
A Scenario-Directed Computational Framework To Aid

Decision-Making And Systems Development

A Thesis
Presented to

The Academic Faculty

by

Reginald L. Hobbs

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

August 2005

A Scenario-Directed Computational Framework To Aid

Decision-Making And Systems Development

Approved by:

Dr. Melody M. Moore, Chairman
College of Computing
Georgia Insitute of Technology

Dr. Mary Jean Harrold
College of Computing
Georgia Institute of Technology

Dr. Leo Mark
College of Computing
Georgia Institute of Technology

Dr. Spencer Rugaber
College of Computing
Georgia Institute of Technology

Dr. David Dampier
Department of Computer Science
& Engineering
Mississippi State University

Date Approved: August 2005

To Lady MacBeth,

thank you for standing by me in this long,

but fruitful journey.

iii

PREFACE

Back Off Man, I’m A Scientist! - Dr. Peter Venkman (Bill Murray), Ghost-

busters

iv

ACKNOWLEDGEMENTS

No one who achieves success does so without acknowledging the help of others.

The wise and confident acknowledge this help with gratitude. – Unknown

As I celebrate the silver anniversary of my association with the Georgia Institute of

Technology, it is fitting that I reach this milestone by achieving the pinnacle that this fine

instititution has to offer. Through 25 years of growth, I have gone from undergraduate stu-

dent to airman in the US Air Force to systems administrator to adjunct professor. Through

all these varied experiences, I have remained a Tech Man.

During my time as both a doctoral student and instructor, I’ve been approached by

my students asking why one seeks a graduate degree. In keeping with my research on the

use of narrative, my explanation consisted of a story on the motivation for learning. The

story involves three characters, all seekers of truth. The first actor is an undergraduate who

approaches the well of knowledge with a large cup, hoping to fill it to the brim with the

stuff of learning. The contents enable the bearer to be a useful practitioner in his or her

field, capable of dispensing knowledge whenever it is needed. The second actor, the master’s

graduate, encounters the well using a large bucket that also acts as a filter. This bucket

contains not only a much larger amount of information, but concentrated from a specific

area of the well. The master’s graduate is truly an expert in their chosen discipline. The

final protagonist is the doctoral candidate. He is motivated by the desire to create cups,

design buckets, and build (and fill) wells.

My well building journey has been subsidized by many people who have placed my feet

on the path of discovery. First and foremost, I thank God for giving me the opportunity to

seek my doctorate and the ability to achieve it. Each challenge has only strengthened my

desire to excel and made each surmounted obstacle more satisfying. I am humbled by His

grace.

I would like to thank Dr. Colin Potts for his advice and for nurturing the spark of a

v

researcher that existed under a pile of wet kindling. Our many discussions enabled me to

think critically, ask the right questions, and seek the right answers. In keeping with the

european model for doctoral candidacy, I truly consider myself the world’s expert in my

particular niche of computer science.

To Dr. Jim Gantt, for recognizing my potential and convincing me to become a scientist.

Your support, both emotionally and professionally, has been immeasurable. You have been

a mentor, in every sense of the word.

To my AIRMICS colleagues: Mr. Glenn Racine, Dr. Gerard McCord, Dr. Michael

Evans, Mr. Butch Higley, Dr. Mark Kindl, Dr. John (Jay) Gowens, Dr. Adrienne Raglin,

Mr. Binh Nguyen, Mr. Son Nguyen, Mr. Brian Rivera and others, thanks for showing

what a good and successful research organization feels like and that the phrase "government

worker" is not an oxymoron. To my administrative support, Mrs. Patsy Riley, Mrs. Delois

Rogers, and Ms. Kim Brinkley, thank you for your ability to cut through the red tape and

leap the government beauracracy in a single bound.

To Colonel Anthony Love, Colonel Mark Kindl (Ret.), Major Jeffrey (Jay) Reddick,

Lieutenant Colonel Rachel Borhaurer, Colonel Ron Byrnes, Major David Dampier (Ret.)

and the other military officers that I’ve had occasion to work with side by side, thanks

for showing that the Army can develop critical thinkers and learn how to use them effec-

tively. You’ve shown me that my research can have a positive impact on both the scientific

community and my country.

To my supervisors at the Army Research Laboratory, particular Mrs. Pat Jones and

Dr. Rick Helfman, thanks for your patience in realizing the potential ROI (Return On

Investment) that rewards ARL. My carbon-to-diamond transformation into a researcher

may well have benefitted from the additional pressure and heat supplied by ARL.

To my doctoral committee: Dr. Leo Mark, Dr. Mary Jean Harrold, Dr. Spencer Ru-

gaber, and Dr. David Dampier. Thank you for your insight and assistance in manipulating

my research ideas into a more palatable form for the larger research community. I’d like to

thank Dr. Mark, in his capacity as PhD program coordinator, for helping with what could

have been a very awkward transition.

vi

To my advisor, Dr. Melody Moore, I extend my special gratitude for her advocacy and

support. It is a major challenge to establish a mentorship in the later stages of a doctoral

program, but you rose to that challenge admirably. Results are the best indicator of your

impact; 4 months after you became my advisor, I was doing my defense of research. I was

motivated as much by your example and work ethic as by your positive view of my work.

I look forward to merging research ideas and having a collaborative impact on the research

community.

To my mother and father, thanks for your belief in what I could eventually accomplish.

Mom, I definitely inherited my fortitude and desire to attempt new things from you. I also

inherited a stubbornness that made it impossible for me to quit something I started. Pop,

thanks for being a good example of fatherhood and how to keep a family going no matter

what happens.

To my brother, Rodney, and my sisters, Belinda and Tonja, thanks for being proud of

me. It does make a difference to me what you think. To my brother, your accomplishment

as a soldier has made me want to have an even greater impact for my country. If my research

ends up helping the army, it is because of my desire to have it help you.

To my children: Jason, Shikitha, Justin, Jenna, Gino, Jordi, and Jules, thank you for

being an even greater accomplishment for me than anything else that I’ve ever done. I

especially want to let Julian, who has never known what it is like for daddy not to be a

graduate student, know that I’m now going to be there for you even more. For all my

children, thank you for being patient while I sought this doctorate; you’ve been a large part

of my motivation as well.

To my loving wife Lisa. It is a bit cliched and not sufficiently strong just to quote that

"behind every successful man, there is a strong woman". You’ve been more than someone

behind me pushing; you’ve been in front of me pulling, beside me nudging, and all around

me cheering me on. It is a cosmically huge understatement to say that I couldn’t have done

this without you. I love you.

vii

Contents

DEDICATION iii

PREFACE iv

ACKNOWLEDGEMENTS v

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF SYMBOLS OR ABBREVIATIONS xvii

GLOSSARY xxi

SUMMARY xxiv

1 INTRODUCTION 1

1.1 Problem Description . 1

1.2 Motivation . 2

1.3 Research Questions . 4

1.4 Research Contribution . 5

1.5 Thesis Statement . 5

1.6 Overview of Remaining Chapters . 5

2 RELATED WORK 6

2.1 Narrative Applications and Research Efforts 6

2.1.1 Knowledge Representation for Business Rules 6

2.1.2 Use Case Scenarios for Business Processes 8

2.1.3 Case Based Reasoning . 9

2.1.4 StoryML . 11

2.2 Narrative Morphology . 12

2.2.1 Narrative Context . 12

2.2.2 Literary Analysis and Criticism . 15

2.2.3 Film Editing and Screenwriting . 16

2.2.4 Cognitive Mental Models and Thought Experiments 18

2.2.5 Hypertext . 19

viii

2.2.6 Scenario-Based Design and Requirements Analysis 19

2.2.7 Use Case Scenarios . 20

2.2.8 Modeling & Simulation Environments 22

2.2.9 Decision Theory and Decision Analysis 23

2.2.10 Interactive narrative and role-playing games 24

2.3 Summary . 25

3 THE HYPERSCENARIO FRAMEWORK 26

3.1 Motivation . 27

3.2 Scenario Concepts, Modeling, and Representation 31

3.2.1 Scenario Structural Model . 31

3.2.2 Dynamic Model and Scenario Construction 43

3.2.3 Scenario Querying for Decision-Making 58

3.3 Scenario Grammar . 61

3.4 Scenario Language Implementation . 65

3.4.1 XML Overview . 67

3.4.2 Scenario Markup Language (SCML) 69

3.5 Creating Scenarios in SCML . 78

3.5.1 Requirements for using SCML for a Narrative Domain 78

3.5.2 Limitations of SCML and the hyperscenario framework 79

3.5.3 Heuristics for finding scenarios for SCML Encoding 81

3.6 Summary . 83

4 SCENARIO APPLICATIONS 86

4.1 Scenario Generation . 86

4.1.1 Scenario Generator Architecture . 86

4.1.2 Scenario Generator Prototype . 89

4.2 SCML-based Decision Support for Military Planning 98

4.2.1 Simulation-to-C4I Interoperability . 99

4.2.2 Semantic Interoperability using DAML+OIL 108

4.3 Mapping SCML to software behavioral design patterns 112

4.3.1 Overview of Design Patterns . 113

ix

4.3.2 Defining Story Patterns . 115

4.3.3 Incorporating Scenario Context within Pattern languages 115

4.4 Summary . 120

5 EXPERIMENT DESIGN 122

5.1 Experimental Environment . 122

5.1.1 Aesop Simulation . 123

5.1.2 Experimental Harness . 126

5.2 Experimental Variables . 147

5.3 Subjects . 147

5.4 Apparatus and Materials . 149

5.5 Test Protocol . 150

5.6 Evaluation Method . 151

5.7 Handling Threats to Validity . 156

5.7.1 Effects to internal validity . 156

5.7.2 Effects to external validity . 157

5.8 Summary . 158

6 DATA ANALYSIS & RESULTS 159

6.1 Effect of Experiment Set-up on Validity . 159

6.2 Using Performance Metrics to Infer Decision-making 169

6.3 Frequency Distribution and Descriptive Statistics 173

6.4 Hypothesis Testing . 178

6.5 Summary . 181

7 CONCLUSION 182

7.1 Chapter Synopsis . 182

7.2 Research Contribution . 182

7.3 Future Work . 183

7.3.1 Defining and implementing and XMLS version of SCML 183

7.3.2 Creating a DAML+OIL implementation of the scenario ontology . . . 184

7.3.3 Empirical study of Scenario Navigation for Decision-making 184

7.4 Conclusion . 184

x

Appendix A — SCENARIO MARKUP LANGUAGE
DOCUMENT TYPE DEFINITION 186

Appendix B — EXPERIMENT DOCUMENTS 191

Appendix C — SCENARIO GRAMMAR AUTOMATON 198

Appendix D — DESIGN DOCUMENTATION 212

Appendix E — SHUTTLE SCENARIO 216

Appendix F — EMPIRICAL DATA 223

Appendix G — ACTION CATEGORIES 241

References 243

VITA 256

xi

List of Tables

1 Shuttle System Character List . 39

2 Shuttle System Action and Prop List . 40

3 Shuttle System Settings . 41

4 Shuttle System Actor List . 42

5 Shuttle System Roles . 43

6 Scenario Database Organization . 58

7 XML Datatypes . 70

8 Hyperscenario Framework . 84

9 Events for Scenario Prototype . 91

10 Action and Prop Lists . 134

11 Event List . 139

12 Episodes . 142

13 Scenarios . 144

14 List of Good Decisions . 153

15 Demographics . 160

16 Logfile Age Statistics . 161

17 SCML Age Statistics . 162

18 Logfile Education Statistics . 163

19 SCML Education Statistics . 164

20 Logfile Experience By Maze . 164

21 SCML Experience By Maze . 166

22 Experience Level By Group . 167

23 Logfile MUD Experience Statistics . 168

24 SCML MUD Experience Statistics . 168

25 Average Doorway Attempts . 169

26 Average Swaps . 171

27 Average Points . 172

28 Logfile Decision Statistics . 174

29 SCML Decision Statistics . 175

xii

30 z-Test Comparison of Sample Means . 179

31 t-Test for Sample Means . 181

32 Logfile Chat Room Experience Statistics . 224

33 SCML Chat Room Experience Statistics . 224

34 Logfile Logic Puzzles Experience Statistics . 225

35 SCML Logic Puzzles Experience Statistics . 225

36 Logfile Video Game Experience Statistics . 226

37 SCML Video Game Experience Statistics . 226

38 Logfile Board Game Experience Statistics . 227

39 SCML Board Game Experience Statistics . 227

xiii

List of Figures

1 Storytelling Context . 14

2 Screenwriting Process . 17

3 Customer Order Use Case Scenario . 21

4 ModSAF Simulation Environment . 23

5 Automated Shuttle System . 27

6 Scenario Conceptual Model . 33

7 Scenario Goal Hierarchy . 37

8 Hyperscenario Navigation Model . 45

9 Scenario Navigation Styles . 48

10 Shuttle Transaction Use Case . 53

11 Shuttle Transaction Hyperscenario . 56

12 Scenario Grammar in BNF notation . 63

13 SCML Root Element Definition and Attributes 71

14 Cast and Character Element Definitions . 71

15 Actor and Prop Element Definitions . 72

16 Act Element Definition . 72

17 Episode Element Definition . 73

18 Goal Element Definition . 73

19 Scene and Setting Element Definitions . 73

20 Event and Action Element Definition . 74

21 Storylink Element Definition . 75

22 SCML Link Definitions . 76

23 Shuttle Scenario in SCML . 77

24 Scenario Generator Architecture . 88

25 Maze Game Design . 90

26 Aesop GUI screenshot . 93

27 Maze Logfile . 94

28 SCML Scenario Hierarchy . 95

29 Narrative generated from simulation trace . 96

xiv

30 Maze Summary Web Page . 97

31 Battle Planning Phases . 103

32 Situational Awareness Goal Hierarchy . 105

33 Concept Of Operations . 106

34 SCML-Encoded Battle Scenario . 107

35 DAML+OIL Syntax . 110

36 DAML+OIL Axioms . 111

37 From Narrative to Decision Support . 112

38 Story Patterns . 117

39 Design Pattern Markup Language and SCML 119

40 Maze Exit Doorway . 123

41 Game Review Browser Window . 124

42 Interaction with Dragon Avatar in the Maze 125

43 Game User Interface . 127

44 Database Relationships . 129

45 Perl DBI database script . 130

46 Excerpt of Filter CGI Script . 132

47 Action Token . 133

48 Parser Script . 135

49 Semantic Analysis Script . 137

50 Matching Event Patterns to Episodes . 141

51 findScenario Subroutine . 146

52 Experiment Registration Form . 149

53 XSL Session Metrics Code . 152

54 XSL Decision Count Code . 155

55 Logfile Experience By Maze . 165

56 SCML Experience By Maze . 166

57 Average Experience By Group . 167

58 Average Doorway Attempts . 170

59 Average Item Swaps . 171

60 Average Points . 173

xv

61 Decision Frequency Histograms . 177

62 Z-statistic on distribution curve . 180

63 Decision Maze Experiment Class Diagrams . 213

64 3-D Maze Class Diagrams . 214

65 Scenario Prototype System Architecture . 215

xvi

LIST OF SYMBOLS OR ABBREVIATIONS

ACL Agent Communication Language.

ACM Association for Computing Machinery.

ACML Agent Communication Markup Language.

AIRMICS Army Institute for Research in Management Information, Communications, and
Computer Science.

ARL Army Research Laboratory.

ASCII American Standard Code for Information Interchange.

BP Business Process.

BRML Business Rules Markup Language.

C4I Command,Control,Communications,Computers, and Intelligence.

CACM Communications of the ACM.

CALS Continuous Acquisition and Life-Cycle Support.

CBML Case-Based Markup Language.

CBR Case-Based Reasoning.

CFG Context Free Grammar.

CFP Call For Participants.

CGI Common Gateway Interface.

CHI Computer-Human Interaction.

CLP Courteous Logic Program.

COE Common Operating Environment.

CSCW Computer-Supported Cooperative Work.

CSS Cascading Style Sheet.

CTA Cooperative Technical Agreement.

DAML DARPA Agent Markup Language.

DAML-ONT DAML Ontology.

DARPA Defense Advanced Research Projects Agency.

DBI Database Interface.

DIF Document Interchange Format.

xvii

DISA Defense Information Systems Agency.

DL Descriptive Logic.

DoD Department Of Defense.

DOM Document Object Model.

DPML Design Pattern Markup Language.

DTD Document Type Definition.

DV Dependent Variable.

ERD Entity Relationship Diagram.

EU Expected Utility.

FIPA Foundation For Intelligent Physical Agents.

GML Generalized Markup Language.

GUI Graphical User Interface.

HCI Human-Computer Interaction.

HLA High-Level Architecture.

HTML Hypertext Markup Language.

HVAC Heating, Ventilation, and Air-Conditioning.

ICSE International Conference on Software Engineering.

IEEE Institute of Electronics and Electrical Engineering.

IRB Institute Review Board.

IS Information System.

ISO International Standards Organization.

IT Information Technology.

IV Independent Variable.

JDBC Java DataBase Connectivity.

JTA Joint Technical Architecture.

KIF Knowledge Interchange Format.

KQML Knowledge Query Markup Language.

KR Knowledge Representation.

KSE Knowledge Sharing Effort.

xviii

LALR Look Ahead Left to Right.

LC Line Of Contact.

LD Line Of Departure.

LIFO Last-In, First-Out.

MDA Model-Driven Architecture.

MIT Massachusetts Institute of Technology.

ModSAF Modular Semi-Autonomous Forces.

MOTW Missions Other Than War.

M&S Modeling & Simulation.

MSU Mississippi State University.

MUD Multi-User Dimension/Dungeon.

NIST National Institute for Standards and Technology.

ODU Old Dominion University.

OIL Ontology Inference Layer.

OMT Object Model Template.

OneSAF One Semi-Autonomous Forces.

OWL Ontology Web Language.

PERL Practical Extraction and Reporting Language.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.

RPG Role Playing Game.

ScenIC Scenario Inquiry Cycle.

SCESM Scenarios and State Machines.

SCML Scenario Markup Language.

SE Software Engineering.

SGML Standard Generalized Markup Language.

SIGCHI Special Interest Group on Computer-Human Interaction.

SIMCI OIPT Simulations-to-C4I Overarching Integrated Product Team.

SISC Simulations Interoperability and Standards Committee.

xix

SISO Simulations Interoperability and Standards Organization.

SIW Simulations Interoperability Workshop.

SME Subject Matter Expert.

SOAP Simple Object Access Protocol.

SOM Simulation Object Model.

SOP Standard Operating Procedure.

SQL Standard Query Language.

TTP Tactics, Techniques, and Procedures.

UML Unified Modeling Language.

UTL Universal Task List.

XLL XML Linking Language.

XMI XML Metadata Interchange.

XML Extensible Markup Language.

XMLS XML Schema.

XMSF Extensible Modeling and Simulation Framework.

XSL XML Style Language.

XSLT XML Style Language Transformation.

YACC Yet Another Compiler Compiler.

xx

GLOSSARY

acteme The lowest level of hypertext activity, such as following a link, p. 19.

action 1)A change in environment. 2) The activity being filmed, p. 13.

actor 1) A character that initiates action. 2) A participant, p. 16.

archetype 1) A character chosen by the storyteller to have a specialized, non-standard
characteristic in addition to the norm. (e.g. a reluctant hero) 2) Deep and
abiding patterns in the human psyche that remain powerful and present over
time, p. 15.

audience The body of listeners or spectators that experience a story, p. 12.

Character A bundle of characteristics, behaviors, and motivations, that when taken to-
gether define a collection of entities with those characteristics (e.g. hero, villain,
damsel-in-distress), p. 34.

conclusion An exit point from an episode based on actions that establish post-conditions
for the episode, p. 47.

continuity 1) Maintained consistency, either temporal or physical, within a story. 2) An
uninterrupted succession or unbroken course, p. 13.

decision A determination arrived at after consideration; a conclusion, p. 1.

decision-making The process of determining from among alternatives, p. 1.

dependency An association representing movement from an action to the next logical
action, p. 45.

engagement The state of mind attained by the audience in order to experience a story,
p. 12.

equivalence An association among two actions within a set of equivalent actions that have
the same meaning within a scenario. (e.g. pick up the ball, lift the ball), p. 45.

event 1) An ordered collection of actions representing something significant. 2) An
occurrence, especially a significant one, p. 11.

flashback 1) A technique of showing past happenings in order to expand an audience’s
comprehension of the present story, character, or situation. 2) Shots or sequences
that convey events or information, which precede the time established as the
present in a film, p. 46.

genre A classification of story using the tradition within which the story is set as it
relates to previously made stories(for example, horror, science fiction, drama),
p. 16.

goal 1) An objective to successfully meet a specific condition. 2) Outer motivation,
p. 11.

xxi

hyperscenario A scenario document containing link structures for navigation to other doc-
uments, p. 4.

hypertext Representations of a story using a document in which interactive structural
operations are intermingled with text, p. 66.

mechanics The representation of a story chosen by the storyteller (e.g. prose, storyboard,
outline), p. 13.

mise en abyme Any aspect enclosed within a work that shows a similarity with the work
that contains it, p. 17.

mise en scene The manipulation of all the elements that contribute to the filming of a
scene; staging, p. 18.

morphology The study of forms, p. 12.

motivation 1) The purpose for the actions of a character. 2) Character in action, p. 15.

multiform A narrative that presents a single situation or plotline in multiple versions,
versions that would normally be mutually exclusive, p. 49.

narrative 1) A narrated account; a story. 2) Represents a specific navigation through a
universe of story elements, p. xxiv.

ontology A formal explicit description of concepts in the domain of discourse, the proper-
ties of each of those concepts and attributes, and restrictions on those properties,
p. 27.

perception Understanding or insight into the story by the audience, p. 12.

prerequisite An association denoting a dependency between the current episode and the
previous episode, p. 46.

Prop A character that is the target of an action, p. 35.

protagonist The character that drives the plot and initiates the action, p. 15.

rewind A reversely ordered collection of previous actions within a shot from the current
action in a scene, p. 46.

scenario 1) A form of narrative as a collection of episodes with the purpose of describing
the actions of characters within an environment. 2) A proposed specific use of
a system; a description of one or more end-to-end transactions involving the
required system and it’s environment. 3) A single path through a use case, one
that shows a particular combination of conditions within that use case, p. 2.

Scene A part of an episode that occurs within a particular setting, p. 44.

scope The extent of an activity, situation, or subject, p. 13.

screenplay A motion picture script, p. 16.

xxii

script 1) A document that describes an appropriate story sequence in a particular
context. 2) A structure that describes an appropriate sequence of events in a
particular context, p. 16.

sequence An ordered collection of episodes representing a meaningful segment of the sce-
nario, p. 47.

Setting Fixes a story in time and space, p. 16.

setup An entry point into an episode based on actions that establish preconditions for
the episode, p. 47.

slide An association between an action within a scenario to an alternate scenario,
p. 47.

story A composition of events, instances of characters, and entities and the interactions
between them, p. 12.

storyteller The presenter of a story to an audience, p. 12.

style The method of telling the story chosen by the storyteller, p. 13.

theme A universal statement about the human condition the storyteller is making; the
ideas and words that the storyteller wishes the audience to walk away with, e.g.
"good triumphs over evil"), p. 17.

Transition An association between a scene and the next logical scene within an episode,
p. 47.

use case A typical interaction between a user and a computer system, p. 8.

xxiii

SUMMARY

Scenarios are narratives that illustrate future possibilities or existing systems, and

help policy makers and system designers choose among alternative courses of action. Scenario-

based decision-making crosses many domains and multiple perspectives. Domain-specific

techniques for encoding, simulating, and manipulating scenarios exist, however there is no

general-purpose scenario representation capable of supporting the wide spectrum of formal-

ity from executable simulation programs to free-form text to streaming media descriptions.

The claim of this research is that there is a computer readable scenario framework that can

capture the semantics of a problem domain and make scenarios an active part of decision

making. The challenge is to define a representation for scenarios that supports a wide range

of discussion and comprehension activities while remaining independent of content and access

mechanisms. This dissertation describes a scenario ontology derived by examining alternate

forms of narrative: thought experiments, mental models, case-based reasoning, use cases,

design patterns, screenwriting, film-editing, intelligent agents, and other narrative domains.

The scenario conceptual model was based on the an analysis of forms of narrative and the

activities of storytelling. This method separates what a narrative is from how it is used. The

research contribution is the development of the hyperscenario framework. A hyperscenario

is a scenario representation containing link structures for navigation between scenario ele-

ments. The hyperscenario framework consists of the scenario ontology, scenario grammar,

and a scenario specification called Scenario Markup Language (SCML). The results of the

web-enabled simulation experiment validate the improvement on decision-making due to the

hyperscenario framework.

xxiv

Chapter 1

INTRODUCTION

Creativity, as has been said, consists largely of rearranging what we know in

order to find out what we do not know. Hence, to think creatively, we must be

able to look afresh at what we normally take for granted.

– George Keller

1.1 Problem Description

The problem domain addressed by this research is that of scenario-based design and decision-

making. A decision is a determination arrived at after consideration; a conclusion [126]. A

decision is related to the concept of selecting a choice or alternate. Decision-making is the

process of determining from among alternatives. There have been many studies establishing

the importance and validity of scenario analysis for systems development [25]. Requirements

engineering, prototyping, high-level design, even maintenance activities benefit greatly from

“what-if” studies and testing based on deriving scenarios [119]. There are different dia-

gramming techniques for depicting scenarios, such as sequence/collaboration diagrams of

use cases [57]. The problem with such notations and formalized descriptions is that they

are passive parts of the design process. They are very useful as points of discussion for

generating ideas and prototyping, but there is not necessarily any direct connection with

other design artifacts.

This disconnect makes it difficult to maintain the relationship between design decisions

and the scenarios that generated them. System developers need to capture design decisions

and the semantics of the problem domain in computer readable form. Formalized models

may force design activities to be captured using a terminology unfamiliar to the problem do-

main or unnecessarily restricted. Finally, studies on thought experiments and mental models

have shown that problem-solving activities benefit greatly from the ability to manipulate

1

and reform decision elements [99].

The purpose of this research is to develop a computational representation of narrative

to aid policy makers, systems developers, and trainers who need to ask such "what-if"

questions in their decision making. This involves (1) a theoretical investigation of the nature

of narrative in decision making and (2) an implementation of a computational framework

for narrative.

1.2 Motivation

Consider the following situations:

• A visitor from out-of-town stops to ask directions from Hartsfield Atlanta Airport to

the campus at Georgia Tech. A knowledgeable resident explains how to get there by

describing the navigation from the point of view of the visitor: First you get onto the

interstate going North, then take exit 100.

• A software developer creates a prototype user interface for a word processing package

and discusses it with a potential user by asking what type of tasks are performed.

• An army commander has a tactical planning briefing with his staff where they discuss

alternate ways of meeting mission objectives by creating a storyboard of tactics.

• A stock market simulation is a mathematical model. Market fluctuations and the

factors that cause them are predicted by the outcome of the simulation.

Each of these situations is an example of a scenario. A scenario is an instance of a system

behavior, a sequence of events and interactions that describe a specific case of a system’s

function [87]. Whether it is for the purpose of comprehension (out-of-town visitor),design

(user interface prototype), collaborative decision making (Army tactical planning briefing),

or dependency analysis (stock market simulation), a scenario is a powerful method for dis-

cussing system behavior.

Many practical disciplines make use of scenarios to improve decisions. System designers

and policy makers use scenarios to assist them in making design and policy decisions [26].

2

Scenarios are used throughout software development to examine alternate design decisions

and requirements [111]. Requirements engineering, the process of determining requirements

for a proposed system, has used reasoning techniques about scenarios to help generate and

evaluate specifications [145]. Throughout the 1990’s, the design research communities in

human-computer interaction, object-oriented software design, and business administration

have paid concerted attention to user-centered design representations that utilize scenarios

[135]. Scenarios are important in management and enterprise modeling. Scenario-based risk

assessment is an effective cost-benefits analysis technique for determining future directions

of an organization. A major technique in business process re-engineering is the creation

of scenarios that illustrate how a business actually works and how its operations might be

improved [140]. Some of these disciplines use methods in which established categories of

scenarios are design artifacts in their own right (for example, storyboards as designs for user

interfaces, sequence diagrams as specifications of software behavior, business scenarios as

planning documents, etc.).

Not only are scenarios of practical importance, they appear to play a fundamental role

in comprehension. Cognitive scientists, and social scientists who study everyday and pro-

fessional reasoning (e.g. by scientists) claim that narrative is central to processes of expla-

nation, inference, and interpretation [137], and apply this theory to professional practices

such as pedagogy and educational technology. Scenarios codify and externalize algorithmic

mental models and thought experiments [100]. The decision-maker may test hypotheses by

constructing what-if scenarios on top of a baseline description of the situation under con-

sideration. Whether these scenarios are merely described, enacted through role-playing, or

simulated computationally, whether they faithfully represent a real phenomenon or merely

provide the outline sketch of a possible course of action, the intention is the same: to clarify

the relationships among actions and features of a situation and to understand better the

consequences of actions.

3

1.3 Research Questions

The primary research question addressed in this work is: “What is a scenario, with respect

to narrative and decision-making?” In other words, what is the scenario ontology necessary

to describe the essential building blocks for decision-oriented storytelling? This scenario

ontology is not derived as a union of all possible story elements across the aforementioned

domains, but instead, as an intersection of those common primitives that appear to cross

boundaries.

The second research question concerns the form of the scenario specification. How can

scenarios be represented in a computer readable form that is non-intrusive, semi-formal,

extensible, and portable, representing the semantics and modalities of storytelling? This

computer-readable form comes about by treating scenario artifacts as documents. These

scenario documents can be authored, shared, and analyzed using the appropriate software

tools. Creating the documents as hyperscenarios makes it possible to create different repre-

sentations of the same scenario content. A hyperscenario is a scenario document containing

link structures for navigation to other documents. These links among text, graphics, and

other multimedia elements supports multiple perspectives, representations, and collaborative

development of artifacts.

The final research question is: Does the availability of the computer-readable scenario

framework improve decision-making? Given a story form of a problem domain during a

decision-making task, is there a noticeable improvement in the quality and the effectiveness

of decision-making?

The first two research questions are answered using direct research methods, using an

analysis of narrative domains and the development of the scenario ontology, respectively.

The final question is answered empirically, using a simulation experiment to assess the

improvement on decision-making.

4

1.4 Research Contribution

The primary contribution of this research is the Hyperscenario Framework. The Hypersce-

nario Framework consists of the scenario ontology, scenario grammar, and a scenario lan-

guage called Scenario Markup Language (SCML). An extensive literature review of narrative

forms identified the concepts and classes that define scenarios. An explicit mathematical

model describing scenario elements and operations is defined using set theory and logic con-

structs. The context-free grammar derived using the rules in the scenario conceptual model

was implemented into SCML.

1.5 Thesis Statement

The claim of this research is that the Hyperscenario Framework captures the semantics of a

problem domain and improves decision making.

1.6 Overview of Remaining Chapters

Chapter 2 of this dissertation covers background information and related work. Chapter

3 is a detailed discussion of the scenario ontology including the conceptual model, formal

mathematical description of scenario elements, grammar definition, and language imple-

mentation. Chapter 4 covers potential scenario applications that can use the features and

characteristics of SCML. A prototype scenario generation tool consisting of a web-enabled

game simulation is described in this chapter as well. Chapter 5 describes the design of the

empirical study to validate the impact of a scenario framework on decision-making. The

independent variable, dependent variables, metrics gathered, method of analysis, and tech-

niques for mitigating threats to validity are outlined in the design chapter. Chapter 6 is an

analysis of the results of the study, displaying and interpreting the data on decision-making

for each experimental group. Finally, Chapter 7 concludes with a discussion of the future

research on the Hyperscenario Framework.

5

Chapter 2

RELATED WORK

The structure of a play is always the story of how the birds came home to

roost.

– Arthur Miller

This chapter is a literature review that outlines the narrative background of the Hyper-

scenario Framework. Narrative is: the representation in art of an event or story, also an

example of such a representation [126]. Scenarios are forms of narrative concerned with

problem-solving. Examining different forms of narrative and existing scenario applications

helped to identify the elements that make up a scenario.

2.1 Narrative Applications and Research Efforts

The first section of this chapter describes tools and languages in business process analysis,

case-based reasoning, and use cases. Each application used some form of narrative to help

in the decision-making process.

2.1.1 Knowledge Representation for Business Rules

Intelligent agents are programs designed to retrieve and disseminate knowledge in a dis-

tributed fashion. The FIPA (Foundation for Intelligent Physical Agents) is a governing

body that created standards for an Agent Communication Language (ACL) [56]. The stan-

dards outline principles and detailed requirements for agent communication, independent of

their implementations. Grosof and Labrou, of IBM T. J. Watson research center, developed

an Extensible Markup Language (XML) approach for intelligent agent communication [72].

Their research focused on two separate language implementations to support an agent-based

environment: ACML and BRML.

ACML (Agent Communication Markup Language) is an XML encoding of the ACL

6

standard. The semantics of FIPA ACL uses declarative knowledge representation for-

mat. Declarative knowledge representation uses speech-querying primitives, such as speaker,

hearer, and communicative act. ACL message syntax uses additional parameters to repre-

sent high-level constructs. There are several pragmatic elements of the ACL syntax, such

as parsing and querying, to describe the operational aspects of the agent messages. The

large number of pragmatic conventions to adhere to minimizes the amount of interoperabil-

ity between different systems that use the same ACL. ACML was an attempt to address

these interoperability issues in an extensible form. Pragmatic/operational elements are more

easily incorporated into the ACL syntax by using XML linking structures.

The second research effort encoded business rules content in a language called Business

Rules Markup Language (BRML). An e-commerce application that uses agents for bidding

negotiations was chosen to illustrate the usefulness of BRML. The business rule representa-

tion for agent information was initially proposed by the Knowledge Sharing Effort (KSE),

a project funded by the Defense Advanced Research Projects Agency (DARPA) in the early

1990s. The goal of the KSE was to develop techniques, tools, and methods for knowledge

sharing/reuse between knowledge based systems. In the KSE model, agents are treated as

knowledge bases that exchange propositional information. The KSE model involved three

layers corresponding to: 1) specifying the propositional attitudes, 2) specifying the propo-

sition (i.e. the knowledge), and 3) the ontology (vocabulary). The KSE implementation of

this model uses the Knowledge Query and Manipulation Language (KQML) [122] for propo-

sitional attitudes, Knowledge Interchange Format (KIF) [62] to represent propositions, and

Ontolingua [74] for describing ontologies. KIF essentially displays first order logic. The

BRML specification uses KIF propositions to represent business processes [72]. KIF is a

content language that can show a broad range of rules, however, it suffers from two prob-

lems: it is logically monotonic and it is a pure belief knowledge representation. Logical

monotonicity means that default rules and conflict handling cannot be expressed, making

exceptions and priority rules hard to depict. Pure belief means the actions are invoked

only as the result of rule inferencing, disallowing the use of external procedure calls for rule

negotiation. BRML focused on correcting the monotonicity problem with Courteous Logic

7

Program (CLP) techniques for conflict resolution and prioritization. CLP’s are declarative

statements that depict a rule base. BRML is essentially an XML encoding of CLP rule sets.

2.1.2 Use Case Scenarios for Business Processes

The research project from the University of Paris focused on creating use case scenarios to

describe business processes [140]. A use case is a unit of interaction between a user and a

system; it is a meaningful unit of work [57]. A Business Process (BP) is a set of activities

that produce an output valuable to the customer. BPs reside on different levels, based on

requirements. The organizational interactions BP level is interactions between agents. The

system interactions BP level describes how the Information System (IS) supports organiza-

tional activities. The final level, concerned with internal operations of the organization, is

called the System Internal BP level. Because of the complexity of BPs and the potential

number of agents that interact, the researchers chose an incremental design technique. They

defined a set of rules for describing BP fragments, integrating the fragments into a single use

case specification inclusive of all levels of BPs. The development effort was centered around

authoring text documents with these use case scenarios as templates. The researchers used

simple natural language processing techniques to capture use case semantics from text doc-

uments.

Conceptual information had to be gathered that could situate the business process within

the organizational environment. This context was made up of the name of the BP, the

initiating agent (entity that starts the business process) and the agents’ goal for the BP.

There is a set of preconditions defined as the initial state of a use case, with respect to a

particular resource. There were two types of scenarios: normal and exceptional. The normal

scenario describes a singular path of actions done to reach a final state that sufficiently

fulfills the goal. An exceptional scenario is also a course of action, but the final state does

not completely fulfill the goal of the initiating agent.

The relevancy of this use case project to the hyperscenario framework was the derivation

of scenario fragments, in this instance, business processes. The researchers looked more at

establishing rules for how these fragments could be captured from existing documentation

8

instead of determining an appropriate representation. The natural language processing

techniques and the terminology of the particular business organization being studied drove

the specification of the use cases. Their approach limits the application of the technique

to limited domain, i.e., in a business that uses the exact same description of its business

processes. However, the authors did consider levels of details required within a use case.

These levels begin to categorize BP use cases in terms of multiple views and perspectives,

from a system and organizational standpoint. Knowing what difference it makes and how

to transition levels treats use cases as dynamic artifacts of organizational knowledge.

2.1.3 Case Based Reasoning

Hayes and Cunningham, designers of the Case Based Markup Language (CBML), focused on

the development of an XML language for Case-Based Reasoning (CBR) [76]. CBR is a tech-

nique for problem solving which looks for previous examples that are similar to the current

problem, particularly when heuristic knowledge is not available [108]. CBML was developed

to support E-commerce applications. The CBR approach to business knowledge creates a

reusable knowledge base. CBR data is integrated with the Information Technology (IT)

infrastructure of a business using industry-specific vocabulary. For example, cases could be

descriptions of the commodities on sale, such as package holidays, hardware configurations,

and real estate. Hayes and Cunningham proposed CBML to support the distributed com-

puting of cases. The initial form of CBML was an XML language that used a Document Type

Definition (DTD) to represent the grammar. The researchers examined two existing CBR

applications that used XML query relational databases. The first system, called the Caret

system, was developer Hideo Shimazu in 1998 to retrieve cases from a database system [168].

The use of XML as a basis for the query format, along with a retrieval algorithm focused on

the coded tags, minimized the number of records required to build case data. The second

example of an XML representation of case data was used for a Heating Ventilation and Air

Conditioning (HVAC) sales support system to query a Microsoft Access c© database [185].

One problem with these approaches is the limited mechanism for data typing and feature

9

weighting within DTDs. DTDs are also inflexible with respect to merging legacy represen-

tations. Version 1.0 of CBML was as designed using a DTD to represent the grammar. It

was intended as a standard for exchanging information between classification and diagnos-

tic systems that use CBR information. CBML required two files for each implementation:

structure file and a base file. The purpose of the case structure file was to define the ele-

ments available to a developer within a specific domain - the features, types, weights, etc.

that were appropriate. The case base file was used to describe elements available to an

application instance. The weakness of the CBML architecture was that both documents

were required for an application, although their relationship with one another was almost

orthogonal. This is the reason that Hayes and Cunningham chose to modify the architec-

ture to use XML namespaces and schemas to create a view of CBR data, as opposed to a

specific grammar. Namespaces are a markup language identification technique that allows

designers to uniquely qualify element names and relationships between them. Namespaces

allow merging of alternate XML representations without element naming conflicts.

A difference between the CBML work and the Hyperscenario Framework is that their de-

scription of CBR information is not as expressive a form of narrative as a hyperscenario. The

CBR information lists features and attributes associated with canned business transactions.

Higher-level knowledge of case data, such as goals for the cases and multiple perspectives,

were not being stored and retrieved. Also, there were very limited applications for the CBML

representation, specifically information storage and retrieval and data exchange. Other ways

of manipulating and authoring case data were not being explored.

The assessment of a DTD-based content representation in the CBML project was sig-

nificant for the hyperscenario framework. The specification language of the Hyperscenario

Framework is DTD grammar. An important issue for applications using the hyperscenario

approach is the choice of mapping technique for a particular narrative domain. This map-

ping might necessitate an external file for domain information, similar to the structure/base

file architecture initially used for CBML. Their lessons learned give some insight into the

advantages and disadvantages of that architectural style. The other useful information from

the CBML effort is the support for existing XML languages. Since the scenario conceptual

10

model contained in the hyperscenario framework is based on different narrative domains, it

stands to reason that there are (or will be) standard XML descriptions of those domains.

A XML schema format, as opposed to a DTD-oriented grammar, could more readily merge

existing XML specifications and minimize the need for mapping rules.

