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SUMMARY 

 
 

 

For Heavy-duty vehicles (HDVs), the distribution of vehicle miles traveled 

(VMT) by vehicle type is the most significant parameters for onroad mobile source 

emissions modeling used in the development of air quality management and regional 

transportation plans.  There are two approaches for the development of the HDV VMT 

distribution.  The first approach uses HDV registration data and annual mileage 

accumulation rates.  The second approach uses HDV VMT counts/observations collected 

with the Federal Highway Administration (FHWA) truck classification.   

 

For the purpose of emissions modeling, the FHWA truck classes are converted to 

those used by the MOBILE6.2 emissions rate model by using either the U.S. 

Environmental Protection Agency (EPA) guidance or the National Research Council 

(NRC) conversion factors.  However, both these approaches have uncertainties in the 

development of onroad HDV VMT distributions that can lead to large unknowns in the 

modeled HDV emissions.  Uncertainties in HDV VMT distributions can be associated 

with the aggregated FHWA truck activities and the lack of proper region-wide activity 

simulation methods for each truck or HDV.  Three questions associated with the 

uncertainties are:  
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• Are registered HDV data properly classified to EPA HDV classes? 

• Do HDV registration distributions developed from registered HDV data properly 

represent onroad HDV fleet compositions?    

• Do current HDV conversion methods or guides properly map FHWA truck 

classes into EPA HDV classes without losing the fine resolution of original 

vehicle characteristics?  

 

This dissertation reports a new heavy-duty vehicle visual classification and activity 

estimation method that minimizes uncertainties in current HDV conversion methods and 

the vehicle registration based HDV VMT estimation guidance.  The HDV visual 

classification scheme called the X-scheme, which classifies HDV/truck classes by vehicle 

physical characteristics such as the number of axles, the number of tires, gross vehicle 

weight ratings, horsepower ranges, vehicle activity characteristics, and tractor-trailer 

configuration, converts FHWA truck classes into EPA HDV classes without losing the 

original resolution of HDV/truck activity and emission characteristics.  The new HDV 

VMT estimation method, developed with the combination of the X-scheme, publicly 

available HDV activity databases, and the 2003 Georgia Tech HDV/BUS database, 

minimizes uncertainties in the vehicle registration based VMT estimation method 

suggested by EPA.  Specifically, the new HDV VMT estimation method minimizes the 

VMT allocation from heavy HDVs to light and medium HDVs.  The analysis of 

emissions impact with the new HDV visual classification and VMT estimation method 

indicates that emissions with the EPA HDV VMT estimation guidance are 



 

 xvi

underestimated by 22.9% and 25.0% for oxides of nitrogen (NOX)and fine particulate 

matter (PM2.5) respectively within the 20-county Atlanta 8-hr ozone nonattainment area.  

The new heavy-duty vehicle visual classification and activity estimation method can be 

used for the development of HDV/truck activity databases without losing the fine 

resolution of vehicle characteristics, and can be used for the facility-specific HDV VMT 

estimation for the development of onroad emissions inventories.  Because the new heavy-

duty vehicle visual classification and activity estimation method has the ability to provide 

accurate HDV activity and emissions estimates, this method has the potential to 

significantly influence policymaking processes in regional air quality management and 

transportation planning.  In addition, the ability to estimate link-specific emissions 

benefits Federal and local agencies in the development of project (microscale), regional 

(mesoscale), and national (macroscale) level air quality management and transportation 

plans. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Over the last several decades, both government and private industry to regulate 

and control the emissions of wide range of pollutants into the atmosphere from a variety 

of sources have made extensive efforts. While these efforts have met with substantial 

success, problems persist and management of air quality remains an important public 

priority and influences numerous public and private decisions. Management of emissions 

from a source requires knowledge of both quantity of activity from a source (e.g., in the 

case of motor vehicles the vehicle miles traveled (VMT)) and the rate of emissions per 

unit of activity (emission rates).  

 

Heavy-duty vehicles (HDVs) are major air pollutant emission sources, especially 

for oxides of nitrogen (NOX) and fine particulate matter (PM2.5).  Although previous 

studies (see for example Lloyd, 2001; Gautam, 2003; Hill, 2003) have stressed the 

significance of emissions from HDVs, in urban nonattainment areas especially for ozone 

(for which nitrogen oxides are a precursor) and PM2.5, current methods to estimate HDV 

activity have major deficiencies. 
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For example, the methods used to separate overall HDV activity into individual HDV 

classes are often inappropriately used or have high uncertainties (Guensler, 1991).  

Specifically, the U.S. Environmental Protection Agency  (EPA) guidance, which provides 

a conversion method from axle and tractor-trailer configuration truck classes into gross 

vehicle weight rating (GVWR) HDV classes, can result in a loss of  resolution of vehicle 

class information relative to field observations and misrepresent onroad HDV fleet VMT 

(Yoon, 2004a).   

 

In addition, the EPA recommended HDV VMT estimation method used in 

conjunction with its current primary emissions model (MOBILE6.2) is based on vehicle 

registration and annual mileage accumulation rates that underestimate inter-region or 

inter-state operations because a greater portion of inter-region operating HDV activity 

occurs within urban areas than relative to their registration fractions.  

 

1.1 NOX and PM2.5 Emission Rates from Heavy-Duty Vehicles 

Baseline NOX and PM2.5 emissions rates used in the EPA MOBILE6.2 emission 

rate model to estimate emission rates from HDV are based on the laboratory test 

procedure (CFR, 2004c) of the emissions from HDV engines. In the test procedure (CFR, 

2004c), an engine is removed from a HDV chassis, mounted on an engine dynamometer 

test stand, and operated through a defined test cycle.  As the engine operates under the 

test procedure, measured emissions are combined with engine power measurements to 
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produce the brake-specific emission rates (g/hp-hr) that are ultimately used in the 

MOBILE6.2 emission rate model as baseline emission rates.  In HDV emissions 

inventory development, baseline emission rates are combined with estimates of vehicle 

fuel economy and vehicle activity parameters, such as annual mileage accumulation rates, 

registration distributions by age, and vehicle miles traveled (VMT) fractions (if VMT is 

not separated into vehicle classes) or HDV vehicle miles (if VMT estimates exist for each 

vehicle class), to estimate emission rates for a certain modeling year (USEPA, 2002a).   

 

Individual HDV annual mileage accumulation rates are area specific and can be 

estimated not only by field data collection and survey methods, but also by VMT 

fractions and aggregated HDV VMT.  Among onroad mobile emission sources, HDVs 

contribute only 7% of total onroad motor vehicle VMT (BTS, 2003)yet contribute more 

than 45% and 75% of total onroad motor vehicle emissions for NOX and PM2.5 

respectively (USEPA, 2003).  The estimated emission contributions from HDV can vary 

significantly from region to region or by the method chosen to assign overall HDV 

activity into individual vehicle classes (vehicle mapping) or VMT estimation methods, or 

both.  Errors due to vehicle mapping arise since estimated emission rates vary 

substantially between different vehicle classes.  For example, the estimated emission 

rates from the heaviest diesel HDV class are five and three times greater for NOX and 

PM2.5 than those from the lightest diesel HDV class.  Figure 1.1 shows 2003 MOBILE6.2 

NOX and PM2.5 emission rates from diesel and gasoline HDVs with modeling parameters 

(GDNR, 2005) used for the 13-county Atlanta metropolitan air quality planning area. 
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Figure 1.1: MOBILE6.2 NOX and PM2.5 Emission Rates for Freeways at 35mph of 
Average Speed and July 2003 within the 13-County Atlanta Metropolitan 
Area 

 

 

 

1.2 Current Heavy-Duty Vehicle Conversion and VMT Estimation Methods  

EPA defines heavy-duty vehicles as “any motor vehicle rated at more than 8,500 

pound of gross vehicle weight rating (GVWR)” (CFR, 2004e).  For emissions modeling 

purposes, HDVs are separated into eight subclasses for each gasoline and diesel vehicle 

by GVWR.  While EPA defines HDV classes by their GVWR, FHWA defines truck 

classes by the number of axles, the number of tires, and tractor-trailer configuration 

(FHWA, 2001).  Because Federal and state HDV vehicle activity measurements are 
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referenced to FHWA truck classes (EPA classes which are based on GVWR cannot be 

directly observed), a EPA class to FHWA class conversion process or processes is 

required to estimate VMT for each EPA HDV class for input into the mobile source 

emissions model.  To make this conversion, EPA suggests aggregating data for nine of 

the FHWA truck classes (5 to 13) and bus class (4) into an overall HDV VMT estimate 

and then disaggregating this estimate into the sixteen EPA HDV and two bus classes in 

accordance with their estimated VMT fractions for each class (USEPA, 2004c).  

However, this conversion guidance can bias in the estimation of light and medium HDV 

VMT and allocate heavy HDV VMT into light or medium HDV VMT, especially in 

urban areas (USEPA, 2004c; Yoon, 2004a).  The VMT fraction estimation method, 

which is based on vehicle registration data with HDV classification and model year 

information used in the MOBILE6.2 emission rate model (USEPA, 2001a), misrepresents 

regional HDV VMT fractions for areas with higher than average heavy HDV traffic 

because inter-region operating HDVs, which are not registered within a specific study 

regional boundary,  are not  incorporated into the VMT fractions for the specific study 

region.  For example, the Georgia Department of Natural Resources (GDNR) developed 

regional HDV VMT fractions and included only HDVs registered in the13-county 

Atlanta metropolitan area (GDNR, 2003).  This can result in the overestimation of light 

and medium HDV VMT and the underestimation of heavy HDV VMT because Atlanta 

has a large volume heavy HDV traffic.  
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1.3 Research Approaches and Objectives  

The major effort of this research is to develop a new heavy-duty vehicle visual 

classification and VMT estimation method that overcomes many of the limitations of 

existing methods and guides.  The new method incorporates observed field data, 

regulatory criteria, and Federal and state HDV activity databases in a logical and 

consistent fashion.  This effort consists of a number of specific objectives outlined below: 

• Develop a method to convert observed FHWA truck classes into EPA HDV 

classes without losing the fine resolution of vehicle class information observed in 

the field and without misallocating heavy HDV VMT into light and medium HDV 

VMT and vise versa.   

• Develop a method to extract HDV or truck activity data from publicly available 

databases with established criteria 

• Incorporate the data extraction method into the new HDV classification scheme, 

and develop a new HDV activity estimation method to estimate HDV VMT for 

various roadway function classes, specifically freeways, arterials, and local roads.   

 

To develop the information necessary for development of a new  FHWA truck-to-

EPA HDV conversion process, vehicle volume data  were observed within the newly 

defined 21-county Atlanta metropolitan area (previously the Atlanta non-attainment area 

was comprised of 13 counties) using the Ahanotu truck classification scheme developed 

at Georgia Institute of Technology (Georgia Tech) (Ahanotu, 1999).  The Ahanotu truck 
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classification scheme is a visual classification scheme and was developed for use in 

collecting onroad truck activity data.  The scheme regroups and aggregates various 

FHWA truck classes by the relationships between engine horsepower and truck weight 

distributions and ultimately employs only four truck classes.  While this scheme offers 

lower resolution than a full FHWA classification scheme it is a rapid and easy to use 

scheme that offers the potential greatly improving truck activity estimates relative to the 

existing EPA guidance.  

 

Because the observed vehicle volume data were partially aggregated with the 

Ahanotu truck classification scheme, new procedures were developed to relate the 

Ahanotu truck classes to EPA HDV classes and appropriate  criteria were developed from 

truck GVWR  and axle specifications  from manufacturers’ truck specification data and 

truck weight limitations from FHWA regulations (FHWA, 1994; FHWA, 2004).  With 

these criteria and observed field volume data, a new FHWA truck-to-EPA HDV hybrid 

vehicle classification scheme called the X-scheme was developed to translate FHWA 

trucks into EPA HDV classes, or vice versa (Yoon, 2004a). 

 

The field vehicle activity observations were expanded through the use of external 

public databases on truck and other HDV activity.  These databases include the Highway 

Statistics from U.S. Department of Transportation, the Georgia Highway Performance 

Monitoring System (HPMS) from the Georgia Department of Transportation, the Vehicle 

Inventory and Use Survey (VIUS) from the U.S. Department of Transportation, and 
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additional HDV and bus activity databases collected and maintained by a variety of 

agencies and groups.  Using these databases the estimated truck VMT for the Atlanta 

metropolitan area was developed and processed through the new vehicle classification 

scheme to apportion VMT into EPA HDV, school bus, and urban bus classes for all but 

the lightest EPA HDV class (HDV2B) because these data were not directly available.  

Separate VMT estimates for the HDV2B class were estimated using AADT from HPMS 

and “other 2-axle, 4-tire vehicle” VMT percentages on various roadway facility types 

from Highway Statistics.   

 

Through this process, HDV VMT was estimated for each roadway facility type 

within the 20-county Atlanta metropolitan area and used to estimate HDV emissions in 

this region using the EPA MOBILE6.2 emission rate model.  This approach allows 

estimated HDV VMT to be directly connected to MOBILE6.2 emission rates without 

losing the fine resolution of observed field data, limits the misallocation of VMT from 

one HDV class to another, and thus provides more accurate emission estimates for 

regional emissions inventories and air quality impact analyses. 
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CHAPTER 2  

 

HEAVY-DUTY VEHICLE EMISSIONS REGULATIONS 

AND EMISSIONS MODELING 

 

 

In the United States, emissions from HDVs are regulated only indirectly by the 

imposition of emissions standards on the engines used to power these vehicles. While 

these emissions standards and associated testing requirements provide information 

regarding engine baseline emission rates (e.g., g/sec or g/bhp-hr) under a standard set of 

conditions, evaluating the overall vehicle emissions from HDV under realistic operating 

conditions required for air quality planning purposes requires the use of separate emission 

models.  Emission models range from  EPA’s MOBILE6.2 emission rate model that 

bases emissions estimates on typical operational speed cycles to HDV modal activity 

based emission models such as the Motor Vehicle Emission Simulator (MOVES), the 

Mobile Emission Assessment System for Urban and Regional Evaluation (MEASURE), 

or the Heavy-Duty Diesel Vehicle Modal Emission Model (HDDV-MEM).   
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2.1 Heavy-Duty Vehicle Emissions Regulations 

Efforts to regulate tailpipe emissions from motor vehicles in the United States 

began in the mid-1960s.  The Clean Air Act (CAA) of 1970 provided for the 

establishment of National Ambient Air Quality Standards (NAAQS) to protect the public 

health and the public welfare (Davis, 1998) and provided a mechanism for the regulation 

of emissions from a range of emissions sources including motor vehicles.  Emissions 

from heavy-duty vehicles were not regulated until the mid-1970s, although tailpipe 

emission reduction efforts for light-duty vehicles started much earlier.  In 1977, 

amendments to the CAA provided for the regulation of oxides of nitrogen (NOX) and 

particulate matter (PM) from diesel vehicles effectively began regulations on heavy-duty 

vehicle emissions.  The CAA of 1990 required the regional transportation plans to ensure  

the mobile source emissions inventories used for transportation planning conforming to 

the emission budgets presented in the corresponding state implementation plan used for 

regional air quality planning (FHWA, 1997).  This requirement had the practical effect of 

coupling air quality and transportation planning. 

   

2.1.1 National Ambient Air Quality Standards 

The CAA of 1970 requires EPA to set NAAQS for six criteria pollutants, which 

are carbon monoxide (CO), nitrogen dioxide (NO2), lead, particulate matter (PM), ozone 

(O3), and sulfur oxides (SOX).  The NAAQS defines two types of air quality standards.  

The first are the primary standards designed to protect public health especially for 
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sensitive populations such as asthmatics, children, and the elderly.  The second set of 

standards is the secondary standards to protect public welfare including visibility, animals, 

vegetation, and buildings (CFR, 2004d).  Table 2.1 illustrates the current NAAQS for 

ambient concentrations of various pollutants. 
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Table 2.1: National Ambient Air Quality Standards 
Pollutant Averaging Times Primary Standards Secondary Standards

8-hr     9ppm        None Carbon Monoxide 

1-hr   35ppm        None 

Lead Quarterly     1.5µg/m3     1.5µg/m3 

Nitrogen Dioxide Annual    0.053ppm    0.053ppm 

Annual   50µg/m3   50µg/m3 PM10 

24-hr 150µg/m3 150µg/m3 

Annual   15µg/m3   15µg/m3 

Particulate 

Matter1 

PM2.5 

24-hr   65µg/m3   65µg/m3 

8-hr     0.08ppm     0.08ppm Ozone 

1-hr     0.12ppm     0.12ppm 

Annual     0.03ppm       None 

24-hr     0.14ppm       None 

Sulfur Oxides 

3-hr      None     0.5ppm 

 

 

 

Among the pollutants emitted from onroad motor vehicles, volatile organic compounds 

(VOC) and NOX are involved in atmospheric chemical processes that result in the 

                                                 
1 Particulate matter less than 10 µm or 2.5 µm in diameters 
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formation of ambient O3 and in formation of secondary PM that in addition to the PM 

emitted by the motor vehicles themselves (Figure 2.1).      

 

 

 

 
Figure 2.1: Air Pollutants Emitted from Onroad Motor Vehicles (Source: USEPA, 

1996a) 
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2.1.1.1 Fine Particulate Matter (PM2.5) 

As illustrated above, both primary and secondarily fine particulate matter (PM2.5) 

are directly emitted from emission sources and formed by chemical reaction processes in 

the air.  PM2.5 emitted from heavy-duty vehicles, which emit more than 75% of that from 

all onroad motor vehicles, can cause not only human health problems and property 

damage, but also adversely impact the environment through visibility reduction and 

retard plant growth (Davis, 1998).  EPA promulgated the PM2.5 standard in 1997 based 

on health studies showing that excessive fine particle concentrations are significantly 

associated with premature death from heart or lung diseases (Sheth, 2000).  Fine particles 

from heavy-duty vehicles are mostly smaller than 0.1 µm in diameter and more than 90% 

of them are smaller than 1µm in diameter (Lloyd, 2001).  These small particles penetrate 

deeply into the lungs and affect a larger surface area of lung tissue than an equivalent 

mass of larger particles.  These small particles even cause more serious health problems 

when they grow larger through nucleation, condensation, and coagulation pathways with 

airborne toxic materials (Huffman, 2001).  Sensitive populations including people with 

heart or lung disease, children whose lungs are still developing, and older people with 

reduced lung function are considered at greater risk than healthy adults (USEPA, 2004a) 

from these effects.   

 

In addition, fine particles may be considered a critical airborne toxic itself and has 

been shown to cause double-digit increase in the relative risk of lung cancer to people in 
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long-term occupational exposure to relatively high concentrations of these particles (HEI, 

1995).  These effects may also extend to the general population.  For example, a major 

study (MATES-II) conducted in the south coast air basin of California has concluded that 

fine particulates from diesel vehicles (called diesel PM) contribute more than 70% of 

cancer risks among airborne toxic materials in this region (SCAQMD, 2000) although 

these results remain controversial.   

   

2.1.1.2 Oxides of Nitrogen and Ozone Formation  

Nitrogen contained in both fuel (40~500 ppm in diesel) and air (78% in volume) 

is converted into oxides of nitrogen through internal engine combustion processes.  

During combustion processes, NOX (NO+NO2), and nitrate (NO3
-) is generated through a 

series of chemical reactions typically called Zeldovich mechanism (Stone, 1992).  

Chemical reaction processes generate more NOX at higher temperatures (higher kinetic 

energy) and at lower flame speed (longer reaction time).  After combustion, almost all 

(90% or more) of the NOX is in the form of NO at the tailpipe (Heywood, 1998).  After 

exhausting to the air, some of this NO is rapidly converted to NO2 by reaction with 

atmospherics oxidants, principally ozone (Moran, 1994).   

 

NO and NO2 emitted from heavy-duty vehicles act as a precursor to ground level 

ozone formation.  Ozone, which is not emitted directly from motor vehicles, secondarily 

forms by chemical reactions involving NOX and volatile organic compounds (VOC) in 
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the air through chained radical reactions in the presence of sunlight (Arya, 1999; 

Spedding, 1974). 

 

• Internal combustion reactions (high temperature processes) 

 O  +  N2  ↔  NO  +  N 

 N  +  O2  ↔  NO  +  O 

 N  +  OH  ↔  NO  +  H 

  

• Photochemical reaction  (net reactions) 

NO  +  HO2  ↔  NO2  +  OH 

 NO2  +  VOC  +  sunlight (UV)  →  O3 + others      

 

Ozone as a highly reactive oxidant gas and is the major constituent of the mixture of 

photochemical oxidants frequently referred to as smog.  Ozone can cause eye irritation, 

lachrymation, and respiratory difficulties for people working outdoors.  In terms of 

human health effects, a review of health studies conducted by the National Research 

Council (NRC) has concluded that exposure to long period with marginal ozone 

concentrations is potentially of greater concern than a short period with high ozone 

concentrations because some pollutants involved in ozone formation processes have 

longer reactive scales than others (NRC, 1999).  For this and other reasons, EPA 

promulgated an 8-hour ozone standard in 1997 intended to replace the 1-hr ozone 

standard.  However, industry groups led by the American Trucking Association 



 

 17

challenged the PM2.5 and the 8-hr ozone standards in federal court.   Through the case 

review process, the U.S. Supreme Court upheld EPA’s interpretation of CAA and let 

EPA move forward with the PM2.5 and the 8-hr ozone designation processes (USSC, 

2000).  EPA is currently conducting the PM2.5 and the 8-hr ozone nonattainment area 

designation processes (CRS, 2004; FR, 2004). 

 

2.1.2 Heavy-Duty Vehicle Certification Standards 

Heavy-duty vehicles classified by their GVWR are further characterized by EPA 

according to the engine size; light, medium, and heavy heavy-duty engines.  Under the 

Federal Tier 2 regulation, light-duty vehicles of GVWR up to 10,000 lbs used for 

personal transportation (called medium-duty passenger vehicles) such as larger sport 

utility vehicle and passenger vans are subject to the light-duty vehicle regulations.  That 

means that light heavy-duty vehicles in between 8,501 and 10,000lbs of GVWR can be 

certified to different standards; chassis dynamometer certification or engine 

dynamometer certification depending on the application (CFR, 2004e).  Except Tier 2 

vehicles, all heavy-duty vehicle emissions standards are defined with the engine 

dynamometer certification process.   
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2.1.2.1 Heavy-Duty Engine Test Cycles 

Currently EPA requires that heavy-duty vehicles should be certified with their 

engine emission test results expressed in grams per brake horsepower-hour (g/bhp-hr) 

over the transient Federal Test Procedure (FTP) engine dynamometer cycle, which 

includes both engine cold and warm start operations (CFR, 2004f).  For the engine 

dynamometer test, the engine is removed from the vehicles’ chassis, mounted on the test 

stand, and operated with the transient FTP cycle.  The transient test cycle consists of four 

segments combined in the order of “New York Non-freeway (NYNF)”, “Los Angeles 

Freeway (LAF)”, “Los Angeles Non-freeway (LANF)”, and “New York Non-freeway 

(NYNF)” cycles.  First two cycles for the cold start, and next two cycles for the hot start 

portions of the cycle (NRC, 1995).  While the engine operates with the test cycle, 

composite emissions and cold-/hot-start time integrated engine revolution per minute 

(RPM) and torque are measured.  From measured RPM and torque, actual torque is 

determined by applying performance percentages to the maximum torque curve at given 

maximum RPM (CFR, 2004f).  Then, the actual torque is converted to the time integrated 

brake horsepower.  Composite emissions associated with the brake horsepower are 

expressed as brake-specific emission rates in g/bhp-hr (CFR, 2004i).  Because the engine 

dynamometer test procedure does not directly account for the impacts from load and 

grade changes, the chassis dynamometer test procedure, which adopted the urban 

dynamometer driving schedule (UDDS), was developed.  The UDDS procedure does not 

require the removal of the engine from the vehicles’ frame.  The chassis dynamometer 
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test procedure incorporated with second-by-second vehicle speed and emission produces 

emission rates in grams per mile (g/mi).   

 

 

 

Figure 2.2: Urban Dynamometer Driving Schedule (UDDS) 
 

 

 

2.1.2.2 Heavy-Duty Engine Emissions Regulations  

EPA regulates heavy-duty vehicle emissions, complied with emissions standards, 

over the useful life of the engine.  Useful life, which warrants zero-mile emission rates 

(g/bhp-hr), varies for each heavy-duty engine; 110,000, 185,000, and 290,000 miles for 

all heavy-duty gasoline and light heavy-duty diesel engines, medium heavy-duty diesel 

engines, and heavy heavy-duty diesel engines, respectively (CFR, 2004g).  Certified 
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engine emissions consist of a deterioration emission rate (g/bhp-hr) at the end of useful 

life and a zero-mile emission rate.  However, the sum of the zero-mile emission rate and 

deterioration emission rates should not exceed certified emissions standards.  Table 2.2 

shows the changes of heavy-duty engine emissions standards for NOX and PM by vehicle 

model year group (Lindhjem, 1999). 

