
SoftCache Architecture

A Thesis
Presented to

The Academic Faculty

by

Joshua Bruce Fryman

In Partial Fulfillment
of the Requirements for the Degree

“Doctor of Philosophy”

College of Computing
Georgia Institute of Technology

August 2005

Copyright c© 2005 by Joshua Bruce Fryman

SoftCache Architecture

Approved by:

Hsien-Hsin S. Lee, Co-Advisor
Electrical and Computer Engineering
Georgia Tech, Advisor

Umakishore Ramachandran, Co-Advisor
College of Computing
Georgia Tech

Santosh Pande
College of Computing
Georgia Tech

Kenneth M. Mackenzie
College of Computing
Georgia Tech

Karsten Schwan
College of Computing
Georgia Tech

David E. Schimmel
Electrical and Computer Engineering
Georgia Tech

Date Approved: 18-July-2005

DEDICATION

It’s the nature of questions to multiply.

Joshua Fryman, 1992

Everything’s a production.

Tiago Stock, 1996

This work is dedicated to my wife, Hathai Sangsupan, who has been loving and supporting despite

the incredible pressure this has brought to bear on our lives. This work is also dedicated to Brieana

Fryman, our wonderful daughter who can always bring a smile to our faces, even during the roughest

of times.

iii

ACKNOWLEDGEMENTS

There are countless people I must thank for their support and advice during the years of my graduate

studies, yet there are a few who deserve special mention for their extraordinary friendship and

advice. In no particular order, they are:

• Ken Mackenzie, who took a chance on a high-risk student and inspired atypical thinking.

• Kishore Ramachandran, who always had friendly advice and encouragement to keep going.

• Sean Lee, who brought an encyclopedic knowledge of related work, implementation details,

and insight into any discussion.

• Karsten Schwan, who managed to provide excellent contacts to other people and industry

while also securing new equipment for the lab.

• Dave Schimmel and Santosh Pande, for always listening to random ideas and providing ex-

cellent suggestions.

• Chad Huneycutt, Peter Sassone, Ivan Ganev, Austen MacDonald, Craig Ulmer, Adam John-

son, and the rest of Arch-Beer, good friends who always had time for a serious discussion or

just plain procrastination over dinner somewhere.

• Neil Bright, Dan Forsyth, and the rest of CNS, who kept the IT infrastructure running and put

up with my intense interference and sometimes unwarranted animosity when things stopped

working.

• Philip and Osnat Teitelbaum, for pushing me to go for a graduate degree at all.

• Hathai Sangsupan, who has supported me through thick and thin and even consented to marry

me despite crazy hours and untold all-night hacking sessions.

• Brieana Fryman, who always can make her daddy smile.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