2.1.4 StoryML

Cynthia Kurtz at IBM T. J. Watson Research Center is the principal investigator for Story

Markup Language (StoryML) research project [110]. Kurtz is a member of the Knowledge

Socialization Group at IBM, whose purpose is to examine knowledge representation and

sharing to support group collaboration . The StoryML specification language was developed

to handle three areas of narrative: story composition, story organization, and group story-

telling. StoryML was created by examining different story domains, such as: narratology,

folklore, professional fiction writing, and case-based reasoning. The concepts were integrated

into a XML schema representing metadata about stories and storytelling events. Kurtz de-

rived the schema by exploring the six narrative domains she felt had the most potential

for story metadata. The view evolved from determining commonalities and constructing a

consensus of story elements. The StoryML approach differentiated between narrated events

(the activities within the story) and narrative events (the process of storytelling). Story

elements, such as, conflict, scripts, and consistent realities were combined into a simplified

model that describe story metadata as form, function, and trace. Story form relates to

the internal structural components of environment, character, plot, and narrative. Story

functions are the relationships between characters in the story, between characters and their

goals, and between individual stories. Function elicits the meaning, understanding, and

convention of the story. The story trace is the context and the temporal development of

the narrative. Kurtz lists a series of tool ideas proposed to manipulate StoryML; tools for

authoring, modeling, organizing, searching, etc.

The StoryML project has much in common the hyperscenario framework, both in its nar-

rative approach the language implementation choice. However, the story metadata model

is based more on a categorization of story elements based form or function, as opposed to

11

a conceptual model that defines direct relationships between them. StoryML was designed

specifically for business stories in order to leverage narrative as a form of institutional knowl-

edge. There is no discussion of how this narrative specification can be used to help decision-

making. StoryML artifacts are suggested as representations of shared cognition, i.e., the

memory and methods of an organization in story form.

2.2 Narrative Morphology

Scenarios are a form of narrative used for making decisions, essentially stories about systems

or environments. For the remainder of this dissertation, the terms scenario and narrative

will be used interchangeably. To address the first research question concerning the structure

of scenarios, it is necessary to survey the diverse forms of narrative. This section describes a

narrative morphology on which to base the scenario representation. A morphology literally

means study of forms. The scenario ontology of the hyperscenario framework evolved by

reviewing different forms of narrative and their utilization in problem-solving activities.

2.2.1 Narrative Context

Before beginning a narrative morphology, it is helpful to examine some narrative concepts.

Figure 1 is a simple diagram to represent a taxonomy of terms in storytelling. The three

divisions in the figure established by the dashed boundary lines represent the story, the

storyteller , and the audience. Depending on the style of story, these separations may be

arbitrary. A story is an account of incidents or events [126]. The audience is the body

of listeners or spectators that experience a story. The storyteller acts as the interface

between audience and story. The storyteller drives audience perception. Perception is the

understanding or insight into the story. The dashed opening on the right-hand side of the

figure is labeled engagement. Engagement is the amount of audience interaction. There

are several levels of engagement. The lowest level of engagement is that of audience as

passive receptacles of the story as it unfolds. The moderate level engagement is the audience

participation style of narrative. This is embodied in dinner theater plays that require the

audience to interact in order to move the story along. The widest level of engagement,

immersion within the story, is the audience-as-storyteller as described in Murray’s Hamlet

12

on the Holodeck [133].

The circle on the figure represents the universe of the story; those characters whose

interaction causes the narrative. These characters are the persons, places, and things whose

actions cause events. Outside of this universe of characters and events are the rules that

govern how they may act. Rules such as rocks don’t fly and people cannot walk through

walls set boundaries for what type of events might occur. Along with the rules, there are

also the issues of space and time. When do things happen? Under what circumstances?

Can the focus occur on two locations in the story at the same time? The answer to these

questions along with the defining rules of interaction set the scope. Within that scope are

the events that the storyteller relates to the audience. Depending upon how the story is told

and the amount of engagement of the audience/storyteller there could be both anticipated

and unanticipated events. There may be loopholes in the rules that allow events to occur

that are not normally valid. The surprise results from these unexpected twists are usually

from the perspective of the audience. Unanticipated events can also be from a participant’s

perspective, for example, a security guard watching Neo walk up a wall in the motion picture

The Matrix [182]. The flow of the story, called its continuity , is how the events are organized

and presented. The amount continuity can be altered is depicted as a dashed opening on

the figure. The more control exerted by the storyteller/audience is increased, the larger the

opening. The smallest opening is keyhole continuity, where the storyteller describes events

one a time without modification of the established rules. At the other extreme, events

can occur in any order and the rules may be modified to cause conflicts or make things

more interesting. For example, the dungeon master in a game of Dungeons and Dragons

can introduce characters and plot devices with which the participants may interact [33].

Mechanics are the style and format that the storyteller wishes to place upon the story. The

children’s story Green eggs and ham would have a different impact if the mechanics were

those of Stephen King instead of Dr. Seuss. The tone, style, and flow of the story color how

the audience may receive it.

Not all narrative forms include every element of the context. There are also other

factors that influence narrative, such as the size of the audience, the number of storytellers,

13

Figure 1: Storytelling Context

14

the media for storytelling (print, visual, auditory), the purpose of the story (educational,

entertainment, informative), etc.

2.2.2 Literary Analysis and Criticism

Literature was an obvious domain for consideration, since the conventional concepts of a

story are based on written descriptions of situations, locations, and events. Propp’s Mor-

phology of a Folktale was an effort by a 19th century literary scholar to create a hierarchy

and structure of the standard folktale, as a basis for analysis [149]. Propp identified recur-

ring patterns within the genre an built relationships between the patterns and the form of

the folktales. Dallenbach, another literary critic, attempted to describe a specific narrative

pattern, that of a play-within-a-play.[42] This type of story is a particularly useful story-

telling device, when, for example, the narrator of a story is telling the tale as a series of

flashbacks.

Joseph Campbell and Carol Pearson examined the concept of myths and storytelling as

societal or cultural metaphors. Campbell’s work is widely known as a treatise on the use of

myth to explain the values and principles from a civilization. Examining how a group creates

its mythos gives greater insight into what motivates their world. In A Hero with a Thousand

Faces [20], Campbell talks about the goals and characteristics that we ascribe to heroes and

how they are a microcosm of people in general. Pearson focuses on the protagonist of stories,

defining a series of archetypes for categorizing goals and motivations [141]. A protagonist is

the character that drives the plot and initiates the action. The antagonist is a character that

attempts to block the goals of the protagonist. An archetype is defined by Pearson as “deep

and abiding patterns in the human psyche that remain powerful and present over time”.

Pearson relates archetypes to phases of psychological development or personality type.

These literary approaches are relevant to the hyperscenario framework because they

assign goals and motivations to particular roles and styles of stories. The goals and purposes

of scenarios have to be able to relate to real life situations for them to be useful in a

computational form.

15

2.2.3 Film Editing and Screenwriting

One catalyst for the hyperscenario framework was the view of a scenario as a document.

Since scenarios are stories about a system that could take on alternate representations,

was there an existing document type that exhibited similar characteristics? The screenplay

documents produced for the film industry were a good example of this type of flexibility.

In the film industry, the screenplay is a standard format for the document that describes a

movie or a play [58]. The same screenplay can be used to create a storyboard, generate a

soundtrack, describe costume requirements, forecast the budget, and outline casting criteria.

There are several ways to represent the content from a screenplay: a storyboard of scenes,

the soundtrack, the advertising trailers, etc. But in all cases, the structure of the original

screenplay document remains consistent. A screenplay can describe movies in different

genres, such as horror, comedy, and drama. A genre is a classification of story using the

traditions under which the story is set as it relates to previously made stories [58].

The commonality among all screenplays is the narrative structure. There is a standard

way of specifying actors, Settings, scenes, and actions. The salient parts of the documents

are understood by the industry and relatively brief instructions can convey large amounts

of information. The analogous document in theater or radio productions is a script. The

standard script format is understood by the different theater perspectives.

16

Figure 2: Screenwriting Process

The screenwriter does not directly translate a novel into a series of scenes, but gives

some notion of a relationship between the story elements and an overall flow of action.

Figure 2 is a flowchart of one version of the screenwriting process [58]. The same screenplay

can be used to create a storyboard, generate a soundtrack, describe costume requirements,

forecast the budget, and outline casting criteria. Higher level abstractions of the story, such

as genre, plot, and theme are determined as the story is written. There can be multiple

levels of a story, as in the mise en abyme, or play-within-a-play, described by Dallenbach

[42]. A screenplay differs from a script in describing the visual aspect of the story from the

point-of-view of the audience. A screenwriter is trying to elicit certain responses or target

17

the story towards a certain perspective. The director has leeway in the set up of scenes and

shooting individual frame, but a screenwriter has to interpret a particular view of a story.

This is the reason that novels are converted to screenplay before filming begins.

The film’s editor is responsible for mise en scene. Mise En Scene means the staging of

scenes for film-making. Each scene is a movie is filmed from multiple angles or perspectives.

The director and film editor then decide what form the story should take by choosing the

shots that most effectively illustrate the story [43]. The choices can greatly enhance or

diminish the impact of the story on the audience. This is the reason that many films have

what is called a director’s cut version of a film. The director’s cut includes sequences and

shots not chosen by the film editor in the theatrical release.

In her book Computers as Theater, Laurel speaks of the need for new design approaches

for human-computer activity, using theatrical techniques as examples [113]. Human-Computer

Interaction (HCI) revolves around the user interface. Direct manipulation systems that use

the desktop metaphor allow users to view the computer as a collection of objects analogous

to real world objects (files, folders, etc.). Laurel uses movie making and film editing ideas

to support the notion of direct engagement systems that enable users to work directly in

the activity of choice.

2.2.4 Cognitive Mental Models and Thought Experiments

Scenarios are analogous to the cognitive science notions of mental models and thought

experiments. A mental model is an internal representation of the outside world [99]. When

asked to picture the earth, most people have an internal visualization of a spinning, spherical

object with patches of blue and brown representing oceans and land. A thought experiment

is a hypothesis testing process where a person visualizes a sequence of events to determine a

possible outcome [163]. If the internal visualization is a sufficiently reasonable model of the

environment under which the events occur, the outcome will illustrate possible solutions to

the problem. A scenario incorporates describing these internal models (with different levels

of detail) with a hypothesis-testing focus.

Some influential cognitive scientists have elevated narrative to a central position in their

18

models of explanation and inference [137] and in the application of these models to pedagogy

and educational technology [108].

2.2.5 Hypertext

In the article The Structure of Hypertext Activity , Rosenberg introduces the concept of

actemes and episodes [152]. An acteme is a low-level activity, such a following a link.

A collection of actemes are termed an episode. These actemes relate to elements in the

hyperscenario framework that support navigation between hypertext links. A hypertext is

a representation of a story where interactive structural operations are intermingled with

the text. With actemes, it is the structure of the language associates the actions with the

episode. The semantics of actions depend upon the overall purpose and presentation form

of the acteme.

2.2.6 Scenario-Based Design and Requirements Analysis

Scenarios have been used in software engineering to aid in decision making, comprehension,

design, and training [23]. These scenarios are used largely as points of discussion in each of

these cases. Building new scenarios or analyzing existing scenarios orient the discussion in

collaborative activities and increase understanding in single user tasks [135].

During a 1993 workshop on user-oriented design representations, several leading prac-

titioners in the fields of HCI, requirements engineering, Computer Supported Cooperative

Work (CSCW), and other disciplines within software engineering attempted to focus atten-

tion on the concept of scenario-based design [24]. The result was a collection of case studies,

design perspectives, and approaches that illustrated the usefulness of scenarios to enhance

traditional system design. Some of these studies on scenarios proposed methods for estab-

lishing scenarios as design artifacts to be used during system development. The output of

the workshop included a list of roles of scenarios during system development:

• Requirements Analysis - Description of user wants and needs for system development

• User/Designer Communication - Scenarios as point-of-discussion between client and

developer

19

• Design Rationale - Annotation of reasons behind design decisions

• Envisionment - Prototypical view of system before implementation

• Software Design - Description of the software modules and algorithms

• Implementation - Task lists to operationalize system actions

• Documentation and Training - Scenarios for end user instruction guides and mainte-

nance trouble-shooting

• Evaluation - Test suites to exercise system functionality

• Abstraction - High level description of system behavior

• Team Building - Merging perspectives to create a coherent story from collaborative

development

In each of these roles, scenarios are an informal approach to the refinement of software

artifacts. Software prototyping, textual descriptions, storyboarding, user interface mockups,

and simulations can all be considered forms of scenarios.

2.2.7 Use Case Scenarios

Scenarios are used so often in system development that they figure prominently in the

notation for Unified Modeling Language (UML). Ivar Jacobsen, one of the originators of the

UML notation, depicts use case scenarios as sequence diagrams representing collections of

actions/event traces for a system under development [57].

20

Figure 3: Customer Order Use Case Scenario

Figure 3 is a UML sequence diagram for a customer order processing system. A sequence

diagram shows temporal information with each vertical line descending from system objects

representing a timeline of events. This figure shows an Order Entry Window, an Order, an

Order Line, and a Stock Item as the actors involved in the task of placing a customer order

in a potential system. Following the time lines from top-to-bottom indicates the order of

activities and the arrows on the diagram depict communication between actors.

21

2.2.8 Modeling & Simulation Environments

The Department of Defense (DoD) has focused much attention in recent years on Modeling

& Simulation (M&S) environments for developing and analyzing the military systems [29].

Decreasing budgets, coupled with the necessity of being prepared for multi-faceted types

of military activities, such as humanitarian interventions, joint peace keeping efforts, and

Missions-Other-Than-War (MOTW) have created a need to prepare for unforeseen missions.

There is also a requirement for the military to attempt to try out unfielded and evolving

weapon systems and technologies to see how they might affect their Tactics, Techniques, and

Procedures (TTP) [178]. This analysis is being done by means of simulation and modeling,

from conventional (live action) wargaming to completely virtual simulations. Constructive

simulations, the man-in-the-loop style of simulation, are being used by the military to de-

termine the affect of new technologies on Command, Control, Communications, Computers,

and Intelligence (C4I). These simulations take the form of war games in which participants

are given assigned roles.

Modular Semi-Autonomous Forces (ModSAF) is an example of a simulation environment

with virtual objects representing tanks, scout vehicles, artillery units, and other combat plat-

forms (Figure 4). ModSAF simulates the hierarchy of military units and their associated

behaviors, combat vehicles, and weapons systems. The participants run the simulation from

static mockups of battlefield vehicles, using on-board computer systems with collaborative

technologies (shared whiteboards, digital radios, etc.) to view the battlefield. During a

simulation exercise, tank mock-ups and command vehicles communicate by radio according

to standard protocols that govern actual mission interactions. This digital radio communi-

cation data, along with data streams from the simulation software are recorded as an event

trace for subsequent analysis .

Capturing high-level, contextual information as well as sharing data objects can enhance

simulation interoperability. The High-Level Architecture (HLA) consortium is a government-

sponsored organization establish standards for simulations interoperability [181]. Specifi-

cally, the IEEE P1516.2 Standard for HLA Object Model Templates (OMT) prescribes a

format to support the reuse of Simulation Object Models (SOMs) [180]. There is a major

22

Figure 4: ModSAF Simulation Environment

effort in the simulations community, called the Extensible Modeling and Simulations Frame-

work (XMSF) to propose a set of standards, processes, and practices to incorporate web

services for the next generation M&S systems.

2.2.9 Decision Theory and Decision Analysis

Eighteenth century scholar Daniel Bernoulli describes decision making in terms of the Ex-

pected Utility (EU) theory. The EU concept states that when given a choice, people do not

attempt to maximize expected value but the maximum expected utility. Since maximum

expected utility is essentially the maximum subjective value, EU describes decision making

in terms of value tradeoffs.

Another major decision theory was promoted by Thomas Bayes, also in the eighteenth

century. The Bayesian Theorem of decision making states that decisions are made using

probabilities of expected outcomes. Bayesian decision theory is a statistical approach for

decision pattern classification using probabilities and the costs of error. Baye’s formula

states that the posterior probability of a decision’s outcome is equal to the likelihood of the

23

outcome times the prior probability divided by the evidence of the outcome [11].

Behavioral psychologists Yates and Estin define good decision making as follows: “A

good decision is one that has few serious decision deficiencies” [190]. They list a series of

common deficiencies that affect good decision making:

1. Aim Deficiency - Aim deficiency occurs when a decision fails to meet the decision-

maker’s aims or objectives.

2. Instigating Need Deficiency - Instigating Need Deficiency occurs when decisions fail to

ease the discomfort that required the decision-making.

3. Aggregrate Outcomes Deficiency - Aggregrate outcomes deficiency happens when all

of a decision’s consequences are worse than if the decision-maker made no decision at

all.

4. Competitor’s Deficiency - Competitor’s deficiency means there existed at least one al-

ternative choice that is superior to decision made, with respect to aggregate outcomes.

5. Process Cost Deficiency - Process cost deficiency happens when there is an excessive

expenditure of resources for a given decision.

Decision Analysis is a modeling approach that is a set of axioms, decision rules, and proce-

dures for structuring the decision-making process [31]. Decision analysis is performed when

the problems are complex, there are high stakes, there is no problem specific expert, or

there is a need to justify decisions. Some of the factors that make decisions hard to make

include conflicting objectives, intangibles, long time horizons, multiple decision makers, and

the difficulty of identifying good alternatives. Decision analysis is normative, not descriptive

[103]. Normative means that decision analysis is a systematic quantitative approach for

better decision-making as opposed to a description of how unaided decisions are made.

2.2.10 Interactive narrative and role-playing games

Interactive narratives are immersive environments, where the participants experience the

story first-hand and the users’ actions determine the plot. This level of engagement is a

24

primary characteristic of Role-Playing Games (RPGs) where players act out the part of a

particular role in a game, performing those behaviors associated with that character [124].

CDROM video games, such as DOOM, Tomb Raider, and Myst allow a player to immerse

themselves into a scenario where the sequence of events are based upon player action [155].

At any point within these adventure games, the possible moves have been predetermined by

the games designer . There is some leeway in how the player accomplishes a particular task,

but for the most part the system can only respond in limited ways. Some of the most complex

interaction in adventure games use the same interactive narrative technique as Multiuser

Dimensions (MUDs) [10]. In the Early 80’s, textbased MUDs such as the Hitchhikers

Guide to the Galaxy [1] allowed for a large number of outcomes based on a handful of

potential moves. MOO (MUD Objectoriented) environments like SimCity create virtual

worlds where users can collaborate on design and share ideas by constructing scenarios. The

MediaMOO project, which originated at the Massachusetts Institute of Technology’s (MIT’s)

Media Lab, is a textbased, networked, virtual reality environment that was created to help

media researchers. Like SimCity, MediaMOO is a constructionist environment, allowing

participants to learn and be entertained by building personally meaningful artifacts [17].

The participants have flexibility in what they wish to create, constrained only by their

creativity and the resources available in the software.

2.3 Summary

This chapter presented a literature review on narrative and highlights related work on

scenario-oriented problem-solving. There are several research projects and software appli-

cations that use narrative for knowledge representation. The context for narrative revolves

around the roles of the story, the storyteller, and the audience. The level of engagement and

perception for the audience is guided by the mechanics and the style of the storyteller, along

with background knowledge of the story environment, such as genre and theme. There are

several forms of narrative, from film editing to use cases to mental models, that influence

the choice of scenario elements for the hyperscenario framework.

25

Chapter 3

THE HYPERSCENARIO FRAMEWORK

See the little phrases go,

Watch their funny antics,

The men who make them wiggle so,

Are teachers of semantics

– Frederick Winsor

The narrative morphology discussed in the previous chapter establishes that people use

stories for problem-solving. It is reasonable to conclude that a computer-readable scenario

representation assists decision-making. This chapter describes the theoretical basis of this

scenario research. It presents a formal description and definitions for the Hyperscenario

Framework. A Hyperscenario is a specially formatted, computer-readable scenario that

contains structures for navigation between scenario elements. The Hyperscenario Framework

is a scenario ontology, scenario grammar, a markup language design, and the implementation

of an XML-based scenario language.

The first section of this chapter discusses the motivation and introduces a scenario ex-

emplar for illustrating the framework. The second section presents the scenario ontology,

scenario construction, querying/analysis operations, and some of the essential operations for

telling stories from the model. Section three discusses the structure of the scenario grammar

based on the ontology. A brief overview of Extensible Markup Language (XML) is presented

in section four as the specific choice for creating the scenario language. The syntax for

the implemented language, Scenario Markup Language (SCML) is then introduced. The

final section of the chapter suggests some general heuristics for finding scenarios within a

narrative domain for representation in SCML, along with a discussion of the requirements,

limitations and disadvantages of the hyperscenario framework.

26

Figure 5: Automated Shuttle System

3.1 Motivation

An ontology is a formal explicit description of concepts in a domain of discourse, the prop-

erties of each of those concepts and their attributes, and restrictions on those properties

[37]. An ontology is not just a conceptual model, but also includes rules and policies that

describes elements within the model. It is helpful to have a running example of a scenario

environment to motivate the identified concepts in the scenario ontology.

The third international Workshop on Scenarios and State Machines (SCESM04), held in

Edinburgh in conjunction with the International Conference for Software Engineering 2004

(ICSE04), supplied scenario case studies for use by participants to evaluate their scenario

research. One of those case studies, involving the simulation of an automated rail shuttle

system, is the running example for this chapter on the hyperscenario framework.

A rail-based shuttle system is being developed under a research project at the University

27

of Paderborn1 . Figure 5 is a snapshot2 from an on-line web camera showing a portion of the

actual rail shuttle system that has a total length of approximately 600 meters. The system

is intended to enable individual traffic of passengers and materials using autonomously

acting rail shuttles. A simplified scenario for the shuttle control software and a simulation

environment have been developed by Dr. Wilhelm Schäfer and Dr. Ekkart Kindler of the

Software Engineering Group at the University of Paderborn [106]. Schäfer and Kindler

taught an undergraduate software engineering course which required teams of students to

re-engineer and improve the railway simulation software. The students’ primary goal was to

implement an intelligent shuttle and add further environment components or modify existing

ones [61].

In order to make it accessible to a broader audience, the shuttle system has been doc-

umented in the form of a case study. The case study was made available in the call for

participation of the SCESM04 conference. The following paragraphs are directly extracted

from the shuttle system case study[107]. It is necessary to include the exact wording of the

case study in order to derive the scenario elements from an actual domain document.

Consider a railway. The railway consists of interconnected stations. Shuttles

bid for orders to transport passengers between certain stations. Successful com-

pletion of an order results in a monetary reward for the shuttle involved. In case

an order has not been completed in a given amount of time, a penalty is incurred.

New orders are made known to all shuttles, thus all shuttles can make an offer.

The shuttle with the best, i.e. lowest offer will receive the assignment. Using the

tracks will incur a toll, depending on the distance covered. Maintenance of the

shuttles is possible at any station and will cost both time and money.

The railway network consists of stations, track and switches. Tracks can be

traveled upon in one direction only. A switch is configured as a converging or

branching junction depending on the directions of the adjoining tracks. A section

of tracks consists of any number of connected tracks and switches. A section of

1http://www-nbp.upb.de/en/index.html
2scale of 1 : 2.5

28

tracks between stations is called a connection. The direction of a connection is

determined by the direction of its constituent sections of tracks. A connection

can only be traversed in the predefined direction and changing the direction while

underway is not possible. Connections can share sections of tracks and switches,

while there must only be one connection between two stations in one direction.

Any number of shuttles can be present at a station at the same time. The

duration of a shuttles stay at a station is not considered maintenance time. Main-

tenance must be explicitly scheduled.

Connections between stations can be temporarily disrupted. Shuttles currently

traveling on a section of tracks at the time of the disruption are not affected by

it, and will be able to complete their journey. Shuttles at stations will not be able

to use the connection. They can however use a different route. All shuttles will

be informed of the disruption and its duration.

Orders are made known to all shuttles by a broker. An order defines start

and destination stations as well as the allowed time for completion. The deadline

is derived from the time of acceptance of an order and the predefined processing

time, which begins at the time of acceptance. Additionally, an order has a certain

size, namely the number of people wishing to travel. Orders will be paid for by

the passengers either by credit card or invoice.

Order assignment follows a strict pattern. Firstly, all shuttles are informed

of the new order. Within a certain period of time, any shuttle can make an offer,

which defines the payment it will receive after successful completion of that order.

The shuttle having made the lowest offer will receive the assignment. In the event

of two equal offers, the assignment will go to the shuttle that first made the offer.

Order processing is handled by the shuttles. Every shuttle can transport pas-

sengers up to a maximum capacity determined at the start of the simulation.

This means that a shuttle can transport more than one order at the same time,

as long as the orders do not exceed the maximum capacity. The number of or-

ders assigned - but not necessarily loaded - to a shuttle at any given time, is not

29

limited. To complete an order a shuttle has to travel to the start station, load the

order and then proceed to the destination station to unload. This sequence must

be completed in a predefined time span; otherwise a penalty will be levied.

Order-processing begins with the loading at the start station and ends with

unloading at the destination. Loading or unloading at other stations is not per-

mitted.

A shuttle traveling on a section of tracks can neither change direction nor

choose another destination. A travel decision is only possible at a station before

the journey has begun.

The Hyperscenario Framework discussed in this chapter is meaningful to three types of

users corresponding to the storytelling context discussed in Chapter two: domain experts,

storytellers, and audience. Each of these users are equivalent to one of the partitions of

the storytelling context as shown in Figure 1 on page 14. The domain expert serves the

role of the story portion of the storytelling context. It is the responsibility of the domain

expert to determine the rules for the kinds of stories that are to be told in the domain.

The domain experts determine the events, characters, actions, and the vocabulary that

are meaningful. The storyteller’s position in the context is as described in Figure 1–the

responsibility for motivating, stylizing, determining genre, applying theme, and creating

plots for stories. The storyteller takes those elements identified by the domain expert and

creates specific stories in the domain. An example of the relationship between domain expert

and storyteller would be the canon of Greek mythology (domain expert) and Homer (the

storyteller). The final user of the Hyperscenario Framework is the audience who applies the

perception, attention, and level of engagement to experience a story. Depending upon the

level of engagement, an audience may be described as a participant that interacts with the

story. Similar to the partitioning of the storytelling context, the boundaries between the

Hyperscenario Framework users could be transparent. The domain expert who identifies the

story pieces could be the storyteller who puts the pieces together into a story and, finally,

the audience/participant that experiences the story.

30

There is a fourth category of user that will take advantage of the Hyperscenario Frame-

work: the hyperscenario storyteller. The hyperscenario storyteller not only creates the plot

of a story, but inserts structures in the story to support navigating the story in different

ways.

These four kinds of users and the shuttle system exemplar are used throughout this

chapter to motivate the scenario ontology, the scenario grammar, language design and im-

plementation, and to illustrate the usefulness of the framework.

3.2 Scenario Concepts, Modeling, and Representation

The purpose of the Hyperscenario Framework is to enable scenario applications that help

decision making. By putting scenarios into computer-readable form, the stories can be

manipulated and queried to answer “what if” questions and make decisions. For the shuttle

system, there are decisions about the number of shuttles required for the system, the most

efficient route for transporting passengers, railway scheduling, ordering processing, and other

choices that are assisted by examining scenarios about system usage.

To make decisions about the shuttle system or any environment that can take advantage

of the Hyperscenario Framework, it is important to develop an ontology for scenarios. It is

the scenario ontology that is useful to the domain expert. Developing the concepts and rules

for scenarios in the ontology will inform the domain expert what pieces to look for that will

be used for stories in a domain.

This section describes the details of the scenario ontology. Section 3.2.1 describes the

structural model that identifies the concepts in the scenario ontology and their relationships.

Section 3.2.2 describes techniques for connecting the conceptual elements together and nav-

igating within a scenario. These operations become the basis for scenario construction and

storytelling operations. Section 3.2.3 discusses some of the queries and decision-making

tasks that are supported with the scenario ontology.

3.2.1 Scenario Structural Model

The first step in developing a scenario ontology is to identify the concepts that make up the

scenario domain. Each person, place, or thing is an entity in the scenario ontology. These

31

entities are then expressed as classes in a conceptual model showing their relationships and

any implicit rules in the domain.

Figure 6 is a scenario conceptual model depicted in the UML notation. Unified Modeling

Language (UML) was developed as a way to represent objects and classes in object-oriented

designs [57]. The choice of UML modeling notation is purposeful: each scenario component

is a class or category of elements. For the sake of this discussion, it is necessary to know

only a few UML symbols to interpret the model.

• Class: Each rectangle in the diagram represents a class of objects. The name of

the class appears in the top section of each rectangle. The two other sections of the

rectangle list attributes and operations, respectively.

• Association: A line between rectangles represents an association between

classes. Each line coming out of a class can be numbered with a range of values

representing the multiplicity of the association. The range is of the form m..n , where

m is the minimum number and n is the maximum number allowed. If there are no

numbers on an association, the multiplicity is one-to-one. Associations between ele-

ments can be named, usually with a descriptive name. There may be an arrowhead on

an association that shows the direction of navigation. The absence of an arrowhead

denotes an association that is bidirectional. Associations can be association classes

that themselves contain attributes and operations.

• Aggregation: An open diamond means the adjacent class is a collection of the

elements on the other end of the association. This is equivalent to the hasA relationship

from entity-relationship diagramming [30].

• Inheritance: The triangle represents inheritance or specialization. The rela-

tionship between the class touching the triangle and the class on the other end of the

association is a kindOf association.

In the conceptual model of Figure 6, there are several associations between container

32

Figure 6: Scenario Conceptual Model

33

elements and aggregated elements labeled with the UML keyword {ordered}. If the key-

word {ordered} is present on an association, the collection is in a specific sequence. To

simplify the discussion, any element that is organizable into a specific sequence based on

the {ordered} notation is referred to as a step for the remainder of this chapter. It is the

domain experts that determines the sequence and the type of sequencing for ordering the

steps of a scenario. All of the rules for the scenario classes that are defined in the next

sections are either implicitly represented in the diagram and/or explicitly defined by the

text.

A Scenario is a sequence of Episodes. A Scenario has at least one Episode. A Scenario

has associated with it one and only one Goal. A Scenario may have a Cast associated with

it. If there is a Cast, there is only one Cast. A Scenario may have an Inventory associated

with it. If there is an Inventory, there is only one Inventory. The Episodes that are in a

Scenario may be grouped into a sequence of Acts. If there are Acts, there are one or more

Acts. The redundant path in the UML diagram allows for Episodes to stand alone or be

grouped into Acts in a Scenario.

An Inventory is a collection of one or more Props. An Inventory has at least one Prop.

An Inventory can be associated with more than one Scenario.

A Cast is a collection of one or more Characters. A Cast has at least one Character. A

Cast can be associated with more than one Scenario.

A Character is defined in this model as any entity that is part of a story. A Character

can be associated with zero or more Casts. It is possible for a Character to exist without

being associated with a Cast. The Character class in the UML model is a superclass with

specialized scenario elements derived from it. There are three kinds of Characters that are

important for the scenario ontology: Characters that do things, Characters that have things

done to them, and Characters that have Goals.

Actor is a subclass of Character. An Actor is a Character that does things. There is

a named association between Actor and Action called Performs. An Actor is a Character

that Performs one or more Actions. An Actor Performs at least one Action. There is a

named association between Actor and Role called Serves. An Actor Serves zero or more

34

Roles. For example, the designer, developer, technical writer, test and evaluation staff, and

customer are different roles that may be associated with the same person. An Actor does

not have to Serve a Role.

Prop is a subclass of Character. A Prop is a Character that has things done to it. A Prop

is associated with an Action through the Manipulates association. A Prop is a Character

that is manipulated by an Action. A Prop must be Manipulated by at least one Action.

A Prop can be associated with more that one Inventory. It is possible for a Prop to exist

without being associated with an Inventory.

Role is a subclass of Character. A Roles is a Character that has one or more Goals

associated with it. A Role must have at least one Goal. There is a named association

between Role and Actor called Serves. It is the Role that an Actor Serves that establishes

the Actor ’s Goal in the story. A Role may be associated with zero or more Actors. It is

possible to have a Role that has no associated Actor.

Act is a sequence of Episodes. An Act must have at least one Episode. Acts are necessary

if there is a dramatic structure to the narrative. For example, the standard three-act struc-

ture for a screenplay includes the setup, conflict, and resolution [58]. Acts give additional

meaning to groupings of Episodes. An Act can be associated with one or more Scenarios.

An Act is associated with at least one Scenario. If there are Acts in a Scenario, all of the

Scenario’s Episodes are contained within those Acts in the same Episode sequence.

Episode is a sequence of Events. An Episode has at least one Event. An Episode has

associated with it one and only one Goal. The Events in an Episode are grouped based on

their support for the Episode’s Goal. Prior to constructing an Episode, a domain expert has

to have defined what pattern of available Events supports the Goal of the Episode. The

Events that are in an Episode may be grouped into a sequence of Scenes. An Episode does

not have to have Scenes. The redundant path in the UML diagram allows for Events to

stand alone or be grouped into Scenes in an Episode. An Episode can be associated with

more than one Scenario. It is possible for an Episode to exist without being associated with

a specific Scenario. An Episode can be associated with more than one Act. An Episode does

not have to be grouped within an Act.

35

A Scene is a grouping that has a Setting and contains a sequence of Events. The possible

Settings of Scenes are identified by the domain expert. A Scene contains zero or more Events.

It is possible for a Scene to contain no Events. A Scene has associated with it one and only

one Setting. A Scene may be associated with zero or more Episodes. If there are Scenes in

an Episode, all of the Episode’s Events are contained within those Scenes in the same Event

sequence. It is possible for a Scene to exist without being associated with a specific Episode.

A Setting is a location, either temporal, physical, or abstract. A Setting may be associ-

ated with zero or more Scenes. It is possible for a Setting to exist without being associated

with a specific Scene.

An Event is a sequence of Actions. The purpose of an Event is to organize meaningful

collections of Actions. The rules and properties that make an Event and its corresponding

Action grouping meaningful are defined by the domain expert. An Event must have at least

one Action. An Event may have zero or more Goals associated with it. An Event does

not have to have a Goal. If an Event has a Goal and is associated with an Episode, the

Event’s Goal is a subgoal of the Episode’s Goal. An Event can be grouped within zero or

more Episodes. It is possible for an Event to exist without being associated with a specific

Episode. Events may be organized within an Episode by Scene. It is possible for an Event

to exist without being associated with a specific Scene.

A fundamental building block of a Scenario is the Action. It is not a collection of any

other scenario classes. Actions are anything that happens in the context of the story. An

Action may consist of characters communicating, the physical movement of an object, or

some other change of state in a Scenario. An Action is grouped within zero or more Events.

It is possible for an Action to exist without being associated with a specific Event. An

Action has zero or more Goals associated with it. An Action does not have to have a Goal.

If an Action has a Goal and is associated with an Event, the Action’s Goal is a subgoal of

the Event’s Goal. An Action is Performed by zero or more Actors. If an Action has a Goal

and is associated with an Actor, the Action’s Goal is a subgoal of the Goal of the Actor’s

Role. It is possible for an Action to exist without being associated with a specific Actor. An

Action Manipulates zero or more Props. It is possible for an Action to exist without being

36

associated with a specific Prop.

Several of the scenario elements are associated with a Goal. A Goal is an objective;

a desired state to be achieved. It is possible for a Goal to exist without being associated

with a Scenario, Episode, Event, Role, or Action. The Goals of the scenario elements in a

complete scenario form a goal hierarchy with the Scenario Goal as the root element (Figure

7). Each Episode class within the Scenario has a Goal that supports the objectives of the

Scenario’s Goal. The Events have Goals that supports the objectives of the Episode’s Goal

above them. All the Actions within an Event are performed by an Actor. Since Actors do

not have Goals, it is the Role that an Actor serves that is listed in the goal hierarchy. These

Roles have Goals that support the objectives for the Events’ Goals in which they occur.

The Actions that are performed by the Actors in those Roles support the objectives of the

Goals of the Roles.

Figure 7: Scenario Goal Hierarchy

37

It is important to note that Cast and Inventory are header information for a scenario, not

actually within the scenario. They are groupings of the Characters and Props in a scenario

in a useful way to support subsequent analysis. It is difficult to depict this notion of header

information in a UML diagram. This is the reason Cast and Inventory may not be present

in a scenario. All of the Characters and Props that are listed in the Cast and Inventory can

be derived by analyzing the scenario. Having the Cast and Inventory elements serve the

same purpose as the closing credits at the end of a movie; it allows the viewers to know the

entities in the story all in one place. Since Props are also Characters, they may be listed in

both the Inventory and the Cast.

The Shuttle system example can be used to illustrate concrete instances of the elements

from the conceptual model. Creating these instances are the responsibility of the domain

expert. The following sections show an informal method for determining scenario elements

from a textual description. The ordering of the activities is a useful way of constructing

scenarios from this type of information. Since Events, Scenes, Episodes, Acts, and Scenarios

are sequences of specific scenario elements, it is more illustrative to give a specific shuttle

hyperscenario example of those scenario elements after introducing dynamic structures for

connecting those sequences. Section 3.2.2 presents the dynamic model and uses the shuttle

example to describe the construction of a complete hyperscenario.

38

Table 1: Shuttle System Character List

CHARACTER

Station

Shuttle

Order

Passenger

Section

Track

Toll

Switch

Time

Money

Broker Agent

Banking Agent

Shuttle Agent

Topology Agent

Disabling Agent

Simulator

Invoice

3.2.1.1 Find Characters

The Characters in a scenario are entities that might occur in the domain. The Characters

can be determined by looking for people, places, or things that are within the natural

language text description. Table 1 is an initial listing of Characters derived from the shuttle

description information.

39

Table 2: Shuttle System Action and Prop List

ACTION PROP

Configure Switch

Transport Passenger

Bid Order

Levy Penalty

Incur Penalty

Change Direction

Move Forward, Back Station

Schedule Maintenance

Disrupt Connection

Assign Order

Load, Unload Order, Passenger

Decide/Choose Route, Station

Perform Maintenance

Create, Delete Order

Check Requirements

Calculate Order

Make Order

Evaluate Order

3.2.1.2 Find Actions

The simplest method for determining Actions in a domain is searching for verbs in the textual

description. It is also helpful to analyze any command list that might be included in the

domain documentation. In Table 2, the second column lists the target of the Actions which

are the props manipulated by those actions. There are Actions, such as Decide/Choose in

the table, that may be synonymous and essentially equivalent in the domain.

40

Props are defined as the target of Actions. The information in column two of Table 2 lists

the objects of the verb/actions as the primary candidates for props. There are additional

Props that can be determined by analyzing the Character list and description document for

passive entities that receive the results of Actions.

3.2.1.3 Identify Settings

The Settings are locations where Characters exist and Actions happen in the domain (Table

3).

Table 3: Shuttle System Settings

SETTING

Track

Station

Shuttle

Simulation

3.2.1.4 Identify Actors

Actors are those characters that perform actions. Any character that performs an action

from the list is a potential actor in a a scenario. Table 4 is the list of actors for the shuttle

system.

41

Table 4: Shuttle System Actor List

ACTOR

Shuttle

Passenger

Track

Switch

Broker Agent

Banking Agent

Shuttle Agent

Topology Agent

Disabling Agent

Simulator

3.2.1.5 Identify Roles

Roles are characters that have goals associated with them. These goals are associated with

the actors that serve in those roles. A good rule-of-thumb is that if several characters can

be associated with a goal, they are serving a role. For example, in Table 5, the role of a

Reward can be served by the characters Time or Money.

42

Table 5: Shuttle System Roles

ROLE GOAL(s)

Disabling Agent Disabling connection between stations

Topology Agent Send Topology data to shuttles

Banking Agent Paying the shuttle

Broker Agent Control Orders

Shuttle Complete Orders, Transport Passengers

Expense Expenditure for Transportation

Toll Transport Fee

Maintenance Repair and Maintain Shuttle

Reward Compensate for Efficient Services

Connection Connect multiple sections of track

Junction Connect multiple path

Income Revenue from Services

Payment Cost of Services

3.2.2 Dynamic Model and Scenario Construction

The narrative morphology described in chapter two is also the basis for modeling dynamic

scenario navigation. The term dynamic is used because there are scenario applications,

such as browsing, simulation, walkthroughs and run-time analysis where it is useful to move

through a scenario. The main goal of the hyperscenario storyteller is to insert structures

in the scenario for these alternate forms of movement. The utility of the Hyperscenario

Framework is in its use for storytelling and what-if manipulation. Moving through the

scenario in alternate ways corresponds to different kinds of storytelling. The hyperscenario

storyteller can use the constructs identified in the dynamic model along with the concrete

instances of scenario elements defined by the domain expert to create a hyperscenario.

Storytelling can be thought of as a form of purposeful navigation through a set of events

43

[65]. Whether the purpose is comprehension, learning, entertainment, or speculation about

an imagined environment, it is the task of the storyteller to weave these event chunks into a

meaningful whole. In film-making, it is the job of the film editor to perform this task. The

process of film-editing involves taking pieces of film that were created out of sequence and

from various viewpoints and merging them into a coherent story [43].

Film-editing terminology is useful in describing the non-linear movement possible within

a scenario. For example, the concept of a Scene is important in the transformation from

plot description to implemented narrative. A Scene is a portion of film that takes place

in a particular location. In a scenario, the location that distinguishes a scene need not be

a physical place, it could be chronological or abstract. Examples of chronological location

are “morning” or “evening”. An example abstract location is “inside the database”. There

are many examples in literature and film-making where non-chronological presentation of

a story enhances its impact. The movies Pulp Fiction and Memento are both made more

memorable because their stories are not presented from beginning to end.

