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SUMMARYDespite recent advances in statistics, artificial neural network theory, andmachine learning, nonlinear function estimation in high-dimensional space remainsa nontrivial problem. As the response surface becomes more complicated and thedimensions of the input data increase, the dreaded "curse of dimensionality" takeshold, rendering the best of function approximation methods ineffective. This thesistakes a novel approach to solving the high-dimensional function estimation problem.In this work, we propose and fully develop two distinct parametric projection pur-suit learning networks with wide-ranging applicability. Included in this work is adiscussion of the choice of basis functions to be used in these networks as well as adescription of the optimization schemes utilized to find the parameters that enableeach network to best approximate a response surface. The essence of these new mod-eling methodologies is to approximate functions via the superposition of a series ofpiecewise one-dimensional models that are fit to specific directions, called projectiondirections. The first of these algorithms is designed to be implemented on functionswith a potential unbounded domain for the projection directions. The second is de-signed to be used on functions consisting of projections with limited coupling, whichis often the case in most real-world applications. The key to the effectiveness of eachmodel lies in its ability to find efficient projections for reducing the dimensionality ofthe input space to best fit an underlying response surface. Moreover, each methodis capable of effectively selecting appropriate projections from the input data in thepresence of relatively high levels of noise. This is accomplished by rigorously exam-ining the theoretical conditions for approximating each solution space and taking fullxiv



advantage of the principles of optimization to construct a pair of algorithms, each ca-pable of effectively modeling high-dimensional nonlinear response surfaces to a higherdegree of accuracy than previously possible.
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CHAPTER IINTRODUCTION AND LITERATURE REVIEW1.1 Problem StatementDespite much research over the years, high-dimensional nonlinear function approxima-tion remains a difficult problem. To be effective, an algorithm must be able to discernthe relevant inputs, maintain a feasible computational complexity in the face of a largevolume of data, and yet still approximate the response function accurately. A majorproblem facing the researcher in making predictions on high-dimensional data spacesis the aptly named "curse of dimensionality," which describes the effects on functionapproximation of the sparsity of sample data points in a high-dimensional functiondomain. As a result, a finite set of observations might not be enough to adequatelydescribe the original response mapping. Projection methods attempt to circumventthis problem by first transforming the input space into a series of low-dimensionalprojections onto which the predictive model is painted. The major difficulty withsuch methods is how to choose the most appropriate projections: the ones that bestdescribe the unknown response surface.The major focus of this work is on how to best choose the optimal projectiondirections. In this thesis, we will extend the initial formulations of the fundamentalprojection pursuit regression algorithm [33] (which sequentially identifies projectiondirections, approximating the functions along these directions with flexible smooth-ing techniques), by applying to it a different iterative method for finding the optimalprojections. In our approach, we define the problem parametrically to optimize pro-jection directions simultaneously and numerically solve the function approximationproblem. We will provide the foundational theory behind just such a methodology,1



including a proof of its universal approximation capabilities. We also propose a sec-ond method for solving for the projections. This method first discretizes the potentialprojection space and then utilizes a random search technique governed by a criterionfor minimal error to select the final directions to use in the model. The theory behindthis approach is also presented. In the literature, similar methods are termed projec-tion pursuit learning networks (PPLN). There are a number of papers that suggestsuch strategies, although their approaches differ in a few fundamental ways, includingutilizing a nonparametric modeling scheme for fitting one-dimensional models alongprojection directions and using gradient-search techniques for solving for the opti-mal directions. Further, such approaches borrow from the heavily-researched neuralnetwork theory. Some of this theory, such as the proof of universal approximation,are more restrictive than is necessary for projection pursuit networks. We extendthis theory and show how it can be applied parametrically with any basis functionssatisfying a rather general set of criteria.1.2 Modeling MethodologiesThe goal of regression analysis is to estimate the conditional expectation of a responseon the basis of the values of relevant inputs. To this end, two different general classesof modeling techniques have been employed for this estimation problem: parametricand nonparametric techniques. Multivariate adaptive regression splines and artifi-cial neural networks are two such examples of high-dimensional parametric modelingtechniques, both of which will be discussed in more depth later in the thesis. In aparametric modeling approach, the functional form of the regression surface is oftenassumed. The model can be quite accurate provided that the initial assumptionsare correct. However, in practice, one often does not have sufficient information toassume the form of the response surface. As a consequence, nonparametric techniquesare often used. These methods, which make only a few general assumptions about2



the regression surface, are applicable to systems in which only information regardingthe inputs and outputs are known. However, nonparametric approaches have theirdrawbacks as well.Typical nonparametric methods, including splines, kernel approaches, and nearestneighbor techniques, rely on full-dimensional local averaging around the predictionpoint. These approaches utilize a weighted average of responses for observations withpredictors in the same neighborhood as the point of interest. Prior work [76] hasshown that these techniques have some favorable asymptotic properties. However,they do not perform well in high-dimensional settings, even in the presence of rea-sonable sample sizes. The reason is that such techniques suffer from what Bellmantermed the curse of dimensionality [7]. This refers to the phenomenon in which thesample size necessary for estimating a function within a certain degree of tolerancegrows exponentially with the total number of input variables.Localized regression techniques are one of the most common form of nonparamet-ric modeling methods. These methods each involve the use smoothing around thelocal region of interest. In fact, this concept is not new, as Schiaparelli, and Italianmeteorologist, began investigating this method in 1866 [72], followed by De Forest(1873) [23]. Because of the effectiveness and intuitive nature of this method, it hasfound wide-ranging applicability and acceptance: [18], [74], and [53] in the field ofeconomics, [55] in numerical analysis, [91] in sociology, [71] and [88] in chemometrics,[62] in computer graphics, and [2] in machine learning.The local regression method has largely been developed on theoretical results ofparametric regression methods and is based on finite sample theory of linear estima-tion. This theory, developed in sources such as [49], [14], and [86], trivialized problemsthat have proven to be major stumbling blocks for the more widely studied kernelmethods.Another theoretical treatment of the local regression approach is to view the3



method as an extension of kernel methods by attempting to extend kernel theory tolocal regression. This treatment has become popular recently, for example in works by[87] and [27]. But, for practical purposes, some [57] have claimed that kernel theoryis of limited use, basing their evidence on its often poor approximations and highlyrestrictive required conditions.Despite the effectiveness of the local regression technique for a wide range of low-dimensional problems, it has yet to be practically extended to effectively model high-dimensional systems. The approach tends to fail with more than 2 or 3 dimensions,even with moderate sample sizes. This ineffectiveness directly results from the curseof dimensionality.1.3 Data SparsityWhile we have derived several lemmas to prove the existence of the curse of dimen-sionality and certain specific attributes of high-dimensional space, in the interest ofnot getting bogged down in details, they will resurface in Chapter 2. Instead, anillustration of the effects of this phenomenon can be presented in the form of an ex-ample. If, for instance, one sets the dimensions of the local neighborhoods to cover10% of the nearest points for each coordinate axes, we find that in 10-dimensionalspace only 0.110, or 0.00000001% of the total sample will be included on average.Thus, each local region will likely be empty. To counteract this, one could assign thetotal number of points for the local neighborhood. For instance, if the number ofnearest points to be included is chosen to be 1% of the total sample, then 63% of thenearest points along each coordinate axes will have to be included. This destroys theaccuracy of the model. Thus, the issue of high dimensional sparsity limits the effec-tiveness of traditional nonparametric modeling techniques. Hence, a new approach isneeded which will be able to better handle such sparsity in high dimensions and stillprovide sufficient accuracy in estimating the underlying regression surface.4



1.3.1 Intrinsic DimensionalityGiven a system with D independent variables, it will in practice, appear to have D2(where D2 > D) degrees of freedom due to the presence of noise, measurement error,etc. Yet, provided the influence of these factors is not so overwhelming as to com-pletely mask the original structure of the system, one should be able to filter suchnoise out and recover the original variables. We now define the intrinsic dimensionof the system as the number of inputs that satisfactorily explain the system. Theintrinsic dimension would be the dimension M of the projected variables that governthe operation of the system. Across varied domains like vision, speech, motor control,climatology, genetic distributions, human motor control, and a range of other phys-ical and biological sciences, various researchers corroborated that the true intrinsicdimensionality of high dimensional data is often very low [80], [67], [85], [26]. Weinterpret these findings as evidence that the physical world has a significant amountof coherent structure that presents itself as being well-suited to dimension reductiontechniques. For instance, in the realm of computer vision, it is quite obvious thatthe neighboring pixels of an image of a natural scene possess redundant information.Moreover, the probability distribution of natural scenes, in general, has been found tobe highly structured. Thus, this illustrates an example application that lends itselfto a sparse encoding in terms of set of basis functions [65].So, dimension reduction techniques can be quite useful in a wide range of applica-tions. Thus, the determination of the intrinsic dimension of a sample distribution isimportant in many prediction applications, as it is central to the problem of dimen-sion reduction. Knowing the intrinsic dimension would eliminate the possibility ofoverfitting or underfitting the data. Of course, the problem is itself ill-posed, becausegiven a data sample it is possible to make a manifold of any dimension pass through it(assuming no observations have duplicate inputs) with negligible error given enoughparameters. Thus, it is important to take these things into account when formulating5



a dimension reduction algorithm.1.3.2 Unsupervised Dimension ReductionOne way to avoid the curse of dimensionality is to reduce the number of input di-mensions. A common unsupervised learning technique used to accomplish this ob-jective is principal component analysis (PCA). Principal component analysis (or theKarhunen-Loeve transform, as its known in signal processing) is the most commonlyused dimension-reduction technique used in practice, primarily because of its simplic-ity and computational efficiency.Figure 1: Model With Unsupervised Dimension ReductionThus, one method employed by some has been to first reduce the dimensionalityof the problem with a technique like principal component analysis and then apply anonlinear modeling technique on the reduced subspace of inputs [77], [78], and [22].Techniques such as partial least squares (PLS) [89], [29] and principal component re-gression (PCR) [60], [82] use the superposition of univariate regressions onto principalcomponent projections of the input space to make response predictions.1.3.3 Principal Component AnalysisThe basic concept behind principal component analysis is to transform the inputs intoa new set of input vectors that are uncorrelated in an attempt to create the maximumseparability in the input space. The dimensionality of this space may also be reducedby retaining only those components which contribute a specified proportion of thetotal variation in the data.This method makes the assumption that the distribution of the data takes theform of a hyperellipsoid, such that the vector of means and the covariance matrix6



define the shape and dimensionality of the distribution [73]. Let us consider a samplein ℜD with mean x = 1n∑ni=1 xi, covariance matrix Σ = E [(x− x) (x− x)T ], andspectral decomposition Σ = UΛUT , with U = [u1 u2 ... uD] orthogonal and Λdiagonal. The principal component transformation: y = UT (x− x) produces anew reference with respect to the sample has zero mean and a diagonalized covariancematrix Λ containing the eigenvalues of Σ.Λ =  λ1 0 0 00 λ2 0 00 0 ... 00 0 0 λD Thus, the uj’s are the eigenvectors corresponding to the eigenvalues, λj ,with theeigenvalues ordered as such: λ1 ≥ λ2 ≥ ... ≥ λD > 0. The question then becomes:how many principal components should be to reduce the dimensionality while stillcapturing information of the original system? To this end, a typical rule employedis to choose M < D such that: ∑Mi=1 λi∑Di=1 λi > ρwhere ρ is some arbitrarily selected percentage of the sum of the system’s total eigen-values.Using this methodology of projecting the initial raw variables onto the subspacespanned by the first M principal components, the transformed variables are uncorre-lated, and those variables with a small variance are discarded. An example of sucha projection is illustrated [12].The problem with this type of approach, as diagrammed in figure (2), is that thedimension reduction is performed with an unsupervised technique. Indeed, it is quiteevident that the selection of the optimal dimensional subspaces will be dependent onthe response surface. 7



Figure 2: Two-Dimensional Normal Point Cloud with its Principal Components
8



1.4 Potential Solutions - supervised learning ap-proachesOver the recent years, some novel ways of trying to address the problem of choosingthe best projections have been devised. Although they utilize an unsupervised localdimensionality reduction algorithm, Teh and Roweis [79] constrain their projections todescribe a single, coherent low-dimensional coordinate system by enforcing agreementamongst principal components to fit a specific coordinate transformation. Some recentwork, such as that of Vijayakumar [82] focus on finding efficient local projections toapproximate functions in the neighborhood of a given query point. In one of hispapers [83], Vijayakumar introduces a locally weighted projection regression (LWPR)algorithm, which uses locally linear models spanned by a series of one-dimensionalregressions along selected input space directions.Figure 3: Model With Supervised Dimension ReductionOne method that has been proposed is covariant projection regression (CPR) [84].This is a method that sequentially chooses its projection directions by taking into ac-count not only the input distribution, as in the case of principal component regression,but also the covariance of the input and output data. Thus, CPR extends the tech-nique by supervising the learning of optimal projection directions, as illustrated infigure (3). However, because this and the other algorithms mentioned above fit linearfunctions along individual projection directions, they are not particularly adept atcapturing nonlinearities in a high-dimensional function space.A number of methods have been developed in an attempt to address this problem.Payman Sadegh and Henrik Ojelund [70] introduce the concept of hierarchical local9



regression to incorporate both local approximations in the neighborhood of a givenquery point and global information in the form of a set of weights from a global regres-sion function. The concept of the multilayer nodal link perceptron network, or NLPN,is introduced in [69] and [28]. This type of model employs multi-dimensional localbases to capture nonlinearities in the response function. Among the best known ofthese algorithms that are designed to target nonlinearities in high-dimensional spaceare multivariate adaptive regression splines [37], neural network models, and projec-tion pursuit regression [33]. The first two of these will be discussed in this chapter,while projection pursuit, central to the research of this thesis, will be discussed inmuch greater depth in the chapter that follows.1.4.1 MARSTo fit a response surface, multivariate adaptive regression splines [31], or MARSmodels, adaptively build a set of basis functions in the original coordinate system.MARS adds basis functions by a forward selection procedure. For each input, xi, andevery possible value, t of xi, MARS splits the data into two parts at the "knot", t.MARS then keeps the knot and the associated variable pair that provides the bestfit. On these two parts, each comprising the data on one side of the knot, a pair oflinear functions is fit. Each of these functions is non-zero on one side of the knotonly. After one variable has been selected, further splits can be assigned via forwardselection based on the previous split (splitting the input space on one side of theprevious knot only), or it ignoring the previous split and splitting the entire inputspace on the new knot. MARS adds to the set of basis functions using a penalizedresidual sum of squares.Generally, the forward selection procedure will overfit on this initial pass. Thus,MARS prunes these results, via generalized cross validation criterion, using backwardelimination on the selected set of basis functions. Finally, the MARS procedure10



replaces the linear basis functions with cubic splines to smooth out the approximation.MARS is able to handle nonlinearities quite well. However, unlike projectionmethods, MARS operates in the original coordinate system only. De Veaux and Unger[22], provide an extension of this approach by combining the MARS procedure withthe linear projection principal component method to achieve more accurate results inthe face of input space multicollinearity.1.4.2 Artificial Neural NetworksNeural networks are universal approximators. Given enough nodes, an artificialneural network can represent any well-behaved function. In general, neural nets arerelatively robust to outliers and are capable of fitting highly nonlinear data quite well.When constructing models of nonlinear high-dimensional systems, neural networksare often chosen because of their of their wide-ranging applicability to such inputspacings. Besides being relatively robust to outliers and noisy data, such models aresuitable for efficient implementation on massively parallel computers as their hiddenunits only pass information to and from those units sharing a direct connection.However, interpretability of neural network model results is difficult due to the highdegree of interaction and multicollinearity between the variables and basis functions.Thus, neural networks are best used as "black box" models, where interpretabilityof the governing model is not as important as identifying an accurate input-outputrelationship. Perhaps the most common form of neural networks is the single hidden-layer feedforward network with sigmoidal activation functions. This type of networkuses one-dimensional activation functions to project high-dimensional spaces ontoseveral single-dimensional spaces that are nonlinearly activated and then summedtogether. Such a network can be written in the formyi = N∑j=1 wijσj (x)11



where σj (x) = [1 + exp(− n∑k=1 wjkxk)]−1and the weights wij and wjk are selected by a nonlinear optimization method tominimize the loss function over the training set. Typically, Levenberg-Marquardtoptimization is used. The Levenberg-Marquardt algorithm is a cross between gradientdescent and Newton’s method:wk+1 = wk − (JTJ − µI)−1 Jewhere J is the Jacobian of the error criterion, µ is the gradient descent weighting,and e is the error between the target and the prediction. When the scalar µ is zero,is essentially Newton’s method using the approximate Hessian matrix. When µ islarge, the method converges to gradient descent with a small step size.
Figure 4: Schematic of the Architecture of a Single Hidden Layer Neural NetworkSince neural networks are so widely used when attempting to model high- di-mensional multivariate functions and have such incredible modeling flexibility, whyis there a need for any other type of model? In fact, it is the large flexibility pro-vided by neural network models that leads to some problems. First, for any giventraining set and any given model architecture, i.e. the number of hidden units, theweight matrix is not uniquely determined. This means that ANN models are not12



identifiable. Second, the optimization problem is nonconvex and quite often unstable.While feedforward neural networks have the ability to approximate high-dimensionalfunctions with relatively few activation functions, they use global basis functions andare difficult to train. In fact, the training of neural networks has become quite anart, of sorts. The gradient descent optimization rule, which is often used for findingthe estimates, may get stuck at local minima. Thus, based on the random sequencein which the inputs are presented to the network and based on the initial values of theinput parameters different solutions may be found. In fact, the non-identifiability ofneural network solutions which are caused by the possible non-uniqueness of a globalminima and the existence of possibly many local minima leads to a large predictionvariance. Thus, the large flexibility provided by neural network models leads to pre-dictions with a relatively small bias, but also leads to a large variance [44]. Carefulmethods for variance control [3], [9], [10], [66], [43] are thus required to robustify theprediction. Third, there is the problem of optimal network architecture selection(number of hidden layers, number of hidden units, weight constraints, etc.). Thisproblem can be addressed to some degree by cross validatory choice of architecture[9], [10], or by averaging the predictors of several network with different architecture[90].With so many problems with traditional neural networks, there is thus a need fora method that will handle some of these problems. The novel methods introducedin this work intend to address some of these problems with the use of a simplerarchitecture that involves fewer average parameters and a more efficient optimizationscheme that will hopefully help alleviate some of the problems of optimal networkarchitecture selection, reduce the possibility of getting caught in local minima, andachieve better overall estimation results. 13



1.5 Thesis Organization

Figure 5: Flowchart of Paper StructureIn the next chapter, we focus on projection pursuit approaches. We will startby examining the "curse of dimensionality" mathematically to gain a better under-standing of why a dimension reduction approach like projection pursuit might beimportant. Then, we will explore the state of the art in projection pursuit learningup to this point.Chapter 3 introduces the newly-proposed parametric projection pursuit learn-ing model of this thesis. This method solves the function approximation problem byoptimizing the projection directions simultaneously using a Levenberg-Marquardt op-timization technique. In this chapter, we explore the mathematical framework of themethod. The major theoretical contributions of this chapter include: 1.) a theorem to14



show that high-dimensional functions satisfying a rather broad set of criteria can bedecomposed into an infinite number of single dimensional, mutually orthogonal func-tions, 2.) the derivation of the projection pursuit data dimension reduction techniquefrom the context of Fourier Analysis, and 3.) a universal approximation theoremfor the newly-proposed method. We then explore the effectiveness of the introducedtechnique by looking at its predictive performance on experimental results.In Chapter 4, we introduce yet another projection-pursuit-inspired model, the dis-cretized parametric projection pursuit learning model. This prediction methodologyuses a different technique for finding optimal projections: the use of a random searchon a discretized set of projection couplings. Again, we introduce the theoretical un-derpinnings of the approach using a similar mathematical framework. However, wewill find that the theory differs a bit, as our underlying assumptions in this case aredifferent. Next, we propose two different techniques for selecting these discretizedprojections, and then we proceed to provide experimental results for the method,using one of the proposed techniques.In Chapter 5, we provide a thorough comparison of the newly proposed methodswith commonly-used high-dimensional prediction techniques. An extensive set ofsimulations is run to examine the varying effectiveness of each of the given methodsunder different conditions.Chapter 6 consists of an experimental case study on financial data. In thiscase study, a comparison of DPPLM simulation results with those of feedforwardneural networks are provided. Also presented is an extensive statistical investigationanalyzing the effectiveness of the DPPLM approach on the simulation data.In Chapter 7, we present our conclusions, a summary of the major contributionsof this work, and suggestions for the future direction of the research.15



CHAPTER IIIN PURSUIT OF OPTIMAL PROJECTIONSOne major problem facing the researcher in making predictions on high-dimensionaldata spaces is the effect of the sparsity of sample data points in a high-dimensionalfunction domain. As a result, a finite set of observations might not be enough toadequately describe the original response mapping. By first transforming the inputspace into a series of single-dimensional projections, projection methods are able toget around this problem to some extent. The major difficulty with this, however,is: how does one choose the optimal projections? This is where the true challengeof high-dimensional function approximation lies. If one can solve this problem, thenprediction methodologies can be constructed that are both accurate and robust evenin the presence of high levels of noise and high degrees of data sparsity. In this chapter,we will first explore the problems of high-dimensional modeling in more depth, andthen we will follow this with a detailed exploration of projection pursuit methods.2.1 The Curse of DimensionalityIn Chapter 1, we used a simple example to illustrate the aptly-named curse of dimen-sionality. To step beyond this simplified illustration, let us now work through someproofs to glean a better understanding of this strange phenomenon. Let us beginwith a lemma:Lemma 1 For a hyperellipsoid in d dimensions, its equation can be written as:X21λ21 + X22λ22 + ...+ X2dλ2d = 116



and its volume can be written as [51]:Vd = 2d ( d∏i=1 λi) πd/2Γ (d2)where Γ(x) is the gamma function given by Γ(x) = ∫∞0 tx−1e−tdtUsing this lemma, we can proceed to make some interesting conclusions aboutdata sparsity and the ”curse of dimensionality.”Lemma 2 The volume of a hypersphere decreases toward zero with increasing dimen-sionality:Proof. For a hypersphere, we note that λi = r for i = 1, 2, ..., d. Thus, the volumeof the hypersphere reduces to [5]: Vd = rdπd/2Γ (d2 + 1)Provided that r is bounded by an arbitrarily large, but finite value M ; i.e., r ∈ (0,M ].Then, limd→∞Vd = limd→∞ rdπd/2Γ (d2 + 1) = 0Thus, Vd will vanish as d becomes large, since d can always be chosen such thatd2 >> πM 2.These results are illustrated for a unit hypersphere in figure (6). The results ofthis lemma can be further extended to a hyperellipsoid of a general form.Lemma 3 The generalized volume of a hyperellipsoid decreases toward zero with in-creasing dimensionality:Proof. For a hyperellipsoid of general form:X21λ21 + X22λ22 + ...+ X2dλ2d = 117



