
STRUCTURAL AND MECHANISTIC INSIGHTS FROM HIGH 

RESOLUTION CRYSTAL STRUCTURES OF THE TOLUENE-4-

MONOOXYGENASE CATALYTIC EFFECTOR PROTEIN, 

NAD(P)H OXIDASE AND CHOLINE OXIDASE 

A Thesis 
Presented to 

The Academic Faculty 

by

George T. Lountos 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Chemistry & Biochemistry 

Georgia Institute of Technology 
December 2005 



STRUCTURAL AND MECHANISTIC INSIGHTS FROM HIGH 

RESOLUTION CRYSTAL STRUCTURES OF THE TOLUENE-4-

MONOOXYGENASE CATALYTIC EFFECTOR PROTEIN, 

NAD(P)H OXIDASE AND CHOLINE OXIDASE  

Approved by:   
   
Dr. Allen M. Orville, Advisor 
School of Chemistry & Biochemistry 
Georgia Institute of Technology 

 Dr. Loren Dean Williams 
School of Chemistry & Biochemistry 
Georgia Institute of Technology 

   
Dr. Christoph J. Fahrni 
School of Chemistry & Biochemistry 
Georgia Institute of Technology 

 Dr. Andreas S. Bommarius 
School of Chemical & Biomolecular 
Engineering
Georgia Institute of Technology 

   
Dr. Giovanni Gadda 
Departments of Chemistry & Biology 
Georgia State University 

   
  Date Approved:  11/11/2005 



This thesis is dedicated to my mother, father, and brother for all of their support. 

Also, this thesis is dedicated to the memory of my grandparents, George & Vassiliki 

Lountos, and George & Konstantina Panakis, and Uncle Gus Lountos 



iv

ACKNOWLEDGEMENTS

 I would like to express my deep gratitude to my research advisor, Dr. Allen 

Orville for his guidance and support over these past five years. Dr. Orville has taught me 

a lot and his guidance was essential for the success of these projects.  

 I would also like to thank the members of my committee, Dr. Loren Williams, Dr. 

Andreas Bommarius, Dr. Christoph Fahrni, and Dr. Giovanni Gadda for serving on my 

committee and for providing valuable criticism, discussions, advice, and suggestions. I 

have had the opportunity to work closely with Dr. Bommarius and Dr. Gadda on 

collaborative projects and I have learned a lot of new concepts as a result. 

 I would like to thank Dr. Brian Fox of the University of Wisconsin-Madison and 

his research group for providing purified T4moD used for crystallization and for 

performing the biochemical characterization of the T4moD mutants. Dr. Fox also worked 

closely with us on publishing the structures of T4moD and provided many insights and 

suggestions. Dr. Bettina Riebel, Dr. Andreas Bommarius, and William Wellborne 

provided purified NAD(P)H oxidase for the crystallographic studies of the enzyme along 

with many discussions. Mahmoud Ghanem of Georgia State University was very helpful 

in obtaining the MALDI-TOF spectra in the NAD(P)H project. I would also like to thank 

Fan Fan and Dr. Giovanni Gadda of Georgia State University for providing purified 

choline oxidase. Fan was very helpful in the initial crystallization experiments of the 

enzyme and thus is an “honorary crystallographer.” Dr. Rajeev Prabhakar of Emory 

University is currently working on theoretical studies of the FAD coordinates in choline 

oxidase and thus has provided helpful insights. 



v

 I would also like to express my gratitude to Jamie Summerour who served as 

Instructor for the analytical chemistry labs that I served as a TA for many years. She was 

a pleasure to work with and was very helpful in allowing me flexibility in my teaching 

schedule when I needed to be away from class for research, especially when I was away 

on synchrotron data collection trips during the semester.  

 I would like to also thank the staff at SER-CAT who were a wonderful resource. 

Almost all of the data in my thesis was collected at the SER-CAT facilities which are 

truly first-class. Dr. Zhongmin Jin was very helpful in the mail-in crystallography 

program and I would also like to thank Prof. Andy Howard who spent a lot of time 

teaching us new concepts in data collection and data processing. Marie Graham was also 

very helpful in scheduling our visits and providing administrative support.  

 Many thanks are in order also to the members of Dr. Williams’ group. Dr. Shelly 

Howerton, Dr. Kris Woods, Dr. Tinoush Moulaei, Dr. Seiji Komeda, Tatsuya 

Maehigashi, and Derrick Watkins were a constant source of support or advice.

 The members of my research group Linda Manning and Akanksha Nagpal also 

deserve special recognition. I have learned a lot from interacting with them and will 

always cherish their friendship and memories. 

 Finally, I would like to thank my parents and brother for providing a loving and 

supporting family for which I am deeply grateful to have.   



vi

TABLE OF CONTENTS 

Page

ACKNOWLEDGEMENTS iv 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF SYMBOLS AND ABBREVIATIONS xiv 

SUMMARY xv 

CHAPTER

1 Crystallization and Preliminary Analysis of Native and N-Terminal Truncated 
Isoforms of Toluene-4-Monooxygenase Catalytic Effector Protein 1 

Abstract 1 

Introduction 2 

Materials and Methods 3 

 Protein Expression and Purification 3 

 Crystallization and X-ray Data Collection 4 

Results and Discussion 11 

Conclusions 12 

References 13 

2 Crystal Structures and Functional Studies of T4moD, the Toluene-4-
monooxygenase Catalytic Effector Protein 15 

Abstract 15 

Introduction 16 

Materials and Methods 19 

 Construction of T4moD Isoforms 19 



vii

 Preparation and Characterization of T4moD 19 

 Crystallization and X-ray Diffraction Data Collection 20 

 Crystal Structure Determination 20 

Results 22 

 Crystal Structure Determination 22 

 Overall Structure Description 24 

 N-Terminal Region 32 

 Catalytic Activity of N-Terminal Deletions of T4moD 32 

Discussion 33 

 Comparison of T4moD Crystal Structures and NMR Structures 33 

 Environment of Asn34 36 

 Environment of Glu64 39 

 N-Terminal Region 42 

 Role of N-Terminal Residues in Effector Proteins 42 

 Fidelity Between Catalytic Effector Proteins 44 

Conclusion 44 

References 46 

3 Crystallization and Preliminary Analysis of a Water-forming NADH Oxidase 
from Lactobacillus sanfranciscensis 50 

Abstract 50 

Introduction 50 

Materials and Methods 53 

 Protein Expression and Purification 53 

 Crystallization and X-ray Data Collection 54 

Results and Discussion 55 

Conclusion 58 



viii

References 59 

4 X-ray Crystal Structure of NAD(P)H Oxidase From Lactobacillus

sanfranciscensis at 1.8 Å Resolution 63 

Abstract 63 

Introduction 64 

Materials and Methods 69 

 Preparation, Crystallization, & Data Collection 69 

 Crystal Structure Determination 70 

 Mass Spectrometry 74 

Results 74 

 Overall Structure Description 74 

 Binding Mode of High Affinity Ligand 78 

 Active Site Architecture 82 

Discussion 84 

 Structural Homologs of L.san-Nox2 84 

 Comparison of L.san-Nox2 and NADH Peroxidase Crystal
Structures 87 

 Comparison of L.san-Nox2 and Human Glutathione Reductase 91 

 Substrate Delivery 94 

 Orientation of Tyr159 96 

 O2 Access and Reactivity 98 

 Mechanistic Insights 99 

Conclusion 103 

References 104 

5 Structural and Mechanistic Insights from the Crystal Structure of Choline  
Oxidase 110 



ix

Abstract 110 

Introduction 111 

Materials and Methods 124 

 Enzyme Preparation, Purifcation, Crystallization, & X-ray Data        
Collection         124 

 Crystal Structure Determination 127 

Results 130 

 Crystal Structure Determination 130 

 Overall Structure Determination 134 

 The Flavin Binding Site 137 

 Substrate Binding Site 145 

Discussion 152 

 Identification of Putative Substrate Binding Site 152 

 The FAD in Choline Oxidase 157 

 Correlation of the Structure to the Proposed Mechanism 164 

Conclusion 169 

References 171 

      VITA 179  



x

LIST OF TABLES 

Page

Table 1.1: Data Collection Statistics for SeMet-T4moD 7 

Table 1.2: Data Collection Statistics for T4moD 8  

Table 1.3: Phasing Statistics for SeMet-T4moD 10 

Table 2.1: Data Collection & Model Refinement Statistics for T4moD 23 

Table 2.2: Root Mean Squared differences between the T4moD and X-ray structures   
and Related NMR structures 25 

Table 2.3: Hinge Angle Calculated Between -sheets of Effector Proteins 28 

Table 2.4:Compariosn of Catalytic Properties and Regiospecificity of Natural and N-
Terminal Deleted Isoforms of Toluene-4-Monooxygenase Effector Protein 43 

Table 3.1: Data Collection Statistics for NADH oxidase 57 

Table 4.1: Data Collection Statistics for L.san-Nox2 72 

Table 4.2: Crystallographic Refinement Statistics for L.san-Nox2    73 

Table 4.3: Structural Alignments of L.san-Nox2 and Homologs 85 

Table 5.1: X-ray Diffraction Data Collection Statistics for Choline Oxidase 132 

Table 5.2: Refinement Statistics for Choline Oxidase 133 

Table 5.3: Selected Bond Lengths and Angles in FAD Isoalloxazine Rings 143 



xi

LIST OF FIGURES 

Page

Figure 1.1: The toluene-4-monooxygenase enzyme complex 3 

Figure 1.2: Crystals of N10-T4moD 6 

Figure 2.1: Comparison of the X-ray crystal structures of the T4moD variants 25 

Figure 2.2: The RMS differences and B-factor profiles for the main chain atoms in     
each residue in chain A & B of T4moD 26 

Figure 2.3: Primary Sequence and Secondary Structure Alignment for T4moD and      
other effector proteins 28 

Figure 2.4: A divergent stereoimage of the environment around the hydrophobic        
cavity of T4moD 29 

Figure 2.5: The electrostatic potential mapped onto the solvent exposed surface               
of N4-T4moD    31 

Figure 2.6: Divergent stereoview of the superimposed X-ray and NMR structures of 
T4moD 34 

Figure 2.7: Differences in hydrogen-bonding patterns observed in the crystal and
NMR structures of T4moD surrounding residue Asn34 38 

Figure 2.8: Differences in hydrogen-bonding patterns observed in the crystal and
NMR structures of T4moD surrounding several charged residues 41 

Figure 3.1: Reactions catalyzed by lactic acid bacteria and other facultative or strict 
anaerobic bacteria. 52 

Figure 3.2: Crystals of L.sanfranciscensis NADH oxidase 56 

Figure 4.1: The overall reactions catalyzed by L.san-Nox2 67 

Figure 4.2: Some in vivo forms of cysteine and its common modifications observed in 
antioxidant enzymes or proteins. 76 

Figure 4.3: The X-ray crystal structure of NAD(P)H oxidase (L.san-Nox2) refined
to 1.8 Å resolution 76 

Figure 4.4: Overlay of the FAD-binding and the NAD(P)H binding domains of L.san-

Nox2 77 



xii

Figure 4.5: UV-Vis spectrum of the supernatant from heat denatured L.san-Nox2 79 

Figure 4.6: Negative-ion mode MALDI-TOF spectrum of the supernatant of       
denatured L.san-Nox2 80 

Figure 4.7: Electron density maps for the bound ADP molecule 81 

Figure 4.8: A divergent stereoview of the binding mode of ADP within the active
site of L.san-Nox2 82 

Figure 4.9: Structural analysis of the redox state of Cys42 83 

Figure 4.10: Stereoview of the active site residues surrounding the si-face of the
FAD and Cys42-SOH. 84 

Figure 4.11: Primary sequence and secondary structure alignment of L.san-Nox2
and related homologs 86 

Figure 4.12: A divergent stereoview of the structural overlays of the C  backbone 89 

Figure 4.13: Structural overlay of the L.san-Nox2 and NADH peroxidase active sites 91 

Figure 4.14: Surface representations of the monomers of L.san-Nox2 and hGr 93 

Figure 4.15: Surface representations of L.san-Nox2 96 

Figure 4.16: Structural overlays of the substrate-binding pocket in L.san-Nox2 and 
NADH peroxidase 97 

Figure 4.17: Hypothetical models of the FAD-C4a:H2O2 complexes 99 

Figure 4.18: Structure-based reaction mechanism for L.san-Nox2 102 

Figure 5.1:  A structure-based hypothesis for reactivity in flavoenzymes 113 

Figure 5.2:  The reaction catalyzed by choline oxidase 116 

Figure 5.3:  The asynchronous hydride transfer mechanism for choline oxidase           
with the alkoxide intermediate stabilized by His466 119 

Figure 5.4:  The three proposed mechanisms for the oxidation of unpolarized
alcohols by members of the GMC family 121 

Figure 5.5:   The reaction mechanism for the oxidation of choline to glycine
betaine by choline oxidase based on mechanistic and structural studies 123 

Figure 5.6:  A view of crystals of choline oxidase under polarized light 126 



xiii

Figure 5.7:  The three-dimensional structure of choline oxidase refined to 1.86 Å 
resolution 136 

Figure 5.8:  A view of the 2mFo-DFc and mFo-DFc electron-density maps for the       
FAD cofactor and surrounding residues during the course of structure        
refinement 138 

Figure 5.9:  Approximately orthogonal views of the final 1.86 Å 2mFo-DFc electron 
density maps for the FAD isoalloxazine ring  141 

Figure 5.10: Approximately orthogonal views of the 1.86 Å electron density maps        
for the FAD isoalloxazine ring in choline oxidase 142 

Figure 5.11: A divergent stereoview of the environment surrounding the FAD 
isoalloxazine ring in choline oxidase 145 

Figure 5.12:  A view of the monomeric structure of choline oxidase highlighting
the loop region that is comprised of residues 64-95. 146 

Figure 5.13:  A representation of the well-defined cavity located in the substrate-
binding domain of choline oxidase 148 

Figure 5.14:  A view of the 2mFo-DFc electron density for the bound DMSO 149 

Figure 5.15:  A view of the molecular surface of choline oxidase dimer with the     
solvent channel that protrudes into the active site 151 

Figure 5.16:  A representation of the solvent channel that protrudes toward the
cavity in the substrate-binding domain. 152 

Figure 5.17:  A divergent stereoview of the active site of choline oxidase with
manually docked choline 155 

Figure 5.18:  The proposed reaction mechanism involved in the generation of the
FAD-C4a adduct in the crystal of choline oxidase  161 

Figure 5.19:  Gas-phase DFT calculations using the FAD C4a-O2
- model with a          

two-electron reduced flavin 162 

Figure 5.20:  Gas-phase DFT calculations using the FAD C4a-OH model with a         
two-electron reduced flavin 163 

Figure 5.21:  A comparison of the enzyme-bound FAD C4a-O2
- adduct from the             

X-ray structure and the enzyme-bound FAD C4a-OH model obtained          
after DFT calculations. 164 

Figure 5.22:  A proposed structural role for His351 in the asynchronous hydride
transfer mechanism  168 



xiv

LIST OF SYMBOLS AND ABBREVIATIONS 

Å  Angstroms 

K  Kelvin 

CHCA  -cyano-4-hydroxycinnamic acid 

ESI  Electrospray Ionization 

hGR Human Glutathione Reducatase 

L.san-Nox2 NAD(P)H Oxidase 

MAD  Multiple Anomalous Dispersion 

MALDI-TOF Matrix Assisted Laser Desorption Ionization-Time of Flight 

NPX  NADH peroxidase 

PCR  Polymerase Chain Reaction 

SeMet  Selenomethionine 

T4MO  Toluene-4-monooxygenase 

T4moD  Toluene-4-monooxygenase Catalytic Effector 



xv

SUMMARY

The following thesis describes three bodies of work that use X-ray 

crystallography to obtain structural insights into the structure-function relationship of 

three different enzymes. The three enzymes that were studied in this thesis include the 

toluene-4-monooxygenase catalytic effector protein from Pseudomonas mendocina,

NAD(P)H oxidase from Lactobacillus sanfranciscensis, and choline oxidase from 

Arthrobacter globiformis.

The first two chapters of this thesis focus on the determination of the crystal 

structure of the toluene-4-monooxygenase catalytic effector protein from the toluene-4-

monooxygenase, a four component protein complex that catalyzes the regiospecific, 

NADH-dependent hydroxylation of toluene to yield p-cresol.  High-resolution crystal 

structures (up to 1.7 Å resolution) were obtained of the wild-type enzyme and two 

engineered variants missing either four or ten amino acids from the N-terminal end of the 

enzyme. The goal of the project was to obtain structural information to complement 

biochemical studies that were initiated to study the role of the N-terminal sequence in 

effector protein catalysis. Results from the crystallographic studies indicate that there are 

significant structural differences between the X-ray crystal structure of T4moD and the 

structure previously determined by NMR spectroscopy. Additionally, deletion of the N-

terminal residues of the enzyme does not appear to result in any significant structural 

deviations relative to the wild-type enzyme and biochemical studies indicate that the N-

terminal residues are not essential for catalysis. The high-resolution X-ray structures 

presented here have helped to define potential differences in electrostatic surfaces that 

may govern the feasibility of protein-protein interactions. Moreover, the present 
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structures reveal a single, well-defined cavity of size suitable for toluene binding near a 

region of the protein surface that has substantial different electrostatic properties among 

the effector protein family members. These results give new information and raise 

important new questions about these small, enigmatic components of the diiron 

hydroxylase enzyme complexes. 

 Chapters three and four present the first crystal structure of a water-forming 

NAD(P)H oxidase. The enzyme is of considerable interest as it catalyzes the oxidation of 

two equivalents of NAD(P)H and reduces one equivalent of oxygen to yield two 

equivalents of water, without releasing hydrogen peroxide after the reduction of the first 

equivalent of NAD(P)H. The 1.8 Å resolution structure reveals the presence of a redox 

active cysteine residue in the active site that exists as a sulfenic acid and plays an 

important mechanistic role by reducing hydrogen peroxide to water, thus preventing the 

release of hydrogen peroxide from the active site. Additionally, a tightly bound ADP 

cofactor was discovered in the enzyme structure which occupies the binding pocket of the 

NAD(P)H binding domain of the enzyme and is hypothesized to play an important role in 

influencing the dual substrate specificity exhibited by NAD(P)H oxidase.  

 Finally, chapter five presents the crystal structure of choline oxidase refined to a 

resolution of 1.86 Å.  Choline oxidase catalyzes the four-electron oxidation of choline to 

glycine betaine via two sequential, FAD-dependent reactions. The study of choline 

oxidase is of considerable interest for medical and biotechnological applications, since 

intracellular accumulation of glycine betaine allows normal function under conditions of 

hyperosmotic and temperature stress in pathogenic bacteria. Consequently, the study of 

choline oxidase has potential for the development of therapeutic agents that inhibit 
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glycine betaine biosynthesis and render pathogenic bacteria susceptible to either 

conventional treatments or the innate immune system, and for the engineering of drought 

and temperature resistance in economically relevant crops. The crystal structure reveals 

the presence a well-defined cavity within the active site that allows for the identification 

of the putative binding site for choline and residues involved in substrate-binding and 

catalysis. Additionally, the structure reveals that the FAD adopts a highly unusual 

conformation and contains a C4a-adduct which is proposed to be either an FAD C4a-O2
-

or FAD-C4a-OH complex. These results provide the first direct observation of an oxygen 

reaction intermediate in any flavoenzyme oxidase by X-ray crystallography. 

Additionally, the structural data obtained from this research allow for new insights into 

the catalytic mechanism of choline oxidase. 
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CHAPTER 1 

CRYSTALLIZATION AND PRELIMINARY ANALYSIS OF NATIVE 

AND N-TERMINAL TRUNCATED ISOFORMS OF TOLUENE-4-

MONOOXYGENASE CATALYTIC EFFECTOR PROTEIN 

Abstract

1Single crystals have been obtained of the toluene-4-monooxygenase catalytic 

effector protein, the SeMet-enriched protein and a truncated isoform missing ten amino 

acids from the N-terminus. Complete X-ray diffraction data sets have been collected and 

analyzed to 2.0, 3.0, and 1.96 Å resolution for the native, SeMet and truncated isoform 

crystals, respectively. The native and SeMet proteins crystallized in space group P6122

(unit cell parameters a = b  = 86.41 ± 0.15, c = 143.90 ± 0.27 Å), whereas the truncated 

isoform crystallized in space group P213 ( a = b = c = 86.70 ± 0.47 Å). Matthews 

coefficient calculations suggest either two or three molecules per asymmetric unit in the 

P6122 space group and two molecules per asymmetric unit in the P213 space group. 

Experimental phases from MAD analysis of the SeMet isoform and molecular 

replacement of the truncated isoform confirm the presence of two molecules per 

asymmetric unit in each case. These crystallographic results are the first available for the 

evolutionary related but functionally diversified catalytic effector proteins from the 

multicomponent diiron monooxygenase family. 

1 Adapted from Orville, A.M., Studts, J.M., Lountos, G.T., Mitchell, K.H., and Fox, B.G. (2005) 
Crystallization and preliminary analysis of native and N-terminal truncated isoforms of toluene-4-
monooxygenase catalytic effector protein. Acta Cryst. D59, 572-575. 
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Introduction 

 Toluene 4-monooxygenase (T4MO) from Pseudomonas menodocina KR1 is a 

multicomponent enzyme complex (1, 2) that exhibits remarkably high regiospecificity for 

the NADH- and O2-dependent  hydroxylation of toluene to form para-cresol (Figure 1.1) 

The T4MO enzyme complex consists of an NADH oxidoreductase  (T4moF, 33 kDa), a 

Rieske-type ferredoxin (T4moC, 12.5 kDa), a catalytic effector protein (T4moD, 11.6 

kDa) and a diiron-containing hydroxylase (T4moH, 212 kDa) with a ( )2 quaternary

structure. T4MO is a member of an evolutionarily related family of oxygenases that 

includes four subgroups distinguished by their specificity for different natural substrates 

(3, 4). Methane monooxygenase is the best characterized member of this family and 

crystal structures are available for hydroxylase components from Methylococcus 

capsulatus Bath and Methylosinus trichosporium OB3b (5, 6). Previous single-turnover 

and peroxide shunt results have shown that the hydroxylase diiron center is the unique 

site of O2 reactivity (7). However, protein-protein interactions involving the catalytic 

effector protein cause changes in the spectroscopic features of the hydroxylase diiron 

center (8), changes in the lifetimes of reactive intermediates (9) and changes in the 

product distributions  observed from substrates capable of yielding more than one product 

(10, 11). These results underscore the fundamental importance of effector protein-

hydroxylase interactions in diiron-enzyme catalysis.  
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Figure 1.1. The toluene 4-monoxygenase enzyme complex. The catalytic effector protein 
(T4moD, 11.6 kDa) is the subject of this work. The natural enzyme complex produces 
>95% yield of p-cresol from NADH, O2, and toluene (11).

 Presently, NMR structures of effector proteins are available for four of the 24 

members of the family: T4MO (T4moD) (3), phenol hydroxylase (DmpM) (12), and 

methane monooxygenase (MmoB) from Methylosinus trichosporium OB3b (13) and 

Methylococcus capsulatus Bath (14). These proteins represent three of the four functional 

classes identified for this enzyme family (3). As a group, these proteins exhibit similar 

secondary-structure topology but significant variability in tertiary structure that may be 

related to functional divergence and/or an incomplete set of NMR distance restraints. In 

this report, we describe the crystallization and preliminary analysis of crystals of native 

T4moD, a selenomethionine-enriched form (SeMet-T4moD) and an isoform lacking ten 

residues from the N-terminus ( T4moD). The data are of sufficient quality to 

permit crystal structural determinations for both T4moD and ( T4moD), which are 

in progress. 

Material and Methods 

Protein Expression and Purification 

 T4moD was expressed in Eschericia coli BL21 (DE3) and purified as previously 

reported (15). SeMet-T4moD was expressed in the Met auxotroph E. coli B834 (DE3) in 
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a minimal medium augmented with selenomethionine. ESI-MS analysis indicated that the 

N-terminal selenomethionine was removed during expression and that ~95% 

incorporation was obtained at the two remaining methionine residues. The T4moD 

isoform was constructed by PCR using pJDP01 as the template (16). The following 

oligonucleotides were used: DtruncF (5’-gcttaCATATGaataacgttggaccgattatccg-3’) and 

NtermR (5’-caaggggttatgctagttattgctcagcggt-3’). Capitals indicate the NdeI site used for 

cloning, which also placed the start codon two residues before -strand 1, the first 

identifiable secondary-structure element in the NMR structure (3).

Crystallization and X-ray data collection 

 The initial crystallization studies were performed using screening kits from 

Hampton Research and were optimized by screening additives and cryoconditions. All 

crystals were grown using the hanging-drop vapor-diffusion technique with standard 24-

well Linbro plates from ~2 L of protein (typically in 25 mM MOPS pH 6.75, 7% v/v

glycerol, 0.15 M NaCl) mixed with 2 L reservoir solution. T4moD crystallized at 298 K 

with 975 mM sodium/potassium phosphate pH 4.7, 400 mM NaCl, 50 mM succinate pH 

5.5 at a protein concentration of approximately 40 mg/mL. The approximately 0.2 x 0.2 x 

0.2 mm crystals grew reproducibly within approximately one week under aerobic 

conditions. Crystals of SeMet-T4moD (approximately 0.15 x 0.15 x 0.15 mm) were 

grown in an anaerobic chamber (Coy Labs, maintained with a 95% N2 and 5% H2

atmosphere) under nearly identical crystallization conditions supplemented with 1 mM 

dithiothreitol. Single crystals of T4moD were transferred to mother liquor augmented 

with 30% glycerol as the cryoprotectant immediately prior to flash-freezing in a 100 K 

cold stream.  For T4moD, the reservoir solution contained 2.0 M ammonium 

sulfate and 5% (v/v) 2-propanol and the drop (10 mg/mL protein) was augmented with 1 

L of 7.5% (v/v) 1,2,3-heptanetriol. Crystals appeared after approximately 3 days of 

equilibration at 277 K and reached maximum dimensions of approximately 0.2 x 0.2 x 
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0.2 mm within one week (Figure 1.2). The T4moD crystals were transferred to 

Paratone-N (Hampton Research), the excess mother liquor was pulled away and the 

crystals were flash-frozen by rapid submersion in liquid N2.

 All X-ray diffraction data were collected from crystals held at approximately 100 

K. The T4moD data set was collected with 0.7433 Å X-rays at the Advanced Photon 

Source (APS), Argonne National Laboratory. The four-wavelength MAD data set was 

collected at beamline 1-5 at the Stanford Synchrotron Radiation Source. An ADSC 

Quantum 4 detector was used to collect two 16o wedges of unique data and their inverse-

beam wedges at the wavelengths indicated in Table 1.1. Each image was exposed for 45 

seconds with a 1o oscillation. Diffraction data from T4moD were collected during 

the commissioning of beamline 22-ID by the South East Regional Collaborative Access 

Team (SER-CAT) at APS using a MAR CCD 165 detector (Table 1.2). Each image was 

collected with a 1 second exposure time and a 1o oscillation range. The T4moD data set 

was processed with DENZO and SCALEPACK (17). The SeMet-T4moD and 

T4moD data set was processed with MOSFLM  and SCALA from the CCP4 suite 

of programs (18).

 .  
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Figure 1.2. A) Crystals of N10-T4moD measuring approximately 0.3 mm along the 
diagonal. B) the X-ray diffraction pattern obtained with 1 second exposure and 1o

oscillation along the vertical axis (vertical line). The data were collected at SER-CAT 
beamline 22-ID with a MAR CCD 165 area detector and a 103 mm crystal to film 
distance. C) An expanded and contrast-adjusted view of the diffraction pattern between 
2.0 and 1.5 Å resolution (inner and outer dashed arcs), respectively. 
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Table 1.1 Data Collection Statistics for Se-Met T4moD 

a Unit cell dimensions for P6122 crystals are a = b = 86.41 ± 0.15 Å, c = 143.9 ± 0.27 Å;  = 90º,  = 
120º. b Data collected at beamline 1-5 of SSRL with an ADSC Quantum 4 detector. cValues in parenthesis 
are for the highest resolution shell of data d Rsym (I) gives the average agreement between the independently 
measured intensities such as h i |Ii - I| / h i I, where I is the mean intensity of the i observations of 
reflection h.eI/ (I) is the root-mean-square value of the intensity measurements divided by their estimated 
standard deviation. 