The dynamic model that is described in this section outlines the different ways of navi-

gating a scenario. There are three methods for scenario navigation: links, portals, and shifts.

A link is a connection from an action to an action. Links are used to connect steps, which

can be re-organized by following paths through the links. A portal is an anchor/position for

entering or leaving a scenario. Shifts are methods for accessing information external to a

scenario, including even another scenario. The methods for movement within a scenario are

links; portals and shifts are methods for moving around externally to a scenario. Just as a

film-editor takes sequences of film created by the director and organizes them, the hyper-

scenario storyteller takes a scenario and uses links, portals, and shifts to transform it into a

hyperscenario.

Figure 8 illustrates the navigation methods between scenario elements. The smaller

diagram in the left side of the figure depicts different kinds of links. All are links because

they connect actions; it is the purpose and the method for connecting the actions that

establishes the different types.

44

Figure 8: Hyperscenario Navigation Model

A dependency link between actions establishes an ordering between them. The depen-

dency link connects two actions and denotes which has to happen first. All links are con-

nections between actions, but the dependency link is the only type of link that establishes

that one action is dependent on another. The action at the source of the dependency link

has to occur before the action at the destination of the link.

The actions enclosed by an oval in the smaller diagram in Figure 8 are equivalent to

each other. A equivalence link establishes a class or set of actions that are synonymous.

Actions connected with an equivalence link have the same meaning in their domain and are

interchangeable. The choice of any action within the set has the same effect on the flow of

the scenario. For example, there may be a domain where the list of actions contain the terms

“throw” and “toss”. Both actions have been designated by domain experts as present in the

45

vocabulary of the domain, but their meanings are essentially the same. The hyperscenario

storyteller designates these terms as equivalent and associate them with an equivalence link,

which allows them to be interchangeable. Replacing one with the other does not affect the

meaning of the scenario.

A rewind link allows for backing up within a sequence of actions. A rewind link is

installed by the hyperscenario storyteller to allow backward movement in a scenario. The

link connects in reverse, from the tail of a sequence of actions to the head of the sequence

of actions, without going through the individual actions in between. The sequence can then

be repeated by following the rewind link to the beginning of a sequence.

The larger diagram on the right of Figure 8 show navigation methods within a scenario.

The dashed outside box represents a single scenario, with the internal boxes depicting in-

dividual episodes within the scenario. The two columns of boxes in the diagram represent

different viewpoints of the same scenario. A viewpoint in this context is the perspective of

a character in the scenario. A horizontal pair of boxes represents the same episode from

different viewpoints. For example, given two characters A and B in the scenario, one box

represents an episode from the perspective of character A while the corresponding box is the

episode from the perspective of character B. Changing viewpoints can be done using a Cut.

A Cut is a link from one actor’s perspective to another. A cut is a link because it connects

from an action to an action. The actions that are connected by a cut are from two different

actors. A cut connects from the action of an actor in an episode to the action of an another

actor in the same episode. Cuts can be used to allow characters to interact and to elicit

some level of engagement from the audience. Effective use of cuts decreases the amount of

exposition or explicit narration.

Flashbacks, transitions, and prerequisites are links intended to connect episodes. A

flashback link is a connection from an episode to a preceding episode to review background

information that is present in the scenario. A prerequisite link connects an episode to

previous episode based on the dependencies between actions in the episodes, unlike flashbacks

which are based on supplying information. Prerequisite links also differ from flashback links

in that the episodes are always adjacent to each other in sequence. Flashbacks can be

46

one or more hops previous to the episode being examined. The Transition links connect

episodes going forward in sequence using action dependencies. A transition link establishes

the dependency between episodes, unlike a dependency link, which establishes a dependency

between actions. For example, the forest episode has to occur before the grandma’s house

episode in Little Red Riding Hood. A transition link connects from an action in the forest

episode to an action in the grandma’s house episode. There does not necessarily have to be

a direct dependency between the actions that are used for the transition link between the

episodes; it is the episode dependencies that are important and that establish the transition.

There are two kinds of portals in the dynamic model: setups and conclusions. A setup

portal is an entry point into a scenario. There may be more than one entry point into a

scenario. Setups are determined by the hyperscenario storyteller as places within a hyper-

scenario where it is appropriate to enter the scenario. The effect of setups is to partition

a scenario into meaningful chunks that can stand alone. Conversely, there may be several

conclusion portals, which are exit points from a scenario. These exit points are places within

the hyperscenario where it is reasonable to leave. The reasonableness of the exit point is

determined by the hyperscenario storyteller.

The purpose of shifts are to move between scenarios or to outside information. A slide

is important for branching to different scenarios. A slide is a shift that connects from

scenario to scenario. Alternate versions of a scenario are traversed by following slides.

Annotation serve the same purpose as flashbacks, but they connect to information external

to the scenario. An Annotation is a shift that connects to outside documentation containing

background details on the scenario.

47

3.2.2.1 Scenario Link Operations

(a) Linear (b) Alternate Endings (c) MultiForm

(d) Flashback (e) Replay (f) Fast Forward

(g) Multiple Entries (h) Multiple Exits (i) Backstory

Figure 9: Scenario Navigation Styles

The links, portals, and shifts identified in the dynamic model for scenario navigation supports

multiple styles of storytelling. Figure 9 represents nine different techniques for traversing

48

scenarios. The vertical lines denote timelines in increasing chronological order from top-

to-bottom. A linear style of navigation of a story is the standard chronological ordering,

following a scenario from beginning to end in time sequence. This also includes following a

scenario in reverse, from the end towards the beginning.

An alternate ending style supports the connection of different episodes to the end of

a scenario. Each terminal episode has the same goal, but contains different patterns of

events. For example, a “Leaving-Atlanta” scenario might have alternate episode endings

that have the same goal of “Arrive-At-The-Airport”. In one episode, the sequence of events

involves using a taxi, whereas the other episode involves using the subway system. The

alternate ending style support navigation through the scenario where a choice is made for

either ending, but the overall scenario is the same.

The dynamic model is also influenced by Murray’s concept of multiform stories. A multi-

form story presents a single plotline with multiple tellings [133]. These versions are the same

story told from different perspectives or variants of the story with some significant detail

modified. The multiform style creates parallel versions of the story that can be navigated.

Each version may contain similar episodes, allowing the user of a scenario application to

branch to alternate paths.

The flashback style supports connecting to background information within the same

story. The replay style supports VCR-type functionality. The position within the story is

adjusted back up the stream of actions, making it possible to rerun the same sequence of

actions. Fast Forward style places markers in the scenario, letting the scenario application

jump ahead in a sequence of actions.

Multiple entry scenario navigation allows a scenario application to begin the story at

different places in the scenario. Multiple exit style is the complement of this, allowing

several places to end the story. Finally, backstory style is similar to flashback style, except

that the background information is external to the scenario. This also supports building

tool-tip functionality into a scenario application, where information pops up that explains

background information or gives instructions on a particular element of the scenario.

49

3.2.2.2 Storytelling and Analysis Operations

The navigational styles listed in Figure 9 can be used to construct several storytelling op-

erations for scenarios. Each storytelling operation can be defined in terms of the links and

the steps that are connected.

• Linear Storytelling Operation - A linear scenario can be represented by combining

a sequence of Setup, Transition, and Conclusion operators on episodes to create a

complete Scenario. Let {e1,e2,e3,e4} be the set of episodes to be contained in a

Scenario s1. Let {y1,y2} be a set of episodes who elements are NOT contained in

s1. A Linear storytelling operation using the episodes looks like:

y1 Setup e1 Transition e2 Transition e3 Transition e4 Conclusion y2

• Multi-view Storytelling Operation - A multi-view storytelling operation involves

interspersing a Linear storytelling operation with CUT operations to change perspec-

tives from one Actor to another Actor. Let {e1,e2,e3} be the set of episodes that

are contained in a Scenario s1. Let y1 and y2 be episodes that are NOT contained

in s1. Let act1 and act2 be Actor elements that perform actions that are contained

within some Episode within s13 . In the following sequence the bracketed information

represents Episode e2 of Scenario s1:

y1 Setup e1 Transition [act1 CUT act2] Transition e3 Conclusion Y2

Some other storytelling operations include:

• Define entry points to a hyperscenario

• Define the exit points from a hyperscenario

• Define transitions/prerequisites between Episodes

• Define places in the scenario for jumping ahead

3Actions that are contained in an Event that are within an Episode.

50

• Define places in the scenario for replaying a sequence of actions/events/episodes

• Scenario variants - Present scenarios that have different episode patterns but meet the

same scenario goal

• Episode variants - Present episodes that have different event patterns but meet the

same episode goal

• Event variants - Present different patterns of actions that achieve the same event

• Action variants - Present different actions that have the same meaning in the narrative

domain. Actions that have the same meaning can be interchanged in a scenario without

changing the meaning of the scenario.

• Generate a successful scenario from the available scenario elements. Given goal X, what

combination of episodes/events/roles/actions create a goal hierarchy that support goal

X and tells a coherent story. A coherent story is meaningful and/or useful in a domain.

The domain experts and the audience/participants establish what is meaningful in a

domain.

• Generate an unsuccessful scenario from the available scenario elements. Given goal X,

what combination of episodes/events/roles/actions creates a goal hierarchy that has

one or more obstacles to achieving goal X but tells a coherent story.

• Create a shot. A shot is a slice of a story from a single character’s point-of-view.

• Merge several shots into a single storyline.

• Storyboarding - Associate graphical images with scenario elements to create a visual

representation of the story.

• Auditory - Create summary versions of scenario elements and associate them with

either pre-recorded or generated audio information.

• Multimedia - Associate multimedia “stock cuts” with scenario elements to create ani-

mated/film version of the scenario.

51

• Translation - Process scenario elements through language translation tools to create

multi-lingual scenario versions.

• Backstory - Give detailed background information on scenario elements. (Detail on

actors, settings, reasons for events, etc.)

• Multiform - Use slide links to follow action(s) from one version of a scenario to another.

• Multiple Endings - Using transition links, connect to multiple final episodes (having

conclusion links) in the story.

• Flashback - Use previous information in the story to help analysis at the current

location in the story.

• Foreshadowing - Detect flashback links as a method to “cheat” and determine what is

going to be important in the story.

• Alternate Style - Tell the story another way by using episode/event variants and fol-

lowing equivalence links between actions. (e.g. Replace “throw” with “pitch” and use

different event patterns)

3.2.2.3 Scenario Construction and Storage

The dynamic scenario model and the static scenario elements are sufficient to construct a

hyperscenario for a domain, given enough narrative information. Figure 10 is a use case

scenario taken from the shuttle system description document [107]. This use case describes

the successful initialization, processing, and completion of a passenger transport request.

The vertical lines in the diagram (which are timelines that show the passage of time from

top-to-bottom) correspond to the actors involved in the use case.

52

Figure 10: Shuttle Transaction Use Case

53

The Shuttle Agent, Broker Agent, Simulator, and Banking Agent are involved in this

transaction. The messages sent between them invoke actions and constitute the actions of

the scenario. The actions are numbered in sequence and follow the timelines.

Constructing a hyperscenario involves determining the events and episodes that make

up the scenario, given the list the actions that occurred, in the order that they occurred.

Knowledge of the shuttle domain is used to group the actions into meaningful events. The

text in Figure 11 is the shuttle transaction use case formatted as a hyperscenario. The

indentation in the text is used to denote the hierarchical grouping of the scenario elements.

The dynamic link structures are included in the text to show potential navigation paths.

To simplify the text (with the exception of the Setup link) only the sources of links are

shown. All the actions that are included in the use case diagram appear in the hyperscenario

structure, in the same sequence. The eleven identified events that group the actions are

numbered in sequence within the hyperscenario. The events were determined by collecting

the actions into meaningful groups. These events were then used to define the subgoals that

support the scenario’s primary goal. These subgoals denote the episode grouping of the

events. There is only one setting for the hyperscenario, the Simulation setting, so there are

no Scene changes in the hyperscenario.

The overall goal of the scenario is to Process Passenger Request for Shuttle Transport

(Line 1). Each episode that is part of the scenario has goals that are subgoals that supports

the primary goal of the scenario. Grouping the events that occurred by the goals that they

support determines the episodes of the scenario. There are seven episodes identified in the

shuttle transaction, numbered sequentially. The goal for each episode is listed on the same

line as the episode.

For example, Lines 23-38 in the hyperscenario text represent Episode 6, the Transport

Passenger(s) episode. Within Episode 6, there are three events, Events 7-9. Each event

contains one or more of the actions that are present in the use case diagram. Event 8, the

Shuttle Transport Movement event, contains Actions 13-15.

Each action in the hyperscenario text lists the Actor that performs the action on the

same line. For example, the Simulator Actor performs Actions 14, 15, 17, 18, 20, and

54

21. The links are listed in parentheses at the end of the appropriate action. There is a single

entry point into the hyperscenario, the Setup link that is listed with Action 1 (Line 4).

The notation in the text shows that the Setup link connects from an External location to

Action 1. Action 1 also contains a Transition link, since it is the last action of Episode

1 (Lines 2-4). The Transition link in Action 1 connects to Episode 2.

There are six Transition links connecting the seven episodes going forward in sequence.

There are also six Prerequisite links that connect the seven episodes going backwards

in sequence. For example, Action 4 contains a Prerequisite link that connects from

Episode 3 to Episode 2 (Line 11). Action 4 contains a link moving forward and a link

moving backward, since it is the only action in the episode. There is a single exit point for

the scenario, the Conclusion link that is in Episode 7 on Line 41. The exit point is a

connection from the last action of the scenario to an External location.

There is an example of a Cut link in the hyperscenario, showing the changing of per-

spective from one actor to another. On Line 32 there is a Cut link that connects to Action

18. This connection switches the perspective from the ShuttleAgent of Action 16 to the

Simulator of Action 18. Within Action 18, there is another Cut link that switches per-

spective back from Simulator to ShuttleAgent by connecting to Action 19 (Line 34).

55

1 Scenario: Successful Shuttle Transport - Goal: Process Passenger Request for Shuttle Transport

2 Episode 1: Initiate Transport Request - Goal: Handle Transport Request

3 Event 1: Notify Shuttle Agent of Request

4 Action 1: Send Order A Available Msg - Actor: BrokerAgent (External->Setup)(Transition->Ep2)

5 Episode 2: Accept Bids For Transport Request - Goal: Accept Bid From Shuttle Agent

6 Event 2: Shuttle Agent Places Bid

7 Action 2: Calculate Offer - Actor: ShuttleAgent (Prerequisite->Ep1)

8 Action 3: Make Offer on Order A - Actor: ShuttleAgent (Transition->Ep3)

9 Episode 3: Start Shuttle Simulation - Goal: Initialize Simulated Shuttle

10 Event 3: Activate Shuttle Simulation

11 Action 4: Send WakeUp Request - Actor: ShuttleAgent (Prerequisite->Ep2)(Transition->Ep4)

12 Episode 4: Process Multiple Transport Requests - Goal: Process Multiple Transport Requests

13 Event 4: Notify Shuttle Agent of Request

14 Action 5: Send Order B Available Msg - Actor: BrokerAgent (Prerequisite->Ep3)

15 Event 5: Shuttle Agent Places Bid

16 Action 6: Calculate Offer - Actor: ShuttleAgent (Flashback->Ep2)

17 Action 7: Send WakeUp Request - Actor: ShuttleAgent (Transition->Ep5)

18 Episode 5: Choose Shuttle for Transport - Goal: Select Shuttle to Handle Request

19 Event 6: Shuttle Selection

20 Action 8: Calculate Offers for Order A - Actor: BrokerAgent (Prerequisite->Ep4)

21 Action 9: Assign Order to Agent - Actor: BrokerAgent

22 Action 10: Calculate Offers for Order B - Actor: BrokerAgent (Transition->Ep6)

23 Episode 6: Transport Passenger(s) - Goal: Transport Passenger(s) to Requested Destination

24 Event 7: Determine Transport Route

25 Action 11: Calculate Path - Actor: ShuttleAgent (Prerequisite->Ep5)

26 Action 12: Send Move Shuttle Request- Actor: ShuttleAgent

27 Event 8: Shuttle Transport Movement

28 Action 13: Check Command - Actor: Simulator (Annotation->External)

29 Action 14: Send Shuttle Moving Msg - Actor: Simulator

30 Action 15: Send Shuttle Arrived Msg - Actor: Simulator

31 Event 9: Load Passenger(s)

32 Action 16: Send Load Shuttle for Order A Request - Actor: ShuttleAgent (Cut->Action 18)

33 Action 17: Check Command - Actor: Simulator (Annotation->External)

34 Action 18: Send Shuttle Loaded Msg - Actor: Simulator (Cut->Action 19)

35 Event 10: Unload Passenger(s)

36 Action 19: Send Unload Shuttle for Order A Request - Actor: ShuttleAgent

37 Action 20: Check Command - Actor: Simulator (Annotation->External)

38 Action 21: Send Shuttle Unloaded Msg - Actor: Simulator (Transition->Ep7)

39 Episode 7: Complete Transport Request - Goal: Assign Payment for Completed Transport

40 Event 11: Request Payment for Shuttle Transport

41 Action 22: Send Order A Invoice - Actor: ShuttleAgent (Prerequisite->Ep6)(Conclusion->External)

Figure 11: Shuttle Transaction Hyperscenario

56

There is a Flashback link on Line 16 that connects from Action 6 back to Episode 2.

This Flashback is there to associate the Calculate Offer action with a previous episode

where the same action occurred, Action 2 on Line 7.

The links that are included in the shuttle transaction hyperscenario example support

navigating through the scenario using different storytelling operations. A linear navigation

of this example can be done using the Transition links between the episodes. The Cut links

contained on Lines 34 and 35 support the multi-view storytelling operation as defined in

section 3.2.2.2.

Acts are not shown in this particular example. Acts are presented if it is useful to have

another level of grouping episodes within the scenario for a specific purpose. For example,

the standard three-act dramatic structure could be applied to this example, letting Act 1

(Setup) include Episode 1, Act 2 (Conflict) include Episode 2-6, and Act 3 (Resolution)

include Episode 7.

The scenario conceptual model lends itself to a straightforward storage into a database

system. Table 6 is a representation of how the shuttle hyperscenario can be organized

into a database for accessing scenario elements. Each column denotes a database table

corresponding to the scenario elements in the shuttle hyperscenario. It is possible to follow

both the UML model and the database organization in the same manner to trace connections

between scenario elements. For example, the database organization is used to determine that

Action 5 is an element in Event 4 which is an element in Episode 4 which is contained in

the shuttle hyperscenario, Scenario 1.

57

Table 6: Scenario Database Organization

Scenario 1 Episode 1 Event 1 Action 1

Episode 2 Event 2 Action 2

Action 3

Episode 3 Event 3 Action 4

Episode 4 Event 4 Action 5

Event 5 Action 6

Action 7

Episode 5 Event 6 Action 8

Action 9

Action 10

Episode 6 Event 7 Action 11

Action 12

Event 8 Action 13

Action 14

Action 15

Event 9 Action 16

Action 17

Action 18

Event 10 Action 19

Action 20

Action 21

Episode 7 Event 11 Action 22

3.2.3 Scenario Querying for Decision-Making

One of the most useful features of a structured scenario format is the ability to perform

queries on stories in meaningful ways. Performing queries on hyperscenarios in a domain

58

assumes that there is definite meaning assigned to the scenario elements and their relation-

ships to one another. This allows queries into a hyperscenario to be based on semantic

information as opposed to keyword searches for information. The primary purpose of these

queries is to help make decisions about the environment being represented by the scenario.

It is the audience/participant user that is interested in the querying and analysis aspects

of the Hyperscenario Framework. The scenario pieces have already been identified by the

domain expert, the plot has already been created by the storyteller, and the navigation

structures have been inserted by the hyperscenario storyteller.

One method of representing these querying operations is a language notation called the

Object Constraint Language (OCL) [183]. OCL is a notation to allow mathematical and

rules based information that cannot be easily representing in UML. OCL is a constraint and

a query language. A constraint is a restriction on one or more values of elements in a UML

model. OCL can be used to write textual query expressions, similar to the Standard Query

Language (SQL)[70] used for retrieving database information.

The following example queries are written in OCL to illustrate the kind of decision-

making queries that can be performed on hyperscenario-structured information. The key-

word context establishes which class in the model is being queried. The dot notation is used

to show path expressions to sub-elements given the context. The keyword body delineates

the start of the query operation. There are several built-in functions on sets, bags, and

collections that can be used to return groups of values that are in the query result. The

syntax and keywords in the following OCL constraints is taken from the OCL version 2.0

specification as referenced in [183].

• Perform scenario element lookups. Scenario lookups are useful for deciding if certain

scenario elements actually occur within any of the scenarios in a system. Is there

an element with a certain characteristic in the scenario? This example shows OCL

code for searching for an episode with a specific goal. This type of query is useful for

deciding episode frequency for establishing probabilities for more accurate prediction

of scenarios. In the query, the searchGoal in the body of the query is the specific goal

that is being sought. For each episode in the set of episodes contained in the scenario,

59

the episode’s goal is compared against the searchGoal.

context Scenario::findEpisode(searchGoal:Goal):Set(Episode)

body: foundEpisode -> select(Episode.Goal(searchGoal))

• Where are the scene changes? Can we retrieve all the scenes that occur within an

episode to determine where most of the scenario occurs? This query is useful for

making the decision whether or not to include scenes as part of the scenario structure.

If there are no or very few scene changes, it may not be necessary or efficient to include

the extra level of scenario element. The episode class has a query getScenes that will

return a set of scenes.

context Episode::getScenes():Set(Scene)

body: scenes -> asSet()

• Some scenario environments may need to isolate important actions to decide a critical

path for development. One way to decide on important actions in a system is to

examine event changes. In the OCL query below, the event class has a query operation

called getTrigger that will return a set of actions. There is an standard library

function first() that will return the beginning of an ordered sequence. The first

action in an event constitutes the trigger for the event.

context Event::getTrigger():Set(Action)

body: trigger -> first().Event.Action

• As an example of decision-making in a particular domain, the shuttle system may

require the elimination of one of the shuttles. To decide which shuttle to eliminate, a

query is developed to determine the number of offers for transportation requests per

shuttle. The shuttle that makes the fewest offers will be the one to eliminate. Assume

the shuttle domain expert has already defined a query operation on the scenario class

called getOffers which will return as a set the actions that are the offers in the system.

In the body of the query, the madeOffers operation will return the actions that are

60

the offers in the shuttle system, e.g. the “bid” actions. The body of the query returns

all the “bid” actions as a set called madeOffers.

context Scenario::getOffers():Set(Action)

body: episodes.events.actions.madeOffers -> asSet()

There are many other kinds of queries on scenarios to make decisions in a domain. For

example, the actors that are serving in specific roles can be found by determining the actions

that support the goal of the role. The link operations and navigational styles in the scenario

can be queried to determine the variants of a scenario and the paths between scenario

elements.

3.3 Scenario Grammar

The conceptual and dynamic models defined in the previous sections of the chapter are the

core of the scenario ontology. Converting these models into a scenario language requires

defining the syntax of the language. A grammar is a system of rules for describing the

syntax of a language. Using a grammar, it is possible to determine if strings of information

constitute syntactically valid elements of a language. The purpose of a scenario grammar

developed for the Hyperscenario Framework is to give an abstract syntax for describing

scenarios. This section defines the scenario grammar for the Hyperscenario Framework.

The scenario grammar is a Context Free Grammar (CFG). A CFG is a formal grammar

where every production rule is of the form V = w, where V is a non-terminal and w is a

string consisting of terminals and/or non-terminals. These grammars are context free in

that any occurrence of a non-terminal such as V can be replaced with its rule w at any

point.

Backus Naur Form (BNF) is a method for formal specification of CFGs [120]. The left-

hand sides of BNF equations consist of non-terminals to be defined in term of other language

elements. The right hand-side is a list made up of terminal symbols and non-terminals. That

is, a BNF specification is a set of derivation rules, written as

<symbol> ::= <expression with symbols>

61

where <symbol> is a nonterminal, and <expression> consists of a sequence of symbols

possibly separated by the vertical bar, ’|’, indicating a choice. Any term that does not

appear on the left-hand side of the equation cannot be decomposed further.

Figure 12 is the scenario grammar represented in BNF. This BNF scenario grammar was

validated using the Yet Another Compiler Compiler (YACC) parser generator to remove

any ambiguities. Ambiguities result when there are several ways to apply rules for a single

input string. YACC takes as input a machine-readable BNF grammar and outputs a parser

for the language written in the programming language C. YACC is particular suited for Look

Ahead Left to Right (LALR) grammars, a subset of CFGs[44]. LALR grammars require that

any input string can be parsed by looking ahead at most a single token. These grammars

are deterministic in that the choice of the next rule to apply can be uniquely determined by

analyzing the preceding input and a single token of the remaining input.

The tool used to analyze the scenario grammar was Bison, a YACC-compatible parser

generator. The output from Bison not only includes a parser, but also an automaton. The

automaton lists all the states that are possible with the grammar and the validation rules

that are applied. The automaton and parser work by analyzing an input string one token

at a time, deciding whether to place the token on an internal stack or to apply a rule of the

grammar to reduce the current stack contents. There are two primary kinds of ambiguities in

an LALR grammar that can cause conflicts: shift/reduce and reduce/reduce. A shift/reduce

ambiguity arises when the automaton and parser have to decide whether to shift a token

onto the stack or reduce the current contents of the stack. A reduce/reduce conflict is a more

severe type of grammatical ambiguity; in this situation, the automaton can apply more than

one rule for reducing the stack based on the input token.

There is one ambiguity in the scenario grammar that was not corrected. In the state

where there are actions on the stack and the parser receives an action token, it has

to decide whether to shift the action on to the stack or reduce the stack into an event

token. The default choice of the parser generated by Bison is to shift the action token

onto the stack. This is an acceptable solution, since every other token input (designated as

the $default rule) causes the reduction of the stack to event. Appendix C is the entire

62

automaton for the scenario grammar.

The token verb does not appear on the conceptual model, but had to be introduced

for grammatical validity. A verb represents the content of an action, the actual text that

describes the action. Verb was necessary to correct ambiguities that occur with action on

the placement of actor and prop elements.

%token goal prop actor setting role

%token intermission manifest verb

%%

scenario : goal cast inventory episodes

| goal cast inventory acts ;

cast : /* empty */ | cast character ;

character : prop | role | actor ;

inventory : /* empty */ | manifest props ;

props : prop | props prop;

acts : act | acts act ;

act : episodes intermission ;

episodes : episode | episodes episode ;

episode : goal events | goal scenes ;

scenes : scene | scenes scene ;

scene : setting events ;

events : event | events event ;

event : actions ;

actions : action | actions action ;

action : verb | verb prop | actor verb | actor verb prop ;

%%

Figure 12: Scenario Grammar in BNF notation

At the top of the grammar listing in Figure 12 are two lines listing the tokens for the

63

grammar. These tokens are the terminal symbols of the language. As terminal symbols, how

these tokens are actually represented in an input string for a language are domain specific.

For example, a noun looks different in English than in Russian, but the noun token is used

in the grammars of both languages.

With the exception of verb, intermission and manifest, each token corresponds di-

rectly to an object in the scenario conceptual model. The extra tokens are place hold-

ers to designate the beginning or ending of the non-terminal symbols act, action, and

inventory. These place holders are necessary grammatically and serve the same pur-

pose as punctuation characters do for programming languages. For example, without the

intermission token, it is ambiguous when (given an act token) to reduce the stack into

acts or into a completed scenario.

The scenario storyteller can use the grammar to build tools for parsing, generating, or

analyzing scenario strings. The availability of the scenario grammar makes it possibles to

determine the validity of scenario element strings. For example, let us say that we are given

strings of scenario elements for the shuttle system with the problem of deciding whether or

not the strings are valid scenarios. The symbols from the scenario grammar are used in the

strings to make the analysis straightforward.

input1 = goal goal action action action goal action action goal action action action

input2 = goal character character manifest prop goal action action goal action action action

input3 = goal goal character character action action action goal action action action

Each input string is parsed using the scenario grammar to determine if the appropriate

reductions will produce a scenario. The results of parsing all three strings are:

input1 = goal episodes (valid scenario)

input2 = goal cast inventory episodes (valid scenario)

input3 = ??? (not valid)

Input string input3 cannot be parsed and reduced into a pattern of symbols that represent

a valid scenario. Although the grammar will allow us to decide that input1 and input2 are

syntactically valid scenarios, it is still possible for them to be semantically incorrect. The

meaning of the strings are not reflected in the grammar, just their syntaxes.

64

3.4 Scenario Language Implementation

The language implementation of the scenario grammar has to support two objectives: 1)

representation in a form that is general enough to describe the structure of any scenario

and 2) expressive enough to support different views of the data. The choice of a markup

language supports both these objectives. Markup languages are languages that describe a

document’s structure using embedded tags, leaving presentation details to the capabilities

of the structure-aware applications. Alternatively, a text formatting approach describes the

appearance of the document by embedding special commands or control sequences, such as

font style or margin settings. Most conventional word processing software applications use a

text formatting approach. The problem with text formatters is that the encodings are pro-

prietary and platform-dependent. Each software manufacturer may describe a proprietary

text formatting technique.

For many documents, the important aspect is not how the document looks but how

it is put together. Constructing documents using a standard structural notation would

allow the presentation of the documents to be handled by the tools that displays them.

This was the reason for the development of the Standardized Generalized Markup Language

(SGML) specification in the mid-1980s. It originated from the Generalized Markup Language

(GML) invented by IBM in 1969 [139]. SGML was developed by the International Standards

Organization (ISO) to describe the structure and content of electronic documents. Instead

of embedding non-printable key sequences to control format, specialized tags are defined to

represent document structure. For example, the beginning of a paragraph is denoted using

a tag of the form <paragraph> follow by the paragraph’s content. The end of the paragraph

is then denoted using a corresponding end tag, in this case </paragraph>. By defining

the appropriate structural tags, complex documents are represented separately from their

formatting.

The SGML standard was quickly adopted by the U.S. government as a method of gen-

erating platform independent documentation for equipment and weapons systems. The

Continuous Acquisition and Life-Cycle Support (CALS) initiative from the middle 90’s re-

lied heavily on SGML as an interchange format for documents [28]. However, SGML proved

65

rather difficult and complex to use. SGML is a meta-language, a language to describe other

languages. Each subset of SGML uses its core concepts, but defines tags specific to a particu-

lar domain. The use of SGML or SGML-based languages was limited outside of government

applications because of its complexity and size. Some word processing packages, such as

WordPerfect and FrameMaker, used SGML to create ASCII versions of their documents.

The use of markup languages changed significantly with the introduction of HyperText

Markup Language (HTML) in 1989. HTML is a markup language for web documents that

describe the structure while allowing a web browser to handle the document presentation

[69]. HTML is now the most widely used SGML-based language. The structural flexibility

and the extensibility of HTML is limited because it was intended to describe web pages

handling different types of content. HTML is an attempt to express hypertext in a computer-

readable document. The term hypertext is defined as:

A special type of database system, invented by Ted Nelson in the 1960s, in which

objects (text, pictures, music, programs, and so on) can be creatively linked to

each other [127].

The concept of hypertext was predicted in a seminal article by linguistic scholar Vannevar

Bush [19]. The hypertext community considers the word hypertext in HTML a misnomer

because HTML is lacking many of the characteristics it considers vital for hypertext. For

example, the idea of highlighting a link to make it stand out from the rest of the text is not

a hypertext convention. Hypertext was intended to be more meaningful than a collection

of links from one location in a document to a location in another document. HTML linking

has made the Web as widespread as it is today but there are several problems that limit its

flexibility:

1. Lack of control of information retrieval - When a link is selected in the conventional

HTML document, there is no control on how much of information will be displayed.

An entire Web document is retrieved and inserted into browser window, replacing the

previous content. The most that can be done to control the information is positioning

it in the browser window.

66

2. Unknown target type - The data type of the destination document is also unknown

before traversing the link. The name of the link may give some information as to what

is being pointed to, but it is not always accurate.

3. One-way linkages - HTML hyperlinks are always one way. There is no direct associ-

ation between the originating document and the target document to the link; there

is no path between them. Using the browser’s "back" button causes navigation using

the history file, not an explicit path.

4. Dangling references - A dangling reference occurs when a link is selected and returns

the infamous 404 File Not Found message. This means that the data has moved, but

the link hasn’t been updated, or the the link has been entered incorrectly.

5. Fixed anchoring - A fixed anchor refers to a link that is anchored in a specific location

within a document.

The generic nature of HTML and these linking problem make it content neutral and not

nearly expressive enough to represent the scenario model.

XML is a meta-language that was developed with the best features of SGML [188].

It allows for the creation of domain-specific languages. It also corrects many of the link-

ing, structural, and semantic problems of HTML. XML was chosen as the implementation

mechanism for the scenario language.

3.4.1 XML Overview

XML is a major subset of SGML. Much of the complexity and many of the seldom used

features within SGML were removed to create XML. With XML, it is easier to describe

domain specific documentation structures. Not only is the structure of a document apparent

in XML markup, but its semantics are available as well. This means that applications can

manipulate XML documents without having to hard-code information about the document’s

application. The structure of the document gives its meaning.

A developer creates a grammar for an instance of XML for a domain. This can done by

defining a Document Type Definition (DTD). A DTD is the grammar of an XML language. It

67

is a list of the elements, entities, notations, and attributes that are available to the language.

It establishes the relationships between these elements and how they can be nested within

one another.

It is not necessary for every XML document to contain an embedded DTD or have a

reference to an external DTD. The XML specification defines two types of documents: valid

and well-formed. A valid document is one that adheres to a specific DTD. Application tools

can use the DTD to validate the structure of XML document in that particular language.

A well-formed document does not require a DTD. This kind of document is considered

acceptable as long as it follows standard rules for creating tags and structuring an XML

document.

Linking in XML documents is done using XML Linking Language (XLL) [35]. XLL

is a far more robust linking capability than that found within HTML. In XLL, a link is

considered a relationship between resources. This relationship depends on the application

that is processing the link and the semantics supplied with the link. The XLL standard

supports several new capabilities, including bidirectional linking, persistent links, dynamic

updates, support for annotations, and link management. Link types can be created in XLL

through named links. These named links support traversal behavior based on the links’

types. There are two components of XLL that make this possible: X-Link and X-Pointer.

X-Link introduces a division of links into simple and extended. Simple links are very similar

to those currently in HTML and are usually in-line (embedded as part of an anchor tag).

The extended links are used to express relationships between more than two resources. These

links can be out-of-line, meaning that they are contained in external files or link databases.

This makes link management more straightforward and leverages the use of databases for

configuration management. The X-Pointer definitions are an advanced addressing scheme

for XML documents. X-Pointer is a notation for pointing to the sub-parts of a document

without requiring an identification number or name within an anchor tag. X-Pointer is a

syntax for accessing resources by traversing an element tree of the document. The element

tree is based on the Document Object Model (DOM) standard. The DOM is a platform- and

language-neutral interface that allows program and scripts to dynamically access and update

68

the content, structure, and style of documents [187]. The DOM provides a standard set of

objects for representing XML documents, a model for how the objects can be combined, and

an interface for accessing them. This greatly simplifies the construction of tools for XML

documents. For example, the X-Pointer reference:

child(2,episode)(3,.)

uses DOM syntax to locate the third child element of the second episode in the scenario

document.

3.4.2 Scenario Markup Language (SCML)

The XML syntax and the scenario grammar have been implemented into the Scenario

Markup Language (SCML). SCML tags correspond to the concepts and rules from the sce-

nario ontology. Rules for combining and nesting tag elements are derived from the associa-

tions and multiplicities represented in the conceptual schema.

The BNF representation of the scenario grammar defined in the previous section can be

ported directly into XML DTD notation. The XML DTD notation is similar to BNF (con-

sisting of terminals, non-terminals, symbols, and production rules) along with the following

additional constructs:

• angle braces ”< >” enclosing definitions

• suffix "*" for Kleene closure (a sequence of zero or more of an item)

• suffix "+" for one or more of an item

• suffix "?" for zero or one of an item

• vertical bar ”|” separating alternatives

• parenthesis ”()” for grouping items

Tags that represent objects in an XML language are defined using the ELEMENT keyword and

are equivalent to non-terminals in an BNF grammar. For example, we can define an address

book element called a person. As an element in a DTD, the declaration looks like this:

69

<!ELEMENT person (name, e-mail*) >

In this example, the ELEMENT person is made up of other elements: a name and optionally

e-mail address elements. The declaration for each of these sub elements are contained

within the DTD. Each element may have attributes associated with it. These attributes

establish the properties that can be modified for the element. External documents can be

referenced using the keyword ENTITY within DTDs. Specific symbols or constants can be

declared using the keyword NOTATION. Keywords that represent the valid XML Datatypes

that can be used on elements and their attributes are listed in Table 7.

Table 7: XML Datatypes

Keyword Description

CDATA Character Data

ENTITY An entity declared in an XML DTD

ID A unique element identifier

IDREF The value of a unique ID type attribute. An IDREF

references the ID of another XML element

NMTOKEN An XML name token that consists of letters,

digits, underscores, hyphens, or periods

NOTATION A notation declared in an XML DTD

Figure 13 is the definition and attribute list for the SCML hyperscenario element. The

hyperscenario element is the root element of the SCML DTD. The attribute list includes

the minimum characteristics necessary for a hyperscenario. The only attribute that is

necessary is the title of the scenario. The keyword #REQUIRED states that the attribute

must appear with the element. The goal of the scenario is the first element contained

within the hyperscenario tag. An identification number, hyperscenarioID, is an attribute

that may be present but is not required for a hyperscenario tag. The keyword #IMPLIED

means that the attribute does not have to appear. Many of the SCML element attributes

70

are CDATA. CDATA are alphanumeric strings of characters. The settings attribute contains

a listing of the possible locations within the scenario.

<!ELEMENT hyperscenario (goal, cast?, inventory?, (episode+|act+))>

<!ATTLIST hyperscenario

hyperscenarioID ID #IMPLIED

title NMTOKEN #REQUIRED

settings CDATA #IMPLIED>

Figure 13: SCML Root Element Definition and Attributes

Figure 14 displays the SCML cast and character ELEMENT definitions. The cast

ELEMENT contains a series of one or more character ELEMENTs . The inventory EL-

EMENT contains one or more prop ELEMENTs. A character ELEMENT contains either

a role ELEMENT or an actor ELEMENT or a prop ELEMENT. Note that the role EL-

EMENT contains one or more goal ELEMENTs within it.

<!ELEMENT cast (character+)>

<!ELEMENT inventory (prop+)>

<!ELEMENT character (role|actor|prop)>

<!ELEMENT role (goal+)>

<!ATTLIST role

roleID ID #REQUIRED

name NMTOKEN #REQUIRED>

Figure 14: Cast and Character Element Definitions

The actor ELEMENT contains a unique identification number, called actionID, and a

required name attribute (Figure 15). The prop element has an attribute targetOF that can

71

be set to the value of the actionID of an action ELEMENT that manipulates it.

<!ELEMENT actor (#PCDATA)>

<!ATTLIST actor

actorID ID #REQUIRED

name NMTOKEN #REQUIRED>

<!ELEMENT prop (#PCDATA)>

<!ATTLIST prop

propID ID #REQUIRED

name NMTOKEN #REQUIRED

targetOF IDREF #IMPLIED>

Figure 15: Actor and Prop Element Definitions

The act ELEMENT is a grouping of episode ELEMENTs. It is shown in Figure 16.

<!ELEMENT act (episode+)>

<!ATTLIST act

name NMTOKEN #IMPLIED>

Figure 16: Act Element Definition

An episode ELEMENT always contains a goal ELEMENT, as shown in Figure 17. It

then contains either a grouping of scene ELEMENTs or a grouping of event ELEMENTs.

72

<!ELEMENT episode (goal, (scene+|event+))>

<!ATTLIST episode

episodeID ID #IMPLIED

name NMTOKEN #IMPLIED>

Figure 17: Episode Element Definition

Figure 18 is the goal ELEMENT definition and its corresponding attribute list. Hav-

ing goals as SCML elements supports focused searches based on the goals of characters,

events, episodes, and entire scenarios.

<!ELEMENT goal (#PCDATA)>

<!ATTLIST goal

goalID ID #IMPLIED

name NMTOKEN #IMPLIED>

Figure 18: Goal Element Definition

The scene and setting ELEMENTs appear in Figure 19. The setting element that is

included within the scene is the name of the location of the scene.

<!ELEMENT scene (setting, event+)>

<ATTLIST scene

sceneID ID #IMPLIED

name NMTOKEN #IMPLIED>

<!ELEMENT setting (#PCDATA)>

Figure 19: Scene and Setting Element Definitions

The event and action ELEMENTs appear in Figure 20 on page 74. Both elements may

73

or may not have goal ELEMENTs associated with them. This supports random events and

actions that happen during a story that do not serve a particular purpose or reason in the

story. An event ELEMENT must have at least one action ELEMENT to be considered an

event. The actor that performs that action must appear within the ELEMENT. A prop

may be the target of an action, so it is a sub-element in the production rule for the action.