 

 

 

Table 2.2: Heavy-Duty Engine Emissions Standard Changes for NOX and PM  
Heavy-Duty Engine Emissions Standard (g/bhp-hr) Model Year 

Group 
Gasoline Engine Diesel Engine Diesel Bus Engine 

1990 6.0 NOX 6.0 NOX 5.0 NOX 

1991-1992 0.25 PM 

1993 

5.0 NOX 

0.25 PM 0.10 PM 

1994-1995 0.07 PM 

1996-1997 

5.0 NOX 

0.10 PM 

0.05 PM 

1998-2003 4.0 NOX 4.0 NOX 4.0 NOX 

2004-2006 2.5 HC + NOX 2.5 HC + NOX 2.5 HC+ NOX 

2007+ 1.0 HC + NOX 0.01 PM 

0.2 NOX 

0.01 PM 

0.2 NOX 
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2.2 Onroad Mobile Source Emission Rate Model, MOBILE6.2 

EPA developed the MOBILE6.2 onroad mobile source emission rate model for 

use in regional air quality planning such as the development of state implementation 

plans (SIP) by way of mobile source emissions inventory development to protect public 

health, welfare, and ecological resources (USEPA, 2004b).  While forty-nine states use 

the MOBILE6.2 rate model for emission analyses, the state of California uses its own 

onroad mobile source emission rate model, the EMFAC2002 (CARB, 2002).  Both 

MOBILE6.2 and EMFAC2002 models estimating HC, CO, NOX, PM, SOx, CO2 and 

Lead share similar core concepts to estimate emission rates.  Emission rates in the models 

result from combining baseline emission rates, vehicle travel activity, and a series of 

correction factors such as speed, temperature, altitude, humidity, and so on.   

 

A mobile source emission estimation process consists of two processing steps: the 

determination of modeling year baseline emission rates modified by a series of correction 

factors and the estimation of vehicle activity (Sawyer, 1998).  With The MOBILE6.2 

emission rate model, HDV modeling year baseline emission rates in grams per mile are 

obtained through the estimation of baseline emission rate, unit conversion processes, and 

weighting by a series of correction factors such as speed, temperature, altitude, etc.  Then, 

the baseline emission rate for a modeling year can be multiplied by vehicle activity 

expressed as VMT for the estimation of emissions and for the development of year-

specific mobile source emissions inventories.       
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2.2.1 Baseline Emission Rates 

Baseline emission rates (g/bhp-hr) for heavy-duty vehicles are obtained from the 

engine dynamometer test results conducted during EPA’s cooperative test program with 

engine manufacturers.  Once a modeling year (i.e. the year for which emissions are to be 

predicted) is specified, modeling year baseline emission rates are estimated with the 

association of year-specific baseline emission rates, vehicle sales fractions, and 

horsepower ratings by age (individual categories for vehicles aged 1 to 24 years and an 

additional category for 25 years and older) for each HDV class (Lindhjem, 1999). 
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Where, ELv is the modeling year baseline emission rate (g/bhp-hr)   

Sales is the vehicle sales fraction  

HP is the engine horsepower rating (bhp) 

ELv,yr is the year-specific baseline emission rate by age (g/bhp-hr)  

v is the vehicle type 

yr is the vehicle age from the modeling year 

 

However, HDV emission rates (g/bhp-hr) can not be directly used to estimate modeling 

year HDV emission rates (g/mi), although light-duty vehicle (LDV) emission rates can be 

obtained from tailpipe emissions measurement and used directly to calculate modeling 
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year emission rates.  To convert g/bhp-hr emission rates into g/mi emission rates, the 

MOBILE6.2 uses conversion factors for each HDV class.  Conversion factors are a 

function of fuel density, brake-specific fuel consumption (BSFC), and fuel economy for 

each HDV class (USEPA, 2002b; USEPA, 2002c).  For the development of BSFC and 

fuel economy, EPA developed regression models with available data from 1987 to 1996 

derived from Truck Inventory and Use Survey (TIUS) conducted by the U.S. Census 

Bureau.  Due to the limit of data, post-1996 BSFC and fuel economy were set to the same 

as 1996 values.  However, post-1996 BSFC and fuel economy may ultimately require 

extensive revision because engine horsepower ratings, vehicle weight, and other vehicle 

characteristics keep changing with time.  For instance, Ahanotu and Yoon have recently 

concluded that overall heavy HDV fleet horsepower ratings are  increasing (getting 

higher) and fleet age is decreasing (getting younger) (Ahanotu, 1999; Yoon, 2004b).     

 

2.2.2 Speed Correction Factors   

In MOBILE6.2, speed implies average speed over vehicle trips; that is the total 

trip distance divided by the total trip time that excludes extended idling time.  For light-

duty gasoline vehicles, EPA tested eighty five 1990s’ model vehicles including 22 light-

duty trucks under a variety laboratory driving test cycles representing level of service 

conditions on roadway types during the development of the model (USEPA, 2001b).  

Unlike light-duty vehicles, however, new speed correction factors were not developed for 

heavy-duty vehicles in the MOBILE6.2 model.  Instead, speed correction factors used in 
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the MOBILE5 model were used in the MOBILE6.2 without modification.  The speed 

correction factors for HDVs originated from the publication of AP-42, Volume II 

(USEPA, 1995), which provided gasoline and diesel HDV speed correction factor models 

and coefficients for HC, CO, and NOX.  These speed correction factors were developed 

from each average speed of three segment cycles except the first NYNF cycle of the 

engine dynamometer test cycle, and expressed as polynomial equations for each pollutant.  

Because there are only three average speeds from three segments in the test cycle, speed 

correction factors rise steeply at low speeds, and become infinite at idle (zero speed).  

Therefore, speed correction factors at idle were not used (NRC, 1995).  Instead, EPA 

developed idling emission rates (g/hr) for use in idle emissions estimation at vehicle 

speeds of less than 2.5 miles per hour (mph).  These HDV speed correction factors, 

however, only apply for emission rate estimation on freeways and arterials.  Thus, HC 

and CO emission rates for a certain HDV class at any given average speed are always 

same on freeways and arterials because same speed correction factors are applied to both 

freeways and arterials at average speeds over 30mph.  However, NOX emissions for 

diesel vehicles on freeways are greater than on arterials (Figure 2.3).  This is not because 

of speed correction factors, but because of NOX off-cycle emission effect on freeways 

(USEPA, 2002c).   
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Figure 2.3: VOC, CO, NOX Emission Rates on Freeways and Arterials at 41mph 
 

 

 

For HDVs on locals and freeway ramps, speed correction factors are not applied.  That is 

because MOBILE6.2 does not use speed correction factors for locals and freeway ramps, 

but instead, use single average speeds of 12.9mph and 34.6mph for locals and freeway 

ramps, respectively.   
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2.2.3 Vehicle Miles Traveled Estimation 

The estimation of vehicle miles traveled (VMT) in the MOBILE6.2 model was 

based on EPA’s fleet characterization study (USEPA, 1998).  To characterize heavy-duty 

vehicle fleet VMT, they used vehicle registrations and annual mileage accumulation rates.  

Vehicle data registered in 1996 were obtained from R.L. Polk Company, which was a 

widely recognized source of vehicle registration data.  Vehicle classes were identified by 

GVWR.  However, because the class HDV8 vehicles were not separated into classes 

HDV8A and HDV8B, an average ratio of classes HDV8A to HDV8B obtained from 

1992 Truck Inventory and Use Survey (TIUS) was used to separate them.  In addition, 

light-duty diesel vehicle class 2 (defined as vehicles having 6,001 to 10,000 lbs of 

GVWR) was not separated into the light-duty truck (LDT) and the light heavy-duty class, 

HDV2B.  Through the consultation with EPA staffs and industry published market data 

books, 10% of light-duty diesel class 2 vehicles were assigned to be the light heavy-duty 

vehicles of HDV2B.  After screening registration data, EPA developed statistical models 

to estimate vehicle registration distributions by age (USEPA, 2001a).  

 

Annual mileage accumulation rates were determined with annual average miles 

obtained from 1992 TIUS data (USEPA, 1998).  Because 1992 TIUS data provided 

annual average miles only from 1983 to 1992 and aggregated miles for the pre-1983 

model years, EPA developed statistical models by age to estimate annual mileage 

accumulate rates with the 10 year (1983-1992) annual average miles.  To apportion the 

aggregated miles for the pre-1983 into each model year, they used the R.L. Polk 
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registration data.  With these average annual miles, EPA developed statistical equations 

to estimate annual mileage accumulation rates by vehicle age (USEPA, 2001a).  

Statistical models for vehicle registration distributions and annual mileage accumulate 

rates were used to estimate vehicle activity expressed as VMT or VMT fractions.   

 

2.3 Modal Activity Based Emission Models 

EPA’s MOBILE series models have significantly improved through the series of 

model revisions from 1970’s.  However, MOBILE models still have major modeling 

defects for the heavy-duty components, which have been widely recognized for more 

than 10 years (Guensler, 1991).  One of the most frequently stated defects is that fleet 

average speed, which aggregates other vehicle activity factors that may address 

significant bias in emissions characterization, characterizes vehicle emission rates.   

 

Studies (USEAP, 2001d; Bachman, 2000; Ramamurthy, 1998) indicate that 

vehicle individual modal activities including idle, motoring, cruse, acceleration, and 

deceleration can be better indicators to properly reflect vehicle emissions resulting from 

various vehicle activities and to characterize relationships between vehicle emissions and 

activities, rather than with only vehicle average speed.  With the consideration of vehicle 

modal activity, EPA and various research communities have been developing modal 

activity based emission models.  The report published by Nation Research Council (NRC, 
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2000) comprehensively reviewed the modeling of mobile source emissions and provided 

recommendations for the improvement of future mobile source emission models.   

 

2.3.1 MOVES 

U.S. Environmental Protection Agency has developed a new modal activity based 

mobile source emission model called the Motor Vehicle Emission Simulator (MOVES), 

intended to follow NRC recommendations.  MOVES estimates emissions of onroad and 

nonroad sources for multiple scale analysis, from fine-scale analysis to national emissions 

inventory estimation (EPA, 2001d).  The basic concept of MOVES starts with the 

characterization of vehicle activity and the development of relationships between 

characterized vehicle activity and energy consumption, and between energy consumption 

and vehicle emissions (EPA, 2005).  To estimate energy consumption by vehicle modal 

activity, vehicle specific power (VSP), which is a function of speed, acceleration, road 

grade, etc., is first estimated, and then VSP is converted to energy consumption rates in 

energy per vehicle weight (kW/tonne) (NAM, 2003).         

 

mvACCggradegavVSP DR /***5.0)**)1(*(* 3ρε ++++=      (2.2) 

 

Where,  v is the vehicle speed (assuming no headwind) (m/s) 

             a is the vehicle acceleration (m/s2) 

ε is the mass factor accounting for the rotational masses (~0.1) 
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g is the acceleration due to gravity 

grade is the road grade 

CR is the rolling resistance (~0.0135) 

ρ is the air density (1.2) 

CD is the aerodynamic drag coefficient 

A is the frontal area (m2) 

m is the vehicle mass (tonne) 

 

To characterize the relationship between vehicle activity and energy consumption, EPA 

establishes a binning approach, which allows the use of laboratory emission test results 

associated with VSP (USEPA, 2002e).  VSP estimated with the equation 2.2 is originally 

separated into 14 VSP bins by VSP ranges, which generalize vehicle modal activity into 

14 VSP bins (USEPA, 2001d).  However, because VSP associated with vehicle average 

speed produces bias at low and high speeds, EPA refines the VSP binning approach by 

the association of second-by-second speed, engine rpm, and acceleration rates (Koupal, 

2004).   The original 14 VSP binning approach are revised with the combination of five 

different speed operating modes and redirected to a total of 37 VSP bins.  If a vehicle 

activity mode is characterized from vehicle activity data, 17 VSP bins, which represent 

the vehicle activity mode, are selected and used to estimate vehicle specific power 

demand.       
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2.3.2 MEASURE 

Since 1995, the Georgia Institute of Technology (Georgia Tech) has developed 

the Mobile Emission Assessment System for Urban and Regional Evaluation 

(MEASURE) model, which estimates onroad mobile source emissions as a function of 

vehicle technology groups and vehicle modal activity under a geographic information 

system (GIS) framework.  Vehicle technology groups, which were combinations of 

vehicle characteristics and operating conditions, were identified in regression tree 

analysis by analyzing laboratory emission test data on various driving cycles.  Vehicle 

modal activity such as acceleration, deceleration, cruse, and idle were identified with 

speed and acceleration distributions (Grant, 1996) as a function of facility type, level of 

service, and other parameters in the Highway Capacity Manual.  Because MEASURE has 

been developed under the GIS platform, it provides following benefits (Bachman, 2000).   

 

• Manages topographical parameters that affect emissions 

• Calculates emissions from vehicle modal activities  

• Allows a ‘layered’ approach to individual vehicles activity estimation 

• Aggregates emission estimates into grid cells for use in photochemical air quality 

models 
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In the MEASURE model, to estimate emission rates, baseline emission rates for a given 

engine load were multiplied by instantaneous engine loads, which were estimated with 

variables including vehicle weight, speed, acceleration, and road grade.   

 

2.3.3 HDDV-MEM  

Georgia Tech has developed a beta version of the heavy-duty diesel vehicle modal 

emissions model (HDDV-MEM), which is based on vehicle technology groups, engine 

emission characteristics, and vehicles modal activity (Guensler, 2005a).  A new heavy-

duty vehicle visual classification scheme, which is an EPA and FHWA hybrid vehicle 

classification scheme developed by Yoon et al. (Yoon, 2004b), classified vehicle 

technology groups by engine horsepower ratings, vehicles GVWR, vehicle configurations, 

and vehicle travel characteristics (see CHAPTER 6).  Currently, engine emission 

characteristics are under the review and development process with chassis dynamometer 

test results obtained from public and university research communities.  In the beta 

HDDV-MEM version, engine emissions by age and by vehicle class have same 

characteristics with the vehicle emissions, which were developed with engine 

dynamometer test results and currently used in the MOBILE6.2. 
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Figure 2.4: A Framework of Heavy-Duty Diesel Vehicle Modal Emission Model 
(Source: Guensler et al., 2005a)  

 

 

 

2.3.3.1 Model Development Approaches 

The HDDV-MEM first predicts second-by-second engine power demand as a 

function of onroad vehicle operating conditions and then applies brake-specific emission 

rates to these activity predictions (Guensler, 2005a; Yoon, 2005a).   
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 Where: P is the total engine power demand (bhp) 

V is the vehicle speed (ft/s) 

a is the vehicle acceleration (ft/s2) 

W is the actual vehicle weight (lbf) 

l is the road grade (degree) 

g is the gravitational acceleration (32.2 ft/s2) 

FR is the rolling resistance force (lbf) 

FW is the gravitational weight force (lbf) 

FD is the aerodynamic drag force (lbf) 

FI is the drivetrain rotational inertial loss (lbf) 

AP is the auxiliary power demand (bhp) 

550 is the conversion factor to bhp 

 

Onroad operating modes (cruise, acceleration, deceleration, and motoring/idle) are 

integral in the power demand functions with other relevant factors such as vehicle weight, 

road grade, road surface type, etc. (Guensler, 2005a; Feng, 2005).  The HDDV-MEM 

consists of three modules:  a vehicle activity module (with vehicle activity tracked by 

vehicle technology group), an engine power module, and an emission rate module.  Each 

module performs a series of routines designed to estimate onroad vehicle activity and 
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operating conditions for each vehicle technology group, estimate engine horsepower 

demand for each technology group and roadway link, and then calculate resulting 

emissions from these onroad activities.  The three modules are initiated with modeling 

parameters defined in model input command lines.  Once modeling parameters are 

defined in the command window, each module processes in parallel and serial to predict 

HDDV emissions on each roadway link (Figure 2.5). 

 

 

 

 

Figure 2.5: Heavy-Duty Diesel Vehicle Modal Emissions Modeling Process (Source: 
Guensler et al., 2005a) 
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2.3.3.2 Vehicle Activity Module 

The vehicle activity module provides hourly vehicle volumes for each vehicle 

technology group on each transportation link in the modeled transportation system.  The 

annual average daily traffic (AADT) estimate for each road link is processed to yield 

vehicle-hours of operation per hour for each technology group (using truck percentages, 

VMT fraction by vehicle technology group, diesel fraction, hourly volume apportionment 

of daily travel, link length, and average vehicle speed). 

 

)/(*)***)/(*( ,|,, vsvvhvssfshv ASSLDFVFHVFTNLNLAADTVA =           (2.4) 

 

Where, VA is the estimated vehicle activity (veh-hr/hr): 

v is the vehicle technology group 

h is the hour of day 

s is the transportation link 

f is the facility type for the link 

AADT is the annual average daily traffic for the link 

NL is the number of lanes in the specific link direction 

TNL is the total number of lanes on the link 

HVF is the hourly vehicle fraction  

VF is the VMT fraction for each vehicle technology group 

DF is the diesel vehicle fraction for each technology group 
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SL is the link length (miles) 

AS is the link average speed of the technology group (mph) 

 

To estimate onroad running emissions from each link, two sets of calculations are 

performed.  Onroad vehicle activity (vehicle-hr) for each hour is multiplied by engine 

power demand for observed link operations (positive tractive power demand plus 

auxiliary power demand), and then by baseline emission rates (g/bhp-hr).  As discussed 

in the engine power module section, these calculations are processed separately for each 

speed/acceleration matrix cell (Yoon, 2005c).  Emissions from motoring/idling activity 

are calculated by the determination of the vehicle-hours of motoring/idling activity on 

each link for each hour and the multiplication of the baseline idle emission rate (g/hr).  

 

 2.3.3.3 Engine Power Model 

In the engine power module, the engine horsepower demand (bhp) for each 

roadway link is calculated for each technology group.  Power demand is predicted by 

applying speed-acceleration matrices (Yoon, 2005c), vehicle weight distributions, 

auxiliary power requirement estimates, environmental conditions, roadway link 

characteristics, and a variety of applicable parameters associated with vehicle physical 

characteristics.  Power demand includes tractive power demand plus auxiliary power 

demand, associated with running refrigeration units and other equipment onboard the 

heavy-duty vehicles.  Onroad activity with positive tractive power demand (and all 
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activity with auxiliary power demand) is linked directly to work-related emission rates 

(g/bhp-hr).  Activity for which tractive power demand is less than or equal to zero 

(motoring) is linked to idle emission rates (g/hr/veh). 

 

])))((**[( ,|,,,,|,,,, hvjisfhvjiIDWR
i j
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Where, P is the engine power demand (bhp) 

v is the vehicle technology group 

h is the hour of day 

s is the transportation link 

f is the facility type for the link 

i is the speed bin from the applicable speed-acceleration matrix 

j is the acceleration bin from the applicable speed-acceleration matrix 

V is the vehicle speed for each speed/acceleration bin (mph) 

AFF is the acceleration frequency fraction for each speed/acceleration bin 

W is the actual vehicle weight (lbf) 

g is the gravitational force (32.2 ft/s2) 

a is the vehicle acceleration (ft/s2) 

FR is the rolling resistance (lbf) 

FW is the gravitational force (lbf) 

FD is the aerodynamic drag (lbf) 
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FI is the drivetrain rotational inertial loss (lbf) 

AP is the auxiliary power requirement (bhp equivalent) 

 

Speed/acceleration matrices implied to the beta HDDV-MEM has been improved to 

speed/acceleration/grade matrices (Yoon, 2005a), and further improvement undergoes 

with parameters, such as vehicle weight, drivers’ driving behavior, etc.  

 

2.3.3.4 Emission Rate Module 

The emission rate module provides work-related emission rates (g/bhp-hr) and 

idle emission rates (g/hr) for each technology group.  Work-related emission rates are 

derived from EPA’s baseline running emission rate data, and idle emission rates are 

derived from EMFAC2002 idling emission rate test data.  Diesel vehicle registration 

fractions and annual mileage accumulation rates are employed to develop calendar year 

emission rates for each technology group.  Baseline diesel emission rates for each engine 

certification group are aggregated according to diesel registration fractions and annual 

mileage accumulation rates by vehicle age.  Each zero-mile emission rate is multiplied by 

diesel registration fraction by vehicle age, and each deterioration emission rate is 

multiplied by diesel registration fraction and by annual mileage accumulation rate by 

vehicle age.  Twenty-five weighted zero-mile emission rates and deterioration emission 

rates are aggregated to a calendar year emission rate. 
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Where, ER is the emission rate (g/bhp-hr) 

v is the vehicle technology group 

y is the vehicle age  

ZML is the baseline zero-mile emission rate (g/bhp-hr) 

DRF is the diesel vehicle registration fraction by vehicle age 

DET is the baseline deterioration emission rate (g/bhp-hr) 

AMR is the annual mileage accumulation rate (miles) 

 

2.3.3.5 Emissions Outputs 

HDDV-MEM outputs link-specific emissions in grams per hour (g/hr) for volatile 

organic compound (VOC), carbon monoxide (CO), oxides of nitrogen (NOX), and 

particular matter (PM) for each vehicle type.  Toxic air contaminant emissions rates 

(benzene, 1, 3-butadiene, formaldehyde, acetaldehyde, and acrolein) are also estimated in 

grams/hour for each vehicle type using the MOBILE6.2-modeled ratios of air toxics to 

VOC for each calendar year.  HDDV-MEM provides not only hourly emissions, but also 

aggregated total daily emissions (in accordance with input command options).  The 

structure of output files, which provide link specific hourly emissions, can be directly 
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incorporated with roadway network features in a GIS environment for use in interactive 

air quality analysis in various spatial scales, i.e., national, regional, and local scales. 
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CHAPTER 3 

 

TRUCK/HEAVY-DUTY VEHICLE CLASSIFICATIONS 

 

 

A truck defined by FHWA means a motor vehicle with a power unit not including 

trailer, and a truck-tractor means a truck designed primarily for drawing loads such as 

other power units or trailers (CFR, 2004b).  In view of GVWR, all FHWA trucks 

correspond to heavy-duty vehicles defined by EPA.  EPA uses the term, “trucks” but only 

for light-duty vehicles, i.e., light-duty trucks (LDTs).  Meanwhile, California Air 

Resources Board (CARB) uses both “trucks” and “vehicles” to differentiate heavy-duty 

vehicle classes (CARB, 2002).   

 

For various purposes in transportation and air quality management, vehicle 

classification schemes have been developed with typical vehicle characteristics, which 

include the number of axles, total vehicle length, body or trailer types, gross vehicle 

weight ratings, engine types, etc.  However, any vehicle classification scheme does not 

directly match to other classification schemes for all analytical purposes because of the 

lack of detailed vehicle characteristics information (Hallenbeck, 2004).  For instance, 

FHWA classifies vehicles with the number of axles and truck-trailer combinations, while 

EPA classifies vehicles with gross vehicle weight ratings. 
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3.1 Gross Vehicle Weight Rating Based Vehicle Classification 

American Automotive Manufacturers Association (AAMA) divides motor 

vehicles into eight classes (1 to 8) in regards to applications and vehicle configurations 

(Merrion, 1994).  Among these eight classes, parts of the class 2 and all of classes 3 to 8 

are corresponding to EPA heavy-duty vehicles (heavier than 8,500 pounds of GVWR).  

Until late 1990’s, EPA had only two HDV classes (heavy-duty gasoline vehicle (HDGV) 

and heavy-duty diesel vehicle (HDDV)) including three heavy-duty engine types that 

were light, medium, and heavy heavy-duty engines for exhaust emissions certification 

purposes.  In late 1990’s, the two EPA HDV classes were separated into eight classes 

from classes HDV2B to HDV8B, which numeric numbers in class description correspond 

to AAMA truck classes, for use in the MOBILE6 emission rate model.  Current EPA 

HDV classes are mostly comparable to HDV defined by California Air Resource Board 

(CARB) for use in series of EMFAC emission rate models.  AAMA vehicle classes based 

on the GVWR are comparable to EPA HDV classes and to CARB truck classes.  

However, vehicle classes on AAMA, EPA, and CARB do not clearly match one-by-one, 

and some classes crossover two or more classes in other classification schemes (Table 

3.1).   
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Table 3.1: Heavy-Duty Vehicle Classes Classified by AAMA, EPA, and CARB 

GVWR (x 1,000 pounds) 

6 8.5 10 14 16 19.5 26 33 60+ 

 AAMA 2 

(LDT) 

3 

(LDT) 

4 

(MDT) 

5 

(MDT) 

6  

(MDT) 

7 

(HDT) 

8 

(HDT) 

 EPA  HDV2B HDV3 HDV4 HDV5 HDV6 HDV7 HDV8A HDV8B 

 CARB  LHDT1 LHDT2 MHDT HHDT LHV 

 

 

 

3.1.1 EPA Heavy-Duty Vehicle Classification 

EPA defines heavy-duty vehicles by gross vehicle weight rating (GVWR), vehicle 

curb weight, or vehicle frontal area as, 

 

“any motor vehicle rated at more than 8,500 pounds of GVWR or that has a 

vehicle curb weight of more than 6,000 pounds or that has a basic vehicle frontal 

area in excess of 45 square feet” (CFR, 2004e).   
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Although a HDV can be defined by one of the three criteria, the GVWR criterion is 

considered first because a vehicle defined by the curb weight and frontal area criteria 

generally satisfies the GVWR criterion as well.  However, Code of Federal Regulations 

(CFR) does not define the GVWR separating HDV classes that are used in the MOBILE6 

model.  Instead, heavy-duty vehicles are grouped by three primary heavy-duty engine 

types. These three engine types are determined by factors such as vehicle GVWR, vehicle 

usage and operating patterns, vehicle design characteristics, engine horsepower, and 

engine design and operating characteristics, which characterizes similar exhaust 

emissions certification (CFR, 2004h).   

