemes. The first scheme is the ad-hoc document placement mechanism, wherein a cache

stores every document for which it receives a client-request. The second scheme is the

beacon-point placement. In this scheme, each document is only cached at its beacon point.

Any other cache receiving a request from a client retrieves the document from its beacon

point and serves the request.

In the first experiment in this set we consider a cache cloud comprising of 10 caches.

On this cache cloud we simulate the various document placement policies. The caches in

this experiment are assumed to have unlimited amount of disk-space. Therefore the disk-

space component of the utility function is turned off by setting WDsCC to 0. The weights

of availability, consistency maintenance, and access frequency components are all set to

0.33. In this experiment the access rates at caches are fixed, whereas we vary the document

update rate to study the effect of the five document placement policies.

10 50 100 195 500 1000
0

10

20

30

40

50

60

70

80

90

100

Percentage of Cached Documents (DsCC Turned Off)

Document Update Rate (# of Updates per Unit Time)

P
er

ce
nt

ag
e

of
 D

oc
um

en
ts

 S
to

re
d

pe
r

C
ac

he

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Figure 26: Percentage of Documents Stored (DsCC Turned Off)

The graph in Figure 26 shows the percentage of the total documents in the log that

are stored at each cache in the cache cloud at various document update rates. The X-axis

represents the document update rate in number of updates per minute on the log scale, and

90

the Y-axis represents the percentage of documents cached. The vertical broken line indicates

the observed document update rate. As the ad hoc policy places each document at every

cache which receives a request, almost all documents are stored at all caches. Similarly, the

greedy-dual size algorithm also stores large numbers of documents in individual caches, since

the disk-spaces in this experiment are unlimited. In contrast the beacon point placement

stores each document only at its beacon point. Hence, each cache stores around 10% of the

total documents. The percentage of documents stored per cache in the utility-based scheme

varies with the update rate, indicating its sensitivity towards document update costs. In

the utility-placement scheme, when the update rates are low, large percentage of documents

are stored at each cache, owing to the small consistency maintenance cost. As the update

rate increases the CMC values of all the documents decrease, leading to a decrease in the

percentage of documents stored at each cache.

10 50 100 195 500 1000
10

20

50

100

200

500

1000
Network Load in Cache Cloud (Dscc Turned Off)

Document Update Rate (# of Updates Per Unit Time)

N
et

w
or

k
Lo

ad
 (M

bs
 T

ra
ns

fe
rr

ed
 p

er
 U

ni
t T

im
e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Figure 27: Network Load Under Various Placement Schemes (DsCC Turned Off)

The immediate question that arises is: what is the advantage of being sensitive to

update costs in document placement. To answer this question we plot the total network

traffic in the clouds generated by various document placement policies in the Figure 27. The

results indicate that the utility-based document placement creates the least network traffic

at all update-rates. The improvements provided by the utility-based placement scheme

over the ad hoc placement scheme increase with increasing update rate. This is because,

91

while the number of replicas present in the cache cloud essentially remains a constant in

the ad hoc placement scheme, utility-based scheme creates fewer replicas at higher update

rates, thereby reducing the consistency maintenance costs significantly. The network traffic

produced by the beacon point caching is very high at all update-rates, as in this scheme

only one copy of each document is stored per cache cloud. Hence, most of the network

traffic is due to caches repeatedly accessing the single copies of the documents.

10 20 50 100 200 1000
0

10

20

30

40

50

60

70

80

90

100
Hit Rates (DsCC Turned Off)

Update Rate(# of Updates/Unit Time)

H
it

R
at

e

Ad hoc Placement: Local Hit
Ad hoc Placement: Group Hit
Utility Placement: Local Hit
Utility Placement: Group Hit
Beacon Placement: Local Hit
Beacon Placement: Group Hit
Observed Update Rate

Figure 28: Hit Rates of Ad-hoc, Beacon Point and Utility Placement Schemes (DsCC Turned Off)

Figure 28 indicates the local and the group hit-rates of ad-hoc, beacon-point and utility-

based placement schemes. The local hit rates and the group hit rates of ad hoc and beacon

point placement schemes remain constant at all document update rates, since these schemes

are not sensitive to document update costs. In contrast to these schemes the hit rate of the

utility scheme varies with the document update rates. As the document update rate gets

higher, the local hit rate of the utility scheme drops and its group hit increases.

In the second experiment, we study the performance of the three document placement

policies when the disk spaces available at the edge caches are limited. In these experiments

the disk space at each cache is set to 25% of the sum of sizes of all documents in the trace.

As the disk space is a limiting factor in this series of experiments, we turn on the disk-space

component of the utility function. The weights of all the utility function components are

set to 0.25.

92

10 50 100 195 500 1000
10

20

50

100

200

500

1000
Network Load in Cache Cloud (Dscc Turned On)

Document Update Rate (# of Updates Per Unit Time)

N
et

w
or

k
Lo

ad
 (M

bs
 T

ra
ns

fe
rr

ed
 p

er
 U

ni
t T

im
e)

Ad hoc Placement
Beacon Placement
Utility Placement
Observed Update Rate

Figure 29: Network Load Under Various Placement Schemes (DsCC Turned On)

Figure 29 indicates the total network traffic generated by the three document placement

policies at various update rates. As in the previous experiment, the utility-based document

placement places the least load on the network. However, the results in this experiment differ

from the previous experiment considerably. The percentage improvement in the network

load provided by the utility scheme over the ad hoc scheme is higher in the limited disk-space

case at low document update rates. However, the percentage improvement in the unlimited

disk space case grows much faster in the limited disk space scenario. These observations are

the manifestations of the different roles the utility placement scheme is playing at different

update rates in the limited disk space scenario. At low document update rates the utility

scheme assumes the predominant role of reducing disk space contention at individual caches.

Whereas at higher update rates its predominant effect is to reduce consistency maintenance

costs.

Figure 30 shows the hit rates of ad-hoc, beacon-point and utility-based placement

schemes for the limited disk space experiment at different update rates. As in the un-

limited disk space scenario, the local hit rate of the utility scheme drops as the update rate

increases, whereas its group hit rate starts to increase. A crucial observation here is that

the cumulative hit rate (the sum of local and group hit rates) of the utility scheme is around

5.5% higher than that of the ad hoc scheme. This shows that when disk pace becomes a

93

10 20 50 100 200 1000
0

10

20

30

40

50

60

70

80

90

100
Hit Rates (DsCC Turned On)

Update Rate(# of Updates/Unit Time)

H
it

R
at

e

Ad hoc Placement: Local Hit
Ad hoc Placement: Group Hit
Utility Placement: Local Hit
Utility Placement: Group Hit
Beacon Placement: Local Hit
Beacon Placement: Group Hit
Observed Update Rate

Figure 30: Hit Rates of Ad-hoc, Beacon Point and Utility Placement Schemes (DsCC Turned On)

limiting factor, utility scheme uses the aggregate disk space available in the cache cloud

more efficiently.

The utility-based document scheme bears similarity to the cost-based document replace-

ment schemes such as Greedy-dual size [29] and Greedy-dual* [21]algorithms. As an example

let us consider the greedy-dual size algorithm, which is one of the most popular cost-based

document replacement schemes. In this scheme each document is associated with a value,

called its HV alue. The HV alue of a document Dc is calculated as HV alue(Dc) = Cp(Dc)
Size(Dc) ,

where Cp(Dc) represents the cost of retrieving the document Dc and Size(Dc) represents

the size Dc. For an arbitrary cache Ecl, let MinHV alue(Dc,Ecl) represent the minimum

of the HV alues of all the documents that are currently stored in Ecl. When a document

needs to be evicted from the cache Ecl in order to make space for an incoming document,

the greedy-dual size algorithm selects the document with the minimum HV alue. That is

the document whose HV alue is equal to MinHV alue(Dc,Ecl) is selected for eviction. After

the document eviction, the HV alues is reduced by MinHV alue(Dc,Ecl). If a document

stored in the cache is hit, its HV alue is restored to the original HV alue it had, when it

entered the cache.

Although both the greedy-dual size algorithm and our utility-based document placement

94

scheme adopt a cost-benefit approach for cache management, there are also important dif-

ferences between them. While, the greedy-dual size algorithm is a document replacement

scheme, the utility-based scheme is a document placement scheme, which takes a proactive

approach to cache management. Further, most current formulations of the greedy-dual size

algorithm’s cost function do not consider the document consistency costs, and hence, they

are not directly applicable to caching dynamic documents. In this scenario, the question

that comes up is: whether the utility function of our document placement scheme can be

utilized in conjunction with schemes such as greedy-dual size algorithms to design docu-

ment replacement policies for dynamic web content caches? The four components of our

utility function capture various costs and benefits involved in caching dynamic web content.

Therefore, we think that our utility function can be adapted in a framework such as the

greedy-dual size, to yield highly effective document replacement strategies for caches storing

dynamic web content.

4.5 Conclusion

In this chapter we have presented the architectural design of the cache clouds, which form the

basic framework of cooperation in the cooperative EC grid. We have adopted a distributed

approach in designing the cache clouds, wherein the caches belonging to the cloud share

the load of document lookups and updates. The caches are organized into sub-structures

called beacon rings, and the caches belonging to a beacon ring are collectively responsible

for handling the updates and lookups of a set of documents. We have proposed a dynamic

hashing protocol for document lookups and updates, which not only balances the load due

to these operations among the caches, but also maintains the balance of loads even when the

load pattern changes. We have also presented two mechanisms to provide failure resilience,

namely, the eager and the periodic replication schemes. Further, we have proposed a utility-

based scheme for placing document within the cache cloud such that the system resources

are optimally utilized, and the client latency is minimized. We have reported a series of

experiments to evaluate the proposed schemes. Our experiments indicate that these schemes

can provide significant performance benefits.

95

CHAPTER V

AUTOMATIC FRAGMENT DETECTION IN DYNAMIC

WEB PAGES

In this chapter, we present our scheme for automatically detecting fragments in dynamic

web pages, which is the second major contribution of this thesis.

Among the several research efforts that have been made to address the challenges posed

by the enormous increase in dynamic web content, fragment-based publishing and caching

of web pages [4, 32, 33, 43] stands out; it has been successfully commercialized in recent

years. Conceptually, a fragment is a portion of a web page which has a distinct theme

or functionality and is distinguishable from the other parts of the page. A web page has

references to these fragments, which are stored independently on the server and in caches.

In a fragment-based publishing scheme, the cacheability and the lifetime are specified at

a fragment granularity rather than at the web page level. While cacheability properties

specify whether a fragment can be cached, its lifetime indicates how long the fragment

would remain fresh (in-sync with the server-copy).

The advantages of the fragment-based schemes have been conclusively demonstrated [33,

43]. By separating the non-personalized content from the personalized content and marking

them as such, it increases the cacheable content of the web sites. Furthermore, with the

fragment-based solution, a whole web page need not be invalidated when only a part of

that page expires. Hence the amount of data that gets invalidated at the caches is reduced.

In addition, the information that is shared across web pages needs to be stored only once,

which improves disk space utilization at the caches.

Although researchers have made considerable efforts to improve the performance and

benefits of fragment-based caching, there has been little research on detecting cache-effective

fragments in web sites. Fragment-based caching solutions typically rely upon web pages that

have been manually fragmented at their respective web sites by the web administrator or

96

Football Sport Today PageFootball Sport Today Page
Fragments - ODGFragments - ODG

High Volume Web Serving Overview

FTgeeepuuCSSDAY.frg

..XXXXXX.frg

FTW400901CSELNK.frg

FTW400902CSELNK.frg

FTgeeepuuMSS.frg

09302030.frg

FTgeeepuuRRS.frg

...NVSLIV.frg

...NVSCSS.frg

...NVSCLS.frg

...NVSMWS.frg

FTgeeepuuNVE.frg

News/TE/sports/Ft.frg <-- No News Today Fragment

common_top.frg
Fragment-4

Header fragment
Included in

many pages

Fragment-3
Daily schedule

fragment

Fragment-1
Latest results

fragment

Fragment-2
Medal tally
fragment

Fragment-5
Side-bar fragment

Included in
many pages

Figure 31: Fragments in a Web Page

the web page designer. Manual markup of fragments in dynamic web pages is both labor-

intensive and error-prone. More importantly, identification of fragments by hand does not

scale as it requires manual revision of the fragment markups in order to incorporate any

new or enhanced features of dynamic content into an operational fragment-based solution

framework. Furthermore, the manual approach to fragment detection becomes unmanage-

able and unrealistic for edge caches that deal with multiple content providers. Thus there

is a need for schemes that can automatically detect “interesting” fragments in dynamic

web pages, and that are scalable and robust for efficiently delivering dynamic web content.

By “interesting” we mean that the fragments detected are cost-effective for fragment-based

caching.

Automatic detection of fragments presents two unique challenges. First, compared with

static web pages, dynamically generated web pages have three distinct characteristics. On

the one hand, dynamic web pages seldom have a single theme or functionality and they typi-

cally contain several pieces of information with varying freshness or sharability requirements.

On the other hand, most of the dynamic and personalized web pages are not completely

dynamic or personalized. Often the dynamic and personalized content are embedded in

97

relatively static web page templates [20]. Furthermore, dynamic web pages from the same

web site tend to share information among themselves.

Figure 31 shows a dynamic web page generated through a fragment-based publishing

system. This Football Sport Today Page was one of the web pages hosted by IBM for a

sporting event. It contains five interesting fragments that are cost-effective candidates for

fragment-based caching: (1) the latest football results on the women’s final, (2) the latest

medal tally, (3) a daily schedule for women’s football, (4) the navigation menu with the IBM

logo for the sport site on the top of the page and (5) the sport links menu on the left side of

the page. These fragments differ from each other in terms of their themes, functionalities,

and invalidation patterns. For example, the latest results fragment changes at a different

rate than the latest medal tally fragment, which in turn changes more frequently than the

fragment containing the daily schedule. In contrast, the navigational menu on the top of

the page and the sport links menu on the left side of the page are relatively static and are

likely to be shared by many dynamic pages generated in response to queries on sport events

hosted from the web site.

Second, it is apparent from the above example that humans can easily identify fragments

with different themes or functionality based on their prior knowledge in the domain of the

content (such as sports in this example). However, in order for machines and programs

to automate the fragment detection process, we need mechanisms that on the one hand

can correctly identify fragments with different themes or functionality without human in-

volvement, and on the other hand are efficient and effective for detecting and flagging such

fragments through a cross-comparison of multiple pages from a web site.

In this chapter, we present a novel scheme to automatically detect and flag fragments

which are cost-effective for fragment-based caching. The proposed scheme examines the web

pages from a given web site and analyzes their properties such as the information shared

among them, the personalization characteristics they exhibit, and their change frequencies.

Based on this analysis, our system detects and flags the “interesting” fragments in a web

site. We consider a fragment interesting if it has good sharability with other pages served

from the same web site or it has distinct lifetime characteristics. The fragments detected

98

through our system may be used in any system that supports fragment-based dynamic

content generation and delivery, including the cooperative EC grid.

This chapter makes three specific contributions:

• First, we propose a framework for automatic fragment detection. This framework

includes augmented fragment tree with shingles [24, 25, 69] encoding, which is a

fragment-aware data structure for modeling dynamic web pages. Further, we also

provide a fast algorithm for incremental shingle computation.

• Second, we present an efficient algorithm for detecting fragments that are shared

among M documents, which we call the Shared Fragment Detection Algorithm. This

algorithm has two distinctive features:

1. It uses node buckets to speed up the comparison and the detection of exactly or

approximately shared fragments across multiple pages.

2. It introduces sharing factor, minimum fragment size, and minimum matching

factor as the three performance parameters to measure and tune the performance

and the quality of the algorithm in terms of the fragments detected.

• Third, we present an effective algorithm for detecting fragments that have different

lifetime characteristics, which we call the Lifetime-Personalization based (L-P) Frag-

ment Detection Algorithm. A unique characteristic of the L-P algorithm is that it

detects fragments which are most beneficial to caching based on the nature and the

pattern of the changes occurring in dynamic web pages.

We discuss several performance enhancements to these basic algorithms, and evaluate the

proposed fragment detection scheme through a series of experiments, showing the effective-

ness and costs of our approach. Further, we also report our experimental study on the effect

of adopting the fragments detected by our system on the web caches and the origin servers.

5.1 Candidate Fragments

In general, a fragment can be considered as a part of a web page. Our goal for automatic

fragment detection is to find interesting fragments in dynamic web pages, which exhibit

99

potential benefits and thus are cost-effective as cache units. We refer to these interesting

fragments as candidate fragments in the rest of the paper.

The web documents considered here are well-formed HTML documents [26] although

the approach can be applied to XML documents as well. Documents that are not well

formed can be converted to well-formed documents through document normalization, for

example using HTML Tidy [5].

Concretely, we introduce the notion of candidate fragments as follows:

• Each Web page of a web site is a candidate fragment.

• A part of a candidate fragment is itself a candidate fragment if any one of the two

conditions is satisfied:

– The part is shared among “M” already existing candidate fragments, where M

> 1.

– The part has different personalization or lifetime characteristics than those of its

encompassing (parent or ancestor) candidate fragment.

A formal definition of candidate fragments for web pages of a web site is given below:

Definition 1 (Candidate Fragment)

Let W denote the set of web pages available on a web site S and CF (v) denote the set of all

the fragments contained in fragment v. A fragment y is referred to as an ancestor fragment

of another fragment x iff y directly or transitively contains fragment x. Let AF (v) denote all

the ancestor fragments of the fragment v and FS denotes the set of fragments corresponding

to the set of documents in W such that FS = ∪
‖W‖
i=1 CF (Di). For any document D from

web site S, a fragment x in CF (D) is called a candidate fragment if one of the following

conditions is satisfied:

1. x is an entire web page available at web site S, i.e x ∈W .

2. x is a maximal Shared fragment, namely:

100

• x is shared among M distinct fragments F1, . . . , FM , where M > 1, Fi ∈ FS,

and if i 6= j then Fi 6= Fj; and

• there exists no fragment y such that y ∈ AF (x), and y is also shared among the

M distinct fragments F1, . . . , FM .

3. x is a fragment that has distinct personalization and lifetime characteristics. Namely,

∀z ∈ AF (x), x has different personalization and lifetime characteristics than z.

We observe that this is a recursive definition with the base condition being that each

web page is a fragment. It is also evident from the definition that the two conditions are

independent. These conditions define fragments that benefit caching from two different

perspectives. We call the fragments satisfying Condition 1 Shared fragments, and the

fragments satisfying Condition 2 L-P fragments (denoting Lifetime-Personalization based

fragments). Lifetime characteristics of a fragment govern the time duration for which the

fragment, if cached, would stay fresh (in tune with the value at the server). The personal-

ization characteristics of a fragment correspond to the variations of the fragment in relation

to cookies or parameters of the URL.

It can be observed that the two independent conditions in the candidate fragment def-

inition correspond well to the two aims of fragment caching. By identifying and creating

fragments out of the parts that are shared across more than one fragment, we aim to avoid

unnecessary duplication of information at the caches. By creating fragments that have dif-

ferent lifetime and personalization properties we not only improve the cacheable content but

also minimize the amount and frequency of the information that needs to be invalidated.