SeMet-T4moDa,b

Crystal 
inflection (f’) peak (f’’) remote 1 remote 2 

Wavelength (Å) 0.979880 0.979571 0.925256 1.068830

Resolution range (Å) 33 - 3.0 33 - 3.0 33 - 3.0 37 - 3.0 

High res. shell (Å) 3.08 - 3.0 3.08 - 3.0 3.08 - 3.0 3.08 - 3.0 

Space group P6122 P6122 P6122 P6122 

Total reflections 44128 44088 44703 39510 

Unique reflections 6781 6791 6800 6293 

Multiplicity (overall)c 6.5 (5.9) 6.5 (6.0) 6.6 (6.8) 6.3 (5.3) 

Completeness  
(%, overall) 

98.9 (98,9) 98.9 (91.3) 99.2 (99.2) 99.0 (91.0) 

Anomalous comp. 
(%, overall) 98.1 98.0 98.6 88.3 

Rsym (%, overall) d 7.1 (27.5) 7.1 (29.0) 7.2 (32.7) 7.5 (33.0) 

I/ (I) (overall) e 4.8 (2.7) 4.8 (2.6) 4.7 (2.3) 5.0 (2.5) 
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Table 1.2 Data Collection Statistics for T4moDa crystals 

Crystal T4moD b N10-T4moDc N10-T4moDd N10-T4moDd

Wavelength (Å) 0.7433 1.5418 1.000 1.000 

Resolution range (Å) 37 - 2.05 23 - 2.2 16 – 1.96 17 – 2.00 

High res. shell (Å) 2.11 - 2.05 2.32 - 2.20 2.07-1.96 2.11-2.00 

Space group P6122 P213 P213 P213

Total reflections 34207 235752 339875 333434

Unique reflections 19009 11161 15889 15236 

Multiplicity (overall)e 1.8 (1.2) 21.1 (21.1) 21.4 (21.0) 21.9 (21.4) 

Completeness  
(%, overall) 

96.5 (78.2) 99.9 (99.9) 99.8 (99.8) 99.8 (99.8) 

Rsym (%, overall) f 6.6 (29.4) 10.9 (30.0) 6.4 (31.7) 5.8 (34.3) 

I/ (I) (overall) g 6 (2.5) 6.2 (2.4) 9.6 (2.3) 10.1 (2.2) 

a Unit cell dimensions for P6122 crystals are a = b = 86.41 ± 0.15 Å, c = 143.9 ± 0.27 Å;  = 90º,  = 
120º and for P213 crystals a = b = c = 86.7 ± 0.47 Å,  = 90º. b Data collected at beamline 1-5 of 
SSRL with an ADSC Quantum 4 detector. c Data collected with rotating Cu anode and an MSC Raxis IV++ 
detector. d Data collected at beamline 22-ID at APS with a marCCD 165 detector. eValues in parenthesis are 
for the highest resolution shell of data e Rsym (I) gives the average agreement between the independently 
measured intensities such as h i |Ii - I| / h i I, where I is the mean intensity of the i observations of 
reflection h .g I/ (I) is the root-mean-square value of the intensity measurements divided by their estimated 
standard deviation.
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The four-wavelength MAD data set of SeMet-T4moD was further scaled and analyzed 

with FHSCALE and SCALEIT from the CCP4 suite of programs (18). The Se atoms 

were located with SOLVE (19) using data from all four wavelengths and X-ray cross-

sectional estimates of anamolous scattering factors at each wavelength as determined 

with CROSSEC (18). The Se sites were refined with SHARP (20) to produce the 

experimental phases currently in use for model building and refinement. The resulting 

phasing statistics from SHARP are presented in Table 1.3. 



10

Table 1.3: Phasing Statistics for SeMet-T4moD a

Data set inflection 
(f’)

peak (f’’) remote 1 remote 2 

Wavelength (Å) 0.979880 0.979571 0.925256 1.068830

Resolution range (Å) 33 - 3.0 33 - 3.0 33 - 3.0 37 - 3.0 

Rcullis centric (iso) b 0.35 0.34 --- 0.78 

Rcullis acentric (iso/ano) 0.39 / 0.93 0.39 / 0.78 --- / 0.83 0.74 / 0.97 

Rkraut centric (iso/ano) c 0.06 / 0.12 0.07 / 0.13 0.08 / 0.13 0.09 / 0.14 

Rkraut acentric (iso/ano) 0.02 / 0.04 0.02 / 0.04 0.03 / 0.04 0.03 / 0.04 

Phasing power, centric (iso)
d 4.11 4.00 0 0.12 

Phasing power, acentric 
(iso/ano)

4.43 / 1.04 4.11 / 1.86 0 / 1.65 0.12 / 0.86 

0.521 (1593 centric refs.);   0.519 (5181 acentric refs.) 
Figure of merit e

0.896 (after solvent flattening, 6815 refs.) 
a Compiled from SHARP (de La Fortelle & Bricogne, 1997). 
b Rcullis = <phase-integrated lack of closure> / < | Fph - Fp | >, where Fph is the structure factor 

obtained from the inflection,  peak  or remote 2 data sets and Fp is obtained from the 0.925256 Å 

data set.  The isomorphous and anomalous differences are designated as iso and ano, respectively. 

c Rkraut = iso / iso for isomorphous differences and ano / Bijvoet for anomalous differences, 

where iso and ano are the isomorphous and anomalous phase-integrated lack of closure 

respectively, and iso is the isomorphous difference and Bijvoet is the Bijvoet difference. 

d Phasing power = < [ | Fh(calc) | / phase-integrated lack of closure ] >, where Fh(calc) is the 
calculated structure factor for the three Se atoms. 
e Figure of merit statistics describe a confidence level for the calculated centroid phases. 
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Results and Discussion 

 The tmoD gene (NCBI accession No. M65106) encodes a 103-residue 11,618 Da 

protein that contains no Cys or Trp residues (21). There are three Met residues (1, 74, and 

103) in T4moD, but the N-terminal Met is efficiently removed during expression in E.

coli  BL21 (DE3). The calculated instability index of 49.7 suggests that T4moD may be 

“unstable” (22). However, purified T4moD is stable and a high-resolution NMR structure 

has recently been completed (3). Moreover, previous structural and catalytic studies 

suggest a potential functional role for the amino-terminal region of the catalytic effector 

protein families (9, 23). To initiate comparative functional studies of the T4MO complex, 

a truncated isoform of T4moD was constructed, purified, and crystallized. 

 The diffraction data from native T4moD and SeMet-T4moD crystals are 

consistent with space groups P6122 or P6522 (a = b = 86.41  0.15, c = 143.9  0.27 Å). 

Matthews coefficient and solvent-content analysis  (24) suggest either two (VM= 3.5 Å3

Da-1, 64.8% solvent ) or three (VM= 2.3 Å3 Da-1, 47.2% solvent) molecules per 

asymmetric unit. Although SOLVE did not produce a reasonable result from analysis of 

the P6522 space group data, three Se sites were identified in the asymmetric unit for the 

P6122 space group. The overall estimated figure of merit reported from SOLVE was 

0.34, with a Z score of 15.22 and peak intensities at the Se sites of 39.5, 39.1, and 26.8 

The presence of three well defined Se atoms is consistent with VM calculations 

assuming a trimer in the asymmetric unit given that, for example, Met74 is well ordered 

and that Met103 is disordered in the crystal lattice. However, an alternative postulate of a 

dimer in the asymmetric unit is tenable by assuming that the two monomers are 

structurally inequivalent and that one of the C-terminal SeMet residues is disordered. The 

Se sites were refined with SHARP and the resulting experimental phases and electron 

density maps clearly show that the asymmetric unit contains two T4moD molecules. The 

overall folds of the monomers are similar to the NMR structure (3). However, there are at 
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least two regions where the structure of each monomer appears to differ significantly 

from the other and from the NMR structure, which includes the amino-terminal regions. 

 Crystals of the N10-T4moD isoform are colorless non-birefringent cubes 

(Figure 1.2) and the diffraction data is consistent with the cubic space group P213 (unit-

cell parameters a = b = c = 86.75 Å). Despite the different space group, the unit-cell 

edges of the cubic form are nearly identical to the two short cell edges of the hexagonal 

crystal form. A typical data set from N10-T4moD consists of 339,875 observations of 

15,889 unique reflections in the resolution range 15.83-1.96 Å. The overall completeness 

of 99.8% (99.8% in the 2.07-1.96 Å highest resolution shell) and overall Rsym of 6.4% 

(31.7% in the highest resolution shell) are both excellent. The data are both strong as 

indicated by the overall I/ (I) of 9.6. Assuming two N10-T4moD monomers in the 

asymmetric unit, the calculated VM of the crystals is 2.64 Å 3 Da-1, corresponding to a 

solvent content of 53%. Molecular replacement is currently under way using the partially 

refined structure of the appropriately truncated native T4moD model and confirms the 

Matthews coefficient estimates for this isoform. 

Conclusions

 High quality crystals of native T4moD, a SeMet enriched isoform, and an isoform 

with 10 amino acids removed from the N-terminus have been obtained. High resolution 

X-ray diffraction data have been collected from  each isoform which is of sufficient 

quality to enable the  determination of the three-dimensional structure of each isoform.   
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CHAPTER 2 

CRYSTAL STRUCTURES AND FUNCTIONAL STUDIES OF 

T4MOD, THE TOLUENE 4-MONOOXYGENASE CATALYTIC 

EFFECTOR PROTEIN2

Abstract

 Toluene 4-monooxygenase (T4MO) is a four component complex that catalyzes 

the regiospecific, NADH-dependent hydroxylation of toluene to yield p-cresol. The 

catalytic effector (T4moD) of this complex is a 102 -residue protein devoid of metals or 

organic cofactors. It forms a complex with the diiron hydroxylase component (T4moH) 

that influences both the kinetics and regiospecificity of catalysis. Here, we report crystal 

structures for native T4moD and two engineered variants with either four ( N4-) or 10 

( N10-) residues removed from the N-terminal at 2.1, 1.7, and 1.9 Å resolution, 

respectively. The crystal structures have C-alpha root-mean-squared differences of less 

than 0.8 Å for the central core consisting of residues 11-98, showing that alterations of 

the N-terminal have little influence on the folded core of the protein. The central core has 

the same fold topology as observed in the NMR structures of T4moD, the methane 

monooxygenase effector protein (MmoB) from two methanotrophs, and the phenol 

hydroxylase effector protein (DmpM). However, the root-mean-squared differences 

between comparable C-alpha positions in the X-ray structures and NMR structure vary 

from approximately 1.8 Å to greater than 6 Å. The X-ray structures exhibit an estimated 

overall coordinate error from 0.095 (0.094) Å based on the R-value (R-free) for the 

2 The following chapter is adapted from Lountos, G.T., Mitchell, K.H., Studts, J.M., Fox, B.G, & Orville, 
A.M. (2005) Crystal Structures and Functional Studies of T4moD, the Toluene 4-Monooxygenase Catalytic 
Effector Protein, Biochemistry 44, 7131-7142. 
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highest resolution N4-T4moD structure to 0.211 (0.196) Å for the native T4moD 

structure. Catalytic studies of the N4-, N7-, and N10- variants of T4moD show 

statistically insignificant changes in kcat, KM, kcat/KM, and KI relative to the native protein. 

Morevoer, there was no significant change in the regiospecificity of toluene oxidation 

with any of the T4moD variants. The relative insensitivity to changes in the N-terminal 

region distinguishes T4moD from the MmoB homologues, which each require the ~33 

residue N-terminal region for catalytic activity. 

Introduction 

 T4MO is a member of the diiron monooxygenase family of enzymes (1). These 

evolutionarily related enzyme complexes are classified as either aliphatic or aromatic 

hydroxylases (2). MMO, a member of the aliphatic monooxygenase class, is the most 

thoroughly studied diiron monooxygenase and serves as the structural and functional 

paradigm for the family (3, 4). The aromatic hydrocarbon hydroxylases can be grouped 

into two subclasses based on operon structure, sequence analysis, and the primary 

substrate that is oxidized (2). Subclass I contains the toluene-2-monooxygenase/phenol 

hydroxylase enzymes (T2MO/phenol), while subclass II contains the toluene 4-

monooxygenase/benzene monooxygenase enzymes (T4MO/benzene). 

 All members of the diiron monooxygenase family are multi-component enzyme 

complexes that consist of either a one- or two-protein electron-transfer chain, a catalytic 

effector protein that contains no metal ions or organic cofactors, and a terminal 

hydroxylase (2, 5-7). Specific interactions between the hydroxylase and 

reductase/ferredoxin components are required for electron transfer during catalysis (3, 5, 

7). X-ray crystal structures of terminal hydroxylases MmoH from Methylococcus

capsulatus (Bath) and Methylosinus trichosporium Ob3B and the toluene/o-xylene

monooxygenase from Pseudomonas stuzeri OX1 have been solved (8-10). Furthermore, 
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NMR structures of the Rieske ferrodoxin T4moC3, the ferrodoxin domain, and the flavin 

domain of M. capsulatus (Bath) oxidoreductase have also been solved (11-13).

 The effector protein has also been shown to serve an essential role in catalysis 

through formation of a protein-protein complex with the hydroxylase (14-20). NMR 

structures of effector proteins from each catalytic effector subclass have been solved (21-

24). Although these structures exhibit approximately the same topology of secondary 

structural elements, there are significant differences in the 3D structures, which may arise 

in part from the different numbers of NOE restraints used to calculate the solution 

structures (21-24). The present crystal structures, determined to 2.1 Å resolution and 

better, allow comparison with the NMR structure of T4moD and other effector proteins. 

 In each of the previously determined NMR structures, a portion of the N-terminal 

region was disordered. For the MMO subclass, the disordered region is ~33 residues 

long. Deletion of the N-terminal end results in the complete loss of catalytic effector 

activity (25, 26). More specifically, His33, which is five residues before the start of -

strand 1 in the folded core of the protein, has a controlling influence on the rate of 

formation and decay of transient catalytic intermediates (27). Intriguingly, mutagenesis of 

His33 gave no apparent effect on steady-state catalysis, which instead appears to be 

governed by rate-limiting product release (27). Mutagenesis also changed the product 

specificity (25, 26). As His33 is conserved in all sequenced examples of MmoB, the 

effector proteins are thought to control internal steps of the multi-step catalytic cycle 

through formation of specific protein-protein interactions (16, 18, 19, 25-31).

 Sequence alignments and structural analysis have shown that there is substantial 

variation in the length of the disordered N-terminal regions of effector proteins from the 

various enzyme subclasses (21-26, 32). For example, the N-terminal disordered region of 

3 The crystal structure of T4moC has also been determined to 1.48 Å resolution (PDB code 1VM9). 
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the effector proteins from the aromatic ring monooxygenases are only ~3 (subclass I, 

T2MO/phenol) or ~13 (subclass II, T4MO/benzene) residues long, respectively. 

Furthermore, sequence alignments revealed that there was no sequence conservation 

among these N-terminal sequences and that only four of the effector proteins from 

subclass II contained a His residue anywhere in the N-terminal sequence. Consequently, 

the role or requirement of these shorter N-terminal sequences in effector protein catalysis 

has not yet been established. In the T4moD solution structure, the disordered region 

consists of the sequence Ser1-Asn124.

 Here, we report X-ray crystal structures and functional analysis of natural T4moD 

and truncated variants with 4,7, and 10 residues deleted from the N-terminal of the native 

protein. These latter variants are designated N4-, N7-, and N10-T4moD, 

respectively. The crystal structures of the natural enzyme and the N4- and N10-

variants were refined to resolutions between 2.1 and 1.7 Å in two space groups. 

Collectively, these structures exhibit low root-mean-squared differences, indicating that 

the protein core is well-ordered, independent of the presence of the N-terminal region, 

and is not influenced by the different crystal lattice packing environments present in the 

two space groups. Comparison of the T4moD X-ray crystal structures with the NMR 

structure reveals substantial agreement with the topology of the fold. However, the high 

resolution X-ray structures allow for a reassessment of certain structural features 

proposed from our previous NMR work on T4moD, including hydrogen-bonding 

interactions, the positions of several side chains, and the nature of an internal cavity. 

Progressive removal of the N-terminal residues from T4moD is also shown to have only a 

modest influence on the steady-state kinetic properties and no significant effect on the 

4 The residue numbering used in this work is based on counting after removal of the N-terminal Met 
residue, giving Ser1 as the first residue in the mature protein obtained from bacterial expression. 
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regiospecificity of product formation in the reconstituted T4MO complex. Thus, specific 

interactions of residues in the N-terminal end are apparently not required for aromatic 

hydroxylation in the T4moH, in contrast to the essential role for the N-terminal end in the 

MmoB homologues during methane hydroxylation. 

Materials and Methods 

Construction of T4moD Isoforms 

 The N4-, N7-, and N10-T4moD isoforms were created by removal of the 

indicated number of amino acid residues from the N-terminal region. These isoforms 

were constructed by PCR using the expression vector pJDP01 (1, 33, 34) as the template, 

Vent DNA polymerase (New England Biolabs, Beverly, MA), and a Perkin-Elmer Model 

9600 thermocycler (Perkin-Elmer, Foster City, CA). The following oligonucleotides were 

purchased from Integrated DNA Technologies (Coralville, IA) and used as forward 

primers to create the deletions: N4-(5’-agcacaCATATGgatcaggctttacataac-3’); N7-

(5’-tggctgatCATATGttacataacaataacg-3’); N10-(5’-gctttaCATATGaataacgttggacc- 

gattatccg-3’). Capital letters indicate the position of an NdeI restriction site used to place 

the start codon at the correct location relative to the ribosome-binding site in pJDP01. 

The reverse primer was 5’-caaggggttatgctagttattgctcagcggt-3’. To generate PCR products, 

a 50 L reaction was subjected to 30 cycles of denaturation at 94o C for 45 seconds, 

anneal at 60o C for 30 seconds, and extention at 72o C for 45 seconds. The PCR products 

were gel-purified and digested with NdeI and BamHI and cloned into similarly digested 

pET3a (Novagen, Madison, WI). The final constructs were sequenced using the Big Dye 

sequencing kit (Perkin-Elmer) at the University of Wisconsin Biotechnology Center. 

Preparation and Characterization of T4moD 

 The T4moD variants and all other T4MO proteins were overexpressed and 

purified as previously reported (1, 35, 36). Yields of purified T4moD were ~10-15 mg/L 

of culture medium. The SeMet-labeled T4moD was produced by fed-batch fermentation 
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in expression host Escherichia coli B834(DE3) as previously described (35).

Electrospray ionization mass spectrometry was performed at the University of Wisconsin 

Biotechnology Center using a Perkin-Elmer Sciex API 365 triple quadrupole mass 

spectrometer. Steady-state kinetic assays and determinations of product distributions 

were as previously reported (22, 34). Velocity data for p-cresol formation versus effector 

protein concentration were fit to  = kcat[S]/(KM + [S] + [S]2/KI)) using the 

NonLinearRegress routine of Mathematica (v.4.0.1.0, Wolfram Research, Inc. 

Champaign, IL), where kcat is the maximal reaction velocity, [S] is the concentration of 

effector protein, KM is the apparent Michaelis constant for formation of the activating 

complex of effector protein, and KI is the apparent equilibrium constant for formation of 

the inhibiting complex of effector protein. The kcat-values are reported as turnover 

numbers relative to diiron center in the ( ) protomer of T4moH. 

Crystallization and X-ray Diffraction Data Collection 

 Single crystals were obtained for the natural, the SeMet-enriched and the N10-

variants as previously described (37). Crystals of the N4-variant were obtained from the 

same conditions used for the N10-variant (37). The X-ray diffraction data were 

collected from cryo-preserved crystals at approximately 100 K and processed as 

previously reported with the diffraction data for the N4-variant collected at the SER-

CAT facility of the Advanced Photon Source (APS), Argonne National Laboratory (37).

Crystal Structure Determination 

 The structure of native T4moD was solved with MAD phasing using a four-

wavelength data set collected from a SeMet-T4moD crystal (37). Two molecules of 

T4moD were present in the asymmetric unit. Three Se atoms were located with SOLVE 

(38) using data between 33 and 3.0 Å resolution and refined with SHARP (39) as 

previously reported (37). The experimental phases between 33 and 3.0 Å resolution were 

appended to the 2.09 Å resolution native T4moD data set. Phase extension and solvent-
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flattening to 2.09 Å was performed with the CCP4 suite of programs (40). Model 

building was performed with the program O (41, 42) and refinements were with CNS 

(43) and/or REFMAC5 (44, 45). Cross-validated 2mFo-DFc and mFo-DFc maps (46) were 

used to evaluate the model and correct errors. Water molecules were located and refined 

in the final stages of refinement with ARP/Waters (47)and REFMAC5. 

 The N4- and N10-T4moD variants crystallized in space group P213 with unit 

cell dimensions of a = b = c = 86.8 Å. Two protein molecules were present in the 

asymmetric unit. The structures for the N4- and N10-T4moD isoforms were solved by 

molecular replacement in CNS with the native T4moD structure as the search model after 

appropriate truncation of the N-terminal residues, removal of solvent molecules, and 

assignment of the B-factors to 20 Å 2. The final structure for N4-T4moD had an R-

factor of 0.15 and an R-free of 0.19 with data between 37 and 1.71 Å resolution. The 

refined N10-T4moD structure had an R-factor of 0.19 and an R-free of 0.25 with data 

between 16 and 1.96  resolution. 

 Validation of the refined models and Ramachandran analysis were done using 

SFCHECK (48) and PROCHECK (48-50). Solvent exposed surface areas were calculated 

with a 1.4  probe radius with DMS implemented in the MidasPlus package from 

Computer Graphics Laboratory, University of California, San Francisco, CA (supported 

by NIH P41 RR-01081) (51), CNS, CCP4, or Swiss-PDB Viewer (v.3.7b2) (52).

Secondary structure assignments were made with KSDSSP (53). The rms difference 

between models was calculated with CCP4 or Swiss-PDBViewer. Structure figures were 

prepared using Swiss-PDBViewer and PovRay (v.3.5) or PyMOL (DeLano Scientific 

LLC, Castro City, CA). 
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Results

Crystal Structure Determination 

 The X-ray data collection and refinement statistics are shown in Table 2.1.  

Although an NMR structure for T4moD was previously determined (22), various search 

models derived from the solution structure ensemble did not yield a molecular 

replacement solution for the native crystal structure. Consequently, the SeMet-enriched 

T4moD was crystallized and used to determine the experimental phases via MAD data 

analysis techniques. Phasing statistics for SeMet-T4moD are reported in Orville et al. 

(2003) (37). The 3.0 Å resolution electron density map resulting from refining three Se 

atoms in space group P6122 was interpretable and used to build the majority of the initial 

model. The phase-extended, solvent-flattened map at 2.1 Å resolution for native T4moD 

was then used to complete the model building. The model for native T4moD was then 

refined against the 2.1 Å resolution data obtained from the native protein. The final 

refined model for native T4moD has an R-factor of 0.24 and R-free of 0.28 with data 

between 37 and 2.1 Å resolution. 
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Table 2.1. Data Collection & Model refinement statistics 

T4moD Variant Native- N4- N10-

Data Collection Statistics    
Resolution range (Å) 37-2.05  37-1.71  16-1.96  
Highest Resolution Shell (Å) (2.11-2.05) (1.80-1.71 (2.07-1.96)
Unique reflections 19009 23407 15889 
Completeness (%)a 96.5 (78.2) 99.99 (99.9) 99.8 (99.8) 
Rsym (%)a,b 6.6 (29.4) 12.5 (35.1) 6.4 (31.7) 
I/ (I) c 6 (2.5) 3.4 (1.9) 9.6 (2.3) 
Refinement Statistics    
Resolution range (Å) 37-2.1 37-1.71 16-1.96 
No. of reflections  17059 21007 14262 
R-factor 0.243 0.154 0.192 
R-freed 0.289 0.185 0.249 
No. of non-H protein atoms 1579 1473 1404 
No. of water molecules 58 238 167 
No. of 1,2,3-heptanetriol molecules 0 0 1 
Mean B, protein atoms (Å2) 50.7 14.5 25.0 
Mean B, water molecules (Å2) 49.6 33.1 36.8 
Mean B, 1,2,3-heptanetriol molecule (Å2) - - 31.8 
RMS deviations from ideal    

Bond lengths (Å) 0.018 0.016 0.019 
Bond angles (°) 1.6 1.6 1.7 

a Numbers in parentheses are for the highest resolution shell 
b The average agreement between the independently measured intensities 
c The root-mean-squared value of the intensity measurements divided by their estimated 
standard deviation 
d Calculated with 10% of the data. 

 Each of the truncated T4moD variants crystallized in space group P213 and 

molecular replacement was used to solve these structures using a search model derived 

from the native crystal structure. The crystals of N4-T4moD diffracted to the highest 

resolution (1.7 Å) and the resulting atomic model was refined to a final R-factor of 0.15 

and R-free of 0.19. Ramachandran analysis of all the crystal structures showed that over 

90% of the residues were located in the most favored region. In the natural T4moD, 

Arg45 is in the disallowed region in both chain A and B. The residue is also in the 
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disallowed region for chain A or B of the N4-T4moD and N10-T4moD structures, 

respectively. The high-resolution structure of N4-T4moD suggests an alternate 

conformation for Tyr47 in the B chain. At this position, the 2mFo-DFc electron density 

maps are consistent with the two most common conformers found in the O library. The 

X-ray structure of the N10-T4moD variant contains a single 1,2,3-heptanetriol 

molecule, an additive in the crystallization solution, located at the interface of the two 

molecules in the asymmetric unit. Each of the heptanetriol hydroxyl groups hydrogen-

bond with either a solvent molecule or the carbonyl oxygen atoms of residues Leu80-A, 

Leu80-B, or Glu77-B. 

Overall Structure Description 

 The three crystal structures of T4moD are similar, especially for the core region 

(residues 11-98) as illustrated in Figure 2.1.  Indeed, the rms difference between C

atoms in the core is less than 0.8 Å (Table 2.2) despite several differences in secondary 

structure assignments (discussed below). Figure 2.2B-F shows the rms differences and B-

values for the individual residue positions. The secondary structure assignments for each 

structure are illustrated in Figure 2.3. The structures differ most significantly at the N-

terminal region for natural T4moD. In chain A, this region adopts an -helical structure, 

designated N, whereas in the B-chain and for both chains in the N4-T4moD, this

region is largely disordered. The other regions exhibiting slight differences are located 

between the 1 strand and the 1 helix and the hairpin turn between strands 2 and 3.

Each of these regions also corresponds to larger thermal factors, suggesting some 

inherent structural variability to the fold. 



25

Figure 2.1. Comparison of the X-ray crystal structures of the T4moD variants. A 
divergent stereo-overlay of the C  backbone trace for natural-(red), N4- (green), and 

N10-T4moD (blue), with arrows highlighting the regions that differ slightly in the three 
structures.

