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SUMMARY 

 

Gas hydrate is a naturally occurring crystalline compound formed by water 

molecules and encapsulated gas molecules. The interest in gas hydrate reflects scientific, 

energy and safety concerns - climate change, future energy resources and seafloor 

stability. Gas hydrates form in the pore space of sediments, under high pressure and low 

temperature conditions. This research focuses on the fundamental understanding of 

hydrate bearing sediments, with emphasis on mechanical behavior, thermal properties 

and lens formation.  

Load-induced cementation and decementation effects are explored with lightly 

cemented loose and dense soil specimens subjected to ko-loading; the small-strain 

stiffness evolution inferred from shear wave velocity measurement denounces stiffness 

loss prior to structural collapse upon loading. Systematic triaxial tests address the 

intermediate and large strain response of hydrate bearing sediments for different mean 

particle size, applied pressure and hydrate concentration in the pore space; hydrate 

concentration determines elastic stiffness and undrained strength when Shyd>45%. A 

unique sequence of particle-level and macro-scale experiments provide new insight into 

the role of interparticle contact area, coordination number and pore fluid on heat transfer 

in particulate materials. Micro-mechanisms and necessary boundary conditions are 

experimentally analyzed to gain an enhanced understanding of hydrate lens formation in 

sediments; high specific surface soils and tensile stress fields facilitate lens formation. 

Finally, a new instrumented high-pressure chamber is designed, constructed and field 

tested. It permits measuring the mechanical and electrical properties of methane hydrate 

bearing sediments recovered from pressure cores without losing in situ pressure 

(~20MPa).  
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CHAPTER I 

INTRODUCTION 

 

1.1  BACKGROUND 

Gas hydrate is a naturally occurring crystalline compound formed by water 

molecules and encapsulated gas molecules. The general appearance resembles ice. 

Methane hydrates form at high pressure and low temperature, and are found in seafloor 

sediments and in permafrost regions. The known global occurrence of methane hydrates 

is shown in Figure 1.1.  

Gas hydrate was first discovered in 1911 by Humphrey Davy and Michael Faraday; 

while experimenting with chlorine and water mixtures, they observed the formation of 

crystalline solid above the freezing temperature of water. Later research was dedicated to 

identifying the various kinds of gas molecules that can form hydrate under different 

conditions.  E. G. Hammerschmidt found hydrate blocking oil and gas pipelines in the 

1930’s. Research followed on chemical additives that could inhibit hydrate formation. 

Natural gas hydrate was first recovered from sediments in the Black sea in 1974. Since 

then, hydrate fields have been identified worldwide through geophysical and deep see 

drilling methods. Active Research & Development programs are currently undertaken in 

Canada, India, Japan, South Korea and U.S.A. among other countries.  
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Figure 1.1 Global occurrence of gas hydrates (Kvenvolden and Lorenson, 2001) 

 

1.2  MOTIVATION AND IMPORTANCE 

The interest in gas hydrates reflects scientific, energy and safety concerns. Details 

follow. 

Climate changes. Methane is a very effective greenhouse gas. Its potential impact on 

warming is much greater than that of carbon dioxide (Kvenvolden, 1999). Therefore, 

should methane be released into the atmosphere by gas hydrate dissociation, significant 

long term global warming effects would follow (Kvenvolden, 1999; Hornbach et al., 

2004; Maslin et al., 2004). 

Energy resources. Gas hydrate formation within sediments traps gas and reduces 

reservoir permeability. The amount of entrapped gas within the hydrate cage has been 

estimated to be more than twice the known carbon resources (20,000 trillion m3 in Collett, 

2002; see also Dickens, 2001 and 2003). Hence, methane hydrate would be a magnificent 
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resource if economically viable recovery techniques are developed (Max and Lowrie, 

1996; Collett and Kuuskraa, 1998; Parker, 2001). 

Seafloor stability and safety. Gas hydrate formation within sediments stiffens seafloor 

sediments, and further sedimentation does not consolidate the hydrate bearing sediments. 

Therefore, hydrate decomposition would cause shear strength loss and massive failure of 

the seafloor in continental margins (Kayen and Lee, 1991; Cochonat et al., 2002; Sloan, 

2003; Sultan et al., 2004-a, b; Maslin et al., 2004).  

Gas hydrates can fill the pore space in sediments, form nodules, veins or lenses or 

develop into massive hydrate zones. Thus, the characterization of natural gas hydrate 

should take into consideration a fundamental understanding of hydrate bearing sediments 

rather than pure hydrate alone. Relatively low percentages of gas hydrates in sediments 

are typically reported (5-10% Guerin et al., 1999; 13-18% Ecker et al., 2000; 5-7% 

Holbrook, 2001).  

Hydrate bearing sediments retrieved by coring experience dissociation due to the 

limited hydrate temperature and pressure stability conditions. Geophysical methods and 

in situ testing face equally challenging difficulties. In all cases, an in-depth understanding 

of the physical properties of hydrate bearing sediments is required to improve 

characterization and to address both scientific and engineering needs. 

 

1.3  SCOPE - ORGANIZATION  

The goal of this research is to attain a fundamental understanding of the behavior of 

hydrate bearing sediments with emphasis on mechanical and thermal properties and lens 
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formation. Measurements are analyzed at the particle-level to identify underlying 

microscale process. Finally, an instrumented high-pressure chamber is designed to 

measure the mechanical and electrical properties of methane bearing sediments from 

pressure cores. This information is organized into five chapters as follows.  

Chapter 2 explores the evolution of small-strain stiffness in lightly cemented loose 

and dense soil specimens subjected to Ko-loading. Emphasis is placed on stiffness loss 

and the associated structural collapse upon loading.  

Chapter 3 documents a study of intermediate and large strain response of hydrate 

bearing sediments taking into consideration the mean particle size, the applied pressure 

and hydrate concentration in the pore space.  

Chapter 4 describes a fundamental study of thermal conductivity in particulate 

materials involving both unique micro and macroscale experiments. Numerical modeling 

complements the experimental study. 

Chapter 5 centers on the formation of hydrate lenses. Microscale mechanisms and 

necessary boundary conditions are experimentally analyzed, varying the thermal gradient, 

water content, soil type and applied pressure.  

Chapter 6 documents the design, construction and calibration of a newly 

instrumented high-pressure chamber built to measure the mechanical and electrical 

properties of gas hydrate bearing sediments recovered by pressure coring.  

Salient conclusions and recommendations for further studies are summarized in 

Chapter 7. 
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CHAPTER II 

DECEMENTATION, SOFTENING AND COLLAPSE: CHANGES IN SMALL  
STRAIN STIFFNESS UNDER Ko-LOADING 

 

2.1  INTRODUCTION 

Cementation increases the contact area between particles and bonds neighboring 

particles together. Light cementation is often sufficient to significantly increase the small-

strain stiffness of soils, their dilative tendency, and the resistance to liquefaction. As the 

degree of cementation increases, the drained strength is impacted as well. Therefore, 

cementation can have a profound effect in the analysis of hydrate bearing sediments. 

These observations highlight the need for proper site characterization, improved 

laboratory test procedures that take into consideration sampling effects, and adequate 

material models.  

Particle debonding and skeletal softening are readily observed under triaxial 

loading conditions (e.g., Airey and Fahey, 1991). Debonding and softening can also take 

place during unloading, even under isotropic conditions: soils cemented under 

confinement expand during unloading and the cement at interparticle contacts fails in 

tension (numerical observations in Zang and Wong, 1995; experimental observations in 

Fernandez and Santamarina, 2001); this is an inherent mechanism in sampling (data in 

Tatsuoka and Shibuya, 1991). In the case of hydrate bearing sediments, the de-

pressurization of the granular skeleton can unload hydrates at contacts and produce their 
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de-stabilization (loss of cementation) even if global pore-fluid pressure conditions would 

indicate stable conditions.  

Available cemented soil response data under Ko-loading (e.g., Shibuya et al., 2001, 

and Leroueil and Hight, 2003) do not permit analyzing the development of debonding, 

softening and collapse. The purpose of this study is to explore the evolution of small-

strain stiffness in lightly cemented loose and dense soil specimens subjected to Ko-

loading. Special emphasis is placed on identifying the association between stiffness loss 

and structural collapse upon loading. This study centers on cemented soils (rather than 

hydrate bearing sediments). It starts with a brief review of prior studies on cemented soils. 

Then the experimental methodology designed to study Ko-loading effects is presented 

followed by results and discussion. 

 

2.2  BRIEF REVIEW OF PRIOR STUDIES 

Previous studies show that the effect of cementation on soil behavior depends on 

the amount and type of cementing agent, the grain size distribution of the soil (the higher 

the specific surface, the thinner the layer of cement around grains), density (interparticle 

coordination increases with density), and the degree of confinement at the timed of 

cementation i.e., the stress-cementation history (Clough et al., 1981; Winkler, 1983; Acar 

and El-Tahir, 1986; Feda, 1995; Baig et al., 1997; Jarrad et al., 2000). 

Cementing agents can deposit evenly around particles. However, cementation has 

maximum influence on the granular skeleton when cementing processes develop at 

contacts. This is the case when drying triggers cementation (a retracting capillary 
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meniscus causes fines migration and aggregation and salt precipitation at the contact), or 

when it is associated with phenomena such as contact yield, sintering and solution-

precipitation (Bernabe et al., 1992). When a cementing agent precipitates around 

interparticle contacts, the load-induced stress distribution at the composite contact 

depends on the stiffness of the minerals that make the grains (Emin) and the cementing 

material (Ecem). Disregarding geometric effects: when Emin/Ecem = 1, the stress changes at 

the contact follows Hertzian behavior; when Emin/Ecem >> 1, the mineral contact picks up 

the new load; and when Emin/Ecem << 1, stress concentration develops within the 

cementing material (Dvorkin and Yin, 1995; Zang and Wong, 1995; Sienkiewicz et al., 

1996). In all cases, the cement is load-bearing; hence, it reduces the stress concentration 

within particles, and increases the crushing strength of the soil (Yin and Dvorkin, 1994; 

Dvorkin and Yin, 1995). 

Two stress regimes can be identified. Under low-confinement, the behavior of the 

cemented soil is cementation-controlled, and the soil exhibits the following 

characteristics:  

 The drained load deformation behavior is brittle (Lade and Overton, 1989; 

Airey and Fahey, 1991).  

 Cementation controls the drained peak strength, and the shear strength intercept 

increases with cement content (Dupas and Pecker, 1979; Clough et al., 1981; 

Acar and El-Tahir, 1986; Dass et al., 1994).  

 Post-peak, strain-softening is often accompanied by strain localization (Schanz, 

1998). 
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 Interparticle bonds begin breaking prior to the peak strength of the soil (Feda, 

1995). Debonding forms an interlocked blocky structure and the soil is more 

prone to dilate (Wissa and Ladd, 1965; Saxena and Lastrico, 1978; Saxena et al., 

1988; Lade and Overton, 1989). 

 Stiffness is cementation-controlled and quasi stress-independent, as in a linear 

solid (Baig et al., 1997).  

Under high-confinement, the soil response is stress-controlled:  

 The small-strain stiffness increases as confinement increases (even in the 

absence of debonding), approaching the power relation that characterizes 

freshly remolded granular materials (e.g., Hardin and Richart, 1963), 

ς
σ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Λ=

kPa
G m

1

'

max          (2.1) 

 where σ’m is the mean effective stress on the shear plane, “Λ” is the stiffness at 

σ’m = 1kPa, and “ζ” is the exponent (both “Λ” and “ζ” are experimentally 

determined).  

 The large-strain load-deformation behavior changes towards a ductile, strain 

hardening response. 

 The effective peak angle of shear strength φ’peak is not significantly changed by 

the degree of initial cementation (Wissa and Ladd 1965; Acar and El-Tahir, 

1986; Saxena et al., 1988; Reddy and Saxena, 1993).  

In both confining stress regimes, the shear resistance gradually changes from cohesive to 

frictional as the imposed strain progresses and debonding takes place. Acoustic emission 
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counts associated with particle debonding decisively increase beyond 75-85% of the peak 

load (Landis and Shah, 1995). Therefore, the large-strain strength is characterized by c = 0 

and residual friction angle φres, and it is independent of the degree of initial cementation 

in both low and high-confinement regimes (Clough et al., 1981). The transition stress 

between these two regimes increases as the cement content increases (Saxena et al., 1988; 

Dass et al., 1994; Baig et al., 1997). 

  The small strain stiffness of particulate materials is determined by the deformability 

of interparticle contacts due to stress concentration. From Hertzian contact theory, the 

small-strain stiffness of the granular skeleton (Eskel) is (e.g., Richart et al., 1970) 

)1( g

gc
skel

G
R
r

E
ν−

⋅=          (2.2) 

where rc is the radius of the contact area (a measure of contact flatness), R is the particle 

radius, and Gg and νg are the shear modulus and Poisson’s ratio of the mineral that makes 

the particles. Equation 2.2 highlights the importance of contact flatness (captured in rc), 

regardless of the mechanism that causes it. In fact, applied confinement, cementation or 

even the viscous creep of the grain renders higher skeletal stiffness. Furthermore, 

Equation 2.2 explains the high sensitivity of small-strain soil stiffness Eskel to cementation, 

and the particularly beneficial effect of cement localization at interparticle contacts thus 

effectively increasing rc (See Fernandez and Santamarina, 2001 for a detailed application 

of Equation 2.2 to cemented soils taking into consideration the cementation-stress 

history). In this study, the small-strain shear stiffness Gmax is estimated from shear wave 

velocity Vs measurements,  
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2
max sVG ⋅= ρ                                                                                  (2.3) 

where ρ is the mass density of the medium.  

 

2.3  EXPERIMENTAL DESIGN 

Artificially cemented sands are used for this study, and subjected to Ko-loading in a 

zero-lateral strain oedometric cell. Material, devices and procedures are described next. 

2.3.1  Sample Preparation 

Uniform, fine, angular sand is used to evaluate the behavior of cemented soils 

(Nevada sand, emin = 0.533, emax = 0.888, mean grain size D50 = 0.14-to-0.17 mm, 

uniformity coefficient Cu = 1.67). The cementing agent is Portland cement Type Ι 

(specific gravity Gs = 3.15). Eight samples are prepared with different initial void ratio, 

cement content and initial vertical stress at the time of cementation herein called the 

vertical seating pressure, σ’seat. The initial void ratio, the vertical seating pressure, the 

maximum load and the number of loading and unloading steps for each test are 

summarized in Table 2.1. All tests are successfully duplicated to verify repeatability.  

The sand is oven-dried for 24 hrs before testing. Uncemented soil specimens are 

prepared in the oedometric cell by funneling and tamping methods to attain either loose 

or dense conditions. When tamping is used, the same weight of soil is added to form each 

layer.  

Artificially cemented soils are prepared by thoroughly mixing the cement and the 

sand; afterwards, a predetermined amount of water is added to the mixture. The wet 
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Table 2.1 Specimen and test characteristics.  

Test No.  eo 
σ’sit [kPa] 

during 
cementation 

σ’max 
[kPa] 

Cement [%] 
Number of 
loading / 

unloading steps

1  0.782 - 1062.5 0 10 / 9 

2  1.139 18.7 1071.1 2 8 / 8 

3  1.154 18.7 1071.1 4 8 / 8 

4  0.953 122.8 1053.8 2 5 / 8 

5  0.575 - 1062.5 0 10 / 9 

6  0.695 18.7 1071.1 2 8 / 8 

7  0.714 18.7 1071.1 4 8 / 8 

8  0.636 122.8 1053.8 2 5 / 8 

  
 

mixture is homogenized for 5 minutes and gradually scooped into the cell or tamped to 

produce loose and dense specimens. These specimens have higher void ratios than the 

corresponding uncemented, dry specimens due to interparticle capillary forces that 

prevent compaction. Capillary stabilization is most pronounced in the loose specimens, 

which are placed without tamping (Rao et al., 1995). 

Once the cell is filled, the upper plate is placed on top of the specimen and the initial 

void ratio is determined.  

2.3.2  Test Devices  

The bottom plate and the top cap of the oedometric cell house the bender element pair. 

Each bender element is electrically shielded and grounded to prevent electrical cross-talk. 

Cell details are shown in Figure 2.1 (design documented in Fam and Santamarina, 1995 

and see Shirley and Hampton, 1978; Dyvik and Madshus, 1985; Thomann and Hryciw, 
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Figure 2.1 Oedometer cell. (a) The top cap and the bottom plate of the oedometer cell 
where bender elements are housed. (b) Peripheral electronics. 

(b) 
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1990 and Kuwano and Jardine, 2002 for a discussion on bender element configuration 

and performance).  

A signal generator (Krohn-Hite 1400A) delivers a 20Hz square wave. The signal 

captured with the receiver bender element is fed through a filter-amplifier (Krohn-Hite 

3364, low-pass filter at f = 50kHz and high-pass filter at f = 100Hz) into the digital 

storage oscilloscope (Rapid Systems R1016), where signals are digitized at 200kHz 

sampling frequency. The stacking of 256 signals permits reducing the non-coherent noise. 

2.3.3  Test Procedure 

The applied load is incrementally doubled at each loading stage reaching a 

maximum vertical effective stress of σ’max ≅ 1MPa. Each loading stage lasts 10-to-15 

minutes. Shear wave velocity is measured at the end of this period before increasing the 

load. The same procedure is implemented during unloading.  

  The vertical seating pressure σ’seat is reached before cement hardens (within 40 

minutes after mixing), and it is maintained constant during the 24hr hardening period; 

either σ’seat = 18.7 or σ’seat = 122.8kPa is used (Table 2.1).  

The time at "first arrival" tfirst is picked from the stored time series, taking into 

consideration near field effects (Sánchez-Salinero et al., 1986). The travel length L is 

taken as the tip-to-tip distance between bender elements (Figure 2.1). Finally, the shear 

wave velocity is computed as Vs = L/tfirst.  

  After testing, specimens are observed with an optical microscope (Qimaging 

micropublisher 32-0028A-211) to identify the effects of loading or load-induced 

decementation. 
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2.4  EXPERIMENTAL RESULTS 

  Time series are presented for three characteristic cases. Figure 2.2 shows the 

variation in travel time during loading and unloading in uncemented specimens. In 

contrast, Figure 2.3 shows almost constant signatures for all load levels in the 4% cement 

specimen. Finally, Figure 2.4 presents the time series for the 2% loose specimen 

cemented at low vertical seating pressure. The sudden increase in travel time during 

loading in this specimen denotes the breakage of cementing bonds; there is also a marked 

increase in travel time during unloading, resembling the trend for the uncemented 

specimen in Figure 2.2. To facilitate the interpretation of results, velocity-stress and 

volume change trends are presented next. 

2.4.1  Velocity-Stress Behavior 

Uncemented Soils. The shear wave velocity of uncemented soils increases as the vertical 

effective stress increases. Velocity-stress data during loading and unloading are shown in 

Figure 2.5-a for loose and dense sands. Combining Equations 2.1 and 2.3, the velocity-

stress relation for uncemented soils becomes Vs = α⋅σ’m
β where σ’m is the mean stress in 

the polarization plane, that is the vertical applied stress times (1+Ko)/2. Data points are 

least squared fitted to determined α and β parameters: for loose sands α = 48m/s and β = 

0.248; for dense sands, the corresponding parameters are α = 68m/s and β = 0.192. These 

values agree with published results for similar sands (compilation in Santamarina et al. 