I SUMMARY . 1

II INTRODUCTION AND MOTIVATION . 3

2.1 Design Space . 4

2.2 Thesis Goals . 5

2.3 Thesis Organization . 7

III SOFTCACHE ARCHITECTURE . 8

3.1 SoftCache System Overview . 8

3.2 Static Analysis by the Server . 9

3.3 Dynamic Execution . 9

3.4 Handling Data in SoftCache . 12

3.5 Motivating Applications . 13

3.6 Related Work . 14

3.6.1 Overlays, Paging, and Caching . 15

3.6.2 Binary Rewriting and Program Analysis 17

IV SOFTCACHE SUPPORT FOR INSTRUCTION CACHING 19

4.1 Design Issues . 19

4.2 Static Analysis . 21

4.2.1 Seeding and Simulating . 21

4.2.2 Tracking the Stack . 24

4.2.3 Trampolines . 25

4.3 Simulation Framework . 25

4.4 MiBench Results . 26

4.4.1 Well Behaved Applications . 27

4.4.2 Adjustable Applications . 28

v

4.4.3 Minor Capacity Conflicts . 29

4.4.4 Major Capacity Conflicts . 30

4.5 Related Work . 31

4.5.1 Alternate Caches . 31

V SOFTCACHE SUPPORT FOR DATA CACHING 33

5.1 UTI-MTI Classification . 34

5.1.1 UTI/MTI Dynamic Distribution . 35

5.1.2 UTI/MTI Static Distribution . 36

5.1.3 Phasing . 38

5.1.4 Capturing UTI-MTI Divisions . 40

5.2 Unstable and Ambiguous References . 40

5.2.1 Capturing Unstable References . 43

5.3 Simulation Framework . 43

5.4 MiBench Results . 44

5.4.1 Well Behaved Applications . 46

5.4.2 Adjustable Applications . 46

5.4.3 Minor Capacity Conflicts . 47

5.4.4 Major Capacity Conflicts . 48

5.5 Related Work . 49

VI ANALYTICAL PERFORMANCE MODEL . 51

6.1 Network Impact . 51

6.1.1 Device Models . 51

6.1.2 Legacy . 53

6.1.3 Pull . 55

6.1.4 Push . 56

6.1.5 Analysis . 57

6.1.6 Best-Case Memory . 58

6.1.7 Worst-Case Network . 58

6.1.8 Mobile CPU . 60

6.1.9 Initial Impact . 60

6.1.10 Portability . 62

vi

6.2 ARM Processor . 64

6.2.1 Cache Overhead . 65

6.2.2 Area . 67

6.2.3 Bank Power . 68

6.2.4 Local vs. Remote Store . 69

6.3 SoftCache Penalties . 70

6.3.1 Energy and Delay . 71

VII REAL HARDWARE EVALUATION . 78

7.1 Sitsang Architecture . 78

7.2 Tuned microbenchmarks . 81

7.2.1 Caches . 82

7.2.2 MMUs . 85

7.2.3 PXA255 States . 86

7.2.4 Ethernet . 88

7.2.5 SDRAM . 89

7.3 Sitsang Measurements . 90

7.4 Multi-tasking . 91

7.5 Related Work . 92

VIIICONCLUSIONS AND FUTURE WORK . 94

8.1 Conclusions . 94

8.2 Future Work . 95

8.2.1 Program Analysis . 95

8.2.2 Cache Implementations . 95

8.2.3 Analytical Hardware Models . 96

8.2.4 Real Hardware Feasibility . 96

8.3 Future Vision . 97

APPENDIX A — PROPER POWER MEASUREMENT METHODS 98

APPENDIX B — MIBENCH RESULTS . 115

REFERENCES . 164

VITA . 172

vii

DOCUMENT . 173

viii

LIST OF TABLES

1 Placing software-managed caches in the overall design space. 6

2 SoftCache Interface Commands . 10

3 Instruction caching results summary for the MiBench suite. 28

4 Comparison of MTI and UTI statistics . 37

5 Data caching results summary for the MiBench suite. 45

6 Mobile DRAM characteristics . 75

7 Low-power Flash characteristics . 76

8 Network link characteristics . 77

9 VDC constant errors for various loads and stimulus conditions 113

10 Measurement equipment feature comparison . 114

11 MiBench bf performance results. 116

12 MiBench bitcnts performance results. 117

13 MiBench cjpeg performance results. 118

14 MiBench crc performance results. 119

15 MiBench dijkstra performance results. 120

16 MiBench fft performance results. 121

17 MiBench gs performance results. 122

18 MiBench ispell performance results. 123

19 MiBench lame performance results. 124

20 MiBench lout performance results. 125

21 MiBench madplay performance results. 126

22 MiBench math performance results. 127

23 MiBench patricia performance results. 128

24 MiBench pgp performance results. 129

25 MiBench qsort performance results. 130

26 MiBench rawcaudio performance results. 131

27 MiBench rijndael performance results. 132

28 MiBench say performance results. 133

29 MiBench search performance results. 134

ix

30 MiBench sha performance results. 135

31 MiBench susan performance results. 136

32 MiBench tiff2bw performance results. 137

33 MiBench tiffdither performance results. 138

34 MiBench toast performance results. 139

35 MiBench bf performance results. 140

36 MiBench bitcnts performance results. 141

37 MiBench cjpeg performance results. 142

38 MiBench crc performance results. 143

39 MiBench dijkstra performance results. 144

40 MiBench fft performance results. 145

41 MiBench gs performance results. 146

42 MiBench ispell performance results. 147

43 MiBench lame performance results. 148

44 MiBench lout performance results. 149

45 MiBench madplay performance results. 150

46 MiBench math performance results. 151