Figure 6: d-Dimensional Volume of a unit cm Hypersphere by Dimensionand provided that λmax is bounded by an arbitrarily large, but finite value M ; i.e.,λmax ∈ (0,M ]. Then,0 ≤ limd→∞Vd = limd→∞ πd/2Γ (d2 + 1) d∏i=1 λi ≤ limd→∞λdmax πd/2Γ (d2 + 1) = 0where i = 1, 2, ..., d. Thus, Vd will vanish as d becomes large, since d can always bechosen such that d2 >> πM2.In fact, we can extend this analysis to gain further insight into the issue of datasparsity.Lemma 4 The volume of a general hyperellipsoid tends to concentrate in an outershell with increasing dimensionality: [45]Proof. First, we note that for a hyperellipsoid of the form:X21(λ1 − ε1)2 + X22(λ2 − ε2)2 + ...+ X2d(λd − εd)2 = 118



where 0 ≤ εi < λi and i = 1, 2, ..., d, then its volume can be written asVd = πd/2Γ (d2 + 1) d∏i=1 (λi − εi) .Now, to illustrate the lemma, we note that the volume ratio of two hyperellipsoids,one slightly smaller than the other is:Vd (λi − εi)Vd (λi) = d∏i=1 (λi − εi)d∏i=1λi = d∏i=1 (1 − ξi)where ξi = εiλi for i = 1, 2, ..., d and 0 < ξmin < 1. Letting ξmin = min( εiλi) fori = 1,2, ..., d , we can see thatlim Vd (λi − εi)Vd (λi) ≤ lim d∏i=1 (1 − ξmin) = lim (1− ξmin)d = 0.Remark 5 Using the results of this lemma, it is evident that data in high-dimensionalspace is expressible in less than full dimensionality.To show how quickly data tends to concentrate in an outer shell for increasingdimensionality, we take the example of two hyperspheres withVd (r − ε)Vd (r) = (1 − ξ)dwhere ξ = ελ = 0.1. Here, we find that the ratio of the two volumes tends to zerorather quickly as the number of dimensions increases.Thus, the volume of a hypersphere in d-dimensions tends to concentrate in an outershell as the number of dimensions grows. A general d-dimensional hyperellipsoid hassimilar properties. 19



Figure 7: Percentage of d-Dimensional Hyperspherical Volume Not Concentrated inOuter ShellRemark 6 Note that as an extension of the prior lemma, one could show that thevolume of a hypercube, or (more generally) the volume of any regular hyperparal-lelepiped, also tends to concentrate in an outer shell with increasing dimensionality:The proof follows similarly from the proof of the preceding lemma.Thus, it seems that if the volume of the n-dimensional space tends toward zeroclustering in lower dimensional surfaces, then if we can find the structure of theselower dimensional clusters, we might be able to project the data onto such surface.This would help alleviate the curse of dimensionality.2.2 Previous Work In Projection PursuitMany of the potential solutions to this data sparsity problem in high-dimensionalspace often fall under the category of projection pursuit. Projection pursuit [40]is a dimension reduction technique that identifies interesting low-dimensional linear20



projections of a high-dimensional space by optimizing an objective function, called aprojection index. Thus, any structure seen in a projection is but a shadow of the actualstructure in original space. It is of interest to the researcher to pursue the sharpestprojections: those that reveal the most information contained in the high-dimensionaldata distribution. With this method, the scaled components of the projection vectorsthat define the corresponding solution indicate the relative strength that each variablecontributes to the observed effect. It is of interest to note that several methods ofclassical multivariate analysis are special cases of projection pursuit (for example,principal component analysis). Two disadvantages [12] of projection pursuit are:1.) because it works with linear projections, projection pursuit has been poorly suitedto deal with highly nonlinear structure, and 2.) projection pursuit methods tend tobe computationally intensive.2.2.1 What is an interesting projection?An example of data projections is provided in figure (8) [12]. In this example, weproject the original data onto a pair of arbitrary two-dimensional hyperplanes. Yet,we should hope to make such data projections only when those projections are "in-teresting." We consider that a projection is interesting if it contains structure [40].Correlation between variables as detected by a linear regression is an example of easilyrecognizable structure in the data. Because of this, and noting the following results,an assessment of such structure can be made. For fixed variance, the normal distrib-ution has the least information, in both the senses of Fisher information and negativeentropy [17]. For most high-dimensional clouds, most low-dimensional projectionsare approximately normal [24]. Thus, it is considered that the normal distributionis the least structured (or least interesting) density.21



Figure 8: Illustration of Data Projections2.2.2 The projection indexA projection index Q is a real functional on the space of distributions on Rk: [12],[40] Q : f ∈ L2 (ℜk)→ q = Qf → ℜNormally, f = FA will be the distribution of the projection (of matrix A) of a D-dimensional random variable X with distribution F , and will correspond to a k-dimensional random variable Y = ATX, if A is D × k. Projection pursuit attemptsto find projection directions ai for a given distribution F which produce local optimaof Q. To make the optimization problem independent of the length of the projectionvectors and to obtain uncorrelated directions, the ai are constrained to be unit lengthand mutually orthogonal (i.e., the column vectors of A must be orthonormal).22



2.2.3 Projection pursuit regression (PPR)2.2.3.1 BackgroundProjection pursuit regression (PPR) [33] is a nonparametric regression approach forthe multivariate regression problem based on projection pursuit. A remarkable featureof projection pursuit regression is that it is one of the few multivariate methodscapable of bypassing the curse of the dimensionality to some extent. However, thepower of any projection pursuit algorithm to find important structure will still suffer ifthe sample size is small and the dimension large. PPR works by additive composition,constructing an approximation to the desired response function by means of a sumof low-dimensional smooth functions, called ridge functions, each of which depend onlow-dimensional projections through the data:f̂ (x) = j∑k=1 gk (aTk x)where each gk is constant on hyperplanes.2.2.3.2 AlgorithmThe PPR algorithm determines ak and gk for k =1,..., j as follows: [12]Initialization of algorithm: Set the projection directions ak to some randomvectors (or the first principal components in a PCA routine). The residuals areinitially set to ri0 = yi. Set j = 1 :Repeat1. Assuming ak and gk for k =1,..., j − 1 determined, compute the residualsri,j−1 = yi − j−1∑k=1 gk (aTk xi) = ri,j−2 − gj−1 (aTj−1xi) i = 1, ..., n2. Fit a nonparametric smooth curve gj to the residuals {ri,j−1}ni=1 as a functionof atxi for any a ∈ ℜD with ‖a‖ = 1. 23



3. Projection pursuit step: minimize the sum of squared residuals (the L2-norm)relative to g over a:aj = arg min‖a‖=1 n∑i=1 (ri,j−1 − g (aTxi))2 = arg min‖a‖=1 n∑i=1 r2i,j4. Insert aj, gj as the next term in the equation for f̂ (x).Until the improvement in step 3 is small.2.2.4 A Brief History of Projection PursuitProjection pursuit regression was first developed by Friedman and Stuetzle [33] andexpanded upon by [36]. As with other nonparametric methods, projection pursuittechniques possess certain useful properties. Nonparametric regression techniqueswere first devised for greater robustness and modeling capabilities when confrontingestimation tasks where the functional form of the response surface is not known.Nonparametric techniques are especially useful in these situations as they make fewerassumptions about said response surface.Projection pursuit regression (PPR) is especially useful when modeling higherdimensional data as it is capable of overcoming the curse of dimensionality as expe-rienced in kernel and nearest-neighbor methods to some extent as all of the modelingperformed is univariate. Interactions amongst predictor variables are directly mod-eled as PPR fits smooth curves to each univariate projection. However, becausea PPR model is the superposition of low-dimensional functions, it will have troublemodeling surfaces that vary in strength equally across all possible linear combinations[52].A comparison of PPR’s prediction capabilities with that of kernel methods hasbeen made by Donohoe and Johnstone [25]. They found that PPR works well when24



the underlying function is angularly smooth, or oscillates slowly with angle, but per-formed poorly for harmonic analysis. Kernel models behaved well in these cases,where functions had sufficient Laplacian smoothness. They also showed that if thefunction to be estimated has nice tail behavior, PPR lowers the dimensionality. Chen[13] devised a PPR scheme such that the convergence rate of the estimator is inde-pendent of dimensionality.Projection pursuit was first extended into the domain of learning networks byBarron and Barron [4]. A projection pursuit learning network (PPLN), is very similarin structure to a one hidden-layer neural network, except in place of the sigmoidalactivation functions are unknown functions to be learned from the data. Thus, PPLNcan be viewed as a generalization of sigmoidal feedforward neural networks.In the original PPLN, a variable span smoother, dubbed the "supersmoother"[33], is used to generated the smooth estimated activation functions. The motiva-tion behind the original design of the supersmoother was two-fold: a.) to have agood variable bandwidth adaptable to varying function curvature and noise levels,and b.) to be very fast, computationally. Hwang et al. [41], [42] revealed that thesupersmoother, and actually such nonparametric smoothers in general, have inherentproblems — such as the use of large regression tables, unstable derivative approxi-mations, and piecewise interpolation in calculating activation values that leads toperformance degradation in training and testing. They proposed using a parametricsmoother that would be the constructed from a superposition of Hermite functions,where the Hermite functions are defined as
25



hr (z) = (r!)−1/2 π1/42−(r−1)/2Hr (z) φ (z) ,where −∞ < z <∞ and Hr (z) are Hermite polynomials, expressed asH0 (z) = 1H1 (z) = 2zHr (z) = 2 (rHr−1 (z)− (r − 1)Hr−2 (z)) .The Hermite-based PPLN uses the minimum L2 criterion, produces smoother re-gression surfaces, and is inherently easy to arrive at the derivative calculations. Inthis thesis, we will extend upon this with another set of parametric networks that arecapable of utilizing a broader, more general class of basis functions.Zhao et al. [95] investigated the use of a parametric PPR to learn the inversedynamics of robot arms in high-dimensional space (six dimensions). They showedthat PPLNs can learn this task quite well and that a parametric PPR with a directtraining method can achieve better accuracy and training speed than a nonparametricPPR. Also, the parametric projection pursuit network has the advantage of achievinga higher degree of accuracy with fewer estimation parameters used than does a onehidden layer sigmoidal neural network.Kwok and Yeung [54] improved upon the PPLN suggested by Hwang et al. [41],[42]. Recall that in those papers the parametric smoother is based on a predefinedorder, R, of the Hermite function. Kwok and Yeung found that a PPLN with a fixedR does not possess the universal approximation capability for any finite value of R.Thus, they suggest that is it possible to keep R fixed while still retaining the propertyof universal approximation by introducing a bias term to each linear combination ofpredictors. They also demonstrate experimentally that this change increases therate of convergence with respect to the number of hidden units and improves themodel’s generalization capabilities. We will be extending upon this with the choice26



of a different set of bases for the local fits along projection directions and with anew universal approximation theorem showing that our approach to approximatingthe response surface maintains its universal approximation capabilities for a broaderclass of functions than was previously demonstrated.2.2.5 Projection Pursuit Learning Networks (PPLN)A projection pursuit learning network (PPLN) is similar in structure to a one hiddenlayer sigmoidal feedforward neural network. The PPLN [42], [95] can be written asŷi = yi + m∑k=1 βikfk( p∑j=1 αkjxj)where βik are the projection strengths, fk are the unknown smooth activationfunctions, and αkj are the projection directions. These parameters are trained byminimizing the mean squared error loss function:L ≡ q∑i=1 WiE (yi − ŷi)2where the weights Wi describe the relative contribution of each mean squaredoutput error to the total loss function, L, and.E is the expected value function,defined as E (yi) = 1n n∑l=1 yli = yiThe PPLN learning algorithm trains each hidden units sequentially instead ofsimultaneously, as is the case with backpropagation networks. The algorithm for thek-th hidden layer neuron can be represented as follows: [52]1. Make initial guess for αk, βk, and fk2. Estimate α̂k = ak +∆ using an iterative optimization method3. Given α̂k, estimate fk as the smooth 1-dimensional curve that best fits thescatterplot [zkl, f ∗k (zkl)] , where zkl = α̂Tk xl.4. Repeat 2-3 for several iterations.27



5. Use the most recent updates of fk and αk to calculate βik by setting tozero the derivatives of the loss function, L, with respect to βik.6. Repeat steps 2-5 until the loss function is minimized with respect to allfk, αk, and βik associated with the k-th neuron.This procedure is then repeated for the (k + 1)-th hidden layer neuron. Aschematic is provided in figure (9) [52].
Figure 9: Schematic of PPLN architectureMaeschler et al. [58] and Hwang et al.[41], [42] compared the performance ofprojection pursuit learning networks with backpropagation neural networks usingtwo-dimensional regression problems. In each case, they used nonparametric datasmoothers to optimize the activation functions in the PPLN, and found that bothmethods achieved similar performance on independent cross-validation samples. Thework by Hwang et al. [41], [42] illuminates some problems with the nonparametricPPLN approach, namely the use of large regression tables and the inherent insta-bility in estimating the derivatives. Thus, they propose using the superposition ofparametric Hermite functions in place of the nonparametric smoother.28



Hwang et al. [42] compared PPLN with cascade-correlation learning networks(CCLN), and found CCLN models unsuitable for most regression applications astheir structures are prone to saturated hidden units leading to unsmooth, jumpy esti-mates.. Like a PPLN, CCLN grows ts hidden layer(s) during training by sequentiallyadding hidden units. With the CCLN, the weights on each candidate hidden unitare trained by holding constant all existing weights. Unlike as is the case with aPPLN, in which the input data form the entirety of the connections feeding into eachhidden unit, each candidate unit in a CCLN will receive connections from both inputunits and from all other hidden units. While this attribute aids the CCLN in findinghigher order features, it also makes the training more difficulty. Hwang et al. foundthat the maximum correlation criterion used in the network to avoid cyclic updat-ing between layers usually produces saturated hidden units, resulting in unsmoothregression surfaces, which make CCLN unsuitable for most regression applications.2.2.6 RemarksIn the next chapter, a new type of projection pursuit learning model is introduced.In our approach, we optimize projection directions simultaneously to solve the func-tion approximation problem using analytical methods. On the block diagram infigure (10), we will be exploring the theory, optimization procedure, and experimen-tal implementation results for the case of unbounded functions (note that in chapter4, we will review the case of bounded functions). Specifically, we will provide thefoundational theory behind just such a methodology, including a proof of its univer-sal approximation capabilities. We then discuss the optimization approach employedalong with providing a detailed algorithm. We conclude with a comparison of thesimulation results of our projection pursuit learning model with three commonly-usedhigh-dimensional modeling methods. 29



Figure 10: Block Diagram of Modeling Approaches
30



CHAPTER IIITHE CONTINUOUS PROJECTION PURSUITLEARNING MODEL (PPLM)3.1 OverviewThe chapter is structured in the following manner. In the next section, we present thetheory to show that a response surface can be modeled by the superposition of one-dimensional functions. Next, the issue of basis functions is addressed along with theassociated grid spacing. In an effort to match the input distribution, a data-driven as-signment of the grid spacing is suggested, which typically results in unequally-spacednodes. The section following this proves the universal approximation capabilities ofthe projection pursuit learning model. The two-stage optimization problem is thenpresented. The algorithm, which utilizes a Levenberg-Marquardt optimization of theprojection directions, is then provided. Finally, before the concluding remarks, anexperimental case study is offered comparing prediction performance with other tra-ditional high-dimensional learning techniques. Please note that in the interest ofreadability, some of the theoretical derivations of this chapter have been moved tothe final section of the chapter, section...3.2 Mathematical FrameworkBefore beginning the analysis, it is useful to first define the mathematical frameworkwithin which we will be working. Our goal is to approximate functions belonging toa subset of Lebesgue measurable multi-dimensional functions f : ℜn → ℜ. The Lp31



norm of f : ℜn → ℜ is denoted by‖f‖p =  (∫ℜn |f |pdx)1/p , 1 ≤ p <∞ess supx∈ℜn |f(x)| , p =∞where ess denotes the essential supremum (i.e., supremum of f except for a set ofmeasure zero). The set Lp refers to the class of Lebesgue measurable functions witha finite Lp and norm: ‖f‖p < ∞. Unless otherwise specified, we shall consider theclass of functions f belonging to L2.3.2.1 Problem StatementGiven an unknown multivariate function of dimension n ≫ 1, f ∈ L2, our objectiveis to approximate f to within a prescribed degree of accuracy based on a finite set ofinput—output data (xk, yk), k = 1, . . . ,N by projecting f along a finite set of directionsand constructing a nonlinear model composed of the superposition of 1—dimensionalfunctions along the projection directions that best fit the input—output data.3.2.2 One—dimensional DecompositionIn this section, we show that a function belonging to a subset of L2 can be expressedas a superposition of 1—dimensional functions, which will form the basis for our pro-jection pursuit approximation. As can be seen this decomposition is of f is closelyrelated to its Fourier transform pair defined below:f̂(ω) = ∫ℜn f(x)e−jωTxdxf̌ (x) = 1(2π)n ∫ℜn f̂ (ω)ejωT xdωIn general f̌(x) �= f (x) (pointwise). But it is true for rapidly decreasing functions[68] defined byFn := {f ∈ L2 : sup|α|≤N supx∈ℜn (1 + ‖x‖2)N ∣∣∣∣ ∂|α|f(x)∂xα11 · · · ∂xαnn ∣∣∣∣ <∞, N = 0, 1, 2, . . .} (1)32



where α = (α1, . . . αn), αi = 0, 1, 2, . . ., is a multi—index and |α| ≤ ∑ni=1 αi. Wherethe function space Fn above is a Frechet space [68], that is if f ∈ Fn, then f ≡ f̌ .Next we define the set of all possible projection directions. It turns out that thisset can be identified by the surface of the one—half unit hypersphere in ℜn given byU ={ω ∈ ℜn : ‖ω‖2 = n∑i=1 ω2i = 1, ωj > 0, j = min1≤i≤nωi �= 0}then it can be easily seen that ℜn = ∪r∈ℜrU . For a function f ∈ Fn we havef (x) = 1(2π)n ∫ℜn f̂ (ω)ejωTxdωThe following lemma can be used to determine the volume and surface area of U .Lemma 7 The generalized volume and surface area of a hypersphere in n dimensionsdefined by ∑ni=1 x2i = R2 is given byVn(R) = πn/2RnΓ(n2 + 1)Sn(R) = dVndR = nπn/2Rn−1Γ(n2 + 1)where Γ(x) is the gamma function given by Γ(x) = ∫∞0 tx−1e−tdt [6].Using ℜn = ∪r∈ℜrU combined with the preceding lemma, the Fourier integral overℜn may be expressed as∫ℜn f̂ (ω)ejωT xdω = ∫ℜ ∫rU f̂ (ru)ejruTxdSrdrwhere dSr is the differential of the surface area of the hyper-hemisphere of radius r,i.e., ∫rU dSr = nπn/2rn−12Γ(n2 + 1)In particular, denoting the surface area of the unit hyper-hemisphere by dS, then∫U dS = nπn/22Γ(n2+1) implying that dSr = rn−1dS. Thus∫ℜn f̂ (ω)ejωT xdω = ∫U [∫ℜ rn−1f̂(ru)ejruTxdr] dS33



Defining the one—dimensional functionfu(z) = 1(2π)n ∫ℜ rn−1f̂ (ru)ejrzdr, z = uTxthen f (x) = ∫U fu(z)dSThe next theorem shows that the one-dimensional projection functions fu(z) aremutually orthogonal with respect to the function space scalar product defined below:Definition 8 The scalar product of two functions f, g ∈ L2 is defined as< f, g >= ∫ℜn f (x)g(x)dxRemark 9 Note that this expression is well-defined for any two functions f, g ∈ L2.By the Schwartz inequality,|< f, g >| = ∣∣∣∣∫ℜn f (x)g(x)dx∣∣∣∣ ≤ ‖f‖2 ‖g‖2 <∞Theorem 10 A function f ∈ Fn can be decomposed into an infinite number of singlevariable, mutually orthogonal functions fu, with fu ∈ F1 and u ∈ U , i.e., < fu, fu′ >=0, u �= u′: f (x) = ∫U fu(z)dS (2)Proof. First, the assertion that fu ∈ F1 follows from Theorem 7.7 in Rudin’sbook, "Functional Analysis" [68], as the Fourier transform maps Fn functions ontoFn. Thus, the only thing remaining to prove is the orthogonality of these functions.〈fu, fv〉 = 1(2π)2n ∫ℜn (∫ℜ rn−1f̂(ru)ejruT xdr)(∫ℜ sn−1f̂(sv)ejsvTxds) dx= 1(2π)2n ∫ℜ ∫ℜ rn−1sn−1f̂ (ru)f̂(sv) ∫ℜn ej(ru−sv)TxThe 2nd integral on the right hand side of the preceding equation is∫ℜn ej(ru−sv)Tx = ∫ℜ ej(ru1−sv1)x1dx1 · · ·∫ℜ ejr(run−svn)xndxn �= 034



if and only if δ(rui − svi) = 12π ∫ℜ ej(rui−svi)xidxi �= 0, i = 1, . . . , nor equivalently ru = sv. Since ‖u‖ = ‖v‖, we must necessarily have that r = ±s oru = ±v. But based on the definition of U it is impossible that u = −v for nonzero uand v. Thus u = v, and 〈fu, fv〉 =  ‖fu‖2 , u = v0, u�=vGiven that these functions are mutually orthogonal, deriving the prediction asa superposition of low-dimensional functions should work as these functions will betheoretically decoupled.3.3 Bases of one-dimensional functionsThus far, we have shown that we can deconstruct any well-behaved continuous func-tions into a series of mutually orthogonal one-dimensional continuous functions. Ourultimate goal is to approximate multi-dimensional functions. In this section, we shallprove that for each projection direction, we can approximate our fit with enough one-dimensional bases to reach an arbitrary degree of closeness. Then, in the section thatfollows we can move on to the universal approximation theorem for multi-dimensionalfunctions. There, we shall show that the results in this section can be extended to in-clude a reasonably large class of high-dimensional functions that can be approximatedwithin an arbitrary degree of closeness by the sum of one-dimensional functions.We should begin with a definition of a basis function [35].Definition 11 Let C denote a subspace of the space of real continuous functions,f : ℜ → ℜ. Consider a countable set of linearly independent {φi ∈ C} such that35