2001). The unloading trends plot above the loading trends because horizontal stresses are 

locked in the sand. 
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Figure 2.2 Evolution of shear wave time series during loading and unloading a dense 
uncemented soil specimen (initial void ratio eo = 0.78). 
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Figure 2.3 Evolution of shear wave time series during loading and unloading a dense, 

cemented soil specimen (initial void ratio eo = 0.71, cement content: 4%, 
vertical seating pressure during hardening σ’seat = 18.7 kPa). 
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Figure 2.4 Evolution of shear wave time series during loading and unloading a loose, 

cemented soil specimen (initial void ratio eo = 1.14, cement content: 2%, 
vertical seating pressure during hardening σ’seat = 18.7 kPa). 
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Figure 2.5  Shear wave velocity versus vertical effective stress - Summary. Note: The log-log plot highlights global trends but 
diminishes the effect of collapse on stiffness. (L: Solid line-loading. U: Dotted line-unloading. Initial vertical seating 
pressures during hardening σ’seat = 18.7 kPa and σ’seat = 122.8 kPa). 

L 

Loose 

Dense 
U 

U 

σ'seat 

L Uncemented 

Dense

Loose U 

L 

Loose 

Dense 
L 

L 

U 

σ'seat 

U Uncemented Uncemented

Loose 

U 

U 

Dense L 

σ'seat 

L 

Vertical effective stress, σ’v [kPa] 

S-
w

av
e 

ve
lo

ci
ty

, V
s [

m
/s

] 

Vertical effective stress, σ’v [kPa] 

S-
w

av
e 

ve
lo

ci
ty

, V
s [

m
/s

] 

Vertical effective stress, σ’v [kPa] 

S-
w

av
e 

ve
lo

ci
ty

, V
s [

m
/s

] 

Vertical effective stress, σ’v [kPa] 

S-
w

av
e 

ve
lo

ci
ty

, V
s [

m
/s

] 

(a) Uncemented soil (b) 2% cemented soil (low σ’seat) 

(c) 2% cemented soil (high σ’seat) (d) 4% cemented soil (low σ’seat) 

 

18 



 19

Loose Cemented Soils. The 2% cemented loose sand under an initial vertical seating 

pressure of σ’seat = 18.7kPa shows a distinctly different trend from the uncemented 

specimen (Figure 2.5-b). At the beginning of loading, until a vertical effective stress σ’v ≅ 

140kPa, the shear wave velocity increases very slightly, and then additional load causes 

the collapse of the specimen and a significant decrease in stiffness. During further 

loading, the velocity never drops below that of the uncemented soil and increases with 

stress. The loading and unloading trends cross; this is not observed in uncemented soils. 

The 2% cemented loose soil specimen formed under high initial vertical pressure, 

σ’seat = 122.8kPa, permits assessing the importance of seating pressure relative to 

cementation (the seating pressure is six times higher than in the previous specimen). 

During early confinement prior to cementation, in Figure 2.5-c, the velocity increase with 

stress as in uncemented soils (albeit with higher values due to increased interparticle 

capillary forces). Cement hardening after 24 hrs renders a velocity higher than for the 2% 

cement specimen cured at low confinement (Figure 2.5-c). Loading after hardening does 

not cause a velocity drop. However, the unloading trend runs below the loading trend in 

the range σ’seat <σ’v <σ’max suggesting loss of cementation. 

The increase in velocity during hardening for the 4% cemented loose specimen is 

much higher than for either of the 2% cemented loose specimens (low and high seating 

pressure - Figure 2.5-d). First, the velocity remains fairly constant during loading, and 

then falls during collapse-decementation and increases again upon further loading. The 

4% cement specimen collapses at around 450-500kPa, which is three times higher than 

the collapse load for the 2% cement soil. The shear wave velocity during unloading 

reaches much lower values than those observed during loading at similar confinement. 
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Dense Cemented Soils. The specimens prepared with 2% and 4% cement and dense 

packing show similar trends as the loose cemented specimens during cementation. 

Decementation-collapse is either absent in dense specimens or less defined than in loose 

specimens. At any given stress, the velocity Vs is higher in dense specimens than in the 

corresponding loose specimens. During unloading, the shear wave velocity remains lower 

than during loading indicating that some decementation has taken place. 

2.4.2  Volume Change – Threshold Vertical Strain 

The e-σ’v response is a fingerprint of the evolution of decementation and collapse 

(Figure 2.6 - see also Feda, 1982 and 1994). For reference, data for uncemented loose and 

dense specimens are presented in Figure 2.6-a. During early stages of loading when the 

interparticle cementation contributes to load-bearing, the cemented soil behaves 

elastically, albeit not necessarily linear. Once the vertical applied stress reaches the 

decementation-collapse load (or yield vertical stress σ’y) of loose specimens, a significant 

reduction in void ratio is observed for both the 2% and 4% cemented loose soils (Figure 

2.6-b,d). The collapse load increases with the amount of cement from σ’y = 140kPa for 

the specimen with 2% cement to σ’y = 450-500kPa for the one with 4% cement. The 

threshold vertical strain on the verge of collapse-decementation εth is estimated from the 

initial void ratio (eo) and the change in void ratio to the moment when collapse starts 

εth= )1/()( oo eee +− . Almost identical values are obtained from duplicate tests: εth = 0.002 

for the 2% cement specimens, and εth = 0.003-to-0.004 for the 4% cement specimens. 

Therefore, these data suggest that the collapse stress and the associated threshold vertical  
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Figure 2.6 Changes in void ratio with vertical effective stress in oedometric cell (L: 
Solid line-loading. U: Dotted line-unloading. C: Collapse. Vertical seating 
pressures during hardening σ’seat = 18.7 kPa, σ’seat = 122.8 kPa). 
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strain for collapse-decementation increases with cement content (Note that this is not the 

strain at peak strength, see for example Clough et al., 1981; Lade and Overton, 1989). 

Dense specimens do not exhibit collapse in e-logσ’v (Figure 2.6-b,c,d). These 

specimens have higher interparticle coordination number, experience small strain upon 

loading, and can better preserve interparticle bonds to high stress levels.  

2.4.3  Optical Observations 

Specimens are removed from the oedometric cell after final unloading. The loose 

cemented soil specimens are broken with a blocky structure suggesting partial 

decementation. The dense cemented soil specimens remain as a monolith stack to the cell, 

and decementation is not visually apparent. Particle crushing is not observed.  

 

2.5  ADDITIONAL OBSERVATIONS 

Load-induced decementation and collapse are simultaneously explored in the Vs-e 

plots for all specimens shown in Figure 2.7. The trajectory is concave upwards; that is, 

decementation softening takes place prior to collapse.  

The amount of cementation is the most important factor on shear wave velocity, 

while density and pressure exert a lesser influence. For example, the dense 2% cement 

specimen cured under 122.8kPa (high) vertical seating pressure reaches a lower shear 

wave velocity than the dense 4% cement specimen cured under 18.7kPa (low) vertical 

seating pressure (Figure 2.5-c,d). In fact, the cemented specimens exhibit higher shear 

wave velocity than the uncemented specimens at the same stress level, even after collapse
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Figure 2.7 Decementation softening and collapse: void ratio vs. shear wave velocity 
(L: Solid line-loading. U: Dotted line-unloading. H: Hardening. C: 
Collapse. Vertical seating pressures during hardening σ’seat = 18.7 kPa and 
σ’seat = 122.8 kPa). 
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and decementation. 

The stiffening effect of capillary interparticle forces is clearly seen in soil-cement 

mixtures prior to cement hardening: menisci that form at grain-to-grain contacts add a 

compressive interparticle force and the shear wave velocity increases. Experimental 

results confirm that the higher the cement content, the higher the specific surface of the 

sand-cement mixture, and the higher the suction for the same water content. 

The velocity-stress sensitivity is lower in cemented specimens in the low-

confinement regime than in uncemented soils. Velocity-stress trends appear to converge  

for both cemented and uncemented specimens at high confinement (see also Dvorkin et 

al., 1991). 

Partial, rather than massive decementation explains the higher stiffness of cemented 

specimens after collapse, as compared to uncemented specimens. Analytical results 

indicate that the shear wave velocity decreases as the size of cemented blocks decreases 

(Fratta and Santamarina, 2002). In general, the higher the strain imposed during loading, 

the higher the stiffness loss that is observed upon unloading. 

Figure 2.8 summarizes observed trends in the logVs-vs-logσ’v space. Velocity-stress 

trends during unloading are not sketched on Figure 2.8 for clarity. Results presented in 

Figure 2.5 suggest that Ko-unloading renders higher velocity in uncemented soils, but 

lower velocities in cemented soils. This observation can be used as a diagnostic tool for 

sampling effects. 
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Figure 2.8 Schematic trends - Summary. Before cement hydration: fresh mixtures 
exhibit shear wave velocity higher than saturated uncemented soils due to 
capillarity. After cementation: the low-cementation loose soil collapses at 
lower stress than the high-cementation loose soil (solid lines correspond to 
loose specimens; "C" denotes collapse); the dense cemented soil 
specimens do not collapse (dotted lines correspond to dense specimens). 
At very high confinement: the shear wave velocity of cemented soils 
appears to asymptotically approach the shear wave velocity of uncemented 
soils (dashed lines).  

 

 

 

While load-induced collapse is considered herein, it is expected that similar 

methodology and observations can be applied to decementation-collapse upon chemical 

changes, wetting and dissolution (Abduljauwad and Al-Amoudi, 1995). 
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2.6  CONCLUSIONS 

Published results show that the behavior of cemented soils depends on the amount 

and type of cement, the grain size distribution, the packing density of the soil, and the 

cementation-stress history. Cementation affects small-strain stiffness, dilative tendency 

during shear, liquefaction resistance and both drained and undrained strengths. At high  

stress, all soil parameters gradually revert to the stress-controlled behavior that 

characterizes uncemented soils. 

The small-strain stiffness is determined by the size of contact areas, i.e., flatness. 

Hence, even light cementation can have a more pronounced effect than confinement on 

the small-strain stiffness of hard-grained soils. Then, shear wave velocity provides 

valuable information about the degree of cementation, and the evolution of cementation 

and decementation in soils, without perturbing ongoing processes.  

There is increasing interest in engineering design using small strain stiffness 

inferred from in-situ shear wave velocity measurements. Such design approaches have 

resulted in much better agreement between predicted and measured settlements. However, 

results presented in this study show that loose, cemented materials may exhibit high 

initial stiffness but collapse upon loading leading to large deformations. 

Furthermore, loose, lightly-cemented soils that experience load-induced collapse 

under Ko-conditions can exhibit small-strain stiffness loss as a precursor to collapse. This 

observation may be used in the context of geophysics-based field monitoring.  

The higher the density, the cement content and the effective confinement during 

cementation, then the lower is the possibility of decementation-collapse during 
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subsequent loading. Nevertheless, some breakage of interparticle bonds may take place 

even in the absence of collapse and a reduction of the small strain stiffness is detected 

when the soil is Ko-unloaded to the same initial confinement.  

The cemented soil behaves elastically albeit not necessarily linear during the early 

stages of loading. Stiffness, collapse load and the corresponding threshold strain increase 

with cement content. While the small-strain stiffness determines the deformation before 

the collapse load, it is inadequate for predicting collapse deformation.  

While these results apply to all types of cemented soils, cementation induced by 

hydrates has the additional complication of pressure and temperature dependent phase 

transformation. Therefore, load-decementation effects in hydrate bearing sediments 

require further analysis. 
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CHAPTER III 

MECHANICAL PROPERTIES OF TETRAHYDROFURAN HYDRATE  
BEARING SEDIMENTS 

 

3.1  INTRODUCTION 

Clathrate hydrates or gas hydrates consist of a hydrogen bonded water lattice and 

guest molecules (e.g., natural gases such as CH4, C2H6, CO2, and H2S) held by van der 

Waals attraction forces (Tulk et al., 1998). Hydrates form under high pressure and above 

the freezing temperature of water. 

The mechanical properties of hydrate bearing sediments are poorly known. 

Theoretical approaches, non-destructive methods and sampling-based attempts have been 

used to investigate the mechanical properties of hydrate bearing sediments (Theoretical 

approaches in Ecker et al., 2000; Lee and Collett, 2001; Lee, 2002; Chand et al., 2004. 

Seismic methods in Hyndman and Spence, 1992; Mi et al., 1999; Pecher and Holbrook, 

2000). However, theoretical studies make untested assumptions to interpret the 

mechanical behavior of hydrate bearing sediments, the small strain response does not 

necessarily correlate with strength, and sampling causes disturbance and degradation of 

in situ properties.  

Therefore, laboratory studies are necessary to explore the properties of gas hydrate 

bearing sediments in particular its large-strain response. The synthesis of methane 

hydrate in sediments is the greatest challenge in laboratory testing. Flushing methane 



 29  

through sediments produces gas percolation paths and creates highly porous and 

heterogeneous methane hydrate bearing sediments. Surfactant used to reduce the gas-

water interfacial tension fundamentally alters the process of hydrate crystallization. The 

low solubility and the long diffusion time of methane gas demand very long time for any 

reasonable size specimen.  

This study focuses on the mechanical properties of hydrate bearing sediments at 

intermediate and large strains. Variables include: mean particle size, applied pressure, 

and hydrate concentration in pore space. This chapter begins with a literature review on 

the behavior of frozen soils and hydrates bearing sediments, followed by experimental 

studies and data analysis. 

 

3.2  LITERATURE REVIEW 

The phase transformation of the pore fluid affects the mechanical properties of 

sediments. Conversely, the presence of sediments alters the equilibrium boundary for 

phase transformation (Riestenberg et al., 2003). Hydrates enhance the strength and 

stiffness of sediments by increasing interparticle coordination, cementing particles and 

filling the pore space (Ladanyi and Benyamina, 1995; Kunerth et al., 2001; Da Re et al., 

2003; Durham et al., 2003-a). The parallelism between hydrate and ice (Table 3.1) 

permits cautiously extending frozen soil knowledge to hydrate bearing sediments 

(Ashworth et al., 1985; Wittebolle and Sego, 1985; Parameswaran et al., 1989; Cameron 

et al., 1990). For example, it is known that even small amounts of ice in soils can 

improve stiffness and strength (Durham et al., 2003-a; see Andersen et al., 1995 for 

numerical modeling), and enhance the tendency to exhibit strain localization and dilation
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Table 3.1 The physical properties of ice, methane and THF hydrates. 

Property Ice CH4 hydrate THF hydrate 

Bulk compressibility [Pa] 12x10-11  ~14x10-11  ~14x10-11  

Density [kg m-3] 917 910 ~910 

Strength hydrate +sand [MPa] at ε
⋅

=10-6 s-1 10.5   16.0 

Vp [m s-1] ~3800 3369 3665 

    

Heat capacity [J K-1 g-1] 2.097 2.07 2.07 

Heat of dissociation [kJ kg-1] at 0oC  333.5 338.7 262.9 

Thermal conductivity [W m-1K-1] 2.23 0.5 0.53 

Thermal diffusivity [m2 s-1] 15.4x10-7 at -17oC 3x10-7 at 3oC  

Thermal linear expansivity [K-1] at –67oC 56x10-6  77x10-6  52x10-6  

source: pers.comm. from Santamarina (2002). 

 

 (Ladanyi and Benyamina, 1995).  

At small-strains, the behavior is governed by the presence of hydrate or ice in 

sediments. Young’s modulus is independent of relative density, confinement, and strain 

rate (Andersen et al., 1995; Da Re et al., 2003). Relative density and confinement have a 

minor effect on stiffness (Andersen et al., 1995; Da Re et al., 2003). 

The strength of frozen soils combines friction between particle grains, the strength 

of ice, and the synergetic interaction between ice and particles (Sayles and Carbee, 1981; 

Ladanyi and Benyamina, 1995; Da Re et al., 2003). The relative roles of these 

mechanisms are determined by variables such as mean particle size (unfrozen water 

content / specific surface), volumetric fraction of ice and soil, porosity, dry unit weight, 

confining pressure and stress history, temperature and strain rate (loading condition). In 

general, the frictional resistance determines strength in densely packed soils (Andersen et 
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al., 1995). The overall stress-strain behavior of frozen soils (and hydrate bearing 

sediments) exhibits remarkable features: The peak strength increases when temperature 

and strain rate increase. (Stoll et al., 1971; Wijeweera and Joshi, Andersen et al., 1995; Li 

et al., 2001; Da Re et al., 2003). Hydrates bearing sediments are less sensitive to strain 

rate than ice (Parameswaran et al., 1989; Cameron et al., 1990). Compressive strength 

decreases with increasing fines content, which is closely related to the specific surface of 

soil particles. (Parameswaran et al., 1989; Wijeweera and Joshi, 1990; Ladanyi and 

Benyamina, 1995). The non-linear stress-strain response is initiated when the ice matrix 

begin to yield (Sayles and Carbee, 1981; Andersen et al., 1995; Da Re et al., 2003). Soil 

skeletal force affects the global behavior and strain localization and dilatancy are 

observed in post-peak range (Ladanyi and Benyamina, 1995). 

Table 3.2 summarizes test methods, specimen preparation techniques and salient 

observations from previous studies. 

 

3.3  EXPERIMENTAL STUDY 

Sediments with synthesized tetrahydrofuran (hereafter THF) hydrates are tested 

with different THF⋅H2O concentration and at selected confining pressures in a modified 

triaxial cell. Soils, hydrate contents and confining pressures are summarized in Table 3.3.  

3.3.1  Tested Materials 

Four soils are selected for this study, covering a mean particle size between D50 = 

1μm and 120μm. Characteristics and SEM pictures of tested soils are presented in Figure 

3.1. The specific surface Sa of precipitated silt and kaolinite are measured with the 



 32  

Table 3.2 Features of frozen soil and hydrate bearing sediments.  

Literature Soil / Guest material Test / Variables Specimen preparation Salient observations 

Wittebolle and 
Sego (1985) 

  Sand (0.85-1.7mm) 
  Freon 12 gas 

  Triaxial compression  

  Confinement (σc) 
  Hydrate vs. Ice 

 Introducing gas to soil 
   with 0.3MPa under cooling 

 Vp → 1.96, 2.46 and 3.6 km/sec (7, 
1.89 and 0oC) 

  σc ↑, strength ↑ 

Li et al 
(2001) 

  Silty sand (5-50μm) 
  H2O  

  Triaxial compression 

  Temperature (T) 
  Strain rate (

•

ε ) 

 Soil+H2O mixture  
 Trim after freezing  
 Curing 

  T ↑, strength ↓ 
  Strain rate ↑, strength ↑ 
  Water content less important 
  σc = σo+1.547 (

••

oεε / ) T   

Da Re et al.  
(2003) 

  Manchester fine sand  
(150μm) 

  H2O 

  Triaxial compression 

  Relative density (Dr) 
  Confinement (σc) 
  Strain rate (

•

ε ) 
  Temperature (T) 

 Soil+H2O mixture  
  under vacuum 
 Trim after freezing 

  T ↑, strength ↓ 
  Strain rate ↑, strength ↑ 
  Strength at small strain region 
   : insensitive to Dr, σc 
  Young’s modulus 

    : insensitive to Dr, σc,
•

ε  

Andersen et al. 
(1995) 

  Manchester fine sand 
(180μm) 

  H2O 

  Triaxial compression 

  Relative density (Dr) 
  Confinement (σc) 
  Strain rate (

•

ε ) 
  Temperature (T) 

 Soil+H2O mixture 
 Trim after freezing 
 Seating (0.3MPa) pressure 

  Strength at small strain region 
   : independent on density 
    : dependent on strain rate and T 
  σc ↑, strength ↑ (stress sensitivity) 
  Young’s modulus 

    : independent on Dr, σc, T, 
•

ε  

Sayles and 
Carbee (1981) 
 

  Silt (30mm) 
  H2O 

  Uniaxial  compression  

  Water (ice) content 
  Constant strain rate  

  Consolidation /Saturation 
  Trim after freezing 

  Water (ice) content ↑, strength ↑ 
  Dry unit weight ↑, strength ↓ 
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Table 3.2 Continued. 