Table 2: Root Mean Squared Differences between the T4moD X-ray Structures and 
Related NMR Structuresa

N4-A N10-A

T4moD

NMR

MMO

(OB3b)

MMO

(Bath) DmpM

native-Ab 0.59 0.45 1.88 1.74 1.88 6.96 

N4-Ac  0.66 1.95 1.77 1.91 6.90 

N10-Ac   1.91 1.68 2.10 6.86 

aSuperposition of C  atoms using SwissPdb-Viewer and the iterative fit function. 
bresidues 5-100 in either chain A or chain B. cResidues 11-98. dAlignment with the best 
representative NMR structure [PDB 1G10, (22)]. eThirty-four C  atoms between residues 
36-126 in the best representative structure from PDB code 2MOB_10 (21). fFifty-nine C
atoms between residues 36-138 in the best representative structure from PDB code 
1CKV_11 (24). gFifty-four C  atoms between residues 31-84 in the best representative 
structure from PDB code 1HQI_3 (23). The best representative structure was selected 
from analysis of the ensemble NMR structure using OLDERADO (54).
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Figure 2.2: The rms differences and B-factors for the main-chain atoms in each residue in 
chain A (blue) and chain B (magenta). The rms differences between A) N4-T4moD and 
the average NMR structure of native T4moD from 1G10 (22), B) N4-T4moD and the 
X-ray structure of native T4moD, and C) N4-T4moD and N10-T4moD. The average 
B-factor values for all backbone atoms in each residue for each chain in D) native 
T4moD, E) N4-T4moD, and F) N10-T4moD. 
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 From one perspective, the shape of T4moD is roughly triangular with 

approximately 24 Å x 20 Å x 23 Å edges when measured at C  atoms of residues 46, 54, 

and 60. From the orthogonal perspective, the molecule is roughly rectangular with a 

width and length of approximately 20 Å by 30 Å when measured at C  atoms of residues 

31-89 and 54-69, respectively. Two sides of the triangular shape are comprised of 

antiparallel -sheets, and the backbone trace crosses the corner connecting them three 

times. A Gly residue is present at each place the backbone chain crosses the vertex of the 

triangle (Gly36, Gly54, and Gly85) in T4moD. Figure 2.3 also shows a structure-edited 

sequence alignment of the effector proteins, and the consensus alignment shows that each 

of these positions is conserved to a differing extent across the entire family. For example, 

according to the more extensive alignment shown in Hemmi et al. (22), Gly36 is present 

in all eight of the sequences most closely related to T4moD but not in MMOB and 

DmpM. In addition, Gly54 is present in 17 of the 24 sequences aligned for the 

superfamily, while Gly85 is present in all sequences of the superfamily (22). Thus, these 

Gly residues appear to provide the conformational flexibility required for the backbone to 

radically alter direction. The angles between the -sheets range from 74o to 85o in the X-

ray structures and from 86o to 113o in the NMR structures (Table 2.3).
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Figure 2.3. Primary sequence and secondary structure alignment for T4moD and other 
effector proteins. The amino acid sequence alignment was from CLUSTALW using 
default weights (T4moD gi:45479224; MmoB OB3b, gi:44616 (21); MmoB (Bath), 
gi:127207 (24); DmpM, gi:118693 (23). Every 10th residue is underlined with the 
numbering fixed to that of the native T4moD after post-translational removal of the N-
terminal Met. The arrows and rectangles indicate the -strands and -helices as assigned 
from KSDSSP. The secondary structure elements from the T4moD X-ray structures are 
shown on the top of the figure for both A- and B-chains in the asymmetric units. The 
secondary structure elements assigned from the NMR structures of T4moD and the other 
effector proteins are shown on the bottom of the figure (21-24).

Table 2.3. Hinge Angle Calculated Between -Sheets of Effector Proteinsa

T4moD
Variant

X-rayb NMR 

 Chain A Chain B T4moD c MMOB
(OB3b) d

MMOB
(Bath) e

DmpM f

Native- 78° 82° 86° 96° 88° 113° 

N4- 74° 85°     

N10- 81° 83°     

aThe angle calculated was between the -sheets within the indicated structure. bThis
work, using the C  of residues 46-52-91 of the given chain. cCalculated from 1G10 (22)
using residues 46-52-91. dCalculated from 2MOB-10 using residues 76-80-119 (21).
eCalculated from 1CKV_11 using residues 77-81-120 (24). fCalculated from 1HQI_3 
using residues 36-42-81 (23). The best representative structure was selected from analysis 
of the ensemble NMR structure using OLDERADO (54).
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 The interior of T4moD is packed exclusively with hydrophobic residues. 

Although one small cavity is detected in each chain (Figure 2.4), the electron density 

maps do not reveal any ordered solvent molecules within the cavity even at high 

resolution. The volume of the cavity is somewhat variable depending on the chain and 

structure, but is typically ~50 Å3, which is approximately comparable to the volume 

required to accommodate a toluene molecule (55-59). The borders of the cavity are 

comprised of Leu22, Pro25, Val26, Leu63, Leu67, Phe71, and Leu76. A few 

hydrophobic residues are also on the exterior surface of the protein. However, either 

charged or polar residues typically flank the exterior hydrophobic residues. For example, 

Glu55, Thr59, Gln86, and Arg95 surround the external residue Ile57. Thus, they provide 

hydrophobic interactions with Ile57 and polar interactions with solvent molecules. In 

addition, Ile78, Phe83, and Ile87 are on the exterior surface. These residues are located 

near the two-fold interface between the two chains in the asymmetric unit. Consequently, 

their exposure to solvent is limited in the crystal lattice. 

Figure 2.4: A divergent stereoimage of the environment around the hydrophobic cavity 
illustrated with chain A of the N4-T4moD crystal structure. 



30

 All of the charged residues in T4moD are located on the exterior of the protein, 

and their distribution is not uniform. Consequently, there are regions with distinctive 

positive or negative electrostatic surface potential (Figure 2.5). For example, 1 is an 

amphiphatic helix with Asp21, Glu24, Glu28, Glu31, and Asp33 all on the exterior 

surface, which yields a strong negative electrostatic surface patch (red in Figure 2.5). The 

other side of the helix is comprised of Val23, Val26, Ile27, and Ala30, and these residues 

all project into the hydrophobic core of the protein. In contrast to the negatively charged 

patch, the region around the hairpin turn between 2 and 3 strands contains four 

arginine residues (Arg18, Arg44, Arg45, Arg49), which yields a distinct positive 

electrostatic patch (blue in Figure 2.5). 
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Figure 2.5. The electrostatic potential mapped onto the solvent exposed surface of N4-
T4moD. A) The solvent exposed surface determined with a 1.4 Å probe radius and 
colored according to the calculated Coulombic electrostatic potentials (-6, -1, and 1.75 
are red, white, and blue, respectively). The ribbon drawing of the backbone trace shown 
on the right is in the identical orientation and scale. The 1 helix is on the bottom, 
approximately in the plane of the page with its N-terminal end on the left. B) Another 
orientation of the molecule in which the 1 helix is in the front. 
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N-Terminal Region 

 The N-terminal regions in the two chains of the native T4moD structure differ. In 

addition, there is no electron density visible for N4-T4moD prior to Asn11 in both 

chains. The electron density for the native T4moD suggests that residues Ser1-Ala7 in 

chain A adopt an -helical configuration. The electron density is weaker for the 

analogous residues in chain B, which suggests the presence of a majority-disordered 

fraction and a minority-ordered fraction for these residues. The B-factors for these 

regions also differ and are consistent with decreased order for the N-terminal region of 

the B-chain. (Figure 2.2D). Analysis of the crystal lattice packing reveals that these 

regions are located in different environments. In chain A, the N-terminal residues are 

located where four chains pack together. Consequently, only approximately 20% of the 

surface area for the N-terminal -helix is exposed to bulk solvent. In contrast, nearly the 

entire N-terminal region in chain B is exposed to solvent because it projects into a large, 

solvent-filled space in the crystal lattice. The electron density maps for the two chains in 

N4-T4moD also suggest that the N-terminal regions are disordered, and analysis of 

lattice packing revealed that these residues are exposed to the bulk solvent between 

molecules in the crystal lattice. 

Catalytic Activity of N-Terminal Deletions of T4moD 

 Table 2.4 shows the steady-state catalytic parameters and regiospecificity for 

toluene oxidation measured from the various N-terminal truncations of T4moD. These 

characterizations were made according to previously described experimental procedures 

(33, 34) and included control reactions with the natural isoform. The results show that the 

disordered N-terminal region of T4moD is not essential for catalysis by the T4MO 

complex. Thus a 10-residue deletion of the N-terminal gave statistically insignificant 

changes in kcat, apparent KM, and kcat/KM. Likewise, the apparent KI for inhibition of the 

toluene hydroxylation reaction was also unaffected by removal of the N-terminal from 

T4moD. Furthermore, the regioselectivity was nearly unchanged, with the percentage of 
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p-cresol slightly decreased from 96.2% in native T4moD to 94.5% in N4-T4moD. 

These observations also suggest that no single residue in the disordered region of T4moD 

is likely to be responsible for the observed modest changes in catalytic parameters.  

 Our previous studies on the reconstitution of T4MO with effector proteins from 

the subclass I (T2MO/phenol) and subclass II (T4MO/benzene) monooxygenases (22)

showed that TbuV from subclass II was able to effectively complement catalytic activity, 

while S1 from subclass I was not. To further define the reactions of heterologous effector 

proteins with T4MO, the natural MmoB effector protein and the catalytically inactive 

N29-MmoB were also tested as part of this work. As with the S1 effector, neither of the 

MmoB variants were able to complement the T4MO complex in the standard T4MO in 

vitro assay (1).

Discussion

Comparison of the T4moD Crystal Structures and NMR Structures 

 Figure 2.6 shows a ribbon trace of the average NMR structure of native T4moD 

superimposed on the N4-T4moD X-ray structure using C  atoms from residues 11-98. 

The average rms difference from the overlay is 1.95 Å, and the individual rms differences 

are plotted with respect to residue position in Figure 2.2A. For N4-T4moD, the structure 

refined from the higher resolution data gave 93.7% of the residues in the most favored 

region of the Ramachandran plot. In comparison, only 65.6% of the residues in the NMR 

structure were in the most favored region. The refined X-ray structures yield an estimated 

overall coordinate error of 0.095 Å for N4-T4moD, 0.180 Å for N10-T4moD, and 

0.211 Å for native T4moD. The correlation coefficients were 0.961 ( N4-T4moD), 0.943 

( N10-T4moD), and 0.945 (native T4moD). For comparison, the core region of the NMR 

structure (Asn12-Phe98) exhibited rms differences to the averaged structure of 0.71 Å for 

the backbone atoms and 1.24 Å for all non-hydrogen atoms (22). The crystal structures of 

the natural and variants of T4moD are more similar to each other than they are to the 
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average NMR structure (Figures 2.1 and 2.2 and Table 2.2). Indeed, the rms differences 

between C  atoms in the T4moD crystal structures are less than 0.8 Å. The rms 

differences between the C  atoms in the crystal structures and the average T4moD NMR 

structure are approximately 2.0 Å (Table 2.2), and increase to ~6 Å when specific 

secondary structure elements are considered (e.g. the 2 helix in T4moD) or increase 

beyond 6 Å when the T4moD x-ray structure is compared with the DmpM NMR 

structure. The high resolution X-ray data also more accurately describes the positions of 

Arg69-Leu80, since these residues were not well defined in the NMR structure (22). As 

illustrated in Figure 2.2A, this region exhibits the highest rms differences between the X-

ray and NMR structure. 

Figure 2.6: Divergent stereoview of the superimposed X-ray and NMR [1G10 (22)]
structures of T4moD using residues 11-98. The chain A from the crystal structure in 

N4-T4moD is shown in green, and the average NMR structure is red. The positions 
where the largest differences in the C  traces occur are indicated with arrows and 
described in the text. 
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 Several notable differences between the T4moD NMR and the X-ray structures 

are readily apparent (Figures 2.6 and 2.2A) and will be discussed with respect to the 

N4-T4moD variant. The three -helices in the X-ray and NMR structures exhibit 

significant differences. For example, the 1 helix consists of three turns in the NMR 

structure, but of four turns in the X-ray structures. Although the 1 helix terminates at 

analogous locations (Asp33), the helix starts at Gly19 in chain A of the N4-T4moD and 

at Val23 in the NMR structure (Figure 2.6a). Consequently, this region yields rms 

differences of ~5 Å. The axes of the 2 helices intersect with an angle of approximately 

45o in the two structures (Figure 6b). Although the 1 and 2 helical axes are nearly 

parallel in the NMR structure, they are related by ~45o in the X-ray structures. The 

connecting loop between 2 and 3 helices and the orientation of the 3 helix are also 

different in the structures (Figure 2.6c). Consequently, the region between residues 60 

and 80 yields the highest rms differences between the NMR and X-ray structures (see 

also below). Finally, the hairpin turns connecting the 2- 3 and 6- 7 strands also 

diverge significantly (Figure 2.6d and 2.6e) and yield peaks in the rms difference plot 

(Figure 2.2A). 

 Each T4moD crystal structure exhibits a well-formed hydrophobic core with all 

charged residues on the exterior surface of the protein. Thus, the crystal structures appear 

more compact than the NMR structures (Figure 2.6). Consistent with these differences, 

the molecular surface area for the core residues (11-98) of the crystal structure ( N4-

T4moD, 4170 Å2) is smaller than the average NMR structure (5753 Å2). Moreover, the 

crystal structures have a continuous solvent accessible surface area with only small 

depressions on the surface, while analysis of the surface area of the NMR structure 

reveals a large, tubular invagination that extends through the entire protein. Because of 

this feature, the enclosed solvent excluded volume for the NMR structure (9580 Å3) is 

smaller than that of the crystal structures ( N4-T4moD, 10450 Å3).
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 The hinge angle between the two -sheets is listed in Table 2.3 and has been 

suggested to be a structural feature that differentiates the effector proteins (22). Three 

conserved glycine residues are located at the vertex of the hinge in T4moD (Gly36, 

Gly54, and Gly85), and extensive hydrogen bonding across the two -sheets apparently 

stabilizes each particular angular relationship between the -sheets. Thus, differences in 

hydrogen bonding between the 1, 2, and 3 helices and the two -sheets apparently 

stabilize the different hinge angles among the family members. It is also worth 

considering that the hydrophobic cavity is located between these three -helices and 

toluene binding (if it does) would potentially influence this hinge angle. 

Environment of Asn34 

 The sequence Asn34-Pro35-Gly36 is highly conserved across the catalytic 

effector protein superfamily (for example, see Figure 7 in Hemmi et al. (22)). Despite this 

sequence conservation, the X-ray and NMR structures of T4moD do not produce 

reasonable overlays when only the C , backbone atoms, or all atoms of these three 

residues are superimposed. Although the overlay between selected residues is reasonable, 

the rest of the structures are completely out of register. Moreover, when the 1 helix and 

these three conserved residues are used, this does not yield satisfactory superposition. 

Thus, significant structural differences are present in this region of the structures. During 

the analysis of the T4moD NMR structure, the Asn34 side-chain amide protons were 

assigned to resonances that were 3  outliers to the average chemical shitfts assigned to 

amide groups in other proteins (http;//www.bmrb.wisc.edu/data_access/outlier_ 

selection_grid.html).  These protons were also unusually resistant to exchange with 

solvent, despite being located near the surface of the protein (22), implying a unique 

chemical environment for the side chain. Figure 2.7A shows the 2mFo-DFc electron 

density for this region of the protein and the quality of the corresponding atomic model. 

The X-ray structures show that Asn34 and Pro35 cap the C-terminal end of the 1 helix 
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and that no solvent molecules are hydrogen-bonded to Asn34N. In the N4-T4moD 

crystal structure, nearly every atom of Asn34 that can participate in hydrogen bonding 

does so. For example, the hydrogen atoms associated with Asn34N 2 are positioned to 

donate hydrogen bonds to the carbonyl oxygen atoms of Ala30 and Ile57. Asn34O 1 is 

poised to accept hydrogen bonds from Ile57N and a solvent atom. In addition, Asn34N

donates a hydrogen bond to Ala30O whereas Asn34O accepts a hydrogen bond from 

Lys37N.
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Figure 2.7: Differences in hydrogen bonding patterns observed in the crystal and NMR 
[1G10 (22)] structures of T4moD surrounding residue Asn34. A) The 2mFo-DFc electron
density (1 , 1.7 Å resolution) superimposed on the refined N4-T4moD model. B) X-ray 
structure of N4-T4moD with hydrogen bonding indicated. Note that the position of 
Arg60 and 2 is different in the X-ray structure relative to the NMR structure. C) NMR 
structure (22). Note that the hydrogen bonding and electrostatic interaction between 
Arg60 and Asp33 and Thr59 are not observed in the crystal structures.
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 The hydrogen-bonding pattern assigned from the NMR structure of T4moD is 

considerably different, beginning where Asn34N provides a hydrogen bond to Glu31O and 

Asn34O accepts a hydrogen bond from Gly36N (see Figure 2.7C). The differences 

between the X-ray and NMR structures increase as the hydrogen-bonding patterns 

propagate further from Asn34. They maximize at Arg60, where the NMR structures 

indicate that Arg60 forms an ionic interaction with Asp33 (see Figure 2.7C). In contrast, 

the X-ray structure shows an ionic interaction between Arg60 and Glu64 (see below and 

Figure 2.8). Thus, some of the largest differences between the structures, also indicated in 

the rms difference plots (Figure 2.2A), are in the regions near Asp33 and Arg60. Two 

consequences of the differences in hydrogen bonding detected by the X-ray structures are 

that the 1 helix is longer and truly amphiphatic. Indeed, all five negatively charged 

residues are on the exterior surface, and all the hydrophobic residues are buried inside the 

hydrophobic core of the structure. 

Environment of Glu64 

 The crystal structures reveal ionic interactions between Glu64 and Arg60 and 

between Glu75 and Arg69 (see Figure 2.8A,B). An interaction between Glu75 and Arg69 

partially sequesters the hydrophobic cavity discussed above from bulk solvent and thus 

resembles an ionic gate for the cavity. The NMR structure of T4moD refined to a 

consensus family with the side chain of Glu64 projecting into the hydrophobic interior of 

the protein (Figure 2.8C), and the lack of a basic residue capable of forming a 

neutralizing charge pair or other potential hydrogen-bonding interactions was noted (22).

Moreover, Arg60, Arg69, and Glu75 were not assigned to charge-pairing interactions. 

The refined NMR structures accommodated these differences through a slightly larger 

hinge angle between the two -sheets (Table 2.3) as well as allowing the large solvent 

accessible channel described above. In the alignment of the NMR and X-ray structures, 

the C  of Glu64 in the NMR structure nearly superimposes with the C  of Leu63 in the 

crystal structures. Consequently, the Glu64 side chain of the NMR structure nearly 
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superimposes with the small hydrophobic cavity in the crystal structures (compare parts 

B and C of Figure 2.8). 
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Figure 2.8: Differences in hydrogen-bonding patterns observed in the crystal and NMR 
[1G10 (22)] structures of T4moD surrounding several charged residues. A) The 2mFo-
DFc electron density (1 , 1.7 Å resolution) superimposed on the refined N4-T4moD 
model. B) X-ray structure of N4-T4moD showing that Arg60 and Glu64 form a charge 
pair, and Phe71 occupies an interior position. C) NMR structure (22) that placed Glu64 in 
an interior cavity. Interactions between Arg60 and Glu64 and Arg69 and Glu75 observed 
in the crystal structures were not predicted by the NMR structures. 
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N-Terminal Region 

 The T4moD NMR structure includes a disordered region comprise of the first 10 

residues, followed by a well-determined structure for residues 11-98 (22). Similarly, 

disordered and ordered regions are also observed in the crystal structures and appear to 

correlate with exposure to bulk solvent. Indeed, of the six chains in the crystal structures 

reported here, only the N-terminal end of chain A in the native T4moD projects into a 

crowded, lattice-packed environment, and only it exhibits a well-defined secondary 

structure. Thus, the -helical structure in the N-terminal region of native T4moD appears 

to be dependent upon the environment or macromolecular crowding. Although the 

propensity for secondary structure to be sequence- and context-dependent has been 

documented, especially within T4 lysozyme (60-62), lattice interaction or 

macromolecular crowding that induce secondary structure is more difficult to asses (63,

64).

Role of N-Terminal Residues in Effector Proteins 

 The N-terminal disordered region of the MmoB effector protein is required for 

catalysis. This portion of the protein plays a role in the formation of the catalytic 

intermediates used by MMO for the oxidation of methane (19, 26, 28), the most difficult 

hydrocarbon to oxidize. The methane oxidation requires a highly reactive intermediate, 

possibly a diferryl species (3, 5, 20, 65-67). In contrast, other diiron enzymes have 

evolved to catalyze aromatic ring hydroxylations, an energetically less demanding 

reaction.

 Deletion of the N-terminal region from T4moD had only modest influence on the 

steady-state kinetic properties and the regiospecificity of product formation of the 

reconstituted T4MO complex (Table 2.4). Furthermore, catalytic complementation of the 

T4MO complex with an effector protein from each subclass has now shown that only 

TbuV, an effector protein from an enzyme complex that is in the same subclass as 

T4MO, was able to give catalytic activity (22, 68) . Specifically, reconstitution studies 
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performed in this work with MmoB and N29-MmoB, which likely have structures 

closely similar to T4moD (Figure 2.3 and Table 2.2), showed no catalytic 

complementation. These results indicate that, even as the three-dimensional structures of 

the effector proteins are relatively conserved, highly specific residue-dependent contacts 

will likely be required for function (Figure 2.5). 

Table 2.4. Comparison of the Catalytic Properties and Regiospecificity of the 
Natural and N-Terminal Deleted Isoforms of Toluene 4-Monooxygenase Effector 
Protein.

Kinetic parametersa Percent of productsb

T4moD
variantc

kcat

(s–1)
KM

(µM)
kcat/KM

(µM s–1)
KI

(µM)
p-cresol m-cresol o-cresol benzyl

alcohol

Native- 3.3(0.1) 7.0(0.7) 0.47(0.1) 98(10) 96.2(0.2) 1.5(0.1) 0.9(0.0) 1.4(0.1)

N4- 3.4(0.2) 2.3(0.3) 1.47(0.6) 106(17) 95.9(0.2) 1.6(0.1) 1.0(0.1) 1.5(0.2)

N7- 2.8(0.1) 5.3(0.5) 0.53(0.2) 110(11) 95.2(0.2) 1.8(0.1) 1.2(0.1) 1.8(0.2)

N10- 3.1(0.2) 3.2(0.5) 0.97(0.4) 116(19) 94.5(0.2) 1.8(0.1) 1.4(0.1) 2.2(0.2)

aApparent kinetic parameters determined with each T4moD variant treated as the variable 
substrate and all other components of the reconstituted enzyme complex present in 
optimal amounts and NADH, toluene, and O2 present in saturating concentrations. All 
kinetic experiments were performed in triplicate with at least seven different 
concentrations of T4moD. The standard error is shown in parenthesis. The kcat values are 
reported relative to the  protomer concentration of the T4moH component. 
bPercentage of product distribution observed from toluene oxidation. The standard error 
is shown in parentheses. cN-terminal sequence of the mature native protein obtained after 
in vivo post-translational removal of the N-terminal Met residue encoded by the 
expression plasmid, consisting of STLADQALHNNN- 1. 1 refers to the start of -
strand 1, the first identifiable element of secondary structure in T4moD. N4-, deletion of 
4 residues from mature N-terminal to give DQALHNNN- 1; N7-, deletion of 7 residues 
from the mature N-terminal to give LHNNN- 1, N10-, deletion of 10 residues from the 
mature N-terminal to give NN- 1.
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Fidelity Between Catalytic Effector Proteins 

 The distribution of charged residues on the surface of the 1 helices is different 

among the effector proteins (Figures 2.3 and 2.5). For example, TbuV, which cross-reacts 

with T4moH, has similarly charged residues as the T4moD. In contrast, MmoB, which 

does not cross-react with T4moH, has several residues that are either opposite in charge, 

polar, or even hydrophobic in places that correspond to Asp or Glu residues. Moreover, a 

positive electrostatic patch observed in T4moD (Figure 2.5, blue) is derived from Arg18, 

Arg44, Arg45, and Arg49. Amino acid sequence alignments suggest that similarly 

charged residues would be located in analogous positions in TbuV. In contrast, the 

MmoB proteins do not have Arg or Lys residues that correspond with these four arginine 

residues. Thus, we hypothesize that the 1 helix and electrostatic interactions may be 

important contributors to specific complex formation between T4moD and T4moH. 

Changes in these specific interactions may also be responsible for the lack of catalytic 

complementation of T4moH by the MmoB components. In T4moD, the 1 helix is 

flanked on one side by the 2 strand and on the other by the 2 helix (Figure 2.5). It is 

interesting to note in the analysis of the crystal packing that an exposed 2 strand forms 

an antiparallel -sheet across the asymmetric unit interface in both space groups. If the 

1 helix and the 2 strand are critical features for complex formation, their interaction 

with T4moH may align the hydrophobic cavity in T4moD and a substrate access tunnel 

proposed from the recent crystal structure for they hydroxylase component of the 

toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1 (9). 

Conclusion

 The effector proteins have no cofactors or metals yet are able to exert exquisite 

control over the reactivity of the multiprotein diiron hydroxylase complex. The 

combination of X-ray and NMR structures now available indicates that the effector 
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proteins have a highly homologous three-dimensional structure, but there are profound 

differences in ability of the structurally conserved proteins to provide heterologous 

complementation of catalytic activity. The high resolution X-ray structures presented 

here have helped to define the potential differences in electrostatic surfaces that may 

govern the feasibility of protein-protein interactions. Moreover, the present structures 

reveal a single, well-defined cavity of size suitable for toluene binding near a region of 

the protein surface that has substantial different electrostatic properties among the 

effector protein family members. These results give new information and raise important 

new questions about these small, enigmatic components of the diiron hydroxylase 

enzyme complexes. 
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CHAPTER 3 

CRYSTALLIZATION AND PRELIMINARY ANALYSIS OF A 

WATER-FORMING NADH OXIDASE FROM LACTOBACILLUS 

SANFRANCISCENSIS

Abstract

5Single crystals have been obtained of NADH oxidase (Nox), a flavoenzyme 

cloned from Lactobacillus sanfranciscensis. The enzyme catalyzes the oxidation of two 

equivalents of NAD(P)H and reduces one equivalent of oxygen to yield two equivalents 

of water, without releasing hydrogen peroxide after the reduction of the first equivalent of 

NAD(P)H. The enzyme crystallizes in space group P212121 with unit cell parameters a = 

59.6, b = 92.6, c = 163.5 Å. The crystals diffract to 1.85 Å resolution using synchrotron 

radiation. Matthews coefficient calculations suggest the presence of two molecules per 

asymmetric unit (VM = 2.3 Å3 Da-1, 45.5% solvent content), which has been confirmed by 

the molecular replacement solution using a search model derived from NADH peroxidase 

(PDB code 1F8W). 

Introduction 

Lactobacillus sanfranciscensis is used in the production of sourdough bread and 

is thus an important member of the family of lactic acid bacteria. It is an aerotolerant 

anaerobe and an obligatory heterofermentative microorganism that obtains most of its 

energy from the fermentation of maltose (1). Genomic sequencing and analysis of several 

5 The following chapter is an adaptation from Lountos, G.T., Riebel, B.R., Wellborne, W.B, Bommarius, 
A.S., and Orville, A.M. (2004) Crystallization and Preliminary Analysis of a Water-forming NADH 
oxidase from Lactobacillus sanfranciscensis, Acta Cryst D40, 2044-2047. 
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lactic acid bacteria suggests that most do not synthesize hemes or cytochromes (2-6).

Consequently, they do not use an electron-transport chain, O2, and oxidative 

phosphorylation for energy metabolism, but rather satisfy all of their energy requirements 

with glycolysis. Fermentation helps to maintain an optimized intracellular NAD+/NADH

ratio that is essential for efficient glycolysis. It also yields lactic acid, which acidifies the 

media and reduces competition from other microorganisms (7, 8). However, L.

sanfranciscensis tolerates O2 in order to maintain a symbiotic relationship with other 

aerobic microbes, most notably the yeast found in sourdough breads, and for the 

fermentation of other cereals. 