1. unity can be expressed as a linear combination of finitely many φi’s.2. the span of {φi} is dense in C, that is, for any f ∈ C and ε > 0, there exists anN and wi ∈ ℜ such that: supz∈R ∣∣f (z)− f (z)∣∣ < εwhere f (z) =∑Ni=0wiφi (z) .There are two broad classes of basis functions: global and local.3.3.1 GlobalExamples of global bases would be:Fourier basis: φk = ejωTk x, where ωk = 2πk and where C is the class ofperiodic functions.Polynomial basis: φk = xk, where k = 0,±1,±2, ... and where C is the classof functions defined on a compact set.A famous theorem of Weierstrass [59] states that any continuous function withvery general properties may be approximated to arbitrary degree of precision.Theorem 12 Stone-Weierstrass Theorem:Let X ⊂ ℜn be compact and let B be a subset of continuous functions, f : X → ℜwith the following properties:1. B is an algebra; i.e., f, g ∈ B , α ∈ ℜ =⇒ f + g ∈ B, f · g ∈ B, and αf ∈ B;2. B contains a non-zero constant function;36



3. B separates points; i.e., for x, y ∈ X , x �= y there is an f ∈ B such thatf (x) �= f (y);Then B is dense in C; that is for each f ∈ C and ǫ > 0, there exists a functiong ∈ B such that supz∈X |f (x)− g (x)| < ǫ.And so we see that both polynomial and exponential functions can approximatecontinuous functions to an arbitrary degree of precision. What remains to be provenis the universal approximation capability of the second broad class of basis functions:the local bases.3.3.2 Local Basis FunctionsLocal bases are often good choices for basis functions because they are quite adaptiveto varying function surfaces [81]. In selecting a basis function, basically, we arelooking for a function with good approximation capabilities within a local region, aswill be described in more detail. Local basis functions have the capability to effectivelymodel highly nonlinear data, as the function approximation in one region of the inputspace S1∩S2 = ∅, x1 ∈ S1, will not alter the approximation of the function in anotherregion of the sample space x2 ∈ S2, where S1 ∩ S2 = ∅, that may be governed by acompletely different set of rules.One possible choice of basis functions is the piecewise linear (PWL) basis. Inthis case, x = x is a scalar and the PWL basis functions reduce to simple ”tent”functions. For our purposes, we shall utilize cubic bases, as the order of the error oftheir approximation is vastly improved.Let us now consider the weighted basis functions on the domain,S ∈ {x : 0 ≤ x ≤ h}. W1φ1 (x) = W1 (1 − xh) (3)37



W2φ2 (x) = W2(1 + x− hh ) = W2 (xh) (4)The above equation pair represents the intersection of two tent functions on thedomain. Here the top of the first ”tent” is affixed at x = 0. The top of the secondtent is located at the edge x = h.Utilizing the capabilities of the Taylor series, we can represent a function f (x)about zero on this domain as f (x) = f (0) + f ′ (0) · x + O (h2). Plugging in for thederivative f ′ (0) = 1h [f (h)− f ′ (0)] +O (h2), the function can be written as:f (x) = f (0) + 1h [f (h)− f ′ (0)] +O (h2) (5)for data points on x between 0 and h.One convenient property of the PWL basis functions is that weight, or amplitude,of each ”tent” at its center (the top of the ”tent”) is exactly equal to the approximationof the function at that point. The reason is that even though the PWL basis functionsoverlap, all other basis functions equal zero at any given basis function’s center. Inother words, at the center of the tent of any given basis function, only one basisfunction is turned on. We can see this to be the case from the above example, asφ1 (h) = 0 and φ2 (0) = 0 in the equations (3) and (4) above. Resulting from this,we can see that f (0) = W1 (1− xh) = W1 and f (h) = W2 (xh) = W2 . Substitutinginto equation 5 gives f (x) = W1 (1 − xh) +W2 (xh) + O (x2) , or f (x) = W1φ1 (x) +W2φ2 (x) +O (x2) , where 0 ≤ x ≤ h.The above proof yields the O (x2) order of approximation. Thus, the greater thenumber of basis functions that we use, packed ever more closely together on thedomain S, the better will our approximation be.Note that the set of one-dimensional basis functions can easily be generalized forany one-dimensional domain with the following framework. Assume that x ∈ A with38



Figure 11: Local Piecewise Linear Basis Functionsthe input space shaped such that A = [α, β]. Allowing this interval to be equallydivided into N subintervals, we find that the center of each triangular basis functiondescribed by these subintervals can be denoted as ηi = α+ i (β−αN ) , while the base ofeach equal-sized interval can be written as: b = β−αN .Provided in figure (11) is an illustration of the local piecewise linear bases. Notethat, for this example where h = 1, α = 0, and β = 1, only the bases, φ1 and φ2, areactive in the region where 0 < x < 1.Thus, if we define xi = x−ηib where each xi is a real number between -1 and 1,then φi =  1− |xi| if |xi| ≤ 10 otherwise  .Another example of local basis functions would be local piecewise cubic bases.
39



3.3.2.1 Local Piecewise Cubic Basis FunctionsFrom the Taylor Series approximation, we can see that the order of approximationimproves considerably:f (x) = w1φ1r + w2φ1l + v1φ2r + v2φ2l +O (x4) (6)for data points on x between 0 and h.Working out the computation of these local bases yields:φ1l = 3x2r − 2x3rφ1r = 1 − 3 |xr|2 + 2 |xr|3φ2l = x (x2r − xr)φ2r = hxr (1 − 2 |xr|+ |xr|2)Where x = x−cb , with c as the position of the node in question and b is the base.We see that:x =  xh = xr , for x > cx−hh = xl , for x ≤ c  and |x| =  xh = |xr| , for x > c1− xh = |xl| , for x ≤ c So, xl = xr − 1 , and |xl| = 1 − |xr| = 1− xr , and |xr| = xrA proof of this is provided in the next section.An example illustration of these bases is provided in figures (12) and (13).Note that figure (13) actually represents the derivative portion of the local cubicbases.3.3.3 Derivation of Local Cubic Basis FunctionsTo derive the local cubic bases, we turn to the Taylor Series approximation:f (x) = f (0) + f ′ (0)x+ f ′′ (0) x22 + f ′′′ (0) x33! +O (x4)Assigning w2 and v2 to be: 40



Figure 12: Local Piecewise Cubic Basis Functions

Figure 13: Local Piecewise Cubic Basis Functions (Derivative Portion)41



w2 = f (h) = w1 + v1h + ah2 + bh3 +O (h4)v2 = f ′ (h) = w1 + v1 + 2ah+ 3bh2 +O (h3)We can then solve for a and b : h2 h32h 3h2  ab  =  w2 − w1 − v1h+O (h4)v2 − v1 +O (h3)  ab  = 1h4  3h2 −h3−2h h2  w2 − w1 − v1h+O (h4)v2 − v1 +O (h3)  ab  = 1h4  3h2 (w2 − w1)− 2v1h3 − v2h3 +O (h6)−2h (w2 −w1) + h2 (v2 + v1) +O (h5) Plugging these into the Taylor Series formulation:f (x) = w1 + v1x+ [ 3h2 (w2 −w1)− 1h (2v1 + v2) +O (h2)] x2+ [−2h3 (w2 −w1)− 1h2 (v1 + v2) +O (h)] x3 +O (x4)Collecting terms yields the following expression:f (x) = w1(1− 3(xh)2 + 2(xh)3)+ w2(3(xh)2 − 2(xh)3)+v1x(1− 2(xh)+ (xh)2)+ v2x(−(xh)+ (xh)2)+O (x4)This can be concisely written asf (x) = w1φ1r + w2φ1l + v1xφ2r + v2xφ2l +O (x4)Substituting v1 = v1 and v2 = v2 yields the local cubic approximation, which is seento be a fourth-order approximation:f (x) = w1φ1r + w2φ1l + v1φ2r + v2φ2l +O (x4)42



Assigning x = x−cb , where c is the position of the node in question and b is thebase. We see that: x =  xh = xr , for x > cx−hh = xl , for x ≤ c |x| =  xh = |xr| , for x > c1− xh = |xl| , for x ≤ c So, xl = xr−1 , and |xl| = 1−|xr| = 1−xr , and |xr| = xr. From the equationsthat preceded, we note that: φ1l = 3x2r − 2x3r = 1 − 3 |xr|2 + 2 |xr|3 . Plugging in for|xl| and rewriting yields:φ1r (xl) = 1 − 3 (1− xr)2 + 2 (1 − xr)3= 1 − 3 (1− 2xr + x2r)+ 2 (1 − xr) (1 − 2xr + x2r)= 1 − 3 − 6xr − 3x2r + 2 (1− 3xr + 3x2r − x3r)= 3x2r − 2x3r = φ1lThus, we really have just one φ1 basis function for the left and right sides. Theonly difference is that we can just plug in xr and xl to distinguish between its valueson the two sides of the center of the node. With a little more algebra, we can seethat the same thing is true for the φ2 basis function. Again, we note that:φ2l = x (x2r − xr)φ2r = hxr (1 − 2 |xr|+ |xr|2)43



Plugging in for |xl| and rewriting:φ2r (xl) = h (xr − 1) (1− 2 (1− xr) + (1 − xr)2)= h (xr − 1) (1− 2xr + 1− 2xr + x2r) = h (xr − 1)x2r= x (x2r − xr) = φ2lPlease note that there also are other choices for localized bases, such as wavelets,which are particularly effectively at modeling time-scale problems and behave like theFourier bases but also include frequency location information [81]. The researcher iscertainly welcome to and is, indeed, encouraged to utilize the local basis function ofhis or her choice when applying the projection pursuit learning methods developedin this thesis.3.3.4 Grid SpacingThus far, we have yet to address how one determines the spacing of the nodes. Indeed,one potential problem with a local piecewise fit rests with the data distribution. Ifthe data is not uniformly distributed, the grid spacing may be adjusted to match thisinput distribution such that a certain fraction of data points fall between each node.This enables the local models to generate very accurate fits in dense regions of theinput space without overfitting the sparse regions. Thus, we suggest creating theorder statistics [30] from the data for each observation. The nodes can be shiftedto enforce an equal number of observations per segment. Note that we are utilizingan unsupervised approach to the grid-spacing adjustment; it is based solely on thedata distribution. A supervised approach could potentially be used for optimaleffect. However, in the simulations that follow later in the paper, we have foundthat the improvement is marginal in most cases, but the computational cost is quitesubstantive. 44



3.4 Universal Approximation CapabilityIn the prior section, we discussed approximating one-dimensional functions. Now, weshall move onto multi-dimensional functions. In this section, we shall attempt to showthat a fairly large class of high-dimensional functions can be approximated by the sumof one-dimensional functions as discussed in the previous section. Within the contextof our algorithmic implementation, we would like to numerically approximate theintegral of the projection directions over the surface of anm-dimensional hypersphere.Thus, we must show that this approach of numerical integration over a finite set canindeed approximate the continuous integral of a compact set within an arbitrarydegree of closeness. Or, in other words, we must prove the universal approximationcapabilities of our discretized approach.Theorem 13 Let f be an arbitrary function, with f ∈ Fn, where Fn is a class ofFrechet functions as defined in equation (1). Let X be a compact subset of ℜn. Forany ε > 0, we can find a finite number of directions u1, . . . , uM and basis functionsper direction φij, i = 1, . . .M , j = 1, . . . ni, such that the resulting approximationwill estimate f to within ε, that is supx∈X ∣∣∣f (x)−∑Mi=1∑nij=1wijφij (z)∣∣∣ < ε, wherez = xTu, φ is the matrix of basis functions, and w is the corresponding weights asdefined in section (3.3) .The proof of the universal approximation theorem is based on lemma (19), whichis important in its own right. The lemma whose proof is given in at the end of thischapter, in section (3.8.1), shows thatf(x) = ∫Sm−1 fu(z)dS (7)in theorem (10) can be approximated by a finite sum of one-dimensional functions.But, now we continue on to the proof of theorem (13).45



Proof. From lemma (19) it follows thatf = ∫Sm−1fu (z1, ..., zm) dS = M∑i=1 f̂ui (z) + f̃u (z)where ∣∣∣f̃u (z)∣∣∣ < ∣∣ ǫ2∣∣ . For each direction, ui, we shall choose enough basis functions,ni, such that f̂ui (z) = ni∑j=1 f̂uij (z) + f̃ui (z)where f̂uij (z) = wijφij (z) with wij as the weights and φij (z) as the basis functions,and ∣∣∣f̃uij (z)∣∣∣ < ∣∣ ǫ2M ∣∣ . So, our approximation can be written asf = M∑i=1 ni∑j=1 f̂uij (z) + M∑i=1 f̃ui (z) + f̃u (z)Thus, the error associated with the approximation ise = M∑i=1 f̃ui (z) + f̃u (z)and its error is bounded by|e| ≤ M∑i=1 ∣∣∣f̃ui (z)∣∣∣+ ∣∣∣f̃u (z)∣∣∣ ≤M · ∣∣∣ ǫ2M ∣∣∣+ ∣∣∣ ǫ2 ∣∣∣ = ǫ.Hence, we have shown the universal approximation capability for a fixed x.As an extension of theorem (13), we can make this theorem more powerful. Thetheorem, along with its accompanying proof is now provided.A More Powerful Theorem As was mentioned, there is an extension of theorem(13) by which we can make this theorem more powerful. Below, we show that wecan approximate any arbitrary Lp function such that its mean error falls within anarbitrary ε. 46



Theorem 14 Letting f be an arbitrary function in Lp where 1 ≤ p < ∞. For anyε > 0, we can find a finite number of directions u1, . . . , uM and basis functions perdirection φij, i = 1, . . .M , j = 1, . . . ni, such that the resulting approximation willestimate f to within ε, that is ∥∥∥f (x)−∑Mi=1∑nij=1wijφij (z)∥∥∥p < ε , where theindividual terms are as defined in theorem (13) .Proof. Letting f be an arbitrary function in Lp because D (ℜn) , or the space ofFrechet functions with compact domains, is dense in Lp [68], then we can find an f inD (ℜn) such that ∥∥f (x)− f (x)∥∥p < ε′ From theorem (13), our approximation f ≈∑Mi=1∑nij=1wijφij (z) was uniform with respect to the supnorm. Thus, integratingover the entire domain yields∥∥∥f (x)− f̂ (x)∥∥∥p < V (κ) ε′where V (κ) is the volume and κ is the domain of f which has compact support,f ∈ D (ℜn) . Letting Rκ be the radius of the hypersphere enclosed by the domain κ,then the volume of this n-dimensional hypersphere can be calculated by the expressionV (κ) = πn/2RnκΓ (n2 + 1) .Thus, utilizing the Schwartz Inequaility, it can be seen that∥∥∥f (x)− f̂ (x)∥∥∥p = ∥∥∥(f (x)− f (x))+ (f (x)− f̂ (x))∥∥∥p≤ ∥∥f (x)− f (x)∥∥p + ∥∥∥f (x)− f̂ (x)∥∥∥p≤ ε′ + πn/2RnκΓ (n2 + 1)ε′ = εwhere ε = (1 + πn/2RnκΓ(n2+1)) ε′.Remark 15 The above theorem approximated the function with respect to the Lpnorm, which expands upon the class of functions for which such a universal approx-imation holds in the literature [54], [47], [46]. But, as was noted in theorem (13),47



the approximation held pointwise for rapidly decreasing functions, f ∈ Fn. Thus, wesee that functions, f ∈ Fn, can also be approximated pointwise as well as in the Lpsense.3.5 OptimizationTo motivate the optimization problem, we recall lemma(19), which claimed that wecan approximate the response surface to within an arbitrary degree of precision, ǫ,with an appropriately chosen set of M directions. So how does one go about findingthese optimal directions? We propose selecting the directions that minimize thenonlinear least-squares cost function (provided below) given a specified set of input-output data:Optimization Objective: Given a high-dimensional, nonlinear dataset, we areseeking to accurately approximate the underlying response function, f (x) governingthe sample space, S.Specifically, we are seeking the directions, u1, ..., uM , and the 1-dimensional func-tions, f̂ui , along those directions that minimizeL =∑Nk=1 ∣∣∣yk −∑Mi=1 f̂ui (zik)∣∣∣2where f̂ui (zik) = ∑nij=1wijφij (zik), zik = uTi xk, and w is a vector of weights on thebasis functions. Each function, f̂ui, is an approximation of the underlying responsesurface along that direction and is formulated by using a suitable set of bases, asdescribed in section (3.3) . The grid spacing methodology upon which these basesoperate is as outlined in section (3.3.4) .Because we are dealing with nonlinear, high-dimensional datasets, the task offinding the optimal directions, ui, is difficult. Our approach will be to solve for them48



individually, fitting the best single dimensional function along each, and then at theend, put all of these directions together to find the optimal model.Thus, we solve our estimation problem with a two-stage optimization. The firststage involves searching for the best fit given fixed directions, u1, ..., uM . This is astandard linear least squares problem to minimize the cost function ‖ΦW − Y ‖2, withthe solution given by WLS = Φ+Y, where Y is the response, Φ+ = (ΦTΦ)−1ΦT andΦ is an N × (∑Mi=1 ni) matrix defined as [Φij (zik)]ST . Note that each Φij (zik) is asuitable basis function as described in section (3.3) , and the matrix W contains theindividual weights for each of those bases. Details for the matrix stacking operationare provided in the appendix. The second level of the optimization is a nonlinearproblem that involves finding the optimal projection directions.eLS = minu1,...,um∈ℜ,‖ui‖=1 (ΦWLS − Y )T (ΦWLS − Y ) (8)The next theorem shows that the two-stage optimization problem can be reducedto the following nonlinear optimization.Theorem 16 Assuming there exists a function belonging to the class of universalapproximators as stated in theorem (13), the optimization problem for finding the bestfunction estimator associated with seeking the optimal projection pursuit directionscan be formulated as maximizing the explanatory power of the estimate, succinctlystated as cep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦ+Y (9)Proof. The argument of equation (8) can be written as(ΦWLS − Y )T (ΦWLS − Y ) = (ΦΦ+Y − Y )T (ΦΦ+Y − Y )which leads to(ΦΦ+Y − Y )T (ΦΦ+Y − Y ) = Y T (I − ΦΦ+)T (I −ΦΦ+)Y49



by plugging in for the least-squares solution. Noting that (ΦΦ+)T = (ΦΦ+) , we haveY T (I − ΦΦ+)T (I −ΦΦ+) Y = Y T (I −ΦΦ+ − ΦΦ+ + ΦΦ+ΦΦ+)YGiven that Φ+Φ = I, this leaves us withY T (I − ΦΦ+ −ΦΦ+ + ΦΦ+ΦΦ+)Y = Y T (I −ΦΦ+)YThus, the optimization problem of eq. (8) reduces tocep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦ+Ygiven that Y TY is constant.Corollary 17 If the bases, φ, that form the basis function matrix Φ are orthogonal,then Φ+ = (ΦTΦ)−1ΦT = ΦT , and the optimization problem reduces to maximizingthe 2-norm of the coefficients:cep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦTY = ∥∥ΦTY ∥∥2where again, Φ is our matrix of basis functions along the given M directions and Yis the response vector.Corollary 18 If the basis function matrix Φ is one-dimensional thencep = maxu ∥∥∥ΦTY ∥∥∥2 (10)where Φ = Φ‖Φ‖.Proof. Noting that Φ+ = ΦTΦΦT in the 1-dimensional case, then it follows fromequation (9) that cep = maxu ∥∥ΦTY ∥∥2‖ΦΦT ‖which can be rewritten as equation (10) .50