47 MiBench patricia performance results. 152

48 MiBench pgp performance results. 153

49 MiBench qsort performance results. 154

50 MiBench rawcaudio performance results. 155

51 MiBench rijndael performance results. 156

52 MiBench say performance results. 157

53 MiBench search performance results. 158

54 MiBench sha performance results. 159

55 MiBench susan performance results. 160

56 MiBench tiff2bw performance results. 161

57 MiBench tiffdither performance results. 162

58 MiBench toast performance results. 163

x

LIST OF FIGURES

1 Execution Model of a SoftCache System. 10

2 Dynamic Execution of a Client in SoftCache. 11

3 A typical well-behaved instruction cache application for the SoftCache 29

4 Adjustable behavior with an instruction cache application for the SoftCache 29

5 A representative application that has a minor capacity conflict problem 30

6 Major capacity conflict application example for the SoftCache 30

7 Basic concept of Uni-Targeted Instructions and Multi-Targeted-Instructions. 35

8 Distribution of UTI/MTI dynamic instances. 36

9 Difference between full application and SimPoint EIO 36

10 Example program structure to illustrate the concept of phasing and ratio changes. . 38

11 Exploring the phasing behavior in UTI-MTI . 40

12 The guard address table to approximate tags. 43

13 A well-behaved data cache application for SoftCache 46

14 Adjustable behavior with an instruction cache application for the SoftCache 47

15 A representative application that has a minor capacity conflict problem 48

16 A representative major capacity conflict application for SoftCache 48

17 Basic 3G cell phone or other ubiquitous networked device 52

18 The TC equilibrium point for different remote server processing times TSrv 61

19 Comparing the energy-delay equilibrium characteristics 61

20 Comparing the Push model energy-delay equilibrium characteristics 63

21 Comparing the Pull model energy-delay equilibrium characteristics 63

22 Overhead storage costs by cache size. 66

23 Different real cache overhead costs. 67

24 CACTI Power Comparison of SoftCache vs. Conventional Cache 69

25 Duration of computation TC that must pass . 72

26 Duration of computation TC that must pass (II) 73

27 Comparison of time for equilibrium energy win and energy-delay product win . . . 74

28 The simplified Sitsang power distribution logic. 79

29 A simplified internal diagram of the PXA255 processor. 80

xi

30 Simplified internal XScale microarchitecture . 80

31 Comparing the Legacy, Pull, and Push models on the Sitsang platform 90

32 Error in a PDA when battery VDC is assumed constant 100

33 Error in a PDA when HP power supply VDC is assumed constant 102

34 Test circuit to calibrate error terms in power measurements. 102

35 A close view of the complex component of real system power use. 104

36 An illustration of the sampling error and need for repeatibility. 107

37 Measuring current with a sense resistor, Rsense. 109

38 Measuring current with a current sensor like the SCD10PUR. 110

39 An example integrator circuit for long-running experiments. 111

40 MiBench bf in instruction cache . 116

41 MiBench bitcnts in instruction cache . 117

42 MiBench cjpeg in instruction cache . 118

43 MiBench crc in instruction cache . 119

44 MiBench dijkstra in instruction cache . 120

45 MiBench fft in instruction cache . 121

46 MiBench gs in instruction cache . 122

47 MiBench ispell in instruction cache . 123

48 MiBench lame in instruction cache . 124

49 MiBench lout in instruction cache . 125

50 MiBench madplay in instruction cache . 126

51 MiBench math in instruction cache . 127

52 MiBench patricia in instruction cache . 128

53 MiBench pgp in instruction cache . 129

54 MiBench qsort in instruction cache . 130

55 MiBench rawcaudio in instruction cache . 131

56 MiBench rijndael in instruction cache . 132

57 MiBench say in instruction cache . 133

58 MiBench search in instruction cache . 134

59 MiBench sha in instruction cache . 135

60 MiBench susan in instruction cache . 136

xii

61 MiBench tiff2bw in instruction cache . 137

62 MiBench tiffdither in instruction cache . 138

63 MiBench toast in instruction cache . 139

64 MiBench bf in data cache . 140

65 MiBench bitcnts in data cache . 141

66 MiBench cjpeg in data cache . 142

67 MiBench crc in data cache . 143

68 MiBench dijkstra in data cache . 144

69 MiBench fft in data cache . 145

70 MiBench gs in data cache . 146

71 MiBench ispell in data cache . 147

72 MiBench lame in data cache . 148

73 MiBench lout in data cache . 149

74 MiBench madplay in data cache . 150

