
Throughput and Fairness Considerations in Overlay

Networks for Content Distribution

A Thesis
Presented to

The Academic Faculty

by

Pradnya Karbhari

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

December 2005

Copyright c© 2005 by Pradnya Karbhari

Throughput and Fairness Considerations in Overlay

Networks for Content Distribution

Approved by:

Dr. Mostafa Ammar
Co-Advisor, College of Computing
Georgia Institute of Technology, Adviser

Dr. Ellen Zegura
Co-Advisor, College of Computing
Georgia Institute of Technology

Dr. Constantinos Dovrolis
College of Computing
Georgia Institute of Technology

Dr. Misha Rabinovich
Department of Computer Science
Case Western Reserve University

Dr. George Riley
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Date Approved: August, 18th 2005

To my parents,

Dr. Mrs. Anagha Karbhari and Mr. Ajit Karbhari.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisors, Dr. Mostafa Ammar and Dr. Ellen Zegura for their guid-

ance, support, encouragement and patience throughout my Ph.D. They have encouraged

me to keep going when I was in the right direction, pushed me a bit when I was getting lax,

and helped me pull myself out of tight spots when I hit any roadblocks. I have learned a

lot more from Mostafa than just that which pertains to academics and the doctoral degree.

I thank him for everything that he has taught me, knowingly and unknowingly. Amongst

other things, I have learnt a lot about presenting myself and my work from Ellen, and I

thank her for everything.

Many thanks are due to Dr. Misha Rabinovich for being a great mentor for two summers

during my internship at AT&T Labs- Research and for being on my thesis committee. I

would also like to thank Dr. George Riley for collaborating with me and for being on my

committee, as well as Dr. Constantinos Dovrolis for being on my committee and for all his

feedback on my work.

Next, I would like to thank Matt Sanders and Dr. Russ Clark of OIT, and CNS folks

including Peter Wan, Dan Forsyth and Karen Carter, for helping me set up some of the

measurement experiments, as part of my research. All the staff at the College of Computing,

and at Georgia Tech has been really helpful, and I thank them for their help.

My student life at Georgia Tech has been an awesome experience. It would have been

very boring and depressing without the incessant support and entertainment of all my

friends at Georgia Tech. First, I would like to thank all my labmates in the NTG group,

including Richard, Shashi, Christos, Ruomei, Qi, Wenrui, Meng, Sridhar, Amogh, Manish,

Ravi, Yarong and Abhishek for all the fruitful and fruitless discussions, the lunches, the

dinners, the get-togethers and the camaraderie. Two labmates who deserve special mention

are Richard and Amogh. Richard helped me learn the ropes in my initial years, served as

a sounding board for numerous technical discussions and competed with me in the online

iv

version of the game, “Settlers of Catan”. He has been an awesome labmate! Amogh has

been a great labmate, a sincere co-author and a special friend, who was helped me face the

ups and downs of a Ph.D. student’s life, especially during the latter half of my PhD. Thank

you Amogh.

Amongst my non-labmate friends at Georgia Tech, special thanks are due to Andrew

and Badri for their friendship and all the advice and encouragement throughout these years.

Srini, Deepak, Aru and Karthik have been a great help and a source of “hajjar” fun and

entertainment, especially during the later part of my Ph.D.

I will be forever thankful to all my roommates, including Harinee, Shalini, Prameela,

Nikhila, Shilpa, Avanti, Nisarga and Nupur, over the course of my graduate life, who made

me feel at home when I got back from a hard day’s work at school. In addition to my

roommates, Sharvari, Amruta and Gayatri have been great company during the last year

of my Ph.D. I would also like to thank Shalini and Ravi for being great hosts during my

first year in Atlanta.

Volunteering for Vibha Inc. (formerly CRY Inc.), a non-profit organization for under-

privileged children in India, has been a significant part of my non-academic life while at

Georgia Tech. I made quite a few friends while volunteering for CRY/Vibha. Vivek, Durga,

Shantanu, Sushant and Aravind, have been more than just “CRY friends”. It was a great

experience to have volunteered with others in Vibha-Atlanta, including Vijay, Srinivas and

Sumatiji.

Anagha, who has been a very good friend since pre-school (or Junior K.G.) has been a

constant source of encouragement and support. All the phone calls filled with grief on one

end and cheering up on the other end serve as reminders of the days when things were going

wrong in either my Ph.D. or hers. I am glad that those days are over for both of us now; but

every time I think of one of those days, I realize how lucky I am to know such a wonderful

person. Thank you, Anagha! Arthi, Kiran, Miku, Mima, Rohit and Tejal have been great

friends since my VJTI days. I deeply appreciate their friendship and encouragement all

these years.

Three people who may not be aware of the inspiration that I have derived from them,

v

and who are a major factor in my decision to pursue a doctoral degree are: my cousin

(Dada), and my two professors in VJTI, Dr. Prerana Rane and Dr. Lalita Deshpande. My

heartfelt thanks to Dada for serving as a perfect role model for me throughout my career.

I have seeked the advice of Dr. Rane and Dr. Deshpande on numerous occasions during

and after my VJTI days, about pursuing a Ph.D. and about my career in general. I thank

them all for their words of wisdom.

My greatest reward at Georgia Tech is Niket. It was here that I met Niket, it was here

that I enjoyed his company, it was here that I had the pleasure of volunteering with him

for Vibha, it was here that a wonderful friendship was formed, it was here that a beautiful

relationship has started, and it will be from here that we will start a new phase of life

together. Thanks a lot Niket, for everything, and for more that is to come in life.

My family, including my parents, sister, aunts, uncles, cousins, grandparents, and Donde

ajji-aajoba have given me a lot that I am thankful for. Shruti has been a great source of

entertainment, support and friendship throughout my life. What would I do without her

during all those times when I was feeling terribly low, and a chat with her for even a few

minutes about totally random things would serve as the right catalyst to lift my spirits.

Thank you Shrutu, for being the best sister in this world.

My Ph.D. would have been absolutely impossible without the immense support, pa-

tience, understanding and encouragement of my parents. They have amazed me with their

support in all my decisions in life. All these years of “When are you graduating?” questions

on every phone call have finally paid off, and I am sure they are the happiest people on

earth now. I am short of words to express my gratitude towards them for everything they

have bestowed on me. Thank you Aai. Thank you Baba.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xii

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Construction of Overlay Networks . 2

1.2 Multipoint-to-Point Session Fairness in Overlay Networks for Content Dis-
tribution . 3

1.3 Design of an Overlay Network with Throughput and Fairness Considerations 5

1.3.1 Design of a Single Path in an Overlay-TCP Network 6

1.3.2 Design of an Overlay-TCP Network 6

1.4 Thesis Organization . 7

II RELATED WORK . 8

2.1 Background on Overlay Networks . 8

2.2 Proposed Modifications to Applications for Handling Applications’ Demands 8

2.3 Peer-to-Peer Networks . 9

2.4 Content Distribution Networks . 10

2.5 Overlay-TCP Networks for Content Distribution 12

III CONSTRUCTION OF AN EXAMPLE OVERLAY NETWORK . . . 15

3.1 Introduction . 15

3.2 Bootstrapping Process in the Gnutella Network 17

3.2.1 Gnutella Web Caching (GWebCache) System 17

3.2.2 Bootstrapping Algorithms of Gnutella Servent Implementations . . 18

3.3 Measurement of Bootstrapping Performance of Servent 21

3.3.1 Measurement Methodology . 21

3.3.2 Performance Measurements . 22

3.4 Importance of Neighbor Peers . 24

vii

3.5 Performance of the GWebCache System 25

3.5.1 Global GWebCache System Performance 25

3.5.2 Experience of a Local GWebCache 30

3.6 Summary . 31

IV MULTIPOINT-TO-POINT SESSION FAIRNESS IN OVERLAY NET-
WORKS FOR CONTENT DISTRIBUTION 32

4.1 Introduction . 32

4.2 Discussion of Problem Statement . 34

4.2.1 Static and Dynamic Sessions . 34

4.2.2 Inter-Session and Intra-Session Fairness 36

4.3 Definitions and Algorithms . 38

4.3.1 Connection Fairness (Max-Min Fairness) 38

4.3.2 Normalized Rate Session Fairness (NRSF) 40

4.3.3 Per-Link Session Fairness (PLSF) 44

4.4 Evaluation Results . 48

4.4.1 Evaluation Model . 48

4.4.2 Performance Metrics . 49

4.4.3 Comparison of Session Fair Algorithms with the Connection Fair
Algorithm . 52

4.4.4 Comparison of Session Fair Algorithms with the User Fair Queueing
(UFQ) Algorithm . 53

4.4.5 Comparison of Connection Rate Allocations Using Different Algo-
rithms . 54

4.5 Implementation Issues . 57

4.5.1 Implementation of Normalized Rate Session Fair Algorithm 58

4.5.2 Implementation of Per-Link Session Fair Algorithm 59

4.6 Summary . 60

V OPTIMIZING END-TO-END THROUGHPUT FOR DATA TRANS-
FERS ON AN OVERLAY-TCP PATH . 61

5.1 Introduction . 61

5.2 Problem Statement . 64

5.3 Case Study: Two-Hop Overlay Path . 65

viii

5.4 The Adaptive Overlay-TCP Provisioning Architecture 67

5.5 Proposed Schemes . 69

5.5.1 Direct Measurement: Isolated Rate Probing Scheme 70

5.5.2 Indirect Measurement: Intermediate Buffer Occupancy Scheme . . 71

5.6 Performance Evaluation . 74

5.6.1 Measurement Methodology . 74

5.6.2 Parameters Used in the Schemes 75

5.6.3 Evaluation for a Two-Hop Overlay Path 76

5.6.4 Evaluation for a Multihop Overlay Path 78

5.7 Summary . 78

VI DESIGN OF AN OVERLAY-TCP NETWORK WITH THROUGHPUT
AND FAIRNESS CONSIDERATIONS . 81

6.1 Introduction . 81

6.2 Example: Sharing Between Multiple Overlay Networks 84

6.3 Design Goals . 86

6.3.1 Model of an Overlay-TCP Network 87

6.3.2 Challenge: Intra-Overlay-Network Fairness 89

6.3.3 Summary of Design Goals . 91

6.4 Design Details . 91

6.4.1 Effect of Increasing the Number of TCP Connections on Overlay Hops 92

6.4.2 Centralized Algorithm . 94

6.4.3 Proposed Heuristics . 96

6.5 Implementation Details . 100

6.5.1 Network Conditions and Parameter Estimation 100

6.5.2 Communication Between Overlay Nodes 101

6.5.3 Refinements to Handle Head-of-Line Blocking 102

6.6 Simulation Results . 103

6.6.1 Simulation Setup and Performance Metrics 103

6.6.2 Single Overlay Network: Comparison of Schemes 104

6.6.3 Single Overlay Network: Effect of Load on Overlay Network 105

6.6.4 Sharing Between Two Overlay Networks 107

ix

6.6.5 Sharing Between Multiple Overlay Networks 108

6.6.6 Sensitivity to Parameter Estimation 111

6.7 Summary . 114

VII CONTRIBUTIONS AND FUTURE WORK 115

7.1 Research Summary . 115

7.2 Future Directions . 116

REFERENCES . 118

VITA . 125

x

LIST OF TABLES

1 Messages Used in the GWebCache System 17

2 Differences in Implementation of Different Gnutella Servents 20

3 Notations Used in Multipoint-to-Point Session Fairness Definitions and Al-
gorithms . 38

4 Model of an Overlay-TCP Path . 64

5 Adaptive Overlay-TCP Provisioning: Parameters and Variables 68

6 Example of Sharing Between Multiple Overlay Networks Using Different
Methods: Total Throughput Achieved . 85

7 Model of an Overlay Node in an Overlay-TCP Network 87

8 Comparison of Schemes: Overlay-TCP Network with 20 Overlay Flows . . . 104

9 Sharing Between 2 Overlay Networks: Equal Nmax 107

10 Sharing Between 2 Overlay Networks: Unequal Nmax 108

xi

LIST OF FIGURES

1 Generic Bootstrapping Algorithm in Gnutella Servents 19

2 CDF of Bootstrapping Times of Servents at University 22

3 Mean Bootstrapping Times of Servents at Different Times of the Day . . . 23

4 CDF of Time to Receive First Query Response at Servent 24

5 CDF of Active Caches in the GWebCache System 26

6 CDF of Mean Update Rate for Host and Cache Lists at a Single GWebCache 27

7 CDF of Request Rate for Host and Cache Lists at a Single GWebCache . . 28

8 CDF of Host List Update Rate at all GWebCaches 29

9 CDF of Request Rates for Host and Cache Lists at Local GWebCache . . . 30

10 Multipoint-to-Point Sessions in the Internet 33

11 Static and Dynamic Multipoint-to-Point Sessions 35

12 Example to Illustrate Multipoint-to-Point Session Fair Algorithms and Re-
sulting Allocations: (a)Example Network, (b)Connection Fair, (c)Normalized
Rate Session Fair, (d)Per-Link Session Fair 39

13 Algorithm to Determine the Normalized Rate Session Fair Allocation 43

14 Algorithm to Determine the Per-Link Session Fair Allocation 46

15 Fairness Index for Session Rates . 49

16 Variance of Session Rates . 50

17 Mean of Session Rates . 50

18 Maximum of Session Rates . 51

19 Minimum of Session Rates . 51

20 Fairness Index for Connection Rates . 54

21 Variance of Connection Rates . 55

22 Mean of Connection Rates . 55

23 Maximum of Connection Rates . 56

24 Minimum of Connection Rates . 56

25 Overlay-TCP Network . 62

26 Model of an Overlay-TCP Path . 63

27 Factor of Improvement in Throughput Using Multiple Connections: Planet-
Lab Experiments . 66

xii

28 Model for an Intermediate Overlay Node Oj in an Overlay-TCP Path . . . 67

29 Decision Algorithm Using Direct Measurement of Isolated Rates 70

30 Buffer Occupancy at Intermediate Overlay Node: PlanetLab Experiments . 72

31 Decision Algorithm Using Estimates of Buffer Occupancy 73

32 Evaluation of a 2-Hop Overlay Path: (a) End-to-End Throughput, (b) Num-
ber of Connections . 77

33 Evaluation of a 5-Hop Overlay Path (a) End-to-End Throughput, (b) Number
of Connections . 79

34 Example: Sharing Between Multiple Overlay Networks 82

35 Model of an Intermediate Overlay Node in an Overlay-TCP Network 88

36 Example: Intra-Overlay-Network Fairness 89

37 Improvement in Throughput Using Multiple TCP Connections: PlanetLab
Experiment Results . 92

38 Model for Improvement in Throughput Using Multiple TCP Connections . 93

39 Centralized Decision Algorithm . 95

40 Upstream and Downstream Tree Knowledge Algorithm 97

41 Decision Algorithm using Estimates of Buffer Occupancy 99

42 Example: Head-of-Line-Blocking . 101

43 Comparison of Schemes: Varying Number of Overlay Flows: (a) Average
Throughput of Overlay Flows, (b) Number of TCP Connections Used by the
Scheme . 106

44 Sharing Between Multiple Overlay Networks: All Overlay Networks use 1
Connection on Each Overlay Hop . 109

45 Sharing Between Multiple Overlay Networks: Centralized Algorithm with
Different values of Nmax for Different Overlay Networks 110

46 Sensitivity to Error in Parameter Estimation on a Fraction of All Used Links:
(a) Mean of all Flow Rates, (b) Number of TCP Connections Specified by
the Algorithm . 112

47 Sensitivity to Error in Parameter Estimation on a Fraction of All Used Links:
(a) Variance of All Flow Rates, (b) Minimum of All Flow Rates 113

xiii

SUMMARY

The Internet has been designed as a best-effort network, which does not provide any

additional service or control to applications using the network. Overlay networks, which

form an application layer network on top of the underlying Internet, have emerged as popular

means to provide specific services and greater control to applications. Overlay networks offer

a wide range of services, including content distribution, multicast and multimedia streaming.

In my thesis, I focus on overlay networks for content distribution, used by applications such

as bulk data transfer, file sharing and web retrieval.

I first investigate the construction of such overlay networks by studying the bootstrap-

ping functionality in an example network (the Gnutella peer-to-peer system). This study

comprises the analysis and performance measurements of Gnutella servents and measure-

ment of the GWebCache system that helps new peers find existing peers on the Gnutella

network.

Next, I look at fairness issues due to the retrieval of data at a client in the form of

multipoint-to-point sessions, formed due to the use of content distribution networks. A

multipoint-to-point session comprises multiple connections from multiple servers to a single

client over multiple paths, initiated to retrieve a single application-level object. I investigate

fairness of rate allocation from a session point of view, and propose fairness definitions and

algorithms to achieve these definitions.

Finally, I consider the problem of designing an overlay network for content distribu-

tion, which is fair to competing overlay networks, while maximizing the total end-to-end

throughput of the data it carries. As a first step, I investigate this design problem for a

single path in an Overlay-TCP network. I propose two schemes that dynamically provision

the number of TCP connections on each hop of an Overlay-TCP path to maximize the

end-to-end throughput using few extraneous connections. Next, I design an Overlay-TCP

xiv

network, with the secondary goal of overlay layer congestion or intra-overlay-network fair-

ness. I propose a centralized algorithm for deciding the number of TCP connections to

be used on each overlay hop, as well as three heuristics that are distributed in nature. In

addition, I show that by varying the maximum number of connections allowed on overlay

hops in each competing overlay network, one can vary the proportion of sharing between

competing overlay networks.

xv

CHAPTER I

INTRODUCTION

The Internet has penetrated the daily lives of millions of people through the use of a

variety of applications such as the World Wide Web (WWW), email, file transfer and

multimedia streaming. With increasing dependence of people on the Internet, end-users

have started expecting more and more services from the Internet. The requirements of

different applications vary significantly. Some applications, like web retrieval, expect that

the requested data should start being delivered very quickly (low wait time); some others,

like multimedia streaming, expect that the jitter in packet delivery, as well as the wait time

should be low; and some others, like data transfer applications, require that the total data

be delivered fast enough (high throughput).

The Internet, however, provides a best-effort service to the end-user. This is not good

enough for many applications, especially if there exist more intelligent ways of using the

network. Recently, overlay networks are gaining increasing focus commercially as well as in

the research community for their ability to offer additional services, beyond those offered

by the underlying native network (Internet). In addition, they offer greater flexibility and

control over the use of the Internet. Overlay networks form an application-layer network on

top of the underlying Internet with the aim of providing a particular service to the users,

in order to meet their specific requirements. These services span a wide range, including

content distribution [4], file sharing [32], multicast [56], quality of service [97], multimedia

streaming [72], fault tolerance [3] and improved routing [89]. These overlay networks, which

address the requirements of applications by explicitly setting up an infrastructure, are

referred to as infrastructure-based overlay networks.

In this thesis, we focus on overlay networks for content distribution. Content distribution

services are often used by applications such as bulk data transfer, file sharing and web

retrieval. The primary requirement of these applications is that the time to retrieve and

1

use or view the requested data should be short, and the throughput of the data transfer

should be high. In particular, we look at three problems that concern overlay networks for

content distribution.

• Construction of overlay networks— We start by looking at the construction of overlay

networks. In particular, we study the construction of the Gnutella [32] peer-to-peer

network, which is an overlay network used for sharing of content between end-users.

• Fairness issues introduced due to the use of overlay networks for content distribution—

The use of content distribution networks (CDNs) for faster retrieval of data has led

to applications retrieving data over a session of multiple point-to-point connections

from multiple servers to a single client. We investigate the fairness in allocation of

resources between multiple such sessions.

• Design of an Overlay-TCP network— Finally, we design a single path in an over-

lay network, and then an entire overlay network, with the aim of maximizing the

total throughput of the data carried on the overlay path or overlay network respec-

tively, while maintaining fairness between competing overlay networks. Our design

dynamically provisions each overlay hop with one or more TCP (Transmission Control

Protocol) connections, as required.

We will elaborate on each one of the listed contributions in the rest of the chapter.

1.1 Construction of Overlay Networks

We first look at the problem of construction of overlay networks. In particular, we consider

the process of construction of an example overlay network— the Gnutella [32] peer-to-peer

system. Peer-to-peer networks, also referred to as file-sharing networks, are a type of overlay

networks, that are typically formed for sharing content between users. The most important

characteristic of these networks is that all peers in these networks can function as clients as

well as servers, and can receive as well as send data. Peers using these networks search for

the content that they are interested in, and download the content from peers that have the

requested content. Any end-user can participate in these systems, thus causing the system

2

to be very diverse in terms of resource capabilities of peers. The system is also very dynamic,

as peers join and leave the network quite frequently. The topology of these networks could

either be structured, where peers maintain a particular structure while joining the network,

or it could be unstructured. Unstructured peer-to-peer networks are partly infrastructure-

based, unlike structured peer-to-peer networks and content distribution networks, and are

therefore interesting from the point of view of overlay network construction. In our work, we

focus on the question of how exactly do peers wanting to join an unstructured peer-to-peer

system locate the peers that they should set up connections with. This process, referred

to as the bootstrapping process, is the first step that any peer needs to execute before it

can use the system. Unless this process is completed, a peer cannot participate in any

search activity on the system. Also, the initial neighbor peers found during bootstrapping

determine the new peer’s location in the overall Gnutella topology, and ultimately its search

and download performance. Hence, the bootstrapping process plays a significant role in the

lifetime of a peer. It is essential that the bootstrapping time of a peer in the system be

minimal, and that the neighbor peers that result from the bootstrapping process give a

good search and download performance. In this thesis, we study the bootstrapping process

in depth, and evaluate it by conducting a measurement-based study.

1.2 Multipoint-to-Point Session Fairness in Overlay Net-
works for Content Distribution

Next, we look at throughput and fairness issues resulting from the use of content distribution

networks. Content distribution networks like Akamai [1], Digital Island [22] and Speedera

[92] are infrastructure-based overlay networks that aim to expedite the reception of data by a

client by setting up servers (or caches) that serve static content from locations topologically

closer to clients. These caches are deployed across the Internet, and host static content

for commercial websites like, say, cnn.com. Consider an example where a user requests the

webpage www.cnn.com. The client application (user’s browser in this case) sends a request

to the origin server, which satisfies part of the request, and then redirects the client to

one or more caches that are topologically closer to the user than the origin server. This

3

causes the requests from the users to be satisfied speedily. Effectively, applications that

use these networks to retrieve data will experience higher throughputs and lower download

times. Additionally, these content distribution networks significantly reduce the load on

the origin servers, thus enabling them to support a larger client population. The result

of using these content distribution networks is that a client retrieves data from multiple

servers (origin server, cache server, image server, etc.) over connections set up with each

server. Krishnamurthy et al. [54] have observed in a January 2001 study that the average

number of CDN servers contacted by a client is somewhere between 3.4 and 10.3, with the

median being around 6.

Proposals for content delivery of streaming media [4, 13, 72] take advantage of path

diversity between multiple servers/peers and clients. These approaches use different forms

of content coding (e.g. multiple description coding) to produce complementary descrip-

tions of content, which are then served from multiple servers/peers to the same client.

Companies like PeerGenius.com [73], CenterSpan.com [17], digitalfountain.com [23, 14] and

parallel file-download applications such as those proposed in [82] start multiple connections

to multiple servers in order to expedite the reception of data, thus improving user-perceived

performance.

The conclusion we draw from these example applications is that data transfer is in-

creasingly being performed over a set of point-to-point connections from multiple servers

to a single client, and we can expect this trend to continue. We refer to such a set of

multiple parallel point-to-point connections as a multipoint-to-point session. According

to current per-connection rate allocation methods, such a session gets a higher total rate

than competing sessions with fewer connections, thus leading to unfair sharing of bottle-

neck bandwidth. In summary, competition among content providers has motivated them

to employ aggressive methods for content delivery in an attempt to give better delay and

bandwidth performance than their competitors, which can potentially cause some unfair-

ness toward other data transfers. In current literature, the problem of fair sharing between

competing multipoint-to-point sessions, with each session comprising connections that use

different paths to different servers and which may or may not share bottleneck links, has

4

not been studied. We explore this multipoint-to-point session fairness issue in depth in this

thesis. We propose two session fairness definitions (normalized rate session fairness and

per-link session fairness), and algorithms to achieve these definitions. We show that the

proposed algorithms are indeed fair from a session point of view.

1.3 Design of an Overlay Network with Throughput and
Fairness Considerations

Finally, we focus on the design of an overlay network. With the increasing popularity of

overlay networks, we envision the simultaneous operation of multiple overlay networks on

top of the native Internet. This co-existence of overlay networks implies that the same set

of underlying resources (such as link bandwidth) will be used by these competing networks.

This calls for mechanisms to enable fair sharing of underlying resources by competing overlay

networks.

Different overlay networks proposed in practice operate using different protocols such

as UDP (User Datagram Protocol) or IP (Internet Protocol) for forwarding data between

overlay nodes. However, these protocols are not congestion responsive, and implement

some ad-hoc form of congestion control, if at all. Recent proposals for the virtualization of

networks [74] indicate the possible co-existence of multiple overlay networks in the future.

These competing overlay networks that use UDP or IP tunnels can prove to be unfair when

sharing the link bandwidth in the native network, a problem identified in [52]. One way

to ensure fair sharing is to use one or more TCP [77] connections for forwarding data on

every hop in every overlay network. In this thesis, we look at designing overlay networks

that use TCP to forward data between overlay nodes, referred to as Overlay-TCP networks.

Such networks have the desirable property that they ensure that multiple overlay networks

will share native link bandwidths fairly, and that the Internet will not suffer due to lack

of congestion control in the network. An additional goal in our design is to maximize the

total end-to-end throughput of the data carried on the network.