 

• Light heavy-duty diesel engines are generally designed with 70 to 170 rated 

horsepower.  Vehicle body types with this engine type might include vans trucks, 

recreational vehicles, and some single axle straight trucks.  The application of 

these vehicles would include personal transportation, light-load commercial haul, 

and construction, and the GVWR of them is usually less than 19,500 pounds (lbs) 

(40CFR86.085-2(a)(1)). 

• Medium heavy-duty diesel engines are generally designed with 170 to 250 rated 

horsepower.  Vehicle body types include buses, tandem axle trucks, city tractors, 

dump trucks, and trash compactor trucks.  The application of these vehicles would 

include commercial short haul and intra-city delivery and pickup.  The GVWR of 

these vehicles usually ranges from 19,500 to 33,000 lbs (40CFR86.085-2(a)(2)). 
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• Heavy heavy-duty diesel engines are generally over 250 rated horsepower.  

Typical vehicle body types are tractors, trucks, and buses used in inter-city long 

haul applications.  The GVWR of these vehicles usually exceeds 33,000 lbs 

(40CFR86.085-2(a)(3)).   

 

EPA reclassifies HDVs and buses into eight HDV classes and two bus classes, which 

were eight classes in conjunction with the three engine types, school bus, and 

transit/urban bus, for use in the MOBILE6 emission rate model.  The EPA HDV 

classification is almost the same as the AAMA classification except vehicle classes 2 and 

8.  AAMA vehicle class 2 is a mixture of LDT (rated at less than or equal to 8,500lbs of 

GVWR) and EPA’s lightest HDV or HDV2B (8,501 to 10,000lbs of GVWR).  AAMA 

vehicle class 8 includes all vehicles rated at greater than 33,000lbs of GVWR, while EPA 

separated AAMA vehicle class 8 into classes HDV8A (33,001 to 60,000lbs of GVWR) 

and HDV8B (more than 60,000lbs of GVWR).   

 

3.1.2 CARB Truck/Vehicle Classification  

California Air Resources Board classifies heavy-duty vehicles into five 

truck/vehicle classes by GVWR, which represents vehicle common emissions 

characteristics such as emission standards, technologies, or in-use emissions (CARB, 

2002).    
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Table 3.2: Heavy-Duty Truck/Vehicle Types Used in the EMFAC2002 Emission Rate 
Model 

Class Fuel Type Description GVWR (lbs) 

LHDT1 Gasoline, Diesel Light Heavy-Duty Trucks 8,501 ~ 10,000 

LHDT2 Gasoline, Diesel Light Heavy-Duty Trucks  10,001 ~ 14,000 

MHDT Gasoline, Diesel Medium Heavy-Duty Trucks 14,001 ~ 33,000 

HHDT Gasoline, Diesel Heavy Heavy-Duty Trucks 33,001 ~ 60,000 

LHV Gasoline, Diesel Line-Haul Vehicles  60,001+ 

 

 

 

CARB truck/vehicle classes LHDT1, LHDT2, HHDT, and LHV correspond to EPA 

classes HDV2B, HDV3, HDV8A, and HDV8B, respectively.  However, class MHDT 

corresponds to the aggregation of EPA classes HDV4 to HDV7.  Emissions 

characteristics of the class MHDT conflicts with those of EPA classes HDV4 to HDV7 

because EPA classes HDV4 and HDV5 fall into different engine horsepower groups (See 

Section 6.3) from EPA classes HDV6 and HDV7, which leads different emissions 

characteristics.  
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3.2 Axle and Configuration Based Vehicle Classification 

For traffic data analysis related to a variety of transportation policy issues, in the 

1980s FHWA developed a nationally consistent vehicle classification, which classifies 

motor vehicles into 13 vehicle classes.  This vehicle classification scheme, usually called 

an axle and vehicle configuration based classification, classifies vehicles according to the 

number of axles, the axle spacing, and tractor-trailer configurations (FHWA, 2001).  For 

simple and easy application in transportation and air quality analysis, Ahanotu grouped 

FHWA truck classes into four truck classes based on similarities of engine horsepower 

ratings and vehicle weights (Ahanotu, 1999).  Table 3.3 compares the FHWA truck and 

Ahanotu truck classes. 
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Table 3.3: Axle and Configuration Based Truck Classes by FHWA and Ahanotu 
Truck Type FHWA Ahanotu 

Other Two-Axle, Four-Tire Single Unit Vehicles 3 N/A 

Two-Axle, Six-Tire, Single-Unit Trucks 5 A 

Three-Axle, Single-Unit Trucks 6 

Four or More Axle Single-Unit Trucks 7 

B 

Four or Fewer Axle Two-Unit Trucks 8 C 

Five-Axle Two-Unit Trucks 9 

Six or More Axle Two-Unit Trucks 10 

Six or More Axle Two-Unit Trucks 11 

Six-Axle Multi-Unit Trucks 12 

Seven or More Axle Multi-Unit Trucks 13 

D 

 

 

 

3.2.1 FHWA Vehicle Classification  

The FHWA axle and configuration based truck classification scheme is used for 

the development of a variety of transportation data products including HPMS, Highway 

Statistics and VIUS by both Federal and state transportation agencies.  FHWA vehicles 

can be easily identified visually because they rely on the number of axles and 

combinations.  However, state transportation agencies are required to develop algorithms 
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to classify vehicles from the number of axles and axle space information obtained axle-

sensor-based field measurements such as pneumatic detectors that measure time intervals 

between two consecutive tire sets on axles, when they develop HPMS data (Wyman, 

1985).  Due to the overlapping axle-space ranges between vehicle classes and the 

complexity of fine-tuning algorithms, many state transportation agencies aggregate 13 

vehicle classes into two vehicle groups; a group of classes 1 to 3 and another group of 

classes 4 to 13.  Among the 13 FHWA vehicle classes, class 3 and classes 5 to 13 include 

trucks corresponding to the EPA HDV classes and CARB truck/vehicle classes.  

However, FHWA class 3, other 2-axle, 4-tire single unit vehicles, includes both light-

duty trucks and heavy-duty vehicles.  For emissions estimation purposes, vehicle activity 

data collected with the FHWA scheme, FHWA class 3 must be properly separated into 

EPA LDT and HDV2B classes.   

 

Federal and state HDV activity databases such as VIUS (TIUS before 1997) and 

HPMS, built with the axle-based vehicle classification scheme, provide extensive HDV 

activity data.  Due to that reason, EPA recommends those data sources for use in regional 

emissions inventory development and in local air quality studies.  However, the axle and 

configuration based vehicles can not be directly translated into EPA or CARB vehicle 

classes because of the lack of similarity between axle and configuration based and 

GVWR based classifications.  
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3.2.2 Ahanotu Truck Classification 

For use in collecting onroad heavy-duty vehicle activity data, Ahanotu developed 

a visual truck classification scheme by modifying FHWA truck classes based upon 

relationships between engine horsepower and truck weight distributions (Ahanotu, 1999).  

Relationships between engine horsepower and truck weight distributions were developed 

through surveying FHWA truck weights and engine horsepower ratings at weight stations 

in Atlanta, Georgia in 1996 and 1997.  Figure 3.3 shows the horsepower-to-weight 

relationship that the bigger and heavier vehicles generally had the higher horsepower 

ratings.   

 

 

 

 

Figure 3.1: Relationships between Truck Engine Horsepower Ratings and Truck 
Weights (Source: Ahanotu, 1999)  
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Engine horsepower-to-weight cross tabulation statistical analyses revealed that certain 

groups of FHWA trucks had the different engine horsepower characteristics from other 

groups of trucks.  Thus, Ahanotu grouped the nine FHWA truck classes into four truck 

classes and found that engine horsepower within each of four truck groups was 

independent of truck weight within each of four truck groups.  For instance, 5-axle trucks 

(mostly tractor-trailer combinations) had the same engine horsepower distribution as 

more than 5-axle trucks, and their engine horsepower were independent from their 

weights, so that they grouped as a unique vehicle group.   
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CHAPTER 4 

 

HEAVY-DUTY VEHICLE ACTIVITY DATA COLLECTION 

METHODS AND DATA SOURCES 

 

 

Collecting heavy-duty vehicle activity data with vehicle characteristics is resource 

intensive both in terms of cost and time required relative to collecting light-duty vehicle 

activity data (FWHW, 1996).  This is because HDV travel is mostly for commercial 

purposes and completely different from LDV travel for private and/or commute purposes.  

Because HDV travel varies by industry, travel patterns can not be readily characterized.  

In addition, the distrust between the government/research community and trucking 

industry makes it more difficult to collect HDV activity and characteristics data (Lloyd, 

2001). 

 

 Heavy-duty vehicle characteristics are generally associated with a wider 

variability and more varied set of factors than those for LDVs.  For instance, engine 

power ranges for heavy HDVs are more than two times greater than light HDVs 

(Ahanotu, 1999), and load carrying capacity for heavy HDVs is up to eight times heavier 

than light HDVs.  The wide ranges of variations result in the wide range of emission rates 
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among HDV classes.  Therefore, collecting activity data with the fine resolution of HDV 

characteristics should be a prime concern in the application of HDV emissions analysis.     

 

4.1 Heavy-Duty Vehicle Activity Data Collection Methods 

Heavy-duty vehicle activity data with their activity characteristics can be 

collected with one of four typical methods: vehicle classification counts, roadside 

intercept surveys, mail/fax surveys, and travel diary surveys.  These four methods can be 

used individually, or combined with other data collection methods for particular data uses.   

 

4.1.1 Vehicle Classification Counts  

Vehicle classification counts, which include both  manual and automatic vehicle 

classification counts, are the most commonly  used method for the collection of HDV 

activity data.  The primary advantage of vehicle classification counting is that HDV 

activity data can be collected along with temporal and spatial information.  Manual 

classification counts can be conducted by direct HDV observations in the field or video 

taped vehicle counts.  Manual classification counts can minimize the ambiguity of HDV 

classification, which automatic vehicle classification method often faces.  For instance, 

manual classification counts readily classify HDV classes by the number of axles, vehicle 

configuration, and body type (Fischer, 2001).  However, manual classification counts 

require extensive time and cost and risk surveyors’ safety in the field.  In addition, 
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manual classification counts should be conducted only after educating observers 

regarding the HDV data collection purposes such as transportation planning, emissions 

analysis, highway maintenance, etc.  This is because observer errors in vehicle 

classification can yield errors in the estimation of emissions (Yoon, 2004a).  Automated 

vehicle classification counts, which can be accomplished with pneumatic tube counters or 

loop detectors, provide large and continuous HDV activity data.  However, the ability to 

accurately capture vehicle class characteristics influences the accuracy of the 

classification from automated vehicle classification counts (Fischer, 2001).           

 

4.1.2 Roadside Intercept Surveys 

Roadside intercept surveys can be conducted at interstate weight stations, 

warehouse/distribution centers, truck stops/terminals, mode change ports, etc (ODOT, 

2004).  Roadside intercept surveys include questions on HDV vehicle characteristics 

(vehicle model year, engine power ratings, current gross vehicle weight, and tractor-

trailer configurations), trip origins and destinations, trip purposes (puck-up, delivery, or 

both), etc.  Roadside intercept surveys generally have high response rates, provide 

temporal and spatial information, and enable interviewers to respond immediately to any 

question from respondents, which can possibly used for the response correction (Meyer, 

2000).  As an example, a truck stop survey conducted by Yoon et al. (Yoon, 2004b) 

showed that over 90% of truck drivers willingly participated in the survey and answered 

for survey questions, and surveyed data readily allocated truck trips into spatial locations 
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and time of day.  However, disadvantages of roadside intercept surveys include potential 

disruption to traffic flow, safety hazards for interviewers, and less ability to follow up 

with respondents (FWHW, 1996).  In addition, roadside intercept surveys have potential 

disadvantaging parameters such as weather, time of day, restricted sampling locations 

(rather than an entire region), etc., which may cause interview results to be skewed from 

the representation of an entire study region.  

 

4.1.3 Mail/Fax Surveys 

Mail/Fax surveys generally focus on the information of vehicle characteristics, 

commodity types, origins and destinations, shipping frequencies, vehicle weight, average 

VMT (annually, monthly, or daily VMT), etc.  If response rates are high enough, mail/fax 

surveys are more efficient to collect representative HDV activity data in an entire study 

region than roadside intercept surveys.  However, mail/fax surveys are not effective in 

collecting temporal activity distributions (i.e., activity by time of day) and making 

immediate responses to respondents.  In addition, mail/fax surveys can easily biased 

when they sample HDVs among registered HDVs in a region.  In fact, much of the 

business activities for inter-region operating HDVs occur in locations other than where 

they are registered.  In general, mail/fax surveys return low response rates.  Response 

rates to a mail/fax survey conducted by Oregon Department of Transportation (ODOT) 

ranged from 9% to 55% depending on the amount of follow-up (ODOT, 2004).  As the 

follow-up of mail/fax surveys for the increase of response rates, telephones and postcard 
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reminders or web-based online survey substitution can be used.  The combination of 

mail/fax surveys and telephone surveys yields a higher response rate than mail/fax only 

surveys.  However, this combination is likely to be more expensive and time consuming.      

        

4.1.4 Travel Diary Surveys  

As one of common methods for collecting HDV trip data, travel diary surveys 

randomly select representative samples from a HDV activity study region and ask them 

to manually record the characteristics of each trip that they make in a standard paper 

diary.  Travel diary surveys are composed of vehicle characteristics, trip origins and 

destinations, the purposes of vehicle activity, vehicle routes, land use at trips, etc.  Trip 

data collected with travel diary surveys are used to estimate and characterize HDV travel 

activity (the number of engine starts, travel miles, travel duration, and travel time of day) 

for use in regional emissions estimation.  Sampling among vehicle population in a study 

region is commonly accomplished by contacting registered vehicle owners.  However, 

this can result in significant errors because HDV trips made by samples in the study 

region may not include non-registered HDV trips, which are not registered in the study 

region (Fischer, 2001; Yoon, 2004b).  Because travel diary surveys use paper-based 

travel diaries, however, collected travel activity data also have potential errors such as 

uncompleted survey items, inaccurate trip information, etc.  In addition, response rates of 

travel diary surveys for HDVs are not as high as for typical household travel diary 

surveys for LDVs.  Phoenix and Atlanta HDV travel diary surveys conducted in 1992 and 
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1998 show that the response rates from their surveys were 17% for Phoenix region 

(Ruiter, 1992) and 19% for Atlanta region (Thornton, 1998), while the response rates of 

travel diary surveys for LDVs were much higher.  For instance, the response rate for a 

LDV travel diary survey conducted in Pennsylvania reached up to 41% (Patten, 2004), 

and the response rate of the National Personal Transportation Survey (NPTS) reached 

over 50% (NPTS, 1995).  The biggest problem in travel diary data collection is that 

drivers are generally not surveyed directly.  They often have to receive approval from 

their management and vehicle owners who are often concerned about the impact of 

surveys on driver productivity and the potential disclosure of confidential business 

information.   

 

To minimize and overcome potential errors and low response rates in paper-based 

travel diaries, automated travel diary survey methods are introduced in transportation 

research field such as Global Positioning Systems (GPS) technologies and instrumented 

vehicle studies.  Wolf et al. comprehensively discussed current GPS and instrumented 

vehicle application in vehicle trip data collection (Wolf, 2000).  However, automated 

travel diary survey methods require extensive cost and time to collect as many samples as 

paper-based travel diary surveys.    

 



 

 58

4.2 Public Heavy-Duty Vehicle Activity Data Sources 

Heavy-duty vehicle activity data are available from publications by Federal and 

state government agencies including FHWA, Bureau of Transportation Statistics (BTS), 

Census Bureau, and state transportation agencies (e.g., Georgia Department of 

Transportation, GDOT).  For the propose of vehicle emissions analysis, vehicle activity 

data are often extracted from Highway Statistics annually published by FHWA from the 

Vehicle Inventory and Use Survey (VIUS) published by Census Bureau every five years, 

or from the Highway Performance Monitoring System (HPMS) biennially published by 

FHWA and the various state transportation departments.   

 

4.2.1 Highway Statistics 

FHWA annually collects highway related statistics from state and local 

governments and publishes Highway Statistics for administering the highway network of 

the Nation, providing funds for its continued improvement and maintenance, and 

regulating its use.  Highway Statistics contain statewide summary data of analyzed 

statistics on highway finance, highway mileage, fuel use, driver license, registered 

vehicles, and highway-user taxation.  In Highway Statistics, the highway mileage is 

expressed as statewide annual total VMT by facility type and by vehicle class originated 

from FHWA vehicle classes, which configure vehicles by the number of axles and 

tractor-trailer configuration (FHWA, 2001).   
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Although statistics in Highway Statistics provide extensive information of vehicle 

activity, vehicle activity data in Highway Statistics can not be directly used for emissions 

analysis because FHWA vehicle classes do not exactly match EPA vehicle classes.  This 

vehicle mismatch may cause overestimation or underestimation of regional emissions.  

For instance, 2-axle, 4-tire trucks correspond to the mixture of EPA classes LDT and 

HDV2B.  However, Highway Statistics do not provide any information regarding how to 

separate this mixture into LDT and HDV2B classes.  Until 1999, Highway Statistics had 

provided “other 2-axle, 4-tire vehicle” VMT percentages out of total vehicle VMT for 

each facility type except collectors and locals (CFR, 2004j).  However, these data for 

other 2-axle, 4-tire vehicle VMT percentage by facility type has not been provided in 

Highway Statistics since the year 2000.  Due to the lack of information in the estimation 

of other 2-axle, 4-tire vehicle VMT percentage from the latest Highway Statistics, other 

2-axle, 4-tire vehicle VMT percentages from 1993 to 1999 Highway Statistics can be 

used for the LDT/HDV separation process.  Seven year mean VMT percentages of other 

2-axle, 4-tire vehicle VMT percentages for each facility type are statistically significant 

at the 5% significant level.  Therefore, mean values of other 2-axle, 4-tire vehicle VMT 

percentages can be used to separate HDV2B VMT out of the mixture of LDT and 

HDV2B classes by associating of daily vehicle miles and the number of vehicle 

registered (see Section 7.3.2).   
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4.2.2 Highway Performance Monitoring System  

FHWA biennially publishes data from the Highway Performance Monitoring 

System, which state departments of transportation provide.  HPMS contains data on the 

extent, conditions, performance, use, and operating characteristics of the Nation’s 

highways.  As the principal source of highway system information, HPMS provides 

extensive information for the analysis of highway system conditions, performance, and 

investment, which support a data driven decision-making process with FHWA, USDOT, 

and the Congress (FHWA, 2005).  The analysis results (published to annual Highway 

Statistics) are reported the Congress, who authorizes legislations that determine the scope 

and size of the Federal-aid highway program and the level of Federal highway taxation.   

 

HPMS provides roadway segment lengths, annual average daily traffics (AADT), 

and truck percentages from which total VMT and truck VMT can be calculated for each 

facility type.  For the estimation of truck percentage and AADT, 48-hour continuous 

vehicle counts with permanent (i.e., loop detectors) or temporary (i.e., pneumatic tube 

detectors) automated vehicle counters on week days are used (FHWA, 2001).  The total 

vehicle count is then adjusted with series of adjustment factors, such as seasonal (month), 

day-of-week, axle, and growth factors.  Studies show that truck counts or percentages can 

be significantly improved by factoring seasonal and day-of-week factors (Sharma, 1998; 

Weinblatt, 1996).  Because HPMS provides extensive vehicle activity information, EPA 

recommends use of the vehicle activity data from HPMS when state agencies do 

emissions analyses and develop emissions inventories in regional air quality planning 
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processes (EPA, 2004j).  In HPMS, however, truck percentages do not count 2-axle, 4-

tire HDVs by definition since trucks according to FHWA include only those with at least 

two axles and six tires.  This means that EPA class HDV2B VMT is not included in the 

truck VMT estimated from HPMS.  Using the VMT percentage of other 2-axle, 4-tire 

vehicles from Highway Statistics and the LDT/HDV2B VMT ratio from vehicle daily 

miles and the number of vehicle registered, HDV2B VMT can be estimated with total 

VMT from HPMS.   

 

4.2.3 Vehicle and Truck Inventory and Use Survey  

U.S. Census Bureau conducts the Vehicle Inventory and Use Survey as a part of 

the economic census every fifth year specifically those ending in “2” and “7”.  The 

primary goal of VIUS is to provide measures of the Nation’s economy, i.e., gross 

domestic product, production and price indices, and the short-term changes in economic 

conditions.  Private and commercial trucks registered as of July 1 of the survey year are 

sampled, and a questionnaire is mailed to registered vehicle samples.  The questionnaire 

is designed to obtain information on two truck information groups, i.e., truck physical 

characteristics such as weight, the number of axles, length, and body type, and truck 

operational characteristics such as gas mileage, mileage driven, hauling commodity type, 

and month of operation (Census Bureau, 2004).  However, the survey does not include 

public vehicles owned by governments, buses, motor homes, farm tractors, etc..  Because 
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the VIUS provides statewide annual vehicle miles with vehicle GVWR ranges, annual 

vehicle miles can be estimated for vehicle types for emissions analysis purposes.   

 

4.3 Georgia Tech Heavy-Duty Vehicle and Bus Database  

The Georgia Institute of Technology recently developed a heavy-duty vehicle 

activity and characteristics database, including trucks, school buses, and urban buses 

(including transit, charter, church, and intercity buses) within the 21-county Atlanta 

metropolitan area (Figure 4.1) (Rodgers, 2005).   
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Figure 4.1: The 21-County Atlanta Metropolitan Area in the Development of Georgia 
Institute of Technology Heavy-Duty Vehicle and Bus Databases 

 

 

 

To develop the database, HDV activity data were collected by the vehicle classification 

count method on a selected highway network, and bus activity and characteristics were 

collected by telephone, mail surveys, and on-site interviews.  For the emission analysis in 

this research, HDV activity data from Dawson County was not included because the 
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Dawson County was not included in the Atlanta 8-hr ozone nonattainment designated 

area. 

 

4.3.1 Heavy-Duty Vehicle Activity Data Collection 

Heavy-duty vehicle volumes were counted on a developed highway network 

including freeways and arterials within the 21-county Atlanta metropolitan area.  Using a 

geographic information system (GIS), a highway network to collect HDV activity was 

developed, composed of 90 freeway and 202 arterial links falling within one mile of the 

region’s major warehouses (greater than 100,000ft2 of area) and truck stops (Figure 4.2).  

The 292 links on the highway network were aggregated into 59 link groups by roadway 

geometry changes, such as lane merges and separations, interchanges, and ramps.  The 

goal of link grouping was to minimize the number of data collection sites without losing 

the characteristics of original highway network, so that one link from each 59 link group 

can be randomly selected as the representative of each group.  Vehicle volumes collected 

on a selected link in a link group were used for all links in a link group.   
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Figure 4.2: A Developed Highway Network to Collect Heavy-Duty Vehicle Activity 
within the 21-County Atlanta Metropolitan Area 

 

 

 

Vehicle volumes for 15 links out of 59 were counted from video tapes captured by video 

detection system (VDS) cameras operated by Transportation Management Center (TMC) 

of Georgia DOT.  Vehicle volumes for the last 44 links were manually counted at sites 

using traffic data collectors (Model TDC-8, JAMAR Technologies, Inc.).  As vehicle 

volumes were counted in the field and on video tapes for consecutive 2 hours with 15 
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minute intervals, the Ahanotu truck classification scheme was used.  Since vehicle 

volumes for each link were observed only for 2 hours, a scale-up method was developed  

to scale up 2-hour vehicle volumes to 24-hour vehicle volumes with representative 24-

hour vehicle volume profiles (Figure 4.3a; Figure 4.3b) for each of Ahanotu truck classes.  

Three representative roadway links (two freeway links on I-285 and I-20 and one arterial 

segment on US-41) were selected and counted vehicle volumes for consecutive 24 hours 

on a weekday.   

  

 

 

Figure 4.3a: Freeway 24-hr Volume 
Profiles for Ahanotu Truck 
Classes (Rodgers et al., 2005) 

Figure 4.3b: Arterial 24-hr Volume 
Profiles for Ahanotu Truck 
Classes (Rodgers et al., 
2005) 
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24-hour vehicle volume profiles for each of Ahanotu truck classes on I-285, I-20, and 

US-41 scaled up 2-hour truck volumes into 24-hour truck volumes.  After the scale-up, 

the VMT for each truck class on each link was estimated.  Among total HDV VMT 

estimated, over 75% of the VMT was generated from Ahanotu truck classes B, C, and D, 

which corresponded to EPA classes HDV8A and HDV8B (Yoon, 2004a).  That implies 

that heavy HDVs were dominant on these freeways and arterials within the Atlanta 

metropolitan area. 

 

4.3.2 Bus Activity Data Collection 

Bus activity data were also counted on the highway network when HDV volumes 

were counted.  However, observed bus activity data may underestimate regional total bus 

activity because a significantly high portion of bus (especially school buses) activity 

comes from lower roadway functional classes such as minor arterials, collectors, and 

local roads.  Therefore, Georgia Tech researchers developed a bus activity database by 

way of mail survey, telephone survey, GIS spatial analysis, and onsite direct interviews.  