The storylink element defines all the link structures that can be used to navigate

through the scenario. There may be multiple links present within an action, generating

many alternate pathways through a story. The target attribute contains the name of the

object being manipulated. This makes it possible to determine all actions that interact with

a particular prop in the scenario by a search based on action targets.

<!ELEMENT event (goal?, action+)>

<!ATTLIST event

eventID ID #IMPLIED

name NMTOKEN #IMPLIED>

<!ELEMENT action (goal?, actor, prop?, storylink*)>

<!ATTLIST action

actionID ID #IMPLIED

name NMTOKEN #IMPLIED

originator IDREF #IMPLIED

target IDREF #IMPLIED>

Figure 20: Event and Action Element Definition

Figure 21 is the SCML element definition for a storylink. The semantics of these links

type is decided by the particular application. The definition for storylink lists the different

types of links that are possible. Every link has to have a target of the link as an attribute.

Classes or categories of links are entered as values in the class attribute. The xml:link

74

attribute is the method for including XLL functionality in the language. Recall that XLL

links can be either simple or extended; here the default is simple. An extended link allows

multiple selections and targeting to aliased locations. The show attribute is a very powerful

feature of XLL. Instead of the standard replacement of the resource being viewed, a link

can be set to embed the retrieved information in the current document or spawn a new

window for display of the information. The actuate characteristics determines if the link is

traversed by direct manual selection of the user or is automatically followed based on some

implicit behavior. For example, a link may be initiated by the movement of the mouse over

a certain area of the display.

<!ELEMENT storylink (annotation|flashback|transition|

cut|slide|dependency|equivalence|setup|conclusion)>

<!ATTLIST storylink

source ID #IMPLIED

target IDREF #REQUIRED

class CDATA #IMPLIED

xml:link CDATA #FIXED "simple"

href CDATA #IMPLIED

role CDATA "transition"

title CDATA #IMPLIED

show (embed|replace|new) "new"

actuate (auto|user) "user"

behavior CDATA #IMPLIED>

Figure 21: Storylink Element Definition

The individual link element definitions (Figure 22) are empty tags. The attributes of

the storylink tag that enclosing a link determine its characteristics.

75

<!ELEMENT flashback EMPTY>

<!ELEMENT cut EMPTY>

<!ELEMENT annotation EMPTY>

<!ELEMENT slide EMPTY>

<!ELEMENT dependency EMPTY>

<!ELEMENT equivalence EMPTY>

<!ELEMENT prerequisite EMPTY>

<!ELEMENT rewind EMPTY>

<!ELEMENT setup EMPTY>

<!ELEMENT conclusion EMPTY>

Figure 22: SCML Link Definitions

The complete SCML DTD appears in Appendix A. Figure 23 is an excerpt (the first

three episodes) of the shuttle scenario from Section 3.2.2.3 written in SCML. The entire

text of this shuttle scenario in SCML appears in Appendix E.

76

<hyperscenario title="Successful Shuttle Transport">

<goal>Process Passenger Request for Shuttle Transport</goal>

<episode episodeID=1 name="Initiate Transport Request">

<goal>Handle Transport Request</goal>

<event eventID=1 name="Notify Shuttle Agent of Request">

<action actionID=1 name="action1">

<actor>BrokerAgent</actor>

Send Order A Available Msg

<storylink source="."><setup/></storylink>

<storylink target="#action2"><transition/></storylink>

</action>

</event>

</episode>

<episode episodeID=2 name="Accept Bids For Transport Request">

<goal>Accept Bid From Shuttle Agent</goal>

<event eventID=2 name="Shuttle Agent Places Bid">

<action actionID=2 name="action2">

<actor>ShuttleAgent</actor>

Calculate Offer

<storylink target="#action1"><prerequisite/></storylink>

</action>

<action actionID=3 name="action3">

<actor>ShuttleAgent</actor>

Make Offer on Order A

<storylink target="#action4"><transition/></storylink>

</action>

</event>

</episode>

<episode episode=3 name="Start Shuttle Simulation">

<goal>Initialize Simulated Shuttle</goal>

<event eventID=3 name="Activate Shuttle Simulation">

<action actionID=4 name="action4">

<actor>ShuttleAgent</actor>

Send WakeUp Request

<storylink target="#action3"><prerequisite/></storylink>

<storylink target="#action5"><transition/></storylink>

</action>

</event>

</episode>

Figure 23: Shuttle Scenario in SCML

77

3.5 Creating Scenarios in SCML

There are several techniques for finding stories in a domain, but it is necessary first to

describe features that a narrative domain needs to effectively use SCML. There are also

limitations to the use of SCML, based on both the implementation choice and the scope of

potential scenario applications.

3.5.1 Requirements for using SCML for a Narrative Domain

SCML was developed from a narrative morphology that sought to incorporate story elements

that were common across domains. The following is a list of characteristics of a domain, not

necessarily organized by priority, that enables SCML encoding.

1. A goal network is required. A narrative domain has to have an explicit goal

network or one that can be derived through enterprise or domain modeling. These

goals and sub-goals can be associated with episodes, events, actions, and roles in a

straightforward manner.

2. Subject Matter Experts (SMEs) have to define canonical stories. To be useful

for decision-making and worth the trouble of SCML encoding, there needs to be a set of

recurring stories or themes. Knowledge representation using narrative and SCML is an

approach to capturing expert system knowledge–the problems and standard solutions

within a domain. The computer-readable form of SCML, along with the appropriate

rule-base make it possible to generate and analyze unexpected stories, but there has

to be a base of standard occurrences.

3. The domain must have definitive action/actor pairs. There must be task

lists, activities, or commands that can be associated with particular subsystems, roles,

or characters. There is a definition of a screenplay that describes it as “character

in action”[36]; the minimum for building a story is known characters accomplishing

known behaviors. SCML encoding requires at the very least the who doing what of

a story; the when, why, how and other semantics of the actions are helpful to add

context.

78

4. Domain ontology has to be mapped to SCML framework. The reason for

defining the scenario ontology and then implementing the SCML language is that

ontologies are at the appropriate level of semantic interchange. To be effective with

SCML, a domain’s ontology has to be connected to the scenario ontology. There are

two main approaches to doing this mapping: Information flow and use of existing

ontology languages.

(a) Information-Flow Based Ontology Mapping. In [101], Kalfoglou and Schor-

lemmer proposed a technique for ontology mapping that was grounded in informa-

tion flow and channel theory. Their approach presupposes the flow of information

in an ontology and uses the mathematical model found in channel theory to de-

scribe this flow. Channel theory uses local logics, which are types, instances,

and binary relations that describe the vocabularies of a community. By char-

acterizing the local logics as ontologies, the researchers were able to develop a

formal technique for accomplishing the mapping between two ontologies. Using

this method, the narrative domain to be mapped to the scenario ontology needs

to be described as a ontological tuple that include the concepts, symbols, and

relations on types and instances.

(b) Mapping to existing ontology language. Ontology languages represent a

domain in terms of concepts, classes, and slots. There are several languages

used to describe a narrative domain, including Ontolingua [51], RDF [171], and

DAML+OIL[123].

3.5.2 Limitations of SCML and the hyperscenario framework

There are limitations in the scope of use of SCML and potential applications that manipulate

SCML-encoded artifacts. When the development of the hyperscenario framework first began,

DTD representations for XML languages were the most mature of the techniques. There was

also a reasonable availability of tools to parse and exchange DTD-based XML documents.

Since then, other approaches, most notably XML Schema (XML-S), have corrected some

of the problems inherent in DTDs. Tools for these other XML technologies are now more

79

widely available.

Some of the limitations are due to DTD or language syntax constraints. There is also

some difficulty in trying to capture all variations of narrative in one general language. One of

the most useful characteristics of SCML as a markup language is its flexibility for handling

domain specific objects that are not part of the base language definition. As an XML

language, SCML was designed to be extended when necessary to capture domain specific

story elements. The use of namespaces, notations, entities, and modifications of the SCML

DTD allow it to be extended within a particular domain. The following is a list of some of

the disadvantages in SCML and the hyperscenario framework.

1. No Ternary Relationships in the Conceptual Model. All of the associations

between classes in the UML model of the scenario ontology are between two elements

at a time. The presence of ternary (three-way) relationships more tightly couples

elements to support certain kinds of queries. For example, if there was a ternary

relationship in the conceptual model between Actor, Action, and Prop it becomes

possible to determine what Actor manipulated a Prop with a single query.

2. The SCML DTD format is weakly typed. DTDs were the basis for creating

XML-based languages when the technology was first introduced. However, DTDs

suffer from several disadvantages such as the lack of user defined types. The loose

typing of DTD-based languages make it difficult to validate the form of the data in

a document. This weak typing is why SCML entity declarations are used to define

enumerated types.

3. DTDs are not XML compatible. The DTD format is not written in XML. This

makes it necessary to have external tools for validation. It also fails to leverage the

vast number of XML tools available for parsing and analysis.

4. No language structure for handling ambiguous events. Ambiguous event pat-

terns cannot be handled in SCML. If the pattern of actions resolve into more than one

event, the application has to determine which event might have occurred. Associating

80

probabilities and weighting factors to disambiguate between similar events is necessary

to create reasonably accurate stories. This is accomplished by inserting calls to list

processing languages, like LISP or Prolog, within the code, or merging SCML with

production rule systems like ACT-R or SOAR [5].

5. No axioms, rules embedded directly in language structure. There are syntactic

rules that are part of the language structure, but no method in a DTD-based language

for including rules on multiplicity, transitivity, and other properties that influence how

scenario elements can be combined

3.5.3 Heuristics for finding scenarios for SCML Encoding

Analyzing the artifacts and processes of the organization helps determine episodic informa-

tion to create reasonable stories. Their is a wealth of existing literature on finding stories,

at the enterprise modeling level ([148] and [93]), domain modeling [96], and in the hypertext

community [156]. Techniques that attempt to capture the goals, motivations, characters in-

volved, or tasks inherent in a system can also be used to model stories. The technique chosen

for story discovery depends upon the domain, but there are some general guidelines for find-

ing stories and increasing the amount of coverage of information. One such set of guidelines

is the contextual inquiry technique developed by Holtzblatt and Beyer to aid requirements

analysis and system design [89]. Contextual inquiry is the basis of customer-centered de-

sign, an attempt to involve the customer in all aspects of software development. To find out

about customers’ requirements, the inquiry technique is used to construct work models that

describe their environment. These models are used to highlight potential design problems

based on the current system. Although contextual inquiry was developed as a technique for

software design, it is very useful in capturing stories about the users’ domain. Holtzblatt

and Beyer present general guidelines for five work models defined in the technique.

• Flow Model – The flow model represents the communication within a system with

respect to work flow. This model is used to define how work is broken up across

an organization and how collaboration is accomplished to get work done. Within

the model, the designer determines the individuals involved, their responsibilities,

81

the groups that coordinate work products, and the artifacts that represent the work

product. This model offers a broad view of the organization, showing the people and

their responsibilities. Determining the force structure to support a military mission

objective is an example application of flow modeling.

• Sequence Model – A sequence model is a list of work tasks and their appropriate

ordering. The focus of a sequence model is discovering a customer’s intent, based on

the actions done. Individual tasks are decomposed into the individual actions and

analyzed. The order, triggers of actions, potential breakdown in task completions,

even hesitations and errors are determined in this model.

• Artifact Model– An artifact model is a description of the work products that is

manipulated by the system. Work products are created, used, and modified in the

course of doing work. These artifacts and their manipulation give insight into the

work practices and business rules of an organization. This model is looking for the

information presented by an object, its structure, and the presentation of the object,

how it is used and any conceptual distinctions represented in the object.

• Cultural Model – The cultural model describes organizational responsibilities and

expectations, the influence of the work environment on accomplishing tasks. Work does

not happen in a vacuum; it is influenced by the culture that defines the expectations,

desires, policies, and value system of the work. The cultural context drives how things

are done based on standards, policies, and organizational influences.

82

• Physical Model – A physical model describes the physical environment where work

occurs. For example, the inside of a tank, the top of a bridge, or a conventional

office. This model reveals the design constraints for new system development. The

model places a distinction on describing the site, the workplace, hardware, software,

communication lines, and layout, including even the organization of materials. There

can be many organizational assumptions derived from how space is utilized.

Although contextual design uses certain diagramming conventions, it is not prescriptive.

The purpose of the technique is to have a systematic approach for modeling the design of a

system.

3.6 Summary

This chapter describes the Hyperscenario Framework derived from the literature review and

the study of narrative morphology of Chapter two. An automated shuttle system example

was introduced at the beginning of the chapter to motivate the framework and serve as a

running example.

Table 8 lists the models and representations in the Hyperscenario Framework. The first

column is the concepts identified in the conceptual model. Column two lists the linking

operations identified in the dynamic model for scenario navigation and storytelling. The

first two columns are the basis for the scenario ontology. An ontology is a description of

a domain in terms of its vocabulary, concepts, relationships, rules, and properties. The

third column is the symbols of the abstract syntax grammar developed from the conceptual

model. As a context-free grammar, the scenario grammar of the Hyperscenario Framework

is defined with a set of production rules in BNF notation. The language as depicted in

the fourth column merges all the concepts, link operations, and grammar elements into a

scenario specification.

83

Table 8: Hyperscenario Framework

Conceptual Dynamic Grammar Language

Scenario Scenario Hyperscenario

Cast Cast Cast

Inventory Inventory Inventory

Character Character Character

Role Role Role

Actor Actor Actor

Prop Prop Prop

Goal Goal Goal

Act Act Act

Episode Episode Episode

Scene Scene Scene

Setting Setting Setting

Event Event Event

Action Action Action

Link Storylink

Equivalence Equivalence

Dependency Dependency

Rewind Rewind

Setup Setup

Transition Transition

Prerequisite Prerequisite

Flashback Flashback

Conclusion Conclusion

Slide Slide

Annotation Annotation

Intermission

Manifest

Verb

84

XML was chosen as the method for representing the scenario language because of the

characteristics of markup languages. Markup languages are a powerful technique for rep-

resenting the structure of artifacts, separating them from the rendering and formatting ap-

plications. The scenario language of the Hyperscenario Framework, called Scenario Markup

Language (SCML) incorporates the concepts and features from the scenario ontology and

grammar. There are some limitations on SCML, much of it based on its DTD syntax. The

final section in this chapter also includes some general heuristics for finding stories in a

narrative domain for representation in SCML.

85

Chapter 4

SCENARIO APPLICATIONS

Knowledge is of no value unless you put it into practice.

– Heber J. Grant

This chapter describes software applications and narrative domains illustrating the hyper-

scenario framework. This research successfully separated the scenario structure from its use;

the following sections outline the affordances created by this structure. The first section de-

scribes a scenario generator application and its actual implementation as a proof-of-concept.

We developed a prototype of the scenario generator, called Aesop, to show how low-level

actions and domain knowledge are applied to create complex, canonical stories. The second

section discusses military applications for SCML, particularly with modeling and simulation

environments. The semantic information for battle planning, simulation interchange, and

decision support is captured in scenario artifacts. The final section outlines a potential use

of SCML for software design patterns.

4.1 Scenario Generation

Each narrative domain that uses the hyperscenario framework would require tools for pars-

ing and manipulating SCML-based narratives. The rules and policies of a domain assign

semantics to SCML story elements. Applications such as scenario walk-throughs, scenario

generation, and scenario manipulation have component pieces in common. We chose a sce-

nario generator as an example application to show some of the capabilities of SCML.

4.1.1 Scenario Generator Architecture

Figure 24 on page 88 depicts the architecture of an automated scenario generator. This

application is designed to generate a story from low-level event data. The event trace consists

of actions/steps gathered from a log file, e-mail messages, or output from a simulation. The

86

main impact of this scenario generation approach is the ability to add “plot structure” to an

event trace. Instead of a list of actions and steps in a linear sequence, the encoded narrative

can contain contextual information about the environment under which the actions took

place. For the purposes of discussion, the format of the event trace is a log file generated

by an external application.

Each component in Figure 24 is responsible for adding information to the plot struc-

ture. These components could be software systems, direct user input, or a combination

of automated and human intervention. The purpose of the Filter component is to remove

non-relevant background information. This can be header information or tool-related com-

mands that add no context to the story. The Parser examines the log file, building action

tokens. An action token is a series of fields, such as action name, type, actor, setting, and

time-stamp that could be gleaned from each transaction (See Figure 47 on page 133). It is

not necessary to have every field to construct a story; the minimum is a list of actions/actor

pairs. The Semantic Analysis is the first of the components that would have knowledge of

the narrative environment. The Semantic Analysis component searches for event patterns

known to occur in the domain. It has a list of significant events and the collections of actions

that could make up each one of them. There is also information on actions that cause event

transitions and inter-action dependencies in this component. Semantic analysis generates

event pragmas (fragments) from the action tokens. The majority of the story creation work

happens in the Inference Engine. Episodes can be determined by doing pattern matching

on the sequence of events. If the engine detects an event pattern that matches, it can as-

sume the goal for that series of events and construct an episode. A similar style of pattern

matching is used to detect the specific scenario that occurred. Once the scenario structure

is complete, the inference engine can add other narrative information, such as cast of char-

acters and scene changes. Finally, the inference engine uses the appropriate style sheet to

generate the encoded narrative.

87

Figure 24: Scenario Generator Architecture

88

4.1.2 Scenario Generator Prototype

A proof-of-concept scenario generation tool has been developed for SCML. To serve as a

proof-of-concept, an environment needed to be chosen that had: 1) a narrative basis, 2) dif-

fering levels of detail, and 3) support for multiple perspectives. It also had to be sufficiently

self-contained to describe a manageable number of actions, events, and episodes for analysis.

The choice of a three-dimensional maze game simulation supports these characteristics. The

storytelling (or story experiencing) aspect of the maze that makes it an appropriate choice

for the prototype. Movement through the maze and accomplishing tasks/sub-goals can be

described from the standpoint of narrative. The implemented prototype tool is called Aesop,

after the legendary Greek fabulist [34], to highlight its storytelling focus.

Aesop consists of Java applets and Common Gateway Interface (CGI) Perl scripts writ-

ten as a simple three-dimensional maze game. The tool is written as applets to leverage

existing Internet browsers for the front-end Graphical User Interface (GUI) of the story

generator. Figure 25 shows the design for Aesop. The applets captures the user’s interac-

tion and transmit information to the Perl scripts to supply the context. The plot that is

created by this context is then encoded in SCML. Transformations are applied to the SCML-

encoded document to create alternate representations of the same story. External program

code, written in XML Style Language (XSL) [128], parses the document for rendering and

transformations. Alternate story views such as hierarchical, summary, tabular, and literary

narrative are made available for the player.

89

Figure 25: Maze Game Design

90

The components of Aesop are implementations of the scenario generator architecture

as shown in figure 24. Event determination and scenario creation is done with UNIX-style

regular expressions for pattern matching. The plot structured, SCML-encoded narrative is

output by the CGI scripts. Saxon [157], an XSLT processor, interpreted the XSL code and

generated the scenario variants.

Aesop displays the maze using texture-mapped images to represent walls and corridors.

Figure 26 on page 93 is a screenshot of the Aesop GUI. The main objective of the game is

to move through the maze, locating the red, green, and blue square on the floor. To find

a square, the player has to be positioned directly over it. The maze game was chosen to

reduce the number of potential actions, events, episodes, and scenarios. There are only four

actions possible within game: move forward, move back, turn right, and turn left.

In this simplified example, there are seven possible events as shown in Table 9. The

potential episodes are accomplished by achieving the goal of finding a particular square.

Table 9: Events for Scenario Prototype

Entered-The-Maze

Moving-Towards-Wall

Moving-Away-From-Wall

Collides-With-Wall

Found-The-Red-Square

Found-The-Blue-Square

Found-The-Green-Square

91

The semantic analysis component goes through the log file, collecting actions into events

based on these rules for the game:

• Start in Northwest corner of maze, facing due east

• Turning changes direction, not position

• Turning always causes the end of an event

• Move one square at a time

• Four squares or less moving in a direction away from a wall is considered as the

moving-away-from-wall event

• If positioned between two walls with less than eight squares between them, use a ratio

of half the distance to determine the appropriate event

• Moving more than four squares in one direction is the moving-towards-wall event with

respect to the wall the player is facing

• Trying to move forward when in front of a wall is a collision

• A square can be seen from three squares away

• Finding a square occurs when standing on the square

92

Figure 26: Aesop GUI screenshot

Using the game rules and performing pattern matching on the events creates the SCML

document. The pull-down menu on the maze game browser gives the player the choice

of representation of the output. The player enters a name in the text field and selects a

format for the output file. The log file choice gives a tabular view of the actions from the

maze. The summary view is an HTML file constructed by analyzing the SCML output and

transforming it with an XSL style sheet. The hierarchy gives the player a collapsible tree

view of the story, shows how actions make up events, how events are separated by scenes,

how scenes are contained in episodes, and so on.

93

Figure 27: Maze Logfile

Figure 27 illustrates the log file created by a game session. This log file is similar to the

standard output of a simulation: the position of objects, actions performed, and temporal

information. There is no additional context added, just the action trace.

A straightforward transformation of the output is a hierarchical tree structure, as illus-

trated in Figure 28 on the next page.

94

Figure 28: SCML Scenario Hierarchy

One of the most interesting SCML document transformations is that of a literary narra-

tive format. The narrative reflects the actions that were done in the game simulation, with

extra text around it to make up a story. Each time the game is played, depending upon the

scenario variant and the actions, a different story is generated. The text of the narrative is

formatted using XSL and Cascading Style Sheets (CSS) [162] to render a web page, as seen

in Figure 29. Aesop can detect particular sequences of events, like running into the walls

repeatedly, and generate appropriate text to describe what happened. The counterpart of

this technique in the modeling and simulation community is the addition of army doctrinal

information or Standard Operating Procedures (SOPs) around known tasks.

95

Figure 29: Narrative generated from simulation trace

Other transformations have been coded for the simulation. A tabular summary file in

HTML format can be created to eliminate the details for a high-level view of the story

(Figure 30). The text from the literary narrative can be further transformed by re-direction

through a translation tool such as babelfish [109] to represent the story in other languages.

Existing XML technologies, such as VoiceXML [167], can be used to generate an audio

version of the story with the help of an appropriate text-to-speech engine.

96

Figure 30: Maze Summary Web Page

97

4.2 SCML-based Decision Support for Military Planning

Because of its utility for decision-making in general, a scenario-centered approach can be

applied to other problem solving domains, such as military planning using modeling and

simulation. The difficulty in developing a meta-model for simulations is due to the variations

in styles, categories, and implementations of simulations. All simulations are essentially

stories. They are stories about what was done, what is being done, or what can be done.

These different forms of narrative can be used for problem solving, training, entertainment,

and other decision-oriented activities.

Constructive simulations, the man-in-the-loop style of simulation, are being used by the

Army to determine the affect of new technologies on Command, Control, Communications,

Computers, and Intelligence (C4I) [175]. These simulations are generally done as war games

in which participants are given assigned roles. The Battle Management Language (BML) ef-

fort being organized by the Simulations-to-C4I Overarching Integrated Product Team (SIMCI

OIPT) is an attempt to solve simulation interoperability problems [21]. BML’s approach

is to standardize the terminology and symbology based on doctrinal information: to al-

low simulations a common way of interacting. This effort is primarily in the exploration

stage, with no specification or implementation determined. There has been discussion in

the C4I community on implementing BML in one of the Army’s tactical databases to make

it available to different representations, particularly XML.

The largest such effort for interoperability revolves around the High-Level Architecture

(HLA) [38] standards development. The HLA was developed to create a common archi-

tecture applicable across different types of simulation environments. The HLA Working

Group, governed by both the IEEE Computer Society and the Simulations Interoperability

Standards Committee (SISC), has developed three draft standards:

1. Framework and Rules (IEEE P1516) – which describes the responsibilities for sim-

ulations that adhere to the standard and the format for a Simulation Object Model

(SOM) [181].

2. Federate Interface Specification (IEEE P1516.1) – describes the interactions between

98

simulations and a Run-time Infrastructure [94].

3. Object Model Template (OMT) Specification (IEEE P1516.2) – which prescribes the

objects, attributes, interactions, and parameters that are required for a SOM [180].

It is the OMT that is critical for describing the format of data exchanged between sim-

ulations. An HLA SOM is a specification of the intrinsic capabilities that an individual

simulation could provide to HLA-compliant federations [180]. The OMT Data Interchange

Format (DIF) supplies a structure that could be used by automated tools to convert from

one representation of an OMT to another. Initially, the OMT DIF was represented primarily

in BNF notation. There is now available an XML version of the OMT that will leverage

many existing tools and techniques for interchange.

The OMT is useful in describing the low-level attributes of data objects that could be

shared by simulations, but does not address how to map these objects into varying envi-

ronments. In order to share higher-level information between simulations, it is necessary to

describe the context under which SOMs are manipulated within each simulation. Interoper-

ability at this level requires meta-models, adaptive models, and common repositories [174].

The Model-Driven Architecture (MDA) [125] initiative has been introduce to create speci-

fications based on formal models. Under the MDA, these models could take advantage of

technology such as the XML Metadata Interchange (XMI) specification [71], Simple Object

Access Protocol (SOAP) [15], and other standards.

4.2.1 Simulation-to-C4I Interoperability

There has been much discussion on the creation of a common framework for integrating

information from Modeling and Simulations (M&S) applications with data generated by

existing C4I Systems [175]. Both domains are shifting towards distributed, network-centric

approaches for designing, implementing, and manipulating scenarios for the war fighter. The

Joint Technical Architecture (JTA) [104] proposes standards for C4I interoperability while

the Extensible Modeling and Simulation Framework (XMSF) [18] promotes the use of web

services, such as XML and SOAP, as M&S standards. In order to share semantically useful

data from such a diverse range of systems, it is necessary to describe a conceptual model

99

that can map the rules and behaviors in an abstract way. The use of narrative, in the form

of scenarios, makes this representation possible. This narrative structure can be derived

from simulation data to generate canonical stories from domain information.

The Hyperscenario Framework was first presented to the Simulations Interoperability

Standards Organization (SISO) community during the Spring 2003 SIW conference [86].

There were two factors that made the work particularly unique: 1) the ideas and concepts

originated from the software engineering community and 2) its focus on using a narrative

meta-model not associated with any operational military environment. However, it was

deemed applicable by the modeling and simulation (M & S) community, as it presented

an alternative approach for simulations interoperability. There are a myriad of standards

being developed that address simulation interoperability at the object level. To support

an exchange of semantics from a simulations tool to decision-oriented C4I systems, it is

the context that must be shared. What must be transferred from simulation to C4I is

not where objects are in the virtual battlefield, but how and under what circumstances

did they get there. Conference participants expressed a high level of interest in issues

concerning M&S and C4I interoperability during the previous SIW conference. Dr. Andreas

Tolk, a leading M&S researcher, gave a widely attended presentation that focused on the

how and the why of creating a framework for the interchange of information between the

two domains [175]. Tolk discussed the necessity for such a framework being driven by the

increasing scope of applications. Many of the systems are vertically integrating with higher

level systems, with little support for cross-pollination between environments. There are also

emerging requirements for embedded training simulations and the ability to immediately

use simulation data under operational conditions. A common framework requires the use

of web services to support network-centric applications, the establishment of direct working

relationships with the C4I community, and the development of components to support the

interaction.

Another approach was the use of the Common Operating Environment (COE), devel-

oped by the Defense Information Systems Agency (DISA) as a model for interoperability

[174]. The COE is an architectural approach towards software development that focuses on

100

reusable software and the establishment of guidelines. There are over one hundred systems

across the DoD that adhere to the guidelines and policies of COE. But the M&S community

lacks a central governing institution on the level of DISA to administer and mandate an

infrastructure like COE. However, there are a large amount of lessons learned on interoper-

ability issues that could be gleaned from examining the COE process.

The Hyperscenario Framework and SCML can be used to communicate information

from a simulation environment to a C4I system. The challenge is in determining a mapping

of story elements from one domain to the other. A characteristic that represents a single

action in a simulation may be operationalized as several events in a decision support system.

This is where the ability to add annotations, external documentation, and other forms of

narrative become of vital importance. The simulation environment contains objects with

attributes and behaviors. There may be some low-level context available within the system,

but only what could be inferred based on the constraints of the software. For example, if the

simulation contained tanks or armored personnel carriers, it would be fairly straightforward

to determine their location in the battlefield and their current mission status. But why

they are positioned the way they are and under what circumstances would not be apparent.

The next section contains a brief example of how the information could be encoded from a

simulation in order to be useful in a command and control situation. The information in

the example was not actually used with either system, but is presented here for the purpose

of illustration.

The One Semi-Autonomous Forces (OneSAF) Objective System is a simulations envi-

ronment being designed to support a wide-range of military training and planning operations

[79]. The fundamental components are behaviors, physical models, and behavior agents. The

behaviors contained in OneSAF are low-level functions based on doctrine. These behaviors

control the use of the physical models in the system, such as weapons, sensors, and commu-

nications. The behavior agents are used for planning and execution; these are the command

and control agents that manipulate the behaviors. These building block components are

used to create composite behaviors that are more complex, entities that represent equip-

ment and personnel, and units that represent organizational structures, such as platoons

101

and battalions.

An example composite behavior would be MoveAndShoot. The definition for this behav-

ior includes a tabular list of variables, an execution timeline, and the primitive behaviors

involved. Within MoveAndShoot, the primitive behaviors are: moving around, sensing the

environment, shooting the weapon system, and reporting the status. Composite behaviors

such as this one could be associated with the episodic elements in the scenario ontology,

because they are goal-based. Each of the primitive behaviors that are contained within a

composite are SCML events; series of actions that may or may not support a subgoal but

are vital to completing an episode.

The Hyperscenario Framework is extremely well-suited for the battle planning domain,

because the Army has policies and procedures for every task and activity necessary for its

operations. There is even a procedure for the decision-making process, called the Military

Decision to Making Process (MDMP) [178]. This process outlines seven separate steps

to be performed for battle planning: 1) receipt of mission, 2) mission analysis, 3) COA

(Course of Action) development, 4) COA analysis, 5) COA comparison, 6) COA approval,

and 7) orders production. The seven steps lend themselves to representation as episodes

within a scenario. Within each step, there are set actions to be performed with specific

responsibilities for particular participants. These actions and responsibilities map well to

the concept of actors, stakeholders, actions, and events. There are Tactics, Techniques, and

Procedures (TTP) that govern how the battle should unfold. The episodic arrangements

of these phases make it easier to develop battlefield templates to represent how the Army

fights.

102

Figure 31: Battle Planning Phases

Figure 31 is a chart that represents a series of phases of the battle (based on location on

the battlefield) and appropriate action to be taking based on standard Army doctrine. In

the diagram, LD means line of departure and LC means line of contact. The table describes

how to play an offensive strategy based on a switch of scenes, from before encountering the

enemy to the initial contact and afterwards. As if this field manual and others like it are

not detailed enough, the military has developed what it refers to as the Universal Task List

(UTL) [179] to consolidate all the actions and responsibilities for every possible operation.

The C4I environment for this example is the Situational Awareness (SA) requirements

analysis effort for Military Operations on Urbanized Terrain (MOUT) [50]. The purpose

of this SA research was to use a goal-directed task analysis and subject matter experts

to determine SA requirements during MOUT missions. Military officers participated in a

103

series of simulated missions and discussed the SA requirements during halts in the mission.

By analyzing the responses, the researchers developed set of measurement tools to assess

situational awareness. A useful output of the research was the development of a detailed

goal-hierarchy that represented the MDMP [178]. This hierarchy (Figure 32) was developed

using doctrinal information, army regulations, input from the subject matter experts and

goal decomposition techniques. Because episodes in the scenario conceptual model are goal-

based, this becomes the bridge to establish an automated connection between OneSAF and

the SA task.

The goal-hierarchy development by the SA environment can be used to place additional

data together with the behavioral data generated by OneSAF. This additional information

can be hyper-linked into the documents and includes descriptions of the force structure,

overlays from the battlefield, and images for battle damage assessment.

Figure 33 is an excerpt from a concept of operation document1 . This scenario describes a

battle from the perspective of an army tank platoon. In this scenario, each of two platoons

has four M1 tanks. The enemy also has two platoons, each of those contain three T72

Russian tanks. This scenario information can be used to generate orders and describe

mission objectives for OneSAF. The participants are expected to know the particulars of

how the objectives are to be met.

1This is from a mission scenario developed at West Point, originally used for ModSAF.

104

Figure 32: Situational Awareness Goal Hierarchy

105

* First Platoon (4 M1s):

1st PLT will occupy attack position vic. ntc235890 and orient

NNE in order to prevent enemy movement west along roadway vic.

ntc240905. If contact is made, 1st PLT will conduct an ambush

with 2nd PLT in support to the west at ntc221901. 1st PLT has

priority of fire with 155 howitzer unit in support of

operation. An Artillery-laid minefield is in place on roadway

at ntc238905 to assist in fixing the enemy. Upon neutralizing

the enemy, 1st PLT will assault to OBJ Red and set up a hasty

perimeter.

* Second Platoon (4 M1s):

2nd PLT will occupy attack position vic. ntc221901 and orient

NE in order to prevent enemy movement west along roadway vic.

ntc240905.

* Enemy (2 platoons; 3 T72Ms each):

Move along Rt. T72M. Upon detecting enemy PLTs, enemy platoons

will conduct contact drills and return fire.

Figure 33: Concept Of Operations

Figure 34 is an example of how the SCML formatted battle scenario looks. Once the

narrative of the battle is in this format it can be fed into other scenario applications to

improve situational awareness, generate after-action reports, perform COA analysis, gen-

erate operational orders, or be inserted into a lessons-learned database to support focused

searches.

106

<?xml version="1.0"?>

<!-- Revision: 1.0 /usr/stb/hobbs/scml/ntcplatoon.scml -->

<!DOCTYPE hyperscenario SYSTEM "c:/current wk/scml.dtd">

<hyperscenario title="NTC Platoon Battle">

<purpose>Maneuver Battle exercise for NTC tank platoon</purpose>

<role name="2nd Platoon" id="2 PLT Charlie Company">

<cast>

<actor>M1 Tank Squad #1</actor>

<actor>M1 Tank Squad #2</actor>

<actor>M1 Tank Squad #3</actor>

<actor>M1 Tank Squad #4</actor></role>

</cast>

<title>NTC Platoon Operations</title>

<setting>ModSAF Fort Irwin Desert Terrain</setting>

<script>

<episode name="Movement to Contact">

<description>Maneuver conducted to develop the situation and

to establish or regain contact</description>

<goal>Establish contact with OPFOR</goal>

<action></action>

</episode>

<episode name="Countermobility">

<description>The construction of obstacles and emplacement of

mine fields to delay, disrupt, and destroy the enemy by

reinforcement of the terrain. The primary purpose of countermobility

operations is to slow or divert the enemy,to increase time for target

acquisition, and to increase weapon effectiveness. See FMs 3-50,3-100,

5-102, and 5-250</description><goal>Slow or Divert the OPFOR</goal>

</episode>

<episode name="Defend in Sector">

<description>A technique that requires a defending unit to prevent

enemy forces from passing beyond the rear boundary of the sector while

retaining flank security and ensuring integrity of effort within the

parent unit’s scheme of maneuver. Initial positions generally are

established as far forward as possible, but a commander may use any

technique to accomplish the mission. The higher commander will normally

assign no-penetration criteria. See FMs 7-30,71-100,71-123,100-5,and

100-15.</description>

</episode>

Figure 34: SCML-Encoded Battle Scenario

107

4.2.2 Semantic Interoperability using DAML+OIL

In [52], Horrocks et. al. describe ontologies as shared and common understandings of a

domain communicated between people and heterogeneous application systems. In philos-

ophy, an ontology is defined as a theory about the nature of existence. An ontology can

be considered as a set of concepts, classes, properties, and behaviors from a domain. An

interesting analogy proposed by Horrocks is that ontologies are to schemas what Entity Re-

lationship Diagrams (ERDs) are to relational databases. Ontologies and ERDs are used to

model theory, in this case, domain theory and database models, respectively. XML-Schemas

(XMLS) [189] and relational databases are particular implementations of the theories. The

analogy breaks down in that ontologies are much more expressive the ERD, allowing for

axiomatic and formal definitions of concepts/classes. The OIL language was an effort by

European researchers to create a computational framework for ontologies that: 1) provides

modeling primitives from frame based and Descriptive Logic (DL)-based ontologies [9], 2)

had consistent semantics, and 3) allowed for automated reasoning support.[52] An ontology

in OIL consists of a container and definitions. OIL definitions include imports (which sup-

port the inclusion of external OIL modules), a rule-base of axioms and global constraints,

and class definitions [136].

DAML, DAML-ONT, and Resource Description Framework (RDF) [171] were efforts

by US researchers and the government to support the creation of the Semantic Web [91].

Tim Berners-Lee, the inventor of the Worldwide Web, envisions the Semantic Web as the

availability of resources to automate processes accomplished through semantic markup and

metadata annotations describing content and functionality. These automated processes,

called software agents2 , are programs that can form connections and communicate with

other programs. In [88], Holmes and Kogut describe agents as the next generation user in-

terface consisting of abstract components that have goals, can interact with humans through

speech acts, and share a context for efficient communication. The purpose of DAML and

2sometime referred to as intelligent agents

108

DAML-ONT was to support software agents by extending XML and RDF. RDF is a stan-

dard to represent metadata for web resources using an XML syntax. The RDF Schema

language (RDFS) incorporates object-oriented concepts such as classes and attributes. Us-

ing RDFS syntax, DAML can represent ontologies and markup web resources with links

between ontologies.

The problem for the semantic web is that DAML, with its RDFS syntax, cannot describe

services with the necessary level of detail. DAML is excellent for content description and

RDFS does qualify as an ontology language. However, the requirements for a web ontology

language are: 1) compatibility with existing standards (XML and RDF), 2) ease of use

with standard Knowledge Representation (KR) idioms, 3) expressive formal specification,

and 4) support for automated reasoning [90]. The merging of the two research efforts into

DARPA Agent Markup Language+Ontology Inference Layer (DAML+OIL)3 was intended

to support these requirements.

Figure 35 is an example of DAML+OIL syntax. The RDFS primitives, such as classes

and unions, are still present in DAML+OIL. Class membership and property definitions can

be shown in the RDF write up. This example describes restrictions on the class Person on

the property hasChild with respect to the class Doctor.

3The DAML+OIL framework is being renamed OWL-S. (Ontology Web Language)

109

<daml:Class>

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Person"/>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasChild"/>

<daml:toClass>

<daml:unionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Doctor"/>

<daml:Restriction>

<daml:onProperty rdf:resource="#hasChild"/>

<daml:hasClass rdf:resource="#Doctor"/>

</daml:Restriction>

</daml:unionOf>

</daml:toClass>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

Figure 35: DAML+OIL Syntax4

The inclusion of OIL axioms adds a richer class of ontological primitives to DAML, such

as transitivity, disjointedness, etc. Figure 36 is a list of some of the axioms available in

DAML+OIL. Column one is the name of the axiom. The middle column in the table is

the DL syntax for describing the rule. Column three is a specific instance of the axiom,

for purposes of illustration. In the example syntax of figure 35 the toClass, unionOf, and

hasClass axioms are visible[90].

110

Figure 36: DAML+OIL Axioms

The modeling and simulation community has focused on increasing the level of interoper-

ability between systems. Simulations need to not only support the vertical sharing of data,

but horizontal interchange between alternate application domains. The HLA establishes

guidelines for constructing shareable simulations objects. To share higher-level information

between simulations, it is necessary to describe the context under which they are manipu-

lated in a predictable format. Interoperability at this level requires meta-models, adaptive

models, and common repositories [174]. For computer-generated forces to be examined at

both the object level and the abstract level, an intermediate form to encode behavior is

needed. The state of the simulation objects should be associated with the context under

which it came about. This context can be introduced through the use of narrative. The

narrative structure can be derived from simulation data to generate canonical stories from

domain information. By using military doctrine to describe the scenarios that occur within

a simulation, the lessons learned can be applied more directly to C4I systems. The hy-

perscenario framework can be used to capture semantics within computer-generated forces.

Scenarios from a simulation platform, such as OneSAF, could then be directly mapped to

DAML+OIL. These scenarios are the basis for decision-making; strategic planning, training,

111

lessons-learned repositories, and systems development. (Figure 37)

Figure 37: From Narrative to Decision Support

4.3 Mapping SCML to software behavioral design patterns

Software designers have used design patterns and frameworks to describe reusable architec-

tures for development. The approach is to capture the best practices in software engineering

to create a catalog of solutions for the practitioner. Incorporating additional semantics

within the problem/solution space can further enhance these pattern descriptions. This

context can be inserted using narrative. Behavioral design patterns have aspects that can

be related to narrative. SCML can be merged with representations of design patterns, which

describe the static, dynamic, and collaborative attributes of software solutions. This enables

pattern descriptions to be narrative exemplars that could be used directly in design tasks.

A design pattern is a description of communicating objects and classes that are cus-

tomized to solve a general design problem in a particular context [60]. A pattern has four

essential elements: 1) a name, 2) the description of the problem, 3) a solution and 4) the

112

costs and benefits of applying the pattern.