Our definition of candidate fragments permits candidate fragments to be embedded

in one or more existing candidate fragments. All the candidate fragments that contain

a candidate fragment cfj are considered to be parent fragments of cfj . Thus Cfj can

have multiple parent fragments. The Depth of a candidate fragment indicates how deep

the fragment is embedded in the web pages, and it is defined as follows: Suppose W =

{w1, w2, . . . , wn} denote the set of all web pages available at a web site S, and CF =

{cf1, cf2, . . . , cfm} denote the set of all candidate fragments from the web site S. Let Pf(cfj)

101

denote the set of all parent fragments of cfj . The depth of a fragment cfj (denoted as

Depth(cfj)) is defined as follows: Depth(cfj) is 1 if cfj is a web page and it is not embedded

in any other fragment. Otherwise, Depth(cfj) is one more than the maximum of the depths

of its parent fragments. Formally,

Depth(cfj) =

1 If cfj ∈W and PF (cfj) = ∅

(1 +Maximum(Depth(cfk)),∀cfk ∈ PF (cfi)) Otherwise

The depth of fragmentation of a fragment detection scheme is defined as the maximum of

the depths of all the candidate fragments, i.e.,DepthFragmentation =Maximum(Depth(cfk)),

∀cfk ∈ CF .

As we are interested only in the fragments that satisfy the conditions in Definition 1, in

the rest of the thesis we use the term fragments to refer to candidate fragments when there

is clearly no confusion.

5.2 Framework for Automatic Fragment Detection

In this section we discuss the basic design of our automated fragment detection framework,

including the system architecture, the efficient fragment-aware data structure for automat-

ing fragment detection, and the important configurable parameters in our system.

5.2.1 System Overview

The primary goal of our system is to detect and flag candidate fragments from dynamic

pages of a given web site. The fragment detection process is divided into three steps.

First, the system is conceived to construct an Augmented Fragment Tree (AF tree) for the

dynamic pages fed into the fragment detection system. Second, the system applies the

fragment detection algorithms on the augmented fragment trees to detect the candidate

fragments in the given web pages. In the third step, the system collects statistics about

the fragments such as size, how many pages share the fragment, and access rates. These

statistics aid the administrator in deciding whether to enable fragmentation. Figure 32

gives a sketch of the system architecture.

102

Figure 32: Fragment Detection System Architecture

We provide two independent fragment detection algorithms: one for detecting Shared

fragments and the other for detecting Lifetime Personalization based (L-P) fragments. Both

algorithms can be collocated with a server-side cache or an edge cache, and they work on

the dynamic web page dumps from the web site.

The algorithm for detecting Shared fragments works on a collection of different dynamic

pages generated from the same web site, whereas the L-P fragment detection algorithm

works on different versions of each web page, which can be obtained from a single query

being repeatedly submitted to the given web site. For example, in order to detect L-P

fragments, we need to locate parts of a fragment that have different lifetime and person-

alization characteristics. This can be done by comparing different versions of the dynamic

web page and detecting the parts that have changed over time and the parts that have

remained constant. While the input to the L-P fragment detection algorithm differs from

the shared fragment detection algorithm, both algorithms work directly on the augmented

fragment tree representation of its input web pages. The output of our fragment detection

algorithms is a set of fragments, which will be served as recommendations to the fragment

caching policy manager or the web administrator.

103

5.2.2 Augmented Fragment Trees with Shingles Encoding

Detecting interesting fragments in web pages requires efficient traversal of web pages.

Thus a compact data structure for representing the dynamic web pages is critical to efficient

fragment detection. Of the several document models that have been proposed, the most

popular model is the Document Object Model (DOM) [3], which models web pages using a

hierarchical graph.

However, the DOM tree structure is not very efficient for fragment detection for a num-

ber of reasons. First, our fragment detection algorithms compare pages to detect those

fragments whose contents are shared among multiple pages or whose contents have distinc-

tive expiration times. The DOM tree of a reasonably sized HTML page has a few thousand

nodes. Many of the nodes in such a tree correspond to text formatting tags that do not con-

tribute to the content-based fragment detection algorithms. Second and more importantly,

the nodes of the DOM do not contain sufficient information needed for fast and efficient

comparison of documents and their parts. These motivate us to introduce the concept of

an augmented fragment tree (AF tree), which removes the text formatting tag nodes in the

fragment tree and adds annotation information necessary for fragment detection.

An AF tree with shingles encoding is a hierarchical representation of a web (HTML or

XML) document with the following three characteristics: First, it is a compact DOM tree

with all the text-formatting tags (e.g., <Big>, <Bold>, <I>) removed. Our experiments

indicate that the number of nodes in the AF tree of a typical web page is around 20% lesser

than the number of nodes in its corresponding DOM tree. Second, the content of each

node is fingerprinted with shingles encoding [24, 25, 69]. Shingles are fingerprints with the

property that if a document changes by a small amount, its shingles encoding also changes

by a small amount. Third, each node is augmented with additional information for efficient

comparison of different documents and different fragments of documents. Concretely each

node in the AF tree is annotated with the following fields:

• Node Path (NodePath): A vector indicating the location of the node in the tree.

• SubtreeValue: A string that is defined recursively. For a leaf node, the SubtreeValue

104

Fragment based publishing of web pages improves the scalability of
web services. In this paper we provide efficient techniques to
automatically detect fragments in web pages. We believe that
automating fragment detection is crucial for the success of fragment
based web page publication.
MD5:982f3bb69a174efb0aa4135c99e30d04
Shingles: {801384, 896252, 1104260, 1329558,1476690, 1569872,
1772039, 2001370 }

Fragment based publishing of web pages improves the efficiency of
web services. In this paper we provide scalable techniques for
automatic detection of fragments in web pages. We believe that
automating fragment detection is critical for the success of fragment
based web page publication.
MD5:91d16c3e9aee060c82c626d7062d0165
Shingles: {801384, 896252, 1104260, 1476690, 1569872, 1772039,
2001370, 2033430}

Figure 33: Example of Shingles versus MD5

is equal to the text contained in the node. For all internal nodes, the SubtreeValue is

a concatenation of the SubtreeValues of all its children nodes. The SubtreeValue of a

node can be perceived as the fragment (content region) of a web document anchored

at this subtree node.

• SubtreeSize: An integer whose value is the length of SubtreeValue in bytes. This

represents the size of the structure in the document being represented by this node.

• SubtreeShingles: An encoding of the SubtreeValue for fast comparison. SubtreeShin-

gles is a vector of integers representing the shingles of the SubtreeValue.

We use shingles because they have the property that if a document changes by a small

amount, its shingles also change by a small amount. Other fingerprinting techniques such

as MD5 do not behave similarly, if applied to the entire document.

Figure 33 illustrates the high sensitivity of shingles by comparing it with the MD5

hash through an example of two strings. The first and the second strings in Figure 33 are

essentially the same strings with small perturbations (the portions that differ in the two

strings have been highlighted). The MD5 hashes of the two strings are totally different,

whereas the shingles of the two strings vary just by a single value out of the 8 values in the

105

shingles set (shingle values that are present in one set but are absent in the other have been

underlined in the diagram). This property of shingles has made it popular in estimating

the resemblance and containment of documents [24].

5.2.2.1 AF Tree Construction

The first step of our fragment detection process is to convert web pages to their correspond-

ing AF trees. The AF tree can be constructed in two steps. The first step is to transform

a web document to its DOM tree and prune the fragment tree by eliminating the text for-

matting nodes. The result of the first step is a specialized DOM tree that contains only the

content structure tags (e.g., like <TABLE>, <TR>, <P>). The second step is to annotate

the fragment tree obtained in the first step with NodePath, SubtreeValue, SubtreeSize and

SubtreeShingles.

Once the SubtreeValue is known, we can use a shingles encoding algorithm to compute

its SubtreeShingles. We discuss the basic algorithm [24] to compute the shingles for a given

string.

The Basic Shingling Algorithm

Any string can be considered as a sequence of tokens. The tokens might be words or

characters. Let Str = T1T2T3...TN , where Ti is a token and N is the total number of

tokens in Str. Then a shingles set of window length W and sample size S is constructed as

follows. The set of all subsequences of length W of the string Str is computed. SubSq =

{T1T2...TW , T2T3...TW+1, ..., TN−W+1TN−W+2...TN}. Each of these subsequences is hashed

to a number between (0, 2K) to obtain a token-ID. A hash function similar to Rabin’s

function [82] is employed for this purpose. The parameter K governs the size of the hash

value set to which the subsequences are mapped. If the parameter K is set to a small

value many subsequences might be mapped to the same token-ID, leading to collisions.

Larger values of K are likely to avoid these collisions of subsequence, but increase the size

of the hash value set. We now have (N −W + 1) token-IDs, each corresponding to one

subsequence. Of these (N −W + 1) token-IDs, the minimum S are selected as the (W,S)

shingles of string Str. The parameters W , S, and K can be used to tune the performance

106

and quality of the shingles encoding [24]. For example, larger values of S provides better

estimates of the resemblance between documents, but at higher storage and computation

costs. In our experiments we have set W to be 20 bytes, S to be 25 samples, and K to be

32.

The basic shingles computation algorithm is suitable for computing shingles for two

independent documents. However, computing the shingles on the SubtreeValues indepen-

dently at each node would entail unnecessary computations and is inefficient. This is simply

because the content of every node in an AF tree is also a part of the content of its parent

node. Therefore computing the SubtreeShingles of each node independently leads to a much

higher cost due to duplicated shingles computation than computing the SubtreeShingles of

a parent node incrementally. We propose an incremental shingles computation method and

call it the Hierarchical Shingles Computing scheme (the HiSh scheme for short).

5.2.3 Efficient Shingles Encoding - The HiSh Algorithm

In this section we describe a novel method to compute shingles incrementally for strings

with hierarchical structures such as trees. By incremental we mean the HiSh algorithm

reuses the previously computed shingles in the subsequent computation of shingles.

Consider a string A = A1A2A3...AnAn+1...Am with m tokens, m ≥ 1. Let B and C

be two non-overlapping substrings of A such that A is a concatenation of B and C. Let

B = A1A2...An and C = An+1An+2...Am. Now we describe how to incrementally compute

the (W,S) shingles of A, if (W,S) shingles of B and C are available. Let Shng(A,W,S),

Shng(B,W,S) and Shng(C,W,S) denote the (W,S) shingles of the strings A, B and C

respectively. We define the Overlapping Sequences to be those subsequences which begin

in B and end in C. These are the subsequences that are not completely present in either

shingles of B or shingles of C. Let the hashes of these subsequences be represented by the

set OvlpHsh = {Hsh(A(n−W+2,n+1)),

Hsh(A(n−W+3,W+2)), ..., Hsh(A(n,n+W−1))}. Then we can obtain the (W,S) shingles of A

as follows:

Shng(A,W,S) = MinS{Shng(B,W,S)
⋃

Shng(C,W,S)
⋃

OvlpHsh}

107

Automatic Detection of Fragments in Websites

{300, 434 1093, 2764} {104, 470, 1956, 3464}{193, 243, 1432, 3456 }

Min

{104, 193, 243, 300}

String B String C

Overlap

Shingles of Concatenated String

Shingles of String B Shingles of String CShingles of Overlap

Automatic Detection of Fragments in Websites

{300, 434 1093, 2764} {104, 470, 1956, 3464}{193, 243, 1432, 3456 }

Min

{104, 193, 243, 300}

String B String C

Overlap

Shingles of Concatenated String

Shingles of String B Shingles of String CShingles of Overlap

Figure 34: HiSh Algorithm

Here MinS(Z) denotes the operation of selecting the S minimum values from values in

set Z.

As the shingles of B and C are available, the only extra computations needed are

to compute the hashes of overlapping sequences. This is the central idea of the HiSh

algorithm. Figure 34 illustrates the working of the HiSh scheme on an example string. In

this example, (8, 4) shingles of the string B and string C are pre-computed and available,

and we want to compute the (8, 4) shingles of the concatenation of the two strings. The HiSh

algorithm computes the overlapping subsequences between the two strings (which is shown

as ”Overlap” in the figure) and computes the shingles on this overlapping string. Finally,

the algorithm selects the minimum 4 values from all three strings to yield the shingles of

the entire string.

Our experiments (see Section 5.5.4) indicate that the HiSh optimization can reduce the

number of hashes computed in constructing the AF tree by as much as 9 times and improve

the shingles computation time by 6 times for 20-Kbyte documents, when compared to the

basic algorithm. The performance gain will be greater for larger documents.

108

5.3 Detecting Shared Fragments

This section discusses our algorithm to detect shared fragments. Given a collection of

N dynamic web pages generated in response to distinct queries over a web site, let AFi

(1 ≤ i ≤ N) denote the AF tree of the ith page. We call a fragment F ∈ AFi a maximal

shared fragment if it is shared among M(M < N) distinct fragments (pages) and there is

no ancestor fragment of F which is shared by the same M fragments (pages). Here M

is a system-defined parameter. With this definition in mind, the immediate question is

how to efficiently detect such shared fragments, ensuring that the fragments detected are

cost-effective cache units and beneficial for fragment-based caching.

5.3.1 Algorithm for Shared Fragment Detection

Our experiences with fragment-based solutions show that any shared fragment detection

algorithm should address the following two fundamental challenges. First, one needs to

define the measurement metrics of sharability. In a dynamic web site it is common to find

web pages sharing portions of content that are similar but not exactly the same. In many

instances the differences among these portions of content are superficial (e.g., they have

only formatting differences). Thus a good automatic fragment detection system should be

able to detect these approximately shared candidate fragments. Different quantifications of

what is meant by “shared” can lead to different quality and performance of the fragment

detection algorithms. The second challenge is the need for an efficient and yet scalable im-

plementation strategy to compare the fragments (and the pages) and identify the maximal

shared fragments.

Approximate Sharability Measures

The Shared fragment detection algorithm operates on various web pages from the same

web site and detects candidate fragments that are “approximately” shared. We introduce

three measurement parameters to define the appropriateness of such approximately shared

fragments. These parameters can be configured based on the needs of a specific application.

• Minimum Fragment Size(MinFragSize): This parameter specifies the minimum

109

size of the detected fragment.

• Sharing Factor(ShareFactor): This indicates the minimum number of pages that

should share a segment in order for it to be declared a fragment.

• Minimum Matching Factor(MinMatchFactor): This parameter specifies the

minimum overlap between the SubtreeShingles to be considered as a shared fragment.

The parameter MinFragSize is used to exclude very small segments of web pages from

being detected as candidate fragments. This threshold on the size of the documents is

necessary because the overhead of storing the fragments and composing the page would

be high if the fragments are too small. The parameter ShareFactor defines the thresh-

old on the number of documents that have shared each candidate fragment. Finally, we

use the parameter MinMatchFactor to model the significance of the difference between

two fragments being compared. Two fragments being compared are considered as sharing

significant content if the overlap between their SubtreeShingles is greater than or equal to

MinMatchFactor.

Detecting Shared Fragments with Node Buckets

The shared fragment detection algorithm detects the shared fragments in two steps as shown

in Figure 35. First, the algorithm creates a sorted pool of the nodes in the AF trees of all

the web pages examined using node buckets. Then, the algorithm groups those nodes that

are similar to each other together and runs the condition test for maximal shared fragments.

If the number of nodes in the group exceeds the minimum number of pages specified by the

ShareFactor parameter, and the corresponding fragment is indeed a maximal shared frag-

ment, the algorithm declares the node group as a shared fragment and assigns it a fragment

identifier.

Step 1: Putting Nodes into a sorted pool of node buckets

More concretely, our algorithm uses the bucket structures to create a sorted pool of nodes.

Buckets are used to efficiently sort the nodes of the AF trees based on their sizes. The

110

A1
5000

A2
3000

A3
2000

A4
2000

A5
1000

B1
5500

B3
2500

B4
2000

B5
1000

B2
3000

B6
1000

B7
1500

A1

B1

A5

B6

B5

B7

A4

A3

B4

B3

A2

B2

B1

A1

A2

B2

B3

B4

A3

A4

B7

B6

B5

A5

B1
B1, A2

1000-1999 2000-2999 3000-3999 4000-4999 5000-5999

BT1 BT2 BT3 BT4 BT5

AFTA AFTB

STEP 1

STEP 2

Node Buckets

Sorted Buckets
Similar Node Group

Sort Buckets

A1
5000

A2
3000

A3
2000

A4
2000

A5
1000

A1
5000

A2
3000

A3
2000

A4
2000

A5
1000

B1
5500

B3
2500

B4
2000

B5
1000

B2
3000

B6
1000

B7
1500

B1
5500

B3
2500

B4
2000

B5
1000

B2
3000

B6
1000

B7
1500

B1
5500

B3
2500

B4
2000

B5
1000

B2
3000

B6
1000

B7
1500

A1

B1

A5

B6

B5

B7

A5

B6

B5

B7

A4

A3

B4

B3

A4

A3

B4

B3

A2

B2

A2

B2

B1

A1

A2

B2

B1

A1

A2

B2

B3

B4

A3

A4

B3

B4

A3

A4

B7

B6

B5

A5

B7

B6

B5

A5

B1B1
B1, A2B1, A2

1000-1999 2000-2999 3000-3999 4000-4999 5000-5999

BT1 BT2 BT3 BT4 BT5

AFTA AFTB

STEP 1

STEP 2

Node Buckets

Sorted Buckets
Similar Node Group

Sort Buckets

Figure 35: Shared Fragment Detection Algorithm

algorithm creates NB buckets. Each bucket Bkti is initialized with bucket size Bsi, and is

associated with a pre-assigned range of the SubtreeSizes, denoted as (MinSize(Bkti),

MaxSize(Bkti)). The AF trees are processed starting from the root of each tree, and a node

is placed into an appropriate bucket based on its SubtreeSize, such that the SubtreeSizes

of all nodes in bucket Bkti are between MinSize(Bkti) and MaxSize(Bkti). If in the

process of putting nodes into buckets, a bucket grows out of its current size Bsi, it will be

split into two or more buckets. Similarly, if the first step results in a pool of buckets with

uneven distribution of nodes per bucket, a merge operation will be used to merge two or

more buckets into one.

After all the AF trees have been processed and the nodes entered into their corresponding

buckets, each buckets is sorted based on the SubtreeSize of the nodes in the bucket. At the

end of the process we have a set of buckets containing nodes, each of which is sorted based

on the SubtreeSize of the node. The STEP 1 in Figure 35 shows how this step works on

two AF trees A and B. The nodes of the two trees are put into 5 buckets based on their

SubtreeSizes. The buckets are sorted, and the buckets BT3, BT4 and BT5 are merged to

obtain a set of sorted buckets.

111

There are three system-supplied parameters: (1) the number of buckets (NB) em-

ployed for this purpose, (2) the size Bi of each bucket, and (3) the range of each bucket

(MinSize(Bkti),MaxSize(Bkti)). Various factors may affect the decision on how to set

these parameters, including the number of AF trees examined, the average number of nodes

in each AF tree and the range of the SubtreeSizes of all the nodes.

The performance of this step would be better if the nodes are evenly distributed in all

the available buckets. One way to achieve such balanced distribution of nodes across all

buckets is to set the ranges of the buckets at the lower end of the size spectrum to be smaller,

and let the range of the buckets progressively increase for the buckets at the higher end

of the size spectrum. This strategy is motivated by the following observations. First, it is

expected that the number of nodes at a lower level of the AF trees would be larger than the

number of nodes at a higher level. Second, the SubtreeSizes of the nodes at the lower level is

expected to be smaller than the SubtreeSizes of the nodes in the higher levels of the AF tree.

Step 2: Identifying maximal shared fragments through grouping of similar nodes

The task of the second step is to compare nodes and group nodes that are similar to

each other together and then identify those groups of nodes that satisfy the definition of

maximally shared fragments. This step processes the nodes in the buckets in decreasing

order of their sizes. It starts with the node having the largest SubtreeSize, which is contained

in the bucket with the highestMaxSize value. For each node being processed, the algorithm

compares the node against a subset of the other nodes. This subset is constructed as follows.