 Oxidative stress in many lactic acid bacteria and other facultative and strict 

anaerobic bacteria is managed in part by the expression of one or more flavin-dependent 

NAD(P)H oxidase(s) (2, 4, 7-11). The enzymes catalyze reactions of the type illustrated 

in Figure 3.1 and thus can be further classified as (i) H2O2-producing NADH oxidases 

(PrxR and some Nox), (ii) peroxidases that reduce H2O2 to H2O and (iii) water-producing 

NAD(P)H oxidases (Nox). In addition to the FAD cofactor (except for Prx and other 

peroxiredoxins which do not contain flavins), each enzyme includes one or more redox-

active cysteine residue(s). This catalytically essential residue alternates between the 

thiol/thiolate and sulfenic acid states (Nox and Npx), the thiol/thiolate and the disulfide 

state (PrxR and Prx) or the disulfide and sulfenic acid state (Prx), for recent reviews see 

(12-18). The NAD(P)H oxidases exhibit a strong preference for O2 as the electron 

acceptor (19-22). Moreover, they only rarely release H2O2 as the product, in contrast to 

most flavin-dependent oxidases (21, 23-26). For example, during aerobic NADH 

turnover by L. sanfranciscensis Nox, less than 0.5% of the reducing equivalents can be 

detected as H2O2 suggesting that hydrogen peroxide is not released from the active site 

(27, 28). In contrast, the Npx and Prx enzymes do not react with O2, but rather use H2O2

or alkylperoxides as the electron acceptor (14, 29-32). Most Nox and Npx enzymes 
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exhibit a strong preference for NADH, whereas Nox from L. sanfranciscensis will use 

either reduced nicotinamide adenine dinucleotide.  

NADH  + O2  +  H+ NAD+  +  H2O2 (PrxR, some Nox)

NADH  + H2O2  +  H+ NAD+  +  2H2O (Npx and Prx)

2NAD(P)H  + O2  +  2H+ NAD+  +  2H2O (Nox)

Figure 3.1. Reactions catalyzed by lactic acid bacteria and other facultative or strict 
anaerobic bacteria. 

 All the enzymes may facilitate regeneration of oxidized pyridine nucleotides for 

glycolysis and help protect the organism against oxidative stress. For example, the 

NADH oxidase from Streptococcus pyogenes and L. delbrueckii have been shown to 

contribute significantly to aerobic metabolism under conditions of high O2 stress (33, 34).

Although no crystal structures have been reported for an H2O-producing NADH oxidase, 

several have been characterized and described in the literature (35-39). BLASTP (v.2.2.8) 

searches with the protein sequence of L. sanfranciscensis Nox return other water-

producing enzymes with sequence identities ranging from 59% for the enzyme from 

L.plantarum WCFS1 (NP_786664.1) to 39% for the crystallographically defined Npx 

from Enterococcus faecalis (32, 40). In each case, the most highly conserved portions 

from the sequence comparisons are associated with either the redox-active cysteine 

(Cys41 in Npx), the FAD-binding or the NAD(P)H-binding regions. The Nox from L. 

sanfranciscensis (ATCC 27651) is a homodimer comprised of approximately 50 kDa 

subunits, similar to other NADH oxidases. In contrast, Npx is a homotetramer with D2
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symmetry relating the four subunits. In order to describe the structural basis of the 

substrate preference and lack of H2O2 generation by L. sanfranciscensis Nox, we have 

initiated a crystallographic analysis of the enzyme. Here, we report the crystallization 

conditions and initial X-ray diffraction analysis of the H2O-forming NADH oxidase from 

L. sanfranciscensis.

Materials and Methods 

Protein expression and purification 

 The cloning, expression and preparation of L. sanfranciscensis Nox was 

essentially as previously reported, with slight modifications (27, 28). Briefly, starter 

cultures of Escherichia coli strain JM101 containing the nox2 gene from L.

sanfranciscensis in the pKK223-3 vector were grown in 5 mL LB media augmented with 

100 g/mL ampicillin (LB/amp) at 310 K to an OD600 of 1.0. 1 L cultures of LB/amp 

medium were inoculated with the starter cultures and grown at 303 K in baffled 2.8 L 

Fernbach shake flasks with 200 rev/min shaking. When the culture reached an OD600 of 

0.7, protein expression was induced by the addition of 1.0 mM IPTG for 3 hours. 

Additional ampicillin was added to 200 g/mL at the induction time and 1.5 hours later. 

Cultures were harvested by centrifugation at 277 K and the resulting cell pellet was 

frozen at 193 K. 

 The protein was purified by a two-step procedure at 277 K unless otherwise 

noted. Approximately 31g of frozen cells were thawed and suspended in 30 mL 100 mM 

1-methylpiperazine buffer pH 5.0 plus 1 mM EDTA, 5 mM DTT and 20 mM spermine. 

The cell slurry was sonicated at approximately 277-283 K for six 2 minute pulses and 

centrifuged at 16,000 rev/min. Acid precipitation of a range of impurities was 

accomplished by dialyzing the cell-free extract overnight at 303 K with three changes of 

1.5 L 20 mM 1-methylpiperazine pH 5.0 plus 1 mM EDTA and 5 mM DTT. After 

centrifugation, the enzyme was loaded onto a Hiprep 16/10 Source 30Q column 

(Amersham Pharmacia, Piscataway, NJ, USA) and washed with ten column volumes of 
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20 mM 1-methylpiperazine pH 5.0 plus 5 mM DTT. The enzyme was then eluted with a 

linear gradient from 0 to 1 M NaCl in the same buffer at a flow rate of 5 mL/min. SDS-

PAGE analysis suggested that the protein was >95% pure. 

L. sanfranciscensis Nox activity was typically assayed with 0.2 mM NADH at 

303 K in 0.1 M triethanolamine (TEA) pH 7.5. The reaction was followed at 340 nm and 

the activity was calculated using a 6220 M-1cm-1 extinction coefficient for NADH. 

Protein concentration was determined by the Bradford method (Pierce Chemical, 

Rockford, IL, USA). The specific activity of L. sanfranciscensis Nox was typically 221 

units/mg. 

Crystallization and X-ray data collection 

 Initial crystallization conditions for NADH oxidase were determined using 

sparse-matrix screens from Hampton Research (Laguna Nigel, CA, USA) and Nextal 

Biotechnologies (Montreal, Quebec, Canada). Typically, 2 L protein (10 mg/mL in 20 

mM 1-methylpiperazine pH 5.0, 0.15 sodium chloride, and 5 mM DTT) was mixed with 

an equal volume of reservoir solution on a silanized cover slip. Equilibration took place 

at room temperature by vapor diffusion in 24-well VDX plates (Hampton Research). 

Crystals appeared after approximately 5 days with reservoir solution containing 100 mM 

HEPES buffer pH 7.0-7.7, 4-10% (v/v) 2-propanol and 18-24% (w/v) polyethylene glycol 

4000. Optimization of the initial conditions involved mixing 2 L protein solution with 2 

L reservoir solution and 1 L freshly prepared 100 mM dithiothreitol and screening pH 

and precipitant concentration. Crystals used for data collection were obtained by 

transferring seed crystals appearing in drops equilibrated over 100 mM HEPES pH 7.5, 

24% (w/v) polyethylene glycol 4000 and 6% (v/v) 2-propanol by streak-seeding with a cat 

whisker into a pre-equilibrated drop containing 2 L 10 mg/mL protein solution, 2 L

reservoir solution [100 mM HEPES pH 7.0, 18% (w/v) polyethylene glycol 4000 and 8% 

(v/v) 2-propanol] and 1 L 100 mM dithiothreitol. Crystals from the streak seeding 
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experiment appeared after approximately 4 days and reached maximum dimensions of 

0.2 x 0.1 x 0.1 mm within two weeks. 

 Crystals for X-ray diffraction data collection were harvested with a nylon loop 

and transferred to mother liquor supplemented with 15% (w/v) polyethylene glycol 400 

and allowed to soak for approximately 30 seconds. The crystals were flash frozen by 

rapid immersion into liquid N2. All diffraction data were collected from crystals held at 

approximately 100 K on beamline 22-ID operated by the South East Regional 

Collaborative Access Team (SER-CAT) at the Advanced Photon Source (APS), Argonne 

National Laboratory using a MAR CCD 225 detector. Each image was collected with a 1 

second exposure time, a 0.5o oscillation range and a 180 mm crystal-to-detector distance. 

The data were integrated with HKL2000 and merged with SCALEPACK (41). Molecular 

replacement was carried out with the MOLREP program from the CCP4 suite of 

programs (42, 43). A search model was prepared using a monomer of NADH peroxidase 

(PDB code 1F8W, (32)) with all non-identical residues to L. sanfranciscensis Nox 

mutated to alanine and searching for two molecules in the asymmetric unit with data 

between 46 and 3  resolution. Rigid-body refinement and simulated annealing of the 

MOLREP solution was performed with CNS (44).

Results and Discussion 

 The first crystals of L. sanfranciscensis Nox appeared as a cluster of small yellow 

rods and plates that were birefringent under polarized light. Refinement of pH and 

precipitant concentration yielded larger reproducible crystals but frequently failed to 

yield single crystals. Moreover, the single crystals obtained from these conditions 

typically only diffracted to approximately 3.5 Å resolution. The addition of dithiothreitol 

and streak-seeding yielded single crystals that were suitable for data collection at high 

resolution (Figure 3.2). The statistics for the X-ray diffraction data collection are reported 

in Table 3.1. The data sets were obtained from 180o of  rotation, are strong [overall 

I/ (I) = 30.7], of good quality (Rsym = 9.9%) and redundant (overall 8.8-fold 
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multiplicity). The space group is P212121 and Matthews coefficient calculations  (45, 46)

suggest the presence of two molecules in the asymmetric unit (VM = 2.3 Å3 Da-1, 45.5% 

solvent content).

Figure 3.2. A) Crystals of L. sanfranciscensis NADH oxidase with dimensions of 
approximately 0.2 x 0.1 x 0.1 mm photographed under polarized light. B) the X-ray 
diffraction pattern obtained with 1 second exposure and 0.5o oscillation range about the 
vertical axis.; arcs indicate 7.1, 3.6, and 1.8 Å resolution. C) An expanded and contrast-
adjusted view of the diffraction pattern between 2.4 and 1.8 Å perpendicular to the 
rotation axis.  
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Table 3.1: Data Collection Statistics for NADH Oxidase 
X-Ray source SER-CAT beamine 22-ID, APS 
Beamline 22-ID 
Wavelength (Å) 0.9997 
Detector MAR CCD 225 
Resolution Range (Å) 46.4-1.85 
Highest Resolution Shell (Å) 1.92-1.85 
Mosaic spread (o) ~0.7 
Space group P212121

Unit-cell parameters  
a (Å) 59.6 
b (Å) 92.6
c (Å) 163.5
Total Reflections 675265 
Unique Reflections 76768 
Multiplicity 8.8 (5.4) 
Completeness (%) 98.1(86.3) 
I/ (I)* 30.7 (2.6) 
Rsym (%)† 9.9 (42.1) 
Data were collected with a MAR CCD 225 detector. Values for the highest resolution 
shell of data are given in parentheses. †Rsym (I) gives the average agreement between the 
independently measured intensities such as h i |Ii-I|/ h iI where I is the mean intensity 
of the i observations of reflection h. *I/ (I) is the root-mean-square value of the intensity 
measurements divided by their estimated standard deviation. 

 The R303M mutant isoform of NADH peroxidase (Npx) from E. facecalis (PDB 

code 1F8W) has 39% sequence identity to L. sanfranciscensis Nox (32). A monomeric 

molecular search model consisted of 447 residues of the 452 residues in a full-length 

monomer of L. sanfranciscensis Nox. All non-identical residues to Nox were truncated to 

alanine unless they were glycine residues in Npx. All B factors were set to 20.0 Å 2. The 

top molecular replacement solution obtained from MOLREP yielded a correlation 

coefficient of 0.4 for two molecules in the asymmetric unit. The top result was 

approximately two times greater than the next best solution. The solution was subjected 

to rigid-body refinement and simulated annealing to 3.0 Å resolution which improved the 

R-factors to Rcryst  = 0.43 and Rfree = 0.48. The resulting electron density maps were 

clearly interpretable. Moreover, greater than 3  positive difference features were 

apparent for the active site FAD and the side chains of the residues missing those atoms 
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in the search model. Refinement of the model to the high-resolution limit is currently in 

progress.

Conclusion

 The structural analysis of L. sanfranciscensis Nox will help to establish the 

structural basis for the nearly stoichiometric production of H2O2, the almost complete 

lack of H2O2 detected after reduction of the first equivalent of NAD(P)H and the apparent 

promiscuity for reduced nicotinamide adenine dinucleotide substrates. Indeed, L.

sanfranciscensis Nox exhibits nearly identical KM values for NADH and NADPH (6.7 

and 6.1 M, respectively), whereas the NADH oxidase from Borrelia burgdorferi or L.

brevis only accept NADH (27, 28, 47). Moreover, comparisons to the other homologs 

may also reveal features that differentiate the various family members. For example, the 

structures of NADH peroxidase and the biochemical analysis of the NADH oxidase from 

Enterococcus  faecalis reveal that a highly conserved redox-active cysteine residue plays 

an essential role in the catalytic cycle (48, 49). L. sanfranciscensis Nox contains the 

analogous Cys42 residue that is proposed to cycle between a thiol/thiolate anion and a 

sulfenic acid (Cys-SOH). This residue is proposed to be largely responsible for altering 

the enzyme reaction coordinate to yield H2O rather than H2O2 (13, 21, 31, 50, 51). The X-

ray diffraction data are of sufficient quality and resolution to support a refined crystal 

structure of L. sanfranciscensis Nox which is in progress. 
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CHAPTER 4 

X-RAY CRYSTAL STRUCTURE OF NAD(P)H OXIDASE FROM 

LACTOBACILLUS SANFRANCISCENSIS AT 1.8 Å RESOLUTION 

Abstract

6The flavin-dependent enzyme NAD(P)H oxidase (L.san-Nox2), found in 

Lactobacillus sanfrancisensis and in homologous form in many lactic acid bacteria, plays 

a critical role in managing oxidative stress. L.san-Nox2 catalyzes the oxidation of two 

equivalents of NAD(P)H and reduces one equivalent of oxygen to yield two equivalents 

of water. Remarkably, the enzyme does not release hydrogen peroxide after the oxidation 

of the first equivalent of NAD(P)H and reaction with O2. In order to understand the 

structure-function relationship of the enzyme, its mechanistic role in preventing release of 

hydrogen peroxide from the active site and its promiscuity for either NAD(P)H 

substrates, our laboratories have overexpressed, purified, and solved the three-

dimensional X-ray structure to 1.8 Å resolution. The structural analysis reveals that the 

enzyme crystallizes as a dimer with each monomer consisting of a FAD binding domain, 

a NAD(P)H binding domain, and a dimerization domain.  The crystal structure also 

shows that the highly conserved, active site Cys42 is located on the si-face of the FAD 

and exists as sulfenic acid (Cys-SOH). During the course of refinement, an unexpected 

ligand was discovered that is bound on the re-face of the FAD in the NAD(P)H binding 

6 The following work is a collaboration between Lountos, G.T., Riebel, B.R., Wellborne, W.B., 
Bommarius, A.S. and Orville A.M. The author gratefully acknowledges the assistance of Mahmoud 
Ghanem and Prof. Giovanni Gadda of Georgia State University in obtaining the MALDI-TOF spectra. 
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domain. The density clearly supports the presence of adenine, ribose, and two phosphate 

moieties and MALDI-TOF analysis indicates that this molecule is ADP. The bound ADP 

along with the redox-active Cys42 residue are hypothesized to play a critical role in 

preventing hydrogen peroxide dissociation from the active site. Additionally, the bound 

ADP molecule may potentially influence the promiscuity for reduced nicotinamide 

adenine dinucleotides observed in L.san-Nox2. Based on crystallographic and 

biochemical data, we propose insights into the mechanism of L.san-Nox2. Furthermore, 

we present a comparison with the crystal structures of NADH peroxidase and glutathione 

reductase to determine similiarities and differences between the homologs.

Introduction 

Oxidative stress is potentially lethal to all life forms. Therefore, ubiquitous and 

diverse strategies have evolved in nature to sense, respond to, avoid or eliminate reactive 

oxygen and nitrogen species. Oxidative stress in many lactic acid bacteria, other 

facultative and strict anaerobic bacteria is managed, in part, by the expression of one or 

more flavin-dependent NAD(P)H oxidase(s) (1-8). Lactobacillus sanfranciscensis is an 

aerotolerant anaerobe and an obligatory heterofermentive microorganism (9). Genomic 

sequencing and analysis of several lactic acid bacteria suggest that most do not synthesize 

hemes or cytochromes (2, 7, 10-12). Consequently, they are unable to use an electron 

transport chain or oxidative phosphorylation and thus must satisfy all of their energy 

requirements with glycolysis. The NAD(P)H oxidases play an important functional role 

in regenerating oxidized pyridine nucleotides for glycolysis and help protect the 

organisms from oxidative stress. Studies have shown that the NADH oxidases from 

Archaeglobus fulgidus, Streptococcus pyogenes, Streptococcus mutans, and Lactobacillus
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delbrueckii contribute significantly to their aerobic metabolism under conditions of 

oxidative stress (13-16). 

Sequence analysis of these enzymes reveals a highly conserved cysteine residue 

analogous to Cys42 in the L.san-Nox2. Typical sequence identities range from 39% for 

the crystallographically defined NADH peroxidase, 23% for the putative NADH 

peroxidase from Streptococcus pyogenes MGAS315, and 59% for the NADH oxidase 

from Lactobacillus plantarum WCFS1 (17-19). In each case, the most highly conserved 

regions include either the redox-active cysteine (Cys42 in L.san-Nox2) or the FAD and 

NAD(P)H binding domains. Although, to our knowledge, no crystal structure has been 

reported for a H2O-producing NAD(P)H oxidase, sequence analysis suggests that these 

enzymes constitute a distinct class of FAD-dependent oxidoreductases. The crystal 

structure of L.san-Nox2 reveals that the enzyme shares close structural homology to the 

well-characterized family of pyridine nucleotide disulfide reductases (20) which include 

glutathione reductase (21), NADH peroxidase (18), thioredoxin reductases (22),

dihydrolipoamide dehydrogenases (23), trypanothione reductases (24), and LpDA from 

Mycobacterium tuberculosis (25). Many of these types of enzymes are also important 

antioxidant proteins in some human pathogens (3, 4, 26-28). 

Our laboratories have isolated and cloned the gene, overexpressed the protein, 

purified, characterized and solved the crystal structure for L.san-Nox2, the NAD(P)H 

oxidase from Lactobacillus sanfranciscensis. Lactobacillus sanfranciscensis alleviates 

oxidative stress and regenerates NAD(P)+ for glycolysis via this FAD-dependent 

NAD(P)H oxidase. The enzyme oxidizes NADH and NADPH at a Vmax-ratio of 3:1, but 

with very similar KM values of 6.1 and 6.7 M, respectively. However, L.san-Nox2 does 
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not release H2O2 during turnover, but rather forms two H2O molecules from O2 and two 

equivalents of NAD(P)H. Indeed, we have demonstrated that less than 0.5% of the 

reducing equivalents can be detected as H2O2. (29, 30) Therefore, hydrogen peroxide 

must not be released from the active site during turnover. Sequence analysis and 

correlation with related enzymes suggest that the enzyme also uses a redox active 

cysteine residue (Cys42) that alternates between the thiol/thiolate and the sulfenic acid 

states during turnover (31). Thus, the first equivalent of NAD(P)H does yield H2O2,

which then reacts with Cys42 to form the Cys42-SOH intermediate. The second 

equivalent of NAD(P)H is then used to reduce the sulfenic acid intermediate to the 

thiolate, which releases the second H2O molecule. The essential role of the sulfenic acid 

intermediate is supported by analysis of mutants in homologous enzymes where the 

homologous residue was replaced with a serine or other amino acids. These mutants 

produced H2O2 instead of water during turnover (32-35). Two features of the reaction 

scheme (Figure 4.1) warrant further comment. First, the L.san-Nox2 evolved a 

mechanism to facilitate the generation of H2O2 which is very common in flavoprotein 

oxidases (36, 37), but then to prevent it from escaping from the active site. This is 

particularly important for L.san-Nox2 as the facultative anaerobe lacks a heme-based 

catalase to protect it from H2O2 (2, 7, 10-12) . Second, the L.san-Nox2 also evolved a 

mechanism to enable O2 reactivity at step 2 but not at step 5. Aberrant H2O2 produced at 

step 5 would likely inactivate the enzyme via generation of a Cys-SO3H intermediate and 

create additional oxidative stress. Thus, L.san-Nox2 has evolved an efficient mechanism 

to protect the organism from oxidative stress.  
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Figure 4.1.  The overall reactions catalyzed by L.san-Nox2. The H2O2 generated in the 
active site does not dissociate from the enzyme, but rather reacts with the active site 
Cys42 (Step 3 within the shaded box). 

The role of cysteine-sulfenic acids in biology and oxidative stress is currently 

garnering attention (31, 38). Oxidative stress is often caused by an imbalance of redox-

active species in the cell of which reactive oxygen species are the principal molecular 

propagators and include hydrogen peroxide, superoxide, hydroxyl radical, or even 

molecular O2. Additionally, reactive nitrogen species such as nitric oxide, nitrite, or 

peroxynitrite are also very important contributers to oxidative stress. Recently, it has 

become clear that many of these reactive oxygen species are important constituents of 

cell signaling pathways and are also employed in fighting pathogenic infections (4, 39-

41). Oxidative stress is implicated in the pathology of a wide range of human diseases 

such as atherosclerosis, hypertension, stroke, cancer, and neurodegenerative diseases 

such as Parkinson’s disease (42-46). In response, Nature has evolved strategies to combat 

oxidative stress which include deployment of thiol-containing or seleno-containing 

proteins and metabolites that serve to scavenge the potentially reactive oxygen and 

nitrogen species (Figure 4.2). However, “second-generation” reactive species such as 

sulfenic or sulfinic acids (R-SO2H), disulfide-S-oxides, or thienyl radicals are also 
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potentially deleterious to the cell as they are not effective mediators of reactive 

oxygen/nitrogen species (3, 26). Cysteine sulfenic acid is unstable in solution and can be 

further oxidized to the sulfonic acid (R-SO3H) under aerobic conditions (31, 38, 47).

Moreover, the oxidation of protein-based cysteine residues to the sulfenic, sulfinic and 

sulfonic acids has received significant attention in recent years and is quite prevalent in 

nature including humans (27). For example, the oxidation of essential cysteine residues in 

enzymes and proteins include the peroxiredoxins, the Parkinson’s disease protein DJ-1, 

protein tyrosine phosphatase 1B, carbonic anhydrase III, the guanine nucleotide binding 

protein H-ras, and human serum albumin (40, 48-52). Often the reactive cysteine 

residue(s) are critical for the antioxidant defense of the cell. Reactive oxygen and 

nitrogen species initiate these modifications, which also include cysteine-S-nitrosylation

and impact remarkable diverse biochemical systems and cell signaling pathways (41, 53-

58). It is hypothesized that the immediate environment around the particular 

cysteine/cysteine sulfenic acid residue influences the susceptibility to further oxidation, 

but structural contributions to this process are not well understood. Recent studies have 

shown that some structural contributions may include intramolecular hydrogen bonding, 

the absence of other vicinal protein thiols that could promote the formation of disulfide 

bonds, limited solvent accessibility, and association with apolar elements of the protein 

(27, 31, 38, 47, 59).
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antioxidant enzymes or proteins. 

Here we report the crystal structure of native NAD(P)H oxidase from 

Lactobacillus sanfranciscensis (which will be referred to as L.san-Nox2) refined to a 

resolution of 1.8 Å. The high resolution structure confirms the presence of the active-site 

cysteine-sulfenic acid which was found to exist in two alternate conformations. 

Surprisingly, a tightly bound ligand which we have modeled as ADP was found on the 

re-face of the active site FAD although no exogenous ADP was added to the protein 

during the course of purification or crystallization. The entire ADP molecule fits well in 

the electron density. The determination and analysis of the three-dimensional structure of 

L.san-Nox2 is the first for any water-forming member of this class (60). It completes the 

structural characterization for the representative members in each subclass and provides 

novel insights toward establishing the structure-function relationship of the enzyme.  

Materials and Methods 

Preparation, Crystallization, & Data Collection 

L.san-Nox2 was cloned, expressed, purified, and crystallized as previously 

reported (60). X-ray diffraction data were collected from cryoprotected crystals held at 

approximately 100 K at beamline 22-ID of the SER-CAT facility of the Advanced 
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Photon Source (APS), Argonne National Laboratory and processed as previously 

reported (60). Briefly, the crystals crystallized in space group P212121 , diffracted up to 

1.8 Å resolution and contain two molecules per asymmetric unit. An additional data set 

was collected from another crystal of L.san-Nox2 grown in identical conditions in order 

to confirm the presence of a bound ADP in this structure as well. The crystal diffracted to 

a resolution of 2.1 Å with very similiar unit cell dimensions. The structure description of 

L.san-Nox2 will be based on the highest resolution (1.8 Å) structure. 

Crystal Structure Determination 

The structure of L.san-Nox2 was solved by molecular replacement using NADH 

peroxidase (PDB code; 1F8W) as a search model and the program MOLREP as 

previously described (60). The molecular replacement solution was initially subjected to 

rigid body refinement and simulated annealing with CNS (61) to a resolution of 3.0 Å 

resolution. Manual model rebuilding was performed with the program O (62, 63) and the 

model was refined against the 1.8 Å resolution data using maximum likelihood 

refinement in the program REFMAC5 (64) from the CCP4 suite of programs (65).

Progress of the refinement was monitored by Rfree  (66, 67), which was calculated using 

5% of the reflections, and cross-validated, A weighted 2mFo-DFc and mFo-DFc maps to 

evaluate the model and correct errors (68). Water molecules were located and refined in 

the final stages of refinement with ARP/Waters (69) and REFMAC5. The 2.1 Å 

resolution crystal structure was determined by subjecting the 1.8 Å structure to rigid body 

refinement against the 2.1 Å data followed by maximum likelihood refinement with 

REFMAC5. The ADP, FAD, and solvent molecules were removed from the model prior 

to the refinement and the Cys42 residue was modeled as alanine to prevent model bias. 
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The quality of the stereochemical parameters of the refined model were evaluated with 

PROCHECK (70, 71) and indicate good stereochemical properties. 

