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SUMMARY 

Infrastructure systems are essential for the continuous functionality of modern 

global societies.  Some examples of these systems include electric energy, potable water, 

oil and gas, telecommunications, and the internet.  Different topologies underline the 

structure of these networked systems.  Each topology (i.e., physical layout) conditions the 

way in which networks transmit and distribute their flow.  Also, their ability to absorb 

unforeseen natural or intentional disruptions depends on complex relations between 

network topology and optimal flow patterns.  Most of the current research on networks is 

focused on understanding the properties of large systems using statistical methods (i.e., 

the study of average network properties that emerge from the properties of its constituent 

elements), or on developing advanced models to capture network dynamics and evolution 

on small networked systems. 

Despite these important research efforts, almost all studies concentrate on specific 

networks.  This network-specific approach rules out a fundamental phenomenon that may 

jeopardize the performance predictions of current sophisticated models: network response 

is in general interdependent with other systems.  The performance and functionality of a 

network is conditioned on the state of additional interacting networks.  Although there are 

recent conceptual advances in network interdependencies, current studies address the 

problem from a high-level point of view.  For instance, they discuss the problem at the 

macro-level of interacting industries, or utilize economic input-output models to capture 
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entire infrastructure interactions, or discuss the potential use of advanced monitoring and 

decision making units for real-time network control and stability. 

This study approaches the problem from a more fundamental level.  It focuses on 

network topology, flow patterns within the networks, and optimal interdependent system 

performance.  This approach also allows for probabilistic response characterization of 

networked systems when subjected to internal or external disturbances.  The response of 

real and idealized interacting systems is nonlinear with respect to the intensity of the 

disruptions due to the increased complexity and intractability introduced by their 

coupling.  Methods proposed in this study can identify the role that each network element 

has in maintaining network connectivity and optimal flow.  This information is used in 

the selection of effective pre-disaster mitigation and post-disaster recovery actions.  

Results of this research also provide guides for resilient network growth and reveal new 

areas for research on interdependent dynamics.  Finally, the algorithmic structure of the 

proposed methods suggests straightforward implementation of interdependent analysis in 

advanced computer software applications for multi-hazard loss estimation.
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CHAPTER 1 

1INTRODUCTION 

World-wide social and economic stability is largely dependent on reliable supply 

of goods and services that traverse technological networked systems.  Current 

globalization requires almost instant trading of products to equilibrate supply and demand 

forces (Friedman, 2005).  However, this phenomenon of globalization which provides the 

opportunity for expanding business also has the potential to annihilate economic sectors 

in case of unforeseen disruptions in their productivity.  Competitors are ready to provide 

the services or manufacturing that a particular country ceases to offer due to natural or 

intentional disruptions to their infrastructures.   

During the last decade, the United States has experienced a series of large scale 

disruptions to its infrastructure revealing unexpected propagation of network disruption 

and unprecedented economic losses.  Examples include earthquakes, satellite 

telecommunication failures, malicious attacks, blackouts, and hurricanes.  The Northridge 

earthquake occurred on January 17, 1994.  This moderate moment magnitude (M = 6.7) 

earthquake proved to be one of the costliest in the United States history with an estimate 

of $40 billion in direct losses alone (Eguchi et al., 1998).  All critical infrastructures were 

severely affected delaying the recovery rate due to their interdependence.  Indirect losses, 

with more uncertain estimates, easily doubled the direct losses figure. 
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The significant disruption potential of a seismic event is due to its impact felt over 

a large geographical region.   However, there are also less severe events with far reaching 

consequences.  In general, small disturbances are locally absorbed by the networks.  But 

there are instances in which unfortunate sequences of events lead to the propagation of 

successively stronger disruptions until a significant portion of the functionality of the 

infrastructure system is impaired.  An unforeseen satellite failure on May 19, 1998 

demonstrated that malfunction of a particular element in one system can cross 

infrastructure boundaries due to their coupling linkages (Little, 2002).  The PanAmSat 

Galaxy IV telecommunications satellite suffered a failure in its on-board control system.  

The backup switch also failed and the device rotated out of its orbital position.  Over 80% 

of the digital pagers in the United Stated went off-line.  Cable and broadcast 

transmissions were affected, as were credit card authorizations and Automated Teller 

Machine (ATM) transactions.  The health care system was also critically affected as 

doctors and care givers could not be paged for just-in-time service delivery. 

Other types of interdependencies were revealed by the terrorist attacks of 

September 11, 2001.  In this case infrastructure destruction was geographically contained 

and impact on physical networks was localized.  Moreover, post-disaster recovery is only 

efficient with substantial coordination among emergency response agencies, intelligence 

agencies, governmental institutions, administrative bodies and general bureaucracies 

(Walker, 2002; Kondrasuk, 2004).  This type of interdependence, although without 

physical links, still operates as a network system and it is vital for optimal allocation of 

scarce resources. 

2 



Another example of infrastructure disruption with high-order propagation effects 

is power grid blackouts.  Power transmission and distribution constitutes the backbone 

for sustained productivity.  Manufacturing industries and digital-quality end users (i.e., 

high-technology businesses) also demand a highly reliable source of electrical current.  

However, the power grid can be fragile.  Deviations from normal operating conditions, 

such as peak loads (i.e., energy demand increase), or benign disruptions from falling trees, 

lightning or ice storms, can result in uncontrollable cascading failures.  The Western 

Systems Coordinating Council (WSCC) suffered a breakup on August 10, 1996.  Arcs to 

trees progressively tripped several high voltage transmission lines near Portland, Oregon.  

In less than seven minutes an outage cascaded through the system, fracturing it into four 

islands and interrupting services to approximately 7.5 million customers on the west 

coast (Hauer and Dagle, 1999; Kosterev et al., 1999).  Another striking blackout occurred 

on August 14, 2003.  High power flow demands, deficiencies in management of reactive 

power and voltage variations, and simple lack of adherence to industry policies (e.g., 

inadequate tree trimming) provided the pre-conditions for the outage.  The event resulted 

as a combination of failures in monitoring system tools, control rooms, and lack of 

efficient decision making—whether or not to drop 1,500 MW of load around Cleveland, 

Ohio to alleviate system stability.  The decision was not made.  As a result, 50 million 

people were affected in at least ten northeastern states and one Canadian province.  

Estimated losses reached $10 billion U.S. dollars (United States - Canada power system 

outage task force, 2004).  Most of the physical and organizational infrastructures essential 

for modern societies were affected.  Examples include national security; health and 

welfare; communications; finance; transportation; food and water supply; heating and 
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cooling; computers and electronics; commercial enterprises; and even entertainment and 

leisure. 

Cyclones with the ability to impact large geographical regions are another 

frequent threat.  Every year many tropical storms develop in the Caribbean.  However, 

some storms evolve and gather force becoming hurricanes of category 4 or 5 strength.  

This unfortunate scenario became true with the category 5 hurricane Katrina, which 

struck Louisiana, Mississippi, and Alabama on August 29, 2005.  The aftermath revealed 

the chaotic situations that can develop when basic societal needs are not satisfied 

promptly (American Society of Civil Engineers, 2005).  Its initial local effects on civil 

infrastructure and governmental institutions resulted in the lost of about one million jobs 

and an estimate of damage of $100 billion.  The propagation of disruptions through the 

interconnecting paths among social and technological networks caused an impact on fuel 

prices, ocean shipping and exports of agricultural products, gambling industry which is a 

significant source of tax revenues, and exposed the weaknesses of the government to 

respond to disasters (Posner, 2005; The Economist, 2005). 

A clear observation common to the sample of discussed cases is that disturbances 

were able to efficiently spread up to the point of compromising the functionality of entire 

infrastructures.  This propagation is in essence facilitated by the obvious underlying 

structure of these systems: they are tightly interconnected networks.  It is clear that real 

networks do not operate in isolation, and that a larger problem needs to be addressed.  

Attempting to recognize and quantify the effects of network interdependencies in their 

response to disturbances constitutes the fundamental challenge of this research study.  

However, it must be recognized that these networks have also been growing 
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independently very fast.  This growth increases their structural complexity and reduces 

the possibility to trace their dynamics, and the dynamics of their interconnecting systems.  

Fundamental approaches need to be implemented to understand the properties of these 

complex entities.  Statistical methods for the study of average properties not of single 

systems, but of large ensembles of systems and their constituent parts are a promising 

approach to provide the basic tools for this ongoing research.  This statistical approach 

offers a reasonable framework to discover emergent behavior and universality among 

systems that are composed of collections of sub-elements.  That knowledge is used to 

understand the correlation between disturbances, network flow, topology, network 

response or performance, and effects of alternative improvements to prevent large scale 

failures. 

 

1.1 RESEARCH GOAL AND OBJECTIVES 

The concise goal of this research study is to understand the effects that network 

interdependencies introduce in their response to disturbances.  The objectives to achieve 

the stated goal are divided in three groups: 

 

• Network characterization 

- to investigate statistical parameters for description of network topology; 

- to identify the role that various network elements have in maintaining 

connectivity and optimal flow; 

- to develop performance metrics for quantifying generic network functionality; 

- to construct a power grid model for statistical analysis; 
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• Interdependent network performance 

- to establish governing rules for modeling network interdependencies; 

- to develop interdependent infrastructure models for statistical analysis; 

- to study the effects of systematic network disruption on independent and 

interdependent system performance; 

- to estimate seismic response of interdependent systems using real infrastructures 

of Memphis, Tennessee; 

 

• Interdependent network improvement 

- to determine mitigation strategies that ensure continuous functionality of 

interdependent systems when resources are limited; and 

- to establish a research agenda for addressing additional research questions 

revealed by this analysis of complex system interdependencies.  For instance 

network growth, dynamic response of networks, and system reliability. 

 

1.2 THESIS ORGANIZATION 

This thesis is divided into eight chapters.  Chapter 2 presents a literature review 

on the recent advances in the fields of complex networks, network topology, network 

dynamics, and interconnected systems.  Chapter 3 provides an introduction to 

fundamental concepts of graph theory that are used throughout the document.  Basic 

properties to characterize network topology are reviewed, and new parameters tailored to 

quantify network functionality are proposed.  Chapter 4 introduces the workings of 
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current network models, the properties of real networked systems, and the development 

of specific models to capture the essence of critical infrastructure topologies.  Modeling 

of network interdependencies is presented in Chapter 5, where a novel simplified model 

for interconnected networks is described.  Chapter 6 presents a comprehensive analysis of 

the response of networked systems when subjected to intentional element removal, or 

when subjected to seismic hazards.  The effect of network interdependencies is 

demonstrated by comparing the response of these systems under different coupling 

strengths.  Chapter 7 provides ideas for optimal mitigation actions, which maximize 

individual network stability and minimize interdependent network instabilities.  Chapter 

8 contains the conclusions of this research and presents relevant issues for future research. 
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CHAPTER 2 

2ADVANCES IN COMPLEX NETWORKS 

Three fundamental aspects make contemporary networked systems grow in 

complexity.  The first is the physical size and expansion of the networks to serve more 

end users.  The second corresponds to the less tractable pattern of dependence within 

infrastructures to connect with other elements of their own systems.  The third one 

corresponds to the need of the networks to interconnect to other systems to efficiently 

perform and control their operations.  These network issues currently pervade all of 

science.  However, there is one basic problem common to all disciplines: the 

characterization of network anatomy has not been completed, and is essential because 

structure always affects function (Strogatz, 2001). 

Analysis of most complex systems indicates that they are governed by organizing 

principles, which should be encoded at some level in their topology and flow patterns.  In 

the past few years there have been several developments that have promoted abundant 

research in the field.  For instance, the computerization of data acquisition has led to the 

emergence of large databases that describe the topology of real networks.  Increased 

computing power now allows investigation of large size networks and exploration of 

questions that were impossible to be addressed or simulated before.  The breakdown of 

boundaries between disciplines has exposed more researchers to the notion of emerging 
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properties on large scale networks.  And finally, there has been an increasingly voiced 

need to move beyond reductionist approaches and try to understand the behavior of 

systems as a whole (Albert and Barabási, 2002). 

These trends support the search for statistical properties of large-scale networks; 

the development of network models that can help understand the meaning of these 

properties; the exploration of evolving models to find how networks become specifically 

structured during their growth; and the ability to predict network behavior to disturbances 

on the basis of measured properties and local rules governing individual elements 

(Newman, 2003).  Recent encouraging progress has been founded on graph theory 

combined with statistical methods and computer simulations, and also on the insight from 

engineering design. 

This chapter begins with a historical review of the analytical and empirical 

developments of graph theory.  This theory has fueled, during the last decade, several 

advances in the calculation of network static and dynamic properties.  The former 

properties are related to network topological structure, while the later properties are 

related to the response of networked systems when subjected to unforeseen disruptions, 

or related to their evolution and growth. 

A discussion of the contributions from the field of lifeline earthquake engineering 

is also presented.  The relevance of this field to the overall study of complex networks 

relies upon the extensive collection of empirical data on the performance of network 

elements when subjected to seismic loads.  Advanced analytical predictive models have 

also been developed, providing unique means to validate new statistical models of 
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increasingly complex real systems.  Loss estimation and risk analysis due to network 

reduced functionality are essential for today’s resource allocation in disaster prevention. 

This chapter also presents recent contributions from the study of a new kind of 

complex system: networks of interdependent infrastructures.  A critical appraisal of the 

state-of-the-art in the field is also included.  Readers familiar with the topic of network 

analysis can omit the fist two sections and focus on the last section of this chapter.  That 

section provides the basis and justification to the issues addressed throughout the present 

thesis.  Readers interested in an introduction to the research on networked systems can 

benefit from the broad discussion of the entire chapter. 

 

2.1 HISTORICAL REVIEW 

Rigorous treatment of network problems started in 1736 when Leonhard Euler 

offered a rigorous mathematical proof to the seven Bridges of Königsberg problem.  The 

problem was to find a route around the city of Königsberg that would require a person to 

cross each of seven bridges exactly once (Barabási, 2003).  He lumped the land into 

nodes (vertices) and replaced the bridges with links (edges), obtaining a graph with four 

nodes and seven links, as shown in Figure 2-1.  He proved that there is no solution.  A 

route crossing each link only once does not exist. 

Further advances in the field were not made until 1959 when two Hungarian 

mathematicians Paul Erdös and Alfred Rényi developed the theory of random networks.  

They introduced the use of probabilistic methods to demonstrate the existence of graphs 

with particular properties (Erdös and Rényi, 1959).  One such property is connectivity or 

the ability of the nodes to communicate with each other.  The interesting aspect is that 
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this property and several others arise rather suddenly: while a random graph with n 

vertices and a certain number of edges is unlikely to have the property at hand, a random 

graph with few more edges is very likely to have the property (Bollobás, 1998a).  This 

rapid change is called a phase transition.  Several disciplines have used this model to 

understand the threshold or critical point at which the transition occurs.  Researchers 

utilize it to understand how innovations spread, how diseases propagate, or how 

information flows. 

     

A

C

B

D

 

Figure 2-1.  Graph representation of the seven Bridges of Königsberg problem 

 

Information flow was the subject of a study conducted by the psychologist 

Stanley Milgram in 1967 on the structure of social networks (Milgram, 1967).  This study 

revealed an important property of social networks: they are simultaneously clustered at 

the local scales (i.e., tight circles of acquaintances), and efficiently connected at the 

global scales (i.e., low degree of vertex separation).  On the technological side, Paul 

Baran a research engineer for RAND Corporation had the task of developing 
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communication systems able to survive nuclear attacks.  His research indicated that the 

ideal survivable architecture was a distributed meshlike network, redundant enough so 

that if some nodes went down, alternative paths maintained the connection between the 

rest of the nodes (Baran, 1964). 

Researchers and scientists did not realized that modeling real complex networks 

required a shift in paradigm, despite the convenience and mathematical insights provided 

by random graphs models, the insights from empirical studies on social networks, and the 

ideas for optimal design of resilient networks.  This only happened in the late 1990’s, 

when databases from several disciplines became readily available, and general features of 

complex networks started to be uncovered.  Sociologists, mathematicians, physicists and 

engineers joined forces to formally develop the new science of a connected age (Watts, 

2003). 

 

2.2 RECENT DEVELOPMENTS 

The new science of networks is a multi-disciplinary field where fundamental 

theoretical advances are required to model real phenomena.  The laws of physics, 

engineered laboratory experiments, and pre/post disaster network evaluations provide the 

tools to validate and calibrate models.  This body of knowledge enables asking questions 

about more complex problems, such as that of propagation of disruptive effects through 

the intricate structure of interdependent systems.  The rigorous study of networked 

systems relies upon the principles of graph theory and the convenience of statistical 

methods.  Applied engineering provides the boundary conditions, initial conditions, and 

operational regimens for successful implementation of theoretical models; and the 
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multiple disciplines interested in the topic constitute the beneficiaries and the source of 

feedback for reshaping theoretical developments and applications. 

 

2.2.1 Graph Theory and Statistical Methods 

With the urge to address realistic problems, researchers turned to observational 

evidence to support their model developments.  In few years the field has moved from 

measuring topological properties for classification of networks, to successfully 

developing models that reproduce real network properties.  The field is also constructing 

dynamically evolving models whose elements age, grow, and interact with each other.  

Research in this new area is shedding some light on the mechanisms that enable networks 

to efficiently operate and respond to large unexpected demands. 

 

2.2.1.1 Static Structure of Networks 

The first network model capable of simultaneously displaying high local 

clustering and a low degree of global separation (as social networks have) is the small-

world network (Watts and Strogatz, 1998).  Construction of this model suggested the 

mechanism that enabled real social networks to display those properties: just a few 

elements of clustered groups at the local scale need to be linked with other distant tight 

clusters.  The algorithm to develop small-world graphs simply starts with a regular 

network or lattice where every node has the same number of neighbors.  Then, for a 

graph with n vertices, each link is rewired at random with probability p.  If p = 1 the 

resulting network is a random graph because every link is rewired (Watts, 1999).  Figure 
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2-2 shows the graph with n = 10 vertices, four neighbors per vertex and three values of 

the rewiring probability p which increases randomness as p → 1.  
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Figure 2-2.  Small-world graphs with (a) p = 0, (b) p = 0.1, and (c) p = 1 

 

An additional property of the small-world networks is that every vertex tends to 

have, on average, the same number of links.  However, empirical data have shown that in 

most known networks (e.g., internet, world wide web, research collaborations, protein 

regulatory networks, cellular metabolism, business, etc), the number of nodes versus the 

number of links per node follows—denoted as vertex degree, d(v)— follows a power-law 

in the tail of their distributions: pd(v) ~ d(v)-β for some constant exponent β.  These tails 

imply that a few nodes are abnormally well connected while most other nodes only have 

a few connections.  Some geographically distributed technological networks such as 

power grids and transportation networks are the exception since they show exponential 

tails in their vertex degree distributions (i.e., most nodes have similar number of 

connections).  The first model that reproduced the power-law distribution of the vertex 

degree was referred to as the scale-free network (Albert et al., 2000; Barabási and 

Bonabeau, 2003).  The mechanisms that allow the model to display such a power law 
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distribution are network growth and preferential attachment.  Rather than starting with a 

set of n connected vertices, each disconnected vertex is joined to the network with links 

connecting to the vertices that are already connected.  This connection is done with a 

probability proportional to the number of links that each existing connected vertex has.  

Figure 2-3 shows a sample scale-free network with n = 10 vertices, grown by connecting 

each new node to two existing nodes following a preferential rule. 

Additional research has shown that it is possible to develop networks with power-

law distributions without using preferential attachment (Kaiser and Hilgetag, 2004).  The 

mechanism in this case is growth of the network in a given space, and letting some nodes 

to be pioneers and be positioned far from the original group.  This generates multiple 

interconnected clusters which a few nodes accumulate a large number of links. 
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Figure 2-3.  Topology of a scale-free network 
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The fact that simple rules helped explain the topology of complex networks 

initiated a research effort to find properties and the mechanisms that produced them.  The 

aim has been to determine universal laws that govern the development and functionality 

of complex natural and technological networks.  An example uncovering universality is 

the study of scientific collaboration networks (Newman, 2001a).  Scientists are nodes, 

and links among them are established if they have co-authored one or more papers.  

Researchers used databases of scientific papers in physics, biomedical, and computer 

science.  They found that from all authors in a discipline 80% to 90% of them had co-

authored a paper.  This is referred to as a component or cluster of connected nodes.  Also, 

the scientific collaboration networks displayed a large local clustering.  This supported 

the hypothesis that social networks form community cliques due to their common 

interests.  Other statistics that are useful to the understanding of how the networks 

operate are typical distances between scientists and measures of centrality (i.e., relative 

importance of network elements according to their role in network topology and flow.)  

This network shows a remarkable short distance between any two scientists—

representing a true small-world effect—which grows logarithmically with the number of 

authors, n, in the network (Newman, 2001b).  These networks were also used to compute 

a parameter called betweenness, which helps identify who are the most influential people 

in the network or the ones who control the flow of information between most others.  

Additional centrality measures suited for specific flow processes have appeared in more 

recent studies of generic networks used for transfer of goods, money, e-mail, and 

infections (Borgatti, 2005; Newman, 2005).  These new approaches account for the kinds 

of trajectories taken by the flow (e.g., shortest paths, trails, or walks), and the method of 
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spread (e.g., transfer, replication, or broadcast).  Trails and walks are just different ways 

to traverse a network not necessarily taking the shortest routes.  Network efficiency is one 

parameter that relies upon measurement of shortest paths between all vertices (Latora and 

Marchiori, 2001). 

Generalizations of known graph models have led to the development of random 

networks with arbitrary vertex degree distribution (i.e., the number of links per vertex).  

Traditional random graphs, as proposed by Erdös and Rényi, possess a Poisson vertex 

degree distribution.  Exact expressions for generalized random graphs have been derived 

for the position of the phase transition (i.e., when a random network becomes suddenly 

connected by adding links); for the size of the largest cluster after the transition; and for 

the vertex-vertex distance within a graph (Newman et al., 2001).  Classical statistical 

methods are also used to study families of network models derived by requiring the 

expected properties of a graph ensemble to match a given set of measurements of real-

world networks (Park and Newman, 2004).  This approach is mathematically and 

conceptually sophisticated, and has the potential to provide predictive models that explain 

several features of real networks, rather than having several models each explaining a 

particular phenomenon. 

More conventional advances are incremental improvements of existing models.  

For instance, traditional scale-free networks exhibit power law-degree distribution for the 

number of connections per node, short vertex to vertex distance, and low local clustering.  

Generalizations have been made to create scale-free networks with tunable local 

clustering which allows generation of networks with all the properties of the scale-free 
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network class, but in agreement with the observed high local clustering of real networks 

(Holme and Kim, 2002).  

Characterization of real networks has benefited from these theoretical advances.  

One example is the network of web pages and hyperlinks connecting them—the world 

wide web (WWW).  Studies indicate that the page rank, or measure of authority of the 

WWW to prioritize pages matching a query, concentrates on a small number of nodes.  

Network analysis says that this is a consequence of the average in-degree (i.e., number of 

links entering into a node, if the network is directed) of the network (Nakamura, 2003).  

Self-links and multiple links may be the responsible for high page rank of non-relevant 

web pages.  Another example of real network characterization shows that transportation 

networks possess small-world characteristics.  Specific examples include subway systems 

(Latora and Marchiori, 2002) and railroad networks (Sen et al., 2003).  Universal 

properties have also been proposed for general distribution networks (e.g., drainage basin 

of a river, cellular metabolism, or civil transportation infrastructure).  Research results 

reveal that the size and the flow rates of efficient transportation networks have a linear 

relation in log-log scales (i.e., power-law relationship) irrespective of dynamical or 

geometric assumptions (Banavar et al., 1999).  Other researchers use empirical data from 

real networks to refine predictive capabilities of existing network models.  In the case of 

the internet topology, scale-free networks reproduced several of the observed properties, 

such as vertex degree and average node separation.  However, in order to enhance their 

predictive capabilities to more characterization parameters, scholars have modified the 

preferential attachment rule from linear on the number of links (i.e., proportional to the 

vertex degree) to nonlinear relations on the number of links (Zhou and Mondragón, 2004). 
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The availability of refined models to reproduce real network properties, and the 

sophistication of the mathematical tools to formulate them allow addressing different 

questions.  These questions go beyond network description and focus on prediction.  

However, predictive capabilities require understanding of how the shape of the various 

systems conditions the way flow traverses them. 

 

2.2.1.2 Dynamic Processes on Networks 

Knowledge of network topological properties and the mechanisms that produce 

them has facilitated the study of network dynamics (i.e., processes going on within 

networks).  Intuitively, researchers have claimed that network topology affects the way in 

which any flow traverses a network.  Today there are tools for their rigorous treatment.  

The concept of percolation, borrowed from physics, describes the process in which 

vertices or links on a network are randomly designated “occupied” or “unoccupied.”  

Figure 2-4 illustrates percolation of nodes and links, referred to as site percolation and 

bond percolation, respectively.  Site percolation indicates whether or not network nodes 

have failed (i.e., occupied state).  Bond percolation indicates the state of network links.  

This idea has been extended to address fundamental dynamic processes such as 

epidemics within social networks, or cascading failures in technological networks—

where infection or failure is the “occupied” state.  Approximate expressions for the 

percolation probability (e.g., susceptibility to infection) have been proposed for disease 

propagation on small-world networks (Newman and Watts, 1999).  Percolation processes 

on random graphs with arbitrary vertex degree distribution have been suggested as 

models for the robustness of communication or distribution networks to breakdown or 
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sabotage.  Researchers have found exact solutions to this particular problem, providing 

another tool to make predictions about the behavior of networked systems under general 

types of breakdowns (Callaway et al., 2000).    

 

Site Percolation Bond Percolation  

Figure 2-4. Site and bond percolation on a network 

 

Percolation has also opened the door to development of simple, yet powerful 

dynamic models to predict cascades on networks.  Using arbitrary random graphs, 

investigations have demonstrated that simple threshold rules govern the decisions of 

interacting nodes based on the state of their neighbors (Watts, 2002).  Node connectivity 

and node stability are the parameters that most influence the susceptibility to cascading 

failure.  Dynamic processes taking place on scale-free networks have demonstrated that 

the breakdown of a single node is sufficient to collapse the functionality of entire systems 

if the node is among the ones with the largest load—the amount of flow traversing it 

(Crucitti et al., 2004).  Theoretical estimates supported with empirical evidence have also 

been obtained for the phase transition point—onset of total collapse—in terms of a 
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characterizing parameter of node capacity (Zhao et al., 2004).   Data transport in scale-

free networks has also led to important observations.  It has been found that a power law 

distribution governs the amount of data packets passing through a vertex when every pair 

of vertices sends and receives data following shortest paths (Goh et al., 2001).  