5

1.3.1 Design of a Single Path in an Overlay-TCP Network

The design of the entire Overlay-TCP network involves enough challenges to warrant the

design of a single path of overlay nodes in such a network, as a first step. We therefore

start by focusing on a single path between a pair of source (ingress) and destination (egress)

overlay nodes, that traverses multiple intermediate overlay nodes. We aim to optimize the

throughput of the end-to-end transfer on the overlay path between the ingress and egress

overlay nodes. We provision individual overlay hops by dynamically introducing multiple

parallel TCP connections on each hop, with the aim of improving the total throughput

on slower hops. Although we introduce multiple TCP connections on each overlay hop,

our goal is to use as few connections on each hop as possible. The addition of a bound

on the number of parallel TCP connections on each overlay hop ensures fairness between

multiple overlay networks. We have proposed two schemes (Isolated Rate Probing Scheme

and Buffer Occupancy Scheme) that assess the state of the overlay path and determine the

number of TCP connections required on each overlay hop, without using too many extrane-

ous connections. We refer to this architecture as the Adaptive Overlay-TCP Provisioning

Architecture. We evaluate these schemes by implementing them on multiple overlay paths

of 2-5 hops on PlanetLab [75], and show that they indeed improve the total throughput of

the end-to-end data carried on the overlay path.

1.3.2 Design of an Overlay-TCP Network

Armed with our understanding of provisioning a single path in an Overlay-TCP network,

we proceed to design an overlay network, keeping in mind the problem of fairness to other

overlay networks. This involves significant challenges, in addition to those that we faced

while designing a single path. These challenges include what we refer to as overlay-layer

congestion, or intra-overlay-network fairness, wherein two data transfers that share a com-

mon overlay hop on their overlay paths should share the throughput of the TCP connection

on that overlay hop fairly between themselves.

We propose a centralized algorithm to determine the minimum number of connections

required on each overlay hop to maximize the total end-to-end throughput of data transfers

6

on all overlay paths in an overlay network, while maintaining fairness to other overlay

networks, and maintaining intra-overlay-network fairness. We also propose three distributed

heuristics that operate on varying amounts of information about the overlay network, and

which approximate the allocation achieved by the centralized algorithm. We show that

all four schemes indeed achieve the specified goal. In addition, we show that by varying

the maximum number of connections allowed on overlay hops in each competing overlay

network, we can vary the proportion of sharing between competing overlay networks.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present a review of the

related work in this field. Chapter 3 looks at the construction of an example overlay

network. In particular, it presents the investigation of the bootstrapping function in the

Gnutella peer-to-peer network [46]. In Chapter 4, we focus on fairness issues in allocation

of resources between competing multipoint-to-point sessions [49], that are caused due to the

use of overlay networks for content distribution. Chapter 5 presents the Adaptive Overlay

TCP Provisioning Architecture for a single path in an Overlay-TCP network [48], that

aims to maximize the total end-to-end throughput of the data carried on the overlay path.

Chapter 6 presents the design of an Overlay-TCP network [47] that aims to maximize the

total throughput of the data carried on the network, while being fair to competing overlay

networks. Chapter 7 concludes with a summary of the contributions of the thesis, and

directions for future work in this area.

7

CHAPTER II

RELATED WORK

2.1 Background on Overlay Networks

Overlay networks are networks formed at the application layer, with the aim of offering

services to applications, in addition to those offered by the underlying Internet. There has

been significant research devoted to the design of overlay networks for specific applications.

These applications span a wide range, some of which include the following. Content dis-

tribution [1, 4, 92] and multimedia streaming [4, 13, 72], have been popular applications

of overlay networks, aimed at speeding up data delivery to clients. Since native multicast

has faced deployment issues, overlay multicast [9, 20, 43, 56] has been proposed in order

to provide the multicast service, although with the overhead of some redundancy in native

paths. Overlay networks that provide quality of service [97] have been proposed to provide

service guarantees beyond the best effort service provide by the Internet. Overlay networks

that address fault tolerance [3] and improved routing [89] are aimed at giving applications

more control over choosing the path for transferring data, based on the quality of the path

in terms of outages, RTTs, packet losses etc. In our work, we focus on overlay networks for

content distribution.

2.2 Proposed Modifications to Applications for Handling
Applications’ Demands

A major drawback of overlay networks is the significant investment necessary to setup such

an infrastructure. Other means of achieving the service demands of applications, that do not

face the infrastructure overhead, are implemented by the applications themselves. These

solutions are specific to each application, depending on the applications’ requirements, such

as end-to-end throughput or latency. For example, for a bulk data transfer application, a

simple strategy to improve throughput is to modify the transport protocol (say TCP [77]).

8

Such modifications include starting with a higher congestion window, or modifying the TCP

slow start or not using a protocol that does congestion control at all and instead using UDP

[76] instead. Although the use of the TFRC protocol [37] is a possibility, applications can

be modified to not comply with the protocol. Some higher layer tricks include the use of

persistent TCP connections for faster web transfers [61] over HTTP, or multiple parallel

TCP connections [82] between the same client-server pair, using either the same path or

multiple different paths. Some other modifications are discussed by Krishnamurthy et al. in

[53]. However, due to the lack of control on applications, these solutions can be quite selfish

and may prove to be unfair to other competing applications. In addition, they require a

deeper knowledge of the protocols, and are difficult for end-users to accomplish. As stated

earlier, in our work we will focus on the infrastructure-based solution i.e. the use of overlay

networks for content distribution.

2.3 Peer-to-Peer Networks

Peer-to-peer networks have been studied extensively in the research community as well as

commercially. As summarized in a survey of peer-to-peer content distribution technologies

[95], peer-to-peer networks can be classified into structured and unstructured peer-to-peer

networks depending on the type of topology of these networks.

Structured peer-to-peer networks maintain a particular structure when peers join or

leave the system. The advantage of the structure of the system is that content can be

located in the network very quickly. The primary disadvantage of this type of systems

is that in a dynamic environment where peers join and leave the system at a very high

rate, the overheads of maintaining the structure can be quite high. A high churn rate is

quite typical for peer-to-peer systems, and hence can be a problem in structured peer-to-

peer networks. Additionally, implementation of keyword-based search for locating content

is difficult in these systems due to the way the system is structured. Some examples of

structured peer-to-peer networks include Chord [96], CAN [81], Pastry [84], Tapestry [105],

Oceanstore [55], PAST [85], and Splitstream [16], to name a few.

9

On the other hand, unstructured peer-to-peer networks do not maintain any struc-

ture when peers join or leave the system. The advantage with these networks is that the

join/leave overhead is low. However, the search performance of peers in the system can be

quite poor. The search queries are typically flooded throughout the system, with a time-

to-live fiel in terms of number of peer-hops over which the query is forwarded. Although

the query is expected to reach the peer(s) holding the requested content, this might not

happen due to an expired time-to-live field, and the query might die before it reaches the

appropriate peer. Hence there is a high probability that the search query might not get any

response, even though the requested content might exist in the system. Thus, the topology

and the neighborhood of a peer plays a significant role in a peer’s search and download

experience in such peer-to-peer systems. Some examples of unstructured peer-to-peer sys-

tems include Gnutella [32], Kazaa [51], Freenet [21], eDonkey [24], and BitTorrent [12].

In the first part of the thesis, we focus on the Gnutella peer-to-peer system, which is an

unstructured peer-to-peer network.

Various studies have been undertaken with the aim of measurement based characteriza-

tion [42, 58, 90] and modeling [27, 106] of different peer-to-peer systems such as BitTorrent,

Kazaa and Gnutella. In particular, Saroiu et al. [88], Chu et al. [19] and Sripanidkulchai et

al. [94] have studied the Gnutella network, with the aim of characterization of peers on the

Gnutella network based on their uptimes, bottleneck bandwidths, latencies and other factors

such as search popularity. Other studies such as the ones by Ng et al. [65] and Chawathe

et al. [18] aim to improve a peer’s search and download experience of peers. However, the

bootstrapping process in unstructured peer-to-peer networks has received very little atten-

tion to date. In this thesis, we undertake a systematic measurement study of the current

bootstrapping process in the Gnutella network.

2.4 Content Distribution Networks

Content distribution networks have been studied extensively in literature. Various studies

[30, 44, 80] focus on the design of content distribution networks, a survey of a few of which

can be found in [91]. Krishnamurthy et al. [54] and Johnson et al. [45] have compared

10

the performance of various commercially available CDNs. Biliris et al. [11] have proposed

an architecture for interoperation of various content distribution networks and intelligent

redirection of clients to other CDNs. In our work, we look at fairness issues resulting from

the use of content distribution networks for data retrieval.

The problem of fairness of resource allocation to multiple connections between the

same client and server pair has been studied previously. Proposals such as Webmux [28],

Ensemble-TCP [25, 100], and Integrated Congestion Manager [6, 7] advocate the sharing of

congestion information between the connections, in order to avoid synchronized losses due

to congestion seen by all connections at the same bottleneck link. The Ensemble-TCP work

differentiates between temporal sharing of information and spatial sharing of information.

Spatial sharing implies the sharing of path information between connections that are active

on the same path at the same point of time, as considered in [6, 7]. Temporal sharing

implies sharing of path information between multiple connections started on the same path

at different times. However, these connections should be started during a small enough

time interval such that the network conditions would not have changed. Padmanabhan et

al. [69, 71] present techniques for temporal sharing of information in their work.

In our work, we extend this problem to the case of multiple servers sending to a single

client, with all connections active at the same time. The challenge in this case is that

each connection in the session might traverse different paths and hence might have different

bottleneck links. Thus, connections cannot share congestion information with each other,

as proposed in the above papers.

Banchs [8] proposed the notion of user-fairness, in which every sender is considered as

a single user in the network. This fairness scheme, referred to as user fair queueing (UFQ),

suggests that all connections started by a user (sender) should be considered as a single

entity for rate allocation. This proposal moves away from the notion of per-connection

fairness, towards session fairness from a sender point of view. This approach might put

the client at a disadvantage because it might contact a server that has many other open

connections, each one of them thus receiving a low rate. We compare the allocation achieved

by this proposal with our session fair allocations. Our algorithms have a more fair allocation

11

from the client’s point of view, compared to the user fairness approach.

In ATM research, there has been some work on multipoint-to-point session fairness.

Fahmy et al. [26] give an informal definition for virtual-circuit based (VC-based) fairness,

but without a formal definition or an algorithm to achieve the same. Moh and Chen [62]

present an informal definition and an algorithm for multipoint-to-point multicast flow con-

trol. These approaches benefit from the ability of ATM switches to do complex processing

and focus on intra-network merge point behavior. However, in the Internet we are limited

in our ability to implement functionality in routers. We want the solution to be purely an

end-to-end [87] solution.

Point-to-multipoint session fairness has been discussed in the multirate multicast con-

text in the paper by Rubenstein et al. [86]. In the multirate multicast scenario, the

bandwidth used by each session on any link is the maximum of the receiving rate of any

of the downstream receivers. In our case however, the session rate on any link is the sum

of the total rates of the upstream senders that are sending to a particular client. Hence we

cannot directly use their approach to solve the multipoint-to-point session fairness problem.

2.5 Overlay-TCP Networks for Content Distribution

As mentioned earlier in this section, there has been significant research devoted to the de-

sign of overlay networks for specific applications. The co-existence of multiple such overlay

networks is slowly getting some research focus. Peterson et al. [74] argue that network

virtualization, and the co-existence of multiple overlay networks is a way to take architec-

tural innovation forward. Deployment and management of multiple overlay networks has

been addressed by studies such as the X-Bone architecture [101]. Keralapura et al. [52, 79]

look at problems faced due to multiple overlay networks taking independent decisions in

the event of route failures. However, the problem of sharing of native resources between

multiple coexisting overlay networks has not been researched yet. In our work, we look

at using TCP connections on each overlay hop in order to control the sharing of resources

between multiple co-existing overlay networks.

Analysis of TCP connections on consecutive overlay hops has been undertaken in [98]

12

and [99] where the authors argue that back-to-back TCP connections between consecutive

nodes on a path, are better than an end-to-end TCP connection in lossy environments. This

is because the multiple TCP connections will have smaller RTTs and hence will recover from

losses faster than an end-to-end TCP connection with a longer RTT. Lee et al. [57] suggest

the use of TCP tunnels for avoiding congestion collapse in the Internet. He et al. [39] analyze

congestion control mechanisms of the set of TCP connections between consecutive nodes,

used for forwarding data on the Gnutella peer-to-peer network. All these papers employ

schemes such as TCP backpressure, packet dropping, and explicit congestion notification to

throttle the connections to the rate of the slowest hop. The end-to-end throughput in all

these papers are limited by the rate on the slowest hop. None of these consider the option

of using multiple TCP connections per overlay hop.

Amir et al. [2] employ TCP connections between overlay nodes in their architecture, and

mention the possibility of multiple connections on each hop, but do not explore it further.

The work on translucent proxying of TCP [83] proposes an architecture for intercepting TCP

connections using proxies. They mention at various issues involved, including the buffer size

and backpressure, but do not explore it further. Han et al. [36] look at data transfers using

end-to-end TCP connections over an overlay network where multiple paths can be used for

routing each TCP connection. They propose an algorithm to split the flow between each

source-destination pair across multiple end-to-end TCP connections on multiple paths in

a stable and optimal way. Note that they consider end-to-end TCP connections on the

overlay and do not look at TCP connections on each overlay hop.

In the reliable multicast literature, a number of studies have explored the issue of end-

to-end throughput using TCP connections on overlay hops. The ROMA architecture [56]

places focus on reliability and propose increasing throughput using erasure resilient coding.

Other research, such as that presented by Baccelli et al. [5] and Urvoy-Keller et al. [103]

shows that the end-to-end throughput of an overlay path, and consequently the whole

multicast tree is limited by the overlay hop with the minimum throughput.

The effect of using parallel TCP connections for transferring data to a single client from

a single server on a single path, or from multiple servers on multiple paths has been studied

13

earlier [6, 25, 29, 64, 82]. However, consecutive parallel TCP connections on two or more

hops have not been studied.

For the design of the Overlay-TCP network, as well as a single path in the overlay

network, overlay nodes are required to estimate the TCP throughput that a single TCP

connections will get on the overlay hop. In our work, we estimate this TCP throughput by

either directly setting up a TCP connection, or by observing the socket buffer occupancy at

the intermediate overlay node. Other possible methods include measuring the RTT and loss

rate on each overlay hop and then using formula-based prediction, as described by Padhye

et al. [68], or using history-based predictors, as discussed by He et al. [40].

14

CHAPTER III

CONSTRUCTION OF AN EXAMPLE OVERLAY

NETWORK

3.1 Introduction

In this chapter, we investigate the process of construction of an example overlay network. In

particular, we undertake a measurement study of the current bootstrapping process in the

Gnutella network. As a reminder, the bootstrapping process refers to the function executed

by a new peer that wishes to join the Gnutella network, during which it discovers other

on-line peers and connects to them. This process is quite significant in the lifetime of a

peer because unless this step is completed, a peer cannot take part in any of the search

and download activities on the peer-to-peer network. Additionally, the initial neighbor

peers that result from the bootstrapping process play an important role in the search and

download experience of the peer.

We give the readers a quick historical perspective of the Gnutella network, as well as

the bootstrapping process in the Gnutella network. In the initial version of Gnutella, all

Gnutella peers, known as servents (due to their ability to function as servers as well as

clients), had equivalent functionalities in the network. The second version implemented the

Ultrapeer [102] nodes, which had greater resources and capabilities than ordinary peers in

the Gnutella network. These nodes are long-running, stable nodes with more bandwidth

capabilities and therefore have the ability to support more incoming peer connections. They

are equipped with the ability to cache the indices of normal or ordinary neighbor peers and

respond to search requests on their behalf, thus reducing the load on these peers. This

introduces a hierarchy in the current version of Gnutella, wherein the Ultrapeers form

the core of the Gnutella network, and other ordinary peers are usually at the edge of the

network.

15

Initially Gnutella users relied on word of mouth to determine the address of an on-line

peer that would allow newly joining peers to tap into the network. The use of automated

caching servers, as well as caching in the Gnutella servent itself, was introduced at a later

time. As Gnutella gained in popularity after Napster was shut down, the caches ultimately

became the pre-dominant bootstrapping technique [67]. Anecdotally, it has been observed

that the switch from the use of word of mouth to the use of automated caches resulted

in a significant change to the structure of the Gnutella network and a worsening of its

performance [67].

Our investigation consists of three parts:

1. An analysis and performance comparison of the bootstrapping algorithms of four

Gnutella servent1 implementations: LimeWire [59], Mutella [63], Gtk-Gnutella [34]

and Gnucleus [31].

2. A measurement-based characterization of the Gnutella Web Caching System [33]

(GWebCaches), a primary component of bootstrapping algorithms.

3. A measurement-based analysis of the role of neighbor peers, resulting from different

bootstrapping algorithms, in the search performance of a peer.

Based on our analysis of the data collected, we highlight below our four main findings

about the current Gnutella bootstrapping system.

1. Although similar in the basic structure of the algorithm and the data structures used,

the servent implementations differ in the details, with significant impact on their

bootstrapping times, as seen in our measurements.

2. The neighbors of a peer play an important role in the search performance of the peer,

thus pointing to the importance of the bootstrapping process.

3. An analysis of the request rates at different GWebCaches points to the disparity in

traffic volume handled by these caches– some caches are very busy, and their host

1The implementations of Gnutella peers are referred to as servents because they function as servers and
as clients. We use the terms peers and servents interchangeably.

16

Table 1: Messages Used in the GWebCache System

Argument Cache Response
ping=1 pong message to servent
urlfile=1 list of caches
hostfile=1 list of online hosts
ip=<IPaddress> host list is updated with IP address and port number
url=<URL of cache> cache list is updated with URL
statfile=1 access statistics over last hour

and cache lists evolve much faster than some others. The load balancing goal of any

distributed system is not really achieved in this system.

4. The GWebCache system is subject to significant misreporting of peer and cache avail-

ability. This is because the data reported in the updates to these caches is not val-

idated by the caches. New peers wanting to join the system might thus waste time

trying to connect to inactive GWebCaches or to off-line hosts returned by the GWe-

bCaches.

The rest of the chapter is structured as follows. In Section 3.2, we give an overview of

the bootstrapping process in different Gnutella servents, with special focus on the GWeb-

Cache system. We discuss the performance of the different servents with respect to their

bootstrapping times in Section 3.3, and the role of the resulting neighbor peers in the search

performance, in Section 3.4. In Section 3.5 we discuss the performance of the GWebCache

system. In Section 3.6, we summarize our findings and discuss future work.

3.2 Bootstrapping Process in the Gnutella Network

In this section, we describe the bootstrapping process in the Gnutella servents we analyzed,

and the functioning of the GWebCache system.

3.2.1 Gnutella Web Caching (GWebCache) System

A peer intending to join the Gnutella network requires the IP addresses of online peers in

the network. Currently, the GWebCache system functions as a distributed repository for

maintaining this information. Peers can query the caches in this system to get a list of online

17

peers to connect to. In the first execution of a particular Gnutella servent, the only means

to locate other online peers is the GWebCache system. In successive executions, individual

servent implementations try approaches apart from the GWebCaches, such as maintaining

local lists of hosts seen during their earlier runs. We first discuss the GWebCache system,

as it is an important component of the bootstrapping functionality, and is essential in the

understanding of the servent bootstrapping algorithms.

The GWebCache system [33] is a network of voluntarily-operated caches that maintain

a list of online peers accepting incoming connections. When a new peer wants to join the

Gnutella network, it can retrieve the host list from one or more of these GWebCaches.

The GWebCaches also maintain a list of other caches in the system. Typically each cache

maintains a list of 10 other caches and 20 hosts that are currently accepting incoming

connections.

The peers in the Gnutella network are responsible for keeping the information in these

caches up-to-date; the caches do not communicate with each other at any time. A host

accepting incoming connections is supposed to update the caches with its IP address and

port number, and with information about some other GWebCache that it believes is alive.

The GWebCaches maintain the host and cache lists as first-in-first-out lists.

Table 1 lists the messages sent by a client using the GWebCache protocol. An HTTP

request of the form “URL?argument” is sent to the webserver at which the cache is located.

The caches respond as shown in the table. Note that the GWebCaches do not maintain any

information about the online hosts, other than their IP addresses and port numbers. Some

additional information such as whether the peer is an ultrapeer or a leaf node and optional

details such as its bandwidth, its current online time in the system and the number of files

it shares might have helped new peers make more intelligent decisions in selecting initial

neighbors.

3.2.2 Bootstrapping Algorithms of Gnutella Servent Implementations

In this section, we discuss the bootstrapping algorithms of the Gnutella servents that we

compared, and point out the differences between them. We analyzed Limewire v2.9 [59],

18

1. Initialize the following data structures in memory by reading the corresponding
files from disk—

• list of caches

• list of known hosts

• list of permanent hosts

• list of ultrapeer hosts (except in Gtk-Gnutella)

2. Depending on mode (ultrapeer/normal), determine the minimum number of con-
nections to be maintained.

3. Try to establish the minimum number of connections to peers in the order:

• In LimeWire and Gnucleus, try to connect to ultrapeers.

• Try to connect to any host in the known hosts and permanent hosts lists.

• If the servent is still not connected, request the host list from a GWebCache
(multiple GWebCaches in LimeWire) and try to connect to these hosts.

4. Periodically, a connection watchdog checks whether the minimum num of con-
nections (step 2) are alive. If not, try to establish a new connection (step 3).

5. Periodically update a cache with its own IP address and URL of another cache
(for LimeWire and Mutella, this is done only if in ultrapeer mode)

6. On shutdown, write the different files to disk, for retrieval on next startup.

Figure 1: Generic Bootstrapping Algorithm in Gnutella Servents

Gtk-Gnutella v0.91.1[34], Mutella v0.4.3 [63] and Gnucleus v1.8.6.0 [31]. All these versions

support retrieval from and updates to the GWebCache system. The bootstrapping processes

in the four servents are similar in their use of the GWebCache system and the local caching

of hosts.

The data structures maintained by these servents include a list of known GWebCaches,

which is periodically populated with addresses of new GWebCaches. Servents also maintain

lists of known hosts and permanent hosts, the definitions of which differ slightly in different

servents. Informally, permanent hosts are hosts that the servent managed to contact in

current and previous runs. Some servents also maintain a separate list of ultrapeers. Ultra-

peers [102] are hosts with high bandwidth and CPU power, and long uptimes and are not

firewalled. Normal or leaf nodes have lower CPU and bandwidth capabilities and typically

19

Table 2: Differences in Implementation of Different Gnutella Servents

Characteristic Limewire Mutella Gtk-Gnutella Gnucleus
Is an Ultrapeer list maintained? Yes Yes No Yes
Are Ultrapeers given priority when Yes No No Yes
connecting?
Are host & cache lists prioritized Yes No Yes No
by age?
What modes send updates to Ultrapeer Ultrapeer Any mode Any
GWebCaches? mode mode mode
Number of hardcoded caches 181 3 3 2

connect to Ultrapeers.

Figure 1 outlines the generic bootstrapping algorithm, and Table 2 summarizes the

differences in the implementations, as discussed below.

1. Limewire and Gnucleus maintain a list of ultrapeers and give priority to hosts in

this list during connection initiation. Since ultrapeers have relatively long uptimes

and the capability to support more incoming connections, prioritizing these peers

during connection initiation increases the probability of successfully connecting to

a peer. Although Mutella also maintains a list of ultrapeers, this information is not

used during bootstrapping. When establishing a connection, it picks a host at random

from the lists of ultrapeers, known hosts and permanent hosts. Gtk-Gnutella does not

distinguish between ultrapeers and normal peers thus performing relatively poorly in

terms of its bootstrapping time, as will be seen in Section 3.3.

2. LimeWire and Gtk-Gnutella prioritize their host and cache lists by age. This enables

them to act on more recent (and hence more accurate) information.

3. Although all four servents we examined support the GWebCache system for retrieving

information, LimeWire and Mutella support updates to the GWebCaches only in the

ultrapeer mode. This is better for the system because the probability of ultrapeers

accepting incoming connections is higher than when in the leaf mode. Gtk-Gnutella

and Gnucleus update the GWebCaches even in the leaf mode. This is not good for

the system as the limit on number of connections is low in leaf mode, and they might

20

not be accepting any more incoming connections by the time a peer tries to connect

to them.

4. The Gnutella servents have a set of hardcoded caches, which are used during the very

first run of the servent, before any other information about caches or hosts is known.

As seen in Table 2, compared to other servents LimeWire has a very high number of

hardcoded caches (181), 135 of which were active when we tried to ping them at the

Gnutella level.

In the next section, we will discuss the effects of these differences in bootstrapping

algorithms on the performance of different servent implementations.

3.3 Measurement of Bootstrapping Performance of Ser-
vent

In this section, we compare the performance of the servents considered in our study, based

on their bootstrapping times. We define the bootstrapping time of a servent as the time

between the start of the servent and the initial establishment of the first stable Gnutella-

level connection. A “Gnutella-level” connection is established after the Gnutella handshake

messages are exchanged between the two connecting peers. We say that a connection is

stable if it is maintained for at least threshold seconds.

3.3.1 Measurement Methodology

We modified the sourcecode of the three Linux-based servents (LimeWire, Gtk-Gnutella

and Mutella) to log the times at which the application was started and shut down, and

when a Gnutella-level connection was established and terminated. For the Windows-based

servent (Gnucleus), we used Windump [104] to collect packet traces, and then analyzed

them to determine the connection times.

We started the Linux-based servents once every hour, synchronously at two locations, at

a university campus on a Fast Ethernet Link and at a residence on a DSL link to a local ISP.