Buses included in the bus activity database were school, urban transit, church, charter, 

and intercity buses.  Table 4.1 shows daily total bus miles for each bus class in the 

Georgia Tech bus activity database within the 20-county Atlanta metropolitan area. 
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Table 4.1: Daily Total Bus Miles within the 20-County Atlanta Metropolitan Area 
Bus Class       Daily Total Bus Miles Per Day  

School Bus 433,304 

Urban Transit Bus 126,550 

Church Bus 19,034 

Charter Bus 17,880 

Intercity Bus 9,587 

 

 
 

4.3.2.1 School Buses 

A school bus characteristics and activity database was developed by telephone 

calls and site visits.  The database describes bus model years, chassis manufacturers, 

body manufacturers, average passenger rates, bus types, daily travel miles, engine types, 

and fuel types.  Within the 20-county Atlanta metropolitan area, total estimated school 

bus VMT was 433,304 miles per day in 2003.  Meanwhile, daily total school bus VMT 

from the observed school bus volume on the highway network was estimated by the same 

VMT estimation method used for HDVs for each county within the 20-county Atlanta 

metropolitan area.  Estimated daily total school bus VMT was 13.8% lower than the daily 

VMT from the bus database.  Therefore, school bus VMT estimated on the highway 

network were scaled up to the school bus VMT from the database.  From the estimation 
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of school bus VMT, school bus VMT distributed 13%, 19%, and 68% to freeways, 

arterials, and locals, respectively (see Section 7.2.3.1).   

 

4.3.2.2 Urban Transit Buses  

Urban transit bus VMT was estimated by GIS spatial analysis with transit bus 

routes and schedules, which were obtained from regional transit operators, including 

Cobb County Transit (CCT), Clayton County Transit (C-TRAN), Metropolitan Atlanta 

Rapid Transit Authority (MARTA), and Gwinnett County Transit (GCT).  For the 

estimation of daily bus travel miles, a bus route map including all bus routes in a GIS 

feature format was developed with transit bus routes and schedules (the number of runs 

per day) from operators’ websites (CCT, 2004; C-TRAN, 2004, MARTA, 2004; 

GCT,2004).  By GIS spatial analysis tool, lengths of bus routes were estimated and 

multiplied by the number of runs per day to estimate daily transit bus VMT for each bus 

route.  Figure 4.4 shows all bus service routes developed in a GIS feature format.  
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Figure 4.4: Urban Transit Bus Routes Operated by MARA, CCT, C-TRAN, and GCT 
in the Atlanta Metropolitan Area 

 

 

 

Total urban transit bus daily VMT was estimated at 104,927 miles per day.  However, 

estimated daily transit bus miles did not include bus miles traveled “out of bus service” 

routes including approaches to and from bus service routes.  From transit bus speed and 

location data collected with Georgia Tech Trip Data Collectors on two transit buses 

operated by MARTA for eight months (July 2004 to March 2005), transit bus miles out 



 

 71

of bus service routes were estimated (Yoon, 2005b).  Two buses on routes 55 and 66 

created 17% of total bus miles for service approaches and leaves.  Therefore, the 

estimated total miles per day was scaled up by 17% for the total transit bus daily VMT.   

 

In addition, transit bus characteristics were incorporated in the bus database by 

direct contacts and telephone calls to transit bus operators.  Transit bus characteristics 

include model years, manufacturers, engine types, fuel types, and daily travel miles.  

Transit buses powered by compressed natural gas contributed about 46% of the total 

daily VMT estimated.      

 

4.3.2.3 Church Buses 

The number of church buses for each county was extracted from the 2003 Dun & 

Bradstreet database.  Due to the lack of church bus VMT estimates, daily total church bus 

VMT was calculated using the school bus daily VMT.  It was assumed that a church bus 

ran 50% of a school bus daily travel.  The calculated total daily church bus VMT was 19, 

034 miles.   

 

4.3.2.4 Charter Buses 

An average charter bus daily VMT was estimated with mail survey responses 

from charter companies in the Atlanta region. Survey responses accounted for which 

showed the yearly total VMT of 1,760,000 miles and 30 buses.  The yearly total VMT 
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was divided by 365 for the average daily charter bus VMT, which was 160 miles per day.  

The average daily charter bus VMT was close to the national average charter bus daily 

VMT (ABA, 2000).  The number of charter buses for each charter operator not responded 

to the survey was estimated with their sales revenues and employee numbers, which were 

obtained from the 2003 Dun & Bradstreet database.  The estimated total number of 

charter buses was 277 buses, and total charter bus daily VMT was estimated at 17,880 

miles per day.   

 

4.3.2.5 Intercity Bus VMT 

Intercity bus VMT was estimated with the total number of departures a day at the 

Atlanta Greyhound terminal, which were 71 departures per day.  The number of 

departures per day was assumed to be the same as the number of arrivals per day, so that 

the number of departures was doubled for the estimation of the total number of buses 

operated within the 20 counties.  Total Greyhound bus VMT was estimated with the 

estimated total number of buses by multiplying the average freeway mile of six travel 

directions with an assumption that intercity bus VMT would be evenly distributed to six 

freeway directions, which were I-75 and I-85 north, and south, and I-20 east and west, 

connecting the Atlanta metropolitan area.  The average freeway miles per direction of 

67.5 miles, which was estimated with the total freeway miles of 405 miles in 20 counties 

divided by 6, was multiplied by the total number of buses of 142, so that the total 

intercity bus VMT was estimated to be 9,587 miles per day. 
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CHAPTER 5 

 

UNCERTAINTIES IN THE CHARACTERIZATION OF 

HEAVY-DUTY VEHICLE VMT DISTRIBUTIONS 

 

 

All states except California use the MOBILE6.2 as their regulatory mobile source 

emission rate model in developing state implementation and regional transportation plans.  

In MOBILE6.2 emission rate modeling, characterizing VMT distributions are the most 

significant influential parameter for accurate emissions estimation.  Currently, VMT 

distributions are characterized by two approaches; one with registered HDV data 

combined with annual mileage accumulation rates and another with HDV VMT collected 

with FHWA truck classes.  In use of registered HDV data, EPA suggests that vehicle 

fleet should be characterized by registered HDV distributions and annual mileage 

accumulation rates by vehicle age and fuel type for HDV classes (USEPA, 2001a).  By 

linking HDV registration distributions and annual mileage accumulation rates, a HDV 

VMT distribution can be developed.  For use of HDV activity data collected with FHWA 

truck classes, EPA and NRC recommend that the collected HDV VMT be aggregated and 

then disaggregated by VMT fractions or by conversion factors into EPA HDV classes.  In 

regional emissions inventory development, however, HDV VMT distributions from HDV 

registration data and conversion guides can lead to the underestimation or overestimation 
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of HDV emissions.  Uncertainties in HDV VMT distributions can be associated with the 

aggregated FHWA truck or HDV activities and the lack of proper region-wide VMT 

simulation methods for each truck and HDV activity (Guensler, 1991).  The following 

questions relate to the uncertainties in registration based HDV VMT distributions. 

 

• Are registered HDV data properly classified to EPA HDV classes? 

• Do HDV registration distributions developed from registered HDV data properly 

represent onroad HDV fleet compositions? 

• Do vehicle class conversion guides properly map FHWA truck classes into EPA 

HDV classes without losing the fine resolution of original vehicle activity and 

emission characteristics? 

 

5.1 Heavy-Duty Vehicle Registration Distributions in MOBILE6.2 

Heavy-duty vehicle registration distributions can be developed from registered 

HDV data and annual mileage accumulation rates by vehicle class, fuel type, and model 

year.  R.L. Polk compiles motor vehicle registration information from each state into their 

databases in a quarterly basis (RLP, 2005).  As the only centralized vehicle registration 

data source, the R.L. Polk registration database provides vehicle information describing 

total vehicle population characterized by model year, gross vehicle weighting (GVWR), 

fuel type, vehicle type, the number of wheels, and registered county and state.  As EPA 

developed vehicle registration distributions for use in the MOBILE6, they used vehicle 
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registration data as of July 1, 1996.  Because vehicle registration reflected only past year 

registration trends, EPA realized that the vehicle registration data of 1996 should be 

modified for the future emissions applications.  That was because vehicle registration 

distributions in 1996 could be changed by any legislative and economical factor, which 

would lead different vehicle registration distributions in future years (USEPA, 1998).  

Therefore, EPA developed generic vehicle registration distributions by age for emissions 

modeling purposes.  Because the registered vehicle population in 1996 significantly 

varied for each GVWR and fuel category, EPA decided to create most representative 

registration distribution curves only by aggregated vehicle category without considering 

fuel types.  EPA aggregated 16 HDVs and three buses into four categories, which were 

EPA classes HDV2B to HDV3 (8,501 ~ 14,000lbs of GVWR), HDV4 to 8B (greater than 

14,000lbs of GVWR), school buses, and urban transit buses.  For each aggregated vehicle 

category, EPA developed a general curve fit HDV registration age distributions.  Because 

the vehicle sales year begins three month earlier than a given calendar year, EPA 

assumed that only 75% of the total vehicle population of the newest vehicle age (the age 

of 1) would occur by the July 1 of a given modeling year, so that 0.75 was multiplied to 

the total vehicle population of the vehicle age of 1.  Figure 5.1 shows EPA’s actual 

registered vehicle age distribution and curve fit distribution for EPA classes HDV4 to 

HDV8B.  The curve fit distribution can cause bias in emission rate estimation by 

differences from actual registered vehicle age distributions by year.  This is because 

baseline emission rates differ by year, i.e., the newer vehicles have the lower baseline 

emission rates.    
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Figure 5.1: EPA’s Registered Vehicle Age Distribution for Classes HDV4 to HDV8B 
(Source: USEPA, 2001a) 

 

 

 

For the development of a VMT distribution, HDV registration age distributions for 

vehicle classes were associated with annual VMT estimates from curve fit annual mileage 

accumulation rates for corresponding ages of vehicles.  VMT (the sum of VMT of all 

ages) for a HDV class at a given modeling calendar year is divided by total HDV VMT 

(the sum of VMT of all ages and HDV classes) to estimate the VMT fraction of the HDV 

class.  



 

 77

 

For nationwide mobile source emissions inventory purposes, EPA’s approach to 

develop curve fit vehicle registration age distributions with vehicle registration database 

may be applicable.  This is because long range (over 200 miles per day) and medium 

range (100 to 200 miles per day) vehicle travel will be captured within Nation’s 

boundaries.  However, EPA’s approach with registration data may not properly capture 

vehicle activities within county or regional boundaries.  EPA shows that more than 68% 

of HDDV8A and 84% of HDDV8B VMT are generated from long and medium range 

vehicle operations (USEPA, 2002b).  This implies that entire heavy HDV VMT may be 

captured within county or regional boundaries.  To explain this, HDV registration 

distributions were developed for the 13-county and the 20-county Atlanta metropolitan 

areas and Georgia statewide (Figure 5.2).   
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Figure 5.2: HDV Registration Distributions for the 13-County and the 20-County 
Atlanta Metropolitan Areas and Georgia Statewide 

 

 

 

HDV registration fractions among three spatial boundaries are almost similar for each 

HDV class.  For classes HDV4 and HDV5, Georgia statewide registration fractions are 

10% and 18% less for the 13-county and the 20-county Atlanta metropolitan areas, 

respectively.  The other HDV registration fractions for Georgia statewide fall within ±6% 

of the 13-county and the 20-county Atlanta metropolitan areas.  These narrow differences 

of registration distributions among spatial boundaries do not significantly affect to 

emission rate changes.  Registration fractions weighted emission rates (g/mi) change very 
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little and are 0.02% and 0.56% greater for the 13-County and the 20-county regions 

respectively than Georgia statewide.  This implies that HDV emissions estimation for the 

20-county Atlanta metropolitan area will not be changed with any one of three 

registration distributions.  Therefore, emissions estimated with VMT distributions created 

with registration database may be underestimated in the Atlanta metropolitan area 

because the significantly high percentage of inter-state or inter-region operating HDVs 

(Yoon, 2004c), which are not registered in the region, will not be reflected in the 

generation of a HDV VMT distribution.     

 

5.2 Uncertainties in HDV Registration Data  

In mobile source emissions modeling, the use of the registration data from the R.L. 

Polk database causes two major uncertainties in the estimation of VMT distributions and 

vehicle registration age distributions.  The first uncertainty in VMT distributions is 

associated with gross vehicle weight rating (GVWR), and the uncertainty in registered 

vehicle age distributions is associated with vehicles that are not registered within a study 

area boundary.    

 

5.2.1 Gross Vehicle Weight Rating      

R.L. Polk applies 28 EPA vehicle codes to each vehicle types on their registration 

database.  In the R.L. Polk registration database, it is expected that heavy HDVs, such as 
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straight tucks and tractors (generally combined with non-motorized trailers), are 

classified into heaver HDV classes such as class HDV8A or HDV8B.  However, any 

single tractor was not classified as the HDV8B class in the 20-county Atlanta 

metropolitan area in the R.L. Polk vehicle registration database (Table 5.1).  This is 

because the R.L. Polk only counts the power unit weight for HDV classification 

(Kimbrough, 2004).  However, manufacturers genetically design tractors to be articulated 

with one or more trailers and define their GVWR or gross combination weight rating 

(GCWR), or both.  

 

 

 

Table 5.1: Registered Heavy-Duty Vehicle Fractions by Registered Vehicle Type and 
EPA HDV Class in the 20-County Atlanta Metropolitan Area  

EPA HDV Class Registered  
Vehicle Type 

2B 3 4 5 6 7 8A 8B 

Cab Chassis 0.054 0.064 0.000 0.000 0.000 0.000 0.000 N/A 

Incomplete Pick-up 0.007 0.000 N/A N/A N/A N/A N/A N/A 

Incomplete Vehicle 0.039 0.037 0.016 0.002 0.006 0.000 N/A N/A 

Straight Truck 0.000 0.042 0.069 0.032 0.126 0.098 0.013 0.102 

Tractor N/A N/A N/A 0.000 0.000 0.024 0.269 N/A 
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Truck manufacturers define GCWR as total combined weight of tractors combined with 

one or more non-motorized trailers (USEPA, 2004e).  In fact, in emissions modeling 

application, EPA uses GCWR for the classification of heavier HDVs because GCWR is 

always greater than or equal to GVWR.  If R.L. Polk used GCWR in their vehicle 

registration databases, they would classify most tractors into class HDV8B.  With the 

assumption that tractors can be classified to class HDV8B, Yoon et al. found that NOX 

and PM2.5 emissions increased by more than 30% in the Atlanta metropolitan area (Yoon, 

2004c).  To minimize this uncertainty before emissions inventory development, local air 

quality agencies reconsider HDV classes ranked by the R.L. Polk.  For example, the 

Georgia Department of Natural Resource (GDNR) allocates all tractors in the R.L. Polk 

database into class HDV8B before developing mobile source emissions inventories for 

state air quality planning purposes (GDNR, 2005).  However, this allocation can create 

another uncertainty that three-axle tractor-trailers, which may be not allowed to carry 

over 60,000lbs of GCWR on highways, can be classified to class HDV8B.  In fact, the 

GCWR of three-axle tractor-trailers is defined up to 60,000lbs according to the FHWA 

truck weight regulation and manufacturers’ truck specification data (see Section 6.1.2).  

This over-weight classification can cause the overestimation of emissions, especially 

NOX and PM2.5.  Luckily, the population of three-axle tractor-trailers is not significant in 

the field (Yoon, 2004a), so that emissions overestimation by Georgia State’s over-weight 

classification will not be significant.   
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Another uncertainty remaining in the R.L. Polk database is that they classify more 

than 97% of three-axle straight trucks into the class HDV8B.  However, manufactures 

generally define that three-axle straight trucks can carry up to 54,000 lbs of GVWR.  

Straight trucks classified to the class HDV8B can cause the overestimation of NOX and 

PM2.5 emissions in mobile source emissions analysis.   

 

5.2.2 Vehicles Not Registered in a Regional Study Boundary     

Unlike light-duty vehicles making their most trips within a regional boundary 

where they are registered, heavy-duty vehicles, especially heavy HDVs, make significant 

portion of their trips outside of the region in which they are registered.  This is because 

significant amount of freight movement relies on HDVs running between regions and 

states frequently.  The registration also depends upon locations of corporate offices and 

the registration fee structure of states (Ahanotu, 1999).  Yoon et al. conducted a screen-

line cordon survey to investigate the fraction of pass-through heavy HDVs to the Atlanta 

region at truck stops on the border of the 21-county Atlanta metropolitan area boundary 

(Yoon, 2004b).  About 50% out of 974 surveys (96% of surveys for HDV8B class) 

reported that their vehicle did not make any business stops on the day surveyed within the 

21-county Atlanta metropolitan area (Figure 5.3).   

 

 

 



 

 83

0

10

20

30

40

50

60

0 1 2 3 4+

Number of Business Stops Per Day

St
op

 P
er

ce
nt

ag
e 

(%
)

 

Figure 5.3: Number of Business Stops per Day for the Class HDV8B Surveyed at 
Truck Stops on the Cordon of the 21-County Atlanta Metropolitan Area 

 

 

 

This implies that 50% of HDV8B vehicles running between regions may not be 

registered in the 21-county Atlanta metropolitan area.  Hence, the total VMT of class 

HDV8B estimated with registration data will be underestimated, which causes the 

underestimation of regional NOX and PM2.5 emissions.  In addition, vehicle age 

distributions from registration data may not properly represent the fleet age distributions 

in the field.  In general, vehicles traveling longer distance beyond regional boundaries 

tend to younger than the vehicles traveling in local areas.  The younger vehicles tend to 
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emit the less pollutants.  The truck stop survey shows that the engine average age of 

surveyed HDVs is 4.5 years with the assumption that vehicle model years are the same as 

engine model years (Figure 5.4). 
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Figure 5.4: Surveyed Engine Model Year and Registered Vehicle Model Year 
Distributions for EPA Class HDDV8b by the Cordon Survey at the 21-
County Atlanta Metropolitan Area Boundary 
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If non-registered HDV8B vehicles are incorporated for fleet age distributions in a region, 

fleet average age will be younger than currently registered average age of 9.4 years for 

class HDDV8B (Yoon, 2004b; GDNR, 2005).  Ahanotu also showed that the trend of 

long-range traveling heavy HDV is getting younger (Ahanotu, 1999).  Younger fleet age 

distributions including non-registered HDVs result in reduced emissions estimates in the 

region.  However, this emission reduction effect depends on the vehicle travel miles by 

model year with younger vehicles traveling the more miles.         

 

5.3 Heavy-Duty Vehicle Conversion Guides 

 

5.3.1 EPA Conversion Guidance and Uncertainties 

EPA classifies heavy-duty vehicles to eight HDV and two bus classes from 

HDV2B to HDV8b for both gasoline and diesel fuel, school bus, and urban bus.  For 

emissions modeling, collecting HDV activity data with the EPA HDV classification 

scheme is almost impossible because the EPA HDV classification scheme has too many 

HDV classes to count separately.  Although several HDV classes can be roughly 

identified by their typical figures such as pick-ups and vans for HDV2B or HDV3 and 

articulated trucks for HDV8A or HDV8B, the other HDV classes can not be easily 

identified due to the wide ranges of GVWR with similar vehicle figures.  In addition, 

state and nationwide HDV activity databases such as HPMS and VIUS are not built with 
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GVWR, so that it is a challenge to obtain HDV activity data with the high resolution of 

HDV classes either from the field or from existing databases.      

 

To obtain fleet VMT in regional air quality planning, EPA recommends that local 

agencies use vehicle activity data in HPMS.  This federally mandated traffic-monitoring 

program provides estimates of vehicle activity by location and vehicle class, using a 

network of permanent and temporary ground count monitors.  However, before using 

HPMS vehicle activity data, agencies must reclassify the data to EPA HDV classes.  

There is a mismatch between the FHWA and EPA vehicle classes, primarily because the 

EPA uses GVWR based classification scheme, while FHWA uses axle and configuration 

based classification scheme.  To reclassify FHWA trucks to EPA HDV classes, the EPA 

conversion guidance suggests that nine FHWA truck classes 5 to 13 should be aggregated 

and then disaggregated to eight EPA HDV classes in accordance with their VMT 

fractions (USEPA, 2004c).  However, this conversion guidance can bias by the VMT 

allocation for light and medium FHWA truck classes such as 2-axle, 4-tire trucks.  For 

instance, FHWA defines trucks as more than or equal to 2-axle, 6-tire trucks, which have 

GVWRs over 10,000lbs.  Meanwhile, the GVWR of EPA class HDV2B having two axles 

and four tires is falling in between 6,001 and 10,000lbs.  This implies that HDV activity 

data provided by HPMS may not include EPA HDV2B activity data.  In addition, any 

high-resolution vehicle class information contained in observed field HDV data can be 

lost when the data are aggregated and then disaggregated to EPA HDV classes.  
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Specifically, a significant portion of heavy FHWA trucks obtained in the field can be 

misallocated into light or medium trucks by the EPA conversion guidance.   

 

5.3.2 Conversion Factors and Uncertainties  

To facilitate the use of the FHWA truck classification scheme in emissions 

modeling with the MOBILE5 model, the National Research Council  developed 

conversion factors, which translate FHWA trucks to EPA HDV classes and vice versa, 

with the VMT from the 1987 TIUS (NRC, 1997).  VMT for each FHWA truck was 

assigned to EPA MOBILE5 vehicle classes by gross vehicle weight (GVW), axle 

configuration, and fuel type.  Because the TUIS VMT for FHWA truck class 5 or heavier 

trucks was estimated lower than from Highway Statistics and HPMS, the TIUS VMT was 

adjusted by VMT factors of 1.36 (Highway Statistics VMT/ TIUS VMT) for single units 

and 1.41 for combinations (NRC, 1997).     
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Table 5.2: National Research Council FHWA VMT Conversion Factors to EPA 
Vehicle Classes (Source: NRC, 1997) 

 

 

 

 

Because NRC developed conversion factors for nationwide, regional air quality agencies 

should not use conversion factors directly to their regions.  In addition, conversion factors 

originally developed for the MOBILE5 emission rate model having only two HDV 

classes (HDGV and HDDV) are not applicable to the MOBILE6 emission rate model 

having 16 HDV classes without modification.  In addition, FHWA truck mapping into 

EPA HDVs by NRC was based on GVW, not GVWR.  Because GVW can not exceed 

GVWR, NRC conversion factors may underestimate HDV VMT fractions but 

overestimate LDV VMT fractions.     

 

Starting with conversion factors developed by NRC, Williamson and Yao 

(Williamson, 2003) generated MOBILE6 conversion factors by multiplying national 
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default MOBILE6 HDV VMT fractions to each HDV MOBILE5 conversion factors.  If 

conversion factors are applied in region level emission estimation, conversion factors for 

HDVs by Williamson have the same uncertainties as the EPA conversion guidance has.  

This is because Williamson disaggregated conversion factors for HDVs with the VMT 

distribution developed with vehicle registration data.   
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CHAPTER 6 

 

A NEW HEAVY-DUTY VEHICLE VISUAL 

CLASSIFICATION SCHEME 

 

 

Heavy-duty vehicle classification methods suggested by EPA and National 

Research Council can cause losing the high resolution of onroad HDV activity 

information and misallocating fleet activity from one HDV class into another (see Section 

5.3.1 and 5.3.2).  Given the differences in the FHWA and EPA HDV classification 

schemes discussed in CHAPTER 5, the development of an improved HDV classification 

method can significantly improve HDV VMT and emissions estimation.  To develop a 

new heavy-duty vehicle visual classification scheme, criteria obtained from the FHWA 

truck weight limitation, the FHWA truck classification, the EPA HDV classification, and 

manufacturers’ truck specification data were used.  Criteria counted the number of axles, 

GVWR, GCWR, and vehicle configurations.  With the criteria, three prototype HDV 

classes were created, which is called the X-scheme (Yoon, 2004a), and the three 

prototype HDV classes were further sub-classified into six X classes by engine 

horsepower characteristics, vehicle travel characteristics, the number of tires, and tractor-
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trailer configurations (Yoon, 2005d; Guensler, 2005b).  This new heavy-duty vehicle 

visual classification scheme keeps the original resolution of onroad fleet activity and 

properly assigns FHWA truck activity into EPA HDV activity for mobile source 

emissions modeling. 

   

6.1 Onroad Heavy-Duty Vehicle Characteristics  

Onroad heavy-duty vehicles are characterized and regulated by their carrying 

capacity (weight) permitted by the FHWA truck weight limitation rule.  To meet truck 

weight limitations, truck manufacturers mechanically design vehicle engines and bodies, 

so that trucks can properly carry limited loads on the road.   

 

6.1.1 Truck Weight Limitations  

FHWA limits truck weights on highways to protect roadway facilities, especially 

bridges, and to support expected truck loads (FHWA, 1994) with the maximum gross 

vehicle weight (GVW) that is the maximum load a truck allowed to carry according to 

the number of axles and space between axles (CFR, 2004j).  The maximum GVW (W), 

which is the maximum weight in pounds that can be carried on a group of two or more 

axles to the nearest 500 pounds, can be calculated with an equation called the bridge 

formula (Equation 6.1) that associates with the axle space (LN) and the number of axles 

(N) (FHWA, 1994).  
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A single-axle or a tandem-axle with maximum 40-inch space between two consecutive 

axles can carry a maximum load of 20,000lbs, and a tandem-axle (more than 40 inches, 

but not more than 96 inches between two or more consecutive axles) can carry a 

maximum load of 34,000lbs.  With the bridge formula, FHWA tabulated the maximum 

GVW of 40,000, 60,000, and 80,000lbs for two, three, and more than three axle vehicles, 

respectively.  Under the FHWA truck weight limitation rule, a single unit truck with two 

axles, which corresponds to the FHWA class 5, can carry loads up to 40,000lbs; a single 

or a two unit truck with three axles, which correspond to the FHWA class 6 or 8, can 

carry loads up to 60,000 lbs; and a single unit or a tractor-trailer combination truck with 

more than three axles, which correspond to FHWA classes 7, or 8 to 13, can carry loads 

up to 80,000 lbs. 