75 MiBench math in data cache . 151

76 MiBench patricia in data cache . 152

77 MiBench pgp in data cache . 153

78 MiBench qsort in data cache . 154

79 MiBench rawcaudio in data cache . 155

80 MiBench rijndael in data cache . 156

81 MiBench say in data cache . 157

82 MiBench search in data cache . 158

83 MiBench sha in data cache . 159

84 MiBench susan in data cache . 160

85 MiBench tiff2bw in data cache . 161

86 MiBench tiffdither in data cache . 162

87 MiBench toast in data cache . 163

xiii

CHAPTER I

SUMMARY

Multiple trends in computer architecture are beginning to collide as process technology reaches ever

smaller feature sizes. Problems with managing power, access times across a die, and increasing

complexity to sustain growth are now blocking commercial products like the Pentium 4. These

problems also occur in the embedded system space, albeit in a slightly different form. However, as

process technology marches on, today’s high-performance space is becoming tomorrow’s embedded

space. New techniques are needed to overcome these problems.

In this thesis, we propose a novel architecture called SoftCache to address these emerging issues

for embedded systems. We reduce the on-die memory controller infrastructure which reduces both

power and space requirements, using the ubiquitous network device arena as a proving ground of

viability. In addition, the SoftCache achieves further power and area savings by converting on-die

cache structures into directly addressable SRAM and reducing or eliminating the external DRAM.

To avoid the burden of programming complexity this approach presents to the application de-

veloper, we provide a transparent client-server dynamic binary translation system that runs arbitrary

ELF executables on a stripped-down embedded target. The drawback to such a scheme lies in the

overhead of hundreds of additional instructions required to effect cache behavior, particularly with

respect to data caching. Another substantial drawback is the power use when fetching from remote

memory over the network. The SoftCache comprises this dynamic client-server translation system

on simplified hardware, targeted at Intel XScale (ARM) client devices controlled from Intel x86

servers over the network.

Reliance upon a network server as a “backing store” introduces new levels of complexity, yet

also allows for more efficient use of local space. The explicitly software managed aspects create a

cache of variable line size, full associativity, and high flexibility. This thesis explores these particular

issues, while approaching everything from the perspective of feasibility and actual architectural

changes.

1

Specifically, this thesis includes the macroblocks to make the SoftCache work, including an

instruction-cache based client-server dynamic translator; a data-cache extension; a power, delay,

and space analysis; and an analysis of different applications and their implications in this system.

The novel contributions of this thesis to the existing body of research are briefly summarized as:

• A distributed client-server dynamic binary translator/rewriter, a framework that is used to

implement the SoftCache system in a ubiquitous network environment

• A novel memory characterization based on target address enumeration, a technique that facil-

itates solving the previously intractable problem of software emulation for data caching

• A novel energy-delay study comparing remote network accesses to local main memory, indi-

cating that local memory is less than ideal

These techniques will partially relax the problems faced with current and next-generation de-

signs. Reduction of the logic required for memory controllers and simplification of on-die memories

will shrink die size and reduce latency effects. Application growth and corresponding complexity

is transparently solved with dynamic binary translation, and manufacturing cost for the embedded

domain is reduced with simpler device development models.

2

CHAPTER II

INTRODUCTION AND MOTIVATION

Embedded consumer systems continue to add more features while shrinking their physical device

size. Current 2.5/3G cell phones incorporate 144kbps or better network links, offering customers

not only phone services but also e-mail, web surfing, digital camera features, and video on de-

mand. With feature expansion demanding additional storage and memory in all computing devices,

densities of DRAM and Flash are increasing in an attempt to keep pace. This continuous storage

expansion translates to a growing power dissipation, temperature, and battery drain.