The algorithm used to implement this modeling technique transforms the rawinput data into a matrix of projection directions and assigns the grid spacing alongthese directions. One-dimensional local basis function fits along these projectionsare then modeled simultaneously. The performance of this model is evaluated alongwith its Jacobian and Hessian. The algorithm is solved iteratively to find the optimalprojection direction matrix, R, by adjusting it via the following Levenberg-Marquardtoptimization: Rk+1 = Rk − (H + µI)−1 JT e. It is not particularly straight-forwardto arrive at the specific expressions used in this optimization, but rather requiresextensive calculations. Thus, the derivations of the Jacobian and Hessian formulationsare provided at the end of this chapter, in section (3.8.2). The interested readeris encouraged to explore these derivations, however, the section could be skippedwithout loss of the general flow of the material.3.6 PPLM Design3.6.1 Network StructureA schematic of the PPLM architecture is provided in figure (14).As illustrated, the inputs, xD, are to be reconstructed into a series of projectiondirections, gj, that are nonlinearly activated and then combined to form the projectedoutput(s), yq, of the model. A detailed sketch of the algorithm used is provided inthe section that follows:
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Figure 14: Schematic of PPLM network structure3.6.2 AlgorithmNote: m = total number of projection directionsR = projection matrixd = grid point subintervals per directionThe performance criterion is set to the MSE of the validation sample.1. Initializationa. Set the number of projection directions, m, and loop throughwhile performance criterion improves, m = m+ 1b. Initialize R randomlyc. For d = dmin to dmax (good values of d might range from 3 to 10)d. Set the stopping criteria for the outer loope. Set parameters for adaptive µ optimization algorithm, loop through whilecriteria are validi. Set µinc and µdec (increments and decrements of 10 are good values)ii. Set µmax 52



iii. Set itermaxiv. Set egoal2. While (µ < µmax) & (iter < itermax) & (e > egoal)3. Determine grid space valuesa. Z = X ∗R (setting transformed inputs)b. For each transformed input vector, Zk, create a vector of Order statisticsfor the observations, Ok , ∀ Zk and set the nodes for that input4. Next, the basis functions can be seta. For each projection direction, k, compute the distance of each data pointto each node (dropping subscript, k, for clarity):i. zij,l = zij−ηjbj,lii. zij,r = zij−ηjbj,rb. Create local piecewise cubic basis functions for each projection (Note:dropping observation number subscript, i, to avoid confusion):i. For each projection direction, compute the first portion of the basisfunction (to be designated as {φ}1), accounting for potential unequal base widthsalong dimensions:{φj}1 =  (|zj,l| − 1)2 (2 · |zj,l|+ 1)(|zj,r| − 1)2 (2 · |zj,r|+ 1)0 , if − 1 < zj,l ≤ 0if 0 < zj,r ≤ 1otherwise ii. For each projection direction, compute the derivative portion of thebasis function (to be designated as {φ}2):{φj}2 = (|zj,l| − 1)2 · zj,l(|zj,r| − 1)2 · zj,r0 , if − 1 < zj,l ≤ 0if 0 < zj,r ≤ 1otherwise iii. Assign basis function for each projection direction:φ = [ {φ}1 {φ}2 ]53



iv. Append to full basis function matrix: Φ = [ Φ φ ]v. Fit using least squares to find the weighting matrix, W : ΦW = Y ,where Y is the response vector(a). Φ+ = (ΦTΦ + γI)−1ΦT , where γ is some small, positive con-stant near zero (b). W = Φ+Y(c). Compute the error: E = ΦW − Y5. Optimization: Compute Jacobian and Hessian as per the Optimization section,equation (17) for the Jacobian and equations (19) and (20) for the Hessian.a. R1 = R− (H + µI)−1 JT eb. Z1 = X ·R1c. Repeat steps 3 & 4 with this new R1 and Z1 matrix to set the grid space,assign the basis functions, and fit the appropriate weights6. Evaluationa. Compare E21 with E20b. If E21 <E20 , then R0 = R1, Z0 = Z1, E0 = E1c. Update µ if necessary7. Return to step 2, repeating steps 3 through 6 provided the criteria in the whileloop of step 2 still holds
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3.7 Experimental ResultsAs a further test of the method’s effectiveness, the model’s predictive prowess wastested on data from a bearing defect experiment [94]. Details for this test, includingthe experimental setup and an explanation of the sensor data are provided below,followed by a comparison of the predictive results. Note that for this test, a com-parison of prediction accuracy of the PPLM model along with that of a feedforwardneural network approach is provided.3.7.1 BackgroundThe failure of rolling element bearings is one of the primary causes of breakdown inrotating machinery. In certain applications, this failure can produce catastrophicconsequences. Unexpected machine breakdown can often lead to high maintenancecosts and lengthy downtime. It is important to monitor and diagnose bearing condi-tion online, because detecting bearing defects early can lead to optimal maintenancescheduling. Details for the experiment, as run by Georgia Tech research fellow, ScottBillington, are now provided.3.7.1.1 Experimental SetupA Timken LM50130 cup (outer race) and LM501349 cone (inner race) bearing is usedfor this experiment. All bearing defects are artificially inscribed axially in the centerof the outer race with a diamond scribe. The size of the damage is controlled bythe pressure and number of passes of the scribe. A Form Talysurf Profilometer wasused to measure both the width and the height of the defects on the outer race. Atable of the widths and heights of the bearing defects is provided in Appendix (A.2).It should be noted that the majority of these defect areas are well below bearingfailure industry standards. Such industry standard has defined a bearing defect tobe one that has a total area of at least 6.25mm2. So, a predictive model capable ofidentifying defects at such an early stage as the defects presented in this experiment55



would provide an early warning system that would be useful in online monitoring anddiagnosis.A Triaxial Kistler 8792A50 high frequency accelerometer and a Physical AcousticsCorporation acoustic emission sensor R15 were mounted on the housing directly abovethe defective bearing. All signals were sampled at 50kXHz with (218 + 10) scansper file. The data acquisition system utilizes a National Instruments DAQ-1200PCMCIA data acquisition card and a Pentium computer. Experiments are performedat different cyclic speeds and radial loads for each defect. These different inputconditions are provided in Appendix (A.2).3.7.1.2 Signal ProcessingBearing defect signals must be extracted and isolated from a variety of noise thatis present in a real-world operating environment. From these extracted signals, thesignal features can be processed. The predictive models used for this analysis aretrained to predict the different levels of bearing defect using such signal features asinputs.The output signals from the accelerometer and acoustic emission were digitizedfrom analog voltage signals. Noise cancellation was employed by HFRT, or high fre-quency resonance technique. This amplitude demodulation makes use of modulatedhigh frequency vibration signatures of the defect frequency in a series of three steps:bandpass filtering, signal rectification, and low-pass filtering. Spectrum analysis canthen be conducted on the resulting signal.The signal features used in this work are RMS, Kurtosis, Crest factor, Max_FFT,Peak Value of the amplitude spectrum of the HFRT signal, Peak Value of the Cep-strum analysis of the accelerometer and RMS, and the 1st FFT Peak Value of AcousticEmission. RMS is the root-mean-square of the signal,56
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RMS =√∑Ni=1X2iNwhere N is the total number of sampling points and Xi is the signal at eachsampling point, i. The kurtosis of a signal is a measure of the degree to which thedata are peaked or flat relative to a normal distribution.Kurtosis = √∑Ni=1 X4iNRMS4The Crest Factor is equal to the peak amplitude of a waveform divided by itsRMS value. Crest Factor = max(abs(X))RMSThe purpose of the Crest Factor is to provide an indication for howmuch impactingis occurring in a waveform. Peak value is the maximum value of the amplitudespectrum at a particular defect frequency. Max_FFT is the maximum amplitude ofthe FFT (Fast Fourier Transform) of a time-domain signal.x (t) = rawdatax (t) = bandpass (x (t))X (f) = FFT (x (t))Max_FFT = max (abs (X (f)))1st FFT peak value is the first peak value reading from the FFT signal. PeakValue of the amplitude spectrum of the HFRT signal is constructed as follows:x (t) = rawdatax (t) = bandpass (x (t))x (t) = abs (x (t))x (t) = lowpass (x (t))X (f) = FFT (x (t))Peak_envelope = max (X (f))58



Cepstrum analysis treats the spectrum as if it were a waveform:Cepstrum = FFT (log10 [(FFT (x(t))N )(conjugate(FFT (x(t))N ))])NThe usefulness of cepstrum is as a pattern recognition scheme that is sensitiveto patterns of sidebands and harmonics. The full listing of signal feature inputs isprovided in Appendix (A.3).3.7.2 Modeling ProceduresFor the series of bearing defect experiments, signal features are provided for differentlevels of defect attribute versus varying load levels and speeds. A total of 143observations were investigated. The input data were a set of 29 different signalfeatures based on accelerometer and acoustic emissions data, as described previously.For all of the experiments run on this data, 75% of the data was used for training,while 25% was randomly chosen as the cross-validation sample. As each of the modelshave a number of varying parameters to be set, the use of this validation sample wasdevised as a data-driven selection method for choosing the appropriate parameters.Each time the experiment was run, the training and cross-validation samples areheld constant for all of the methods tested in order to give a fair comparison of theresults. In order to maximize the use of testing data, an n− 1 set produced for eachobservation. Thus, for each one of the 143 observations, that one data point wasremoved from the sample space. The remaining 142 observations were then split intoa 75% and a 25% randomly-chosen training and validation sample. The best neuralnetwork and the best PPLMmodels were thus chosen and then applied to the holdout(test) observation to develop a predicted defect size. This process was repeated foreach of the 143 observations. The results displayed are cumulative (average acrossall observations) or, in some cases, have been split up into cumulative within groups(average across all defects of a certain width). In this manner, we can glean an59



accurate reflection of the prediction capabilities of the compared modeling methods.3.7.3 Experiment Set #1For this experiment, the defect width was chosen as the response variable. TheLevenberg-Marquardt implementation of the projection pursuit network was com-pared on the cross-validation sample with the best feedforward artificial neural net-work (ANN) model. The neural net which performed the best on the cross-validationsample is presented in the graph, figure (16). As a comparison of the results, we willillustrate the differences in performances by simply comparing results across defectgrouping. The defect groupings were defined based on the experimental data pro-vided. The data consisted of 8 distinct levels of defect, or in this case defect width.Thus, performance across each of those groupings is what is illustrated in the graph.The true value of the defect width for each group is labeled actual in the chart, whilstthe other two bars per grouping are average prediction results along each set of testconditions run for that particular defect group.
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where E [ŷi] is the mean value of the prediction within defect group i, E [yi] is theexpected value of the actual defect size within the group, and E [y] is the overallaverage defect size across the entire sample population. Note that we are computingerror per grouping in this manner so as not to weigh more heavily the lower groupings(those with small defects) and similarly, so as not to produce a division-by-zero errorfor group 1.
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of the defect height. Results are shown in figure (18) grouped by the 8 discrete levelsof this new response. An error comparison is provided in figure (19). Again, for thiscomparison, errors were grouped by defect grouping and calculated for the ith groupas follows: errori = abs (E [ŷi]−E [yi])E [y]where the terms are as defined previously. Similarly, taking the overall percentageerror, we see that the PPLM approach performs quite well.Table 2: Overall defect height percentage error for Experiment 1Model % ErrorANN 3.1%PPLM 1.7%
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3.8 Additional Theory and Derivations for Chap-ter 3Because of the extensive mathematical derivations, the casual reader is invited toskip the next subsection without loss of the general flow of the material. The nextsection contains the bulk of the proofs for the universal approximation capabilitiesof the method. In the interest of readability, the derivations of the Error Jacobianand the Hessian for use in the Levenberg-Marquardt optimization technique have alsobeen moved to this final section of Chapter 3. They are included after the universalapproximation theory details. Again, while the reader is encouraged to explore thissection, the casual reader may skip directly to Chapter 4 without loss of continuity.3.8.1 Universal Approximation Theory and Derivation DetailsLet us begin with the derivation of a key lemma.Lemma 19 For any arbitrary function f ∈ Fn, with ǫ > 0, there exists an integerM set of directions u1, ..., uM, where M > 0, and a set of continuous functions f̂uk :ℜ → ℜ, such that ∣∣∣∣∣∣∫U fu (xTu) dS − M∑k=1 f̂uk (xTuk)∣∣∣∣∣∣ < ǫuniformly in X ⊂ ℜnfor all x ∈ X .Proof of Lemma 19 The function fu (x) , fu (x) : Sm−1 × X → ℜ, is continuouson the compact space in Sm−1 × X , and thus can be considered to be uniformlycontinuous on Sm−1×X . For any ε′ > 0, there exists a δ > 0 such that if y ∈ Bδ (x)then ∣∣fu (xTu)− fu (yTu)∣∣ < ε′ for any x ∈ X and u ∈ Sm−1, and where Bδ (x) is aball of radius δ centered at x.Since ∪x∈XBδ (x) is an open cover for X and due to the compactness of X , there ex-ists a finite subcover. Let x1, x2, ..., xN be the centers of the corresponding open balls,64



Bδ (x) , that cover space Sm−1. For each xk, we wish to approximate ∫Sm−1fu (xTk u) dSnumerically. Fortunately, the integral over the surface of an m-dimensional hyper-sphere on a compact set may be approximated within an arbitrary degree of precisionby a finite sum [19] and [75]. For each xk, k = 1, 2, ..., N, there exists an mk > 0, aset of weights ψ1,....ψmk, and a set of directions u1, ....umk such that∣∣∣∣∣∣∫U fu (xTk u) dS − mk∑j=1 ψjkfujk (xTk ujk)∣∣∣∣∣∣ < ε′ (11)for k = 1, 2, ..., N [19], [75].Now define F̂ (x) = N∑k=1(αk mk∑j=1 ψjkfujk (xTk ujk))N∑k=1 αkwhere αk = 1 −min( |x−xk|δ ,1), thus 0 ≤ αk ≤ 1 for each k.F̂ (x) = N∑k=1 mk∑j=1 αkψjkfujk (xTk ujk)∑Nk=1 αk  = N ′∑i=1 f̂ui (zi)where zi = xTk ui , f̂ui = αkψjkfujk (xTk ujk)∑Nk=1 αk(xk) ,j1 + j2 + ...+ jk < i < j1 + j2 + ...+ jk+10 < k < N , M = N∑k=1 jk, 1 ≤ i ≤M.
65



Using equation (11) and letting Er = ∣∣∣∣∣∫Ufu (xTk u) dS − N ′∑i=1 f̂ui (zi)∣∣∣∣∣ we find thatEr ≡ ∣∣∣∣∣∣∣∣∑Nk=1 αk (x) ∫Ufu (xTu) dS −∑Nk=1 αk (x)∑mkj=1 ψjkfujk (xTk ujk)∑Nk=1 αk (x) ∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∑Nk=1 αk∑Nk=1 αk∫U fu (xTk u) dS − mk∑j=1 ψjkfujk (xTk ujk)∣∣∣∣∣∣= ∣∣∣∣∣∣∫U fu (xTk u) dS − mk∑j=1 ψjkfujk (xTk ujk)∣∣∣∣∣∣ < ε′and thus we have that∣∣∣∣∣∣∫U fu (xTk u) dS − N ′∑i=1 f̂ui (zi)∣∣∣∣∣∣ < ε′ (12)Let x ∈ X be arbitrary. Since N∪k=1Bδ (xk) covers X , there exists k such that x ∈Bδ (xk) . Then, [ M∑i=1 f̂ui (xTk ui)− M∑i=1 f̂ui (xTui)] ≤ ςwhere ς = N∑k=1 mk∑j=1 αkψjk ∣∣∣fujk (xTk ujk)−fujk (xTu)∣∣∣∑Nk=1 αk  .It follows then thatN∑k=1 mk∑j=1 αkψjk ∣∣∣fujk (xTk ujk)− fujk (xTu)∣∣∣∑Nk=1 αk  ≤ ε′ N∑k=1 αk mk∑jk=1 ∣∣ψjk∣∣∑Nk=1 αk ≤ cε′where ck = mk∑jk=1 ∣∣ψjk∣∣ and c = maxk ck.Then, recalling equation (12) and since∣∣∣∣∣∣∫U fu (xTk u) dS − ∫U fu (xTu) dS∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∫U ∣∣fu (xTk u) dS − fu (xTu)∣∣ dS∣∣∣∣∣∣ ≤ ε′S,we can write:∣∣∣∣∣∣∫U fu (xTu) dS − M∑i=1 f̂ui (xTui)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∫U fu (xTu) dS − ∫U fu (xTk u) dS∣∣∣∣∣∣+ ξ66



whereξ = ∣∣∣∣∣∣∫U fu (xTk u) dS − M∑i=1 f̂ui (xTk ui)∣∣∣∣∣∣+ ∣∣∣∣∣ M∑i=1 f̂ui (xTk ui)− M∑i=1 f̂ui (xTui)∣∣∣∣∣ .It can then be noted that ξ ≤ (1 + S + c) ε′ Now, by letting ε′ = ǫ1+S+c , the theoremis proven: ∣∣∣∣∣∣∫U fu (xTu) dS − M∑i=1 f̂ui (xTui)∣∣∣∣∣∣ < ǫ,and thus the universal approximation capability holds across x.
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3.8.2 Additional Optimization Theoretical DerivationsTo implement a Levenberg-Marquardt optimization of the PPLM approach, we mustfirst derive the Error Jacobian and Hessian specific to our optimization problem.These derivations are painstakingly detailed in the pages that follow.3.8.2.1 Derivation of the Error Jacobian: Case where µ = 0:Defining Ys to be the response variable and letting g be the weighting matrix, g ≡ W.Let f = Y Ts g (gT g)−1 gTYs.Then the Error Jacobian can be written as d (ETE) = −df since ETE = Y Ts Ys −f. Letting z = gTYs, we are left with f = zT (gT g)−1 z. And letting ∆f and∆ (gT g) each denote a small perturbation in f and (gT g), respectively, we arrive atthe following expression, neglecting for higher-order terms:∆f = zT∆ (gT g)−1 z +∆zT (gT g)−1 z + zT (gT g)−1∆z.And since each of these collections of terms is a scalar, it follows that:∆f = zT∆ (gT g)−1 z + 2zT (gT g)−1∆z. (13)But, we can now note that∆ (gT g)−1 = [gT g +∆ (gT g)]−1 − (gT g)−1 .Using this, we can write[gT g +∆ (gT g)]−1 = (gT g)−1 + (gT g)−1∆ (gT g) (gT g)−1 +O (∥∥∆ (gT g)∥∥2) .Thus, it follows that∆ (gT g)−1 = − (gT g)−1∆ (gT g) (gT g)+O (∥∥∆ (gT g)∥∥2) .68



And then equation (13) can be written (dropping higher-order terms) as:∆f = −zT (gT g)−1∆ (gT g) (gT g)−1 z + 2zT (gT g)−1∆z. (14)Now, letting ∆g denote a perturbation in g, so that,∆ (gT g) = (gT +∆gT ) (g +∆g)− gT g= gT g + gT∆g +∆gT g +∆gT∆g − gT g.We arrive at ∆ (gT g) = gT∆g +∆gT g +O (‖∆g‖2) .Plugging this into equation (14) and dropping higher-order terms yields∆f = −zT (gT g)−1 gT∆g (gT g)−1 z (15)−zT (gT g)−1∆gT g (gT g)−1 z + 2zT (gT g)−1∆z. (16)Therefore, it follows due to the symmetry of the matrix (gT g), as(gT g)−T = (gT g)−1that we arrive at the following reduction of equation (15):∆f = −Y Td gT∆gYd − Y Td ∆gT gYd + 2zT (gT g)−1∆z.Again, using the property that the collections of these terms are scalars∆f = −2Y Td gT∆gYd + 2∆zT (gT g)−1 z= −2Y Td gT∆gYd + 2Y Ts ∆gYd= 2 (Ys − gYd)T ∆gYd.Thus, {∆f}s = 2 (Y Td ⊗ ET ) {∆g}s .69



where the specified matrices have been stacked. Note that the Kronecker product isdefined in the Appendix (A.1). And so as ∆g → 0, we haveDf = 2 (Y Td ⊗ ET ) (Dg) .However, in our case, we add the constant µ to reduce the chance of singularity.The derivation of the Jacobian for this is now provided in the subsection that follows.

70



3.8.2.2 Derivation of the Error Jacobian: Case where µ �= 0:Defining Ys to be the response variable, assigning Yd = g+Ys to be the basis functions,and letting g be the weighting matrix, g ≡ W, our error vector may be written as:E = Ys−gYd = Ys−gg+Ys = [I − g (gT g + µI)−1 gT ]Ys. Note that we have addedthe constant µ to the least-squares computation to reduce the chance of singularity.So, ETE = Y Ts [I − g (gT g + µI)−1 gT]T [I − g (gT g + µI)−1 gT]Ys.Rearranging terms, we find thatETE = Y Ts [I − g (gT g + µI)−T gT] [I − g (gT g + µI)−1 gT ]Ys.Expanding yields the following expression:ETE = Y Ts [I − g (gT g + µI)−T gT − g (gT g + µI)−1 gT ]Ys+Y Ts [g (gT g + µI)−T gT g (gT g + µI)−1 gT ]Ys.Now add ψ = Y Ts g (gT g + µI)−T µI (gT g + µI)−1 gTY Tsto both sides of the equation, and since (gT g + µI) (gT g + µI)−1 = I , then we areleft with:ETE+ψ = Y Ts [I − g (gT g + µI)−T gT − g (gT g + µI)−1 gT + g (gT g + µI)−T gT ]Ys.Canceling out another set of terms, leaves us withETE + ψ = Y Ts [I − g (gT g + µI)−1 gT]Ysor, it may be restated asETE = Y Ts [I − g (gT g + µI)−1 gT ]Ys − Y Ts g (gT g + µI)−T µI (gT g + µI)−1 gTY Ts .71



Recalling that Yd = (µI + gT g)−1 gTYs, yields:ETE = Y Ts [I − g (gT g + µI)−1 gT ]Ys − Y Td µIYd = Y Ts [I − gg+]Ys − µY Td Ydwhere g+ ≡ (gT g + µI)−1 gT . Definingf = − [Y Ts Ys − zT (gT g + µI)−1 z]with z = gTYs, then ETE = − (f + µY Td Yd)and D(ETE) = −Df − µD(Y Td Yd).Therefore the computation of the Jacobian of ETE can be separated into computationof Df and D(Y Td Yd). So, dropping higher-order terms:∆f = ∆zT (gT g + µI)−1 z + zT∆ (gT g + µI)−1 z + zT (gT g + µI)−1∆z.Collecting algebraic expressions, we can rewrite as∆f = zT∆ (gT g + µI)−1 z + 2zT (gT g + µI)−1∆z.Noting that ∆ (gT g + µI)−1 = [gT g +∆ (gT g)+ µI]−1 − (gT g + µI)−1And that[gT g +∆ (gT g)+ µI]−1 = (gT g + µI)−1 − (gT g + µI)−1∆ (gT g) (gT g + µI)−1+O (∥∥∥∆ (gT g)2∥∥∥) .Then, dropping higher-order terms yields:∆ (gT g + µI)−1 = − (gT g + µI)−1∆ (gT g) (gT g + µI)−172