Literature Soil / Guest material Test / Variables Specimen preparation Salient observations 

Wijeweera and 
Joshi  (1990) 

  Benonite, clay,  
   silt kaolin 
  H2O 

  Uniaxil compression 

  Fine content 
  Particle size 
  Water content 
  Constant strain rate 

 Freezing after consolidation 
   (0.07-2.45MPa) 
 

  Dry unit weight ↑, strength ↑ (high 
plastic clays) 

  Specific surface ↑, strength ↓ 
  Fine content ↑, strength ↑ 
  High w/c, w/c ↑, strength ↑ 
  Low w/c, w/c ↓, strength ↑ 

Cameron et al. 
(1990) 

  Sand (0.2-0.6mm) 
  THF⋅16.7H2O 

  Uniaxial compression 

  Temperature (T) 
  Strain rate (

•

ε ) 

 Soil+solution mixture  
 Trim after freezing 

  Similar strength between frozen soils 
and hydrate bearing sediments 
  Hydrate bearing sediment insensitive to 

strain rate 
  T ↓, strength ↑  

Stoll et al. 
(1971) 

  Ottawa sand 20-30 
  Methane gas 

  P-wave measurement 

  Temperature (T) 
  Hydrate phase 

  Water+soil mixture under 
3.3 oC/1100 psi 

  Inject methane (700 psi) 

  Vp (sand+fluid) → 1850 m/s  
  Vp (sand+hydrate) → 2690 m/s 

Kunerth et al. 
(2001) 

  Garnet sand  
  THF⋅17H2O 

  P- and S-wave 
   measurment 

  Temperature (T) 
  Hydrate phase 

  Oversaturate soil with fluid 

  Vp (sand+fluid) → 1635 m/s 
  Vp (sand+hydrate) → 3400 m/s 
  Vs (sand+hydrate) → 2400 m/s 
  Bulk modulus increases prior to   shear 
modulus increase by second event of 
phase transformation   
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Table 3.3  Test variables.  

Soils % hydrate-filled porosity  [%] 
THF⋅H2O ratio 

Confining 
pressures, σc  

Sand (F110) 0% 
H2O (unfrozen) 0.03 MPa 

Crushed silt 
(Sil Co Sil 106) 

50% 
THF⋅2.95H2O 0.5 MPa 

Precipitated silt 
(Silica zeofree 5161) 

100% 
THF⋅17H2O 1.0 MPa 

Kaolinite (SA1)   

Note: all possible combinations are tested except crushed silt which is not tested for 50% 
hydrate concentration only. 
 

methylene blue method (wet method). Note that the specific surface of precipitated silt is 

larger than that of crushed silt even though their D50 is the same. This indicates the 

presence of internal porosity in precipitated silt. 

THF is herein selected as a surrogate molecule for laboratory studies (Gough and 

Davidson, 1971; Rueff and Sloan, 1985; Pearson et al., 1986; Cameron et al., 1990; 

Devarakonda et al., 1999). THF is in liquid phase of room temperature and atmospheric 

ressure, is fully miscibility in water, and presents a low freezing temperature (Table 3.4). 

A comparative analysis of methane and THF hydrates is presented in Table 3.1. 

The stoichiometic mixture of THF and water (THF⋅17H2O) forms clathrate hydrate 

structure II under atmospheric pressure and at ~4.4oC (Sloan, 1990). THF properties are 

useful to control the hydrate fraction in the pore space when the fluid mixture goes 

through phase transformation. 
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Sand (F110) Precipitated silt (Silica zeofree 5161) 

  

D50 = 120 μm 
Gs = 2.65 
Sa ≅ 0.019 m2/g 

emax / emin = 0.85 / 0.54 
Sphericity = 0.7 
Roundness = 0.7 

D50 = 20 μm 
Gs = 2.2 
Sa*= 5~7 m2/g 

Sphericity = 0.9 
Roundness = 0.7 

Crushed silt (Sil Co Sil 106) Kaolinite (SA1) 

  

D50 = 20 μm 
Gs = 2.65 
Sa ≅ 0.113 m2/g 

emax / emin = 1.51 / 0.67 
Sphericity = 0.9 
Roundness = 0.1 

D50 = 1.1μm 
Gs = 2.6 
Sa*= 36~37 m2/g 

Sphericity = 0.7 
Roundness = 0.1 

 
Figure 3.1 Characteristics of tested soils and SEM pictures (SEM pictures: courtesy of 

Angelica Palomino, 2003. Data: Santamarina and Cho 2001, Klein 1999, Parks 
1990 and Guimaraes 2001) 
*: Specific surface is measured with the methylene blue method (wet method) 
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Table 3.4 Properties of tetrahydrofuran (THF). 

Material Tetrahydrofuran (THF) 

Molecule in 3D 

 
(http://people.ouc.bc.ca/woodcock/molecule/modelfiles/jb05thf.html) 

Molecular formula C4H8O 

Molecular weight 72.05 g 

Composition Tetrahydrofuran (>99.0%) / Butylated Hydroxytoluene (0.025%) 

Appearance Colorless liquid 

Odor Ethereal odor 

Vapor pressure 160 mmHg (23.7 mmHg for water) @ 25 oC 

Boiling point 65.4 oC 

Freezing/melting point -65 oC 

Solubility in water 100% miscible 

Specific gravity / density 0.89 
sources: Fisher Scientific (www.fisherscientific.com) 
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Figure 3.2 Triaxial cell and peripheral electronics. Two thermocouples are embedded 
on the top and bottom plates. A strain gauged arch is mounted at the 
middle height of the specimen.  

 
 
 
3.3.2  Devices 

  A conventional triaxial cell is modified to house electronics for specimen 

monitoring and thermocouples (TP29, BK precision) to assess phase transformation. Cell 

details are shown in Figure 3.2.  

Lateral displacement is measured with a metal arch instrumented with half of a bridge. 

The two active gauges are installed on both sides of the thin metal arch (one in 

compression and the other in tension). The other half of the bridge is placed outside the 

cell (strain gauge: CEA-06-240UZ-120, Measurement Group INC.). This configuration 

cancels non-linear and temperature effects. The resolution of this full bridge displacement  

Power supply

Multimeter

Thermocouple

Thermocouple

Lateral 
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Load cell
LVDT

Data acquisition 

Data acquisition 
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transducer is 5-to-6μm. The direct measurement of lateral displacement with a digital 

caliper confirms the reliability of the strain gauged arch (Note that this lateral strain is not 

the same as one used for the calculation of Poisson’s ratio). 

3.3.3  Specimen Preparation and Test Procedure 

The ratio between THF and H2O controls the amount of hydrate concentration in 

the pore space (Table 3.3). THF hydrate forms with 81% of H2O and 19% of THF by 

mass (point A in Figure 3.3). Specimens with 50% hydrate-filled porosity are obtained by 

choosing either point B or C in Figure 3.3. Point B corresponds to excess THF while THF 

hydrate formation at point C leaves excess water. The fraction at point B (42.4%/57.6% 

as H2O/THF) is used to make 50% hydrate-filled porosity in this study due to the 

convenience of temperature control (freezing temperature of THF is ~ -65oC). The 

maximum exposure time to prepare the solution does not exceed 2 minutes.  

Dry soils are thoroughly mixed with the prepared solution under a ventilation hood. 

Then the soil-fluid mixture is poured into the membrane set in the triaxial cell. Detailed 

specimen preparation procedures are summarized in Table 3.5. Fluid saturated filter 

paper surrounds kaolinite and precipitated silt specimens to facilitate drainage. Once 

specimens are closed with the top cap, vacuum is applied to erect the specimens; the 

initial volume is determined at this point. The lateral strain gauge is mounted onto the 

middle height of the specimen. The chamber is filled with mineral oil; then, specimens 

are isotropically consolidated until the predetermined effective confining pressure is 

attained (For comparison, Table 3.1 summarizes specimen preparation procedures 

followed by previous researchers).  



 39  

 

 

 
 

 

0

25

50

75

100

0 20 40 60 80 100
 

 
 
 

 Fraction of pore filling hydrate H2O [%] THF [%] 

A 100% hydrate / no liquid 80.9 19.1 

B 50% hydrate / 50% excess THF 42.4 57.6 

C 50% hydrate / 50% excess water 90.6 9.4 

 
Figure 3.3 Hydrate fraction by volume filling the pore space. 

 

The volume change in the specimen during consolidation is monitored using a graduated 

burette. After consolidation, specimens are frozen to –10oC while monitoring temperature 

changes. It takes 6-8 hours to freeze the specimen. The system is stabilized for an 

additional 12 hours. The specimen with 0% hydrate-filled porosity (100% H2O) is not 

subjected to freezing.  

The deviatoric stress is applied to impose 0.1%/min strain rate in specimens with
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Table 3.5 Specimen preparation procedures. 

Soils Procedures 

Sand 

1. Prepare solution mixture with defined ratio. 

2. Mix the soil with the solution. 

3. Fill the membrane / cell with the solution. 

4. Pour the soil and solution mixture into the membrane / cell by 

scooping. 

5. Tamp and tap the specimens with 6-8 layers. 

6. Close the specimen with top cap. 

Kaolinite 

/ Precipitated silt 

1. Prepare solution mixture with defined ratio. 

2. Mix the soil with the solution thoroughly. 

3. Fill the auxiliary cell with the soil-fluid mixture. 

4. Surround the inner wall of the membrane / cell with filter paper. 

5. Extrude the mixture in the auxiliary cell into the membrane / cell. 

6. Place the top cap. 

Crushed silt 

1. Prepare solution mixture with defined ratio. 

2. Mix the soil with the solution thoroughly. 

3. Fill membrane / cell with the mixture. 

4. Close membrane cell temporarily.  

5. Iterate step 4 2-3 times to fill the membrane / cell. 

6. Place the top cap. 

 
 

0% hydrate-filled porosity and 1%/min strain rate in specimens with 50% and 

100% hydrate-filled porosity specimens. The triaxial cell is kept below freezing 

temperature with dry ice during the test duration (less than 20 min for specimens with 

hydrates). The applied load, and ensuing vertical and lateral displacements are recorded 

during loading. All specimens are optically observed after the test to identify 

heterogeneities (ice lenses) and the failure mode. 
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3.3.4  Precautions Taking During the Experiments 

THF evaporation. The vapor pressure of THF is 6~7 times higher than water (Table 3.4); 

this situation leads to experimental difficulties related to preferential evaporation of THF 

(Cameron et al., 1990).  

An experimental study is performed to assess evaporation effects. Pure THF and the 

optimal THF+H2O solution are exposed to the atmosphere to allow evaporation. The 

weight of the mixture is monitored with time and resultant n-values (THF⋅nH2O) are 

calculated assuming the worst condition whereby all weight loss is due to THF 

evaporation only. Results are presented in Figure 3.4. The THF+H2O solution shows 

lower evaporation rate than pure THF when both fluids are subjected to stirring during 

evaporation. The evaporation of pure THF under static conditions is lower. The time 

range between 10 and 20 minutes represents the approximate sample preparation time. 

The estimated n-value of the optimal THF+H2O solution after evaporation is 17.5 ~ 18.2. 

It is believed that n-values for THF+H2O mixtures in soils are closer to the pre-selected 

value because mixing is minimal (compared to this test) and because the porous network 

prevents evaporation.  

Surface effects. Soil mixtures with THF⋅17H2O solution would lead to incomplete 

hydrate formation with excess THF because water molecules are preferentially attracted 

to the mineral surface. This situation gains relevance in high specific surface sediments 

such as kaolinite, illite and montmorillonite. Let’s assume that water molecules in the 

double layer do not react with THF. Then the effective number of water molecules per 

molecule of THF is  
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Figure 3.4 Evaporation: evolution of n-value in THF⋅nH2O solution with time for 
fluids with and without stirring (Assumption: all mass loss is due to THF 
evaporation). 

 

( )a wwc S dn R
wc

ρ− ⋅ ⋅
= ⋅               (3.1) 

where R = 17 is the optimal ratio between THF and H2O, Sa  specific surface of soils 

(m2/g), d  diffuse double layer thickness (m), ρw unit weight of water (g/m3), and wc is 

the volumetric water content in the soil. Figure 3.5 shows the maximum estimated n-

values with varying specific surface and water content assuming d=5⋅10-10 m. The value 

of n remains constant at 17 when the specific surface is small but it declines for high 

specific surface sediments at low wc. The estimated n-values to produce 100% hydrate 

filling voids are 17.00 for sand, 17.13 for precipitated silt and 17.76 for kaolinite.  

Hydration memory: The temperature of a cell filled with THF⋅17H2O solution is 

monitored during repeated freezing-thawing cycles. The phase transformation during the 
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Figure 3.5 Effective number of available water molecules, staring from the 
stoichiometric mix (n=17) as a function of the water content and the 
specific surface of the soil. The assumed thickness of the double layer is d 
= 5⋅10-10 m.  
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Figure 3.6  Phase transformation cycles. The freezing time decreases with increasing 

number of cycles.  
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first cycles is shown in Figure 3.6. The second hump indicates ice formation that results 

from THF evaporation. It is observed that formation occurs in shorter time during 

subsequent cycles. It is inferred that THF hydrate formation has a freezing history 

memory (Sloan, 1998; e.g., Iida et al., 2001). The internal mechanisms remain unclear. 

 

3.4  EXPERIMENTAL RESULTS 

The stress-strain response and post-failure specimen characteristics are documented 

in this section. It is assumed that specimens fail at the maximum deviatoric stress, σdev-

max=(σ1-σ3)max.  

3.4.1  Stress-Strain Response 

Figure 3.7 shows the stress-strain curves during undrained deviatoric loading for all 

tested specimens and confining pressures (0.03 MPa to 1 MPa). The following salient 

observations can be made:  

 Specimens with 0% hydrate-filled porosity primarily show strain hardening 

behavior. 

 Hydrate bearing sediments exhibits high stiffness at low strains. The quasi-elastic 

behavior extends to higher axial strain as confining pressure increases. 

 Sand and crushed silt with 100% hydrate exhibit a second region with lower 

tangential stiffness before failure (strain level 1~2%). This is observed at all 

confining pressures (see also Andersen et al., 1995; Ting et al., 1983).  
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Figure 3.7 Stress versus axial strain. Thin lines are the post-peak response where localization is expected. Letters a, b and c denote 

0.03, 0.5 and 1 MPa confining pressure. Note that kaolinite is plotted in a larger stress scale. 
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 Precipitated silt and kaolinite with 100% hydrate-filled porosity exhibit quasi-

brittle behavior. 

 The range of σdev values at failure under different confining pressures becomes 

narrower as hydrate concentration increases, and the stress-strain response 

becomes less sensitive to confining pressure. 

3.4.2  Post-Failure Visual Inspection 

No ice lens or noticeable heterogeneity is observed in all tested specimen. Fast 

freezing rates and confining pressure appear to promote self-homogenization. Figure 3.8 

shows pictures obtained from sand specimens after failure. Specimens with 50 and 100% 

hydrate-filled porosity tested at 0.03MPa show vertical fractures similar to those 

commonly reported in rock tests at low confinement. The specimens at 0.5MPa show 

clear shear planes while sand with 100% hydrate-filled porosity develops a fracture 

network at 1MPa.  

 

3.5  ANALYSIS 

3.5.1  Stiffness 

Intermediate-strain stiffness is obtained at (σ1-σ3)f /2, for the corresponding axial 

strain. Figure 3.9 shows the variation in stiffness with confinement and hydrate 

concentration. The stiffness of sediments without hydrate is governed by the confining 

pressure: as confinement increases, the interparticle coordination and contact area 

increase and the skeletal stiffness increases. On the other hand, hydrate concentration
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Figure 3.8 Sand specimens after failure.  

 

controls the stiffness in hydrate bearing soils and confinement has a negligible effect (the 

same trend is observed at small strains, see Figure 2.5 in Chapter II).  

The strength and stiffness dependency on the initial effective confinement and 

hydrate cementation suggest a correlation between τpeak and E. The stiffness E is plotted 

versus the peak shear strength for all tested soils (with and without hydrate and all 

effective confinement) in Figure 3.10. Assuming a relation of the form:  

B
peakE A

kPa
τ⎡ ⎤

= ⋅ ⎢ ⎥
⎣ ⎦

                 (3.2) 

The inverted parameters are A = 96.1 and B = 1.13.  

σc = 0.03 MPa σc = 0.5 MPa σc = 1 MPa 

50% hydrate 

100% hydrate 

sketch 
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Figure 3.9 Longitudinal stiffness at (σ1-σ3)f/2 versus effective confining pressure. The parameter β is computed for 0% hydrate 
bearing sediments. The exponent of the power relation E=α⋅σ’β. 
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Figure 3.10 Longitudinal stiffness at (σ1-σ3)f/2 versus undrained shear strength for all 

tested soils, with and without hydrates, and at all confining pressures. 
 

 

 

3.5.2  Undrained Strength 

The undrained peak shear strength τpeak is plotted for all tested soils in Figure 3.11. 

The undrained shear strength increases as hydrate concentration increases, it is 

confinement-dependent in 0% hydrate bearing sediments, and it is quasi confinement-

independent in the 50% and 100% hydrate bearing soils (Recall that specimens subjected 

to higher effective confinement σ’c reach a lower void ratio prior to the undrained 

deviatoric loading stage). 
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Figure 3.11 Undrained peak strength versus effective confining pressure and hydrate-filled porosity. 

(b) Crushed silt (a) Sand 

(c) Precipitated silt (d) Kaolinite
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Table 3.6 Computed fitting parameters. 

Soils D50 [μm] Sa [m2/g] α [MPa] β μ 

Sand 120 0.019 7.97 3.69 1.82 

Crushed silt 20 0.113 5.97 1.81 1.1 

Precipitate silt 20 6 2.49 1.88 0.52 

Kaolinite 1.1 36 7.75 2.51 1.43 

 

 

3.5.3  Strength as a Function of Hydrate Concentration and Confinement 

 The Coulomb strength criterion is properly defined in terms of effective stress σ’n  

' tan( )ncτ σ φ⎡ ⎤= + ⋅⎣ ⎦                 (3.3) 

where c is the cementing strength, and φ is the friction angle. However, pore pressure 

generation during shear cannot be measured with certainty in hydrate bearing systems. 

Instead, the measured undrained shear strength Su is related to the initial isotropic, 

effective confinement σ’o and the hydrate concentration Shyd (0 ≤ Shyd ≤ 1) as follows:  

μσα β ⋅+⋅= '
ohydu SS                (3.4) 

α, β and μ are model parameters. The first term hydS βα ⋅ captures the cementing 

contribution of the hydrate mass, while the second term σ’o⋅μ reflects the consequences 

of higher interparticle coordination due to a higher initial effective stress. Fitting 

parameters are listed in Table 3.6 and plotted versus specific surface in Figure 3.12. The 

cementation terms (α and β) and the stress dependent strength parameter (μ) decrease  
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Figure 3.12  Model coefficients estimated by Equation 3.4 (o indicates the precipitated 
silt specimens). 