We started Gnucleus once every three hours at the university location only. Each servent

was allowed to run for 15 minutes, after which it was shut down. In the following section we

21

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 r

ea
di

ng
s

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)
Gnucleus (univ)

Figure 2: CDF of Bootstrapping Times of Servents at University

analyze the bootstrapping times measured during an 11-day experiment. One limitation of

our study is that both locations in our experiments have high bandwidth access links. We

did not run any experiments at a slower access link.

3.3.2 Performance Measurements

Figure 2 shows the cumulative distribution function of the bootstrapping times of the four

servents at the university location. In this graph we set threshold to 120 seconds. We

analyzed the bootstrapping times with different values for threshold and observed similar

results. The graphs for the bootstrapping times of servents on the DSL link are similar.

The most striking observation is that Gtk-Gnutella performs much worse than Mutella

and LimeWire. We conjecture that this is due to the fact that Gtk-Gnutella does not differ-

entiate between ultrapeers and normal peers. Also, once it selects a particular GWebCache

to contact for retrieving the host list, it uses it for 8 consecutive updates or retrievals. In

Section 3.5, we will see that cache quality varies; thus, maintaining a poor choice of cache

can affect performance. Gnucleus also performs worse than Mutella and LimeWire, but

better than Gtk-Gnutella. This is probably because the GWebCache list and the different

22

0 2 4 6 8 10 12 14 16 18 20 22
Time of day (hours)

0

25

50

75

100

125

150

175

200

M
ea

n
bo

ot
st

ra
pp

in
g

tim
e

(s
ec

on
ds

)

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)

Figure 3: Mean Bootstrapping Times of Servents at Different Times of the Day

host lists are not prioritized by age in the Gnucleus implementation.

Figure 3 shows the mean bootstrapping times for the three Linux-based servents at the

university location for different times of the day. LimeWire and Mutella perform almost the

same throughout the day. Gtk-Gnutella, which does not differentiate between ultrapeers

and normal peers performs similar to LimeWire and Mutella around noon or late afternoon,

when there are more normal peers online in the system. Early in the morning, with very

few normal peers around, Gtk-Gnutella shows a higher mean bootstrapping time. This

highlights the importance of ultrapeer awareness on the part of a Gnutella servent.

Although we started multiple instances of Gnutella servents on the same local area

network, none of our peers were able to discover each other in any one of our experiments

over two weeks. This highlights the lack of Internet location awareness in the GWebCache

system and in the local host list of the servents.

In the next section, we discuss the importance of neighbor peers (resulting from the

bootstrapping process) in the search performance of peers.

23

0 200 400 600 800
Time (seconds)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Gtk-Gnutella
Limewire
Mutella

Figure 4: CDF of Time to Receive First Query Response at Servent

3.4 Importance of Neighbor Peers

A peer gets access to the peer-to-peer network through its directly connected neighbors.

The peers that these neighbors have access to, within an N -hop radius (usually N=7),

comprise the neighborhood of the peer. All query messages originated by the peer will be

forwarded to this neighborhood. The number of peers in this neighborhood, the types of

files shared, the number of files shared amongst all these peers will reflect on the search

performance of a peer.

We studied the effect of neighbors on search performance of LimeWire, Mutella and

Gtk-Gnutella for the the 15 most popular search queries [19]. The performance metric we

considered is the time to get the first response, which is the time-lag from when the servent

is bootstrapped and issues the query, to the time when it gets the first response. Figure 4

shows the CDF of this response time for the top 15 queries issued by that servent during

any experiment.

We found that there is usually a significant variation in the time to get the initial re-

sponse. Limewire performs the best, primarily because during bootstrapping it prioritizes

24

ultrapeers, who usually have access to a larger neighborhood. Mutella and Gtk-Gnutella

perform worse, and take more than 5 minutes to give a result, in about 10% of the experi-

ments.

We conclude that for a good search experience it is very important to have a set of good

neighbors that provide access to many peers, sharing many files.

3.5 Performance of the GWebCache System

We analyzed the performance of the GWebCache system with reference to the properties of

a good distributed caching infrastructure (e.g., sufficient total system capacity, good load

balancing, reliability of cached items, and physical or topological proximity of cached items

served). With this goal in mind, we performed a measurement study of the system at two

levels, globally and locally.

3.5.1 Global GWebCache System Performance

We studied the global GWebCache system by periodically crawling all the caches. We sent

requests in the format shown in Table 1 to each active cache, according to the information

required. We collected multiple traces over a five month period (Apr-Sept 2003), with the

goal of answering the following questions.

1. How many GWebCaches does the system comprise of? How many of the reported

caches are active at any time?

We retrieved the cache list every 30 minutes, starting with a seed GWebCache and

crawled the caches returned, until we had polled all reachable caches. We also determined

the number of active GWebCaches by sending Gnutella ping messages to the crawled list.

Although we found URLs of 1638 unique GWebCaches in 5 months, only one-fourth of

them (403) were active at any time, and at most 220 of them were active during a single poll.

This is quite a low number of reachable GWebCaches, potentially serving about 100000

active hosts2 at any time on the Gnutella network, only 10% of which accept incoming

connections. This indicates that the GWebCache system might get overloaded.

2As shown by the Limewire [59] hostcount, during the period of our study.

25

0 50 100 150 200 250 300 350 400
Number of GWebCaches

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 P

ol
ls

GWebCaches Found
Active GWebCaches Found

Figure 5: CDF of Active Caches in the GWebCache System

Figure 5 shows the CDF of the number of GWebCaches found during each of our polls,

and the number of caches which were actually active (i.e. responded to out Gnutella-level

ping messages). Most of the time, only about 160 caches out of 280, or about 60% were

active. This is because the GWebCache system does not have any means of deleting an

introduced cache. Since peers update caches with URLs of caches they know of (probably

even cached from previous runs), without necessarily knowing whether they are alive or

not, it is quite likely that inactive caches are reported for a long time.

2. What are the access patterns for different requests (cache list, host list, and updates)

at different GWebCaches? What are the differences in access patterns across different GWe-

bCaches and in the whole system?

We retrieved the statistics file every hour from each active GWebCache. The statistics

file gives the number of update requests and total requests for cache and host lists the

GWebCache received within the last hour.

Figure 6 shows the CDF of the mean update rates to the cache and host lists (determined

by analyzing lists retrieved in consecutive polls) at a single GWebCache. About 80% of the

GWebCaches get cache list update rates of 10 per hour or less, while a few caches receive

26

0 10 20 30 40 50 60 70 80 90 100
Mean update rate (updates/hour)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 G

W
eb

C
ac

he
s

Host list
Cache list

Figure 6: CDF of Mean Update Rate for Host and Cache Lists at a Single GWebCache

very high update rates, upto 40 updates per hour. About 60% GWebCaches receive host

list update rates of less than 1 per minute, whereas others receive update rates almost twice

as much.

Similarly, Figure 7 shows the CDF of the mean and maximum total request rates (as

reported by the statistics files) at a single GWebCache. These include requests for the host

and cache lists and updates to both lists from peers. About 90% of the GWebCaches receive

an average request rate of 3000 per hour or less, whereas some caches receive extremely

high loads of the order of 20000 requests per hour on an average, with a maximum of 30000

requests per hour.

This points to the disparity in the type of GWebCaches in the system. Some caches are

very busy, with their lists evolving faster and receiving high request rates, whereas others

are relatively lightly loaded. The servents we studied have some hardcoded GWebCaches,

indicating that the request rates to these caches could be very high. This suggests poor

load balancing in the GWebCache system.

3. How does the host list at a single GWebCache and at all GWebCaches evolve? What

percentage of new hosts added to the GWebCaches are unique?

27

0 5000 10000 15000 20000 25000 30000
Request rate (requests/hour)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 G

W
eb

C
ac

he
s

Maximum rate
Mean rate

Figure 7: CDF of Request Rate for Host and Cache Lists at a Single GWebCache

We retrieved the host list from the active GWebCaches every 5 minutes, and studied its

evolution at a particular cache and in the whole system. As expected, the host list evolves

much faster than the cache list in any GWebCache. During a 15-day period in our study,

we saw over 300000 unique IP address:port combinations in all GWebCaches.

Figure 8 shows the CDF of the host update rates at all GWebCaches in the system.

The rightmost line shows the CDF of the host updates received at all GWebCaches in the

system. The dotted line shows the CDF of the host updates with unique IP address:port

combination at each cache. The leftmost curve with the dashed line shows the CDF of the

unique IP address:port combination seen in the whole system. The average rate for unique

IP address:port updates at a particular GWebCache is lower than the actual update rate

at that cache. The update rate for IP address:port, unique throughout the system is much

lower, almost by a factor of 10. This suggests that the same hosts (presumably ultrapeers)

update the GWebCaches frequently with their IP addresses, leading to a high replication

rate of the same addresses in multiple caches.

4. In the host list returned by the GWebCaches, how many hosts are alive, how many

are accepting Gnutella-level connections, and how many are ultrapeers?

28

0 2000 4000 6000 8000 10000 12000
Update rate to all caches(hosts/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 ti

m
e

Hosts at all caches
Unique hosts at each cache
Unique hosts at all caches

Figure 8: CDF of Host List Update Rate at all GWebCaches

We sent Gnutella-level connect messages to the hosts in the host lists returned by the

GWebCaches. If a TCP connection was established, we determined that the host was alive.

If a Gnutella-level connection was established, we determined that the host was accepting

incoming connections. Out of the hosts that responded with the proper pong response, we

determined whether the host was an ultrapeer or not, using a field X-Ultrapeer: True/False

in the response.

When we tried connecting to the hosts in the host lists retrieved, on an average we found

50% peers online, 16% peers accepting incoming Gnutella-level connections, and 14% ultra-

peers. This shows that a surprisingly low number of peers indicated in the GWebCaches are

actually accepting incoming connections. This could be a cause for the high bootstrapping

times of servents in some cases, where peers waste time trying to connect to off-line hosts

returned by the GWebCaches. The reliability of content served by the GWebCache system

is therefore questionable.

Our measurement methodology has several limitations. Since we polled the GWeb-

Caches starting with a seed GWebCache, we will miss caches in any disconnected compo-

nents of the GWebCache system. Also, between the times we retrieved the list and tried

29

0 10 20 30 40 50 60
Request rate per hour

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 ti

m
e

Host list requests
Cache list requests

Figure 9: CDF of Request Rates for Host and Cache Lists at Local GWebCache

connecting to the peer, the peer could have gone offline. We assume that the informa-

tion returned by the GWebCaches during our polls is valid (i.e., the GWebCaches are not

misconfigured or misbehaving).

3.5.2 Experience of a Local GWebCache

We set up a GWebCache locally by modifying a publicly available PHP script for the

GWebCache v0.7.5 [33] to log request arrivals, and advertised it to the global caching

infrastructure.

We introduced the GWebCache into the system using a feature in the Gnucleus servent.

The servent first ensures that the GWebCache is alive, using the Gnutella ping-pong message

exchange. It then iterates through its list of known GWebCaches and sends an update

request to each cache, with the URL of the new cache. It also adds the new cache to its

local list of GWebCaches. In our polls, we found that 17 GWebCaches pointed to our cache

immediately after the advertisement, after which the number stabilized to about 4 or 5

GWebCaches pointing to ours every hour.

Figure 9 shows the CDF of requests for the host and cache lists at the local GWebCache.

30

Our cache received a request rate of about 15-20 per hour for the host list and about 5-10

per hour for the cache list. It received update rates of about 7 per hour to the host list and

4 per hour to the cache list. Comparing these rates to those of other GWebCaches seen

earlier, we can see that our local cache is used less frequently than the other GWebCaches.

One short-coming of the GWebCache system is that once a GWebCache is in the system,

it is quite difficult to remove it from the system. This is because peers store the URLs of

GWebCaches they have seen in the past. Even after a GWebCache is taken down, one of

the peers that has cached its URL might end up sending a request. After we terminated

our GWebCache, we saw requests to the cache in the webserver logs for quite a long time.

3.6 Summary

In summary, our study highlights the importance of understanding the performance of the

bootstrapping function as an integral part of a peer-to-peer system. We find that (1) Al-

though all servents implement a similar structure for the bootstrapping algorithm, there

is considerable variation among various implementations, that correlates to their boot-

strapping performance. (2) The neighbors of a peer play an important role in the search

performance of the peer. Hence it is important that the bootstrapping process results in

good neighbors. (3) Even though the GWebCache system is designed to operate as a truly

distributed caching system in keeping with the peer-to-peer system philosophy, it actually

operates more like a centralized infrastructure function, with some GWebCaches handling

a large volume of requests while others are idle. (4) The GWebCache system is subject to

significant misreporting of peer and GWebCache availability due to stale data and absence

of validity checks.

31

CHAPTER IV

MULTIPOINT-TO-POINT SESSION FAIRNESS IN

OVERLAY NETWORKS FOR CONTENT

DISTRIBUTION

4.1 Introduction

In this chapter, we will look at fairness issues that arise due to the use of overlay networks

for content distribution.

In Chapter 1, we have presented a number of example applications which indicate that

data transfers are increasingly being performed over a set of point-to-point connections from

multiple servers to a single client. We refer to such a set of connections as a multipoint-to-

point session.

The long-standing max-min fair [10] rate allocation strategy, which proposes a fair al-

location for competing connections, is based on a network with point-to-point connections.

It allocates rates to connections, considering each connection independently. In the current

Internet, this strategy favors sessions with more connections because a session with multiple

connections from multiple servers to a single client will be given a higher total rate than a

session with a single connection between one of the servers and the client.

For example, if two connections belonging to a single session are bottlenecked at the

same link, the max-min fair rate allocation strategy says that each connection should get an

equal share at that link. Thus, the session as a whole will receive twice as much bandwidth

as any other single-connection session bottlenecked at that link. One may view this as being

“unfair” from the point of view of a session with fewer connections. In this work, we explore

the possibility of treating sessions “equally”, irrespective of the number of connections they

comprise1.

1The appropriate use of our mechanisms is a matter of policy.

32

server
client

server

server
serverserverclient

Figure 10: Multipoint-to-Point Sessions in the Internet

In general, the data path of a multipoint-to-point session forms a tree with data flow

from the leaves to the root, as shown in Figure 10. The whole network will thus have a

set of senders and a set of receivers, with each session comprising some of these senders

and a single receiver2. Each connection in the session might have different individual bot-

tlenecks. The data path of a session might thus have multiple bottlenecks and sharing of

these bottlenecks at a session level, as opposed to the current connection-level sharing, is a

challenging problem.

Our goal in this chapter is to explore this issue of fairness of rate allocations from a

session perspective. This problem has been alluded to as an open problem by Balakrishnan

et al. [7] and Padmanabhan [70]. In particular, we look at multipoint-to-point sessions,

which are defined as a set of point-to-point connections started from multiple servers to a

client in order to transfer an application-level object. We explore answers to the questions:

• What are “reasonable” definitions for session fairness?

2For simplicity, we assume a network with only point-to-point and multipoint-to-point connections. We
expect that point-to-multipoint connections can be accommodated as a set of point-to-point connections.

33

• How do connection-fair allocations differ from session fair allocations?

We use Raj Jain’s fairness index [78], variance of session rates, and mean, minimum

and maximum session rates as quantitative metrics to compare rate allocations. We show

that the fairness index for session rates improves with the session fair allocations, while

maintaining or improving overall utilization, in comparison with the connection fair allo-

cation. Also, the variance and minimum of the session rates achieved with the session fair

allocations are lower than those with the connection fair allocation.

The outline of the chapter is as follows. We elaborate on the problem statement in

Section 4.2. We then formalize the definitions of session fair allocations, and give algo-

rithms to achieve the same in Section 4.3. The evaluation results comparing the session fair

algorithms with each other and with the original connection fair algorithm are presented in

Section 4.4. Implementation issues are briefly outlined in Section 4.5, and we conclude in

Section 4.6.

4.2 Discussion of Problem Statement

This section provides more detail regarding the problem of multipoint-to-point session fair-

ness, and describes informally the proposed fairness definitions.

4.2.1 Static and Dynamic Sessions

We begin by differentiating between static and dynamic sessions. Static sessions are

multipoint-to-point sessions comprising connections which, for the purposes of rate alloca-

tion, start and terminate at approximately the same time. On the other hand, connections

in dynamic sessions start and terminate at different times. Thus, the composition of a

dynamic session varies significantly over time. Clearly, the designation of static or dynamic

must be based on the temporal granularity of resource allocation.

A typical static session is shown in Figure 11(a). The length of each horizontal line

denotes the duration that the connection was active. The Multiple Description Streaming

Media with Content Delivery Networks approach [4], the parallel-access approach in Ro-

driguez et al. [82], and retrieval by companies like PeerGenius.com [73], CenterSpan.com

34

1

2

3

4

time

object
number

(a) Connections in a static multipoint-to-point session

10

1

2

3

4

5

6

7

8

9

13

12

11

14

number
object

time

(b) Connections in a dynamic multipoint-to-point session

Figure 11: Static and Dynamic Multipoint-to-Point Sessions

35

[17], digitalfountain.com [23], are examples of applications using static sessions.

Retrieval of webpages, on the other hand, is typically an example of a dynamic session.

Figure 11(b) from Liston et al. [60] shows a typical object retrieval with a number of

connections (possibly to different servers) starting and ending at different points in time.

In this work, we focus on static sessions. Static sessions are important in their own right,

given the number of near-simultaneous parallel download applications that are increasingly

under development. Further, the definitions and algorithms proposed here can be used as

building blocks to solve the session fairness problem for dynamic sessions3.

4.2.2 Inter-Session and Intra-Session Fairness

The notion of session fairness has two components—

• Inter-session fairness refers to the fairness of the total session rates with reference to

each other.

• Intra-session fairness refers to the division of the session rate amongst the connections

constituting the session.

Inter-session fairness advocates fair sharing of network resources between independent

sessions on intersecting paths. To this end, we propose the notions of normalized rate

session fairness and per-link session fairness, the details of which are presented in Section

4.3.

Normalized rate session fairness is based on the notion of weight of a connection, which

is used to express, in some sense, the number of connections in the session. Each connection

in a session is assigned a weight, such that the total weight of the connections in a session

is 1. The rate allocation for each connection at every link in the network is based on the

weight of the connection. The constraint on the total weight of the connections in a session

ensures that the session rates are fair with reference to each other. In fact, if all connections

in all sessions traverse the same bottleneck link, all sessions will get an equal session rate.

3Dynamic sessions may require additional or alternative strategies, particularly if the connections are
highly dynamic.

36

Per-link session fairness, on the other hand, looks at each link in the network and tries

to ensure that each session shares the capacity of the link in a fair manner. The capacity of

every link in the network is divided equally between the sessions traversing that link. The

sessions divide the rate assigned to them at that link amongst the connections belonging to

that session, that traverse the link4.

Intra-session fairness options allow the client in each session to decide for itself as to how

each connection in the session should be treated, in terms of rate allocation. An allocation

is said to be “source and session fair” if each connection in the session is treated equally.

That is, the rate allocation within the session is fair from the point of view of the sources

in the session. If each connection in a session is given a rate allocation in proportion to the

amount of data retrieved over that connection, the allocation is said to be “data and session

fair”. This allocation has the appeal of allowing sources with more data to operate at higher

speeds than sources with less data. If each connection in a session is given a rate allocation

based on its path in the network (i.e. based on sharing of links between connections in the

session), the allocation is said to be “path and session fair”. For simplicity, we describe

algorithms that achieve “source and session fairness”.

The normalized rate session fair algorithm is very flexible and can be easily extended to

incorporate intra-session fairness definitions, based on the clients’ choices, by adjusting the

weights of the connections. It is also amenable to a distributed end-to-end implementation.

On the other hand, it is difficult to extend the per-link session fair algorithm to incorporate

the intra-session fairness definitions. This is because the algorithm has implicit weights

embedded for each connection. There is no way for the client to specify (say with the

weight of the connection) that it wants otherwise, in terms of rate allocation within the

session, at any link.

In the next section, we discuss these definitions and algorithms in detail.

4We conjecture that per-link session fairness is equivalent to normalized rate session fairness for some
globally-coordinated assignment of weights. However, such an assignment is sufficiently complex that it
makes sense to describe per-link session fairness separately.

37

4.3 Definitions and Algorithms

In this section we formalize the definitions for different fairness criteria for rate allocation

to multipoint-to-point sessions. For comparison, we define the connection max-min fairness

criterion. We also present algorithms to achieve the allocations defined, and discuss prop-

erties of these allocations with respect to their session rates. The notations used are given

in Table 35.

Table 3: Notations Used in Multipoint-to-Point Session Fairness Definitions and Algorithms

lj jth link in the network
Cj capacity of link lj
cj residual capacity of link lj
Si ith session in the network
m number of sessions in the network
ki number of senders in session Si

si,k kth sender in session Si

ri ith receiver in the network
Ri,j set of receivers in Si whose data path traverses lj
Rj set of receivers in all sessions whose data path traverses lj
ai,k data rate of sender si,k

ai,k data rate of sender si,k using an alternate allocation
wi,k weight of sender si,k

zi,k normalized rate for sender si,k

bi,k,j link rate for kth connection in session Si on lj
bi,j link rate for session Si on lj
bj link rate for all sessions on lj
ai data rate for session i (or session rate of Si)
X,Y set of unassigned receivers
ci,j residual capacity for session i on link lj
ui,j number of unassigned connections in session i on link lj
uj number of unassigned sessions on link lj

4.3.1 Connection Fairness (Max-Min Fairness)

We first present the traditional connection max-min fairness definition, for comparison with

our session fairness definitions.

Definition: An allocation of sender rates ai,k is said to be connection fair [10] if it is

feasible and for any alternative feasible allocation of sender rates where ai,k > ai,k, there is

5For consistency, we adopt a notation similar to that used in Rubenstein et al. [86].

38

5
r

s

s

1,1
s

1

2

2,1

2,2

d

c

r

6
a

4

b

(a) Session Layout

6

5

4

r

r

s

s

1,1
s

1

2

2,1

2,2

: 2.0

: 2.0

: 2.0

a b

c

d

(b) Connection fair allocation (S1 : 2.0, S2 :
4.0)

6

5

4

r

r

s

s

1,1
s

1

2

2,1

2,2

: 2.66

: 1.33

: 2.0
d

a b

c

(c) Normalized rate session fair allocation (S1

: 2.66, S2 : 3.33)

6

5

4

r

r

s

s

s

1

2

2,1

2,2

: 1.75

: 2.0

: 2.25
1,1

a b

c

d

(d) Per-link session fair allocation (S1 : 2.25,
S2 : 3.75)

Figure 12: Example to Illustrate Multipoint-to-Point Session Fair Algorithms and Resulting
Allocations: (a)Example Network, (b)Connection Fair, (c)Normalized Rate Session Fair,
(d)Per-Link Session Fair

39

some other sender si′,k′ 6= si,k such that ai,k ≥ ai′,k′ > ai′,k′ .

An allocation is said to be feasible if each sender si,k is assigned a sending rate ai,k,

subject to the constraint

∀j : {∑ ai,k : si,k ∈ Rj} ≤ Cj

Informally, the rate of a connection at its bottleneck link is greater than or equal to the

rate of any other connection at that link. The feasibility condition ensures that the link

is not loaded beyond its capacity. The algorithm for achieving this allocation is given in

Bertsekas and Gallager [10].

Example allocation: We describe the working of the algorithms with the help of an

example. Figure 12(a) shows the topology considered. Session S1 consists of sender s1,1

sending to receiver r1. Session S2 consists of two senders, s2,1 and s2,2, sending to r2. The

capacities of the links are as shown in Figure 12(a).

Figure 12(b) shows the connection fair rate allocation. Link a-b is the bottleneck link

for all three connections, and hence each connection gets a rate of 2 units. Session S1 gets

a total rate of 2 units, and session S2 gets a total rate of 4 units.

Properties of the Allocation: We discuss properties of the allocation from a session point

of view. These properties are in addition to the normal connection rate properties.

• If all connections in all sessions have the same bottleneck link, the session rates will

be in proportion to the number of connections in the session.

• Two connections between the same sender and receiver, belonging to different sessions

will be bottlenecked at the same link and will receive equal rates.

4.3.2 Normalized Rate Session Fairness (NRSF)

We now present the two session fair definitions and discuss them in detail. We also present

algorithms to achieve the allocations and then discuss some properties of the allocations.

Definition: An allocation of sender rates ai,k is said to be normalized rate session fair if

it is feasible and for any alternative feasible allocation of sender rates where the normalized

rate zi,k > zi,k, there is some other sender si′,k′ 6= si,k such that zi,k ≥ zi′,k′ > zi′,k′ .

40

The normalized rate of a connection is defined as

zi,k = ai,k

wi,k
,

where wi,k is the weight of the connection, subject to the constraints:

∑
k wi,k = 1

wi,k ≤ 1

Informally, the normalized rate of a connection at its bottleneck link is greater than

or equal to the normalized rate of any other connection at that link. The first constraint

on the weights ensures that the set of connections in each session behaves as at most one

connection throughout the data path of the session, and hence as at most one connection on

each link that it traverses. The rate assigned to each connection at its bottleneck link will

be in proportion to its weight6. The second constraint ensures that no connection behaves

as more than one connection on any link.

The session fairness definition can be extended to an r-parallel connection fairness def-

inition if each session behaves as at most r connections throughout the data path of the

session. This approach lies between the connection-fair and the session fair rate allocation

approaches, with r = 1 corresponding to the session fair approach and r = number of con-

nections corresponding to the connection-fair approach. r-parallel connection fairness can

be achieved by defining the normalized rate of a connection as

zi,k = ai,k

wi,k
,

subject to the constraints:

∑
k wi,k ≤ r

wi,k ≤ 1

The second constraint ensures that no connection behaves as more than one connection

on any link.