And we are left with∆f = 2zT (gT g + µI)−1∆z − zT (gT g + µI)−1∆ (gT g) (gT g + µI)−1 z.Noting that∆ (gT g) = (gT +∆gT ) (g +∆g)− gT g = gT g + gT∆g +∆gT g +∆gT∆g − gT g,Dropping higher order terms, yields∆ (gT g) = gT∆g +∆gT g.So, ∆f = 2zT (gT g + µI)−1∆z − zT (gT g + µI)−1∆gT g (gT g + µI)−1 z−zT (gT g + µI)−1 gT∆g (gT g + µI)−1 z.Since g+ ≡ (gT g + µI)−1 gT , Yd = g+Ys, and z = gTYs thenYd = (µI + gT g)−1 z.Thus, ∆f = 2Y Td ∆z − Y Td ∆gT gYd − Y Td gT∆gYd = 2∆zTYd − 2Y Td gT∆gYd.This can be rewritten as:∆f = 2 (∆gYs)T Yd − 2Y Td gT∆gYd = 2 (Ys − gYd)T ∆gYd = 2ET∆gYd.Because we are dealing with matrices, we will rewrite this in stack form as {∆f}s =2 (Y Td ⊗ ET ) {∆g}s . As ∆g → 0, we are left withDf = 2 (Y Td ⊗ ET ) (Dg) .Since ETE = − (f + µY Td Yd), then it follows that D (ETE) = −Df − µD (Y Td Yd) .So, now we must compute D (Y Td Yd) . Recall that Yd = g+Ys, whereg+ ≡ (gT g + µI)−1 gT .73



So, ∆ (Y Td Yd) = ∆Y Td Yd + Y Td ∆Yd +O (‖∆Yd‖2) ∼= 2Y Td ∆Yd,dropping higher order terms. Noting that ∆Yd = ∆g+Ys, and (dropping higher orderterms) that ∆g+ = ∆ (gT g + µI)−1 gT + (gT g + µI)−1∆gT ,it follows that∆g+ = (µI + gT g)−1∆gT − (µI + gT g)−1∆ (gT g) (µI + gT g)−1 gT .If we then recall that ∆ (gT g) = ∆gT g+gT∆g, we can write the following expression:∆g+ = (µI + gT g)−1∆gT− [(µI + gT g)−1∆gT g + (µI + gT g)−1 gT∆g](µI + gT g)−1 gTand we have that∆g+ = (µI + gT g)−1∆gT − (µI + gT g)−1∆gT gg+ − g+∆gg+.This leads us to rewriting the expression ∆ (Y Td Yd) = 2Y Td ∆Yd, as follows:∆ (Y Td Yd) = 2Y Td ∆Yd = 2Y Td (µI + gT g)−1∆gTYs− 2Y Td (µI + gT g)−1∆gT gg+Ys − 2Y Td g+∆gg+Ys= 2Y Ts ∆g (µI + gT g)−1 Yd − 2Y Td gT∆g (µI + gT g)−1 Yd − 2Y Td g+∆gYd= 2 (Ys − gYd)∆g (µI + gT g)−1 Yd − 2Y Td g+∆gYd.Which leads us to a final expression:∆ (Y Td Yd) = 2 [((µI + gT g)−1 Yd)T ⊗ ET − Y Td ⊗ Y Td g+] {∆g}s .Note that the Kronecker product is defined in the Appendix (A.1). Thus, we arriveat our stated objective with an expression for D (Y Td Yd) as follows:D (Y Td Yd) = 2{[(µI + gT g)−1 Yd ⊗ E]T − (Yd ⊗ g+TYd)T}Dg74



where g+T = g (µI + gT g)−1 . So finally, recalling thatD (ETE) = −Df−µD (Y Td Yd),we arrive at: D (ETE) = −2 (Y Td ⊗ ET ) (Dg)− ϑ (17)where ϑ = 2µ{[(µI + gT g)−1 Yd ⊗ E]T − (Yd ⊗ g+T Yd)T}Dg.Since JT e = D (ETE) , the value we compute for this D (ETE) will be used in ouroptimization algorithm: Rk+1 = Rk − (H + µI)−1 JT e. At this point, we have onlyto compute the Hessian, H, for use in the algorithm.
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3.8.2.3 Derivation of the Approximate Hessian:Recalling that E = Ys − gYd, then∆E = ∆Ys −∆gYd − g∆Yd.But since ∆Ys = 0, then ∆E = −∆gYd − g∆Yd (18)Now we must solve for an expression for ∆Yd. As one recalls: ∆Yd = ∆g+Ys where∆g+ = ∆ (µI + gT g)−1 gT + (µI + gT g)−1∆gT= (µI + gT g)−1∆gT − (µI + gT g)−1∆ (gT g) (µI + gT g)−1 gT .Since ∆ (gT g) = ∆gT g + gT∆g, then,∆g+ = (µI + gT g)−1∆gT− [(µI + gT g)−1∆gT g + (µI + gT g)−1 gT∆g] (µI + gT g)−1 gT .Thus, an expression for ∆Yd can be written as∆Yd = (µI + gT g)−1∆gTYs − [(µI + gT g)−1∆gT g + (µI + gT g)−1 gT∆g]Yd.Cleaning this up a bit by collecting appropriate terms, yields the following expressionfor ∆Yd : ∆Yd = (µI + gT g)−1∆gT [Ys − gYd]− (µI + gT g)−1 gT∆gYd.This can, in turn, be substituted into the equation (18) to show that∆E = −∆gYd − g (µI + gT g)−1∆gTE + g (µI + gT g)−1 gT∆gYd.Upon further inspection, the expression reduces to:∆E = −∆gYd − g+T∆gTE + g+T gT∆gYd.76



And so we have −∆E = (I − g+T gT )∆gYd + g+T∆gTE. Or written in stack form:−∆Es = Y Td ⊗ (I − g+T gT )∆gs + (g+T ⊗ ET )∆gs.Finally, we arrive at our expression for the Hessian:H ≃ (DE) (DE)T (19)where DEs = −Y Td ⊗ (I − g+T gT )Dgs − (g+T ⊗ ET )Dgs. (20)
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CHAPTER IVTHE DISCRETE PROJECTION PURSUITLEARNING MODEL (DPPLM)4.1 Mathematical Framework4.1.1 Problem StatementGiven an unknown multivariate function of dimension n ≫ 1, f ∈ L2, our objectiveis to approximate f to within a prescribed degree of accuracy based on a finite set ofinput—output data (xk, yk), k = 1, . . . ,N by projecting f along a finite set of directionsand constructing a nonlinear model composed of the superposition of 1—dimensionalfunctions along the projection directions that best fit the input—output data.4.1.2 TheoryBefore beginning the analysis, it is useful to first define the mathematical frameworkwithin which we will be working. For approximation purposes, we consider a subsetof Lebesgue measurable multi-dimensional functions f : ℜn → ℜ with rectangulardomain D = [α1, β1]× · · · × [αn, βn] . Without loss of generality, by scaling and/orshifting the coordinate axes if necessary, we shall assume that D = [0, 1]n. The L2norm of f : ℜn → ℜ on the domain D is defined as, ‖f‖2 = (∫D |f |2dx)1/2. Thenotation L2(D) denotes the space of functions where each function f is (Lebesgue)measurable and ‖f‖2 <∞.The scalar product of two functions f, g ∈ L2(D) is defined as< f, g >= ∫D f (x)g(x)dx78



Motivated by the fact that we will be approximating multivariate functions on abounded compact domain, our analysis will be carried through by representing ourfunction in terms of its Fourier series. This seems well justified when consideringthat the Fourier series representation of a function is intended for functions definedon a bounded compact domain space. Analysis using the Fourier transform wouldbe equally valid but its ability to represent a function defined on all of ℜn wouldbe largely unnecessary for purposes here. Letting and Zn = Z × · · · × Z︸ ︷︷ ︸n—times then theFourier series of f ∈ L2(D) can be expressed by the series,f̌(x) = ∑k∈Zn f̂kejωTkx (21)where ωk = 2πk f̂k = ∫D f (x)e−jωTkxdxFrom the well known L2 theory, the Fourier series of an L2 function converges inthe L2 sense so that ∥∥f − f̌∥∥2 = 0. Also by Parseval’s theorem the L2 of f and the2—norm of its coefficients coincide: ‖f‖22 =∑k∈Zn ∣∣∣f̂k∣∣∣2.To develop the projection pursuit formulation let K be the following subset of ZnK = {k ∈ Zn : gcd(k1, . . . , kn) = 1, kj > 0, j = min1≤i≤n ki �= 0}where gcd(k1, . . . , kn) denotes the greatest common divisor of k1, . . . , kn.It can be easily seen that Zn = ∪r∈ZrK and consequently the Fourier series of f,given that f is continuous, can be expressed asf(x) = f̂0 + ∑k∈K\0∑r∈Z f̂krej2πrz, z = kTxDefining fk (z) :=∑r∈Z f̂krej2πrzfor k �= 0 and f0 (z) = f̂0 (constant), thenf(x) =∑k∈K fk (z) , z = kTx79



We can summarize the results obtained so far in form of the following theorem:Theorem 20 A continuous function f ∈ L2(D) can be decomposed into an infinitenumber of single variable, mutually orthogonal functions fk, i.e., < fk, fk′ >= 0,k �= k′: f(x) =∑k∈K fk (z) , z = kTxP���� The only thing we need to prove is the orthogonality of these functions.〈fk, fm〉 = ∫D(∑r∈Z f̂krej2πrkT x)(∑s∈Z f̂mse−j2πsmTx) dx=∑r∈Z∑s∈Z f̂krf̂ms ∫D ej2π(rk−sm)Tx=∑r∈Z∑s∈Z f̂krf̂ms ∫ 10 ej2π(rk1−sm1)x1dx1 · · ·∫ 10 ej2πr(rkn−smn)xndxnThe right hand side of the above expression is nonzero if only if∫ 10 ej2π(rki−smi)xidxi �= 0, i = 1, . . . , nor equivalently rki = smi, i = 1, . . . , n by the orthogonality of ej2πkx functions. Weclaim that k = m. If this is not the case, let d = gcd(r, s), and put r′ = r/d, ands′ = s/d. Then r′ki = s′mi and since r′ and s′ are relatively prime, they must dividemi and ki respectively. But this is a contradiction since elements of k and m arerelatively prime. By the definition of set K it is also impossible for k = −m unlessthey are both zero (and consequently equal). Thus r = s and k =m implying that〈fk, fm〉 =  ∑r∈Z ∥∥∥f̂kr∥∥∥2 = ‖fk‖2 , k =m0, k �=m4.2 Universal Approximation CapabilityWithin the context of our algorithmic implementation, we would like to show thatnumerical integration over a selected set of directions can approximate the infinite set80



to within an arbitrary degree of closeness. Or, in other words, it must be proven thatthis discretized approach possesses universal approximation capabilities. Drawingupon the concept of basis functions as described in section (3.3) , the derivation ofuniversal approximation follows.Theorem 21 For any function f ∈ L2(D) and ε > 0, we can find a finite number ofdirections and basis functions per direction such that the resulting approximation willestimate f to within ε, such that ∥∥∥f (x)−∑i,j f̂ij (x)∥∥∥ < ε.P����By Theorem (20), we recall that f (x) =∑k∈K fk (z) , or redefining indices, f (x) =∑∞i=1 fi (uTi x) . Since fi’s are mutually orthogonal ‖f‖2 = ∑∞i=1 ‖fi‖2 < ∞. Thusthere exists M > 0 such that ∥∥∥f −∑Mi=1 fi∥∥∥ = √∑∞i=M+1 ‖fi‖2 < ǫ2 . For eachdirection ui , we shall choose enough basis functions {φij}, 1 ≤ j ≤ ni, such thatf̃i = fi −∑nij=1 θijφij satisfies ∥∥∥f̃i∥∥∥ < ǫ2M . So, our approximation can be written as:f = M∑i=1 ni∑j=1 θijφij + M∑i=1 f̃i (z) + f̃ (z)where f̃ = f − ∑Mi=1 fi. Thus, the error associated with the approximation is:e =∑Mi=1 f̃i (z) + f̃ (z) . And we have this error bounded by:‖e‖ ≤ M∑i=1 ∥∥∥f̃i∥∥∥+ ∥∥∥f̃∥∥∥ ≤M · ǫ2M + ǫ2 = ǫ.The theorem is now proven by setting f̂ij = θijφij.4.3 OptimizationThere are alternative approaches for the optimization procedure that would be par-ticularly useful for identifying functions with bounded domains. For instance, instead81



of using a multidimensional gradient search method to find the optimal directions, anexhaustive search of the entire domain of projection directions could be employed. Orif an exhaustive search would prove too computationally intensive for the domain ofinterest, an efficient search scheme could be attempted after the linear trends are re-moved to target the remaining effects. In this case, a genetic algorithm could be usedto identify the projection directions. Together with the use of limited coupling, thegenetic algorithm approach could determine the desired projection directions whileavoiding getting caught in local minima.Recalling theorem(20) , the function to be modeled can be written simply as:f = f0 + f1 + f2 + .... = ∞∑k=1 fkWe note a partial sum of these low-dimensional functions:f̂r = f0 + f1 + f2 + ...+ fM = M∑k=1 fkThus the error given the orthogonality of these functions, 〈fi, fj〉 = 0, can beexpressed as: ∥∥∥f − f̂r∥∥∥22 = ∞∑k=M+1 ‖fk‖22 (22)This expression for the 2-norm of the error can then be used as the evaluationcriterion of our approximation. This metric can be used in the development ofa random search routine, such as a genetic algorithm, for the optimal projectiondirections. 82



Figure 20: Relatively Prime Projection DirectionsSuch a random search approach could be coded to identify the contributions ofeach projection direction to the overall governing function. As such, the norm of thiscontribution for each attempted projection direction would be the fitness functionfor evaluating the performance of a given direction. Further, by reducing couplingand assuming the function is bandlimited, the search space of possible projectiondirections is finite. Thus, the problem of finding the optimal projection directionsseems well-suited for a such a search technique. And, of course, once the directionshave been chosen, these can be fed back into the local basis function network toaccurately model the given system. In the example simulations to follow later inthis dissertation, an exhaustive search will be utilized with low-degree of couplingassumed, as the dimensionality of the input space is small enough to do so. However,we will briefly explore the potential implementation of a GA search routine given thatsuch a method would likely be necessary if the dimensionality of the problem spacetruly quite high. Indeed, a brief simulation investigation of this GA adapted methodwill also be presented following the comprehensive simulations.83



4.3.1 Genetic AlgorithmA genetic algorithm is an optimization procedure that searches a function’s solutionspace via a simulated version of Darwinian evolution, i.e., the survival of the fitteststrategy. In fact, the algorithm works in a manner that is quite similar to the well-known biological process upon which it is based. In general, the “fittest” individualsof a population tend to reproduce and survive to the next generation, thus improvingthe overall fitness of successive generations. However, there is still a chance that“inferior” individuals might also survive and reproduce.One advantage of genetic algorithms over some other potential optimization choicesis that genetic algorithms have been shown to solve linear and nonlinear problems byexploring all regions of a search space and exponentially exploiting promising areasthrough the procedures of mutation, crossover, and selection operations [63]. The ba-sic steps of a genetic algorithm (GA) are summarized in the algorithm that follows.We will touch on each of the major components in the paragraphs that follow.
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4.3.1.1 AlgorithmBasic Steps of the Genetic Algorithm Scheme1. Supply a population P0 of N individuals and respective function values.2. i←− 13. P ′i ←− selection_function(Pi − 1)4. Pi ←− reproduction_function(P ′i )5. evaluate(P ′i )6. i←− i+ 17. Repeat step 3 until termination8. Output rank-ordered population of best solutions foundThe use of a genetic algorithm requires the determination of six fundamentalfacets: chromosome representation, the selection function, the genetic operators mak-ing up the reproduction function, the creation of the initial population, the termina-tion criteria, and the evaluation function. The rest of this section describes each ofthese issues.4.3.1.2 Solution RepresentationFor any GA, a chromosome representation is needed to describe each individual in thepopulation. The representation scheme determines how the GA problem is structuredand also determines the genetic operators that are to be used. Each individual, orchromosome, is made up of a sequence of genes from a certain alphabet. In this case,we use bounded integer values. Thus, each chromosome is bounded by the infinitynorm of its composite genes. 85



4.3.1.3 Selection FunctionThe selection of individuals to produce successive generations plays an extremely im-portant role in the genetic algorithm. Often, a probabilistic selection is performedbased upon the individual’s fitness such that the better individuals have an increasedchance of being selected. An individual in the population can be selected more thanonce with all individuals in the population having a chance of being selected to repro-duce into the next generation. There are several potential schemes for the selectionprocess: roulette wheel selection and its extensions, scaling techniques, tournament,elitist models, and ranking methods [34], [63].In our case, we enlist the services of the tournament selection method. Tournamentselection only requires the evaluation function to map solutions to an ordered set anddoes not assign probabilities. Tournament selection works by selecting j individualsrandomly, with replacement, from the population, and inserts the best of the j into thenew population. This procedure is repeated until N individuals have been selected.4.3.1.4 Genetic OperatorsGenetic Operators provide the basic search mechanism of the genetic algorithm. Theoperators are used to create new solutions based on existing solutions in the popu-lation. There are two basic types of operators: crossover and mutation. Crossovertakes two individuals and produces two new individuals while mutation alters oneindividual to produce a single new solution.Crossover For our purposes the crossover function works as demonstrated in theaccompanying figure, Figure (21). In the figure, we assume an initial input spaceconsisting of 5 dimensions. Thus, the chromosomes, or individuals, listed are thevector representations of projection directions that we are mating to achieve a newset of vector representations. For this example, the crossover point was randomly86



Figure 21: Demonstration of Crossover Procedureselected to be between the third and fourth components of the vectors. Note thatthere will be some instances in which the crossover will naturally produce unchangedoffspring.Mutation: Because of their inherent randomness, mutations have the unique abilityto keep the optimization procedure from getting stuck in a local minimum: Thisprovides one clear-cut advantage of the evolutionary approach to optimization overits gradient descent and Newtonian cousins. The mutation scheme adopted foruse in our algorithm was governed by the type of chromosomes we used. Becauseof the complexity of the projection direction chromosomes, in which each directionis comprised of component genes with the non-zero components representing theprojection hyperplane and the magnitude of those components identifying the specificdirection within the hyperplane, a multi-attribute mutation scheme was employed.Thus, mutations can occur in any one of 4 different ways, which are assigned randomlyand with equal probability. The first type of mutation is the simple switching ofvector components within a projection direction. This is illustrated in figure (22).Another potential mutation is given in figure (23). With this flip-and-switch87



Figure 22: Illustration of a "Switch" Mutation (Type I)mutation, components are switched and signs are flipped.
Figure 23: Illustration of a "Flip-and-Switch" Mutation (Type II)A third mutation type involves shifting one non-zero direction component to anunoccupied slot, where an unoccupied slot is defined as a component position havinga zero value. This is portrayed in figure (24).

Figure 24: Illustration of a "Shift" Mutation (Type III)The fourth type of mutation employed is the flip-and-shift. An example of thisis provided in figure (25). 88



Figure 25: Illustration of a "Flip-and-Shift" Mutation (Type IV)4.3.1.5 Initial Population Generation:The GA must be provided an initial population as indicated in step 1 of the algo-rithm provided in section 4.3.1.1. The most common method is to randomly generatesolutions for the entire population. This is the technique we employ in our version ofthe genetic algorithm.4.3.1.6 Stopping Criteria:The GA moves to each successive generation by selecting and reproducing parentsuntil the termination criterion is met. In our case, this stopping criterion is a specifiedmaximum number of 500 generations.4.3.1.7 Evaluation function:The evaluation function was presented in equation (22) and is the same one used inthe other PPLM algorithms we have implemented. It is provided again below, forthe reader’s convenience. ∥∥∥f − f̂r∥∥∥22 = ∞∑k=M+1 ‖fk‖22Once again, the terms were as originally defined earlier in this chapter.4.3.2 Projection Direction Optimization:Evaluating each individual direction separately, we choose the top msub directions(a subset of our total number of directions) based on our selection criterion of the89



minimization of the approximation error, from equation (22). From this subsetof selected directions, the forward selection procedure is performed to choose theprojection directions, adding sequentially those with the biggest impact on the error.In this way, the model space is built up until the stopping criterion is reached.4.3.3 Function ApproximationProblem Statement:Given a high-dimensional, nonlinear dataset, we are seeking to accurately ap-proximate the underlying response function, f (x) governing the sample space, S.Specifically, we are seeking the directions, u1, u2, ..., uM , and the one-dimensionalfunctions, f̂uk , along those directions that minimize (∑Nj=1 ∣∣∣yj −∑Mk=1 f̂uk (zkj)∣∣∣2) ,where f̂uk (zkj) =∑nkj=1wjφij (zki) ,zki = uTk xi, and w is a vector of weights on the basis functions. Each function, f̂uk,is an approximation of the underlying response surface along that direction and isformulated by using a suitable set of bases, as described in section (3.3) . The gridspacing methodology upon which these bases will operate is as outlined in section(3.3.4) .Because we are dealing with nonlinear, high-dimensional datasets, the task offinding the optimal directions, uk, is difficult. Our approach will be to solve for themindividually, fitting the best 1-dimensional function along each, and then at the end,put all of these directions together to find the optimal model.Thus, we will attempt to solve our estimation problem with a two-stage opti-mization. The first stage involves solving for the best fits given fixed directions,u1, ..., uM . This is a standard linear least squares problem to minimize the cost func-tion ‖ΦW − Y ‖2, with the solution given by WLS = Φ+Y, where Y is the response,Φ+ = (ΦTΦ)−1ΦT and Φ is an N × (∑Mk=1 nk) matrix defined as [Φkj (zki)] ST .90



Note that each Φkj (zki) is a suitable basis function as described in section (3.3) , andthe matrix W contains the individual weights for each of those bases. Details forthe stacking operation for matrices is provided in the appendix. The 2nd level ofthe optimization is a nonlinear problem that involves finding the optimal projectiondirections. eLS = minu1,...,um∈ℜ,‖ui‖=1 (ΦWLS − Y )T (ΦWLS − Y ) (23)4.3.4 Exact Function Approximation — an infinite sampleBefore moving on, one should be careful to note the approximations being made whencharacterizing the function estimation in the manner described above. To begin, theleast-squares error shall be defined as:eLS = min ∫X e2dxwhere e = ΦW−f̂ , and f̂ = ΦW. The terms Φ andW are as described previously.However, the basis function matrix for exact function approximation would consistof infinite rows (in the continuous case) as Φ contains as many elements as W. So,we take Φ (x). By, basing our function estimation only on the available information,we can then solve only for the row we need based on the data.Rewriting our least squares error based on this information, we have:eLS = minu,W ∫ [Φ (x)W − Y (x)]T [Φ (x)W − Y (x)]For a given fixed u, the least-squares solution isWLS = Φ+ (x) Y (x) = (∫ Φ (x) ΦT (x) dx)−1 ∫X ΦT (x)Y (x) dx91