To reduce energy effects and increase battery life, designers use the smallest parts and lowest

part count possible. These design practices have the added benefit of keeping manufacturing costs

down. This effort to minimize available resources works against application feature expansion and

device flexibility for dynamic upgrades.

In an attempt to address some of these problems, companies such as NTT Japan are investing

time and research effort in solutions that allow for Mobile Computing – dynamically migrating

application code between the remote device and other network connected systems [63].

One avenue for power savings has not been fully considered, however. Many embedded devices,

and all mobile devices, have a network link (GSM, Bluetooth, Ethernet, etc.) into a larger distributed

environment. After designers incorporate sufficient power to support a network link, they then

attempt to minimize use of the link due to its excessive energy needs during activity. Products

therefore incorporate all the needed local storage in the device, buffering as much as possible to

avoid retransmission. This ignores the fact that the remote server has a much less restricted power

budget, and can be made arbitrarily fast to handle requests quickly.

For ubiquitous always-on devices like 3G cell phones, there is the potential to use the network

link as a means for accessing applications remotely. Such network usage could reduce local storage

space, thereby reducing energy demands on the mobile platform. This remote memory could lie in

a remote server, or simply be cached within the network infrastructure.

3

Utilizing the network link to access remote memory can provide a more energy efficient solution

than traditional local memory. Traditional designs assume that the additional cost of utilizing the

network link for moving code and data will far outweigh any benefit of removing or reducing local

storage. The common misconception assumes the network is in use constantly, and therefore is

much more power consuming than local storage. This is not always the case, as we will demonstrate.

The best low-power mobile DRAM available today is 100 times less expensive to access in terms

of energy per bit than a very low-power Bluetooth network. But for these same parts, the sleep-

mode current of the Bluetooth network module is 10 times less expensive than the DRAM part.

Therefore, if sufficient time elapses between accesses, the network link is more power efficient than

local DRAM.

2.1 Design Space

In the embedded space, there are two basic classes of motivating applications. The first class com-

prises ubiquitous sensor networks, where the price point of each sensor device must be minimal.

The ability to dynamically load new code into such “motes” is critical to support changing needs in

the environment. The SoftCache system we will propose provides a virtual workstation to the pro-

grammer, speeding development processes, and transparently running the virtual application on the

restricted sensor device. The second class, cell phones and PDAs, constantly rolls out new features

and service enhancements. Rather than requiring re-flashing of entire applications – an inherently

risky process – the SoftCache allows a micro-bootloader to be resident and load any application on

demand. This stripped-down approach allows for security patches, new applications, and a vehicle

for pay-per-service on non-standard activities (e.g., unlock the car you have been locked out of).

One step higher, the SoftCache technique may be applicable to more complex devices such as

network processors. When large corporations like Cisco write their switch software for a blade

with 16 ports, they would like that same software to run seamlessly on 4 ports or 8 ports. Rather

than spend precious developer hours revising applications and debugging one-offs, replete with the

maintenance headaches, systems like the SoftCache can seamlessly handle the change in underlying

hardware if coupled with domain specific knowledge.

4

A much more aggressive area of application lies in next-generation high-performance micropro-

cessors. Rather than have one large Pentium 4 or equivalent, the future is moving toward massive

CMPs of simplified cores. With 32, 64, or even 128 cores on one die, it becomes irrelevant what

instruction set the machine uses. Edge cores can run SoftCache like systems, and dynamically

translate IA64, x86-64, ARM, MIPS, and SPARC all at the same time. This would enable a new

generation of incredibly flexible systems, able to run any program from any platform with such dy-

namic translation systems. In the CMP model, the extremely high-speed on-board interconnect at

a fraction of the power for network links makes an immediate advantage for schemes like the Soft-

Cache when compared to traditional caches. Inside cores are fed from edge cores, with specialized

interrupt mechanisms passing chunks of code and data around as necessary.