6Moh and Chen [62] also use the concept of weights for each connection, but their definition and algorithm
differ from ours.

41

Algorithm: We first assign weights to each connection according to the intra-session

fairness approach that the client wants, as described in Section 4.2. For “source and session

fairness”, we assign equal weights to each connection, for “data and session fairness”, we

assign weights to each connection in proportion to the size of data retrieved from that

server, and for “path and session fairness”, we assign weights to each connection according

to the sharing of the data path of the session. For simplicity, we describe the normalized

rate session fair algorithm with all clients using “source and session fairness”.

In every iteration, we compute the normalized rate attainable on every link and saturate

the link with the minimum normalized rate. The connections which get saturated as a result

are bottlenecked at that link. Thus, after every iteration, at least one link will be saturated,

and the algorithm will terminate when all connections have a bottleneck link. We expect

the session rates to be fair with respect to each other because we have assigned weights

subject to the constraint:

∑
k wi,k = 1

In fact, the weight of each connection gives an idea about the number of other connections

constituting the session it belongs to.

Figure 13 presents the algorithm for determining the normalized rate session fair al-

location. We assume that each connection has a weight wi,k. In step 1, we initialize the

unsaturated sender set (senders in a session with no bottleneck link) to all the sender-

receiver pairs in the topology. Each connection is assigned a rate ai,k of 0. In step 3, xj

is calculated as the ratio of the residual capacity of the link to the sum of the weights

of all unsaturated connections traversing that link, that do not have a bottleneck yet. In

step 4, we compute the minimum of all these xj ’s. In step 5, the rate for all unsaturated

connections is incremented by its weight, times the minimum value, thus saturating at least

one link. The residual capacity on all links along the path from the senders in set X to

the receivers is then decremented by that amount. In step 6, all senders that are saturated

as a result are removed from set X. We repeat steps 2 through 7 until all receivers have a

bottleneck link. The rate allocation thus determined is the required normalized rate session

42

1. X = {si,k : i = 1..m, k = 1..ki};
∀j, cj = Cj ;
∀si,k, ai,k = 0

2. while (|X| > 0)

3. ∀j, xj = cjP
si,k∈Rj

wi,k

4. xmin = min{xj}
5. ∀si,k ∈ X :

ai,k += wi,k ∗ xmin

∀lj along the path from si,k to ri

cj −= wi,k ∗ xmin

6. ∀j, if (cj == 0)7

X = X − {si,k ∈ Rj}
7. repeat from step 2

Figure 13: Algorithm to Determine the Normalized Rate Session Fair Allocation

fair allocation.

Example allocation: Figure 12(c) shows the allocation achieved by the normalized rate

session fair algorithm. The connection in session S1 is assigned a weight of 1.0, and the two

connections in session S2 are each assigned a weight of 0.5. In the first iteration, the total

weight on link a-b is 2.0, hence a weight of 1.0 would correspond to a rate of 3 units. The

total weight on link b-c is 1.5, hence a weight of 1.0 corresponds to a rate of 4/1.5 = 2.66

units. The total weight on link b-d is 0.5, hence a weight of 1.0 corresponds to a rate of

10 units. The minimum normalized rate is 2.66, hence the algorithm will saturate link b-c

first. s1,1, which has a weight of 1.0, therefore gets a rate of 2.66 units, and s2,1, which has

a weight of 0.5, gets a rate of 1.33 units. In the next iteration, link a-b is saturated, and

s2,2 gets a rate of 2.0 units. Thus, session S1 gets a total rate of 2.66 units and session S2

gets a rate of 3.33 units.

Properties of the Allocation: We present some properties of the allocation that follow in

a relatively straightforward manner from the definition of normalized rate session fairness.

• If all sessions have an equal number of connections, they will share bandwidth as in

43

the connection max-min fair allocation. This is because, the weights of all connections

in all the sessions will be equal, and they will share the capacity on bottleneck links

equally.

• If all connections in all sessions traverse the same bottleneck link, the rates allocated

to each session will be equal because we have imposed the constraint:

∑
k wi,k = 1

on each session. Each session will therefore be treated as a single connection on that

link. The connections within a session will share this session rate.

• All connections (possibly from different sessions) bottlenecked at the same link will

have the same normalized rate:

zi,k = ai,k

wi,k

• Two connections between the same sender and receiver (assuming they follow the

same path), belonging to different sessions with different number of connections (and

hence having different weights, to be more precise), will be bottlenecked at the same

link and will receive different rates, in proportion to their weights. However, their

normalized rates will be the same.

4.3.3 Per-Link Session Fairness (PLSF)

Definition: An allocation of sender rates ai,k is said to be per-link session fair if it is feasible

and for any alternative feasible allocation of sender rates ai,k, where bi,j > bi,j for session

Si at some link lj , there is some other session Si′ 6= Si such that bi,j ≥ bi′,j > bi′,j .

Informally, this means that the rate of a connection can be increased only by decreasing

the rate of a session with an already lower or equal rate on a link at which the higher rate

session, which comprises the connection, is bottlenecked. This also ensures that each session

behaves like at most one connection on each link that it traverses. The basic idea here is

that the capacity of the bottleneck link is shared equally by all the sessions traversing that

44

link (and not by the individual connections). In other words, we try to achieve session

fairness on every link.

The above definition does not lead to a unique allocation. This is because the per-link

session fairness definition advocates the sharing of the session rate at each link in a fair

manner. The session then splits this rate amongst the connections that traverse that link.

This leads to residual capacity on some links. The manner in which this residual capacity

is shared amongst the sessions can lead to multiple allocations which satisfy the above

definition. We present an algorithm which will lead to one such allocation.

Algorithm: In this algorithm, we make the distinction between virtual bottleneck links

and physical bottleneck links. Each link is considered to be a set of virtual links, one for each

session on that link. In every iteration, at least one virtual link is saturated. Thus, at the

end of one run of the algorithm, each connection has a virtual bottleneck link. But it might

be the case that a connection does not have a physical bottleneck link on its path, and

hence it can send at a higher rate. We therefore reassign the available capacities amongst

all sessions without physical bottleneck links and reiterate through the algorithm. We do

this until each connection has a physical bottleneck link on its path.

Figure 14 presents the algorithm to compute the per-link session fair allocation. Set Y is

the set of receivers without a physical bottleneck link. Set X is the set of receivers without

a virtual bottleneck link in the current iteration. In step 5, each session is assigned the rate

it is allowed to use on that link. This is the ratio of the residual capacity of that link to the

number of sessions traversing that link. In step 7, each session then determines the rate of

each connection it comprises as the ratio of the above rate to the number of unsaturated

connections constituting that session on that link. In step 8, we determine the minimum

of these rates, and increment the rates of all unsaturated connections by that amount.

We thus saturate at least one virtual link in this step, and remove these connections from

consideration in this iteration. If any physical edge has a residual capacity of zero, we

remove those connections from consideration permanently. We repeat steps 6 through 10

until all connections are saturated by a virtual link. We then reassign the set X to the

set Y and continue steps 3 to 11 until each connection has a physical bottleneck link. The

45

1. ∀j, cj = Cj ;
∀si,k, ai,k = 0

2. Y = {si,k : i = 1..m, k = 1..ki}
3. while (|Y | > 0)

4. X = Y
uj = number of sessions on link lj
ui,j = number of connections in session i on link lj

5. ∀i, j, if (uj 6= 0)
ci,j = cj

uj

6. while (|X| > 0)

7. xi,j = ci,j

ui,j

8. xmin = min{xi,j}
9. ∀si,k ∈ X:

ai,k += xmin

∀lq along the path from si,k to ri

ci,q −= xmin

cq −= xmin

if (ci,q == 0)8

X = X − {si,k ∈ Ri,q}
∀lq on the path from these si,k’s to ri,

ui,q−−
if (ui,q == 0)

uq−−
if (cj == 0)

Y = Y − {si,k ∈ Rj}
10. repeat from step 6

11. repeat from step 3

Figure 14: Algorithm to Determine the Per-Link Session Fair Allocation

46

resulting rate allocation is the per-link session fair allocation.

Example allocation: Figure 12(d) shows the allocation achieved by the per-link session

fair algorithm. On link a-b, sessions S1 and S2 can each use a rate of at most 3 units.

Session S2 can therefore use at most 1.5 units for each connection, assuming that it shares

the rate equally between the connections in the session. On link b-c, sessions S1 and S2 can

each use at most 2 units. On link b-d, session S2 can use at most 5 units. Since 1.5 units

is the minimum rate that can be used by a connection in this scenario, the virtual link for

session S2 on link a-b is saturated in this iteration, and s2,1 and s2,2 each get a rate of 1.5

units. These two connections are then removed from contention on all the links that they

traverse. In the next step, s1,1 is assigned 0.5 units more, thus saturating its virtual link on

b-c. Note that we did not reallocate the extra 0.5 units not used by session S2 on link b-c,

because we can reuse it in successive iterations. In the next run, we therefore reconsider all

senders that are not saturated by a physical link. All three senders satisfy this condition—

the residual capacity on link b-c is 0.5 units, that on link a-b is 1 unit, and that on link b-d

is 3.5 units. s1,1 and s2,1 get 0.25 units each, in this round, thus saturating physical link

b-c. s2,2 also gets 0.25 units, thus saturating the virtual link for session S2 on link a-b, but

the physical link is not yet saturated. In the next round, the only connection in contention

is s2,2, and it gets the residual 0.25 units, thus saturating link a-b. Session S1 therefore gets

a rate of 2.25 units under the per-link session fair allocation, and session S2 gets a total

rate of 3.75 units.

Properties of the Allocation: The properties presented are for the allocation in general,

and not just for the allocation achieved by this particular algorithm. They follow in a

relatively straightforward manner from the definition of per-link session fairness.

• If all connections in all sessions traverse the same bottleneck link, the rates allocated

to each session will be equal by definition. That is, each session will be treated as a

single connection on that link. The connections within a session will share this session

rate.

• Two connections between the same sender and receiver, belonging to different sessions

47

will be bottlenecked at the same link if they are part of sessions with the same number

of connections at the bottleneck link, and they will receive the same rates. If the

connections belong to sessions with different number of connections on that link, they

will receive different rates.

To summarize this section, we have proposed two definitions for session fairness, and

presented algorithms to achieve those allocations. We have also discussed some properties

of these allocations.

4.4 Evaluation Results

This section describes an evaluation of the proposed session fair algorithms using simulations

of a wide area network. Our goal is to evaluate the advantages offered by the proposed

algorithms in an environment like the Internet, with data paths of sessions intersecting

arbitrarily, and to ensure that the session fair allocations do not just degrade to the existing

connection fair allocation. We compare the two session fair algorithms with each other, and

with the original connection fair algorithm. We also compare these algorithms with the

user fair queueing algorithm presented by Banchs [8].

4.4.1 Evaluation Model

We implemented the four algorithms (normalized rate session fair, per-link session fair,

connection fair, and user fair queuing) and computed the allocations achieved for various

session configurations in the topologies discussed below.

We constructed transit-stub topologies of 100 nodes and 600 nodes using GT-ITM [15].

A number of sessions were then simulated on top of this topology, with varying percentages

of clients and servers. These sessions comprised 1, 4 or 15 connections from multiple servers

to a single client. We allowed for a single client to have multiple co-located sessions.

Based on a study by Krishnamurthy et al. [54], we varied the percentages of 1, 4

and 15-connection sessions, such that the average number of servers contacted by a client

is between 4 and 9. We varied client and server percentages and their locations in the

network, computed the allocations with the four algorithms and plotted the performance

48

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0

0.2

0.4

0.6

0.8

1

Fa
ir

ne
ss

 I
nd

ex
 o

f
Se

ss
io

n
R

at
es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 15: Fairness Index for Session Rates

metrics discussed in Section 4.4.2. A typical plot for the performance metrics is analyzed

later in this section.

4.4.2 Performance Metrics

The performance metrics used for comparison of the algorithms, and their significance are

discussed below.

• Raj Jain’s fairness index: This is a commonly accepted fairness performance measure,

and is defined as:

f(x1, x2, . . . xn) = (
Pn

i=1 xi)
2

n
Pn

i=1 xi
2

It accounts for variability in the xi’s of all the users. The index assumes a range of

values between 0 and 1. A fairness index of 1 implies an equal distribution of xi’s.

The lower the value of the fairness index, the more unfair the distribution is. For

calculation of the fairness index for session rates, the xi’s are the total data rates of

each session. For calculation of the fairness index for connection rates, the xi’s are

the rates allocated to each connection by the algorithm.

49

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0
1e

+
07

2e
+

07
3e

+
07

4e
+

07
V

ar
ia

nc
e

of
 S

es
si

on
 R

at
es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 16: Variance of Session Rates

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

45
00

50
00

55
00

60
00

M
ea

n
of

 S
es

si
on

 R
at

es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 17: Mean of Session Rates

50

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
M

ax
im

um
 S

es
si

on
 R

at
e

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 18: Maximum of Session Rates

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0
50

0
10

00
15

00
20

00
25

00
30

00
M

in
im

um
 S

es
si

on
 R

at
e

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 19: Minimum of Session Rates

51

• Variance of session rates: A higher variance in session rates implies that the session

rates are unevenly distributed across all sessions. Hence, a lower variance indicates a

more fair distribution.

• Mean session rate: A higher mean session rate indicates a higher utilization of available

bandwidth resources.

• Minimum and Maximum session rates: The minimum and maximum session rates are

just two extreme points in the distribution. Since the session with the lowest rate

is least satisfied, a fair algorithm would try to increase the minimum session rate.

Also, a fair algorithm would try to redistribute the excess rate in the session with the

maximum rate amongst sessions with lower total rates. Hence, an algorithm with a

higher minimum session rate and a lower maximum session rate can be considered

more fair.

4.4.3 Comparison of Session Fair Algorithms with the Connection Fair Algo-
rithm

Figures 15, 16, 17, 18 and 19 show typical plots of the performance metrics discussed in the

previous section. These plots are for a 100-node topology with 30 servers and 20 clients. 20%

sessions have 15 connections, and we vary the percentage of 1-connection and 4-connection

sessions between 0% and 80%. The x-axis for each graph is the percentage of sessions with

1 connection, and therefore, the percentage of sessions with 4 connections is (80− x)%.

From Figure 15, it is clear that the fairness indices for the normalized rate session fair

algorithm are higher than the per-link session fair and connection fair algorithms. It thus

achieves the most fair allocation of session rates for this configuration.

The variances in session rates, as seen from Figure 16, are much higher with the connec-

tion fair algorithm than the per-link session fair algorithm and the normalized rate session

fair algorithm. In some cases, the connection fair algorithm has a variance as much as two

or three times that of the normalized rate session fair algorithm, thus giving a rather unfair

allocation.

Although the mean session rates, as seen in Figure 17, are almost the same for all three

52

algorithms, in most cases the normalized rate session fair algorithm achieves a higher mean

than the connection fair algorithm and the per-link session fair algorithm. Note that a

higher mean session rate implies a higher overall bandwidth utilization in the network.

As seen in Figure 19, the minimum session rate achieved by the normalized rate session

fair algorithm is always greater than that achieved by the per-link session fair algorithm,

which is again greater than that achieved by the connection fair algorithm. On the other

hand, as seen from Figure 18, which plots the maximum session rate, the connection fair

algorithm has a higher maximum session rate most of the times. The session fair algo-

rithms try to decrease the maximum rate achieved by any session, and redistribute that

rate amongst sessions with lower rates, thus increasing the minimum rate. Thus, the nor-

malized rate session fair algorithm is more fair than the connection fair algorithm.

Thus, we can conclude that the session rates achieved by the session fair algorithms

are more fair than those achieved by the connection fair algorithm, while maintaining or

increasing overall bandwidth utilization.

4.4.4 Comparison of Session Fair Algorithms with the User Fair Queueing
(UFQ) Algorithm

In the normalized rate session fair algorithm, we need to be careful when we assign weights

to the connections in each session. Our algorithm assigns weights in a session at the client or

receiver end, subject to the condition
∑

k wi,k = 1. However, if the weights are distributed

amongst all connections at the sender, as suggested in the user fair queueing algorithm [8],

the session-rate distribution may not be fair.

In Figures 15, 16, 17, 18 and 19 the fourth algorithm plotted is the user fair queueing

algorithm, which is basically the normalized rate session fair algorithm, with weights as-

signed at the server. As can be seen, the minimum session rate achieved by this algorithm

is often lower than even that achieved by the connection fair algorithm. The variance is al-

most as high as that with the connection fair algorithm, or sometimes higher, and the mean

session rate (and hence utilization) is lower than that with the connection fair algorithm at

times. This is because, in user fair queueing, if a sender has many clients (N), the weight

assigned to each connection is 1/N . Effectively, some multipoint-to-point session might get

53

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0

0.2

0.4

0.6

0.8

1

Fa
ir

ne
ss

 I
nd

ex
 o

f
C

on
ne

ct
io

n
R

at
es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 20: Fairness Index for Connection Rates

a total weight of more than 1, and if two such sessions share a bottleneck link for all their

connections, one session will get a higher share than the other session. The normalized rate

session fair algorithm performs better than the user fair queueing algorithm in all cases.

4.4.5 Comparison of Connection Rate Allocations Using Different Algorithms

The improved session fairness does not come without a penalty. The performance metrics for

the connection rates are shown in Figures 20, 21, 22, 23 and 24. The x-axis shows varying

percentages of 1-connection sessions in the network. On the y-axes we plot minimum,

maximum, variance and mean of the connection rates in the network. It is clear that

the minimum connection rates for the session fair algorithms are lower than those for the

connection-fair algorithm and the variances are higher. This is the tradeoff seen due to our

proposal of achieving fairness at the session level, as opposed to fairness at the connection

level.

Thus, we conclude that the session fair algorithms, while achieving the same or higher

total utilization as the connection fair algorithm, distribute the rate allocations more evenly

among sessions.

54

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0
1e

+
06

2e
+

06
3e

+
06

4e
+

06
V

ar
ia

nc
e

of
 C

on
ne

ct
io

n
R

at
es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 21: Variance of Connection Rates

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

50
0

75
0

10
00

12
50

15
00

17
50

M
ea

n
of

 C
on

ne
ct

io
n

R
at

es

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 22: Mean of Connection Rates

55

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

60
00

70
00

80
00

90
00

10
00

0
11

00
0

M
ax

im
um

 C
on

ne
ct

io
n

R
at

e

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 23: Maximum of Connection Rates

0 10 20 30 40 50 60 70 80
% of 1-connection sessions

0
20

0
40

0
60

0
80

0
M

in
im

um
 C

on
ne

ct
io

n
R

at
e

Normalized Rate Session Fair
Per-Link Session Fair
User Fair Queueing
Connection Fair

Figure 24: Minimum of Connection Rates

56

4.5 Implementation Issues

We present some preliminary thoughts on the challenges involved in implementing the ses-

sion fair algorithms proposed. Both the algorithms assume global knowledge of the residual

capacities of each link, and information about all connections in all sessions. Thus, these al-

gorithms are inherently centralized and do not scale well. Modifications to these algorithms

are necessary in order to implement them in a distributed and scalable manner.

The three issues involved in the distributed implementation of the session fair algorithms

at the client end are as follows:

• Identification of the transport connections belonging to the same session.

• Communication between connections within the same session about the existence of

other connections in the session.

• Estimation of the sending rate of each connection, in accordance with the session fair

algorithms, and then achieving that rate.

The issue of session identification of a connection, and communication between connec-

tions in a session can be implemented explicitly by each application. Alternatively, the

Session Control Protocol [93] or the Session Initiation Protocol [38] can be extended to

identify the connections belonging to a session. The Integrated Congestion Management

architecture [6] has the ability to communicate information between different connections,

though clearly the appropriate type and use of information must be modified to meet our

needs.

More work is needed to develop techniques for estimating the correct sending rate and

incorporating rate adjustment into existing protocols. Over here, we need to distinguish

between the two proposed session fair algorithms.

The normalized rate session fair algorithm is more amenable to a distributed end-to-end

implementation. This is because, once a client knows the connections that comprise its

multipoint-to-point session, it can assign weights to each session according to the specified

intra-session fairness scheme. The question is, how do we use this weight information inside

57

the network in order to achieve the normalized rate session fair allocation. We will present

two possible solutions to the above problem later in this section.

The per-link session fair algorithm, on the other hand, appears to require a more complex

implementation, because of the need to compute the session rate at every link. In this

section, we present a possible solution to the problem using support from intermediate

overlay nodes in an overlay network.

4.5.1 Implementation of Normalized Rate Session Fair Algorithm

Two possible solutions to implementing a distributed version of the normalized rate session

fair algorithm are presented in this section. One solution uses the eXplicit Control Protocol

(XCP [50]), and another solution uses ideas from the design of an Overlay-TCP network,

presented in Chapter 6.

• Using eXplicit Control Protocol (XCP): The eXplicit Control Protocol, developed by

Katabi et al. [50] decouples utilization control from fairness control in the network.

XCP routers implement an efficiency controller, which maximizes link utilization while

minimizing drop rate and persistent queues, and a fairness controller, which apportions

the feedback to individual packets to achieve fairness. We are interested in a modified

version of the fairness controller, described in the paper, which provides differential

bandwidth allocation. This idea is based on a price associated with each flow. The

network allocates bandwidth so that competing flows on the same bottleneck link will

achieve a throughput in proportion to their prices.

In the normalized rate session fairness implementation, once a client computes the

weight of each connection, it can assign the corresponding weight as the price of that

flow, and attach the price to each packet in the network. Recall that the weights are

normalized such that each multipoint-to-point session gets a total weight of 1 unit.

Hence, the price will be assigned accordingly, and will ensure that all sessions get a

total rate allocation that is normalized rate session fair.

• Using Overlay-TCP Networks: The intra-overlay network fairness concept presented

58

in Section 6.3.2 defines max-min fair sharing amongst overlay flows in the same over-

lay network. In our design of an Overlay-TCP network, we implement this fairness

between overlay flows by requiring the overlay nodes to track the number of overlay

flows forwarded on each overlay hop, and then reading from the socket buffers of the

TCP connections on each overlay hop in proportion to the number of flows on that

hop.

This can be modified to implement the normalized rate session fair algorithm by

assigning weights to each overlay flow as before, assuming that each connection in a

session is a single overlay flow. Each packet in the overlay network carries the weight

assigned to the overlay flow by the client. The overlay nodes are required to track

the total weight of the overlay flows on each overlay hop and then read data from

the socket buffers in proportion to the total weight of the overlay flows comprising

that hop. If all nodes implement this strategy, the resulting allocation should be

normalized rate session fair.

4.5.2 Implementation of Per-Link Session Fair Algorithm

The solution we present for the distributed implementation of the per-link session fair al-

gorithm derives ideas from the design of an Overlay-TCP network, similar to the previous

discussion. The per-link session fair algorithm does not use the concept of weights of each

connection. Instead, it requires each packet to carry a globally unique session identifier,

which indicates the session that the packet belongs to. This session identifier can be as-

signed by the client, assuming that each connection in a session is a single overlay flow.

Each overlay node will then need to keep track of the number of sessions on each overlay

hop, and then read from the socket buffers in proportion to this number. Thus, all overlay

flows belonging to the same session will be identified as a single unit on each overlay hop.

This will ensure that at each overlay hop, all sessions traversing that hop get an equal share.

A detailed investigation of these options, with the goal of designing and building a

workable system for session fair rate control, is a potential direction for future work in this

59

area.

4.6 Summary

In the current Internet, many applications start sessions with multiple connections to mul-

tiple servers in order to expedite the reception of data. Such aggressive behavior can be

viewed as unfair sharing of available bandwidth. This has been our motivation to propose

the notion of session fairness when allocating rates to connections. In particular, we looked

at static multipoint-to-point sessions which comprise multiple connections from multiple

senders to a single client, starting and terminating at approximately the same time. We ex-

plored the session fairness space and proposed and evaluated two definitions and algorithms

to achieve the definitions. The normalized rate session fair algorithm achieves a higher level

of session fairness, while achieving the same or higher network utilization, as compared to

the connection fair algorithm. The per-link session fair algorithm also performs better than

the connection fair algorithm, but not as well as the normalized rate session fair algorithm.

We discussed some of the issues involved in implementing these algorithms and presented

some preliminary thoughts on options for implementation. The normalized rate session fair

algorithm appears to be easier to implement than the per-link session fair algorithm.

60

CHAPTER V

OPTIMIZING END-TO-END THROUGHPUT FOR DATA

TRANSFERS ON AN OVERLAY-TCP PATH

5.1 Introduction

In this chapter, we focus on a single path in an Overlay-TCP network, and describe the

proposed Adaptive Overlay-TCP Provisioning Architecture that dynamically provisions the

number of TCP connections on each overlay hop on the overlay path.

Figure 25 shows an example of an Overlay-TCP network. Consider a native network

comprising some native nodes and native links between these nodes. A subset of these

native nodes function as overlay nodes, with overlay hops between these nodes. Senders

and receivers, referred to as overlay users, are not necessarily part of the overlay network.

Sources send data to an ingress overlay node, which detects the transfer, say by looking

at headers, as suggested by the proxy mechanism in [74]. The ingress overlay node then

transfers the data over the Overlay-TCP network to the egress overlay node. This node

demultiplexes the data and delivers it to the appropriate receiver. We refer to the data

transfer between a pair of ingress and egress overlay nodes as an overlay flow. Each overlay

hop carries data over one or more TCP connections. We assume the existence of a separate

routing infrastructure that determines the overlay path from a sender S to a receiver R.