Software engineers are interested in using design patterns to create a repository of so-

lutions for software development. The concept is similar to the source books used by other

engineering disciplines, such as civil or electrical engineering. When faced with a particular

design problem, civil engineers can consult a catalog of possible techniques. These solutions

are based on known successful methods from the industry. The problem with this approach

for the software engineering discipline is that SE involves analyzing abstractions that are

not based on physical systems. Software design patterns are normative at best, describing

solutions given enough similarities in the problem space. In an article published in Com-

munications of the ACM (CACM), Schmidt describe several motivating factors that make

it worthwhile to identify these patterns [45]:

1. Success is more important than novelty.

2. Clarity of communication should be emphasized.

3. The need for qualitatively validating of concrete solutions.

4. Good design patterns arise from practical experience.

5. The need to incorporate human factors into software development.

The benefits of design patterns are constrained by the difficulty in applying them in real-

world situations. Many design patterns are unnecessarily difficult for the average designer

to learn. There is also the problem of making the pattern classifications useful to the

practitioner. Cline, a software designer and researcher, argues that some of the classifications

do not appear to map to the mental models used by the average developer [32]. Using a

scenario-based technique, particular one based on narrative, enables the patterns to better

fit into the terminology and knowledge base of the developer.

4.3.1 Overview of Design Patterns

An architect, Christopher Alexander, initially developed the concept of a pattern language

[2]. Alexander wished to capture the recurring aesthetic features and functionality of a

113

living space as well as detail standard design solutions. These architectural patterns were

created as an aid to the participatory design process, involving user requirements as well as

technical guidelines [40].

Software design patterns and frameworks were described to support reusable architecture

and detailed design, respectively. A framework is a set of components that provide a reusable

infrastructure for a family of related applications. Pattern descriptions are often independent

of implementation details, whereas, frameworks are semi-complete applications that provide

domain-specific functionality. Patterns are abstract representations of the problem space

that use a particular instance of a framework for portions of the solution. By the same

token, a framework may contain several different patterns within its implementation. This

discussion incorporates scenario information within patterns. This allows the flexibility

inherent in scenario analysis to take advantage of the abstract nature of software patterns.

However, scenarios can be associated with frameworks to describe alternate configurations

of components within a domain.

In the software engineering textbook Design Patterns [60], Gamma et.al. outline three

major categories of patterns: creational, structural, and behavioral. Creational patterns are

those that deal with initializing and configuring classes and objects. Structural patterns

seek to separate interface from implementation issues in design. Finally, behavioral patterns

deal with interactions and collaborations among collections of classes and objects. Within

each category, there are numerous identified patterns derived from recurring design tasks.

For example, the behavioral patterns are:

1. Chain of Responsibility - All object requests are routed to the responsible service

provider in a system.

2. Command - Requests in the system are treated as objects.

3. Interpreter – There is a language interpreter for a grammar of a system.

4. Iterator – An object accesses aggregate elements sequentially .

5. Mediator – An object coordinates interactions between associate objects.

114

6. Memento – A System snapshot captures and restores object states.

7. Observer – Dependent objects update when a subject changes state.

8. State – Object behavior depends upon its current state.

9. Strategy – There is an abstraction for the selection from different algorithms.

10. Template Method – An algorithm with steps for usage is supplied by a derived class.

11. Visitor – System operations are applied to a heterogeneous object.

4.3.2 Defining Story Patterns

Figure 38 depicts two approaches for incorporating narrative information with design pat-

terns. In the Design-Patterns-with-Scenarios approach, each of the smaller items, S i , rep-

resent scenario variants. A scenario variant is an alternate form of the same scenario. For

example, assume we are describing a scenario calling Getting To The Airport. One instance

of this scenario involves driving through the city and taking the appropriate exit for the air-

port. A variant on this scenario would be hiring a taxi or shuttle as transportation directly

to the airport. With respect to software, each variant within a pattern represents scenario

descriptions of alternate implementations of the pattern. These variants could be due to

programming language, networking, or even platform differences. The second approach is

the Scenario-with-Design-Patterns method. In this method, P j represents several possible

solutions for a particular design problem. For example, a scenario can be constructed to rep-

resent the requirements of a software system’s user interface, based on a particular activity

to be accomplished.

4.3.3 Incorporating Scenario Context within Pattern languages

Since the beginnings of discussion on the utility of design patterns, there have been efforts to

create languages for representing pattern artifacts. These languages were designed to allow

for the direct manipulation of the pattern descriptions in design tools, particularly during

requirements analysis. There has also been research into the design of usability pattern

languages that could assist the user-centered design process [121].

115

One example pattern language is Design Pattern Mark-up Language (DPML). This lan-

guage was developed as part of a research effort to automatically detect design patterns from

source code [191]. The researchers viewed design patterns as higher-level abstractions of the

object-oriented design within the code. Recognizing these patterns aids program compre-

hension, code documentation, and validation. DPML was used to create a pattern library,

consisting of most of the standard software design patterns as outlined in the descriptions

by Gamma et. al. [60]. C++ source code was analyzed to create a class diagram, call graph,

and object creation graph. These were then matched against DPML patterns formatted into

an XML DOM tree structure. The algorithm was used on four open-source C++ projects.

Of twenty-six patterns searched for in over three million lines-of-code, fifteen patterns were

detected, with over nine hundred different instances occurring.

116

Figure 38: Story Patterns

Figure 39 is an example of how the narrative structure available in SCML could be

used with DPML. This particular situation uses the Scenario-with-Patterns approach. The

scenario may contain several patterns that represent alternate solutions within the story.

The scenario is a description of the process of determining networking requirements for a

proposed system. The purpose of the scenario is to examine the risks/benefits of differ-

ent network implementations. Here, each design pattern is considered to be a character

within the scenario. An XML Namespace is used to incorporate DPML elements within

the hyperscenario structure. Namespaces are a technique to import information from ex-

ternal languages without conflicting with the grammar of the current language [188]. The

DPML: prefix identifies those elements that are not part of the SCML grammar. The classes

117

contained in the pattern are described in the element definition. The example code for the

Proxy pattern in the figure is a modified version from the DPML study [191]. In the network

solution scenario of the figure, There would be a character entry for each potential pattern.

118

<?xml version="1.0" standalone="no"?>

<!DOCTYPE hyperscenario SYSTEM "scml.dtd">

<hyperscenario xmlns:DPML="dpml.dtd"

title="Network Requirement Analysis"

purpose="Examine Alternatives for Implementing System Network"

logline="Risk Assessment of Network Strategies">

<cast>

<character><actor><DPML:DesignPattern=’Proxy’>

<DPML:Class id=’id10’ name=’Subject’ isAbstract=’true’>

<DPML:Operation id=’id11’ name=’Request’

isVirtual=’true’><DPML:hasTypeRep ref=’id50’/>

</DPML:Operation></ DPML:Class>

<DPML:Class id=’id20’ name=’Proxy’><DPML:Base ref=’id10’/>

<DPML:Aggregation ref=’id30’/> <DPML:Operation id=’id21’

name=’Request’ isVirtual=’true’>

<DPML:defines ref=’id11’/> <DPML:calls ref=’id31’/>

<DPML:hasTypeRep ref=’id50’/></DPML:Operation>

<DPML:Attribute id=’id22’ name=’realSubject’>

<DPML:hasTypeRep ref=’id52’/>

</DPML:Attribute</DPML:Class>

<DPML:Class id=’id30’ name=’RealSubject’>

<DPML:Base ref=’id10’/>

<DPML:Operation id=’id31’ name=’Request’ isVirtual=’true’>

<DPML:defines ref=’id11’/><DPML:hasTypeRep ref=’id50’/>

</DPML:Operation></DPML:Class>

</DPML:DesignPattern></actor></character>

.

.

</cast>

<episode id="000.01" name="Network Service Request">

<goal>Handle External Network Requests</goal>

<scene><setting>Local Area Network</setting>

<event name="Establish Network Connection">

.

.

.

Figure 39: Design Pattern Markup Language and SCML

In this example, the episode examines how service requests is handled on the local

119

network by each of the characters (patterns). There are domain-specific actions associated

with the patterns in the scenario, some of which could be derived from the operations defined

within the pattern. The completed scenario captures design decisions and establish a way

of associating non-functional requirements with the system.

4.4 Summary

We developed a proof-of-concept scenario generation tool, Aesop, to highlight the hypersce-

nario framework and SCML. The prototype is written as a Java applet, using standard web

browsers for the user interface. The narrative domain is that of a simple three-dimensional

maze game, modified to generate a log file. The objective is to move through the maze,

locating colored squares on the floor. The applet captures the user’s interaction and uses

knowledge of the domain to supply the context. This plot structure is then encoded in

SCML. At that point, transformations are applied to the document to create alternate rep-

resentations of the same story. The usefulness of these story versions is in the extension of the

thought experiments that are naturally performed during decision making. Game playing

in decision oriented environments, such as logic puzzles and mazes, are inherently pattern

matching exercises. Discovering the correct sequence and form of subtasks is accomplished

by trial-and-error, until the solution pattern unfolds.

The hyperscenario framework and SCML are submitted as another viable technique for

bridging the gap between M & S and C4I systems. In order to share semantically useful

data from such a diverse range of systems, it is necessary to describe a conceptual model

that can map the rules and behaviors in an abstract way. The use of narrative, in the form

of scenarios, as a meta-model makes this representation possible. This narrative structure

can be derived from simulation data to generate canonical stories from domain information.

SCML leverages XML technologies and can be merged with existing efforts, such as XMSF.

The narrative model and the heuristics for story discovery could assist in finding ways to

have the simulations inform decision making in C4I systems and for C4I systems to improve

the accuracy and utility of simulation tools. This also merges with activities that support

the semantic web, specifically DAML+OIL. The scenario ontology contains the concepts,

120

classes, and slot definitions necessary to delineate a narrative domain theory for OIL. DAML

as an XML-implementation of an OIL ontology can be mapped to SCML scenario elements,

entities, and attributes. This mapping allows SCML to leverage the vast amount of work

being done in DAML to support military planning, training, and system development.

Scenario-based design and software design patterns are approaches to handling the com-

plexity and uncertainty inherent in software development. Scenario-based methods are used

to capture and track design decisions made during requirements analysis. Design patterns

attempt to leverage the best practices in software engineering by recognizing recurring prob-

lems and their solutions. This chapter discussed a method that can be used to merge both

techniques, creating reusable story patterns that assign further context to proposed design

solutions.

121

Chapter 5

EXPERIMENT DESIGN

It is theory that decides what can be observed.

– Albert Einstein

This chapter describes the experiment done to confirm the hypothesis that a computer-

readable scenario format will improve decision-making. To measure an improvement in

decision-making, it is necessary to describe the choices, their context, and what constitutes

a good decision.

The following sections describe the experimental evaluation of the Hyperscenario Frame-

work as an aid to decision-making. The Experimental Environment section describes the

maze simulation and the experimental harness. The Experimental Variables section de-

scribes the variables under consideration during the experiment, as well as their operational

definitions. The Subjects section states the subjects undertaking the experiment and a brief

description of the population from which they are chosen. The Apparatus and Materials sec-

tion describes the experimental instrumentation. The Test Protocol section is a description

of the plan for executing the experiment and gathering the results. The Evaluation Method

section discusses how the metrics have been used to analyze the data.

5.1 Experimental Environment

The experiment software is an extension of the Aesop simulation discussed in chapter four.

The simulation was modified to add objectives, character interaction, and the ability to cap-

ture and process the generated story information. The simulation is an immersive, three-

dimensional game representing the point-of-view of someone wandering through a maze.

This viewpoint was chosen because it affects how the participants perceive and make deci-

sions about the environment. Navigation through the maze is two-dimensional, involving

forward/backward movement and changes in direction. Allowing participants to climb walls,

122

jump over walls, or tunnel through the floor add complexity to the game but does not nec-

essarily add additional insight to their decision-making. If the viewpoint of the maze were

two-dimensional, the participant would see the whole maze at once, significantly changing

the decision-making aspect.

5.1.1 Aesop Simulation

Figure 40: Maze Exit Doorway

The Aesop simulation is a series of three-dimensional images of texture-mapped walls and

corridors. The player starts each game session with 500 points, which decreases by twenty

points at set intervals during a session, making time a factor. Within the maze there is

a closed exit doorway (Figure 40). The player attempts to open the door using the F2

function key. The maze either opens the exit or supplies the player with a system message.

Movement through the maze is controlled using the arrow keys on the keyboard. There are

only four movements possible within game: move forward one square, move back one square,

turn right, or turn left. There are two avatars in the maze that require player interaction:

a dragon and a wizard. Each avatar has a list of items for player selection. Twenty points

are assigned to the player’s running total for each item selected. Players initiate interaction

with a character using the F1 function key.

A game session begins when the player clicks the start button below the maze viewer.

There was a maximum of five minutes of review time between each game session. The game

timer reverts to a review timer to count down the seconds remaining. The browser window

123

in the right-hand side of Aesop experiment page contains a view of the previous game session

activity (Figure 41). The player uses this browser to plan for the next game session. The

player could interrupt the review at any time, starting the next game session. The timer

changes automatically from review to game mode. The player could also quit a game session

early by pressing the button. If the five minute time expires, the timer automatically changes

mode.

Figure 41: Game Review Browser Window

The main goal of the game is to open the exit doorway. The player must decide which

combination of items, avatar interactions, and points will improve the possibility of opening

the doorway to successfully complete the game. There are several sub-goals that have to be

accomplished to achieve the overall objective: 1) Find a path through the maze, 2) Locate

the avatars in the maze, 3) Select the appropriate items from each avatar, 4) Complete the

124

game within five minutes, and 5) Unlock the exit to complete the game.

• Find a Path through the Maze: The maze is a three-dimensional representation of a

labyrinth, from the point-of-view of a person walking through the maze. The movement

is controlled using the arrow keys on the keyboard.

• Locate the avatars in the maze: The participants are told that there are two avatars

to locate with the maze, each one with a list of items to be obtained. The avatars in

the simulation are represented by still images on specific walls in the maze.

• Choose the appropriate items: Once a player has located an avatar, the appropriate

function key on the keyboard can be used to start the interaction. A dialog box is

displayed for interaction with the avatar (Figure 42).

Figure 42: Interaction with Dragon Avatar in the Maze

Each item selected is either a weapon, defensive object, or treasure. These categories

are implicit; they are not supplied to the player. The player must determine the

categorization and which object combination will open the doorway.

125

• Complete the game within five minutes: Once a game session begins, an embedded

clock applet representing a timer displays the current elapsed time. At the end of five

minutes the game session will end. If a player opens the exit before that time, the

game will end.

• Unlock the exit to complete the game: The game exit appears as a texture-mapped

image of a closed door. The player cannot end the game and open the door unless the

appropriate level of points has been achieved, both avatars have been found, and the

correct items have been selected.

5.1.2 Experimental Harness

This same technique was used to determine the maze layout. There were three differing maze

layouts in the experiment. This was done to decrease the likelihood of influencing the results

by the sharing of information by participants. Three maze layouts were sufficient to decrease

the possibility of an exchange of information between players; With six possible arrangements

of experiment group-to-layout, there was only a 16.7% chance that a participant would

randomly encounter someone with the exact same experiment set-up. The selection of the

layouts was implicit; participants were unaware that there was more that one maze layout.

5.1.2.1 User Interface

The user interface for the Aesop web client consisted of three Java applets: 1) maze game,

2) timer, and 3) logfile browser. All three applets were embedded in the web page and

visible at the same time. Figure 43 is a snapshot of the GUI as it appears in the Mozilla

browser. The top of the web page contains instructions for playing the game. The maze

game applets uses texture mapped images to represents walls. The timer below the game

window was coordinated with the both the browser and the game. During game play, the

timer shows the time used, point total, and current number of items. Between game sessions

the timer counts down the time remaining to review the browser. The legend that describes

the keystrokes for game navigation and interaction is below the timer.

126

Figure 43: Game User Interface

The browser has three pull-down menus. The Session menu allows the participant to

review all game sessions available between iterations. The Mode menu is primarily for the

narrative group; it supports switching from tabular summary format to a hierarchical view

of the story-structured data. The extra menu options are grayed out and non-selectable for

the control group. The Help menu supplies group specific information on the use of the

game.

5.1.2.2 Data Storage and Retrieval

The data from game sessions and participant demographics were stored in a Microsoft Access

database. The database was normalized to prevent redundancy and consisted of six primary

tables (Figure 44 on page 129). Four of the tables keep track of session information; two

track user information.

127

1. SessionMetrics Table - Store game session information; primary key SessionID.

2. Demographics Table - Keeps track of participant information; primary key Identifier.

3. Scenario Table - Contains scenario data; primary key SessionID.

4. Good Decisions - Contains counts of good decisions by session;primary key SessionID.

5. Bad Decisions - Contains counts of bad decisions by session; primary key SessionID.

6. Survey - Contains results of survey taken by participants at end of experiment; primary

key Email address.

The lines between the tables in figure 44 on the next page depict how tables are joined to

access the data. Session tables were joined using the unique SessionID key generated by

the system. The user data was tracked by an Identifier derived from the email address.

Most of the data was written directly to the database using Perl scripts with embedded SQL

statements. Java Database Connectivity (JDBC) calls were embedded in the browser and

game applets to retrieve the data for display.

128

Figure 44: Database Relationships

There were also Perl Database Interface (DBI) calls embedded in the CGI scripts for

storing the scenario information. Perl DBI is a package that contains standard SQL functions

for interacting with relational database [173]. Figure 45 is an example of Perl code to store

scenario information into the database. Lines 2-9 initialize the database access information.

Lines 11 and 12 open a database connection for queries and updates. The SQL statement

to be processed is put together at lines 14-17. The statement includes fields of data to be

129

store in the ScenarioTable . Lines 18-20 prepares the SQL statement handle and executes

the insert statement against the open database connection.

1 # setup the database information

2 $ENV{’DBI DSN’}="dbi:ODBC:DecisionMaze";

3 $ENV{’DBI PASS’}="reggie";

4 $ENV{’DBI USER’}="reggie";

5 $database name = "DecisionMaze";

6 $db user = "reggie";

7 $db password = "xxxxxxx";

8 $databaseString = "dbi:ODBC:$database name";

9 $db result;

10 # Connect to the Database

11 $dbh = DBI->connect($databaseString, $db user, $db password)

12 or die "Can’t connect to Database: $DBI::errstr\n";

13 # Set up insert statement

14 $sql statement = "INSERT INTO ScenarioTable (".

15 "SessionID, Sequence, Identifier, Scenario) VALUES (’".

16 "$sessionID’, $sequence, ’$identifier’, ’$scenario’)\;";

17 # execute SQL statement

18 $sth = $dbh->prepare($sql statement);

19 $sth->execute()

20 or die "Can’t execute SQL statement : $dbh->errstr\n";

Figure 45: Perl DBI database script

5.1.2.3 Scenario generation

The experiment was designed using the scenario generation components as depicted in Fig-

ure 24 on page 88. The maze simulation supplied the event trace that served as input for

the scenario generator. The output of the generator was either a logfile or SCML-encoded

130

documents.

The main Perl script responsible for the story generation was called decisionMaze.cgi.

This was a wrapper script that called each of the generation components and processed

the output. The Aesop browser calls decisionMaze.cgi, passing it the log file in an input

stream. The story generation was accomplished by pattern matching and some additional

logic located in the Perl scripts.

5.1.2.4 Filter

The purpose of the filter script was to remove any background information located in the log

file. This component is necessary in a story generator to remove header information that is

not relevant to the scenario. The script searches the valid commands or actions and removes

lines not containing keywords. The output of the filter is a sanitized log file submitted for

processing to the parser script. Figure 46 on page 132 is a portion of the filter script. In

lines 6-10, the command list containing the valid actions for Aesop are read into an array.

Each line of the original input file is analyzed one line at a time, comparing it against the

list of valid actions (lines 17-23). If a line contains an appropriate action, it is written out

to the output file.

5.1.2.5 Parser

The parser processes the modified log file and creates a list action tokens. An action token

is made up of fields such as: the name of the action, the actor, the qualifiers, time stamp,

and any props. (See figure 47). All the fields are not necessary to complete the action token;

the minimum information would be an actor-action pair. The parser uses an action list and

the associated action categories, as well as a list of valid props. (Table 10). The action list

was derived from the actions for maze navigation and player interaction with the avatars in

the system.

131

1

2

3 #@cmdlist = <CMDS>; # Build an array from the command file

4 #chomp(@cmdlist);

5

6 for ($i = 0; $i <= $#cmdlist; $i++) {

7 # print "Command $i before split: $cmdlist[$i]\n";

8 ($action) = split(/\|/, $cmdlist[$i]);

9 $cmdlist[$i] = $action;

10 # print "Command $i after split: $cmdlist[$i]\n";

11 }

12

13 # Compare each line of the logfile against the list

14 # of valid commands. Write the valid commands into

15 # a new logfile

16

17 print "Writing valid commands to log file\n";

18 while (<OLD>) {

19 chomp; # remove end-of-line character

20 $line = $;

21 if(isValid($line,@cmdlist)) {

22 print NEW ("$line\n");

23 }

24 }

25 print "Removed end-of-line characters\n";

26 # Close files

27

28 #close(CMDS);

29 close(NEW);

30 close(OLD);

Figure 46: Excerpt of Filter CGI Script

132

Figure 47: Action Token

The action categories were taken from work by Roger Schank [161]. These categories

were chosen as an example only and are not necessary to create action tokens. Appendix E of

this document contains a definition for each of the action categories. The prop categories are

not used during story processing. They are implicit categories used to determine successful

game completion. It is the choice of particular categories of props that helps achieve the

main game objective.

133

Table 10: Action and Prop Lists

Action Qualifiers Category

enters none ptrans

turns left,right ptrans

moves forward, back ptrans

found <character> grasp

collides none propel

says none mtrans

chooses <prop> grasp

discards <prop> grasp

opens doorway grasp

attempts doorway grasp

exits none ptrans

stops none ptrans

Prop Category

pistol weapon

grenade weapon

sword weapon

spear weapon

silver treasure

sapphire treasure

diamonds treasure

gold treasure

gauntlet defensive

helmet defensive

shield defensive

armor defensive

Figure 48 is a portion of the parser Perl script. Each line of the logfile is examined, using

the lists and positional information to search for fields. The parser takes the input $line

variable from the modified logfile that was generated by the filter (Line 3). If an action

was a movement (moves or turns) or the found action (Lines 10-20), the parser script looks

for qualifiers and positional coordinates. All other commands have no qualifier; those fields

were left blank or contain the word none. The script determines if there is a valid prop on

the line by comparing a substring against an internal list (Lines 24-26). The located fields

are joined together into an action token using a pound sign as a delimiter (Line 33). The

parser then writes the tokenized version of the log file (Line 34).

134

1 while (<OLD>) {

2 chomp;

3 $line=$;

4 ($lineNum,$CONTENTS)=split(/\|/,$line);

5 $ACTION=findAction($line,%cmds);

6 $actionPosition = index($line,$ACTION);

7 $qualifierPosition = $actionPosition+length($ACTION)+1;

8 $timePos = index($line,"time: ")+1;

9 $location = rindex($line,"position ")+length("position ");

10 if($ACTION eq "moves" || $ACTION eq "turns"|| $ACTION eq "found"){

11 $QUALIFIER =substr($line,$qualifierPosition,

12 index($line,"",$qualifierPosition+1)-$qualifierPosition);

13 @coordinates = split(" ",substr($line,$location,$timePos-

14 $location));

15 $SETTING =

16 "XPOS="."$coordinates[0]".","."YPOS="."$coordinates[1]";

17 $savedCoordinates = $SETTING;

18 } else {

19 $QUALIFIER = "none";

20 $SETTING = $savedCoordinates;}

21 $TYPE=$cmds{$ACTION};

22 $actorPos = index($line,"|")+1;

23 $ACTOR=substr($line,$actorPos,$actionPosition-$actorPos-1);

24 $PROP=findProp($line,@proplist);

25 if($PROP eq "0") $PROP="none";

26 $propPosition = index($line,$PROP);

27 $PLURALITY="singular";

28 $TENSE="present";

29 $TIMESTAMP=substr($line,$timePos+5);

30 @fields=

31 ($ACTION,$TYPE,$ACTOR,$PROP,$SETTING,$PLURALITY,$TENSE,$QUALIFIER,

32 $TIMESTAMP,$CONTENTS);

33 $token=join("#",@fields);

34 print NEW "$token\n";}

Figure 48: Parser Script

135

5.1.2.6 Semantic Analysis

The semantic analysis script is responsible for determining event patterns. The analysis tool

receives as input the tokenized list of actions from the parser script, still in chronological

order. There are twenty-five possible events to be found (Table 11 on page 139). Analysis

begins at the top of an action token list, processing each token one at time. Each action token

is placed on a stack, while the script attempts to match the action sequence to known events.

The fields are separated during processing, so that the actor name and any qualifiers can be

used to narrow down the appropriate event. Rules for event changes are processed to empty

the stack and create an event pragma. An event pragma is a hashtable entry containing event

information and the sequence of action tokens detected. The event information includes the

name, sequence number, and description of the event. The analysis script creates pragmas

from the discovered events and writes them to an output file for processing by the inference

engine. The excerpt of the analyzer script in Figure 49 contains code for determining wall

events and found events. The script has a bitmap representation of the maze layout for

determining wall distances and orientation (Line 1-2). The variable $mapChoice is set to

the appropriate bitmap for each of the three possible layouts. The rules that the semantic

analysis uses for assigning lists of action token to meaningful events include:

• Rule 1 : The START-THE-MAZE event always consists of the first action. The assumption

is that the first action is the start of the maze game, therefore, the second action is

the beginning of the next event.

• Rule 2 : A change of direction automatically signals a new event.

• Rule 3 : If the action is movement, either forward or back, the system stores it on the

stack and starts a wall event. If the player is less than four steps in front of a wall, it is

considered a MOVING-AWAY-FROM-WALL event. If the player is more than four away, it

is a MOVING-TOWARDS-WALL event (Lines 9-15). In the case were the distance between

walls is less than four steps total, it uses a ratio of half the distance to determine the

appropriate event (Line 7).

136

1 $wallDistances =

calculateDistance($position,$heading,@map."substr($mapChoice,4)");

2 print "Chose map ".substr($mapChoice,4);

3 print "\n";

4 ($frontWall,$rearWall)=split(/,/,$wallDistances);

5 $distanceBetween = $frontWall+$rearWall+1;

6

7 $ratioBetweenWalls=$rearWall/$distanceBetween;

8

9 if ($action eq "moves"){

10 $progress++;

11 if($ratioBetweenWalls<=0.5 && $progress<=4){

12 $event="MOVING-AWAY-FROM-WALL";

13 } else {

14 $event="MOVING-TOWARDS-WALL";

15 }}

16 if($action eq "found"){

17 $event =

18 calculateFoundEvent($qualifier);

19 } elsif ($action eq "collides") {

20 $event="COLLISION-WITH-WALL";

21 } elsif ($action eq "turns") {

22 $event="CHANGED-DIRECTION";

23 } elsif ($action eq "enters") {

24 $event = "START-THE-MAZE";

25 } elsif($action eq "says") {

26 $event = calculateConversationEvent($actor);

27 if(index($contents,"finished",0) != -1) {

28 print ERRS "Found the word finished\n";

29 $event = "COMPLETED-ITEM-SELECTION";

30 }}

Figure 49: Semantic Analysis Script

137

• Rule 4 : When the action is found, the analyzer uses the qualifier to determine who

or what was found (Lines 16-18).

• Rule 5 : The says action denotes the beginning of an information message or conver-

sation with an avatar. The analyzer uses the actor field and certain key words to

process the message and categorize it properly (Lines 25-29).

138

Table 11: Event List

Event Description

START-THE-MAZE Player starts the game

MOVING-AWAY-FROM-WALL Player moving away from wall

MOVING-TOWARDS-WALL Player moving towards wall

COLLISION-WITH-WALL Player attempts to move forward when in front of wall

CHANGED-DIRECTION Player adjusts heading either left or right

COMPLETED-ITEM-SELECTION Player indicates the completion of item selection

RAN-OUT-OF-TIME Five minute time limit expired

OPENS-DOOR Player successfully opens doorway

NOT-ENOUGH-POINTS Player does not have enough points to open doorway

INAPPROPRIATE-ITEM-SELECTION Player has one or more inappropriate items

TOO-MANY-ITEMS Player has too many items

TOO-FEW-ITEMS Player does not have enough items

CANT-OPEN-DOOR-FROM-HERE Player attempts to open door from a distance

CANT-SPEAK-FROM-HERE Player attempts to talk to avatar from a distance

NEED-ITEM-FROM-DRAGON Player needs at least one item from the dragon

NEED-ITEM-FROM-WIZARD Player needs at least one item from the wizard

CHOOSING-ITEMS Player selecting items from avatar

ATTEMPTS-TO-OPEN-DOOR Player attempts to open doorway

LOCATED-THE-DRAGON Player has located the dragon

LOCATED-THE-WIZARD Player has located the wizard

LOCATED-THE-DOORWAY Player has located the exit doorway

QUITS-MAZE-EARLY Player stops game before time expired

TALKING-TO-DRAGON Player interacting with dragon

TALKING-TO-WIZARD Player interacting with wizard

MAZE-SUPPLIES-INFORMATION Maze supplies information message

139

5.1.2.7 Story Engine

The story engine code is responsible for taking the event pragmas and creating episodes and

scenarios. Episodes and scenarios are processed with simple pattern matching using regular

expression search strings.

Table 12 on page 142 is a list of episodes and their goals. The events are examined in re-

verse order, attempting to match episode patterns. For example, if the LOCATED-THE-DRAGON

event is found, all events preceding it are assumed to be part of the LOOKING-FOR-THE-DRAGON

episode. In the set of episodes under consideration the last event in each pattern is unique,

so there is no ambiguity in determining the correct episode. The preceding events are placed

on a stack until another episode pattern matches. It is assumed that all events between the

pattern matches are part of one episode. Figure 50 is the story engine code for process-

ing a list of events into episodes. Line 1 creates a string containing the pattern of events

that were gathered as input from the semantic analysis script. The goal of each potential

episode is stored in the @patterns array, along with the sequence of events that make up the

episode. Lines 4-7 separates the goal of the episode being sought from its event patterns.

The event patterns are concatenated into a $searchString at line 8. Lines 10-14 uses the

$searchString and $eventString to find out where in the event pattern the episode oc-

curred. If there is a match, the goal of the episode is pushed onto a stack for processing

into a scenario (Lines 15-19).

140

1 $eventString=join("",@listOfEvents);

2 print "The eventString is $eventString\n";

3 for($goalCounter=0;$goalCounter<=$#goalList;$goalCounter++){

4 ($goal,@patterns) = split(/:/,$goalList[$goalCounter]);

5 ($goalName,$purpose) = split(/,/,$goal);

6 $goal = $goalName;

7 print ERR "Searching for $goal episode Pattern\n\n";

8 $searchString=join("",@patterns);

9 print "The searchString is $searchString\n";

10 if($eventString =~ /$searchString/){

11 for($i=0;$i<=$#listOfEvents;$i++){ # locate where the pattern

12 $searchPattern = substr($patterns[$#patterns],

14 rindex($patterns[$#patterns],"*",)+1);

15 if($listOfEvents[$i] =~ $searchPattern){

16 push(@unsortedGoalArray,"${i}:${goal}:${purpose}");

17 print ERR "${i}:${goal}:${purpose}\n";

18 print "Found $goal at $i\n";

19 }

20 }

21 }

Figure 50: Matching Event Patterns to Episodes

Once an episode is matched, the contents of the stack are emptied and inserted into a

hash table, using the episode name as the key. Additional episode information, including

goal and description, are inserted into the hash table. This hash entry is pushed onto a Last

In-First Out (LIFO) array structure, which puts it at the beginning of the array. This way,

the order of the episodes is preserved by the array indices. This technique is used until the

event list is exhausted.

141

Table 12: Episodes

Episode Goal

STARTING-THE-MAZE Begin search through the Maze

LOOKING-FOR-THE-DRAGON Attempting to find Dragon

LOOKING-FOR-THE-WIZARD Attempting to find Wizard

LOOKING-FOR-THE-EXIT Looking for Exit

ATTEMPTING-TO-OPEN-EXIT Trying to open doorway

TALKING-TO-WIZARD Get information from the Wizard

TALKING-TO-DRAGON Get information from the Dragon

SELECTING-ITEMS Select items to carry through Maze

TIME-EXPIRED Game terminates because time expired

COMPLETED-THE-MAZE Player completed the Maze

NEED-AN-ITEM-FROM-

DRAGON

Maze shares information with Player

NEED-AN-ITEM-FROM-

WIZARD

Maze shares information with Player

NOT-ENOUGH-POINTS Maze shares information with Player

WRONG-ITEM-SELECTION Maze shares information with Player

TOO-MANY-ITEMS Maze shares information with Player

TOO-FEW-ITEMS Maze shares information with Player

MAZE-INFORMS Maze shares information with Player (doorway)

MAZE-INFORMS Maze shares information with Player (conversation)

STOPPED-THE-GAME-EARLY Player ends game before time expired

The scenario patterns are analyzed using a similar technique. Table 13 is a priority list

of scenarios. Even though the scenarios had different descriptions, they all had the same

stated goal: “Open the Exit Doorway.” The scenarios are searched in order down the list,

142

from the most desirable to least desirable. For example, scenarios 1-8 all involve quitting

the game early. Scenarios one and three both end up with the participant having chosen

the wrong items. However, it is more important that the game was terminated with wrong

items and too few items, which is why scenario one is higher on the priority list and will

match the pattern first.

143

Table 13: Scenarios

Scenario Description

0 GAME COMPLETED The player has successfully opened the doorway

1 QUIT GAME WITH WRONG ITEMS AND TOO

FEW

Player gave up on game with wrong items and too few

2 QUIT GAME WITH WRONG ITEMS AND TOO

MANY

Player gave up on game with wrong items and too many

3 QUIT GAME WITH WRONG ITEMS Player gave up on game with wrong items

4 QUIT GAME WITHOUT ENOUGH ITEMS Player gave up on game with too few

5 QUIT GAME WITH TOO MANY ITEMS Player gave up on game with too many

6 QUIT GAME WITHOUT AN ITEM FROM THE

WIZARD

Player gave up on game without obtaining an item from

the Wizard

7 QUIT GAME WITHOUT AN ITEM FROM THE

DRAGON

Player gave up on game without obtaining an item from

the Dragon

8 QUIT GAME BEFORE TIME EXPIRED Player gave up on game before time expired

9 TIME EXPIRED WITH WRONG ITEMS AND TOO

MANY

Time expired and player has wrong items and too many

10 TIME EXPIRED WITH WRONG ITEMS AND TOO

FEW

Time expired and player has wrong items and too few

11 TIME EXPIRED WITH WRONG ITEMS Time expired and player has wrong items

12 TIME EXPIRED WITH TOO FEW POINTS Time expired and player did not have enough points

13 TIME EXPIRED WITH TOO FEW ITEMS Time expired and player has too few items

14 TIME EXPIRED NEEDING AN ITEM FROM WIZ-

ARD

Time expired and player did not have an item from the

Wizard

15 TIME EXPIRED NEEDING AN ITEM FROM

DRAGON

Time expired and player did not have an item from the

Dragon

16 TIME EXPIRED Time expired before completing the maze

144

Figure 51 is the subroutine in the story engine script that is responsible for searching

for scenario patterns. Lines 2-3 are the declaration of local variables to be used in the

subroutine. The parameters from the main source code are passed to the subroutine and

separated into the $scenario string and its episode pattern, @patterns. The episode list

to be searched is generated at Lines 7-10 and converted to the string $episodeString at

Line 13. The scenario pattern to be matched is changed into a string at Line 12. If the

$scenarioString occurs anywhere in the episode list, the return value is set to one (true).

Otherwise, the scenario was not located, so the return value is set to zero (false)

145

1 sub findScenario {

2 my($scenario,@patterns,@pattern);

3 my($scenarioFound,$location,$i);

4 ($scenario,@patterns)=@ ;

5 # Build the list of episodes to be searched

6 $episodeNumber = @episodes;

7 for($episodeSeq=0;$episodeSeq<=$#episodes;$episodeSeq++) {

8 for $episode (keys %{ $episodes[$episodeSeq] }) {

9 push(@listOfEpisodes,$episode);

10 }

11 }

12 $scenarioString=join("",@patterns);

13 $episodeString=join("",@listOfEpisodes);

14 chomp($scenarioString);

15 chomp($episodeString);

16 print "Episode string is ----$episodeString---\n";

17 print "Scenario string is ----$scenarioString---\n";

18 # Match the patterns one at a time

19 if($episodeString =~ /$scenarioString/) {

20 $scenarioFound = 1;

21 } else {

22 $scenarioFound = 0;

23 } # End of Pattern Matching

24 # Clear the episode array

25 while(pop @listOfEpisodes){}

26

27 return ($scenarioFound);

28 } # end of subroutine findScenario

Figure 51: findScenario Subroutine

146

5.2 Experimental Variables

The most important aspect of evaluating this research was the establishment of a method to

measure the relative improvement of the decision-making process. The independent variable

(IV) was the presence of scenario-structured documentation. The experimental conditions

that correspond to the IV were that: 1) the SCML group had SCML-encoded log file infor-

mation from game sessions 2) the Logfile group did not have access to the SCML encoding.

The dependent variable (DV) assessed by this experiment was the number of good decisions

made by players of the maze game.

IV Operational Definition: The scenario-structured documentation consisted of SCML-

encoded documents generated by analyzing the log files. The applet browser contains rules

and event patterns for the game. Simple natural language processing of the logfiles along

with pattern matching of the actions performed were used to construct a plot structure of

what occurred during the game sessions.

DV Operational Definition: The number of good decisions during game sessions by par-

ticipants.

The following are categories of metrics gathered during the experiment:

• Decision Making: Count of the good decisions per session based on the predefined

good decision list. The good decision list is described in the section 5.6.

• Performance Metrics: Movement through the maze. Total number of moves, changes

in direction, elapsed time, forward movement, backward movement, number of wins.

• Environment Interactions: Measure of how often participant interacts with the envi-

ronment through the avatars or by status messages. Number of informational mes-

sages, amount of time per avatar, number of avatar conversations visits.

5.3 Subjects

The subjects for this experiment consisted of volunteers with access to the Internet. The

experimental environment includes an Apache [115] web server installed behind a security

firewall. The volunteers were solicited through announcements on appropriate newsgroups

147

and e-mail to listserv aliases. The call for participants (CFP) form and the research consent

form are located in Appendix B. The CFP was not limited to the local university network; the

announcement was posted in the SISO listserv, e-mail messages at Old Dominion University

(ODU) , Mississippi State University (MSU) , the Army Research Laboratory (ARL), as

well as through regionally-accessible newsgroups on bellsouth.net. Participants registered

through an online registration form, which assigns a username and session identification.

The registration form also gathers demographic information. In accordance with Institute

Review Board (IRB) guidelines, children under the age of eighteen were unable to participate

in the study.

The sample population used for this experiment were players of the Aesop maze game.

Membership in this sample was established by voluntary registration. After reviewing the

consent form, the participants were redirected to the registration form as seen in figure 52.

The only directly identifiable information solicited from the user was the first name, last

name, and e-mail address. The user’s first name was assigned as the player name used

during game play. The e-mail address was used to generate a unique, ten-digit string for an

identifier. This was done by concatenating the first five characters of the e-mail address with

the last five digits of the user’s IP address.1 The demographic data gathered consisted of

the age, gender, and educational level. The participants who volunteered for the experiment

were randomly placed in either the SCML group or the Logfile group. This was accomplished

with a simple random number technique that used modulo arithmetic on the system time.

Essentially, players were assigned to either group based on whether a calculated value was

even or odd. Using this method mitigated potential bias introduced based on participant

attributes.

1The IP address is a standard part of an HTTP request. Padding with zeros was used when the e-mail
address was less than 5 characters.

148

Figure 52: Experiment Registration Form

Demographic data was gathered during participant registration via an online form. The

participants entered information about their gaming experience using a scale of one to five,

with one meaning never played/used the environment and five meaning frequent usage.

5.4 Apparatus and Materials

Participants in the experiment could use any Internet-connected computer for game play.

The maze simulation was accessible through standard web browsers. The software was tested

and developed with several web browsers: Netscape 7.0, Microsoft’s Internet Explorer 5.0,

and Mozilla 4.0 . The software version number and browser acceptability was determined

during the registration process. Once a workstation was used for registration, it was assigned

149

as the machine for the game session. The network address and hostname of the machine were

captured for this purpose. All documentation, such as game instructions, game log files, and

external help documentation was available to both groups. The choice of operating system

platform or machine hardware did not affect the data collection.

Aesop was developed on a Pentium 4 3.06GHz laptop machine running Windows XP

operating system and running an Apache Web server. The source code was written in Java,

PERL scripts, HTML, SQL, and XSL style sheets. The scripts are located on the Web

server and transmitted game session information to the client browsers.