The X-ray data collection and refinement statistics for L.san-Nox2 are shown in 

Tables 4.1 and 4.2. Initial maps obtained after rigid-body refinement and simulated 

annealing resulted in interpretable electron density with greater than 3  positive 

difference features clearly visible for the active site FAD and the side chains for many of 

the truncated residues. In order to minimize model bias, Cys42 was modeled as alanine 

until the majority of the structure was traced correctly into the maps. An ADP molecule 

was fit into the extra density on the re-face of the flavin which consisted of greater than 

6.5  positive difference features and was refined. Simulated-annealing OMIT maps were 

also calculated in CNS by omitting ADP, FAD, and Cys42 from the map calculations in 

order to check for model bias (61). The final model for L.san-Nox2 refined to an R-factor 

of 0.17 and R-free of 0.22 for data between 46.4 and 1.8 Å (77355 reflections). The 2.1 

structure was refined to an R-factor of 0.20 and R-free of 0.26 for data between 50 and 

2.1 Å (49877 reflections). Ramachandran analysis of the highest resolution structure 

showed that 90.3% of the residues were located in the most favored region, 9.3% in 

additionally allowed region, 0.4% in generously allowed regions, and none in the 

disallowed region. The estimated overall coordinate coordinate error for the model based 

on the R-factor was 0.137 (0.132 for R-free) and the correlation coefficient of the maps 

was 0.965.
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aNumbers in parentheses are for the highest resolution shell. b The average agreement 
between the independently measured intensities. cThe root-mean squared value of the 
intensity measurements divided by their estimated standard deviation 

Table 4.1.  Data Collection Statistics for L.san-Nox2

Crystal 1 Crystal 2 

Space group P212121 P212121

Unit Cell Dimensions (Å) a = 59.6 b = 92.6 c= 163.5 a = 59.2 b = 92.5 c= 163.2 

Resolution Range (Å)a 46.4-1.80 (1.85-1.80) 50-2.10 (2.15-2.10) 

Total Reflections 693981 344645 

Unique Reflections 81507 52622 

Completeness (%) 96.1 (73.8) 98.7 (95.2) 

Multiplicity 8.5 (4.1) 6.5 (4.7) 

I/ (I)b 29.0 (1.9) 20.0 (2.2) 

Rsym (%)c 10.2 (48.9) 9.9 (48.8) 
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Table 4.2  Crystallographic Refinement Statistics for  L.san-Nox2

Crystal 1 Crystal 2 

Resolution Range (Å) 46.4-1.80 50-2.10 

No. of Reflections  77370 49878 

R-factor 0.178 0.199 

R-freea 0.223 0.254 

No. of non-H protein atoms 6980 6980 

No. of FAD molecules 2 2 

No. of ADP molecules 2 2 

No. of water molecules 708 225 

Mean B, protein atoms (Å2) 27.1 34.6 

Mean B, FAD (2) ( 2) 22.7 27.9 

Mean B, ADP (2) (Å2) 48.0 49.7 

Mean B, water atoms (Å2) 37.2 225 

RMS deviations from ideal   

          Bond lengths (Å) 0.015 0.015 

          Bond angles (o) 1.542 1.546 

Estimated Coordinate error 0.136 0.257 

Correlation coefficient 0.965 0.951 

a Calculated with 5% of the data. 
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Solvent exposed surface areas were calculated with a 1.4 Å probe radius with 

Swiss-PDB viewer (v3.7b2) (72) or VEGA (http://www.ddl.unimi.it) (73). Library files 

for the modified Cys42 residue and cofactors were made using the Dundee PRODRG 

server (74) . Secondary structure assignments were made using KSDSSP (75). Structural 

homologs in the Protein Data Bank were found using MSDfold (76) . The rms differences 

between models was calculated with SSM (http://www.ebi.ac.uk/msd-serv/ssm) or Swiss-

PDB viewer (v3.7b2). Structure figures were prepared using Swiss-PDBViewer (v3.7b2) 

and PovRay (v.3.5) or Pymol (DeLano Scientific LLC, Castro City, CA). 

Mass Spectrometry 

The supernatant containing released ligands from heat denatured L.san-Nox2 was 

analyzed using MALDI-TOF mass spectrometry. Samples were prepared by gel filtration 

using a Sephadex G-25 column (PD-10) (Amersham-Pharmacia Biotech) and then heat 

denatured by boiling the enzyme for 1.5 hours.  MALDI-TOF spectra of the supernatant 

were collected using an ABI Voyager DE-pro mass spectrophotometer at the Georgia 

State University (Atlanta, GA) Mass Spectrometry facility.  

Results

Overall Structure Description 

The determination of the crystal structure of L.san-Nox2 reveals structural 

homology with the pyridine nucleotide disulfide reductases family of enzymes (Table 

4.3). The asymmetric unit contains one holoenzyme which is composed of two identical 

subunits related by two-fold symmetry (Figure 4.3). Indeed, structural overlays between 

the two monomers reveal rms differences of approximately 0.4 Å even though non-

crystallographic symmetry restraints were not applied during refinement. Each subunit is 

roughly divided into three major domains; an N-terminal FAD-binding domain (residues 
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1-120), a middle NAD(P)H binding domain (residues 150-250), and a C-terminal 

dimerization domain (residues 325-451). Approximately 6000 Å2 is buried at the dimer 

interface which corresponds to 30% of the surface area for each monomer. The C-

terminal residue 452 in chain A and residues 450-452 in chain B were not visible in the 

electron density maps and therefore were not modeled. The FAD and NAD(P)H binding 

domains both adopt a Rossman fold topology (Figure 4.4) and the structure of the 

individual domains are very similar when compared (rms difference of 1.09 Å over 66 

common C  atoms). In addition to non-covalently bound FAD, the enzyme also contains 

a bound ligand molecule in the NAD(P)H binding domain which we have modeled as 

ADP.
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Figure 4.3. The X-ray crystal structure of NAD(P)H oxidase (L.san-Nox2) refined to 1.8 
Å resolution illustrating A) the view perpendicular to the 2-fold axis and B) parallel to it 
are related by a 90o rotation about the horizontal axis. The FAD and ADP are shown as 
CPK atoms with the C, N, and O atoms colored in gray, blue and red, respectively.
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Figure 4.4. Overlay of the FAD–binding (green, residues 1-120) and the NAD(P)H–
binding (red, residues 150-250) domains of L.san-Nox2. The FAD (yellow) and ADP 
(blue) cofactors are illustrated as CPK atoms. Both domains adopt a Rossman fold 
topology and exhibit very closely related structures. The Cys42-SOH and Tyr159 
residues are shown in sticks (magenta). 

Binding Mode of High Affinity Ligand 

During the course of refinement, strong positive difference features (greater than 

6.5 ) were present on the re-face of the FAD that indicated the presence of a bound 

ligand. The electron density clearly supports the presence of at least an adenine, ribose, 

and two phosphate moieties.  The extra density is located on the re-face of the FAD in the 

NAD(P)H binding domain. Crystal structures from the closely related NADH peroxidase 

in complex with NADH show that this region is the binding site for NADH (77).  The 
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supernatant (Figure 4.5) containing released ligands from the heat denatured enzyme was 

analyzed by MALDI-TOF mass spectrometry (Figure 4.6). The negative ion mode 

analysis reveals two sharp m/z ratios of 784 and 425.9 that correlate with the molecular 

weights of FAD and ADP, respectively. Simulated-annealing OMIT maps further support 

the fit of the ADP to the density (Figure 4.7). The ligand is nestled in the NAD(P)H 

binding domain in an extended conformation towards the FAD re-face (Figure 4.8). 

There is no evidence for covalent attachment of the ligand to the enzyme. The ligand also 

binds near the GXGXXG motif in which the carboxylate side chain of Asp179 hydrogen 

bonds with the 2’ hydroxyl group of the ribose portion of ADP. The binding of ADP is 

stabilized by hydrogen bonding of the two well-defined phosphate groups with Ile160N,

Tyr159N, and Tyr188OH. Additional stabilizing hydrogen bonds occur between the ribose 

carbonyl groups and His181N 2.
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Figure 4.5  UV-Vis Spectrum of the supernatant from heat denatured L.san-Nox2.
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Figure 4.6. Negative-ion mode MALDI-TOF spectrum of the supernatant of denatured 
L.san-Nox2. The negative ion peaks with m/z ratios of 784 and 425.9 correlate with the 
molecular weights of FAD (785.7) and ADP (427), respectively.  An ADP molecule was 
fit into the mFo-DFc difference electron density and is supported by the MALDI-TOF 
peak at 425.9. The peaks at 289, 311, 333, 351, 375, and 395 correspond to the molecular 
weights of the CHCA matrix.

199.0 459.4 719.8 980.2 1240.6 1501.0

Mass (m/z)

0

2.9E+4

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
n

s
it

y

Voyager Spec #1[BP = 784.0, 28566]

Ghanem NOx (CHCA, negative ion mode)
784.0

786.0

425.9

686.0

468.0

311.0

399.0
526.0

333.0 407.9
210.0

315.0 542.0375.0 664.0497.9437.0 820.0323.9



81

Figure 4.7. Electron density maps for the bound ADP molecule. A) The fit of the ADP 
molecule to the 2mFo-DFc (contoured at 1 , 1.8 Å resolution) simulated annealing OMIT 
map obtained after omitting ADP and FAD from the map calculations  B-C) The fit of the 
ADP molecule to the final 2mFo-DFc maps (contoured at 1 , 1.8 Å resolution)
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Figure 4.8. A divergent stereoview of the binding mode of ADP within the active site of 
L.san-Nox2. The hydrogen bonding interactions are represented by green dashed lines. 
The ADP molecule is superimposed upon the final 2mFo-DFc electron density maps 
(contoured at 1 , 1.8 Å resolution). The bonds in the ADP molecule are colored in 
orange and the C, N, O, and S atoms of the amino acid residues are colored in gray, blue, 
red, and yellow, respectively.

Active Site Architecture 

 The electron density for the entire portion of the non-covalently bound FAD 

cofactor is unambiguous.  A portion of the FAD in chain A is shielded from the exterior 

solvent by the second chain of the dimer via the backbone of Pro424b, Phe235b, and 

Met236b. In this contact, Phe423b is in close proximity to make hydrogen bonds via the 

backbone carbonyl with FAD N3 and O4 atoms. The electron density maps further 

indicate that the active site FAD is bent slightly with an approximate angle of 168.4o

along C6-N5-C4 atoms and 169.6o along the C9-N10-N1 atoms of the isoalloxazine ring. 

The redox-active Cys42 is located on the si-face of the FAD and appears to be oxidized 

to the sulfenic acid (Cys42-SOH) that adopts two alternate conformations (Figure 4.9). 

Each conformation is stabilized by hydrogen bonding with His10N 2 or the O2’ of the 

FAD ribitol moiety. A number of refinement models were analyzed for this residue 

including Cys42-SH, Cys42-SO2H, and Cys42-SO3H. None of these trials produced 

models devoid of mFo-DFc difference features and often had B-values for the S and/or O 

atoms that were much different than their bonded atoms within the residue. A refinement 

model comprised of Cys42-SOH in two 0.5 occupancy conformations produced a model 
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with very well defined 2mFo-DFc electron density and no difference features. Moreover, 

the B-values with the residue varied smoothly from atom to atom. Additional trials with 

occupancies of the two conformations that ranged in 10% increments from 1:0 for each 

conformation were analyzed but these did not improve the models or maps. Slightly 

different orientations of the His10 residue are noticed that may depend on the orientation 

of the Cys42-SOH group. The Cys42-SOH residue further is in close proximity to the 

FAD-C4a (3.04 Å); thus it partially blocks access to the FAD-C4a atom from the si-face.

In addition to the close proximity to His10, analysis of the protein environment around 

Cys42-SOH indicates the residue is sequestered by mostly nonpolar residues (Leu40, 

Gly43 from chain A and  Phe435, Pro427 from chain B). A polar Ser41 residue lies 

adjacently to the Cys42 position. There are no vicinal thiol residues within close 

proximity to the Cys42-SOH. 

Figure 4.9. Structural analysis of the redox state of Cys42. A) The mFo-DFc positive 
difference electron density (gold, contoured at 3 , 1.8 Å resolution) obtained from 
simulated annealing OMIT maps, with Cys42 omitted from the map calculations, 
superimposed upon the Cys42-SOH residue which is modeled with the distal oxygen 
occupying two alternate conformations with half-occupancy. B-C) The Cys42-SOH 
residue exists in two alternate conformations and is stabilized by hydrogen bonding 
interactions with either His10 or the FAD. Cys42-SOH also partially blocks access of O2

to the FAD-C4a atom.  The atoms in B-C are superimposed upon the final 2mFo-DFc

electron density (blue, contoured at 1 , 1.8 Å resolution). The bonds in the Cys42-SOH 
residue are colored in green and those of the FAD in orange. The C, N, O, and S atoms 
are colored in gray, blue, red, and yellow, respectively. 
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Figure 4.10. Stereoview of the active site residues surrounding the si-face of the FAD and 
Cys42-SOH. The Cys42-SOH residue is colored in green and the C, N, O, and S atoms 
are colored in gray, blue, red, and yellow, respectively. 

Structural Homologs of L.san-Nox2 

 The structure of L.san-Nox2 consists of a homodimer related by two-fold 

symmetry. Structural analysis of the monomer fold and a search of the Protein Data Bank 

reveal structural homology with the pyridine nucleotide disulfide reductase family of 

proteins. A detailed analysis of the structural overlays with the closest family members is 

listed in Table 4.3. Overall, these enzymes share very similar folds even at levels of low 

sequence identity. Due to the structural homology and the presence of homologous redox 

active cysteine(s) in the active site, the family members may be evolutionary related 

(Figure 4.11). The closest structural homolog is NADH peroxidase (pdb code: 1JOA) 

which exhibits rms deviations of 1.45 Å over 439 common C  atoms when the monomers 

are superimposed (47).  
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Table 4.3: Structural Alignments of L.san-Nox2 with Homologs 
Enzyme Q-Scorea Nalign

b RMSDc % sequence 
identity

NADH 
Peroxidased

0.78 439 1.45 39 

Putidaredoxin 
Reductasee

0.49 368 2.01 21 

Ferrodoxin 
Reductasef

0.48 356 2.07 19 

NADH oxidase/ 
Nitrite Reductaseg

0.43 324 2.25 24 

Dihydrolipoamide 
dehydrogenaseh

0.34 368 2.93 20 

Trypanothione 
Reductasei

0.31 348 2.64 17 

Glutathione 
Reductasej

0.28 329 2.83 18 

LPDA(Rv3303C)k 0.27 343 3.24 20 

Structural Analysis of L.san-Nox2 with relevant homologs. Structures were 
superimposed using the Secondary Structure Matching server. a The Q score is defined as 
Nalign * Nalign/ (1+(RMSD/Ro)

2) * Nres1 * Nres2, where Nalign is the length of alignment and 
Nres1 and Nres2 are the number of total residues in the L.san-Nox2 and target structure.  
cThe root mean squared difference b Number of C  atoms used in alignment dAlignment 
with PDB code 1JOA, e1Q1W, f1F3P, g1XHC, h1LVL, i1AOG, j1GRA, and k1XDI. In all 
cases, chain A was used for structural overlaps.
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Figure 4.11 Primary sequence and secondary structure alignment of L.san-Nox2 and 
related homologs. The secondary structure elements for L.san-Nox2 are illustrated above 
the sequence for L.san-Nox2. The green arrows represent -strands and the red rectangle 
represents -helices. The amino acid sequence alignment was from CLUSTALW using 
default weights. The sequences (from top to bottom) used in the alignment are NAD(P)H 
oxidase (Lactobacillus sanfranciscensis, gi: 11862874), NADH oxidase (Lactobacillus

plantarum, gi:28379772 ), NADH oxidase (Enterococcus faecalis, gi:29375784 ), NADH 
peroxidase (gi:29375784), NADH oxidase (Lactococcus lactis, gi:15672373), and human 
glutathione reductase (gi:18655540). 
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Comparison of L.san-Nox2 and NADH Peroxidase Crystal Structures 

A comparison of various structurally defined members of the pyridine nucleotide 

disulfide reductase family indicate that the closest structural homology and sequence 

identity are found between L.san-Nox2 and NADH peroxidase. The monomers of L.san-

Nox2 and NADH peroxidase superimpose with an rms difference of 1.4 Å over 439 

common C  atoms (Figure 4.12A) . A striking difference between the two homologs, 

however, is that the biological unit of NADH peroxidase is a homotetramer with D2

symmetry relating the four 46 kDa subunits. The quaternary structure contains an 

extensive interface between two monomers and only a weak association between the 

dimer of dimers (18, 47).  In contrast, L.san-Nox2 is a homodimer comprised of two 50 

kDa subunits. The NADH peroxidase tetramer is stabilized by only a few weak contacts. 

Analysis of the structure indicates that there are no salt bridges between the dimer of 

dimers. The main stabilizing interactions consist of hydrogen bonding and van der Waals 

contacts. Examination of interchain contacts indicates that the main contacts involve 

Lys53, Val55, Asn56, Ile138, Lys141, Gln142, Val145, Asp146, Pro147, Lys170, 

Ala171, Gly172, and Thr300.  Sequence comparisons to L.san-Nox2 indicates that only 

Lys53, Pro147, and Thr300 are conserved in L.san-Nox2. Charge differences are also 

observed between the two structures in which Asn56, Ile138, Gln142, Asp146, and 

Lys170 of NPX are found to be Asp, Lys, Glu, Ala, Asn residues respectively in L.san-

Nox2. Furthermore, the hydrophobic Val55 in NADH peroxidase is found to be Asn, a 

polar residue, in L.san-Nox2.   Consequently, these differences in amino acid identity 

may contribute to the observation that L.san-Nox2 is a dimer. Moreover, crystal packing 

analysis in L.san-Nox2 does not yield a similar quaternary structure. When the L.san-

Nox2 dimer is superimposed with the NADH peroxidase dimer, the rms differences 
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increase to approximately 1.9 Å (for 956 common C  atoms). Analysis of the three 

common domains suggests additional structural differences.  The largest structural 

deviations are found in the FAD binding domain (residues 1-119 ). Upon monomer 

superposition, all 119 C  atoms overlay with rms deviation of ~4.8 Å but increases to 

~6.2 Å when compared to the alignment of dimer structures. Indeed, the greatest 

differences are found between residues 53 and 120 in which rms differences range 

between 4 and 8 Å. In comparison, when comparing monomer vs. dimer structures with 

respect to the NAD(P)H binding domain, there is only an increase of 0.5 Å rms 

difference. The largest deviation in this domain occurs within residues 121-148 where 

rms differences range from ~3.4-8.0 Å. Thus, it appears that significant differences are 

found in the orientation of the secondary structure elements in the FAD binding domain 

that contribute to significant differences between the two structures which may favor a 

tetramer structure in NADH peroxidase and a dimer structure in L.san-Nox2. The most 

striking difference between the two homologs, however, is the presence of a bound ADP 

molecule in the NAD(P)H binding domain of L.san-Nox2 as isolated and crystallized. 

Native NADH peroxidase does not contain any bound ligands within the NAD(P)H 

binding domain as isolated.  



89

Figure 4.12. A divergent stereoview of the structural overlays of the C  backbone trace of 
A) L.san-Nox2 (red) and NADH peroxidase (blue, PDB code: 1JOA) and B) L.san-Nox2
(red)  and human glutathione reducatase (blue, PDB code: 1GRA). 

A comparison of the active site environment between NADH peroxidase (with 

native sulfenic acid) and L.san-Nox2 further reveals similiarities and differences (Figure 

4.13).  Residues His10 and Cys42 are conserved among the two structures although the 

positions of the residues vary between the two structures. The positions of the C  atom 

for His10 differ by 1.2 Å and 0.7 Å for Cys42. Furthermore, His10 is observed in two 

alternate conformations in L.san-Nox2. There is also a significant shift of 1.0 Å in the 

location of the sulfur atoms. The hydrogen-bonding environment also differs with respect 

to the two residues. In the NADH peroxidase structure, the proximal oxygen of Cys42-

SOH hydrogen bonds with the FAD-N5 atom (3.2 Å) and is within 3.4 Å of the His10N 2
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atom, whereas in the L.san-Nox2 structure, the alternate conformations of Cys42-SOH 

allow the oxygen to hydrogen bond with either the FAD O2’ atom (2.5 Å) in one 

orientation and to the His10N 2 atom (3.2 Å) in the other orientation. Consequently, the 

location of the proximal oxygen atoms of Cys42-SOH differs in the two structures. As 

His10 is conserved among many of the NAD(P)H oxidase and NADH peroxidase 

sequences, it has been proposed that His10 functions as an essential acid-base catalyst in 

NADH peroxidase (18). However, crystal structures from the NADH peroxidase C42S 

mutant and wild-type NADH peroxidase reveal a hydrogen bond between the Arg303 

guanidinium moiety and the His10 imidazole. Based on these observations, it has been 

proposed that His10 remains unprotonated throughout the catalytic cycle (34). Studies 

based on the NADH peroxidase H10Q and H10A mutants suggest that His10 in NADH 

peroxidase is not essential for catalytic activity, but does function in part to stabilize the 

Cys42-SOH redox center within the active site environment (78). The mechanistic role of 

His10 in L.san-Nox2 awaits further biochemical study. Additional differences exist 

among residues lining the solvent access channel to the si-face of the FAD. In NADH 

peroxidase, there exists an ionic interaction between Glu14 and Asp303 and furthermore, 

the Arg303N1 atom hydrogen bonds with His10N 1. These interactions are non-existent in 

L.san-Nox2 due to the fact that these residues are nonpolar (Phe14 and Val304, 

respectively).
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Figure 4.13. Structural overaly of L.san-Nox2 and NADH peroxidase active sites. The 
carbon atoms of L.san-Nox2 are colored in gray and those of NADH peroxidase are 
colored in cyan. The residue labels in parenthesis correspond to the NADH peroxidase 
residues. The N, O, S, and P atoms are colored in blue, red, yellow, yellow, and magenta, 
respectively. 

Comparison of L.san-Nox2 and human Glutathione reductase 

The monomeric structures of L.san-Nox2 and human glutathione reductase (hGR) 

overlay with rms differences of approximately 2.8 Å over 329 common C  atoms (Figure 

4.12b). The overall fold is very similar and both proteins exhibit roughly the same 

topology of secondary structural elements and domains (21). Analysis of the molecular 

surface of the L.san-Nox2 and hGR reveal that both share homology in the active site 

which includes the redox-active cysteine residues (Figure 4.14). The L.san-Nox2 Cys42 

residue is analogous to the hGR Cys63 residue and the nearby Cys58 residue in hGr 

allows for the formation of a redox-active disulfide bond (79). The C  positions of the 
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aligned Cys42 in L.san-Nox2 and Cys63 differ by 2.0 Å.  Results from our laboratories 

indicate that the total turnover number for L.san-Nox2 is greatly increased in the presence 

of thiol-reducing agents, especially DTT (29, 30). Catalysis of L.san-Nox2 with NADH 

and O2 is “turnover-limited”. For example, extended enzyme reactions at low enzyme 

concentrations (typically in the range of 2-20 nM) do not convert all of available NADH. 

The lack of conversion depends on the substrate-to-enzyme ratio and the presence or 

absence of thiol reagents such as DTT. In the absence of DTT, the total turnover number 

is approximately 5000 ± 1500. In contrast, the total turnover number in the presence of 1 

mM DTT is more than 120,000 which is 24 times greater (29, 30). In comparison, the 

hydrogen peroxide producing NADH oxidase from Lacotococcus lactis exhibits a total 

turnover number of greater than 82,000 (80). Thus, DTT has a dramatic effect on L.san-

Nox2 catalysis, but its precise role remains to be determined.  As shown in Figure 4.14, 

the close homology of Cys42 in L.san-Nox2 and Cys63 in hGr suggests a putative 

binding site for exogenous thiols similar to the glutathione binding site in hGR. In the 

hGR-gluthione complex structure, hydrogen bonds between the glutathione substrate and 

the side chains of Ser30, Arg37, Tyr114, and Arg347 stabilize the complex (79).

Comparison with L.san-Nox2 indicates that these residues correspond with His10, Lys17, 

His79, Arg308. Thus, the only strictly conserved residue corresponds to Arg308 and the 

other residues are conservatively substituted. These residues also surround the solvent 

channel that protrudes toward the si-face of the FAD and Cys42 allowing for a possible 

port of access for reducing agents. Previous crystallographic studies have shown that in 

NADH peroxidase, the Cys42 residue is susceptible to overoxidation to the sulfonic acid 

(Cys42-SO3H) upon prolonged oxygen exposure (47). Thus, our observations involving 
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the use of exogenous thiols (DTT) suggests that they may play an important role in 

preventing the premature overoxidation of Cys42 in L.san-Nox2 which may involve 

binding of thiol-reducing agents near Cys42. We hypothesize that these agents may react 

with the Cys42-SOH resulting in the reduction of Cys42-SOH to the thiolate anion. It is 

also worthy to note that DTT was an essential component of the crystallization conditions 

that led to high quality crystals (60).

Figure 4.14. Surface representations of the monomer of A) L.san-Nox2 (cyan) and B) 
human glutathione reductase (gray) bound to two glutathione substrates (CPK atoms, 
yellow) (PDB code: 1GRA) compared to C) an overlay of the two indicate similar 
binding surfaces with respect to exogenous thiols. 

The structural overlays for the monomeric structures of L.san-Nox2 and hGr are 

more similar to each other, however, than when the two biological units are super-

imposed. Upon superimposing the dimer structures, it is clearly evident that there are 

significant differences between the two structures. Using the Swiss-PDB viewer iterative 

fit function, the best structural overlay resulted in a rms difference of 1.8 Å over only 212 

common C atoms.  In comparison, the same routine gave an rms difference of 1.7 Å over 

only 204 common C  atoms upon monomer overlays. Analysis of the two dimeric 

structures reveals that although the molecules in one half of the dimer superimpose well, 

the second subunits in the dimer are completely out of register with respect to each other 
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(rms difference of 34.8 Å for residues 18-450). Thus, there is a significant shift in the 

orientation of the second molecule in the dimer of hGr when compared to the dimer 

structure of L.san-Nox2 that more than likely is due to significant differences in 

interactions at the dimer interface. Analysis of the monomer overlays indicates the 

greatest structural differences occur in the dimerization domains of the two homologs. 

Substrate Delivery 

Previous work has shown that L.san-Nox2 exhibits dual substrate specificity for 

NAD(P)H (29, 30). Indeed, both substrates have similiar KM values for NADH and 

NADPH (6.7 and 6.1 M, respectively). There are two channels that start from the 

solvent-exposed surface of the protein and extend to the active site; one to the re-face and 

the other to the si-face of the flavin. The channel beginning from the solvent-exposed 

surface of the enzyme and traversing to the si-face of the FAD is lined primarily with 

hydrophobic residues. In NADH peroxidase, the homologous channel is lined with more 

polar residues and is proposed to be the channel in which H2O2 is delivered to the active 

site (18). Another channel traverses from the solvent directly to the re-face of the FAD 

and forms a cavity which is bordered by Tyr159, Tyr188, Ile160, Glu163, Ser328, 

Gly329, Leu330, and the phosphate moieties of the ADP (Figure 4.15).  If the observed 

ligand remains tightly bound to the enzyme, it can be envisioned that NAD(P)H  

substrate may be delivered via this channel. The channel is appropriately positioned to  

allow for an NAD(P)H molecule to enter the active site and position the nicotinamide 

ring beneath the isoalloxazine ring. Thus, we hypothesize that the dual substrate 

promiscuity could arise from the ability of the solvent channel to accept either NAD(P)H 

molecules. Additionally, there are two channels that are adjacent to the FAD re-face. The 
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second channel traverses from the re-face of the FAD to the si-face and is partially 

bordered by Cys42-SOH. Specificity for NAD(P)H is due, in part, to the identity of the 

amino acid located 19-21 residues downstream of the last glycine in the signature motif 

(GXGXXG). The motif is involved in recognizing the ADP portion of pyridine 

nucleotides (81-84). In general, NADP+ specificity usually involves an arginine at this 

position whose side chain interacts with the 2’-phosphate of NADP+ by ionic and 

hydrogen bonding interactions. In contrast, NAD+ specificity involves an acidic amino 

acid at this position in which the carboxylate side chain makes hydrogen bonding 

interactions with the hydroxyl groups of the ribose containing the adenine ring. In L.san-

Nox2, Asp179 occupies this position and makes hydrogen bonding contacts with the 

ribose hydroxyl of the bound ADP. Thus, with ADP occupying the binding site and an 

available entrance tunnel to the re-side of the FAD, the bound ADP molecule may play 

an influential role in allowing L.san-Nox2 to accept either NAD(P)H substrate. Further 

biochemical experiments are needed to define the precise role of ADP within L.san-

Nox2.  Additional steric contributions from residues surrounding the cavities in the active 

site may also contribute to preventing escape of hydrogen peroxide from the active site 

prior to its reaction with the redox-active Cys42. 
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Figure 4.15. Surface representations of L.san-Nox2 reveals a probable A) entrance 
channel for NAD(P)H molecules towards the re-face of the active site FAD. B) The 
channel extends deep into the active site and forms a “cavity” in front of the re-face of 
the FAD isoalloxazine ring which would allow for the positioning of the nicotinamide 
ring of the entering NAD(P)H molecule next to the isoalloxazine ring. The availability of 
the entrance channel and the bound ADP in the Rossman fold domain are postulated to 
contribute to the observed promiscuity for NAD(P)H substrates exhibited by L.san-Nox2.
Furthermore, an additional channel between the re-face of the FAD and the si-face exists 
which is hypothesized to allow H2O2 migration towards the redox-active cysteine 
resulting in its reduction to H2O after nucleophilic attack by the thiolate form of Cys42. 