 

6.1.2 Manufacturers’ Truck Specifications  

EPA classifies heavy-duty vehicles by vehicle gross vehicle weight rating 

specified by manufacturers (EPA, 2004e).  Truck manufacturers annually publish truck 

specification data, which include truck types (pick-ups, vans, cutaways, chassis-cabs, 

straight trucks, tractor, etc.), the number of axles, axle types (single, tandem, etc.), the 

number of tires, fuel types, GVWR, GCWR, etc. (Truck Index, 1997a; Truck Index, 
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1997b; Ford, 2004; GMC, 2004; DC, 2004).  For HDVs, the definition of GVWR is the 

maximum vehicle weight of the sum of vehicle curb (empty), fluid, a driver, and 

maximum payload weights.  Vehicle manufacturers may also specify allowable 

maximum vehicle plus trailer weight as GCWR.  However, the GCWR is allowed only 

for tractor-trailer articulated motor vehicles over 10,000 lbs of GVWR, and the GVWR is 

not allowed to exceed the GCWR (CFR, 2004a). 

 

Through the review of truck specification data, truck types are separated into a 

light truck group I, a light truck group II, a medium truck group, and a heavy truck group.  

The light truck group I, which has two axles and four tires, includes pick-ups and vans. 

The light truck group II, which has two axles and six tires, includes chassis-cabs and 

cutaways.  The medium truck group, which has two axles and six tires, includes straight 

trucks.  The heavy truck group, which has more than two axles and more than five tires, 

includes straight trucks and tractors.  GVWR of gasoline-powered trucks are 

approximately 15,000, 34,000, and 54,000lbs for light, medium, and heavy truck groups, 

respectively.  Light group I trucks can carry up to 12,000lbs of GVWR, while light group 

II trucks can carry up to 15,000lbs of GVWR.  Although a few light group I trucks, such 

as Ford F-350 trucks and Dodge Ram-3500, can carry over 10,000lbs of GVWR, the 

other light group I trucks did not exceed 10,000lbs of GVWR.  Gasoline-powered 

medium and heavy trucks have specified not only by GVWR, but also by GCWR, which 

are 60,000lbs for the both medium and heavy trucks.  Table 6.1 shows GVWR, GCWR, 

the number of axles, and the number of tires for gasoline-powered trucks by truck group. 
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Table 6.1: Gasoline-Powered Truck Specifications 
Truck Group GVWR (lbs) GCWR (lbs) Axles Tires 

Light I (pick-ups/vans) 12,000 N/A 2 4 

Light II (chassis-cabs/ cutaways) 15,000 N/A 2 6 

Medium 34,000 60,000 2 6 

Heavy 54,000 60,000 ≥3 ≥6 

 

 

 

For diesel-powered trucks, the GVWR of light group I, light group II, and 

medium group trucks are the same as the GVWR of gasoline-powered trucks.  However, 

the GVWR of 64,000lbs for heavy trucks is much heavier than that of gasoline-powered 

heavy trucks.  In addition, the GCWR of 80,000lbs for heavy trucks is much heavier than 

that of gasoline-powered heavy trucks.  Table 6.2 shows GVWR, GCWR, the number of 

axles, and the number of tires for diesel-powered trucks. 
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Table 6.2: Diesel-Powered Truck Specifications 
Trucks GVWR (lbs) GCWR (lbs) Axles Tires 

Light I (pick-ups/vans) 11,000 N/A 2 4 

Light II (chassis-cabs/ cutaways) 15,000 N/A 2 6 

Medium 34,000 60,000 2 6 

Heavy 64,0002 80,0002 ≥3 ≥6 

 

 

 

6.2 Three Prototype Heavy-Duty Vehicle Classes   

The X-scheme, which is a new HDV visual classification scheme designed to 

bridge FHWA truck and EPA HDV classification schemes, employs three HDV classes.  

The three X classes are relatively simple and easy to identify in the field, i.e., 2-axle 

HDVs (the class X1), 3-axle HDVs (the class X2), and more than 3-axle HDVs (the class 

X3).  The X classes interactively map among FHWA truck, Ahanotu truck, and EPA 

HDV classes.        

 

Class X1 corresponds to Ahanotu truck class A (2-axle, 6-tire, single unit HDVs) 

and maps into FHWA truck class 5, or EPA classes HDV3 to HDV7.  FHWA weight 

limitations and truck specifications support the mapping; that is that 2-axle, 6-tire single 

                                                 
2 Some specialty heavy trucks have much heavier GVWR or GCWR with more than three axles  
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unit HDVs can carry loads up to 34,000lbs of GVWR.  Although 2-axle, 4-tire vehicles, 

corresponding to EPA class HDV2B, are not included in Ahanotu truck class A, they are 

included in class X1.  

 

 Because truck manufacturers specify few 2-axle, 4-tire vehicles with over 10,000 

lbs of GVWR, they can be classified to EPA class HDV3.  In addition, because 2-axle, 6-

tire vehicles can be classified to a heavier class than HDV7, i.e., over 33,000lbs of 

GVWR, some of 2-axle, 6-tire vehicles can be classified to EPA class HDV8A.  However, 

the classification to HDV3 for 2-axle, 4-tire vehicles or HDV8A for 2-axle, 6-tire 

vehicles does not significantly influence overall mobile source emissions inventory 

development.  This is because VMT fractions of HDV3 with two axles and four tires and 

HDV8A with two axles and six tires portion only small parts of total HDV VMT.  In fact, 

the HDV3 and the HDV8A take 3% and 10% out of overall HDV VMT from 

MOBILE6.2 default VMT fractions in 2004.  In addition, only 2.4% of 2-axle, 6-tire 

HDV VMT are apportioned to class HDV8A (see Section 7.2.2).      

 

Class X2 corresponds to parts of Ahanotu truck classes B (3-axle, single unit) and 

C (3-axle, two units).  If a single unit or a tractor-trailer combination truck has three axles 

in total, the truck can carry loads up to 60,000lbs in conjunction with the FHWA weight 

limitations and truck specifications.  As a field evidence, comprehensive truck size and 

weight study (FHWA, 2000) indicates that truck carrying capacity with three axles does 

not exceed 60,000lbs on the road.  Therefore, class X2 includes 3-axle single unit and 
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tractor-trailer combination trucks, which correspond to FHWA truck classes 6 and 8, and 

directly maps into EPA class HDV8A by definition. 

 

Class X3 corresponds to remaining portions of Ahanotu truck classes B (4-axle, 

single unit) and C (4-axle, two units) and all of class D (more than 4-axle, multi units), 

which are FHWA truck classes 7, 8, and 9 to 13.  Class X3 directly maps into EPA class 

HDV8B.  The X-scheme as a hybrid HDV classification scheme between EPA HDV and 

FHWA truck classification schemes properly converts FHWA truck or Ahanotu truck 

classes into EPA HDV classes for the purpose of emissions modeling.  Table 6.3 shows a 

map interactively mapping among X, EPA HDV, FHWA truck, and Ahanotu truck 

classes. 
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Table 6.3: Heavy-Duty Vehicle Reclassification Map Amongst X, EPA HDV, FHWA 
Truck, and Ahanotu Truck Classes 

X Class EPA Class FHWA Class Ahanotu Class Axles 

X1 HDV2B, HDV3, 

HDV4, HDV5, 

HDV6, HDV7 

3 (HDV), 5 A 2 

X2 HDV8A 6, 8 (3-axle) B (3-axle), C (3-axle) 3 

X3 HDV8B 7, 8 (4-axle), 9, 10, 

11, 12, 13 

B (4-axle),  

C (4-axle), D 

  ≥4 

 

 

 

6.2.1 Typical X Class Vehicle Types  

Class X1 typically includes pick-ups, vans, and straight delivery trucks (Figure 

6.1).  Although those HDVs are articulated with one or two small trailers, they should be 

still considered as 2-axle HDVs because their GVWRs will not be changed by articulated 

small trailers.     
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Figure 6.1: Class X1: 2-Axle HDVs, 8,501 to 33,000lbs of GVWRs 
 

 

 

Class X2 includes dump trucks and articulated delivery trucks having three axles 

(Figure 6.2).  Although X2 HDVs are articulated with a small trailer(s) as shown in 

Figure 6.3, those HDVs should be considered as 3-axle HDVs because their GVWRs will 

not be changed by articulated small trailers. 
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Figure 6.2: Class X2: 3-Axle HDVs, 33,001 to 60,000lbs of GVWRs 
 

 

 

Figure 6.3 shows class X3 including all more than three-axle, articulated or single 

HDVs.  Class X3 HDVs typically consists of a tractor and a trailer or multi-trailers for 

long range inter-region transports.     

 

 

Figure 6.3: Class X3: more than 3-Axle HDVs, over 60,000lbs of GVWRs 
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6.2.2 Split of 3-axle and 4-axle Vehicle from Ahanotu Trucks B and C  

Because Ahanotu truck classes B and C include 3-axle and 4-axle single and two 

unit trucks, they should be separated into 3-axle and 4-axle trucks and mapped into 

classes X2 and X3 for use of emissions modeling.  The split of 3-axle and 4-axle vehicles 

from Ahanotu truck classes B and C was conducted by the observation of 3-axle and 4-

axle trucks on the road.  A field observation was conducted on a freeway segment of I-

285 for 6 hours from 8 a.m. to 6 p.m. on a weekday.  Only 3-axle and 4-axle single unit 

and tractor-trailer combination trucks were counted on the freeway segment.  From the 

observed Ahanotu truck class B, more than 94% of single unit trucks had 3-axles, and 

less than 6% of them had 4-axles.  From the observed Ahanotu truck class C, more than 

89% of tractor-trailer combination trucks had 4-axles, and less than 11% of them had 3-

axles.  From the observation, majority of the mixture of 3-axle and 4-axle single unit 

trucks had 3-axles, while majority of 3-alxe and 4-axle tractor-trailers had 4-axles.  

Percentages of split 3-axle and 4-axle vehicles from the field observation were similar to 

values estimated from 2002 VIUS statistics.  From the mixture of 3-axle and 4-axle 

single unit truck annual miles for Georgia statewide in the VIUS, 96% of single unit truck 

annual miles was contributed by 3-axles trucks, and 4% of single unit truck annual miles 

was contributed by 4-axle trucks.  Among the mixture of 3-axle and 4-axle tractor-trailer 

combination truck annual miles, more than 84% and less than 16% of miles came from 4-

axle and 3-axle trucks.  Therefore, the percentages to split 3-axle and 4-axle trucks from 

the filed observation could be applicable to Ahanotu truck classes B and C.     
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6.3 Sub X Classes from the Three Prototype X Classes   

The three prototype X classes, which are classes X1, X2, and X3, can be sub-

classified into six classes by the number of axles, the number of tires, GVWR, GCWR, 

tractor-trailer combinations, and engine horsepower ranges without losing the fine 

resolution of original observed vehicle activity data.  Class X1 can be sub-classified into 

two classes of X1A and X1B by the number of axles and tires.  Class X1A represents 2-

axle, 4-tire HDVs, which corresponding to EPA class HDV2B.  From truck specification 

(see Section 6.1.2), the GVWR of majority of 2-axle, 4-tire HDVs is under 10,000lbs.  

Although some of 2-axle, 4-tire HDVs are classified to the EPA class HDV3, their impact 

in emissions inventories will be small and ignorable.  For example, the baseline NOX 

emission rate of HDV3 is 11% greater than HDV2B, and the MOBILE6.2 default VMT 

fraction of HDV3 is 3.4% of total HDV VMT.  Therefore, HDV total emissions impact 

by 2-axle, 4-tire HDVs classified to HDV3 will be far less than 0.02% (= 

(11%*3.4%*10%)/2, assumed that 10% of HDV3 VMT from 2-axle, 4-tire vehicles and 

average HDV baseline emission rate is 2 times greater than HDV3).  Class X1B 

represents EPA classes HDV3 to HDV8A.  Although some of 2-axle, 6-tire HDVs are 

classified into class HDV8A, its impact in emissions inventories will be also ignorable.  

This is because only 2.4% (see Section 7.2.2) of 2-axle, 6-tire vehicle (HDV3 to HDV7) 

VMT (23% of the MOBLE6.2 default HDV VMT distribution) will be apportioned into 

HDV8A (10% of the MOBILE6.2 default HDV VMT distribution).   
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By vehicle types (single unit or tractor-trailer combination), class X2 can be 

separated into classes X2A and X2B for singe unit trucks and tractor-trailer combinations.  

Although classes X2A and X2B are classified to the same EPA class HDV8A, their travel 

characteristics are different, especially travel origins and destinations.  For instance, class 

X2A typically representing dump trucks, cement mixers, and local delivery trucks 

involves in local and nonroad trips and travels shorter miles than class X2B.  Class X2B 

involves in warehouse-to-retail center trips and travels 2.5 times greater annual miles 

than class X2A from the 2002 VIUS.      

 

EPA classifies heavy-duty vehicle engines into three engine classes (light, 

medium, and heavy engines) by typical horsepower ranges (see Section 3.1.1).  These 

engine classes closely represent light (HDV2B to HDV5), medium (HDV6 and HDV7) 

and heavy HDVs (HDV8A and HDV8B), respectively.  Light and medium engine classes 

can be specified to class X1, and the heavy engine class can be specified to classes X2 

and X3.  However, Ahanotu found that horsepower ranges for three engine classes were 

much higher on the road than EPA defined.  Onraod fleet horsepower ranges were 126hp 

to 231hp, 237hp to 350hp, and 210hp to 475hp for light, medium, and heavy engines, 

respectively.  Mean horsepowers were 188hp, 279hp, and 360hp for light, medium, and 

heavy engines, respectively.   
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Figure 6.4: Horsepower Distributions by The number of Axles (Ahanotu, 1999) 
 

 

 

Among heavy engines, horsepower distributions were quite different by the number of 

axles.  For instance, mean horspowers were 293hp and 372hp for 4-axle trucks and 

5+axle trucks.  Mean engine horsepower for 5+axle trucks was 30% greater than for 4-

axle trucks (Figure 6.5).  
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Figure 6.5: Horsepower Distributions and Mean Horsepower for 4-Axle (X3A) and 
5+Axle (X3B) trucks 

 

 

 

In addition, Chi-square tests indicated that horsepower distributions between 4-axle and 

5+axle vehicles were independent each other.  Because horsepower means and 

distributions between 4-axle and 5+axle trucks were significantly different, X3 class 

could be separated into classes X3A and X3B for 4-axle and 5+axle trucks, respectively.   

 

To six sub-X classes, school and urban buses were added and directly classified to 

classes X4 and X5.  FHWA class 4, the mixture of school and urban buses, should be 

properly separated into each bus class before conducting emissions modeling.  This is 
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because baseline emission rates between two bus classes are significantly different, i.e., 

the NOX emission rate of urban diesel buses is about 25% greater than school buses.  

With typical vehicle types and detail definitions for each X classes, the three prototype X 

classes can be re-expressed into eight X classes.   
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Table 6.4: Eight X Classes with Their Vehicle Types and Definitions 
X Class Vehicle Type Definition 

X1A Single Unit Truck 2-axle, 4-tire single trucks with or without trailers  

X1B Single Unit Truck 2-axle, 6-tire single trucks with or without trailers 

X2A Single Unit Truck 3-axle single trucks with or without trailers 

X2B Tractor Trailer 3-axle tractor-trailers (only total number of axles) 

Single Unit Truck  4-axle single trucks with or without trailers X3A 

Tractor Trailer 4-axle tractor-trailers (only total number of axles) 

Single Unit Truc  5+ axle single trucks X3B 

Tractor Trailer 5+ axle tractor-trailers (only total number of axles) 

X4 School Bus School buses 

X5 Urban Bus Urban buses 
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Table 6.5: Interactive Vehicle Mapping Among X, FHWA Truck, Ahanotu Truck, and 
EPA HDV Classes 

X  
Class 

FHWA  
Class 

Ahanotu   
Class 

 

Engine Size 
(EPA Power, hp) 

[Onroad Power, hp] 

EPA HDV 
Class 

Tires & 
Axles 

 
HDV2B X1A 3 (HDV)  

HDV3     

2 axles & 
4 tires 

HDV3 

HDV4 

Light 
(70 ~ 170) 

[126 ~ 231]3 

HDV5 

HDV6 

HDV7 

X1B 5 A 

Medium 
(170 ~ 250) 
[237 ~ 350]3 

HDV8A 

2 axles & 
6 tires 

X2A 6 HDV8A 3 axles 

X2B 8 (3 axles) HDV8A 3 axles 

X3A 7 (4 axles) 

8 (4 axles) 

B  
(FHWA Classes 

6 & 7) 
 

C 
 (FHWA Class 8) 

HDV8B 4 axles 

X3B 7 (5 axles)4, 

9 to 13 

D 

Heavy 
(> 250) 

[210 ~ 475]3 

HDV8B 5+ axles 

X4 School Bus 

X5 

4  Heavy 
(> 250) 

Urban Bus 

 

 

                                                 
3 Onroad fleet power distributions (Ahanotu, 1999) 
4 Ignorable due to extremely low frequency of this type of trucks on the road 
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X classes directly convert FHWA truck classes into EPA HDV classes and vise 

versa.  However, the conversion of FHWA classes 3 and 4 into X classes or EPA HDV 

classes, a proper split guide is required such as annual vehicle miles or daily vehicle 

miles weighted by the number of registered vehicles of light-duty trucks (LDT1 to LDT4), 

HDV2B, school buses, and urban buses.  Then, split ratios of LDTs to HDV2Bs for 

FHWA class 3 and of school to urban buses for FHWA class 4 can be developed.      

    

6.4 Emissions Impact from the New Heavy-Duty Vehicle Visual Classification 

Scheme  

Emissions estimates with the new heavy-duty vehicles visual classification 

scheme were compared to emissions with the EPA guidance for the development of HDV 

emissions inventories.  Truck volumes observed on the highway network (see CHAPTER 

4) were assigned into each X class.  Observed truck volumes, which contain FHWA truck 

classes from 5 to 13, were aggregated into Ahanotu truck classes A, B, C, and D.  

Ahanotu class A was assigned into X1B class and apportioned into each EPA HDV 

classes from HDV3 to HDV8A using VMT fractions obtained from 2002 VIUS (see 

Section 7.2.2).  3-axle and 4-axle HDVs from Ahanotu classes B and C were split by 

observed 3-axle and 4-axle HDV percentages for single unit trucks and tractor-trailer 

combination trucks.  After splitting the HDVs by the number of axles, 3-axle and 4-axle 

HDVs were assigned into HDV8A and HDV8B, respectively.  Because Ahanotu class D 

corresponds to FHWA truck classes 9 to 13, all Ahanotu class D trucks were assigned 
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into EPA HDV8B class.  Figure 6.6 shows VMT fractions estimated and assigned into 

EPA HDV classes through the X-scheme from observed HDV volumes with the Ahanotu 

truck classes.  Estimated HDV VMT fractions were compared to MOBILE6.2 default 

HDV VMT fractions. 
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With the X-scheme, the estimated HDV8B VMT fraction was much higher than the 

MOBILE6.2 default HDV8B VMT fraction, while lighter HDV VMT fraction 

differences were rather small.  Because the X-scheme avoided the aggregation and 

desegregation process used in the EPA guidance, observed heavier HDV activity was not 

misallocated into light and medium HDV activity.  Therefore, HDV VMT fractions by 

the X-scheme kept the original fine resolution of onroad vehicles characteristics 

information.      

 

For the evaluation of emissions impact by the X-scheme, the MOBILE6.2 model 

was run with input parameters used to develop air quality plans for the 13-county Atlanta 

1-hr ozone nonattainment area.  Input parameters were 2002 vehicle registration 

distributions in Atlanta, GDNR hourly temperatures, a fuel RVP of 7psi, the refueling 

program, and the fuel program.  The MOBILE6.2 ran with the scenario for the month of 

July and the year of 2003.  Emission rates (g/mi) for HDV classes from the MOBILE6.2 

model were multiplied by each HDV VMT obtained with the X-scheme and MOBILE6.2 

default VMT fractions.  In comparing emissions with the EPA guidance, emissions of 

NOX and PM2.5 with the X-scheme significantly increased.  With the X-scheme, NOX and 

PM2.5 emissions of HDVs observed on the highway network were greater by 35% and 

32% respectively than estimates with the EPA guidance. 
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CHAPTER 7 

 

A NEW HEAVY-DUTY VEHICLE VMT ESTIMATION 

METHOD 

 

 

As has been discuss earlier, many existing methods for evaluating HDV VMT 

have major limitations and it is desirable to developing improved methods for estimating 

VMT from these vehicle classes.  Presented here is such a method.  This new heavy-duty 

vehicle VMT estimation method consists of two major processes; one is to estimate VMT 

from those HDV vehicle classes that can be derived from HPMS data (i.e., EPA HDV3 to 

8 and Busses that are labeled as HDV3 to Bus VMT), and the second is to estimate 

HDV2B VMT as a fraction of travel for all trucks having two axle and four tires.  For 

each process, heavy-duty vehicle data sources discussed in CHAPTER 4 are integrated to 

estimate HDV VMT for EPA facility types and EPA HDV classes within the 20-county 

Atlanta metropolitan area.  Because EPA facility-specific HDV activity is required in 

emissions modeling, all HDV activity data, originated from HDV data sources and 

classified by FHWA facility types, are converted into EPA facility types using the facility 

conversion guidance developed by Guensler, et al. (Guensler, 2004). 
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For the estimation of HDV3 to bus VMT distributions, HDV VMT, which was 

observed with the Ahanotu truck classification scheme in the development of the 2003 

Georgia Tech HDV/BUS database, was translated into X classes.  Then, class X1 VMT 

was separated into each HDV3 to HDV8A class using mean annual mileage 

accumulation rates derived from the 2002 VIUS and the registration fractions of 2-axle, 

6-tire HDVs.  In addition, classes X4 and X5 VMT were corrected using school bus and 

urban transit bus activity data from the 2003 Georgia Tech HDV/BUS database.  For the 

estimation of HDV2B VMT fractions on EPA facility types, “other 2-axle, 4-tire vehicle” 

VMT percentages on FHWA facility types from Highway Statistics were associated with 

MOBILE6.2 daily mileage accumulation rates and vehicle registration fractions for 

LDT1 to 4 and HDV2B classes.   

 

For the estimation of HDV VMT by EPA HDV class and EPA facility type, 

HDV3 to bus VMT distributions and HDV2B VMT fractions were applied to total truck 

miles and total vehicle miles obtained from the Georgia DOT HPMS within the 20-

county Atlanta metropolitan area.  Figure 7.1 shows the overall HDV VMT estimation 

process schematically.  Finally, emissions estimates from this new scheme were 

compared to emissions estimates using the EPA MOBILE6.2 default VMT fractions.  
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7.1 FHWA Facility Conversion into EPA Facility Types 

The MOBILE6.2 emission rate model requires EPA facility-specific (freeway, 

arterial, local, and freeway ramp) heavy-duty vehicle activity data.  However, HDV 

activity data including VIUS, HPMS, Highway Statistics, and Georgia Tech HDV/BUS 

database are classified by FHWA facility type.  Therefore, all FHWA facility types must 

be converted into the four EPA facility types before applying in emissions modeling.  

EPA suggests a facility conversion method according to genetic facility functional 

characteristics (USEPA, 2004c).   

 

However, Guensler, et al found that FHWA facility types should be characterized 

not only by functional characteristics, but also by traffic parameters.  For instance, 

FHWA minor collectors and locals with high speed limits (i.e., over 40mph) have the 

same functional characteristics as FHWA minor arterials or major collectors.  FHWA 

minor collectors and locals should be converted into EPA locals by the EPA facility 

conversion guidance, however, Guensler, et al converted FHWA minor collectors and 

locals with high speed limits into EPA arterials (Guensler, 2004).  Using the Guensler’s 

facility conversion method, HDV activity data with FHWA facility types can be 

converted into EPA facility types for air quality analysis purposes.               
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Table 7.1: Mapping of Functional Road Classifications for MOBILE-Matrix in Air 
Quality Analysis (Source: Guensler et al., 2004) 

MOBILE6.2 
Categories 

FHWA  
Corresponding Categories 

Georgia MTPT 5 
Corresponding Categories 

Freeway 

• Interstate Rural, Urban 
(FHWA Class 1, 11) 

• Principal Arterial Rural 
(FHWA Class 2) 

• Other Freeways & Exp. Urban 
(FHWA Class 12) 

• Interstate Rural, Urban (FHWA 
Class 1, 11) 

• Urban freeway and expressway 
(FHWA Class 12) 

Arterial 

• Minor Arterial Rural, Urban 
(FHWA Class 6, 16) 

• Major Collector Rural (FHWA 
Class 7) 

• Other Principal Arterial Urban 
(FHWA Class 14) 

• Principal Arterial Rural (FHWA 
Class 2) 

• Urban principal arterial (FHWA 
Class 14) 

• Minor Arterial Rural, Urban 
(FHWA Class 6, 16) 

• Major Collector Rural (FHWA 
Class 7) 

• NFA Minor Collector Street with 
speed limit > 40mph (FHWA Class 
8)  

• Collector Urban (FHWA Class 17) 
• Non-Ramp Local Rural, Local 

Urban with speed limit > 40mph 
(FHWA Class 9, 19) 

Local  

• Minor Collector Rural (FHWA 
Class 8) 

• Local Rural, Local Urban 
(FHWA Class 9, 19) 

• Collector Urban (FHWA Class 
17) 

• NFA Minor Collector Street with 
speed limit ≤ 40 mph) (FHWA 
Class 8) 

• Non-Ramp Local Rural, Local 
Urban with speed limit ≤ 40mph 
(FHWA Class 9, 19) 

Ramp  • None • Ramps designated at Local Rural, 
Local Urban (FHWA Class 9, 19) 
but defined as an RCLINK code 6 
(Ramp/Interchange)in the Georgia 
database 

                                                 
5 Multimodal Transportation Planning Tool (MTPT)  
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7.2 HDV3 to Bus VMT Distributions 

To develop HDV3 to Bus VMT distributions for EPA facility types, three serial 

steps should be followed.  Theese are HDV class translation into X classes, the 

development of a 2-axle, 6-tire HDV VMT distribution, and bus VMT correction.  