Additional studies have addressed the dynamics of networks taking place on 

various graph topologies such as branching trees or regular lattices in one and two 

dimensions (i.e., rings and meshes, respectively).  Models for communication networks 

reveal that when nodes deliver packets of information proportionally with increments on 

the load traversing them, the network is not susceptible to collapse due to congestion of 

information.  When the number of delivered packets of information decreases with load 

increments, there is a sudden phase transition from a functional state to a collapsed state; 

and when the number of delivered packets of information is independent of the load 

traversing them, the phase transition is a continuous function from functionality to 

collapse (Guimera et al., 2002).  Theoretical work indicates that there is a critical traffic 

load above which the probability of traffic congestions destroying the network 

communications capabilities is finite (Moreno et al., 2003).  When the traffic flow is 

proportional to the number of shortest paths passing through the nodes, the congestion 

conditions (i.e., critical points below which the traffic flows free and above which traffic 

congestion occurs) are independent of network size and topology (Zhao et al., 2005).  

Similar studies have been performed to measure the size of avalanches or cascades in 

simplified power transmission systems where solution of circuit equations is not included 

in the models.  Threshold rules alone are used to activate protective devices in each node.  

It has been shown that the probability distribution of the size of the disturbance has 
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power law scaling (Sachtjen et al., 2000).  Slight disruptions to elements that have a 

critical role in load delivery can cause overload failures.  Heterogeneous distribution of 

loads in networks—as in the case of the internet or the power grid—is a precondition to 

large-scale cascades because heavily loaded nodes operate close to their capacity, and if 

overloaded, the amount of flow to be redistributed easily overwhelms their neighbors 

(Motter and Lai, 2002). 

After the increase in awareness to possible attacks to critical infrastructures, 

research has also focused on uncovering what would happen to network functionality if 

particular network elements are intentionally removed.  Answers to this type of question 

are being pursued in the context of network models and real networks.  The common 

starting point is to determine the importance of the network elements, so that the top 

ranked ones are removed first.  Importance can be defined in terms of the role an element 

has to maintain connectivity or to transmit flow.  After every removal the status of the 

network in term of some functionality parameter is monitored.  Studies for random 

graphs, small-world graphs, and scale-free graphs with and without high local clustering 

have revealed important characteristics.  One such result is that random graphs and small-

world graphs are equally vulnerable to random or to targeted attacks, whereas scale-free 

graphs are very resilient to random disturbances, but also highly vulnerable to targeted 

attacks (Holme et al., 2002).  Their vertex degree distribution plays an important role in 

determining network vulnerability.  Disruptions to links also show that scale-free 

networks are more sensitive to attacks on short-range links—where range is the length of 

the shortest path between two nodes in the absence of that link (Motter et al., 2002).   
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Network functionality parameters have been evolving from measuring the size of 

the remaining largest cluster after every network element removal, to quantifying the ease 

of connection between any two nodes of the network.  A more refined parameter, referred 

to as network efficiency, measures the ease of node to node connection after disruptions 

but taking into account the Euclidean distance between them (Crucitti et al., 2003).  Other 

network performance measures have been developed to quantify the functionality of 

classes of networks, such as the ones for flow transmission from generation nodes to 

distribution nodes.  Connectivity loss, a parameter to measure the ability of the 

distribution nodes to remain connected to generation nodes, has been introduced to study 

the effects of disturbances on power grids (Albert et al., 2004).  

Research has also focused on development of strategies for mitigation of network 

vulnerability and enhancement of network recovery.  Biological networks show that the 

nature of the recovery after a crash (e.g., time to recovery), depends upon the 

organizational structure that survives the crash (Jain and Krishna, 2002).  This is also true 

for technological systems and for network models.  Some researchers have proposed 

models of networks for complex system design that display the connection effectiveness 

of scale-free networks and the robustness to random attacks of exponential networks 

(Shargel et al., 2003). 

Practical implementation of mitigation actions requires exploration of optimal 

strategies in terms of low cost and high impact.  This examination implies exhaustive 

analysis of alternatives and determination of the protection policy that maximizes the 

improvement of network performance given a damage that minimizes network 

performance (Latora and Marchiori, 2005).  This approach marks one of the state-of-the-
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art methods for spotting critical network elements and for outlining network expansion 

plans. 

Observed network damage after major disasters has provided some evidence of 

recurring failure modes and particular element vulnerabilities.  Therefore, it has been 

necessary to bridge the gap between the various elements representing the abstract set of 

nodes and links in graph theory and their real physical and mechanical properties.  This 

has attracted the interest of engineers, and the general approach consists of quantifying 

and describing the fragility of network elements (i.e., susceptibility to fail given certain 

level of disruption), estimating their importance for infrastructure functionality, and 

measuring the potential effects of mitigation actions on system reliability. 

 

2.2.2 Applied Engineering 

Lifelines represent the set of civil infrastructure systems essential for continuous 

operation of modern societies.  These systems are distributed in large geographical 

extensions, are composed of nodes and links, and are suitable for analysis using network 

and optimization theory.  However, due to the significant uncertainty in the parameters 

that influence the response of network elements, engineers have adopted probabilistic 

methods for performance estimation.  Early attempts included the development of 

probability matrices, based on expert opinion, to estimate damage to facilities or 

likelihood of breaks per unit length in linear facilities such as pipelines or high voltage 

transmission lines (Applied Technology Council, 1991).  The focus of their research was 

on the response to seismic hazards.  This approach considered the network elements to be 

independent.  Refinements to this methodology have been the research motivation for 
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numerous predictive response models, experimental studies, and probabilistic 

methodologies for risk quantification. 

 

2.2.2.1 Analytical, Numerical and Empirical Developments 

Recent studies have focused their research at the individual and system level 

elements.  These studies are validated and calibrated with empirical evidence collected by 

post-disaster reconnaissance teams and experimental tests.  An example of individual 

element studies includes dynamic and static analysis of structures for transmission of 

electric energy (Riley et al., 2003).  This study identifies failure modes for lattice steel 

towers and for steel poles—tension and compression capacity of legs, and base moment 

capacity, respectively.  Other studies include interaction among various pieces of closely 

integrated equipment, for instance, the voltage transformer–bushing system.  In this 

system the bushing is a porcelain or fiberglass insulating element that connects 

transformers to the external power lines.  Finite element models are developed to estimate 

the dynamic response of the system, and provide evidence that the expected response of 

transformers—more flexible than originally thought—can exceed acceptable limits and 

response predictions from design guidelines (Institute of Electrical and Electronics 

Engineers, 1997; Matt and Filiatrault, 2003).  Another example is the investigation of 

dynamic interaction between connected electrical substation equipment with dissimilar 

characteristics.  Hysteretic models for enhanced rigid connectors (i.e., bus sliders) are 

proposed to improve prediction of dynamic response of interacting equipment items 

(Song et al., 2003).  Simplified models to estimate interconnection point displacements 

have also been developed (Dastous and Filiatrault, 2003).  Finally, interacting power 
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transmission towers with high voltage transmission lines prove to have a critical 

separating span beyond which their interaction is highly detrimental due to the 

considerable mass that lines add to the systems (Li et al., 2003). 

Models to capture the entire flow dynamics of a power grid have also been in 

development.  Transient stability programs—step by step integration of circuit 

differential equations—are the most reliable.  There are other approaches that rely upon 

approximations and are part of expert systems, pattern recognition methods, or neural 

networks.  These methods are useful for the analysis of large scale problems and steady 

state responses.  Transient stability approaches are more suitable for dynamic response 

evolution.  For instance, they are used to reproduce power outages (Kosterev et al., 1999).  

Software development with advanced visualization tools, such as WinIGS-F, also 

performs power flow analysis of electric power systems.  Specifically, it allows the user 

to model any three phase power system together with its ground wires, and analyzes the 

performance of the system under steady state conditions (Advanced Grounding Concepts, 

2005).  Similar tools have been developed for other transmission and distribution systems.  

For instance, the steady-state analysis of potable water flow using the principles of 

conservation of mass—supply and demand equilibrium—and conservation of energy—

head losses through the system must balance at every point (Hatestad, 2004). 

Empirical estimates of network damage have also been widely used, especially in 

pipeline analyses.  Damage ratios in repair per kilometer for common pipeline materials, 

pipe diameters, and pipe support conditions became the preferred fragility measure for 

linear infrastructures (O'Rourke and Ayala, 1993).  Experimental studies using shake 

tables and pseudo-dynamic testing have also been undertaken to expand the 

26 



knowledgebase of network element response (e.g., steel storage tanks, pumps, electrical 

substation equipment, compressors, etc.)  Some projects have already revealed the 

inadequateness of current electrical equipment evaluation procedures (Schiff and 

Kempner Jr., 2003). 

Observed damage has also influenced definition of performance objectives for 

lifelines.  An example for water systems includes guidelines for acceptable performance 

requirements in networks exposed to diverse natural hazards (Eguchi and Honegger, 

2003; Graf et al., 2003).  More ambitious efforts try to unify the design of key utility and 

transportation systems (e.g., electric power, telecommunication, water, waste water, oil, 

natural gas, rail, and shipping ports) to achieve a desired performance in natural hazards.  

A fast evolving set of guidelines has been that for seismic design and retrofit of piping 

systems (American Lifelines Alliance, 2002).  The ultimate goal has been to guide 

lifeline system operators on how to ensure intended network functionality after 

earthquakes (e.g., position retention, leak tightness, operability, etc.)   This functionality 

demanded additional research beyond prediction of the response of network elements.  It 

required mapping element response with potential service impact on end-users. 

 

2.2.2.2 Loss Estimation and Mitigation Methods     

Network element response aggregation is essential for estimation of system-level 

performance after disruptions.  The uncertainty in the response and the resistance of 

network elements is significant and needs to be included in loss estimation methods.  

Reliability analysis of network systems provides a framework to assess within certain 

confidence bounds the probability of failure of network elements (Yang and Shaoping, 
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2003).  Some studies, in addition to accounting for the reliability of the elements, also 

consider flow capacity to enhance reliability assessment.  A particular example for water 

delivery systems recommends the construction of reliability surfaces (i.e., reliability 

contour maps) to guide maintenance decision-making (Quimpo and Wu, 1997).  In the 

case of highway systems, research has suggested simple performance parameters such as 

length of operating network, or accessibility between points to estimate the reliability of 

complete systems (Chang and Nojima, 2001; Lleras-Echeverri and Sánchez-Silva, 2001). 

Additional analytical efforts are invested in development of efficient analytical 

algorithms for generic large scale system reliability evaluation (Li and He, 2002). 

Other probabilistic risk assessment methods use Monte Carlo simulations to 

produce failure sets at an element level, and then monitor network performance (Ostrom, 

2003).  This methodology has been widely accepted because for moderate order 

networks—number of vertices ≤ 10,000—it is feasible to perform exhaustive evaluation 

of element failure.  Other researchers, focusing on seismic hazards, have included 

liquefaction potential and have used Geographic Information System (GIS) technology to 

estimate network performance (Hwang et al., 1998).  GIS also provides a useful link 

between network service reduction from estimated damage and the differential social 

impact that reflects demographic diversity—age, income, ethnicity, etc.  Two example 

applications correspond to the water delivery and transportation networks of Shelby 

County, Tennessee (French and Jia, 1997; Werner et al., 1997).   

Visualization can enhance understanding of the extent of damage after a loss 

estimation exercise.  Important efforts to aid city planners, emergency agencies, and 

decision-makers concentrate in development of software applications for estimation of 
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potential losses from disasters.  A module for damage estimation of lifelines and utility 

systems is available in the Federal Emergency Management Agency’s tool for loss 

estimation, HAZUS-MH (Federal Emergency Management Agency, 2005).  This 

program allows for deterministic and probabilistic damage calculation at different levels 

of accuracy.  Confidence levels depend on the quality of the input data and the chosen 

estimation model (e.g., statistical aggregation, simplified network flow analysis, or 

detailed network flow analysis).  Another software project with a network analysis 

module is the Mid-America Earthquake Center’s tool for risk management, MAEViz 

(Mid-America Earthquake Center, 2004).  This software, still under development, 

combines risk communication, advanced visualization, and dynamic decision-making.  

The goal is not to be simply a loss estimation tool but rather a system to engage 

stakeholders to manage their risks and help them minimize the consequences of disasters 

by implementing effective mitigation measures.  Software development for specialized 

networks is another driving research force.  A particular tool for water systems permits 

benefit-cost analysis, comparison of mitigation strategies, and prioritizing capital for 

improvement programs (Huyck et al., 2003).  For power networks, seismic risk 

management systems are also under development (Shumuta, 2003).  This approach 

allows for network mitigation benefit-cost analyses including financial costs of business 

disruptions.  Benefit-cost exercises that include treatment of costs that vary over time 

enhance the predictive capability of the analyses (Chang and Seligson, 2003). 

Almost all loss estimation and consequence minimization methodologies evaluate 

the damage when the systems reach equilibrium after the disruption.  However, some 

research teams are looking at the residual capacity of the systems to estimate the duration 
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of the service interruption (Nojima and Sugito, 2003).  The study of network resilience—

the ability of network elements to recover from disturbances—constitutes one of the 

major research areas in lifelines engineering.  Post-earthquake restoration processes are 

traditionally characterized by restoration curves (i.e., recovery of functionality as a 

function of time).  However, recovery processes are intimately dependent on the recovery 

rates of interacting systems (Cagnan and Davidson, 2003).  This notorious effect has 

contributed to the already significant need for exploring interdependencies among 

networked systems. 

  

2.2.3 Network Interdependencies 

Large scale natural disasters and contemporary terror threats have triggered a 

wake up call for understanding the complexities of interacting critical infrastructures.  

Experts advising the government of the Untied States of America produced a 

comprehensive report highlighting the need for mathematical unifying frameworks that 

allow modeling and prediction of the response of networked systems (National Research 

Council, 2002).  This report includes an explicit request for communicating across 

disciplines.  This requires domain experts to learn one another’s languages in order to 

pose significant questions and interpret the answers usefully.  This request also implies 

supporting systems-level thinking in education to create a generation of scientists who 

understand the interconnectedness of modern society’s constituent parts.  The federal 

government has also initiated a coordinated effort to disseminate and implement a 

national strategy for securing the infrastructures and assets vital to security, governance, 

public health, economy and public confidence (The White House, 2003).  This strategy 
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delineates specific responsibilities and provides guiding principles to both government 

institutions and private sectors.  It asks for setting goals to appreciate and harness the 

complexities of interdependent mixes of facilities, systems and functions.   

From the engineering point of view, interdependencies among civil infrastructure 

systems are growing in number and strength.  Some infrastructures are becoming 

markedly more essential than others.  Electric energy and information transfer (e.g., 

telecommunications) are leading the stability, control, automation, efficiency, and 

reduced operation costs of most infrastructure services (Heller, 2001).  Emerging 

frameworks to model interacting infrastructures are just starting to be developed, and 

they are already facing multi-disciplinary integration challenges. 

One of the simplest approaches to model interdependencies is sequentially 

ordering the implications of infrastructure failure.  Stages include identification of the 

causes of perturbation; definition of the possible infrastructure failure; identification of 

the potential disruptive events derived from infrastructure failure, and quantification of 

the damage.  Each stage of the sequence is connected to the preceding and following 

stages by a probabilistic function based on the frequency of occurrence for any two 

linked stages (Little, 2002).  This method has the drawback of having a linear structure 

that differs from the parallel interaction of real infrastructures. 

A better approach is one that accounts for simultaneous interaction of collections 

of network elements in which change occurs with time.  Rules for interaction among 

evolving network elements depend on several dimensions.  For each system, there are 

differences in the types of failure, the strength of the coupling with other networks, the 

environment in which they operate, the type of interdependency, the state of operation, 
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and the characteristics of the infrastructure (Rinaldi et al., 2001).  Complex adaptive 

systems (CAS) have been proposed as a viable framework to deal with interacting 

infrastructures (Axelrod and Cohen, 1999).  In a CAS there are many kinds of 

participants or agents (e.g., network elements), who interact in complicated ways that 

continuously reshape the future.  Each agent is an entity with location, capabilities and 

memory (Gell-Man, 1994).  These properties aggregated at a system-level generate 

behavior and responses that go beyond the simple addition of agent contributions.  This 

emergent behavior is the hallmark of a CAS.  Interesting conceptual depictions of CAS 

technology envision their use not only for predictive purposes, but also for self-healing of 

infrastructure systems (Amin, 2000; Amin, 2001).  It is claimed that if agents sense any 

anomalies in their surroundings they can work together, essentially reconfiguring the 

system to keep the problem local.  Additional CAS applications use idealized networks 

(e.g., small-world) to represent infrastructures whose interdependencies are governed by 

empirical rules.  Such an approach allows combination of physical infrastructure 

networks with organizational networks, creating a stronger model to predict societal 

impacts (Comfort et al., 2004).  In essence, this method captures the interconnection 

between technical systems that provide public services and the organizational systems 

that manage them.  However, incomplete information, complex data mining of available 

information and high subjectivity in trend interpretations and governing rules for 

evolution have prevented CAS approaches to grow faster in practical applications.   

Other frameworks, with the objective of providing reasonable global estimates of 

the effects of interdependencies, use ideas from input-output models of the economy 

which are inherently interdependent.  An example of these studies focuses on the 
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estimation of economic losses to a specific industry sector caused by damage to three 

other infrastructure systems (i.e., power, water, and gas), which are evaluated separately.  

Then, using an input-output (I-O) impact methodology, interdependencies are accounted 

for in the analysis of exchanges of goods and services among industries (Chang et al., 

1996).  Another example is an extension of Leontief’s economic model which enables 

understanding and forecasting of the effects on one segment of the economy upon 

changes in another (Haimes and Jiang, 2001).  In this model, entire infrastructure systems 

take the place of economic sectors.  It is a high-level approach sensitive to the definition 

of the amount of inoperability induced by one infrastructure system on another system.  

Advances to the same model have been recently proposed.  New features allow for 

dynamic interactions and different temporal recovery patterns (Haimes et al., 2005a; 

Haimes et al., 2005b).  However, the interconnectedness is still modeled among 

infrastructure sectors without dealing with elements of each infrastructure.  Recent 

attempts to combine economics—which provides bounds to the interactions—and 

elements of an infrastructure network are founded on game theory.  In this framework, 

coupled networks are treated as layers of transportation networks (e.g., vehicles, freight, 

or data) comprised of non-cooperative game players—Cournot-Nash dynamic agents.  

The goal is to solve the problem for flow equilibrium and optimal budget allocation 

(Zhang et al., 2005).  This approach, despite requiring complex behavioral rules of 

interaction, uses a holistic perspective that can lead to a more efficient understanding and 

modeling of interconnected infrastructure systems. 

Even though there have been significant conceptual and theoretical advances in 

the field of interdependent networks, most frameworks use highly simplified real 
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networks, or theoretical network models to formulate the interdependencies problem.  

These frameworks do not explicitly ask for the role that the layout of the chosen network 

has in flow distribution.  They do not account for the simultaneous topology-flow effects 

on response prediction.  Network topology affects the way in which any flow traverses it, 

and vice versa.  Few studies utilize a well defined topological layout to let network 

dynamics occur within them.  One recent example uses two dimensional idealized grids 

as layouts for network interactions (Newman et al., 2005).  However, further 

improvements can be done to better represent the natural topology of infrastructure 

networks, and more importantly, to include the configuration of network interdependent 

elements in their layout. 

 

2.3 CRITICAL REVIEW OF CURRENT RESEARCH 

The body of knowledge on the new science of networks is strengthening its 

fundamental basis and this is allowing an expansion of applications.  Statistical network 

characterization is providing important evidence about the universality of network class 

properties.  Also, when these properties are reproduced by analytical or algorithmic 

models, researchers are able to obtain significant insights on the mechanisms that 

produce them.  Engineering is providing relevant experimental information regarding the 

fragility of individual and interacting network elements.  Sophistication in specific 

network system models is increasing network response prediction.  Loss estimation 

methods now allow for dynamic decision-making and realistic representation of the 

social impacts induced by network malfunctions.  In the infrastructure interaction area, 

there are significant advances to allow moving from conceptual recognition of the 
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problem to the development of models that account for these coupling effects.  

Interacting economic sectors provide evidence of the relevance of accounting for 

infrastructure coupling, and complex adaptive systems (CAS) show the potential to 

become the future tool for dynamic representation of evolving interacting networks. 

Despite these advances in less than a decade, statistical characterization of 

infrastructure networks still needs parameters to quantify network performance and the 

impact on society if malfunctions occur.  Parameters to measure network redundancy or 

to quantify their service flow reduction need to be investigated.  Refinement of the 

probabilities of failure of network elements given different hazards needs to be included 

in the calculation of network response to disturbances.  Explicit accounting of the effects 

of network topology should also be considered in the development of engineering 

reliability assessment and mitigation plans. 

The topology and flow pattern characteristics of interdependent systems also 

require more investigation.  This will provide the understanding of the role that each 

network element has in maintaining individual and interdependent network connectivity 

and flow.  Further analysis of this type of information will lead to optimal strategies to 

improve the performance of modern multi-infrastructure systems.  Initial steps to address 

this needed research have been conceptually proposed by the author (Dueñas-Osorio et 

al., 2004).  This preliminary study suggests an evolving model for encapsulating the 

topology and flow characteristics of critical infrastructures such as power, water, and gas 

that share a common geographical area.  Figure 2-5 sketches an expanded version of this 

evolving interdependent network.  The figure illustrates that individual network growth 

occurs from the core of the existing network to the peripheries—proportional to 
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population growth, and that the interdependencies increase uniformly throughout the 

entire space. 

 

 

(a) at time t0            (b) at time t1 

Figure 2-5.  Interdependent networks in the same spatial domain at times t0 < t1 

 

Additional ongoing research is expanding the understanding of the effects that 

network disturbances, network topology and optimal engineered service flow patterns 

have on interdependent response (Dueñas-Osorio et al., 2005c; Dueñas-Osorio et al., 

2005b).  Specific tasks of this research examine the static properties of networks, identify 

consistent performance measures useful for characterizing generic network functionality, 

and investigate approaches for efficient mitigation actions that account for network flow 

type, topology, spatial interconnection, strength of coupling, and direction of the 

interconnectedness. 
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CHAPTER 3 

3NETWORK PROPERTIES 

Every networked system exhibits a distinct topology or physical layout.  

Depending on the nature of the network, its structural configuration usually evolves to 

optimize the type of flow to be transported.  In the case of civil infrastructure, 

transportation networks exhibit a mesh-like structure (Figure 3-1a); telecommunication 

networks display a decentralized topology (Figure 3-1b); the World Wide Web (WWW) 

shows an disproportionate case of decentralization in which a few highly connected 

vertices are responsible for network stability (Figure 3-1c); and the power grid at the 

transmission level displays a sparse mesh-like structure—due to its geographical extent—

while at the distribution level it exhibits a radial tree-like structure (Figure 3-1d).  Other 

utility networks such as potable water and natural gas—if gas has widespread 

consumption—have a less sparse mesh-like structure within urban centers, and a very 

sparse (e.g., minimally connected) topology for interurban transmission.  Oil networks 

also have a minimally connected tree structure. 
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(a)                                                         (b) 

                

(c)                                                         (d) 

Figure 3-1.  Sample of network topology diversity: (a) transportation, (b) 
telecommunications, (c) WWW, and (d) electric power 

 
 

In addition to topological differences, networks display distinctive features in 

terms of their mechanisms for flow dynamics.  In most civil infrastructure networks the 

flow process has a fixed destination from a particular origin, and it tends to happen along 

the most efficient route—the shortest path.  This need for optimal flow traversal sets the 

basis for determining and proposing measurable network properties that simultaneously 

account for their physical topology and their flow processes along the routes of least 

resistance.  Examples of flow processes different from transmission of goods starting at 

node i and ending at node j are the kinds of traffic exhibited by broadcasting and e-mail.  
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These processes allow movement of data packets from node to node, but at some point 

certain nodes make flow diffusion by replication, as opposed to flow diffusion by transfer.  

They take their incoming packet and replicate it for massive distribution.  When social 

networks are analyzed, a larger variety of flow processes is observed (Borgatti, 2005; 

Newman, 2005).  Money traverses a social network via random walks (i.e., a bill can 

move in any direction from person to person, and it is allowed to revisit nodes and links).  

A particular private rumor, unlike dollar bills, can simultaneously flow in several places.  

However, one person does not tell the same person the same story twice, even though a 

person can hear the same rumor from several other people.  This makes the flow a trail 

rather than a walk.  Infections flow like gossip, from person to person, but do not re-

infect anyone who already has had it—and survived—because they became immune.  If 

immunization did not take place, the person can be re-infected, making the flow a trek—

which is a walk that does not backtrack.  

Concepts from modern graph theory are fundamental to enable measuring of 

these observable differences in network topology and flow types.  Their unambiguous 

characterization is essential for classification and establishment of correlations between 

performance, network structure, and flow patterns.  This chapter presents a discussion of 

the concepts of graph theory that are necessary to build up tools for network 

characterization.  It also introduces strategies to identify the importance of network 

elements according to their role in connectivity and flow.  Additionally, it presents 

network performance measures which provide different levels of detail to estimate 

network functionality and impact on end users after internal or external disruptions.  This 
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chapter also emphasizes the development of algorithms that efficiently calculate network 

properties and performance measures in computer applications.     

 

3.1 INTRODUCTION TO GRAPH THEORY 

Standard graph theory terminology used throughout the following chapters is 

introduced in this section.  A set A’ = {A1,…,Ak} of disjoint subsets of a set A is a partition 

of A if A =   A set of all k-element subsets of A is denoted by [A]k.  A graph or 

network is a pair G = (V,E) of sets satisfying E ⊆ [V]2; thus, the elements of E are 2-element 

subsets of V (Figure 3-2).  The elements of V are the vertices (i.e., nodes) of the graph G, 

whereas the elements of E are its edges (i.e., links).  The number of vertices of a graph G is 

its order denoted by |G| or n, and the number of edges is its size denoted by ||G|| or m 

(Bollobás, 1998b; Diestel, 2000). 