5.5 Test Protocol

As the software developer for the Aesop maze game, I am also the subject matter expert for

the environment. As discussed in the section on requirements for the hyperscenario frame-

work (3.5.1), SMEs are responsible for describing the stories in a domain. The terminology,

naming conventions, meaningful events, and other domain information are captured in the

stories that are described by the SMEs. As the SME, I decided what constitutes an action

in the Aesop game and what collection of actions are meaningful events. One of the reasons

that scenarios are useful in problem solving activities is that they help in knowledge rep-

resentation. The rules for the domain were written into the source code of the maze game

and are reflected in the scenarios that are generated by the experiment.

Two experiment groups, the Logfile group and the SCML group, are supplied with the

same amount of information to begin game play. The display of the data captured for

each group between game sessions differed. The difference in representation of the data is

declarative versus narrative. A declarative view shows a game session as a reproduction of

the actions in the maze, just as they occurred. A narrative view is a plot-structured view of

the data, representing a description of the events and episodes with an educated guess as to

what was happening. Each group was presented the same amount of data, just structured

into a different form. Both groups used the intra-game session data for planning the next

game session.

The experiment consisted of the repetition of a series of maze game playing sessions.

150

There were six game sessions per participant. Each session was played exactly the same,

with the maze simulation reset to its beginning state. The length of individual sessions

was limited to five minutes or until the objective is achieved, whichever occurs first. After

each session, the participants were given five minutes to review the session to plan the next

iteration of the game. The player had the ability to end either review or game play before

the time limit had expired. Having six game sessions and a set intra-game review time kept

the maximum time to complete the experiment to less than seventy minutes per participant.

5.6 Evaluation Method

Although examining the number of wins by group is a method of gauging improved decision-

making, it is not sufficient. It is possible for the decision-making of a group to get better,

but not be reflected by the percentage of successful completions. Successfully completing a

simulation game with pre-determined objectives is normally done by trial-and-error. Players

of video games and PC simulations have to determine patterns in the game that allow them

to complete individual tasks. Once these patterns are discovered, achieving the overall goal

of winning the game is sped up. These patterns are the rules and policies under which the

game’s narrative domain operates. The hypothesis that this experiment is attempting to

validate is that the hyperscenario framework will improve the decision-making of players in

this game simulation. The claim is that the underlying rules and limitations of the game

can be discovered much sooner by analyzing a scenario-structured view of the game. For

this experiment, improving decision making means that the number of good decisions will

increase.

151

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

3 xmlns:fo="http://www.w3.org/1999/XSL/Format">

4 <xsl:variable name="leftTurns" select="count(//action[@qualifier=’left’])"/>

5 <xsl:variable name="rightTurns" select="count(//action[@qualifier=’right’])"/>

6 <xsl:variable name="forwardMoves" select="count(//action[@qualifier=’Forward’])"/>

7 <xsl:variable name="backwardMoves" select="count(//action[@qualifier=’Back’])"/>

8 <xsl:variable name="wizardVisits" select="count(//episode[@name=’TALKING-TO-WIZARD’])"/>

9 <xsl:variable name="dragonVisits" select="count(//episode[@name=’TALKING-TO-DRAGON’])"/>

10 <xsl:variable name="doorAttempts" select="count(//episode[@name=’ATTEMPTING-TO-OPEN-EXIT’])"/>

11 <xsl:variable name="swaps" select="count(//action[@name=’chooses’ or @name=’discards’])"/>

12 <xsl:template match="/">

13 <hr/>

14 Left Turns: <xsl:value-of select="$leftTurns"/>

15 <hr/>

16 Right Turns: <xsl:value-of select="$rightTurns"/>

17 <hr/>

18 Forward Moves: <xsl:value-of select="$forwardMoves"/>

19 <hr/>

20 Backward Moves: <xsl:value-of select="$backwardMoves"/>

21 <hr/>

22 Total Moves: <xsl:value-of select="$leftTurns+$rightTurns+$forwardMoves+$backwardMoves"/>

23 <hr/>

24 Number of Times visited Wizard : <xsl:value-of select="$wizardVisits"/>

25 <hr/>

26 Number of Times visited Dragon : <xsl:value-of select="$dragonVisits"/>

27 <hr/>

28 Number of Times attempted Doorway: <xsl:value-of select="$doorAttempts"/>

29 <hr/>

30 Number of Swaps: <xsl:value-of select="$swaps"/>

31

32 </xsl:template>

33 </xsl:stylesheet>

Figure 53: XSL Session Metrics Code

Session metrics were tracked by the client applets as the games were being played.

Performance measures (such as number of moves, forward moves, left turns, and right turns)

were accumulated in global variables during game navigation. These variables were passed

152

as an array to the Perl scripts for processing. XSL stylesheets made several passes over the

scenario documents to calculate variables such as wizard visits, dragon visits, and number

of information messages (Figure 53). Lines 4-11 in the figure show how the intrinsic XSL

function count is used to count the occurrences of variables using X-Pointer syntax for

matching. For example, in Line 4 the number of left turns is determined by counting all

action elements in the SCML document with a qualifier attribute set to left. Lines 12-32

output a simple HTML-formatted document containing the calculated values separated by

horizontal lines.

Table 14: List of Good Decisions

Information Message Decision

Inappropriate Selection Changing Item Selection

Too Few Items Increasing Items

Too Many Items Decreasing Items

Need Item From Dragon Obtaining Item From Dragon

Need Item From Wizard Obtaining Item From Wizard

None Looking Around The Maze

The evaluation of the experiment results will be based on mapping the decision patterns

in each session. The most straightforward method for measuring decision making during

each event is to have a simple enumeration of possible good decisions. The number of good

decisions were calculated for each game session. Table 14 lists the good decisions and their

corresponding information messages. Most of the good decisions are intuitive; when the

system gives the player a message involving a resource, the player modifies their behavior

accordingly. In order to infer that the user made the decision purposefully, there were

embedded rules for analyzing the pattern. For example, if the system told the user that

they require an item from the dragon, the TALKING-TO-DRAGON event has to occur within

a set maximum of moves. The only decision that requires no information message was

the Looking Around The Maze decision. If the player changed direction, then immediately

153

returned to the original heading, that was considered examining the environment. Recall

that a turn does not involve movement, but a change of direction. Therefore, a left followed

by a right is the equivalent of turning ones head. It is a good decision in the Aesop maze

for the player to occasionally stay in one spot and look around to figure out the best path

through the maze.

The decision counts were derived by stylesheets that were programmed to detect patterns

in the SCML-encoded documents. Figure 54 on page 155 is an excerpt of the XSL stylesheet

that was used to count decisions. In this example, the script is counting the number of times

the good decision for increasing the number of items selected occurred. For an event to be

considered as a purposeful decision, it had to happen within a specific number of events

after the original information message. Line 2 shows that the XSL script is analyzing the

player’s response to the TOO-FEW-ITEMS information message from the system. In Lines 4-9,

if the SELECTING-ITEMS event has occurred as the next event, the script checks to see if the

player is performing the chooses action. Choosing an item in response to the informational

message qualifies as a good decision, so the script writes the string goodIncreasingDecision

to an output file. Lines 11-31 performs the same processing for SELECTING-ITEMS events

that are from two to four events away from the informational message. If the user makes a

choice of an item more than four events away, it is not considered purposeful and does not

count in the good decisions.

154

1 <!-- Increasing items good decision -->

2 <xsl:when test="@name=’TOO-FEW-ITEMS’">

3 <xsl:choose>

4 <xsl:when test="$episodes[$nextNode]/@name=’SELECTING-ITEMS’">

5 <xsl:if test="$episodes[$nextNode]/scene/event/action/

6 @name=’chooses’">

7 goodIncreasingDecision

8

9 </xsl:if>

10 </xsl:when>

11 <xsl:when test="$episodes[$nextNode+1]/@name=’SELECTING-ITEMS’">

12 <xsl:if test="$episodes[$nextNode+1]/scene/event/action/

13 @name=’chooses’">

14 goodIncreasingDecision

15

16 </xsl:if>

17 </xsl:when>

18 <xsl:when test="$episodes[$nextNode+2]/@name=’SELECTING-ITEMS’">

19 <xsl:if test="$episodes[$nextNode+2]/scene/event/action/

20 @name=’chooses’">

21 goodIncreasingDecision

22

23 </xsl:if>

24 </xsl:when>

25 <xsl:when test="$episodes[$nextNode+3]/@name=’SELECTING-ITEMS’">

26 <xsl:if test="$episodes[$nextNode+3]/scene/event/action/

27 @name=’chooses’">

28 goodIncreasingDecision

29

30 </xsl:if>

31 </xsl:when>

32 </xsl:choose>

33 </xsl:when>

Figure 54: XSL Decision Count Code

155

The data gathered during the experiment was interpreted using the standard statistical

techniques available for scientific analysis. Hypothesis testing was done using probability

analysis with the appropriately chosen significance level. Descriptive statistics were gen-

erated to determine central tendencies of the data and amount of dispersion (variability).

These descriptive statistics include (but are not limited too) the arithmetic mean, standard

deviation, variance, and z-scores (standardized values). The next chapter presents and an-

alyzes the results from the maze experiment. The data analysis is described in detail in

chapter 6.

5.7 Handling Threats to Validity

There are outside factors that can limit the validity of this experiment by introducing vari-

ables that affect conclusions. These outside factors can be mitigated by the appropriate

experimental design that takes into account these threats to validity. Threats to validity

refer to the manner in which variables can influence the results of an experimental study

and its generalizability to the population under consideration [78]. There are internal and

external threats to validity. Internally validity occurs when the results on the dependent

variable are solely attributed to the independent variable. External validity is a measure of

how well the study can be generalized to groups beyond the experiment sample.

There is extensive literature about research methods to decrease the affects of outside

factors, particularly in the social sciences([118] , [176], and [130]). This is because many

psychological and sociological experiments involve human subjects, which account for many

of the unwanted variables. The next sections describe the individual factors and how they

were handled for this experiment.

5.7.1 Effects to internal validity

1. History - History refers to any event outside of the research study that can affect

performance. Participants performed one trial of six sessions, making it difficult to

establish a history. This discouraged the memorization of the maze layout that could

occur during multiple trials. The random selection of maze layout and experiment

156

group also decreased the amount of information that could be shared between partic-

ipants.

2. Maturation - Maturation is only a factor if the experiment takes place over a long

period of time, so that basically everyone would improve. The experiment site was

available for a week to ten days. Participants were instructed not to share information

about the game and its solution to other potential volunteers.

3. Selection of subjects - The volunteers for this experiment were recruited based only on

their ability to access the Internet and locations where the request for participation

was posted. Although demographic data was gathered for post-experiment analysis,

assignment to experimental groups was randomized.

4. Instrumentation - Instrumentation refers to consistency in measurement and devices

used throughout the experiment. Both groups had access to the same user interface

and the metrics collected did not differ by group.

5.7.2 Effects to external validity

1. Reactive effects - Reactive effects are effects due to pretesting subjects. The partici-

pants were exposed to the game environment only once, during the actual run of the

experiment. Anyone who participated in any pilot study or during development was

precluded from the actual experiment.

2. Selection bias vs. Experimental variable - Selection bias of this type occurs when

participants are chosen who have a characteristic that is known to affect the experiment

variable under consideration. The randomization of group selection decreased any bias

due to prior game experience or knowledge of similar maze environments.

3. Self-Selection bias - Self-Selection bias occurs when there is non-random sampling

of membership within a group or category that is hypothesized to affect a variable of

interest [98]. Recruitment of volunteers for the experiment was not limited to the local

university. Messages were posted on regional newsgroups, distributions to three other

universities, e-mail messages to a government site, and listserv posts to a simulation

157

news group. The assignment to experiment group was random and not based on any

user attribute. Also, since the maze domain was created for this experiment, there

was no direct characteristic of a participant that makes them more likely to make a

good decision in the Aesop maze. The impact of any indirect user characteristic was

minimized by the randomization of group selection.

4. Multiple treatments - Multiple treatment bias happens when participant are involved

in an experiment multiple times. Participants performed the maze experiment once.

5.8 Summary

This experiment was designed to validate the impact of scenario-structured information on

decision-making. The subjects for the experiment were volunteers who had access to the

web-enabled maze simulation. The only requirement, in terms of apparatus and materials,

was the use of a Java-compatible browser, Netscape, Mozilla or Internet Explorer. The

source code was an implementation of a scenario generator, with each component written

as Perl scripts or Java applets. The simulation supplied the event traces that were analyzed

by the system to determine plot structure. The user interface allowed participants to play

the game and perform planning for successive iterations. Players were randomly assigned to

either the Logfile group, who received direct log file information, or the SCML group that

received scenario-structured documents for review. The performance and decision metrics

were stored in a database for post-experiment analysis and comparison. Evaluation of the

experiment is based on comparing the effect on the dependent variable, the number of good

decisions, by the presence (or absence) of the independent variable, scenario-structured

information.

158

Chapter 6

DATA ANALYSIS & RESULTS

It is a capital mistake to theorize before one has data

– Sir Arthur Conan Doyle

This chapter contains an analysis of the results of the empirical study. The experiment was

conducted over a two-week period, with over 50 volunteers participating. Scenarios were

examined to capture performance metrics and quantitative decision-making data. Each po-

tential threat to validity and the method for mitigating that threat was discussed. The first

section discusses the impact of user demographics and experience level on the results. The

second section describes performance metrics used to infer player decision making. Section

three is an analysis of the descriptive decision statistics for both experimental groups, out-

lining the central tendencies, spread, and frequency distribution. Finally, hypothesis testing

using a z-test comparison of sample means is used to validate the results of hyperscenario-

directed decision-making.

6.1 Effect of Experiment Set-up on Validity

Table 15 is the demographic information on experiment participants showing counts and

percentages for gender, age, and educational level for both experimental groups. Recall

that membership on the groups was randomized without taking into account any of the

demographic information. As can be seen from the table, the percentage of participants

based on gender were fairly evenly distributed. In the age category, the percentages were

also fairly consistent at each level across groups. There is a slightly larger percentage of

36-45 year olds on the SCML group. There are not enough data points to determine if this

difference is statistically significant. The age data values for the experiment groups can be

compared by using descriptive statistics.

Table 16 contains the statistical information on the age for the Logfile group. The median

159

Table 15: Demographics

Logfile SCML % Logfile %SCML

GENDER
Male 14 20 58.3% 60.6%

Female 10 13 41.7% 39.4%

AGE
18-24 16 22 66.7% 66.7%
25-35 3 4 12.5% 12.1%
36-45 3 5 12.5% 15.2%
46+ 2 2 8.3% 6.1%

EDUCATION LEVEL
High School 3 1 12.5% 3.0%

Undergraduate 14 25 58.3% 75.8%
Graduate 7 7 29.2% 21.2%

age for the group is 26.6 years. The confidence level, using a level of significance of 0.05, is

3.806. The level of significance establishes a 95% certainty in the results. The confidence

interval for the age would be 26.6 ±3.806. This means that there is a 95% certainty that

age values in the range from 22.84 years to 30.45 are statistically the same as that of the

Logfile group. The descriptive statistics in Table 17 are the age values for the SCML group.

The mean age is 26.561. This is within the confidence interval for the Logfile group, so the

averages are statistically the same.

160

Table 16: Logfile Age Statistics

Mean 26.646

Standard Error 1.840

Median 21

Mode 21

Standard Deviation 9.014

Sample Variance 81.250

Kurtosis 0.053

Skewness 1.277

Range 25

Minimum 21

Maximum 46

Sum 639.5

Count 24

Confidence Level(95.0%) 3.806

161

Table 17: SCML Age Statistics

Mean 26.561

Standard Error 1.525

Median 21

Mode 21

Standard Deviation 8.759

Sample Variance 76.715

Kurtosis -0.126

Skewness 1.219

Range 25

Minimum 21

Maximum 46

Sum 876.5

Count 33

Confidence Level(95.0%) 3.106

To calculate an average educational value for the groups, each level was given a rating of

one, two, or three representing high-school, undergraduate, and graduate levels, respectively.

The ratings were then averaged for each group, yielding an average education level of 2.18

for the SCML group and 2.16 for the Logfile group. Tables 18 and 19 are the educational

statistics for the groups. Using the confidence level and mean of the SCML group, the

confidence interval is from 2.017 to 2.347. The mean for the Logfile education is within this

range and is statistically the same as the SCML group educational mean.

162

Table 18: Logfile Education Statistics

Mean 2.167

Standard Error 0.130

Median 2

Mode 2

Standard Deviation 0.637

Sample Variance 0.406

Kurtosis -0.368

Skewness -0.143

Range 2

Minimum 1

Maximum 3

Sum 52

Count 24

Confidence Level(95.0%) 0.269

163

Table 19: SCML Education Statistics

Mean 2.182

Standard Error 0.081

Median 2

Mode 2

Standard Deviation 0.465

Sample Variance 0.216

Kurtosis 0.834

Skewness 0.674

Range 2

Minimum 1

Maximum 3

Sum 72

Count 33

Confidence Level(95.0%) 0.165

There were seven categories of experience to be assessed. For each type of experience,

the user was asked to gauge, on a scale of one-to-five, their level of knowledge or use of the

game. A selection of one represented no experience with the activity; three represented some

experience with the activity; five represented frequent use of the activity. A participant at

level five can be viewed as a person who did the activity as a frequent gamer.

Table 20: Logfile Experience By Maze

Board Combat Card Chat Logic Video

Games MUDS Games Rooms Crosswords Puzzles Games

Maze 1 2.40 1.80 2.80 2.20 1.80 2.20 2.60

Maze 2 2.83 1.67 3.17 2.00 2.00 2.83 3.00

Maze 3 4.00 1.08 3.46 1.62 3.08 3.38 3.23

164

Table 20 is the data on experience for the Logfile group. The three rows correspond to the

different maze layouts. This table was constructed to determine if the amount of experience

was distributed evenly among the maze layouts. There is a slightly larger average value for

board games and crosswords for maze layout three but it does not appear to be enough to

have impacted the overall results for the logfile group

Figure 55: Logfile Experience By Maze

Figure 55 is a graphic depiction of the Logfile experience data, color-coded to represent

the maze layouts. It is easier to see the variations in experience using the chart to represent

the data. The SCML group experience is distributed evenly across the maze layouts, as

shown in Table 21.

165

Table 21: SCML Experience By Maze

Board Combat Card Chat Logic Video

Games MUDS Games Rooms Crosswords Puzzles Games

Maze 1 3.54 1.85 3.31 2.92 2.54 2.54 3.46

Maze 2 3.80 2.40 3.50 3.10 2.60 2.70 4.10

Maze 3 3.11 1.11 3.11 1.33 2.44 2.78 2.78

Figure 56, the graphic for the SCML group, also shows a fairly consistent level of expe-

rience across the categories. When comparing the diagrams for both groups, it appears that

no single category of experience was prevalent on either group. Again, there are not enough

data points by maze layout to establish if there variations are statistically meaningful. Ex-

amining the experience values across all layouts by group yield a better comparison.

Figure 56: SCML Experience By Maze

The Table 22 lists the average for each category of experience, organized by experiment

group.

166

Table 22: Experience Level By Group

Board Combat Card Chat Logic Video

Games MUDS Games Rooms Crosswords Puzzles Games

Control 3.38 1.38 3.25 1.83 2.54 3.00 3.04

SCML 3.50 1.81 3.31 2.53 2.53 2.66 3.47

Figure 57 is the graphical depiction of the data from the experience table. The board

games, card games and crosswords are almost equal, with a negligible variation between the

groups. The same descriptive statistics used earlier can be used to determine if there is a

statistical significance to the variations in the other experience levels.

Figure 57: Average Experience By Group

The following tables are descriptive statistics for the combat MUD experience for the

167

experiment groups (Tables 23 and 24). The confidence interval for the SCML MUD ex-

perience level is 1.78 ±0.507 which ranges from 1.273 to 2.287. The Logfile group’s MUD

experience is statistically the same. Appendix E contains similar information for the chat

room, logic puzzle, video game, and board game experience levels by group. All of the levels

are statistically the same and therefore did not impact the results of the experiment.

Table 23: Logfile MUD Experience Statistics

Mean 1.375
Standard Error 0.145
Median 1
Mode 1
Standard Deviation 0.711
Sample Variance 0.505
Kurtosis 1.368
Skewness 1.671
Range 2
Minimum 1
Maximum 3
Sum 33
Count 24
Confidence Level(95.0%) 0.300

Table 24: SCML MUD Experience Statistics

Mean 1.788
Standard Error 0.249
Median 1
Mode 1
Standard Deviation 1.431
Sample Variance 2.047
Kurtosis 1.561
Skewness 1.760
Range 4
Minimum 1
Maximum 5
Sum 59
Count 33
Confidence Level(95.0%) 0.507

168

6.2 Using Performance Metrics to Infer Decision-making

There were several performance metrics that were tracked or calculated during game play

that could be used to evaluate the decision making patterns of the players. As we have

defined it for this experiment, decision making is the process of making choices after consid-

eration. The context for those choices are represented in the domain. Each action, event,

or episode in the maze could constitute a decision by the player in order to solve the maze.

We can use some performance metric data to infer the strategy being applied by the players

in the game and determine decisions that were being made.

Session SCML Logfile

1 4.6 4.8

2 5.2 6.6

3 9.8 4.6

4 14.5 2.3

5 10.7 3.2

6 0.8 4.3

Table 25: Average Doorway Attempts

The number of attempts to open the doorway is an indicator of the kind of strategy the

participant was using to solve the game (Table 25). This table shows the average number

of attempts per group, organized by game session. The number of attempts for the SCML

group continued to increase through iteration four. At this point, the attempts decreased

to the lowest value by the last session.

169

Figure 58: Average Doorway Attempts

Figure 58 makes it easier to compare the trends between the two groups. There is a

definite spike in attempts for the SCML group during session four. Overall, the SCML group

attempted the doorway more often than the Logfile Group. As the domain expert, I can

say that this is the most effective strategy for solution, because it allows the participants to

narrow down choices for each system informational message. For example, when the system

displays a TOO-FEW-ITEMS message, a player can use the strategy of adding items one at a

time until that message is no longer shown when the door is tried.

The particular choice of items was one of the most difficult values to determine by the

players. Purposefully, the system does not say what makes a choice inappropriate, just that

there is at least one inappropriate choice within the users current inventory. Exhausting

every possible combination of items would be prohibitive, given the time limits on each

session. The player had to determine any implicit characteristics that would aid in the

correct selections. Measuring the number of swaps indicates how intensely the player is

attempting to find the right sequence of items.

170

Session SCML Logfile

1 15.8 15.8

2 18.0 13.4

3 21.0 12.0

4 22.3 5.8

5 17.3 7.4

6 4.8 8.3

Table 26: Average Swaps

Figure 59 shows the trend of average swaps between the groups. Again, there is a definite

increase of swaps during the middle sessions for the SCML group. The Logfile group decrease

the number of swaps and then begin to increase them.

Figure 59: Average Item Swaps

Both the number of attempts and number of swaps had an effect on the number of

171

points. The number of points decreases periodically during game play, so continuing to try

the doorway decreases the running total of points. Every time an item is removed from the

player’s inventory the points also decrease. In Table 27, the average total points for the

SCML group is lower for the first four sessions. This might indicate that the SCML players

were less concerned about their point totals during the beginning sessions than finding the

appropriate sequence of items.

Session SCML Logfile

1 316.0 388.0
2 344.0 440.0
3 253.3 440.0
4 395.0 395.0
5 413.3 404.0
6 510.0 375.0

Table 27: Average Points

Figure 60 depicts the trend by session. There is a definite dip in total points during

the third session. This would make sense, if the participants were rapidly swapping items,

trying to determine the right combinations while trying the doorway as often as possible.

The SCML group ends the sessions with more total points, ostensibly because they had

determined the solutions to the maze.

172

Figure 60: Average Points

6.3 Frequency Distribution and Descriptive Statistics

As described in the chapter on the experimental design, there is an list of good decisions for

this maze environment. This decision table was used to establish a count of the number of

good decisions made by each group during game play. From this count, statistics describing

the central tendency, spread and frequency distribution of decision-making were calculated.

Table 29 shows the descriptive statistics for the experiment. Each row in the table represents

the data for a session indexed by the unique seven digit session ID. The first column in the

table is the session ID followed by the second column which is the actual number of good

decisions for that particular session.

The central tendency shows how a set of values converge. The central tendencies are

presented by the mean and the median. The average number of good decisions in the

Logfile group was 24.6; the median was 26 good decisions. In the SCML group, the mean

and median were 34.3 and 24.5, respectively. It is interesting to note that while the medians

for the two groups are very similar, the means are much further apart. This is supported by

the measures of variability: the standard deviation and the range.

173

Logfile Good Decisions

Mean StdDev Median Range

24.64 16.98 26 55

Session ID Count Dev Z-Score

4724100 0 -24.64 -1.45

2616130 2 -22.64 -1.33

3344410 10 -14.64 -0.86

3304540 49 24.36 1.43

2144250 11 -13.64 -0.80

2329000 35 10.36 0.61

1448130 37 12.36 0.73

3204120 38 13.36 0.79

2952200 6 -18.64 -1.10

2324500 32 7.36 0.43

9203300 9 -15.64 -0.92

3904260 6 -18.64 -1.10

2096480 7 -17.64 -1.04

1708180 55 30.36 1.79

1100230 44 19.36 1.14

3784900 46 21.36 1.26

3524360 4 -20.64 -1.22

3832220 26 1.36 0.08

1588430 26 1.36 0.08

1592150 14 -10.64 -0.63

3268210 12 -12.64 -0.74

3180160 33 8.36 0.49

3268500 36 11.36 0.67

3044340 39 14.36 0.85

3828330 39 14.36 0.85

Table 28: Logfile Decision Statistics

174

SCML Good Decisions

Mean StdDev Median Range

34.375 29.65 24.5 107

Session ID Count Dev Z-Score

1040270 0 -34.375 -1.16

3205000 1 -33.375 -1.13

1744330 2 -32.375 -1.09

1928160 6 -28.375 -0.96

5482400 24 -10.375 -0.35

2944520 31 -3.375 -0.11

3412590 40 5.625 0.19

2924180 48 13.625 0.46

2444140 95 60.625 2.05

1488490 30 -4.375 -0.15

2468370 107 72.625 2.45

3424500 16 -18.375 -0.62

1100240 11 -23.375 -0.79

2776550 62 27.625 0.93

2128310 14 -20.375 -0.69

3144250 10 -24.375 -0.82

4036450 11 -23.375 -0.79

2272570 22 -12.375 -0.42

1168380 23 -11.375 -0.38

2988580 64 29.625 1.00

1484300 55 20.625 0.70

5361700 56 21.625 0.73

2984520 72 37.625 1.27

1088320 25 -9.375 -0.32

Table 29: SCML Decision Statistics

175

Measures of variability depict how widely data in a sample varies from the mean, other-

wise known as the spread of the data. The deviation is an actual measure of this difference,

and is shown in the third column of Table 29. The standard deviation is the average de-

viation of each value from the mean. The Logfile group had a standard deviation of 16.98

decisions across its data points as opposed to the much higher SCML group standard de-

viation of 29.65. The range is a simple calculation of the difference between the highest

and lowest values in group of data. Range values are 55 for the Logfile group and 107 for

SCML group. For each value in the table, the corresponding Z-score is shown in the third

column of information. A Z-score is a value representing number of standard deviations a

data point is from the mean. For example, a value with a Z-score of -1.22 is 1.22 standard

deviations to the left of (less) than the mean.

Examining the relative frequencies of decision-making will give an even better depiction

of how the participants in each group fared during the experiment. Figure 61 are histograms

of frequency data for both experimental groups. Each bin in the frequency table is a count

of the number of participants that fell with a certain range. For example, Bin 15 is a count

of all players with between 0 and 15 good decisions; Bin 30 are all players with between 16

and 30 good decisions. Referring to the upper table in the diagram, which is for the Logfile

group, it can be seen that there were more players who had fifteen or fewer decisions than

any other category. This is also true for the SCML group. However, the cumulative affect

is different, that is, the percentage of total players represented by the bins. The histograms

show the distribution of decision counts as a cumulative effect. Eighty-eight percent of the

participants on the Logfile group had 45 or fewer good decisions, while one-third of the

SCML group had more that 45 good decisions.

176

(a)

(b)

Figure 61: Decision Frequency Histograms

177

6.4 Hypothesis Testing

Hypothesis testing is the process of using statistical analysis and probability distributions

to determine the validity of a claim. This is done by analyzing two competing claims: a null

hypothesis and an alternate hypothesis. A null hypothesis is a theory that is put forward

as a basis for an argument. The alternative hypothesis is a statement of what is really to

be proven. The results of the experiment are used to disprove or reject the null hypothesis,

validating the alternative. The hypotheses are stated by comparing sampling statistics, such

as the mean, standard deviation, or variance.

For this experiment, the hypothesis testing revolves around a comparison of the sample

means. The mean (Greek symbol µ) is the average number of good decisions in a group.

The mean for the Logfile group is depicted in the analysis with µ. The SCML group’s mean

is shown as µ
0
. The null hypothesis, H 0, is that there is no difference between the means

and the probabilities for either group’s success are the same. H 0 means that the SCML-

encoded information had no affect on the decision-making. Mathematically, H 0 is µ = µ
0
.

The alternate hypothesis, H a is that there is a difference between the means of the two

groups, given by the formula: µ 6= µ
0
.

A normal probability distribution curve was created with the sample statistics in order

to compare the hypotheses. We can assume a normal distribution for the data because

of the central limit theorem. The central limit theorem states that the distribution of an

average tends to be normal, even when the distribution from which the average is computed

is non-normal [59]. A test statistic can be calculated from the sample data and plotted on a

normal distribution to determine which hypothesis to accept. The technique for comparing

the decision samples is called a z-test for sample means. The test statistic is represented as

z . The process is to calculate the z value and determine where it occurs on the probability

curve.

A level of significance, (denoted α) has to be chosen to establish the probability of error.

There are two kinds of errors to be considered: Type I and Type II. A Type I error (also

called errors of the first kind) occurs when the null hypothesis is rejected when it is true.

Type II errors (errors of the second kind) denote when the alternative hypothesis is wrongly

178

rejected. Type I errors are the most important to avoid, so the α value is selected as small

as possible. For this experiment, α = 0.15, meaning that there is a 15% probability of a

Type I error. Using this value, a confidence interval under the distribution curve can be

determined. The confidence interval refers to the range of values for the test statistics where

the null hypothesis can be safely accepted. The critical region (also known as the region of

rejection) are the set of values for which the null hypothesis should be rejected.

The following table (Table 30) shows the results of a Z-test on the means of both exper-

iment groups. The mean and number of observations are taken directly from the sampling

data of both experimental groups. P-values are calculated using standard statistical formu-

las. A P-value is the probability of getting a value of a test statistic as extreme or more

extreme than that observed by chance alone, if the null hypothesis is true. In the table

are p-values for one-tailed and two-tailed hypothesis test. A one-tailed test is a statistical

test where the values for which we can reject the null hypothesis occurs on one-side of the

distribution curve. Two-tailed tests have rejection regions on either side of the distribution

curve. Because H a states that there will be a difference in the means, but does not state

which sample will have the higher µ value, the two-tailed test is the relevant p-value.

Table 30: z-Test Comparison of Sample Means

Logfile SCML

Mean 24.64 34.38

Observations 25 24

Hypothesized Mean Difference 0

z -1.402

P(Z<=z) one-tail 0.0803

z-critical one-tail 0.8416

P(Z<=z) two-tail 0.1607

z-critical two-tail 1.2816

179

The z-critical two-tail, the critical value, is plus or minus 1.28 as shown in the table.

A critical value is the threshold for which the value of the z-test should be rejected. The

calculated z-statistic falls outside the region of acceptance to the left of the distribution

curve, as depicted in Figure 62 [8]. This z value means that there is a 84% probability

that the alternate hypothesis, H a , is true and there is a statistically significant difference

in number of good decisions between the two groups. The fact that z occurs on the left in

the two-tailed test means that µ < µ
0
; there is a statistically significant probability that the

average number of good decisions will be higher for the SCML group than for the Logfile

group.

Figure 62: Z-statistic on distribution curve

I also performed a t-test for sample means to validate this result. A t-test is useful for

180

approximating the normal distribution if the number of data values is less than thirty. There

were enough data values that a z-test could be used, however, it helps to check the results

using another statistical test. In Table 31, the calculated t-statistic is -1.5, which is outside

the confidence interval established at the t-critical (two-tail) value of ±1.489. The calculate

P-value means that there is an 85.5% probability that the SCML group will have the better

average of good decisions between the two experimental groups.

Table 31: t-Test for Sample Means

Logfile SCML

Mean 24.041 34.375

Observations 24 24

Pearson Correlation 0.040

Hypothesized Mean Difference 0

df 23

t Stat -1.506

P(T<=t) one-tail 0.073

t Critical one-tail 1.060

P(T<=t) two-tail 0.145

t Critical two-tail 1.489

6.5 Summary

The results of the experiment were not affected by the demographics or level of experience

of the participants in either group. The performance metrics support the conclusion that

the SCML group made more good decisions about the maze during game play. There is a

statistically significant improvement in the amount of good decision-making for the group

that used SCML-encoded information for planning. On the average, there were 30% more

of the good decisions from the SCML group.

181

Chapter 7

CONCLUSION

I feel that the greatest reward for doing is the opportunity to do more.

– Dr. Jonas Salk

7.1 Chapter Synopsis

Chapter 1 establishes the motivation and problem space for the scenario research. Chapter 2

is background information on narrative forms and their commonalities. Chapter 3 describes

the research approach of defining a scenario framework based on conceptually modeling

narrative and defining explicit relationships between scenario elements. Chapter 4 highlights

potential uses for the scenario framework and presents a proof-of-concept scenario generator

tool called Aesop. Chapter 5 is the design of an experiment to validate the positive impact

of a computer readable scenario format on decision making. Chapter 6 presented the results

of the empirical study comparing a sample of decision-makers using a simulation game.

7.2 Research Contribution

The primary intellectual contribution of the research is the scenario ontology and repre-

sentation. The ontology was derived from an extensive examination of narrative domains,

identifying the teleological story components, their relationships, constraints, and establish-

ing the semantics for them. The ontology includes the scenario conceptual model, dynamic

navigation model, and mathematical description of scenario elements and properties.

The secondary intellectual contribution is the hyperscenario framework which includes

the scenario grammar and design and implementation of a scenario specification language

based on the scenario ontology, SCML. The use of a markup language as the implementation

platform effectively separates the form of a scenario from the scenario applications that

manipulate it.

182

7.3 Future Work

There are three major tasks for the hyperscenario framework: 1) creating an XMLS version

of SCML, 2) Mapping the scenario ontology to DAML+OIL. 3) Performing an empirical

study on the impact of scenario navigation styles on decision-making.

7.3.1 Defining and implementing and XMLS version of SCML

As described in previous chapters, the SCML DTD was chosen for implementation based

on existing tools and technologies available at the beginning of this effort. However, the

XML Schema definition has now matured and there are now a wealth of tool sets that can

effectively use XMLS. Some of the desirable features of XMLS include:

• Object-Oriented Approach

• Wider range of basic types available, more than the CDATA and PCDATA types in

DTDs. The basic types include byte, integer, string and floating point numbers as

well as ISO types for internationalization.

• The ability to create complex, user-defined types from the basic types and other user

defined types

• Assignment of cardinality constraints and multiplicities to data

• The ability to require uniqueness of elements

• XMLS is written in XML

• It is easier to associate with both relational and object-oriented databases, as well

as XML-oriented data storage structures. XQuery and XForms technologies for dis-

tributed information storage and retrieval assume an XML Schema

The new version of the scenario language, called SCML-S, will support strong data typing

in the language and better support for automated reasoning through interaction with RDF

and DAML. It will also be possible to have stand-alone scenario elements, such as episodes

and events, since there is not the constraint of a root element.

183

7.3.2 Creating a DAML+OIL implementation of the scenario ontology

The DAML+OIL language, and its successor, OWL-S, are the basis for the semantic web.

Software agents that exchange information across networks are being coded to lookup and

access services based on DAML+OIL syntax and rules. SCML as an implementation suffers

from the limitations of being a DTD, as outlined in the previous section. There is also

a problem that it is difficult to represent the axioms and rules of a domain in an XML

language. A DAML+OIL version of the scenario ontology would allow the inclusion of

descriptive logics into the mathematical model, making scenario element relationships more

explicit and easier to define. Automated reasoning support could then be created for the

scenario framework, making it possible to build tools that not only display stories, but could

“reason” about stories as well. The DAML+OIL representation of the scenario framework

would also have have the aforementioned affect of making the ontology in a better form for

mapping to a wide range of existing ontologies.

7.3.3 Empirical study of Scenario Navigation for Decision-making

The hyperlink structures and navigational styles outlined in the framework chapter were

not part of the decision-making experiment. To keep the interaction simple, each scenario

was contained in only one SCML document. The collaborative and distributed nature of

hyperscenarios need to be tested in an environment that supports creating scenario artifacts

that are linked together to create a coherent story. The experiment will have to be concerned

with the type of collaborative activities that can be supported with a distributed scenario and

how can the story be managed and maintain coherency. Can software agents be constructed

that can follow the distributed links of a hyperscenario to create several versions of a story?

7.4 Conclusion

Scenarios are narratives that help policy makers and system designers choose among alter-

native courses of action. Scenarios also appear to mimic our cognitive processes, making a

story view of information fit naturally into problem solving. Scenario-based decision-making

crosses many domains and multiple perspectives. Existing scenario environments are not

184

capable of supporting the wide spectrum of formality from executable simulation programs

to free-form text to streaming media descriptions.

The thesis of this research claimed that a computer readable scenario framework could

capture the semantics of a problem domain and make scenarios an active part of decision

making. This dissertation described the Hyperscenario Framework and a scenario ontology

derived by examining alternate forms of narrative. The approach was to define a scenario

conceptual model based on the forms of narrative and the activities of storytelling. This

method separates what a narrative is from how it is used. This research contributed an

ontology that included a conceptual model of scenarios, a formal mathematical model, a

context-free grammar, and a language implementation of that grammar. The results of

a web-enabled simulation experiment validated the claim of improvement in the number

of good decisions using SCML-encoded documents. Future work will involve improving

the language implementation, representing the ontology in a computer readable form, and

studying the impact of scenario navigation on decision-making.

185

Appendix A

SCENARIO MARKUP LANGUAGE

DOCUMENT TYPE DEFINITION

186

<!-- SCML(Scenario Markup Language) -->

<!-- Revised: Mar 2005 -->

<!-- Author: Reginald L. Hobbs -->

<!ENTITY % actiontp "atrans|ptrans|propel|move|grasp|ingest|

expel|mtrans|conc|mbuild|attend|speak">

<!ENTITY % acttp "setup|conflict|resolution|denouement">

<!ENTITY % cuttp "reaction|jump">

<!ELEMENT hyperscenario (goal, cast?, inventory?, (episode+|act+))>

<!ATTLIST hyperscenario

hyperscenarioID ID #IMPLIED

title NMTOKEN #REQUIRED

logline CDATA #IMPLIED

synopsis CDATA #IMPLIED

settings CDATA #IMPLIED>

<!ELEMENT cast (character+)>

<!ELEMENT inventory (prop+)>

<!ELEMENT character (role|actor|prop)>

<!ELEMENT role (goal,(archetype?|actor+))>

<!ATTLIST role (goal+)

roleID ID #REQUIRED

name NMTOKEN #REQUIRED

actions CDATA #IMPLIED>

<!ELEMENT actor (#PCDATA)>

187

<!ATTLIST actor

actorID ID #REQUIRED

name NMTOKEN #REQUIRED

role CDATA #IMPLIED

responsibility IDREF #IMPLIED>

<!ELEMENT prop (#PCDATA)>

<!ATTLIST prop

propID ID #REQUIRED

name NMTOKEN #REQUIRED

targetOF IDREF #IMPLIED>

<!ELEMENT act (episode+)>

<!ATTLIST act

name NMTOKEN #IMPLIED

acttp (%acttp;) "conflict">

<!ELEMENT episode (goal, (scene+|event+))>

<!ATTLIST episode

episodeID ID #IMPLIED

name NMTOKEN #IMPLIED>

<!ELEMENT goal (#PCDATA)>

<!ATTLIST goal

goalID ID #IMPLIED

name NMTOKEN #IMPLIED

description CDATA #IMPLIED>

188

<!ELEMENT scene (setting, event+)>

<ATTLIST scene

sceneID ID #IMPLIED

name NMTOKEN #IMPLIED

slugline CDATA #IMPLIED>

<!ELEMENT setting (#PCDATA)>

<!ELEMENT event (goal?, action+)>

<!ATTLIST event

eventID ID #IMPLIED

name NMTOKEN #IMPLIED>

<!ELEMENT action (goal?, actor?, prop?, storylink*)>

<!ATTLIST action

actionID ID #IMPLIED

name NMTOKEN #IMPLIED

actiontype (%actiontp;) "move"

originator IDREF #IMPLIED

target IDREF #IMPLIED>

<!ELEMENT storylink (annotation|flashback|transition|

cut|slide|dependency|equivalence|prerequisite|

rewind|setup|conclusion)>

<!ATTLIST storylink

source ID #IMPLIED

target IDREF #REQUIRED

class CDATA #IMPLIED

xml:link CDATA #FIXED "simple"

189

href CDATA #IMPLIED

role CDATA "transition"

title CDATA #IMPLIED

show (embed|replace|new) "new"

actuate (auto|user) "user"

behavior CDATA #IMPLIED>

<!ELEMENT annotation EMPTY>

<!ELEMENT flashback EMPTY>

<!ELEMENT transition EMPTY>

<!ELEMENT cut EMPTY>

<!ATTLIST cut

cuttype (%cuttp;) "reaction">

<!ELEMENT slide EMPTY>

<!ELEMENT dependency EMPTY>

<!ELEMENT equivalence EMPTY>

<!ELEMENT prerequisite EMPTY>

<!ELEMENT rewind EMPTY>

<!ELEMENT setup EMPTY>

<!ELEMENT conclusion EMPTY>

190

Appendix B

EXPERIMENT DOCUMENTS

191

Call for Research Participants

I am seeking participants to use an experimental game environment developed as part

of my research. The game is a 3-D maze simulation accessible across the web. The

purpose of the game is to determine how the availability of a narrative-based, scenario

view of data impacts decision-making.