 

7.2.1 HDV VMT with Ahanotu Truck Classes into X Classes 

From the 2003 Georgia Tech HDV/BUS database, observed heavy-duty vehicle 

VMT with Ahanotu truck classes A to D, school bus, and urban bus was translated into 

each X class for freeways and arterials.  VMT from classes A, D, school bus, and urban 

bus were directly assigned into classes X1B, X3B, X4, and X5, respectively.  Because 

Ahanotu truck classes B and C were mixtures of 3-axle and 4-axle single units and 

tractor-trailer combinations, they were separated by 3-axle and 4-axle HDV percentages 

observed in the field (see Section 6.2.1).  Percentages of 3-axle and 4-axle HDVs 

observed in the field were applied to the Ahanotu truck classes B and C to split them into 

classes X2A, X2B, and X3A.       

 

7.2.2 Two-Axle and Six-Tire HDV VMT Distribution 

Because class X1B corresponds to EPA classes HDV3 to HDV7 and a part of 

HDV8A, aggregated HDV VMT must be separated into each EPA HDV class.  From the 

2002 VIUS, annual mileage accumulation rates of 2-axle, 6-tire HDVs were estimated by 
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fuel type (gasoline and diesel) and vehicle model year for EPA classes HDV3, HDV4, 

HDV5, HDV6, HDV7, and HDV8A.  Vehicle model years were categorized by year 

from 2002 to 1987 and all pre-1987.  Due to the small sample size of classes HDV4, 

HDV5, HDV6, and HDV7 in the VIUS, they were combined into two HDV classes 

(classes HDV4 and HDV5, and classes HDV6 and HDV7) based on their engine 

horsepower similarities (see Section 6.3).  For HDV classes, fuel types, and ages, mean 

annual mileage accumulation rates were estimated.  As HDVs age, their annual mileage 

accumulation rates decrease, and for vehicles of the same age heavier HDVs travel more 

miles than lighter HDVs (Figure 7.2).           
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Figure 7.2: Annual Accumulated Vehicle Miles for 2-Axle, 6-Tire Single Unit Heavy-
Duty Vehicles  

 

 

 

To develop VMT distributions for 2-axle, 6-tire single unit HDVs, annual mileage 

accumulation rates were multiplied by the number of vehicles registered in the 20-county 

metropolitan area for only 2-axle, 6-tire HDV classes 3 to 8A.  Since 2-axle, 6-tire single 

unit HDVs predominantly operate on the local network, the use of registration data is 

acceptable without generating large uncertainties.  To estimate VMT fractions for each 2-

axle, 6-tire single unit HDV class, annual mileage accumulation rates for each HDV class 

were divided by aggregated total annual mileage accumulation rates using equation 7.1.   
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Where, VF is the HDV VMT fraction of 2-axle, 6-tire single unit HDVs 

 v is the EPA HDV class (3 to 8A) 

 f is the fuel type (gasoline or diesel) 

 y is the vehicle age from 0 to 16 

 AM is the annual mileage accumulation rates  

 RF is the registered vehicle fraction for a vehicle class 

 RD is the registered vehicle fraction for a fuel type  

 

From the VMT fractions estimated with the equation 7.1, more than 82% of 2-axle, 6-tire 

single unit HDVs was generated from diesel HDVs, and more than 45% of 2-axle, 6-tire 

single unit HDVs was generated from medium HDV classes (HDV6 and HDV7) (Figure 

7.3).  This VMT distribution was used to split the aggregated VMT of 2-axle, 6-tire 

single unit HDV or Ahanotu trucks class A into EPA HDV3 to HDV8A VMT.   
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Figure 7.3: Heavy-Duty Vehicle VMT Distribution for 2-Axle, 6-Tire Single Unit 
HDVs  

 

 

 

7.2.3 Bus VMT Correction  

As described earlier, school buses and urban buses (including urban transit, 

church bus, charter, and intercity buses) were observed on the highway network (see 

CHAPTER 4).  Buses observed on freeways and arterials were directly used to estimate 

bus VMT fractions on freeways and arterials.  Because bus activity on collectors and 

local roads was not observed in the development of the HDV/BUS database, bus VMT 
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fractions observed on minor arterials was used to estimate bus VMT fractions on EPA 

defined local roads.   

 

However, school bus VMT fractions observed on minor arterials could 

underestimate school bus VMT fractions on local roads because school buses generate 

significant amount of their activity on collectors and local roads.  In the 2003 Georgia 

Tech HDV/BUS database, urban transit bus VMT, which was 73% of total urban bus 

VMT in counties operating urban transit buses, only included urban transit bus activity on 

regular service routes without including out of service urban transit bus activity (i.e., 

travel to and from regular service routes).  Therefore, school and urban transit bus VMT 

fractions observed on the network needed to be corrected. 

 

7.2.3.1 School Bus VMT Correction 

Daily school bus miles from the bus activity database were 14% greater than that 

estimated with school bus VMT fractions developed with the observed school bus 

activity on minor arterials.  This implied that school bus VMT fractions developed with 

the highway network underestimated school bus VMT on local roads.  Therefore, school 

bus VMT on local roads was scaled up by 14%.  Estimated school bus VMT fractions 

within the 20-county region were thus 13%, 19%, and 68% for freeways, arterials, and 

local roads, respectively.      
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7.2.3.2 Urban Transit Bus VMT Correction 

Because the 2003 Georgia Tech HDV/BUS activity database included only urban 

transit bus VMT on regular service routes, without including “out of service” activity, 

urban transit bus VMT also needed to be corrected.  To correct urban transit bus VMT, 

transit bus activity data obtained with Georgia Tech Trip Data Collectors installed on two 

MARTA buses for routes 55 and 66 from July 2004 to February 2005 (Yoon, 2005b) 

were used.  Yoon et al. (Yoon, 2005b) found that 17% of transit bus VMT was “out of 

service” bus activity.  Therefore, bus VMT from the 2003 Georgia Tech HDV/BUS 

database increased by 17%.  The corrected urban transit bus VMT was combined with 

other bus VMT including church, intercity, and charter buses.  Estimated total urban bus 

VMT fractions were 47%, 39%, and 13% for freeways, arterials, and local roads, 

respectively.        

 

7.2.4 HDV3 to Bus VMT Distributions for EPA Facility Types  

Since class X1B was the mixture of EPA HDV classes 3 to 8A, the X1B VMT 

was disaggregated into each HDV class by the 2-axle, 6-tire single unit HDV VMT 

distribution (see Section 7.2.2).  Because vehicles were observed on freeways and 

arterials, VMT distributions of EPA HDV classes 3 to 8B, school bus, and urban bus 

could be created for freeways and arterials.  If VMT distribution on freeways or arterials 

was not available for a county, the 20-county average freeway or arterial VMT 

distributions were used for the county.  However, because HDV VMT was not collected 
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on EPA defined local roads, HDV and corrected bus VMT collected on rural and urban 

minor arterials were used to develop VMT distributions for EPA local roads.  If VMT on 

either rural or urban minor arterials, or both, was not available for a county, the 20-

county average local VMT distribution was used for the county (see APPENDIX A).  

However, this approach could cause the overestimation of emissions on local roads 

greater than with the MOBILE6.2 default VMT distribution because VMT fractions for 

heavier HDVs on locals are possibly lower than on the minor arterials.  On the contrary, 

an EPA study (USEPA, 1999) showed that commercial tractor-trailer combination 

vehicle VMT on collectors was 10% greater than on minor arterials in metropolitan areas 

over 1,000,000 of population.   

 

7.3 HDV2B VMT Fractions 

The VMT fraction of the lightest heavy-duty vehicle of HDV2B, which 

corresponds to class X1A, can be estimated with the statewide “other 2-axle, 4-tire 

vehicle” VMT percentages provided by FHWA Highway Statistics and the number of 

vehicles registered as LDT1, 2, 3, and 4 and HDV2B in the 20-county Atlanta 

metropolitan area. 
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7.3.1 Other 2-Axle and 4-Tire Vehicle VMT Percentages  

Highway Statistics defines “other 2-axle, 4-tire vehicles” as single unit vehicles 

including vans, pick-ups, and SUVs, but excluding passenger cars (FHWA, 1999).  

Before 2000, Highway Statistics had provided the other 2-axle, 4-tire truck VMT 

percentages in the table of the “VM-4” for FHWA facility types of rural/urban interstates, 

principal arterials, minor arterials, and urban expressways.  Since 2000, Highway 

Statistics have not provided other 2-axle, 4-tire truck VMT percentages by facility type.  

Therefore, other 2-axle, 4-tire truck VMT percentages from available Highway Statistics 

(from 1993 to 1999) were used to estimate HDV2B VMT fractions.  Seven-year mean 

VMT percentages, which were statistically significant at the 95% confidence level, were 

used to estimate HDV2B VMT for facility types.  Table 7.2 shows mean VMT 

percentages of other 2-axle, 4-tire vehicles by facility type in Georgia.   
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Table 7.2: Georgia Statewide Mean VMT Percentages of “other 2-axle, 4-tire vehicles” 
from Highway Statistics    

FHWA Facility Type Mean VMT Percentage of the Other 
2-Axle, 4-Tire Vehicles 

1 Rural Interstates 20.5 

2 Rural Other Principal Arterials 13.3 

6 Rural Minor Arterials 15.2 

11 Urban Interstates 26.1 

12 Urban Other Freeways and Expressways 25.9 

14 Urban Principal Arterials 23.0 

16 Urban Minor Arterials 21.6 

 

 

 

7.3.2 Separation of HDV2B VMT from Other2-Axle and 4-Tire Vehicle VMT  

The category of “other 2-axle, 4-tire vehicles” was the mixture of light-duty 

trucks (LDTs) and HDV2Bs.  To separate HDV2B VMT, other 2-axle, 4-tire vehicle 

VMT percentages were multiplied by MOBILE6.2 default daily VMT and the number of 

vehicles registered for LDT and HDV2B classes.  To estimate HDV2B VMT fractions 

among the mixture of LDT and HDV2B classes, the HDV2B daily VMT was divided by 

the sum of HDV2B and LDT VMT.  Then, the HDV2B VMT fraction was multiplied by 

VMT percentages of other 2-axle, 4-tire vehicles to estimate the HDV2B VMT fraction 
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for each facility type in a county (Equation 7.2).  APPENDIX B provides HDV2B VMT 

fractions for counties in the 20-county Atlanta metropolitan area.   
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 Where, FHDV2B is the VMT fraction of HDV2B out of all vehicle classes 

P2A4V is the mean VMT percentage of other 2-axle, 4-tire vehicles  

F is the FHWA facility type 

f is the fuel type (gasoline or diesel) 

v is the LDGT1/2/3/4, LDDT12/34, HDGV2B, and HDDV2B 

DM is the MOBILE6.2 default daily VMT  

NR is the number of vehicles registered in the 20-county Atlanta 

metropolitan area  

 

By applying HDV2B VMT fractions to total VMT for all vehicle classes on each facility 

type, HDV2B VMT for facility types could be estimated.  
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7.4 HDV VMT Estimation for Facility Types  

Heavy-duty vehicle VMT by HDV class for EPA facility types was estimated 

with link-specific transportation characteristics in Georgia HPMS and HDV VMT 

fractions developed in Sections 7.2 and 7.3.  A link-specific aggregated truck VMT was 

estimated with a start and an end mile points, an annual average daily traffic (AADT), 

and a truck percentage.  A set of start and end mile points indicated a homogeneous road 

link characteristics in geometry as start and end mile points defined changes in road 

geometry such as lane merge/split, bridges, intersections, and ramp changes.  The 

difference of an end mile point and a start mile point was used to define the link length in 

miles.   

 

Truck percentages in HPMS include all vehicle having at least two axles and six 

tires.  This includes FHWA truck classes 5 to 13 and buses, EPA HDV3 to HDV8B and 

buses, and X classes X1B to X5.  To estimate total truck VMT for each EPA facility type, 

link-specific truck percentages were multiplied by AADT and link length (the subtraction 

of an end mile point to a start mile point).  Then, the total truck VMT was multiplied by 

estimated HDV VMT distributions and separated into each EPA HDV VMT for each 

facility type.  Because HDV2B VMT was not included in truck percentages, HDV2B 

VMT fractions developed in the previous section (see Section 7.3) were used.  
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Overall, HDV VMT (including HDV2B and HDV3 to Bus VMT) distributions 

can be developed for EPA facility types for use in HDV emissions inventory 

development (see APPENDIX A).  Within the 20-county Atlanta metropolitan area, the 

estimated regional HDV VMT distribution was significantly different from the 

MOBILE6.2 default VMT distribution.    
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Figure 7.4: Heavy-Duty Vehicle VMT Distributions Estimated with the HDV VMT 
Estimation Method and the 2004 MOBILE6.2 Default VMT Distribution 
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Estimated VMT fractions for HDV8B, school bus, and urban bus classes were 

61%, 107%, and 88% respectively greater than MOBILE6.2 default values.  However, 

estimated VMT fractions for HDV2B, HDV5, HDV6, and HDV7 classes were 65%, 53%, 

62%, and 36% respectively of MOBILE6.2 default VMT fractions.  Estimated VMT 

fractions were generated from vehicle activity in the highly populated Atlanta urban area, 

while MOBILE6.2 default VMT fractions were developed nationwide including urban 

and rural areas.  In urban areas, VMT fractions for heavy HDVs and buses were greater 

than in rural areas because of goods movement and the existence of public transportation 

systems.  Table 7.3 shows estimated HDV VMT distributions for freeways, arterials, and 

locals in the 20-county Atlanta metropolitan area.   

 

 

 

Table 7.3: Estimated HDV VMT Distributions for Freeways, Arterials, and Locals 
HDV VMT Fraction EPA 

Facility 2B 3 4 5 6 7 8A 8B School 
BUS 

Urban
BUS 

Freeway 0.161 0.049 0.035 0.015 0.052 0.036 0.084 0.552 0.006 0.011

Arterial 0.249 0.033 0.023 0.010 0.035 0.024 0.126 0.457 0.019 0.024

Local 0.339 0.023 0.016 0.007 0.025 0.017 0.091 0.340 0.130 0.011
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7.5 Emissions Impact Analysis with the New HDV VMT Estimation Method  

The new heavy-duty vehicle VMT estimation method that incorporated the new 

heavy-duty vehicle visual classification scheme was applied to estimate regional HDV 

emissions in the Atlanta 8-hr ozone nonattainment designated area.  For the estimation of 

emission rates in 2004, MOBILE6.2 was run with input parameters developed for the 13-

county Atlanta 1-hr ozone nonattainment area.  Input parameters included; 2002 vehicle 

registration distributions for Atlanta, GDNR hourly temperatures, a fuel RVP of 7psi, the 

refueling program, and the fuel program.  In emissions modeling, FHWA facility types 

were assigned into EPA facility types by the Guensler’s (Guensler, 2004) facility 

conversion guide, and FHWA facility-specific average speeds (see Table 7.4), which 

were posted to the Atlanta Regional Commission (ARC) travel demand modeling 

network used for the development of Georgia State Implementation Plans (GDNR, 2001), 

were applied for the modeling month of July and the modeling year of 2004.  

APPENDIX C shows MOBILE6.2 inputs and outputs. 

 

 

 

 

 

 

 



 

 132

  Table 7.4: FHWA Facility-Specific Average Speed Posted on ARC Travel Demand 
Modeling Network 

Facility Type Facility Code Average Speed (mph) 

Rural         Interstate 

                  Principal Arterial 

Minor Arterial 

Major Collector 

Minor Collector 

Local  

1 

2 

6 

7 

8 

9 

59 

53 

47 

44 

43 

40 

Urban        Interstate 

                  Freeway/Expressway 

Principal Arterial 

Minor Arterial 

Collector 

Local 

11 

12 

14 

16 

17 

19 

55 

54 

43 

38 

35 

35 

 

 

 

FHWA facility-specific emission rates were multiplied by HDV VMT estimated 

with EPA facility-specific VMT distributions corresponding to FHWA facility types (See 

Section 7.1).  Then, road link-specific emissions were aggregated into each EPA facility 
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types (freeways, arterials, locals) within the 20-county Atlanta metropolitan area using 

equation 7.3.     

       

∑=
j

jfjifif VMTERE ,,,, *                                                                   (7.3) 

 

Where, E is the total daily emissions (tons/day) 

 f is the FHWA facility type 

 i is the pollutant type 

 j is the heavy-duty vehicle class 

ER is the emission rate (g/mi) from the MOBILE6.2 

VMT is the vehicle miles traveled (miles/day) 

 

7.5.1 NOX and PM2.5 Emissions by HDV Class and Facility Type  

NOX emissions estimated with the new HDV VMT estimation method were 

27.2%, 18.5%, and 10.3% greater than estimates with the MOBILE6.2 default VMT 

fractions for EPA freeways, arterials, and locals, respectively.  PM2.5 emissions with the 

new HDV VMT estimation method were also 25.5%, 21.5%, and 31.2% greater than 

estimates with the MOBILE6.2 default VMT fractions for freeways, arterials, and locals, 

respectively.  On freeways and arterials, the new HDV VMT estimation method, which 

minimized the misallocation of heavy HDV VMT into light and medium HDV VMT, 

resulted in greater emissions than the MOBILE6.2 default VMT fractions.  On local 
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roads, significant underestimation of school bus VMT with the MOBILE6.2 default VMT 

fractions caused lower emissions than the new HDV VMT estimation method.   

Table 7.5: Emissions Increase with A New Heavy-Duty Vehicle Visual Classification 
and Activity Estimation Method from the Mobile6.2 Default VMT 
Fractions 

Pollutant Emissions Increase (%) 

 Freeway Arterial Local Road Total 

NOX 27.2 18.5 10.3 22.9 

PM2.5 25.5 21.5 31.2 25.0 

 

 

 

On freeways, the three largest NOX emission contributors with the HDV VMT 

estimation method were classes HDV2B, HDV8A, and HDV8B by 5.1%, 8.8%, and 

73.9%, respectively.  With the MOBILE6.2 default VMT fractions, HDV2B, HDV6, 

HDV7, HDV8A, and HDV8B were major contributors by 12.9%, 5.2%, 7.8%, 14.4%, 

and 52.5%, respectively.  Although emissions with the MOBILE6.2 default VMT 

fractions were greater for classes HDV2B, HDV6, HDV7, and HDV8A, the 

underestimation of HDV8b VMT by 44% caused a 27.2% underestimation of NOX 

emissions on freeways.  Figure 7.5 shows NOX emission differences by vehicle class 

between the MOBILE6.2 default VMT fractions and estimated HDV VMT on freeways. 
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Figure 7.5: Heavy-Duty Vehicle NOX Emissions on EPA Freeways 
 

 

 

On arterials, classes HDV2B, HDV8A, and HDV8B contributed the largest NOX 

emissions with the estimated HDV VMT by 9.4%, 13.4%, and 63.9%, respectively.  With 

the MOBILE6.2 default VMT fractions, classes HDV2B, HDV6, HDV7, HDV8A, and 

HDV8B contributed most NOX emissions by 12.9%, 5.2%, 7.8%, 14.4%, and 52.5%, 

respectively.  Although emissions with the MOBILE6.2 default VMT fractions greater 

for classes HDV2B to HDV7, the underestimation of HDV8B VMT by 34.5% caused 

18.5% underestimation of NOX emissions on arterials.  Figure 7.6 shows NOX emission 
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difference by vehicle class between the MOBILE6.2 default VMT fractions and the 

estimated HDV VMT on arterials.      

 

 

 

 

Figure 7.6: Heavy-Duty Vehicle NOX Emissions on EPA Arterials 
 

 

 

On local roads, classes HDV2B, HDV8A, HDV8B, and school bus contributed 

the largest NOX emissions with the estimated HDV VMT by 11.9%, 10.2%, 47.5%, and 
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21.8%, respectively.  With the MOBILE6.2 default VMT fractions, classes HDV2B, 

HDV6, HDV7, HDV8A, and HDV8B contributed most NOX emissions by 13.0%, 5.9%, 

9.2%, 14.1%, and 49.3%, respectively.  NOX emissions estimated with the two methods 

were close over all HDV classes except HDV6, HDV7, and school bus.   
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Figure 7.7: Heavy-Duty Vehicle NOX Emissions on EPA Locals 
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Although the MOBILE6.2 default VMT fractions overestimate NOX by 187% and 390% 

for classes HDV6 and HDV7, the underestimation of school bus VMT by 91% caused a 

10.3% greater value with the estimated HDV VMT on locals.  
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CHAPTER 8 

 

RESEARCH CONTRIBUTIONS, CONCLUSIONS, AND 

RECOMMENDED RESEARCH   

 

 

 

The research community has long stressed the importance and significance of 

emissions from heavy-duty vehicle and developed methods for measuring engine and 

HDV emissions, collecting HDV activity data, reducing those emissions through new 

technologies, etc.  However, applying those research results to professional practice is 

often challenging.  The new heavy-duty vehicle visual classification and activity 

estimation method can provide a new protocol for developing HDV activity in “real-

world” applications without losing the fine resolution of original vehicle activity and 

emissions characteristics.   

 

This chapter will discuss how the new heavy-duty vehicle visual classification 

and activity estimation method can influence regional air quality management and 

transportation policymaking and next generation modal activity based emissions models.  
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8.1 Research Contributions  

The new heavy-duty vehicle visual classification and activity estimation method 

provides planning and air quality management agencies with more specific information 

regarding the major NOX and PM2.5 emission contributors among HDVs.  This, in turn, 

can lead to better policies to reduce regional emissions from these sources.   Accurate 

heavy-duty vehicle activity and emissions information is therefore a key to success in 

regional air quality and transportation policymaking processes under the requirement of 

Clear Air Act and Transportation Equity Act for the 21st Century.  This research has the 

potential to influence this process in the following ways:   

 

• The new heavy-duty vehicle classification scheme, which can convert FHWA 

truck classes into EPA HDV classes or vice versa, and can be directly applied to 

HDV activity data collection in the field by providing more specific information 

and making better use of existing data than to current methods. 

• The heavy-duty vehicle VMT estimation method, which can overcome 

uncertainties in HDV VMT estimation processes associated with HDV 

registration distributions, retains the resolution of HDV classes and activities 

observed in the filed, and improves the EPA HDV2B VMT estimation process. 
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In the research arena, the research results can contribute to the development of modal 

activity based emission models, which requires HDV vehicle technology groups having 

common emissions and engine characteristics, and roadway link level HDV activity.        

  

8.1.1 Contributions to GVWR Based Vehicle Classification 

Because EPA classifies heavy-duty vehicles by their gross vehicle weight ratings 

and certified engine emission characteristics, heavy-duty vehicles are not easily 

distinguished by visual observation, especially the eight EPA HDV classes for 

MOBILE6.2 emission rate modeling purposes.  In the development of HDV activity 

databases, EPA HDV classes are rarely used and FHWA truck classes based on visually 

observable qualities (i.e. configuration and number of axles) are used instead.  The new 

heavy-duty vehicle visual classification X-scheme as a hybrid scheme associating EPA 

heavy-duty vehicles and FHWA trucks without losing the original HDV activity and 

emissions characteristics.  Although light and medium HDVs are aggregated into class 

X1B, however, class X1B still retains similarities in terms of certified engine emissions 

characteristics.   

 

8.1.2 Contributions to Axle and Configuration Based Vehicle Classification 

FHWA classifies trucks into nine truck classes by the number of axles and tractor-

trailer configuration largely for purposes of infrastructure maintenance and protection.  

However, keeping nine truck classes is not necessary for the purpose of emissions 



 

 142

analysis.  Nine truck classes can be regrouped into the new classification that retain 

similar activity and emissions characteristics.  Unlike the EPA method that focuses only 

of GVWR, the X-scheme regroups nine truck classes into five X classes (X1B to X3B) 

using criteria that include GVWR, truck weight limit, engine horsepower ratings, travel 

characteristics, and emissions characteristics.    