.
1U

k

i iA
=

 

21

3 4
5

6

9
8

7

 

Figure 3-2.  A graph on V = {1, …, 9} with edge set E = { [1,2], [3,6], [3,7], [4,5], 
[6,9] } 
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A vertex v is incident with an edge e if v ∈ e; then e is an edge at v.  The set of all 

the edges in E at a vertex v is denoted by E(v).  Two vertices x, y of G are adjacent, or 

neighbors, if xy is an edge of G.  If all the vertices of G are pair-wise adjacent, then G is 

complete. A complete graph on n vertices is a Kn; for example a K3 is a triangle.  If V’ ⊆ 

V and E’ ⊆ E, then G’ is a subgraph of G, written as G’ ⊆ G.  A subgraph G’ ⊆ G is a 

spanning subgraph of G if V’ spans all of G, i.e., if V’ = V.      

A path is a non-empty graph P = (V,E) of the from V = { x0, x1,…, xk }, E = { x0x1, 

x1x2, …, xk-1xk } where the xi are all distinct.  The vertices x0 and xk are linked by P and are 

called its ends.  The number of edges of a path is its length, and a path of length k is 

denoted by Pk.  In paths, k is allowed to be zero, thus P0 = K1.  If P = x0 x1… xk-1 is a path 

and k ≥ 3, then the graph C := P + xk-1x0 is called a cycle.  The length of a cycle is its 

number of edges or vertices and is denoted by Ck (Figure 3-3). 

 

G G

Path Cycle

 

(a)                                                           (b) 

Figure 3-3.  Paths and cycles in bold: (a) a path P = P7 in G, and (b) a cycle C8 in G 

 

The distance dG(x,y) in G of two vertices x, y is the length of a shortest x—y path 

in G; if no such path exists, dG(x,y) := ∞.  The greatest distance between any two vertices 
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in G is the diameter of G denoted by diam(G).  A vertex is central in G if its greatest 

distance from any other vertex is as small as possible.  This distance is the radius of G, 

denoted by rad(G).  These distance measures are topological parameters that do not 

include network performance information such as the rate of flow transmission.    

A non-empty graph G is called connected if any two of its vertices are linked by a 

path in G.  A maximal connected subgraph of G = (V,E) is called a component of G 

(Figure 3-4).  A component, being connected, is always non-empty.   

 

 

Figure 3-4.  A graph with two components and minimal spanning connected subgraphs 

 

An acyclic graph is a graph that does not contain any cycles, and it is called a 

forest.  A connected forest is called a tree—a forest is thus a graph whose components 

are trees.  The vertices of a tree that have only 1 incident edge are its leaves (Figure 3-5). 
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Leaves

 

 

Figure 3-5.  A tree as a minimally connected graph 

 

The incidence matrix B = (bij)n × m of a graph G = (V,E) with V = { v1, …, vn } and E 

= { e1, …, em } is defined by: 

 

⎩
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b              ( 3-1 ) 

 

Finally, the adjacency matrix A = (aij)n × n of G, which constitutes its more 

fundamental mathematical representation, is defined by: 
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3.2 FUNDAMENTAL PROPERTIES 

Several parameters can be calculated to characterize the topology (i.e., geometric 

configuration) of a network.  This section presents some of the most relevant parameters 

currently used in the field, and introduces a proposed parameter that will be used to 

estimate the potential resilience of a network. 

 

3.2.1 Mean distance, L 

The network mean distance, L, has become one of the fundamental parameters in 

complex network analysis.  Its importance is due to its ability to measure whether or not a 

network has the small-world effect—that is, most pairs of vertices are connected by a 

short path through the network.  L for undirected graphs is defined as: 

 

∑
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where d(i,j) is the shortest distance from vertex i to vertex j, and n the order of the graph.  

If the number of vertices within a distance k of a typical central vertex grows 

exponentially with k, then the value of L increases as log n.  Networks are said to show 

the small-world effect if the value of L scales logarithmically or slower with the network 

order, n, for a fixed average number of edges per vertex. 

The definition of L is problematic in networks that have more than one 

component.  In such cases, there exist vertex pairs that have no connecting path, and 

hence d is assigned with an infinite distance, which drives the value of L to also be 
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infinite.  An alternative is to define L’ as the reciprocal of the harmonic mean of G—the 

average of the reciprocals (Newman, 2003): 
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where the infinite values of d(i,j) contribute nothing to the sum.  In essence, these 

parameters measure the effectiveness of the network elements to communicate at a global 

scale on the order of n.  

 

3.2.2 Vertex degree, d(v) 

The degree dG(v) = d(v) of a vertex v is the number |E(v)| of edges at v.  This is 

equal to the number of neighbors of v.  A vertex of degree 0 is isolated.  The number 

δ(G) := min { d(v) | v ∈ V } is the minimum degree of G, while the number ∆(G) := max 

{ d(v) | v ∈ V } is the maximum degree.  If all vertices of G have the same degree k, then 

G is k-regular.  The average degree of G is simply: 
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Analysis of the vertex degree for theoretical and real graphs has revealed that the 

distribution of their vertex degree plays a crucial role in determining the fate of a network 

when subjected to random or targeted attacks (Albert et al., 2000).  If the vertex degree 
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distribution is Possion with short thin tails, then the network is equally vulnerable to 

random or malicious disruptions because all vertices have a typical degree.  If the vertex 

degree distribution follows a power law with long thick tails (i.e., distribution in which 

most vertices have a typical degree, but that a few vertices have a disproportionately 

large degree), then the networks show a significant resilience to random disruptions.  

However, they also exhibit a dramatically vulnerable response if the disturbance is 

directed to the vertices with the highest degree.    

 

3.2.3 Clustering coefficient, γ 

In order to define the clustering coefficient of a graph, it is necessary to first 

introduce the concept of neighborhood.  The neighborhood, Γ(v), of a vertex v is the 

subgraph that consists of vertices adjacent to v without including v itself (Figure 3-6).  

The neighborhood Γ(S) of a connected subgraph S is the subgraph that consists of all 

vertices adjacent to any of the vertices in S, but not including the vertices of S.  In the 

special case that S = Γ(v), Γ(S) = Γ(Γ(v)) = Γ2(v).  Then, the clustering coefficient, γv uses 

Γ(v) to characterize the extent to which vertices adjacent to any vertex v are adjacent to 

each other (Watts, 1999).  More precisely: 
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where |E(Γv)| is the number of edges in the neighborhood of v and the denominator 

represents the expansion of a binomial coefficient which amounts to the total number of 
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possible edges in Γ(v).  This clustering coefficient can be regarded as a local measure of 

connectivity—it measures how connected the network is in local scales (i.e., in the order 

of |V(Γv)| << n). 

 

 

v v 

 

(a)                                              (b) 

Figure 3-6.  The neighborhood Γ(v) of a vertex v: (a) neighbors of v, and (b) links among 
neighbors of v   

 
 

3.2.4 Redundancy Ratio, RR 

Large scale complex networks, such as the power grid, may be sporadically 

subjected to infrequent natural disasters (e.g., earthquake, hurricanes, tornadoes, etc.), or to 

malicious attacks.  However, these networks are also constantly subjected to direct 

disturbances of their elements, either by frequent natural hazards (e.g., windstorms, ice, fire, 

lightning, etc.), vandalism, or simple malfunction due to aging or improper operating 

conditions.  Most of the frequent disturbances are locally absorbed by the networks, and the 

end-users remain unaware of their occurrence (Institute of Electrical and Electronics 

Engineers, 2004).  This fact results from the ability of the networks to redistribute the flow 

at the location of the disturbance.  In other words their global stability depends on the 
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capacity to manage and redistribute local disturbances.  When this does not work, the 

various infrastructure networks can head to imminent cascading failures, traffic congestions, 

or widespread pressure losses.     

This local disturbance absorption motivated the author to propose a parameter that 

captures the redundancy of the network at local levels.  Then, if G is a graph, the 

redundancy ratio of a vertex, RRv, is a parameter that counts the number of independent 

paths from a vertex v ∈ V(G), to each of the vertices of the set of the neighbors of its 

neighbors, V(Γ2(v)).  This count is normalized by the maximum possible number of node-

independent paths from v to the vertices of VS(Γ2(v)), where the graph S = { v ∪ Γ(v) ∪ 

Γ2(v) } is a complete graph.  Let I(i,j) denote the maximum number of node-independent 

paths (i.e., paths that only share vertices i and j) between each pair of distinct vertices (i,j) in 

G.  This counting can be efficiently computed using approximating algorithms (White and 

Newman, 2001).  Figure 3-7 shows a graph G with I(i,j) = min{d(i), d(j) }, which is true for 

any graph.  The redundancy ratio of a vertex v in a graph G is (Dueñas-Osorio et al., 2005c): 
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where (|S|-1)2 is the number of independent paths between a vertex v and the vertices of the 

vertex set VS(Γ2(v)) in a complete graph on |S| vertices.  The most redundant simple graph is 

a complete graph.  Hence, the median of RRv for all v ∈ V(G) results in a measure of the 

redundancy ratio for the graph G, where 0 ≤ RR  ≤ 1, and values close to 1 identify highly 

redundant networks.  RR = 0 indicates completely fragmented graph (i.e., no edges left), 
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which implies that the number of components equals the order n.  RR = 1 indicates a 

complete graph.  For large n, paths have RR → 1/8, and stars (i.e., graphs with n-1 leaves and 

1 vertex connecting them all) have RR → 0.     

 

i j

G  

 

Figure 3-7.  Graph with I(i,j) = min { d(i), d(j) } = 2 

 

 If a large scale disturbance occurs (one that is not locally contained) and the number 

of disturbed vertices is comparable to the order n of the network G, then it can be expected 

that graphs with high RR will still display a higher global redundancy.  This correlation 

comes from the fact that in most graphs the number of vertices reachable from a vertex v 

increases exponentially with the distance from it.  In other words, high RR implies that the 

number of vertices in the ith neighborhood of v for i > 1 grows exponentially with i, and 

therefore the likelihood of path existence between vertices far apart is also high. 

 Measuring network properties, despite being theoretically feasible, still poses 

challenging implementation restrictions.  Large complex systems are composed of 

thousands of elements that computationally restrict the number and type of 
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characterization parameters.  Only efficient algorithms—which imply simple topological 

parameters—are useful for computer applications, since otherwise, the amount of time to 

run them becomes unbounded. 

When the characterization of the properties of any network can be established by 

running algorithms within a computer application, it is fair to think about the feasibility 

of parameter calculation when the networked systems are large in order and size.  

Appendix A introduces the concept of computational complexity to address the 

performance of computer algorithms as a function of network growth.  This appendix is 

aimed to illustrate the feasibility of implementation of network analysis in software 

applications (e.g., tools for loss estimation and risk management of multiple hazards on 

networked systems).  The appendix includes a summary table with the worst-case time 

required by an algorithm to solve a particular problem.  The running time is generally 

expressed as a function of n and m and is represented by the “big O” notation (Table A-1). 

The source code for the major network properties and performance measures is 

included in Appendix B. 

 

3.3 NETWORK ELEMENT RANK-ORDERING 

The fundamental elements of an infrastructure network are its vertices and its edges.  

Both are crucial for shaping the structure and influencing the properties exhibited by a 

network.  However, what would happen to the network in the absence of a particular 

element?  To address this question it is necessary first to determine the set of elements 

that would be more likely to be absent or removed by malfunction, natural hazards or 

attacks.  This section focuses on defining the criteria to establish the importance of 
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network elements based upon their role on connectivity, centrality, and flow transfer.  

The discussion is restricted to rank-ordering the importance of network vertices.  Each 

vertex removal impairs the functionality of one or more edges, whereas each edge 

removal impairs the functionality of exactly one edge.  In other words, vertex removal is 

more effective at being harmful to network performance. 

Three parameters are introduced to rank order the importance of a particular 

vertex v ∈ V(G) for the functionality of a network G.  This rank ordering is relevant 

because networks tend to display avalanches or cascading failures after disruption of high 

ranked vertices.  The propagation mechanism can compromise all elements, in 

descending order, of the rank-ordered sets.  In general, the cascading phenomenon occurs 

when a particular element of a network initially ceases to provide its intended function—

due to either internal or external disturbances.  Then, following managerial strategies 

seeking maximal returns and minimal operation costs, the flow traversing that node is 

redistributed to adjacent nodes which usually function close to their maximum capacity.  

Some of those adjacent nodes may be operating so close to their capacity that the 

additional inflow from the redistribution can induce a failure.  This process repeats itself 

until either the network absorbs the disruption locally, or, if the set of initial conditions 

are all unfavorable, until a large scale disruption propagates further, thus compromising a 

significant portion of the network and its functionality. 

Rank ordering strategies are presented in increasing order of information demand 

and significance of their ordering criteria.   
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3.3.1 Vertex degree rank-ordering 

This strategy is based upon the vertex degree, d(v), of a vertex v ∈ V(G).  This 

parameter d(v), computed for all v, permits determination of its frequency distribution.  

Most networks in nature such as social, informational and biological, display power law 

vertex degree distributions where a few highly connected nodes coexist with many 

minimally connected nodes (Barabási, 2003; Barabási and Bonabeau, 2003).  However, 

some of the man-made technological networks exhibit Poisson vertex degree distributions.  

A relevant example is the power grid of the western United States (Watts and Strogatz, 

1998; Watts, 1999). 

Regardless of the shape of the histogram of vertex degrees, it is safe to say that 

the most connected vertex, represented by the vertex v with maximum d(v) or with d(v) = 

∆(G), plays an important role in keeping the network as a component.  Rank ordering by 

vertex degree provides an ordered set for investigating what would happen to the 

networks if their most connected vertices are removed one at a time.  This strategy is 

purely topological and requires only the information contained in the adjacency matrix 

AG of a graph G.  The amount of time required to establish d(v) for all v ∈ V(G) is O(n).  

Selecting the largest value from the set takes time O(1).  If the set is recalculated after 

every removal (i.e., another n times), which is reasonable since the topology of the graph 

changes when a vertex is removed, then the worst-case complexity is O(n2).    

 

3.3.2 Vertex betweenness rank-ordering 

The betweenness, Bv, of a vertex v is defined as the total number of shortest paths 

that pass through vertex v, when the shortest paths are calculated between every pair of 
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vertices (i, j) ∈ V(G), and v is not considered an end of any shortest path (Newman, 

2001b; Borgatti, 2005).  An illustrative extreme example is to consider a graph which can 

be disconnected by removing just one edge or bridge (Figure 3-8).  The vertex 

betweenness of vertices x and y would be amongst the highest of all V(G) because any 

flow sent from one side to the other has to pass through x and y.   

 

x y

 

 

Figure 3-8.  Nodes with expected high vertex betweenness Bx and By 

 

In the context of technological networks, such as electric power or water 

distribution, the vertex betweenness can be measured for paths going from a generation 

subset F ⊆ G, to a distribution subset H ⊆ G passing through a transmission subset Q ⊆ 

G (Albert et al., 2004).  Assuming that network flows are routed through the most direct 

path (i.e., shortest), which is consistent with optimal engineering systems design, the 

betweenness, Bv, of a vertex v represents the load or total flow that traverses it.  Its 

calculation reduces to finding every shortest path from F to H and keeping the score of 

the nodes linked by each path.  Rank ordering by vertex betweenness takes into account 
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information beyond network topology.  It accounts for the potential flow patterns within 

the network.  This parameter requires distinctions between vertices’ roles and functions.  

Its investigation provides information about the effect on network performance induced 

by removing the nodes that are in between most other nodes.  These nodes are not 

necessarily the most connected ones.  Calculation of the vertex betweenness takes time 

O(n4).  Conventional shortest path algorithms run in time O(nm), recovering the path of 

the shortest paths is a separate problem that can run in time O(n3), and the algorithm 

needs to be run at most n times, 1 after every removal.  Hence the total running time is 

O( n (nm+n3) ) = O(n4). 

 

3.3.3 Vertex transshipment rank-ordering 

The concept of vertex transshipment, denoted Wv, is introduced by the author as 

an alternative measure to the vertex betweenness, Bv.  As in the case of Bv, vertex 

transshipment also takes into account network flow patterns, but in a greater detail.  Wv 

monitors the actual total amount of flow that passes through each vertex so that the flow 

demand at the distribution nodes is optimally satisfied by the supply flow sent from the 

generation nodes.  This optimality amounts to solving not a linear problem but a convex 

minimum cost network flow problem.  This kind of optimization minimizes the cost of 

routing flow from a generation subset F to a distribution subset Q, and assumes that the 

cost is a convex function of the amount of flow traversing the edges.  Flow costs vary in a 

convex manner in numerous problems settings including: (1) power losses in an electrical 

network due to resistance, (2) congestion costs in a city transportation network, (3) 

expansion costs of a communication network, and (4) flow losses in water, gas or oil 
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networks due to pressure decay induced by leaks, breaks and terrain topography (Ahuja et 

al., 1993).  This implies that in addition to network topology and partition of the network 

into subsets of specialized vertices, their net demands, traversal costs, and capacities 

should also be known.  The net demands of the system are the difference between supply 

and demand flow quantities at every node.  Costs are related to the price of traversing a 

particular edge, which is defined here to be proportional to the length of the edges.  

Capacity bounds—lower and upper—of every vertex and edge of the network refer to 

their physical constraints to allow flow traversal (i.e., pipe diameters, transmission line 

voltage limits, thermal insulation, age, etc.)  The general formulation for an optimal 

convex cost network flow model, with directed edges having ends (i,j) oriented from 

vertex i to vertex j—or simply eij—is the following (Rardin, 2000): 
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         ( 3-8 ) 

 

where ci,j represents the cost of traversing the edges connecting vertices (i,j);  xi,j represents 

the decision variables of the model which are the optimal amount of flow that traverses 

edges eij ∈ E(G);  bk is the net flow at each vertex; and li,j, ui,j are the lower and upper 

bounds of the flow within edges eij ∈ E(G).  Figure 3-9 presents a network of seven vertices, 

two of which are for generation, two for transmission and three for distribution (i.e., 

consumption).  Also, the parameters required to solve a convex minimum cost flow problem 
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are identified along each edge.  The minimum capacity of the edges is lij = 0 for all eij ∈ 

E(G).  
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Figure 3-9.  Parameters of generic convex minimum cost network flow problems 

 

Once the optimal amount of flow xi,j to be routed through the edges is established, 

the vertex transshipment, Wv, is the summation of incoming flows at every vertex v ∈ V(G).  

This quantity represents the importance of a node in terms of its role to maintaining optimal 

streams within the network.  It provides a realistic assessment of the vertices that are 

essential for flow circulation.  Also, since in real networks some vertices are operated close 

to their design capacities—allowing maximal flow circulation through them—there is a 

correlation between them and the vertices with high Wv.  This advises that vertex 

transshipment rank ordering can also be used for determining effective mitigation actions 

whose benefits are expected to propagate optimally through the entire network. 
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This rank-ordering can be calculated with a polynomial-time algorithm.  The worst-

case complexity analysis indicates that Wv can be calculated in time O(n2m2logU), with U 

representing the edge with the largest flow upper bound.  The minimum convex cost flow 

problem alone is solved in time O(m logU S(n, m, C)), where S(n, m, C) is the time required 

to solve a shortest path problem on a network with n vertices, m edges, and with C as the 

largest edge cost.  The shortest path problem is solved in time O(nm).  Repeating the 

operation n times, once after every removal, leads to the indicated total time for generating 

the vertex transshipment rank-ordered set. 

The three rank-ordering methods presented above allow devising vertex removal 

strategies that follow particular criteria for deciding vertex importance (i.e., vertex degree, 

vertex betweenness, and vertex transshipment).  A final method for providing vertex 

removal sets can be implemented, and it has the characteristic that does not require any 

vertex input data. 

 

3.3.4 No rank-ordering 

In addition to rank ordering vertices according to their topological characteristics 

or according to their role in optimal flow circulation, it is important to consider failure of 

nodes due to aging, lack of maintenance, or unforeseen malfunction.  Random vertex 

selection captures these events and complements the collection of rank-ordered vertex 

sets for implementation of element removal strategies.  This strategy is also very efficient 

computationally since its complexity is linearly related to graph order n and hence its 

worst-case instance runs in time O(n).    
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3.4 NETWORK PERFORMANCE MEASURES 

Independent of the nature of the disruption and the mechanism by which it 

propagates—either by overloading the most connected vertices, or the vertices most in 

between other vertices, or the most instrumental to flow circulation, or by random 

malfunction—overall network functionality needs to be characterized.  This characterization 

requires comparison of the response of the system after any disruption (i.e., network 

performance), with predefined network damage states.  Response parameters could depend 

on network topology alone, or they can combine topology with various levels of refinement 

to capture flow patterns.  Damage states can reflect different levels of functionality if they 

are set to be thresholds within the possible value range of the performance parameters. 

Three network performance measures are introduced in this section.  They, as in the 

case of the vertex rank-ordering strategies, are presented in increasing order of input 

information demand and relevance.  Network response characterization, given its underlying 

architecture and layout for flow distribution, is essential to understanding failure modes, 

cascading mechanisms, growth patterns, and mitigation spread.   

 

3.4.1 Efficiency, E 

Network efficiency generalizes the concept of the reciprocal harmonic mean, L’, of 

a graph G.  The fundamental difference is that E drops the restriction of edge 

unweightedness and undirectedness.  As originally formulated, L’ relies upon calculation of 

the distance d(i,j) between any two vertices of the graph.  The distance d(i,j) was defined as 

the length of the shortest path i-j, and this length corresponds to the number of edges in the 
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path.  Also, L’ assumes the graphs to be undirected.  The generalization introduces a matrix 

D, with non-zero entries identical to the adjacency matrix A, and dij elements that represent 

the physical distance between them.  Hence, the new distances d(i,j) calculated using A and 

D reflect the physical separation between vertices i and j, and d(i,j) ≥ dij for all i, j ∈ V(G).  

The equality is valid if there is an edge joining i and j.  The parameter E is calculated as 

follows (Latora and Marchiori, 2001; Latora and Marchiori, 2002): 
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            ( 3-9 ) 

 

where the denominator normalizes the numerator with respect to the most efficient of all 

possible simple graphs: a complete graph with same order n as the original graph.  

Therefore, 0 ≤ E(G) ≤ 1.  This parameter, as its names suggests, can be regarded as a global 

indicator of efficiency in network connectivity.  It represents the ease with which any two 

vertices can communicate or share flow.  The input information requirements are limited to 

the Euclidean distances between adjacent vertices.  Its calculation can be performed in 

polynomial time O(nm).  If calculated n times, once after every vertex removal, its running 

time grows to O(n2m). 

 

3.4.2 Connectivity loss, CL 

Given a graph G = { F ∪ H ∪ Q }, the concept of connectivity loss, CL, is useful to 

quantify the average decrease of the ability of distribution vertices—those belonging to the 
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Q subset—to receive flow from the generation vertices—elements of the F subset—passing 

through transmission vertices—elements of the H subset.  In other words CL quantifies the 

decrease in the number of generators with connecting paths to the distribution vertices 

(Albert et al., 2004).  Denoting nF the order of the generation subset F ⊆ G at the 

unperturbed state of the network (i.e., the number of connecting paths from every generation 

vertex to any distribution vertex), and ni
F the number of generation units able to supply flow 

to distribution vertex i, after a perturbation takes place.  The connectivity loss, CL, can be 

calculated as: 

 

iF

i
F

L n
nC −=1           ( 3-10 )  

 

where the averaging 〈〉 is done over the distribution vertices i of the distribution subset Q ⊆ 

G.  The calculation of this parameter clearly relies on the topological structure of the 

network, and on the existence of paths connecting supply and demand elements.  The input 

information requires distinction on the types of vertices, and as for the case of network 

efficiency, E, the paths are assumed to follow the shortest available route computed with 

Euclidean distances.  The algorithm to compute CL has a worst-case running time O(nm).  If 

the calculation is performed by systematically removing all vertices—according to any of 

the rank-ordering strategies of the previous section—the running time becomes O(n2m). 
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3.4.3 Service flow reduction, SFR 

Network efficiency, E, and connectivity loss, CL, only provide information 

pertaining to the processes that take place within the network.  However, it is of paramount 

importance to assess the effect that any network element removal has not only on internal 

network functionality, but also on the way it impacts its end-users.  For that reason, the 

service flow reduction, SFR, performance measure for generic networks is introduced in this 

study (Dueñas-Osorio et al., 2005a). 

The objective in measuring SFR is to quantify the amount of flow that does not meet 

the distribution vertex demands.  These demands are directly related to the affected 

population, and therefore, it is more meaningful for decision-making and consequence 

minimization.  The network service flow reduction, SFR, can be calculated as: 

 

i
1

i

i
FR D

SS −=           ( 3-11 ) 

 

where Si denotes the actual amount of flow supplied to distribution vertex i at any given 

time, and Di denotes the flow demand of vertex i which is considered to be proportional to 

the population served by distribution vertex i in the undisturbed network state.  The 

averaging 〈〉 is done over the distribution vertices i of the distribution subset Q ⊆ G. 

Calculation of SFR requires a two-phase problem solving approach.  The first phase 

solves a convex minimum cost network flow problem.  In other words, phase I calculates 

the optimal amount of flow that traverses the network so that it meets the constraints 

imposed by matching supply and demand with minimum circulation costs.  This phase is 
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performed even for disconnected graphs which may exist after network disturbances.  Its 

calculation requires the use of infinite costs in the edges incident to any removed vertex.  

This condition ensures connectivity while providing optimal flows throughout the remaining 

network.  The second phase of the problem solves a maximum flow – minimum cost 

problem.  Essentially, phase II pushes as much available generation flow as the distribution 

vertices can consume.  However, the upper bounds on the flow traversing each edge are set 

to be the optimal edge flows found in phase I. 

This performance measure requires information about the amount of population 

served by each distribution vertex (i.e., demand), the supply capacity of the generation 

vertices, the cost of transporting flow (i.e., proportional to physical distances), and the 

maximum and minimum carrying capacity of the network elements.  Despite of the apparent 

computationally intensive two-phase method to calculate SFR, its insightful measurements 

can be performed in polynomial time.  The worst-case complexity analysis indicates that it 

requires a running time O(nm2logU + n2m) = O(nm2logU).  This is dominated by the time of 

computing the convex minimum cost network flow.  Calculating SFR after every vertex 

removal, according to a rank vertex ordered set, the running time becomes O(n2m2logU).  

This parameter in addition to providing the link between network performance and potential 

social impacts also retains its computational feasibility for algorithmic implementation.  Its 

uniqueness relies upon the combination of topological information with feasible optimal 

flow patterns. 