Using the arrow keys and function keys on your keyboard, you will navigate and interact

with the maze environment. Each participant will play the game several times, using log

file information generated between sessions for planning. The experiment should take 70

minutes or less to complete. Because of incompatibilities with the MS Internet Explorer

Java environment, the experiment has to be accessed using Mozilla 4.0 or Netscape 7.0

or higher.

This is a research study, so you will be required to complete a short, online survey at the

end of the game play (all information is confidential and protected by IRB guidelines).

If you are interested you may access further experiment information at:

http://www.cc.gatech.edu/~reggie/experiment.htm

Thank You.

Reginald L. Hobbs

reggie@cc.gatech.edu

192

Research Consent Form

Georgia Institute of Technology

1. Project Title: The Effect of a Computational Scenario Framework on Decision-

making in a 3-D Maze Simulation

2. Investigator: Reginald L. Hobbs

3. Purpose of Research: You are being asked to be a volunteer in a research study

to assess the impact of a scenario specification environment on decision-making. The

experiment will take approximately 70 minutes to complete. There will be a maximum

of 50 participants in this study.

4. Procedures: The experiment will consist of the repetition of a series of game playing

sessions within a web-enabled 3-D maze. There will be six game sessions per partici-

pant. The first game is done for initialization purposes and for game familiarization;

at that time you will be presented with an instruction page that describes how to play

the game. The length of individual sessions will be limited to 5 minutes or until the

objective is achieved, whichever occurs first. You will be randomly assigned to one of

two groups that will have alternate methods of reviewing game sessions. A browser

will be available to review the previous game for the purpose of planning the next

session. Intra-game reviews will be limited to 5 minutes or less. A survey will be

presented to you at the end of the overall session to collect your assessment of the

game.

5. Foreseeable Risks/Discomforts: The risks involved are minimal and are no greater

than those involved in accessing the Internet, browsing the Web, or playing simple

puzzle games.

6. Benefits: You may not benefit directly from participating in this study; however, your

participation may provide additional knowledge about the domain being investigated.

7. Compensation: You will not be paid for your participation in this research study.

193

8. Confidentiality: The following procedures will be followed to keep your personal

information confidential in this study: The data that is collected about you will be

kept private to the extent allowed by law. To protect your privacy, your records will

be kept under a code number rather than by name. Your name and any other fact

that might point to you will not appear when results of this study are presented or

published.

You should be aware that the experiment is not being run from a secure Web server

of the kind typically used to handle credit card transactions, so there is a small pos-

sibility that responses could be viewed by unauthorized third parties (e.g., computer

hackers). Also, in general the web page software will log as header lines the IP address

of the machine you use to access this page, but otherwise no other information will be

stored unless you explicitly enter it.

To make sure that this research is being carried out in the proper way, the Geor-

gia Institute of Technology IRB may review study records.

9. Costs: There is no cost to you for participation in this study.

10. Subject Rights: Your participation in this study is voluntary. You do not have to

be in this study if you don’t want to be. You have the right to change your mind and

leave the study at any time without giving any reason, and without penalty. Any new

information that may make you change your mind about being in this study will be

given to you. You do not waive any of your legal rights by acknowledging this consent

form.

Questions about the Study or Your Rights as a Research Subject: If you have any questions

about the study, you may contact Reginald Hobbs, at telephone (404) 894-1807. If you have

any questions about your rights as a research subject, you may contact Ms. Alice Basler,

Georgia Institute of Technology at (404) 894-6942.

194

Registration Form

1. Name

2. E-mail address. Please enter a complete e-mail address.

3. Age

• 18-25

• 25-35

• 35-45

• 45+

4. Gender

• Male

• Female

5. Educational Level

• Undergraduate

• Graduate

• Post-graduate

195

6. Please indicate your level of experience with the following games/environments on a

scale of 1 to 5. 1=never, 3=sometimes, 5=often.

Role-Playing Games 1 2 3 4 5

Crossword Puzzles 1 2 3 4 5

Word Search 1 2 3 4 5

Logic Puzzles 1 2 3 4 5

Chat Rooms 1 2 3 4 5

PC Simulation Games 1 2 3 4 5

Adventure/Combat MUDs 1 2 3 4 5

Social MUDs 1 2 3 4 5

Video Games 1 2 3 4 5

Board Games 1 2 3 4 5

Card Games 1 2 3 4 5

196

Comments on Registration Form

1. Name: For identification purposes. The first initial and last name will be used to

create a username for access to the simulation environment Participants may access

the system only once.

2. E-mail Address: Verification of identity to prevent duplication.

3. Age: Demographic purposes.

4. Gender: Demographic purposes.

5. Educational Level: Demographic purposes.

6. Game Experience: The categories were chosen to determine the type and frequency

of experience with the following attributes:

• Immersive/Role-Playing

• Games of Chance

• Pattern Matching

• Memory

• Interaction

197

Appendix C

SCENARIO GRAMMAR AUTOMATON

198

State 27 conflicts: 2 shift/reduce

Grammar

0 $accept: scenario $end

1 scenario: goal cast inventory episodes

2 | goal cast inventory acts

3 cast: /* empty */

4 | cast character

5 character: prop

6 | role

7 | actor

8 inventory: /* empty */

9 | manifest props

10 props: prop

11 | props prop

12 role: archetype

13 acts: act

14 | acts act

15 act: episodes intermission

16 episodes: episode

17 | episodes episode

18 episode: goal events

19 | goal scenes

20 scenes: scene

21 | scenes scene

22 scene: setting events

23 events: event

24 | events event

25 event: actions

199

26 actions: action

27 | actions action

28 action: verb

29 | verb prop

30 | actor verb

31 | actor verb prop

Terminals, with rules where they appear

$end (0) 0

error (256)

goal (258) 1 2 18 19

prop (259) 5 10 11 29 31

actor (260) 7 30 31

archetype (261) 12

setting (262) 22

intermission (263) 15

manifest (264) 9

verb (265) 28 29 30 31

Nonterminals, with rules where they appear

$accept (11)

on left: 0

scenario (12)

on left: 1 2, on right: 0

cast (13)

on left: 3 4, on right: 1 2 4

character (14)

on left: 5 6 7, on right: 4

200

inventory (15)

on left: 8 9, on right: 1 2

props (16)

on left: 10 11, on right: 9 11

role (17)

on left: 12, on right: 6

acts (18)

on left: 13 14, on right: 2 14

act (19)

on left: 15, on right: 13 14

episodes (20)

on left: 16 17, on right: 1 15 17

episode (21)

on left: 18 19, on right: 16 17

scenes (22)

on left: 20 21, on right: 19 21

scene (23)

on left: 22, on right: 20 21

events (24)

on left: 23 24, on right: 18 22 24

event (25)

on left: 25, on right: 23 24

actions (26)

on left: 26 27, on right: 25 27

action (27)

on left: 28 29 30 31, on right: 26 27

201

States

state 0

0 $accept: . scenario $end

1 scenario: . goal cast inventory episodes

2 | . goal cast inventory acts

goal shift, and go to state 1

scenario go to state 2

state 1

1 scenario: goal . cast inventory episodes

2 | goal . cast inventory acts

3 cast: .

4 | . cast character

$default reduce using rule 3 (cast)

cast go to state 3

state 2

0 $accept: scenario . $end

$end shift, and go to state 4

state 3

1 scenario: goal cast . inventory episodes

2 | goal cast . inventory acts

4 cast: cast . character

5 character: . prop

6 | . role

7 | . actor

8 inventory: . [goal]

9 | . manifest props

12 role: . archetype

prop shift, and go to state 5

202

actor shift, and go to state 6

archetype shift, and go to state 7

manifest shift, and go to state 8

$default reduce using rule 8 (inventory)

character go to state 9

inventory go to state 10

role go to state 11

state 4

0 $accept: scenario $end .

$default accept

state 5

5 character: prop .

$default reduce using rule 5 (character)

state 6

7 character: actor .

$default reduce using rule 7 (character)

state 7

12 role: archetype .

$default reduce using rule 12 (role)

state 8

9 inventory: manifest . props

10 props: . prop

11 | . props prop

prop shift, and go to state 12

props go to state 13

state 9

4 cast: cast character .

$default reduce using rule 4 (cast)

state 10

203

1 scenario: goal cast inventory . episodes

2 | goal cast inventory . acts

13 acts: . act

14 | . acts act

15 act: . episodes intermission

16 episodes: . episode

17 | . episodes episode

18 episode: . goal events

19 | . goal scenes

goal shift, and go to state 14

acts go to state 15

act go to state 16

episodes go to state 17

episode go to state 18

state 11

6 character: role .

$default reduce using rule 6 (character)

state 12

10 props: prop .

$default reduce using rule 10 (props)

state 13

9 inventory: manifest props . [goal]

11 props: props . prop

prop shift, and go to state 19

$default reduce using rule 9 (inventory)

state 14

18 episode: goal . events

19 | goal . scenes

20 scenes: . scene

204

21 | . scenes scene

22 scene: . setting events

23 events: . event

24 | . events event

25 event: . actions

26 actions: . action

27 | . actions action

28 action: . verb

29 | . verb prop

30 | . actor verb

31 | . actor verb prop

actor shift, and go to state 20

setting shift, and go to state 21

verb shift, and go to state 22

scenes go to state 23

scene go to state 24

events go to state 25

event go to state 26

actions go to state 27

action go to state 28

state 15

2 scenario: goal cast inventory acts . [$end]

14 acts: acts . act

15 act: . episodes intermission

16 episodes: . episode

17 | . episodes episode

18 episode: . goal events

19 | . goal scenes

goal shift, and go to state 14

205

$default reduce using rule 2 (scenario)

act go to state 29

episodes go to state 30

episode go to state 18

state 16

13 acts: act .

$default reduce using rule 13 (acts)

state 17

1 scenario: goal cast inventory episodes . [$end]

15 act: episodes . intermission

17 episodes: episodes . episode

18 episode: . goal events

19 | . goal scenes

goal shift, and go to state 14

intermission shift, and go to state 31

$default reduce using rule 1 (scenario)

episode go to state 32

state 18

16 episodes: episode .

$default reduce using rule 16 (episodes)

state 19

11 props: props prop .

$default reduce using rule 11 (props)

state 20

30 action: actor . verb

31 | actor . verb prop

verb shift, and go to state 33

state 21

22 scene: setting . events

206

23 events: . event

24 | . events event

25 event: . actions

26 actions: . action

27 | . actions action

28 action: . verb

29 | . verb prop

30 | . actor verb

31 | . actor verb prop

actor shift, and go to state 20

verb shift, and go to state 22

events go to state 34

event go to state 26

actions go to state 27

action go to state 28

state 22

28 action: verb . [$end, goal, actor, setting, intermission, verb]

29 | verb . prop

prop shift, and go to state 35

$default reduce using rule 28 (action)

state 23

19 episode: goal scenes . [$end, goal, intermission]

21 scenes: scenes . scene

22 scene: . setting events

setting shift, and go to state 21

$default reduce using rule 19 (episode)

scene go to state 36

state 24

20 scenes: scene .

207

$default reduce using rule 20 (scenes)

state 25

18 episode: goal events . [$end, goal, intermission]

24 events: events . event

25 event: . actions

26 actions: . action

27 | . actions action

28 action: . verb

29 | . verb prop

30 | . actor verb

31 | . actor verb prop

actor shift, and go to state 20

verb shift, and go to state 22

$default reduce using rule 18 (episode)

event go to state 37

actions go to state 27

action go to state 28

state 26

23 events: event .

$default reduce using rule 23 (events)

state 27

25 event: actions . [$end, goal, actor, setting, intermission, verb]

27 actions: actions . action

28 action: . verb

29 | . verb prop

30 | . actor verb

31 | . actor verb prop

actor shift, and go to state 20

verb shift, and go to state 22

208

actor [reduce using rule 25 (event)]

verb [reduce using rule 25 (event)]

$default reduce using rule 25 (event)

action go to state 38

state 28

26 actions: action .

$default reduce using rule 26 (actions)

state 29

14 acts: acts act .

$default reduce using rule 14 (acts)

state 30

15 act: episodes . intermission

17 episodes: episodes . episode

18 episode: . goal events

19 | . goal scenes

goal shift, and go to state 14

intermission shift, and go to state 31

episode go to state 32

state 31

15 act: episodes intermission .

$default reduce using rule 15 (act)

state 32

17 episodes: episodes episode .

$default reduce using rule 17 (episodes)

state 33

30 action: actor verb . [$end, goal, actor, setting, intermission, verb]

31 | actor verb . prop

prop shift, and go to state 39

$default reduce using rule 30 (action)

209

state 34

22 scene: setting events . [$end, goal, setting, intermission]

24 events: events . event

25 event: . actions

26 actions: . action

27 | . actions action

28 action: . verb

29 | . verb prop

30 | . actor verb

31 | . actor verb prop

actor shift, and go to state 20

verb shift, and go to state 22

$default reduce using rule 22 (scene)

event go to state 37

actions go to state 27

action go to state 28

state 35

29 action: verb prop .

$default reduce using rule 29 (action)

state 36

21 scenes: scenes scene .

$default reduce using rule 21 (scenes)

state 37

24 events: events event .

$default reduce using rule 24 (events)

state 38

27 actions: actions action .

$default reduce using rule 27 (actions)

state 39

210

31 action: actor verb prop .

$default reduce using rule 31 (action)

211

Appendix D

DESIGN DOCUMENTATION

212

Figure 63: Decision Maze Experiment Class Diagrams

213

Figure 64: 3-D Maze Class Diagrams

214

Figure 65: Scenario Prototype System Architecture

215

Appendix E

SHUTTLE SCENARIO

216

<hyperscenario title="Successful Shuttle Transport">

<goal>Process Passenger Request for Shuttle Transport</goal>

<episode episodeID=1 name="Initiate Transport Request">

<goal>Handle Transport Request</goal>

<event eventID=1 name="Notify Shuttle Agent of Request">

<action actionID=1 name="action1">

<actor>BrokerAgent</actor>

Send Order A Available Msg

<storylink source="."><setup/></storylink>

<storylink target="#action2"><transition/></storylink>

</action>

</event>

</episode>

<episode episodeID=2 name="Accept Bids For Transport Request">

<goal>Accept Bid From Shuttle Agent</goal>

<event eventID=2 name="Shuttle Agent Places Bid">

<action actionID=2 name="action2">

<actor>ShuttleAgent</actor>

Calculate Offer

<storylink target="#action1"><prerequisite/></storylink>

</action>

<action actionID=3 name="action3">

<actor>ShuttleAgent</actor>

Make Offer on Order A

<storylink target="#action4"><transition/></storylink>

</action>

</event>

</episode>

<episode episode=3 name="Start Shuttle Simulation">

217

<goal>Initialize Simulated Shuttle</goal>

<event eventID=3 name="Activate Shuttle Simulation">

<action actionID=4 name="action4">

<actor>ShuttleAgent</actor>

Send WakeUp Request

<storylink target="#action3"><prerequisite/></storylink>

<storylink target="#action5"><transition/></storylink>

</action>

</event>

</episode>

<episode episodeID=4 name="Process Multiple Transport Requests">

<goal>Process Multiple Transport Requests</goal>

<event eventID=4 name="Notify Shuttle Agent of Request">

<action actionID=5 name="action5">

<actor>BrokerAgent</actor>

Send Order B Available Msg

<storylink target="#action4"><prerequisite/></storylink>

</action>

</event>

<event eventID=5 name="Shuttle Agent Places Bid">

<action actionID=6 name="action6">

<actor>ShuttleAgent</actor>

Calculate Offer

<storylink target="#action2"><flashback/></storylink>

</action>

<action actionID=7 name="action7">

<actor>ShuttleAgent</actor>

Send WakeUp Request

<storylink target="#action8"><transition/></storylink>

218

</action>

</event>

</episode>

<episode episodeID=5 name="Choose Shuttle for Transport">

<goal>Select Shuttle to Handle Request</goal>

<event eventID=6 name="Shuttle Selection">

<action actionID=8 name="action8">

<actor>BrokerAgent</actor>

Calculate Offers for Order A

<storylink target="#action7"><prerequisite/></storylink>

</action>

<action actionID=9 name="action9">

<actor>BrokerAgent</actor>

Assign Order to Agent

</action>

<action actionID=10 name="action10">

<actor>BrokerAgent</actor>

Calculate Offers for Order B

<storylink target="#action11"><transition/></storylink>

</action>

</event>

</episode>

<episode episodeID=6 name="Transport Passenger(s)">

<goal>Transport Passenger(s) to Requested Destination</episode>

<event eventID=7 name="Determine Transport Route">

<action actionID=11 name="action11">

<actor>ShuttleAgent</actor>

Calculate Path

<storylink target="#action10"><prerequisite/></storylink>

219

</action>

<action actionID=12 name="action12">

<actor>ShuttleAgent</actor>

Send Move Shuttle Request

</action>

</event>

<event eventID=8 name="Shuttle Transport Movement">

<action actionID=13 name="action13">

<actor>Simulator</actor>

Check Command

<storylink target="."><annotation/></storylink>

</action>

<action actionID=14 name="action14">

<actor>Simulator</actor>

Send Shuttle Moving Msg

<storylink target="."><annotation/></storylink>

</action>

<action actionID=15 name="action15">

<actor>Simulator</actor>

Send Shuttle Arrived Msg

<storylink target="."><annotation/></storylink>

</action>

</event>

<event eventID=9 name="Load Passenger(s)">

<action actionID=16 name="action16">

<actor>ShuttleAgent</actor>

Send Load Shuttle for Order A Request

<storylink target="#action18"><cut/></storylink>

</action>

220

<action actionID=17 name="action17">

<actor>Simulator</actor>

Check Command

<storylink target="."><annotation/></storylink>

</action>

<action actionID=18 name="action18">

<actor>ShuttleAgent</actor>

Send Shuttle Loaded Msg

<storylink target="#action19"><cut/></storylink>

</action>

</event>

<event eventID=10 name="Unload Passenger(s)">

<action actionID=19 name="action19">

<actor>ShuttleAgent</actor>

Send Unload Shuttle for Order A Request

</action>

<action actionID=20 name="action20">

<actor>Simulator</actor>

Check Command

<storylink target="."><annotation/></storylink>

</action>

<action actionID=21 name="action21">

<actor>Simulator</actor>

Send Shuttle Unloaded Msg

<storylink target="#action22"><transition/></storylink>

</action>

</event>

</episode>

<episode episodeID=7 name="Complete Transport Request">

221

<goal>Assign Payment for Completed Transport</goal>

<event eventID=11 name="Request Payment for Shuttle Transport">

<action actionID=22 name="action22">

<actor>ShuttleAgent</actor>

Send Order A Invoice

<storylink target="#action21"><prerequisite/></storylink>

<storylink target="."><conclusion/></storylink>

</action>

</event>

</episode>

</hyperscenario>

222

Appendix F

EMPIRICAL DATA

223

Table 32: Logfile Chat Room Experience Statistics

Mean 1.788
Standard Error 0.249
Median 1
Mode 1
Standard Deviation 1.431
Sample Variance 2.047
Kurtosis 1.561
Skewness 1.760
Range 4
Minimum 1
Maximum 5
Sum 59
Count 33
Confidence Level(95.0%) 0.507

Table 33: SCML Chat Room Experience Statistics

Mean 2.485
Standard Error 0.258
Median 2
Mode 1
Standard Deviation 1.482
Sample Variance 2.195
Kurtosis -0.917
Skewness 0.676
Range 4
Minimum 1
Maximum 5
Sum 82
Count 33
Confidence Level(95.0%) 0.525

224

Table 34: Logfile Logic Puzzles Experience Statistics

Mean 3
Standard Error 0.200
Median 3
Mode 3
Standard Deviation 0.978
Sample Variance 0.957
Kurtosis 0.144
Skewness -0.913
Range 3
Minimum 1
Maximum 4
Sum 72
Count 24
Confidence Level(95.0%) 0.413

Table 35: SCML Logic Puzzles Experience Statistics

Mean 2.606
Standard Error 0.162
Median 3
Mode 3
Standard Deviation 0.933
Sample Variance 0.871
Kurtosis -0.642
Skewness -0.329
Range 3
Minimum 1
Maximum 4
Sum 86
Count 33
Confidence Level(95.0%) 0.331

225

Table 36: Logfile Video Game Experience Statistics

Mean 3.042
Standard Error 0.310
Median 3
Mode 4
Standard Deviation 1.517
Sample Variance 2.303
Kurtosis -1.450
Skewness -0.158
Range 4
Minimum 1
Maximum 5
Sum 73
Count 24
Confidence Level(95.0%) 0.641

Table 37: SCML Video Game Experience Statistics

Mean 3.485
Standard Error 0.243
Median 4
Mode 5
Standard Deviation 1.395
Sample Variance 1.945
Kurtosis -1.007
Skewness -0.519
Range 4
Minimum 1
Maximum 5
Sum 115
Count 33
Confidence Level(95.0%) 0.495

226

Table 38: Logfile Board Game Experience Statistics

Mean 3.375
Standard Error 0.281
Median 3
Mode 5
Standard Deviation 1.377
Sample Variance 1.897
Kurtosis -0.991
Skewness -0.315
Range 4
Minimum 1
Maximum 5
Sum 81
Count 24
Confidence Level(95.0%) 0.582

Table 39: SCML Board Game Experience Statistics

Mean 3.424
Standard Error 0.200
Median 3
Mode 3
Standard Deviation 1.146
Sample Variance 1.314
Kurtosis -0.872
Skewness 0.131
Range 4
Minimum 1
Maximum 5
Sum 113
Count 33
Confidence Level(95.0%) 0.407

227

Cumulative Frequency Tables

Logfile Decision

Frequency Distribution

Bin Frequency Cumulative %

15 11 44%

30 2 52%

45 9 88%

60 3 100%

75 0 100%

More 0 100%

SCML Decision

Frequency Distribution

Bin Frequency Cumulative %

15 8 33.3%

30 6 58.3%

45 2 66.7%

60 3 79.2%

75 3 91.7%

More 2 100.0%

228

Logfile Movement

Mean StdDev Median Range

119.00 94.84 111.5 389

Session ID Moves Deviation Z-Score
1588430 177 58.00 0.49
9203300 105 -14.00 -0.12
3044340 265 146.00 1.23
1260580 19 -100.00 -0.84
3904260 49 -70.00 -0.59
3268210 81 -38.00 -0.32
4724100 4 -115.00 -0.97
1100230 391 272.00 2.29
3432480 2 -117.00 -0.98
2144250 155 36.00 0.30
2616130 33 -86.00 -0.72
1592150 115 -4.00 -0.03
2096480 57 -62.00 -0.52
3524360 87 -32.00 -0.27
3832220 166 47.00 0.39
3828330 253 134.00 1.13
3268500 183 64.00 0.54
3928900 5 -114.00 -0.96
2952200 49 -70.00 -0.59
1448130 108 -11.00 -0.09
1708180 179 60.00 0.50
2324500 130 11.00 0.09
3304540 147 28.00 0.24
2329000 137 18.00 0.15
3784900 173 54.00 0.45
3204120 261 142.00 1.19
1148330 3 -116.00 -0.97
3344410 49 -70.00 -0.59
3180160 181 62.00 0.52
2828370 6 -113.00 -0.95

229

SCML Movement

Mean StdDev Median Range

121.03 114.81 117.92 453

Session ID Moves Deviation Z-Score
2272570 143 21.98 0.18
5361700 301 179.98 1.49
2984520 408 286.98 2.37
2988580 324 202.98 1.68
2500430 18 -103.03 -0.85
3280240 62 -59.03 -0.49
3352200 18 -103.03 -0.85
2864110 36 -85.03 -0.70
3272100 40 -81.03 -0.67
3072580 38 -83.03 -0.69
3112430 36 -85.03 -0.70
4020350 79 -42.03 -0.35
2764570 53 -68.03 -0.56
2012190 38 -83.03 -0.69
3144510 36 -85.03 -0.70
6281800 1 -120.03 -0.99
1040270 5 -116.03 -0.96
3144250 99 -22.03 -0.18
4036450 129 7.97 0.07
3424500 171 49.98 0.41
1436520 33 -88.03 -0.73
3648530 31 -90.03 -0.74
1744330 23 -98.03 -0.81
1484300 209 87.98 0.73
1488490 173 51.98 0.43
1100240 61 -60.03 -0.50
3804170 315 193.98 1.60
2444140 453 331.98 2.74
2128310 136 14.98 0.12
1964160 0 -121.03 -1.00
3412590 160 38.98 0.32
1088320 160 38.98 0.32
1928160 58 -63.03 -0.52
2924180 156 34.98 0.29
2468370 279 157.98 1.31
5482400 111 -10.03 -0.08
3205000 17 -104.03 -0.86
2776550 203 81.98 0.68
2944520 129 7.97 0.07
1168380 99 -22.03 -0.18

230

Logfile Swaps

Mean StdDev Median Range

10.37 8.29 9 27

Session ID Swaps Deviation Z-Score
1588430 24 13.63 1.64
9203300 20 9.63 1.16
3044340 12 1.63 0.20
1260580 6 -4.37 -0.53
3904260 6 -4.37 -0.53
3268210 14 3.63 0.44
4724100 0 -10.37 -1.25
1100230 27 16.63 2.01
3432480 27 16.63 2.01
2144250 13 2.63 0.32
2616130 3 -7.37 -0.89
1592150 13 2.63 0.32
2096480 4 -6.37 -0.77
3524360 8 -2.37 -0.29
3832220 27 16.63 2.01
3828330 16 5.63 0.68
3268500 12 1.63 0.20
3928900 0 -10.37 -1.25
2952200 6 -4.37 -0.53
1448130 10 -0.37 -0.04
1708180 4 -6.37 -0.77
2324500 3 -7.37 -0.89
3304540 4 -6.37 -0.77
2329000 10 -0.37 -0.04
3784900 6 -4.37 -0.53
3204120 18 7.63 0.92
1148330 0 -10.37 -1.25
3344410 6 -4.37 -0.53
3180160 12 1.63 0.20
2828370 0 -10.37 -1.25

231

SCML Swaps

Mean StdDev Median Range

12.85 17.25 6 73

Session ID Swaps Deviation Z-Score
2272570 20 7.15 0.41
5361700 54 41.15 2.39
2984520 73 60.15 3.49
2988580 42 29.15 1.69
2500430 6 -6.85 -0.40
3280240 8 -4.85 -0.28
3352200 3 -9.85 -0.57
2864110 8 -4.85 -0.28
3272100 3 -9.85 -0.57
3072580 4 -8.85 -0.51
3112430 6 -6.85 -0.40
4020350 4 -8.85 -0.51
2764570 8 -4.85 -0.28
2012190 3 -9.85 -0.57
3144510 6 -6.85 -0.40
6281800 0 -12.85 -0.74
1040270 0 -12.85 -0.74
3144250 7 -5.85 -0.34
4036450 42 29.15 1.69
3424500 42 29.15 1.69
1436520 6 -6.85 -0.40
3648530 6 -6.85 -0.40
1744330 6 -6.85 -0.40
1484300 47 34.15 1.98
1488490 30 17.15 0.99
1100240 6 -6.85 -0.40
3804170 2 -10.85 -0.63
2444140 0 -12.85 -0.74
2128310 11 -1.85 -0.11
1964160 0 -12.85 -0.74
3412590 4 -8.85 -0.51
1088320 10 -2.85 -0.17
1928160 6 -6.85 -0.40
2924180 3 -9.85 -0.57
2468370 12 -0.85 -0.05
5482400 9 -3.85 -0.22
3205000 0 -12.85 -0.74
2776550 4 -8.85 -0.51
2944520 7 -5.85 -0.34
1168380 6 -6.85 -0.40

232

Logfile Points

Mean StdDev Median Range

385.33 198.12 480 600

Session ID Points Deviation Z-Score
1588430 20 -365.33 -0.95
9203300 120 -265.33 -0.69
3044340 120 -265.33 -0.69
1260580 560 174.67 0.45
3904260 520 134.67 0.35
3268210 360 -25.33 -0.07
4724100 460 74.67 0.19
1100230 600 214.67 0.56
3432480 600 214.67 0.56
2144250 40 -345.33 -0.90
2616130 20 -365.33 -0.95
1592150 140 -245.33 -0.64
2096480 120 -265.33 -0.69
3524360 0 -385.33 -1.00
3832220 480 94.67 0.25
3828330 500 114.67 0.30
3268500 500 114.67 0.30
3928900 500 114.67 0.30
2952200 500 114.67 0.30
1448130 480 94.67 0.25
1708180 480 94.67 0.25
2324500 480 94.67 0.25
3304540 480 94.67 0.25
2329000 480 94.67 0.25
3784900 500 114.67 0.30
3204120 500 114.67 0.30
1148330 500 114.67 0.30
3344410 500 114.67 0.30
3180160 500 114.67 0.30
2828370 500 114.67 0.30

233

SCML Points

Mean StdDev Median Range

403.00 175.15 480 560

Session ID Points Deviation Z-Score
2272570 240 -163.00 -0.93
5361700 20 -383.00 -2.19
2984520 40 -363.00 -2.07
2988580 200 -203.00 -1.16
2500430 500 97.00 0.55
3280240 500 97.00 0.55
3352200 480 77.00 0.44
2864110 500 97.00 0.55
3272100 480 77.00 0.44
3072580 480 77.00 0.44
3112430 500 97.00 0.55
4020350 500 97.00 0.55
2764570 500 97.00 0.55
2012190 500 97.00 0.55
3144510 500 97.00 0.55
6281800 500 97.00 0.55
1040270 500 97.00 0.55
3144250 380 -23.00 -0.13
4036450 40 -363.00 -2.07
3424500 140 -263.00 -1.50
1436520 540 137.00 0.78
3648530 560 157.00 0.90
1744330 560 157.00 0.90
1484300 0 -403.00 -2.30
1488490 200 -203.00 -1.16
1100240 380 -23.00 -0.13
3804170 480 77.00 0.44
2444140 480 77.00 0.44
2128310 480 77.00 0.44
1964160 500 97.00 0.55
3412590 0 -403.00 -2.30
1088320 500 97.00 0.55
1928160 500 97.00 0.55
2924180 480 77.00 0.44
2468370 480 77.00 0.44
5482400 500 97.00 0.55
3205000 500 97.00 0.55
2776550 480 77.00 0.44
2944520 480 77.00 0.44
1168380 520 117.00 0.67

234

Logfile Wizard Visits

Mean StdDev Median Range

2.67 2.34 2 7

Session ID WizardVisits Deviation Z-Score
1588430 3 0.33 0.14
9203300 6 3.33 1.43
3044340 4 1.33 0.57
1260580 1 -1.67 -0.71
3904260 1 -1.67 -0.71
3268210 5 2.33 1.00
4724100 0 -2.67 -1.14
1100230 5 2.33 1.00
3432480 0 -2.67 -1.14
2144250 4 1.33 0.57
2616130 1 -1.67 -0.71
1592150 4 1.33 0.57
2096480 1 -1.67 -0.71
3524360 3 0.33 0.14
3832220 6 3.33 1.43
3828330 7 4.33 1.85
3268500 7 4.33 1.85
3928900 0 -2.67 -1.14
2952200 1 -1.67 -0.71
1448130 1 -1.67 -0.71
1708180 1 -1.67 -0.71
2324500 2 -0.67 -0.29
3304540 1 -1.67 -0.71
2329000 2 -0.67 -0.29
3784900 2 -0.67 -0.29
3204120 4 1.33 0.57
1148330 0 -2.67 -1.14
3344410 1 -1.67 -0.71
3180160 7 4.33 1.85
2828370 0 -2.67 -1.14

235

SCML Wizard Visits

Mean StdDev Median Range

2.65 3.64 1 14

Session ID WizardVisits Deviation Z-Score
2272570 5 2.35 0.65
5361700 13 10.35 2.84
2984520 14 11.35 3.12
2988580 12 9.35 2.57
2500430 1 -1.65 -0.45
3280240 1 -1.65 -0.45
3352200 1 -1.65 -0.45
2864110 1 -1.65 -0.45
3272100 1 -1.65 -0.45
3072580 1 -1.65 -0.45
3112430 1 -1.65 -0.45
4020350 1 -1.65 -0.45
2764570 1 -1.65 -0.45
2012190 1 -1.65 -0.45
3144510 1 -1.65 -0.45
6281800 0 -2.65 -0.73
1040270 0 -2.65 -0.73
3144250 1 -1.65 -0.45
4036450 6 3.35 0.92
3424500 9 6.35 1.74
1436520 1 -1.65 -0.45
3648530 1 -1.65 -0.45
1744330 1 -1.65 -0.45
1484300 5 2.35 0.65
1488490 8 5.35 1.47
1100240 2 -0.65 -0.18
3804170 1 -1.65 -0.45
2444140 0 -2.65 -0.73
2128310 4 1.35 0.37
1964160 0 -2.65 -0.73
3412590 1 -1.65 -0.45
1088320 3 0.35 0.10
1928160 1 -1.65 -0.45
2924180 0 -2.65 -0.73
2468370 1 -1.65 -0.45
5482400 1 -1.65 -0.45
3205000 0 -2.65 -0.73
2776550 2 -0.65 -0.18
2944520 1 -1.65 -0.45
1168380 2 -0.65 -0.18

236

Logfile Dragon Visits

Mean StdDev Median Variance Range

2 1.98 1.5 3.93 8

Session ID DragonVisits Deviation Z-Score
1588430 2 0.00 0.00
9203300 3 1.00 0.50
3044340 8 6.00 3.03
1260580 1 -1.00 -0.50
3904260 1 -1.00 -0.50
3268210 1 -1.00 -0.50
4724100 0 -2.00 -1.01
1100230 5 3.00 1.51
3432480 0 -2.00 -1.01
2144250 2 0.00 0.00
2616130 0 -2.00 -1.01
1592150 2 0.00 0.00
2096480 1 -1.00 -0.50
3524360 2 0.00 0.00
3832220 3 1.00 0.50
3828330 6 4.00 2.02
3268500 3 1.00 0.50
3928900 0 -2.00 -1.01
2952200 1 -1.00 -0.50
1448130 2 0.00 0.00
1708180 1 -1.00 -0.50
2324500 1 -1.00 -0.50
3304540 1 -1.00 -0.50
2329000 2 0.00 0.00
3784900 2 0.00 0.00
3204120 6 4.00 2.02
1148330 0 -2.00 -1.01
3344410 1 -1.00 -0.50
3180160 3 1.00 0.50
2828370 0 -2.00 -1.01

237

SCML Dragon Visits

Mean StdDev Median Range

1.75 2.59 1 12

Session ID DragonVisits Deviation Z-Score
2272570 3 1.25 0.48
5361700 9 7.25 2.80
2984520 12 10.25 3.96
2988580 7 5.25 2.03
2500430 0 -1.75 -0.68
3280240 1 -0.75 -0.29
3352200 0 -1.75 -0.68
2864110 1 -0.75 -0.29
3272100 0 -1.75 -0.68
3072580 0 -1.75 -0.68
3112430 1 -0.75 -0.29
4020350 0 -1.75 -0.68
2764570 1 -0.75 -0.29
2012190 0 -1.75 -0.68
3144510 1 -0.75 -0.29
6281800 0 -1.75 -0.68
1040270 0 -1.75 -0.68
3144250 1 -0.75 -0.29
4036450 4 2.25 0.87
3424500 5 3.25 1.26
1436520 1 -0.75 -0.29
3648530 1 -0.75 -0.29
1744330 1 -0.75 -0.29
1484300 1 -0.75 -0.29
1488490 2 0.25 0.10
1100240 1 -0.75 -0.29
3804170 0 -1.75 -0.68
2444140 0 -1.75 -0.68
2128310 4 2.25 0.87
1964160 0 -1.75 -0.68
3412590 0 -1.75 -0.68
1088320 4 2.25 0.87
1928160 1 -0.75 -0.29
2924180 2 0.25 0.10
2468370 1 -0.75 -0.29
5482400 1 -0.75 -0.29
3205000 0 -1.75 -0.68
2776550 1 -0.75 -0.29
2944520 2 0.25 0.10
1168380 1 -0.75 -0.29

238

Logfile Doorway Attempts

Mean StdDev Median Variance Range

4.27 3.87 2 14.96 12

Session ID DoorAttempts Deviation Z-Score
1588430 8 3.73 0.97
9203300 12 7.73 2.00
3044340 10 5.73 1.48
1260580 1 -3.27 -0.84
3904260 2 -2.27 -0.59
3268210 5 0.73 0.19
4724100 0 -4.27 -1.10
1100230 8 3.73 0.97
3432480 0 -4.27 -1.10
2144250 7 2.73 0.71
2616130 1 -3.27 -0.84
1592150 8 3.73 0.97
2096480 1 -3.27 -0.84
3524360 5 0.73 0.19
3832220 7 2.73 0.71
3828330 11 6.73 1.74
3268500 10 5.73 1.48
3928900 0 -4.27 -1.10
2952200 2 -2.27 -0.59
1448130 2 -2.27 -0.59
1708180 2 -2.27 -0.59
2324500 2 -2.27 -0.59
3304540 1 -3.27 -0.84
2329000 2 -2.27 -0.59
3784900 4 -0.27 -0.07
3204120 7 2.73 0.71
1148330 0 -4.27 -1.10
3344410 1 -3.27 -0.84
3180160 9 4.73 1.22
2828370 0 -4.27 -1.10

239

SCML Doorway Attempts

Mean StdDev Median Range

5.5 9.87 2 47

Session ID DoorAttempts Deviation Z-Score
2272570 6 0.50 0.05
5361700 34 28.50 2.89
2984520 47 41.50 4.20
2988580 29 23.50 2.38
2500430 1 -4.50 -0.46
3280240 1 -4.50 -0.46
3352200 2 -3.50 -0.35
2864110 2 -3.50 -0.35
3272100 3 -2.50 -0.25
3072580 0 -5.50 -0.56
3112430 1 -4.50 -0.46
4020350 1 -4.50 -0.46
2764570 2 -3.50 -0.35
2012190 5 -0.50 -0.05
3144510 1 -4.50 -0.46
6281800 0 -5.50 -0.56
1040270 0 -5.50 -0.56
3144250 2 -3.50 -0.35
4036450 12 6.50 0.66
3424500 17 11.50 1.17
1436520 1 -4.50 -0.46
3648530 1 -4.50 -0.46
1744330 1 -4.50 -0.46
1484300 6 0.50 0.05
1488490 9 3.50 0.35
1100240 2 -3.50 -0.35
3804170 2 -3.50 -0.35
2444140 0 -5.50 -0.56
2128310 5 -0.50 -0.05
1964160 0 -5.50 -0.56
3412590 0 -5.50 -0.56
1088320 7 1.50 0.15
1928160 1 -4.50 -0.46
2924180 7 1.50 0.15
2468370 2 -3.50 -0.35
5482400 1 -4.50 -0.46
3205000 3 -2.50 -0.25
2776550 2 -3.50 -0.35
2944520 1 -4.50 -0.46
1168380 3 -2.50 -0.25

240

Appendix G

ACTION CATEGORIES

241

• atrans - Transfer of an abstract relationship(i.e. control, ownership)

• ptrans - Transfer of physical location of an object

• propel - The application of physical force to an object

• move - The movement of a body part of an animal

• grasp - The grasping of an object by an actor

• ingest - The taking of an object by an animal

• expel - The expulsion from the body of an animal into the world

• mtrans - The transfer of mental information between or within animals

• conc - The conceptualization or thinking about an idea by an animal

• mbuild - The construction of new information from old information

• attend - The action of directing a sense organ towards an object

• speak - The action of producing sounds from the mouth

242

REFERENCES

[1] Adams, D., The Hitchhiker’s Guide To The Galaxy. New York, NY: Pocket Books,
1981.

[2] Alexander, C., Ishakaw, S., and Silverstein, M., A Pattern Language. New
York: Oxford University Press, 1977.

[3] Anderson, J. S. and Durney, B., “Using Scenarios in Deficiency-driven Require-
ments Engineering,” in IEEE International Symposium on Requirements Engineering,
(San Diego, CA), pp. 134–141, IEEE Computer Society Press, 1993.