 

 

with the specific surface Sa. Experimental results and predicted values are plotted in 

Figure 3.13. 
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Figure 3.13 Measured (symbol: o) and predicted (symbol: x) undrained shear strength. 

(b) Crushed silt (a) Sand 

(c) Precipitated silt (d) Kaolinite
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3.5.4  Poisson’s Ratio  

The zero-volume volume change condition for saturated near surface soils implies a 

Poisson’s ratio of ν=0.5. However, when measurements are corrected for geometric 

effects, the estimated Poisson's ratios vary between ~0.05 and ~0.35. The exact cause for 

these values remains unclear. It is anticipated that ν<0.5 values may reflect material 

behavior, such as: (1) contractile tendency magnified at large stress,  (2) cemented 

skeleton in the presence of hydrates, (3) unsaturation, and (4) the development of 

cavitation during shear. In addition, ν<0.5 values may also be the results of measurement 

difficulties associated with: (1) membrane penetration in coarser materials and its effects 

on measured lateral strains εr, (2) shear band formation and its effects on measured lateral 

strains εr at large strains as specimens approach peak strength, and (3) sitting effects 

which would affect the measured axial strains εa at low strain levels. 

Nevertheless, the evolution of lateral strain εr versus axial strain εa shows 

characteristic trends that reflect soil type, confinement and hydrate content. Summary 

plots for all tested soils are presented in Figure 3.14. The following observations can be 

made: 

 The evolution of lateral strains is similar for soils with similar hydrate 

concentration, regardless of confining stress. 

 The lateral strain evolution is similar in crushed silt and sand, it is independent of 

hydrate concentration in precipitated silt, and it is affected more by hydrate 

concentration than by confinement in kaolinite.  
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Figure 3.14 Lateral strain versus axial strain for tested specimens with different 
hydrate concentration, and subjected to various confining stresses. The 
thick solid line is 0% hydrate-bearing sediment, thin solid line denotes 
50% hydrate-bearing sediments, and dotted line presents 100% hydrate-
bearing sediments. 
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 Lateral strains manifest at higher axial strains with increasing hydrate 

concentration. 

 Note that strain localization leads to either no lateral strain (if the sensing band is 

not across a shear band) or constant slope (when the sensing band is across a 

shear band). 

These trends capture the competing effects between increased contractive behavior 

with increased confinement and increased dilative trend with increased hydrate content: 

(1) specimens without hydrates become less dilative as σ’c increases; (2) sand specimens 

with hydrates (50% and 100%) exhibit low lateral strains and they are independent of the 

confining pressure at intermediate axial strains.  

3.5.5  Micro-Mechanism of Shear Strength and Failure 

Etan=Δσd/Δεa is computed along the load-deformation for each specimen. The 

computed value is normalized by the initial confinement (E/σ’o) and plotted versus axial 

strain εa in Figure 3.15. Specimens with the same hydrate concentration show similar 

stiffness evolution for a given soil, and confining pressure has almost no effect. Hydrate 

bearing sediments tend to exhibit a sudden drop in Etan (except kaolinite) while 

specimens without hydrate show a gradual decrease axial strain. The 100% hydrate 

bearing sand and crushed silt specimens show two yield points. The first yield point may 

correspond to the hydrate-particle debonding, while the second one is considered to 

indicate the global structural collapse of the soil-hydrate structure. Strain localization 

could begin at the first yield point (Ting, 1983; Lo et al., 2003). The 100% hydrate 

bearing precipitated silt specimens show only one yield point, and there is no clear yield  
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Figure 3.15 Tangential stiffness normalized by the confining pressure σ’o versus axial 

strain. The number 0, 50 and 100 represents the hydrate fraction in pore 
space. The arrow in each plot indicates the noticeable stiffness loss.
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point in kaolinite specimens. Therefore, it appears that high specific surface soils do not 

present the yield point.  

 

3.6  DISCUSSION 

Shear wave velocity measurements indicate that hydrate tends to nucleate in the 

pore space (most likely on the grain surface) and to grow towards the pore space causing 

no significant change in Vs until hydrate concentration exceeds Shyd ~ 45% (Yun et al., 

2005). Strength exhibits a similar evolution with hydrate concentration (Figure 3.16): 

there is a decisive increase in strength when Shyd > ~45%.  

Micro-mechanisms for shear strength at different hydrate concentration are 

hypothesized in this study. Figure 3.17 shows possible particle-level mechanisms that 

may explain the role of hydrates on sediment strength. In the absence of hydrates, Shyd ~ 

0%, shear causes the rotation and rearrangement of particles; rotational frustration is 

overcome by dilation or slippage. At low hydrate concentration, Shyd < 45%, hydrate 

crystals may shear, detach or interfere with rotation, and cause minor increase in 

sediment strength; the extent of this effect depends on the hydrate-particle bonding 

strength, the hydrate strength and hydrate concentration. At high hydrate concentration, 

Shyd > 45%, the cementing strength provided by the hydrate mass and the bonding 

between particles and hydrates govern deformation and strength response. A shear plane 

develops through the hydrate mass when the hydrate strength (τhyd) is smaller than the 

hydrate-grain bonding strength (τhbs); in this case, τhyd dominates the overall strength 

evolution. On the other hand, failure occurs along the hydrate-particle interface when the  
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Figure 3.16 Hydrate concentration versus normalized shear wave velocity (trend from 
Yun et al., 2005) and shear strength.  

 

 

hydrate strength (τhyd) is greater than than the hydrate-grain bonding strength (τhbs); this 

case is more likely when smooth particles or high specific surface soils are involved. In 

all cases, the presence of hydrate promotes enhanced dilation.  

From this analysis, it is concluded that extending experimental results gathered 

with THF hydrate to methane hydrate depends on hydrate and bonding strengths. Only 

part of this information is currently available: the strength of THF hydrate varies between 

3-to-44MPaand for methane hydrate varies between 16-to-102MPa depending on 

temperature, confining pressure and strain rate (Ohmura et al., 2002). 
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Figure 3.17 Possible particle-level mechanisms involved in the shear strength of 
hydrate bearing sediments. 
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3.7  CONCLUSIONS 

 Soil type, confining pressure and hydrate concentration in the pore space determine 

the deformation, the failure behavior and the strength of THF hydrate bearing 

sediments. 

 Hydrate bearing sediments have high intermediate strain stiffness and the quasi-

elastic behavior extends to higher strain levels as the confining pressure increases. 

As the hydrate concentration increases above Shyd ~ 45%, the stress-strain response 

becomes less sensitive to the confining pressure.  

 The undrained shear strength and elastic stiffness increase as hydrate concentration 

increases.  

 Lateral strain evolution mainly depends on the hydrate concentration rather than 

confining pressure. Hydrate bearing specimens are less dilative at the global scale 

than specimens without hydrate. 

 Two yield points are identified in coarse-grained soils (sand and crushed silts) and 

high hydrate-filled porosity. It is hypothesized that hydrate-grain debonding marks 

the first yield point, while the structural collapse of the soil-hydrate structure 

determines the second yield point. 

 The shear strength of hydrate bearing sediments evolves depending on the hydrate 

concentration in pore space, the hydrate strength, the hydrate-particle bond strength 

and confining pressure. Possible particle-level mechanisms include interference in 

particle rotation, enhanced pore-level dilation, hydrate-particle debonding, and 

hydrate shear. 
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CHAPTER IV 

MICRO-SCALE STUDY OF HEAT TRANSFER IN PARTICULATE MATERIALS 

 

4.1  INTRODUCTION 

The internal structure of the earth consists of a hot core (3000-5000oC); more than 

95% of the earth’s volume is at a temperature higher than 1000oC. This great geothermal 

dynamo has determined the geological history of the earth. Heat flux in oceans and 

climate change are macro-scale manifestations of geothermal phenomena. Geotechnical 

engineering examples include thermal stabilization, foundation effects in permafrost 

regions, geothermal energy resources, thermal storage, radioactive waste disposal, 

pavements in extreme climates and methane hydrates (Miller, D. L. 1985; Joshi et al., 

1994; Singh and Devid, 2000). 

Scientific studies on temperature, thermal properties and thermal phenomena date 

back to Galileo (1564-1642) who devised the thermoscope to measure temperature 

changes.  Issac Newton (1642-1727) suggested the scaling of temperature from the 

freezing temperature of water to the temperature of the human body. Anders Celcius 

(1701-1744) established the celcius temperature scale and the absolute temperature was 

introduced by William Thompson (1824-1907). Issac Newton observed that the rate of 

heat loss relates to the temperature difference between the body and its surroundings, 

Joseph Fourier (1768-1830) postulated that the rate of heat transfer is proportional to the 

temperature gradient through the ‘thermal conductivity’. Joseph Stefan (1835-1893) 
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discovered radiation, which was later analyzed by Ludwig Boltzmann (1844-1906) 

resulting in the Stefan-Boltzmann Law.  

The formation and stability of gas hydrate bearing soils are controlled by the 

sensitivity of gas hydrate to temperature. Drilling operation into the seafloor and 

pipelines in cold regions create a thermal gradient near gas hydrate bearing sediments, 

which could result in hydrate dissociation and sediment instability (Hovland and 

Gudmestad, 2001).  

The thermal conductivity k of the different soil components varies across two order 

of magnitude: kmineral >> 3 W⋅m-1⋅K-1, kwater = 0.56 W⋅m-1⋅K-1 and kair = 0.026 W⋅m-1⋅K-1. 

While the thermal conductivity of minerals is high, the thermal conductivity of the dry 

soil skeleton is typically ksoil < 0.5 W⋅m-1⋅K-1 depending on mineral composition and 

packing density. The ordered sequence of thermal conductivity for saturated soils is 

typically kair<kdry-soil<kwater<ksaturated soil<kmineral. These observations suggest that the main 

heat transfer path in soils is through contacts and the pore fluid (Carslaw and Jaeger, 

1959; Murashov and White, 2000). 

  The purpose of this study is to explore particle-level mechanisms that govern heat 

transfer in particulate materials. The manuscript begins with a literature review on heat 

transfer in soils, followed by particle-level and macro-scale experimental and numerical 

results.  
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4.2  LITERATURE REVIEW 

Energy flow is driven by hydraulic, chemical, electrical and thermal gradients. The 

heat flux q in steady state is proportional to the thermal gradient by the coefficient of 

thermal conductivity k, according to Fourier’s law: q=k⋅ (dT/dx). The rate of heat transfer 

in transient conditions is equal to the heat stored within the medium and the rate of 

internal heat generation.  

         generated stored
d q q q
dx

= −  (4.1)  

The heat stored in the material is  

 
t
Tcqstored ∂
∂
⋅⋅= ρ                 (4.2) 

where ρ is the material mass density and c is heat capacity. Combining the above 

equations,  

2

2

1
generated

T c Tq
x k k t

ρ∂ ⋅ ∂
= − ⋅

∂ ∂
             (4.3) 

If there is no heat generation within the material, the first term on the right hand-side 

vanishes and 

2

2

1T T
x D t

∂ ∂
= − ⋅

∂ ∂
                 (4.4) 

where D = k/(ρ⋅c) is thermal diffusivity of the material (Note that the sign in Equation 4.4 

depends upon the direction of heat flow).  
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Table 4.1 summarizes values for the thermal conductivity, diffusivity and heat 

capacity of soils and soil components. The governing particle-level and macroscale 

factors that determine the thermal behavior of soils are compiled in Table 4.2. The 

relevance of interparticle contacts and water content is highlighted.  

There are three heat transfer mechanisms in a medium: conduction prevails in 

solids, convection in fluids, and radiation does not require a material medium.  The solid 

contact is the most effective way to transfer heat in dry particulate materials, while 

conduction through the gas phase and radiation have minute effects (Carslaw and Jaeger, 

1959; Murashov and White, 2000). On the other hand, heat transfer by convection 

becomes effective if the particle size D50 is larger than ~6mm permitting fluid currents in 

pores and through the porous network (Thalmann, 1950).  

  There are several soil thermal conductivity data sets. These have supported the 

development of empirical correlation that is summarized in Table 4.3. In addition, 

mixture models have been developed to predict the thermal properties of soil-fluid 

mixtures (Tarnawski et al., 2002; Gori and Corasaniti, 2004); these are summarized in 

Table 4.4. The theoretical prediction of thermal conductivity requires detailed knowledge 

of the mixture geometry, the properties of each phase and the volumetric fractions. In 

general, theoretical mixture models predict higher conductivity values than measured 

values. This is attributed to restricted heat transfer through interparticle contacts; the 

concept of a “contact heat resistance” is often argued (Tarnawski et al., 2002; Kumlutas 

et al., 2003; Song and Chen, 2004). Heat transfer between particles is addressed in the 

following section. 
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Table 4.1 Thermal properties of materials.  

Material Density 
[kg⋅m-3] 

Heat capacity
[kJ⋅kg-1⋅K-1] 

Thermal 
conductivity 
[W⋅m-1⋅K-1] 

Thermal 
diffusivity 

[m2⋅s-1] × 10-7 

Air – 10oC 1.25 1.00 0.026 0.21 

Water 999.87 4.2 0.56 1.4 

THF (25oC) 890 1.72 0.6 3.92 

Ice (-10oC) 900  2.09 2.25 11.2 

CH4 hydrate 910 2.07 0.5 2.654 

THF hydrate ~910 2.07 0.53 2.814 

Dry 1700 0.92 0.9 5.754 
Clay 

Saturated   0.6~2.5  
      

Dry 2000 0.80 1.1 6.875 
Soil 

Sand 
saturated   2~4  

       

 quartz 2660 0.733 8.4 43.08 
Mineral 

 Mica 2883 0.88 0.75 2.956 

Aluminum bronze (630) 7584 0.38 39.1 136.8 

Wood 780 1.75 0.04 ~ 0.15 0.293 ~ 1.1 

Metal Patch   2.3012  

source: http://www.jukseflux.com; Becker et al., 1992; Andersland and Ladanyi, 2004. 
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Table 4.2 Governing factors controlling thermal conductivity of soils. 

Factors Features 

Mineralogy 
 Thermal conductivity of quartz > feldspar and mica (Gangadhara Rao and 

Singh, 1999; Tarnawski et al., 2002) 

Particle size 

 Heat flux between particles is proportional to the radius of particle and 

reciprocal to the contact distance (numerical solution in Batchelor and 

O’Brien, 1977).  

 Larger particles and fewer contacts in a given volume result in higher 

thermal conductivity (Aduba, 1996; Gangadhara Rao and Singh, 1999).   

Packing 

geometry 

 Higher interparticle coordination increases the thermal conductivity for a 

given particle size (Tarnawski et al., 2002). 

 The contact conductance is more important than the radiational conductance 

(Lambert and Fletcher, 1997-a, b). 

 The thermal conduction at contacts results in percolation-type conduction 

process (Sahimi and Tsotsis, 1997). 

Applied 

pressure 

 Heat flux increases with contact radius; therefore k increases with load. 

(Batchelor and O’Brien, 1977; Sridhar and Yovanovich, 1996; Lambert and 

Fletcher, 1997-b; Vargas and McCarthy, 2001). Contact orientation affects 

thermal conductance.   

 Granular chains in particulate materials determine heat transfer (Vargas and 

McCarthy, 2001):  

                                         
3/1

* ⎥⎦
⎤

⎢⎣
⎡⋅⋅=

E
F

kaH n
solid    

where H is heat flux, ksolid is thermal conductivity of solid material 

(mineral), Fn is the normal force on contacts and E* is the effective stiffness 

of two particles. 
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Table 4.2 Continued. 

Factors Features 

Water 

content 

 Adding small amount of water dramatically improves the thermal 

conduction (Singh and Devid, 2000). 

 On the other hand, the thermal conductivity in partially saturated soils 

increases with water content suggesting the important role of pore fluid 

conduction (Farouki, 1985; Andersland and Layandi, 2004; Singh and 

Devid, 2000).  

Density / 

Gradation 

 The lower the void ratio the higher the thermal conductivity.  

 Well-graded soils exhibit higher heat transfer since smaller particles fill the 

interstitial pore and increasing interparticle coordination (Esch, 2004) 

Particle size 

 Thermal conductivity is proportional to the particle size (Gangadhara Rao 

and Singh, 1999). 

 Soils with flat surface present high thermal conduction by large interparticle 

contact area (Becker et al., 1992). 

Cementation 
 Cement and colloidals precipitated at particle contacts increase the thermal 

conductivity (Tarnawski et al., 2002).  
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Table 4.3 Empirical methods to estimate the thermal conductivity of soils. 

 Empirical correlations 

Johansen’s 

correlation 

(1975)* 

 Correlation with particle size, saturation, and particle conductivity. 

   ( )sat dry e dryk k k K k= − +  

   Ke = Kersten number. Each parameter has its own empirical relations (see 

Andersland and Ladanyi, 2004 for details) 

 
0.137 64.7( / ) 20%

2700 0.947
d

dry
d

k W m K ρ
ρ

+
⋅ = ±

− ⋅
 

   2.2( / ) 0.039 25%dryk W m K n−⋅ = ±  for crushed rock materials 

Becker et al., 

(1992) 

 Correlation with saturation. 

   [ ]1 2 3 4sinh( ) sinh( )S kλ λ λ λ= + −  

    S = saturation. k = thermal conductivity (Btu⋅in/ft2⋅hr⋅oF) 

   λ1~λ4 = coefficients fitted. 

 k linearly increases with dry density. 

Esch (2004) 
   2 30.025 0.238 0.193 0.114dry d d dk γ γ γ= + − +   for mineral / organic soil 

   dγ = dry density (< 2g/cm3) 

*: summarized in Andersland and Ladanyi (2004) 
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Table 4.4 Theoretical thermal conductivity mixture models. 

Effective thermal conductivity Model 

maeff kkk
φφ −

+=
11

 Series type – Ruess (1929)

maeff kkk ⋅−+⋅= )1( φφ  Parallel – Voigt (1910) 

φφ −⋅= 1
maeff kkk  Geometric Mean Method 

Kumlutas (2003) 

⎥
⎦

⎤
⎢
⎣

⎡
−++

−⋅
−=

)1(2
)1(31
AA

Akk sceff φ
φ

 
sc

fc

k
k

A =  

kfc and ksc are Hashin and Shtrikman’s upper and lower bound.

Nimick and Leith (1992) 

1
1 1
3 2 2eff

eff m eff a

k
k k k k

φ φ
−

⎡ ⎤−
= +⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 

Self Consistent Method 
Tarnawski and Leong 

(2000) 

ψφ
φ
⋅⋅−
⋅⋅+

⋅=
B

Bakk meff 1
1

   

akk
kk

B
ma

ma

+
−

=
/

1/
, φ

φ
φ

ψ ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+= 2

1
1

m

m    

a and φm are particle shape and packing parameters.  

Kumlutas (2003) 

maaeff kkkk +−⋅
+

⋅
−

=
)1(

11
2β
β

β
β

, 
3/1

1
1
φ

β
−

= for dry soil Cubic Cell Model 
Gori and Corasaniti (2004)

mma

meff

kkk

kk

3
11 φ

φ
−

+
−

+= : Upper bound 

aam

aeff

kkk

kk

3
11

1
φ

φ
−

+
−

−
+= : Lower bound 

Hashin and Shtrikman 
bounds (1962) 

φ: porosity, ka: thermal conductivity of air, km: mineral thermal conductivity. 
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4.3  HEAT TRANSFER BETWEEN TWO PARTICLES - CONTACT LEVEL 

A numerical simulation and complementary experimental study of heat transfer 

through contacts are documented in this section.  