Now consider a single path in such an Overlay-TCP network, as shown in Figure 26,

which is explained in detail in Section 5.2. In order to optimize the end-to-end throughput of

the overlay path, the main design parameter is we consider the number of TCP connections

on each overlay hop in the path. To understand the need for such a design, we define

the isolated rate of an overlay hop as the throughput that a single long-lived continuously

backlogged TCP connection would achieve on that overlay hop. Now consider an Overlay-

TCP path in which a single TCP connection is used on each hop. Clearly, the isolated rates

61

Users
Overlay

Overlay
Hop

Overlay
Nodes

Source

Data

Receiver
Overlay Node

Egress

Flow
Overlay

Ingress
Overlay Node

TCP Connections

Nodes
Underlying

Links
Underlying

����������
�����
�����

����������
������

����������
������

����������
������

	�	�		�	�	

�

�

Network
Underlying

Network
Overlay

����������
����������

�
�

�
�

����������

����������
���������� ����������

������

����������
������

�����
�����
���
���

����������
�����
�����

Figure 25: Overlay-TCP Network

on the overlay hops are usually not equal, and vary over time. The end-to-end throughput

on this path is therefore limited by the minimum of the isolated rates on the individual

overlay hops.

This end-to-end throughput can be improved by introducing multiple parallel connec-

tions on the slower overlay hops to increase their rate to match that of the faster overlay

hops. This might be considered an aggressive measure, and unfair to connections competing

on the bottleneck native link. However, the addition of a bound on the number of parallel

TCP connections can provide effective control on this unfairness and equalize treatment

among multiple overlays. Also, we are using TCP connections which are congestion respon-

sive. Finally, although we intend to use parallel connections on overlay hops, we aim to

maximize the throughput using as few connections as possible.

The improvement in path throughput achieved with the addition of multiple parallel

connections comes at the expense of reordering at the receiver. We observed that the re-

ordering index 1 increases with increasing number of parallel connections between two nodes.

1We define the packet reordering index as the root mean square error of the received packet order compared
to the initial sending order.

62

�����
�����
���
���

�����
�����
�����
�����

2,N 3,N1,N

Overlay Hop (K ,N)i i

iOverlay Node (O)

iUnderlying Node (U)

iUnderlying Link (L)

L 9L 2L 1

3

�����
�����
���
���

Ingress
Overlay Node Overlay Node

Egress
ReceiversSources

Data
Data

���
���
���
���

K

U3U2UU1 4

K21K

4O3O2OO1

10U9U8U7U6U5U

Figure 26: Model of an Overlay-TCP Path

The receiver has to buffer and reorder all data sent over multiple parallel connections, thus

adding some complexity. The reordering of packets therefore serves as an added incentive

to keep the number of parallel connections to a minimum.

We first show that using more than one connection on some overlay hops can indeed

increase the throughput on overlay paths. We then propose two schemes, the buffer oc-

cupancy scheme and the isolated rate probing scheme that assess the path state and dy-

namically introduce and remove TCP connections on individual overlay hops. We evaluate

these schemes on a set of PlanetLab [75] nodes and show that our schemes significantly

increase the end-to-end throughput with as few extraneous connections as possible. We

discuss the appropriate parameters to be used so as to be less aggressive while maximizing

the end-to-end throughput.

The rest of the chapter is structured as follows. We formulate the problem in Sec-

tion 5.2 and present a case study of a 2-hop overlay path in Section 5.3. We discuss the

proposed Adaptive Overlay-TCP Provisioning architecture in Section 5.4, outline the pro-

posed schemes in Section 5.5, and evaluate their performance in Section 5.6. Section 5.7

summarizes the conclusions of the current work and presents our directions for future work.

63

Table 4: Model of an Overlay-TCP Path

System Parameters
m Number of underlying nodes on the path
n Number of overlay nodes on the path

System Variables
Ui ith underlying node on the path, i = 1..m
Oi ith overlay node on the path, i = 1..n
Li ith underlying link on the path, i = 1..m− 1
Ki ith overlay hop on the path, i = 1..n− 1
Ni Number of TCP connections on ith overlay hop on the path, i = 1..n− 1
Ri Average isolated rate on ith overlay hop on the path, i = 1..n− 1

5.2 Problem Statement

Our model for an overlay path is shown in Figure 26. The parameters and variables for

the overlay path are listed in Table 5. Consider a path of m nodes, each node denoted by

Ui in the underlying network. These nodes are connected by m− 1 links, each denoted by

Li. Let n of the m underlying nodes function as overlay nodes, where n ≤ m. The overlay

nodes, denoted by Oi, form an overlay path of n − 1 hops, each denoted by Ki, with Ni

TCP connections on each hop. The overlay path comprises one or more links and nodes in

the underlying network.

We consider one-way data transfer on this path. A set of sources send data to a set of

receivers. The senders and receivers are not part of the overlay network. Sources send data

to an ingress overlay node, which detects the transfer, say by looking at headers, and then

transfer the data over the Overlay-TCP network, as suggested by the proxy mechanism

in [74]. The egress overlay node demultiplexes the data and delivers it to the appropriate

receiver. We assume that the aggregate incoming data at the ingress overlay node keeps

the connection continuously backlogged. The overlay path is assumed to carry background

traffic.

Given such an overlay path, with varying background traffic, our goal in this work is

to dynamically determine and provision the number of TCP connections necessary on each

overlay hop in order to maximize the end-to-end throughput. We refer to this approach as

64

Adaptive Overlay-TCP Provisioning.

5.3 Case Study: Two-Hop Overlay Path

We start by studying the behavior of a 2-hop overlay path with a single connection on each

hop. At the intermediate overlay node, the socket buffer for the incoming TCP connection

forwards the data packets to an application layer buffer. This buffer then forwards the

packets to the socket buffer for the outgoing TCP connection. See Figure 28 for more

details. The outgoing connection is therefore forced to depend on the incoming connection

for supplying the data to be sent downstream, thus affecting the end-to-end throughput as

seen below.

Recall that we define the isolated rate of an overlay hop as the throughput that a single

long-lived continuously backlogged TCP connection would achieve on that overlay hop. The

isolated rates of the incoming hop (R1) and the outgoing hop (R2) at any overlay node will

generally be unequal. We define the degree of mismatch, M (M ≥ 1) at an overlay node as

M = max(R1,R2)
min(R1,R2) .

1. If R1 < R2, the data comes in at the intermediate node at a rate slower than what can

be forwarded on the outgoing hop. The outgoing connection does not have enough

data to operate at the isolated rate (R2) and is limited by the data rate of the incoming

connection. Also, since the outgoing connection is not continuously backlogged any

more, it might repeatedly go into the slow start phase, thus slowing it even more.

2. If R1 > R2, the data comes in at the intermediate node at a rate faster than what the

outgoing connection can keep up with. Although the outgoing connection can now

operate at the maximum rate (R2), the intermediate node has to buffer the excess

data. Once the buffers at the intermediate node are full, the incoming connection

has to throttle back. It can now send data only after the buffers have space to hold

more data. The incoming connection is now bounded by the data rate of the outgoing

connection. Also, depending on the time to drain the buffer at the intermediate node,

the incoming connection might go into repeated slow-starts, thus lowering the effective

throughput even more.

65

0 1 2 3 4 5 6 7
Factor of improvement in throughput

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

2 connections
3 connections
4 connections
6 connections
9 connections
12 connections
15 connections

Figure 27: Factor of Improvement in Throughput Using Multiple Connections: PlanetLab
Experiments

3. If R1 = R2, the average connection rates over some time period T are equal. However,

at any instant, each TCP connection will be in the slow start or congestion avoidance

phase. These phases need to be synchronized in order to get the maximum effective

rate.

Effectively, the end-to-end throughput on a 2-hop overlay path with a single TCP con-

nection on each hop is bounded by the throughput of the slower connection along the path.

In an attempt to improve the end-to-end throughput, we evaluate the effect of using multiple

TCP connections on the slower overlay hop.

We set up 2-hop overlay paths on a set of PlanetLab [75] nodes and determined the

isolated rates on each overlay hop by performing a 50 MByte transfer on a TCP connec-

tion between consecutive overlay nodes. We then started overlay TCP transfers with one

connection on the faster hop and multiple (2-15) connections on the slower hop.

Figure 27 shows a sample of the results we obtained on an overlay path where the

PlanetLab nodes at Duke University, Georgia Institute of Technology and University of

66

j,i
OUTS

j,i
OUTS j,i

INS

functionalitySenderReceiver functionality

Layer
Application

Transport layerTCP Connection j
OUTN

j
INN

j

Forwarding

j,i

D
ow

nstream
 N

odeU
ps

tr
ea

m
 N

od
e

Intermediate
buffer (A)

INS

j,i
INS

Figure 28: Model for an Intermediate Overlay Node Oj in an Overlay-TCP Path

Arizona were used as ingress, intermediate and egress overlay nodes respectively. On this

2-hop path, the isolated rate from Duke University to Georgia Tech was higher than that

between Georgia Tech and University of Arizona (i.e. R1 > R2). The figure plots the

CDF of the factor of improvement, defined as the ratio of the end-to-end throughput using

multiple connections on an overlay hop, to the that using a single connection on each overlay

hop. We see that the factor of improvement increases with more connections being added

downstream. However, the effect of adding new connections decreases as the number of

connections increase. We observed similar results for the case where R1 < R2 when using

multiple connections on the incoming overlay hop.

We conclude from these experiments that adding multiple TCP connections on a slower

overlay hop does indeed improve end-to-end throughput. However, there is a threshold

beyond which adding new connections does not have a significant effect on the throughput.

5.4 The Adaptive Overlay-TCP Provisioning Architecture

We can generalize the above discussion to an n-hop overlay path. The effective end-to-end

throughput of a data transfer on this path, with a single TCP connection on each hop

67

Table 5: Adaptive Overlay-TCP Provisioning: Parameters and Variables

Parameters
Nmax Maximum number of TCP connections between consecutive overlay nodes
Aj Size of application layer buffer
SIN

j,i Size of socket buffer for each incoming connection
SOUT

j,i Size of socket buffer for each outgoing connection
Variables at Overlay Node Oj

Mj Degree of mismatch between upstream and downstream isolated rates
N IN

j Current number of incoming TCP connections
NOUT

j Current number of outgoing TCP connections
BIN

j,i Current occupancy of socket buffer for each incoming connection
BOUT

j,i Current occupancy of socket buffer for each outgoing connection

will be limited by the slowest TCP connection on the path. We can however improve the

throughput by using multiple TCP connections on slower overlay hops.

The architecture for a system to provide Adaptive Overlay-TCP Provisioning is based

on the model of an overlay node Oj , shown in Figure 28. The dashed box represents the

internal structure of the overlay node, which is split into two layers— the Application Layer,

and the Transport Layer. A pair of consecutive overlay nodes are allowed to communicate

over a maximum of Nmax TCP connections in the overlay network. Nmax is a system-wide

parameter. At any point of time, the overlay node Oj has N IN
j active TCP connections

with the upstream node, and NOUT
j active TCP connections with the downstream node.

These connections read or write data into the transport layer socket buffers, each with

a maximum capacity of SIN
j,i and SOUT

j,i for the incoming and outgoing TCP connections

respectively. All incoming connections forward the packets from the socket buffers to the

application buffer, of capacity Aj . Effectively, each overlay node has a buffering capacity

of
∑Nmax

i=1 SIN
j,i +

∑Nmax
i=1 SOUT

j,i + Aj . At any point of time, the incoming and outgoing

socket buffer occupancy for connection i of overlay node j, is denoted by BIN
j,i and BOUT

j,i

respectively.

The Adaptive Overlay-TCP Provisioning architecture consists of three components: the

network condition evaluation module, the decision algorithm, and the connection setup and

maintenance module.

68

1. Network Condition Evaluation Module:

This module evaluates the network conditions under which the TCP connections will

be operating. This can be done by measuring multiple quantities. A direct approach

is to periodically probe the isolated rates on each overlay hop by performing a data

transfer. An indirect method is to measure the buffer occupancy of the incoming TCP

connections, which give an indication of the relative isolated rates.

2. The Decision Algorithm:

Based on the measured quantities, the decision algorithm decides whether multiple

connections are required on any hop on the overlay path. If yes, it also gives either

the number of connections required on each hop, or a decision to increase or decrease

the number of connections.

3. Connection Setup and Maintenance:

Since the number of upstream and downstream connections varies over time, we have

two options to implement these in practice. First, we can keep Nmax connections

active at all times. At any point of time, we use N IN
j and NOUT

j connections, as

computed by the decision algorithm, to send data. Another option is to start a new

connection and tear down an existing one every time the decision algorithm alters

either N IN
j or NOUT

j . However, there is a connection setup overhead associated with

this option, and hence we use the first option in our solution.

Once the number of incoming and outgoing connections have been decided and imple-

mented, we cannot assume that those are the optimal values for the rest of the time of

data transfer, since the network conditions might change, especially for longer data trans-

fers. Hence, in our schemes, we periodically evaluate the network conditions and repeat the

decision process.

5.5 Proposed Schemes

Based on the two quantities measured by the Network Condition Evaluation Module, we

propose two schemes and corresponding decision algorithms to determine the number of

69

connections required on each overlay hop.

5.5.1 Direct Measurement: Isolated Rate Probing Scheme

In this scheme, we directly measure the isolated rates on each overlay hop by periodically

performing a 250 KByte data transfer over a TCP connection between the overlay nodes at

the ends of each hop. The advantage of this scheme is that it is relatively accurate and gives

a good estimate of the values of the isolated rates. However, it places additional load on

the path of the data transfer. We can use the lightweight alternative of measuring the loss

probability and round-trip time for each overlay hop, and estimating the TCP throughput

using the TCP equation [68] to give an estimate of the isolated rates. Alternatively, we can

use some of the other schemes mentioned in [40] for predicting TCP throughput. However,

in this work we do not implement these schemes.

1. if (R1 > R2) // faster incoming link

2. M = R1/R2 // calculate degree of mismatch

3. if (M < Nmax)

4. NOUT
j = int(M) // assign higher number of outgoing connections

5. elseif (M ≥ Nmax)

6. NOUT
j = Nmax // do not exceed maximum connection count

7. endif

8. elseif (R2 > R1) // faster outgoing link

9. M = R2/R1 // calculate degree of mismatch

10. if (M < Nmax)

11. N IN
j = int(M) // assign higher number of incoming connections

12. elseif (M ≥ Nmax)

13. N IN
j = Nmax // do not exceed maximum connection count

14. endif

15. endif

Figure 29: Decision Algorithm Using Direct Measurement of Isolated Rates

70

2-Hop Overlay Path: Figure 29 shows the decision algorithm at overlay node Oj for

determining the location and number of new connection(s) on a 2-hop overlay path, with

isolated rates R1 and R2 on incoming and outgoing overlay hops respectively. If R1 is

greater, the algorithm computes the degree of mismatch (M) in Line 2 as the ratio of R1

to R2 and decides in Line 4 that the number of outgoing connections required is equal to

M . Similarly, if R2 is greater, then the degree of mismatch (M) is calculated in Line 9 and

assigned to the number of incoming connections in Line 11. Lines 5 and 12 ensure that the

maximum connection limit is not exceeded.

Multi-Hop Overlay Path: We now extend the algorithm to the multihop case. We

compute Mmax
i , the maximum degree of mismatch for each overlay hop along the whole

path as the ratio of the maximum isolated rate (Rmax) on the whole overlay path, to the

isolated rate (Ri) of each overlay hop on the whole path. This ratio gives the minimum

number of connections necessary on the overlay hop to increase the total rate on that hop

to the rate of the hop with the maximum isolated rate. With the limit on the number of

connections on any hop, the number of downstream connections required at each overlay

node is given by NOUT
i = min(Rmax

Ri
, Nmax).

In order to implement the above algorithm, we require the ingress overlay node to send

its upstream and downstream isolated rates to the downstream overlay node. This node

appends its own downstream isolated rate and forwards it to the next overlay node, and so

on until the vector of isolated rates reaches the egress overlay node on the path. This node

then computes the NOUT
i values for each overlay hop and sends the vector back along the

overlay path.

5.5.2 Indirect Measurement: Intermediate Buffer Occupancy Scheme

The isolated rate probing scheme can incur a significant overhead for determining isolated

rates and signaling among the overlay nodes. We now describe a scheme based on local

observation of an overlay node’s buffers. To illustrate this scheme, consider the occupancy

of the incoming socket buffers at an intermediate overlay node on a 2-hop overlay path. Our

intuition indicates that when the isolated rate on the incoming hop is greater than that on

71

0 100 200 300 400 500 600 700 800
Time (sec)

0

50

100

150

200

250

300

In
pu

t s
oc

ke
t b

uf
fe

r
oc

cu
pa

nc
y

(K
B

yt
es

)

duke-gatech-arizona (R1 > R2)
UK-columbia-cornell (R1 < R2)

Figure 30: Buffer Occupancy at Intermediate Overlay Node: PlanetLab Experiments

the outgoing hop (i.e. R1 > R2), the buffer should be relatively full most of the time,

whereas, if R1 < R2, the buffer should be relatively empty. We validated this by observing

the incoming socket buffer occupancy over time for several 2-hop overlay paths on a set of

PlanetLab nodes. Figure 30 shows the buffer occupancy over time for two overlay paths,

each with 2 overlay hops. On one sample path, the PlanetLab nodes at Duke University,

Georgia Institute of Technology and University of Arizona were used as ingress, intermediate

and egress nodes respectively. The isolated rate on the incoming overlay hop was higher

than that on the outgoing hop (i.e. R1 > R2), and hence, the buffer occupancy was a

steady 200 KB. Similarly, on an overlay path between University of Cambridge, Columbia

University and Cornell University, where R2 > R1, the buffer occupancy is less than 10 KB

most of the time, with intermediate bursts. The intermediate bursts are due to the lack

of synchronization of the phases of the TCP connections on the upstream and downstream

hops.

For the general multi-hop case, Figure 31 shows the decision algorithm at an overlay

node to determine whether it needs to either increase or decrease the number of connections

72

on either the incoming or outgoing hop. This algorithm operates at each overlay node inde-

pendently. The algorithm uses a buffer occupancy estimator, B̂, based on an exponentially

weighted moving average of periodic samples of instantaneous buffer occupancy as follows,

B̂ = γ ∗B̂+(1−γ)∗B̂sample, where 0 < γ < 1. Let α and β be the low and high watermarks

respectively, below which we consider the buffer at the intermediate node to be underfull,

and above which we consider the buffer to be overfull. These parameters are the fraction

of the total buffer space available at the receiving end of the incoming TCP connection at

the intermediate node.

1. if (B̂ > β ∗B) // overfull buffer

2. if (N IN
j > NOUT

j) // too many incoming connections

3. N IN
j −−

4. elseif (N IN
j ≤ NOUT

j) // not enough outgoing connections

5. if (NOUT
j < Nmax)

6. NOUT
j + +

7. endif

8. elseif (B̂ < α ∗B) // underfull buffer

9. if (N IN
j ≥ NOUT

j) // not enough incoming connections

10. if (N IN
j < Nmax)

11. N IN
j + +

12. elseif (N IN
j < NOUT

j) // too many outgoing connections

13. NOUT
j −−

14. endif

15. else

16. Do nothing

17. endif

Figure 31: Decision Algorithm Using Estimates of Buffer Occupancy

If the current buffer occupancy is higher than the high watermark, the algorithm checks

73

whether the number of incoming (N IN
j) or outgoing connections (NOUT

j) is greater. If there

are too many incoming connections (line 2), the outgoing link might not be able to keep up,

hence we decrease one incoming connection. On the other hand, if N IN
j is less than NOUT

j

(line 4), the outgoing connections cannot keep up even though there are very few incoming

incoming connections. In this case, we increase the number of outgoing connections. Note

that line 5 ensures that the number of outgoing connections do not exceed Nmax at any

point of time. Similarly, Lines 8-14 handle the case when the buffer is underfull. If the

current buffer occupancy is within the acceptable range (α ∗ B ≤ B̂ ≤ β ∗ B), we do not

take any action.

If the algorithm at an intermediate overlay node decides to change the number of out-

going connections, it can be implemented immediately. On the other hand, if the number

of incoming connections needs to be changed, the overlay node notifies its upstream node

accordingly. The upstream node then changes its number of outgoing connections if its

own buffer occupancy estimates indicate the same. However, the ingress node implements

whatever the downstream node tells it, because it does not do any buffer estimation itself.

The advantage of this scheme is that we can measure the conditions in the network

without introducing additional traffic. Also, we can do the estimation while the data transfer

is in progress. The disadvantage is that we cannot determine the exact values of the isolated

rates, and hence we do not know the exact number of connections required. We need to

continuously monitor and increase or decrease either the number of upstream or downstream

connections by one, re-estimate the buffer occupancy, and repeat the decision process.

5.6 Performance Evaluation

In this section, we present a set of experimental results, based on experiments on PlanetLab

[75] nodes. We discuss the measurement methodology, the parameters for the schemes, and

then the performance results.

5.6.1 Measurement Methodology

We experimented with multiple overlay paths of 2-5 hops, the results for which are pre-

sented below. We selected 3-6 overlay nodes for each overlay path from the set of available

74

PlanetLab [75] nodes. For the isolated rate probing scheme, we first started a set of control

nodes that performed a 250 KByte transfer every 30 seconds to estimate the current value

of Ri. We then start parallel transfers of 100 MB each between the following nodes.

1. Direct TCP transfer between all sets of consecutive overlay nodes. These are used to

monitor the isolated rates on each overlay hop.

2. Overlay-TCP transfer from ingress overlay node to egress overlay node with a single

TCP connection on each overlay hop. We compare the throughput of data transfers

using our schemes to this benchmark case, which would be the one used in an Overlay-

TCP without multiple connections.

3. Overlay-TCP transfer from ingress overlay node to egress overlay node using our

Adaptive Overlay-TCP Provisioning schemes to maintain the appropriate number of

parallel connections between overlay nodes.

5.6.2 Parameters Used in the Schemes

The parameters involved in the implementation are listed below. We performed a number

of experiments with different values of each parameter and determined the best values as

discussed below.

• Socket Buffer Size:

Our experiments with the TCP socket buffer size varying from minimum (8 KB) to

maximum (256 KB) showed that the end-to-end throughput of a data transfer over

an Overlay-TCP path with a single connection on each hop is higher with the socket

buffer size and the receiver advertised window set to the maximum value. This is

because the socket buffers can absorb intermittent burst in either the upstream or

downstream connections.

• EWMA parameter (γ):

γ is the fractional weight of the previous buffer estimate in the exponentially weighted

moving average estimator for estimating the current buffer occupancy of the incoming

75

TCP connections. We experimented with values of γ from 0.05 to 0.95, and concluded

that a value between the range 0.7 to 0.95 follows the trend well enough and filters out

intermediate bursts in the buffer occupancy. In our experiments we used γ = 0.85.

• Estimation and Decision Algorithm Time Interval:

In our experiments, we estimate the buffer occupancy every 200 ms. We run the

decision algorithm every 30 seconds to determine whether the network conditions have

changed enough to either increase or decrease the number of outgoing or incoming

connections.

• Buffer Occupancy Thresholds (α and β):

The buffer occupancy thresholds determine how aggressive the scheme is in using

more parallel connections. The lower threshold is set to 0.1, below which we consider

the socket buffers to be underfull. In order to set the higher threshold, we observed

from our experiments on 2-hop paths that if β is too low (0.15), a large number of

connections are added and removed on the downstream hop, even when R1 < R2.

On the other hand, if β is too high (0.8), the addition of connections is very slow,

even when the downstream overlay hop is the bottleneck. In our experiments, we use

β = 0.4.

• Maximum connections on each overlay hop (Nmax):

We use Nmax = 10 in our experiments, based on results shown in Section 5.3.

5.6.3 Evaluation for a Two-Hop Overlay Path

We performed experiments, as described in Section 5.6.1, using the parameters listed above

on a variety of 2-hop overlay paths On each path, we performed 10-25 experiments. We

present representative results for an overlay path with Cornell University, Columbia Uni-

versity and Stanford University as the ingress, intermediate and egress overlay nodes re-

spectively. Figure 32(a) shows a CDF of the end-to-end throughput achieved using the

proposed schemes and that achieved using a single connection on each overlay hop. The

two schemes are quite similar in their performance, with the isolated rate probing scheme

76

0 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05
Throughput (bytes/sec)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Buffer estimation method
Isolated rate probing method
Single connection on each hop

(a) End-to-End Throughput

0 2 4 6 8 10
Number of connections

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Buffer esitmation; maximum
Buffer esitmation; average
Isolated rate probing; maximum
Isolated rate probing; average

(b) Number of Connections

Figure 32: Evaluation of a 2-Hop Overlay Path: (a) End-to-End Throughput, (b) Number
of Connections

77

giving a slightly higher throughput. However, we also need to determine how aggressive

the two schemes are, by looking at the number of connections started by each one. Figure

32(b) shows a CDF of the average and maximum number of connections started by each

scheme. The isolated rate probing scheme is more agressive, and uses a higher number of

maximum as well as average connections. The buffer estimation scheme is more conservative

and effectively achieves lower end-to-end throughput. We also observed that an increase in

degree of mismatch causes a higher factor of improvement in end-to-end throughput, using

either of the two schemes, as compared to a single TCP connection on each overlay hop.

5.6.4 Evaluation for a Multihop Overlay Path

We evaluated the two schemes on overlay paths of 3-5 hops. Figure 33(a) shows the CDF of

the throughput achieved using the two schemes, and the throughput achieved using a single

TCP connection on each overlay hop, for a sample 5 hop overlay path between University of

Massachusetts, New York University, Georgia Institute of Technology, University of Texas,

University of Arizona and University of California at Los Angeles. Clearly, the two proposed

schemes achieve better throughput than using a single TCP connection on each overlay hop.