If we are processing node Ai, then the subset of nodes that Ai is compared against should

include all nodes whose sizes are larger than P% of the SubtreeSize of Ai, where P can

range from 0% to 100%. Let CSet(Ai) denote the subset of nodes with respect to node Ai.

We can use the following formula to compute CSet(Ai).

CSet(Ai) = {Aj |SubtreeSize(Aj) ≥
P×SubtreeSize(Ai)

100 }

It is important to note that the value setting of the parameter P has implications on

both the performance and the accuracy of the algorithm. If P is too low, it increases the

number of comparisons performed by the algorithm. If P is very close to 100, then the

112

number of comparisons decrease; however, it might lead the comparison process to miss

some nodes that are similar. In practice we have found a value of 90% to be appropriate

for most web sites.

When comparing the node being processed with the nodes in its CSet, the algorithm

compares the SubtreeShingles of the nodes. Let Resemblance(Ai, Bj) denote the resem-

blance between the nodes Ai and Bj based on similarity of their SubtreeShingles. We can

compute Resemblance(Ai, Bj) using the following formula [24]:

Resemblance(Ai, Bj) =
SubtreeShingles(Ai)∩SubtreeShingles(Bj)
SubtreeShingles(Ai)∪SubtreeShingles(Bj)

All such nodes whose resemblance with the node being processed exceed minimal match-

ing factor (MinMatchFactor) are grouped together. Specifically, a node Bj ∈ CSet(Ai) is

put into the group if Resemblance(Ai, Bj) ≥MinMatchFactor.

STEP 2 of Figure 35 demonstrates the comparison and grouping of the nodes in the

sorted buckets. The cost of computing the overlap between two nodes is equal to the sum

of the costs of computing the intersection and the union of two sets with S elements, where

S is the sample size of the SubtreeShingles.

If this group has at least ShareFactor nodes then we have the possibility of detecting

it as a fragment. However before we declare the group as a candidate fragment, we need to

ensure that the fragment corresponding to this group of nodes is indeed a maximally shared

fragment.

To ease the decision on whether a group of nodes with similar shingles is a maximally

shared fragment, we mark the descendent of each declared fragment with the fragment-ID

assigned to the fragment. When similar nodes are detected, we check whether the ancestors

of all of the nodes belong to the same fragment. If so, we reject the node group as a

trivial fragment. Otherwise we declare the node group as a candidate fragment, assign it a

fragment-ID and mark all of the descendant nodes with the fragment-ID. Once we declare a

node-group as a candidate fragment, we remove all the nodes belonging to that group from

the buckets. The algorithm proceeds by processing the next largest node in the node group

in the same manner. We provide the pseudo-code in Algorithm 2.

113

A1

A2 A3 A4

A5 A6 A7

B1

B2
B3 B4

B5 B6 B7

Part from BBC’s
World News Page

Part from BBC’s
Mid-East Page

AF Tree - 1

AF Tree - 2

Figure 36: Illustration of Shared Fragment Detection on BBC Website

5.3.2 Illustration on Real Web Data

In this section we illustrate the working of shared fragment detection algorithm on real web

pages and demonstrate the effect of the configurable parameters on the detected fragments.

Figure 36 shows parts of two web pages from BBC. The first web page part is taken from

the BBC’s World news page and the second part appeared in the BBC’s Mid-East page.

AF Tree - 1 and AF Tree - 2 depict the corresponding Augmented Fragment trees. The

arrows in the figure show the mapping between nodes of the AF trees and their contents.

The nodes A1 and B1 correspond to the entire web-page segments, whereas the nodes A2,

B2 and A3, B3, represent the heading and the paragraph text respectively. The nodes A4,

B4 represent the bulleted list in the two segments and the nodes A5 . . . A7 and B5 . . . B7,

the individual bullet points.

114

Algorithm 2 The Shared Fragment Detection Algorithm
INPUT:
AF trees of web pages: {Af1, Af2..AfP }
MinFragSize, SharFactor and MinMatchFactor

OUPUT:
A set of Shared fragments: {SFd1, SFd2..SFdq}
PROCEDURE:
Create a set of node buckets: {Bkt1, Bkt2..Bktl}
Initialize AncestorFragment to False

Initialize AncestorFragmentArray to NULL of all nodes
for i = 0 to P do
Put all the nodes in tree Afi whose SubtreeSize ≥ MinFragSize into appropriate buckets

end for
Sort and Merge the buckets {Bkt1, Bkt2..Bktl}
while Buckets are Non empty do

LrNd ⇐ Largest Node in Buckets
NewNodeGroup ⇐ LrNd

Compute the CSet(LrNd)
for Each Ndg ∈ CSet(LrNd) do

if Overlap between the shingles of Ndg and LrNd ≥ MinMatchFactor then
Add Ndg to NewNodeGroup

end if
end for
if Number of Nodes in NewNodeGroup ≥ SharFactor then

if At least one Node has AncestorFragment = False OR
AncestorFragmentArray of at least one Node differs from others then
{/* New Maximal Fragment Detected */}
Assign a FragmentID to the fragment and add it to Fragment Set
for All descendants of the nodes in NewNodeGroup do
Set AncestorFragment to True

Add FragmentID to AncestorFragmentArray

end for
end if

end if
Remove all nodes in NewNodeGroup from buckets

end while
Output the fragments in the FragmentSet

A high degree of similarity between these two web page parts makes them prime can-

didates for shared fragments. The contents of nodes A2, A3 of AF Tree-1 are identical to

their corresponding nodes in AF Tree-2, whereas the contents of nodes A5 and A7 differ

from their counterparts.

The shared fragment detection algorithm puts these nodes into buckets, sorts these

buckets, and processes the nodes in decreasing order of their sizes. Hence the node A1 is

compared with other nodes to group similar nodes based on the value ofMinMatchFactor.

IfMinMatchFactor is set to 0.70, then the nodes A1 and B1 are grouped together as similar

nodes and are detected as a candidate fragment. In this case the entire web page segment

is detected as a single, large fragment. The nodes A2 . . . A7 and B2 . . . B7 are not declared

115

as fragments because they share the same set of ancestor fragments, and hence are not

maximal fragments.

However, if MinMatchFactor is set to a higher value, say 0.90, then the nodes A1 and

B1 are not considered to be similar and these nodes are just removed from the buckets. In

this case (A2, B2), (A3, B3), (A6, B6) are detected as fragments. Therefore, we see that the

number of detected fragments increase as MinMatchFactor increases, whereas the size of

the detected fragments decrease. The experimental results in Section 5.5.1 reflect this effect

of MinMatchFactor on the number and the size of the detected fragments.

5.4 Detecting L-P Fragments

In this section we discuss the algorithm for detecting L-P fragments. One way to detect the

L-P fragments is to compare various versions of the same web page and track the changes

occurring over different versions of the web page. The nature and the pattern of the changes

may provide useful lifetime and personalization information that is helpful for detecting the

L-P fragments.

5.4.1 Algorithm for L-P Fragment Detection

The first challenge in developing an efficient L-P fragment detection algorithm is to identify

the logical units in a given web page that may change over different versions, and to discover

the nature of the change.

The second challenge is to detect candidate fragments that are most beneficial to caching.

Suppose we have a structure such as a table in the web page being examined. Suppose the

properties of the structure remain constant over different versions of the web page, but the

contents of the structure have changed over different versions. Now there are two possible

ways to detect fragments: Either the whole table (structure) can be made a fragment or

the substructures in the table (structure) can be made fragments. Which of these would be

most beneficial to caching depends upon what percentages of the substructures are changing

and how they are changing (frequency and amount of changes).

In the design of our L-P fragment detection algorithm, we take a number of steps to ad-

dress these two challenges. First, we augment the nodes of each AF tree with an additional

116

field NodeStatus, which takes one value from the set of three choices {UnChanged,

V alueChanged, PositionChanged}. Second, we provide a shingles-based similarity func-

tion to compare different versions of a web page, and determine the portions of a web

page that have distinct lifetime and personalization characteristics. Third, we construct

the Object Dependency Graph (ODG) [33] for each web document examined on top of all

candidate fragments detected.

An Object Dependency Graph is a graphical representation of the containment rela-

tionship between the fragments of a web site, which can be used to efficiently compose web

pages at the servers and the caches [33]. The nodes of the ODG correspond to the fragments

of the web site and the edges denote the containment relationship among them. Finally,

we use the following configurable parameters to measure the quality of the L-P fragments

in terms of cache benefit and to tune the performance of the algorithm:

• Minimum Fragment Size(MinFragSize): This parameter indicates the minimum

size of the detected fragment.

• Child Change Threshold(ChildChangeThreshold): This parameter indicates the

minimum fraction of children of a node that should change in value before the parent

node itself can be declared as V alueChanged. It can take a value between 0.0 and

1.0.

The L-P fragment detection algorithm works on the AF trees of different versions of

web pages. It installs the first version (in chronological order) available as the base ver-

sion. The algorithm compares each subsequent version to the base version and identifies

candidate fragments. A new base version is installed whenever the web page undergoes a

drastic change when compared with the current base version. In each step, the algorithm

executes in two phases. In the first phase it marks the nodes that have changed in value

or in position between the two versions of the AF tree. In the second phase the algorithm

outputs the L-P fragments which are then merged to obtain the object dependency graph.

Phase 1: Comparing the AF trees and detecting the changes

Concretely, if we have two AF trees A and B corresponding to two versions of a web page,

117

ValueChanged

PositionChanged

B1

B2 B3 B10

B7 B6
B5

B11 B12

UnChanged

UnChanged
UnChanged

PositionChanged ValueChanged

ValueChanged

A1

A2 A3 A4

A5 A6
A7

A8 A9

B1

B10B5 B6 B7

Version 1 Version 2

Object Dependency Graph

L-P Fragments

ValueChanged

PositionChanged

B1

B2 B3 B10

B7 B6
B5

B11 B12

UnChanged

UnChanged
UnChanged

PositionChanged ValueChanged

ValueChanged

ValueChanged

PositionChanged

B1

B2 B3 B10

B7 B6
B5

B11 B12

UnChanged

UnChanged
UnChanged

PositionChanged ValueChanged

ValueChanged

B1

B2 B3 B10

B7 B6
B5

B11 B12

UnChanged

UnChanged
UnChanged

PositionChanged ValueChanged

ValueChanged

A1

A2 A3 A4

A5 A6
A7

A8 A9

B1

B10B5 B6 B7

B1

B10B5 B6 B7

Version 1 Version 2

Object Dependency Graph

L-P Fragments

Figure 37: L-P Fragment Detection Algorithm

our algorithm compares each node of the tree B, to a node from A which is most similar to

it. We employ the Resemblance measure (defined in Section 5.3) for similarity comparison

between nodes.

If we are processing node Bj from AF tree B, we obtain a node Ai from tree A such that

Resemblance(Ai, Bj) ≥ OvlpThrshld, and there exists noAh such thatResemblance(Ah, Bj)

> Resemblance(Ai, Bj) where OvlpThrshld denotes a user-specified threshold for the quan-

tity Resemblance, which can take a value between 0 and 1.0. If no such node is found in

tree A, then it means that there is no node in A that is similar to the node Bj . Hence, the

node Bj is marked as V alueChanged.

If a node Ai is found similar to node Bj , the algorithm begins comparing node Bj with

node Ai. The algorithm compares the SubtreeValues and the NodePaths of the two nodes.

If both SubtreeValue and NodePath of the two nodes exactly match then the node is marked

UnChanged. If the NodePaths of the two nodes differ, then it means that the node has

changed its position in the tree and hence it is marked as PositionChanged.

If the SubtreeValues of the nodes Ai and Bj do not exactly match then the algorithm

118

checks whether they are leaf nodes. If so, they are marked as V alueChanged. Otherwise,

the algorithm recursively processes each child node of Bj in the same manner described

above marking them as V alueChanged, PositionChanged or UnChanged.

The algorithm addresses the second issue of discovering the fragments based on the ex-

tent of changes it is undergoing by calculating the fraction of Bj ’s children that are marked

as V alueChanged. If this fraction exceeds a preset threshold, which we call the Child-

ChangeThreshold, then Bj itself is marked as V alueChanged. The algorithm recursively

marks all the nodes in the tree in the first phase.

In our algorithm, the decision regarding the status of a node is based upon the fraction

of its children which have been marked as V alueChanged. Therefore, the statuses of all

children nodes have equal impact on the status of their parent node. Alternatively, the

weight given to the status of a child node in deciding its parent’s status may be scaled

according to size of the child node. Although we have not experimentally evaluated this

variant of our basic algorithm, we believe that it would yield results comparable to those

obtained by the basic algorithm (equal weights to all children nodes).

Phase 2: Detecting and labeling the L-P fragments

In the second phase, the algorithm scans the tree again from the root and outputs the

nodes that are marked as V alueChanged or PositionChanged. The algorithm descends

into a node’s children if the node is marked as PositionChanged or UnChanged. If the

node is marked as V alueChanged, the algorithm outputs it as a L-P fragment, but does

not descend into its children. This ensures that we detect maximum-sized fragments that

change between versions.

Figure 37 demonstrates the execution of one step in the L-P fragment detection algo-

rithm. In the figure we compare the nodes of the AF tree of version 2 with the appropriate

nodes of the AF tree of version 1. For example the node B7 is compared with A7 although

these nodes appear at different positions in the two AF trees. In this example we set the

ChildChangeThreshold to be 0.5. The node A6 is marked as V alueChanged as both of its

children have changed in value. The figure also indicates the fragments discovered in the

119

Algorithm 3 The L-P Fragment Detection Algorithm
INPUT:
AF trees of web pages: {Af1, Af2..AfP }
Child Change Threshold: ChildChangeThreshold

Minimum Fragment Size: MinFragSize

OUTPUT:
Object Dependency Graph of the Detected Fragments: ODG

PROCEDURE:
for i = 2 to P do
Compare the trees Afi and Af0 and mark the changed nodes via the recursive procedure
MarkChangedNodes(RootNode1, RootNodei)
Detect fragments and merge the fragments into ODG via the recursive procedure
DetectLPFragments(Rooti)

end for
PHASE 1: MarkChangedNodes(NodeA, NodeB)
Compare the NodePaths of NodeA and NodeB
if The NodePaths of the two Nodes differ then
Mark the NodeStatus as PositionChanged: NodeStatus ⇐ PositionChanged

end if
NumChangedChildren = 0
for Each Child Node (ChldNodeB) of NodeB do
Obtain the Nearest Node (ChldNodeA) from Children of NodeA to compare ChldNode with
if There is no nearest node from children of NodeA then
Mark NodeStatus of ChldNodeB as V alueChanged

NumChangedChildren ⇐ NumChangedChildren+ 1
else

ChldStatus ⇐ MarkChangedNodes(ChldNodeA, ChldNodeB)
if ChldStatus = V alueChanged then

NumChangedChildren ⇐ NumChangedChildren+ 1
end if

end if
end for
if NumChangedChildren

TotalChildren
≥ ChildChangeThreshold then

Mark NodeStatus as V alueChanged: NodeStatus ⇐ V alueChanged

end if
Return(NodeStatus)
PHASE 2: DetectLPFragment(NodeB)
if NodeStatus = V alueChanged then
Declare NodeB a Fragment and Merge the NodeB into ODG

Return;
end if
if NodeStatus = PositionChanged then
Declare NodeB a Fragment and Merge the NodeB into ODG

end if
for Each Child node of NodeB say ChldNodeB do
DetectLPFragment(ChldNodeB)

end for
Return

second pass of the algorithm. We provide the pseudo-code in Algorithm 3.

As the L-P fragment detection algorithm works on different version of a web page, the

fragments detected by the algorithm are affected by the versions of the web page provided

to it as input. The algorithm yields most accurate fragments when it receives each new

120

version of the web page within a given time period. In other words the performance of

the algorithm is best when the web pages versions are captured each time the web page

changes. If the web pages are not sampled at each observed change, the algorithm might

miss some fragments.

In summary, our L-P fragment detection algorithm detects the parts of a web page

that change in value and parts of web pages changing their position between versions. The

fragments detected by the algorithm might either have different lifetimes or differ in their

personalization characteristics. The lifetime-based fragments are detected by comparing

various versions of the web page that are time-spaced, whereas fragments representing per-

sonalized information are detected by comparing versions of web pages that are generated

for different users and tracking the changes the web page is undergoing. Fragments repre-

senting personalized content represent information that is specific to particular users, and

hence might not be cacheable. Although lifetime fragments and personalization fragments

are detected in a similar manner, they serve different purposes. While lifetime-based frag-

ments decrease the amount of data invalidations at the caches, personalization-based frag-

ments increase the cacheable content of the web site by clearly demarcating the potentially

non-cacheable content.

5.4.2 Illustration of L-P Fragment Detection on Real Web Data

Next we illustrate the working of the L-P fragment detection algorithm and the effect of

its configuration parameters on a web page from Slashdot. Figure 38 indicates the same

segment from two versions of a web page from Slashdot and their corresponding AF trees.

The arrows indicate the correspondence between the nodes of the AF tree and the web page

content.

As we previously described, the first phase of the algorithm compares each node of the

AF Tree-2 with the most similar node from AF Tree-1, and marks them as UnChanged,

PositionChanged or V alueChanged. In the figure, the nodes B7 through B10 are marked as

V alueChanged, since these are new information appearing in this version and have no corre-

sponding nodes in AF Tree-1. The nodes B11 through B14 are marked as PositionChanged

121

as they have changed the relative position in which they appear in the AF tree. For exam-

ple, while the content of node B11 is identical to the content of node A7 in AF Tree-1, they

vary in the relative positions in which they appear in their respective AF trees.

A1

A2 A3 A4 A5 A6

A7 A8 A9 A13A10 A12A11 A14

B1

B2 B3 B4 B5 B6

B7 B8 B9 B14B13B12B10 B11

ValueChangedPositionChangedUnChanged

Version 1

Version 2

AF Tree-1

AF Tree-2

Figure 38: Illustration of L-P Fragment Detection

In the second phase, the algorithm traverses the tree from the root and detects the L-P

fragments. The value of the ChildChangeThreshold parameter influences the fragments

that are identified in this phase. In this example, we see that 4 out of 8 children of the

node B4 are marked as V alueChanged. Hence, if the ChildChangeThreshold is set to

0.5 or lower values, the node B4 would be detected as a single fragment. However, if the

ChildChangeThreshold is set to higher values, the individual nodes B7 through B14 are

122

detected as fragments. Thus, when ChildChangeThreshold is set to higher values, it is

more likely that nodes that are located deeper in the tree are flagged as fragments. As there

are more nodes deeper in the tree, the number of fragments detected is higher. Equivalently,

the average size of the fragment decreases as ChildChangeThreshold increases.

The appropriate value of ChildChangeThreshold depends upon factors such as the

request rate at the web pages, the capacity of the server and the caches, and the bandwidth

of the network connection between the caches and the server. While the amount of data

invalidation and the bandwidth consumption of the network connection between the caches

and the server decrease with increasing numbers of fragments, having a very large number

of fragments increases the page composition costs, placing additional load on the individual

caches.

5.5 Experimental Evaluation

We have performed a range of experiments to evaluate our automatic fragment detection

scheme. In this section we report four sets of experiments. The first and second sets test

the two fragment detection algorithms, showing the benefits and effectiveness of the al-

gorithms. The third set studies the impact of the fragments detected by our system on

improving caching efficiency, and the fourth set evaluates the Hierarchical Shingles compu-

tation scheme.

The input to the schemes is a collection of web pages including different versions of each

page. We periodically fetched web pages from the web sites of BBC (http://news.bbc.co.uk),

IBM’s portal for marketing (http://www.ibm.com/us), Internetnews (http://www.internet-

news.com) and Slashdot (http://www.slashdot.org) and created a web ‘dump’ for each web

site. While most of these sites share information across their web pages and hence are good

candidates for Shared fragment detection, the Slashdot web page forms a good candidate

for L-P fragment detection for reasons explained in Section 5.5.2.