 

8.1.3 Contributions to Heavy-Duty Vehicle Activity Database Development 

Because the EPA guidance to estimate HDV VMT is based on HDV registration 

distributions, the guidance can cause severe bias in VMT estimation.  Heavy HDV 

activity, especially that generated by inter-region operating HDVs, will be significantly 

underestimated in regions where they are not registered.  Even though inter-region 

operating HDVs can create the high portion of heavy HDV activity in the regions, their 

activity will not be reflected in the estimation of VMT fractions if the EPA guidance is 

applied.  This can cause heavy HDV VMT to be allocated into light and medium HDV 

VMT, and result in the underestimation of emissions for heavy HDV and the 

overestimation of emissions for light and medium HDV, especially in the case of NOX 

and PM2.5 emissions.  The new HDV VMT estimation method presented in this research 

includes all vehicle activities with sufficient resolution of onroad vehicle classes to avoid 

significant misallocation of heavy HDV VMT into light and medium HDV VMT.  
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The new HDV VMT estimation method can also improve the estimation of the 

lightest HDV (HDV2B) VMT when HDV VMT is estimated from HPMS databases.  By 

definition, a FHWA truck includes trucks having at least two axles and six tires that have 

over 10,000 lbs of GVWR. Vehicles with these characteristics belong to EPA HDV3 or 

heavier HDV classes and thus do not include vehicles from the lightest EPA HDV class 

(HDV2B) that includes two axle vehicles with four tires.  EPA advises that FHWA truck 

VMT percentages in HPMS should be apportioned into EPA HDV2B to Urban Bus 

categories even though the FHWA truck definitions do not include the EPA HDV2B 

class.  Therefore, the EPA guidance can cause lower HDV VMT estimation and higher 

LDT VMT estimation by misallocation of FHWA truck VMT into HDV2B VMT.  

Because the new HDV VMT estimation method separates HDV2B VMT estimation 

process from the HDV/BUS VMT estimation process, this problem is largely avoided in 

the procedure outlined in this research.   

 

8.1.4 Contributions to Current Emissions Modeling 

 In developing mobile source emissions inventories, state air quality agencies 

estimate VMT via HDV databases or field HDV volume counts using the FHWA truck 

classification scheme.  The X-scheme works as a hybrid HDV-to-truck classification 

scheme, which converts FHWA truck classes into EPA HDV classes and vise versa, 

without losing truck axle and configuration characteristics or HDV GVWR and emissions 

characteristics.  HDV-to-truck conversion with the X-scheme can minimize the potential 
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bias in VMT misallocation and provide more precise onroad fleet VMT distributions for 

emissions modeling proposes.  The new heavy-duty vehicle VMT estimation method 

combined with the X-scheme also has the capability of estimating facility-specific 

emissions by the use of facility-specific HDV VMT distributions.       

 

8.1.5 Contributions to Heavy-Duty Vehicle Modal Emissions Modeling 

Road load-based modal emissions models estimate emissions from relationships 

between emission rates and engine power demand for vehicle technology groups having 

similar engine and emission characteristics.  The X-scheme, which classifies HDVs by 

their physical configurations, can be a starting point for vehicle technology grouping 

since each X class has similar engine and emission characteristics. Modal emission 

models can use the X-scheme to guide data collection in the following areas: 

 

• Emissions characteristics  

• Weight distributions 

• VMT distributions 

• Speed and acceleration characteristics 

 

The X-Scheme can be further subdivided by statistical analysis to account for detailed 

relationships between emission rates and engine power demand.  This research effort is 

currently under development by researchers at Georgia Tech.   
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The new heavy-duty vehicle visual classification and activity estimation method 

also provides the ability to estimate road link level HDV VMT and VMT distributions 

that can be directly used in modal emission models incorporating link-specific 

speed/acceleration/grade matrices (Yoon, 2005a; Yoon, 2005b).  The new heavy-duty 

vehicle visual classification and activity estimation method further associates with link-

specific roadway characteristics (i.e., road characteristics, mile point, speed, the number 

of lanes, facility type, AADT, truck percent, etc.). 

 

The combination of the new heavy-duty vehicle visual classification and activity 

estimation methods allows interconnection of modal activity variables and facility 

parameters and therefore provides the potential for link-specific emissions estimation in 

modal activity based emission models.  Link-specific emissions estimates could 

significantly benefits agencies in all levels of government in the development of project 

(microscale), regional (mesoscale), and national (macroscale) scale air quality 

management and transportation plans.    

  

8.2 Conclusions  

In policymaking processes of regional air quality and transportation management, 

accurate emissions and vehicle activity information should be guaranteed.  Given this, 

uncertainties in current HDV classification and VMT estimation methods, which are 

mostly developed with vehicle registration data, should be minimized.  The new heavy-
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duty vehicle visual classification and VMT estimation method better reflects onroad 

HDV fleet VMT distributions. This has the impact of reducing uncertainties in emissions 

estimation processes that are currently derived from locally registered vehicle 

information.  In addition, the new heavy-duty vehicle visual classification and VMT 

estimation method provides key protocols for developing modal activity based emission 

models.  

 

8.2.1 A New Heavy-Duty Vehicle Visual Classification Scheme 

Because the new heavy-duty vehicle visual classification X-scheme bridges the 

gap between the EPA HDV and FHWA truck classification schemes, it converts FHWA 

truck classes into EPA HDV classes and vise versa while keeping original fine resolution 

of vehicle activity and emissions characteristics.  Emissions estimated for the Atlanta 

metropolitan area indicate that the new HDV visual classification scheme shows that 

NOX and PM2.5 emissions increase by 35% and 32% respectively more than emissions 

estimates based on  the EPA VMT estimation guidance. This indicates that current 

methods may be severely underestimating emissions from HDVs.  Benefits using the new 

heavy-duty vehicle visual classification X-scheme in emissions analyses follow: 

 

• Mitigates uncertainties in current EPA and NRC HDV-to-truck conversion 

methods, 
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• Adopts three prototype X classes (six sub-X classes) and two bus classes with 

simple criteria for use in HDV and truck activity data collection in the filed, 

• Keeps the original fine resolution of HDV or truck class characteristics such as 

certified engine emissions characteristics and vehicle activity characteristics 

throughout the HDV-to-truck conversion process, and  

• Estimates emissions with regionally specific onroad fleet VMT distributions 

 

8.2.2 A New Heavy-Duty Vehicle VMT Estimation Method 

In the development of the new heavy-duty vehicle VMT estimation method, 

publicly available HDV databases, which are Vehicle Inventory and Use Survey, 

Highway Performance Monitoring System, and Highway Statistics, and Georgia Tech 

HDV/BUS activity database, incorporate to estimate HDV VMT for HDV classes, 

facilities types, and counties.  With the combination of the new HDV visual classification 

scheme, the new HDV VMT estimation method mitigates uncertainties in the HDV 

registration based VMT estimation method suggested by EPA.  For instance, HDV VMT 

distributions excluding non-registered HDV VMT in a specific regional boundary 

misallocates heavy HDV VMT into light and medium HDV VMT.  The emissions impact 

analysis with the HDV VMT estimation method within the 20-county Atlanta 8-hr ozone 

nonattainment designated area shows that NOX and PM2.5 emissions are significantly 

underestimated with the MOBILE6.2 default VMT fractions developed with vehicle 

registration data.  With the new HDV VMT estimation method, NOX emissions estimate 
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by 27.2%, 18.5%, and 10.3% for freeways, arterials, and locals, and PM2.5 emissions by 

25.5%, 21.5%, and 31.2% greater than estimates with the MOBILE6.2 default VMT 

fractions.   Benefits using the new HDV visual classification scheme in emissions 

analyses follow: 

 

• Mitigate uncertainties in the current EPA’s registration based HDV VMT 

estimation guidance by the combination of the new HDV visual classification 

scheme, 

• Easily obtains publicly available HDV activity databases, 

• Minimizes heavy HDV VMT allocation into light and medium HDV VMT, and  

• Estimate emissions for HDV classes, facility types, and counties. 

 

The new HDV VMT estimation method can be applicable for the facility-specific HDV 

VMT estimation and for the development of onroad emissions inventory development for 

use in regional air quality and transportation planning processes.     

 

8.3 Recommended Research 

While the new heavy-duty vehicle visual classification scheme and activity 

estimation method has been developed and undergone limited validation testing, much 

additional work is needed to be done before the method is fully validated for widespread 

applications. Recommended future research includes the validation of the new heavy-
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duty vehicle visual classification scheme with engine characteristics and emissions data 

and the validation of the new HDV activity estimation method with regionally specific 

HDV activity data.  In addition, methods of onroad HDV data collection should be 

reviewed in conjunction with emissions inventory development and modal emissions 

model development.    

 

• The new HDV visual classification scheme explains HDV technology and 

emissions characteristics only by their physical characteristics.  Emissions test 

data with engine physical characteristics should be collected and analyzed to 

validate and possibly refine physical characteristic based HDV classes, since 

emissions can be characterized with engine size, horsepower ratings, related 

engine technologies, etc.   

• For the validation of the HDV activity estimation method, regional-specific HDV 

activity data should be collected and analyzed.  These data should include daily 

travel miles, trip origins and destinations, spatial and temporal information, place 

of registration, etc.  These HDV activity data can be collected with the 

combination of mail/fax surveys, roadside intercepts surveys, screen line cordon 

surveys, travel diary survey, etc. 

• For modal activity emissions modeling applications, HDV activity data, which 

include spatial and temporal information, speed, acceleration, speed, weight, and 

etc., should be collected and associated into HDV technology grouping and VMT 

estimation processes.  The effort required to collect these HDV activity data can 
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be substantially aided by increased reliance on more advanced  technologies such 

as geographic information system (GIS), global positioning system (GPS), and 

onboard diagnostic system (OBD).      

 
 
Research results from this recommended research will improve the proposed methods 

and potentially help identify major emission contributors and make regionally consistent 

and effective air quality management and transportation plans more efficiently.      
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APPENDIX A 

 

 
 

ESTIMATED HEAVY-DUTY VEHICLE VMT 

DISTRIBUTIONS BY FACILITY TYPE AND COUNTY FOR 

THE ATLANTA METROPOLITAN AREA 
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Table A-1: Estimated Heavy-Duty Vehicle VMT Distributions for Facility Types and 
the Atlanta Metropolitan Counties   

HDV Class Bus County 
*a 

Facility 
*b 2B 3 4 5 6 7 8A 8B School Urban 

13 1 
     
0.080  

     
0.019 

     
0.014 

     
0.006 

     
0.021 

     
0.014 

     
0.156 

     
0.677  

     
0.012  

     
0.000  

13 2 
     
0.149  

     
0.033 

     
0.023 

     
0.010 

     
0.034 

     
0.024 

     
0.078 

     
0.609  

     
0.034  

     
0.006  

13 3 
     
0.233  

     
0.028 

     
0.020 

     
0.008 

     
0.030 

     
0.020 

     
0.068 

     
0.529  

     
0.059  

     
0.004  

15 1 
     
0.106  

     
0.078 

     
0.055 

     
0.023 

     
0.083 

     
0.057 

     
0.081 

     
0.515  

     
0.001  

     
0.001  

15 2 
     
0.176  

     
0.023 

     
0.016 

     
0.007 

     
0.025 

     
0.017 

     
0.147 

     
0.554  

     
0.028  

     
0.007  

15 3 
     
0.337  

     
0.019 

     
0.013 

     
0.006 

     
0.020 

     
0.014 

     
0.094 

     
0.442  

     
0.052  

     
0.003  

45 1 
     
0.091  

     
0.034 

     
0.024 

     
0.010 

     
0.036 

     
0.024 

     
0.075 

     
0.697  

     
0.005  

     
0.005  

45 2 
     
0.180  

     
0.044 

     
0.031 

     
0.013 

     
0.047 

     
0.032 

     
0.157 

     
0.456  

     
0.035  

     
0.003  

45 3 
     
0.325  

     
0.036 

     
0.025 

     
0.011 

     
0.038 

     
0.026 

     
0.126 

     
0.366  

     
0.041  

     
0.008  

57 1 
     
0.132  

     
0.100 

     
0.071 

     
0.030 

     
0.106 

     
0.073 

     
0.108 

     
0.366  

     
0.006  

     
0.008  

57 2 
     
0.185  

     
0.044 

     
0.031 

     
0.013 

     
0.047 

     
0.032 

     
0.138 

     
0.501  

     
0.007  

     
0.001  

57 3 
     
0.291  

     
0.027 

     
0.019 

     
0.008 

     
0.029 

     
0.020 

     
0.109 

     
0.343  

     
0.147  

     
0.006  

63 1 
     
0.172  

     
0.044 

     
0.031 

     
0.013 

     
0.047 

     
0.032 

     
0.081 

     
0.568  

     
0.001  

     
0.009  

63 2 
     
0.349  

     
0.044 

     
0.031 

     
0.013 

     
0.047 

     
0.032 

     
0.121 

     
0.323  

     
0.022  

     
0.016  

63 3 
     
0.361  

     
0.045 

     
0.032 

     
0.013 

     
0.047 

     
0.032 

     
0.070 

     
0.233  

     
0.154  

     
0.012  

67 1 
     
0.286  

     
0.063 

     
0.045 

     
0.019 

     
0.067 

     
0.046 

     
0.064 

     
0.404  

     
0.001  

     
0.004  

67 2 
     
0.358  

     
0.037 

     
0.026 

     
0.011 

     
0.039 

     
0.027 

     
0.082 

     
0.374  

     
0.014  

     
0.031  

67 3 
     
0.348  

     
0.026 

     
0.018 

     
0.008 

     
0.027 

     
0.019 

     
0.059 

     
0.256  

     
0.220  

     
0.019  

77 1 
     
0.103  

     
0.026 

     
0.018 

     
0.008 

     
0.027 

     
0.019 

     
0.054 

     
0.733  

     
0.008  

     
0.003  

77 2 
     
0.163  

     
0.038 

     
0.027 

     
0.011 

     
0.040 

     
0.028 

     
0.224 

     
0.447  

     
0.015  

     
0.006  

 
77 

 
3 

     
0.341  

     
0.013 

     
0.010 

     
0.004 

     
0.014 

     
0.010 

     
0.157 

     
0.303  

     
0.146  

     
0.002  
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Table A-1: Estimated Heavy-Duty Vehicle VMT Distributions for the Atlanta  
                  Metropolitan Area (Continued)                  

HDV Class Bus County 
*a 

Facility 
*b 2B 3 4 5 6 7 8A 8B School Urban 

89 1 
     
0.168  

     
0.034 

     
0.024 

     
0.010 

     
0.036 

     
0.025 

     
0.106 

     
0.583  

     
0.009  

     
0.004  

89 2 
     
0.373  

     
0.034 

     
0.024 

     
0.010 

     
0.036 

     
0.025 

     
0.071 

     
0.403  

     
0.010  

     
0.014  

89 3 
     
0.341  

     
0.021 

     
0.015 

     
0.006 

     
0.023 

     
0.015 

     
0.046 

     
0.263  

     
0.263  

     
0.006  

97 1 
     
0.147  

     
0.031 

     
0.022 

     
0.009 

     
0.033 

     
0.023 

     
0.069 

     
0.647  

     
0.013  

     
0.006  

97 2 
     
0.293  

     
0.036 

     
0.026 

     
0.011 

     
0.038 

     
0.026 

     
0.130 

     
0.411  

     
0.025  

     
0.004  

97 3 
     
0.370  

     
0.031 

     
0.022 

     
0.009 

     
0.033 

     
0.022 

     
0.114 

     
0.364  

     
0.029  

     
0.004  

113 1 
 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

113 2 
     
0.207  

     
0.048 

     
0.034 

     
0.014 

     
0.050 

     
0.034 

     
0.165 

     
0.431  

     
0.010  

     
0.005  

113 3 
     
0.312  

     
0.024 

     
0.017 

     
0.007 

     
0.025 

     
0.017 

     
0.091 

     
0.327  

     
0.158  

     
0.022  

117 1 
 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

117 2 
     
0.131  

     
0.048 

     
0.034 

     
0.014 

     
0.051 

     
0.035 

     
0.171 

     
0.504  

     
0.010  

     
0.004  

117 3 
     
0.269  

     
0.021 

     
0.015 

     
0.006 

     
0.022 

     
0.015 

     
0.118 

     
0.397  

     
0.131  

     
0.005  

121 1 
     
0.212  

     
0.062 

     
0.044 

     
0.018 

     
0.065 

     
0.044 

     
0.085 

     
0.418  

     
0.009  

     
0.043  

121 2 
     
0.367  

     
0.018 

     
0.013 

     
0.005 

     
0.019 

     
0.013 

     
0.126 

     
0.325  

     
0.006  

     
0.108  

121 3 
     
0.403  

     
0.016 

     
0.011 

     
0.005 

     
0.017 

     
0.012 

     
0.128 

     
0.297  

     
0.071  

     
0.041  

135 1 
     
0.157  

     
0.043 

     
0.031 

     
0.013 

     
0.046 

     
0.031 

     
0.077 

     
0.577  

     
0.015  

     
0.010  

135 2 
     
0.275  

     
0.015 

     
0.010 

     
0.004 

     
0.016 

     
0.011 

     
0.113 

     
0.513  

     
0.030  

     
0.014  

135 3 
     
0.325  

     
0.011 

     
0.008 

     
0.003 

     
0.011 

     
0.008 

     
0.071 

     
0.346  

     
0.203  

     
0.014  

139 1 
     
0.221  

     
0.039 

     
0.028 

     
0.012 

     
0.042 

     
0.028 

     
0.071 

     
0.543  

     
0.010  

     
0.007  

139 2 
     
0.200  

     
0.022 

     
0.016 

     
0.007 

     
0.023 

     
0.016 

     
0.089 

     
0.591  

     
0.030  

     
0.007  

139 3 
     
0.280  

     
0.019 

     
0.013 

     
0.006 

     
0.020 

     
0.014 

     
0.077 

     
0.512  

     
0.056  

     
0.003  
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Table A-1: Estimated Heavy-Duty Vehicle VMT Distributions for the Atlanta 
                  Metropolitan Area (Continued)                  

HDV Class Bus County 
*a 

Facility 
*b 2B 3 4 5 6 7 8A 8B School Urban 

151 1 
     
0.102  

     
0.017 

     
0.012 

     
0.005 

     
0.018 

     
0.012 

     
0.054 

     
0.776  

     
0.002  

     
0.003  

151 2 
     
0.166  

     
0.071 

     
0.050 

     
0.021 

     
0.075 

     
0.051 

     
0.124 

     
0.419  

     
0.015  

     
0.006  

151 3 
     
0.306  

     
0.051 

     
0.036 

     
0.015 

     
0.054 

     
0.037 

     
0.068 

     
0.256  

     
0.176  

     
0.001  

217 1 
     
0.094  

     
0.036 

     
0.025 

     
0.011 

     
0.038 

     
0.026 

     
0.110 

     
0.656  

     
0.003  

     
0.002  

217 2 
     
0.156  

     
0.034 

     
0.024 

     
0.010 

     
0.036 

     
0.024 

     
0.070 

     
0.598  

     
0.038  

     
0.010  

217 3 
     
0.297  

     
0.021 

     
0.015 

     
0.006 

     
0.023 

     
0.015 

     
0.047 

     
0.388  

     
0.186  

     
0.001  

223 1 
 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

 
N/A 

223 2 
     
0.125  

     
0.040 

     
0.028 

     
0.012 

     
0.042 

     
0.029 

     
0.117 

     
0.590  

     
0.008  

     
0.009  

223 3 
     
0.294  

     
0.022 

     
0.016 

     
0.007 

     
0.024 

     
0.016 

     
0.086 

     
0.307  

     
0.227  

     
0.001  

247 1 
     
0.212  

     
0.028 

     
0.020 

     
0.008 

     
0.030 

     
0.020 

     
0.092 

     
0.578  

     
0.006  

     
0.006  

247 2 
     
0.385  

     
0.026 

     
0.019 

     
0.008 

     
0.028 

     
0.019 

     
0.105 

     
0.388  

     
0.015  

     
0.007  

247 3 
     
0.402  

     
0.019 

     
0.014 

     
0.006 

     
0.020 

     
0.014 

     
0.083 

     
0.316  

     
0.122  

     
0.004  

255 1 
     
0.116  

     
0.016 

     
0.012 

     
0.005 

     
0.017 

     
0.012 

     
0.052 

     
0.761  

     
0.002  

     
0.007  

255 2 
     
0.188  

     
0.034 

     
0.024 

     
0.010 

     
0.035 

     
0.024 

     
0.170 

     
0.483  

     
0.025  

     
0.008  

255 3 
     
0.320  

     
0.024 

     
0.017 

     
0.007 

     
0.026 

     
0.017 

     
0.105 

     
0.396  

     
0.085  

     
0.003  

297 1 
     
0.142  

     
0.040 

     
0.029 

     
0.012 

     
0.043 

     
0.029 

     
0.122 

     
0.573  

     
0.004  

     
0.006  

297 2 
     
0.139  

     
0.044 

     
0.031 

     
0.013 

     
0.046 

     
0.032 

     
0.137 

     
0.519  

     
0.034  

     
0.005  

297 3 
     
0.307  

     
0.035 

     
0.025 

     
0.011 

     
0.037 

     
0.025 

     
0.119 

     
0.400  

     
0.036  

     
0.005  
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*a County       
                    13 = Barrow 

  15 = Bartow 
  45 = Carroll 
  57 = Cherokee 
  63 = Clayton 
  67 = Cobb 
  77 = Coweta 
  89 = DeKalb 
  97 = Douglas 
113 = Fayette 
117 = Forsyth 
121 = Fulton 
135 = Gwinnett 
139 = Hall 
151 = Henry 
217 = Newton 
223 = Paulding 
247 = Rockdale 
255 = Spalding 
297 = Walton 

 

*b Facility  
                  1 = Freeway 
                  2 = Arterial 
                  3 = Local Road 
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APPENDIX B 

 

 
 

HDV2B VMT FRACTIONS FOR THE ATLANTA 

METROPOLITAN COUNTIES 
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Table B-1: HDV2B VMT Fractions for Counties in the Atlanta Metropolitan Area 
County Name County Code HDV2B VMT Fractions 
Barrow 13 0.102 
Bartow 15 0.102 
Carroll 45 0.101 
Cherokee 57 0.107 
Clayton 63 0.089 
Cobb 67 0.084 
Coweta 77 0.106 
DeKalb 89 0.077 
Douglas 97 0.102 
Fayette 113 0.097 
Forsyth 117 0.116 
Fulton 121 0.097 
Gwinnett 135 0.094 
Hall 139 0.100 
Henry 151 0.098 
Newton 217 0.104 
Paulding 223 0.107 
Rockdale 247 0.119 
Spalding 255 0.101 
Walton 297 0.121 
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APPENDIX C 

 

 
 

MOBILE6.2 INPUTS AND OUTPUTS FOR THE ATLANTA 

METROPOLITAN AREA 
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C.1 MOBILE6.2 Inputs for the Atlanta Metropolitan Area  
 
 
MOBILE6 INPUT FILE : 
 
AGGREGATED OUTPUT  : 
DATABASE EMISSIONS : 2111 1111 22 
DATABASE FACILITIES: Freeway Arterial Local  
DATABASE OUTPUT    :   
DATABASE VEHICLES  : 22222 22222222 2 222 22222222 222 
PARTICULATES       : SO4 OCARBON ECARBON GASPM LEAD BRAKE TIRE 
POLLUTANTS         : HC CO NOX 
WITH FIELDNAMES    : 
REPORT FILE        : AtlVMTEM.txt 
  
 
RUN DATA 
HOURLY TEMPERATURES: 74 74 74 84 84 84 92 92 92 94 94 94 
                     89 89 89 81 81 81 75 75 75 72 72 72 
FUEL RVP           : 7.0 
EXPRESS HC AS VOC  : 
EXPAND EXHAUST     : 
EXPAND EVAPORATIVE : 
EXPAND LDT EFS     : 
EXPAND HDGV EFS    : 
EXPAND HDDV EFS    : 
EXPAND BUS EFS     : 
 
STAGE II REFUELING :  
92 3 81. 81. 
 