There exist models for capturing network dynamics whose sophistication goes 

beyond topology and optimal flow.  Such models utilize mass and energy conservation 

principles in the case of water networks, and they use circuit equations, in the case of 
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electric power (Hatestad, 2004; Advanced Grounding Concepts, 2005).  However, their 

implementation is limited to specific systems, and the requirements for data imply 

knowledge of detailed sensitive information about every element of the networked system.  

For example, assessing the equilibrium of a power system requires for every vertex—or 

bus, as referred to in the electrical engineering community—specification of voltage 

magnitudes, reactive power, element resistance, and losses; and for every edge or 

transmission and distribution line, their capacities, lengths, and resistance.  Information 

drawn from these models allows calculation of exact values that can be related with the 

impact of irregular network operation on end-users.  However, SFR is instrumental in 

providing, from a statistical point of view, the same information (i.e., perturbation impact 

on end users) at a mere fraction of the computation time and data requirements. 

 

3.5 SUMMARY 

Fundamental concepts developed in the field of graph theory have allowed 

important advances in network characterization.  Several new properties have been 

proposed in this study to quantify the differences in network structure and flow patterns.  

Parameters such as mean distance, clustering coefficient, vertex degree distribution, and 

redundancy ratio are intended to provide statistical information about the configuration of 

the networks.  The relevance that each network element has to maintaining connectivity 

and facilitating flow circulation is measured following various rank-ordering strategies.  

Vertex degree, vertex betweenness, vertex transshipment, and random selection are 

introduced as potential strategies to systematically remove network elements and 

investigate their effects on network functionality.  This functionality can be measured 
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with different levels of detail depending on the network input information.  Performance 

measures build up from the simplest parameter referred to as network efficiency, to a 

more elaborate parameter referred to as connectivity loss, to the most comprehensive, 

introduced here, referred to as the service flow reduction.  The later takes into account 

topological properties of the network plus the patterns of flow that follow optimal paths 

within it, and yet it still retains computational feasibility for large networks.  Optimality 

(i.e., minimum cost paths) negotiates realistic constraints such as flow transmission cost, 

flow capacity, and network element function.  This parameter is expected to be more 

instrumental than other current statistical parameters in conveying the risk potential to 

decision makers and community leaders.  
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CHAPTER 4 

4NETWORK MODELS 

Network modeling is essential to explaining properties observed in real complex 

systems.  When a network model captures and reproduces measurable characteristics of 

graphs, it provides unique insights about the fundamental mechanisms that allow real 

networks to display particular properties.  Interestingly, some properties have the 

character of universality.  In other words, most networks possess properties dictated by 

similar underlying principles that guide their evolution and behavior.   

The most primitive network model devised to capture complex real phenomena is 

the random network which is still used today as a reference system since it can be 

described by elegant mathematical theorems.  This network is referred to as the ER 

model, in recognition to the developers Erdös and Rényi (Erdös and Rényi, 1959; 

Bollobás, 1998b). 

More sophisticated models did not appear until the late 90’s, when a very simple 

network referred to as the WS model—in recognition to their developers Watts and 

Strogatz (Watts and Strogatz, 1998; Watts, 1999)—was able to capture paradoxical 

properties observed in real social networks.  Their model explained the mechanism by 

which tightly connected groups of acquaintances were also very close to apparently 

distant and unrelated groups.  This phenomenon is referred to as the small-world effect.  
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Another breakthrough was made when certain real network properties, such as the vertex 

degree distribution, were better explained by models that displayed the small-world effect 

but contained realistic attributes like growth and preferential attachment.  This dynamic 

model is referred to as the BA model in recognition to the developers Barabási and Albert 

(Albert et al., 2000; Barabási, 2003; Barabási and Bonabeau, 2003). 

This chapter presents another type of network model with the purpose of 

realistically representing the class of technological networks that contain transmission 

and distribution, (TD), civil infrastructures.  This model is intended to statistically 

characterize geographically distributed networks such as electric energy, water 

distribution, gas, and oil.  Telecommunications networks have a different structure.  They 

rely upon decentralized hubs for connectivity.  Also, the geographical separation between 

elements is not as strong a constraint in as in the case of other transmission and 

distribution systems for global flow traversal.  Calibration of the TD model relies upon 

analysis of data from real networks documented in published work.  Two of these 

documented networks are examined in more detail because they share the same 

geographical region, and this makes them suitable for later interdependent analysis. 

This chapter also presents a comparison of network properties including all 

artificial models and explores their variation as a function of network size.  This is 

investigated to establish their scaling characteristics.  The properties of real networks are 

also included.  The chapter concludes with a discussion of potential robust architectures 

for effective resilience of distributed networks. 
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4.1 TRANSMISSION AND DISTRIBUTION NETWORKS 

Generic civil infrastructure networks are designed to allow optimal circulation of 

flows (e.g., minimum cost, least resistance, etc.) from supply locations to demand 

locations.  An intrinsic property of these networks is that their growth is correlated in 

location and number with the growth of the population that consumes the flow.  

Population growth at a particular location with fixed geographical extent has a saturation 

limit imposed by the density of the population, the availability of public services, and 

access to affordable space for living and working.  This simply results in expansion of the 

original jurisdictional area from the existing core to its peripheries (i.e., radial growth).  

Network expansion follows this growth pattern.  The result is a network with a mesh-like 

structure.  This network topology exhibits differences according to the type of 

infrastructure.  For a given geographical area, such as a county, oil and gas networks at 

the transmission level (i.e., main lines) are sparse networks.  The power grid at the same 

transmission level is less sparse, and potable water is still less sparse than the others.  

Telecommunication networks are also sparse but do not display mesh-like structure.  

Rather, they evolve as decentralized topologies as shown in Figure 3-1.   

An important property shared by all mesh-like topologies and pertaining to the 

ideal class of lattice-graphs is that they do not possess edges with long range—that is, 

edges connecting otherwise distant vertices.  A lattice-graph, or more generally, a d-

lattice is an unweighted, undirected, regular, simple graph of dimension d in which any 

vertex v is joined to its lattice neighbors, ui and wi, as specified by the following rules 

(Watts, 1999): 

 

67 



) (mod           )(
) (mod   ])[(

'

'

nivw
nnivu

d
i

d
i

+=
+−=

            ( 4-1 ) 

 

where 1 ≤ i ≤ d(v)/2, 1 ≤ d’ ≤ d, d(v) is the vertex degree of v, which is equal for all v ∈ 

V(G), n is the order of the graph G, and (mod n) is the arithmetic integer modulus that 

ensures periodic boundaries to the lattice.  To illustrate this regular structures a 1-lattice 

with d(v) = 2 is a ring, and a 2-lattice with d(v) = 4 is a two dimensional square grid 

(Figure 4-1).   

 

       

(a)                                                                      (b) 

Figure 4-1.  Two d-lattices: (a) 1-latice with d(v) = 4, and (b) 2-lattice with d(v) = 4 

 

The range of an edge eij denoted by r(i,j) is the length of shortest path between i 

and j in the absence of that edge.  An edge (i,j) is called an r-edge if it has a range r(i,j) = 

r;  hence, the observation that geographically distributed networks do not possess long-

range edges.  This means that most infrastructure networks for flow transmission and 
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distribution cover vast extensions but with short range edges.  This has a very important 

implication: the response and redundancy of a TD (transmission and distribution) 

network is largely dependent on the characteristics of the neighborhood of each vertex.  

Global network properties arise because of the characteristics exhibited by its vertices’ 

neighborhoods, and neighborhoods of neighborhoods. 

 

4.1.1 Construction of TD networks 

In order to develop a flow TD (transmission and distribution) network, it is 

proposed to use modified 2-lattices with d(v) = 8 for all v ∈ V(G) as substrate graphs.  A 

substrate is a template graph topology.  The modification consists of removing the 

periodicity of the boundary elements of the lattice.  Therefore, vertices on the periphery 

of the graph will have smaller vertex degree than the internal vertices.  This implies 

d(v)boundary < d(v)internal, which also implies that the average vertex degree, d(G) < 

d(v)internal.  However, for large n, d(G) ~ d(v)internal.  Figure 4-2 shows a single internal 

vertex of the 2-lattice with d(v)internal = 8 substrate.  This fundamental building block 

represents the simplest bypass mechanism.  If a vertex fails, network flows can still 

circulate throughout the network without compromising global functionality by locally 

bypassing the malfunctioning element.      
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Figure 4-2.  Building block of a TD model substrate: a vertex in a 2-lattice with d(v) = 8 

 

A periodic TD substrate with d(v) = 8 for all v ∈ V(G) and n = 9 is a complete 

graph.  The number of edges in any periodic TD substrate is m = ½ n × d(v).  The number 

of edges for a specific aperiodic TD substrate with d(v) = 4 is m = ½ [ d(v) (n - n½) ], and 

with d(v) = 8 is m = ½ [ d(v) (n – 3/2n½) ].  For the cases in which the substrate is required 

to have directed edges, then m for periodic and aperiodic substrates is twice the number 

of the undirected cases.  A directed substrate building block is depicted in Figure 4-3.  

Development of a TD model requires the following steps: 

 

(i) Generate an undirected—or directed if required—aperiodic TD substrate of 

order n equal to the order of the real system, and with d(G) ~ 8. 

(ii) Retain each of the m edges of the substrate with a probability of existence 

equal to pm.   
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(iii) Repeat steps (i) and (ii) until an ensemble of x ≥ 20 connected TD graphs is 

generated.  

 

 

Figure 4-3.  Building block of a directed TD substrate 

 

The probability pm is empirically set to be the ratio between the edge density of 

real infrastructure systems and the edge density of aperiodic TD substrates with d(G) ~ 8.  

Edge density is the ratio between the number of edges (i.e., nonzero entries of the 

adjacency matrix divided by two) of a graph G with n vertices, and the number of edges 

in a complete graph of same order n.  When the networks need to be directed, these 

densities use the full set of nonzero entries in their adjacency matrices.  Connectivity is 

assured by sequential retention of edges.  Start at a vertex v, and retain one of its incident 

edges.  Then, the end of the chosen edge provides the new vertex for repeating the step 

which is performed pm × mTD substrate times.  At early stages, this allows populating the 
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adjacency matrix to form square grid networks, towards the end this procedure populates 

the matrix to form the bypasses typical of TD substrates. 

Given the geographical constraints that prevent real transmission and distribution 

networks to have long range edges, it is expected that the edge density of TD substrates 

with d(G) ~ 8 exceeds the edge density of most measured real network edge densities.  In 

the rare event that this condition is not met, the average vertex degree d(G) of the TD 

substrate has to be increased.  The upper limit for the average vertex degree is d(G) ~ n – 

1.  For periodic boundaries the equality holds and a simple complete graph is formed—

the most redundant of all simple graphs.     

Measurements of the number of edges m as a function of the order n for several 

real power networks are shown in Figure 4-4.  Nine networks with different vertex set 

sizes are investigated from published work:  (1) a network with n = 14,099 that represents 

the major elements of the North American power grid  (Albert et al., 2004); (2) a network 

with n = 4,961 that represents the power grid of the states west of the Rocky Mountains 

(Watts, 1999); (3) a network with n = 59 representing the major components of the power 

grid of Shelby County, TN (Multidisciplinary Center for Earthquake Engineering 

Research, 1998); and (4) six typical networks with n = 9, 14, 30, 39, 57, and 118, used as 

simulation tool by researchers and educators (Zimmerman et al., 2005).  For comparison 

purposes, Figure 4-4 also presents the scaling of m as a function of n for aperiodic TD 

substrates with d(G) ~ 8, and for the simple complete graphs with d(v) = n – 1. 

Power law fitting of the measured scaling of m as a function of n for power grids 

provides the following empirical relation:  
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Figure 4-4.  Power law dependence between m and n 

 

The exponent for the empirical relation of complete graphs on n is twice as large 

as the measured for real graphs.  The TD substrates with d(G) ~ 8 have a slightly larger 

exponent as compared to the real power grids.  The empirical equations for these 

mathematically constructed graphs are: 

 

8)( with substrates TDfor    ,18.2 07.1 ≈= Gdnm         ( 4-3 ) 

 

graphs complete simplefor    ,46.0 01.2nm =          ( 4-4 ) 

 

73 



These empirical relations provide the means to estimate the probability of edge 

retention, pm, in power grids with respect to TD substrates.  The ratio between densities 

of real graphs and TD substrates reduces to simply calculating the ratio between their 

number of edges, m.  The scaling of pm for power grids—as a particular case of 

transmission and distribution networks—is: 

   

05.055.0 −= npm              ( 4-5 ) 

 

where n ≥ 1, and pm indicates the proportion of edges that are retained from a TD 

substrate.  The particular substrate used so far (i.e., modified 2-lattice with d(G) ~ 8), 

recognizes the limitations in edge range, and provides the means to capture absorption of 

disturbances at local scales.  Figure 4-5 shows the scaling of the number of edges, m, as a 

function of n, for the graphs presented in Figure 4-4, and adds the scaling for graphs that 

correspond to power grid realizations of the TD substrate.  
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Figure 4-5.  Scaling of edge count in TD models for power grids 

 

Generation of TD models calibrated for other geographically distributed networks 

such as potable water, natural gas, or oil, proceeds in a similar way to the development of 

TD models for electric energy.  Their scaling of m with respect to n is assumed to have 

the same functional power-law form m = αnβ.  This is because the number of edges that a 

new vertex adds to m is relatively constant due to geographical constraints, and therefore 

it grows at a proportional rate with n, given similar exponents β.  In other words, as n 

becomes larger, the number of edges per vertex, d(v) is confined to be as large as the 

order of the union of its ith neighborhoods for small i—in this discussion i = 1, 2.  This 

implies that d(G) experiences small variations as n increases.  Hence, the differences 

between TD models are reduced to the proportionality constant α.  TD substrates with 

d(G) ~ 8 have α < 4, square grids (i.e., aperiodic 2-lattices with d(v) = 4) have α < 2, 
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trees and aperiodic rings have α < 1, and totally fragmented networks—those with the 

number of components equal to n—have α = 0.   

The probabilities of edge existence pm for ideal mathematical models, empirical 

power grids, and other arbitrary TD models (e.g., water, gas, and oil) are presented in 

Table 4-1.  Water and gas network probabilities of edge existence are assumed to be 

approximately ±10% the value of power grids.  Oil networks are less connected and are 

assumed to be 20% less dense than power grids.  The probability values for ideal lattice 

graphs is obtained with respect to periodic TD substrates (i.e., d(G) = 8).  For square 

grids, open rings, and utility networks, the probabilities are obtained with respect to 

aperiodic TD substrates (i.e., d(G) ~ 8).   

 

Table 4-1.  Edge existence probabilities, pm, for networks G ⊆ TD substrates 

Probability of edge existence, pm 
Network Type With respect to periodic 

substrates 
With respect to aperiodic 

substrates 
2-lattice with d(v) = 4 0.50 _ 

1-lattice with d(v) = 2 0.25 _ 

Square grid _ 0.65n-0.03 

Open ring _ 0.42n-0.06 

Empirical power _ 0.55n-0.05 

Speculated water _ 0.60n-0.05 

Speculated gas _ 0.50n-0.05 

Speculated oil  _ 0.45n-0.05 

 

It is clear that the aperiodic TD model for power grids lies between square grids 

and open rings.  The speculated values for the other lifelines try to reflect their inherent 
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topological characteristics.  Oil networks tend to be minimally connected, while water 

distribution networks tend to be mesh-like connected.  Gas networks, tend to be more 

cyclic than the oil infrastructure, but its widespread use is heterogeneous, making them 

sparse meshes.  Figure 4-6 illustrates the limiting topologies of TD models. 

 

 

Figure 4-6.  Sample of topology realizations for the TD models as a function of pm 

 

4.2 REAL POWER AND WATER NETWORKS 

Network model development is useful for the analysis of network properties and 

the prediction of network response to disturbances.  However, understanding network 

characteristics has an ulterior purpose: to aid in explaining the effects of interactions 

among them if their coupling is acknowledged.  For this reason, two networks will first 

be introduced independently and described in particular detail.  They are chosen because 

their spatial distribution shares the same geographical area.  The networks are located in 

the Central United States in Shelby County, Tennessee, on the east banks of the 

Mississippi River.  Their intended function is representative of critical infrastructures for 
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modern society.  The networks are an electric power network, denoted by P, and a water 

distribution network, denoted by W (Chang et al., 1996; French and Jia, 1997; Hwang et 

al., 1998; Multidisciplinary Center for Earthquake Engineering Research, 1998).  The 

water network is simplified so that the distribution system covers the entire area, but 

portions of its dense end-user delivery grid are removed from consideration.  It just 

retains enough links to reasonably represent arterial water mains and major secondary 

feeders.  The order of the systems are np = 59 and nw = 49 for the power and water 

networks, respectively.  The order of the generation node subsets Fp ⊆ P and Fw ⊆ W is 

nFp = 8, and NFw = 15. 

The water network topology resembles a two dimensional grid with quadrilaterals 

and few acyclic branches as fundamental building blocks or network motifs.  The power 

grid exhibits sparser quadrilaterals and more acyclic branches.  This is proven 

numerically by their average clustering coefficient, γ, and average vertex degree, d(G).   

These parameters estimate the average proportion in which the neighbors of vertex v are 

adjacent to each other, and the average number of links per vertex, respectively.  In this 

case γp = 0.034, and γw = 0.047, although, both values indicate sparseness, there are fewer 

local clusters in the power network.  Regarding their vertex degree, d(P) = 2.48, and d(W) 

= 2.90.  This indicates the tendency of water nodes to have more than two connections.  

A value of d(G) = 2.67 is reported for the 4,961 vertices of the United States Western 

power Interconnection (Watts, 1999).  Figure 4-7 shows the physical layout of the power 

grid, and Figure 4-8 shows the layout of the water distribution network. 
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Figure 4-7.  Simplified power grid on 59 vertices for Shelby County, Tennessee 

 

 

Figure 4-8.  Simplified water network on 49 vertices for Shelby County, Tennessee 
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A summary of the fundamental topological properties of these two networks is 

presented in Table 4-2.  Five mathematical graphs are included for comparison: two 

graph realizations of the TD model (i.e., one for power and one for water), one TD 

substrate, one square grid, and a complete graph.  The trend is clear: the more the number 

of edges the more desirable the properties exhibited by the graphs. The number edges, m, 

for the mathematical graphs increases from TD model realizations, to square grids, to TD 

substrates, to complete graphs.  An increasing number of edges produce graphs with 

more cycles, which essentially provide alternative routes for flow traversal.  This 

increment in cycle existence directly impacts the measured properties in the networks.  

Large m increases the reciprocal harmonic mean, L’, because it is easier to connect any 

vertex v to any vertex w.  More edges increase the average vertex degree, d(G), and also 

increase the redundancy ratio, RR, due to the increment in alternative independent paths 

between nodes. 

The two real networks exhibit similar properties.  They both exist in a Euclidean 

plane, but the water network displays slightly better metrics due to its tendency to 

resemble square grids.  The TD models representing power and water networks maintain 

the same relative differences of the real systems.  These TD models (i.e., realizations of 

the TD substrate) exist on squares adjacency matrices.  Therefore, their properties are 

reported for two orders: n = 49 and n = 64, which contain the order of the real systems.  

Their measured properties include the values displayed by the real infrastructures.  The 

variability in their properties is small except for the clustering coefficient, γ.  This 

variability is expected because the TD model realization occurs on a template that 
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provides the means to either form or not node triads—direct connections among 

neighbors of a vertex v.  Square grids do not form triads, hence γ = 0.   

 

Table 4-2.  Topological properties of networks with n ~ order of real systems 

Fundamental Network Properties 

Network Type Reciprocal 
harmonic 
mean, L’ 

Vertex 
degree d(G) 

Clustering 
coefficient, γ 

Redundancy 
ratio, RR 

Real 59-node Memphis 
Power 0.251 2.474 0.034 0.188 

Real 49-node Memphis 
Water 0.264 2.898 0.047 0.193 

TD model with power pm 
on 49 (64) nodes 

0.271 ±0.009 
(0.238 ±0.007) 

2.857 ±0 
(2.906 ±0) 

0.023 ±0.018 
(0.021 ±0.019) 

0.199 ±0.009 
(0.197 ±0.008) 

TD model with water pm 
on 49 (64) nodes 

0.289 ± 0.009 
(0.258 ±0.003) 

3.102 ± 0 
(3.156 ±0) 

0.044 ± 0.018 
(0.038 ±0.028) 

0.212 ± 0.010 
(0.213 ±0.010) 

TD substrate with d(G) ~ 
8 on 49 (64) nodes 0.440 (0.399) 6.288 (6.500) 0.261 (0.255) 0.295 (0.288) 

Square grid on 49 (64) 
nodes 0.301 (0.267) 3.428 (3.500) 0 (0) 0.221 (0.221) 

Complete graph on 49 
(64) vertices  1 (1) 48 (63)  1 (1)  1 (1)  

 

An interesting observation from the previous table is that the measured properties 

for the same systems, but with different n, exhibited noticeable variations.  Exploration of 

these network property variations as a function of their order, n, is referred more 
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generally to as the network parameter scaling which was initially introduced to measure 

the variation of m as a function of n.   

 

4.3 NETWORK PARAMETER SCALING 

The scaling of network properties as a function of graph order, n, provides 

valuable insights about the effects of topology on measured network characteristics.  

These scaling trends are the basis for empirical relationships or analytical expressions—

based on counting arguments—to characterize network properties as their size and order 

grows larger.  For large n it becomes impractical to implement computer algorithms to 

measure network properties.  In typical contemporary personal computers—processor 

speed ~ 3 GHz and RAM ~ 1GB—handling of operations involving large adjacency 

matrices for network characterization imposes virtual memory limitations.  Therefore, 

scaling analysis enables exploration of topological properties in large graphs. 

The topologies considered in this scaling exploration include random ER graphs, 

WS graphs, BA graphs, square grids, TD substrates, TD models of power and water 

systems, real power grids, and complete graphs.  The order of the networks ranges from 

10 ≤ n ≤ 200. 

The scaling of m, L’, d(G), ∆(G), γ, and RR as a function of n is shown in the 

figures below.  All graphs are constructed so that they have similar order, n, and size, m, 

except for the cases in which their inherent topology requires a larger size (e.g., complete 

graphs or TD substrates).  For the networks that are realizations of particular classes (e.g., 

TD models, WS models, ER models, and BA models), their metrics are an average of 20 

simulations. 
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Figure 4-9.  Scaling of the number of edges, m 
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Figure 4-10.  Scaling of the reciprocal harmonic mean, L’ 
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Figure 4-11.  Scaling of the average vertex degree, d(G) 
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Figure 4-12.  Scaling of the maximum vertex degree, ∆(G) 
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Figure 4-13.  Scaling of the clustering coefficient, γ 
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Figure 4-14.  Scaling of the redundancy ratio, RR 
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Figure 4-9 revisits the scaling of m.  Except for the mathematical constructs of 

complete graphs and TD substrates, the rest of the models have a comparable number of 

edges.  This is important because assessment of other network properties will only be 

function of n and the topology of the graphs.  Table C-1 in the appendices contains a 

summary of the analytical and empirical relations of the scaling of m for mathematical 

(i.e., artificial), and real networks.  The expressions are obtained from counting 

arguments and power law fitting. 

Figure 4-10  shows the scaling of the reciprocal harmonic mean, L’.  This 

parameter measures the potential for efficient global connectivity.  This potential is a 

slow decreasing function for large n.  The realizations of the TD substrate compare well 

with each other, with real graphs, and with square grids.  The slowest connections are 

provided by the WS model because of its ring-like structure, which sets every node apart 

from others as n increases.  The BA model shows significant L’ due to its few hub nodes. 

Figure 4-11 and Figure 4-12 deal with vertex degrees.  The average vertex degree, 

d(G) for the TD substrate and the square grids approaches the degree of perfect 2–lattices 

with d(G) = 8 and d(G) = 4.  The TD models exhibit slightly smaller degree than the 

square grids, in agreement with measured values for large real power grids with d(G) ~ 3.  

Complete graphs have a linear scaling relation of d(G) with n.  The maximum vertex 

degree, ∆(G), highlights the existence of greatly connected nodes in BA models.  The 

other TD models have larger maximum degree as compared with square grids. This is 

because the realizations of TD models from TD substrates allows for the existence of 

bypasses, as displayed by real networks.    
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Figure 4-13 displays the scaling of network clustering coefficients, γ.  This 

parameter, as a measure of the probability of neighbor connectivity at the local scales, 

exhibits small variation for the TD models.  Square grids prevent neighbors of a vertex, v, 

to be directly connected, and therefore the clustering coefficient remains null.  

Mathematical constructs such as complete graphs, WS models and TD substrates show 

no significant variation for n > 50.  The clustering coefficient, γ, in ER and BA models 

tend to zero with large n because there is an increasingly small probability of randomly 

connecting the neighbors of vertices, or of connecting new vertices with low degree 

nodes. 

Figure 4-14 presents the scaling of network redundancy ratio, RR. This quantifies 

the ability of individual nodes to reroute flow in case their immediate neighbors are 

nonfunctional.  For all graphs, this parameter remains constant as a function of n, for n > 

25.  Distributed networks (e.g., TD models and square grids) show similar redundancy 

and perform better than simple random graphs.  Their values are bounded below by the 

BA model, whose local cooperation is minimal due to their growth with preferential 

attachment to highly connected vertices.  The general constancy of the RR is due to the 

modular structure that each graph has as it grows.  They use similar building blocks for 

expansion, thus maintaining similar local capabilities for rerouting flow.  The variation of 

the parameter is also small.  Figure 4-15 shows that network realizations of a particular 

class (e.g., TD models, BA models, and ER models) exhibit low standard deviation.  For 

large n, RR shows a coefficient of variation (COV) ~ 0.05.  The WS models display larger 

variation because they are constructed as a realization of 1-lattices with random rewiring 

of their vertices.  1-lattices require even vertex degree.  In these simulations the average 
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degree for distributed networks is d(G) ~ 3.  This odd value forces realizations of the WS 

models to have d(G) = 2 and d(G) = 4, thus increasing the variability.  Real graphs and 

mathematical constructs such as complete graphs, TD substrates, and square grids have 

no variation in their property characterization because of their deterministic nature.  The 

results for TD models, WS models, ER models, and BA models are an average of 20 

simulations. 
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Figure 4-15.  Standard deviation scaling of the redundancy ratio, RR. 