The isolated rate probing scheme achieves higher throughput than the buffer estimation

scheme. Figure 33(b) shows the CDF of the number of connections started by each scheme

on different overlay hops. The isolated rate probing scheme starts 2 connections on an

average on hops 1, 3 and 4, and the buffer estimation scheme starts 1 connection on hop 1.

On the bottleneck hop (hop 2), the buffer estimation scheme starts more connections than

the isolated rate probing scheme. On the rest of the overlay hops, the isolated rate probing

scheme is again more aggressive than the buffer estimation scheme.

5.7 Summary

The end-to-end throughput of data transfers in overlay networks that carry data over one

or more TCP connections between consecutive overlay nodes is limited by the minimum

of the TCP throughputs achievable on each overlay hop. In this work, we focus on a

path in an Overlay TCP network with the aim of maximizing the end-to-end throughput

by using multiple parallel connections on one or more overlay hops. We show that the

78

1e+05 2e+05 3e+05 4e+05
Throughput (bytes/sec)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Buffer estimation
Isolated rate probing
Single connection on each hop

(a) End-to-End Throughput

0 1 2 3 4 5 6
Number of connections

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 e

xp
er

im
en

ts

Buffer estimation; Hop 2
Buffer estimation; Hop 3
Buffer estimation; Hop 4
Buffer estimation; Hop 5
Isolated rate probing; Hop 2
Isolated rate probing; Hop 5

(b) Number of Connections

Figure 33: Evaluation of a 5-Hop Overlay Path (a) End-to-End Throughput, (b) Number
of Connections

79

use of multiple parallel connections on some overlay hops does indeed increase the end-to-

end throughput. We have proposed two schemes that assess the network conditions and

dynamically increase or decrease the number of connections used on each overlay hop. We

show through experiments on PlanetLab nodes that both schemes significantly improve

performance while keeping the number of extraneous connections to a minimum.

The overlay path design was just a first step toward maximizing the throughput of an

Overlay-TCP network. Next, we look at the design of a network of overlay nodes with the

aim of maximizing the throughput of data carried by the overlay network as a whole.

80

CHAPTER VI

DESIGN OF AN OVERLAY-TCP NETWORK WITH

THROUGHPUT AND FAIRNESS CONSIDERATIONS

6.1 Introduction

In this chapter, we present the design of an Overlay-TCP network that maximizes the

total end-to-end throughput of the data carried on the overlay network, while maintaining

fairness between competing overlay networks.

At the outset, we would like to remind the readers that in this chapter, we consider

infrastructure overlay networks that provide some service to applications. Such networks

have a stable topology with a set of overlay nodes that provide the functionality necessary

for the offered service, and specified routing between overlay nodes. They carry aggregated

data from multiple sources to multiple destinations, which are external to the network. We

are not looking at peer-to-peer file-sharing networks that support voluntary participation

of nodes and thus have highly dynamic topologies. We also stress that we are primarily

concerned with sharing between competing overlay networks as we are looking at scenarios

where the overlay traffic accounts for a majority of the traffic (say 70-80%) on the native

network.

To illustrate the potential unfairness in sharing native resources between competing

overlay networks, consider a simple example, shown in Figure 34. In this scenario, two

overlay networks carry data from multiple ingress overlay nodes to multiple egress overlay

nodes. A data transfer between a pair of ingress and egress overlay nodes is referred to as

an overlay flow. The two overlay networks compete for the bottleneck bandwidth on native

link I-J, with network 1 carrying four flows and network 2 carrying one flow on that link.

As one might expect, simulations using ns2 [66] show that when both networks forward

data over UDP or IP tunnels, they share the native link bandwidth in the ratio 4:1. While

81

K

L

M

N

OE

D

C

B

A

JIH

O

1,2O

1O
2O

1O

1O

1O

1O

1O

1O
1O

1O

2 2O
E−I−J−O
Overlay Network 2 2(O)

D−H−J−N
C−H−J−M
B−H−J−L
A−H−J−K
Overlay Network 1 1(O)

Figure 34: Example: Sharing Between Multiple Overlay Networks

this sharing behavior is not necessarily unfair, it is strictly a function of the end-to-end

traffic offered by the two overlay networks, and it is not controllable. We refer the readers

to Section 6.2 for more details on this example.

In our work, we investigate the use of TCP connections for building overlay networks,

as a mechanism to control the sharing of native resources by competing overlay networks.

Within the constraint of fairness to competing overlay networks, our secondary aim is to

maximize the total throughput of the data carried by each overlay network, We use TCP

connections because it implements congestion control mechanisms, which help with fair

sharing. The specific sharing, of course, depends on factors such as the round trip times of

the TCP connections and the loss probability on the native links. In addition, the use of

TCP connections enables us to control the proportional sharing between multiple overlay

networks, as will be seen later.

Given TCP connections on overlay hops, we face the question of exactly how to use

TCP connections to build overlay networks. There are three possibilities:

1. Use a single ingress-to-egress TCP connection for each overlay flow in each overlay

network.

2. Use a single TCP connection on each overlay hop in each overlay network.

82

3. Use multiple TCP connections on each overlay hop in each overlay network, with a

limit on the maximum number of TCP connections allowed on each hop.

Solution (1) is quite straightforward to implement. However, it does not allow control

over the total load offered by an overlay network, and can therefore lead to unfair sharing

of native link bandwidth between competing overlay networks. Using this solution for the

example shown in Figure 34, overlay network 1, with more overlay flows on the bottleneck

link, will get a higher total throughput than network 2.

Solutions (2) and (3) provide more control over the sharing of resources between com-

peting overlay networks. Both solutions require aggregation of the data to be transferred

on each overlay hop. Solution (2) forwards the aggregated data on each overlay hop using a

single TCP connection, whereas solution (3) uses multiple TCP connections. In solution (3),

by changing the number of TCP connections used on each overlay hop, we can control the

total TCP throughput achieved on the hop. This helps us maximize the total throughput of

the overlay network, as well as control the sharing between multiple overlay networks. The

total end-to-end throughput achieved in solution (3) is higher than that in solution (2).

In this chapter, we focus on the design of an Overlay-TCP network that implements

solution (3) at the application layer. An example of such an Overlay-TCP network is

shown in Figure 25, the terminology of which is explained in Section 6.3. The primary

challenge in this design is to determine the number of TCP connections required on each

overlay hop. In addition, the aggregation of data on each overlay hop introduces congestion

at the overlay layer. This leads to fairness issues between overlay flows in the same overlay

network, referred to as intra-overlay-network fairness, which we handle in our work.

In summary, our goal in this work is to design an overlay network that (1) shares re-

sources with competing overlay networks in a fair and controllable manner, (2) maximizes

the total end-to-end throughput of data carried on the network, (3) uses as few TCP con-

nections as possible on each overlay hop, and (4) maintains intra-overlay-network fairness.

We develop a centralized algorithm to compute the number of TCP connections re-

quired on each overlay hop to achieve the above goal. We also propose three heuristics

that are distributed in nature, and which aim to achieve the allocation specified by the

83

centralized algorithm. Using simulations, we demonstrate that by varying the maximum

number of TCP connections on each overlay network, we can control the sharing of native

resources between competing overlay networks. We also show that all four schemes achieve

a significantly higher throughput than the scheme where each overlay hop uses a single

TCP connection. The total throughput achieved improves when more knowledge about the

overlay network is available to the heuristic.

Compared to the provisioning architecture presented in Chapter 5, the challenges posed

when designing an overlay network are quite different. In addition to the problem of fair

sharing between multiple overlay networks, the aggregation of multiple overlay flows at each

overlay node introduces the problem of congestion at the overlay layer. We address both

problems in this work. In summary, in our work, we develop mechanisms for controlling

the sharing of native resources between competing overlay networks. The appropriate use

of these mechanisms is a matter of policy.

The outline of the chapter is as follows. We start with a simple example to illustrate

the sharing of native resources between competing overlay networks in Section 6.2, and

elaborate on the design goals of this work in Section 6.3. We develop a centralized algo-

rithm and three heuristics that meet these goals in Section 6.4. In Section 6.5, we outline

some implementation details, and present simulations results in Section 6.6. Finally, we

summarize the conclusions of our work in Section 6.7.

6.2 Example: Sharing Between Multiple Overlay Networks

In this Section, we present a simple example that illustrates the potential for unfair sharing

of native resources between competing overlay networks when no mechanisms are used.

Figure 34 shows the topology used in the example. Nodes in overlay network 1 (O1)

are shown with triangles, and those in overlay network 2 (O2) are shown with circles. With

overlay flows as shown in the figure, native links H-I-J are shared by both overlay networks.

Bottleneck link I-J, with a capacity of 1Mbps, is shared by overlay flows A—K, B—L,

C—M, D—N in O1 and E—O in O2. All flows have the same round-trip time. We also

introduce some background TCP traffic on the bottleneck link.

84

Table 6: Example of Sharing Between Multiple Overlay Networks Using Different Methods:
Total Throughput Achieved

Method Overlay Overlay Total Ingress-
Network 1 Network 2 Egress
(bytes/sec) (bytes/sec) (bytes/sec) Loss

UDP 99313 25702 125015 95%
End-to-End TCP 91000 16720 107720 0%
Hop-by-Hop Single TCP 29936 28948 58884 0%
Hop-by-Hop Multiple 4/4 TCP 55466 65341 120807 0%
Hop-by-Hop Multiple 10/4 TCP 88749 32778 121527 0%

We present results for ns2 simulations of this scenario. Table 6 shows the total through-

put achieved by each overlay network in bytes/sec and the total throughput in the whole

system. The four flows in O1 share the total throughput achieved by the overlay network

equally, as their round trip times are the same. The methods compared are:

• UDP— The simple case where overlay nodes forward data to each neighbor without

using any congestion control mechanisms.

• End-to-End TCP— Each overlay flow starts an end-to-end TCP connection.

• Hop-by-Hop Single TCP— Each overlay hop uses a single TCP connection to forward

data.

• Hop-by-Hop Multiple N1/N2 TCP— Each overlay hop uses multiple TCP connections

to forward data, with a maximum of N1 or N2 connections allowed on each overlay

hop, for overlay networks 1 and 2 respectively. We use our proposed centralized

algorithm to determine the number of TCP connections on each overlay hop.

As expected, comparing the total throughput achieved by each overlay network, we

observe that when using UDP as well as end-to-end TCP, overlay network 1 achieves 4

times as much total throughput as overlay network 2. The overlay networks therefore share

the bottleneck link bandwidth in proportion to the number of overlay flows carried by each

network on that link. This sharing is strictly a function of the end-to-end offered traffic on

both overlay networks, and is not controllable. For instance, a 3:1 sharing is not achievable

85

in this case. The UDP flows get a higher throughput than the end-to-end TCP flows due to

the fact that the UDP flows totally block out the background TCP flows. Also, the UDP

flows suffer a loss rate of almost 95%, as they are all competing with each other and sending

data at a high rate. The end-to-end TCP flows, on the other hand share the bottleneck link

bandwidth fairly with the background traffic.

On the other hand, when using TCP connections on each overlay hop, the two overlay

networks share the bottleneck link bandwidth in more equal measure. Using a single TCP

connection on each overlay hop gives a 1:1 sharing, with the least total throughput. This

sharing can be controlled and total throughput can be improved by varying the maximum

number of TCP connections allowed on each overlay hop for each overlay network. As seen

in the last two rows in the Table, the sharing can be changed from 1:1 to 3:1 by changing

the maximum number of TCP connections from 4:4 to 10:4 for O1 and O2 respectively. In

addition, the total throughput in the whole network is maximum using our schemes. The

end-to-end TCP scheme gives the least throughput because each TCP connection has a

larger RTT, and loss recovery is done end-to-end, rather than on each overlay hop, thus

lowering the end-to-end throughput. This has been observed by others as well [98, 99].

In summary, this simple experiment demonstrates (1) the potential unfairness in sharing

of native bottleneck bandwidth between multiple overlay networks when using UDP or IP

tunnels to forward data, (2) the ability to control the sharing between competing overlay

networks by varying the maximum number of TCP connections allowed on each overlay

hop in each overlay network, and (3) the ability to improve total throughput in the system

using our proposed schemes.

6.3 Design Goals

In this section, we focus on the design of an Overlay-TCP network that is fair to competing

overlay networks. We outline the model of an Overlay-TCP network, present the challenges

faced in the design, and then summarize our design goals.

86

Table 7: Model of an Overlay Node in an Overlay-TCP Network

System Parameters
m Number of nodes in native network
n Number of nodes in overlay network
l Number of links in native network
h Number of links in overlay network
f Number of overlay flows in overlay network
Nmax Maximum number of TCP connections on each overlay hop

System Variables
UNi ith node in native network, i = 1..m
Oi ith node in overlay network, i = 1..n
Li ith native link, i = 1..l
Ki ith overlay hop, i = 1..h
Ni Number of TCP connections on ith overlay hop, i = 1..h
Ri Average isolated rate on ith overlay hop, i = 1..h
Ti,Ni Total throughput on ith overlay hop using Ni TCP connections, i = 1..h

6.3.1 Model of an Overlay-TCP Network

As a reminder, we describe below the model of an Overlay-TCP network that we consider in

our work. Table 7 summarizes the notation used in the chapter. Consider a native network

comprising m nodes and l links between these nodes. A subset (n ≤ m) of these nodes

function as overlay nodes, with h overlay hops between these nodes. Each overlay hop i

carries data over Ni TCP connections. We define the isolated rate (Ri) of an overlay hop

as the throughput of a single TCP connection on that hop. We refer to such a network as

an Overlay-TCP Network. An example Overlay-TCP Network is shown in Figure 25.

Senders and receivers, referred to as overlay users, are not necessarily part of the overlay

network. Sources send data to an ingress overlay node, which detects the transfer, say by

looking at headers, as suggested by the proxy mechanism in [74]. The ingress overlay node

then transfers the data over the Overlay-TCP network to the egress overlay node. This

node demultiplexes the data and delivers it to the appropriate receiver. We refer to the

data transfer between a pair of ingress and egress overlay nodes as an overlay flow. We

assume that the routing between overlay nodes is given, and each overlay node forwards

data according to the forwarding table available.

The model of an overlay node in this chapter has been modified, compared to the model

87

S IN
j,i

Sender functionality

NOUT
j

U
ps

tr
ea

m
 N

od
e

S IN
j,i

Forwarding

j

TCP Connection

Transport layer

Ingress data Egress data

j

S IN
j,i

S IN
j,i

D
ow

nstream
 N

ode

(A)buffer
Intermediate

Application
Layer

functionalityReceiver

U
ps

tr
ea

m
 N

od
e

S OUT
j,i

S OUT
j,i

NIN

S OUT
j,i

D
ow

nstream
 N

ode

S OUT
j,i

Figure 35: Model of an Intermediate Overlay Node in an Overlay-TCP Network

shown in Figure 28 in Chapter 5 to account for multiple upstream and downstream overlay

hops in an overlay network. The modified model for an overlay node is shown in Figure 35.

The dashed box represents the internal structure of the overlay node. The upper half is the

application layer, whereas the lower half is the transport layer. The part to the left of the

first vertical dotted line is the receiver functionality of the overlay node, and the part to the

right of the second dotted line is the sender functionality. Each overlay node has multiple

incoming TCP connections with each upstream node. The overlay node reads data from

the socket buffers of these TCP connections in the form of packets and forwards it to the

application-layer buffer. The forwarding module looks at the (application/overlay) header

of the packet, determines the destination of the packet and looks up the forwarding table

to determine the next overlay node to forward the packet to. It forwards the packet to one

of the TCP connections to that overlay node. Note that all overlay nodes now function as

routers. In addition, at each overlay node, there can be new ingress data that is added to

the overlay network and some egress data that exits the network.

88

B

D

A E

C

F

Overlay Flow 1

Overlay Flow 2a

Overlay Flow 2b

Overlay Flow 2
Rsmall

Rlarge

Rlarge

Rvery large

Rlarge

Figure 36: Example: Intra-Overlay-Network Fairness

6.3.2 Challenge: Intra-Overlay-Network Fairness

We elaborate on the problem of congestion at the overlay layer, introduced due to the

aggregation of overlay flows carried on an overlay hop. To simplify the discussion, we

consider overlay hops with a single TCP connection in the following section. However, the

arguments hold for overlay hops with multiple TCP connections as well.

As mentioned in Chapter 5, if an overlay flow is the only flow traversing an overlay

network, its end-to-end throughput is limited by the minimum isolated rate of the overlay

hops on its path. The isolated rate of each overlay hop depends on the characteristics of the

underlying native path. However, when multiple overlay flows are traversing an Overlay-

TCP network, the flows that share an overlay hop will need to share the isolated rate on

that overlay hop. This can lead to overlay-layer congestion due to a number of flows being

routed through the same overlay hop. As a result, we face the intra-overlay-network fairness

problem, as discussed below.

Consider overlay nodes arranged in the topology shown in Figure 36, with the isolated

rate on each overlay hop as shown. Consider 2 overlay flows, C—F (flow 1) and D—F (flow

2), such that node E forwards the data received on overlay hops C-E and D-E onto overlay

hop E-F. Ideally, the isolated rate on overlay hop E-F should be split equally between the

two overlay flows. This can be done if node E alternately reads data from the incoming

socket buffers of TCP connections on hops C-E and D-E. If there is no data available on the

89

socket buffer of D-E, the read can be kept non-blocking, and E can then read and forward

data from C-E.

Now consider a scenario in which 3 overlay flows, C—F (flow 1), A—F (flow 2a) and

B—F (flow 2b) exist in the network. The data from hops A-D and B-D is aggregated at

node D and sent on hop D-E over one TCP connection. At node E, data from hops C-E

and D-E is aggregated and sent over hop E-F. Now, if node E reads alternately from the

socket buffers of connections C-E and D-E to send onto connection E-F, the isolated rate

on overlay hop E-F will be shared in the ratio 2:1:1 between overlay flows C—F, A—F and

B—F respectively. This can be considered unfair to flows A-F and B-F. Ideally all three

flows should get an equal (one third) share of the isolated rate on E-F. We refer to this

problem as the intra-overlay-network fairness problem.

This problem can be solved by keeping track of all the (ingress, egress) pairs, correspond-

ing to overlay flows, that traverse each incoming overlay hop at each overlay node. Overlay

nodes can then read from the socket buffer of the TCP connection on each overlay hop in

proportion to the number of overlay flows carried on that hop. In the above example, over-

lay node E should determine that TCP connection D-E comprises two overlay flows (A—F

and B—F) and that TCP connection C-E comprises just one overlay flow (C—F). Then,

node E should read from TCP connection D-E twice before reading from TCP connection

C-E. Node D should also read alternately from A-D and B-D, thus ensuring that all three

overlay flows get an equal (one-third) share of the isolated rate on E-F. We formalize this

fairness notion as follows.

Definition: An allocation of overlay flow rates is said to be intra-overlay-network fair if it

is feasible and for any alternative feasible allocation of overlay flow rates where a particular

overlay flow gets a higher rate in the new allocation as compared to the old allocation, there

exists some other overlay flow with an already lower rate than the first flow, which gets an

even lower rate in the new allocation. This definition is the max-min[10] fairness definition

applied to the sharing of TCP throughput on each overlay hop amongst flows at the overlay

layer.

To summarize, any provisioning scheme for an Overlay-TCP network should be able to

90

handle slow overlay hops due to the native path, as well as congestion at the overlay layer

due to multiple overlay flows sharing the overlay hops.

6.3.3 Summary of Design Goals

In summary, our goal in this work is to design an Overlay-TCP network that:

1. shares native resources with competing overlay networks in a fair and controllable

manner

2. maximizes the total end-to-end throughput of all data transfers on the overlay network

3. uses as few TCP connections as possible on each overlay hop, with a maximum of

Nmax connections

4. maintains fairness between overlay flows in the same overlay network.

6.4 Design Details

In this section, we focus on the design of a single Overlay-TCP network that meets our goals.

We start by trying to determine in a centralized manner, the number of TCP connections

required on each overlay hop, and the rate allocation for all flows in the overlay network,

that will achieve our goals.

Assume that we are given the isolated rate on each overlay hop in the network and

that these isolated rates are static for some period of time1. Considering the capacity

of each overlay hop to be equal to the isolated rate on that hop, we can determine the

rate for each overlay flow using the max-min fairness algorithm [10]. Now, in order to

increase the total end-to-end throughput in the overlay network, we need to increase the

total throughput achieved on the bottleneck overlay hops. The problem is to determine

the bottleneck overlay hop that requires more TCP connections, and the number of new

connections required.

We first present a heuristic to determine the total TCP throughput on each overlay

1We will address the issue of varying isolated rates in Section 6.5.

91

0 2 4 6 8 10 12 14 16
Number of connections

0

1

2

3

4

5

6

7

8

R
at

io
 o

f
th

ro
ug

hp
ut

 (
m

ul
tip

le
/s

in
gl

e)

Average
Median

Figure 37: Improvement in Throughput Using Multiple TCP Connections: PlanetLab
Experiment Results

hop using multiple TCP connections. We then develop a centralized algorithm that simul-

taneously determines the overlay hop that requires more TCP connections, as well as the

required number of new connections. Finally, propose three distributed heuristics to achieve

this allocation, with varying amount of knowledge of the network.

6.4.1 Effect of Increasing the Number of TCP Connections on Overlay Hops

Consider an overlay hop with an isolated rate of R. A naive assumption would conclude

that using N TCP connections on the overlay hop would give a total throughput of N times

R, and that one can increase the number of TCP connections indefinitely until the capacity

of the bottleneck link on the native path of the overlay hop is reached. However, in practice,

we are limited by two factors. The first is Nmax, the system-wide limit on the number of

TCP connections on each overlay hop in the network.

The other factor is that adding a new TCP connection does not necessarily translate to

the addition of the throughput of one TCP connection on that overlay hop. To verify this,

we performed numerous experiments on different overlay hops on PlanetLab [75] nodes.

In Figure 37, we present a sample of the results obtained for an overlay hop between

92

Number of TCP connections
ba1

slope =

slope = α

β

2 3 4

1

R
at

io
 o

f
th

ro
ug

hp
ut

 (
m

ul
tip

le
/s

in
gl

e)

Figure 38: Model for Improvement in Throughput Using Multiple TCP Connections

Columbia University and Stanford University. The Y axis shows the ratio of throughput

using multiple TCP connections to the throughput using a single TCP connection (isolated

rate). We observe that as more connections are added, the throughput does not increase

indefinitely. Also, the increase in total throughput is less than linear with the number of

TCP connections.

We generalize the above observations to arrive at a model for the improvement in

throughput using multiple parallel TCP connections, as shown in Figure 38. Let the isolated

rate (throughput of a single TCP connection) on an overlay hop be denoted by R = T1.

When the number of TCP connections on the overlay hop is N , let the total throughput

achieved be TN . Note that N can only take non-zero integral values. We compute the

improvement in total throughput as the ratio TN
T1

. Initially, adding up to a connections,

results in an improvement with a slope of α. When more than a connections are started, the

slope decreases to β, and eventually, after b parallel TCP connections have been started, the

ratio stays constant. Hence, increasing the number of TCP connections beyond b is futile.

This pattern has been studied in literature [35], and was confirmed by our experiments on

PlanetLab nodes. Using this model, the throughput of N parallel TCP connections can be

93

given by:

TN =





T1(1 + α(N − 1)) ∀N ≤ a

T1(1 + α(a− 1) + β(N − a)) ∀a < N ≤ b

T1(1 + α(a− 1) + β(b− a)) ∀b < N

The parameters specified in the above model (i.e. a, b, α, β) will be different for

different overlay hops, depending on the native path characteristics such as the round-trip

time, the loss probability and the background traffic. For example, on some hops, new TCP

connections might not help. In this case, we assume α = 0, β = 0 and a = 1, b = 1. In

the remainder of the chapter, these parameters for overlay hop i are referred to as Ri, ai,

bi, αi and βi, and the total throughput using Ni TCP connections is denoted by Ti,Ni . We

present techniques to estimate these parameters in Section 6.5.

To conclude this discussion, we use the above model in our algorithm to determine the

number of TCP connections required on each overlay hop.

6.4.2 Centralized Algorithm

Figure 39 presents a centralized algorithm that computes the minimum number of TCP

connections required on each overlay hop to give the maximum total end-to-end through-

put, while maintaining intra-overlay-network fairness. The algorithm assumes complete

knowledge of the network, which includes the isolated rate (Ri = Ti,1), the TCP model

parameters (ai, bi, αi, βi), and the number of overlay flows Ui carried on each overlay hop

i.

The algorithm assumes that the capacity of each overlay hop is equal to the total TCP

throughput using Ni connections on the hop (step 5). The algorithm successively improves

the allocation by determining the bottleneck overlay hop in terms of throughput per overlay

flow (steps 6-7), and if possible, increasing the number of TCP connections on that hop

(step 17) to improve total the throughput. The intra-overlay-network fairness property is

maintained at all times. When the algorithm terminates, it produces an allocation such

that every overlay flow has at least one overlay hop with either Nmax (maximum allowed)

or bi (maximum useful) number of TCP connections. This hop is the bottleneck overlay

94

1. ∀i, Ni = 1

2. ∀i, Ui = Number of unsaturated overlay flows on overlay hop i

3. X = {i}, i = 1..h (Set of all overlay hops)

4. Z = {j}, j = 1..f (Set of all unsaturated overlay flows)

5. ∀i ∈ X, Compute Ci = Ti,Ni

6. ∀i ∈ X,Fi = Ci
Ui

7. Fmin = min{Fi}
8. Choose i with Fi = Fmin and min Ni

9. If ((Ni == bi) or (Ni == Nmax))

10. ∀j ∈ X, Cj− = Uj ∗ Fmin

11. Uj −− on entire path for each overlay flow on overlay hop i

12. If (Cj == 0)

13. X = X − {j}
14. Z = Z − {j} for each overlay flow on hop i

15. if Z = {}, break

16. Repeat from step 6

17. else Increase Ni

18. Repeat from step 2

19. Compute final max-min fair allocation for overlay flows

Figure 39: Centralized Decision Algorithm

95

hop for that overlay flow. The final step computes the final max-min fair allocation for all

overlay flows using the algorithm in [10].