5.5.1 Detecting Shared Fragments

In the first set of experiments, we study the behavior of our Shared fragment detection

algorithm. The data sets used in this experimental study were web page dumps from BBC,

123

Internet news and IBM. We primarily report the results obtained from our experiments on

the BBC web site.

Figure 39: Number of Fragments Detected in BBC Data Set

BBC is a well-known news portal. Primarily, the web pages on the BBC web site can

be classified into two categories: web pages reporting complete news and editorial articles

(henceforth referred to as the ‘article’ pages) and the ‘lead’ pages listing the top news of

the hour under different categories such as ‘World’, ‘Americas’ ‘UK’ etc. We observed that

there is considerable information sharing among the lead pages. Therefore, the BBC web

site is a good case study for detecting shared fragments. Our data set for the BBC web site

was a web dump of 75 distinct web pages from the web site collected on 14th July 2002.

The web dump included 31 ‘lead’ pages and 44 ‘article’ pages.

Figure 39 illustrates the number of Shared fragments detected at two different values

of MinFragSize and MinMatchFactor (recall that MinFragSize is the minimum size of

the detected fragment and MinMatchFactor is the minimum percentage of shingles over-

lap). When MinFragSize was set to 30 bytes and MinMatchFactor was set to 70%, the

number of fragments detected was 350. The number of fragments increased to 358 when the

MinMatchFactor was set to 90% and to 359 when theMinMatchFactor was set to 100%.

In all of our experiments we observed an increase in the number of detected fragments with

increasing MinMatchFactor. As we explained in Section 5.3.1, when MinMatchFactor

124

BBC INTERNET NEWS IBM
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Maximum Size of Detected Fragments

Data Sets

S
iz

e
of

 L
ar

ge
st

 F
ra

gm
en

t (
B

yt
es

)

Match Factor: 70%
Match Factor: 90%
Match Factor: 100%

Figure 40: Maximum Size of the Detected Fragments

is set to a high value, the algorithm looks for (almost) perfect matches, which leads to

an increase in the number of detected fragments and a drop in the size of the detected

fragments.

Fragments Shared
by 2 Pages: 52%

Fragments Shared
by 3 Pages: 13%

Fragments
Shared by

4−5 Pages: 11%

Fragments
Shared by

6−10 Pages: 13%

Fragments
Shared by

>10 Pages: 11%

Figure 41: Distribution of Fragment Sharing in BBC Data Set

Figure 40 indicates the maximum size of the detected fragments for various data sets

when MinMatchFactor was set to 70% and 90%. For the BBC web site, the change in the

size of the largest detected fragment is rather drastic. The size falls from 5633 bytes to 797

bytes when MinMatchFactor increases from 70% to 90%.

Table 2 shows the sum of sizes of the shared fragments detected by our algorithm at

125

Table 2: Sum of Sizes of Shared Fragments Detected in the BBC Data Set

MinMatchFactor MinFragSize

= 30 bytes
MinFragSize

= 50 Bytes

0.70 136 Kbytes 130 Kbytes

0.90 122 Kbytes 115 Kbytes

1.00 121 Kbytes 115 Kbytes

different values of MinMatchFactor and MinFragSize for the BBC data set. The total

number of bytes in the shared fragment set is higher at lower values of MinMatchFactor

and vice-versa.

The pie chart in Figure 41 indicates the percentage of fragments according to the number

of pages sharing the fragments for the BBC data set. We see a large number of fragments (a

little over 50%) are being shared by exactly two pages. 13% of the fragments were shared

among exactly 3 pages, and 11% of the pages were shared by 10 pages or more. All 75

pages shared one fragment, and 3 fragments were shared by 69 pages. The mean of the

number of pages sharing each of the detected fragments was 13.8. The fragments which

were shared across a small number of pages were fragments such as synopses of news items

(with links to news articles), tables indicating statistics that were relevant to news articles,

etc. In contrast the fragments shared across a large percentage of web pages were typically

fragments such as headers, footers, and navigational bars.

A similar type of behavior was observed in all three data sets. A large percentage of

the detected fragments were shared by a small number of pages, but a few fragments were

shared by almost all the web pages of the site.

5.5.2 Detecting L-P Fragments

We now present the experimental evaluation of the L-P fragment detection algorithm. We

have primarily used the web pages hosted on the web site from Slashdot

(http://www.slashdot.org) for our experiments.

Slashdot is a well known web site providing IT, electronics and business news. The front

page of the Slashdot web site carries headlines and synopses of the articles on the site. The

126

Table 3: Statistics for L-P Fragment Detection

ChildChangeThreshold 0.50 0.70

Total Fragments 79 285

Average Fragment Size (in bytes) 822 219

Depth of Fragmentation 3 3

Sum of Sizes of Detected Fragments (in bytes) 64938 62415

page indicates the number of comments posted by other users under each article. Thus, as

new comments are added to existing articles and new articles are added to the web site, the

page changes in small ways relative to the entire content of the page. It therefore forms a

good case for L-P fragment detection, as well as other techniques that identify similarity

across pages. The same Slashdot data set has been used in another study of similarity across

pages at the level of unstructured bytes, finding that different versions of the Slashdot home

page within a short time frame are extremely compressible relative to each other [62].

This web page provides a good case study to detect L-P fragments for a number of

reasons. First, this web page is highly dynamic. Not only are there parts of the page that

change every few minutes, the web page experiences major changes every couple of hours.

Second, various portions of the web page have different lifetime characteristics. Third, the

web page experiences many different kinds of changes like additions, deletions, and value

updates. Furthermore, there are parts of the web page that are personalized to each user.

Table 3 provides a synopsis of the results of the L-P fragment detection experiments. A

total of 79 fragments were detected when the ChildChangeThreshold was set to 0.50, and

285 fragments were detected when ChildChangeThreshold was set to 0.70. As explained

in Section 5.4.2, when ChildChangeThreshold is set at higher values, larger numbers of

small fragments are detected and vice versa.

In both cases, the depth of fragmentation was 3. The depth of fragmentation is defined

at the end of Section 5.1. When ChildChangeThreshold was set to 0.50, the number of

fragments detected at depths 1, 2 and 3 were respectively 10, 7 and 62.

Figure 42 and Figure 43 indicate the lifetime distribution of the L-P fragments from

127

< 1/12 1/12−1 1−4 4−8 8−12 12−16 16−20 20−24 > 24
0

5

10

15

20

25

30

35

40

45

50

55
Fragment Lifetime Distribution

Fragment Lifetime in Hours

N
um

be
r

of
 F

ra
gm

en
ts

ChildChangeThreshold = 0.7
ChildChangeThreshold = 0.5

Figure 42: Fragment Lifetime Characteristics

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
CDF Characteristics of Fragment Lifetimes

Lifetime in Hours

Fr
ac

tio
n

of
 F

ra
gm

en
ts

ChildChangeThreshold = 0.7

Figure 43: Cumulative Distribution of Fragment Lifetimes

the Slashdot web site. Figure 42 shows the lifetime of the fragments detected when

ChildChangeThreshold is set to 0.7 and 0.5. Figure 43 indicates the cumulative distribu-

tion of the detected fragments with respect to their lifetimes. As the cumulative distribu-

tions of the fragments detected by setting ChildChangeThreshold to 0.7 and 0.5 were simi-

lar to each other, the figure shows the cumulative distribution at ChildChangeThreshold =

0.7. We observe that when ChildChangeThreshold was set to 0.70, around 8% of the de-

tected fragments had a lifetime of less than 5 minutes, around 17% of the fragments had

lifetimes between 5 minutes and 1 hour, and around 6% had lifetimes of more than 24 hours.

128

5.5.3 Impact on Caching

Having discussed the experimental evaluation of our fragment detection system with regard

to its accuracy and efficiency, we now study the impact of fragment caching on the per-

formance of the cache, the server and the network when web sites incorporate fragments

detected by our system into their respective web pages.

0 10 20 30 40 50 60 70 75
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Disk Space Requirements

Total Number of Pages

S
iz

e
of

 D
is

k
S

pa
ce

 (M
B

)
Page Caching
Fragment Caching: MinMatchFactor = 0.9
Fragment Caching: MinMatchFactor = 0.7

Figure 44: Total Storage Requirements

We begin by studying the savings in the disk space requirements of a fragment cache

when the web pages incorporate the fragments discovered by our fragment detection system

in comparison to a page cache that stores entire pages. Earlier we had explained the

experimental evaluation of our shared fragment detection system on the BBC data set. We

now compare the disk space needed to store the web pages in the data set when they are

stored at the page granularity with disk space requirements for storing these web pages

when they are fragmented as determined by our system.

Figure 44 indicates the total storage requirements as a function of the number of pages

both for page caches and fragment caches. The graph shows that caching at the fragment

level requires 22% to 31% less disk space than the conventional page level caching. The

graph also shows that the improvements are higher when MinMatchFactor is set to low

values. This is because when MinMatchFactor is set to low values, larger size fragments

are discovered. When they are stored only once rather than being replicated, the savings

129

obtained in terms of the disk space are higher.

In the next experiment we study the effects of L-P fragments detected by our system on

the load on the network connecting the cache and the server. As we discussed in Section 5.1,

incorporating L-P fragments into web pages reduces the amount of data invalidated at the

caches, which in turn reduces the load on the origin servers and the backbone network. In

order to study the impact of the L-P fragments on the server and network load, we use the

L-P fragments detected by our algorithm on the Slashdot web site.

To study the load on the network we also need the access patterns of the web pages and

the lifetime characteristics of the fragments. We model the lifetime characteristics based

on the fragment lifetime data collected from the Slashdot’s web site. As we do not have

the access pattern data for the web pages from Slashdot, we make certain assumptions,

which aid us to model the access pattern. We assume that the requests for web pages arrive

according to a Poisson process, as supported by past analysis [73]. We vary the request

arrival rate from 1000 requests per minute to 10000 requests per minute.

Figure 45 indicates the total bytes transferred as a function of the number of requests

arriving at the cache, at page access rates of 5000 and 7500 accesses per minute. The X-

axis indicates the number of accesses and the Y-axis indicates the total number of bytes

transferred, on log scale. The number of bytes transferred for page-level caching is always

higher than for fragment-level caching. The effect is more pronounced when the access

rates are low. This is because, at low access rates the probability of fragments getting

invalidated between two consecutive accesses are higher. In case of fragment caching, only

the invalidated fragments have to be fetched from the server, whereas the entire page has

to be fetched if the caching is done at page granularity.

In Figure 46 we indicate the compulsory byte miss rates for the page caching and the

fragment level caching schemes. Compulsory byte miss rate of a cache is defined as the

miss rate (ratio of the bytes obtained from the server to the total bytes accessed at the

cache) incurred exclusively due to freshness constraints on the web pages being served by

the cache. In other words compulsory byte miss rate does not include byte-misses due to

storage limitation of the cache. The X-axis indicates the ratio of mean fragment invalidation

130

1K 3K 6K 9K 12K 15K 18K 21K 24K 27K 30K
10K

50K

100K

500K

1M

5M
Bytes Transfered between Server and Cache

Number of Requests

B
yt

es
 T

ra
ns

fe
re

d
P

er
 P

ag
e

Page Cache: Access Rate = 5000
Fragment Cache: Access Rate = 5000
Page Cache: Access Rate = 7500
Fragment Cache: Access Rate = 7500

Figure 45: Bytes Transferred between Server and Cache

rate to access rate on a log scale. In this graph, it is assumed that the cache has enough

storage capacity to contain all the web pages and hence, there is no data replacement in

the caches, which in turn implies that there are no misses due to storage limitations. All

the misses are occurring because of the data invalidations occurring in the cache. The

compulsory byte miss rate is defined as the ratio of the bytes fetched from the origin server

to the total bytes accessed from the cache, when the cache only experiences compulsory

misses.

.00001 .00002 .0001 .0002 .001 .002 .01
0

10

20

30

40

50

60

70

80

90

100
Compulsory Miss Rate

Invalidation Rate/Access Rate

M
is

s
R

at
e

Page Caching
Fragment Caching

Figure 46: Compulsory Byte Miss Rate

The graph in Figure 46 indicates that when the invalidation to access rate ratio is very

low, the miss rates for both page level caching and fragment caching are very low. However,

131

when this ratio reaches 0.0001, the byte miss rate of the page level caching is 8.86%, whereas

it is just 0.10% for fragment caching. When the invalidation to access rate ratio reaches

0.001, the byte miss rate of the page cache jumps to 51.4%, compared to 7.8% for fragment-

based caching. Therefore fragment-based caching is clearly very useful when the web pages

contain parts that are highly dynamic.

1K 3K 6K 9K 12K 15K 18K 21K 24K 27K 30K
10

50

100

500

1000

5000
Server Load

To
ta

l C
P

U
 C

os
t

Page Cache: Access Rate = 5000
Fragment Cache: Access Rate = 5000
Page Cache: Access Rate = 7500
Fragment Cache: Access Rate = 7500

Number of Requests

Figure 47: Server Load with Constant Fragment Generation Cost

Next we compare page caching and fragment caching with respect to the load on the

server using two cost models. In both models the web pages were updated multiple times

within the duration of the experiment. The first model, called the constant-cost model,

assumes that the cost of generating each fragment is constant. In other words, generating

each fragment involves one unit cost at the server. Figure 47 indicates the total cost incurred

at the server per web page as a function of the total number of page accesses for the page

cache and the fragment cache at page access rates of 5000 and 7500 accesses per minute.

The X-axis indicates the total number of page requests, and the Y-axis shows the total cost

at the server per page on a log scale.

In the second model, which we call the weighted-cost model, we assume that the cost

of generating a fragment is proportional to the size of the fragment, with an average sized

fragment costing one unit cost at the server. Figure 48 indicates the total cost incurred at

the server per web page under this model.

132

1K 3K 6K 9K 12K 15K 18K 21K 24K 27K 30K
10

50

100

500

1000

5000
Server Load

Number of Requests

To
ta

l C
P

U
 C

os
t

Page Cache: Access Rate = 5000
Fragment Cache: Access Rate = 5000
Page Cache: Access Rate = 7500
Fragment Cache: Access Rate = 7500

Figure 48: Server Load with Weighted Fragment Generation Cost

In both models, the load on the server in the fragment-based caching mechanism is

always less than the caching mechanism that stores the web pages at page granularity. For

example in the constant-cost model, at an access rate of 7500 accesses per minute, the

total cost at the end of 30K accesses is around 9.6 times the total server cost for fragment-

based caching. Similarly, the total cost of page caching at the end of 30K accesses for the

weighted-cost model at 7500 accesses per minute is around 9.48 times the corresponding

cost for the fragment-based caching scheme.

In a page cache, when a single fragment expires, the whole page has to be fetched

from the origin server. Fetching a particular page from the origin server involves all the

fragments corresponding to the page to be regenerated. In the fragment-based caching,

when a fragment gets invalidated only that particular fragment has to be fetched from the

origin server. Therefore, the load on the server in the page caching scheme is much higher

than the server load in the fragment-based caching scheme.

In conclusion, these experiments demonstrate that caches which store the fragments

detected by our system effectively reduce server load and network bandwidth consumption,

which are the key goals of web caching.

133

1.7K 3.8k 5.0K 11.5K 19K
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180
Number of Hash Calculations for Shingle Computation

Size of the Document String

N
um

be
r

of
 H

as
he

s
(in

 th
ou

sa
nd

s)

Direct Computation
HiSh Algorithm

Figure 49: Number of Hashes Computed

5.5.4 Improving Fragment Detection Efficiency

We have proposed a number of techniques to improve the performance of the fragment

detection process including an incremental scheme to compute the SubtreeShingles of the

nodes in the AF trees (HiSh algorithm) and pruning the nodes of the DOM tree to obtain

the more compact AF tree representation. In this section we evaluate these techniques. We

first present the experimental evaluation of the HiSh algorithm.

Figure 50: Total Shingle Computation Time

Figure 49 shows the total number of hash computations involved in constructing the

AF tree for various documents, and Figure 50 illustrates their total shingle computation

134

times. For a document with 1.7K characters in its content string, whose AF tree contained

409 nodes and had a depth of 6, the number of hash computations needed for the direct

computation is 2.6 times the number of hashes computed in the HiSh scheme and takes 1.9

times more computation time than that of the HiSh scheme. For a document whose content

string had 19K characters, and whose AF tree had a depth of 11 and contained 1390 nodes,

the number of hashes computed in the direct computation is almost 8.5 times and takes 5.8

times more computation time. The improvements provided by the HiSh algorithm in terms

of total shingle computation times may be less than the corresponding improvements in

terms of the number of hash computations. This is due to overheads involved in operating

on large strings and bookkeeping operations, which cannot be completely avoided.

Figure 51: Number of Nodes in DOM and AF Trees

Next we discuss the effectiveness of pruning the unnecessary nodes from the DOM tree.

Figure 51 shows the number of nodes in the original DOM tree and the number of nodes

after pruning. The web page from IBM had 1.7K bytes of content and 478 nodes. After

node pruning the number of nodes comes down to 409, which is a reduction of 14%. For

a page from the Internet News, which had a total size of 1416 nodes, the pruning reduces

the number of nodes to 1152, which is a reduction of around 18%. Similarly for a web page

from Slashdot, which had 1750 nodes in its DOM tree, the reduction was by 360 nodes or

20.5%. It should be noted that the percentage of pruned nodes is consistently increasing

with the number of nodes in the original DOM tree.

135

5.6 Conclusion

Fragment-based generation and caching of dynamic web pages is widely recognized as an

effective technique to counter the scalability and performance challenges caused by the

enormous growth of dynamic web content. Most Fragment-based caching solutions rely

upon web pages that have been manually fragmented at their respective web sites by the

web administrator or the web page designer. However, manual fragmentation of web pages

is expensive, error prone, and unscalable.

In this chapter we have presented a novel scheme to automatically detect and flag

“interesting” fragments in dynamically generated web pages that are cost-effective cache

units. This scheme is based on analysis of the web pages dynamically generated at given

web sites with respect to their information sharing behavior, personalization properties and

change patterns. Our approach has three unique features. First, we propose a hierarchical

and fragment-aware model of the dynamic web pages and a data structure that is compact

and effective for fragment detection. Second, we present an efficient algorithm to detect

maximal fragments that are shared among multiple documents. Third, we develop an

algorithm that effectively detects fragments based on their lifetime and personalization

characteristics. We evaluate the proposed scheme through a series of experiments, showing

the benefits and costs of the algorithms. We also report our study on the impact of adopting

the fragments detected by our system on disk space utilization and network bandwidth

consumption.

Our fragment detection scheme is a general technique, and it may be used in conjunction

with any fragment-based dynamic content delivery system, including the cooperative EC

grid which is appropriately configured to cache dynamic content at fragment granularities.

136

CHAPTER VI

RELATED WORK

The area of generation and delivery of dynamic web content has received considerable

research attention in recent years. Caching has been a popular technique for efficient delivery

of dynamic web content. Researchers have designed and implemented various systems for

dynamic web content caching. Further, researchers have also attempted to address some

of the general challenges that arise in designing caching solutions for dynamic web content

delivery. In this chapter, we first survey the area of dynamic content delivery, discussing

important research directions that have been pursued in the past. Later in the chapter we

discuss prior works that are most relevant to the research presented in this thesis.

6.1 Architectures and Systems for Dynamic Web Content

Caching

Designing new architectures, developing new systems, and studying the artifacts of existing

architectures and systems constitute a significant portion of the existing research in the

area of dynamic web content caching. The design issues and the architectural features of a

caching system are, to a large extent, influenced by two factors, namely, the location of the

cache(s) within the Internet and the granularity at which content is stored in the caches.