So, the least-squares error can then be written aseLS = ∫ Y 2 (x) dx− Py (∫S Φ(x)ΦT (x) dx)−1 PYwhere Py = ∫S ΦT (x)Y (x) dx. If we knew the values of the function, this is howwe would solve it for an exact function representation. However, in practice, wedo not know the exact values of the function for all possible inputs; hence, theneed for our function approximation in the first place. The discrete solution ofmaxu ∥∥∫X ΦT (x) Y (x) dx∥∥ depends on the distribution of the data. We cannot sim-ply take a summation of the terms, as, in this case, the summation is not a goodapproximation for the integral we are trying to solve. Thus, unless the distributionof the bases is exactly uniform or unless we have infinite data, then we do not havestrict orthogonality. So, as an approximation, we discretize the solution. Note thatthis was the reason for the nonparametric technique of arranging the data into Orderstatistics as described in section (3.3.4) and in the algorithm details. Such Orderstatistics were employed to transform the bases into a uniform distribution that couldthen be utilized to approximate the integrals in the equations above.As a result of this, we must proceed with a finite approximation to the exactsolution. eLS = minu1,...,um∈ℜ,‖ui‖=1 (ΦWLS − Y )T (ΦWLS − Y ) (24)4.3.5 Nonlinear OptimizationThe next theorem shows that the two-stage optimization problem can be reduced tothe following nonlinear optimization.Theorem 22 Assuming there exists a function belonging to the class of universalapproximators as stated in theorem (21), the optimization problem for finding the best92



function estimator associated with seeking the optimal projection pursuit directionscan be formulated as maximizing the explanatory power of the estimate, succinctlystated as cep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦ+Y (25)P����The argument of equation (23) can be written as(ΦWLS − Y )T (ΦWLS − Y ) = (ΦΦ+Y − Y )T (ΦΦ+Y − Y )= Y T (I − ΦΦ+)T (I − ΦΦ+)Yby plugging in for the least-squares solution. Noting that (ΦΦ+)T = (ΦΦ+) , we haveY T (I − ΦΦ+)T (I − ΦΦ+)Y = Y T (I − ΦΦ+) (I − ΦΦ+)Y= Y T (I − ΦΦ+ − ΦΦ+ + ΦΦ+ΦΦ+)YGiven that Φ+Φ = I, this leaves us withY T (I − ΦΦ+ − ΦΦ+ + ΦΦ+ΦΦ+)Y = Y T (I − ΦΦ+)Y.Thus, the optimization problem of eq. (23) reduces tocep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦ+Ygiven that Y TY is constant.Corollary 23 If the bases, φ, that form the basis function matrix Φ are orthogonal,then Φ+ = (ΦTΦ)−1ΦT = ΦT , and the optimization problem reduces to maximizingthe 2-norm of the coefficients:cep = maxu1,...,um∈ℜ,‖ui‖=1Y TΦΦTY = ∥∥ΦTY ∥∥2where again, Φ is our matrix of basis functions along the given M directions and Yis the response vector. 93



Corollary 24 If the basis function matrix Φ is 1-dimensional thencep = maxu ∥∥∥ΦTY ∥∥∥2 (26)where Φ = Φ‖Φ‖.Proof. Noting that ΦT = ΦTΦΦT in the 1-dimensional case, then it follows thatcep = maxu ∥∥ΦTY ∥∥2‖ΦΦT ‖which can be rewritten as equation (26) .The algorithm used to implement this modeling technique transforms the rawinput data into a finite set of projection directions and assigns the grid spacing alongthese directions. Sequentially, one-dimensional local basis function fits are generatedalong these projections. The performance along these directions is evaluated and thedirection set is then winnowed down to a more manageable number for simultaneousdirection modeling. The final directions are chosen via a forward selection routine.4.4 AlgorithmNote: m = number of projection directionsR = projection matrixd = grid point subintervals per directionThe performance criterion is set to the MSE of the validation sample.1. Initializationa. Set the number of couplings (for systems with low degrees of coupling, 2is a good choice)b. Set the relatively-prime projection directions per hyperplane (integer di-rections with a maximum infinity-norm of 3 are what we use in our simulations)94



c. Assign the number of projection directions on which to run the selectionprocedure: msubd. Set the maximum number of projection directions to include, mmax, andthe maximum number of consecutive iterations without improvement, itermax, as thestopping criteria and loop through while performance criterion improves, m = m+1.Initialize R to be an n×m uniform random variable.e. For d = dmin to dmax (good values of d might range from 3 to 10)2. Assign grid spacing for each direction and storea. Z = X∗R (setting transformed inputs and storing these for repeated use)b. For each transformed input vector, Zi, create Order statistics for theobservations, Ok , ∀ Zk where k ∈ [1, N ] and set the nodes for that input.3. Whittle down the total set of projection directionsa. Loop through each direction, reassigning the transformed inputs and nodesb. Next, the basis functions can be set(a). Compute distance of each data point to each node:i. zij,l = zij−ηijbij,lii. zij,r = zij−ηijbij,r(b). Create local piecewise cubic basis functions for each projection(Note: dropping projected input subscript, j, to avoid confusion):i. For each projection direction, compute the first portion of thebasis function (to be designated as {φ}1), accounting for potential unequal base widthsalong dimensions:{φi}1 =  (|zi,l| − 1)2 (2 · |zi,l|+ 1)(|zi,r| − 1)2 (2 · |zi,r|+ 1)0 , if − 1 < zi,l ≤ 0if 0 < zi,r ≤ 1otherwise ii. For each projection direction, compute the derivative portionof the basis function (to be designated as {φ}2):95



{φi}2 =  (|zi,l| − 1)2 · zi,l(|zi,r| − 1)2 · zi,r0 , if − 1 < zi,l ≤ 0if 0 < zi,r ≤ 1otherwise iii. Assign basis function for each projection direction:φ = [ {φ}1 {φ}2 ]iv. Append to full basis function matrix: Φ = [ Φ φ ]c. Fit least-squares derived weighting matrix, W : ΦW = Y , where Y is theresponse vector(a). Φ+ = (ΦTΦ + γI)−1ΦT , where γ is some small, positive constantnear zero (b). W = Φ+Y(c). Compute the error: E = ΦW − Y(d). Evaluate the strength of the fit along the direction:(Note 1.) Since, f = ΦW,‖f‖2 = ∫ W TΦTΦW dz = W T (∫ 10 ΦTΦdz)W(Note 2.) For cubic basis functions(∫ 10 ΦTΦdz) =  13/35 9/70 11/210 −13/4209/70 13/35 13/420 −11/21011/210 13/420 1/105 −1/140−13/420 −11/210 −1/140 1/105 (e). Select top msub directions based on this strength criterion4. Optimization (Build model from msub projection population, starting with"best" individual direction, adding directions with the forward selection method),m = 1 a. While (m < mmax) & (iter < itermax) ,96



b. Loop through msub directions not yet in model direction population (ini-tially assigned to null space)i. Repeat Step 3a-3c for m− 1 total model directions, adding one msubdirection not yet in model direction populationii. Evaluate eLSiii. Remove this added direction from the total model direction popula-tion c. Choose the direction that had the lowest eLS in step 4b to be added to themodel direction populationd. Fit this same model to the test sample and evaluate eLS,teste. If eLS,test (m) > eLS,test (m− 1)Then iter = iter + 1Else iter = 0f. m = m+ 14.5 Experimental ResultsAs another test of the method’s effectiveness, we return to the bearing defect exper-iment. In this case, the prediction accuracy of the DPPLM model will be comparedwith that of a continuous PPLM methodology and a feedforward neural networkapproach. Results for the same three response variables will be presented.The test procedure is the same as in the continuous case. Once again, the inputdata are a set of 29 different signal features based on accelerometer and acousticemissions data, with an n− 1 set of data being split into a 75% training sample and25% validation sample for constructing the predictions on each individual observation.The results are again displayed as cumulative (average across all observations) or, insome cases, have been split up into cumulative within groups (average across alldefects of a certain defect size). 97



4.5.1 Experiment Set #1For this experiment, the defect width was chosen as the response variable. As acomparison of the results, we will illustrate the differences in performances by simplycomparing results across the 8 distinct levels of defect. It is clear from figure (26)that the PPLM and DPPLMmodels estimate the defect widths more accurately thandoes the best of the artificial neural networks.Computing overall percent error yields the following:Table 3: Overall defect width percentage error for Experiment 2Model %Error (%Error)2ANN 32.1% 10.3%PPLM 16.5% 2.7%DPPLM 13.1% 1.7%For comparison purposes, [94] used (% error)2 as the calculated error and pro-duced a prediction error of 11.8% (albeit on a somewhat different sample) usinga specialized back-propagation prediction network with parameters attuned to thisbearing defect problem. Thus, the results of the similar feedforward networks used(ANN) in this analysis seem consistent with results produced by previous researchers.Therefore, the improved prediction accuracy of the two new methods introduced inthis thesis are notable
98
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4.5.2 Experiment Set #2Using the same data and defect height as the response, the comparison group pre-dictions for the various models are shown in figure (28). The errors by defect height
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Table 4: Overall defect height percentage error for Experiment 2Model %Error (%Error)2ANN 3.1% 0.095%PPLM 1.7% 0.029%DPPLM 1.5% 0.023%Overall, the results show that both the continuous PPLM and discrete projectionpursuit learning network perform quite well on the experimental data relative to thebest other available methods. The DPPLM even provides a slight improvement inprediction accuracy over the continuous PPLM method described earlier.
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CHAPTER VCOMPARISON OF METHODS - SIMULATIONRESULTSThus far, we have only examined the effectiveness of the newly-devised models witha very limited set of test cases. It is in this chapter that the bulk of the simulationresults, a total of 96 separate test cases, will be presented. In the simulations thatfollow this section, comparisons will be made of the performance of the two projectionpursuit learning methods presented in this thesis with various other methods. Theseother methods used for comparison have been described in great detail earlier. Theyare projection pursuit regression, MARS, and feedforward neural networks. But,before getting into the simulation results, the issue of overfitting and the steps takento handle it, must first be addressed.5.1 Bias-Variance Trade-off / Overfitting"If you torture the data long enough, they will confess. " — Thomas Mayer [61]5.1.1 OverfittingFor most classes of models, we can reduce the prediction error of the estimation on themodel sample by increasing the complexity of the model structure. While this sharp-ening of our predictive blade at first may seem advantageous in all circumstances, itis in fact dangerous as the complexity blade is a double-edged sword. We can geta model that is as accurate as we’d like on the model sample by simply making itsstructure more complicated; but this increased accuracy is gained at a price. Whileour very flexible model produces a relatively small bias (yields an average prediction102



for each snapshot of input values that is close to the true response), this increasedmodel complexity result in an increase in the number of parameters to be estimated.This results in a higher variance of each parameter estimation generated from differentdatasets.5.1.2 Bias-Variance Trade-offThe response can be written as y = f (x; θ)+ǫ. So, µy = E [y | x] represents the actualexpected value of the response for a given input state space. Similarly, ŷ = f (x; θ̂)is the estimate provided by our model and its corresponding fitted parameters. Thus,the mean squared error at x is defined as:MSE (x) = E [ŷ − µy]2which can be rewritten asMSE (x) = E [ŷ − E (ŷ)]2 + E [E (ŷ)− µy]2 (27)where the expectation, E, is taken over the probability distribution p(D) of allpotential datasets of size n. In this way, ŷ is a random variable allowing for therandom sampling responsible for generating the particular set of training data, D,from amongst all possible choices from within the theoretical population. Note thatdifferent datasets, D, would have led to different models with different estimationparameters and a different set of predictions, ŷ. Thus, the expectation, E, in theequation for the mean squared error above represents the expected value of the givenrandom variable over different potential datasets of equivalent size n, each chosenrandomly from the source population.Note that this relationship is written in such a form as to provide us with insightsinto the bias variance trade-off. Essentially, what we have written is:103



MSE (x) = variance+ bias2So a closer inspection of equation (27) now unveils insights into each of its majorconstituents. The variance term, E [ŷ − E (ŷ)]2, provides an expectation for the de-viation of our estimate, ŷ, across different potential datasets of size n. It measuresthe sensitivity of ŷ to the specific dataset being used to train the model. To glean abetter understanding of this term, let us choose a couple of examples. For instance, ifthe constant, yc, was always chosen as our predicted response, without considerationfor the data, this variance would be zero. Choosing the other extreme, if we select avery complicated model with many parameters, our predictions, ŷ, will tend to varygreatly given a different choice of training dataset.The bias term, E [E (ŷ)− µy]2, reflects the systemic error in our prediction: thedeviation of our average predicted response, E (ŷ), from the true population mean,.µy.If we again choose a constant, yc, as our predicted response, irrespective of the data,we might expect this model to have a large bias term. On the other hand, if a morecomplex model is employed, our bias (or average prediction) may be substantivelylower. This battle of the countervailing forces of bias and variance quantifies thetension between the choice of a simple model (one with low variance and high bias)and a more complicated one (with low bias and high variance).From a practical standpoint, the average mean squared error over the entire do-main of the function being estimated is of interest to us. Thus, we might define theexpected MSE with respect to the input distribution, p(x), as ∫ MSE (x) p (x) dx .While this quantification of the bias-variance trade-off is of interest theoretically, itis not possible to calculate it in practice because we cannot measure the bias term.Nevertheless, the theoretical bias-variance formulation is quite instructive, as it illu-minates the need to choose a model flexible enough to handle variations within theinput data, yet not too complex so as to result in the overfitting of the variations of104



the noise present in the dataset.5.1.3 How to Handle OverfittingWhile we have measures in place to try to improve the overall fit of the model, whatcan be done to reduce the possibility of overfitting the training set? One method ischoosing a score function with two components: one to measure the goodness-of-fit ofthe predictions, and the other component that penalizes model complexity [1]. Theproblem with this approach is that its effectiveness depends greatly on a good choiceof the relative weighting of the two score function components, which can be quitedifficult to select appropriately.Another approach to use is that of external validation. This is the approach,we will be using in the simulations that follow. This approach will be used for theselection of the "best" model within each of the various model types in the comparison.The idea here is to split the data into two mutually exclusive sets: the training setand the validation set. The training set is used to construct the model; the validationset is used to test the effectiveness of the model generated from the training set.Thus, the validation set is used to choose from among candidate models offered bythe training set. After building the model on the training dataset, the score function,which often is a measure of the SSE between the predicted and actual response, isreevaluated on the validation set. Thus, the score function is, itself, a random variablewhere the randomness has two sources. The first is from the training dataset, whilethe second is from the data being used to validate it.Ideally, we would like an unbiased estimate of the score function on future datafor each model considered. Here, since the two datasets are assumed independentand randomly selected, the validation score for a given model provides an unbiasedestimate of the score for that model for an out-of-sample dataset. So the bias fromtraining is absent from the independent validation estimate.105



With this approach, we have a data-driven method for handling the problem ofoverfitting. Now, when comparing the validation scores, we should better be able todistinguish between a high quality and a low quality model, as a model better ableto fit the response surface should produce a lower score. This process deters againstchoosing those models unduly influenced by the noise of the training set.5.2 Simulation ProceduresTo compare the effectiveness of the newly-formulated continuous and discrete projec-tion pursuit learning methods with other high-dimensional prediction methodologies,several sets of simulation examples are presented. As was mentioned previously, thePPLM and DPPLM methods are not restricted to a single choice of bases. Thus,for the simulations that follow, they were allowed their choice of basis functions tobe determined from the data: either a global harmonic basis function set or set ofa local cubic basis functions. It should be noted that for the case of the globalharmonic bases, the Levenberg-Marquardt PPLM algorithm required a good set ofstarting conditions. Much work has been done in this area, including [48]. For ourpurposes, a simple 2-degree of coupling GA was run to establish the initial projectiondirection matrix. With the local cubic bases, this procedure was not necessary. Withthe DPPLM, this procedure was not necessary for any choice of bases — the methodwas capable of converging regardless of initial conditions. Experiments were run onsimulated datasets with different forms of the response function, varying numbers ofobservations, different distributions of the data, and varied levels of noise introducedinto the dataset. The examples presented below were chosen to give the reader a feelfor the varying effectiveness of the distinct modeling methodologies across differenttypes of functions and different data conditions. With each example, a compari-son of the normalized mean-squared errors (nMSE = MSEvar(Y )) of the models will beprovided. 106



For all of the simulations presented here, each modeling methodology utilized thesame training sample of data. Two separate samples of equal size were used acrosseach modeling methodology for validation and testing purposes. As each of the modelsare dependent on specific user-defined parameters, a data-driven approach, with theaid of the cross-validation sample, was used to select these optimal parameters. Modeltraining continued, building up models of greater and greater complexity, until nofurther improvement was achieved on the validation sample. Thus, each model wasbrought to the highest level of complexity that produced not only a low trainingerror, but also the lowest validation data error as well. The same training, cross-validation, and holdout (test) samples were used for all models. The prediction resultsof the discretized projection pursuit learning network were then compared to thoseof the other models. In each case, the results presented are for the holdout samplewithout noise, to isolate the model’s effectiveness at predicting the intended response.For each simulated response function, both a high noise (r2 = 0.90) and a low noise(r2 = 0.99) case were run. Noise levels have been parametrized by the coefficient ofdetermination, defined as r2 = σ2y−σ2residσ2y , where σy is the standard deviation of theresponse and σresid is the standard deviation of the residual error. Noise has beenadded to the training and validation response in such a way as to frame σnoise =√ σ2residσ2y−σ2resid . Thus, the noise is always scaled to the variance of the response such thatσ2noise = cσ2y, where c = 1r2 − 1. [83]For each of the simulations, two different levels of the number of observations(low=1000 observations, high=2,700 observations), along with two distinct distribu-tions for the noise and the input data (normal and uniform) were tested along with thetwo noise levels described above. In this manner, we can gain a better insight into thepredictive abilities of each of the methodologies tested. The different testing regimesalong with their designation is now provided. Results will be presented grouped by107



low and high observation number groupings. Then, three letter combinations repre-senting the noise level, the input distribution, and then the noise distribution will beprovided. Thus, ’LNU’ will refer, for instance, to the low noise, normally-distributedinputs, uniformly distributed noise condition, whereas a designation of ’HUN’ wouldrefer to the high noise condition with uniform inputs and where the noise is normally-distributed. The specific input distribution used is N(0, 1) for the normalized inputcondition and U(−4.5, 4.5) for the uniform case. The noise levels are determinedfrom the data as described previously.5.3 Simulation Results5.3.1 Simulation Set 1For the first set of simulations, the response function utilized was the following har-monic function: y = f (X1, ...,X5) = 15 sin (πX1) sin (πX2)+ sin (πX3) cos (πX4) + noiseThe results of each of these simulations is provided in table (5) as a set of nor-malized mean-squared error comparisons.As can be seen from table (5), both the DPPLM and PPLM approaches pro-vide considerable improvement on the results of the projection pursuit regression(PPR), feedforward artificial neural networks (ANN), and MARS models. TheMARS method was allowed up to 5-degrees of coupling and an unlimited numberof terms. With all three of the comparison methods (MARS, projection pursuitregression, and the neural network), the method was allowed as many terms and as108



Table 5: nMSE Comparison of 5-Dimensional Harmonic Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 1.01205 1.03688 0.40579 0.00008 0.00065LNU 1.01407 1.05473 0.24158 0.00015 0.00060LUN 1.01210 1.08882 0.96785 0.00011 0.00066LUU 1.00980 1.03957 0.93544 0.00014 0.00077HNN 1.01231 1.06851 0.27598 0.00153 0.00817HNU 1.04108 0.54479 0.58958 0.00102 0.00530HUN 1.01375 1.02688 0.96635 0.00120 0.00599HUU 1.01030 1.01713 0.91333 0.00156 0.00850Obs = 2700 LNN 1.00089 1.01788 0.14809 0.00009 0.00024LNU 1.00154 1.01060 0.52295 0.00003 0.00021LUN 0.99904 1.01476 1.00282 0.00009 0.00017LUU 1.00510 1.02732 1.00667 0.00006 0.00027HNN 1.00253 1.02490 0.55273 0.00035 0.00109HNU 1.01074 1.02080 0.47061 0.00033 0.00292HUN 1.00462 1.01677 0.87353 0.00032 0.00125HUU 1.01262 1.02897 1.00866 0.00070 0.00292many degrees of coupling as it wanted until it could no longer improve upon theperformance criterion. The DPPLM approach worked very well on these rather lowdimensional harmonic datasets.To give the reader a sense for the modeling on these projections, figure (30) isincluded. From the response function, we see can the important directions. Thus,one of these is now plotted in figure (30), with the data projected onto it. The portionof the response function lying along that direction is displayed along with that of thepredictions from the DPPLM approach, which fits the response quite nicely alongthis direction.
109



 

Figure 30: Solution Along a Projection Direction5.3.2 Simulation Set 2For the second set of simulations, the harmonic response function was made a bitmore complicated, and the dimension of the input space was doubled:y = f (X1, ...,X10) = noise+ 45 sin (πX1) sin (πX2)+ sin (πX3) cos (πX4)− 85 sin (πX5) cos (2πX6)− 75 sin (2πX7) cos (3πX8) + 15 sin (πX1) sin (πX8)Under these conditions, the performance of all of the modeling methodologies suf-fered. Once again, looking at table (6), the MARS and PPR methods had troubleuncovering any useful information about the response surface. This time, the feedfor-ward neural network was also ineffective at predicting response. The PPLM approach110