As the algorithm has full knowledge of the overlay network, in some sense, the allocation

specified by this algorithm is the best achievable allocation using as few TCP connections as

possible. However, in practice, the actual rates achieved by each overlay flow will be subject

to overheads due to the use of TCP connections on each overlay hop. These overheads

include synchronization of phases of TCP connections on different overlay hops, the head-

of-line blocking problem (described in Section 6.5), and the variation in isolated rate due

to background traffic.

6.4.3 Proposed Heuristics

The above algorithm incurs a significant overhead due to control data sent between the

overlay nodes and a control node, which computes the centralized allocation. In an attempt

to devise a more distributed algorithm, we develop three heuristics to compute and control

the number of TCP connections on the direct upstream and downstream overlay hops. These

heuristics are implemented at each overlay node and vary in the amount of knowledge about

the network, available to the node when making a decision.

1) Upstream and Downstream Tree Knowledge (Tree-Based):

To start with, we assume that every overlay node has knowledge of the necessary param-

eters and measured values of all overlay hops on the upstream and downstream trees formed

by the overlay flows that are traversing this particular overlay node. Each node computes

the allocation achieved for all the component overlay flows using a modified version of the

centralized algorithm. This algorithm, shown in Figure 40, assumes that the overlay node

can only control the TCP connections on the upstream and the downstream overlay hops.

If one of these overlay hops is the bottleneck for any of the overlay flows traversing this

overlay node, the algorithm increases the number of TCP connections on that hop (steps

18-19). This continues until one of the following two termination conditions is reached. The

first is that none of the immediate upstream or downstream overlay hops is the bottleneck

for the considered overlay flows. The second is that the upstream or downstream bottleneck

96

1. ∀i, Ni = 1

2. ∀i, Ui = Number of unsaturated overlay flows on overlay hop i

3. X = {Set of overlay hops in upstream and downstream trees}
4. Y = {Set of direct upstream and downstream overlay hops}
5. Z = {j}, j = 1..f (Set of all unsaturated overlay flows)

6. ∀i ∈ X, Compute Ci = Ti,Ni

7. ∀i ∈ X,Fi = Ci
Ui

8. Fmin = min{Fi}
9. Choose i with Fi = Fmin and min Ni

10. If ((Ni == bi) or (Ni == Nmax) or (i /∈ Y))

11. ∀j ∈ X, Cj− = Uj ∗ Fmin

12. Uj −− on entire path for each overlay flow on overlay hop i

13. If (Cj == 0)

14. X = X − {j}
15. Z = Z − {j} for each overlay flow on hop i

16. if Z = {}, break

17. Repeat from step 7

18. else if (i ∈ Y)

19. Increase Ni

20. Repeat from step 2

21. Compute final max-min fair allocation for overlay flows

Figure 40: Upstream and Downstream Tree Knowledge Algorithm

97

overlay hops have reached either Nmax (maximum allowed) or bi (maximum useful) number

of TCP connections.

2) 1-Hop Neighborhood Knowledge:

In this case, an overlay node has knowledge about only the upstream and downstream

overlay hops, i.e., a very small part of the trees. This information is relatively easy to

gather, and is very much toward the zero-knowledge end of the spectrum. We then use

the above algorithm (Figure 40), again assuming that we can control the number of TCP

connections on any of the upstream or downstream overlay hops.

3) Zero Knowledge:

At the other end of the spectrum, the zero knowledge algorithm makes a decision purely

based on local observations at an overlay node. We consider decisions based on the buffer

occupancy level of the TCP socket buffers of the incoming connections, an idea proposed

in Chapter 5. Figure 41 shows the corresponding algorithm, applied to the overlay network

case for every incoming overlay hop at every overlay node in the network. The algorithm

uses a buffer occupancy estimator, B̂, based on an exponentially weighted moving average of

periodic samples of instantaneous buffer occupancy as follows, B̂ = γ ∗ B̂ +(1−γ)∗ B̂sample,

where 0 < γ < 1. We compare the estimated buffer occupancy to some low (wL) and high

(wH) watermarks, below which we consider the buffer at the intermediate overlay node to

be underfull, and above which we consider the buffer to be overfull. N IN
i refers to the

number of incoming connections on the current hop being considered, at overlay node i,

and NOUT
i,j refers to the number of outgoing connections from node i to node j.

A high buffer occupancy (step 1) could mean that either the incoming overlay hop is too

fast or at least one of the output hops for the flows on the incoming overlay hop is too slow.

Hence we either decrease the number of connections on the incoming hop (step 3) because

it is too fast, or increase the number on the outgoing hop with the minimum number of

TCP connections (step 5-6). On the other hand, a low buffer occupancy (step 8) could

imply that either the incoming hop is too slow or the outgoing hops for all overlay flows

comprising the incoming hop are too fast. Hence, in this case, we need to either increase the

number of TCP connections (step 11) on the incoming overlay hop, or decrease the number

98

1. if (B̂ > wH ∗B) // overfull buffer

2. if (N IN
i > max{NOUT

i,j }) // too many incoming connections

3. N IN
i −−

4. elseif (N IN
i ≤ max{NOUT

i,j }) // not enough outgoing connections

5. if (min{NOUT
i,j } < Nmax)

6. NOUT
i,j + +

7. endif

8. elseif (B̂ < wL ∗B) // underfull buffer

9. if (N IN
i ≥ max{NOUT

i,j }) // not enough incoming connections

10. if (N IN
i < Nmax)

11. N IN
i + +

12. elseif (N IN
i < max{NOUT

i,j }) // too many outgoing connections

13. NOUT
i,j −−

14. endif

15. else

16. Do nothing

17. endif

Figure 41: Decision Algorithm using Estimates of Buffer Occupancy

99

(step 12-13) on the outgoing overlay hop with the maximum number of TCP connections

that the incoming overlay hop forwards data to.

6.5 Implementation Details

All algorithms proposed above require a number of quantities to be measured and param-

eters to be estimated. In this section, we present techniques for estimating the required

quantities.

6.5.1 Network Conditions and Parameter Estimation

Each overlay node evaluates the network conditions under which the TCP connections

operate, on its upstream and downstream overlay hops. In our work, we measure the

isolated rate either directly by performing a data transfer at the start of the experiment, or

indirectly by periodically measuring the buffer occupancy of the incoming TCP connections.

Alternatively, some of the techniques discussed by He et al. [40] can be used for this

estimation.

The estimation of the parameters (ai, bi, αi and βi) is more difficult. One way to estimate

this is an incremental one, where the overlay node keeps adding a TCP connection and

determines the parameters implicitly. Another way is to implement a separate estimation

module, located at each overlay node to explicitly perform the experiments required to

determine the above parameters. In Section 6.6, we evaluate the sensitivity of the allocations

computed by the centralized algorithm to incorrect estimation of the parameters. Based on

this analysis, we can determine how often and how accurate the parameters need to be, in

order to achieve a reasonable allocation. In our simulations, we estimate these parameters

explicitly using a separate estimation module.

The number of overlay flows transiting through an overlay hop can be determined by

looking at the overlay header of each incoming packet and determining the (ingress, egress)

pair, that identifies each overlay flow.

100

Overlay Flow 2

Overlay Flow 1

D

C

BA very largeR

largeR

smallR

Figure 42: Example: Head-of-Line-Blocking

6.5.2 Communication Between Overlay Nodes

The parameters and values measured above need to be communicated by each overlay node

to either a control node or to other nodes in the overlay network, as required by each

algorithm.

In the centralized algorithm, all overlay nodes send all information to a designated control

node. This node computes the number of connections required on each overlay hop using the

centralized algorithm, and sends a response back to each overlay node. Although inefficient,

this algorithm might be a feasible option for smaller overlay networks.

In the upstream and downstream tree knowledge algorithm, all ingress overlay nodes

send the information gathered to the downstream neighbors, which forward it to their

downstream neighbors and so on until each node receives information about its complete

upstream tree. The egress overlay nodes similarly send the information to their upstream

neighbors and so on until each node receives information about its complete downstream

tree. Each overlay node can then compute the number of TCP connections on the upstream

and downstream overlay hops.

The 1-hop neighborhood knowledge algorithm requires the overlay nodes to send the

information to just the upstream and downstream neighbors, whereas the zero knowledge

algorithm does not require any communication between overlay nodes.

101

6.5.3 Refinements to Handle Head-of-Line Blocking

One problem that we face when using TCP connections on each overlay hop is what we refer

to as the head-of-line blocking problem. Consider a scenario where an incoming overlay hop

carries two overlay flows, which are forwarded onto two different outgoing overlay hops, all

of which use a single TCP connection, as shown in Figure 42. Assume that the incoming hop

has a much higher isolated rate than the two outgoing hops, and that one of the outgoing

hops has a much lower isolated rate than the other outgoing hop. At node B, since the

TCP connection on link B-C is very slow, it will eventually fill up the socket buffer. The

next read call on the TCP connection A-B that returns a packet to be forwarded to B-C

will block until the outgoing buffer has more space. Now, even if the TCP connection on

B-D has the capacity to forward data, it will be unable to do so as there is no new data

being read from TCP connection A-B. In this case, the slow connection on B-C is affecting

the throughput of the overlay flow A-B-D. The addition of an application layer buffer to

buffer some of the data being sent from A-B to B-C does not help because the buffer will

eventually fill up and lead to the same problem.

This problem can be handled in multiple ways. The simplest policy would be to set up

at least one incoming TCP connection for every input-output pair of overlay hops. This

can lead to too many TCP connections on each overlay hop, similar to the end-to-end

TCP approach. A more sophisticated way to do this would be to add TCP connections on

demand when an overlay node/hop observes this kind of stalling behavior. At each overlay

node, we need a mapping from the TCP connections on each incoming overlay hop to the

TCP connections on each outgoing overlay hop. This mapping is a function of the relative

rates that the overlay flows will get on their respective outgoing overlay hops.

If such a mapping does not help (due to the limit on the number of TCP connections),

we can introduce overlay-layer losses by dropping packets that cannot be forwarded to the

corresponding outgoing TCP connections (because the outgoing socket buffers are full) at

the moment that they were read from the incoming TCP connection. This will increase the

delivered throughput in the entire overlay network, at the cost of losses introduced on the

slow overlay flows. These losses can be limited by dropping packets only up to a certain

102

allowed loss percentage for each overlay hop.

In our schemes, the use of multiple TCP connections mitigates this problem to some

extent. In addition, when we read packets that cannot be forwarded to the corresponding

overlay hop, we append them to the end of the application buffer from which they are read.

This allows the next packet in the buffer to be read. The limitation of this approach is that

eventually the application buffer will be filled up with packets that cannot be forwarded.

6.6 Simulation Results

In this section, we present the evaluation of our design using ns2 [66] simulations. We

extended ns2 with enhancements for the FullTcpAgent [41] and implemented our proposed

design using TCP tunnels with socket buffers on each overlay hop. We evaluated the four

algorithms with respect to different performance metrics and also looked at the sharing

between multiple overlay networks using our algorithms.

6.6.1 Simulation Setup and Performance Metrics

We first describe our simulation setup. We performed a number of different simulations,

and show a sample of these in this section. For the following simulations, we set up a

10-overlay node topology on a 100-node native topology. These nodes were connected using

15 randomly chosen overlay hops. We did not implement a complete graph on the overlay

topology. Each overlay hop is bidirectional, and uses one or more TCP connections for

each direction, as determined by our algorithms. We added bottleneck links arbitrarily

in the native network, and introduced a number of background TCP connections between

arbitrary pairs of native nodes.

We then started a number overlay flows, again chosen at random on this overlay topol-

ogy. In addition to the four schemes proposed in our work (centralized, tree-based, 1-hop

neighborhood knowledge and buffer estimation), we present results for the single TCP con-

nection scheme, as well as the NMax TCP scheme where all overlay hops carrying overlay

flows in the network always use the maximum allowed number of connections. The single

TCP scheme and the NMax TCP scheme represent two ends of the spectrum of the num-

ber of TCP connections used in the overlay network, and our schemes fall somewhere in

103

Table 8: Comparison of Schemes: Overlay-TCP Network with 20 Overlay Flows

Scheme Total Throughput Num of TCP Throughput/ Connection
(bytes/sec) Connections (bytes/sec)

Centralized 848980 80 10612
Tree-Based 802860 80 10036
1-hop Neighborhood 779140 96 8116
Buffer Estimation 527160 52 10138
Single TCP 398600 30 13287
NMax TCP 779140 96 8116

between.

The performance metrics used include the mean throughput of the overlay flows and

the total throughput in the overlay network. We also show the number of TCP connections

used by each algorithm2, and compute the average efficiency of each TCP connection in the

resulting allocation, as the ratio of the total throughput in the overlay network to the total

number of TCP connections used. A higher mean or total throughput is desirable, while the

number of TCP connections should be low. The efficiency of the TCP connections should

preferably be high.

6.6.2 Single Overlay Network: Comparison of Schemes

We first compare the schemes for a sample simulation, as described above, to illustrate their

performance. Table 8 shows the performance metrics for a simulation of 20 flows in the

overlay network, with a maximum of 4 TCP connections allowed on each overlay hop. The

primary observation is that all the proposed schemes give a better total throughput than

the single-TCP connection scheme. The centralized scheme which has complete knowledge

of the network uses fewer connections than the maximum (NMax TCP scheme) and gives a

higher total throughput. As a result, it gives a much higher efficiency in terms of throughput

per TCP connection in the system, as compared to the NMax TCP scheme.

The tree-based scheme starts almost the same number of connections as the centralized

scheme, primarily because each overlay node gathers information about all overlay hops

2The number of TCP connections varies over time for the buffer estimation scheme, hence we show the
maximum number of TCP connections used.

104

that are on the paths of the overlay flows traversing this node. It thus achieves a total

throughput comparable to that of the centralized scheme. The 1-hop neighborhood scheme

has limited knowledge, thus starting too many connections, and almost approaches the

NMax TCP scheme in terms of number of connections and total throughput achieved. The

buffer estimation scheme is more conservative due to very limited knowledge and indirect

estimation of the isolated rate. It therefore uses very few extraneous connections and

performs slightly better than the single TCP scheme.

It should be clear that the single TCP connection scheme uses the minimum number of

total TCP connections (30 i.e. one connection on each of the 15 overlay hops in each direc-

tion), whereas NMax TCP scheme uses the maximum total number of TCP connections.

Although the single TCP scheme gives a high efficiency of TCP connection usage, it gives

a low total throughput.

We now present an evaluation of the intra-overlay network fairness goal in our design

of an Overlay-TCP network. In the above simulations, we computed the total throughput

achieved on each overlay hop as the sum of the throughput of all the TCP connections

comprising that hop. We then used the max-min fairness algorithm [10] to compute the

rate that each overlay flow should get, with the capacity of each overlay hop equal to the

total TCP throughput on that hop. We then compared this rate allocation vector with the

vector of the end-to-end throughput of each overlay flow. For all the schemes considered,

the rate vectors differed by less than 1%, on an average for each overlay flow. This shows

that our schemes do indeed achieve an intra-overlay network fair allocation.

6.6.3 Single Overlay Network: Effect of Load on Overlay Network

Figure 43 presents the results of simulations using the different schemes for varying number

of flows in the overlay network, which corresponds to varying load in the overlay network.

In all cases, we maintain the same amount of background traffic. The X-axes show the

different number of overlay flows that we considered in the network, and the Y-axes show

the different performance metrics.

With increasing number of overlay flows in the network, the mean throughput of the

105

5 10 15 20 25 30 35
Number of overlay flows

0
25

00
0

50
00

0
75

00
0

1e
+

05
1.

25
e+

05
M

ea
n

R
at

e
(B

yt
es

/s
ec

)

Centralized
Tree-Based
1-hop Neighborhood
Buffer Estimation
Single TCP
NMax TCP

(a) Average Throughput

5 10 15 20 25 30 35
Number of overlay flows

25

50

75

100

125

N
um

be
r

of
 C

on
ne

ct
io

ns

Centralized
Tree-Based
1-hop Neighborhood
Buffer Estimation
Single TCP
NMax TCP

(b) Number of TCP Connections

Figure 43: Comparison of Schemes: Varying Number of Overlay Flows: (a) Average
Throughput of Overlay Flows, (b) Number of TCP Connections Used by the Scheme

106

Table 9: Sharing Between 2 Overlay Networks: Equal Nmax

Scheme Total Throughput Num of TCP Throughput/ Connection
(bytes/sec) Connections (bytes/sec)

Overlay Network 1: Nmax = 4
Centralized 1067210 59 18088
Tree-Based 1078320 55 19606
1-hop Neighborhood 987840 71 13913
Buffer Estimation 450770 36 12521
Single TCP 451610 30 15054
NMax TCP 909030 72 12625

Overlay Network 2: Nmax = 4
Centralized 741790 59 12573
Tree-Based 833630 56 14886
1-hop Neighborhood 872540 70 12465
Buffer Estimation 441360 34 12981
Single TCP 419600 30 13987
NMax TCP 913200 72 12683

overlay flows decreases for all algorithms. The centralized algorithm and the tree-based

algorithm perform the best even with varying load in the network. They give the maximum

total throughput using very few TCP connections. Although the single-TCP scheme and

the buffer estimation scheme use fewer TCP connections, they give a low mean throughput

as well. The buffer estimation scheme uses a few extraneous connections and performs

slightly better than the single TCP scheme.

6.6.4 Sharing Between Two Overlay Networks

In this section, we demonstrate the sharing between 2 overlay networks, and our ability

to control this sharing. We add an additional overlay network on top of the underlying

topology, exactly the same way as described in Section 6.6.1. Tables 9 and 10 present the

performance metrics for an ns2 simulation of this scenario.

Table 9, in which both overlay networks use the same value for the maximum number of

TCP connections on each overlay hop in the network, shows that overlay network 1 achieves

an almost equal, but slightly higher mean throughput than overlay network 2 using all

schemes. Although the number of TCP connections started on both overlay networks is

the same in all schemes, it does not imply that both overlay networks get the same total

107

Table 10: Sharing Between 2 Overlay Networks: Unequal Nmax

Scheme Total Throughput Num of TCP Throughput/ Connection
(bytes/sec) Connections (bytes/sec)

Overlay Network 1: Nmax = 4
Centralized 650150 60 10846
Tree-Based 785840 56 14033
1-hop Neighborhood 563590 71 7948
Buffer Estimation 453280 36 12591
NMax TCP 576980 72 8014

Overlay Network 2: Nmax = 10
Centralized 1238850 122 10155
Tree-Based 1191840 106 11244
1-hop Neighborhood 1166990 151 7738
Buffer Estimation 441060 42 10501
NMax TCP 1144600 156 7347

throughput. This is because these connections are started on different overlay hops with

different bottleneck links for each network.

Table 10, presents results for the case where the value of Nmax differs for the two

networks. Overlay network 1 uses a maximum of 4 TCP connections on each overlay hop,

while overlay network 2 uses a maximum of 10 connections. In this case, overlay network 2

gets almost twice the mean throughput of overlay network 1 using most schemes. This shows

that by varying the value of Nmax, we can control the ratio in which 2 overlay networks

share the native link bandwidth. The buffer estimation scheme is quite conservative, and

therefore does not use as many connections as other schemes, and therefore does not give

the unequal sharing that other schemes do. More aggressive parameters for this scheme, on

overlay network 2, might result in a 1:2 sharing as desired in this case.

6.6.5 Sharing Between Multiple Overlay Networks

We now look at the sharing between multiple (> 2) overlay networks. In the ns2 simulation

setup described in Section 6.6.1 we added multiple overlay networks, again, as described

in Section 6.6.1. We present results for a scenario with 5 competing overlay networks that

share the same set of underlying resources in the native network.

Figure 6.6.5 shows the total throughput achieved by each of the 5 competing overlay

108

1 2 3 4 5

0
2e

+
05

4e
+

05
6e

+
05

T
ot

al
 T

hr
ou

gh
pu

t (
by

te
s/

se
c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

N
um

be
r

of
 C

on
ne

ct
io

ns

Figure 44: Sharing Between Multiple Overlay Networks: All Overlay Networks use 1 Con-
nection on Each Overlay Hop

networks, and the total number of TCP connections used, when using a single TCP con-

nection on each overlay hop. The total number of TCP connections is the same for all

overlay networks. The total throughput is also almost the same for all overlay networks.

The throughput for all networks is not exactly equal as different overlay networks share

different links in the native network.

Figure 6.6.5 shows the total throughput and the total number of TCP connections used,

when using the centralized algorithm, with different values of Nmax for different overlay

networks. In each subfigure, the lower graph shows the number of TCP connections used

by each overlay network, and the upper graph shows the total throughput achieved by each

overlay network. We observe that in all graphs, the proportion of total throughput roughly

follows the proportion of the values of Nmax for different overlay networks, and hence the

total number of TCP connections used in the network. By setting the value of Nmax to be

very high, or very low, an overlay network can be forced to achieve a very high or a very

low total throughput.

The main point we have tried to illustrate here is that by setting different values of the

maximum number of connections allowed on each overlay hop for different overlay networks,

we can vary the proportion of sharing between different networks. Thus, our schemes serve

109

1 2 3 4 5

0
4e

+
05

8e
+

05
T

ot
al

 T
hr

ou
gh

pu
t (

by
te

s/
se

c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

N
um

be
r

of
 C

on
ne

ct
io

ns

(a) Nmax = 1,4,1,1,1

1 2 3 4 5

0
1e

+
06

2e
+

06
T

ot
al

 T
hr

ou
gh

pu
t (

by
te

s/
se

c)

1 2 3 4 5
Overlay Network ID

0

30

60

90

120

N
um

be
r

of
 C

on
ne

ct
io

ns

(b) Nmax = 10,2,10,2,2

1 2 3 4 5

0
3e

+
05

6e
+

05
9e

+
05

T
ot

al
 T

hr
ou

gh
pu

t (
by

te
s/

se
c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

N
um

be
r

of
 C

on
ne

ct
io

ns

(c) Nmax = 2,4,2,4,2

1 2 3 4 5

0
1e

+
06

2e
+

06
T

ot
al

 T
hr

ou
gh

pu
t (

by
te

s/
se

c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

N
um

be
r

of
 C

on
ne

ct
io

ns

(d) Nmax = 4,2,4,2,4

1 2 3 4 5

0
3e

+
05

6e
+

05
9e

+
05

T
ot

al
 T

hr
ou

gh
pu

t (
by

te
s/

se
c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

N
um

be
r

of
 C

on
ne

ct
io

ns

(e) Nmax = 6,2,2,2,2

1 2 3 4 5

0
1e

+
06

2e
+

06
T

ot
al

 T
hr

ou
gh

pu
t (

by
te

s/
se

c)

1 2 3 4 5
Overlay Network ID

0

20

40

60

80

N
um

be
r

of
 C

on
ne

ct
io

ns

(f) Nmax = 6,3,6,3,6

Figure 45: Sharing Between Multiple Overlay Networks: Centralized Algorithm with Dif-
ferent values of Nmax for Different Overlay Networks

110

as mechanisms to achieve different definitions of fairness of resource allocation between

different overlay networks.

6.6.6 Sensitivity to Parameter Estimation

We now evaluate the sensitivity of the allocation achieved using the centralized algorithm

to correctly predicting the parameters, Ri, αi, βi, ai, bi. We vary these parameters by ei-

ther under-estimating or over-estimating them on either the bottleneck links, or the non-

bottleneck links, or all used links. We also vary the percentages of links in the network with

either under-estimated or over-estimated parameters.

Figures 46 and 47 show various performance metrics for the allocation computed, when

the error in estimation of parameters is on all used links. The X-axes in all graphs show

the error in estimating each parameter. All errors less than 1 imply under-estimation, and

errors greater than 1 imply over-estimation. An error of 1 indicates correct estimation,

which is the reference point for comparison. The Y-axes show the average, variance and

minimum of the computed rate allocation for all overlay flows in the network. We also show

the total number of TCP connections used in each allocation.

The general trends indicate that an over-estimation of parameters causes an over-

estimation of the mean and minimum; and an under-estimation of the variance and the

number of TCP connections. On the other hand, an under-estimation of parameters causes

an under-estimation of the mean and minimum; and an over-estimation of the variance and

the number of TCP connections. We observe that an error in estimation of the parameters

on 25% of the links does not affect the performance metrics much. An error in estimating

the isolated rate affects the performance metrics the most and the value of ai affects the

metrics the least. The values of bi and αi affect the metrics significantly as well. In par-

ticular, an over-estimation of bi causes significant over-estimation of the number of TCP

connections. The maximum rate amongst all overlay flows does not vary with an error in

estimation.