Accordingly, the proposed architectures and systems can be classified based on either on

the location of the cache(s) or on the granularity of caching.

If the dynamic content caching systems were to be classified based on the location of

the caches, the major categories of classification would be (a) Client-side caching, (b) Edge

caching, and (c) Server-side caching. Similarly, if we were to adopt granularity of caching

as the basis of classification, we obtain three classes, namely (1) Whole-page caching, (2)

Fragment caching, and (3) Table or query caching. The works that are most related to

the research presented in the thesis belong to the categories of edge caching and fragment

137

caching, and are discussed in separate sections (see Section 6.4 and Section 6.6

Architectures wherein the caches are located within client’s infrastructure are known as

client-side caching schemes. Caching dynamic content on the client-side has not received

much research attention. One of the few research efforts in this direction was the active

cache project [30], which explored the possible ways of developing closer interaction between

the client-side caches and the origin server. The central idea of the Active Cache scheme is

to shift some of the operations associated with dynamic pages from the origin server to the

proxy caches through server-supplied code called cache applets. Although the idea of active

caching was very novel, it did not become popular because of the security risks involved in

executing server-supplied code at client-side caches. Caching dynamic content at the edge

of the Internet has become popular in recent years.

In contrast to client-side caching, the field of server-side caching of dynamic content have

been well researched [54, 27, 44, 67, 94, 34]. Server-side caching of dynamic content has

been a popular technique reducing the load on various servers on the origin site, thereby

increasing its throughput and reducing the latencies of requests. In this discussion we

consider any cache that is located within the origin-site’s infrastructure to be a server-

side cache. Server-side caching schemes may be classified into various categories based on

location of the caches within the site’s infrastructure.

Caching at the interface of the web servers and the external network is referred to as

front-tier caching or reverse-proxy caching [27, 64, 94]. It was one of the earliest server-side

caching schemes and it remains very popular even today. Song et al. [94] discuss the design

and implementation of a web server accelerator, which is a high-performance reverse proxy

cache with a collocated load balancer. This work concentrates on the operating system-level

issues involved in designing high performance front-tier cache.

Candan et al. [27] present the architectural design of CachePortal, a front-tier cache

for a database-driven, e-commerce web site. The system is designed to be deployed in a

web-farm environment with multiple web servers and collocated application servers, but

having a centralized non-replicated database server. The requests arriving at the web site

are intercepted by the front-end cache, and any requests that can be satisfied by the data

138

available in the cache receive responses from the cache, and they do not reach the web farm.

If a request reaches the web farm, it is directed to one of the web servers by a load-balancer,

which handles the request and generates the response web page. The generated web page

flows through the front-end cache, which may store it for responding to future requests.

Middle-tier caching is another popular category of server-side caching mechanisms. The

goal of middle-tier caching schemes is to alleviate the load on the application server and

the backend databases, thereby improving their throughputs and average response times.

In these schemes caching is done at the interface of application server and database server.

The cache might be either collocated with the application server or might be located on

a separated, dedicated machine. In middle-tier caches, content is generally stored at the

granularity of html fragments [44], database-tables [67] or query results [17]. Middle tier

caching solutions have also been incorporated into commercial products such as Oracle

Application Server [12].

The Dynamic Content Acceleration (DCA) solution by Datta et al. [44] is a middle-tier

cache which stores HTML fragments. The experiments reported in the paper show that

caching at the granularity of fragments provides distinct advantages in terms dynamic page

composition costs incurred at the application server.

Luo et al. [67] present the architectural design of DBCache, which is a middle-tier cache

storing complete database tables. The DBCache is a modified DB2-version 7 database

system, which acts as a database cache. The SQL queries issued by the application server

are processed using the information stored at the DBCache, and if necessary by contacting

the backend databases. DBCache uses the federated features of DB2 for generating a

distributed query plan, in case a query references tables that are not cached locally.

Another flavor of server-side caching schemes is the multi-tiered cache architectures,

wherein multiple caches are located at various cache-points within the server infrastruc-

ture [34, 66]. These architectures are employed in web sites experiencing very heavy loads

in which single tiered caching solutions cannot provide acceptable levels of throughput and

latency. Challenger et al. [34] discuss the design and implementation of a multi-tiered

caching solution, which has been used in web sites for events such as 2000 Summer Olympic

139

Games, Wimbledon, US Open, and French Open Tennis tournaments.

The architecture consists of multiple front-tier caches (reverse proxy caches), referred

to as the origin caches. Other than these front-tier caches, the architecture also has Point

of Distribution caches that are spread out in the network and are analogous to edge caches.

The scheme maintains the freshness and consistency of the cached data through the data

update propagation algorithms. These algorithms employ the Object Dependency Graph

structure to represent the containment relationship between the underlying data and the

cached objects and decide when a cached data item is stale and has to be refreshed.

Li et al. [66] extend the CachePortal architecture [27] to a multi-tiered caching scheme.

In addition to the front-end cache located at the interface of the web farm and the external

Internet, the proposed architecture includes a cache in-between the application servers and

the DBMS. This cache, which is termed as a XJDBC cache, stores the results of the database

queries issued by the application server. The database queries are intercepted by the XJDBC

cache, and if a query cannot be answered by the cached results, the XJDBC cache provides

the connectivity functionality between the application server and the databases.

Server-side caching of dynamic web content continues to be a popular area of research.

Researchers are studying several variants of these basic approaches for optimizing specific

performance parameters, or to address the needs of specific applications.

In terms of the caching granularity, the early systems only supported caching at the

granularity of entire pages. These are referred to as whole-page caches. However, it was

soon realized that whole-page caching is not very well suited for delivering dynamic web

content, due to its frequent changing nature and its stringent freshness requirements. This

prompted researchers to explore caching at finer granularities, which eventually led to the

development of fragment and query caching schemes. Of these two categories, fragment

caching has received a higher degree of research attention, and it has also been commercial-

ized. Fragment caching schemes are discussed in detail in Section 6.6.

Query caching schemes, as the name suggests, store results of queries issued to backend

databases. Although query caching has been studied in the database community for quite

sometime [41, 47], its application to dynamic web content is relatively recent [46, 68, 17]. A

140

key problem in query caching is to decide whether the data stored in the cache can satisfy

an incoming query. This is known as the query-containment problem. While researchers in

databases have explored a few solutions to the general query containment problem, most

solutions are not very efficient and scalable. To address this concern, query caching schemes

typically restrict the class of queries stored in the caches. While Luo and Naughton [68],

propose a scheme to cache results of HTML forms-based queries, the template-based query

caching scheme [17] is slightly more general in the sense that it permits queries to be

originating from HTML forms or from programs using pre-specified statements.

6.2 Data Freshness Issues in Dynamic Content Caching

Irrespective of the location of the cache and the granularity of caching, a fundamental and

important issue that has to be addressed by all dynamic content caching mechanisms is to

maintain the freshness and consistency of cached content. The time-to-live mechanism [52],

which was one of the very popular schemes for maintaining consistency of static web content,

is not very useful for dynamic content caching. Dynamic web content changes frequently

and unpredictably. Therefore, stronger consistency mechanisms are needed to maintain

consistency of these documents.

Mechanisms for ensuring data freshness can be broadly classified as push-based schemes

and pull-based schemes. In Push-based schemes, the server informs the caches when a

data-item changes through update/invalidate messages. Hence these schemes are also called

server-driven consistency mechanisms. In Pull-based schemes the caches query the server

to determine whether a particular cached data item is fresh. Push-based mechanisms can

support stronger consistency requirements in general, but they are also costlier in terms of

the load on the server. Most dynamic content caching schemes have adopted some form of

push-based mechanism for maintaining consistency of cached documents. Researchers have

also investigated schemes that combine push and pull based mechanisms for consistency

maintenance. An example of such schemes is the adaptive push-pull strategy proposed by

Bhide et al. [22].

141

Several server-driven consistency mechanisms have been proposed in the literature. Vol-

ume leases [105] provides a generic framework for push-based consistency mechanisms. In

this framework, when a cache stores a document, it requests a lease on the document for

a finite duration of time. The server registers the lease for the document. The lease is

revoked by the server when the document is modified. Researchers have studied various

implementations of the basic volume leases mechanism [65, 104, 107].

Yin et al. [103] present a comparative study involving the various variants of the volume

leases mechanism, the time-to-live mechanism, and the client-polling mechanism. These

mechanisms are compared with respect to a host of performance parameters including read

latency, hit rate, message load, and average staleness. The results of the simulation-based

experiments lead to some important observations. First, server-driven consistency mecha-

nisms can significantly improve the effectiveness of dynamic content caching. Second, for

lease-based mechanisms, it is possible to limit the callback state information maintained at

the server without suffering high performance penalties. Fourth, the synchronization dura-

tion, which is defined as the time for which the caches and the server are kept synchronized,

can have considerable performance impact.

An important challenge in maintaining consistency of dynamic documents is to deter-

mine which cached documents need to updated/invalidated when an underlying data item

changes. Most dynamic web pages are generated by using information stored in backend

databases. Therefore, when a data-item stored in these databases is modified, one or more

of the cached dynamic web pages may have to be updated. Establishing the correspondence

between the cached dynamic documents and the underlying data-items can have profound

performance impact. Challenger et al. [32] use the object dependency graph for maintaining

this correspondence information. Cacheportal [27] adopts a bi-layered mechanism for this

purpose. A sniffer component constantly monitors the client requests and the database

queries issued by each request. Through this process, it creates a Query-to-URL mapping,

which indicates the URLs that contain the results of a particular query instance. An in-

validator module on the other hand monitors the changes occurring at the database. This

module determines the queries that are affected by the changes at the database. The exact

142

technique used for determining the affected queries is discussed in section [28]. Once the

queries that are affected by the update are determined, the invalidator uses the Query-to-

URL mapping to discover the web pages affected by the data update.

The process of generating appropriate update/invalidate messages when an underlying

data-item changes is a computationally intensive process. Hence, there is a non-negligible

time lag between the instant at which data-item is modified, and the instant when the

corresponding web pages are invalidated. During this time period the caches would be

serving stale web pages. Labrinidis et al. [63] propose a scheme for intelligently scheduling

updates such that the average freshness of all the cached documents is maximized.

A fundamental assumption in all of the above schemes is that the caches are read-only.

That is the caches store copies of data and serve read requests from clients, but the caches

do not modify (or write to) the cached data. All the writes to all data-items happen only at

the origin site. This model is termed as multiple-reader-single-writer model. Relaxing this

assumption, and permitting the caches to also modify the cached copies of data-items leads

to the multiple-readers and writers model. This mode of caching/replication introduces new

data consistency issues.

Traditionally, replicated transactional systems, which follow the multiple readers and

writers replication model, ensure strong data consistency through locking. However, sup-

porting strong consistency entails very high performance overheads [45]. This has prompted

researchers to propose various optimistic consistency models for applications that can tol-

erate relaxation in consistency of replicated data to some extent [50, 51, 97]. These sys-

tems, under certain circumstances, permit replicas to modify data without obtaining locks,

thereby introducing the possibility of inconsistencies and associated rollbacks. Yu and

Vahdat [106] note that there is a continuum between the strong and optimistic (relaxed)

consistency models. They argue that relaxed consistency models that can provide, and

enforce bounds on inconsistencies of replicated data-items are meaningful for a considerable

class of applications. Based on this premise, they design the TACT toolkit - a middleware

layer which supports relaxed consistency models, and can also enforce bounds on the in-

consistencies of replicated data. The work presented in this thesis assumes the single-writer

143

multiple reader model of replication. As a part of our future work, we intend to support

multiple readers and writers consistency model in the cooperative EC grid.

6.3 Policies for Cache Management

Another important challenge in the area of web caching is to design and implement policies

for effectively managing the resources available at the caches. Previously researchers have

studied two types of cache management policies, namely, document placement and docu-

ment replacement policies. We have explained the similarities and differences between the

two categories of cache management polices in Chapter 4.

6.3.1 Document Replacement Policies

Of the two categories of cache management policies, the field of document replacement has

received considerable attention from the web caching community. Researchers have pro-

posed several schemes for optimizing various performance parameters. Podliping and Bozs-

zormenyi [79] classify existing cache replacement schemes into five broad categories, namely,

recency-based strategies, frequency-based strategies, recency/frequency-based strategies,

function-based strategies, and randomized strategies.

Recency-based strategies base their document replacement decisions on how recently

various documents in the cache have been last accessed. Most recency-based strategies are

variants of the well-known least recently used (LRU) policy, wherein the document for which

the time since the last access is the longest is evicted from the cache. All the recency-based

strategies are based on the premise of temporal locality, which states that documents which

have been accessed in the recent past, have higher chances of being accessed again in the near

future. Some examples of recency-based strategies are LRU-threshold [16], Pitkow/Reckers

scheme [78], and value-aging [110].

Frequency-based strategies on the other hand make replacement decisions based on

frequently the documents in the cache are being accessed. The most basic frequency-based

strategy is the least frequently used (LFU) document replacement strategy, which evicts the

document whose access frequency is the least. LFU-aging [18], LFU-DA [18], and server-

weighted LFU [58] are a few examples for frequency-based cache replacement schemes.

144

Policies such as LRU* [36] and HYPER-G [16] use both access frequency and access

recency information while making document replacement decisions. Thus they may be

classified as recency/frequency document replacement strategies.

Function-based document replacement strategies use different functions for quantifying

the values of the individual documents that are stored in the cache. In most function-

based replacement strategies, the document with the least value is evicted from the cache.

Examples of function-based replacement schemes include Greedy-dual size [29], Greedy-

dual* [21], and GDSF [18, 38].

In contrast to all the above strategies, the replacement decisions in the randomized

strategies are not entirely deterministic. As the name suggests, these schemes incorporate

some amount of randomness in their document replacement decisions. The pure random

strategy chooses a document from the set of cached documents completely at random and

evicts it. While pure random strategy chooses the document to be evicted with equal

probability, policies such as harmonic [60], LRU-C, LRU-S [95], and randomized replacement

with general value functions [80] use weighted probabilities for selecting the document for

removal. The weight may depend on factors such as recency of access, frequency of access,

document size, and cost of retrieving the document from the server.

6.3.2 Document Placement Policies

In contrast to the document replacement schemes, the field of document placement has not

received much research attention. Of the few research efforts in this area the works by

Korupolu and Dahlin [61], and by Wu and Yu [102] are among the prominent ones. We

discuss these schemes in Section 6.5.

6.4 Caching on the Edge of the Internet

Computing on the edge of the Internet has gained considerable popularity as technique for

efficiently delivering dynamic web content. Companies like Akamai [1], Speedera [13]have

successfully commercialized edge computing technology. Most application servers available

on the market today such as IBM’s Websphere [7] and Oracle’s Oracle-10g application

server [12] can support edge computing and caching.

145

The white paper from Akamai Inc. [14] describes the benefits of adopting the edge com-

puting technology for delivering highly dynamic web content, from a commercial perspec-

tive. The listed benefits include better scalability, higher reliability, improved performance,

and on-demand extensibility.

Prior research efforts have focused on addressing issues like scalability, performance,

and security of edge cache networks. One of the critical issues that can have profound

implications on the scalability and performance of edge caching is deciding the extent to

which the origin site’s functionality has to be offloaded to edge cache nodes. At the most

basic level, the edge caches might store entire dynamic web pages and serve them upon

receiving client requests. Advanced edge caching solutions offload parts of the application

logic to the edge caches. The problem is to decide how much of the application logic has to

be offloaded to the edge servers?

A typical architecture for systems generating dynamic content is composed of three tiers,

namely, database tier, application tier (or business logic tier), and web server tier (or the

presentation tier). Of these three layers, the database layer is generally maintained at the

origin server for the purposes of simplicity. Chun et al. [108] present a comparative study

of 4 different offloading strategies. The four strategies are evaluated with respect to the

security concerns, implementation complexities, and performance. The results presented in

the paper show that replicating all application components except the database provides

best average response time, but only when the database interaction is highly optimized.

Further, this strategy is also the easiest to implement. The authors also find that a simple

strategy of offloading the functionality of composing web pages from fragments can be very

effective in terms of latency and server load reduction.

Rabinovich et al. [83] describes the design, implementation, and performance study of

an edge computing system, which they call ACDN. A key feature of this system is the

automatic redeployment of application as necessitated by changing request patterns. For

this purpose, the ACDN system has a central replicator engine that keeps track of the

application replicas, and the loads on the edge caches. When the central replicator detects

a load imbalance, it triggers application redeployment.

146

Gao et al. [49] consider the scenario wherein the database is also replicated at the edge-

sites, and the edge servers are capable of updating the database replicas in addition to

generating dynamic content. In this scenario, ensuring strong consistency for replicated

data items is very costly. Therefore, developing low-cost replication strategies which can

satisfy consistency requirements of applications is very attractive. In this work, the au-

thors utilize the semantics of the applications to design an edge caching strategy based on

application-specific distributed object. The application considered in the paper is that of

an online bookstore. TPC-W, which is an industry-standard benchmark for transactional

web workloads, is also based on the same application. The TPC-W benchmark has five

distinct kinds of objects. The paper identifies the application semantics associated with

each type of object and determines its consistency requirement. In the proposed scheme,

the consistency guarantees accorded to different types of objects vary depending upon their

application semantics. As an example, for an inventory object the exact count of the in-

ventory is not important, as long as it is ensured the count does not go below zero (or

appropriate messages are generated to clients who order an item whose inventory count is

below zero). Such relaxations in consistency guarantees reduce the costs of replicating data

on edge servers, while ensuring that application semantics are not violated.

All of the above schemes regard individual edge caches as completely independent enti-

ties and they do not provide adequate support for cooperation among the edge caches. In

contrast, the cooperative edge caching architecture proposed by us supports low-cost coop-

eration among the edge caches. Although we have assumed the basic level of application

offloading, we believe that cooperation among the edge caches can improve the performance

of the edge cache network, irrespective of the offloading strategy employed.

6.5 Cooperative Web Caching

Another research area that is related to the work presented in this thesis is that of co-

operative proxy caching. The basic research in this field has been focused on designing

cache-sharing protocols and cooperative architectures aimed at improving hit rates and

document access latencies.

147

The idea of cooperative proxy caching was first explored in the Harvest system by

Chankhunthod et al. [37]. This system promotes a hierarchical cooperation architecture,

wherein the caches are organized into a tree-like hierarchy. The document lookups in this

system were implemented through remote procedure calls (RPCs). A cache suffering a local

miss performs a RPC to all of its parents and siblings. If none of the parents or siblings

have the document, then the responsibility of handling the miss is entrusted to the parents,

which continue the process of document lookup by initiating RPCs to their parents and

siblings.

One of the drawbacks of hierarchical cooperation architecture is that the document

lookup messages might need to traverse multiple hops before locating the document. Noting

that this might severely affect the latencies experienced by clients, Tewari et al. [98] propose

a completely distributed cooperative architecture. In this architecture, the only relationship

among the cooperating caches is the peer relationship. When a cache suffers a miss, it

contacts its peers to find out whether they have the document. If none of the cooperating

peers have the requested document, the cache contacts the origin server to retrieve the

document.

Another shortcoming of the harvest scheme was the high cost of RPC mechanism for

document lookups. In order to overcome this drawback Internet Cache Protocol (ICP) [53]

was designed specifically for communication among web caches. ICP is a lightweight pro-

tocol and is implemented on top of UDP. The protocol consists of two types of messages,

namely, ICP queries and ICP replies, that are exchanged between neighboring caches for

the purpose of document lookups.