Orientation of Tyr159 

Comparison of the sequence alignments of L.san-Nox2, NADH peroxidase, and 

hGR reveal that Tyr159 in L.san-Nox2 is highly conserved among the proteins. In the 

various structures from these homologs, the equivalent Tyr159 residues occupy one of 

two orientations; either the “in” orientation which partially occludes the FAD, or the 

“out” conformation which permits ligand binding at the re-face of the FAD. The crystal 

structures of NADH peroxidase in complex with NADH, and hGR in complex with 

NADP+, and L.san-Nox2 indicate that Tyr159 in L.san-Nox2 occupies the “out” position 

in order to accommodate the bound ligand (77, 79). The hydrogen bonding of the 
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hydroxyl moiety of the equivalent Tyr159 residue is important for stabilizing each 

orientation of the residue in the homologous structures. In L.san-Nox2, the “out” 

conformation is held in place by a hydrogen bond between Tyr159OH and Ser O . Thus, 

conformational changes and the orientation of the Tyr159 appear to play an important 

role towards the affinity for the substrate. A comparison of the aligned structures of 

NADH peroxidase in complex with NADH and L.san-Nox2 (Figure 4.16) indicate that 

the ADP molecule occupies a similiar position with respect to the ADP portion of the 

NADH molecule (77).   

Figure 4.16. Structural overlays of the substrate-binding pocket in L.san-Nox2 and 
NADH peroxidase. The figure illustrates the location of the bound ADP molecule on the 
re-face of the FAD in L.san-Nox2. A) The superimposed structures of L.san-Nox2 (red) 
and unliganded NADH peroxidase (blue). B) The superimposed structures of L.san-
Nox2 (red) and NADH peroxidase in complex with NADH (green). The conformation of 
the Tyr159 residue is hypothesized to influence ligand binding. In the homologous 
NADH peroxidase structure, the Tyr159 residue undergoes a conformational change 
upon ligand binding in the NAD(P)H binding domain (77, 79).  
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O2 Access and Reactivity 

Gas-phase theoretical studies indicate that the isoalloxazine ring has different 

conformations associated with the oxidized, reduced, and FAD C4a-H2O2 intermediate 

states (85-87). These redox-dependent alterations will likely influence reactivity with O2

and reactivity with the Cys42-SOH intermediate.  Previous work on NADH oxidase from 

Enterococcus faecalis 10C1, which shares 59% sequence identity with L.san-Nox2, has 

shown evidence for a C4a-peroxyflavin intermediate in studies of the C42S mutant 

isoform of NADH oxidase (33, 38). Mallett et al. proposed a direct reaction of Cys42-S-

with the peroxyflavin which would yield an immediate product as FAD-C4a-hydroxide. 

In this model, Mallett et. al predict that bound NAD+ at the re face does not dissociate 

prior to the O2 reaction, and the O2 reaction must be directed at the flavin si-face. This 

would generate the C4a-peroxy flavin with the distal oxygen projected into a position 

optimal for transfer to Cys42-S- to regenerate the oxidized Cys42-SOH center. However, 

there is no crystal structure available to provide any structural insights.  In order to 

predict the structural basis for reactivity with O2 using our crystal structure, we have 

modeled in the C4a-peroxy complex using MOPAC simulations in CHEM3D 

(Cambridgesoft Corporation, Cambridge, MA). In the model, the reduced flavin can have 

the C4a-peroxy at either the re or si face (Figure 4.17). However, analysis of the active 

site architecture of L.san-Nox2 shows that the protein backbone packs tightly under the 

si-face of the FAD and the Cys42-SOH residue is in van der Waals contact with the FAD 

leaving no space for a C4a-peroxy adduct due to steric crowding. However, the 

alternative model shows that a C4a-peroxy adduct on the re-face is more likely due to 

available space. Furthermore, if a C4a-peroxy adduct does indeed form on the re-face of 
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the FAD, there is a short channel that traverses from the re to the si-face. This would 

allow for the product hydrogen peroxide to traverse to the si face and react with the 

Cys42-S- residue. Thus, our structure predicts that due to steric crowding of the FAD-C4a 

position on the si-face, it is sterically more favorable for a potential C4a-peroxy adduct to 

project from re-face of the flavin. In order for a dioxygen adduct to form on the si-face of 

the FAD, a conformational change involving Cys42 would be necessary. 

Figure 4.17. Hypothetical models of the FAD-C4a:H2O2 complexes modeled with 
MOPAC simulations in CHEM3D using either a A) si-face complex or a B) re-face
complex. Each model was overlayed with the isoalloxazine ring of L.san-Nox2. Note in 
panel A, that the C4a-H2O2 would result in a steric clash between the sulfur of Cys42 and 
the dioxygen adduct, whereas in panel B there are no steric clashes with the dioxygen 
adduct. The Cys42-SOH and His10 residues are modeled with both alternate 
conformations. The C, N, O, S, and P atoms are colored in gray, blue, red, orange, and 
magenta, respectively. 

Mechanistic Insights 

The high resolution crystal structure of L.san-Nox2 provides structural 

information for better understanding the reaction mechanism. The oxidation state of the 

redox-active Cys42 residue provides critical information for rationalizing the lack of 
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H2O2 release from the active site of L.san-Nox2 (Figure 4.18). Cys42 is proposed to 

alternate between the thiol/thiolate (E) and the sulfenic acid states (E*) during turnover. 

Analysis of the two C4a-peroxy flavin models suggests that the enzyme may react with 

O2 at the FAD re-face to yield a C4a-peroxy intermediate similar to that observed in the 

Enteroccocus faecalis NADH oxidase C42S mutant. The first equivalent of NAD(P)H 

during the first oxidative half reaction may enter the active site via a channel traversing 

from the solvent toward the re-face of the FAD, reduce the FAD and yield H2O2 after 

reaction of the reduced FAD with O2. The existence of a nearby channel from the re-face

traversing to the si-face suggests that upon break down of the C4a-peroxy intermediate, 

dissociated H2O2 is delivered to Cys42 allowing for Cys42-S- to react with H2O2 via a 

nucleophilic attack to yield Cys42-SOH intermediate which is stabilized via hydrogen 

bonds to His10 and the FAD. The bound ADP would thus also potentially serve the role 

of steering H2O2 toward Cys42-S- by blocking the escape of H2O2 from the re-face. The 

second equivalent of NAD(P)H is then used to deliver the second set of electrons to the 

FAD. Since the FADH- is in van der Waals contact with Cys42-SOH (E*), it transfers 

two electrons to Cys42-SOH and reduces the sulfenic acid moiety to the thiolate (E) and 

releases the second H2O molecule.  The importance of Cys42 in preventing H2O2 escape 

has been demonstrated by site-directed mutagenesis in NADH peroxidase in which 

Cys42 was mutated to Ala or Ser and also in the Enterococcus faecalis NADH oxidase 

C42S mutant. These mutants generated H2O2 as opposed to H2O (33-35).

Our crystal structure is most consistent with the E* form indicated in the reaction 

mechanism. Based on the crystal structure, we propose that the Cys42-SOH residue has 

two possibilities for conversion back to the thiol/thiolate state of the resting enzyme (E). 
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First, the NAD(P)H-dependent process is similar to the first half of the reaction cycle. 

However, since one conformation of the Cys42-SOH is in van der Waals contact with the 

reduced FAD, the reduction of the Cys42-SOH is predicted to be much faster than 

aberrant reaction with O2. Second, the DTT-dependent process is analogous to that of the 

non-flavin human peroxidase which also passes through a cysteine sulfenic acid 

intermediate (48, 88). It is also consistent with a large, DTT-dependent increase in total 

turnover number observed in the catalytic process. Thus, L.san-Nox2 has two relatively 

independent mechanisms to eliminate O2 and neither pathway releases H2O2. For 

example, during oxidative stress and conditions with low availability of NAD(P)H, the 

thiol-dependent process provides protection. In contrast, if thiol based reagents are scarce 

during oxidative stress, but the NAD(P)H level is abundant, then the L.san-Nox2 still 

affords protection. Thus, to our knowledge, our laboratories are the first to describe these 

two types of structural contributions toward the stoichiometric conversion of one O2

molecule into two H2O molecules in any flavoprotein. 
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Conclusion

Our high-resolution crystal structure of L.san-Nox2 provides the first structure of 

a water-forming NADH oxidase and allows for analysis of the structural basis for the 

conversion of O2 into two molecules of H2O by the FAD-dependent enzyme. The 

determination of the X-ray structure confirms that L.san-Nox2 is a structural homolog of 

the pyridine nucleotide disulfide reductase family of enzymes and most closely resembles 

the structure of NADH peroxidase. The structure provides a detailed look at the active 

site of the enzyme and confirms the presence of Cys42-SOH that is proposed to play a 

critical role in the conversion of H2O2 into H2O via a thiolate intermediate. Furthermore, 

the discovery of a high affinity molecule which copurifies and cocrystallizes with the 

enzyme raises important new questions on the role of ADP in the enzyme mechanism. 

Further biochemical studies are needed to fully understand the role of the bound ligand. 

The structure also provides further insights into the reaction mechanism involving the 

alternating states of the Cys42-SOH and thiolate/thiol forms of Cys42 that may involve 

reaction with reducing agents such as DTT. Finally, the structure provides a basis for 

future site-directed mutagenesis experiments to probe the mechanistic role of certain 

active site residues. The structure of L.san-Nox2 will also further provide critical 

structural information in its development as a potential biocatalyst for the regeneration of 

oxidized pyridine nucleotides (29, 30).
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CHAPTER 5 

STRUCTURAL AND MECHANISTIC INSIGHTS FROM THE 

CRYSTAL STRUCTURE OF CHOLINE OXIDASE 

Abstract

7The accumulation of glycine betaine (N,N,N-trimethylglycine) in many human 

pathogens is an essential factor in their stress response toward hyperosmotic 

environments. The metabolite is most commonly imported or enzymatically generated in

situ. Choline oxidase from Arthrobacter globiformis catalyzes the flavin-dependent, four-

electron oxidation of choline to glycine-betaine, with betaine aldehyde as a two-electron 

intermediate. In the two oxidative half-reactions, two molecules of O2 are converted into 

two H2O2 molecules. We have solved the X-ray crystal structure of choline oxidase at 

1.86 Å resolution using synchrotron radiation. The overall structure of monomeric 

choline oxidase folds into substrate and flavin-binding domains and is structurally similar 

to other members of the glucose-methanol-choline oxidase (GMC) family. The crystal 

structure further reveals a covalent linkage between the His99N 2 and FADC8M atoms. 

Moreover, the electron density maps for the FAD also reveal an unusually distorted 

isoalloxazine ring system with an approximately 120° angle between the pyrimidine and 

the dimethylbenzene rings. The C4a atom is sp
3 hybridized, suggesting the presence of a 

covalent adduct and is supported by the electron density. The C10a atom also appears to 

7 The following chapter is based on work in collaboration between Lountos, G.T., Fan, F., Gadda, G., and 
Orville, A.M. Fan Fan provided purified choline oxidase and was involved in initial crystallization 
experiments. The author also acknowledges the efforts of Megan O’Neill during the initial crystallization 
trials of choline oxidase. Mahmoud Ghanem and Osbourne Quaye determined the O2 to H2O stoichiometry 
in choline oxidase. Dr. Zhongmin Jin of SER-CAT is also acknowledged for assitance with mail-in 
crystallography data collection. Dr. Rajeev Prabhakar of Emory University performed the DFT 
calculations.
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be partially sp
3 hybridized. An atomic model fit to the electron density is consistent with 

an FAD C4a-O2
- or FAD C4a-OH complex. We propose that the anionic complex is 

generated in situ via photo-reduction from the synchrotron X-ray irradiation, followed by 

O2 binding. The complex does not release H2O2 because the cryogenic conditions do not 

establish the appropriate proton inventory on the surrounding residues. The unusual 

feature of the FAD was also confirmed with another data set collected from a different 

crystal that diffracted to 2.69 Å structure. This is the first direct observation of an oxygen 

reaction intermediate in any flavoenzyme oxidase by X-ray crystallography. 

Additionally, the high-resolution crystal structure reveals a cavity in the substrate-binding 

domain that is sealed off from the exterior of the protein. A model for the choline 

substrate can be positioned into the cavity and reveals important structural information 

that allows for the identification of the putative binding site for choline and identification 

of residues involved in the catalytic mechanism. The availability of the crystal structure 

of choline oxidase in combination with emerging biochemical and mechanistic data 

provide many new insights into the structure-function relationship of the enzyme. 

Introduction 

Flavins and flavoproteins were first discovered in the 1930s (1-3). Over the past 

seven decades chemists and biochemists have continued to characterize their remarkable 

diversity (4). It is now recognized that about 4% of microbial proteins are thought to be 

associated with either an FMN or FAD cofactor. Indeed, in the annotated genome of 

Escherichia coli, there are 205 different predicted flavoproteins. Furthermore, in the 
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genome of Homo sapiens there are more than 360 predicted flavoproteins8.  A major 

reason for the ubiquity of flavin-dependent enzymes lies in the chemical versatility of the 

flavin isoalloxazine ring (4). This heterotricyclic organic cofactor (Figure 5.1) is ideally 

suited for oxidative or reductive reactions involving one or two electron transfer to and 

from other redox-active centers as well as reactivity with molecular oxygen (4-6). A 

manifestation of flavin versatility is the unique ability of flavin-dependent proteins to 

catalyze a wide range of biochemical reactions ranging from aerobic and anaerobic 

metabolism, light emission, photosynthesis, DNA repair, plant phototropism, the 

activation of dioxygen for oxidation and hydroxylation reactions, and regulation of 

biological clocks (4, 5, 7-18). From a chemical standpoint, the isoalloxazine ring can act 

as an electrophile, by accepting a hydride equivalent, or a nucleophile, by forming 

covalent adducts with either protein residues or reaction intermediates at the C4a, N5, C6, 

and/or C8M positions (see Figure 5.1 for nomenclature) (4).

8 G.A Reid, paper presented at the 14th International Symposium on Flavins and Flavoproteins, Cambridge, 
UK 2002 
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Figure 5.1. A structure-based hypothesis for reactivity in flavoenzymes. 

 As described above, many biological transformations of substrates are either 

catalyzed by, or otherwise involve flavoenzymes. FAD and FMN are the most common 

cofactors found in enzymes (4, 7). Consequently, they facilitate very diverse catalytic 

activities (19). A myriad of fundamentally similar interactions influence each reaction 

coordinate, yet, yield remarkable catalytic diversity. Moreover, selective pressure and 

evolution have enhanced “desirable” reactions, while simultaneously decreasing 

“deleterious” reactions. Although more than 600 flavoprotein structures have been 

deposited into the Protein Data Bank, much debate remains as to how the active site 

microenvironment influences a given reaction coordinate. However, far less is known 

about how different reactions can occur. 

 The reactions of a particular flavoprotein derive from a complex combination of 

interactions. These include the flavin cofactor itself, protein active site residues, substrate 
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molecule(s) and inclusion or exclusion of solvent molecules and/or ions. A few well-

studied flavoenzymes support proposals for several of these features. Structural analysis 

of several dehydrogenases, oxidases and reductases reveal that substrates often bind 

parallel to the isoalloxazine ring, but often on opposite faces (Figure 5.1) (7). The 

dehydrogenases and oxidases frequently bind substrates adjacent to the re-face, whereas 

reductases often bind substrates parallel to the si-face. In contrast, p-hydroxybenzoate 3-

hydroxylase and many other oxygenases, bind substrates near the top edge of the reduced 

flavin (19-25). Thus, the three-dimensional binding relationship between the substrate(s) 

and the cofactor profoundly influences the reaction. The reduction potential of the flavin 

is thought to be influenced by the presence of either a positive or negative charge near the 

redox active N5-N1 pair (26-31). For example, a positive charge near N1 appears to 

increase the reduction potential and may also stabilize the anionic state at N1 in the 

reduced cofactor. Furthermore, hydrogen bonding to N5 is thought to polarize the LUMO 

and HOMO orbital of the N5 atom of oxidized flavins. Theoretical studies suggest that 

the hydrogen bond donor approximately in the plane of the isoalloxazine ring will orient 

the LUMO approximately perpendicular to the plane (32-35). Consequently, the 

electrophilicity at this position is increased and hydride transfer is enhanced, provided 

that the substrates are also suitably oriented and parallel to the plane of the isoalloxazine 

ring. Futhermore, gas-phase theoretical studies and crystallographic studies of free flavins 

and flavin analogs have shown that the two electron reduced isoalloxazine ring is bent by 

up to 30° along the N5-N10 axis (36-38). Such a “butterfly” conformational change 

associated with redox pertubation should significantly influence catalysis in 

flavoproteins. Reaction with molecular O2 at the C4a or other acceptor molecules at 
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either the C4a or N5 atoms can occur from either the si or re-face. However, there are 

also structurally defined examples where oxidized flavoproteins have significantly bent 

isoalloxazine rings and other examples where reduced flavoproteins contain almost 

planar cofactors (22, 23, 35, 39-42). The protein environment is hypothesized to play a 

significant role in stabilizing these higher energy states. It is thus clearly evident that the 

rules which yield a given reaction coordinate remain to be defined in most flavoproteins. 

A fundamental reaction of reduced flavoenzymes is with molecular oxygen, 

which can be orders of magnitude faster or slower than the analogous reactions of flavins 

in solution (6). The outcome of the reaction also varies greatly, which has been used to 

differentiate flavoenzymes into different classes (43). The FAD-dependent hydroxylases 

cleave the dioxygen O-O bond and incorporate one oxygen atom into the organic product, 

whereas the other oxygen atom is released as water. In contrast, ubiquitos flavin-

dependent oxidases use O2 as an electron acceptor and yield H2O2. Despite the different 

outcomes of their oxidative half-reactions, these two classes of flavoenzymes transfer two 

reducing equivalents from the reduced flavin to O2 (6). In the monooxygenases, 

exemplified by p-hydroxybenzoate hydroxylase, luciferase, and microsomal flavin-

containing monooxygenase, a transient C4a-hydroxy-flavin species has been established 

by rapid kinetic methods and its structure characterized by NMR spectroscopy (44-49). In 

the oxidases, with the exception of rapid kinetic studies on a mutant form of NADH 

oxidase (50) and pulse radiolysis experiments with glucose oxidase (51) showing that a 

flavin hydroperoxide species can be obtained from the neutral flavin radical and 

superoxide anion, a flavin C4a-hydroperoxide has not been detected. This has prompted 

some to propose that in oxidases, flavin reoxidation proceeds via an outer-sphere electron 
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transfer process without the involvement of a C4a-hydroperoxide intermediate (6, 52).

Regardless of the mechanism, there are no structurally defined C4a-hydroperoxide 

adducts, despite over 600 flavoprotein structures deposited in the Protein Data Bank to 

date (53).

Choline oxidase (E.C. 1.1.3.17) catalyzes the four-electron oxidation of choline to 

glycine betaine (N,N,N-trimethylglycine) via two sequential, FAD-dependent reactions in 

which betaine aldehyde is formed as an obligatory enzyme-bound intermediate (Figure 

5.2) (54, 55). The FAD cofactor is covalently linked via the C8M position to a histidine 

residue resulting in a midpoint reduction potential in choline oxidase of ~130 mV, which 

is the highest determined for a flavoenzyme (56-59). In both oxidation reactions 

catalyzed by choline oxidase, H2O2 is formed in the flavin-dependent reduction of O2

(54). Molecular oxygen acts as the primary electron acceptor in the reaction. The study of 

choline oxidase is also of considerable interest for medical and biotechnological 

applications, since intracellular accumulation of glycine betaine allows normal cell 

function under conditions of hyperosmotic and temperature stress in pathogenic bacteria 

(60-67) and transgenic plants (68-75). Consequently, the study of choline oxidase has 

potential for the development of therapeutic agents that inhibit glycine betaine 

biosynthesis and render pathogenic bacteria  susceptible to either conventional treatments 

or the innate immune system, and for the engineering of drought and temperature 

resistance in economically relevant crops. 
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Figure 5.2. The reaction catalyzed by choline oxidase. 

The oxidation of alcohols to aldehydes is catalyzed by a number of flavin-

dependent enzymes including choline oxidase (54, 76, 77), choline dehydrogenase (78),

glucose oxidase (79, 80), cholesterol oxidase (81), and cellobiose dehydrogenase (82). 

All these enzymes utilize FAD as a cofactor for catalysis and have been grouped into the 

glucose-methanol-choline (GMC) oxidoreductase enzyme superfamily (83). Although 

GMC enzymes exhibit low sequence similiarity in the substrate-binding domain, the 

crystal structures of glucose oxidase (84, 85), cholesterol oxidase (86-88), and the flavin 

domain of cellobiose dehydrogenase (89) show that they all share a highly conserved 

catalytic site. This suggests that they may exhibit a similar activation mechanism for the 

oxidation of substrates. However, the nature and identity of both the catalytic base that 

abstracts the hydroxyl proton from the substrate and the residues that provide the 

necessary stabilization of the alkoxide intermediate in catalysis has not been fully 

determined. Mechanistic studies have been conducted on cholesterol oxidase (90, 91), 

cellobiose dehydrogenase (92), and glucose oxidase (17, 93, 94). A study of these 

enzymes has suggested that a highly conserved histidine residue found in the GMC 

family may act as the catalytic base that participates in the oxidation of the alcohol 

substrate. In choline oxidase, this residue corresponds to His466 (58). Sub-atomic 

resolution crystal structures from unliganded cholesterol oxidase refined up to 0.92 Å 
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resolution, however, indicate that the corresponding His447 residue is protonated at the 

N 2 position, which points at the substrate hydroxyl group (88). Studies on the 

His466Ala mutant isoform of choline oxidase by Ghanem and Gadda have provided 

mechanistic insights into the catalytic role of this residue in choline oxidase (59). In this 

study, His466 was mutated to alanine by site-directed mutagenesis and the biochemical, 

spectroscopic, and mechanistic properties of the enzyme were evaluated. Indeed, the 

mutant exhibited kcat and kcat/Km values with choline as the substrate that were 60- and 

1000-fold lower than the values for the native enzyme. The kcat/Km value for molecular 

oxygen, however, was unaffected by the mutation (59). This result suggested that the 

residue is involved in the oxidation of choline, but not in the reduction of molecular 

oxygen. Futhermore, the lack of involvement of His466 in the oxidative half-reaction also 

agrees well with previous kinetic data on choline oxidase as a function of pH which 

illustrated that no ionizable groups with pKa values of 6-10 are required for the oxidation 

of the enzyme-bound reduced flavin in catalysis (95). Additional data support the notion 

that His466 is not likely the active site base with a pKa of 7.5 that abstracts the hydroxyl 

proton of the substrate in the reductive half-reaction in which choline is oxidized to 

betaine aldehyde. Evidence for this notion comes from the pH dependence of the 

imidazole effect with the His466Ala mutant which showed that imidazolium is the 

catalytically relevant species involved in the partial rescue of activity of the mutant 

isoform. Indeed, it was demonstrated that enzymatic activity could be rescued with the 

addition of exogenous imidazolium, but not imidazole which is consistent with the notion 

that the His466 residue is indeed protonated (59). These data raise questions of the notion 

that the His466 residue is the active site base involved in the oxidation of choline because 
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if this were the case, maximal rescue of enzymatic activity of the mutant enzyme should 

have been observed with increasing pH. Thus, it has been proposed that His466 

contributes to catalysis by modulating the electrophilicity of the FAD and the polarity of 

the active site. In addition, it is suggested that the residue is involved in the stabilization

of the negative charge of the alkoxide intermediate that is formed in the oxidation of 

choline to betaine aldehyde (Figure 5.3). Evidence for stabilization of the alkoxide 

intermediate comes from the observation that there is a complete loss of the ability of the 

His466Ala mutant to form an N5-flavin adduct with sulfite, which is restored in the 

presence of exogenous imidazole (59).
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Figure 5.3. The asynchronous hydride transfer mechanism for choline oxidase with the 
alkoxide intermediate stabilized by His466. Adapted from (59)
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Several possible mechanisms for the activation of unpolarized alcohols have been 

proposed for the members of the GMC family of enzymes. X-ray crystal structures of 

glucose oxidase (85, 93), cholesterol oxidase (87, 88), and the flavin domain of 

cellobiose dehydrogenase (89, 96), support the notion that the catalytic mechanism 

involves the removal of the hydroxyl proton by an active site base and concomitant 

transfer of a hydride from the substrate -carbon to the flavin cofactor (Figure 5.4, path 

a). Mechansitic studies using kinetic isotope effects to probe the relative timing of OH 

and CH bond cleavages have been hindered in glucose oxidase (97) and cholesterol 

oxidase (91, 98) due to the occurrence of steps that are slower than those that directly 

involved in the reductive or oxidative reactions. An asynchronous hydride transfer 

mechanism has been suggested based on studies on methanol oxidase (99) using isotope 

effects and substrate analogs in which OH bond cleavage occurs to a great extent before 

the CH bond cleavage (Figure 5.4, path b). Alternatively, it has been suggested from 

crystallographic studies on cholesterol oxidase (87) and cellobiose dehydrogenase (96)

that a single electron is transferred to the flavin concomitantly with abstraction of the 

hydroxyl proton which is then followed by the transfer of the -hydrogen to the flavin 

(Figure 5.4, path c). Biochemical studies, however, have not proved successful in 

providing evidence for such a mechanism involving the formation of the two-radical 

species. Additionally, a carbanion mechanism has been proposed for the oxidation of 

polarized alcohols catalyzed by flavocytochrome b2 (100, 101) in which catalysis is 

initiated by abstraction of the substrate -proton by an active site base to form a 

carbanion, followed by the formation of a covalent N5-flavin adduct that would 

subsequently decay to yield the aldehyde product and reduced flavin. However, this 
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mechanism is least likely for the oxidation of unpolarized alcohols due to energetic 

factors related to the stabilization of the negative charge (102) .
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Figure 5.4. The three proposed mechanisms for the oxidation of unpolarized alcohols by 
members of the GMC family include a) a concerted hydride transfer mechanism, b) an 
asynchronous hydride transfer mechanism, and c) an oxygen radical mechanism. Adapted 
from (77).

 In a study of choline oxidase using primary deuterium and solvent kinetic isotope 

effects, insights into the mechanism for substrate oxidation by choline oxidase using both 
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steady-state kinetics and rapid kinetic techniques have been obtained by Fan and Gadda 

(77). Kinetic isotope effects with isotopically substituted substrate and solvent have been 

used to obtain insights into the mechanism of alcohol oxidation in the reaction catalyzed 

by choline oxidase. The reaction involves the removal of both the hydroxyl proton and 

the hydrogen bound to the -carbon of the choline substrate in either a concerted or 

stepwise fashion, depending on the relevant timing of CH and OH bond cleavage. In this 

study, the oxidation of choline catalyzed by choline oxidase was found to occur through 

the formation of an alkoxide species resulting from the removal of the substrate hydroxyl 

proton occurring before hydride transfer to the flavin. Evidence for this mechanism, in 

which the choline alkoxide proton is not in flight in the transition state for CH bond 

cleavage, comes from the substrate and solvent deuterium kinetic isotope effects 

determined on the rate of reduction of the flavin by choline, showing a substrate isotope 

effect of ~9 and a solvent isotope effect of unity (77). The data rule out a concerted 

hydride transfer mechanism in which both the proton and the hydride are concomitantly 

in flight in the transition state. Thus the emerging biochemical data suggest that choline 

oxidase follows an asynchronous hydride transfer mechanism (77).