 

4.4 SUMMARY 

Network models have successfully allowed researchers to explain the mechanisms 

by which real networks evolve and display specific topological properties.  Random, 

small-world, and scale-free networks are just a few examples of graphs whose rules for 
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development explain properties of several real networks thus giving them a character of 

universality.  In the context of infrastructure networks, the most common generic type of 

network is that for minimum cost flow transmission and distribution of goods or services 

between predefined locations.  This motivated the development of a new template graph 

model that contains most of the geographically distributed lifelines.  The template model 

is referred to as a TD substrate which provides bypasses to all vertices.  Boundary 

elements have slightly less possibilities for bypassing, but for large n the properties of 

internal vertices dominate the measured properties of these networks.  These TD 

substrates are used to generate TD models of other lifelines.  A tuning probability of edge 

existence allows realizations of these utility networks, whose properties compare well 

with real power networks.   

Two specific networks are described in detail because of their usefulness for later 

interdependent analysis.  The properties of these real networks (e.g., power and water), 

which share the same geopolitical extent, are compared with mathematical constructs of 

similar characteristics and with the realizations of the TD substrates.  Comparisons 

showed agreement between real systems and their modeled counterparts.  Also, some 

sensitivity of the properties was observed as a function of n.  This prompted the 

exploration of the relationship between measured properties and the order, n, of the 

graphs.  Such scaling analysis revealed that most networks experience a power law 

decrease in their global connectivity effectiveness.  It also showed an almost constant 

local connectivity, γ, and constant redundancy ratio, RR, which measures the ability of the 

flow to bypass malfunctioning nodes or edges.  The modular growth patterns exhibited by 
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artificial and real networks ensure this constancy.  Such modularity also determines a 

small COV for the redundancy of the networks.      

Other topologies not explored in this work but that are part of ongoing 

investigations include decentralized models for telecommunication networks, and a very 

robust ideal network for distributed systems: plane triangulations.  These graphs exhibit 

desirable properties and are not required to be complete.  They just need to be maximally 

plane, or their vertices must be elements of graph triangles (i.e., cycles of length three or 

C3).  More precisely, a plane graph G is called a plane triangulation if every face of G—

including the outer face—is bounded by a triangle.  Figure 4-16 shows an idealized plane 

triangulation, and a modified triangulation for geographically distributed systems.  This 

modified version violates the definition of plane graphs, where edges do not intersect 

with each other.  However, it is useful to depict the possible topology of triangulation 

within distributed networked systems and to highlight its redundancy potential.  Edge 

intersections of the drawing do not necessarily exist in real systems.  
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Figure 4-16.  Plane triangulations as potential block for robust distributed networks 

 

It is conjectured that future highly redundant systems will tend to form maximally 

plane graphs.  One of the reasons is their obvious ability to locally absorb disruptions 

without the need to involve multiple neighborhoods per vertex as the existence of 

bypasses requires.  Another reason is because end-users in this contemporary digital-

quality era will demand exceptionally reliable flow supply which will necessarily depend 

on efficient redundancy mechanisms for networked systems.  Finally, physical 

boundaries for the expansion of networks will prevent the traditional replication of 

building blocks.  This implies that growth will head towards densification of the networks, 

thus increasing the number edges.  Plane triangulations are efficient for increases in graph 

size, m, if confined by spatial boundaries. 
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CHAPTER 5 

5MODELING OF NETWORK INTERDEPENDENCIES 

It is currently accepted that understanding the effect of interacting forces among 

infrastructure networks is of paramount importance for ensuring the continuous 

functionality of modern societies.  Infrastructure interdependencies materialize in several 

ways, and systems are frequently connected at multiple points through a variety of 

mechanisms.  There exist feedback and feedforward physical as well as nonphysical 

paths that create intricate branching topologies and make network interdependency 

increasingly intractable.     

  Even though there have been significant conceptual and theoretical advances in 

the field of interdependent networks, most frameworks still use highly simplified real 

networks, or use ideal network models to formulate the interdependencies problem.  

These frameworks do not explicitly question the role of network topology and network 

elements in maintaining and facilitating inter-infrastructure connectivity and flow 

exchange.  Network topological and flow diffusion characteristics can be used in devising 

policies for minimization of the impact of disturbances on network functionality. 

In order to proceed further with modeling interdependencies, this chapter reviews 

the conceptual dimensions that are currently accepted for describing infrastructure 

interdependencies.  Then, it proposes a set of rules that allow objective characterization 
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of multiple-system interconnections.  The application of these rules is illustrated with the 

two real systems (i.e., electric energy and potable water for Shelby County, TN) 

introduced in the previous chapter. 

 

5.1 DIMENSIONS OF INTERDEPENDENCIES 

For a given a geographically bounded system, determination of what constitutes 

interdependencies among infrastructures is a nontrivial problem because factors of 

different nature contribute to the observed coupling characteristics.  Ideally, 

interdependencies could be quantified by weighting each of the following dimensions: 

type of interdependency, coupling and response behavior, infrastructure characteristics, 

infrastructure environment, type of failure, and network state of operation (Rinaldi et al., 

2001).  A brief description of these dimensions is presented below. 

 

5.1.1 Types of interdependency    

There are four main types of interdependencies: physical, geographical, 

informational, and logical.  Physical interdependencies arise when the state of the 

infrastructures depends on tangible or material linkages among them.  This type of 

interdependency is suitable for quantification with low uncertainty.  Visual inspection 

would be the simplest procedure for determining physical coupling.  Geographical 

interdependencies are also quantifiable because they depend on the spatial proximity 

among network elements.  Informational interdependencies emerge due to the 

contemporary need for exchange of data, and the computerized control of infrastructure 
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performance.  Finally, logical interdependencies appear when human decisions intervene, 

or when the connection is not physical, geographical, or informational. 

 

5.1.2 Coupling and response behavior 

This dimension is characterized by the degree of coupling, the coupling order, and 

the complexity of the connections.  The degree of coupling refers to the “tightness or 

looseness” of the interdependency.  In highly coupled infrastructures disturbances tend to 

propagate rapidly through and across them.  Hence, tight coupling implies time 

dependent processes with little slack. 

Coupling order defines whether or not two infrastructures are directly connected 

to one another or indirectly coupled through one or more intervening infrastructures.  For 

instance, if the power grid fails, there is a supply / demand imbalance whose first-order 

effects could be disruption in gas supply, oil extraction, and water distribution.  Second-

order effects manifest as reduced cogeneration for oil production, inventory buildup in 

refineries, inventory drawdown in storage terminals, and crop losses in agriculture.  

Third-order effects can also be quantified by reduced oil production, shortages of 

gasoline for road transportation, disruption of flight schedules, financial losses, etc.  This 

type of analysis can be extended to nth-order effects, at the expense of introducing 

additional complexity and uncertainty. 

Complexity of the links represents the linearity or nonlinearity of the interactions 

among critical infrastructures. 
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5.1.3 Infrastructure characteristics 

This dimension considers the scale of the infrastructure in spatial and temporal 

aspects and the hierarchy of the elements that constitute an infrastructure.  Scale brings 

into consideration the size of the problem analysis (i.e., level of granularity).   

Different temporal scales for network functionality are illustrated in the case of 

unforeseen network element perturbation: in power grids disruption travels in 

milliseconds; in gas, water and transportation networks, disruptions propagate in hours; 

and in most networked systems, interruptions due to maintenance, upgrading, or capacity 

increase, propagate disruptive effects during years. 

Spatial scales reflect the level in the hierarchy of network elements, at which the 

analysis is defined.  Typical hierarchical levels, illustrated with a power grid, are: 

 

• part: smallest component identifiable in power analysis. 

• unit: functionally related collection of parts (e.g., steam generator). 

• subsystem: array of units (e.g., secondary cooling system). 

• system: grouping of subsystems (e.g., nuclear power plant). 

• infrastructure: complete collection of like systems (e.g., electric power 

infrastructure). 

 

A network G, as represented in this research by its adjacency matrix, is a 

collection of systems.  The functionality of infrastructures is established from the 

performance of systems, subsystems, units, and parts. 
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5.1.4 Infrastructure environment 

This dimension refers to the impact on network interconnectedness due to 

economic concerns, government decisions, legal regulations, public health and safety, 

technical limitations, and social and political decisions.  These types of factors are highly 

subjective, and can introduce large uncertainties in the definition of network 

interdependencies. 

 

5.1.5 Types of failures 

Failure modes influence interdependent behavior through the way networks 

propagate or absorb disruptive effects.  Cascading, escalating, and parallel failures are 

feasible modes of failure.  Cascading failures are a manifestation of the potential 

vulnerability of otherwise highly robust networks.  Blackouts are examples of such 

propagation mode, where disturbances can initiate and propagate in a variety of ways that 

are difficult to foresee.  Escalating failures occur when an existing disruption in one 

infrastructure exacerbates an independent disruption of a second infrastructure, generally 

in the form of increasing the severity or the time for recovery or restoration. 

A parallel failure occurs when two or more infrastructure networks are disrupted 

at the same time and elements within each network fail because of some common 

triggering event (e.g., earthquakes, cyclones, etc.).  This case represents simultaneous 

effects, either because the elements occupy the same physical space, or because the root 

problem is widespread. 
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5.1.6 State of operation 

The state of operation of an infrastructure exhibits different behaviors during 

normal operating conditions (i.e, varying from peak to off-peak conditions), during times 

of severe stress or disruption, and during times when repair and restoration activities are 

underway.  The state of operation of a unit, subsystem, or system at the time of failure 

affects the extent and duration of the disruption of the entire infrastructure. 

Even though the six dimensions for describing infrastructure interdependencies 

are conceptually simple, the amount of data required for their characterization makes 

their systematic evaluation impractical.  Fewer fundamental parameters are necessary to 

capture the essential mechanism for coupling networked systems.  In this study, three 

aspects are selected for establishing the model of network interdependencies.  

Accessibility to data, objectivity, and possibility to explore their domain are the criteria 

for their selection.    

 

5.2 FUNDAMENTAL INTERDEPENDENCIES 

Real networked systems require continuous multi-network interactions to perform 

their intended functions (National Research Council, 2002).  Power grids depend on gas 

networks to fuel generation units.  Water networks provide cooling and help controlling 

emissions of coal-based power generators.  Water and gas networks are heavily dependent 

on power for pumping stations and control systems.  Therefore, characterization of network 

performance needs to be enhanced by explicitly accounting for their interconnectedness.  In 
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this study the approach for establishing network interactions is based upon geographical 

immediacy, direction of the interaction, and strength of the coupling. 

A set of conditional probabilities of failure is established to describe the direction 

and strength of the coupling between adjacent multi-network elements.  Considering two 

networks, for example the power and water networks of Shelby County, TN, their directed 

degree of coupling can be expressed as follows: 

 

ijp P| WP
ij| PWij ~ allfor    ,)FailureFailure( =          ( 5-1 )  

      

where Wj represents failure of the jth element of the water network; Pi is failure of the ith 

element of the power network; pWj|Pi is the value of the conditional probability of failure of 

element Wj given failure of element Pi; and ~ indicates node adjacency between every Wj 

element and every Pi element.  The conditional probability, P(Wj|Pi), can be tuned to 

represent any strength of network coupling, ranging from independence P(Wj|Pi) = P(Wj) to 

complete interdependence P(Wj|Pi) = 1.  Interdependent adjacencies are established from the 

geographical proximity between network elements. 

Transmission and distribution networks provide service to their end-users through 

service areas assigned to specific distribution vertices.  The size of the service areas is 

proportional to the population density and the capacity of the distribution nodes.  An 

illustration of the use of geographical proximity for establishing interdependencies is shown 

in Figure 5-1.  For clarity this figure only contains 23kV and 12kV substations, storage 

tanks, and large pumping plants.  The highlighted area is served by one 23kV electrical 

substation that transforms power to its end users.  Among its users there is a critical large 
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pumping station that fills the tank in the service area, and contributes to three storage tanks 

in the borders.  In general, one substation provides power to one assigned service area.  In 

this power network there are 37 service areas.  Each service area is an aggregation of 

administrative and political subdivisions referred to as census tracts.  The population size of 

the power service areas is on average 25,000 people.  As an example, if power substation 

P25 ⊆ P fails, it conditions with probability PWj|P25 the failure of pumping station W12, and 

storage tanks W7,W10, W14, W15, for j = 7, 10, 12, 14, 15. 

 

 

Figure 5-1.  Distribution of electric power service areas 

 

Failure of node P25 implies that approximately 9% of the county population, 

according to the 1990 United States census data (United States Census Bureau, 2002), has 

the potential to experience impaired water delivery service.  Interdependent effects have the 
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potential to leave the water system incapable of fulfilling basic objectives: meeting water 

needs, accommodating fire fighting, and equalizing grid operating pressures. 

Location, direction, and strength of the interdependencies are captured by the 

interdependent adjacency matrix, AW|P.  In this example AW|P is a nP × nW matrix whose non-

zero entries, row by row, are the jth water network elements served by the ith power element.  

The values of these no-zero entries are the conditional probabilities pWj|Pi.  For example, the 

25th row of the matrix has five non-zero entries: columns 7th, 10th, 12th, 14th, and 15th.  The 

values of the non-zero entries are the tunable strength of coupling pWj|P25 for j = 7, 10, 12, 

14, 15.  The nW × nP interdependent adjacency matrix, AP|W, which captures the effect of 

water network element failure on power grid performance, is established in identical 

manner.  Figure 5-2 displays 34 service areas for the potable water network in Shelby 

County, TN.  These areas are defined for the junctions of main artery lines and secondary 

feeders of the simplified real water distribution network. 
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Figure 5-2.  Distribution of potable water service areas 

 

5.3 SUMMARY 

Six conceptual dimensions for describing infrastructure interdependencies are 

considered representative of the mechanisms that trigger interconnectedness.  Although 

these dimensions (i.e., type of interdependency, coupling and response behavior, 

infrastructure characteristics, infrastructure environment, type of failure, and network state 

of operation) are intuitive and conceptually simple, their quantification is limited by data 

availability.  This study proposes exploration of more objective and fundamental aspects to 

characterize the interconnection among networked systems: location, direction, and strength 

of coupling.  These fundamental aspects are contained in the interdependent adjacency 

matrices, AG|G’, of interacting systems which is constructed from the conditional 
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probabilities P(Gj|G’i).  The nonzero entries of these matrices indicate the location of the 

interconnection and the strength of the coupling, pWj|Pi, which is defined as a tunable 

variable to allow exploration of coupling from independence to complete interdependence.  

The location of the nonzero entries is obtained from geographical immediacy analysis of the 

interacting systems.  The tunable parameter represents the conditional probability of failure 

of one infrastructure element given failure of distinct infrastructure element.  This simple 

approach improves on the most recent schemes utilized for modeling interdependencies 

among networks with specific topological features.   
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CHAPTER 6 

6NETWORK RESPONSE TO DISTURBANCES 

One of the persistent questions in the analysis of the performance of networked 

systems is what would happen to their functionality if particular network elements are 

removed?  To answer this question it is necessary to measure the post-disturbance 

performance of the networks in terms of their capacity to remain functional or to fulfill 

customers’ demands.  Generic network performance measures that are meaningful to 

different infrastructure systems are desirable metrics.  Critical infrastructures are often the 

type of networks that operate transmission and distribution of flows by either transfer or 

replication.  Their performance can be measured using either simple metrics that only 

depend on the topology of the network, or metrics that require a combination of data from 

topology and flow patterns.  These more elaborate metrics require knowledge of the role that 

each element has in the supply-demand chain, in addition to their flow capacities and cost of 

flow traversal as measured in terms of geographical separation.  In addition, more detailed 

performance measures developed for specific networks may have extensive input data 

requirements necessary to model time-dependent physical processes.  This specificity 

currently makes impractical their implementation for the analysis of interdependent network 

performance. 
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This chapter reviews two of the most recent proposals for generic network 

performance quantification—network efficiency, E, and network connectivity loss, CL 

(Latora and Marchiori, 2001; Albert et al., 2004).  These generic metrics are suitable for 

statistical exploration of network response to disturbances.  Networks can be either real 

systems, simplifications of real systems, or mathematical constructs.  In addition, this 

chapter uses the proposed network service flow reduction, SFR, as a generic performance 

measure that captures network topology, flow patterns, social impact, and yet is still 

computationally efficient and suitable for statistical exploration of networked systems.  

This chapter also illustrates the utilization of network performance measures when 

the systems are subjected to systematic removal of their elements.  Removal of vertices is 

executed according to three strategies that reflect their importance to connectivity, their 

ability to facilitate flow, and their actual role in providing optimal flow distribution.  This 

systematic removal is first performed on independent systems, and then its effects are 

investigated in interconnected networks.  

This chapter includes a discussion of network response to seismic hazards as well.  

These events are some of the most disruptive and uncertain external disturbances and 

require a probabilistic framework for their investigation.  The study of seismic hazard 

potential to disrupt network functionality is extended, based on a review of the seismic 

vulnerability of network elements, to the effect of their failure on infrastructure 

functionality.  The parameters chosen to characterize network performance are the ones that 

combine topology and flow patterns (i.e., CL, and SFR).  Finally, this analysis is expanded to 

the response of interdependent infrastructures.  The chapter concludes with the introduction 
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of interdependent fragility curves as a means to characterize the probabilistic response of 

interacting infrastructures.    

  

6.1 SYSTEMATIC DISRUPTION OF NETWORKS 

Systematic network element removal refers to the process of deletion of vertices 

following a predefined policy.  This policy dictates the order in which nodes have to be 

removed from the networks.  Node rank-ordering is updated after every removal because 

deletion of vertices changes the topology and conditions the flow traversal within the 

networks. 

This study considers four removal strategies to span several criteria that define the 

importance of nodes and the nature of the disruptive event (e.g., targeted attack, overload, 

random malfunctioning, etc.).  Vertex degree rank-ordering is based on network 

connectivity and only requires topological information of the systems.  Vertex betweenness 

rank-ordering requires information of the role that each node plays in the chain of flow 

generation, transmission, and distribution.  Its calculation combines topology and introduces 

essential elements of optimal flow.  Transshipment flow rank-ordering is the most 

comprehensive criterion and requires additional information to characterize the network as a 

minimum convex cost flow problem.  This implies knowledge of the flow capacities of the 

elements—both nodes and edges—and the cost of pushing flow through particular paths 

based on Euclidean distances.  Finally, random selection of vertices complements the set of 

removal policies.  This strategy is included because it captures events such as lightning, 

vehicle collisions, falling trees, equipment failure, vandalism, animals, and planned 
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removals.  These events are frequent in geographically distributed infrastructures, and they 

induce constant small disruptions which in some cases can develop into cascading failures. 

 

6.1.1 Independent networks 

Exploration of independent network performance as a function of the fraction of 

removed rank-ordered vertices constitutes the fundamental step for response 

characterization.  The objective is to identify the ways in which different networks degrade 

their functionality as the number of removed vertices increases, and also as the removal 

strategy varies. 

This section presents results for simplified models of the power grid and water 

network of Shelby County, TN.  The performance metrics for characterization of the 

disturbed networks are: global efficiency of the network, represented by its reciprocal 

harmonic mean, L’; average connectivity loss, CL; and average service flow reduction, SFR.  

The response of the networks for each performance measure is recorded for four different 

element removal strategies.  These vertex removal strategies systematically delete nodes 

according to their importance in terms of: vertex degree, vertex betweenness, vertex 

transshipment flow, and random selection.  The importance of each node is reassessed after 

every removal because of changes in topology and flow patterns.  Chapter 3 contains 

definitions for each of these network performance measures and vertex removal strategies. 

Figure 6-1 contains the response of the networks to different disruption mechanisms 

in terms of their reciprocal harmonic mean, L’.  This parameter measures the ease for global 

connectivity in terms of their topology.  Both networks display a similar trend in their 

response.  This is expected since both systems have topologies that resemble regular square 
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grids.  A revealing result is that the response to the various removal strategies is bounded by 

two mechanisms: the random selections of nodes, and the selection of vertices according to 

their vertex degree, d(v).  The first one captures unforeseen malfunctioning of network 

elements (e.g., lighting, vandalism, aging, collisions, animals, etc.), while the second one 

captures highly intrusive disruptions focused on the most topologically connected nodes.  

This vertex degree rank-ordering provides an idea of network response if malicious attacks 

were planned against them. 
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  (a) Power grid    (b) Water network 

Figure 6-1.  Reciprocal harmonic mean, L’, for a power grid and a water network 

 

The removal strategies that are based upon vertex flow distribution within the 

network are contained between the random selection and targeted removal bounds.  These 

flow-based removal strategies better reflect the possible evolution of a cascading failure.  If 

an overloaded node fails (i.e., the one with the most flow traversing it), then its flow has to 

be redistributed.  The next node more likely to fail is such node that after flow redistribution 

gets closer to, or exceeds, its maximum capacity.  Figure 6-2 presents a normalized version 

107 



of the reciprocal harmonic mean, L’.  This plot shows their response for the two observed 

bounds. 
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Figure 6-2.  Normalized reciprocal harmonic mean L’ 

 

 It is observed that for random selection, the water network performs poorer than 

the power grid.  This is because the water network has properties closer to the square 

grids—its vertex degree exhibits a Poisson distribution—where every node is a typical 

node.  Hence, removal of any water node counts since each node has a similar role in 

facilitating global connectivity.  In the power grid this does not hold.  There are some 

special nodes (e.g., more connected than the average node), which are difficult to pick at 

random.  However, the price is that for targeted removals, the power grid becomes more 

vulnerable.  This paradox is rooted in their topological characteristics.  Figure 6-3 

presents their vertex degree distribution.  The power grid has a coefficient of variation, 
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COVp = 0.44, and a skewness coefficient, φp = 0.66.  The parameters for the water 

network are COVw = 0.34 and skewness coefficient, φw = -0.05—almost symmetric.  The 

larger skewness of the power grid indicates the existence of a few highly connected that 

if strategically removed can induce significantly reduce network functionality. 
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  (a) Power grid    (b) Water network 

Figure 6-3.  Vertex degree distribution for a power grid and water network 

 

The other two network performance measures follow the same trends displayed 

by the global reciprocal harmonic mean, L’.  However, CL (Figure 6-4) and SFR (Figure 

6-5) provide a more realistic representation of network performance after disruption 

because they account for topology and flow traversal.   
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  (a) Power grid    (b) Water network 

Figure 6-4.  Connectivity loss, CL, for a power grid and a water network 
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  (a) Power grid    (b) Water network 

Figure 6-5.  Service flow reduction, SFR, for a power grid and a water network 

 

Figure 6-6 presents, for each response, the variation in performance as bounded 

by the random and targeted degree removals.  Something additional portrayed by these 

sets of response measures is that the performance of the networks is expected to be closer 

to the random selection bound.  If vertex transshipment flow captures the optimal flow 

that traverses each node to meet the constrains of supply and demand, then the response 
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based on transshipment better reflects the flow process that occurs within real 

transmission and distribution systems.  This is clearly evident for removal fractions less 

than 30%. 
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       (a) Connectivity loss       (b) Service flow reduction 

Figure 6-6.  Bounded network response: (a) CL and (b) SFR 

 

One question triggered by the analysis of these global response plots is what does 

the topology of the disrupted network looks like?  The plots clearly show that network 

functionality is severely impaired by targeted removals and less impacted by random 

removals.  Other removal strategies lie somewhere in between.  However, it remains to 

be understood how the networks fragment.  Figure 6-7 presents sequential states of the 

power network for various fractions of removed elements (i.e., 0%, 20% and 40%), and 

for the two bounding removal strategies (i.e., random selection and targeted vertex 

degree).  The plots are an abstract representation of the spatial network connectivity. 

Disconnected nodes are not shown. 
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It is clear that for significant removal fractions, the strategy based on vertex 

degree is more effective at partitioning the network.  This targeted strategy severely 

disconnects the network, and fewer remaining elements exist in several isolated islands.  

For example, at the 40% removal fraction, random removals retain more elements, and 

they are kept as a larger connected cluster.  Vertex degree removals deplete the edges of 

the system faster and induce a fractured remaining network.   
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(a) Random vertex removal 
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(b) Vertex degree removal 

Figure 6-7.  Fragmentation patterns for: (a) random and (b) vertex degree removals 

 

 These abstract network representations call for a more systematic monitoring of 

the number of fragments, Nf, in which the network partitions as a result of the removal 

strategies.  Figure 6-8 presents the fragmentation evolution of the networks.  The rate of 
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fragmentation tends to be similar for all removal strategies.  Every removed node also 

reduces the possibilities of its neighbors to remain connected, exacerbating the 

detrimental effects. 
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  (a) Power grid    (b) Water network 

Figure 6-8.  Network fragmentation for a power grid and a water network 

 

A natural question that follows from the insights on fragmentation patterns is 

what would be the order, n, of the largest connected cluster?  If a disturbance occurs and 

vertices are removed systematically, the larger the order of the remaining clusters the 

better chances the network has to largely remain functional.  The largest cluster order, nc, 

also indicates the potential of the network to restore functionality if it has been lost.  

Reconnecting small islands to the largest dominant cluster is easier than putting together 

several small isolated clusters with no clear indication of which is the dominant one.  

Figure 6-9 presents the order evolution of the largest cluster order.  All vertex removal 

strategies except random selection are effective at breaking down the structure of the 

networks.  However, the strategy based on optimal flow traversal (i.e., transshipment 

flow) is still closer to the response delineated by random disruptions. 
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Real systems, despite having some nodes with more connections than others, tend 

to fracture at locations where nodes are not necessarily special in terms of their vertex 

degree.  Flow transfer in these transmission and distribution networks is made optimal by 

utilizing as many routes as possible.  The fact that the cost of flow traversal is a convex 

function of the amount of flow calls for diversity in the portfolio of transmission paths to 

meet flow demands.  This makes the network resilient to congestion, and if separation is 

enforced, the effect of removing highly loaded nodes—where load refers to the amount 

of flow traversing the node—is not as dramatic as if the most connected nodes were 

removed. 
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  (a) Power grid    (b) Water network 

Figure 6-9.  Maximum cluster order for a power grid and a water network 

 

These observations are supported by another metric: one that monitors the 

average order, <nr>, of the clusters without including the largest one.  The plots in Figure 

6-10 indicate that whenever the network gets disconnected, the average order of the 

disconnected portions is minimal, <nr> ≤ 2, for the random and transshipment based 
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removal strategies.  Removing the most connected nodes leaves larger islands.  However, 

removing the nodes with the largest betweenness leaves a significant average order for 

the remaining clusters.  This is interesting because the vertex betweenees removal 

sequence is finding bottlenecks, which when removed can separate the network into 

similar size clusters.  If the removal sequence based on transshipment flow were 

calculated as a minimization of costs as a linear function of the amount of flow, instead 

of a convex function, then the sequence would be comparable to that of the vertex 

betweenness strategy. 