The graphs for error in parameter estimation on just bottleneck links look similar, but

the effect is not as pronounced as in the all used links case. The effect of error in estimation

111

0 1 2 3 4 5
Error factor in Parameter Estimation

1600

2000

2400

2800

M
ea

n
R

at
e

(K
bp

s)

All parameters 25%
Alpha 50,75%
Beta 50,75%
NumA 50,75%
NumB 50,75%
Isolated Rate 50%
Isolated rate 75%

(a) Sensitivity: Mean Rate

0 1 2 3 4 5
Error factor in Parameter Estimation

80

100

120

140

160

180

200

N
um

be
r

of
 T

C
P

C
on

ne
ct

io
ns

All parameters 25%
Alpha 50,75%
Beta 50,75%
NumA 50,75%
NumB 25%
NumB 50%
NumB 75%
Isolated rate 25%
Isolated Rate 50%
Isolated rate 75%

(b) Sensitivity: Number of TCP Connections

Figure 46: Sensitivity to Error in Parameter Estimation on a Fraction of All Used Links:
(a) Mean of all Flow Rates, (b) Number of TCP Connections Specified by the Algorithm

112

0 1 2 3 4 5
Error factor in Parameter Estimation

2e
+

06
3e

+
06

4e
+

06
V

ar
ia

nc
e

All parameters 25%
Alpha 50,75%
Beta 50,75%
NumA 50,75%
NumB 50,75%
Isolated rate 25%
Isolated Rate 50%
Isolated rate 75%

(a) Sensitivity: Variance in Rates

0 1 2 3 4 5
Error factor in Parameter Estimation

0

500

1000

1500

2000

M
in

im
um

 R
at

e
(K

bp
s)

Alpha 25,50,75%
Beta 25,50,75%
NumA 25,50,75%
NumB 25,50,75%
Isolated rate 25%
Isolated Rate 50,75%

(b) Sensitivity: Minimum Rate

Figure 47: Sensitivity to Error in Parameter Estimation on a Fraction of All Used Links:
(a) Variance of All Flow Rates, (b) Minimum of All Flow Rates

113

of parameters on non-bottleneck links is not significant.

These graphs suggest that it is a good idea to periodically estimate the value of the

isolated rate (Ri) and the values of bi and αi should be as accurate as possible. In our

simulations we estimated the values at the start of the experiment.

6.7 Summary

In this chapter, we have shown the need for mechanisms that ensure fairness between mul-

tiple competing overlay networks that share the same set of resources in the underlying

Internet. We look at the use of TCP connections for building overlay networks, as a mech-

anism to achieve fair sharing. We have designed an Overlay-TCP network that uses one

or more TCP connections on each overlay hop. Our design controls the number of TCP

connections used on each overlay hop in order to maximize the total throughput achieved

by the network, while sharing native resources fairly with competing overlay networks. We

show that this sharing can be controlled by varying the maximum number of TCP connec-

tions allowed on each overlay hop for different networks. Our design also ensures fairness

between multiple overlay flows in the same overlay network. Our proposed centralized algo-

rithm and the three heuristics that operate in a distributed manner achieve a significantly

higher throughput than the scheme where each overlay hop uses a single TCP connection.

In addition, our schemes use fewer TCP connections than the scheme where all hops use

the maximum allowed number of TCP connections because some extraneous connections

on faster overlay hops are deemed unnecessary.

Our work will help overlay network designers architect their network to share resources

with competing overlay networks in a fair manner, where the definition of fairness would

be a policy decision. In addition, the network designers will be able to maximize the total

throughput of the data transferred on their overlay network, using as few TCP connections

as possible. Also, the overlay flows within the same overlay network will be able to share

the resources available to the overlay network in a manner similar to max-min fairness.

114

CHAPTER VII

CONTRIBUTIONS AND FUTURE WORK

7.1 Research Summary

To summarize, the contributions of this thesis are as follows:

• Bootstrapping in Gnutella: A Measurement Study

The first part of the thesis investigates the bootstrapping function of the Gnutella

peer-to-peer network. This study is the first to investigate the bootstrapping func-

tionality in Gnutella. We have presented the common thread in the bootstrapping

functionality of four popular Gnutella servents, as well as pointed out the differences.

We have shown that the neighbor peers found during bootstrapping have a significant

impact on the search performance of a peer. We have also carried out a measurement-

based study of the GWebCache system, a primary component of the bootstrapping

functionality in Gnutella.

• Multipoint-to-Point Session Fairness in the Internet

The second part of the thesis investigates fairness issues involved in the use of static

multipoint-to-point sessions while transferring data over connections from multiple

servers to a single client. We have proposed two fairness definitions that are multi-

point-to-point session fair. We have also proposed algorithms to achieve these defini-

tions in a centralized manner.

• Optimizing End-to-End Throughput for Data Transfers on an Overlay-TCP Path

This part of the thesis investigates issues in the design of a single path in an Overlay-

TCP network. We have proposed the Adaptive Overlay-TCP Provisioning approach,

in which the intermediate overlay nodes assess the state of the network path and

dynamically determine the number of TCP connections needed on each overlay hop.

The buffer occupancy estimation scheme proposed as a part of this provisioning is a

115

novelty in this context.

• Design of an Overlay-TCP Network with Throughput and Fairness Considerations

This was the first work that looked into issues involved in the design of an Overlay-

TCP network, with the option of using multiple parallel TCP connections on each

overlay hop. The primary aim in designing this network was to enable competing

overlay networks to share the same set of native resources in a fair and controllable

manner. At the same time, we aimed at maximizing the total throughput of data

carried on the overlay network, using as few TCP connections as possible. Our design

also addressed the problem introduced due to overlay layer congestion, referred to

as intra-overlay-network fairness. We showed that all four schemes indeed achieve

the specified goal. In addition, we showed that by varying the maximum number of

connections allowed on overlay hops in each competing overlay network, one can vary

the proportion of sharing between competing overlay networks.

7.2 Future Directions

Finally, we will now present some directions for future research in this area.

• Distributed Implementation of the Algorithms to achieve Multipoint-to-Point Session

Fair Allocations

In Chapter 4, we have presented centralized algorithms that achieve the proposed

session-fairness definitions. We have also presented some preliminary thoughts on the

implementation of these algorithms in a distributed manner. The design of protocols

to implement these algorithms, and a detailed investigation thereof is a direction for

future research in this area. The use of the eXplicit Control Protocol (XCP [50]) for

implementing the normalized rate session fair algorithm and the use of our design of

an Overlay-TCP network to implement the per-link session fair algorithm, as well as

the normalized rate session fair algorithm are suggested starting points to think in

this direction.

• Extensions to the Design of Overlay-TCP Networks

116

The Overlay-TCP network design can be investigated further in multiple ways.

The use of multiple parallel TCP connections on each overlay hop can be modified to

incorporate proposals for sharing congestion information between the TCP connec-

tions. As an example, the Integrated Congestion Management architecture [6] can be

used to share congestion information between the TCP connections on each overlay

hop. Alternatively, the parallel TCP connections can use multiple paths between the

same pair of end-nodes of an overlay hop.

This idea can be further generalized to using multiple overlay paths, between two

overlay nodes. This can be designed as a hybrid Overlay-TCP-UDP network, where

overlay nodes can either read the data from the incoming TCP connections and for-

ward it to the outgoing TCP connections, or they can read incoming UDP data and

do UDP or IP forwarding to the outgoing hop.

In the design of the Overlay-TCP network, we have shown that the sharing between

multiple overlay networks can be controlled. However, the exact values of the max-

imum number of TCP connections that can be allowed on each overlay hop of each

overlay network, in order to achieve a specific ratio of sharing is left to future work.

This is a difficult problem, as it is a function of the competing traffic at the overlay

layer, as well as the non-overlay traffic in the native network, and the properties of

the native links, including the propagation delay and the capacity.

In this thesis, the implementation and evaluation of the design of a single path in an

Overlay-TCP network has been done on PlanetLab nodes. However, the evaluation

of the design of the Overlay-TCP network has been done using ns2 simulations. The

Overlay-TCP network design can be implemented on Planetlab nodes and evaluated,

as a follow-up of this thesis.

117

REFERENCES

[1] “Akamai.” http://www.akamai.com/, December 2002.

[2] Amir, Y. and Danilov, C., “Reliable communication in overlay networks,” in In-
ternational Conference on Dependable Systems and Networks, June 2003.

[3] Anderson, D., Balakrishnan, H., Kaaoshek, F., and Morris, R., “Resilient
overlay networks,” in Proceedings of the 18th Symposium on Operating Systems Prin-
ciples, October 2001.

[4] Apostolopoulos, J., Wong, T., Wee, S., and Tan, D., “On Multiple Description
Streaming with Content Delivery Networks,” in Proceedings of IEEE INFOCOM, June
2002.

[5] Baccelli, F., Chaintreau, A., Liu, Z., Riabov, A., and Sahu, S., “Scalability
of reliable group communication using overlays,” in Proceedings of IEEE INFOCOM,
April 2004.

[6] Balakrishnan, H., Rahul, H., and Seshan, S., “An Integrated Congestion Man-
agement Architecture for Internet Hosts,” in Proceedings of ACM Sigcomm, Septem-
ber 1999.

[7] Balakrishnan, H. and Seshan, S., “The Congestion Manager,” Request for Com-
ments 3124, Internet Engineering Task Force, June 2001.

[8] Banchs, A., “User Fair Queueing: Fair Allocation of Bandwidth for Users,” in Pro-
ceedings of IEEE INFOCOM, June 2002.

[9] Banerjee, S., Bhattacharjee, S., and Komareddy, C., “Scalable application
layer multicast,” in Proceedings of ACM SIGCOMM, August 2002.

[10] Bertsekas, D. and Gallager, R., Data Networks. Englewood Cliffs, NJ, Prentice-
Hall, 1992.

[11] Biliris, A., Cranor, C., Douglis, F., Rabinovich, M., Sibal, S., Spatscheck,
O., and Sturm, W., “CDN brokering,” in Proceedings of the Sixth International
Workshop on Web Caching and Content Distribution, June 2001.

[12] “BitTorrent.” http://www.bittorrent.com, July 2005.

[13] Byers, J., Considine, J., Mitzenmacher, M., and Rost, S., “Informed Con-
tent Delivery Across Adaptive Overlay Networks,” in Proceedings of ACM Sigcomm,
August 2002.

[14] Byers, J. W., Luby, M., Mitzenmacher, M., and Rege, A., “A digital fountain
approach to reliable distribution of bulk data,” in Proceedings of ACM SIGCOMM,
pp. 56–67, September 1998.

118

[15] Calvert, K., Doar, M., and Zegura, E., “Modeling Internet Topology,” IEEE
Communications Magazine, June 1997.

[16] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., and
Singh, A., “Splitstream: High-bandwidth multicast in a cooperative environment,”
in 19th ACM Symposium on Operating Systems Principles (SOSP), October 2003.

[17] “Centerspan.” http://www.centerspan.com/, December 2002.

[18] Chawathe, Y., Ratnasamy, S., L.Breslau, Lanham, N., and Shenker, S.,
“Making Gnutella-like P2P Systems Scalable,” in SIGCOMM, August 2003.

[19] Chu, J., Labonte, K., and Levine, B., “Availability and locality measurements of
peer-to-peer file systems,” in Proceedings of ITCom: Scalability and TrafficControl in
IP Networks, 2002.

[20] Chu, Y., Rao, S. G., Seshan, S., and Zhang, H., “A case for end system multi-
cast,” IEEE Journal on Selected Areas in Communication, Special Issue on Network-
ing Support for Multicast, 2002.

[21] Clarke, I., “Freenet.” http://freenet.sourceforge.org, July 2005.

[22] “Digital island.” http://www.digisle.net/, December 2002.

[23] “Digital fountain.” http://www.digitalfountain.com/, December 2002.

[24] “eDonkey.” http://www.edonkey.com, July 2005.

[25] Eggert, L., Heidemann, J., and Touch, J., “Effects of Ensemble-TCP,” ACM
Computer Communication Review, vol. 30, pp. 15–29, January 2000.

[26] Fahmy, S., Jain, R., Goyal, R., and Vandalore, B., “Fairness for ABR
multipoint-to-point connections,” in Proceedings of SPIE Symposium on Voice, Video
and Data Communications,, November 1998.

[27] Ge, Z., Fiegueiredo, D. R., Jaiswal, S., Kurose, J., and Towsley, D., “Mod-
eling peer-peer file sharing systems,” in Proceedings of IEEE INFOCOM, April 2003.

[28] Gettys, J. and Nielsen, H., “The WEBMUX protocol, Internet Draft (work
in progress).” http://www.w3.org/Protocols/MUX/WD-mux-980722.html, August
1998.

[29] Gkantsidis, C., Ammar, M., and Zegura, E., “On the effect of large-scale de-
ployment of parallel downloading,” in Proceedings of the Third IEEE Workshop on
Internet Applications, June 2003.

[30] “Globule.” http://www.globule.org/, July 2005.

[31] “Gnucleus.” http://www.gnucleus.net/, December 2003.

[32] “Gnutella.” http://gnutella.wego.com/, December 2003.

[33] “Gnutella Web Caching System.” http://www.gnucleus.com/gwebcache/, December
2003.

119

[34] “Gtk-Gnutella.” http://gtk-gnutella.sourceforge.net/, December 2003.

[35] Hacker, T., Athey, B., and Noble, B., “The End-to-End Performance Effects of
Parallel TCP Sockets on a Lossy Wide-Area Network,” in International Parallel and
Distributed Processing Symposium (IPDPS), April 2002.

[36] Han, H., Shakkottai, S., Hollot, C. V., Srikant, R., and Towsley, D.,
“Overlay tcp for multi-path routing and congestion control,” in IMA Workshop on
Measurement and Modeling of the Internet, January 2004.

[37] Handley, M., Floyd, S., Padhye, J., and Widmer, J., “TCP Friendly Rate
Control (TFRC): Protocol Specification,” Request for Comments 3448, Internet En-
gineering Task Force, January 2003.

[38] Handley, M., Schulzrinne, H., Schooler, E., and Rosenberg, J., “SIP: Ses-
sion Initiation Protocol,” Request for Comments 2543, Internet Engineering Task
Force, March 1999.

[39] He, Q. and Ammar, M., “Congestion control and message loss in gnutella networks,”
in Multimedia Computing and Networking, January 2003.

[40] He, Q., Dovrolis, C., and Ammar, M., “On the predictability of large transfer tcp
throughput,” in Proceedings of ACM SIGCOMM, August 2005.

[41] He, Q., “Enhancement to the FullTcpAgent in ns2.”
http://www.cc.gatech.edu/computing/compass/gnutella/tcp.html, July 2005.

[42] Izal, M., Urvoy-Keller, G., Biersack, E., Felber, P., Hamra, A. A., and
Garces-Erice, L., “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,” in
Proceedings of the 5th Passive and Active Measurement Workshop, April 2004.

[43] Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., and
O’Toole, Jr., J. W., “Overcast: Reliable multicasting with an overlay network,” in
Proc. Symposium on Operating System Design and Implementation (OSDI), pp. 197–
212, October 2000.

[44] J.E. van der Merwe and P. Gausman and C.D. Cranor and R. Akhmarov,
“Design, Implementation and Operation of a Large Enterprise Content Distribu-
tion Network,” in Proceedings of the Eighth International Workshop on Web Content
Caching and Distribution, September 2003.

[45] Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, M. F., “The measured
performance of content distribution networks,” in Proceedings of the Fifth Interna-
tional Web Caching and Content Delivery Workshop, May 2000.

[46] Karbhari, P., Ammar, M., Dhamdhere, A., Raj, H., Riley, G., and Zegura,
E., “Bootstrapping in Gnutella: A Measurement Study,” in Proceedings of the 5th
Passive and Active Measurement Workshop, April 2004.

[47] Karbhari, P., Ammar, M., and Zegura, E., “Design of an Overlay-TCP Network
with Throughput and Fairness Considerations,” in Submitted, July 2005.

120

[48] Karbhari, P., Ammar, M., and Zegura, E., “Optimizing End-to-End Throughput
for Data Transfers on an Overlay-TCP Path,” in Proceedings of IFIP Networking
Conference, May 2005.

[49] Karbhari, P., Zegura, E., and Ammar, M., “Multipoint-to-Point Session Fairness
in the Internet,” in Proceedings of IEEE INFOCOM, April 2003.

[50] Katabi, D., Handley, M., and Rohrs, C., “Congestion control for high bandwidth-
delay product networks,” in Proceedings of ACM SIGCOMM, August 2002.

[51] “Kazaa.” http://www.kazaa.com, July 2005.

[52] Keralapura, R., Taft, N., Chuah, C., and Iannaccone, G., “Can ISPs take
the heat from Overlay Networks?,” in Third Workshop on Hot Topics in Networks
(HotNets), November 2004.

[53] Krishnamurthy, B. and Rexford, J., Web Protocols and Practice. Addison Wes-
ley, 2001.

[54] Krishnamurthy, B., Wills, C., and Zhang, Y., “On the Use and Performance of
Content Distribution Networks,” in Proceedings of ACM SIGCOMM Internet Mea-
surement Workshop, November 2001.

[55] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels,
D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C.,
and Zhao, B., “Oceanstore: An architecture for global-scale persistent storage,”
in Proceedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), November 2000.

[56] Kwon, G. and Byers, J., “Roma: Reliable overlay multicast with loosely coupled
tcp connections,” in Proceedings of IEEE INFOCOM, April 2004.

[57] Lee, B., Balan, R., Jacob, L., Seah, W., and Ananda, A., “Avoiding Congestion
Collapse on the Internet using TCP Tunnels,” Computer Networks, vol. 39, no. 5,
pp. 207–219, 2002.

[58] Leibowitz, N., Ripeanu, M., and Wierzbicki, A., “Deconstructing the kazaa
network,” in Proceedings of the Third IEEE Workshop on Internet Applications, June
2003.

[59] “LimeWire.” http://www.limewire.com, December 2003.

[60] Liston, R. and Zegura, E., “Using a Proxy to Measure Client-Side Web Perfor-
mance,” in Proceedings of the Sixth International Workshop on Web Caching and
Content Distribution, June 2001.

[61] Mogul, J., “The Case for Persistent-Connection HTTP,” in Proceedings of ACM
Sigcomm, August 1995.

[62] Moh, M. and Chen, Y., “Design and Evaluation of Multipoint-to-Point Multicast
Flow Control,” in Proceedings of SPIE Symposium on Voice, Video and Data Com-
munications,, November 1998.

121

[63] “Mutella.” http://mutella.sourceforge.net/, December 2003.

[64] Myers, A., Dinda, P., and Zhang, H., “Performance Characteristics of Mirror
Servers on the Internet,” in Proceedings of IEEE INFOCOM, March 1999.

[65] Ng, T. E., Chu, Y., Rao, S., Sripanidkulchai, K., and Zhang, H.,
“Measurement-based optimization techniques for bandwidth-demanding peer-to-peer
systems,” in Proceedings of IEEE INFOCOM, April 2003.

[66] “ns2- The Network Simulator.” http://www.isi.edu/nsnam/ns, July 2005.

[67] Oram, A., Peer-To-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly,
2001.

[68] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., “Modeling TCP Through-
put: A Simple Model and its Empirical Validation,” in Proceedings of ACM Sigcomm,
September 1998.

[69] Padmanabhan, V., “Addressing the Challenges of Web Data Transport,” September
1998.

[70] Padmanabhan, V., “Coordinating Congestion Management and Bandwidth Sharing
for Heterogenous Data Streams,” in Proceedings of NOSSDAV, June 1999.

[71] Padmanabhan, V. and Katz, R., “TCP fast start: a technique for speeding up web
transfers,” in IEEE Globecom Internet Mini-Conference, November 1998.

[72] Padmanabhan, V., Wang, H., Chou, P., and Sripanidkulchai, K., “Distribut-
ing Streaming Media Content Using Cooperative Networking,” in Proceedings of
NOSSDAV, May 2002.

[73] “Peergenius.” http://www.peergenius.com/, December 2002.

[74] Peterson, L., Shenker, S., and Turner, J., “Overcoming the Internet Impasse
through Virtualization,” in Third Workshop on Hot Topics in Networks (HotNets),
November 2004.

[75] “PlanetLab.” http://www.planet-lab.org/, November 2004.

[76] Postel, J., “User Datagram Protocol,” Request for Comments 768, Internet Engi-
neering Task Force, August 1980.

[77] Postel, J., “Transmission Control Protocol,” Request for Comments 793, Internet
Engineering Task Force, September 1981.

[78] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley and Sons
Inc., 1991.

[79] R. Keralapura and C. Chuah and N. Taft and G. Iannaccone, “Can coexist-
ing overlays inadvertently step on each other?,” in Proceedings of IEEE International
Conference on Network Protocols (ICNP), November 2005.

[80] Rabinovich, M. and Aggarwal, A., “RaDaR: a scalable architecture for a global
Web hosting service,” Computer Networks, vol. 31, no. 11–16, pp. 1545–1561, 1999.

122

[81] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., “A
scalable content addressable network,” in Proceedings of ACM Sigcomm, August 2001.

[82] Rodriguez, P., Kirpal, A., and Biersack, E., “Parallel-Access for Mirror Sites
in the Internet,” in Proceedings of IEEE INFOCOM, March 2000.

[83] Rodriguez, P., Sibal, S., and Spatscheck, O., “TPOT: Translucent Proxying for
TCP,” in Proceedings of the Fifth International Web Caching and Content Delivery
Workshop, May 2000.

[84] Rowstron, A. and Druschel, P., “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), pp. 329–350, November 2001.

[85] Rowstron, A. and Druschel, P., “Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility,” in 18th ACM Symposium on
Operating Systems Principles (SOSP), pp. 188–201, October 2001.

[86] Rubenstein, D., Kurose, J., and Towsley, D., “The Impact of Multicast Layering
on Network Fairness,” in Proceedings of ACM Sigcomm, September 1999.

[87] Saltzer, J., Reed., D., and Clark, D., “End-to-End Arguments in System De-
sign,” ACM Transactions on Computer Systems, November 1984.

[88] Saroiu, S., Gummadi, P., and Gribble, S., “A measurement study of peer-to-
peer file sharing systems,” in Proceedings of Multimedia Computing and Networking,
January 2002.

[89] Savage, S., Anderson, T., Aggarwal, A., Becker, D., Cardwell, N.,
Collins, A., Hoffman, E., Snell, J., Vahdat, A., Voelker, G., and Zahor-
jan, J., “Detour: Informed Internet Routing and Transport,” IEEE Micro, February
1999.

[90] Sen, S. and Wong, J., “Analyzing peer-to-peer traffic across large networks,” in
Second Annual ACM Internet Measurement Workshop, November 2002.

[91] Sivasubramanian, S., Szymaniak, M., Pierre, G., and van Steen, M., “Repli-
cation for web hosting systems,” ACM Computing Surveys, vol. 36, no. 3, pp. 291–334,
2004.

[92] “Speedera.” http://www.speedera.com/, December 2002.

[93] Spero, S., “Session Control Protocol.” http://www.w3.org/Protocols/HTTP-
NG/http-ng-scp.html, 1998.

[94] Sripanidkulchai, K., “The popularity of gnutella queries and its implications on
scalability.” http://www-2.cs.cmu.edu/ kunwadee/research/p2p/gnutella.html, 2001.

[95] Stephanos Androutsellis-Theotokis and Diomidis Spinellis, “A survey of
peer-to-peer content distribution technologies,” ACM Computing Surveys, vol. 36,
no. 4, pp. 335–371, 2004.

123

[96] Stoica, I., M., R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.,
“Chord: A scalable peer-to-peer lookup service for internet applications,” in Proceed-
ings of ACM Sigcomm, August 2001.

[97] Subramanian, L., Stoica, I., Balakrishnan, H., and Katz, R., “OverQos: An
Overlay based Architecture for Enhancing Internet QoS,” in Symposium on Networked
Systems Design and Implementation (NSDI), March 2004.

[98] Sundararaj, A. and Duchamp, D., “Analytical characterization of the throughput
of a split tcp connection,” in Tech Report, December 2003.

[99] Swany, M. and Wolski, R., “Improving throughput with cascaded tcp connections:
the logistical session layer,” in UCSB Tech Report, June 2002.

[100] Touch, J., “TCP Control Block Interdependence,” Request for Comments 2140,
Internet Engineering Task Force, April 1997.

[101] Touch, J., “Dynamic Internet Overlay Deployment and Management Using the X-
Bone,” Computer Networks, pp. 117–135, July 2001.

[102] “Ultrapeer Specifications.” http://www.limewire.com/developer/Ultrapeers.html,
December 2003.

[103] Urvoy-Keller, G. and Biersack, E., “A congestion control model for multicast
overlay networks and its performance,” in Proceedings of the Fourth International
Workshop on Networked Group Communication, October 2002.

[104] “Windump.” http://windump.polito.it/, December 2003.

[105] Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubia-
towicz, J. D., “Tapestry: A Resilient Global-Scale Overlay for Service Deployment,”
IEEE Journal on Selected Areas in Communications, vol. 22, no. 1, 2004.

[106] Zou, L. and Ammar, M., “A File-Centric Model for Peer-to-Peer File-Sharing Sys-
tems,” in IEEE International Conference on Network Protocols (ICNP), November
2003.

124

VITA

Pradnya Karbhari received her B.E. in Computer Engineering at the Veermata Jijabai

Technological Institue (VJTI) in the University of Mumbai in 1998. She was in Texas A&M

University for a year and moved to Georgia Institute of Technology in 1999. She completed

her doctorate under the able guidance of Dr. Mostafa Ammar and Dr. Ellen Zegura on

the topic of “Throughput and Fairness Considerations in Overlay Networks for Content

Distribution”. She has worked as a Summer Manager at AT&T Labs- Research with Dr.

Misha Rabinovich in the summers of 2000 and 2001. Her research interests include overlay

networks, peer-to-peer networks and content distribution networks.

125