A detailed picture of the catalytic mechanism of choline oxidase has emerged 

from pH and kinetic isotope effect studies (55, 77, 103), as well as mechanistic studies 

with substrate and product analogues (104), site-directed mutants (59), and X-ray 

crystallography (Figure 5.5). During enzymatic turnover with choline, a catalytic base 

with pKa of 7.5 activates choline by abstracting the hydroxyl proton from the alcohol 

substrate (95). Stabilization of the transient choline-alkoxide species is provided by 

electrostatic interactions with the positively charged imidazolium of His466 (59) which is 
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located at ~3.3 Å from the FAD N1 atom. A hydride is then transferred from the -

carbon of the activated alcohol to the FAD N5 atom, resulting in the reduction of the 

flavin. Thus, the first reductive half-reaction during turnover with choline provides a 

proton and a hydride to the enzyme and the flavin, respectively (77). In the subsequent 

oxidative half reaction, two electrons are transferred from the reduced flavin to O2. The 

final delivery of two protons from the catalytic base, shown as His351, and the FAD N5 

atom yields oxidized FAD and H2O2, which readily dissociates from the enzyme active 

site. Enzymatic turnover is then completed with a second oxidation reaction in which the 

enzyme-bound aldehyde is oxidized to a glycine betaine, although this reaction has not 

been mechanistically characterized yet. 
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Here, we report the crystal structure of choline oxidase refined at resolutions of 

1.86 Å and 2.69 Å from two independent crystals and data sets. Since nearly identical 

structures were obtained from both data sets, we will focus the structure description on 

the highest-resolution structure. In preparation for the X-ray diffraction data collection, 

the crystals of oxidized enzyme in aerobic mother liquor were flash cooled by plunging 

them into liquid N2. The crystals were yellow after freezing which is consistent with the 

oxidized FAD within the enzyme. The diffraction data were collected under cryogenic 

conditions using synchrotron X-rays. However, the structure reveals a surprising feature 

of the active site FAD in which it adopts a highly unusual conformation with respect to 

the isoalloxazine ring and appears to contain a C4a-adduct species. The determination of 

the crystal structure of choline oxidase provides detailed structural information that can 

be correlated with emerging biochemical and mechanistic studies of the enzyme. In 

addition, it provides important information in the design of new site-directed mutants to 

further probe the chemical mechanism and provides novel insights into the identity of 

specific residues that may be important constituents in the catalytic mechanism. 

Materials and Methods 

Enzyme Preparation, Purification, Crystallization, & X-ray Data Collection 

 Choline oxidase from Arthrobacter globiformis was cloned, expressed, and 

purified in high purity and yield as previously described (58) Fully oxidized enzyme was 

obtained as previously described (104). Crystals of choline oxidase were grown by the 

hanging drop vapor diffusion method with standard VDX plates from Hampton Research 

(Aliso Viejo, CA). Initial crystallization conditions for choline oxidase were obtained 
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from commercially available sparse-matrix screening kits from Hampton Research and 

Nextal Biotechnologies (Montreal, Quebec). Typically, 2 L of protein solution (4.9 

mg/mL) was mixed with 2 L of crystallization solution on a silanized cover slip and 

sealed over the reservoir solution. Screening experiments were conducted by incubating 

the plates at 4°, 15°, and 23° C for each type of experiment.  Initial conditions for choline 

oxidase crystals were obtained from 0.1M Tris-HCl, pH 8.5 and 1.5 M ammonium sulfate 

at 23° C which yielded a shower of thin, yellow needles (Figure 5.6, panel A). 

Optimization of the conditions involved screening pH , precipitant concentration, and 

temperature in addition to different types of buffers. Additional optimization trials 

involved the screening of several small molecule additives from the Hampton Research 

Additive Screen. From the additive screens, dimethylsulfoxide (DMSO) was selected as a 

supplemental additive to the crystallization solution that contributed to improved crystals. 

In order to obtain optimal crystals used in data collection, 2 L of choline oxidase (4.9 

mg/mL) was mixed with 2 L of reservoir solution containing 0.1 M Bis Tris Propane, 

pH 8.5, 1.2 M ammonium sulfate, and 10% v/v dimethylsulfoxide on a silanized cover 

slip and sealed over the reservoir containing 1 mL of crystallization solution. The tray 

was incubated at 23° C for approximately two weeks. Yellow rod-like crystals were 

obtained within 4 days of incubation and grew to maximal dimensions of 0.2 x 0.05 x 

0.05 mm within two weeks (Figure 5.6, panel B). 
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Figure 5.6. A view of crystals of choline oxidase under polarized light. Initial crystals of 
choline oxidase appeared as A) a shower of small needles and microcrystalline clusters. 
Refinement and optimization of the initial conditions resulted in B) rod like crystals 
which grew to a maximum dimensions of 0.2 x 0.05 x 0.05 mm which were of sufficient 
quality to allow for collection of X-ray diffraction data. 

 A single crystal for data collection at cryogenic conditions was prepared by 

transferring a crystal from the mother liquor into a 2 L solution of 3.4 M sodium 

malonate, pH 7.0 (105) and allowed to soak for two minutes at 23° C prior to capturing 

the crystal with a nylon loop. The crystal was flash-frozen by quick submersion into 

liquid nitrogen. Two independent data sets were collected from crystals held at 

approximately 100 K at the SER-CAT facilities at the Advanced Photon Source, Argonne 

National Laboratory. The highest resolution data set (1.86 Å) was collected at beamline 

22-ID using a wavelength of 1.0 Å and a MARCCD 300 detector. The crystal to detector 

distance was set at 250 mm and data were collected using fine slicing with a 0.2°

oscillation angle and two seconds exposure time. The second data set (2.69 Å) was 

collected at beamline 22-BM using a wavelength of 1.0 Å and a MARCCD 225 detector. 

The crystal to detector distance was set to 350 mm and data were collected with an 
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oscillation angle of 0.5° and a 60 second exposure time. The diffraction images were 

processed with HKL2000 and scaled with SCALEPACK (106).

Crystal Structure Determination 

 The crystal structure of choline oxidase was solved using molecular replacement . 

Initial phases for model refinement were obtained by molecular replacement using the 

coordinates of the 1.9 Å resolution structure of glucose oxidase (PDB code 1CF3) as a 

search model (93). Glucose oxidase exhibits 26% sequence identity with choline oxidase.  

The search model was modified by analyzing the sequence alignment between choline 

oxidase and glucose oxidase. Unaligned portions of the sequence in glucose oxidase were 

deleted from the model and all non-identical residues to choline oxidase were mutated to 

alanine. All B-factors for the model were set at 20.0 Å2. Furthermore, all solvent, ligand, 

and FAD molecules were removed from the search model. Molecular replacement was 

performed using the program MOLREP (107) from the CCP4 suite of programs (108).

Cross rotation and translation searches were performed with data from 15.0-3.5 Å 

resolution and searching for two molecules in the asymmetric unit. Since at this point, the 

two possible space groups were either P43212 or P41212, molecular replacement was 

performed in both space groups. The best solution from MOLREP in each space group 

was then subjected to rigid body refinement with data from 50.0-1.86 Å resolution using 

CNS (109).  Space group P43212 gave interpretable electron density maps and was 

determined to be the correct space group at this point. The starting model at this point had 

an R-factor of 0.48 and R-free of 0.54. Multiple rounds of manual model rebuilding and 

positional and isotropic B-factor refinement were carried out with O (110) and 

REFMAC5 (111), respectively. Progress of the refinement was monitored by Rfree , which 
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was calculated using 5% of the reflections, and cross-validated, A weighted 2mFo-DFc

and mFo-DFc maps to evaluate the model and correct errors (112). The electron density 

maps obtained at this point were then vastly improved by using the PRIME & SWITCH 

phasing routine (113) from RESOLVE (114) . In order to carry out the map 

improvements with PRIME & SWITCH, phases calculated from the model were obtained 

using SIGMAA in CCP4 and were input as the starting phases into PRIME & SWITCH. 

The new maps obtained from this routine resulted in electron density maps that were used 

to correct errors in the backbone trace and to locate the positions of the amino acid side 

chains.

The location of the FAD was identified after several rounds of refinement and 

model building and was placed into the electron density.  Library files containing the 

topology and parameter files for the FAD were prepared using the Dundee PRODRG 

server (115). Initially, planar restraints were enforced on the FAD isoalloxazine ring 

throughout several rounds of refinement. When the overall R-factor decreased below 

0.30, water molecules were located with ARP/Waters (116), refined with REFMAC5, 

and manually inspected. A single DMSO molecule, an additive in the crystallization 

solution, was fit into electron density near the N5 position of the FAD isoalloxazine ring 

that indicated the presence of a small molecule and refined. For comparison, a sulfate 

molecule (a possible candidate from the crystallization solution) was also fit in this 

position and refined, but DMSO was deemed to fit the density better. The electron 

density for the FAD molecule clearly indicated a significant bend in the isoalloxazine 

ring at this point in the refinements. The library file for the FAD was adjusted with 

respect to planar restraints and atom hybridization as suggested by the electron density 
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features. The isoalloxazine ring was then manually adjusted to properly fit the pyrimidine 

ring into the electron density and planar restraints were removed with respect to the 

pyrimidine ring and sp
3 hybridization was conferred upon the C4a and C10a atoms. After 

refinement, the pyrimidine ring fit well into the electron density, but greater than 4.5 

difference features were observed in the mFo-DFc electron density maps near the C4a 

atom. At this point, three models were refined with different FAD models. In one model, 

the sp
3 C4a atom was bonded to a single oxygen atom (FAD-C4a-OH) and the model was 

refined after appropriate adjustment of the library files. Another model was analyzed in 

which the sp
3 C4a atom was bonded to a dioxygen adduct (FAD-C4a-O2

-) and then 

refined. A final model consisted of a water molecule placed in the positive difference 

density peak and refined. The FAD-C4a-O2
- model was selected as the best model that fit 

the electron density and was used for the completion of the model refinements. 

Occupancy refinements of the distal oxygen atom of the bound O2 were also performed 

and an occupancy of 0.5 was selected for this atom. To check for model bias, simulated 

annealing OMIT maps (109) were prepared in CNS as follows. The FAD and DMSO 

atoms were removed from the model and all residues within a 3.5  radius of His99 were 

selected for exclusion from the OMIT map calculation. Simulated annealing was carried 

out with a starting temperature of 1000 K and steps of 50 K with data from 50.0-1.86 Å. 

The 2mFo-DFc and mFo-DFc simulated annealing OMIT maps were calculated and 

analyzed with respect to the model. The final refinement of the model was then 

completed with REFMAC5. Structure validation of model geometry was carried out with 

PROCHECK (117, 118).
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Solvent exposed surface areas were calculated with a 1.4 Å probe radius with 

Swiss-PDB viewer (v3.7b2) or VEGA (http://www.ddl.unimi.it) . Secondary structure 

assignments were made using KSDSSP (119). Structural homologs in the Protein Data 

Bank were found using MSDfold . The rms differences between models was calculated 

with SSM (http://www.ebi.ac.uk/msd-serv/ssm) or Swiss-PDB viewer (v3.7b2). Structure 

figures were prepared using Swiss-PDBViewer (v3.7b2) and PovRay (v.3.5) or Pymol 

(DeLano Scientific LLC, Castro City, CA). 

Results

Crystal Structure Determination 

 The X-ray data collection and refinement statistics are listed in Tables 5.1 and 5.2. 

High quality X-ray data were obtained from two crystals of choline oxidase and the best 

crystals diffracted to a resolution of 1.86 Å using synchrotron radiation. Crystals that 

were screened on the home source did not exhibit any diffraction, likely due to the small 

dimensions of the crystals, but diffracted to high resolution at the synchrotron source. 

The diffraction data from the highest resolution structure are consistent with either space 

group P43212 or P41212 with unit cell dimensions of a = b = 84.4, c = 343.5 Å.

Matthew’s coefficient (120) and solvent-content calculations suggested two molecules 

per asymmetric unit (VM = 2.5 Å3 Da-1 , 50% solvent content).  The data set consists of 

381317 observations of 97546 unique reflections in the resolution range 50.0-1.86 Å. The 

overall completeness of 92.3% (63.2% in the highest resolution shell) and overall Rsym 

of 7.2% (31.5 % in the highest resolution shell) indicate the data are of good quality. A 

protein-protein BLAST search indicated that the protein with the highest % sequence 

identity that had an available crystal structure was glucose oxidase (PDB code: 1CF3) 
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(93). Although both proteins exhibited rather low % sequence identities when compared 

to each other (26%), molecular replacement was nevertheless successful in obtaining 

starting phases for the refinements. Molecular replacement using both possible space 

groups resulted in interpretable electron density only for the P43212 space group. The 

model was refined against the 1.86 Å resolution data which resulted in a final R-factor of 

0.161 and R-free of 0.202. The overall coordinate error of the model is 0.128 based on 

the R-factor and the correlation coefficient is 0.967.  Ramachandran analysis of the 

crystal structures showed that 89.4% of the residues are in the most favored region, 10% 

in the additionally allowed regions, 0.6% in the generously allowed regions, and 0.1% in 

the disallowed regions. Ala230 in the A chain was flagged as being in the disallowed 

region but the electron density maps indicate this residue fits well in the observed 

density.



132

Table 5.1  X-ray Diffraction Data Collection Statistics 

Crystal ID Crystal 1 Crystal 2 

X-ray Source SER-CAT SER-CAT 

Beamline 22-ID 22-ID 

Detector MARCCD 335 MARCCD 225 

X-ray Wavelength (Å) 1.0 1.0 

Resolution Range (Å)a 50-1.86 (1.91-1.86) 50-2.69 (2.76-2.69) 

Space group P43212 P43212

Unit Cell Dimensions (Å)   

     a = b = 84.4 84.4 

     c = 343.5 343.7 

Total Reflections 381317 196964 

Unique Reflections 97546 33722 

Multiplicity 3.9 (2.8) 5.8 (2.4) 

Completeness ( %) 92.3 (63.2) 94.2 (69.7) 

Rsym  (%)b 7.2 (31.5) 10.8 (27.1) 

I/( )Ic 17.7 (2.3) 15.6 (2.8) 

a Values for the highest resolution shell of data are given in parentheses. b Rsym (I) gives 
the average agreement between the independently measured intensities such as h i |Ii - I| 
/ h i I, where I is the mean intensity of the i observations of reflection h. c I/ (I) is the 
root-mean-square value of the intensity measurements divided by their estimated standard 
deviation.



133

Table 5.2 Refinement Statistics for Choline Oxidase 

Crystal ID Crystal 1 Crystal 2 

Resolution Range (Å) 50-1.86 50-2.69 

No. of Reflections 92403 31943 

No. of protein atoms 8171 8168 

No. of water molecules 960 152 

R-factor 0.161 0.157 

R-freea 0.202 0.219 

Average B-factors (Å2)   

Protein 22.5 25.5 

Water  32.6 17.5 

FAD (2) 17.4 20.4 

O2
- (2) 24.8 37.2 

DMSO (2) 40.0 44.1 

Rms deviations for ideal   

     Bond length (Å) 0.014 0.018 

     Bond angles (°) 1.5 1.7 

Correlation coefficient 0.967 0.954 

Estimated coordinate error  0.128 0.219 

a Calculated with 5% of the data. 
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Overall Structure Description 

 Overall, the X-ray structure reveals that choline oxidase crystallizes as a 

homodimer with approximate dimensions of 88 Å x 70 Å x 46 Å. The choline oxidase 

monomer contains 546 residues, however the last 19 residues in the C-terminal portion of 

the monomer were not visible in the electron density maps and thus were not included in 

the model. The lack of electron density for these residues suggests that the C-terminal 

portion of choline oxidase is disordered. The overall fold of choline oxidase resembles 

other members of the GMC family (83, 85, 87, 93) and adopts a two-domain topology 

similar to the bacterial flavoenzyme p-hydroxybenzoate hydroxylase or PHBH-fold (7) . 

A search of the Protein Data Bank reveals that the closest structural homolog is glucose 

oxidase. When the two monomeric structures are superimposed, they overlay with a rms 

difference of 1.75 Å over 477 common C  atoms. The two monomers of choline oxidase 

interact with each other in an anti-parallel fashion. The buried surface area at the 

interface of the two monomers is approximately 2429.6 Å2 which corresponds to 

approximately 13% of the total surface area of each monomer. The two monomers in the 

asymmetric unit are essentially structurally equivalent with rms deviation of only 0.23 Å 

over 527 common C  atoms when superimposed despite that non-crystallographic 

symmetry restraints were not applied during refinement. The monomeric structure 

consists of two domains, an FAD-binding domain and a substrate binding domain. The 

FAD-binding domain is formed primarily by residues 1-159, 201-311, and 464-527.  The 

domain consists of a six-stranded parallel -sheet that is flanked on one side by a three-

stranded anti-parallel -sheet and further surrounded by eight -helices. The substrate 

binding domain is formed primarily by residues 160-200 and 312-463. The topology of 
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the substrate binding domain consists of a distorted six-stranded anti-parallel -sheet

which forms the bottom of the choline oxidase active site and is flanked on the other side 

by three -helices which protrude into the bulk solvent. The dimerization contacts 

between the two monomers are rather limited. Indeed, examination of the dimer contacts 

reveals that the primary dimer contacts are located on the two edges of the dimer 

interface. The primary contacts involve interactions between charged residues Arg255-

Glu370 (3.2 Å), Asp72-Lys398 (4.1 Å), Asp250-Glu53 (4.3 Å), Arg255-Glu370 (3.2 Å), 

Asp358-Arg396 (2.4 Å), Arg363-Asp394 (4.2 Å), and Arg363-Asp397 (2.9 Å).  The 

middle portion of the dimer interface contains very few close contacts between subunits.   
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Figure 5.7. The three-dimensional structure of choline oxidase refined to 1.86 Å 
resolution. A) Choline oxidase is a homodimer with a molecular weight of 120 kDa. The 
enzyme consists of a FAD-binding and substrate-binding domain. The FAD is shown in 
CPK atoms with the C, N, and O atoms colored in gray, blue, and red, respectively. B) 
Another view of choline oxidase after a 90° rotation about the horizontal axis with 
respect to the orientation in A. The C  ribbon trace is colored with a gradient from the N-
terminal (blue) to the C-terminal (red) end. 
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The Flavin Binding Site 

 The high-resolution electron density maps obtained allow for a detailed view of 

the choline oxidase active site. The flavin molecule is very well buried within the protein 

and no parts of the molecule are visible from the molecular surface of the protein. 

Solvent-accessible surface area calculations indicate that 21.5 Å2 of a total surface area of 

1024.5 Å2 is solvent exposed for the FAD. The electron density clearly indicates that the 

FAD is covalently linked to the His99N 2 atom via the FADC8M atom of the isoalloxazine 

ring in contrast to previous mass spectrometry studies by other authors that identified 

His87 as the residue covalently attached to the FADC8M (56) . The most outstanding and 

surprising feature of the electron density however, is the observation that the flavin 

isoalloxazine ring is not planar as anticipated for oxidized flavin. However, the 

distortions also differ significantly from the structures of reduced flavins, which typically 

exhibit an approximately 150° angle along the N5-N10 axis defined by the 

dimethylbenzene and pyrimidine rings (7, 121, 122). An examination of the electron 

density indicates that although the coplanar dimethylbenzene and piperazine rings in 

choline oxidase are essentially flat, the plane of the pyrimidine ring is at an 

approximately 120° angle to the former plane. The pyrimidine ring is also significantly 

distorted from planarity and adopts a “half-boat” configuration. In this orientation, all 

atoms in the pyrmidine are in the same plane with the exception of C4a, which lies 

approximately 0.5 Å above the pyrimidine ring plane. Moreover, during the refinement of 

both structures a greater than 4 mFo-DFc positive difference peak associated with the 

C4a atom became apparent. These features all suggest that the C4a atom is sp3

hybridized; therefore, we concluded that a covalent adduct was present in the crystal. 
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Figure 5.8.  A view of the 2mFo-DFc (blue, contoured at 1 , 1.86 Å resolution) and mFo-
DFc (white, contoured at 3.0 , 1.86 Å resolution) electron-density maps for the FAD 
cofactor and surrounding residues during the course of structure refinement.  The C, N, 
O, and S atoms are colored in yellow, blue, red, and green, respectively. During the 
refinement process, it was observed that the FAD isoalloxazine ring adopts a distorted 
structure in which the pyrimidine ring is at an approximate angle of 120° to the coplanar 
dimethylbenzene and piperazine rings.  The mFo-DFc electron density maps indicate that 
a covalent linkage to the C4a atom is present. The electron density maps also indicate that 
the FAD is covalently linked to the protein via the His99 residue. 

 The crystallization conditions and materials do not include any reagents known to 

form a C4a adduct with FAD. On the other hand, the aerobic crystals do contain O2,

which is proposed to react with reduced flavins at the C4a position of the isoalloxazine 

ring (6). Therefore, we modeled an O2 molecule bound to the C4a atom. This model 
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refined well with REFMAC5 and did not yield any significant difference features (Figure 

5.9A). However, occupancy refinements and B-factor considerations suggest that the 

distal oxygen atom of the adduct may be partially disordered due to precession. As a 

further and independent check, we used simulated annealing OMIT maps as implemented 

in CNS to refine a model from which the FAD and the atoms associated with C4a were 

omitted. The resulting mFo-DFc and 2mFo-DFc electron density maps calculated with 

reflections between 50 and 1.86 Å resolution support the presence of an O2 species bound 

to C4a (Figure 5.10). Therefore, we concluded that the FAD in choline oxidase is most 

likely a C4a adduct. The quality of the refined atomic model of choline oxidase and the 

fit to the observed electron density reported here is comparable to that of the recently 

reported oxygen complexes of cytochrome P450cam and naphthalene dioxygenase (123,

124). We also refined several additional models with REFMAC5 to check for additional 

possibilities. One alternative model included a water molecule centered in the difference 

peak and unrestrained with respect to the FAD and the C4a atom. Upon convergence of 

the refinement of this model, the water molecule was only 1.6 Å from the C4a atom and 

there was continuous electron density between the two atoms (Figure 5.9C). However, 

since there is no bond present between the C4a and the solvent, it does not satisfy the 

observed sp3 hybridization of the flavin C4a atom. We also refined a model consisting of 

a covalent C4a-OH moiety, which refined to a 1.45 Å bond distance (Figure 5.9B). 

Although this model fits the electron density well, it is difficult to rationalize because 

during enzymatic turnover with choline or betaine aldehyde as substrate, a 1:1 

stoichiometry of H2O2 produced per O2 consumed is observed. This was established here 

by determining the effect of catalase on the rate of O2 consumption with betaine aldehyde 
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or choline as substrate for choline oxidase at pH 7 and 35° C. In the presence of 5,000 

units catalase, the rate of O2 consumption decreased from 16.8 ± 0.2 s-1 to 8.2 ± 0.5 s-1

with 10 mM choline, consistent with a 1:1 stoichiometry of O2 consumed per H2O2

formed. Similiarly, catalase decreased the rate of O2 consumpiton from 15.4 ± 0.7 s-1 to 

7.4 ± 0.5 s-1 when 5 mM betaine aldehyde was used as a substrate.
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Figure 5.9. Approximately orthogonal views of the final 1.86 Å 2mFo-DFc electron 
density maps (contoured at 1 ) for the FAD isoalloxazine ring in choline oxidase and 
comparison to different models of the FAD-C4a-adduct. The C, N, O, and P atoms are 
colored in gray, blue, red, and yellow, respectively. In panel A) the FAD-C4a-O2

- adduct 
is superimposed on the electron density maps B) A representation of the fit of the FAD-
C4a-OH model to the density and C) the model with a water molecule placed in the 
residual density protruding from C4a. 
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Figure 5.10. Approximately orthogonal views of the 1.86 Å electron density maps for the 
FAD isoalloxazine ring in choline oxidase. The mFo-DFc difference map (contoured at 
+3.5 ) is shown in gold and the 2mFo-DFc map (contoured at 1 ) is shown in cyan. The 
maps are simulated-annealing OMIT maps calculated in CNS with the FAD atoms 
omitted during map calculations. For comparison, the refined atomic model is shown 
superimposed on the maps with C, N, and O atoms colored in gray, blue, and red, 
respectively.

In the 1.86 Å resolution structure of choline oxidase, the refined bond length 

between C4a and the proximal O atom (Op) converged to a distance of 1.39 Å. The O-O 

bond distance (Op-Od) is approximately 1.40 Å and the C4a-O-O bond angle is 110.4°.

Although the estimated coordinate error of the model is approximately 0.1 Å, these 

parameters agree well with those determined by quantum mechanical calculations for the 

model FAD-C4a-OOH intermediate in p-hydroxybenzoate 3-hydroxylase (25, 125).

Thus, the refined model of choline oxidase has reasonable geometry for sp3 hybridization 

and the appropriate bond lengths and angles for a C4a-oxygen complex (Table 5.3). 
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Table 5.3. Selected Bond Lengths and Angles in FAD Isoalloxazine Rings

Enzyme CHOa CHO CHO pHBA-3Hb

Model FAD-C4a-H2O FAD-C4a-OH FAD-C4a-OO- FAD-C4a-

OOH

Bond Distance (Å) 

Op-Od
c N.A.d N.A. 1.38 1.28 - 1.44 

C4a-Op 1.63 1.45 1.40 1.43 - 1.48 

C10a-C4a 1.47 1.47 1.46 N.R.e

C4-C4a 1.55 1.59 1.55 N.R. 

C4a-N5 1.51 1.47 1.48 N.R. 

Bond Angle (°) 

C4a-Op-Od N.A. N.A. 113.7 108.9 - 113.3 

C4-C4a-Op 134.2 123.5 115.4 N.R. 

C10a-C4a-Op 104.1 107.4 108.6 102.2 - 103.2  

(108.5 - 109.9) 

N5-C4a-C4 123.5 120.8 122.2 N.R. 

N1-C10a-

C4a

108.2 109.8 108.4 N.R. 

N5-C4a-Op 88.9 100.7 105.2 N.R. 

C10a-N10-

N1

173.7 173.7 173.6 N.R. 

C4-C4a-C6 125.2 125.2 124.3 N.R. 
a Choline Oxidase (CHO). b p-hydroxybenzoate 3-hydroxylase . cOp is proximal 

oxygen and Od is the distal oxygen. d Not applicable. e Not reported 
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 Several important interactions are observed between the configuration of the 

isoalloxazine ring and the protein structure. As shown in Figure 5.11, the pyrimidine ring 

is involved in a network of hydrogen bonds to the backbone atoms of the protein. This 

includes hydrogen bonding or electrostatic interactions with the backbone atoms of 

Asn100, Cys102, Ile103, Pro511, and Asn512. Moreover, if the FAD were planar, then 

the edge of the pyrimidine ring would be adjacent to the side chains of Asn510 and 

Ile103. Indeed, the location of Ile103, a hydrophobic residue, adjacent to the hydrophilic 

pyrimidine ring is an unusual feature of choline oxidase. Nearly all of the backbone 

atoms between Ile103 and His99, the site of FAD covalent attachment, are involved in 

contacts with the isoalloxazine ring. Therefore, it appears that the FAD isoalloxazine ring 

is constrained by the covalent linkage at His99 and the proximity of Ile103 to the 

pyrimidine ring, which together define the borders of the cavity for the cofactor. 

Additionally, there are two -helix dipoles that interact with the flavin in each monomer. 

The -helix comprised of residues 23-34 points the N-terminal region directly at the 

pyrophosphate moiety of the FAD while the N-terminal of the -helix comprising 

residues 512-527 points directly at the pyrimidine of the isoalloxazine ring. 
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Figure 5.11. A divergent stereo view of the environment surrounding the FAD 
isoalloxazine ring in choline oxidase. The hydrogen bonding interactions are illustrated 
by green dashed lines. The bonds for the isoalloxazine ring and DMSO are shown in 
orange and green, respectively. The C, N, O, and S atoms of the amino acids are colored 
in gray, blue, red, and yellow, respectively. 