It is important to confirm whether or not the response of real systems to 

systematic removal of nodes is closer to that for a random removal strategy.  The average 

vertex degree reduction is another parameter that reinforces this notion, Figure 6-11.  The 

behavior of this parameter to vertex removal based on transshipment flow which captures 

real flow distributions is similar to that for random vertex removals.  This effect is more 

pronounced in the power network.  The reason goes back to the vertex degree distribution 

of the networks.  Picking and removing typical nodes from the water network is more 

significant than doing so for the power network which has more small-degree nodes due 

to its positively skewed distribution. 
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  (a) Power grid    (b) Water network 

Figure 6-10.  Average order of remaining clusters for a power grid and a water network 

 

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

Fraction of Power Grid Removed Elements

A
ve

ra
ge

 V
er

te
x 

D
eg

re
e,

 d
(G

)  
-  

P
ow

er

Vertex Degree
Vertex Betweenness
Vertex Transshipment
Random Selection

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

Fraction of Water Network Removed Elements

A
ve

ra
ge

 V
er

te
x 

D
eg

re
e,

 d
(G

)  
-  

W
at

er
Vertex Degree
Vertex Betweenness
Vertex Transshipment
Random Selection

 

  (a) Power grid    (b) Water network 

Figure 6-11.  Average vertex degree for a power grid and a water network 

 

All the performance measures and additional topological metrics used to 

characterize network response to disruptions have a common feature: their monitored 

responses are bounded by the random and targeted vertex degree removal values.  Why 

does that occur? 
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To answer this question, it is worth looking at the distribution of the vertex 

betweenness and the vertex transshipment of the networks at their intact state.  Figure 6-3 

presents their vertex degree distribution.  Figure 6-12 displays the distribution of the 

vertex betweenness and vertex transshipment flow for the power grid of Shelby County, 

TN, at its undisturbed state.  There are 8 generation units in the generation subset FP ⊆ 

GP.  The order of the distribution subset QP ⊆ GP is nQP = 37.  Hence, the maximum 

possible betweeness is Bv = 296.  The actual measured Bv ranges from 1 to 100.  The 

vertex transshipment flow, Wv, is a metric proportional to the population size of the 

County.  Each element of the distribution subset QP has a power demand associated with 

it.  The power demand at each distribution node is treated as a fraction of the total power 

demand of the County.  Hence, for solving an integer convex program to calculate the 

optimal flow patterns the smallest fractions are multiplied by 1,000 so that no fractions 

need to be handled at the demand nodes.  The maximum possible transshipment would be 

Wv = 1,000.  The measured Wv for this power network ranges from 1 to 100. 
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   (a) Betweenness     (b) Transshipment 

Figure 6-12.  Power grid vertex distribution for: (a) betweenness and (b) transshipment 
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Table 6-1 presents a summary of the main descriptors for these vertex parameters.  

In essence, the impact on network performance decreases in severity from targeted vertex 

degree removals, to vertex betweenness, to vertex transshipment, and to random 

selections.  The key to explaining this lies in the distribution of these vertex parameters 

which, in turn, is the basis of their removal sequences.  For obtaining a rank-ordered 

sequence of vertex removals, the tails of the distribution indicate where to find the most 

important initial nodes.  If the criterion is vertex degree, there are few special nodes (i.e., 

more connected tan other nodes) in the fast decaying thin tail.  If they are removed they 

cause an immediate large impact on network performance, and this is persistently 

displayed in the response plots.  If the criterion is vertex betweenness, then there are 

more vertices along the tail with high betweenness as indicated by its positive skewness 

and large COV.  These special vertices on the tail of the vertex betweenness distribution, 

when removed, can cause significant impact on network performance.  However, they are 

more common than in the vertex degree case, thus lessening their detrimental effect if 

absent from the network.  Finally, if the criterion is vertex transshipment, then there are 

even more vertices along the shorter and thicker tail of the distribution.  Its smaller 

skewness indicates that there is a tendency of having less special nodes in terms of 

transshipment.  Hence, their removal, despite inducing a disruptive effect in network 

performance, is not as critical as in the other cases. 

The tail behavior of the distributions can be further explained using the 

information captured by the kurtosis, k.  This parameter measures how prone to outliers a 

distribution is.  It corresponds to the normalized fourth moment of the distributions.  The 
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size of the sample is np = 59.  Data that follows a normal distribution has k = 3.  The data 

of the vertex transshipment flow has kWv = 2.62, while for the vertex degree is kd(v) = 3.74.  

These numbers are relative to the expected tail of a normal distribution.  This indicates 

that the Wv is less outlier-prone, hence its thicker and shorter tail, and that d(v) is more 

prone to outliers, hence its thinner and longer tail.  In the case or random selection the 

probability of picking and removing important nodes is an inversely proportional 

function of the order of the network.  Chance makes more difficult the removal of critical 

network elements. 

 

Table 6-1.  Statistical characterization of power grid vertex distributions 

Fundamental Descriptors 

Vertex Property Mean 
µ 

Standard 
Deviation 

σ 
COV 

Skewness 
Coefficient 

φ 

Kurtosis 
k 

Vertex Degree 2.47 1.07 0.43 0.66 3.74 

Vertex Betweenness 25.66 27.17 1.05 0.75 2.45 

Vertex Transshipment 27.13 21.57 0.79 0.62 2.62 

 

 

In spite of the differences in network response induced by the type of disturbance, 

some disruption mechanisms display similar trends.  This observation leads to further 

investigation of their correlations.  Each removal strategy is established by rank-ordering 

the vertices of the network at the undisrupted state.  Then, after removing the most 

significant element, the rank-ordering is reassessed.  This is repeated until all nodes are 
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removed.  The sequence of selected vertices at every stage provides the arrangement for 

systematic vertex removal.  Figure 6-13 displays the correlation between removal 

sequences of three removal strategies.  The vertex betweenness sequence is selected as 

the reference removal strategy.  This sequence shows that its induced disturbances are in 

general between the disturbances generated by vertex degree removal and vertex 

transshipment flow.  Its correlation coefficient with transshipment is ρBv,Wv = 0.58, 

whereas with the recalculated vertex degree is ρBv,d(v) = 0.36.  Its higher correlation with 

vertex transshipment is expected since both removal mechanisms rely upon flow traversal.    
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Figure 6-13.  Correlation between vertex removal sequences for the power grid 

 

 For completeness, the following correlation matrix summarizes the correlation 

between all removal sequences, plus a removal strategy based on just the initial vertex 

degree without recalculating it after each vertex deletion: 
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⎥
⎥
⎥
⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

00.158.001.036.003.0
58.000.117.036.011.0
01.017.000.121.006.0
36.036.021.000.122.0
03.011.006.022.000.1

ρ          ( 6-1 ) 

 

where the sequences are: ρ1,1 = initial vertex degree, d(v)initial; ρ2,2 = recalculated vertex 

degree d(v), ρ3,3 = random selection, ρ4,4 = vertex betweenness, Bv; and ρ5,5 = vertex 

transshipment, Wv. 

A final check to confirm the variations in network response induced by the 

different removal strategies is to monitor the reduction of the network size, m.  This edge 

counting gives an indication of the amount of links that are lost after every node removal.  

Losing edges implies losing the possibility to reroute flow, and therefore making less 

desirable the measured network properties.  The trend shown in Figure 6-14 is 

unequivocal.  Network size is bounded by the random and the vertex degree removal 

strategies.  Even the sequence based on only the information of the network vertex degree 

at its undisturbed state is more harmful than the sequences based on simultaneous flow 

and topology.  The expected response of the network if a cascading failure occurs—as 

captured by the transshipment flow—is closer to the response of the network if random 

elements were removed.  Flow distribution and redistribution according to optimal 

supply/demand constraints causes the network to be more egalitarian: no single node 

becomes dominant or completely essential for performing the intended transmission of 

flows.  This can be generalized to any transmission and distribution network whose flow 

is indivisible and traverses the system by transfer and not by replication.  Hence, similar 

observations apply to the water network. 
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Figure 6-14.  Reduction in power network size, mP, for selected node removal sequences 

 

6.1.2 Interdependent networks 

For the two example networks (power and water) in Shelby County, TN, 

introducing interdependencies means P(Wj|Pi) > P(Wj).  For the extreme case of P(Wj|Pi) 

= 1, any failure in a power grid element will automatically disconnect the water elements 

that interact with it, if they exist.  Failure in the power grid can occur following any of the 

disruptive strategies already investigated: vertex degree deletion, vertex betweenness 

removal, vertex transshipment flow removal, and random selection of vertices for 

removal.  Figure 6-15a presents the response of the water network—measured by its 

reciprocal harmonic mean, L`—as a function of its strength of coupling with the power 

grid.  Failure in the power grid and in the water network is induced by the random vertex 

selection.  The plot indicates that accounting for interdependent effects results in an 
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increase of the negative impacts on global network connectivity.  The plot enlarges the 

zone of low fraction of removed elements, < 50%, where most lifelines operate most of 

the time: within normal or mildly abnormal conditions.  Larger removal fractions are 

induced by less frequent natural hazards such as cyclones or earthquakes.  Figure 6-15b 

presents a quantification of the effect of network coupling on the response and it 

introduces a new metric: the interdependent effect, Ie.  This parameter is defined as the 

absolute difference between the independent and interdependent response.  This 

difference is normalized by the maximum independent response attained for all removal 

fractions: 

 

)Responset Independenmax(
| Responset Independen  -  Responsedent Interdepen|

=eI        ( 6-2 ) 

 

The plot includes the effect of power grid failure on water network response.  This 

effect on the response is monitored for the power grid undergoing disruptions according 

to the two bounding removal strategies (i.e., random and vertex degree removals).  

Interdependencies are critical in network response for removal fractions < 40%.  Their 

magnitude is also substantial.  At its peak, the interdependent effect accounts for an 

additional reduction of 16% in network functionality with respect to its intact state.   
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(a)                                                                 (b) 

Figure 6-15.  Interdependent network response: (a) L’, and (b) Ie on L’ 

 

An interesting outcome of the interdependent effect plot comes from the targeted 

removals in the power grid.  Picking the most connected nodes of this system appears to 

cause no significant interdependent effects on the water network.  If the power network is 

being severely disrupted, then why is the water network indifferent?  The reason is 

simple: the most connected nodes of the power grid are not necessarily the nodes that 

facilitate the interaction with other systems.  At the interacting interface, the water 

network knows of power nodes which are not the specially connected ones. 

Since the impact that a particular removal strategy provides interesting clues about 

network behavior, Figure 6-16 presents additional cases.  Figure 6-16a displays the 

response of the water network when both the power and the water network are subjected 

to targeted removal of their most connected nodes.  The interdependent effects now 

vanish completely.  No strength of coupling is influential to the response.  This is because 

both networks are prematurely degraded, leaving their remaining interface elements 

unable to add any detrimental effects.  Figure 6-16b shows the response of the water 
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network when it is subjected to each of the vertex removal strategies while the power grid 

is undergoing only random removals.  The strength of the coupling, as characterized by 

the conditional probabilities of failure P(Wj|Pi), is monitored for its limiting values (i.e., 

P(Wj|Pi) = P(Wj) and P(Wj|Pi) = 1.0).  It confirms the trends exposed by the independent 

network analysis.  The interdependent response of the networks is also bounded by the 

random and the targeted vertex degree, d(v), removal strategies.  The effect of removal 

strategies based on simultaneous topology and flow (i.e., vertex betweenness, Bv, and 

vertex transshipment flow, Wv) lies between the bounding strategies.    
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(a)                                                                 (b) 

Figure 6-16.  Interdependent L’ response for: (a) coordinated attacks, and (b) all type of 
removals 

 
 

Figure 6-17 presents the interdependent response of the water network in terms of 

its connectivity loss, CL.  Again, the strength of coupling accelerates the loss of 

connectivity between distribution and generation nodes.  The effect of the 

interdependencies on the response is sizable for removal fractions < 40%.  The magnitude 

of the interdependent effect at its peak amounts for 22% of the independent response. 
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(a)                                                                 (b) 

Figure 6-17.  Interdependent network response for: (a) CL and (b) Ie on CL 

 

Similar results are observed for the service flow reduction, SFR.  Figure 6-18 

shows the response of the networks with various strengths of coupling, and its 

interdependent effects.  It is noticeable that the interdependencies are significant for a 

larger portion of the removal fraction range.  Since the requirements for optimal flow 

distribution induce a widespread utilization of all network elements, the 

interdependencies are significant almost up to the point in which the network is going to 

completely break down. 
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(a)                                                                 (b) 

Figure 6-18.  Interdependent network response: (a) SFR and (b) Ie on SFR 

 

The number of fragments in which the network breaks displays the same trends of 

the SFR response metric (Figure 6-19).  The interdependent effects remain active well 

above mild removal fractions.  This is because as the network partitions into islands due 

to vertex removal, any node becomes more likely to disconnect.  Additional disturbances 

coming from the interaction lead these nodes to eventual failure.      
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(a)                                                                 (b) 

Figure 6-19.  Interdependent network response: (a) Nf and (b) Ie on Nf 
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To complement the information provided by the fragmentation patterns of the 

networks, Figure 6-20 and Figure 6-21 present the reductions of the network order, n, and 

the average order of the fragments without counting the largest one.  Interdependencies 

reduce the order of the largest cluster.  The interdependent effect, Ie, is significant for a 

substantial portion of the fragmentation removal range.  The two plots suggest the 

following: for small removal fraction the preferred failure mode of interdependent 

networks consists of multiple fragmentations, where the distribution of the order of the 

clusters is highly skewed.  This means that most of the fragments are small n < 2, with 

the exception of one that tries to keep a maximum size ~ nW—the original water network 

order.  The implications of this observation can have a large impact in devising 

consequence minimization actions that take advantage of this well behaved largest cluster.  

Speed of recovery is a function of the ability to reconnect the entire network.  The 

backbone for this reconnection is the maximum order cluster. 
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(a)                                                                 (b) 

Figure 6-20.  Interdependent network response: (a) nc and (b) Ie on nc 
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(a)                                                                 (b) 

Figure 6-21.  Interdependent network response: (a) <nr> and (b) Ie on <nr> 

 

A final response metric for monitoring interdependent response is the average 

vertex degree of the entire network, d(G).  Figure 6-22 shows that the overall vertex 

degree diminishes faster in the presence of interdependencies.  These effects are felt for 

the entire removal fraction range.  Every node counts and each removal preconditions 

more nodes to be depleted of its connections.  Additional disturbances induced by 

interacting systems simply exacerbate the incident edge count decrement. 

All monitored network response metrics, either those based upon topology or 

simultaneous topology and flow, show a common trend.  The strength of the 

interdependencies accelerates non-desirable properties in the networks.  These effects are 

bounded as expected by the independent and interdependent states (i.e., limiting values of 

the conditional probabilities of failure P(Wj|Pi)).  The effect of the interconnection is 

more significant for removal fractions < 50%.  However, some metrics that are closer to 

capturing physical processes within the networks, such as SFR, show significant 
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interdependent effects up to removal fractions of 80%.  The magnitude of the 

interdependency effect at their peaks was approximately 20% the maximum independent 

response.  This is a non negligible percentage, and it occurs where the fraction of 

removals is low < 20%.  This is precisely the range in which the networks operate, where 

common faults induce element removals which are small with respect to the network 

order n. 
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(a)                                                                 (b) 

Figure 6-22.  Interdependent network response: (a) d(v) and (b) Ie on d(v) 

 

Finally, it is consistently shown that the interdependent effect, Ie, for targeted 

disruption of one of the networks has little effect on the dependent network.  The claim is 

that the critical nodes for performance and structure of one network are not necessarily 

the same nodes in charge of transferring the flow at the interface between distinct 

networks. 
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6.2 LARGE SCALE PERTURBATION OF NETWORKS 

Rather than systematically removing one vertex at a time according to certain 

criteria to assess node importance this section deals with simultaneous disruptions over large 

portions of the networks.  Earthquakes provide the hazard context.  Every element of a 

networked system experiences different seismic demands depending on its geographical 

location and its intrinsic dynamic characteristics. 

 

6.2.1 Seismic vulnerability of network elements 

Each element of a networked infrastructure (i.e., a system) has an inherent 

vulnerability to seismic hazards.  These systems are in general composed of several 

subsystems.  For instance, a typical element of the power grid, such as an electric substation, 

contains several subsystems, parts and units, such as transformers, disconnect switches, 

circuit breakers, regulators, control equipment, and lightning arrestors.  Failure of any or 

several of these subsystems compromises the functionality of the entire substation.  Fault 

tree analyses, numerical simulations, and log-normal fits are tools used by researchers to 

estimate and describe the conditional probability of failure of network elements to seismic 

hazards.  These probabilities enable development of system fragility curves.  Similar system 

reliability approaches are followed to generate fragility curves for other network elements 

such as generation units and different voltage electric substations (i.e., high voltage > 

350kV; medium voltage, 350kV > voltage > 150kV; and low voltage < 150kV).  

Vulnerability of systems for other networks is established in analogous fashion.  Water 

distribution network elements include large (> 10 million gallons per day, mgd) and medium 
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(< 10mgd) pumping plants, elevated storage tanks (~ 2mgd), and brittle or ductile delivery 

pipelines.  Generic estimates of network element fragility relationships are available from 

various sources, for instance HAZUS-MH (Federal Emergency Management Agency, 

2005).  Most of the data for calibration of these damage functions comes from studies of 

network elements on the west coast of the United States where the seismic activity is larger 

than in the central/eastern part of the country.  Figure 6-23 displays the probability of 

exceeding either an extensive or complete damage limit states as a function of peak ground 

acceleration (PGA) for the major elements of a power grid.  Figure 6-24 displays the 

vulnerability for the essential elements of a potable water network.  The extensive damage 

limit state implies damage beyond short term repair, leaving the network systems under 

consideration as completely nonfunctional.  The complete damage limit state implies 

collapse of structures and failure of equipment. 
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Figure 6-23.  Fragility curves for power grid elements exceeding extensive damage 
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Figure 6-24.  Fragility curves for water network elements exceeding extensive damage 

 

Damage functions for buried pipelines without soil susceptibility to liquefaction, 

have empirical evidence that they follow power laws (i.e., linear trend in log – log scales).  

These functions usually estimate the rate of repair or expected number of repairs per unit of 

length as a function of hazard intensity.  The equation below shows a sample relationship in 

terms of peak ground velocity (PGV).  This empirical relation was developed by using post-

disaster data from past United States and Mexican earthquakes (O'Rourke and Ayala, 1993): 

 

252(PGV)
00010
1 .

rate ,
R =            ( 6-3 ) 
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where the repair rate, Rrate, corresponds to the number of repairs per kilometer of brittle 

pipelines, and PGV is in cm/s.  Repair rates are caused by two major damage mechanisms: 

breaks and leaks.  In general, 15 - 20 % of those damage mechanisms result in breaks or 

ruptures, while the rest represent leaks (Hwang et al., 1998).  The diameter of the pipelines 

ranges from φ = 0.15m to φ = 1.22m in order to include transmission and distribution links.  

This Rrate parameter is useful to characterize the probability of having pipeline ruptures 

because it allows estimation of the mean occurrence rate of breaks.  This characterization is 

done by introducing a spatial Poisson process to define the probability that the number of 

pipe breaks Br equals r within a given pipeline segment of length L: 

 

*LR
r

rate
r

ratee
L!

*LRrBP −==
)()(           ( 6-4 ) 

 

In this study, it is assumed that the occurrence of at least one break will impair the 

functionality of a pipeline segment.  Therefore, the probability of pipeline break occurrence 

simplifies to: 

 

*LR
rr

rateeBPBP −−==−=> 1)0(1)0(           ( 6-5 ) 

 

This equation when applied to all pipelines of a junction permits calculation of the 

failure of pipeline intersections given a PGV level of seismic hazard.  These intersection 

nodes are fundamental part of the topological characteristics of water networks according to 

the graph theory approach of this study.  In essence these junctions lump the incident 

pipeline fragilities.  Non-functionality or failure, Fv, of a junction, v, is reached when all 
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pipeline segments incident to v have at least one break.  This is analogous to the probability 

of failure as prescribed by the reliability of parallel systems:   

 

)...()(
)(21 vdvvvvf FFFPFPP ∩∩∩==             ( 6-6 ) 

 

where the vertex degree, d(v), corresponds to the maximum number of incident segments of 

the intersection under consideration.  This relationship, along with the fragility curves of 

Figure 6-23 and Figure 6-24, fully characterize the vulnerability of fundamental constitutive 

subsystems and parts of power and water networks.  Other network elements exist, but the 

ones already introduced (e.g., electrical substations, pipelines, tanks, and pumps) are 

sufficient to characterize the simplified power and water networks of Shelby County, TN. 

 Figure 6-25 presents samples of generic pipeline junction fragility curves for a 

nonfunctional damage state DS (i.e., at least one break per pipeline segment).  The curves 

are shown for a range of typical topological parameters of main pipes of water distribution 

systems (e.g., average pipe length and average vertex degree).  The water network used in 

this study has a vertex degree d(v) that ranges from 1 to 5, with an average of d(G) = 3.  

Also, pipeline segment lengths, Lvj, from vertex v to its jth immediate neighbors, vary from 1 

km to 15 km, with an average <L> = 6.9 km. 

 

135 



0 0.2 0.4 0.6 0.8 1 1.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PGV (m/s)

P
( A

t l
ea

st
 1

 b
re

ak
/s

eg
m

en
t |

 P
G

V
 )

d(G) = 2, <L> = 10 km
d(G) = 4, <L> = 10 km
d(G) = 2, <L> = 5 km
d(G) = 4, <L> = 5 km
d(G) = 2, <L> = 1 km
d(G) = 4, <L> = 1 km

 

Figure 6-25.  Generic fragility curves for brittle pipeline junctions as a function of PGV, 
average vertex degree d(G), and average pipeline segment lengths <L> 

 
 

6.2.2 Seismic hazard and independent network vulnerability 

In order to develop fragility curves for interdependent networked systems, it is 

necessary to evaluate the network performance under several levels of seismic hazard.  

Since the constitutive network elements are distributed over a large geographical area, the 

levels of seismic hazard to which they are subjected are different depending on their 

location.  Therefore, it is necessary to describe the temporal and spatial characteristics of 

the disturbance (i.e., hazard).  In the present study, PGA and PGV contours for Shelby 

County are established for several earthquake return periods using HAZUS-MH.  This 

hazard definition follows the probabilistic methodology proposed by the United States 

Geological Survey (USGS), (Frankel et al., 2002).  This methodology for the 

Central/Eastern United States uses parameters such as magnitude, distance and return 
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period to determine the contribution to the hazard from different seismic sources.  These 

sources include historical seismicity, large background sources, and specific fault sources.  

Figure 6-26 and Figure 6-27 present a sample of the seismic hazard in PGA and PGV for 

Shelby County, TN.  The maps display seismic hazard contours for a hazard rate 

consistent with a 10% probability of exceedance in 50 years.  The PGA and PGV 

contours are matched with the boundaries of the census tracts, and the main components 

of the water and power networks are displayed without transmission or distribution links 

for clarity. 

 

 

Figure 6-26.  Probabilistic seismic hazard for Shelby County, TN, in PGA 
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Figure 6-27.  Probabilistic seismic hazard for Shelby County, TN, in PGV 

 

The geographical distribution of PGAs and PGVs as the hazard propagates to the 

southeast portions of the county decreases relative to the maximum observed values in 

the northwestern part of the county.  This trend is similar for all return periods under 

consideration (i.e., 100, 250, 500, 750, 1,000, 1,500, 2,000, and 2,500 years).  The 

expected PGA and PGV values are recorded for each seismic hazard return period at the 

location of each network element.  Since the probabilities of each network element to 

exceed extensive or complete damage are conditioned on these PGA or PGV values, a 

Monte Carlo simulation routine is implemented to determine whether a particular 

network element fails or not.  Each element has a probability of failure associated with its 

location and dynamic characteristics.  This probability of failure is compared with a 

uniform random variable X ~ U(0, 1).  If the value of X is larger than the probability of 
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failure the element, then the element is removed.  This is done for all elements at every 

hazard level and repeated 10,000 times to determine the distribution of the response of 

the networks.  The performance of the network after each trial is measured by the 

connectivity loss, CL.  After the trials are completed for a particular hazard level, the 

proportion of all trials that exceed certain network damage state, DS (e.g., DS > 20% CL, 

DS > 50% CL, or DS > 80% CL) is the limiting probability of network failure given a 

seismic intensity value PGA or PGV.  This is done for various levels of PGA and PGV. 

The response data from the simulations leads to the development of fragility 

curves in terms of the CL response metric.  This parameter is chosen because of its 

compromise between computational complexity and ability to capture network flow 

distribution.  The worst-case complexity for CL and efficiency, E, is O(n2m), while the 

worst-case complexity for the more desirable SFR response is O(n2m2logU).  Also CL by 

rudimentarily combining topology and flow is more desirable than the topology-based 

network efficiency, E. 

Figure 6-28 presents a revealing plot for the complement cumulative distribution 

functions of the CL.  This figure shows that the CDFs for the water CL display different 

behavior depending on the hazard level (i.e., approximately 10%, 5% and 2% probability 

of exceedance in 50 years).  The behavior varies according to a power law for low PGA 

hazard levels, to a linear relation for medium PGA levels, to a logarithmic function for 

high PGA levels.  The effect of interdependencies induces an analogous behavior.  The 

curve for the water network at low seismic hazard, but with 100% interdependence with 

the power grid or P(Wj|Pi) = 1.0, highlights the potential for inducing extra fragility.  The 

CDF for the power CL at low seismic hazard levels is superimposed in the plot.  It 
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strengthens the notion that both network topology and network element vulnerability 

have a significant role on the performance of the system. 

The power grid proves to be highly vulnerable, despite being the backbone of 

modern productivity.  One of the reasons is that electrical substations which are 

composed of numerous vulnerable subsystems posses a steep fragility relationship.  Also, 

the order of its generation subset FP ⊆ GP is smaller, and its sparseness is higher as 

compared to the water network.  Power demand and generation have experienced a 

significant growth in the last 25 years, whereas, transmission lines (i.e., edges), growing 

at slower rates, have been forced to be used beyond their original design capacities.  