2.2 Thesis Goals

In this thesis we explore an alternative mechanism for caching instructions and data near the cen-

tral processing core to address these problems, without significantly impacting program perfor-

mance. Such a solution hinges on the concept of removing the hardware control over cache storage,

thereby exposing the cache memory directly to software management. Rather than burdening the

programmer with the mechanics of manual memory management as attempted in the past (e.g., with

overlays), an automatic translation or rewriting system demonstrates transparent support for such a

software managed cache.

The concept of a software managed cache fits within the design space of other memory manage-

ment options when all are evaluated on a few key criteria, as suggested by Table 2.2. Of increasing

importance is the issue of power dissipation, with modern caches consuming tens of Watts. Related

to power slightly, yet closer to cost and speed of access, is the size of the memory storage space.

Caches have substantial overhead in their hardware design, whereas RAM does not require tags,

valid bits, etc. Regardless of design, a major concern is how easy it is for programmers to use.

Any system that increases complexity for programming should be immediately rejected, particu-

larly when software maintenance is approximately 90% of total lifetime software cost. A trade-off

exists, however, when programmers use inflexible tools that disallow optimizations which could

significantly impact performance, such as data pinning. Our qualitative perspective on these criteria

5

is shown in Table 2.2. While a software managed cache will address the topics sketched here, it also

introduces new problems in the overall system which require additional evaluation.

Table 1: Placing software-managed caches in the overall design space.
criteria hardware cache software cache virtual memory manual overlays

power bad good bad better
size (space) bad better bad good

programming better good good bad
flexibility bad better good bad

In this thesis, we implement and evaluate a software managed cache system. Using the top three

criteria from Table 2.2 – power, layout size, and programmer perspective or ease – we systematically

examine a SoftCache implementation.

As a typical example of an embedded processor, the StrongARM-110 is a low-power application-

flexible device. This processor, originally developed by DEC, is now part of Intel’s intellectual

property and the basis for their entire XScale product line. The evaluation of the SA-110 micro-

processor by its design engineers showed that the entire cache subsystem (storage, tags, MMU, and

write buffers) accounts for 62% of the total die power consumption[75]. This power consumption

was spent in half of the chip area and roughly 65% of the 2.5 million transistor budget. These ob-

servations imply that, by Amdahl’s Law[4], the most gain can come from significantly cutting the

size (and power) of the cache related systems.

Based on the results from the ARM analysis, it is apparent that a significant amount of to-

tal power consumption is spent on the hardware support features of the cache. This suggests that

removing the hardware control of caches by placing the cache storage area under software man-

agement may result in substantial power savings. Redesigning a cache system to support software

management explicitly is a non-trivial task. Such a design is the primary focus of this work.

Caches and automated memory management systems (like virtual memory) evolved, however,

to facilitate easier programming models. Many would consider it a step backward to remove the

automated hardware support for caching, thereby placing the burden of memory management back

on the programmer. We therefore propose to achieve software management over the cache memory

space by an automated binary translation mechanism which will transparently manage the cache

6

storage space. Such a system provides the benefit of transparent operation to the programmer while

also reducing power consumption through removal of hardware support for virtual memory and

caches.

A potential drawback to such a solution is that software is generally slower than hardware.

A major objective of this thesis discussion is to demonstrate that such a software managed cache

system will not be significantly slower than hardware. A further obstacle is the use of network

infrastructure for accessing remote memory. Conventional wisdom is that using a network is far

more expensive than using local storage, and we propose to explore this area carefully.

2.3 Thesis Organization

This thesis is organized into five primary chapters, with a concluding chapter and two appendi-

cies. The conceptual organization and behavior of our SoftCache system is contained in Chapter 3.

These conceptual basics are extended by introducing a working instruction cache replacement in

Chapter 4, followed by a working data cache replacement in Chapter 5. The implementation details

of a working SoftCache present many technical challenges for proving the feasibility of our system.

Chapter 6 explores the analytical underpinnings of our proposed system and uses typical hardware

datasheets to derive initial answers. To translate the analytical results to real hardware, Chapter 7

explores an Intel PDA reference design platform for true power consumption and network delays.

Finally, Chapter 8 concludes the primary thesis material and presents future research suggestions.