Although the costs of individual ICP messages are low when compared to the RPC

mechanism, the total number of ICP messages circulated in a group of cooperating proxy

caches might be potentially very high, thus placing heavy loads on the network and the

cooperating proxies. Several research projects were aimed at addressing this drawback, of

which summary cache [48] and adaptive web caching [71] are prominent. These mechanisms

optimize the number of ICP messages circulated among cooperating caches. For example

in summary cache, each proxy stores a summary of URLs of documents cached at all other

148

proxies. When the proxy cache suffers a miss, it checks the summaries to see whether the

document might be available at any of the other proxies. If the summary indicates that the

document might be available in one or more of the other proxies, the cache sends out ICP

messages to those proxies. Otherwise, the document is retrieved from the server. Other

techniques such as hints, directories, name-based mapping, and hash routing [57, 91, 92,

101, 99] have been proposed to reduce the overall cost of document location process.

Most of the cooperative caching schemes discussed above were designed in the context of

proxy caches for storing static web pages. They assumed the Time-to-Live-based mechanism

for maintaining their consistency. These schemes cannot be applied directly for caching

dynamic web pages, since they neither provide support for stronger consistency mechanisms,

nor consider the costs of document updates in their design.

In contrast to the research efforts on cooperative proxy caching schemes Ninan et al. [77]

describe cooperative leases - a lease-based mechanism for maintaining document consistency

in cache groups. They statically hash each document to a cache, which bears the responsi-

bility of maintaining its consistency. However, this work exclusively considers the problem

of consistency management in cache groups, and does not study the problems related to

document lookups, serving misses and document placement in cache groups. In contrast

we believe that all these problems are interrelated, and hence our system adopts a holistic

approach in designing the edge cache network based on cache clouds. The research by Shah

et al. [93] on dynamic data dissemination among cooperating repositories is also related to

the work presented in this thesis. In this system, a dissemination tree is constructed for

each data item based on the coherency requirements of the cooperating repositories. The

server circulates the updates to the data item through this tree. One of the key differences

between this scheme and our work is that, in this scheme the dissemination tree construc-

tion is based purely on the coherency requirements of repositories, and it does not take

into account the relative positions of the repositories. In our work the cache clouds are

constructed based on the network proximities of the caches.

The utility-based document placement scheme proposed in this thesis is related to prior

works on placing documents in cooperative web caches [61, 102]. However, most of these

149

schemes are again targeted for caching static web content, and they do not consider the

document consistency costs while making document placement decisions. Korupolu and

Dahlin [61] present coordinated document placement and replacement schemes for coopera-

tive caches. This work assumes that the caches are organized into clusters and these clusters

themselves are arranged in a tree structure. They define a cost function that quantifies the

cost incurred by a cache to obtain the document. The proposed document placement scheme

aims at minimizing the sum of the cost functions of all documents over all caches in the

group. However, this document placement differs from the utility-based placement scheme

in various aspects. First, the cost function used in the coordinated placement scheme is

exclusively based on document retrieval costs, and it does not take into account the docu-

ment consistency costs. In contrast, our utility function has four components, and has been

designed to estimate the benefit to cost ratio of storing a document at a given cache with

respect to different criteria including document freshness maintenance. Second, the coordi-

nated placement scheme assumes for cluster-based hierarchical organization of caches, while

the utility scheme can be used for document placements in both hierarchical and distributed

cooperation architectures. Third, the decision whether to cache a document at a particular

node is made on the fly in the utility scheme, whereas the scheme proposed by Korupolu

and Dahlin involves a bottom-up pass of the cluster tree structure to determine the cache

where the document has to be stored. Hence, the utility scheme can be considered to be

more general and practical than the coordinated placement scheme.

The adaptive replication (ACR) scheme proposed by Wu and Yu [102] augments the

work on hash-based routing schemes by permitting documents to be placed in more than

one cache. In the ACR scheme, the numbers of copies existing within the cache group is

purely based on the relative popularities of the documents. This scheme does not take into

account the consistency costs or the storage costs when making placement decisions, and

hence it cannot be directly applied in caches storing dynamic web content.

150

6.6 Fragment-based Caching of Dynamic Web Content

Fragment-based publishing, delivery and caching have been popular techniques to address

challenges caused by the enormous increase of the dynamic web content over the past few

years [33, 43]. One of the first works in this field was the fragment-based dynamic web data

publishing system developed by Challenger et al. at IBM [33]. This approach simplifies

designing web sites by allowing recursive embeddings of fragments. This permits reuse of

generated fragments, thereby avoiding unnecessary regeneration of the same information

multiple times.

Another early work on fragment-based caching was by Datta et al. [43]. The work is

motivated by the observation that the dynamic natures of web pages are exhibited along

two orthogonal dimensions, namely, a web page’s layout, and its content. Based on this

premise they propose a fragment-based web caching system, in which the dynamic content

is cached at proxy caches, whereas the layout of the web page is fetched from the server on

each access to the web page. This approach minimizes the load on the network connecting

the server and the proxy cache by transferring only the layout and the fragments that are

not present in the cache. However, the proposed scheme has two significant drawbacks.

First, it does not address the problem of ameliorating the load on the origin server. Second

it entrusts the responsibility to the origin server, further increasing its load.

The concept of fragment-based web page composition has also been applied for pro-

viding efficient QoS support and security mechanisms for web documents. Mohapatra and

Chen [74] propose a system called WebGraph, which is a graphical representation of the

containment relationship among weblets, which are analogous to fragments. In the proposed

system the QoS and security attributes can be specified at the granularity of a weblet. The

system decides whether to include a particular weblet in a web page based on several factors

including the QoS specifications of the weblet, the desired QoS guarantees, and the present

system conditions such as the current loads on the server and the network.

Successful commercialization of fragment-based solutions requires industry-wide stan-

dards for fragment-caching. Efforts to standardize fragment-based caching resulted in Edge

151

Side Includes [4], which is a XML-based markup language to define web page compo-

nents for page assembly at the edge caches. ESI provides mechanisms for specifying the

cacheability properties at fragment level. ESI can be used by content providers to specify

the fragments to be included in a web page. Caches constructs web pages by inserting the

specified fragments either from the cache, or by fetching them from the origin server. The

key functionalities provided by the ESI include Inclusion, Conditional inclusion/exclusion,

Exception handling and Fragment invalidation.

Naaman et al. [75] present analytical and simulation-based studies to compare ESI and

delta-encoding, finding that ESI has potential performance advantages due to its ability to

deliver only changing fragments.

While assembling fragments at edge caches has been shown to be effective in reducing

the loads on the backbone network and origin servers, it does not ameliorate the load on the

network links connecting the end clients to the edge caches (the so called last-mile links).

However, reducing the load on the last-mile links is very important, especially for clients

that are connected through dial-up connections. Rabinovich et al. [84] address this problem

by taking the concept of edge-side includes one step further. They propose the Client Side

Includes scheme, wherein the composition of web pages from fragments is done at the client,

rather than at the reverse proxy. The CSI mechanism enables the browsers to assemble the

web pages from the individual fragments. The paper also describes a JavaScript-based

implementation of the CSI mechanism.

In addition to the fragment-based solutions discussed above, researchers have explored

related research ideas in different contexts. The work by Wills and Mikhailov [100] bears

some similarity to the automatic fragment-detection scheme presented in Chapter 5. They

propose to use change characteristics of objects embedded in web pages, and interrela-

tionships among the web objects for reducing the consistency maintenance overhead at

web caches. Researchers have also explored utilizing structural properties of web pages for

efficient delivery of dynamic content. Chan and Woo [35] propose to use the structural

similarity existing among various pages of a single site to efficiently delta-encode multiple

web pages over time.

152

The work of Bar-Yossef and Rajagopalan [20] is related to our research on automated

fragment detection, although the authors were addressing a different problem. They discuss

the problem of template detection through discovery of pagelets in the web pages. However,

our work differs from the work on template detection both in context and content. First, the

work on template detection is aimed towards improving the precision of search algorithms.

Our work is aimed at detecting fragments that are most beneficial to caching and content

generation. Second, the syntactic definition of a pagelet in their paper is based on the

number of hyperlinks in the HTML parse tree elements, which is very different from our

working definition of a candidate fragment provided in Section 5.1. Further, their definition

of pagelets forbids recursion. In contrast we permit embedded fragments. Finally, our

system has two algorithms: one to detect Shared fragments and another to detect L-P

fragments. Both of these detect embedded fragments.

Fragment detection also has similarities to comparing two similar structured documents.

While some tools look at longest matching subsequences, it is possible to use signatures of

subtrees to identify pieces of a document that have moved rather than been deleted. An

example of this approach is the Xyleme XML diff application [39].

There has been significant work in identifying web objects that are identical, either at

the granularity of entire pages or images [19, 59, 72] or pieces of pages [90], using MD5

or SHA-1 hashes to detect and eliminate redundant data storage and transfer. While

the motivations of these researches are similar to that of the shared fragment detection

algorithm, they are more restrictive in the sense that they work on full HTML pages and

can only detect and eliminate pages (or byte-blocks) which are exact replicas. Although

these techniques have the potential to reduce transfer sizes, decomposing web pages into

separately cached fragments accomplishes similar reductions in size without the need for

explicit version management.

6.7 Conclusions

In the past few years the field of caching and delivering dynamic content has been a pop-

ular area of research. Several projects have studied the research issues in this area, and

153

have proposed various architectures, mechanisms and techniques to address the challenges

involved in delivering dynamic web content to the users.

In this chapter we have provided a brief overview of the important research milestones

in the general area of generation, caching, and delivery of web content. We have focused

on the prior research efforts that are most relevant to the work presented in this thesis.

We have explained the similarities and differences between our research and the important

earlier works in this area, thereby identifying the unique features of the work presented in

this thesis.

154

CHAPTER VII

CONCLUSIONS

The tremendous growth of dynamic web content in recent years has introduced new chal-

lenges to the scalability and performance of the World Wide Web. There is a heavy demand

for technologies for efficient generation and timely delivery of fresh dynamic content.

In this thesis we have studied the various challenges involved in efficiently serving dy-

namic content to the end-users. We have investigated several techniques to enhance the

efficiency and scalability of the dynamic web content delivery process. This dissertation

makes two major technical contributions.

We have designed cooperative edge cache grid (cooperative EC grid, for short) - a novel

cooperative edge cache network for delivering dynamic web content. The cooperative EC

grid is, to our knowledge, the first edge cache network that has been specifically designed

to harness the power of low-cost cooperation to efficiently, scalably, and reliably deliver

highly dynamic web content with varying server update rates to the clients. Through the

design of the cooperative EC grid, we demonstrate that efficient and effective cooperation

can considerably enhance the benefits provided by edge cache networks.

Cooperative EC grid incorporates several innovative techniques and mechanisms that

are aimed at promoting efficient and effective edge cache cooperation. The proposed EC

grid architecture is based on the concept of cache clouds, which forms the fundamental

framework of cooperation among the edge caches. We have designed the selective landmarks-

based server distance sensitive clustering scheme (SDS scheme) for creating cache clouds

in the cooperative EC grid by accurately clustering its caches. The design architecture

of individual cache clouds includes dynamic hashing-based mechanisms for lookups and

updates, which not only distribute the lookup and update loads among all the caches of

a cloud, but also are resilient to failures of individual caches. Further, we have developed

a utility-based scheme for strategically placing documents among caches of a cache-cloud,

155

so that available system resources are optimally utilized. We have performed an extensive

experimental study to evaluate the costs and benefits of the proposed architecture and

techniques, the results of which indicate that these schemes can enhance the performance

of edge cache networks on critical parameters like latency, network load, hit-rates, and

client-latencies.

The second key novelty of this dissertation research is the design and development of

a framework for automatically identifying cache-effective fragments in dynamic web pages.

This is the first, and remains to be one of the very few schemes proposed for automatically

fragmenting dynamic web pages. This thesis hereby demonstrates the feasibility automating

the fragment detection process in dynamic web pages.

While fragment-based caching has been shown to provide considerable benefits for de-

livering dynamic web content, most existing fragment-based techniques rely upon manual

web-page fragmentation, which is costly, error-prone, and unscalable. Our automatic frag-

ment detection scheme exhibits three unique features. First, it includes a fragment-aware

data-structure to model the dynamic web pages, called the augmented fragment tree (AF

tree). Second, we present an efficient algorithm to detect maximal fragments that are shared

among multiple documents. Third, we develop a practical algorithm that effectively detects

fragments based on their lifetime and personalization characteristics. We have evaluated

the proposed fragment detection scheme through a series of experiments, showing the effec-

tiveness and costs of our approach. Further, we have also presented our experimental study

on the effects of adopting the fragments detected by our system on the web caches and the

origin servers.

Although the main focus of this dissertation is the efficient delivery of dynamic web

content, many of the schemes that we have proposed in this thesis can be adopted in

designing various types of distributed systems and applications. For example, the dynamic

hashing technique can be used to design efficient document-lookup mechanisms in peer-to-

peer systems and other overlay networks. Similarly, our utility-based document placement

scheme can be used as a basis for designing data placement strategies for peer-to-peer

networks, grids, and mobile ad-hoc networks. Further, the automatic fragment detection

156

scheme can be adopted for discovering data/document fragments in various applications.

7.1 Open Problems and Future Work

While this thesis presents techniques to solve some of the important problems in the area

of dynamic content delivery, several more challenges remain to be addressed. In fact, our

work in this field opens up many research issues. In this section we provide a brief overview

of the open problems in this area and future research directions that we intend to pursue.

In the context of the cooperative EC grid, a key research challenge that remains to be

addressed is that of deciding the appropriate number of edge caches in the EC grid, and the

locations where these edge caches have to be placed in order to obtain optimal performance.

Although researchers have proposed a few techniques for solving similar problems in the

context of content distribution networks, they are mostly designed for delivering multimedia

content. Hence, these may not be directly applicable for cooperative EC grid whose main

focus is serving dynamic web content. We believe that it is important to design cache

placement techniques that consider the issues that are specific to dynamic content delivery.

The SDS scheme for cache cloud formation presented in this thesis considered two im-

portant factors while creating cache clouds, namely, proximity among the caches and the

distances between the caches and the server. Another factor that impacts the effectiveness

of cooperation in the EC grid is the document access patterns at various caches. Clearly it

is advantageous to have some amount of diversity in the access patterns of the belonging

to a cloud. However, creating clouds from caches having completely disparate document

access patterns may also be counter-productive. Cloud formation mechanisms that consider

these access patterns trade-offs along with the other two further enhance the effectiveness

of cooperation in edge cache networks.

In the current cooperative EC grid design, the cooperation is limited to caches within

a cache cloud. We believe that incorporating mechanisms for inter-cloud cooperation can

enhance the resilience of the cooperative EC grid against massive failures such as network

partitions. Similarly, the cooperation infrastructure of the cooperative EC grid can also

be utilized to design low-cost schemes for revalidating documents (to ensure consistency)

157

stored at a cache that has just started re-functioning after a failure.

The utility function for document placement presented in this thesis comprises of four

components, of which we have studies the disk-space component in-detail. We think that it

is important to study other components of the utility-based placement scheme as well as to

design cooperative replacement policies for effectively managing the caches of the EC grid.

The current design of the cooperative EC grid makes two assumptions. First, the caching

is done at either page granularity or at fragment granularity. Second the individual caches

are read-only, and all the document modifications occur only at the origin server. Extending

the cooperative EC grid to support caching of database query results presents interesting

research challenges. Similarly relaxing the read-only restriction on the caches and permitting

them to modify the data (the multiple readers and writers model) brings up important

research issues.

The automatic fragment detection scheme presented in this thesis is based on the analysis

of web pages with respect to their information sharing characteristics and their change

patterns. An alternate approach would be to analyze the application programs and detect

fragments based on their data access patterns. Studying this approach, comparing it with

our scheme, and to evolve mechanisms that combine these to fragment detection approaches

are interesting research problems.

Dynamic web content delivery systems like the cooperative EC grids carry large amounts

of private information such as personal information and financial data. These systems can

be targets of various kinds of malicious attacks. Ensuring privacy of security and privacy of

data as well as protecting the content delivery infrastructure from different types of attacks

are very important problems. We think that considerable research efforts are required in

this direction to satisfactorily address the security and privacy concerns.

Finally, a growing population of users is accessing the web through resource-constrained

devices such as PDA’s and cell phones. We believe that caching in general and cooperative

caching in particular can play very important roles in efficiently delivering dynamic content

to these users. As a part of our future work we intend to devise specialized caching mech-

anisms for resource-constrained clients as well as completely decentralized systems such as

158

mobile ad-hoc networks.

To summarize, we believe that the work presented in this thesis has brought several

important issues to the fore and addressing these issues can significantly improve the per-

formance, scalability and security of dynamic web content.

159

APPENDIX A

ANALYTICAL STUDY OF THE DYNAMIC HASHING

MECHANISM

In this chapter we analytically study the load balancing properties of the static and the

dynamic hashing mechanisms presented in Chapter 4. We consider an edge cache cloud

with N edge caches. Suppose the number of unique documents being served by these caches

during a given time period is represented as DocCount. We assume that the cumulative

load due to updates and lookups is distributed across the DocCount documents according

to the popular Zipf model. This assumption is supported by previous studies in the area of

web caching [23].

Without loss of generality, we rank the documents in decreasing order of the load induced

by them, and represent the document at rank i asDi. As the load induced by the documents

are distributed according to the Zipf-model, the load generated by Di is proportional to
1
iα
,

where α is the Zipf constant. Analysis of actual workloads have indicated that α is close

to 1.00. Let the cumulative load due to all documents in the time period is represented as

TotalLoad. Now the load generated by Di is given by Load(Di) =
TotalLoad

∑D
k=1 ocCount

1
kα
× 1

iα
.

In order to obtain a closed form expression for the Load(Di), we employ an approxi-

mation technique. When α ≈ 1, the series 1
1α +

1
2α + · · ·+

1
DocCountα

can be approximated

by the harmonic series 1 + 1
2 + · · · +

1
DocCount

. The term
∑DocCount

k=1
1
kα
would be ap-

proximated by HDocCount, where Hk represents the k
th harmonic number. Therefore, we

obtain Load(Di) =
TotalLoad
HDocCount

× 1
i
. When DocCount is large enough the harmonic num-

ber HDocCount can be approximated by ln(DocCount) + γ, where ln represents the natural

logarithm function and γ is the Euler-Mascheroni constant whose value is approximately

0.57721. Substituting HDocCount with ln(DocCount) + γ, we get

160

Load(Di) =
TotalLoad

(ln(DocCount) + γ)× i
(3)

We now analyze the worst-case scenario for both static and dynamic hashing schemes.

First we consider the static hashing scheme. A reasonable hashing function distributes the

documents approximately evenly across the beacon points in the cache cloud. However, this

does not always ensure good load balancing, as some caches might receive a large portion of

hot documents, while others might receive very few of them. The worst case for the static

hashing would be when the documents inducing the heaviest load, namely the documents

{D1, D2, . . . , DDocCount
N

} all get hashed to the same beacon point. This beacon point would

encounter the maximum cumulative load due to lookups and updates. The load being

encountered by this beacon point is given by:

MaxCacheLoadStaticHashing =
∑

DocCount
N

i=1 Load(Di) (4)

= TotalLoad
(ln(DocCount+γ)

∑

DocCount
N

i=1
1
i

(5)

The term
∑

DocCount
N

i=1
1
i
is equal toHDocCount

N
which can be approximated by ln(DocCount

N
)+γ.