[4] Anderson, J., Reder, L., and Simon, H., “"Situated Learning and Education,”
Educational Researcher, vol. 25.4, pp. 5–11, May 1996.

[5] Anderson, J. R., “Production Systems and the ACT-R Theory,” in Rules of the
Mind, pp. 1–14, Hillsdale, NJ: Erlbaum, 1993.

[6] Anton, A. I., “Goal-Based Requirements Analysis,” in Proceedings of the Second
IEEE International Conference on Requirements Engineering, April 1996.

[7] Ayyub, B. M. and McCuen, R. H., Numerical methods for engineers. Upper Saddle
River, NJ 07458, USA: Prentice-Hall, 1996.

[8] Ayyub, B. M. and McCuen, R. H., Probability, Statistics, and Reliability for Engi-
neers and Scientists. Chapman & Hall/CRC, 2002.

[9] Baader, F. and Narendran, P., “Unification of Concept Terms in Description
Logics,” in Proceedings of the International Workshop on Description Logics, DL’97,
pp. 34–38, LRI, Universitè PARIS-SUD, Cente d’Orsay, 1997.

[10] Bartle, R., Interactive Multi-User Computer Games. Muse Ltd, British Telecom
plc., 1990.

[11] Berger, J. O., Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,
1993.

[12] Berliner, B., “CVS II: Parallelizing Software Development,” white paper, Prisma,
Inc., Colorado Springs, CO, 1990.

[13] Böhm, K., Aberer, K., neuhold, E. J., and Yang, X., “Structured Docu-
ment Storage and Refined Declarative and Navigational Access Mechanisms in Hy-
perStorM,” The VLDB Journal, vol. 6, pp. 296–311, Nov. 1997.

[14] Borhauer, R., “Developing a Distributed Collaborative Battle Planning System - In-
tegration of Legacy Display Systems,” in Proceedings of the ARL Federated Laboratory
4th Annual Symposium, (College Park, MD), March 2000.

243

[15] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,
Nielsen, H. F., Thatte, S., and Winer, D., Simple Object Access Protocol
(SOAP) 1.1. World Wide Web Consortium, May 2000. statut : « W3C Note, W3C
Submission », http://www.w3.org/TR/SOAP/.

[16] Brooks, K., “Do Story Agents Use Rocking Chairs? The Theory and Implementation
of One Model for Computational Narrative,” in Proceedings of the Fourth ACM Mul-
timedia Conference (MULTIMEDIA’96), (New York, NY, USA), pp. 317–328, ACM
Press, Nov. 1996.

[17] Bruckman, A. S., “The MediaMOO Project: Constructionism and Professional
Community,” Convergence, vol. 1, no. 1, 1995.

[18] Brutzman, D., Morse, K., Pullen, M., and Zyda, M., “Extensible modeling and
simulation framework (xmsf): Challenges for web-based modeling and simulation,”
tech. rep., Naval Postgraduate School, Monterey, CA, 2002.

[19] Bush, V., “As We May Think,” The Atlantic Monthly, vol. 176, pp. 101–108, July
1945.

[20] Campbell, J., The Power Of Myth. New York, NY: Doubleday, Inc., 1988.

[21] Carey, S., Kleiner, M., Heib, M., and Brown, R., “Standardizing Battle Man-
agement Language-A Vital Move Towards the Army Transformation,” in Proceedings
of the 2001 Fall Simulations Interoperability Workshop, (Orlando, FL), September
2001.

[22] Carr, F. and Myers, L., “Interoperability and Reuse through a Modeling and Simu-
lation Common Operating Environment,” in Proceedings of the 2003 Spring Simulation
Interoperability Workshop, (Orlando, FL), April 2003.

[23] Carroll, J. M., “Editorial: Introduction to this Special Issue on "Scenario-Based
System Development",” Interacting with Computers, vol. 13, no. 1, pp. 41–42, 2000.

[24] Carroll, J. M., ed., Scenario-Based Design: Envisioning Work and Technology in
System Development. New York, NY: John Wiley & Sons, Inc., 1995.

[25] Carroll, J. M., “The Scenario Perspective on System Development,” in Scenario-
Based Design: Envisioning Work and Technology in System Development [24], pp. 1–
15.

[26] Carroll, J. M., Making Use: Scenario-based Design of Human-Computer Interac-
tions. Cambridge, MA.: MIT Press, 2000.

[27] Carroll, J. M., “Making Use: Scenarios and Scenario-Based Design,” in Proceedings
of the ACM SIGCHI Conference on Designing Interactive Systems: Processes, Prac-
tices, Methods and Techniques (DIS-00) (Boyarski, D. and Kellog, A. W., eds.),
(N.Y.), pp. 4–4, ACM Press, Aug. 17–19 2000.

[28] Carson, G. S. and Henderson, L., “The CALS standard (military computing),”
in NCGA’90 Conference Proceedings, (Fairfax, VA), pp. 570–598 (Vol. 1), National
Computer Graphics Association, 1990. 3 volumes.

244

[29] Cavitt, D. B., Overstreet, C. M., and Maly, K. J., “Modeling and Dis-
tributed Simulation Techniques for Synthetic Training Environments,” Technical Re-
port TR 96 15, Old Dominion University, Apr. 25, 1996.

[30] Chen, P. P., “ “The Entity-Relationship Model”,” ACM Trans. on Database Systems
(TODS), vol. 1, pp. 9–36, 1976.

[31] Clemen, R. T., Making Hard Decisions: An Introdution to Decision Analysis. Bel-
mont, CA: Wadsworth Publishing Company, second ed., 1996.

[32] Cline, M., “The Pros and Cons of Adopting and Applying Design Patterns in the
Real World,” Communications of the ACM, vol. 39, no. 10, pp. 37–39, 1996.

[33] Collins, A., Noonan, D., and Stark, E., Complete Warrior (Dungeons Dragons
Accessory). Renton, WA: Wizards of the Coast, Inc., 2003.

[34] Columbia Encyclopedia, The Columbia Encyclopedia. Columbia University Press,
sixth ed., 2004.

[35] Connolly, D., ed., XML: Principles, Tools, and Techniques, vol. 2(4) of The World
Wide Web Journal. Cambridge, MA: O’Reilly & Associates, Inc., Winter 1997.

[36] Crittenden, R., The Thames and Hudson Manual of Film Editing. London: Thames
and Hudson, Ltd, 1984.

[37] Crubezy, M. and Musen, M. A., “Ontologies in Support of Problem Solving,”
Stanford Medical Informatics, 2002.

[38] Dahmann, J., Fujimoto, R., and Weatherly, R., “The Department Of Defense
High Level Architecture,” Feb. 24 1999.

[39] Dautenhalm, K., “The Narrative Intelligence Hypothesis: In Search of the Transac-
tional Format of Narratives in Humans and Other Social Animals,” CT 2001, LNAI
2117, pp. 248–266, 2001.

[40] Dearden, A., Finlay, J., Allgar, E., and McManus, B., “Using Pattern Lan-
guages in Participatory Design,” in Proceedings of the Participatory Design Conference
2002, (Malmo, Sweden), June 2002.

[41] Decker, D., “The American Screenplay,” in Anatomy of a Screenplay, pp. 3–17, New
York: The Screenwriters Group, 1998.

[42] Dällenbach, L., The Mirror in the Text. Chicago, Illinois: The University of Chicago
Press, 1989.

[43] Dmytryk, E., On Film Editing. Boston, MA: Focal Press, 1984.

[44] Donnelly, C. and Stallman, R. M., Bison Manual: Using the YACC-compatible
Parser Generator. Boston, MA, USA: GNU Press, 2002.

[45] D.Schmidt, Johnson, R., and Fayad, M., “Software Patterns,” Communications of
the ACM, vol. 39, no. 10, pp. 37–39, 1996.

245

[46] Dunnigan, J. F., The Complete Wargames Handbook: How to Play, Design, & Find
Them. New York, NY: William Morrow and Company, 1992.

[47] Elmarisi, R. and Wu, Y.-C., “Conceptual Modeling for Customized XML Schemas,”
Lecture Notes in Computer Science, vol. 2503, pp. 429–443, 2002.

[48] Endsley, M., Pleban, R., and Matthews, M., “Measures of Platoon Leader Sit-
uation Awareness in Virtual Decision-Making Exercises,” Tech. Rep. 1753, US Army
Research Institute, Alexandria, VA, January 2000.

[49] Endsley, M. R. and Jones, D., “Designing to Support Situation Awareness in the
Objective Force,” in Proceedings of CTA Conference 2003 Advanced Decision Archi-
tectures, (College Park, MD), April-May 2003.

[50] Endsley, M. R. and Shattuck, L., “Situation Awareness Requirements for the
Future Objective Force,” in Proceedings of CTA Conference 2003 Advanced Decision
Architectures, (College Park, MD), April-May 2003.

[51] Farquhar, A., Rice, J., and Fikes, R., “Tools For Assembling Modular Ontologies
in Ontolingua,” tech. rep., Jan. 16 2002.

[52] Fensel, D., Harmelen, F., Horrocks, I., and Klein, M., “The Relation Between
Ontologies and XML Schemata,” Feb. 04 2001.

[53] Fickas, S., Johnson, W. L., Karat, J., and Potts, C., “Using Scenarios to Elicit
User Requirements,” in Proceedings of ACM CHI’94 Conference on Human Factors in
Computing Systems, vol. 2 of WORKSHOPS, p. 467, 1994.

[54] Field, S., The Foundations of Screenwriting. New York, NY: Dell Publishing, 1984.

[55] Flanagan, M., Arble, F., Clanton, C., Marks, H., and Murray, J., “Inter-
active Narrative: Stepping into Our Own Stories,” in Proceedings of ACM CHI 98
Conference on Human Factors in Computing Systems (Summary), vol. 2 of Panels,
pp. 88–89, 1998.

[56] Foundation for Intelligent Physical Agents, “FIPA 98 Specification Part 1:
Agent Management,” Oct. 1998. version 1.0.

[57] Fowler, M. and Scott, K., UML Distilled: Applying the Standard Modeling Object
Language. Object Technology Series, Addison-Wesley, 1997.

[58] Frensham, R., Screenwriting. Chicago, IL: NTC/Contemporary Publishing, 1996.

[59] Gall, M., Kutner, R., and Wesela, W., “The Proof and Illustration of the Central
Limit Theorem by Brownian Numerical Experiments in Real Time within the Java
Applet,” Lecture Notes in Computer Science, vol. 3037, pp. 467–474, 2004.

[60] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns. Reading,
MA: Addison Wesley, 1995.

[61] Gehrke, M., Giese, H., Nickel, U., Niere, J., Tichy, M., Wadsack, J., and
Zündorf, A., “Reporting about Industrial Strength Software Engineering Courses
for Undergraduates,” in Proc. of the 24

th International Conference on Software Engi-
neering (ICSE), Orlando, Florida,USA, pp. 395–405, May 2002.

246

[62] Genesereth, M. R. and Fikes, R. E., “Knowledge Interchange Format, Version 3.0
Reference Manual,” Tech. Rep. Logic-92-1, Computer Science Department, Stanford
University, Stanford, CA, USA, June 1992.

[63] Genter, D. and Markman, A., “Structure Mapping in Analogy and Similarity,”
American Psychologist, vol. 52.1, pp. 45–56, 1997.

[64] Gerdt, P., Kommers, P., Suhonen, J., and Sutinen, E., “StoryML: An XML
Extension for Woven Stories,” Lecture Notes in Computer Science, vol. 2363, pp. 893–
??, 2002.

[65] Giere, R. N., ed., Cognitive Models Of Science. Minneapolis, MN: University Of
Minnesota Press, 1992.

[66] Gonzalez, C., “ACT-R Implementation of an Instance-based Decision Making The-
ory,” in Proceedings of CTA Conference 2003 Advanced Decision Architectures, (Col-
lege Park, MD), April-May 2003.

[67] Gooding, D., “How Do Scientists Think? Capturing The Dynamics Of Conceptual
Change In Science,” in Giere [65], pp. 3–44.

[68] Gooding, D., “The Procedural Turn; or, Why Do Thought Experiments Work?,” in
Giere [65], pp. 45–76.

[69] Graham, I. S., HTML 4.0 sourcebook: A Complete Guide to HTML 4.0 and HTML
Extensions. New York, NY, USA: Wiley, fourth ed., 1998.

[70] Groff, J. R. and Weinberg, P. N., SQL: The Complete Reference. Berkeley:
McGraw Hill, 1999.

[71] Grose, T. J., Doney, G. C., and Brodsky, B., Mastering XMI: Java programming
with XMI, XML, and UML. New York, NY, USA; London, UK; Sydney, Australia:
John Wiley and Sons, 2002. Includes CD-ROM.

[72] Grosof, B. N. and Labrou, Y., “An Approach to Using XML and a Rule-Based
Content Language with an Agent Communication Language,” in Issues in Agent Com-
munication (Dignum, F. and Greaves, M., eds.), pp. 96–117, Springer-Verlag: Hei-
delberg, Germany, 2000.

[73] Gruber, T. R., “A Translation Approach to Portable Ontology Specifications,” Tech.
Rep. KSL 92-71, Knowledge Systems Laboratory, Stanford University, April 1993.

[74] Gruber, T. R., “Ontolingua: A Mechanism to Support Portable Ontologies,” tech.
rep., Sept. 01 1994.

[75] Harel, I. and Papert, S., “Software Design as a Learning Environment,” Interactive
Learning Environments, pp. 1–32, 1990.

[76] Hayes, C. and Cunningham, P., “Shaping a CBR View with XML,” Lecture Notes
in Computer Science, vol. 1650, pp. 468–??, 1999.

[77] Hayes-Roth, B. and Hayes-Roth, F., “A Cognitive Model of Planning,” in Cogni-
tive Science, pp. 275–310, Ablex Publishing Company, 1979.

247

[78] Heffner, C. L., Research Methods for Education, Psychology, and the Social Sci-
ences. Online E-textbook: AllPsych and Heffner Media Group, Inc., 2004.

[79] Henderson, C., “Model Execution in the OneSAF Objective System,” in Proceedings
of the 2003 Spring Simulation Interoperability Workshop, (Orlando, FL), April 2003.

[80] Hobbs, R., “Hyperscenarios: A Framework for Active Narrative,” in Proceedings of
the 38th Annual ACM Southeast Conference, (Clemson, SC), April 2000.

[81] Hobbs, R., “A Narrative Meta-Model Approach to Bridging M&S and C4I Appli-
cations,” in Proceedings of the 2003 Fall Simulations Interoperability Workshop, (Or-
lando, FL), September 2003.

[82] Hobbs, R., “Using XML to Support Military Decision-making,” in Proceedings of the
XML 2003 Convention & Exposition, (Philadelphia, PA), Dec 2003.

[83] Hobbs, R. L., “Hypermedia Scenarios for Command & Control,” in Proceedings of
the 13th Army Science Conference, (Norfolk, VA), 1998.

[84] Hobbs, R. L., “An XML-Based Framework For Battle Planning Simulations,” in 2000
Winter Simulations Conference, (Orlando, FL), December 2000.

[85] Hobbs, R. L., “A Narrative-Based Cognitive Model For Computer-Generated Forces,”
in Proceedings of the 10th Conference on Computer Generated Forces And Behavorial
Representation, (Norfolk, VA), May 2001. Abstract.

[86] Hobbs, R. L., “Sharing Stories: Using Narrative For Simulations Interoperability,” in
Proceedings of the 2003 Spring Simulations Interoperability Workshop, (Orlando, FL),
Simulations Interoperability Standards Organization (SISO), March 2003.

[87] Hobbs, R. L. and Potts, C., “Towards a Framework for Hypermedia Scenarios,”
Technical Report GIT-CC-98-06, College of Computing, Georgia Institute of Technol-
ogy, Atlanta, GA, Feb. 1998.

[88] Holmes, W. and Kogut, P., “XML + Semantics = DARPA Agent Markup Lan-
guage,” in Lockheed Martin Joint Symposium 2001, (Valley Forge, PA), June 2001.

[89] Holtzblatt, K. and Beyer, H., “Making Customer-Centered Design Work for
Teams,” Communications of the ACM, vol. 36, pp. 92–103, Oct. 1993.

[90] Horrocks, I., “DAML+OIL: A Reason-able Web Ontology Language,” in Proceed-
ings of the Advances in Database Technology - EDBT 2002, 8th International Con-
ference on Extending Database Technology, Prague, Czech Republic, March 25-27
(Jensen, C. S., Jeffery, K. G., Pokorný, J., Saltenis, S., Bertino, E., Böhm,
K., and Jarke, M., eds.), vol. 2287 of Lecture Notes in Computer Science, Springer,
2002.

[91] Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F., “Reviewing the
design of DAML+OIL: An ontology language for the semantic web,” in Proceedings
of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Con-
ference on Innovative Applications of Artificial Intelligence (AAAI/IAAI-02), (Menlo
Parc, CA, USA), pp. 792–797, AAAI Press, July 28– Aug. 1 2002.

248

[92] Houghton-Mifflin, Webster’s II Riverside Dictionary. New York, NY: Berkeley
Publishing Group, 1984.

[93] Houlihan, P., “Bookshelf: Design patterns for the enterprise: Enterprise Modeling
with UML: Designing Successful Software Through Business Analysis,” IEEE Software,
vol. 18, pp. 106–107, Jan./Feb. 2001.

[94] Huang, J.-Y. and Deng, L. Y., “Modeling of the HLA-based simulation system,”
Lecture Notes in Computer Science, vol. 2195, pp. 367–??, 2001.

[95] International Organization for Standardization, ISO/IEC 14977:1996: In-
formation technology — Syntactic metalanguage — Extended BNF. Geneva, Switzer-
land: International Organization for Standardization, 1996.

[96] Iscoe, N., Williams, G. B., and Arango, G., “Domain Modeling for Software
Engineering,” in Proceedings of the 13th International Conference on Software Engi-
neering, pp. 340–343, May 1991.

[97] Jacky, J., The Way of Z: Practical Programming with Formal Methods. Cambridge
University Press, 1997.

[98] James, H. S., “Correcting for Self-Selection Bias In Business Ethics Research,” Work-
ing Paper 2004-08, Contracting and Organizations Research Institute (CORI), New
York, NY, July 2004.

[99] Johnson-Laird, P. N., Mental Models: Towards a Cognitive Science of Language,
Inference, and Conciousness. Cambridge: Cambrige University Press, 1983.

[100] Johnson-Laird, P. N. and Wason, P. C., eds., Thinking: Readings In Cognitive
Science. Cambridge, MA: Cambridge University Press, 1997.

[101] Kalfoglou, Y. and Schorlemmer, M., “Information-Flow-Based Ontology Map-
ping,” CoopIS/DOA/ODBASE 2002, vol. LNCS 2519, pp. 1132–1151, 2002.

[102] Kaste, R. and O’May, J., “From Simulation to Insights: Experiments in the Use of
a Multi-criteria Viewer to Develop Understanding of the COA Space,” in Proceedings
of CTA Conference 2003 Advanced Decision Architectures, (College Park, MD), April-
May 2003.

[103] Keefer, D. L., Kirkwood, C. W., and Corner, J. L., “Perspective On Decision
Analysis Applications,” Decision Analysis, vol. 1, pp. 4–22, Mar. 2004.

[104] Kerner, J., “Joint Technical Architecture: Impact on Department of Defense Pro-
grams,” Crosstalk, The Journal of Defense Software Engineering, vol. Oct, 2001.

[105] Kesselman, J., Davis, M., Champion, M., and Pixley, T., “Document object
model (DOM) level 2 specification,” tech. rep., Mar. 07 2000.

[106] Kindler, E., Giese, H., Niere, J., Wadsack, J. P., Wendehals, L., Gehrke,
M., Wagner, R., and Schfer, W., “Software Engineering Education,” Feb. 11 2003.

[107] Klein, F., Seibel, A., and Giese, H., “Shuttle system case study,” Case Study
Description Version 1.0, University of Paderborn, Software Engineering Group, Oct.
2004.

249

[108] Kolodner, J., Owensby, J., and Guzdial, M., “Theory and Practice of Case
Based Learning Aids,” in Handbook of Research for Educational Communications and
Technology. 2nd edition, pp. 829–861, Mahwah, NJ: Lawrence Erlbaum Associates,
2004.

[109] Kraaij, W., “TNO at CLEF-2001: Comparing Translation Resources,” Aug. 20 2001.

[110] Kurtz, C., “StoryML: An XML Markup Language for Business Narrative,” tech.
rep., Knowledge Socialization Group. IBM T.J. Watson Research Center, Yorktown
Heights, NY, 2000.

[111] Kyng, M., “Creating Contexts for Design,” in Carroll [24], ch. 4, pp. 85–107. Aarhus
University, Department of Computer Science.

[112] Landow, G. P., ed., Hyper/Text/Theory. Baltimore, MD: Johns Hopkins University
Press, 1994.

[113] Laurel, B., Computers as Theatre. Reading, MA: Addison-Wesley Publishing Co.,
1991.

[114] Laurel, B., Bates, J., Don, A., and Strickland, R., “Interface and Narrative
Arts: Contributions from Narrative, Drama, and Film,” in Proceedings of ACM CHI’91
Conference on Human Factors in Computing Systems, Panels, pp. 381–383, 1991.

[115] Laurie, B. and Laurie, P., Apache: The Definitive Guide. 981 Chestnut Street,
Newton, MA 02164, USA: O’Reilly & Associates, Inc., 1997.

[116] Law, A. M. and Kelton, D. W., Simulation Modeling and Analysis. New York,
NY: McGraw-Hill, Inc., 1982.

[117] Lawrence, D. and Thomas, J. C., “Social dynamics of storytelling: Implications
for story-base design,” 1999.

[118] Liborg, N.-K., “A Study of Threats to Validity in Controlled Software Engineering
Experiments.” The University Of Oslo, 2004.

[119] Mack, R. L., “Discussion: Scenarios as Engines of Design,” in Carroll [24], ch. 14,
pp. 361–386. IBM T. J. Watson Research Center.

[120] Maeenpaeae, P., “Semantical BNF,” Lecture Notes in Computer Science, vol. 1512,
pp. 196–??, 1998.

[121] Mahemoff, M. J. and Johnston, L. J., “Pattern Languages for Usability: An
Investigation into Alternative Approaches,” in Proceedings of the Asia-Pacific Confer-
ence on HCI 1998 (APCHI), (Los Alamitos, CA), July 1998.

[122] Mayfield, J., Labrou, Y., and Finin, T., “Evaluating KQML as an Agent Com-
munication Language,” in Intelligent Agents II — Agent Theories, Architectures, and
Languages (LNAI 1037) (Wooldridge, M., Müller, J.-P., and Tambe, M., eds.),
pp. 347–360, Springer-Verlag: Heidelberg, Germany, 1996.

[123] McGuinness, D. L., Fikes, R., Hendler, H., and Stein, L. A., “DAML+OIL:
An ontology languages for the semantic web,” IEEE Intelligent Systems, 2002.

250

[124] Mcnichols, K., Fadali, M. S., and Robinson, M., “Teaching Engineering to K-12
Students Using Role Playing Games,” Aug. 30 2000.

[125] Mellor, S. J., Scott, K., Uhl, A., and Weise, D., MDA Distilled: Principles of
Model-Driven Architecture. Boston: Addison-Wesley, 2004.

[126] Merriam-Webster’s Collegiate Dictionary. Springfield, MA: Merriam-Webster,
tenth ed., 1993.

[127] Merriam-Webster Online Dictionary, “Merriam-webster online dictionary,”
2005.

[128] Milowski, A. and Richman, J., “Extensible stylesheet language (XSL) - version
1.0,” tech. rep., World-Wide Web Consortium, Nov. 13 2001.

[129] Minsky, M., The Society of Mind. London: Heinemann, 1987.

[130] Mitchell, M. L. and Jolley, J. M., Research Design Explained. Pacific Grove,
CA: Wadsworth, 5th ed., 2004.

[131] Mollaghasemi, M. and Pet-Edwards, J., Making Multiple-Objective Decisions.
Los Alamitos, CA: IEEE Computer Society, 1997.

[132] Moore, M. and Potts, C., “Meso-Adaptation of Systems,” Tech. Rep. BAA 00-20,
DASADA Program, DARPA Technical Proposal, 2000.

[133] Murray, J. H., Hamlet on the Holodeck: The Future of Narrative in Cyberspace.
New York, NY: Free Press, 1997.

[134] Nardi, B., Information Ecologies: Using Technology With Heart. Cambridge, MA:
MIT Press, 1999.

[135] Nardi, B. A., “Some Reflections on Scenarios,” in Carroll [24], ch. 15, pp. 387–399.
Apple Computer, Advanced Technology Group.

[136] Nederland, A. A., Fensel, D., Harmelen, F. V., Horrocks, I., Erdmann,
M., Klein, M., and Decker, S., “OIL in a Nutshell,” July 23 2000.

[137] Nersessian, N., “The Procedural Turn; Or, Why Do Thought Experiments Work?,”
in Giere [65], pp. 45–76.

[138] Nichols, D. A. and Curtis, P., “MUDs Grow Up: Social Virtual Reality in the
Real World,” tech. rep., Xerox PARC, 1993.

[139] NIST, “Standard Generalized Markup Language (SGML),” tech. rep., National Insti-
tute for Standards and Technology (NIST), Gaithersburg, MD, September 1988.

[140] Nurcan, S., Grosz, G., and Souveyet, C., “Describing Business Processes with a
Guided Use Case Approach,” Lecture Notes in Computer Science, vol. 1413, pp. 339–
??, 1998.

[141] Pearson, C. S., The Hero Within: Six Archetypes We Live By. New York, NY:
Harper & Row, Publishers, Inc., 1989.

251

[142] Penna, G. D. and Intrigila, B., “An XML Definition Language for Software Sys-
tem Specification,” in Proceedings of the 6th World Multi-Conference on Systemics,
Cybernetics,and Informatics, (Orlando, FL), July 2002.

[143] Pohl, K. and Haumer, P., “Modeling Contextual Information about Scenarios,” in
Proceedings REFSQ‘97, 3rd Int. Workshop on RE, (Barcelona, Spain), 1997.

[144] Potts, C., “Requirements Completeness, Enterprise Goals and Scenarios.” Research
Report, August 1994.

[145] Potts, C., “Using Schematic Scenarios to Understand User Needs,” in DIS95, Sce-
narios, pp. 247–256, ACM, 1995.

[146] Potts, C., “Using Schematic Scenarios to Understand User Needs,” in Proceedings of
the Symposium on Designing Interactive Systems: Processes, Practices, Methods and
Techniques (Olson, G. M. and Schuon, S., eds.), (New York), pp. 247–256, ACM
Press, 23–25 Aug. 1995.

[147] Potts, C., “ScenIC: A Strategy for Inquiry-Driven Requirements Determination,” in
RE’99: International Symposium on Requirements Engineering, (Limerick, Ireland),
IEEE Computer Society Press, 1999.

[148] Presley, A. and Liles, D. H., “Enterprise Modeling Within An Enterprise Engi-
neering Framework,” Sept. 10 1998.

[149] Propp, V., Morphology Of The Folktale. Austin, TX: University Of Texas Press,
1968.

[150] Restak, R. M., The Mind. New York, NY: Bantam Books, 1988.

[151] Roesler, A., Feil, M., and Woods, D. D., “Design is Sharing Stories About the
Future,” in Proceedings of CTA Conference 2003 Advanced Decision Architectures,
(College Park, MD), April-May 2003.

[152] Rosenberg, J., “The Structure of Hypertext Activity,” in Proceedings of the 7th
ACM Conference on Hypertext, (New York), pp. 22–30, ACM Press, 16–20 Mar. 1996.

[153] Ross, K. G. and Klein, G., “The Recognition Planning Model: Application for the
Objective Force Unit of Action,” in Proceedings of CTA Conference 2003 Advanced
Decision Architectures, (College Park, MD), April-May 2003.

[154] Rosson, M. B. and Carroll, J. M., Usability Engineering: Scenario-Based Devel-
opment of Human Computer Interaction. Morgan Kaufmann Publishers, 2001.

[155] Rouse III, R., “Gaming and Graphics: Looking for Some Art Amidst the Technol-
ogy,” Computer Graphics, vol. 33, pp. 7–10, Feb. 1999.

[156] Rutledge, L., Alberink, M., Brussee, R., Pokraev, S., van Dieten, W., and
Veenstra, M., “Finding the story: broader applicability of semantics and discourse
for hypermedia generation,” in Proceedings of the 14th ACM Conference on Hypertext
and Hypermedia (HYPERTEXT-03), (New York), pp. 67–76, ACM Press, Aug. 26–30
2003.

252

[157] Sarkar, S. and Cleveland, C., “XML Based Document Transform Applied To
Application Software Development Projects,” Oct. 2001.

[158] Schank, R., Fano, A., Bell, B., and Menachem, J., “The Design of Goal Based
Scenarios,” The Journal of the Learning Science, vol. 3.4, pp. 305–345, 1993/1994.

[159] Schank, R. and Kass, A., “A Goal Based Scenario for High School Students,” Com-
munications of the ACM, vol. 39.4, pp. 28–29, April 1996.

[160] Schank, R. C., Tell Me A Story: Narrative and Intelligence. Evanston, Ill: Norwest-
ern University Press, 1995.

[161] Schank, R. C. and Abelson, R. P., “Scripts, Plans and Knowledge,” in Proceedings
of the Fourth International Joint Conference on Artificial Intelligence, vol. 1, (Tbilisi,
Georgia, USSR), pp. 151–157, IJCAI, Sept. 1975.

[162] Schengili-Roberts, K., Core CSS: [Cascading Style Sheets]. Prentice Hall PTR
core series, Upper Saddle River, NJ 07458, USA: Prentice-Hall PTR, 2000. Subtitle
from cover.

[163] Scott, S., “Dueling Theories: Thought Experiments In Cognitive Science,” in
CogSci2000, (Philadelphia, PA), 22nd Cognitive Science Society Conference 2000, Aug.
2000.

[164] Segal, R. A., Joseph Campbell: An Introduction. New York, NY: Penguin Books
USA, 1990.

[165] Shah, R. and Romine, J., Playing MUDs on the Internet. New York, NY: John
Wiley & Sons, Inc, 1995.

[166] Shaker, S. and Gembecki, M., The WarRoom Guide to Competitive Intelligence.
New York, NY: McGraw-Hill, Inc, 1999.

[167] Sharma, C. and Kunins, J., VoiceXML: Strategies and Techniques for Effective
Voice Application Development with VoiceXML 2.0. Professional developer’s guide
series, New York, NY, USA: Wiley, 2002. Includes CD-ROM.

[168] Shimazu, H., “A Textual Case-Based Reasoning System Using XML on the World-
Wide Web,” Lecture Notes in Computer Science, vol. 1488, pp. 274–??, 1998.

[169] Simon, H. A., “What Is an ’Explanation’ of Behavior?,” Psychological Science, vol. 3,
pp. 150–161, 1992.

[170] Simpson, J. E., Just XML. Upper Saddle River, NJ 07458, USA: Prentice-Hall PTR,
1999.

[171] Swick, R. R., “Resource Description Framework (RDF) Model and Syntax.” World
Wide Web Consortium, July 02 1998.

[172] Szilas, N., “Interactive Drama on the Computer: Beyond Linear Narrative,” in Pro-
ceedings of the AAAI 1999 Fall Symposium on Narrative Intelligence, 1999.

[173] Taylor, A., “Perl for the DBA,” Sys Admin: The Journal for UNIX Systems Admin-
istrators, vol. 8, pp. 20, 23–24, 26–27, 29–30, July 1999.

253

[174] Tolk, A., “Avoiding Another Green Elephant-A Proposal for the Next Generation
HLA based on the Model-Driven Architecture(MDA),” in Proceedings of the 2002 Fall
Simulation Interoperability Workshop, (Orlando, FL), September 2002.

[175] Tolk, A., “A Common Framework for Military M&S and C4I Systems,” in Pro-
ceedings of the 2003 Spring Simulations Interoperability Workshop, (Orlando, FL),
March-April 2003.

[176] Trochim, W., The Research Methods Knowledge Base. Cornell University: Atomic
Dog Publishing, Inc., 2nd ed., 2001.

[177] US Army Command & General Staff College, Fort Leavenworth, KS, USA, Battle
Book, July 1997.

[178] US Army Command & General Staff College, Fort Leavenworth, KS, USA, Staff Or-
ganization and Operations, May 1997.

[179] US Army Training and Doctrine Command, Fort Monroe, VA, Operational Terms and
Graphics, Sept. 1997.

[180] US Department Of Defense, High-Level Architecture Object Model Template Specifica-
tion, July 1998.

[181] US Department Of Defense, High-Level Architecture Rules, Apr. 1998.

[182] Wachowski, L., Wachowski, A., and Gibson, W., The Matrix: The Shooting
Script. Newmarket Press, 2002.

[183] Warmer, J. and Kleppe, A., The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series, Reading/MA: Addison-Wesley, Aug. 2003.

[184] Warwick, W. and Hayes, P., “Developing Computational Models of Naturalistic
Decision-making: Methodologies and Perspectives,” in Proceedings of CTA Conference
2003 Advanced Decision Architectures, (College Park, MD), April-May 2003.

[185] Watson, I., “A Case-Based Reasoning Application for Engineering Sales Support
using Introspective Reasoning,” Apr. 26 2000.

[186] Wieland, F., “The Threshold of Event Simultaneity,” TRANSACTIONS of The
Society for Computer Simulation International, vol. 16, no. 1, pp. 23–31, 1999.

[187] Wood, L., Hors, A. L., Apparao, V., Byrne, S., Champion, M., Isaacs, S.,
Jacobs, I., Nicol, G., Robie, J., Sutor, R., and Wilson (Eds), C., “ “Document
Object Model (DOM) Level 1 Specification Version 1.0”.” W3C Recommendation, Oct.
1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[188] World Wide Web Consortium, “Extensible markup language (XML) 1.0 (sec-
ond edition).” W3C Recommendation, 2000. http://www.w3.org/TR/2000/WD-xml-
2e-20000814.

[189] World Wide Web Consortium, “XML Schema Part 1: Structures, W3C Recom-
mendation,” May 2001. http://www.w3c.org/TR/xmlschema-1/.

254

[190] Yates, J. F. and Estin, P. A., “Decision making,” in A Companion To Cognitive
Science (Bechtel, W. and Graham, G., eds.), pp. 186–196, Malden, MA: Blackwell,
1998.

[191] Zsolt, B. and Ferenc, R., “Mining Design Patterns from C++ Source Code,” in
Proceedings of the International Conference on Software Maintenance (ICSM ’03),
(Amsterdam, The Netherlands), September 2003.

255

VITA

REGINALD L. HOBBS is a research computer scientist in the Battlefield Information

Processing Branch of the Army Research Laboratory. Mr. Hobbs has 20 years of experi-

ence in the computer industry, beginning on active duty as an information systems operator

in the Air Force at NORAD headquarters. As a defense contractor, he worked as a pro-

grammer analyst, systems administrator, and computer facilities manager. Mr. Hobbs has

a B.S. in Electronics from Chapman University and a Masters in Computer Science from

the Georgia Institute of Technology. He is completing his PhD Candidacy in the area of

Software Engineering at the College of Computing, Georgia Tech. He successfully defended

his doctoral research as of June 2004. He has research interests and experience in the areas

of software development methods, re-engineering, scenario-based design, XML for knowl-

edge representation, and interactive narrative. Mr. Hobbs has participated on government

and industry working groups on software engineering techniques, software process model

descriptions, and software architecture transitions. Mr. Hobbs has extensive teaching ex-

perience at the undergraduate, graduate and continuing education level, teaching courses

in software engineering, foundations of computer science, and information technology. He

has been an instructor or adjunct professor at Clark-Atlanta University, Spelman College,

Southern Polytechnic State University, and Georgia Tech Continuing Education. He and his

wife, Lisa, have 5 children.

Education

B.S. Electronics, Chapman University, 1990

M.S. Computer Science, Georgia Institute of Technology, 1993

PhD Computer Science, Georgia Institute of Technology, 2005

256

Experience

Air Force Space Command, Information Systems Operator (Active Duty), 1984 - 1987

Army Research Institute, System Administrator/Systems Programmer, 1987 - 1989

Army Research Laboratory, Computer Scientist, 1990 - Present

North Carolina A&T, Industrial Engineering Dept., Visiting Lecturer, 1996-1998

Spelman College, CS Dept., Adjunct Prof., 1998-2004

Southern Polytechnic State University, CS/IT Dept., Adjunct Prof., 2000-2003

Georgia Tech Continuing Education Department, Instructor, 2000-2003

Areas of Teaching and Research Specialization

Software Engineering, Information Technology, Web Design & Development, Object-Oriented

Analysis & Design (Java, UML, XML), Data Structures, Foundations of Computer Science,

scenario-based design, interactive narrative, knowledge representation, cognitive science.

Publications

•R. Hobbs, Show Me A Story: Capturing CGF Behavior Through Narrative in

Proceedings of the Fourteenth Conference on Behavior Representation in Modeling and Sim-

ulation (BRIMS 05), Universal City, CA., May 16-19, 2005.

•R. Hobbs, Hyperscenarios: Adding Domain Knowledge to Web-Enabled Simula-

tions, in Proceedings of the 2005 Spring Simulations Interoperability Workshop, San Diego,

CA., 3-8 April 2005. (In Press)

•R. Hobbs, Using A Scenario Specification Language to Add Context to Design

Patterns in Proceedings of the Sixteenth International Conference on Software Engineering

and Knowledge Engineering (SEKE 04),Banff, Alberta, Canada., June 20-24 2004.

•R. Hobbs, Using XML to Support Military Decision-making in Proceedings of the

XML 2003 Convention & Exposition, Philadelphia, PA., Dec 7-12 2003.

•R. Hobbs, A Narrative Meta-Model Approach to Bridging M&S and C4I Appli-

cations, in Proceedings of the 2003 Fall Simulations Interoperability Workshop, Orlando,

FL. September 2003.

257

•R. Hobbs, Sharing Stories: Using Narrative for Simulations Interoperability, in

Proceedings of the 2003 Spring Simulations Interoperability Workshop, Orlando, FL., 30

March - 4 April 2003. (In process)

•R. Hobbs, A Narrative-based Cognitive Model for Computer-Generated Forces• , in Pro-

ceedings of the 10th Conference on Computer Generated Forces and Behavioral Representa-

tion, Norfolk, VA, 15-17 May 2001. (Abstract).

•R. Hobbs, An XML-based Framework for Battle Planning Simulations• , in Pro-

ceedings of the 2000 Winter Simulation Conference, Orlando, FL., 10-13 December 2000.

•R. Hobbs, Hypermedia Scenarios for Command & Control, in Proceedings of the

21st Annual Army Science Conference: Science & Technology for the Army After Next,

Norfolk, VA, 15-17 June 1998.

•R. Hobbs, Hypermedia Scenarios for Command & Control (Extended Abstract),

in Summary Digest of the 21st Annual Army Science Conference, Norfolk, VA, pp 147-148,

15-17 June 1998.

•R. Hobbs and C. Potts, Towards a Framework for Hypermedia Scenarios, College

of Computing Technical Report GIT-CC-98-06, Georgia Institute of Technology, Atlanta,

GA, 1998.

•R. Hobbs, G. Racine, "Re-engineering Legacy Systems: A Case Study of Software

Redevelopment and Business Process Improvement”, in Proceedings of First Annual

Software Engineering Techniques Workshop on Software Reengineering, Software Engineer-

ing Institute (SEI), Pittsburgh, PA, 3-5 May 1994.

•R. Hobbs, "COBOL-to-Ada Transition: A System Re-engineering Case Study”,

Computer-Aided Software Engineering - Issues and Trends for the 1990s and Beyond, Idea

Publishing Group, Harrisburg, PA, 1993.

•R. Hobbs, J. Mitchell, G. Racine, "Ada Transition Research Project (Phase II): Fi-

nal Report”, Army Institute for Research in Management Information, Communications,

and Computer Science (AIRMICS) Report ASQB-GI-92-004, AIRMICS, Atlanta, 1992.

•R. Hobbs, J. Mitchell, G. Racine, "Re-engineering Old Production Systems: A Case

258

Study of Systems Re-development and Evaluation of Success”, in Emerging Infor-

mation Technologies for Competitive Advantage and Economic Development, Proceedings

of 1992 Information Resources Management Association (IRMA) International Conference,

Charleston, SC, pp 29-37, 24-27 May 1992.

•G. E. Racine, R. Hobbs, R. Wassmuth, "Ada Transition Research Project (A Soft-

ware Re-engineering Effort)”, in Proceedings of the Tenth Annual National Conference

on Ada Technology (ANCOAT `92), Arlington, VA, pp 192-201, 24-28 February 1992.

•R. Hobbs, J. Nealon, R. Wassmuth, "Ada Transition Research Project (Phase I): Fi-

nal Report”, Army Institute for Research in Management Information, Communications,

and Computer Science (AIRMICS) Report ASQB-GI-91-005, AIRMICS, Atlanta, 1991.

•R. Hobbs, "System Reengineering Executive Summary”, Army Institute for Re-

search in Management Information, Communications, and Computer Science (AIRMICS)

Report ASQB-GI-92-003, AIRMICS, Atlanta, 1991.

259