Substrate Binding Site 

 A common feature of the structurally characterized members of the GMC family 

members is a loop that covers the active site and forms a lid over the putative substrate 

binding site (89, 126-128). In choline oxidase, this loop region is composed of residues 

64-95. Examination of the identity and orientation of the residues that comprise the loop 

indicate that the loop is amphiphatic in nature. Hydrophobic residues are directed towards 

the interior of the protein and the more hydrophilic residues are located on the external 

surface of the molecule. The loop contains eight charged residues all of which protrude 

away from the interior of the surface of the protein. The charged residues are primarily 

negatively charged with the exception of three positively charged residues. While the 

bottom portion of the loop is shielded from bulk solvent by the second monomer of the 

dimer, residues 74-85 protrude into the bulk solvent. Analysis of the average B-factors of 
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the residues comprising the loop indicate an average B-factor of 20.0 Å2 for all residues 

which suggests that the loop is rigid in the crystal structure. The top portion of the loop 

that protrudes into the bulk solvent reveals two negatively charged residues, Glu76 and 

Glu79 whose side chains extend into the solvent.

Figure 5.12.  A view of the monomeric structure of choline oxidase high-lighting the loop 
region (yellow) that is comprised of residues 64-95. Additionally, the  FAD-binding 
(green) and the substrate-binding (cyan) domains are shown. The structurally defined 
members of the GMC family all share a loop region that covers the substrate-binding 
domain and is proposed to act as a lid covering the substrate binding site. In choline 
oxidase, the crystal structure reveals that this loop is rigid as defined by the average B-
factor of 20 Å2 and is part of the FAD-binding domain. The loop is amphiphatic in nature 
with charged residues protruding into the solvent. The negatively charged residues are 
colored in red and positively charged ones in blue. A portion of the residues comprising 
the substrate-binding domain are illustrated in stick figures with the C, N, and O atoms 
colored in gray, blue, and red, respectively. The FAD atom is shown in CPK atoms. 
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 Analysis of the molecular surface of the protein reveals a cavity of an 

approximate volume of 123 Å3 that is located in the substrate binding domain on the re-

face of the flavin isoalloxazine ring and is sealed of from the exterior of the protein. The 

cavity is surrounded primarily by hydrophobic residues and a single charged residue that 

include Trp61, Glu312, Trp331, His351, Phe357, Val464, Tyr465, and His466. Indeed, 

an analysis of the location of the residues surrounding the cavity reveal that the 

orientation of the residues form a hydrophobic, aromatic cage around the cavity that is 

bordered by the flavin isoalloxazine ring on the bottom and is topped by a negatively 

charged Glu312 which points directly towards the cavity. There are no ordered solvent 

molecules within the cavity with the exception of a neighboring DMSO molecule that is 

located within close proximity to the N5 atom of the isoalloxazine ring (2.7 Å from the 

DMSO oxygen to N5) and two water molecules that are bound to the Glu312 side chain. 

Two histidine residues, His466 and His351 border the bottom portion of the cavity and 

the side chains of both histidines point directly at the cavity. The His466N 2 atom is 

involved in hydrogen bonding interactions with the flavin isoalloxazine ring N1 (3.1 Å)

while His351N 2 is hydrogen bonded to Asn510N 2 (3.0 Å). Another interesting feature of 

the substrate binding domain that is within close proximity to the cavity is a network of 

five histidine residues that are within close contact and form a path to the exterior surface 

of the protein.  His466 is interestingly in close contacts with a neighboring His310 

residue which in turn is within close proximity to a His381 and His506. His506 and 

His381 are located close to the solvent exposed molecular surface. The orientation and 

proximity of these residues to each other suggest that these residues may potentially form 

a proton relay system to the active site. 
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Figure 5.13. A representation of the well-defined cavity located in the substrate-binding 
domain of choline oxidase. The cavity is surrounded by hydrophobic residues that 
include Trp61, Trp331, Phe357, and Val464. The cavity is bordered by the FAD 
isoalloxazine ring on one end and is topped by a negatively charged Glu312 residue. The 
cavity volume of 123 Å3 is of sufficient size to accommodate a choline molecule (shown 
in magenta). 

 The electron density maps furthermore indicated a sphere of electron density with 

greater than 4.5  positive difference features which was located approximately 4.0 Å

from the N5 atom of the isoalloxazine ring. The shape and size of the electron density 

clearly indicated that this species was not a water molecule. Thus, it was assumed that the 

density may correspond to a species from reagents in the crystallization solution. Indeed, 

the crystallization solution contains both DMSO and ammonium sulfate (which can 

contribute a sulfate anion). Such solvent molecules are often found to be bound within 

the solvent channels of proteins thus we examined the possibility that either species could 

be located at this position. Analysis of the fit of DMSO and sulfate ion into the electron 

density revealed that DMSO fits better into the density (Figure 5.14). The methyl groups 

of DMSO point towards Val464 (3.7 Å) and His351 (3.5 Å). The oxygen atom of DMSO 
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is within hydrogen bonding distance with Ser101O  (2.7 Å), which may contribute to the 

binding of the molecule. The average B-factor of 40.0 Å2 for the refined DMSO molecule 

suggests that this molecule is not tightly bound. We further examined the possibility that 

DMSO might be an inhibitor of the enzyme as it is bound near the FAD in the substrate-

binding domain. However, experiments determined that although DMSO showed 

competitive inhibition patterns, the inhibition constant was determined to be 462 ± 4 mM 

(personal communication, Fan, Fan & Gadda, Giovanni). 

Figure 5.14.  A view of the 2mFo-DFc electron density for the bound DMSO molecule 
and surrounding residues in the active site of choline oxidase. The oxygen atom of 
DMSO is within 2.7 Å of the N5 atom of the isoalloxazine ring of the FAD. The DMSO 
molecule binds at the bottom of the cavity located in the active site. 

 While it has been proposed that the loop region (residues 64-95) acts as a lid 

which regulates substrate entry into the substrate binding site of the GMC family 

members (126, 128), the structure of choline oxidase also reveals a channel which begins 

from the exterior of the protein and extends toward the defined cavity located in the 
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active site (Figure 5.15 –5.16). The connectivity of the channel to the cavity is broken by 

the sulfur of the Met62 side chain and the terminal portion of the channel is bordered by 

Phe357, Phe252, Pro356, and Trp330. The molecular surface of the protein shows an 

invagination that protrudes from the bulk solvent into the protein interior towards the 

active site cavity. Met62 blocks the channel from connecting with the cavity via its sulfur 

atom and the surface analysis shows a solvent exposed Glu7 residue from the second 

subunit in the dimer that borders the “entrance” of the channel. The negative charge of 

this residue and its close location to the entrance of the channel suggests that the negative 

charge of Glu7 may attract the positive charge of the trimethylammonium group if 

choline enters the active site through this channel. If choline can enter the active site 

through this channel, it would require a reorientation of the Met62 side chain to allow for 

access to the interior cavity.  
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Figure 5.15 A view of the molecular surface of choline oxidase dimer (gray) with the 
solvent channel that protrudes into the active site highlighted in orange.
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Figure 5.16.  A representation of the solvent channel that protrudes toward the cavity in 
the substrate-binding domain. The channel is blocked from connecting to the cavity by 
the side chain of Met62. The negatively charged Glu312 residue is colored in red appears 
to play an important structural role by providing an ionic interaction with the 
trimethylammonium headgroup of the choline molecule. The C, N, O, and S atoms are 
colored in gray, blue, red, and orange, respectively. 

Discussion

Identification of Putative Substrate Binding Site 

 The determination of the crystal structure of choline oxidase provides much 

needed structural information to accompany the many ongoing mechanistic and 

biochemical studies of the enzyme (55, 59, 77, 103, 104). A major question that needs to 

be answered to better understand the chemical mechanism of choline oxidase is the 

identity of amino acid residues involved in substrate binding and catalysis. The high-

resolution electron density maps have allowed us to identify the putative binding site for 

the choline substrate. Previous kinetic studies performed on choline oxidase with choline 
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analogs indicate that the positively charged trimethylammonium moiety is critically 

important for the binding of ligands at the active site of choline oxidase and is a major 

determinant that defines the specificity of the enzyme for the substrate (104).

Additionally, kinetic data have indicated that the positively charged amino headgroup of 

choline plays an important role in the oxidation of the enzyme-bound reduced flavin 

during catalysis of choline oxidase. Inhibition data have also shown that the binding 

affinity of ligands is not critically affected by the nature of the side chain attached to the 

trimethylammonium moiety of the ligand (104). The analysis of the molecular surface of 

the crystal structure of choline oxidase reveals a cavity on the re-face of the flavin 

isoalloxazine ring with an approximate volume of 123 Å3. The cavity is enclosed mainly 

by hydrophobic residues that form a hydrophobic cage. Additionally, a negatively 

charged Glu312 residue protrudes toward the cavity. The volume of the cavity is of 

sufficient size to accommodate a choline molecule (93 Å3). In order to gain insights 

between the enzyme and substrate interactions, we took advantage of the location and 

dimensions of the cavity and manually docked choline into the cavity. Thus, the 

identification of the cavity and the modeled choline provide structural insights into the 

putative binding mode of choline substrate and the residues that may be responsible for 

binding and involved in catalysis.

 The docked choline molecule is oriented in a manner in which the positively 

charged trimethylammonium headgroup is positioned approximately 3.1 Å from the 

negatively charged side chain residue of Glu312. Structural data based on residues that 

surround the cavity indicate that the residues that most likely are involved in binding of 

the choline substrate are Trp61, Trp331, His351, Phe357, Val464, and Glu312. The 
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active site cavity suggests that the positively charged headgroup of choline points 

towards the negatively charge Glu312 residue. Glu312 is thus hypothesized to play an 

important structural role by forming an ionic pair with the positively charged 

trimethylammonium moiety and thereby properly anchoring the choline molecule in 

position for efficient catalysis. Recent unpublished data show that the Glu312Asp mutant 

exhibits lower activity than the wild type enzyme, but the Glu312Ala mutant is 

completely devoid of activity even when the concentration of choline is 20 times larger 

than that commonly used to saturate the wild-type enzyme. (personal communication, 

Quaye, Osbourne & Gadda, Giovanni). Additionally, the trimethylammonium moiety is 

surrounded by three hydrophobic residues with aromatic side chains (Trp61, Trp331, and 

Phe357).  A hydrophobic Val464 also borders the trimethylammonium moiety. The 

aromatic residues are hypothesized to further facilitate substrate binding through cation-

interactions between the aromatic side chains and the positive charge of choline. Thus, 

these interactions are potentially critical in properly positioning choline for catalysis. X-

ray crystallographic and site-directed mutagenesis studies on phospholipase C have 

demonstrated the importance of three residues for substrate specificity in the enzyme’s 

choline binding site (129). These studies demonstrated that Glu4, Tyr56, and Phe66 were 

important residues in providing a binding site for an inhibitor similar to 

phosphatidylcholine through electrostatic and cation-  interactions. Additional structural 

studies on the choline binding site in acetylcholinesterase (130, 131) and 

CTP:phosphocholine cytidylyltransferase (132) have also demonstrated the importance of 

cation-  interactions in stabilization of the trimethylammonium moiety. 
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Figure 5.17.  A divergent stereoview of the active site of choline oxidase with manually 
docked choline. The choline molecule was docked into the active site cavity in order to 
obtain structural insights into the putative residues involved in substrate binding and 
catalysis. The bonds of the choline molecule are colored in green and the bonds of the 
FAD molecule are colored in orange. The C, N, and O atoms are colored in gray, red, and 
blue, respectively. 

 We further used the location of the bound DMSO molecule to model the position 

the hydroxyl moiety of the choline molecule in the cavity. Two histidine residues, His466 

and His351 are within close proximity to the hydroxyl moiety of the modeled choline 

substrate. In our model, His351 is in closest proximity to the hydroxyl group 

(approximately 3.3 Å). We positioned this portion of the molecule towards His351 based 

on biochemical data from studies on a mutant isoform of choline oxidase in which 

His466, which is conserved among the GMC family members, was changed into an 

alanine (59). The conserved residue has been proposed to be the catalytic base in the 

GMC family. This notion is based on earlier mechanistic studies on cholesterol oxidase, 

cellobiose dehydrogenase, and glucose oxidase that suggested that a histidine residue 
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which is fully conserved among the GMC family might act as the specific base that 

participates in the oxidation of the alcohol substrate.  However, the determination of the 

X-ray crystal structure of unliganded cholesterol oxidase at sub-atomic resolution 

revealed that the N 2 position of His447 in cholesterol oxidase is protonated (88, 133). 

Thus, this finding raises questions on the catalytic role of the conserved histidine residue 

in the GMC family. The crystal structure of choline oxidase reveals that His351 and 

His466 are the only residues that are suitably located in the active site of the enzyme with 

the ability to act as a catalytic base in the oxidation of choline. Biochemical and 

mechanistic data on a choline oxidase His466Ala mutant suggest that His466 does not 

participate in the oxidative-half reaction and is likely not the base that abstracts the 

hydroxyl proton of choline. The enzymatic activity of this mutant is furthermore partially 

rescued in the presence of exogenous imidazolium but not imidazole (59). Based on the 

biochemical data, we hypothesize that, in choline oxidase, His351 is most likely the 

residue that acts as the general base that initiates the oxidation of choline and the general 

acid that participates in the reduction of O2. In our model of docked choline, His351 is 

located approximately 3.3 Å from the choline hydroxyl group. Thus the new structural 

data that reveal the location of His351 is in close proximity to the choline binding site 

and the combination of biochemical data from mechanistic studies on the His466Ala 

mutant provide strong evidence that suggest His351 may be the catalytic base in choline 

oxidase. The crystallographic data have thus prompted our collaborators to further study 

the role of His351 in the reaction mechanism which is currently in progress. Additionally, 

in lieu of the new structural and biochemical data, it is proposed that His466 may play an 

important role in stabilization of the alkoxide intermediate during the oxidation of choline 
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and also influence the polarity of the active site.  Indeed, studies on the His466Ala 

mutant have demonstrated that a significant contribution to the electrophilicity of the 

FAD cofactor is contributed by His466 (59). In the crystal structure of choline oxidase, 

His466 is involved in a direct interaction with the N1 position of the flavin cofactor via 

the N 2 locus and thus may influence the flavin microenvironment via this interaction. 

The polarity of the active site is essential for efficient proton transfer of the hydroxyl 

proton from the alcohol substrate to the active site proton acceptor. Data from studies on 

the His466Ala mutant also suggest that the His466 residue is important for regulating the 

reactivity of the catalytic base that accepts the hydroxyl proton of the substrate for 

efficient catalysis (59).  Furthermore, the combination of structural and biochemical data 

available now with respect to identification of the putative choline binding site should 

provide the groundwork for investigations aimed at the development of specific inhibitors 

targeted at choline oxidase and glycine betaine synthesis. The development of therapeutic 

agents that inhibit glycine betaine biosynthesis could potentially render a number of 

human pathogens more susceptible to conventional treatments. 

The FAD in Choline Oxidase 

 The highly unusual structure of the flavin isoalloxazine ring in choline oxidase 

raises several questions. The most outstanding question regards the chemical process 

responsible for the distortion of the flavin isoalloxazine ring and the stability of the 

structure to allow detection by X-ray crystallography. The electron density maps clearly 

indicate a significant distortion of the pyrimidine ring from planarity and additionally 

identify the His99 residue as the residue that covalently links the FAD to the protein. The 

distortion from planarity is contrary to the flat, planar geometry expected for the 
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isoalloxazine ring in oxidized FAD but it also significantly differs from the structures of 

reduced flavins which adopt a bend of approximately 30° along the N5-N10 axis. The 

presence of a C4a-adduct which we have modeled as a dioxygen atom is also significant 

in that to our knowledge, this is only the third C4a-adduct crystal structure described for 

any flavoprotein. For example, trans-2-phenylcyclopropylamine forms a FAD-C4a 

adduct in human monoamine oxidase B (MAO-B), an outer mitochondrial membrane-

bound enzyme (39). The other complex was observed as a Cys-S-C4a FMN adduct in the 

LOV1 domains of the blue-light photoreceptors responsible for phototropism in seed 

plants. Although the flavin with MAO-B exhibits distortions in the isoalloxazine ring, the 

distortions observed in the choline oxidase structure are much more significant.  Reduced 

flavin-adducts with covalent ligands attached at the N5 position also affect the distortion 

of the isoalloxazine ring in MAO-B (39).

 We propose that the crystals of choline oxidase formed the FAD-C4a-O2
- in vitro

in a two-step process (Figure 5.18). The cryogenic data collection conditions and high 

brilliance synchrotron x-ray beam are known to reduce oxidized flavoproteins and 

metalloproteins (134, 135). Since the FAD in choline oxidase has a very high redox 

potential (~130 mV), the thermodynamic driving force is for reduction of the FAD by 

either one or two electrons (95). The one-electron reduced flavin semiquinone state of 

choline oxidase can be formed aerobically and is fully stable over prolonged times in the 

presence of O2 even after removal of reducing power (58, 95). Consequently, it is likely 

that the enzyme-bound FAD is fully reduced by two electrons in the X-ray beam. After 

reduction of the flavin, we propose that O2 from within the aerobic crystal matrix diffuses 

to the C4a position of the reduced FAD, in a process similar to that documented at low 
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temperature crystals for myoglobin-CO photodissociated complexes (136-138). Indeed, 

geminate recombination and even ligand exchange of diatomic ligands have been 

demonstrated by spectroscopic methods at temperatures as low as 4 K (139-144). Once 

the choline oxidase FAD-C4a-O2
- complex is formed, it does not release H2O2 because 

the cryogenic X-ray data collection methods do not establish the appropriate proton 

inventory on the surrounding residues.

 We have also compared the refined coordinates of choline oxidase with Density 

Functional Theory (B3LYP/6-31G) calculations for a further analysis of the electronic 

structure of the FAD observed in the crystal structure. Dr. Rajeev Prabhakar of Prof. 

Keiji Morokumo’s group at Emory University is currently performing the calculations. A 

variety of models are currently being studied by the calculations. As shown in Figure 5.9, 

the two possibilities for the C4a-adduct indicate a choice between the FAD-C4a-O2(H)

and the FAD-C4a-O(H) models. Calculations were performed with the FAD-C4a-OH 

model in the gas-phase. Upon optimization, the FAD-C4a-O(H) model with a two 

electron-reduced flavin refined into a planar structure and indicate an energetic cost of 

approximately 73 kcal/mol to achieve a bent structure in the flavin (Figure 5.19). 

Similiarly, the FAD-C4a-O2(H) model with a two electron reduced flavin optimized into 

a planar structure (-82 kcal/mol) (Figure 5.20). These results clearly indicate the 

preference of the flavin to adopt a planar conformation in the gas-phase with a very large 

energetic cost to achieve the bent conformation observed in the crystal structure. 

However, DFT calculations performed when the protein residues around the flavin are 

included indicate very similar structures between what is observed in the crystal structure 

and the structure obtained by DFT calculations. A comparison of the bond angles 
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between experimental and theoretically calculated values show strikingly similar results.  

For example, the experimental values for the N5-C10a-N1 bond angle is 115.8° and 

108.8° for the N5-C4a-C4 bond angle. In comparison, the calculated values for the same 

bonds are 121.2° and 113.6°, respectively (Figure 5.21). Preliminary calculations with the 

FAD C4a-O2(H) adduct with surrounding protein residues indicate that after DFT 

calculations, the O-O bond is cleaved resulting in the formation of a C4a-O double bond 

that results in cleavage of the flavin ring. Thus, DFT calculations currently suggest that 

the FAD C4a-adduct favors OH as the covalently bound ligand. However, for this step to 

occur, it would require the presence of a nucleophile to attack the dioxygen adduct in 

order to form the FAD C4a-OH adduct. The identity of such a nucleophile in the choline 

oxidase crystal is not known, but there have been reports in the literature in which 

dimethylsulfide can be hydroxylated to form dimethylsulfoxide (145). Thus, if 

dimethylsulfide was indeed present, it could have been hydroxylated which would 

explain the presence of the bound DMSO molecule. However, the DMSO used in the 

crystallization conditions is of 99.9% purity.  Additional calculations with the FAD-C4a-

O2(H) adduct are further being conducted at this moment to further analyze the adduct 

structure.
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Figure 5.18.  The proposed reaction mechanism involved in the generation of the FAD-
C4a-adduct in the crystal of choline oxidase initiated by the synchrotron X-rays. 
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Figure 5.19. Gas-phase DFT calculations (B2LYP/6-31G) using the FAD C4a-O2
- model 

with a two-electron reduced flavin result in a planar flavin molecule after optimization. 
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Figure 5.20. Gas-phase DFT calculations (B2LYP/6-31G) using the FAD C4a-OH model 
with a two-electron reduced flavin result in a planar FAD C4a-OH model after 
optimization. 
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Figure 5.21.  A comparison of the enzyme-bound FAD C4a-O2
- adduct from the X-ray 

structure (left) and the enzyme-bound FAD C4a-OH model (right) obtained after DFT 
calculations with the protein residues included in the calculations indicate similar bond 
angles for the pyrimidine ring between experimental and calculated values. Gas-phase 
DFT calculations indicate that the FAD-adduct optimizes with a planar flavin but when 
DFT calculations are performed with the protein environment similar geometry to the X-
ray structure is obtained. 

Correlation of the Structure to the Proposed Reaction Mechanism 

 The combination of the available crystal structure of choline oxidase, mechanistic 

studies, and site-directed mutagenesis has now allowed for a more detailed examination 

of the catalytic mechanism of choline oxidase. As described earlier in the introduction 

section, the three leading proposals for the activation of unpolarized alcohols by the 

GMC family of enzymes involve a concerted hydride transfer mechanism, asynchronous 

hydride transfer mechanism, and an oxygen radical mechanism. Results from mechanistic 
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investigations on choline oxidase with deuterated substrate and solvent by Fan and Gadda 

(77) indicate that the chemical steps are fully rate limiting for the overall turnover of 

choline oxidase. The oxidation of choline by choline oxidase has been shown to occur 

through the formation of an alkoxide species resulting from the removal of the substrate 

hydroxyl proton occurring before the hydride transfer to the flavin. Evidence for such a 

mechanism, in which the choline alkoxide proton is not in flight in the transition state for 

CH bond cleavage, comes from the substrate and deuterium kinetic isotope effects 

determined on the rate of reduction of the flavin by choline. The data show a substrate 

isotope effect of ~9 and a solvent isotope effect of unity which rules out a concerted 

hydride transfer mechanism in which both the proton and the hydride are concomitantly 

in flight in the transition state (77). The alternative mechanism, in which a single electron 

is transferred to the flavin concomitantly with the abstraction of the hydroxyl proton 

before hydrogen transfer to the flavin, has also been determined to be unlikely. Such 

evidence is supported by observations that such a mechanism would result in the 

accumulation of flavin radical species during turnover. However, it has been 

demonstrated that the enzyme-bound flavin is reduced by choline directly to the 

hydroquinone state without formation of a detectable flavin semiquinone species (58, 95).

Furthermore, previous studies have shown that the semiquinone in choline oxidase is 

catalytically inert, thereby providing indirect evidence against a radical mechanism (95).

 Thus, by taking into account data that suggest that substrate oxidation by choline 

oxidase is via a base-initiated hydride transfer of the substrate to the N5 position of the 

flavin isoalloxazine ring (77) and the determination that the pKa value of the catalytic 

base is 7.5 (95), an emerging chemical mechanism for choline oxidase can be described 
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taking into account both mechanistic and structural data. The X-ray crystal structure 

suggests that His351 is the catalytic base rather than His466, which is in agreement with 

the biochemical and mechanistic study of the His466Ala mutant enzyme. The pH-

dependent studies on His466Ala demonstrated the presence of a catalytic base with a 

shifted pKa of 9.0, suggesting that His466 affects the polarity of the active site 

environment and the flavin micro-environment rather than acting as the catalytic base 

(59). The structural data now available provide further evidence that that His466 residue 

plays an important role in the stabilization of the alkoxide intermediate during catalysis. 

It is positioned appropriately to play a stabilizing role of the alkoxide intermediate as 

indicated by the modeled choline.  Furthermore, Asn512 may also play an important role 

in influencing the redox potential of the FAD and the active site environment as it forms 

the N-terminal portion of the -helix dipole that points at the pyrimidine of the 

isoalloxazine ring. Indeed, it has been demonstrated in cholesterol oxidase that an Asn 

residue is important in creating an electrostatic environment around the isoalloxazine ring 

that favors reduction of FAD by unactivated alcohols (146).

 The combination of structural and mechanistic studies suggest a chemical 

mechanism for choline oxidase in which an asynchronous hydride transfer mechanism is 

most likely for choline oxidase. In the reaction mechanism, we propose that His351 is 

most likely the active site base that abstracts the hydroxyl proton from the alcohol 

substrate and to form an alkoxide intermediate which is stabilized by electrostatic 

interactions with the imidazolium of His466. This step is then followed by a hydride 

transfer from the -carbon of the activated alcohol to the N5 atom in the flavin 

isoalloxazine ring resulting in the formation of reduced flavin and betaine aldehyde. 
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Indeed, in our structure with modeled choline in the active site, the distance between the 

-carbon in choline and the FAD N5 is approximately 4 Å. A combination of 

electrostatic interactions between the choline headgroup and Glu312 along with cation-

interactions are proposed to be key interactions that properly position the -carbon of 

choline to allow for efficient hydride transfer to the flavin N5 position.  In the subsequent 

oxidative half-reaction, two electrons are transferred from the reduced flavin to O2. The 

final delivery of two protons from the catalytic base, His351, and the FAD N5 atom 

yields oxidized FAD and H2O2, which readily dissociates from the enzyme active site. 

Enzymatic turnover is then completed with a second oxidation reaction in which the 

enzyme bound aldehyde is oxidized to glycine betaine, although this reaction has not 

been mechanistically characterized yet. 



168

N

N

NH

N O

O

RN

N

 -

H

H
ON

N

N

H466

H

H

H

N

N

NH

N O

O

RN

N

H

H
ON

N

N

H466

H

H

N

N

NH

N O

O

RN

N

H

H
ON

N

N

H466

H

H

N

N

NH

N O

O

R

H

H

ON

N

N

H466

H

H

N

N

H351
: NH

N

H351

NH

N

H351

NH

N

H351

H99 H99

H99

N

N
H99

Figure 5.19 . A proposed structural role for His351 in the asynchronous hydride transfer 
mechanism. His351 is proposed to act as the active site base with a pKa of 7.5 by 
abstracting the hydroxyl proton from choline. His466 is proposed to play an important 
structural role by influencing the electrophilicity of the flavin cofactor and stabilizing the 
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Conclusion

The determination of the crystal structure of choline oxidase at 1.86 Å resolution 

has provided structural information to aide in the study of the catalytic mechanism of the 

enzyme. While ongoing studies of the chemical mechanism of choline oxidase have 

proved fruitful in gleaning information regarding the catalytic mechanism, the recently 

determined crystal structure has allowed for structural insights to complement the many 

mechanistic studies performed on the enzyme. The structure determination has allowed 

for the identification of the putative substrate-binding site and the residues that may be 

directly involved in catalysis. The active site architecture has also revealed that His351 is 

most likely the active site base that initiates the removal of the hydroxyl proton from the 

unpolarized alcohol substrate. His466, which is conserved among the GMC family 

members, appears to play an important role in influencing the polarity of the flavin 

microenvironment and stabilizing the alkoxide intermediate during catalysis. The x-ray 

crystal structure indicates that a covalent adduct is present on the C4a position of the 

flavin which according to DFT calculations is most likely favored to be a FAD C4a-OH 

adduct. Further theoretical calculations are underway to study the flavin structure 

observed in the crystal structure. The determination of the structure of choline oxidase 

thereby provides many signigicant insights that will guide the further characterization of 

the overall catalytic mechanism of choline oxidase. 
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