4.3.1  Numerical Simulation 

 The two-dimensional numerical simulation of contacts between “cylinders” is 

implemented using the following form of the thermal diffusion equation  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
T

x
TD

t
T                (4.5) 

In finite differences, and assuming that Δx=Δy, Equation 4.5 becomes  

t
ji

t
ji

t
ji

t
ji

t
ji

t
ji TMTMTMTMTMT 1,1,,,1,1
1

, )41( −+−+
+ ⋅+⋅+⋅−+⋅+⋅=   (4.6) 

where 2/( )M D t x= ⋅Δ Δ . Three cases are simulated: 1) particles surrounded by air, 2) 

particles with a water meniscus at the contact and 3) particles surrounded by water. The 

particle geometry and boundaries are pre-defined for the three cases (Figure 4.1). The 

value of M at boundaries is taken as a local average, i.e., the adopted diffusion coefficient 

D is the average of D for the two media in the explicit scheme for nonlinear diffusion 

problem (see Press et al., 1992). A constant high temperature boundary is assumed at the 

equatorial plane of the lower particle. 

The evolution of the heat front is shown in Figure 4.2. As heat flows from the lower 

boundary, it reaches the particle contact in a similar fashion in all three cases (~4 sec for 

a 12.7mm radius metal particle), and the isothermal front closely delineates the particle 
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Figure 4.1 FDM modeling condition. The shadowed and white region stand for the 
solid particle and pore space. 

 

 

geometry. Thereafter, heat transfer is much more effective when water is present (case II 

and III) than in the dry system (case I). In the three cases, the particle contact is the 

primary path for heat transfer. The presence of water at the contact plays a critical role 

bridging the gap between the two particles and reducing the contact resistance. 

The temperature field along the particle axis is plotted in Figure 4.3 at different 

times (solid lines). In addition, the temperature evolution in an infinite solid block is  
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Figure 4.2  Numerical study: heat evolution for different particle contact conditions. 

 Case I: air in void space. Case II: air in void space and water meniscus at 
contact. Case III: water in void space. 

 

shown for comparison. The retardation effect of particle contacts is highlighted at early 

times. Eventually all cases evolve toward the same temperature field.  
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Figure 4.3 Temperature evolution with particle geometry. The continuous lines 
correspond to the granular case simulated in Figure 4.2. The dotted line is for 
an infinite solid medium (1: t=6sec, 2: t=150sec, 3: t=3000sec).  
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4.3.2  Experimental Study: Infrared Imaging 

A series of three spherical particles (aluminum bronze alloy – 25.4 mm diameter) 

are coated with black paint to monitor the surface temperature evolution by black body 

radiation using an infrared camera (Delta therm 1400, Stress Photonics Inc.). The 

temperature at the center of each particle is monitored with thermocouples. The test 

begins when a constant temperature To ≅ 100 oC heat source is brought into contact with 

the bottom sphere. Infrared images are sequentially taken with time.  

Figure 4.4 shows the evolution of internal temperature with time for the three 

particles. The bottom particle that contacts the heat source exhibits the earliest 

temperature increase while the middle and top particles experience a lower rate. The 

higher the particle is, the lower the final temperature is due to radiation loss. 

4.3.3  Observations 

Numerical simulation results and infrared images show that heat transfer in 

particulate materials involves: 

 transport through interparticle contacts; in fact, isothermal lines inside the particle 

are “centered” at the contact. 

 transport through liquids near contacts. 

 heat loss observed in the IR study (lower steady state temperature away from 

lower particle) indicates that there is surface radiation driven by the temperature 

gradient between the particle and the medium. 
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Figure 4.4 Internal temperature evolution at the center of the three particles measured 
with thermocouples. The series of particles are heated at the bottom. 

 

Therefore, the increase in contact area by loading or moisture will cause higher thermal 

conductivity in the medium. 

 

4.4  THERMAL CONDUCTION IN A 1-D GRANULAR CHAIN - CHAIN LEVEL 

 An experimental study is designed to extend prior observations to a long column of 

spherical metal particles to simulate an “equivalent 1-D” column. The experimental study 

is complemented with an equivalent 1D continuum analysis.  

4.4.1  Experimental Design 

The test configuration is shown in Figure 4.5. The 15 aluminum-bronze spheres 

(Alloy 630- 25.4 mm diameter, k=39.1 W⋅m-1⋅K-1, D=136.8⋅10-7m2/sec) are vertically 
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Figure 4.5 Heat transfer in a granular chain - Test design. The core temperature in 
each particle is monitored while the heat is applied from the bottom.  

 

aligned within a wooden guide (k=0.1 W⋅m-1⋅K-1, D=0.5⋅10-7m2/sec). A heat source 

applies a constant temperature at the bottom. The source temperature ranges between 103 

oC and 107oC for all tests (room temperature ~20oC). Each particle has a small 

perforation (1.8mm diameter) that permits mounting a thermocouple (TP-29, B&K 

Precision) to monitor the core temperature. Temperature values in the 15 particles and at 
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the source are logged every 10 seconds until the temperature reaches equilibrium. Figure 

4.6 shows sketches of contact and boundary conditions for the 6 different tests performed 

as part of this study: 

 Reference column (O): Particles are vertically aligned without any contact 

modification or special boundary condition. 

 Contact Retardation (RO): A single sheet of filter paper (medium porosity) is 

placed between particles to hinder heat transfer at contacts.   

 Load (LO): A force of 160 N is applied at the top to improve interparticle 

contact coupling the equivalent effective stress is ~ 30kPa). 

 Load - Meniscus (LMO): The interparticle contact areas are purposely enlarged 

with metal patch (S-50, Devcon Inc., k=2.3 W⋅m-1⋅K-1)).  A vertical force 160 N 

is applied as well.  

 Boundary Insulation (IO or LIO): The entire column is insulated with a foam 

sealant to reduce radiation and convection heat loss. Tests are repeated with and 

without load (160 N). 

The temperature-time histories at selected particles (#2~9) are presented in Figure 

4.7 for the 6 test configurations. The temperature of the bottom particle that is in direct 

contact with the heat source increases first followed by the upper particles. There is a 

time lag for each successive particle. The steady-state temperature reached by each 

particle does not converge to the same plateau and the equilibrium temperature decreases 

from the bottom to the top particle; this implies heat loss along the 1-D column.
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Figure 4.6   Particle column - Test conditions. The test name indicates: O-reference, R: 
retardation, L: load, M: meniscus, I: insulation. 
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Figure 4.7 Temperature evolution with for particles #2~9.  
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Figure 4.7 Continued. 
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   Figure 4.8 compares temperature time histories for particles #2 and #4 under 

different test conditions arranged into two groups. Taking the results of test 1 as reference 

(O: thick solid line), the following observations can be made: 

 Group 1 (Figure 4.8-a): The paper at contacts hinders heat conduction.  Thus, the 

initial temperature evolution of test 2 (RO: dotted line) is shifted to later time. 

Furthermore, radiation loss increases and the steady-state temperature is lower 

than in test 1. On the other hand, loading in test 3 (LO: dashed line) enhances 

thermal conduction due to increased contact area and contact improvement related 

to flattening of surface roughness; the equilibrium temperature is higher than in 

tests 1 and 2. Test 4 (LMO: solid line) shows faster and steeper thermal evolution, 

and higher equilibrium temperature as a result of the added metal meniscus. 

Therefore, particle contact conditions determine both the rate of heat transfer and 

the relevance of heat loss at equilibrium. 

 Group 2 (Figure 4.8-b): Convective air circulation and radiation heat losses are 

reduced in tests 5 and 6 by foam shielding. Heat loss reduction leads to increased 

conduction and higher equilibrium temperature. In addition, the normal load 

further promotes heat conduction in test 6 (LIO: solid line). 

Heat loss and contact resistance have different affects on the measured time 

histories. Heat loss is solely responsible for lower equilibrium temperatures in test 6 

(LIO) and test 3 (LI) in Figure 4.9. The particle contact condition determines the rate of 

transfer and is best detected in early stages of heating. For example, the temperature rise 

in test 4 (LMO) precedes that of test 6 (LIO) during transient conditions, while test 6 still 

has higher equilibrium temperature (Figure 4.9-b). Note that there is heat loss even in
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Figure 4.8 Time history comparison – Heat transfer under different contact and 
boundary conditions. 
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Figure 4.9 The effects of heat loss and contact resistance on measured time histories.  
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insulated cases.  

4.4.2  Equivalent 1-D Continuum Numerical Analysis  

  The numerical analysis in this section is based on equivalent heat conduction theory, 

and takes heat loss into consideration as follows: 

    *TL
dt
dTAdzcQQ vinout ⋅−⋅⋅⋅⋅−= ρ           (4.7) 

 

 

units: [ ] 2
3sec sec sec sec

o
o

o o

cal cal cal kg C calm m C
kg C m C

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
      

This equation indicates that the outflow heat is the sum of the inflow heat, the heat used 

for heating the material, and the heat loss, where cv is heat capacity, ρ  mass density, z 

distance, A area, T temperature, and L the loss factor that relates the heat loss to the 

instantaneous thermal difference between the particles and the medium. Rearranging 

Equation 4.6,  

*T
dz
L

dt
dTAc

dz
dQ

v ⋅+⋅⋅⋅= ρ              (4.8) 

The rate of heat transfer by conduction is  

dz
dTAkQ ⋅⋅=                   (4.9) 

where k is the thermal conductivity. Combining Equations 4.8 and 4.9 results in  

Heat 
loss 

Inflow 
heat 

Energy used for 
material heating 

Outflow 
heat = 
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Rearranging  

*
2

2

T
dz

TdD
dt
dT

⋅−⋅= λ                           (4.11) 

where /( )vD k c ρ= ⋅  and /( )vL dz A cλ ρ= ⋅ ⋅ ⋅ . In finite difference form, Equation 4.11 

becomes: 

1 1 1(1 2 )i i i i surT M T M t T M T t Tλ λ+ + −= ⋅ + − − ⋅Δ ⋅ + ⋅ + ⋅Δ ⋅       (4.12) 

where Tsur is the surrounding room temperature and M = 2/D t z⋅Δ Δ . The value of M 

should be less than 0.5 to prevent numerical divergence. Equation 4.11 captures the 

interplay between thermal diffusion D and loss λ. In particular, higher thermal 

conduction and smaller loss λ have a similar effect while modeling the early time history 

for a single particle. Therefore, the thermal diffusivity D and the loss coefficient λ must 

be simultaneously fitted to a complete set of thermal time histories in order to extract 

correct value of the equivalent continuum diffusion coefficient D. A least square 

inversion is implemented. The error in temperature is computed in log-scale to emphasize 

early low values. The corresponding error for the i-th measurement and the total L2 error 

norm are: 

log log log
measured measured measured

i i i
i o o predicted

i

T T Te
C C T

⎡ ⎤⎡ ⎤ ⎡ ⎤
= − = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
         

0.5
2

2 i
i

L e⎡ ⎤= ⎢ ⎥⎣ ⎦
∑                       (4.13) 
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The iterative algorithm continues until the inverted variables D and λ are stable for a 

minimum error L2. Figure 4.10 shows measured and predicted time series. The equivalent 

1-D column adequately captures experimental results; the major derivations are deserved 

for Test 4 (LMO). Figure 4.11 shows the contours of error surface for the joint inversion 

of D and λ. The dots represent the selected optimal values for the minimum errors. In all 

cases, λ increases with D. The loss coefficient λ is more sensitive in test 2 (RO) rather 

than in test 5 (IO) and 6 (LIO) showing the higher contour slope. There is a trade off 

between the two values.  

 The evaluated thermal diffusivity and loss coefficient values are summarized in 

Table 4.5. The following observations can be made:  

 Diffusion decreases when poor contact conditions prevail (improving radiation 

heat loss) for example in test 2. 

 Diffusion increases when heat can be more easily transported across larger 

contact areas attained by loading (examples: test 3 and test 6) or cementation 

(test 4). A larger interparticle contact area facilitates heat conduction yet it also 

causes an increase in the loss term λ because more heat supply induces a higher 

temperature gradient with the surrounding temperature (Figure 4.10 shows that 

both D and λ increases to fit experimental results) (Sridhar and Yovanovich, 

1996; Lambert and Fletcher, 1997-a). 

 Peripheral insulation prevents heat loss and leads to higher heat conduction and 

smaller λ (test 5 and 6). 

 Retardation causes a decrease in D and a slight increase of λ in all cases. 
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Figure 4.10 Measured and fitted thermal histories - Shown for selected particles 
(dotted line: experiment; solid line: numerical analysis). 
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Figure 4.10 Continued. 
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Figure 4.11 Contours of L2 error surfaces for the joint inversion of D and λ. The value 
of λ increases linearly with D. Note that this trade off hinders inversion 
uniqueness. 
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Table 4.5 Thermal diffusivity D and loss coefficient λ. 

Test # Error 
Thermal diffusivity  

[m2/sec]  × 10-7   
Loss coefficient  

[1/sec] × 10-4 

 Normalized Log scaled Normalized Log scaled Normalized Log scaled 

1 (O) 11.192 4.494 2.5 2.6 2.5 2.4 
2 (RO) 4.549 2.253 1.8 1.7 3.0 2.7 
3 (LO) 8.709 2.663 4.9 5.0 3.0 2.9 
4 (LMO) 44.494 13.329 6.5 6.5 3.3 2.8 
5 (IO) 3.134 0.862 3.7 3.8 1.4 1.4 
6 (LIO) 2.875 0.887 4.3 4.4 1.5 1.5 

 

  

 Above all, the diffusion coefficient in the particle column is only 4% of the 

diffusion coefficient in the metal that makes the particles.  

Note that the thermal time history gathered at any given particle can be very closely 

fitted with Equation 4.12 (rather than simultaneously fitting all time series). This provides 

a new set of D and λ parameters which are summarized in Table 4.6 and compared in 

Figure 4.12. While results are similar, fitting single time histories is less robust than 

extracting D and λ by simultaneously satisfying all time histories.  

 

4.5  THERMAL CONDUCTION IN SOILS – MACRO-SCALE 

The effect of contact quality, area size and coordination number on the thermal 

conductivity of natural soils is studied by varying the void ratio, gradation and particle 

shape of dry sands. The thermal needle probe method is used for these measurements.  
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Table 4.6 Thermal diffusivity D and loss coefficient λ for individual particles with 
log scaled temperature calculation. 

Test # D [m2/sec]  × 10-7    λ [1/sec] × 10-4 

 3rd 4th 5th 6th 7th 8th  3rd 4th 5th 6th 7th 8th 
1 2.8 3.2 3.5 3.6 3.3 3.2  2.6 2.5 2.3 2.4 2.4 2.6
2 2.2 2.3 2.4 2.3 1.9 2.0  3.3 3.0 2.8 2.6 1.9 1.9
3 5.1 5.7 6.3 6.1 5.9 5.6  3.1 3.1 3.1 3.2 3.2 3.3
4 6.5 6.5 6.5 6.5 6.5 6.5  3.3 2.9 2.7 2.1 1.9 1.7
5 4.0 4.1 4.2 4.1 4.1 3.9  1.5 1.5 1.5 1.5 1.5 1.5
6 4.8 4.7 4.9 4.9 4.8 4.8  1.6 1.6 1.6 1.6 1.6 1.6

 

 

 

 

                                            
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Profile of evaluated thermal diffusivity and loss coefficient. ‘A’ stands for 
the overall estimated value obtained by simultaneously taking into 
consideration all time series. Numbers 3 and 5 denote values computed for 
individual time series, in this case for the 3rd and 5th particles. In all cases, 
the logarithmic error definition and the L2 norm are used to guide the 
inversion. 
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Figure 4.13 Thermal conductivity measurement circuit - Thermal needle probe method. 

 

4.5.1  Test Method 

  The thermal needle probe consists of a heating wire and a thermocouple installed 

within a 1 mm diameter metal needle (Thermal Logic). Heat is generated by imposing a 

DC current through the heating wire and the temperature evolution within the needle is 

monitored with the thermocouple (Figure 4.13): the higher the thermal conductivity of 

the medium, the higher the rate of heat dissipation and the lower the rate of temperature 

increase detected with the thermocouple. The electric current I is related to the voltage 

drop Vref across a reference resistor Rref  placed in series with the heating wire, 

I = Vref / Rref                   (4.14) 
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Figure 4.14 Temperature-time series. Identification of the steady state region. 

 

 

The input heat energy Q is 

2
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              (4.15) 

where Rm is the resistance of the heating wire. The early portion of the temperature time 

series is affected by the needle-soil coupling while long-time data are affected by 

specimen boundaries. Therefore, the thermal conductivity is obtained from the linear, 

central portion of temperature versus log of time plot (Figure 4.14). The thermal 

conductivity is computed as (derivation in Carslaw and Jaeger, 1959): 
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        (4.16) 

This test method is valid in homogeneous, isotropic materials (for details on this 

procedure, see Monohar et al., 2000; ASTM D5334-00). 
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4.5.2  Experimental Study 

Index properties and microscopic images of the tested soils are presented in Table 4.7 and 

Figure 4.15. Ottawa 20/30 and F110 are round sands while blasting and crushed sand 

have low roundness and sphericity. Crushed sand-I and sand–III have significant fines 

content. In all cases, sand is air-pluviated into a zero lateral strain cell to attain the loosest 

possible state (cell diameter = 15.25 cm, height = 15.50 cm - Figure 4.13). The thermal 

needle probe is then vertically inserted into the soils. The temperature is logged every 0.5 

second for 2 minutes (Agilent multimeter 34401A). The voltage drop Vref  remains 

relatively constant throughout the test and it is recorded to calculate the input energy. 

Measurements are repeated after 10 minutes. Once three measurements are completed, 

the specimen is tamped and /or densified on a shaking table to attain gradual reductions 

in porosity (5~6 steps).  

4.5.3  Test Results  

  Results are shown in Figure 4.16. Following prior particle-level studies, it is 

inferred that the increase in thermal conductivity with decreasing porosity reflects the 

increase in interparticle coordination and possible improvements in “contact quality”. 

There is a weak correlation between particle shape and the slope of the k vs. n line 

(Δk/Δn). Results for crushed sand-I and sand–III suggest that well graded sands attain 

lower porosities and higher k values as smaller particles fill voids left between larger 

particles; the result is improved heat transfer and higher thermal conductivity.  
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Table 4.7 Tested soil properties. 

Void ratio Gradation Shape 
Soil Mineralogy 

emax emin D50 (mm) D10 (mm) Cu Cc 
Gs 

Roundness Sphericity

Ottawa 20/30 sand(1) quartz 0.742 0.502 0.72 0.65 1.15 1.02 2.65 0.9 0.9 

Ottawa F110 sand(1) quartz 0.848 0.535 0.12 0.081 1.62 0.99 2.65 0.7 0.7 

Blasting sand(1) quartz 1.025 0.698 0.71 0.42 1.94 0.94 2.65 0.3 0.55 

Crushed sand-I(2)  granite, gneiss 0.93 n/a 0.33 N/A 5.5 n/a n/a 0.1 0.6 

Crushed sand-II(2)  n/a 0.91 n/a 0.52 N/A 2.3 n/a n/a 0.5 0.9 

Crushed sand-III(2)  granite 0.79 n/a 0.3 N/A 3.2 n/a n/a 0.2 0.8 

Note: (1) Cho (2002). (2): Dodds (2003) 
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Ottawa 20-30 sand F110 sand Blasting sand 
   

- Spherical and round shape 
- Very uniform distribution 

- Elliptical shape.  - Angular shape. 