Table 6: nMSE Comparison of 10-Dimensional Harmonic Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 1.02963 1.06282 1.00525 0.92335 0.33605LNU 1.01566 1.08564 1.00738 0.87920 0.37324LUN 1.01819 1.14552 1.01847 0.81122 0.35239LUU 1.02323 1.10336 1.02319 0.80768 0.34996HNN 1.03423 1.06936 1.01660 0.71133 0.35320HNU 1.03540 1.06042 1.04583 0.85169 0.34261HUN 1.02826 1.20014 1.03256 0.90877 0.38122HUU 1.01912 1.09495 1.01638 0.86690 0.35624Obs = 2700 LNN 1.01115 1.01612 1.01729 0.78675 0.28828LNU 1.01296 1.01304 1.01417 0.87350 0.30172LUN 1.00504 1.01708 1.01271 0.80769 0.35072LUU 1.00671 1.03233 1.01211 0.89499 0.34385HNN 1.00376 1.02066 1.01134 0.78543 0.30855HNU 1.00793 1.02914 1.00864 0.77420 0.30291HUN 1.00795 1.03343 1.00888 0.82148 0.34802HUU 1.00758 1.01373 1.01862 0.84112 0.34719was still moderately effective at estimating the response function, while the DPPLMdid a fine job of identifying this complicated response surface. The primary causefor the success of the DPPLM methodology is quite likely largely due to its ability toemploy any basis function. For the past two sets of simulations, the method chose aset of Fourier basis functions for each of the models it constructed.5.3.3 Simulation Set 3So, the question arises: how will the PPLM and DPPLM methods perform when re-stricted to a single choice of bases and on conditions well-suited to the other modelingtechniques. For this reason, a two additional sets of simulations were run. For thesesets, a polynomial response was chosen, as the other methods are especially good atmaking predictions on such data. Below, we explore the lower-dimensional case.y = f (X1, ...,X5) = −2X1X3 −X2X3 + X1X42 + noiseTo constrain the PPLM and DPPLM approaches, the choice of the set of localcubic basis functions was enforced. It should be noted that when employing these111



approaches, the researcher could easily choose a polynomial response which wouldlikely generate even better predictions. However, in practice, one does not oftenknow what the functional form of the predictive model should be. Hence, the choiceof local cubic bases, which are general all-around good predictors.Table 7: nMSE(x100) of 5-Dimensional Polynomial Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 0.01962 0.16352 0.12224 0.10020 0.05812LNU 0.04289 0.32450 0.16333 0.11022 0.06814LUN 0.01678 0.08648 0.06713 0.09519 0.02705LUU 0.03892 0.11448 0.08617 0.09619 0.05812HNN 0.36920 1.14155 1.14028 1.38577 0.53507HNU 0.33972 1.75962 0.66132 0.91283 0.44890HUN 0.13551 0.81362 1.03206 1.50501 0.42485HUU 0.24475 1.48668 0.76152 1.67836 0.64228Obs = 2700 LNN 0.00669 0.11669 0.02409 0.07932 0.01631LNU 0.00767 0.10682 0.02372 0.02113 0.01297LUN 0.00317 0.03744 0.02780 0.03521 0.01964LUU 0.00448 0.04387 0.02261 0.03558 0.01371HNN 0.11417 0.50362 0.14789 0.43365 0.15530HNU 0.05156 0.78966 0.15048 0.34433 0.14900HUN 0.07728 0.51021 0.28725 0.24574 0.18310HUU 0.00420 0.47413 0.33840 0.31690 0.19125With this set of samples, all of the methods performed incredibly well (note thatthe numbers in table (7) are scaled up by a factor of 100). The continuous PPLMapproach provided some slight advantage in performance over PPR, but was generallyoutpaced by the feedforward neural networks. DPPLM performed quite well versusall of these three, but was unable to match the stellar performance of the MARSmodels. Still, given the constraints placed on the DPPLM method, it performedadmirably. MARS is particularly well suited for approximating relatively simplelow-dimensional polynomial response surfaces.112



5.3.4 Simulation Set 4However, this test was for a relatively low-dimensional input space: four importantinput variables plus one extraneous input. Let us now investigate performance foramore complicated higher-dimensional polynomial response surface.y = f (X1, ...,X10) = X1 +X2 −X1X2 − 2X1X3−X2X3 + X1X42 − X5X62 −X7+ 4X7X8X95 + 3X6X7X910 + noiseTo constrain the PPLM and DPPLM approaches, the choice of the set of local cubicbasis functions was enforced once again.Table 8: nMSE Comparison of 10-Dimensional Polynomial Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 0.1518 0.1468 0.0110 0.0046 0.0024LNU 0.1254 0.0880 0.0123 0.0043 0.0209LUN 0.2935 0.1652 0.0105 0.0018 0.0014LUU 0.2914 0.2693 0.0138 0.0050 0.0012HNN 0.0873 0.1155 0.0460 0.0760 0.0218HNU 0.1514 0.1116 0.0213 0.0671 0.0300HUN 0.2579 0.1673 0.0424 0.0308 0.0166HUU 0.2626 0.1043 0.0265 0.0494 0.0310Obs = 2700 LNN 0.1396 0.0746 0.0048 0.0013 0.0007LNU 0.1113 0.0744 0.0029 0.0007 0.0006LUN 0.2902 0.0557 0.0124 0.0006 0.0003LUU 0.2459 0.0987 0.0024 0.0020 0.0004HNN 0.1233 0.0729 0.0151 0.0172 0.0257HNU 0.0979 0.0761 0.0101 0.0074 0.0043HUN 0.2567 0.1399 0.0094 0.0077 0.0057HUU 0.2893 0.0706 0.0086 0.0060 0.0034With this set of samples, both the MARS and the projection pursuit regres-sion methods performed admirably, but their respective performances appear to have113



suffered severely with the increase in dimensionality and the corresponding expand-ing complexity of the response surface. They were both outpaced by the feedfor-ward neural network, PPLM, and DPPLM approaches as is evidenced from table (8).While the discretized projection pursuit learning model and the continuous PPLMmanaged to generally achieve the best fit of the simulated response surfaces, theyalso took the most computation time. Thus, if online CPU time is a factor, theneither the projection pursuit regression or neural network approaches might provemore suitable for the researcher.5.3.5 Simulation Set 5Yet, thus far, we have looked only at response surfaces consisting purely of lowerdimensional superpositions of functions of the same form: harmonic in the first twosets and polynomial in the next two sets of simulations. The question of performanceon other types of response surfaces still remains. Thus, the last two sets of simulationswere run with unusual response surfaces consisting of mixtures of different types offunctions. For the first of these sets, let us investigate the low-dimensional case.y = f (X1, ...,X5) = − ln( |X1X2|2 + 32)+ ∣∣∣∣X3X4 + 25∣∣∣∣−X24 · sign (X4)− 15X25 + noiseAll of the methods performed well (note that the numbers in table (9) are scaledby a factor of 100). The ANN, PPLM, and DPPLM approaches produce the bestresults overall, with DPPLM consistently achieving the best performance.114



Table 9: nMSE(x100) of 5-Dimensional Nonlinear Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 3.4939 2.8827 1.0050 0.6493 0.3076LNU 4.1143 2.4604 0.5601 0.5581 0.2906LUN 1.4347 1.7756 0.4900 0.6343 0.2826LUU 1.8082 3.9834 0.5451 0.5511 0.2585HNN 3.5209 7.8786 2.0731 2.4379 1.1894HNU 2.5183 6.6348 2.0822 2.3828 1.3918HUN 1.6731 4.3674 3.2285 2.7014 1.3076HUU 1.6046 3.3031 2.5411 2.2545 1.6994Obs = 2700 LNN 4.2739 1.9636 0.6201 0.4522 0.2413LNU 2.8221 2.1333 0.6234 0.2557 0.2561LUN 1.5489 1.4339 0.4059 0.3354 0.1271LUU 1.6030 1.3755 0.3328 0.3714 0.1423HNN 2.9740 1.9548 1.7250 1.6723 1.0174HNU 3.2455 2.2868 0.9559 0.8784 0.4689HUN 1.7386 3.8024 0.9970 1.3903 0.4859HUU 1.9665 2.4337 1.0467 1.3736 0.56195.3.6 Simulation Set 6For the final set of simulations, we expand the dimensionality and complexity of theresponse surface.y = f (X1, ...,X10) = noise− ln( |X1X2|2 + 32)+ ∣∣∣∣X3X4 + 25 ∣∣∣∣− sign (X3)− 15X25 − ∣∣∣∣X6X7 − 15 ∣∣∣∣+ ln( 920 · |X8X9|+ 25)+ 25sign (X7)Relative to the prior set of simulations, table (10) shows that the prediction per-formance of each of the methods deteriorates. The multivariate adaptive regressionsplines, projection pursuit regression, artificial neural network, and the PPLM ap-proaches all seem to achieve similar performance with a small number of observations.115



Table 10: nMSE Comparison of 10-Dimensional Nonlinear Response Simulations# of Obs Data Distr MARS PPR ANN PPLM DPPLMObs = 1000 LNN 0.22659 0.32261 0.14285 0.14197 0.04839LNU 0.23510 0.29065 0.10220 0.10769 0.04633LUN 0.10914 0.21986 0.17577 0.05966 0.02028LUU 0.12980 0.16989 0.20783 0.08871 0.01961HNN 0.23797 0.33263 0.22984 0.21703 0.08676HNU 0.23360 0.28718 0.25080 0.28681 0.08884HUN 0.10641 0.26644 0.21387 0.17400 0.04427HUU 0.11321 0.22751 0.17431 0.08848 0.03839Obs = 2700 LNN 0.20486 0.23808 0.09210 0.06131 0.05543LNU 0.19906 0.24333 0.08534 0.06645 0.05956LUN 0.10120 0.19676 0.13347 0.05655 0.02145LUU 0.10029 0.19024 0.07432 0.05814 0.02226HNN 0.19299 0.23727 0.10056 0.08930 0.06275HNU 0.19451 0.24274 0.10772 0.08430 0.06883HUN 0.12149 0.22036 0.17326 0.08376 0.03176HUU 0.11153 0.19191 0.10980 0.08671 0.03745However, PPLM and ANN outpace the other two with more observations. Acrossthe board, though, the DPPLM clearly achieves the best results.But, this type of analysis bring ups an interesting question: with all of this data,can any clear trends be gleaned? Is one type of model well-suited for a certain typeof problem, while another is the best choice for a different type of problem? Toanswer these questions, we now peruse the data more carefully.5.4 Comprehensive ComparisonFor a more comprehensive investigation, we now turn to the composite results of allof the simulations. In figure (31), we can see the average performance of the variousmethods.Overall, the DPPLM and PPLM approaches outperformed. However, a closerinvestigation may shed some light on how differences in the response surface beingmodeled or in the input conditions might change the performance amongst each of116
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Figure 31: Overall Average Performance By Modeling Methodologythese methodologies. We begin by looking at the noise condition in figures (32) and(33).On the whole, adjusting the noise amplitude has little effect on performance re-sults. As shown in Figure (33), the average nMSE of the predictions are very similarwithin each specific model type.An investigation of the distribution of the noise, figures (34) and (35), showssimilar results. All of the modeling methods tested seem to be quite insensitive tonoise.Next, a look at the distribution of the inputs, figures (36) and (37), shows thateach of the models are insensitive to changes in the condition as well. The soleexception is the feedforward neural network, which had superior performance whenpresented with input data that were normally distributed. Still, the relative rankordering of performance of the models remained the same across input distributiontype, with the neural nets outpacing both the MARS and PPR models, and the117
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Figure 32: Performance Comparison Within Noise Amplitude Groups
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Figure 33: Impact of Noise Amplitude on Model Performance118



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

normal noise uniform noise

A
ve

ra
g

e 
n

M
S

E

MARS

PPR

ANN

PPLM

DPPLM

Figure 34: Performance Comparison Within Noise Distribution Groups
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Figure 35: Impact of Noise Distribution on Model Performance119



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

normal inputs uniform inputs

A
ve

ra
g

e 
n

M
S

E

MARS

PPR

ANN

PPLM

DPPLM

Figure 36: Performance Comparison Within Input Distribution Groups
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Figure 38: Performance Comparison Within Sample Size Groupsprojection pursuit learning methods improving upon these performances.An investigation of the numbers of observation in figures (38) and (39) reveals asimilar trend across all model types: an increase in performance with the higher ob-servation condition (n = 2, 700). Intuitively, this makes sense — the models performedbetter when presented with more data.Turning to the effects of the response surface, figures (40) and (41), the samegraph is presented twice. Because of the vast differences in magnitude of performanceacross response surface type, the graph grouping by model type is left out while theperformance chart that groups by response is presented a second time. This is doneto re-scale the chart such that we might better be able to discern average performanceon the polynomial response functions.From these performance graphs, the DPPLM performs best across all responsefunction types tested. However, the feedforward neural network modeling approach121
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Figure 40: Performance Comparison Within Response Function Groups122
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Figure 41: Performance Comparison Within Response Function Groups (Rescaled)does appear to achieve a slight improvement in results relative to the Levenberg-Marquardt PPLM model. Once again, all three of these approaches produce betterpredictions on average than PPR or MARS.Investigating the effects of dimensionality and function complexity on performancereveal dramatic results. Figures (42) and (43) illustrate these results. Figure (43),especially, shows the expected effect of dimensionality: performance suffers with in-creasing dimensionality. This is what would be anticipated from our earlier investiga-tion into the phenomenon of data sparsity. Perhaps, more surprising is the dramaticimprovement in modeling capability of the continuous and discrete PPLM modelswhen dimensions are reduced.A closer look reveals more insight into this phenomenon. As was done earlier,the same figure was replicated and re-scaledto magnify the effects.From figure (44) and (45), we see what’s going on. While all of the models123
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Figure 42: Performance Comparison Within Input Dimensionality Groups
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Figure 45: Dual-Level Performance Comparison Within Response Function and Di-mensionality Groups (Rescaled)
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perform better with reduced dimensionality and reduced response surface complexity,what is clear is that the PPLM and DPPLM models worked exceedingly well in thecase of a low-dimensional harmonic response function. Discounting for this, theother modeling approaches actually tended to experience a greater deterioration inperformance with increased dimensionality and subsequent model complexity. Whilethis is not evident for the harmonic response function simulations, perhaps this isdue to the ceiling effect of the nMSE. Essentially, an nMSE of approximately 1.0 iswhat would be obtained by predicting the response with only its true mean value.Thus, each of these modeling methodologies, each fully capable of at least predictingthe mean value of the response, will tend to generate nMSE values of approximately1.0 when faced with a response surface they cannot approximate. Thus, the error iscapped to an extent. So, we cannot gauge the true deterioration of the MARS andPPR models on predictions of the harmonic response simulation functions when facedwith increasing dimensionality because their respective prediction errors were alreadymaxed out in the lower dimensional cases. Likewise, the feedforward neural network’sperformance degradation cannot be quantified either in the case of harmonic responsegiven that its error was capped in the higher dimensional simulations. Thus, we canonly base our conclusions about this dimensionality performance deterioration on thecases of nonharmonic response surfaces. For these cases, it is clear that both thePPLM and DPPLM approaches seem, to some extent, to have mitigated the effectsof the curse of dimensionality.A comparison of computation time for the artificial neural networks, PPLM, andDPPLM models is provided in figure (46) and figure (47). The PPR and MARSmodels were left off of the comparison because they were run using the R softwarepackage. These runs were very quick, however such comparison in CPU time acrossdifferent platforms would be spurious, at best. Thus, the other three models were127
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Figure 46: Comparison of Computational Time By Modeling Methodology
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compared for computation time, as all three were coded and implemented in Matlab.This comparison shows that the feedforward neural network is computational quickerto train and score than either of the two approaches developed for this dissertation.Part of this is due to inefficiencies in coding. A more computationally efficientalgorithm could be coded for the PPLM and DPPLM approaches, however this wasnot the goal of this research. Yet, a further perusal of the charts show somethingintriguing. In particular, the DPPLM shows a dramatic increase in processing timewith an increase in dimensionality. The culprit here lies with the approach to choosingthe initial population of potential discrete projection directions. For the simulations,a low-dimensional exhaustive search of the direction search space was conducted.This was done for greater reproducibility of results and because the dimensionality waslow enough to do so without great computational inconveniences. In an even higher-dimensional space, for instance, the direction search routine could easily be switchedto a computationally more efficient search method such as a genetic algorithm. Thischange would bring the computation time in line with the other methods.As an illustration of this, two of the sets of simulations (the harmonic responsesimulations) were rerun with a GA search algorithm in place of the exhaustive searchmethod that had been employed for the DPPLM approach. Implementing this geneticalgorithm version of DPPLM brings a marked increase in computational efficiencyover the original version. Computational times of the GA approach are cut inhalf (to an average of only 45% of those for the exhaustive search DPPLM) on lowdimensional search spaces and are shrunk over 12-fold to just 7.7% of the average timefor DPPLM over the 10-dimensional input space problems. In fact, the improvementis so substantial that the GA implementation clocks in at even faster times than theneural nets, as shown in the table that follows:But an improvement in computation speed is meaningless without the ability to129



Table 11: Average CPU Times for Harmonic Response SimulationsModel ANN DPPLM(GA)low # obs, low dim. 1.5 1.0low # obs, high dim. 3.5 1.0high # obs, low dim. 3.9 2.8high # obs, high dim 10.5 2.8still achieve good performance. Thus, table (12) is provided in an attempt to helpquantify the performance degradation cost of the speedier implementation. Figure(48) also beautifully illustrate these results.Table 12: Average nMSE on Harmonic Response SimulationsModel MARS PPR ANN PPLM DPPLM DPPLM(GA)low obs & dim 1.01568 0.98466 0.66199 0.00073 0.00383 0.01112low obs & dim 1.02546 1.10278 1.02071 0.84502 0.35561 0.59587high obs & dim 1.00463 1.02025 0.69826 0.00025 0.00113 0.00113high obs & dim 1.00788 1.02194 1.01297 0.82315 0.32390 0.44004As can be seen from chart (48) and table (12), performance is comparable to theexhaustive search DPPLM method. Thus, if computational speed is an issue, onecould still implement a version of the DPPLM method, such as one with a genetic al-gorithm directional search scheme, that would provide improvement over a traditionalfeedforward network.5.5 Simulation ConclusionsOverall, both the PPLM and DPPLM methods worked quite well when presentedwith a multitude of varied simulation conditions. From the individual simulationrun tables provided earlier in this chapter, it would appear that the discretized para-metric projection pursuit method presented in Chapter 4 generally outperformed130
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Figure 48: Harmonic Response Performance Comparison of Genetic Algorithm DP-PLM with Other Modeling Typeseach of the other methods Only in the cases of the low-dimensional harmonic re-sponse simulations and the low-dimensional polynomial response was the DPPLMmethod outpaced by another modeling methodology. In the first of these cases, theiterative continuous PPLM approach described in Chapter 3 slightly bettered theDPPLM in terms of average performance. In the second case, the MARS modelperformed surprisingly well, achieving a slight error improvement over DPPLM forlow-dimensional, polynomial functions. But, overall, both PPLM and DPPLM werequite robust, and suffered only a disadvantage in computation time when comparedagainst the commonly-used high-dimensional modeling methods tested in these sim-ulations. However, certain modifications to the optimization scheme could be im-plemented to alleviate the lengthy computation time of the DPPLM methodologywithout suffering greatly in terms of overall performance.131



CHAPTER VICASE STUDY: STOCK MARKET MODELING6.1 Background6.1.1 OverviewFinancial markets provide a rich source of data. And indeed, an analysis of suchdata can lead to some very interesting and useful findings. With this case study,we tap into this abundant source of data. Our approach will be to investigate theefficient market hypothesis (EMH) from the context of our newly-formulated DPPLMapproach. According to EMH, stock prices should not be predictable as informationis freely and widely disseminated. Thus, new information should be incorporated intocurrent stock prices making the direction of future prices unpredictable. To test thishypothesis, we will build a predictive model to anticipate intraday price changes. Thedata used in this endeavor is raw 5-minute price and volume data for one security.6.1.2 Pockets of PredictabilityWhile the efficient market hypothesis in economics might tend to suggest that themarket is not predictable, some researchers feel that there are certain regions withinan otherwise complicated phenomenon such as the stock market that can be pre-dicted accurately [50]. In other words, the distribution of unpredictability is notuniform throughout systems. Most of the time, most of a complex system may notbe forecastable, but some small part of it may be for short times.David Berreby, writing in the March 1993 issue of Discover magazine [8], putsthe search for pockets of predictability in terms of a lovely metaphor: "Looking at132



market chaos is like looking at a raging white-water river filled with wildly tossingwaves and unpredictably swirling eddies. But suddenly, in one part of the river, youspot a familiar swirl of current, and for the next five or ten seconds you know thedirection the water will move in that section of the river." So, while we may not beable to predict where the water will go a half-mile downstream, for a short period oftime on a small section of the river, we may be able to forecast such movement6.2 Experiment Preparation6.2.1 Data AcquisitionTo acquire the data, a PERL script was written that seeks out and downloads the rawvariables from the internet. However, during the process of contacting trading firmsto work with in partnership, I managed to secure via Joel Lander another method foracquiring the data. A zipped file of archived data consisting of the dates mentionedwas emailed to me for use with the analysis. This data was procured by Dr. Landerfrom an intraday data vendor: Tick Data, a division of Nexa Technologies, Inc.6.2.2 Potential Modeling Pitfalls:Before getting into the model-building process, there is a potential problem to addresswhich could lead us to poor results: the issue of omitted variables. When buildingfinancial models, variable omission is to be expected. It would be virtually impossibleto include all potential variables. Thus, extreme precaution must be taken in theformulation of our model sample and the construction of our explanatory variables tolimit the number of omitted variables. To combat this, we shall limit the effects ofeconomic conditions and underlying company fundamentals on our response variableby focusing on a very short outcome period. A 4-hour outcome period has beenchosen for this analysis. Furthermore, our data will be comprised of a single security— the semiconductor holders exchange traded fund (SMH). The SMH is an exchange133



traded fund (ETF) designed to track the price movements of 20 semiconductor stocks.So, it is very similar to a stock index, but it is also tradeable. With this focus ona security that averages the price performance of many stocks within a single sector,we are able to alleviate many of the omitted variables concerned addressed earlier.6.3 Modeling ProceduresFor the intraday stock market modeling experiments, The input variables consist ofthe raw price and volume information with some simple transformations being appliedto these data. Unfortunately, the specific variables used cannot be disclosed as theyremain the proprietary possession of the investment firms which have so graciouslylent their assistance and expertise for this academic investigation. For all of theexperiments run on this data, the data consisted of 5-minutes intraday data collectedon one security (SMH) over a 212 year period (6/3/2002-1/31/2005). From this data,the training, validation, and test samples were constructed as follows:training sample = (6/3/2002-10/17/2003)validation sample = (10/20/2003-5/24/2004)testing sample = (5/25/2004-1/31/2005)The response variable is:Y = The % change in the stock price over the next 4 trading hoursFor this case study, the feedforward artificial neural networks is compared withthe DPPLM approach (this time, also allowing for polynomial bases as the choice ofbasis functions). As each of the models have a number of varying parameters to beset, the validation sample is again used as a data-driven selection method for choosingthe appropriate parameters. Each time the experiment was run, the training andcross-validation samples are held constant for all of the methods tested in order togive a fair comparison of the results. Once again, the best neural network and theDPPLM with parameters optimized by this validation sample were thus chosen and134



then applied to the holdout (test) sample. This process should provide an accuratereflection of the prediction capabilities of the compared modeling methodologies.6.4 ResultsA summary of the results on the test sample is provided in table (13).Table 13: nMSE on Test SampleANN DPPLM0.9926 0.9791From these results, it is obvious that neither model can predict this sample ofstock market data with impeccable accuracy. But, this is to be expected. The stockmarket is notorious for being highly unpredictable. However, looking at this data inanother way, as 1−nMSE, we can gauge how much of the variability in the response iseffectively forecasted by each method. From this, we see that the feedforward neuralnets can only predict a fraction of a percent of this variability, whereas DPPLM iscapable of forecasting over 2% of the variability. Still, this nMSE metric that we haveused so effectively as a performance comparison for past simulations may not be thebest comparison tool for this sample given its very limited degree of predictability.But the question still remains: obviously, predicting on this sample is very difficult,but how effective are these results? Is this apparently slight improvement in predictivepower really that significant? To answer this question, we have devised an interestingmethod to test the effectiveness of the predictions for this data.6.5 Trading Strategy - a model implementationIn practice, the implementation of such a model would not be confined to just lookingat nMSE results. A trading strategy built around the model predictions would beconstructed in order to implement the results on the actual stock data.135