FUEL PROGRAM       : 4 
  150.0  150.0  150.0   90.0   30.0   30.0   30.0   30.0 
   30.0   30.0   30.0   30.0   30.0   30.0   30.0   30.0 
 1000.0 1000.0 1000.0 1000.0  150.0  150.0   87.0   87.0 
   80.0   80.0   80.0   80.0   80.0   80.0   80.0   80.0 
 
REG DIST           : 02regis2.d 
 
ANTI-TAMP PROG     :  
82 75 97 22222 11111111 1 11 097. 12111111 
 
I/M DESCRIPT FILE  : iminfo-p.d 
I/M CREDIT FILE    : Tech12.d 
 
SCENARIO REC       :  Freeway, Atlanta, 2004, 59mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
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                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 59 Freeway 100.0 0.0 0.0 0.0 
 
SCENARIO REC       : Freeway, Atlanta, 2004, 55mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 55 Freeway 100.0 0.0 0.0 0.0 
 
SCENARIO REC       : Freeway, Atlanta, 2004, 53mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 53 Freeway 100.0 0.0 0.0 0.0 
 
SCENARIO REC       : Arterial, Atlanta, 2004, 54mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 54 Arterial 
 
SCENARIO REC       : Arterial, Atlanta, 2004, 47mph 
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CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 47 Arterial 
 
SCENARIO REC       : Arterial, Atlanta, 2004, 44mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 44 Arterial 
 
SCENARIO REC       : Arterial, Atlanta, 2004, 43mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 43 Arterial 
 
SCENARIO REC       : Arterial, Atlanta, 2004, 38mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
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AVERAGE SPEED      : 38 Arterial 
 
SCENARIO REC       : Local Road, Atlanta, 2004, 12.9mph 
 
CALENDAR YEAR      : 2004 
EVALUATION MONTH   : 7 
ALTITUDE           : 1 
RELATIVE HUMIDITY  : 68 68 68 50 50 50 37 37 37 32 32 32 
                     40 40 40 56 56 56 64 64 64 70 70 70 
BAROMETRIC PRES    : 28.98 
PARTICLE SIZE      : 2.5 
PARTICULATE EF     : PMGZML.CSV PMGDR1.CSV PMGDR2.CSV PMDZML.CSV 
PMDDR1.CSV PMDDR2.CSV 
DIESEL SULFUR      : 500.00 
AVERAGE SPEED      : 12.9 Local 
 
END OF RUN 
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C.2 Summary of MOBILE6.2 Outputs of NOX and PM2.5 Emission Rates for 
the Atlanta Metropolitan Area 
 
 

Table C-1: MOBILE6.2 NOX and PM2.5 Emission Rates (g/mi) for the Atlanta 
Metropolitan Area  

Pollutant Speed HDV Class Bus 
 

Facility 
 *c 2B 3 4 5 6 7 8A 8B School Urban 

 
NOX 1 59 4.81 5.73 6.83 6.52 10.03 13.03 17.59 22.61 16.81 21.87 
 
NOX 1 53 4.55 5.12 6.01 5.95 8.96 11.47 15.65 20.26 14.60 19.19 
 
NOX 1 55 4.45 4.93 5.74 5.76 8.62 10.97 15.04 19.53 13.91 18.33 
 
NOX 2 47 4.50 5.03 5.88 5.86 8.40 10.80 13.24 16.89 14.26 18.77 
 
NOX 2 44 4.18 4.40 5.04 5.24 7.30 9.24 11.32 14.56 12.07 16.07 
 
NOX 2 54 4.06 4.21 4.80 5.04 6.98 8.78 10.76 13.88 11.43 15.27 
 
NOX 2 43 4.03 4.17 4.74 4.99 6.90 8.68 10.65 13.74 11.30 15.10 
 
NOX 2 38 3.87 3.98 4.52 4.78 6.59 8.28 10.17 13.16 10.75 14.39 
 
NOX 3 12.9 3.56 4.72 5.80 5.19 7.91 10.63 12.05 14.96 14.47 18.55 
 
PM2.5 1 59 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 1 53 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 1 55 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 2 47 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 2 44 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 2 54 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 2 43 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 2 38 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 
 
PM2.5 3 12.9 0.08 0.11 0.12 0.09 0.21 0.29 0.31 0.42 0.75 0.70 

 
*c Facility 1 = Freeway; 2 = Arterial; 3 = Local Road 



 

 164

REFERENCES 

 

 

 

ABA (2000). 2000 Motor coach Census. American Bus Association. 

Ahanotu, D. (1999). Heavy-Duty Vehicle Weight and Horsepower Distributions: 
Measurement of Class-specific Temporal and Spatial. Presented for A 
Doctoral Thesis. Georgia Institute of Technology. Atlanta, GA. 

Arya, S. (1999). Air Pollution Meteorology and Dispersion. Oxford University Press, Inc. 
New York, NY. 

Bachman, W., W. Sarasua, S. Hallmark, and R. Guensler (2000). Modeling regional 
mobile source emissions in a geographic information system framework. 
Transportation Research, Part C. pp. 205 ~ 229. 

BTS (2003). National Transportation Statistics. Bureau of Transportation Statistics, U.S. 
Department of Transportation. 

CARB (2002). EMFAC2002: Calculating Emission Inventories for Vehicles in California 
User’s Guide. Air Resource Board, California Environmental Protection 
Agency. 

CCT (2004). Route Descriptions and Schedules, Cobb Community Transit (See 
http://www.cobbdot.org/cct.htm#routes, Accessed June 2004). 

Census Bureau (2004). 2002 Economic Census, Vehicle Inventory and Use Survey. 
Census Bureau, U.S. Department of Commerce.  

CFR (2004a). Federal Motor Carrier Safety Regulations: General (49CFR390). Code of 
Federal Regulations, National Archives and Records Administration. 

CFR (2004b). Federal Motor Vehicle Safety Standards/Definitions (49CFR571.3). Code 
of Federal Regulations, National Archives and Records Administration. 



 

 165

CFR (2004c). Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty 
Engines; Gaseous and Particulate Exhaust Test Procedures (40CFR86.1327). 
Code of Federal Regulations, National Archives and Records Administration. 

CFR (2004d). National Primary and Secondary Ambient Air Quality Standards 
(40CFR50). Code of Federal Regulations, National Archives and Records 
Administration. 

CFR (2004e). Gross Vehicle Weight Rating (40CFR86.1803). Code of Federal 
Regulations, National Archives and Records Administration.      

CFR (2004f). Transient Test Cycle Generation (40CFR86.1333). Code of Federal 
Regulations, National Archives and Records Administration. 

CFR (2004g). Useful Life (40CFR86.1805). Code of Federal Regulations, National 
Archives and Records Administration.    

CFR (2004h). Control of emissions from new and in-use highway vehicles and 
engines/Definitions (40CFR86.1803-1). Code of Federal Regulations, 
National Archives and Records Administration. 

CFR (2004i). Calculations: exhaust emissions (40CFR86.1342-90). Code of Federal 
Regulations, National Archives and Records Administration. 

CFR (2004j). Truck Size and Weight, Route Designations: Weight Limitations 
(23CFR658.17). Code of Federal Regulations, National Archives and Records 
Administration. 

CRS (2004). Particulate Matter (PM2.5): National Ambient Air Quality Standards 
(NAAQS) Implementation. Order Code RL32431. Congress Research 
Services.  

C-TRAN (2004). Route Schedules, Clayton County Board of Commissioners (See 
http://web.co.clayton.ga.us/ctran/schedule.htm, Accessed June 2004).  

Davis, W., K. Wark, and C. Warner (1998). Air Pollution Its Origin and Control, 3rd 
Edition. Addison Wesley Longman, Inc. Menlo Park, California. 



 

 166

DCC (2004). DaimlerChrysler Corporation Truck Specifications (See 
http://www.dodge.com, Accessed November 2004). 

Feng, C., S. Yoon, and R. Guensler (2005). Data Needs for a Proposed Modal Heavy-
Duty Diesel Vehicle Emission Model. Conference proceedings for the 98th Air 
and Waste Management Association Annual Meeting. Minneapolis, MN. 

FHWA (1993 ~ 1999). Highway Statistics Series. Federal Highway Administration, U.S. 
Department of Transportation.  

FHWA (1994). Bridge Formula Weights. Publication No. FHWA-MC-94-007. Federal 
Highway Administration, U.S. Department of Transportation. 

FHWA (1996). Quick Response Freight Manual: Final Report. Publication No. DTFH61-
93-C-00075/DTFH61-93-C-00216. Federal Highway Administration, U.S. 
Department of Transportation. 

FHWA (1997). Transportation Conformity: A Basic Guide for State & Local Officials. 
Publication No. FHWA-PD-97-035. Federal Highway Administration, U.S. 
Department of Transportation. 

FHWA (1999). 1999 Highway Statistics. Federal Highway Administration, U.S. 
Department of Transportation. 

FHWA (2000). The Comprehensive Truck Size and Weight Study. Publication No. 
FHWA-PL-00-029. Federal Highway Administration, U.S. Department of 
Transportation. 

FHWA (2001). Traffic Monitoring Guide. Publication No. FHWA-PL-01-021. Federal 
Highway Administration, U.S. Department of Transportation. 

FHWA (2005). Highway Performance Monitoring System (See 
http://www.fhwa.dot.gov/policy/ohpi/hpms/index.htm, Accessed February 
2005). 

Fischer, M. and M. Han (2001). Truck Trip Generation Data, NCHRP Synthesis 298. 
Transportation Research Board, National Research Council. National 
Academy Press. Washington, D.C.  



 

 167

Ford (2004). Ford Motor Company Truck Specifications (See 
http://www.fordvehicles.com/trucks, Accessed November 2004). 

FR (2004). Air Quality Designations and Classifications for the 8-hr Ozone National 
Ambient Air Quality Standards; Early Action Compact Areas with Deferred 
Effective Dates. Federal Register, Vol. 69, No. 84. National Archives and 
Records Administration. 

Gautam, M., and N. Clark (2003). Heavy-Duty Vehicle Chassis Dynamometer Testing 
for Emissions Inventory, Air Quality Modeling, Source Apportionment and 
Air Toxics Emission Inventory; Phase I Report. Publication CRC Project No. 
E-55/E-59. Coordinating Research Council.  

GCT (2004). Routes and Schedules, Gwinnett County Transit (See 
http://www.gctransit.com/frame_set.html, Accessed June 2004). 

GDNR (2001). TECHNICAL MEMORADUM: Assignment of HPMS Functional 
Classification and Posted Speed Limit Attributes to the Atlanta Regional 
Commission Highway Network. Georgia Department of Natural Resources. 

GDNR (2003). Georgia’s Post-1999 Rate-of-Progress State Implementation Plan 
Revision for the Atlanta 1-Hour Ozone Nonattainment Area, Appendix A, 
Exhibit 3. Georgia Department of Natural Resources. 

GDNR (2005). Existing State Implementation Plans. Georgia Department of Natural 
Resources (See http://www.dnr.state.ga.us/dnr/environ/, Accessed February 
2005). 

GMC (2004). General Motors Corporation/Chevrolet Specifications (See 
http://www.chevrolet.com, Accessed November 2004). 

Grant, C., R. Guensler, and M. Meyer (1996). Variability of heavy-duty vehicle operating 
mode frequencies for prediction of mobile emissions. Proceeding of the 89th 
Air and Waste Management Association Annual Meeting. Pittsburgh, PA.  

Guensler R., D. Sperling, and P. Jovania (1991). Uncertainty in the Emission Inventory 
for Heavy-Duty Diesel-Powered Trucks. Research Report UCD-ITS-RR-91-
02. Institute of Transportation Studies, University of California. Davis, CA. 



 

 168

Guensler, R., K. Dixon, V. Elango, and S. Yoon (2004). MOBILE-Matrix: Georgia 
Statewide MTPT Application for Rural Areas. In Transportation Research 
Record: Journal of Transportation Research Board, No. 1880, TRB, National 
Research Council, Washington, D.C., pp. 83-89. 

Guensler, R., S. Yoon, C. Feng, H. Li, and J. Jun (2005a). Heavy-Duty Diesel Vehicle 
Modal Emissions Modeling Framework. Regional Applied Research Effort 
(RARE) Project. Presented to U.S. Environmental Protection Agency. Georgia 
Institute of Technology. 

Guensler, R., S. Yoon, C. Fung, V. Elango, and M. Rodgers (2005b). Heavy-Duty Diesel 
Vehicle Modal Emissions Modeling Framework. Conference Presentation for 
the 15th CRC On-Road Vehicle Emissions Workshop. San Diego, CA. 

Hallenbeck, M. and H. Weinblatt (2004). Equipment for Collecting Traffic Load Data. 
National Cooperative Highway Research Program Report No. 509. 
Transportation Research Board, National Academes.   

HEI (1995). Diesel Exhaust: A Critical Analysis of Emissions, Exposure, and Health 
Effects (A Special Report of the Institute's Diesel Working Group). Health 
Effects Institute, Cambridge, MA. 

Heywood, J. (1998). Internal Combustion Engine Fundamentals. McGraw Hill, Inc. New 
York, NY.  

Hill, L. (2003). Diesel Engines: Emissions and Human Exposure (See 
http://www.catf.us/publications/index.php, Accessed July, 2004). 

Huffman, G. P. (2001). Molecular Structure and Microstructure of PM2.5 Derived from 
Stationary and Mobile Fossil Fuel Sources. Annual report on research 
supported by the National Science Foundation.  

Kimbrough, Sue. (2004). R.L. Polk Vehicle Classification (Personale Communication, 
January 2004). 

Koupal, J., E. Nam, B. Giannelli, and C. Bailey (2004). The MOVES Approach to Modal 
Emission Modeling. The 14th CRC  On-Road Vehicle Emissions Workshop. 
Coordinating Research Council. San Diego, CA.  



 

 169

Lindhjem, C. and T. Jackson (1999). Update of Heavy-Duty Emission Levels (Model 
Years 1988-2004+) for Use in MOBILE6. Publication No. EPA420-R-99-010. 
U.S. Environmental Protection Agency. 

Lloyd, A. C. and T. A. Cackette (2001). Diesel Engines: Environmental Impact and 
Control. Journal of Air and Waste Management Association. Volume 51, 
pp.809-847.  

MARTA (2004). Transit Schedules and Maps, Metropolitan Atlanta Rapid Transit 
Authority (See http://www.itsmarta.com/getthere/schedules/index.htm, 
Accessed June 2004). 

Merrion, D. F. (1994). Diesel Engine Design for the 1990s. SAE Publication No. SP-
1011(940130). Society of Automotive Engineers, Inc. Warrendale, PA. 

Meyer, M. and E. Miller (2000). Urban Transportation Planning, 2nd Edition. McGraw 
Hill, Inc. New York, NY.  

Moran, J. and M. Morgan (1994). Meteorology; the Atmosphere and the Science of 
Weather, 4th Edition. Macmillan College Publishing Company, Inc. New York, 
NY.   

Nam, E. (2003). Proof of Concept Investigation for the Physical Emission Rate Estimator 
(PERE) for MOVES. Publication No. EPA420-R-03-005. U.S. Environmental 
Protection Agency. 

NPTS (1995). Nationwide Personal Transportation Survey (See 
http://npts.ornl.gov/npts/1995/courseware/index.html, Accessed February 
2005).  

NRC (1995). Expanding Metropolitan Highways: Implications for Air Quality and 
Energy Use. Special Report 245. National Research Council (NRC), National 
Academy Press. Washington, D.C. 

NRC (1997). Improving Transportation Data for Mobile Source Emission Estimates. 
NCHRP Report 394. National Research Council, National Academy Press. 
Washington, D.C. 

NRC (1999). Ozone-Forming Potential of Reformulated Gasoline. National Research 
Council, National Academy Press. Washington, D.C. 



 

 170

NRC (2000). Modeling Mobile Source Emissions. National Research Council, National 
Academy Press. Washington, D.C. 

ODOT (2004). Improving Freight Data Collection Methods. Publication No. RSN 05-01. 
Oregon Department of Transportation.  

Patten, M., K. Goulias (2004). Integrated Survey Design for a Household Activity-Travel 
Survey in Centre County, Pennsylvania. Conference Proceedings for the 83rd 
Transportation Research Board Annual Meeting. Washington, D.C.    

Ramamurthy, R., N. Clark, C. Atkinson, and D. Lyons (1998). Models for predicting 
Transient Heavy Duty Vehicle Emissions. SAE Publication No. 982652. 
Society of Automotive Engineers, Inc. Warrendale, PA. 

RLP (2005). Polk’s Motor Vehicle Registration Manuals. R.L. Polk & Co (See 
http://www.polk.com/products/25_mvrm.htm, Accessed June 2005).   

Rodgers, M., R. Guensler, J. Pearson, O. Kemenova, S. Yoon, and P. Zhang (2005). 
Atlanta Heavy-Duty Vehicle and Equipment Inventory and Emissions Study 
(AHDVEIES): Data Collection Report.  Submitted to Georgia Regional 
Transportation Authority. Georgia Institute of Technology.  

Ruiter, E. (1992). Development of an Urban Truck Travel Model for the Phoenix 
Metropolitan Area. Report No. FHWA-A292-314. Arizona Transportation 
Research Center, Arizona Department of Transportation. 

Sawyer, R., R. Harley, S. Cadle, J. Norbeck, R. Slott, and H. Bravo (1998). Mobile 
Sources Critical Review: 1998 NARSTO Assessment. CRC Project No. E-34. 
Coordinating Research Council, Alpharetta, GA.    

Sharma, S., G. Liu, and S. Thomas (1998). Sources of Error in Estimating Truck Traffic 
from Automatic Vehicle Classification Data. Journal of Transportation and 
Statistics, Vol. 1, No. 3; Bureau of Transportation Statistics, Washington, DC., 
pp. 89-93. 

Sheth, A., and T. Giel (2000). Understanding the PM-2.5 Problem; Studies shed light on 
primary, secondary source control. Pollution Engineering, March 2000, pp. 
32-35. 



 

 171

SCAQMD (2000). Multiple Air Toxics Exposure Study (MATES-II) in the South Coast 
Air Basin. South Coast Air Quality Management District, CA. 

Spedding, D. (1974). Air Pollution. Oxford University Press. London, UK. 

Stone, R. (1992). Introduction to Internal Combustion Engines, 2nd Edition. Society of 
Automotive Engineers, Inc. Warrendale, PA. 

Thornton, M., R. Guensler, and P. Schropp (1998). The Development of an Urban 
Commercial Vehicles Travel Model and Heavy-Duty Vehicle Emissions 
Model for the Atlanta Region. Conference Proceedings for the 77th 
Transportation Research Board Annual Meeting, Washington, D.C.  

Truck Index (1997a). Gasoline Truck Index: Specifications of Current Model Gasoline 
Highway Trucks & Tractors. Truck Index, INC., Santa Ana, CA. 

Truck Index (1997b). Diesel Truck Index: Specifications of Current Model Diesel 
Highway Trucks & Tractors. Truck Index, INC., Santa Ana, CA. 

USEPA (1995). AP-42 Volume II. Compilation of Air Pollution Emission Factors, 
Mobile Sources, Appendix H. U.S. Environmental Protection Agency.     

USEPA (1996a). Indicators of the Environmental Impacts of Transportation; Highway, 
Rail, Aviation, and Maritime Transport. Publication No. EPA230-R-96-009. 
U.S. Environmental Protection Agency. 

USEPA (1996b). Use of Locality-Specific Transportation Data for the Development of 
Mobile Source Emissions Inventory. U.S. Environmental Protection Agency. 

USEPA (1998). Update of Fleet Characterization Data for Use in MOBILE6 – Final 
Report.  Publication No. EPA420-P-98-016. U.S. Environmental Protection 
Agency.    

USEPA (2001a). Fleet Characterization Data for MOBILE6.  Publication No. EPA420-
R-01-047. U.S. Environmental Protection Agency.    

USEPA (2001b). Final Facility-specific Speed Correction Factors. Publication No. 
EPA420-R-01-060. U.S. Environmental Protection Agency.   



 

 172

USEPA (2001c). Fleet Characterization Data for MOBILE6: Development and Use of 
Age Distributions, Average Annual Mileage Accumulation Rates, and 
Projected Vehicle Counts for Use in MOBILE6. Publication No. EPA420-R-
01-047. U.S. Environmental Protection Agency. 

USEPA (2001d). EPA’s New Generation Mobile Source Emissions Model: Initial 
Proposal and Issues. Publication No. EPA420-R-01-007. U.S. Environmental 
Protection Agency.  

USEPA (2002a). User’s Guide to MOBILE6.1 and MOBILE6.2: Mobile Source 
Emission Factor Model. Publication No. EPA420-R-02-028. U.S. 
Environmental Protection Agency. 

USEPA (2002b). Update Heavy-Duty Engine Emission Conversion Factors for 
MOBILE6: Analysis of Fuel Economy, Non-engine Fuel Economy 
Improvement and Fuel Densities. Publication No. EPA420-R-02-006. U.S. 
Environmental Protection Agency.  

USEPA (2002c). Update Heavy-Duty Engine Emission Conversion Factors for 
MOBILE6: Analysis of BSFCs and Calculation of Heavy-Duty Engine 
Emission Conversion Factors. Publication No. EPA420-R-02-005. U.S. 
Environmental Protection Agency.  

USEPA (2002d). Development of Heavy-Duty NOX Off-Cycle Emission Effects for 
MOBILE6. Publication No. EPA420-R-02-004. U.S. Environmental 
Protection Agency.    

USEPA (2002e). Methodology for Developing Modal Emission Rates for EPA’s Multi-
Scale Motor Vehicle and Equipment Emission System. Publication No. 
EPA420-R-02-027. U.S. Environmental Protection Agency. 

USEPA (2003). 2003 National Air Quality and Emissions Trend Report. U.S. 
Environmental Protection Agency. 

USEPA (2004a). Fine Particle (PM2.5) Designations (See 
http://epa.gov/pmdesignations/index.htm, Accessed December 2004). U.S. 
Environmental Protection Agency. 

USEPA (2004b). Memorandum: Policy Guidance on the Use of MOBILE6.2 and the 
December 2003 AP-42 Method for Re-Entrained Road Dust for SIP 



 

 173

Development and Transportation Conformity. U.S. Environmental Protection 
Agency.  

USEPA (2004c). Technical Guidance on the Use of MOBIEL6 for Emissions Inventory 
Preparation. Publication No. EPA420-R-04-013. U.S. Environmental 
Protection Agency. 

USEPA (2005). Fuel Consumption Modeling of Conventional and Advanced Technology 
Vehicles in the Physical Emission Rate Estimator (PERE). Publication No. 
EPA420-P-05-001. U.S. Environmental Protection Agency.  

USSC (2000). Supreme Court Decision on the EPA’s Ozone & Particulate Matter Air 
Quality Standards, Nos. 99-1257 and 99-1426. U.S. Supreme Court. 

Weinblatt, H. (1996). Using Seasonal and Day-of-Week Factoring to Improve Estimates 
of Truck Vehicle Miles Traveled. In Transportation Research Record: Journal 
of Transportation Research Board, No. 1522, Transportation Research Board, 
National Research Council, Washington, D.C., pp. 1-8. 

Williamson, D., and M. Yao (2003). Improved Data Collection and Evaluation for 
Mobile6 based Conformity Analysis of Transportation Project. UTCA Report 
00466. University Transportation Center for Alabama. 

Wolf, J. (2000). Using GPS Data Loggers to Replace Travel Diaries in the Collection of 
Travel Data. Presented for A Doctoral Thesis. Georgia Institute of Technology. 
Atlanta, GA. 

Wyman, J. H. (1985). Field Evaluation of FHWA Vehicle Classification Categories. 
Materials & Research Division, Main Department of Transportation.   

Yoon S., P. Zhang, J. Pearson, R. Guensler, and M. Rodgers (2004a). A Heavy-Duty 
Vehicle Visual Classification Scheme: Heavy-Duty Vehicle Reclassification 
Method for Mobile Source Emissions Inventory Development. Conference 
Proceedings for the 97th Air and Waste Management Association Annual 
Meeting. Indianapolis, IN.    

Yoon, S., M. Rodgers, J. Pearson, and R. Guensler (2004b). Engine and Vehicle 
Characteristics of Heavy-Duty Diesel Vehicles in the Development of 
Emissions Inventories: Model Year, Engine Horsepower and Vehicle Weight. 
In Transportation Research Record: Journal of Transportation Research Board, 



 

 174

No. 1880, Transportation Research Board, National Research Council, 
Washington, D.C., pp. 99-107. 

Yoon, S., P. Zhang, J. Pearson, R. Guensler, M. Rodgers, and S. Kimbrough (2004c). 
Heavy-Duty VMT Translation for Mobile Source Emissions Inventories 
Using a New Heavy-Duty Vehicle Visual Classification Scheme. Conference 
Presentation for the 14th CRC On-Road Vehicle Emissions Workshop. San 
Diego, CA. 

Yoon, S., H. Li, J. Jun, R. Guensler, and M. Rodgers (2005a). Transit Bus Engine Power 
Simulation: Comparison of Speed-Acceleration-Road Grade Matrices to 
Second-by-Second Speed, Acceleration, and Road Grade Data. Conference 
proceedings for the 98th Air and Waste Management Association Annual 
Meeting. Minneapolis, MN.  

Yoon, S., J. Jun, H. Li, R. Guensler, M. Rodgers, and S. Kimbrouth (2005b). Transit Bus 
Load-Based Modal Emissions Simulation with Link Specific Speed-
Acceleration-Road Grade Matrices. Conference Presentation for the 15th CRC 
On-Road Vehicle Emissions Workshop. San Diego, CA. 

Yoon, S., H. Li, J. Jun, J. Ogle, R. Guensler, and M. Rodgers (2005c). A Methodology 
for Developing Transit Bus Speed-Acceleration Matrices to be Used in Load-
Based Mobile Source Emissions Models. Journal of Transportation Research 
Board, Transportation Research Board, National Research Council, 
Washington, D.C. (in progress).  

Yoon, S., P. Zhang, J. Pearson, R. Guensler, and M. Rodgers (2005d). A New Heavy-
Duty Vehicle VMT Estimation Method: Impact to Regional Emissions Rates 
and Its Application. Conference Presentation for the 15th CRC On-Road 
Vehicle Emissions Workshop. San Diego, CA. 

 

 

 

 

 



 

 175

VITA 

 

 

 

Seungju Yoon achieved his undergraduate degree (1995) from the Department of 

Polymer Engineering at the Chonnam National University in Korea.  After five-year 

working for a oil and petroleum company as an air environmental technology and project 

engineer, he enrolled to graduate programs in 2000.  He received his Master of Science 

degree from the Department of Civil and Environmental Engineering at the University of 

Tennessee, Knoxville with emphasis in air quality in 2002 and his Doctor of Philosophy 

degree from the School of Civil and Environmental Engineering at the Georgia Institute 

of Technology with emphasis in transportation engineering, geographic information 

systems, and environmental engineering in 2005. 

 

He is married to Juhyun Park and has a son Taehyuan Yoon.  At the time of 

writing, he resides with his family in downtown Atlanta, Georgia.  His research interests 

continue to be transportation and air quality planning and management issues. 