Crushed sand-I Crushed sand-II Crushed sand-III 
   

- Elongated and angular shape. 
- Fines passing #200: 9.84%. 

- Spherical, medium rounded. 
- Fines passing #200: 0.7% 

- Angular shape. 
- Fines passing #200: 4.35%. 

Figure 4.15 Microscopic images of tested sands. 
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Figure 4.16 Changes in thermal conductivity with porosity. Maximum and minimum 
porosities are calculated from maximum and minimum void ratios 
n=e/(1+e). Refer to Table 4.7. 
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Figure 4.17 shows thermal conductivity versus porosity trends predicted with thermal 

conductivity models summarized in Table 4.4. These trends are computed assuming that 

the thermal conductivity of quartz and air are km = 8.4 W⋅m-1⋅K-1 and ka = 0.026 W⋅m-1⋅K-

1. Experimental data are superimposed on the same plot.  

The thermal conductivity of the tested sands drops sharply from the thermal 

conductivity of quartz mineral (Note that the y-axis is in log scale in Figure 4.17). Series 

and Hashin-Shtrikman lower bound (HS-L) models plot below experimental results, 

while other predictive models overestimate the thermal conductivity of these dry sands. 

The volume fraction model (same as the Complex Refractive Index Method CRIM) and 

the log-model are fitted as:  

1/
(1 )

cc c
eff a mk n k n k⎡ ⎤= ⋅ + − ⋅⎣ ⎦  with a value c=-0.25 (4.17) 

ln( )effk a n p= − ⋅ +  

with values a= 0.291 W/(m⋅k) and p = 0.026 W/(m⋅k) (4.18)  

On the other hand, the semi-empirical models (in Table 4.3) fit the experimental 

result in Figure 4.17-b. These results suggest that effective thermal conductivity models 

for particulate materials must not only consider volumetric fractions and the bulk 

conductivity of each phase but also the inherent presence of contacts in particulate 

materials (Tarnawski et al., 2002; Kumlutas et al., 2003; Song and Chen, 2004). 

 

4.6  DISCUSSION 

Previously published results, particle-level and macro-scale measurements and 

simulations in this study permit identifying several heat transfer paths in granular
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Figure 4.17 Effective thermal conductivity versus porosity. Experimental results 
shown as black dots (total of 39 measurements-6 sands). Model 
predictions are shown with lines.  

 Series: Reuss (1929), Parallel: Voigt (1910),  HS: Hashin-Shtrikman (U: upper bound and 
L: lower bound), GM: Geometric mean (Kumlutas, 2003), SC: Self consistent (Tarnawski 
and Leong, 2000), VF: Volume fraction (Roth et al., 1990) 
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materials refer to (Figure 4.18):  

 Conduction in solid: Heat propagates within the material that makes the particle. 

Solid-to-solid conduction: This is the main path at particle contacts. Its 

effectiveness is controlled by the contact area.   

 Conduction in fluid: Heat is conducted from the particle into the fluid and back 

into neighboring particles. Heat is also conducted through the fluid within the 

porous network. 

 Convection: Heated particles warm the surrounding fluid and convective heat 

circulation develops.  

 Radiation conduction at interparticle contacts: The geometry of spherical 

particles allows radiation heat propagation across particles. 

 Radiation from the particle surface into the surrounding medium (Aduda, 1996). 

 

4.7  CONCLUSIONS  

  Heat transfer in soils affects geotechnical design in permafrost regions, and 

potential methane formation and recovery from gas hydrate bearing sediments. The 

thermal condition in soils depends on particle size and grain size distribution, packing 

geometry, pressure, water content and density. The thermal conductivity in soils and 

among soil components is related as kmineral >  ksaturated soil  > kwater > kdry-soil > kair. 

Interparticle contacts govern thermal conduction. The presence of high thermal 

conductive fluids or cementing agents at contacts promotes heat transfer. Larger contact
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Figure 4.18 Summary: possible heat transfer paths through particulate materials.  

 

areas (for example by loading, creep, or diagenesis) enhance thermal diffusion.  

There are competing effects between heat transfer within the granular skeleton and 

heat loss to the surroundings. Improvement in interparticle contacts results in higher 

thermal gradient with the surrounding medium eventually leading to higher heat loss. 

Effective thermal conductivity models must be carefully applied in particulate 

materials because interparticle contacts play a decisive role in thermal conduction and 

diffusion.  
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CHAPTER V 

MECHANISTIC STUDY OF LENSING RELATED TO GAS HYDRATE 
FORMATION 

 

5.1  INTRODUCTION 

 Natural gas hydrate is found in various morphological patterns: disseminated, 

nodular, layered and massive forms (Sloan, 1990). The evidence of segregation and 

lensing in gas hydrate includes:  

 Nodular and vein hydrate in marine sediments at ODP Leg 164 (Paull, 1997). 

 Pervasive gas hydrate lenses, vein or nodules at ODP Leg 204 in the Cascadia 

continental margin (Leg 204 preliminary report, 2002). 

 Lens shape hydrate in marine sediments at the Gulf of Mexico (2002). 

 Nodule, vein and dyke hydrate from Mallik 2L-38 in permafrost region in Alaska 

(Uchida et al., 2001). 

 Gas hydrate in layered bands within a mud matrix offshore from northern 

California (Brooks et al., 1991).  

Examples of hydrate lenses are shown in Figure 5.1. 

 It is herein hypothesized that knowledge of ice lens formation in soils may help the 

interpretation and prediction of gas hydrate lens formation. However, any analogy must 

take into consideration differences in boundary conditions, formation history, and both 

thermal and mechanical properties. 
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                  (a)                                             (b)                                               (c) 
 
Figure 5.1 Evidence of hydrate segregation in natural systems. (a) Hydrate lenses 

parallel to the strata. Hydrate vein normal to bedding from ODP Leg 204, 
(b) lens shape gas hydrate in the marine sediments at Gulf of Mexico 
(2002), (c) Hydrate vein (GeoTek, Inc.) 

 
 

 Ice lensing in soils is a common phenomenon in cold and permafrost regions. 

Engineering consequences include highway and pavement damage, buried pipe breakage 

and slope instability (Everett, 1961; Tsytovich, 1973; Konrad, 1989). Previous studies 

using experimental and numerical techniques have attempted to correlate soil properties, 

thermal boundary conditions and state of stress with the formation of ice lenses in soils. 

Ice lensing in typical near-surface conditions is mainly observed in “frost-susceptible” 

fine-grained soils and they form parallel to the bedding plane that is typically parallel to 

the thermal boundary (Taber, 1929; Penner, 1963; Miller, 1980).  

 The purpose of this study is to discern the mechanisms of ice lens formation and to 

extend this enhanced understanding to gas hydrate formation. The study begins with a 

literature review of physical process involved in ice lens formation. Then, an exploratory 

2.5 cm 
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experimental study is conducted to identify mechanisms in ice lensing. Finally, the 

discussion addresses the case of gas hydrate lensing. 

 

5.2  LITERATURE REVIEW 

5.2.1 Ice Lens Formation in Soils 

 Nine percent volume expansion by phase transformation of water is not enough to 

explain the frost heave phenomenon (Miller, 1980). The systematic research effort by 

Taber (1929) identifies that frost heave is induced by ice segregation called “ice lens” 

depending on soil particle size, available water, freezing rate and overburden pressure.  

  Ice lenses form either parallel to the freezing front or in multiple directions 

depending on the thermal boundary. And the segregated ice lenses form the blocky soil 

aggregates and increase the water content of layered ice, and the surrounding soils are 

compressed by the growth of ice lens (Hutchinson, 1974; McRoberts, 1975).  

  Water in soils can be found freely in the pore space and in diffuse double layers 

around particles (Gold, 1957; Penner, 1958, 1963; Everett, 1961; Anderson et al., 1973). 

Diffused double layers are connected through the soil skeleton in fine particles (silty clay 

and clay). Therefore, the adsorbed water film is an effective migration path in fine 

grained soils (Taber, 1930; Jumikis, 1966; Jinsheng and Rong, 1983). The water 

migration rate in double layers is proportional to the specific surface of soil particles 

(Jumikis, 1958). As water within this layer migrates to the ice front, the film thickness 

becomes thinner; then, soil particles tend to retain the constant thickness by taking water 

molecule from the warmer side (Taber, 1930; Penner, 1963; O’Neill and Miller, 1985). 
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The adsorbed moisture has little mobility perpendicular to the soil particles, but it can 

easily move parallel to particles (Jumikis, 1966). In a closed system, lens formation 

decreases the water content near the ice lens (redistributed water content along the ice 

lens profile in Mageau and Morgenstern, 1980).  

  The inter-connected ice lenses act as pre-existing fractures within the soil structure 

during melting and provide high hydraulic diminishing excess pore pressure generation. 

In-situ studies show that segregated ice decreases the shear strength in the basal ice layer 

and may finally cause slope instability (Harris and Lewkowicz, 2000, Analytical solution 

for shear resistance and critical slope angle in Vallejo, 1980). 

5.2.2 Thermodynamics  

 This section introduces basic concepts in thermodynamics considering free energy 

in freezing phenomena. First of all, the energy U is defined as heat Q and work W 

  dU = dQ + dW = dQ - P⋅ΔV        (5.1) 

Defining the entropy S is dQ/T, the heat is expressed 

   dU = T⋅dS - P⋅dV          (5.2) 

Also, enthalpy H is  

   dQ = dU + d(PV) = dQ = d(Q+PV) = d(H)      (5.3) 

The differential form of enthalpy defines the free energy  

   dH = dU + P⋅dV + V⋅dP 

   dH = T⋅dS - P⋅dV + P⋅dV + V⋅dP = T⋅dS + V⋅dP     (5.4) 
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Adding the entropy term, 

   d(H – TS) = T⋅dS + V⋅dP - S⋅dT - T⋅dS (5.5) 

where H-TS = Gibbs free energy G. The Gibbs free energy is  

   dG = V⋅dP - S⋅dT             Gibbs-Durham equation   (5.6) 

The chemical potentials of water and ice for phase equilibrium are  

   μw = Vw⋅dPw - Sw⋅dT         for water        (5.7) 

   μi = Vi⋅dPi - Si⋅dT   for ice         (5.8) 

The above two phases reach equilibrium if the chemical potential is zero. Threfore, 

   Vw⋅dPw - Sw⋅dT = μi = Vi⋅dPi - Si⋅dT = 0 

   Vw⋅dPw - Vi⋅dPi = (Sw – Si)⋅dT = (dQ/To)⋅dT = ΔHwi⋅dT (5.9) 

Dividing Equation 5.9 by Vw and expressing it in terms of the chemical potential  

   dT
T
L

V
V

dd
ow

i
iw =− μμ  (5.10) 

where L is latent heat and To is the temperature when ice forms. This is the generalized 

Clapeyron equation and if presents the inter-dependence between pressure and 

temperature gradient. Thus, the two phases at equilibrium produce a pressure difference 

and cause water migration.  

5.2.3 Governing Factors 

  The effective parameters that govern ice lens formation in soils delineate the lower 

and upper limits of favorable conditions for lens formation. Figures 5.2-to-Figure 5.4 
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summarize the observed lens formation conditions observed by previous researches in 

terms of consideration particle size, overburden pressure and hydraulic conductivity 

effects. The following observations facilitate the interpretation of these figures: 

 Smaller particles have a larger specific surface area, therefore, a higher relative 

volume of unfrozen water in double layers. On the other hand, larger particles have 

higher thermal conductivity and may support a faster freezing rate.  

 As the overburden pressure increases, the ice pressure required to form ice lenses 

increases and the freezing temperature for ice lens initiation decreases (Jumikis, 

1957; Gilpin, 1980; Nixon, 1991). The hydraulic conductivity decreases (Konrad 

and Morgenstern, 1982; Benson and Othman, 1993) and the length of frozen 

fringes increases with overburden pressure (Anderson, 1967; Penner and Walton, 

1978; Gilpin, 1980).  

 Lower hydraulic conductivity prevents water movement toward the ice lens. 

Besides these factors, Carlson and Nixon (1988) report that layered soils facilitate ice 

lens formation. In addition, surface irregularities enhance ice crystallization (Golubev, 

1997).  

  The freezing temperature decreases with the increase in ionic concentration in the 

pore fluid:  

                        fT i K mΔ = − ⋅ ⋅  (5.11) 

where i=1.81 for NaCl, Kf=freezing temperature depression constant (=-1.86oC/mol) and 

m molar concentration. Ice formation causes salt exclusion and the concentration in 

surrounding pore fluid increases. Hence, the ice lens formation temperature decreases 
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*: The mixture of Ottawa sand and clay: Ice observed with more 50% clay. 
S: saturated, U: unsaturated, O: open, C: closed system. 
 
 
Figure 5.2 Particle size effect. The bold line constrains the range where ice lens is 

experimentally observed. 
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Figure 5.3  Overburden pressure effect. The bold line constrains the range where ice 
lens is experimentally observed.  
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Figure 5.4  Hydraulic conductivity effect. The bold line constrains the range where ice 
lens is experimentally observed.   
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and further growth hindered and new ice nucleation occurs away from the initial lens. 

This sequence of events leads to many micro- ice lenses in salty pore fluid. The excluded 

salt and micro-lenses reduce the hydraulic conductivity as well. There is more than 50% 

reduction in frost heave in saline soils (Chamberlain, 1983). 

5.2.4 Ice Lensing Models 

Capillary theory. This model explains ice lens formation at the freezing front. The 

pressure difference between ice and water induced by surface tension is predicted by 

Laplace’s equation  

 
r

PPP iw
wiiw

γ⋅
=−=Δ

2
     (5.12) 

where γiw is the surface tension between ice and water and r is the pore radius. If ΔPiw is 

larger than 2⋅γiw/r, ice can form penetrating the pore space. Ice lenses form in pore space 

and push particles away (Everett, 1961). This model known as primary heaving theory 

only includes pore size and surface tension without heat and mass conservation. It also 

underestimates frost heave pressure and fails to explain periodic ice lenses (Miller, 1980; 

Loch, 1981). 

Secondary frost heave theory. Miller (1972) assumed that there is a transition zone 

between the unfrozen region in soils and the freezing front (called frozen fringe). Pore ice 

and unfrozen water in the water film between ice and particles coexist in pore spaces. 

Regelation by exothermic heat of phase transformation causes a partially molten ice to 

move toward the ice lens (an example of a particle migration away from the lens face is 

shown in Romkens and Miller, 1973). This model predicts that ice lenses form when the 
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ice pressure exceeds the overburden pressure (the Terzaghi’s effective stress = 0), soil 

particles do not sustain the force, and grain separation takes place (Gilpin, 1980). This 

model has been widely accepted by previous researchers to model frost heave and it can 

explain periodic ice lens (Holden, 1983; O’Neill and Miller, 1985; Black, 1995). 

However, the model is complex and requires many physical parameters.  

Osmotic model. It is hypothesized that connected with diffused double layers in frost-

susceptible soils such as silts and clays have enough ions to produce osmotic pressure in 

addition to secondary frost heave pressure (Horiguchi, 1987). Furthermore, phase 

transformation causes ion exclusion, lowers the freezing temperature, ice does not tend to 

segregate, and nucleation occurs elsewhere (Martin, 1959; Chamberlain, 1983).  

Segregation potential model. This model focuses on water migration to the ice lens as a 

function of the temperature gradient in the frozen fringe (Konrad and Morgenstern, 1981). 

The driving force for water migration is suction by phase transformation and the 

segregation potential decreases as overburden pressure increases (Konrad and 

Morgenstern, 1982).  

 

5.3  EXPERIMENTAL STUDY AND ANALYSIS 

 Ice lenses form in different soils and under various stress boundary conditions. 

These conditions are explored next. 

5.3.1  Ice Lens Formation 

 Specimens made of sand, precipitated silt or kaolinite are prepared at different 

water content. Each mixture is placed into a foam container, and inside a styrofoam box 
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so that heat is removed from the top while the other sides are thermally insulated. Test 

conditions are shown in Figure 5.5. Phase transformation is monitored with 

thermocouples buried in the specimen. After phase transformation, specimens are 

dissected and the spatial distribution of ice lenses is documented. Table 5.1 and Figure 

5.6 summarize typical results. The following observations are made: 

 Kaolinite and precipitated silt are susceptible to lens formation. Lenses are not 

observed in sand. 

 Periodic ice lenses form normal to the heat flux direction in the mixture of kaolinite 

and water (this is also the σ3 direction).  

 Soils between ice lenses are not frozen (Figure 5.6-a, b - see also Penner 1963 for a 

similar observation of unfrozen soils). 

 Omnipresent needle shape ice lenses form in kaolinite saturated with a 0.6molar 

NaCl solution, and in precipitated silt saturated with deionized water (Figure 5.6-c, 

d). 

There is water content redistribution after lens formation, therefore water in neighboring 

pores feeds ice lens growth (Figure 5.6-a, see also Miller, 1980). 

5.3.2  Lens Growth - Micro-Scale Study 

 Ice lens growth on the surface of a shallow specimen is continuously monitored 

using a digital microscope. The soil mixture consists of kaolinite (Wilkay SA1- liquid 

limit: 43%) saturated with deionized water (wc ~ 40%). The cylindrical cell is 1cm height 

and 4cm in diameter. The black granules passing through sieve #270 (53μm) are spread 
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Figure 5.5  Experimental device designed to study ice lens formation – 1D heat front. 

 

 

 

 

 

Table 5.1 Test conditions and observed features. 

Soil w/c Ice lens Features 

Nevada Sand ~ 25 % No  

Kaolinite ∼ 2LL No Without heat insulator 

Kaolinite ∼ 2LL Yes Bottom part w/c=57.2% 

Precipitated silt ~ 350 % Yes Needle shape lenses 

Sand / Kaolin ~ 30 % Yes Striation distribution with very fine needle shape lens

Kaolinite 53.3 % Yes Undulated lensing 

Kaolinite 33.2 % Yes Overburden pressure during freezing 

Kaolinite* 54.6 % Yes Thin plate shape lenses locally grouped 

*: Mixed with salt water (0.6 mol) 

Foam 
container 

styrofoam 

Filled with soil 

Cold front 

water 
Filter paper 
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Figure 5.6 Ice lens formation within different soils at various water content and salt 
concentration. Heat is removed from the top; the other specimen walls are 
thermally insulated. 

[Kaolinite-water mixture, ωo > LL] 
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on the surface of the specimens to monitor surface displacements. The specimen and the 

microscope are placed inside a cooling chamber (at -15oC). As the ice lens grows, the 

displacement of granules is sequentially traced in digital microphotographs.  

  Figure 5.7 shows the growth of an ice lens with time. Displacement vectors are 

plotted in Figure 5.8. It is observed that displacements are normal-to and away-from the 

lens face. Therefore, the surrounding soil is compressed by the increasing volume of the 

lens body. On the other hand, granules move toward the lens tip ahead of the lens. This 

suggests water intake to the lens tip (Figure 5.8-b). A thin opening at the lens tip is 

observed prior to lens propagation. Apparently, pore water migration associated to lens 

growth and the corresponding stress field induced by the lens support its continuous 

growth. 