These factors have the effect of reducing the reliability of the system, and of generating 

the potential for massive blackouts due to transmission overload and subsequent 

cascading failures (Hauer and Dagle, 1999; United States Department of Energy, 2000). 

 

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Connectivity Loss

C
om

pl
em

en
t C

D
F 

of
 C

on
ne

ct
iv

ity
 L

os
s

W ater at 0.3g
W ater at 0.6g
W ater at 1.0g
W ater at 0.3g | Pw|p = 1.0
Power at 0.3g

Water

Power

 

Figure 6-28.  Complement of interdependent CDFs for the network connectivity loss, CL 
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The distributions of the CL for several hazard levels provide sufficient information 

to establish network performance levels.  Fragility curves for the networks can be 

established fitting the probabilities of exceeding specific limit states to a lognormal 

distribution.  Connectivity loss levels CL of 20%, 50% and 80% represent three limiting 

states to measure the ability of the network to function properly.  More precisely, they 

quantify, for different performance levels, the likelihood of the distribution nodes to 

decrease their capacity to be connected to generation nodes given a particular seismic 

hazard.  Figure 6-29 presents the fragility curves for the potable water infrastructure 

systems as a function of the maximum expected PGA in the area and expressed in term of 

their connectivity loss, CL.   
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Figure 6-29.  Fragility curves for the water infrastructure system as a function of CL 
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Figure 6-30 displays the relationships for the electric power grid.  The fragility of 

the power grid, and to some extent the fragility of the water network, reflect the response 

of a system that undergoes a phase transition: either functions or not.  Under disturbances, 

these transmission and distribution systems try to maintain their global functionality by 

maximizing the size of the remaining connected portions of the network.  As elements 

fail, this global functionality becomes more and more dependent on fewer links.  Once 

those few links are gone, the network suddenly fragments.  This phenomenon is also 

observed in the growth of abstract random graphs.  Figure D-1 in the appendices shows 

the phase transition in the number of connected of nodes as a function of the total number 

of edges.   
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Figure 6-30.  Fragility curves for the power infrastructure system as a function of CL 
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The next step is to construct system fragility curves after taking into account the 

effect of network interdependencies.  This is done by performing again the Monte Carlo 

simulation routines of element survival.  However, this time for every network element, the 

algorithm not only compares the probability of failure with a uniform random variable to 

decide if the element fails or not, but it also compares the strength of the coupling among 

interacting elements with another random variable.  This new uniform random variable Y ~ 

U(0, 1) is used to determine if the nodes need to take into account the effect of the nodes 

that condition their performance (i.e., when Y is less than the strength of coupling).  The 

strength of the coupling, denoted by the value pWj|Pi , corresponds to the conditional 

probabilities of failure of the interdependent adjacency matrix AW|P.  The following figures 

introduce a set of interdependent fragility curves.  They display the effect that seismic-

induced failures on the power grid have on the water distribution network.  Four different 

values of the strength of coupling, that is, the magnitude of the interdependence, are 

considered.  These values range from independence where P(Wj|Pi) = P(Wj) to complete 

interdependence where P(Wj|Pi) = 1.0.  Figure 6-31 shows the interdependent effect for a 

connectivity loss, CL = 20%.  Other performance levels are presented in Figure 6-32 for CL = 

50%, and in Figure 6-33 for CL = 80%. 
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Figure 6-31.  Interdependent fragility curves for connectivity loss CL = 20%  
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Figure 6-32.  Interdependent fragility curves for connectivity loss CL = 50% 
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Figure 6-33.  Interdependent fragility curves for connectivity loss CL = 80% 

 

These plots clearly show the increase in system fragility as the strength of 

coupling grows larger.  This effect is amplified as the monitored network performance 

level, CL, increases.  The median value of the fragility distributions decreases 

approximately 60% with respect to the median of the independent system at CL = 20%.  

The decrements in the median then become 65% and 70% with respect to the independent 

case for CL = 50% and CL = 80%, respectively.  The maximum interdependent effect in 

all performance levels is an astonishing Ie = 100%.  Accounting for interdependencies 

increases the complexity of the systems.  This adds new combinations to the possible 

failure modes, inducing a substantial increase to the overall infrastructure fragility. 

A peculiar aspect of these plots is that the marginal contribution of the value of 

network interconnectedness, pWj|Pi, is relatively small once the interdependencies exist.  

In other words, the leap from the independent state (i.e., P(Wj|Pi) = P(Wj)) to a small 
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strength of coupling (e.g., P(Wj|Pi) = 0.2) is larger than from a small strength of coupling 

to complete interdependence (i.e., P(Wj|Pi) = 1.0).  This happens for all the monitored 

performance levels, CL.  The explanation lies in the insistence that the transmission and 

distribution systems maintain functionality via widespread utilization of its elements.  

After a sizeable perturbation, the remaining connected portions of the network tend to 

remain in a single cluster.  This cluster becomes the backbone of the network, but at the 

same time it is held together by lone cut vertices—nodes whose removal separates the 

network into isolated components.  Introducing any additional perturbation, such as the 

one induced by interacting with other systems, results in an increased likelihood of losing 

those nodes that maintain the network functional.  Their absence can suddenly fragment 

the network and increase the overall infrastructure fragility.   

 

6.3 SUMMARY 

Analysis of the response of networked systems requires monitoring of their 

performance parameters as a function of the intensity of disruptive effects.  These 

disturbances are either of internal or external nature.  Four strategies for systematic vertex 

removal are considered: random removal, vertex degree removal, vertex betweenness 

removal, and vertex transshipment flow removal.  These strategies range from simply 

picking any vertex according to a uniform distribution to a relying upon the actual role of 

each node to receive and transfer flow under optimality, so that supply and demand 

constraints are satisfied.   

Each of the example networks of Shelby County, TN, networks (i.e., electric 

power, and potable water) is subjected to systematic disruption of their vertices.  Both 
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networks exhibit similar response as the fraction of removed elements increases.  

However, the water network displays better performance than the power grid for targeted 

removals.  The opposite occurs for random removals.  The reason for that type of 

response lies in the vertex degree distribution.  The more egalitarian degree distribution 

of the water network (i.e., Poisson with small variation) induces the observed behavior. 

Another interesting observation is that all network response parameters are 

bounded by the evolution of the response to random removals and vertex degree 

removals.  Additional topological metrics that monitor the physical breakdown of the 

networks also display the same bounds.  The response parameters that combine topology 

and flow are within the stated bounds.  However, the service flow reduction parameter, 

SFR, introduced in this work to capture real flow transfer within networks, has a tendency 

to remain close to the response to random vertex selection.  This indicates that optimal 

flow requires the utilization of a widespread set of paths to accomplish its distribution 

tasks.  Hence, no specific node is essential for providing the intended function, but rather, 

every node has a similar share of responsibility, mimicking a random selection process. 

The fact that all network response parameters are bounded by the random and the 

targeted vertex degree removals calls for a deeper investigation.  The analysis of the 

vertex property distributions contains clues to solve the problem.  The shape of the tails 

indicates where to find the special nodes if a systematic removal is planned.  Vertex 

degree removals are more damaging because they result in a few nodes with more 

connections than others which, when removed, can impair network functionality at a 

faster rate.  Random removal, on the other hand, has less chance of picking these few 

special nodes.  Main descriptors of the vertex property distributions confirm these 
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observations.  Skewness and kurtosis of the sample data capture the tail behavior that 

leads to the rank-ordering of vertices for systematic removal. 

The response of the networks accounting for their interdependencies is also 

investigated.  Each performance metric is examined for several strengths of coupling 

between networks.  In general, the strength of the interdependencies accelerates non-

desirable properties of the networks.  All network response metrics are bounded by the 

independent and the fully interdependent strengths of coupling. 

Interdependencies are more pronounced when the power and the water network 

are subjected to systematic random removal.  This work introduces a parameter to capture 

the effect of interdependencies with respect to the independent response.  The 

interdependence effect, Ie, shows that networks have their interacting peak at removal 

fractions less than 40%.  This marks the range where most networks operate under 

normal and mildly abnormal conditions.  Removal fractions beyond 40% are reserved for 

catastrophic events such as cyclones or earthquakes.  When the removal in the power 

network is strategic, that is, it is based upon vertex degree, rather than random, the 

interdependent effect decreases.  This defies the expected following outcome: the more a 

system is initially disturbed, the more the detrimental effects are transferred to its 

interacting systems.  This does not happen all the time.  The claim is that the critical 

nodes for performance and integrity of one network are not necessarily the same nodes in 

charge of transferring the flow at the interface between distinct networks. 

 The response of the networks is also investigated for seismic hazards.  In this case 

their performance is characterized by the connectivity loss, CL.  This response parameter 

shows a distribution that follows different regimes depending on the levels of the seismic 
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hazard.  It goes from power law, to linear, to logarithmic functional forms, as the 

intensity measure increases.  The fragility of the infrastructures as a function of the 

fragility of its constituent subsystems tends to follow a step function.  It resembles a 

phase transition where there is a critical value below which failure does not occur, but 

above which it does. 

The effect of the interdependencies is accounted by explicitly checking the status 

of each network element for seismic failure and for interacting effects.  The connectivity 

loss parameter is recorded at several seismic hazard return periods.  Several iterations are 

performed within each level.  This provides the information for construction of 

interdependent fragility curves.  Each interdependent fragility curve presents the effect 

that increasing the strength of coupling has on failure likelihood.  This interdependent 

effect on the response occurs as a sudden phenomenon.  Once the interdependency exists, 

the response is highly affected.  However, increasingly larger values of the strength of 

coupling, though influential to the response, do not affect the network performance as 

dramatically as they do from independence to small interdependence. 

The explanation for this sudden transition (which is also applicable to the sudden 

transition observed in the steep response of each infrastructure) is related to the 

fragmentation patterns of the networks.  As the number of removed elements increases, 

the network fragments into several disconnected clusters.  Among those clusters, there is 

one whose order is larger than the average order of the remaining clusters.  That large 

cluster becomes the backbone to hold the network as a single entity.  However, there is a 

critical moment in which a few nodes become essential to maintain the structure of the 
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system—or cluster.  If those nodes are absent, the network rapidly partitions into several 

small islands. 

The insights gained about interdependent failure mechanisms, response regimens, 

and role of nodes for topology and flow traversal, provide a strong basis for devising 

effective mitigation actions that are discussed in the following chapter.        
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CHAPTER 7 

7ENHANCEMENT OF NETWORK FUNCTIONALITY 

Accounting for the interdependent effects in the response of networked systems 

accelerates degradation of their performance as the intensity of the disruption increases.  

If the networks are subjected to systematic removal of critical elements, their gradual 

deterioration has a marked peak on the interdependent effects—the absolute difference 

between the interdependent and independent response, normalized by the maximum 

observed independent response).  Large extent simultaneous removals, such as the ones 

induced by earthquakes, proved that the interdependent effect can be as large as 100%.  

These significant effects on the response require devising mitigation strategies to control 

the propagation of disruptions within and across several infrastructures.  However, 

interacting infrastructures are complex entities where the increasing intractability of 

disruption propagation obscures the identification of key network elements to enhance 

overall infrastructure response. 

This chapter explores the effects that minimal interventions to enhance the 

performance of one infrastructure have on the response of another infrastructure.  In 

particular, few elements of the power grid are improved either by lowering their 

centrality to flow traversal—decongesting them—or by reducing their seismic 

vulnerability.  The effects of power grid enhancement on water network response are 
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monitored.  Results reveal that key elements for power grid performance are not 

necessarily the key elements for maintaining multi-infrastructure flow transfer.  The 

interface elements between infrastructures require their inclusion into the mitigation 

action plan.  This implies that an effective mitigation action policy necessitates 

evaluation of the role that each network element of each infrastructure has in ensuring 

connectivity, facilitating flow traversal, and maintaining flow transfer at the interfaces. 

 This chapter introduces a straightforward interdependent rank-ordering procedure 

to account for the various responsibilities of network elements.  It is conjectured that 

implementing mitigation actions on these elements will provide the necessary settings for 

propagating beneficial effects throughout the networks.  This propagation is expected to 

occur the same way as cascading of detrimental effects spreads.   

Finally, this chapter discusses a tool that can potentially be used to capture the 

required conditions for widespread propagation of disruptive effects among 

interdependent systems.   

 

7.1 MINIMAL INTERVENTIONS 

Evaluation of the effectiveness of competing mitigation actions on infrastructure 

systems requires exhaustive exploration of available alternatives.  The same analysis 

approach used for estimating network performance after disruptions can be utilized to 

monitor network improvement after implementation of mitigation actions.  Common 

methods for effective consequence minimization after disruptions rely upon optimization 

techniques.  Researchers look for the optimal mitigation alternative to improve network 

service right after any disruption takes place.  Optimal solutions are searched where they are 
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needed the most: in areas with high expected number of victims (i.e., fatalities and injuries).  

These areas are in general the same with low lifeline service reliability (Vanzi, 2000).  Other 

studies focus on intensive search for the critical retrofit strategy.  That strategy must result 

from trying an exhaustive set of retrofit alternatives, and selecting the one that produces the 

best possible improvement (Latora and Marchiori, 2005). 

This study attempts to explore mitigation alternatives that simultaneously account 

for improvements in network flow patterns and in network topology stability.  However, 

considering just topology, grid-like systems have a more redundant structure than sparse 

systems.  Cycles within the network induce resilient response.  Therefore, the retrofit 

strategy to first explore defines mitigation actions that locally modify network topology by 

adding cycles—in this case bypasses.   

The objective is to induce a less vulnerable flow regime in network performance as 

measured by the connectivity loss, CL.  The location for re-meshing the network is obtained 

from the vertex betweenness, Bv, rank-ordering.  This sorting criterion assesses the amount 

of load or total flow that passes through the nodes at an unperturbed network state.  The 

vertices to select for lessening their congestion are those where more than 65% of all 

possible flow paths pass through.  Flow paths go from the generation set, F, to the 

distribution set, Q.  For the power grid, being one of the core enabling systems for network 

interdependencies, its intact flow state indicates that elements P2, P5, and P6 have the highest 

betweenness (Figure 7-1).  Hence, these nodes are selected for remedial actions.  The 

fundamental premise is to create bypasses around the most heavily loaded nodes to 

decongest them.  Those new decongestion edges are constrained in their length due to edge 

expansion limitations.  Growth of the United States high voltage transmission lines for the 
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2002 - 2011 period is projected to be 5% of the existing line-miles, despite the growth in 

demand of 20% (Bush, 2003). 

Approximately 17% of the transmission lines of the power grid of this study are high 

voltage lines (e.g., > 350 kv).  This leads to exploration of two network growth scenarios 

(i.e., bypasses), consistent with observed power grid growth trends.  The first scenario 

corresponds to approximately 10 km (i.e., 5% growth) of new lines around element P2 and 

partially around P5; and the second scenario is approximately 40 km (i.e., 20% growth) of 

new lines around elements P2, P5, and P6.  Figure 7-2 presents an ideal bypassing 

mechanism to lessen the flow transfer burden on congested nodes.   

 

 

Figure 7-1.  Congested nodes in the power grid as identified by their betweenness, Bv 

 

154 



 

Figure 7-2.  Ideal bypassing of congested nodes 

 

Local mitigation actions increase the redundancy of networked systems.  This is 

because new edges around congested vertices introduce additional cycles, which diversify 

the path portfolio used in flow transfer.  To test this observation the network is subjected to 

a seismic hazard of 10% probability of exceedance in 50 years specified by ground motion 

contours.  Figure 7-3 presents the impact of bypasses on the power grid for two transmission 

line growth levels.  The response improves but not as significantly as expected.  The steep 

fragility curves of the power grid have the explanation: for the seismic hazard under 

consideration (i.e., 475 year return period, which induces a PGA ~ 0.30g), the vulnerability 

of electric substations prevents new edges to be more effective, because failure occurs 

prematurely at most network nodes.  This calls for seismic retrofit of vertices. 

The effect of seismic retrofit is reported in the same figure.  Improvements are 

introduced to the three identified vertices P2, P5, and P6, which are high voltage electrical 
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substations.  The fragility of an electrical substation can be reduced by providing adequate 

anchoring of its various subcomponents.  It is assumed that the mean and the standard 

deviation of the LN (PGA) increase by 15% after anchoring of their subsystems.  This 

results in a new median PGAm = 0.25, and a new dispersion ξ = 0.4, as compared to the 

original PGAm = 0.20, and ξ = 0.35 of Figure 6-30.  Network improvements are more 

significant when seismic retrofit is implemented.  However, this result provides an unfair 

view on the significance of node bypassing.  For more modest disruptions such as lighting, 

vandalism, or aging, the nodes involved in the disruption can be effectively avoided through 

the new bypasses.  They enhance local absorption of the perturbation.  They contain it in a 

space that does not compromise large portions of the system. 
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Figure 7-3.  Impact of growth and seismic retrofit on power grid response 
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Power network growth for the seismic perturbation under consideration, is not 

sufficient to propagate visible benefits to the water network (Figure 7-4).  The performance 

of the water system is reported when the interdependency is set to be P(Wj|Pi) = 0.5.  If the 

power grid is retrofitted, then the effects on the water network response are more evident.  

This behavior of the water network is explained by the marginal contribution that 

construction of bypasses has when the networks are subjected to seismic hazards.  However, 

for small rerouting needs, bypasses provide the solution.  This indicates that a good 

mitigation policy must combine reduction of the vulnerability to external hazards, and 

alleviation of the internal congestion around funneling nodes.   
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Figure 7-4.  Impact of power grid growth and retrofit on water network response 

 

An approach to better reduce the fragility of interdependent networks requires 

prioritization of the mitigation actions based upon a vertex rank-ordering that accounts for 
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the importance of each node to their multiple roles, and their susceptibility to multiple 

hazards.  Each node has a place in network connectivity, flow traversal, flow transfer at the 

interface with other infrastructures, and network vulnerability.  This concept can be 

generalized as a weighted average of vertex importance.  If the possible roles that a node, v, 

can take for maintaining interdependent network performance are denoted by H = 1, 2, …, 

h, then the formulation of the interdependent rank-ordering of a vertex, IROv, follows: 

 

i

h

i
iv va

h
IRO ∑

=

=
1

1              ( 7-1 ) 

 

where ai is the weighting factor given to each criterion of node importance.  Sorting the 

IROv of all v ∈ V(G) in ascending order provides a simple prioritization list to implement 

mitigation actions.  Current research efforts are focused on finding optimal edge growth, 

independent network vertex retrofit, and interdependent interface vertex retrofit.  This 

ultimate strategy is expected to propagate through the networks as an inverse avalanche in 

the same way some disruptions can generate cascading failures after exceeding a particular 

threshold of stability (Callaway et al., 2000; Watts, 2003). 

 

7.2 CASCADING SUSCEPTIBILITY 

The description of network response to external disruptions and to mitigation actions 

has been done in two different ways.  One way systematically removes vertices according to 

a rank-ordered set which is updated after every removal.  The other way simultaneously 

removes network nodes whose probability of failure, given certain hazard intensity, is 
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exceeded.  The analysis of network response using these methods has provided valuable 

insights about their structure and function.  However, looking ahead, an additional trend for 

analysis of complex systems may continue gaining acceptability.  This trend relies upon 

definition of governing rules for each element of the interacting systems.  These rules 

monitor the state of the nodes and update their state according to the conditions of their 

environment.  If there is a flow overload, a node can absorb the event, or fail and let its 

neighbors to handle the peak.  Sometimes the neighbors contain the event, but sometimes 

they cannot and the process propagates as an avalanche (Watts, 2002).   

In the context of interdependent infrastructures, the overall state of their elements 

can be monitored by using few influential parameters.  For instance, two network generic 

descriptors are the average susceptibility of failure (i.e., vulnerability), and the average 

importance for network functionality (i.e., centrality).  As the intensity of the disruptions 

increases, or as the strength of the coupling among infrastructures increases, the networks 

show a critical value below and above which their state is completely different.  This sudden 

transition is expected if the interdependent network problem is formulated as a set of 

interacting agents whose decisions are determined by the actions of their neighbors 

according to simple threshold rules.   

Figure 7-5 depicts what would be a tool to determine the cascading susceptibility of 

interacting networks.  Its axes represent average descriptors of the state the network.  At any 

given time, if a disruption is induced, the interacting rules will allow the network to settle 

into another state.  Each new state of the network will only depend on its current state—

resembling a Markovian process.  Exhaustive exploration of possible network states will 

indicate the conditions that lead to unstoppable large scale avalanches. 
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As an illustration, if the network is at a current state P, any perturbation able to 

induce an increase in average centrality or vulnerability will leave the network in a state that 

is closer to a precondition for cascading.  Insights gained from this analysis will permit 

devising mitigation actions that inhibit the conditions that favor cascading development.  

Consequence minimization will be more effective since most of the disruptions would be 

managed at local scales. 
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Figure 7-5.  Conditions for interdependent network cascading failures 

 

7.3 SUMMARY 

The decision about which network elements should be the object of mitigation 

actions requires looking at the multi-infrastructure system as a single complex entity.  For 
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the problem of seismic hazards, if mitigation actions are devised considering just the 

importance of the nodes in terms of their role to facilitate flow (i.e., lessen congestion), their 

impact is marginal.  If seismic retrofit actions are implemented, then as expected, the effects 

of mitigation are more significant.  However, if the external hazard were a less disruptive 

and common event, such as lightning, vandalism, or simple malfunctioning, decongesting 

loaded nodes with bypasses will allow the networks to effectively absorb the perturbation at 

a local scale. 

Since the response of a network depends on the integrity of nodes and edges, 

keeping the most valuable elements will result in a network that, despite disturbances, is still 

able to provide its service.  The importance of the nodes depends on their role for 

maintaining the topology of the system, for facilitating flow traversal, and for being 

instrumental in flow transfer at the interface with other networks.  The contribution of the 

nodes to overall infrastructure vulnerability due to their fragility to external disruptions is 

another importance factor.  This means that selecting nodes for mitigation actions in 

interdependent systems requires accounting for their multiple responsibilities. 

This study introduces a simple prioritization scheme.  The interdependent rank-

ordering, IROv, of a vertex is defined as the weighted average of the ranking of each node in 

the various importance criteria.  The nodes with the smallest IRO will be preferred for 

initiation of mitigation efforts.  The claim here is that a cascade of beneficial effects can be 

propagated within the networks, in the same way that detrimental effects propagate as an 

avalanche. 

More sophisticated mitigation actions require development of agent-based 

simulations.  In these simulations, each node is an entity with governing rules whose 
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decisions are determined by the actions of their neighbors.  Any disruption is either 

absorbed locally, or it grows and propagates throughout a significant portion of the 

networks.  Inhibiting the preconditions for cascading failure will represent the most 

desirable mitigation policy. 
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CHAPTER 8 

8CONCLUSIONS AND FUTURE RESEARCH 

The understanding of the structure and function of interdependent networks 

requires further exploration of the fundamental mechanisms that shape and condition 

their evolution.  The topology of most infrastructures has distinct features that set them 

apart in terms of their ability to handle internal or external disruptions.  The continuous 

functionality of critical infrastructures is taken for granted by the public.  However, these 

networks are undergoing massive growth within their own systems, and across other 

systems.  Interdependencies result in more efficient lifelines, but at the same time, the 

state of each network becomes more dependent on the state of other networks.  This 

global interdependence creates a less tractable complex entity, which has the potential to 

induce unforeseen failure modes.  The occurrence of devastating events efficiently 

propagates its detrimental effects through the network of physical infrastructures that 

sustain modern societies.  Any infrastructure failure directly threatens the economy, the 

governance, the security, and the confidence of the population.  

This chapter synthesizes the lessons learned from the exploration of the 

performance of interdependent systems.  It indicates the significance of the work and its 

potential applications.  Also, this chapter outlines some of the research tasks required to 

continue advancing the study of engineered networked systems. 
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8.1 CONCLUSIONS 

Infrastructure systems are entities whose networked nature makes them suitable 

for rigorous mathematical analysis.  Their description relies upon tools from graph theory, 

optimization, statistical physics, and structural engineering. 

One of the first tasks to understand networks is to measure their properties 

according to their adjacency matrix—the array that describes which nodes are connected 

to others.  This study describes properties that provide information about their global 

connectivity, local clustering, and overall shape.  It also introduces a new parameter that 

allows quantification of the ability of the networks to reroute flow when there are 

localized perturbations.  The parameter is referred to as the redundancy ratio, RR.  

Networks that belong to the class of transmission and distribution of flows (e.g., electric 

energy, potable water, natural gas, and oil) exhibit redundancies close to the ones 

inherent in perfect square grids, where RR ~ 0.20.  Networks with abundant cycles—flow 

paths that start and end at the same node—exhibit more desirable properties, including a 

higher RR.  Complete graphs—networks where every node has a direct connection to 

every other node—have a redundancy ratio of RR = 1.0. 

In addition to the study of parameters that aid in the characterization and 

classification of networks according to their topological properties, there are parameters 

that help with the differentiation of the relative importance of network elements.  Their 

rank-ordering ranges from purely topological criteria, to criteria that simultaneously 

account for topology and optimal flow patterns.  This study introduces one criterion that 

captures optimal flow traversal within networks.  It is referred to as the vertex 
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transshipment flow, Wv.  It measures the ability of the nodes to facilitate flow transfer to 

meet supply and demand constraints.  This parameter closely reproduces real flow 

phenomena, such as systems that are governed by physical laws of circuits in the case of 

power grids, or conservation of mass in the case of water networks. 

Another set of metrics of interest are related with network performance.  These 

parameters measure if the networks are able to provide their intended service.  

Additionally, these performance parameters can rely on various levels of input data, as in 

the previous case when the importance of the vertices of the networks was defined.  Some 

only require topological information, while others necessitate more complete input data 

sets—including capacities, costs, supply, demands, etc.  This study proposes a parameter 

that captures the ability of the network to meet the flow demands of its end-users.  This 

parameter is referred to as the service flow reduction, SFR, of the networks.  This 

parameter can be directly related to the impact on the socio-economic apparatus in which 

the networks exist.  This parameter can be measured in any infrastructure network, 

highlighting its usefulness for generic applications and for interdependent network 

analysis.  Also, despite its more demanding input data set, it is still feasible for computer 

applications.  In fact all of the parameters introduced in this research have polynomial-

time algorithms—where the time to solve the problem scales as a polynomial function of 

the size of the problem, as opposed to other problems whose solution algorithms scale 

exponentially.  This makes it desirable for integration with software development.        