Thus, we have set up a simple trading strategy as follows:Trade Initiations:If score < −0.1, then short sellelseif score > 0.1, then buyelse do not initiate tradeExit Criteria:1.) Exit initiated trades 4 hours after time of initiation, unless there is a newinitiation triggered.2.) On New Initiation triggera.) If new initiation triggered in opposite direction, then exit trade and follownew signal.b.) If new initiation triggered in same direction, then maintain position butuse this new pseudo-initiation for initiation time.The reasoning behind the trading strategy is as follows. Due to commissionsand slippage (caused by bid-ask spread), a score cut-off is used for initiations. Thisenables the investor to only put on trades that would overcome the costs of trading.The exit time of 4 hours corresponds to the outcome variable used by the model. Themodifications to the exit strategy are implemented because the strategy is trading atfull-exposure on a first initiation.6.6 Strategy SimulationsUsing the trading strategy outlined in the prior section, both the results of the neuralnetwork and those of the DPPLM were then simulated on the test sample. Anillustration of these results is provided in figures (49) and (50) for the ANN andDPPLM approaches, respectively. 136
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Figure 50: Simulated returns using trading strategy based on DPPLM predictions(05/25/04-01/31/05)Without commissions, we see from the graphs, that both models can be imple-mented profitability. However, when taking commissions into account, only theDPPLM is profitable. In fact, commissions take a much larger toll on the ANNapproach since there are nearly ten times the number of trades being initiated withthat approach over the same simulation time period. While these results seem quiteencouraging as a measure of the of the DPPLM, still, a more extensive investigationis in order.6.7 Comprehensive Statistical InvestigationFor this investigation, we will perform a number of statistical tests in an effort togauge how effective the DPPLM approach was at making predictions on this data.To do this, we will first pose a series of question, each in turn, to be answered by aspecific statistical test designed to address that question.138



6.7.1 Statistical Test #1Our first question is: "Are the DDPLM trading results just the result of luckyguesses?"To address this question, a bootstrap of 10,000 replications (w/o replacement)was run given our distribution of long/short/neutral signals over the specified period.H0 : The returns achieved by our trading strategy are the result of random guessesH1 : The trading strategy returns are statistically higher than the mean returnsgiven the distribution of signal directions

Figure 51: Bootstrap of DPPLM trading results on test sampleEmploying the bootstrap test yielded a mean return of 0.21% over the period.we see from figure (51) that the returns achieved over this period are statisticallysignificantly higher than the mean returns at the 5% significance level. In fact, only57 of the 10,000 replications would have yielded a return equal to or higher than those139



achieved by the trading strategy over the specified period. Thus, we reject the nullhypothesis.6.7.2 Statistical Test #2Is this trading strategy capable of picking the direction of the market more accuratelythan a random guess?Over the simulated period, the trading strategy correctly identifies the directionof the intraday move in the SMH with the majority of its signals.Table 14: Classification of accuracy of DPPLM trading strategy signal directionsPred. Direction # of Trades Avg. ReturnCorrect 84 1.52%Incorrect 48 -1.50%Neutral 1 (N/A)The Upper-Tailed Sign Test, which is a nonparametric statistical test, was used todetermine if the increased frequency of positive return days is statistically significant.H0 : P (correct_signal_direction) ≤ P (incorrect_signal_direction)H1 : P (correct_signal_direction) > P (incorrect_signal_direction)The significance level used for this test was α = 0.01. So,t = 12 (132 − 2.3263√132) = 52.64.Since, n − t = 79.36, and T = 84, where T is the number of positive signals,then we reject the null hypothesis at a 1% significance level (99% confidence level) asT > n − t. Therefore, the Sign Test suggests that the trading strategy is capable ofcorrectly predicting the direction of the SMH more frequently than not.140



6.7.3 Statistical Test #3Is the magnitude of the trading strategy score correlated with actual SMH returns?First, we state our null and alternate hypotheses in an attempt to address thisquestion.H0 : SMH signal returns are independent of trading strategy model scoresH1 : SMH signal returns are correlated with trading strategy model scores (i.e.,high predicted scores tend to lead to higher price moves)Now, to answer this question, we can employ the Spearman’s Rho test. This is anonparametric test, selected specifically so as not to depend on an implied distribu-tion.Spearman’s rho, is computed by:ρ = n∑i=1R (Xi)R (Yi)− n (n+12 )2√ n∑i=1R (Xi)2 − n (n+12 )2√ n∑i=1R (Yi)2 − n (n+12 )2 = 0.1320.The overall significance then is written as:p− value = P (Z ≥ ρ√n− 1) = P (Z ≥ 0.1320√132− 1) << 0.01Thus, we easily reject the null hypothesis at the 1% significance level.6.8 SummaryEven without running any of these statistical tests, we can intuitively see the signifi-cance of the DPPLM model results with a graph of model predictions versus actualreturns, as is provided in figure (52):Thus, this case study gives us further affirmation of the effectiveness of the DP-PLM technique to address a wide array of modeling problems.141



Figure 52: DPPLM Predictions vs. Actuals Quartile Plot
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CHAPTER VIICONCLUSIONSThis thesis presented two new learning algorithms, PPLM and DPPLM: both nonlin-ear function approximation models that are particularly well-suited for high- dimen-sional nonlinear datasets. Theorems were presented that established the methods’mathematical foundations, and proofs were detailed to provide insight into the both ofthe methods’ approximation capabilities. The essence of these novel approaches is toapproximate functions with the superposition of a series of piecewise one-dimensionalmodels that are fit to specific projection directions. The key to their effectivenesslies in their ability to find efficient projections for reducing the dimensionality of theinput space to best fit the underlying response surface. Moreover, these methodsare capable of effectively selecting appropriate projections from the input data inthe presence of relatively high levels of noise. For illustration purposes, this paperdemonstrated how PPLM leads to excellent function approximation results on twosimulated datasets, each exhibiting very different characteristics.This was accomplished by formulating algorithms that rigorously adhere to thetheoretical conditions of approximating the solution space, taking full advantage ofthe principles of optimization for maximizing the efficiency of the algorithms, deriv-ing the theory of function construction from a series of low-dimensional projections,developing a new universal approximation theorem for each of the methods to provetheir convergence, and constructing such algorithms capable of hedging against thecurse of dimensionality. 143



7.1 ContributionsThe contributions of this work in the realm of nonlinear modeling and function ap-proximation can be outlined as follows:1. In Chapter 2, the "curse of dimensionality" was rigorously examined to derivesome theoretical results showing the properties of data distributions in high-dimensional space.2. In Chapter 3, the projection pursuit learning model (PPLM) was fully developedfrom theoretical underpinning to the construction of the algorithma.) The theory was derived to show that a function f ∈ Fn can be decom-posed into an infinite number of single variable, mutually orthogonal functions.This forms the basis for the development of a class of projection pursuit learningmodels capable of approximating high-dimensional functions by the construc-tion of lower-dimensional projections.b.) As an extension of this, a theorem for the universal approximationcapabilities of this approach to function approximation is rigorously derived.This theorem provides an enhancement over existing universal approximationtheorems in the field today as it extends the approximation abilities to a widerclass of functions.c.) Based on the prior theory, a theorem for optimizing the selection ofoptimal projections is developed. This is central to the algorithms in thisthesis.d.) An algorithm is constructed that employs all of the foundational theoryof the chapter to effectively model high-dimensional response surfaces3. Given that many real-world response surface may be approximated by func-tions of low-degrees of coupling, Chapter 4 presented the discretized projection144



pursuit learning model (DPPLM). The theory behind this method and the sub-sequent implementation of the algorithm are provided. Also, given the uniqueproperties of this discrete projection search space, a more efficient method ofoptimization is described.a.) The theory was derived to show a continuous function f ∈ L2(D) canbe decomposed into an infinite number of single variable, mutually orthogonalfunctions.b.) A universal approximation theorem is derived to prove the approxima-tion capabilities of this approach to function approximation.c.) A theorem for optimizing the selection of optimal projections is devel-oped that has its basis in the prior theory.d.) The culmination of the foundational theory of the chapter is an algo-rithm that effectively incorporates this theory into a method of function ap-proximation capable of mitigating the effects of data sparsity.e.) Another possible construction of the algorithm based on a GA projec-tion direction search routine is suggested that could achieve similar approxima-tion results with substantial computational savings.4. Drudging through an extensive series of simulations in Chapter 5 and the casestudy of Chapter 6, it is shown that the algorithms presented in the thesis arequite capable of approximating a wide array of response surfaces under varioussample conditions.7.2 Major Creative ContributionsThe major creative contributions are as delineated below.1. A theorem for the universal approximation capabilities of the continuous PPLM145



approach to function approximation is rigorously derived. This theorem pro-vides an enhancement over existing universal approximation theorems in thefield today as it extends the approximation abilities to a wider class of func-tions. Specifically, the class of functions for which the universal approximationtheorem holds has been expanded to include unbounded, Lp space. In the liter-ature, universal approximaton theorems, [38], [39], [54], are proven for functionsrestricted to the class of bounded, Lp functions or are even more restrictive, suchas is the case of [16], which is confined to L2 space.2. The structure of the optimization procedure is an expansion upon the currentliterature for both of the learning models presented. Specifically, neural networkalgorithms focus on solving for both the magnitude and direction of their in-tended projections with an iterative procedure. In the approaches described inthis thesis, the 1-dimensional basis functions are derived in closed-form. Thus,the optimization can focus its reseources on only searching for optimal projec-tion directions.3. The DPPLM approach offers another considerable creative contribution to opti-mization that is not found elsewhere in the literature. Because of the constraintson what the algorithm is trying to optimize (only the directions, and not alsothe magnitude) and because of the discretization of these projections, the setof possible projection directions is finite and countable. Therefore, a new setof optimization routines can be used to search this space of potential projec-tions. In this thesis, an exhaustive search and a genetic algorithm approach areemployed as possible optimization procedures. While genetic algorithms havepreviously been used to optimize specific network topology parameters, such asthe network size, nowhere in the literature have we found a genetic algorithmused for optimizing projection directions. In fact, as previously constructed,146



this problem would be intractable to solve with a GA given the infinite possibili-ties of projections. Thus, constructing the problem in such a way that a randomsearch technique can be used to search for projection directions is a significantcontribution, particularly considering that the problem of finding the optimalprojection directions is key in projection pursuit function approximation.4. Another significant contribution of this thesis is the comprehensive comparisonstudy of these new methods with the major high-dimensional function approx-imation methodologies in use today. While a considerable number of otherresources [15], [20], [21], [22], [64], [84], [92], [93], [95] have previously presentedcomparison studies of various different methodologies, we have found no studyas comprehensive in its investigation of the various attributes of the featurespace.7.3 Impact of Work1. The resulting algorithms constructed in this work have wide-ranging applica-tions, each as a methods for improving prediction capabilities for problems inhigh-dimensional space (problems with dozens of inputs). These methods caneasily be applied in such diverse fields as machine vision, speech recognition,motor control, machine learning, financial prediction, economic forecasting, anda range of other engineering and data mining applications.2. The framing of the optimization problem into a discrete problem of findingoptimal projections from a choice of finitely many possibilities is a substantialcontribution that has a rather profound impact on the high-dimensional functionapproximation problem. Because of this new framework, a whole new classof optimization procedures is now available for use in optimizing projectiondirections. The problem of finding the optimal projection directions has been147



stated to be the most difficult problem in function approximation for projectionpursuit methods [32], [83], and [84]. Thus, it is possible that this new frameworkwill spark a new area of research focused on finding the best discrete projectiondirection optimization techniques.7.4 Recommendations for Future WorkThis research suggest a number of exciting future directions in both the theoreticaland implementation domains:1. The methods could be extended into the realm of classification problems.2. The convergence rates of the PPLM and DPPLM methods could be derivedto prove their computational advantages over other nonlinear high-dimensionalmodeling techniques.3. From a theoretical standpoint, it would appear that the continuous PPLMmethodology should be able to achieve better performance than that of DPPLM.In practice, the opposite was shown to be the case. Thus if an improved methodof identifying the optimal directions could be found, than this method mightprove most effective for a wide array of high-dimensional prediction problems.4. Algorithmic refinements to the Matlab code (or implementation in a lower-levelcomputing language) could improve the computational efficiency of both thePPLM and DPPLM models.5. The parameters and structure of the genetic algorithm approach to DPPLMprojection selection could be subjected to a comprehensive investigation. Suchan undertaking would likely yield a highly computationally efficient model thatretains the approximation capabilities of the original DPPLM presented andwould enable the application of the method to be extended considerably, up toeven higher dimensional datasets than is presently possible with this method.148



APPENDIX AADDITIONAL INFORMATIONA.1 Appendix: Matrix CalculusThe first set of notations we introduce are the stacking operation and Kroneckerproduct used extensively in matrix calculus [11], [56].Given a matrix A ∈ ℜm×n, its stack, denoted by As, is the column-wise vectoriza-tion of A: A =  A11 · · · A1n... . . . ...An1 · · · Ann  , Then As = 
A11...A1n...An1...Ann

The Kronecker product of two matrices A ∈ ℜm×n and B = ℜp×q isC = A⊗B =  A11B · · · A1nB... . . . ...An1B · · · AnnB A useful identity [56] used later in our matrix calculus is(ABC)s = (CT ⊗A)Bs (28)Next we define the Jacobian of vector and matrix valued functions. For a smoothvector—valued function f : ℜn → ℜm, Df is the m× n Jacobian matrix of f (x):Df = [ ∂f∂x1 · · · ∂f∂xn ]149



The differential of f(x) corresponding to ∆x ∈ ℜn is defined to be∆f (x,∆x) = f(x+∆x)− f (x)The Jacobian of a matrix valued function, A(x) ∈ ℜm×nis defined to be theJacobian of its vectorization: DA(x) := DAs (x).The following lemma extends the differentiation product rule to matrix multipli-cation:Lemma 25 Given smooth matrix valued functions A(x) ∈ ℜm×n and B(x) ∈ ℜn×pwe have D (AB) = (BT ⊗ I)DA+ (I ⊗A)DBProof. Let F = AB and let x be perturbed by ∆x. Then,F +∆F = (A+∆A) (B +∆B) = AB +A∆B +∆AB +∆A∆B.Thus, (A+∆A) (B +∆B)−AB = A∆B +∆AB +O (∥∥∆x2∥∥)So, ∆F = A∆BI + I∆AB +O (‖∆x2‖) . Vectorizing both sides using identity (28),we have ∆F s = (I ⊗A)∆Bs + (BT ⊗ I)∆As +O (∥∥∆x2∥∥)sTaking the limit of both sides as ∆x→ 0 yieldsDF = (I ⊗A)DB + (BT ⊗ I)DA
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A.2 Bearing Experiment Data
Width (um) Height (um) Speed (RPM) Load (PSI) Replication #

0 0 800 200 1
0 0 800 200 2
0 0 800 400 1
0 0 800 400 2
0 0 800 600 1
0 0 800 600 2
0 0 1200 200 1
0 0 1200 200 2
0 0 1200 400 1
0 0 1200 400 2
0 0 1200 600 1
0 0 1200 600 2
0 0 1600 200 1
0 0 1600 200 2
0 0 1600 400 1
0 0 1600 400 2
0 0 1600 600 1
0 0 1600 600 2

35.33 2.46 800 200 1
35.33 2.46 800 200 2
35.33 2.46 800 400 1
35.33 2.46 800 400 2
35.33 2.46 800 600 1
35.33 2.46 800 600 2
35.33 2.46 1200 200 1
35.33 2.46 1200 200 2
35.33 2.46 1200 400 1
35.33 2.46 1200 400 2
35.33 2.46 1200 600 1
35.33 2.46 1200 600 2
35.33 2.46 1600 200 1
35.33 2.46 1600 200 2
35.33 2.46 1600 400 1
35.33 2.46 1600 400 2
35.33 2.46 1600 600 1
35.33 2.46 1600 600 2
37.67 10.56 800 200 1
37.67 10.56 800 200 2
37.67 10.56 800 400 1
37.67 10.56 800 400 2
37.67 10.56 800 600 1
37.67 10.56 800 600 2
37.67 10.56 1200 200 1
37.67 10.56 1200 200 2
37.67 10.56 1200 400 1
37.67 10.56 1200 400 2
37.67 10.56 1200 600 1
37.67 10.56 1200 600 2151



Width (um) Height (um) Speed (RPM) Load (PSI) Replication #
37.67 10.56 1600 200 1
37.67 10.56 1600 200 2
37.67 10.56 1600 400 1
37.67 10.56 1600 400 2
37.67 10.56 1600 600 1
37.67 10.56 1600 600 2
48.33 2.38 800 200 1
48.33 2.38 800 200 2
48.33 2.38 800 400 1
48.33 2.38 800 400 2
48.33 2.38 800 600 1
48.33 2.38 800 600 2
48.33 2.38 1200 200 1
48.33 2.38 1200 200 2
48.33 2.38 1200 400 1
48.33 2.38 1200 400 2
48.33 2.38 1200 600 1
48.33 2.38 1200 600 2
48.33 2.38 1600 200 1
48.33 2.38 1600 200 2
48.33 2.38 1600 400 1
48.33 2.38 1600 400 2
48.33 2.38 1600 600 1
48.33 2.38 1600 600 2
49.33 4.88 800 200 1
49.33 4.88 800 200 2
49.33 4.88 800 400 1
49.33 4.88 800 400 2
49.33 4.88 800 600 1
49.33 4.88 800 600 2
49.33 4.88 1200 200 1
49.33 4.88 1200 200 2
49.33 4.88 1200 400 1
49.33 4.88 1200 400 2
49.33 4.88 1200 600 1
49.33 4.88 1200 600 2
49.33 4.88 1600 200 1
49.33 4.88 1600 200 2
49.33 4.88 1600 400 1
49.33 4.88 1600 400 2
49.33 4.88 1600 600 1
49.33 4.88 1600 600 2

61 5.8 800 200 1
61 5.8 800 200 2
61 5.8 800 400 1
61 5.8 800 400 2
61 5.8 800 600 1
61 5.8 800 600 2
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Width (um) Height (um) Speed (RPM) Load (PSI) Replication #
61 5.8 1200 200 1
61 5.8 1200 200 2
61 5.8 1200 400 1
61 5.8 1200 400 2
61 5.8 1200 600 1
61 5.8 1200 600 2
61 5.8 1600 200 1
61 5.8 1600 200 2
61 5.8 1600 400 1
61 5.8 1600 600 1
61 5.8 1600 600 2
64 11 800 200 1
64 11 800 200 2
64 11 800 400 1
64 11 800 400 2
64 11 800 600 1
64 11 800 600 2
64 11 1200 200 1
64 11 1200 200 2
64 11 1200 400 1
64 11 1200 400 2
64 11 1200 600 1
64 11 1200 600 2
64 11 1600 200 1
64 11 1600 200 2
64 11 1600 400 1
64 11 1600 400 2
64 11 1600 600 1
64 11 1600 600 2

131.33 1.4 800 200 1
131.33 1.4 800 200 2
131.33 1.4 800 400 1
131.33 1.4 800 400 2
131.33 1.4 800 600 1
131.33 1.4 800 600 2
131.33 1.4 1200 200 1
131.33 1.4 1200 200 2
131.33 1.4 1200 400 1
131.33 1.4 1200 400 2
131.33 1.4 1200 600 1
131.33 1.4 1200 600 2
131.33 1.4 1600 200 1
131.33 1.4 1600 200 2
131.33 1.4 1600 400 1
131.33 1.4 1600 400 2
131.33 1.4 1600 600 1
131.33 1.4 1600 600 2
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A.3 Bearing Defect Experiment InputsTable 15: Full List of Inputs Used In Bearing Defect ExperimentSpeed yRMS_bandpass zKurtosis_bandpassLoad yVpeak_bandpass zKurtosis_overReplication yRMS_over zCrest_bandpassxRMS_bandpass yKurtosis_bandpass zCrest_overxVpeak_bandpass yKurtosis_over ae_RMSxRMS_over yCrest_bandpass ae_Vpeak_overxKurtosis_bandpass yCrest_over ae_Vpeak_bandpassxKurtosis_over zRMS_bandpass ae_KurtosisxCrest_bandpass zVpeak_bandpass ae_CrestxCrest_over zRMS_over
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