5.3.3  Lens Formation Controlled by Stress Boundary Condition 

 The effect of the stress field on lens formation is explored herein. Kaolinite 

specimens (Wilkay SA-1, LL=43%; mixed at wc ~ 36%-to-40% near liquid limit) are 

consolidated to σv’= 30kPa under ko conditions. After consolidation, the cylindrical 

specimen (10cm diameter and 7cm height) is extruded from the ko cell and a V-shape 

groove (1cm width x 4cm depth) is made along its height; then, a thin slot is cut at the tip 

using a sharp blade. Tension at the groove tip is exerted by loading the groove faces with 

200g weights on each side. Alternatively, compression is applied by sitting the specimen 

on lateral points so to cause the groove to close. Figure 5.9 shows the experimental 

conditions in both cases. An example of the evolution of ice lenses from the tip in tension 

is shown in Figure 5.10.  
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Figure 5.7 Ice lens growth with time. A thin opening at the lens tip is observed prior 
to lens growth. 

 

1mm 
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(a) Ice lens propagation (arrow indicates the lens growth direction). 
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(b) The movement of granules ahead of lens tip. 

 

Figure 5.8  Displacement vectors in the sediment near the ice lens tip denoted. The 
red dots show the final point of each displacement. The bottom figure is an 
enlarged display of the region ahead of lens tip (unit: mm). 
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Figure 5.9 Experimental configuration to study the effect of stress on lens formation. 
 
 

  Experiments are repeated 6 times in tension and 3 times in compression. In all 

tension cases, an ice lens propagates vertically from the groove tip, following the tensile 

field (Figure 5.10-a, minor ice lenses form around the specimen). It appears that the 

tensile stress field promotes water migration towards the slot tip driven by the pressure 

gradient. Lenses do not form in the specimens where the stress field at the slot tip is in 

compression. 

  Tensile specimens are dissected upon completion of each test. The ice lens face has 

a unique texture. Ripple marks parallel to the lens growth direction are readily identified 

and exhibit very distinct surface texture compared to the rest of the surface created during 

dissection (Figure 5.10-b). Sketches of ice lens development in all 8 specimens are 

summarized in Table 5.2. Additional comments follow. A uniaxial cold front is applied 

and water fills the groove in test 1. A well defined ice lens forms from the groove tip, 

gradually deviating from the 

Tension at tip Compression at tip 
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(a) Ice lens evolution when subjected to tension 

 

 

 
(b) Dissected lens surface 

 

Figure 5.10 Lens formed in tension. 

 

   

Lens surface
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During specimen dissection 

Pre-made 
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Table 5.2 Ice lenses formation under different stress boundary conditions. 

Test Stress Ice lens evolution 
   

 
 
 
 
 

Stress:             / cold front: 

Tension 

Tension  

Tension 

Compression 
wc=37.1% 

Compression 
wc=37.3% 

Tension 
wc=36.3% 

Tension 
wc=37.4% 

Tension + 
compression 

1 

2 

3 

4 

5 

6 

7 

8 

Tension stops 
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vertical direction. In all other tests, equal cold conditions are applied in all directions and 

no water is added at the groove. Applying tension at the groove tip promotes lens growth 

in all cases (test 1~4). The effect of tension is again verified in test 5, where tension is 

removed after a certain lens length, and the lens stops growing (other lenses develop 

throughout the specimen). Both compression and tension are applied in test 6 and a lens 

grows vertically upwards from the bottom groove that is on the tension side. Lenses 

initiate at the periphery of the specimen rather than at the tip in compression tests 7 and 8. 

In all cases where lenses grow, the lens tip curves away from regions under compression. 

5.3.4 Finite Element Model 

  Specimens subjected to tension are modeled using the finite element method to 

confirm the stress and strain fields (homogeneous, elastic and isotropic model in plain 

strain-ABAQUS 6.4). A fixed displacement boundary condition is modeled at the bottom 

of the specimen (see Figure 5.9 for test condition). The specimen self weight and the 

pressure exerted on the groove faces are imposed. Figure 5.11 shows the evolution of 

strains in the specimen. Dilation develops near the groove tip (volumetric strain 2.93E-06 

~ 6E-08 in the lens tip indicated by a circle in Figure 5.11-a). While self weight causes 

contraction at the center of the specimen the additional load on the groove faces causes a 

stress distribution at the groove tip that promotes the ice lens initiation and growth. It is 

herein hypothesized that growth is dominated by water migration to the tip caused by the 

lens propagation itself, rather than by the applied stress. Note that the strain field 

becomes contractive towards that lower part of the specimen and lenses curve away from 

the vertical plane. 
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(a) ε1 

 
 
(b) ε2 

 
 
 
 
Figure 5.11 Strain evolution within the cylindrical specimen subjected to loading on 

the groove faces (plain strain – elastic FEM). 
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Figure 5.12 Unfrozen water content below 0oC temperature. 
Source: #7-Penner (1963), #9-Anderson and Morgenstern (1973), #20-Akimov et 
al.(1983), #28-Smith (1985), #42-Konrad and Duquennoi (1993) 

 

 

5.3.5  Unfrozen Water Content 

  Unfrozen water can exist below the freezing temperature in small pores. Unfrozen 

water plays an important role in ice lensing. The existence of unfrozen water changes the 

soil-ice mixture properties such as hydraulic and thermal conductivities. The amount of 

unfrozen water is governed by the specific surface of soils, the electrolyte concentration, 

fabric type, packing geometry and P-T condition. The unfrozen water between particle 

and ice favorably reduces the interfacial free energy (Watanabe, 1999). 
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  The unfrozen water content of a clayey soil (kaolinite SA-1, Sa ≈ 36m2/g) below 

freezing temperature is evaluated using permittivity measurements (f = 300kHz~1.3GHz; 

device-HP 8752A; probe–HP 85070A). Permittivity is first related to water content 

through calibration tests. Then, the unfrozen water content is determined at different 

temperatures. Data are shown in Figure 5.12 where additional data found in the literature 

are also plotted. The water content does not decrease ~ 40% at -2 to -4 oC for high 

specific surface soils like kaolinite and bentonite; thereafter, it drops sharply as 

temperature decreases further.  

  The unfrozen water network in the pore space serves as water feeding paths to ice 

lenses. Indeed, ice lenses can not grow if pore ice blocks the void space in soils and 

lowers the hydraulic conductivity. These observations are compatible with observations 

of unfrozen layers after lens formation mentioned earlier in this chapter. 

5.3.6  Particle Size and Freezing Rate 

  Ice lenses do not develop if the cooling front advances fast enough to trap solid 

particles. The attractive force causing the viscous drag between a particle and the cooling 

front and the repulsive force are 

   
2
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where η is fluid viscosity [poise], Vg ice lens growth rate [m/s], R particle radius [m], d  

distance between cooling front and a particle [m], ao average molecular distance in water  
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Figure 5.13 Critical velocity (Vc) versus particle radius (R). As the particle radius 
increases, a low critical velocity is needed to form ice lens. 

 

[1⋅10-10 m], and Δγ surface tension difference between particle-water and ice-water 

[0.342 N/m]. Ice lens can form in case that Fr>Fa. The critical ice lens growth velocity is 

determined from the force equilibrium between two forces (Watanabe, 1999). The 

dimensionless form of the critical velocity Vc is 
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Figure 5.13 shows a plot of the critical velocity as a function of particle radius R and 

distance d. Sand-size sediments require a very low critical velocity to form ice lens (see 

also Rempel and Worster, 1999). However, phase transformation begins just after the 

temperature drops below the freezing temperature, and then the high thermal conductivity 

of sediments controls the evolution of freezing. Therefore, ice lenses rarely form in 

coarse grained soils because the freezing rate is faster than in fine grained soils. As the 
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freezing rate increases, the spacing between ice lenses decreases and lens formation is 

inhibited. The freezing rate is more effective than temperature gradient to control ice lens 

formation (Konrad, 1989). 

 

5.4  DISCUSSION - GAS HYDRATE FORMATION 

  The formation of gas hydrate lenses in nature is analyzed herein on the bases of the 

insight gained with ice lensing.  

  The gas hydrate stability boundary depends on temperature and fluid pressure 

conditions. Formation in the seafloor typically takes place under several hundred meters 

of water and sediment. Then the question arises whether gas hydrate formation can 

develop in this natural setting.  

  Ice lenses form preferably under low overburden pressure. The discrete ice lens 

theory (Nixon, 1991) is invoked to address this problem. It has a much simpler form than 

the rigid ice model theory (O’Neill and Miller, 1985) and it encompasses the segregation 

potential theory (Konrad and Morgenstern, 1980). The criterion for lens initiation is that 

the ice pressure Pi overcomes the sum of the overburden pressure Po acting on 

incompressible particles and the particle separation pressure Psep in a frozen fringe (for a 

the detailed discussion of this model, see Gilpin 1980 and Nixon 1991).  The ice pressure 

is  

          11 (1.09 ( ) ) (1 )
1.09i o sep u u

xP P P T P P T
a

αβ β+⎡ ⎤⎡ ⎤= ⋅ ⋅ + + ⋅ − ⋅ − + − ⋅⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
   (5.16) 
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where β =1.222 [MPa/K], T freezing temperature, Pu hydrostatic pressure, “a” frozen 

fringe length, and α experimentally determined coefficient between hydraulic 

conductivity and temperature (typically α = 1.5). The particle separation pressure Psep is  

   rP
R

P sL
sep

σ2
=  (5.17) 

where σsL is 0.028 [N/m], R=1⋅10-6 [m] and Pr=1 (see Nixon, 1991 for the calculation of 

parameter Pr). The calculated value is Psep=56.6 kPa. 

In permafrost region. It is assumed that the hydrostatic pressure is 0 Pa since the region 

above the lens initiation location is completely frozen. The calculated ice pressure (Pi 

solid line) and total pressure (Po+Psep dotted line) in a frozen fringe are plotted versus 

depth in Figure 5.14. As depth increases, the total pressure exceeds the ice pressure and 

the possible region of lens initiation in a frozen fringe decreases as well. The total 

pressure exceeds the ice pressure at 492m depth so that no lens can form below this depth.  

  The overlapped area between the phase boundary for gas hydrate and the 

geothermal gradient indicates that the gas hydrate stability zone extends from 180m-to-

1060m (Figure 5.15). However, the depth of potential hydrate lens formation is limited 

from 180m to 492m. 

Seafloor. The ice pressure is calculated taking into consideration the hydrostatic pressure, 

the overburden pressure and the given ocean depth (assumed to be 1200m for this 

analysis). Furthermore, it is assumed that sediments are fully saturated.  The total 

pressure is higher than the ice pressure at a depth of 804m from the seafloor (Figure 5.16). 

The hydrate stability zone in the ocean is narrower than that in permafrost regions, and it 

is 300m deep from the seafloor. Then hydrate lenses can occur everywhere in the stability 
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Figure 5.14 Calculated ice pressure in a frozen fringe in permafrost region. Dotted 
lines indicate the critical pressures (overburden pressure Po + separation 
pressure Psep). Ice lenses initiate when Pi ≥ Po+Psep. The maximum depth 
where lenses can form is 492m. 

 

 

zone (Figure 5.17). Note that hydrate lens formation in natural systems is also affected by 

other parameters such as sediment type, methane source, pore fluid concentration and 

geological structure. It is important to highlight that this analysis was conducted using 

pressure and associated volumetric strain for gas hydrate equal to ice. 

 

5.5  CONCLUSIONS 

  Natural gas hydrates form in different ways such as disseminated, nodular, 

layered and massive forms. The understanding of ice lensing in shallow soils can help 

explain hydrate lens formation in nature. Many governing factors determine ice lens 
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Figure 5.15 Gas hydrate stability zone and the possible lensing region in permafrost. 
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Figure 5.16 Calculated ice pressure in a frozen fringe in seafloor condition. Dotted 
lines indicate the critical pressure (overburden pressure Po + separation 
pressure Psep). Ice lenses initiate when Pi ≥ Po+Psep. The maximum depth 
where lenses can form is 804m from the seafloor. 

 

 

 

formation, including soil type, stress boundary and freezing condition. New experimental 

results show that: 

 Ice lenses form normal to the heat flux direction in high specific surface soils – 

kaolinite and precipitate silt. 

 Unfrozen water in the pore space migrates to the lens tip during phase 

transformation, lens propagation compresses the surrounding soils and the water 

content in soils is redistributed after phase transformation. 

Depth=50m 

Depth=400m 

Depth=804m 

Normalized frozen fringe 

Ic
e 

pr
es

su
re

, P
i [

Pa
] 

Frozen region Unfrozen region 



 133

 

 

 

 

 

 

 

Figure 5.17  Gas hydrate stability zone and the possible lensing region in seafloor. 

 

 

 The initial stress field in soils plays an important role in lens formation and growth. 

Tension (low compression) facilitates lens initiation, and lens formation is hindered 

under high compression.  

 As particle size increases, a lower freezing rate is required to form ice lenses. 

 Hydrate lenses can form everywhere of the stability zone in the seafloor while they 

have a limited formation range (~490 m depth) in permafrost regions.  

0 10 20 30

Pi 

Po+Psep 

Geothermal 
gradient Phase 

boundary 

Gas hydrate 
stability zone 

Ocean 

Sediment 

20 10 0 10 20

0

500

1000

1500

2000

2500

3000

2004m 

Pressure [MPa] 

D
ep

th
 [m

] 

Temperature [oC] 



 134  

 
 
 

CHAPTER VI 

INSTRUMENTED HIGH-PRESSURE CHAMBER  

 

6.1  INTRODUCTION 

The study of gas hydrates is important to engineers and scientists who study energy 

resources, oil recovery, seafloor stability and global climate change. The local and global 

characterization of gas hydrates beneath the seafloor is necessary to understand the 

fundamental behavior of hydrate bearing sediments in the context of these scientific and 

engineering challenges. However, the unique pressure and temperature stability 

conditions of gas hydrate challenges the research efforts. In particular, hydrate is not 

stable in boreholes under atmospheric pressure and it dissociates during standard core 

recovery operations. Indeed proper sampling requires maintaining the in-situ pore 

pressure, effective stress and temperature during the recovery of hydrate-bearing 

sediments.  

Various Ocean Drilling Programs (ODP) coring, sampling and downhole 

measurement methods have been developed and they are briefly described in Table 6.1. 

Conventional coring technology causes sediment destruction and hydrate destabilization 

due to pressure release during recovery. After ODP leg 164 in 1995, researchers launched 

the development of advanced tools designed to maintain the in-situ fluid pressure during 

and after core recovery. The resulting HYACE system (HYdrate Autoclave Coring 

Equipment) by the European MAST programme (from 1998 to 2001) included a
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Table 6.1 Features of ODP (Ocean Drilling Program) coring techniques. 

Coring Method Features 

APC 
(Advanced Piston Corer) 

- Hydraulically actuated piston corer. 
- Relatively undisturbed and continuous (9.5m) samples. 
- Proper for very soft to firm sediment. 
- 200-250m below the mud-line. 
- Not good for stiff sediments.  

XCB 
(Extenden Core Barrel) 

- Deployed when sediments are too stiff for APC. 
- 9.5m long and 500-600m below the mud-line. 

PCB 
(Pressure Core Barrel) 

- 1m core sample keeping 10,000 psi pressure. 
- Mainly used for recovery of gas hydrate sample. 

MDCB 
(Motor Driven Core Barrel) 

- For fractured crystalline rock, interbedded formation. 
- 4.75m core length. 

RCB 
(Rotary Core Barrel) 

- Rotary coring system. 
- Proper for firm to hard sediments and igneous basement. 
- 9.5m core length 

ADCB 
(Advance Diamond Core 

Barrel) 

- 4.75m core length 
- Proper for firm to well-lithified sediment or igneous 

formation. 

APCT 
(Advanced Piston Corer 

Temperature) 

- Instrumented version of APC. 
- Proper for soft sediments. 
- Temperature measurement to determine the heat flow 

gradient taking 8 min. 

DVT(P)P 
(Davis-Villinger Temperature 

(pressure)  Probe) 

- Tmperature gradient measurement instead of APCT (stiff). 
- 10 min for temperature / 40 min for pressure measurement. 
- 10,000 psi operation (DVTPP). 

WSTP 
(Water Sampling Temperature 

Probe) 

- Temperature measurement between cores. 
- 1-3 hours for each measurement. 

APC Methane Tool 
- Conductivity, temperature, pressure of core measured. 
- To determine the existence of hydrate by conductivity 

change. 
JNOC PTCS 

(JNOC Pressure Temperature 
Core Sampler) 

- Top-drive rotary / push (pressure-temperature) 

HYACINTH 
(Pressure coring and logging) 

- Consists of FPC (Fugro Pressure Corer) and HRC (HYACE 
Rotary Corer) coring tool. 

- Implemented with the associated pressure logging, transfer 
and storage data chamber.  

Source: www.jamstec.go.jp  
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Table 6.2 HYACE and HYACINTH systems. 

HYACE (HYdrate Autoclave Coring Equipment) 

FPC 
(Fugro Pressure Corer) 

HRC 
(HYACE Rotary Corer) 

HYACINTH 
(Development of 
HYACE tools In 

New Tests on 
Hydrates) 

- Water hammer to drive the 
core barrel into the sediment 

- 1m ahead of drill bit 

- Unlithified sediment covering 
stiffclay to sandy material 

- Diameter: 57mm 

- Inverse Moineau Motor to 
rotate the cutting shoe. 

- 1m (max 1.5m) ahead of drill 
bit. 

- Lithified sediment or rock 

- Diameter: 50mm 

HYACE operation 
and pressure core 
transfer system 

development for 
the further 

investigation. 

Source: www.geotek.co.uk  
 

 

percussion corer (called Fugro Pressure Corer) and the HYACE rotary corer. The features 

of these pressure corers are summarized in Table 6.2. The main advantages of the 

HYACE system are: 

 The corer is much more stable in the borehole since the coring tool is driven from 

the bottom not from the drilling string on the ship. This results in good quality 

cores. 

 The wireline coring tool in the HYACE system permits the transfer of recovered 

cores to the laboratory transfer chamber while maintaining the fluid pressure.  

The next generation system, named HYACINTH (development of HYACE tools In New 

Tests on Hydrates) came on line in 2001. In this system, pressure equilibrium and 

longitudinal transfer into a shear transfer chamber enable the obtained pressure core to be 

transferred to the storage chamber of the laboratory transfer chamber without losing the 

in-situ pressure. This is beneficial for geophysical logging (in particular, P-wave velocity 
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and gamma density measurements), microbiological and petrophysical studies. 

Nevertheless, the identification of gas hydrate bearing sediments by non-destructive tests 

remains limited and more direct and sophisticated measurement techniques are necessary 

for gas hydrate research.  

The design of a new instrumented high-pressure chamber is presented herein. This 

development is part of the joint industry drilling project in the Gulf of Mexico, led by 

ChevronTexaco as part of the U. S. department of Energy’s National Methane Hydrate 

Research and Development program. The goals in the design of the instrumented high-

pressure chamber are to collect mechanical and electrical properties (P- and S-wave 

velocity, strength and electrical resistance) of gas hydrate bearing sediments by means of 

direct measurements on stable, pressured cored specimens. This chapter documents the 

development of the high-pressure chamber, the instrumentation, and corresponding data 

reduction techniques. 