Therefore

MaxCacheLoadStaticHashing = TotalLoad×
ln(DocCount)− ln(N) + γ

ln(DocCount) + γ
(6)

Let MaxLoadRatio represent the ratio of the load encountered by the most heavily

loaded beacon point to the mean of the loads on all beacon points. For the static hashing

scheme the MaxLoadRatio is given by:

MaxLoadRatioStaticHashing =
TotalLoad×

ln(DocCount)−ln(N)+γ
ln(DocCount)+γ

TotalLoad
N

(7)

= N × ln(DocCount)−ln(N)+γ

ln(DocCount)+γ
(8)

Next, we analyze the worst-case scenario of the dynamic hashing scheme. Consider a

dynamic hashing scheme in which each beacon ring has K beacon points. Therefore the

edge cache cloud has M = N
K
beacon rings. In the dynamic hashing scheme the worst case

scenario occurs when the documents with ranks 1 through DocCount
M

(the DocCount
M

documents

inducing the heaviest loads) maps to the same beacon ring. Therefore the maximum load

161

experienced by any beacon ring within the edge cache cloud is given by

MaxRingLoadDynamicHashing =

DocCount
M

∑

i=1

Load(Di) (9)

10
2

10
3

10
4

10
5

10
6

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
Improvements in Load Balancing due to Dynamic Hashing

Total Number of Documents in Cache Cloud

Lo
ad

 Im
ba

la
nc

e
R

at
io

Cache Cloud with 6 Caches
Cache Cloud with 10 Caches
Cache Cloud with 20 Caches

Figure 52: Comparing Load Balancing Properties of Static and Dynamic Hashing Schemes

Applying similar approximations as in the static hashing scenario, we get:

MaxRingLoadDynamicHashing = TotalLoad× ln(DocCount)−ln(M)+γ

ln(DocCount)+γ
(10)

= TotalLoad× ln(DocCount)−ln(N)+ln(K)
ln(DocCount)+γ

(11)

The sub-range determination process occurring at the end of each cycle distributes this

load approximately equally among all beacon points in the beacon ring. Therefore, the

maximum load experienced by any beacon point in the worst case would be

MaxCacheLoadDynamicHashing = TotalLoad×
ln(DocCount)− ln(N) + ln(K) + γ

(ln(DocCount) + γ)×K)
(12)

The MaxLoadRatio for the dynamic hashing scheme would therefore be:

MaxLoadRatioDynamicHashing = N ×
ln(DocCount)− ln(N) + ln(K) + γ

(ln(DocCount) + γ)×K)
(13)

We compare the worst-case load-balancing properties of the static and the dynamic

hashing scenarios by considering the ratio
MaxLoadRatioStaticHashing

MaxLoadRatioDynamicHashing
. The ratio

162

MaxLoadRatioStaticHashing
MaxLoadRatioDynamicHashing

is an indicator to the load imbalance occurring in static hashing

when compared with that of dynamic hashing. Hence we call it the Load Imbalance Ratio

(represented as LoadImbalanceRatio).

LoadImbalanceRatio = K ×
ln(DocCount)− ln(N) + γ

ln(DocCount)− ln(N) + ln(K) + γ
(14)

If LoadImbalanceRatio is greater than 1.00, it indicates that the dynamic hashing

scheme provides better load balancing, and vice-versa. In order to provide an insight into

the behavior of the above function we plot it for different values of DocCount in Figure A.

In this graph, M is kept constant at 2, which means each beacon ring contains 2 caches.

The graph shows that for a cache cloud with 10 caches, the load encountered by the most

heavily loaded beacon point in the static hashing scheme is 1.81 times the load encountered

by the most heavily loaded beacon point in the dynamic hashing scheme, when DocCount

is 10,000. We note that this ratio increases with increasing values of DocCount. This

analysis shows that dynamic hashing scheme exhibits very good load-balancing properties,

even when the update and lookup load distributions are highly skewed.

163

APPENDIX B

ANALYTICAL STUDY OF FRAGMENT-BASED

CACHING

In this chapter we present an analytical study of the benefits of caching dynamic web content

at the granularity of web page fragments. Although several researchers have studied various

aspects of fragment-based dynamic content caching, none, to our knowledge, have tried to

analytically quantify the benefits of caching web content at the granularity of individual

fragments. In this chapter we specifically analyze the following two aspects of fragment-

based caching:

1. Effect of fragment-based caching on the efficiency of disk-space utilization in web

caches.

2. Improvements in server load obtained by caching at fragment granularity

B.1 Effect of Fragments on Disk-space Efficiency

In this section we mathematically analyze the improvements provided by fragment-based

caching on the efficiency of disk-space utilization at web caches. We compare fragment-

based caching to a scheme wherein the caching is done at the granularity of entire web

pages, which we refer to as whole-page caching. Specifically, we show that the number of

documents available in fragment cache is an order of magnitude higher than the number of

documents present in a corresponding whole page cache of identical size. The number of

documents available at a cache is an important metric because the hit rate of a cache is

directly dependent on the number of documents available in the cache.

In order to simplify the analysis we make certain assumptions. We consider a cache with

disk capacity of DCC bytes. We assume that web pages contain Nf number of fragments

on an average. Let the average size of each fragment be Sz bytes. We also assume that

164

a fragment is included in Fp web pages on an average (the methodology to compute the

number of web pages including a particular fragment is discussed later part of this section).

First, we consider the case when the server and the cache support only whole-page

caching. As each fragment is of size Sz bytes and each page has Nf fragments on an

average, the average size of each webpage would be Sz × Nf . Therefore the number of

pages that are contained in a whole-page cache of capacity DCC bytes is given by

NumPagesWC =
DCC

Nf × Sz
(15)

Now we consider a fragment-based caching scheme. We note that in a fragment-based

cache, each fragment is stored only once irrespective of how many pages it is contained in.

Therefore the number of fragments that can be stored in the cache of size DCC is given by

NumFragsFC =
DCC

Sz
(16)

As we have assumed that each contains Nf fragments on average, the number of web

pages corresponding to the NumFragsFC stored in fragment cache is
NumFragsFC×Fp

Nf
.

Therefore, the number of pages present in a cache of size DCC supporting fragment caching

is:

NumPagesFC =
DCC × Fp

Sz ×Nf
(17)

The percentage improvement in the number of pages that can be stored in fragment

cache over a whole page cache of equal size is given by:

PercImprovment =
(NumpagesFC −NumPagesWC)

NumPagesWC
× 100 (18)

=
(Fp− 1)× DCC

Sz×Nf

DCC
Sz×Nf

× 100 (19)

= (Fp− 1)× 100 (20)

This equation indicates that percentage improvement in the number of pages in the

cache is directly and linearly dependent on the average number of pages each fragment is

contained in.

165

Many studies in the past have shown that hit rate of a cache is directly dependent on

the average number of documents it contains. Though the exact relationship between the

number of pages available in the cache and the hit rate is dependent on many factors studies

have shown that it resembles a logarithmic function. As we know that NumPagesFC =

Fp ×NumPagesWC , the relationship between the hit rate of fragment-based cache and a

corresponding whole page cache can be approximated as HitRateFC = HitRateWC + α×

log(Fp), where HitRateFC and HitRateWC denote the hit rates of fragment cache and

whole-page cache respectively. This indicates that as Fp increases, the improvements in hit

rates provided by the fragment-based caching scheme also grows.

We now briefly describe the method to count the number of pages that contain a partic-

ular fragment. We will call this as the Page-Count of the fragment. It has to be remembered

that the fragments can be recursively embedded. Hence the method to compute the Page-

Count is also recursive.

Consider a fragment FgA. Let us define Contain(FgA) as the set of all fragments that

include FgA. The page count of FgA can be calculated recursively as:

Page-Count (FgA) =

1 if FgA is a complete web page
∑

FgB∈Contain(FgA) Page-Count(FgB)

otherwise

(21)

The above equation provides a basis for computing the average number of web pages

that fragments are contained in.

B.2 Impact of Fragment-based Caching on Server Load

We now study the impact of fragment based page composition on the load experienced by

the server. As in the previous section we make some assumptions to simplify the analysis.

Consider an arbitrary web page WP in a web server. Let the web page be composed of

N fragments, {Frag1, F rag2, ...F ragN}, each of which has distinct lifetime characteristics.

That is these fragments remain fresh for different amounts of times, after which they need

to be refreshed. We assume that constructing each fragment places one unit load on the

origin server. We model the invalidation of each fragment to follow a Poisson process.

166

Let the fragment Fragi is invalidated at a rate of µi per unit time. This means that the

time between two invalidations of a single fragment is exponentially distributed with mean

frac1µi. As the fragments have distinct lifetime characteristics, the invalidation processes

of fragments are assumed to be independent of one another. Further, let us assume that

generating any fragment places one unit load on the origin server. Therefore generating the

entire web page (in whole-page caching) places a load of N units on the server.

Let a cache receive requests for the web page WP according to a Poisson process with

the rate of λWP requests per unit time. Now let us consider the case wherein the server and

cache only supports whole-page caching. In this scenario, the web page WP becomes stale

when any one of the fragments gets stale. As the invalidations of each of the fragments is

a poisson process with rates {µi | 1 ≤ i ≤ N}, the invalidation of the page itself is poisson.

Further the theory on Poisson process suggests that the rate of invalidation of the web page

WP would be:

µWP =
N

∑

i=1

µi (22)

As we have assumed that requests for web page WP arrives at the cache according to a

Poisson process with rate λWP , from the theory on Poisson processes, we can show that the

requests that are sent from the cache to the server (due to document expiry at the cache)

follow a poisson process with rate of λWP×µWP

λWP+µWP
. Let us call this rate as ReqRateServerWP .

Now, each time the request for the document WP arrives at the server, the page has to

be regenerated. Therefore, the load on the server per unit time due to the web page WP ,

in whole page caching is N ×ReqRateServerWP , which yields:

TotalCostWholeCache
WP =

N × (
∑N

i=1 µi)× λWP

(
∑N

i=1 µi) + λWP

(23)

For further simplification, let us assume that all fragments are invalidated at the same

rate, represented as µ. Now the above equation becomes:

TotalCostWholeCache
WP =

N2 × µ× λWP

N × µ+ λWP
(24)

Now let us consider the scenario wherein the caches and the server support fragment-

based caching. Let us consider the web pageWP with the same fragments as in the previous

167

scenario. However, in this case the cache stores each fragment separately and composes the

page upon request arrival. Therefore, when a fragment is invalidated in the cache, the next

request to WP causes the cache to contact the server and obtain the invalidated fragment.

As in the previous case, let us assume that Fragk is invalidated in accordance with a poisson

process with rate µk per unit time and request rate to page WP is poisson process at rate

of λWP . The request rate to each of the component fragments of page WP is the same as

the request rate of the parent fragment (λWP). We can show that the number of requests

sent to the server for Fragk follows a poisson process with rate ReqRate
Server
k as given by:

ReqRateServerk =
µk × λWP

µk + λWP
(25)

Therefore, the total number of requests reaching the server due to all the fragments in

web page WP is still a poisson process with rate
∑

k = 1NReqRateServerk . Let us call this

ReqRateServerWPFrag.

ReqRateWPFragServer =
N

∑

k=1

µk × λWP

µk + λWP
(26)

As in the previous scenario, to simplify the analysis we assume the invalidation rates of all

the fragments are the same and are equal to µ. Then the above equation reduces to

ReqRateWPFragServer =
N × µ× λWP

µ+ λWP
(27)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
Server Load of Whole−page and Fragment Caching

Number of Fragments Per Page

S
er

ve
r

Lo
ad

 R
at

io

lambda/mu = 2
lambda/mu = 10
lambda/mu = 50
lambda/mu = 100
lambda >> mu

Figure 53: Server Load Patterns in Whole Page and Fragment Caching

168

However, in fragment-based caching the server needs to only regenerate the fragment for

which it received the request. Therefore the total server load per unit time due to requests

for all the fragments in web page WP is given by

TotalCost
FragCache
WP =

N × µ× λWP

µ+ λWP
(28)

To compare the server load in fragment-based caching with that of whole-page caching

let us consider the ratio
TotalCostWholeCache

WP

TotalCost
FragCache
WP

. We shall refer to it as CostRatio.

CostRatio =
N × (µ+ λWP)

(N × µ+ λWP)
(29)

Let us now see how the CostRatio evolves with respect to λWP

µ
. If λWP = µ, then

CostRatio(λWP=µ) =
2×N
N+1 . If λWP = l×µ then CostRatio(λWP=µ) =

(l+1)×N
N+l . If λWP À µ,

then the equation reduces to CostRatio(λWP=∞) = N . This shows that when the access

rate of web page is much larger than the invalidation rates, the load induced by whole

page caching is N times the load induced by an equivalent fragment cache. The graph in

Figure B.2 shows the pattern of CostRatio at various values of λWP

µ
and N . The graph in

Figure B.2 shows the pattern of TotalCost at various values of λWP

µ
and N .

Finally, we note that our experimental results discussed in Figure 47 substantiates the

above mathematical analysis.

169

REFERENCES

[1] “Akamai Technologies Incorporated.” http://www.akamai.com.

[2] “BEA Systems Incorporated: BEA Weblogic Server.”
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server.

[3] “Document Object Model - W3C Recommendation.” http://www.w3.org/DOM.

[4] “Edge Side Includes - Standard Specification.” http://www.esi.org.

[5] “HTML TIDY.” http://www.w3.org/People/Raggett/tidy/.

[6] “IBM WebSphere Application Server Product Overview.”
http://www-306.ibm.com/software/webservers/appserv/was/.

[7] “IBM WebSphere Edge Server.”
http://www-3.ibm.com/software/webservers/edgeserver/.

[8] “Internet Statistics via WhoIs Source.” http://www.whois.sc/internet-statistics/.

[9] “Internet World Usage Statistics.” http://www.internetworldstats.com/stats.htm.

[10] “Nua Internet Survey.” http://www.nua.net/surveys/how many online/world.html.

[11] “OCLC - Web Growth Characterization.”
http://www.oclc.org/research/projects/archive/wcp/stats/size.htm.

[12] “Oracle Corporation: Application Server 10g Release 2 White Paper.”
http://www.oracle.com/technology/products/ias/pdf/1012 nf paper.pdf.

[13] “Speedera Networks, Incorporated.” http://www.speedera.com/.

[14] “Turbo-Charging Dynamic Web Sites with Akamai EdgeSuite.”
http://www.akamai.com/en/resources/pdf/whitepapers/Akamai EdgeSuite Turbo-

-charging Websites.pdf.

[15] “Zooknic Internet Geography Project.” http://www.zooknic.com/index.html.

[16] Abrams, M., Standridge, C. R., Abdulla, G., Fox, E. A., and Williams, S.,
“Removal Policies in Network Caches for World-Wide Web Documents,” in Proceed-
ings of the ACM SIGCOMM ’96 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, August 1996.

[17] Amiri, K., Park, S., Tewari, R., and Padmanabhan, S., “A Self Managing
Data Cache for Edge-Of-Network Web Applications,” in ACM CIKM International
Conference on Information and Knowledge Management, November 2002.

[18] Arlitt, M. F., Cherkasova, L., Dilley, J., Friedrich, R., and Jin, T., “Eval-
uating Content Management Techniques for Web Proxy Caches,” SIGMETRICS Per-
formance Evaluation Review, vol. 27, March 2000.

170

[19] Bahn, H., Lee, H., Noh, S. H.,Min, S. L., and Koh, K., “Replica-Aware Caching
for Web Proxies,” Computer Communications, vol. 25, no. 3, 2002.

[20] Bar-Yossef, Z. and Rajagopalan, S., “Template Detection via Data Mining and
its Applications,” in Proceedings of the 11th International World Wide Web Confer-
ence, May 2002.

[21] Bestavros, A. and Jin, S., “Popularity-Aware Greedy Dual-Size Web Proxy
Caching Algorithms,” in Proceedings of the 20th International Conference on Dis-
tributed Computing Systems(ICDCS-2000), April 2000.

[22] Bhide, M., Deolasse, P., Katker, A., Panchbudhe, A., Ramamritham, K.,
and Shenoy, P., “Adaptive Push-Pull: Disseminating Dynamic Web Data,” IEEE
Transactions on Computers, vol. 51, June 2002.

[23] Bresalu, L., Cao, P., Fan, L., Fan, L., Phillips, G., and Shenker, S., “Web
Caching and Zipf-like Distributions: Evidence and Implications,” in Proceedings of
IEEE INFOCOM 1999, March 1999.

[24] Broder, A., “On resemblance and Containment of Documents,” in Proceedings of
SEQUENCES-97, 1997.

[25] Broder, A., Glassman, S. C., Manasse, M. S., and Zweig, G., “Syntactic
Clustering of the Web,” in Proceedings of the 6th International World Wide Web
Conference, April 1997.

[26] Buttler, D. and Liu, L., “A Fully Automated Object Extraction System for the
World Wide Web,” in Proceedings of the 21st International Conference on Distributed
Computing Systems, 2001.

[27] Candan, K. S., Li, W.-S., Luo, Q., Hsiung, W.-P., and Agrawal, D., “Enabling
Dynamic Content Caching for Database-Driven Web Sites,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, May 2001.

[28] Candan, K. S., Agrawal, D., Li, W.-S., Po, O., and Hsiung, W.-P., “View
Invalidation for Dynamic Content Caching in Multitiered Architectures,” in Proceed-
ings of Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB-2002), August 2002.

[29] Cao, P. and Irani, S., “Cost-Aware WWW Proxy Caching Algorithms,” in Pro-
ceedings of USENIX Symposium on Internet Technologies and Systems, 1997.

[30] Cao, P., Zhang, J., and Beach, K., “Active Cache: Caching Dynamic Contents
on the Web,” Distributed Systems Engineering, vol. 6, March 1999.

[31] Castro, M., Druschel, P., Kermarec, A.-M., and Rowstron, A., “Scribe:
A Large Scale and Decentralized Application-level Multicast Infrastructure,” IEEE
Journal on Seleceted Areas in Communications, vol. 20, no. 8, 2002.

[32] Challenger, J., Iyengar, A., and Dantzig, P., “A Scalable System for Consis-
tently Caching Dynamic Web Data,” in Proceedings of IEEE INFOCOM 1999, March
1999.

171

[33] Challenger, J., Iyengar, A., Witting, K., Ferstat, C., and Reed, P., “Pub-
lishing System for Efficiently Creating Dynamic Web Content,” in Proceedings of
IEEE INFOCOM 2000, May 2000.

[34] Challenger, J., Dantzig, P., Iyengar, A., Squillante, M. S., and Zhang,

L., “Efficiently Serving Dynamic Data at Highly Accessed Web Sites,” IEEE/ACM
Transaction on Networking, vol. 12, April 2004.

[35] Chan, M. C. and Woo, T. W. C., “Cache-Based Compaction: A New Technique
for Optimizing Web Transfer,” in Proceedings of IEEE INFOCOM 1999.

[36] Chang, C.-Y.,McGregor, T., and Holmes, G., “The LRU* WWW Proxy Cache
Document Replacement Algorithm,” in Proceedings of the Asia Pacific Web Confer-
ence, 1999.

[37] Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., and Worell,

K., “A Hierarchical Internet Object Cache,” in Proceedings of the 1996 USENIX
Technical Conference, January 1996.

[38] Cherkasova, L. and Ciardo, G., “Role of Aging, Frequency, and Size in Web
Cache Replacement Policies,” in Proceedings of the 9th International Conference on
High-Performance Computing and Networking, June 2001.

[39] Cobena, G., Abiteboul, S., and Marian, A., “Detecting Changes in XML Doc-
uments,” in Proceedings of the 18th International Conference on Data Engineering,
February 2002.

[40] Dabek, F., Cox, R., Kaashoek, F., and Morris, R., “Vivaldi: A Decentralized
Network Coordinate System,” in Proceedings of ACM-SIGCOMM 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, August 2004.