The availability of certain parameters to characterize network properties and 

response calls for the development of models that reproduce properties observed and 

measured in real systems.  This study introduces a transmission and distribution network 
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model denoted as the TD model.  The model is a realization from an aperiodic 2-lattice 

template with maximum vertex degree ∆(G) = 8—a square grid with bypasses between 

all nodes.  The properties of real power and water networks are well reproduced by the 

TD models.  This provides a tool for abstract exploration of the performance of 

transmission and distribution networks—in the absence of complete data of real systems.   

It also provides the basis for the study of the impact of network size and order on their 

measured properties. 

The explicit modeling of network interdependencies poses a challenge on the 

selection of the parameters that capture the phenomenon.  There are several dimensions 

that induce coupling between infrastructure systems.  They range from the environment 

in which the network operates, to the quality of the labor force that maintains and control 

their functionality.  This study proposes a framework to more objectively capture the 

interdependence among infrastructures.  Most of the interconnectedness is captured by a 

single entity referred to as the interdependent adjacency matrix, AG|G’.  This matrix 

accounts for the location of the interdependency, the direction of the interaction, and the 

representation of the strength of coupling, PGj|Gi’, which can be tuned from independence 

to interdependence.  Geographical immediacy is the key aspect for defining the locations 

where the interfaces of the networks interact.   

The response of networked systems is investigated for two types of disruptions: 

systematic removal of network elements—one at a time—and simultaneous removal of 

several elements.  Systematic removals include deletion of elements according to their 

importance in terms of connectivity, flow traversal, and optimal flow distribution.  

Random selection is also included to represent spontaneous failure of elements.  The 
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response of the networks to these disruptions indicates that the evolution of the 

detrimental effects—as a function of the amount of removed elements—is bounded by 

the random removal and the removal that targets the nodes with the largest vertex degree, 

d(v).  All response metrics, including topological measures that help in deciphering 

network failure modes, display the same response bounds.  More interestingly, the 

response of real systems, as captured by the transshipment flow, Wv, is closer to the 

response exhibited by the random removal strategy.  This implies that flow patterns 

within the networks make use of a highly diverse portfolio of paths to accomplish their 

intended function.  The explanation of these observations is contained in the tails of the 

distribution function that describe the properties of the vertices.  Differences between 

power and water network response are also attributable to their vertex property 

distribution—in particular to their vertex degree distribution. 

Monitoring the response to systematic removal of interdependent networks also 

reveals the presence of performance bounds.  The stronger the strength of coupling 

among networks the faster the degradation of their desirable properties.  Also, the 

removal strategies are bounded by the random selection and the targeted vertex degrees.  

The quantification of the effect of interdependencies on network response reveals that 

their effects remain strong throughout most removal fractions.  These effects are 

quantified using the interdependent effect, Ie, parameter, which measures the relative 

importance of the differences between interdependent and independent responses.  The 

peaks of the Ie are always first observed at removal fractions less than 20%, precisely 

where the networks operate during normal and mildly abnormal conditions.  Another 

interesting outcome of the interdependent effects is that when the removal of the 
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elements of the independent network is strategic (i.e., focusing on the important 

elements) then the effect on the dependent network is smaller than in the case where the 

removal of the independent network elements is at random.  This contradicts the expected 

result: if one systematically disrupts a network in the most damaging possible way, one 

expects to see larger effects on other networks.  The explanation of this contradiction is 

simple.  The nodes that are critical to maintaining the integrity of one network are not 

necessarily the nodes that maintain the flow at the interface between networks. 

The response of the networks to widespread initial failure, as induced by 

earthquakes, shows a particular type of behavior as the intensity of the hazard increases.  

Their observed probabilistic response resembles a step function.  The response of these 

systems is monitored as their individual elements fail according to their fragility 

functions, which is an example of a random method.  Consequences include an increase 

in the intensity of the hazard, and a simultaneous decrease in the amount of nodes and 

links in the network.  There is a critical moment in which some of the remaining elements 

have the responsibility of connecting various fragments of the disrupted network.  If they 

are absent, the entire network collapses.  Such response resembles a phase transition 

which is a sudden change in state.  This same sudden response is observed if the 

networks are either independent or interdependent.  The effect of the strength of coupling 

also induces a sudden chance in state.  The change in the response of the systems 

between independence and low interdependence is larger than the change between low 

strength of interdependence and complete interdependence.  However, in both cases their 

relative impact on the independent response is substantial.  This information is captured 
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in the interdependent fragility curves, which are introduced as a tool to enhance current 

loss estimation and risk assessment methods. 

The regime at which the networks respond to seismic hazards changes as the 

intensity increases.  As an example, the water network at low peak ground acceleration 

(PGA) exhibits a polynomial decay (i.e., linear in log-log scale) in the complement of the 

response parameter’s cumulative density function (CDF).  At a medium PGA, the 

complement of the CDF exhibits a linear decay, and at a high PGA, the complement 

distribution exhibits a logarithmic decay.  The power grid shows logarithmic decays for 

all PGA values.  This is due to the high fragility of its critical elements such as high 

voltage substations.   

The insights gained about response distributions, the importance of elements, and 

the interdependent effects can be utilized to devise effective mitigation actions.  These 

minimal interventions have the potential to induce significant improvements in network 

response.  This study explores the ability of mitigation actions to decrease critical nodes’ 

congestion and seismic vulnerability.  Both are useful depending on the nature of the 

disruption.  Small disruptions are controlled with bypasses and large disruptions are 

contained if their elements are less fragile.  The results indicate that an effective 

mitigation policy should account for the simultaneous importance of every node to 

maintain network connectivity, to facilitate network flow, to be instrumental in flow 

transfer between networks at their coupling interfaces, and to reduce overall vulnerability.  

A method for interdependent rank-ordering is proposed.  This study claims that by 

identifying the necessary interdependent elements, future corrective measures will ensure 
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propagation of benefits during their life cycle and throughout the same networked 

medium in which cascading failures propagate.  

Finally, the search for mitigation actions also calls for more sophisticated 

representation of the transient dynamics of networked systems.  Agent-based simulations 

may provide the tools to identify the conditions that lead to cascading failures.  Having 

identified those conditions, one can take preventive actions which will ultimately ensure 

no widespread failure within or across infrastructures. 

 

8.2 APPLICATIONS AND FUTURE RESEARCH 

Immediate applications of the outcomes of this research are related with the 

enhancement of loss estimation methods.  The algorithmic structure of the network 

characterization and response parameters is suitable for efficient software implementation.  

These methods will aid city planners, public officials, and utility owners in determining 

the best mitigation policies so that the response of their critical infrastructures is 

improved at the interdependent level.  Results from an interdependent analysis provide 

clues about the topological deficiencies of the networks, about the characteristics of their 

interfaces with other networks, and about the expected magnitude of the interdependent 

effects.  This type of analysis can also shed some light on common network failure modes, 

and on how to better plan network expansions. 

Other applications, outside the earthquake engineering field, include 

implementation of the interdependent formulation in the design of expert systems to 

control the performance of military ships.  These systems are finite entities where several 

infrastructures coexist, interact, and share the same spatial domain. 
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The understanding of complex systems is at its infancy.  From the ongoing 

development of the present research several issues have arisen as topics for more in-depth 

study.  A selected list of research activities include: 

 

• development of models to capture the topology of telecommunication networks; 

• investigation of the scaling of network response to disruptions—effect of network size 

on its functionality; 

• exploration of network growth patterns to induce resilient architectures; 

• development of interdependent systems using artificial network architectures (e.g., TD 

models, and telecommunication models); 

• development of models to explore cascading susceptibility within interdependent 

infrastructures; 

• investigation of reliability metrics to describe the likelihood of failure of 

interdependent systems subjected to multiple hazards and facilitate development of 

decision support tools for consequence minimization; 

• development of models that capture the transient dynamics of the constituent 

networks; 

• study of the impact of network state of operation on interdependent formulation; and 

• formulation of the interdependent adjacency matrix as a multi-graph problem. 

 

 

 

 

171 



 

APPENDIX A: COMPUTATIONAL COMPLEXITY 

An algorithm is a step-by-step procedure for solving a problem.  An instance is a 

special case of a problem with data specified for all the problem parameters.  The 

different steps an algorithm typically performs are (1) assignment steps (e.g., assigning a 

value to a variable), (2) arithmetic steps (e.g., addition, subtraction, multiplication and 

division), and (3) logical steps (e.g., comparison of two numbers). 

A widely used approach to measure the performance of an algorithm is referred to 

as the worst-case analysis (Ahuja et al., 1993).  This analysis, independent of the 

computing environment, provides an upper bound on the number of steps—and time—

that a given algorithm can take on any problem instance.  To express the time 

requirement of an algorithm, it is necessary to define a measure of the complexity of the 

problem instances.  It is possible to express such a measure as a function of the problem 

size—which can be directly related to the network parameters n (i.e., order), m (i.e., size), 

C (i.e., largest cost), and U (i.e., largest capacity).  A time complexity function for an 

algorithm is a function of the problem size and specifies the largest amount of time 

needed by the algorithm to solve any problem instance of a given size.  This function 

measures the rate of growth in solution time as the problem size increases. 

The “big O” notation has become common in computational mathematics, and 

replaces the lengthy expression “the algorithm required cnm time for some constant c” by 

the equivalent expression “the algorithm requires O(nm) time.”  This means that the big 
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O notation indicates only the most dominant term in the running time, because for 

sufficiently large n, terms with a smaller growth rate become insignificant as compared to 

terms with a higher growth rate.  In essence, this complexity measure states the 

asymptotic growth rate of the running time.  Currently the scientific community considers 

a network algorithm “good” if its worst-case complexity is bounded by a polynomial 

function of the problem’s parameters (i.e., a polynomial function f n, m, log C, and log U).  

Any such algorithm is said to be a polynomial-time algorithm.  An algorithm is said to be 

an exponential-time algorithm if its worst-case running time grows as a function that 

cannot be polynomially bounded by the input length.  Some examples of exponential time 

bounds are O(nC), O(2n), O(n!), and O(nlog n). 

A simple example to illustrate this complexity measure is the problem of 

changing the values of the non-zero elements of any asymmetric adjacency matrix.  This 

problem will take time O(m), because the assignment has to be done m times, where m 

represents the number of non-zero entries—or edges.  Regarding network 

characterization parameters, the algorithm to calculate the mean distance L of a network 

takes time O(nm) for an undirected network of n vertices and m edges (Ahuja et al., 1993).  

This is accomplished by running n times a breadth-first search algorithm.  This algorithm 

starts at a particular node v, and from it step-by-step visits its neighbors, then the 

neighbors of its neighbors, and so on, until every edge and vertex is visited once, and 

scores are kept for the shortest distances.  This operation takes time O(n+m) = O(m).  

Doing this n times—for n vertices—the total worst-case running time is O(nm). 

The algorithm to calculate the clustering coefficient, γ,  of a graph G runs in time 

O(nm).  The algorithm to compute the average degree, d(G), of a graph G, is linear with 
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the number of vertices.  Therefore it runs in time O(n).  The algorithm for calculating the 

redundancy ratio, RR, of a graph G has a worst-case complexity of O(n3m).  This comes 

from finding the number of node independent paths from a vertex v to all other vertices—

which is true in a complete graph where | V(Γ2(v)) | = n.  This is accomplished using a 

conventional maximum flow - minimum cut algorithm that runs in time O(n2m) and is 

based upon successive shortest path algorithm solutions (Ahuja et al., 1993).  Then 

repeating the process n times, one for each vertex v ∈ V(G) as initial vertex, gives the 

bound of O(n3m).  Approximate methods can establish the number of node independent 

paths between two vertices in linear time with respect to network size (White and 

Newman, 2001).  Hence, an approximate solution to the global RR can be run in time 

O(n2m).  Table A-1 summarizes the computing time of the topological and performance 

parameters to characterize networked systems. 

 

 

 

    

  

 

 

 

 

 

 

174 



Table A-1.  Worst case complexity of algorithms for network analysis 

Network Property Running Time 

Mean distance, L O(nm) 

Modified mean distance, L' O(nm) 

Clustering coefficient, γ O(nm) 

Vertex degree, d(v) O(n) 

Redundancy ratio, RR O(n3m) 

Vertex degree rank-ordering O(n2) 

Vertex betweenness rank-ordering O(n4) 

Vertex transshipment rank-ordering O(n2m2 logU) 

Vertex random selection O(n) 

Efficiency, E O(n2m) 

Connectivity loss, CL O(n2m) 

Service flow reduction, SFR O(n2m2 logU) 

  
where,  

m graph size 
n graph order 

U 
largest upper bound of flow in e ∈ 
E(G) 
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APPENDIX B: NETWORK ALGORITHMS 

B.1 MODIFIED MEAN DISTANCE, L’ 

FunctionB.1 [L’1, L’2, DegSepU] = ModifiedMeanDistance (A) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function: Calculates reciprocal harmonic mean, L’             
Details:      Serves as a global measure of network connectivity                                                    
Input:        Adjacency matrix of the network, A                                                                             
Output:     Mean and median reciprocal harmonic mean L’1, and L’2, and matrix of shortest       
  path lengths, DegSepU                                                                                                  
Filename:  ModifiedMeanDistance.m                                  
Date:          April 22, 2005                                                 
Author:      Leonardo Dueñas-Osorio                                    
Revision:    0                                                                
Test:           TModifiedMeanDistance.m                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
% 1 Initialization 
% 
DegSepU = PathLengthUndirected (A); % FunctionB.1.1 
[a1,b1] = size(DegSepU); 
MeanL = zeros(a1,1); 
MedianL = zeros(a1,1); 
 
% 
% 2 Calculation of mean of means and median of medians 
% 
VectorOnes = ones(a1,1); 
VectorZeroes = zeros(a1,1); 
DegSepUInv = DegSepU; 
DegSepUInv(find(eye(a1))) = VectorOnes; 
DegSepUInv = 1./DegSepUInv; 
DegSepUInv(find(eye(a1))) = VectorZeroes; 
for a3 = 1 : a1 
    [a4,b4,c4] = find(DegSepUInv(a3,:)); 
    [a5,b5] = size(c4); 
    if b5 == 0 
        MeanL(a3,1) = 0; 
        MedianL(a3,1) = 0; 
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    else 
        TempDegSepUInv = DegSepUInv(a3,:); 
        TempDegSepUInv(:,a3) = []; 
        MeanL(a3,1) = mean(TempDegSepUInv); 
        MedianL(a3,1) = median(TempDegSepUInv); 
        clear TempDegSepUInv; 
    end 
end 
L1 = mean(MeanL); 
L2 = median(MedianL); 
 
 
FunctionB.1.1 DegSepU = PathLengthUndirected (A) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function:  Computes shortest path lengths for undirected graphs with non-negative costs  
Details:   Uses Floyd-Warshal algorithm to generate shortest paths 
Input:     Valid adjacency matrix, A: (i) No self-loops, (ii) No Repetitions (iii) Symmetric                            
Output:    Matrix indicating degree of separation among vertices, DegSepU                                           
Filename:  PathLengthUndirected.m                           
Date:      September 20, 2004                                    
Author:    Leonardo Duenas-Osorio                            
Revision:  0                                                                
Test:      TPathLengthUndirected.m                          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
% 1 Variable Declaration 
% 
[n,m] = size(A); 
DegSepU = zeros(n,n,2); 
t=1; 
 
% 
% 2 Initialization 
% 
DegSepU(:,:,t) = A; 
for i = 1 : n 
    for j = i : m 
        if ( i ~= j & DegSepU(i,j,t) == 0 ) 
            DegSepU(i,j,t) = inf; 
            DegSepU(j,i,t) = DegSepU(i,j,t); 
        end 
    end 
end 
 
% 
% 3 Evaluation of shortest paths 
% 
for t = 2 : n+1 
    for i = 1 : n 
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        for j = i : n 
            if ( j ~= t-1 ) 
                DegSepU(i,j,2) = min( DegSepU(i,j,1), DegSepU(i,t-1,1) + DegSepU(t-1,j,1) ); 
                DegSepU(j,i,2) = DegSepU(i,j,2); 
            else 
                DegSepU(i,j,2) = DegSepU(i,j,1); 
                DegSepU(j,i,2) = DegSepU(i,j,1); 
            end 
        end 
    end 
    DegSepU(:,:,1) = DegSepU(:,:,2); 
end 
DegSepU(:,:,1) = []; 

 

B.2 CLUSTERING COEFFICIENT, γ 

FunctionB.2 Gamma1 = ClusteringCoefficient(A) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function: Calculates average clustering coefficient of networks               
Details: Evaluates the number of connections among the neighbors of each vertex and  
  normalizes it by the total possible number of connections among them                      
Input:     Adjacency matrix, A                        
Output:    Average clustering coefficient, Gamma1                                                        
Filename:  ClusteringCoefficient.m                                                        
Date:      May 28, 2004                                                 
Author:    Leonardo Dueñas-Osorio                                         
Revision:  0                                                              
Test:      TClusteringCoefficient.m                                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[n,n] = size(A); 
Ne = zeros(n,n); 
for i=1:n 
    ii = 0; 
    for j=1:n 
        if A(i,j) > 0 
            ii = ii+1; 
            Ne(i,ii) = j; 
        end 
    end 
end 
for i=1:n 
    for j=1:n 
        Clust = zeros(n,n); 
        for g=1:n 
            if Ne(i,j) == 0 | Ne(i,g) == 0 
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            elseif A(Ne(i,j),Ne(i,g)) > 0 
                Clust(j,g) = 1; 
            end 
        end 
        Clu(j,1) = sum(Clust(j,:));  % Sums edges within neighbors of v that start at the jth neighbor 
    end 
    K1 = length(find(A(i,:)));  % Implies symmetry 
    Clus = sum(Clu)/2; 
    if K1 == 0 | K1 == 1 
        gamma1(i,1) = 0; 
    else 
        gamma1(i,1) = Clus / (K1*(K1-1)/2); 
    end 
end 
Gamma1 = mean(gamma1); 

 

B.3 VERTEX DEGREE, d(G) 

FunctionB.3 [De, pDes, K1, K2] = VertexDegreeDistribution(A) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function:  Computes the vertex degree distribution of a network                              
Details:   Rank-orders frequency of occuerrence                             
Input:     Adjacency matrix, A 
Output:    Cumulative distribution of vertex degree, pDes, vertex degree vector, De, mean  
  vertex degree, K1, and median vertex degree, K2                 
Filename:  VertexDegreeDistribution.m                                       
Date:      April 22, 2005                                                 
Author:    Leonardo Dueñas-Osorio                                           
Revision:  1; Removed “for” loop                                               
Test:      TVertexDegreeDistribution.m                                      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[n,n] = size(A); 
Flag = zeros(n,n); 
for i=1:n 
    [r1,c1] = size(find(A(i,:))); 
    De(i,1) = c1; 
end 
Des = sort(De); 
K1 = (mean(Des)); 
K2 = (median(Des)); 
N = size(Des); 
for i=1:N(1,1) 
    p(i,1) = 1 - i/(N(1,1)+1); 
end 
pDes = [p, Des]; 
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B.4 REDUNDANCY RATIO, RR 

FunctionB.4 [RedundancyVector, RR] = RedundancyMatrix(A) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function:  Computes the average redundancy ratio of networks                                               
Details:   Focuses on alternative paths connecting vertices with their second order  
  neighboors                
Input:     Valid adjacency matrix, A: (i) no self-loops, (ii) no Repetitions (iii) Symmetric                            
Output:    Vector indicating relative degree of redundancy, and average Redundancy, RR                               
Filename:  RedundancyMatrix.m                                               
Date:      October 2, 2005                                              
Author:    Leonardo Duenas-Osorio                                           
Revision:  0                                                                
Test:      TRedundancyMatix.m                      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
% 1 Initialization 
% 
[n,n] = size(A); 
Redundancy = zeros(n,n); 
RedundancyVector = zeros(n,1); 
 
 
% 
% 2 Calculation 
% 
for i = 1 : n 
    a1 = find(A(i,:)); 
    G2 = zeros(n,1); 
    Neighborhood2 = zeros(n,1); 
    for j = 1 : length(a1) 
        a2 = find(A(a1(j),:)); 
        for k = 1 : length(a2) 
            if i < a2(k) & G2(a2(k)) ~= 1 
                Counter1 = 0; 
                Connection = 0; 
                MM = A; 
                [Connection, Pathh] = ShortestPath1to1Sequence(MM, i, a2(k)); 
    % indicates if connection exist between i,j and provides the path sequence  
                while Connection ~= Inf 
                    [r1,c1] = size(Pathh); 
                    if c1 == 2 
                        MM(i,a2(k)) = 0; 
                        MM(a2(k),i) = 0; 
                        Counter1 = Counter1 + 1; 
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                    else  
                        c2 = c1-1; 
                        Set = Pathh(2:c2); 
                        for m = 1 : (c1 - 2) 
                            MM(Set(1,m),:) = zeros(1,n); 
                            MM(:,Set(1,m)) = zeros(n,1); 
                        end 
                        Counter1 = Counter1 + 1; 
                    end 
                    [Connection, Pathh] = ShortestPath1to1Sequence(MM, i, a2(k)); 
                end 
                Redundancy(i,a2(k)) = Counter1; 
                Redundancy(a2(k),i) = Counter1; 
                G2(a2(k)) = 1; 
            end 
        end 
    end 
    Redundancy; 
    N1 = a1; 
    length(N1); 
    N2 = find(Redundancy(i,:)); 
    Neighborhood2(N1) = 1; 
    Neighborhood2(N2) = 1; 
    if length(N1) == 0 
        SizeG2 = 1; 
    else 
        SizeG2 = length(find(Neighborhood2 == 1)); 
    end 
    RedundancyVector(i,1) = sum(Redundancy(i,:))/(SizeG2)^2; 
end 
RR = mean(RedundancyVector); 
 
 
FunctionB.4.1 [DegSep, Pathh] = ShortestPath1to1Sequence(A, i, j) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function:  Computes shortest path between specified vertices and recovers path sequence                               
Details:   Uses Dijkstra’s one to all nonnegative costs algorithm for undirected graphs                 
Input:     Valid adjacency matrix, A, initial node, i, and final node j                            
Output:    Shortest path between a particular node and all other nodes, DegSep, path  
  sequence between nodes i and j, Pathh                                         
Filename:  ShortestPath1to1Sequence.m                                               
Date:      October 2, 2005                                              
Author:    Leonardo Duenas-Osorio                                           
Revision:  0                                                                
Test:  TShortestPath1to1Sequence.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% 
% 1 Initialization 
% 

181 



MM = A; 
[N,N] = size(MM); 
v = zeros(N,1); 
d = zeros(N,1); 
v(:,1) = Inf(N,1); 
v(i,1) = 0; 
Aux = ones(N,1); 
Aux(i) = 0; 
permanent = i; 
CountDown = 0; 
 
% 
% 2 Calculation of shortest path 
% 
for q = 1 : N 
    [r3,c3] = size(find(Aux));  % determines column of temporal nodes 
    [r4,c4] = find(Aux); 
    [r1,c1] = size(find(MM(permanent,:))); 
    [r2,c2] = find(MM(permanent,:)); 
    vTemp = 0; 
    if r3 == 0 | c1 == 0 
       continue 
    end 
    Temporals = intersect(r4', c2)'; 
    [r7,c7] = size(Temporals); 
    if r7 == 0 
        Temporals = 0; 
    end 
    if r7 == 0  % updates permanent nodes even when no temporal nodes are available 
        [r8,c8] = find(v(:,1)>=0); 
        Admisibles = intersect(r4,r8); 
        vTemp = v(Admisibles,1); 
        NextPerm = min(vTemp); 
        [r5,c5] = find(vTemp == NextPerm); 
        Aux(r4(r5(1,1),1),1) = 0; 
        permanent = r4(r5(1,1),1); 
        continue 
    else 
        [r6,c6] = size(Temporals); 
        for u = 1 : r6  % evaluates minimum distance and keeps track of path sequence 
            d1 = v(Temporals(u,1),1); 
            v(Temporals(u,1),1) = min( v(Temporals(u,1),1), v(permanent,1) + 1); 
            d2 = v(Temporals(u,1),1); 
            if d1 ~= d2 
                d(Temporals(u,1),1) = permanent; 
            end 
        end 
    end 
    [r8,c8] = find(v(:,1)); 
    Admisibles = intersect(r4,r8); 
    vTemp = v(Admisibles,1); 
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    NextPerm = min(vTemp); 
    [r5,c5] = find(vTemp == NextPerm); 
    Aux(r4(r5(1,1),1),1) = 0; 
    permanent = r4(r5(1,1),1); 
end 
 
% 
% 3 Recovery of path sequence 
% 
jj = j; 
if jj == i 
    Pathh = 0; 
else 
    Pathh(1,1) = j; 
    for r = 2 : N 
        if d(j) == 0 
            Pathh = 0; 
            break 
        end 
        Pathh(1,r) = d(j); 
        j = d(j); 
        if j == i 
            break 
        end 
    end 
end 
DegSep = v(jj,1); 
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APPENDIX C: SCALING OF NETWORK SIZE 

Table C-1.  Scaling of m as a function of n 

Network Type Scaling of m 

Complete graphs ½ n ( n - 1 ) 

Square grids ½ d(v) [ n - n0.5 ] 

Open rings ½ d(v) ( n - 1 ) 

Stars ( n - 1 ) 

d-lattices ½ d(v) n 

Trees ( n - 1 ) 

ER models ½ d(G) n 

WS models ½ d(v) n 

BA models ( n - vo ) mi + mo 

TD substrates with d(G) ~ 8 ½ d(v) [ n - 3/2 n0.5 ] 

TD model for power grids 1.20 n1.02 

TD model for potable water networks 1.32 n1.02 

  
where,  

m graph size 
n graph order 

d(v) degree of vertex v 
d(G) average vertex degree 

vo initial number of nodes in BA growth 
mo initial number of edges in BA growth 
mi number of new links per new vertex  
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APPENDIX D: PHASE TRANSITION IN NETWORK 

RESPONSE 

Starting with n nodes and adding edges at random until m = n × ln(n) a phase 

transition in the number of connected nodes is observed.  This effect is more notorious as 

n becomes larger.  The number of edges, m, is twice the amount of edges required to 

guarantee that almost any random graph is connected (Erdös and Rényi, 1959).  The data 

is normalized with respect to the order, n, and size, m, of each graph. 
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Figure D-1.  Phase transition of the order of random graphs. 
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