 

6.2  DESIGN AND CONSTRUCTION 

 The design of the instrumented high-pressure chamber (hereafter IHPC) has 

gradually evolved to take into consideration unique design criteria – compatibility with 

peripheral instrumentation, workability (fast and robust), and safety. The IHPC consists 

of three parts: 1) pressure chamber, 2) instrumented rods, 3) rod guide and position 

control system. The design criteria satisfy ESH manual Doc. 18.2 (pressure vessel and 

system design). Stainless steel (316 SS) is selected for all components to resist corrosion 

by seawater.  
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6.2.1  Design Evolution 

The different design alternatives, their advantages and disadvantages are summarized in 

Table 6.3. Alternative I consists of a 1m-long core chamber with equally spaced 

measurement ports; the specimen is fixed inside the chamber. Alternative II has a single 

measurement test station and the end manipulators control longitudinal displacement and 

rotation. Alternative III has a short section of aligned measurement ports and 

manipulators that control the longitudinal position of the specimen. Alternative III is 

selected as an optimal combination of versatility and robustness. Detailed design 

considerations and solutions are summarized in Table 6.4. 

The core transfer mechanism is shown in Figure 6.1. The IHPC is connected to the 

storage chamber where the pressure core is kept after drilling (within its plastic liner), 

and to the extension chamber. Quick clamps fix components together. The ball valve in 

the storage chamber is opened after the inside pressure of the IHPC reaches the same 

fluid pressure as the storage chamber. The manipulators grab the pressure core and slide 

it into the IHPC without allowing rotation. Then, the properties of gas hydrate bearing 

sediments are sequentially measured through instrumentation ports. This operation starts 

by drilling two diametrically opposite holes through the plastic liner.  

6.2.2   Pressure Chamber 

The pressure chamber is designed to accommodate the instrumented rods. The 

overall length is 690.5mm. The wall thickness is 12.5mm to sustain a fluid pressure of 

~36MPa with a safety factor ~5 (Mathgram 6.1). Flanges at both ends match similar 

flanges in the storage and extension chambers (by GeoTek, Inc.). The IHPC has two
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Table 6.3 Design evolution of instrumentation.  

Features 
Alternative Schematic Design 

Advantages Disadvantages 

I 

 

 

 

 

 

- No depressurization 

- No gas expansion 

- Measuring at each section 
iteratively requires connecting / 
disconnecting each tool. 

- Test would be slow. 

- Possible safety concern in terms 
of many steps. 

II  
- All of above 

- Tools remains under 
pressure. 

- Mounting / dismounting 
operations are avoided. 

- Safer and faster. 

- Similar measurement station 
could be added in series 

- Manipulator does not allow the 
rotation. 

III 

 
- All of the above 

- Rotation is not needed. 
- Relatively long string is 

involved. 

Ball valve Ball valve 

Multiple ports along the chamber per side 

Manipulator 

Single measurement station 
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Table 6.4 Design considerations and solutions. 

Considerations Solutions 

Couple the pressure chamber with the storage 

chamber housing pressure core 
Identical flange design with storage chamber 

Pressure chamber factor of safety FS=5 @ 36 MPa 

Advancing / rotational motion of drill bit and 

force against high pressure 

Advancing motion by screw force / rotation 

by drilling with ball bearing / high pressure O-

ring (30MPa) for helical motion 

Advancing motion and force against high 

pressure / pressure and fluid leakage / 

shielding electronics 

Advancing motion by screw force and ball 

bearing / 8mm diameter rods / same O-ring as 

drilling / Strong epoxy with low viscosity 

Maintain pressure / spare parts Ball valve controls pressure / spare sensors 

Simple / robust / reliable / minimal machining Design with readily available off-shelf parts 

 

 

 

 

 
Figure 6.1  Pressure core transfer mechanism. The manipulator slides the pressure 

core from the storage chamber into the instrumented high-pressure 
chamber.  

Manipulator 

Instrumented High Pressure 
Chamber 

Extension  
Chamber 

Storage 
Chamber 

Ball Valve

Manipulator 

Clamp 
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Mathgram 6.1  Pressure chamber mechanical design. 
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parallel rows of 4 identical sequential ports. The chamber design and the manufactured 

chamber are shown in Figure 6.2. An auxiliary tube is designed to house and align 

smaller diameter cores (HRC) (Figure 6.3). 

6.2.3  Instrumented Rods 

The drill bit and transducers are installed at the end of 8mm diameter and 30cm 

long stainless steel rods. The force on a rod tip is ~1 kN under 20 MPa fluid pressure. 

The buckling load is computed in Mathgram 6.2. For elastic wave velocity and strength 

measurements, rod endings are trimmed (6mm) to facilitate introducing transducers into 

drilled holes.  

Drill rods. Various commercially available drill bits are tested. Shapes include pilot tip, 

flute bit, no wing bit and tip with a cone shape and large angle (Table 6.5). All these drill 

bits are tested to identify the characteristics that lead to best performance. The selected 

drill bit design (built by Withers. Co.) is also shown in Table 6.5.  

P-wave measurement & Rods (Figure 6.4-a). The miniature pinducer barrel (Valey Fisher, 

VP1093) and connecting coaxial cable (Belden, 8216) slide inside the rod that are fixed 

with a high strength, low viscosity epoxy (EPO-TEK, 301).  

S-wave measurement & Rods (Figure 6.4-b). Bender elements (PIEZO, Y-poles for 

parallel operation) are used for S-wave measurements. The 4mm bender element sticks 

out of the rod to attain optimal signal generation and detection. The connecting co-axial 

cable and pinducers are fixed to the rod with epoxy.  

Electrical resistance measurement & Rod (Figure 6.4-c). The electrical needle probe 

described in Cho et al. 2004 is used to measure the electrical resistance of the specimen.
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Figure 6.2 The high pressure chamber (without instrumentation ports). End flanges are designed to attach to storage and extension 
chambers with quick clamps (all dimensions in mm). 
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Figure 6.3 Auxiliary tube to align smaller diameter core (HRC). 4 bolts tighten the 
tube. 

 

 

 

Mathgram 6.2 Buckling load for instrumented rods. 
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Table 6.5 Drill bit - Tested and selected bit. 

Bits  Features 

Forstner Bit 

 

- Pilot point at bit tip 
- Remnant shape: thin disc (into a liner) 
- Small pieces / twisted long remnant                

Spade Bit 

 

- Pilot point at bit tip 
- Remnant shape: thin disc (into a liner) 
- Aggregated remnant remains at tip 
- Small pieces before the wing bits touch 

Glass Bit 

 

- No thin disc into a liner / small pieces 
- Need more sharpen tip 

Flute bit 

 

- Positioning is difficult 
- Remnant shape: aggregated at bit tip 

Twist bit 

 

- Remnant shape: small thin disc (into a liner)
- Twisted long remnant 

Cone bit 

 

- No pilot point at bit tip 
- Smaller remnant than others 
- No thin disc into a liner 

Brad Point Bit 

 

- Pilot point at bit tip 
- Remnant shape: thin disc (into a liner) 
- Twisted long remnant 

 

- Tip angle: 150o 
- Long flutes 
- Produce the small chips 
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Figure 6.4 Instrumented rods - Details (all dimensions in mm).  
 

gauge 

(b) S-wave (a) P-wave (c) Resistance (d) Strength 
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 The needle tip sticks 2.5cm ahead of the rod to profile the specimen.  

Strength measurement & Rod (Figure 6.4-d). Strength is measured using a specially 

designed cone-shaped stud. The full-bridge strain gauge circuit is mounted on the inner 

wall of the cone tube (StrainSert, Inc.) which is fixed to the rod with epoxy.  

In all rods, the electrical wire is protected as it exits the rod with shrink tube to 

prevent shearing it. The maximum penetration depth of each instrumented rod into the 

specimen is 15.2mm for elastic wave measurements, 35.5mm for strength measurements 

and 33.0mm for resistance measurements. 

6.2.4  Rod Guide and Position Control System 

Instrumented rods penetrate into the pressurized chamber through 2.54 cm diameter 

rod guides (Figure 6.5-a). The inside hole houses a high-pressure O-ring which can 

accommodate rotation, oscillation, and helicoidal motion of instrumented rods while 

withstanding ~30 MPa (Busakshamban, Turcon Roto Glyd Ring-TGX000313-Z80NA, 

PTFE, polytetrafluoroethylene sea-water resistant). 

The driver consists of a cylinder welded to a drive nut that advances along the 

externally threaded rod guide, and in so doing pushes the instrumented rods (Figure 6.5-

b). The torque required to rotate the nut is 7.6 Nm for a 20 MPa chamber pressure 

(Mathgram 6.3). Flat ball bearings between instrumented rods and drivers minimize 

friction, facilitate drilling and prevent rotation of direction-dependent bender elements 

(Figure 6.5-c). 
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a) Rod guide b) Driver c) Rod detail d) Assembled system 
 
 

 

 
 
 

 

  

 

 
 
Figure 6.5 Rod guide and position control system. 

O-ring  
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Flat ball 
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Mathgram 6.3  Screw equation: required torque. 
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 A ball valve (Jamesbury, 3/8 5H-36HBRT) is placed between the rod-guides and 

the chamber to permit replacing instrumented rods during high pressure operation. Figure 

6.6 shows the assembled parts. 

 

6.3  MEASUREMENT PROCEDURE – DATA REDUCTION 

  Instruments are calibrated first, followed by high-pressure testing of the IHPC 

coupled with the manipulators provided by GeoTek, Inc.  

 The design and instrumented rods are prototyped and tested in a one-segment pressure 

chamber before building the entire IHPC system (Figure 6.7). Figure 6.8 presents 

measured elastic wave signals in compacted Georgia silts saturated, subjected to  
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Figure 6.6 Rod guide and position control system assembled in pressure chamber. 
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Figure 6.7  Prototype of the IHPC. Instrumentation and parts are tested before 
building the entire IPHC system.  
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Figure 6.8 Elastic wave signals measured in IHPC (σc = 17 MPa).  
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Figure 6.9 Needle probe – Spectral response. 

 

a fluid pressure of σc=17 MPa. P-wave signals are obtained while the transducer is 

introduced into the specimen (Vpo) as well as through water coupling (Vpo-1).  

 The operating frequency for the needle probe is explored with measuring the 

spectral response with a LF impedance analyzer (HP 4192A - Figure 6.9). A f = 100kHz 

is selected. The simplified measurement procedure is implemented for off-shore 

measurements; it consists of connecting the needle in series to a known resistor (Rknown); 

the voltage drop at the needle and at the resistor permit computing the resistance at the 

needle tip Rneedle 

needle
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VR R
V

Δ
= ⋅
Δ

 (6.1) 

where Rknown = 100 Ω (±5%). The measured Rneedle reflects the material conductivity. 

Figure 6.10 shows calibration data in terms of electrolyte conductivity versus measured 

conductance. 
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Figure 6.10 Needle probe calibration.  
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Figure 6.11 Load cell calibration 
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Figure 6.12 Peripheral electronics (Notation: that s is source, r is receiver) 

 

The load cell tip for strength measurement is calibrated up to 1000 N. Data in Figure 6.11 

shows the measured voltage V versus normal force F at the cone stud 

 [ ]134.3 /F V N mV= ⋅  (6.2) 

The connection to peripheral electronics is designed to minimize duplicating 

electronics and to simplify the measurement procedure (Figure 6.12). The signal 

generator (Krohn-Hite 1400A) produces sine and square waves for the electrical 

resistance and S-wave velocity measurements. The impulse generator provides the source 

signal for P-wave velocity measurements. Received signals (P- and S- time series) are 
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filtered and amplified (Krohn-Hite 3364), and are digitized and stored in a 4-channel 

oscilloscope (DSO Agilent 54624A). A multiple BNC adapter board facilitates switching 

connections for the different measurements. Strength is independently measured using a 

multimeter (HP 34401A) and it is automatically logged into the computer via a RS-232 

data port.  

 

6.4  FIELD TEST 

  Two sites in the Gulf of Mexico are chosen for the JIP 2005 research cruise; 

Atwater Valley AT and Keathley Canyon KC (Figure 6.13). Both sites have similar water 

depth ~ 1300m. Difficulties encountered with the IHPC in the field and possible solutions 

are summarized in Table 6.6. 

  Four pressure cores are recovered. The properties of 2 pressure cores (FPC and 

HRC) are measured with the IHPC. Ice bags are placed on the chambers to prevent 

hydrate instability during the test. Figure 6.14 shows the measured elastic wave velocities 

from the FPC specimens (KC151-#3-11P, 227mbsf) recovered at Keathley Canyon under 

14MPa fluid pressure. First, non-invasive P-wave scanning is performed every 3cm along 

the specimen (dotted line) to monitor the overall sample condition. Then, the P-wave 

veolocity is measured before introducing the transducer once the holes are made (empty 

circle) and invasively by pressing the transducer onto the specimens (solid circle). The 

shear wave velocity measured at three locations is Vs ~ 230m/s. The penetratation 

resistance into the specimen is monitored as the transducer is penetrated to different 

depths. Figure 6.15 presents the penetration force versus time. The peak valueis followed 

by a minor relaxation. The penetration force increases with penetration depth. 
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Figure 6.13 Test sites during the April – May 2005 research cruise (map from Milkov 
and Sassen, 2001). 

 

 

 

6.5  CONCLUSIONS 

  A new, instrumented, high-pressure chamber is designed and manufactured to 

measure the mechanical and electrical properties of methane hydrate bearing sediments 

recovered by pressure coring. The chamber and sensors are calibrated and tested in the 

lab and field test. Results show the unique potential of this unprecedented device to 

characterize the physical properties of pressure core samples.  
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Table 6.6 Experienced difficulties and possible improvements for the IHPC system. 

Difficulties Observation and Potential Solutions 

Sensor positioning 

 The current design requires less than 1mm resolution for 
sensor positioning.  

 Either small size sensor diameter or bigger holes can 
better accommodate the introduction of sensors and 
prevent the sensor damage. 

Core reducer 
 The core reducer for HRC measurement is not enough to 

guide the sample.  

 A second chamber is needed for smaller specimens. 

S-wave measurement 
 It is not easy to get a signal for very stiff sediments with 

bender elements.  

 More robust S-wave transducers are needed. 

Non-invasive P-wave 

measurement 

 A proper model of the fluid-liner-core-chamber system is 
needed to interpret non-invasive P-wave measurement 
results. 
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Figure 6.14 Elastic wave velocities for recovered pressure core. 
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Figure 6.15 Penetration force versus time at different penetration depths (hole #1). 

 

 

 

 

Time [sec] 

Fo
rc

e 
[N

] 

+3mm deep 

5mm 
7mm 

Pressure: 14MPa (227mbsf) 



 161

 
 
 

CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1  CONCLUSIONS 

 This research has attempted to provide fundamental mechanistic understanding of 

hydrate bearing sediments, including the effects of cementation and decementation on 

small-strain stiffness, medium and large-strain deformation and strength, thermal 

properties, and the development of lenses. Unique experimental studies and numerical 

analyses have been implemented, including a newly designed and built instrumented 

high-pressure chamber that allows the measurement of the mechanical and electrical 

properties of natural methane hydrate bearing sediments while under 20 MPa pressure 

inside pressure cores. The most important conclusions from this study follow.  

Decementation. The small-strain shear stiffness inferred from shear wave velocity 

measurements is affected by the state of stress and the presence of cementing phases. The 

evolution of cementation and load-induced collapse under Ko-conditions are uniquely 

denoted in the evolution of Gmax. 

 The velocity-stress sensitivity is lower for cemented soils in low effective 

confinement than for uncemented soils. Velocity-stress trends converge for 

cemented and uncemented soils at high confinement. 
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 Cemented loose soils may have high initial stiffness but decement and collapse 

upon further loading; decementation precedes skeletal collapse. Debonding may 

also occur upon loading without collapse; in this case, stiffness loss manifests 

during unloading. 

 The possibility for decementation and collapse decrease with increasing density, 

cement content and effective confinement during cementation. All these 

observations point to the role of contact stability and coordination number on the 

behavior of granular materials. 

Strength and stiffness. The mechanical properties of hydrate bearing sediments are 

governed by soil type, confining pressure and hydrate concentration in the pore space. 

 Hydrate bearing sediments have high value of low- and intermediate-strain 

stiffness. As confining pressure increases, the quasi-elastic behavior extends to 

higher strain levels. 

 The increased hydrate concentration stiffens the granular skeleton and strengthens 

the sediments causing larger undrained shear strength.  

 The decisive increase in strength takes place when Shyd > 45%. This hydrate 

concentration corresponds to the amount needed to increase interparticle 

coordination for hydrate nuclei growing in the pore space. 

 The breakage of hydrate-to-particle bonding precedes the deformation of hydrate-

soil structures towards failure. Possible particle-level mechanisms include 

interference in particle rotation, enhanced pore-level dilation, hydrate-particle 

debonding, and hydrate shear. 
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Heat transfer in particulate materials. Micro- and macro-scale test results, parallel 

analyses and simulations show that  

 Interparticle contacts dominate the thermal properties of dry particulate materials. 

Two related conclusions follow. First, thermal diffusion increases when inter-

particle contact areas increase due to creep, loading, or the presence of a 

cementing agent. Second, thermal diffusion increases with increasing interparticle 

coordination (i.e., with increasing density and decreasing porosity). 

 The presence of water in the pore space enhances heat transfer at contacts and 

within the porous network. Mechanisms include mineral-water-mineral 

conduction and conduction within the pore fluid. 

 There are competing effects between heat transfer through the granular skeleton 

and heat transfer from the mineral to the pore fluid. Better interparticle contact 

causes higher thermal conduction in the skeleton and more heat transfer to the 

pore fluid due to higher gradient. 

Lensing. The study of ice lens formation leads to an enhanced understanding of hydrate 

lens formation in natural sediments. 

 Ice lenses form normal to the heat flux direction in high specific surface soils. The 

self-stabilizing effect of the phase transformation isothermal makes the isothermal 

direction more relevant than the state of stress in typical, near-surface frozen 

ground conditions. 

 Tension (i.e., low effective confining stress) facilitates lens formation while 

compression hinders lens initiation. 
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 Unfrozen water in neighboring pore space sustains ice lens growth; double layers 

act as conduction paths.  

 Salt exclusion leads to high local salt concentrations, lower freezing temperature, 

halted lens growth, and nucleation at new locations. 

 Lens formation requires lower freezing rate when coarser soils are involved. 

Instrumented high-pressure chamber. The instrumented high-pressure chamber is a new 

device -first in its kind- designed to measure the mechanical and electrical properties of 

methane hydrate bearing sediments recovered from pressure cores. The direct 

measurement of material properties takes place under high pressure (~20MPa) and 

requires the perforation of the plastic liner. This unique device permits extending the 

understanding of hydrate bearing sediments formed in situ. The data will have a crucial 

effect to the analysis of methane production and related stability problems. 

 

7.2  RECOMMENDATIONS AND FUTURE RESEARCH 

 Development of realistic synthetic methane hydrate formation in soils to conduct 

systematic laboratory studies with adequate pressure and temperature control. 

 Thermal properties of heterogeneous and anisotropic mixtures in view of hydrate 

formation and dissociation problems. 

 Further development of instrumented chamber to re-generate the effective stress 

experienced by methane hydrate bearing sediments in situ. 
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