[41] Dar, S., Franklin, M. J., Jonsson, B. T., Srivastava, D., and Tan, M., “Se-
mantic Data Caching and Replacement,” in Proceedings of the 22nd International
Conference on Very Large Data Bases (VLDB), September 1996.

[42] Datta, A., Dutta, K., Thomas, H., VanderMeer, D., and Ramamritham,

K., “Accelerating Dynamic Web Content Generation,” IEEE Internet Computing,
September/October 2002.

[43] Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Suresha, and Ramam-

ritham, K., “Proxy-Based Acceleration of Dynamically Generated Content on the
World Wide Web: An Approach and Implementation,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, June 2002.

[44] Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Ramamritham, K., and
Fishman, D., “A Comparitive Study of Alternate Middle Tier Caching Solutions to
Support Dynamic Web Content Acceleration,” in Proceedings of 27th International
Conference on Very Large Data Bases (VLDB-2001), September 2001.

[45] Davidson, S. B., Garcia-Molina, H., and Skeen, D., “Consistency in Partitioned
Networks,” ACM Computing Surveys, vol. 17, no. 3, 1985.

172

[46] Degenaro, L., Iyengar, A., Lipkind, I., and Rovellou, I., “A Middleware
System Which Intelligently Caches Query Results,” in Proceedings of Middleware
2000, IFIP/ACM International Conference on Distributed Systems Platforms, April
2000.

[47] Deshpande, P., Ramasamy, K., Shukla, A., and Naughton, J. F., “Caching
Multidimensional Queries Using Chunks,” in Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, June 1998.

[48] Fan, L., Cao, P., Almeida, J., and Broder, A., “Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol,” in Proceedings of ACM SIGCOMM 98,
September 1998.

[49] Gao, L.,Dahlin, M., Nayate, A., Zheng, J., and Iyengar, A., “Improving Avail-
ability and Performance with Application-Specific Data Replication,” IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), vol. 17, January 2005.

[50] Guy, R. G., Heidemann, J. S., Mak, W.-K., Jr., T. W. P., Popek, G. J., and
Rothmeier, D., “Implementation of the Ficus Replicated File System,” in Proceed-
ings of USENIX Summer Conference, 1990.

[51] Guy, R. G., Reiher, P. L., Ratner, D., Gunter, M., Ma, W., and Popek,

G. J., “Rumor: Mobile data access through optimistic peer-to-peer replication,” in
Proceedings of the 17th International Conference on Conceptual Modelling (ER’98),
1998.

[52] Gwertzman, J. and Seltzer, M., “World Wide Web Cache Consistency,” in Pro-
ceedings of the 1996 Usenix Annual Technical Conference, January 1996.

[53] “Internet Cache Protocol: Protocol Specification, Version 2,” September 1997.
http://icp.ircache.net/rfc2186.txt.

[54] Iyengar, A. and Challenger, J., “Improving Web Server Performance by Caching
Dynamic Data,” in Proceedings of the 1st USENIX symposium on Internet Technolo-
gies and Systems, December 1997.

[55] Jain, A. K., Murty, M. N., and Flynn, P. J., “Data Clustering: A Review,”
ACM Computing Surveys, vol. 31, no. 3, 1999.

[56] Jamin, S., Jin, C., Kurc, A. R., and Shavitt, Y., “Constrained Mirror Placement
on the Internet,” in Proceedings of IEEE-INFOCOM’01, April 2001.

[57] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R.,
Iwamoto, K., Kim, B., Matkins, L., and Yerushalmi, Y., “Web Caching with
Consistent Hashing,” in Proceedings of the 8th International World Wide Web Con-
ference, 1999.

[58] Kelly, T., Jamin, S., andMackie-Mason, J. K., “Variable QoS from Shared Web
Caches: User Centered Design and Value-Sensistive Replacement,” in Proceedings of
the MIT Workshop on Internet Service Quality Economics, 1999.

173

[59] Kelly, T. and Mogul, J., “Aliasing on the World Wide Web: Prevalence and
Performance Implications,” in Proceedings of the 11th International World Wide Web
Conference, May 2002.

[60] Khayat-Hosseini, S., Investigation of Genaralized Caching. PhD thesis, Washington
University, St. Louis, MO, 1997.

[61] Korupolu, M. R. and Dahlin, M., “Coordinated Placement and Replacement
for Large-Scale Distributed Caches,” IEEE Transactions on Knowledge and Data
Engineering, vol. 14, no. 6, 2002.

[62] Kulkarni, P., Douglis, F., LaVoie, J., and Tracey, J., “Redundancy Elim-
ination Within Large Collections of Files,” in Proceedings of the USENIX Annual
Technical Conference, June 2004.

[63] Labrinidis, A. andRoussopoulos, N., “Update Propagation Strategies for Improv-
ing the Quality of Data on the Web,” in Proceedings of 27th International Conference
on Very Large Data Bases (VLDB-2001), September 2001.

[64] Levy-Abegnoli, E., Iyengar, A., Song, J., and Dias, D. M., “Design and Per-
formance of a Web Server Accelerator,” in Proceedings of IEEE-INFOCOM’99, March
1999.

[65] Li, D. and Cheriton, D. R., “Scalable Web Caching of Frequently Updated Objects
Using Reliable Multicast,” in Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems (USITS’99), October 1999.

[66] Li, W.-S., Hsiung, W.-P., Kalshnikov, D. V., Sion, R., Po, O., Agrawal,

D., and Candan, K. S., “Issues and Evaluations of Caching Solutions for Web
Application Acceleration,” in Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB-2002), August 2002.

[67] Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay,

B. G., and Naughton, J. F., “Middle-tier Database Caching for E-Business,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data,
June 2002.

[68] Luo, Q. and Naughton, J. F., “Form-Based Proxy Caching for Database-Backed
Web Sites,” in Proceedings of the 27th International Conference on Very Large
Databases (VLDB), September 2001.

[69] Manber, U., “Finding Similar Files in a Large File System,” in Proceedings of the
USENIX Winter 1994 Technical Conference, January 1994.

[70] Mendes, M. A. and Almeida, V. A., “Analyzing the Impact of Dynamic Pages on
the Performance of Web Servers,” in Proceedings of International CMG Conference,
December 1998.

[71] Michel, S., Nguyen, K., Rosenstein, A., Zhang, L., Floyd, S., and Jacob-

son, V., “Adaptive Web Caching: Towards a New Global Caching Architecture,”
Computer Networks and ISDN Systems, vol. 30, November 1998.

174

[72] Mogul, J., Chan, Y., and Kelly, T., “Design, Implementation, and Evaluation
of Duplicate Transfer Detection in HTTP,” in Proceedings of the 1st Symposium on
Networked Systems Design and Implementation, March 2004.

[73] Mogul, J., “Network Behavior of a Busy Web Server and its Clients,” tech. rep.,
DEC Western Research Laboratories, 1995.

[74] Mohapatra, P. and Chen, H., “A Framework for Managing QoS and Improving
Performance of Dynamic Web Content,” in Proceedings of the IEEE Global Telecom-
munications Conference, November 2001.

[75] Naaman, M., Garcia-Molina, H., and Paepcke, A., “Evaluation of ESI and
Class-Based Delta Encoding,” in Proceedings of the 8th International Workshop on
Web Content Caching and Distribution, 2003.

[76] Ng, E. and Zhang, H., “Predicting Internet Network Distance with Coordinates-
Based Approaches,” in Proceedings of IEEE-INFOCOM, June 2002.

[77] Ninan, A., Kulkarni, P., Shenoy, P., Ramamritham, K., and Tewari, R.,
“Scalable Consistency Maintenance in Content Distribution Networks Using Coop-
erative Leases,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 15, July 2003.

[78] Pitkow, J. and Recker, M., “A Simple Yet Robust Caching Algorithm Based on
Dynamic Access Patterns,” in Proceedings of the 2nd International World Wide Web
COnference (WWW-94), October 1994.

[79] Podlipnig, S. and Boszormenyi, L., “A Survey of Web Cache Replacement Strate-
gies,” ACM Computing Surveys, vol. 35, December 2003.

[80] Psounis, K. and Prabhakar, B., “A Randomized Web-Cache Replacement
Scheme,” in Proceedings of IEEE-INFOCOM-2001, April 2001.

[81] Qiu, L., Padmanabhan, V. N., and Voelker, G. M., “On the Placement of Web
Server Replicas,” in Proceedings of IEEE-INFOCOM’01, April 2001.

[82] Rabin, M. O., “Fingerprinting by Random Polynomials,” tech. rep., Center for Re-
search in Computing Technology, Harvard University, 1981.

[83] Rabinovich, M., Xiao, Z., and Aggarwal, A., “Computing on the Edge: A Plat-
form for Replicating Internet Applications,” in Proceedings of the 8th International
Workshop on Web Content Caching and Distribution, September 2003.

[84] Rabinovich, M., Xiao, Z., Douglis, F., and Kalman, C. R., “Moving Edge-Side
Includes to the Real Edge - the Clients,” in Proceedings of Usenix Symposium on
Internet Technologies and Systems, March 2003.

[85] Ramaswamy, L., Iyengar, A., Liu, L., and Douglis, F., “Techniques for Effi-
cient Fragment Detection in Web Pages,” in Proceedings of ACM-CIKM International
Conference on Information and Knowledge Management, November 2003.

[86] Ramaswamy, L., Iyengar, A., Liu, L., and Douglis, F., “Automatic Detection of
Fragments in Dynamically Generated Web Pages,” in Proceedings of the 13th World
Wide Web Conference, May 2004.

175

[87] Ramaswamy, L., Iyengar, A., Liu, L., and Douglis, F., “Automatic Detection
of Fragments in Dynamic Web Pages and its Impact on Caching,” IEEE Transactions
on Knowledge and Data Engineering (TKDE), vol. 17, June 2005.

[88] Ramaswamy, L. and Liu, L., “An Expiration Age-Based Document Placement
Scheme for Cooperative Web Caching,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 16, May 2004.

[89] Ramaswamy, L., Liu, L., and Iyengar, A., “Cache Clouds: Cooperative Caching
of Dynamic Documents in Edge Networks,” in Proceedings of the 25th International
Conference on Distributed Computing Systems(ICDCS-2005), June 2005.

[90] Rhea, S. C., Liang, K., and Brewer, E., “Value-Based Web Caching,” in Pro-
ceedings of the 12th International World Wide Web Conference, 2003.

[91] Ross, K. W., “Hash-Routing for Collections of Shared Web Caches,” IEEE Network
Magazine, November-December 1997.

[92] Sarkar, P. and Hartman, J., “Efficient Cooperative Caching using Hints,” in Pro-
ceedings of the USENIX Conference on Operating Systems Design and Implementation
(OSDI), October 1996.

[93] Shah, S., Ramamritham, K., and Shenoy, P., “Resilient and Coherence Preserv-
ing Dissemination of Dynamic Data Using Cooperating Peers,” IEEE Transactions
on Knowledge and Data Engineering (TKDE), vol. 15, July 2004.

[94] Song, J., Iyengar, A., Levy-Abegnoli, E., and Dias, D. M., “Architecture of a
Web Server Accelerator,” Computer Networks, vol. 38, January 2002.

[95] Starobinski, D. and Tse, D. N. C., “Probabilistic Methods for Web Caching,”
Performance Evaluation, vol. 46, October 2001.

[96] Tang, L. and Crovella, M., “Virtual Landmarks for the Internet,” in Proceedings
of the 3rd ACM SIGCOMM Conference on Internet Measurement, October 2003.

[97] Terry, D. B., Theimer, M., Petersen, K., Demers, A. J., Spreitzer, M., and
Hauser, C., “Managing Update Conflicts in Bayou, a Weakly Connected Replicated
Storage System,” in Proceedings of the 15th ACM Symposium on Operating System
Principles (SOSP), December 1995.

[98] Tewari, R., Dahlin, M., Vin, H., and Kay, J., “Beyond Hierarchies: Design Con-
siderations for Distributed Caching on the Internet,” in Proceedings of International
Conference on Distributed Computing Systems, May 1999.

[99] Thaler, D. and Ravihsankar, C., “Using Name-Based Mappings to Increase Hit
Rates,” IEEE/ACM Transactions on Networking, vol. 6, February 1998.

[100] Wills, C. and Mikhailov, M., “Studying the Impact of More Complete Server
Information on Web Caching,” in Proceedings of the 5th International Web Caching
and Content Delivery Workshop, 2000.

[101] Wu, K.-L. and Yu, P. S., “Latency sensitive hashing for collaborative web caching,”
Computer Networks, vol. 35, June 2000.

176

[102] Wu, K.-L. and Yu, P. S., “Replication for Load Balancing and Hot-Spot Relief on
Proxy Web Cache with Hash Routing,” Distributed and Parallel Databases, vol. 13,
no. 2, 2003.

[103] Yin, J., Alvisi, L., Dahlin, M., and Iyengar, A., “Engineering Web Cache Con-
sistency,” ACM Transactions on Internet Technology, vol. 2, August 2002.

[104] Yin, J., Alvisi, L., Dahlin, M., and Lin, C., “Using Leases to Support Server-
Driven Consistency in Large-Scale Systems,” in Proceedings of the 18th International
Conference on Distributed Computing Systems (ICDCS-1998), May 1998.

[105] Yin, J., Alvisi, L., Dahlin, M., and Lin, C., “Volume Leases for Consistency
in Large-Scale Systems,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 11, June 1999.

[106] Yu, H. and Vahdat, A., “Design and Evaluation of a Conit-based Continuous Con-
sistency Model for Replicated Services,” ACM Transactions on Computer Systems,
vol. 20, August 2002.

[107] Yu, H., Breslau, L., and Shenker, S., “A Scalable Web Cache Consistency Archi-
tecture,” in Proceedings of the ACM SIGCOMM ’99 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, August
1999.

[108] Yuan, C., Chen, Y., and Zhang, Z., “Evaluation of Edge Caching/Offloading for
Dynamic Content Delivery,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 16, November 2004.

[109] Zegura, E. W., Calvert, K., and Bhattacharjee, S., “How to Model an Inter-
network,” in Proceedings of IEEE-INFOCOM, 1996.

[110] Zhang, J., R.Izmailov, Reininger, D., and Ott, M., “Web Caching Framework:
Analytical Models and Beyond,” in Proceedings of the IEEE Workshop on Internet
Applications, 1999.

[111] Zhang, J., Liu, L., Pu, C., and Ammar, M., “Reliable Peer-to-peer End System
Multicasting through Replication,” in 4th International Conference on Peer-to-Peer
Computing (P2P 2004), August 2004.

[112] Zhou, S., Ganger, G. R., and Steenkiste, P., “Location-based Node IDs: En-
abling Explicit Locality in DHTs,” Tech. Rep. CMU-CS-03-171, Computer Science
Department, Carnegie Mellon University, 2003.

177

VITA

Lakshmish Ramaswamy was born in Chamarajanagar, a small town near Bangalore in
India. He obtained the bachelors degree (B.E.) in computer science and engineering from
the University of Mysore in 1996. He was conferred the masters in science degree (M.S.
by research) in computer science by the Indian Institute of Science (IISc.), Bangalore in
1999 for the thesis entitled “Wavelets for Volume Graphics”. Subsequently, he worked as
a software engineer in the Multimedia Codecs Group of Silicon automation systems (now
SASKEN communications limited) until July 2000.

178

LOOKING BACK

Lakshmish Ramaswamy

Completing the PhD degree is indeed a great experience. It also provides an opportunity
to look-back and contemplate upon the path that has led me to this momentous day in my
life.
I was born in Chamarajanagar, a small town near Bangalore in India, on July 8th,

1974. My father, M.S. Ramaswamy used to work as an aeronautical engineer at Hindustan
Aeronautics Limited (HAL) and my mother, C.R. Padmavathy used to be a professor of
chemistry at Bangalore University. Both of them are now retired and are living in Bangalore.
My primary, secondary, and pre-university education was all in Bangalore. Today Bangalore
is known as the silicon valley and technological capital of India. In my school days most
people in Bangalore had never seen a computer. However, my high school had a course in
computer science as an extra curricular activity. In addition to the MS-DOS fundamentals,
we were thought elementary programming concepts, most of which we implemented in the
BASIC programming language. When I look back, I think probably this was what made
me choose computer science as my career path.
I did my Bachelors degree in Sree Jayachamarajendra College of Engineering (SJCE),

which was then affiliated to Mysore University, majoring in computer science and engineer-
ing. Other than studying and preparing for exams, most of my time during those 4 years
was spent in passionately arguing with friends about any random topic. The subjects of
our discussion included, but were not limited to, politics, international affairs, social issues,
economy, cricket, and of course computer science. For our final year project we worked on
image compression and coding, wherein we implemented a discrete cosine transform-based
image compression software.
When I was in my pre-final year of the bachelor’s degree, I had made up my mind

that I would do a masters rather than immediately taking up a job. Accordingly I wrote

179

the Graduate Aptitude Test in Engineering (GATE) exam, and I was ranked 6th among
more than 5000 candidates who attended the exam all over India. Through this exam, I
got admitted to the masters by research (MS by research) program in computer science
at Indian Institute of Science (IISc.), which is one of the prestigious research institutions
in India. As a master’s student I was interested in graphics and computational geometry.
For my thesis, I worked with Prof. Vijaya Chandru and Prof. Swami Manohar on volume
graphics and visualization. My master’s thesis was titled “Wavelets for Volume Graphics”.
In fact, my interest in computer graphics and visualization was partly the reason behind
applying to Georgia Tech.
When I finished my master’s I was in a dilemma regarding my future career. I was

interested in doing a PhD but was not sure whether I had the requisite talents and patience.
So I decided to take-up a job temporarily and then go in for a PhD, if I really felt the
motivation to do so. I started working in Silicon Automation Systems (now SASKEN
communications limited) as a software engineer in their multimedia codecs group, where I
was employed until I embarked on the journey towards my PhD. When I decided to take
up a job as a software engineer, many of my friends and professors at IISc. had warned me
that the transition from student to a working professional is usually a one-way door, and it
would be very hard to come back to academics. Although I enjoyed my job as a software
engineer at SAS, I was feeling the urge to go back to academics and obtain a PhD. With
enough moral support from my parents, sister, relatives and other friends I started applying
to different universities in the US, and finally chose Georgia Tech. Thus I landed in Atlanta
on August 10, 2000.
As most PhD students, in my first semester I was undecided regarding the research area,

as many areas in computer science seemed interesting to me. I had dabbled with software
architecture, my interest in computer graphics was urging me to go back to that area, and I
was also interested in databases and distributed systems. I decided to do a CS-7001 project
with Dr. Ling Liu. At the end of the first meeting with her, I had decided to work with
her for my PhD. Then, I started reading a couple of papers in the area of distributed data-
intensive systems. As I read through those papers I was amazed by the challenges posed by
the large amounts of data being pumped into the Internet by various kinds of sources. I got
particularly interested in designing systems and techniques for efficient delivery of dynamic
web content, and chose this as the topic of my PhD dissertation. My internships at IBM TJ
Watson research center with Dr. Arun Iyengar further enhanced my interest in this area.
In addition to the work presented in this thesis, during my years at Georgia Tech, I have

also worked on a few other topics including distributed node clustering schemes for peer-
to-peer networks, and countering free-riding in peer-to-peer systems through utility-based
schemes.
In conclusion, PhD has been a great learning experience for me. It provided me with the

an opportunity to explore my talents. It has also been an enjoyable experience, although
frustrating at times. In addition to the academic and research skills, I have also learnt many
other skills, which I am sure, will help me in my future professional and personal life. Last,
but not the least, it was during my years as a PhD student I got married to Seema, who
has been a wonderful life partner.

180