Appendix A is a detailed explanation of proper hardware measurement and analysis for real

systems. This appendix also contains error estimations for different pitfalls and limitations of mea-

surement tools available. It is a reference to aid in proper power studies of hardware. Appendix B is

a detailed set of results for both the instruction and data caching behaviors of the SoftCache system

for the MiBench embedded benchmark suite.

7

CHAPTER III

SOFTCACHE ARCHITECTURE

This chapter introduces the overall organization of the SoftCache system, demonstrating the vari-

ous behaviors or modes of operation. Later chapters will present detailed examples of the actual

dynamic binary translation system.

The basic idea behind a SoftCache system is to use remote servers as virtual memory, which ef-

fectively contain infinite resources while leaving the “indispensable” components on the capability-

limited embedded devices. For an always-connected environment, information including code and

data can be retrieved on demand instead of storing all of it in the embedded device. As such, the

hardware features on these embedded devices, in particular both volatile and non-volatile mem-

ory, can be kept at a minimal level. This hardware simplification may reduce the power and area

requirements, leading to longer operation hours and lower cost.

3.1 SoftCache System Overview

The SoftCache system is based on a client-server computing model. We implemented and tested

two working SoftCache prototypes, one based on the Intel XScale platform and the other on Sun Ul-

traSPARC. This thesis focuses only on the ARM/XScale implementation. During startup, a server

loads the invoked application and prepares it for translation to the embedded device; the client dy-

namically communicates with the server to load necessary code and data on demand for execution.

The atomic granularity of each request made by the client is called a “chunk.” The size of each code

fragment in a chunk, a design option, can be a basic block, a hyperblock, a function, or even an ar-

bitrary program partition. Dynamic data allocation, completely managed by the server, is discussed

in Section 3.4.

For each target application, an arbitrary ELF file image is provided to the server and is broken

into chunks of code and data for future on-demand transfer. On the client, an exception is triggered

to acquire the demand chunk from the remote server whenever the client attempts to fetch and

8

execute non-resident code targets or data variables. Once acquired, these chunks will then stay

inside the local on-chip memory until they are eagerly evicted or de-allocated when the application

is terminated. As long as the embedded device contains just enough on-chip RAM to hold the “hot

code” and associated data, a steady state will eventually be reached. Henceforth there will be no

more remote transfers until the execution shifts program phases into a different code or data working

set.

Our existing SoftCache design focuses on small embedded processors and ignores issues that

arise with multiple cache levels. There is potential for treating both L1 and L2 as SoftCaches,

or constructing a SoftCache/hardware hybrid for performance reasons, such as a hardware L1 and

SoftCache L2.

3.2 Static Analysis by the Server

As previously mentioned, the server loads an arbitrary ELF image. Our implementations require

the image to be statically1 linked. The server constructs, as per the ELF header information, a

virtual memory space and seeds the bss and data segments to appropriate values. As the program

is loaded, extensive static analysis is performed to isolate blocks of code (e.g., into basic blocks

or functions), beginning with the ELF-specified entry vector. Each block is annotated to support

fast rewriting for the target client. To facilitate this translation process, the server also maintains a

shadow copy of the client’s local memory. As blocks are rewritten on demand, they are copied into

the shadow copy and then patches are sent from the server to the client to update the client memory

as needed. Additional details of the static analysis and partial evaluation are in Section 4.2.

3.3 Dynamic Execution

When an application is running on the client, the client and server communicate via five major

SoftCache interface commands as listed in Table 3.3. As illustrated in Figure 1, the client begins

by activating its interface block, that will connect to a remote server and request the first chunk of

code and data by sending an initial start command. The server in turn translates the first block of

1It can be easily extended to support dynamically linked images.

9

main() and returns it to the client with a patch memory command. This transaction is imme-

diately followed by a resume execution command. Once the initial block is loaded, execution

begins.

Table 2: SoftCache Interface Commands
Command Sent by Client Function Server Function

initial start Client Request the first data chunk Translate the first block of main()
patch memory Server Receive data chunks Allocate code and data chunks

resume execution Server Continue the instruction execution Wake up the client to continue execution
exception address Client Request missing data chunks Translates address and updates the shadow map table

return memory Server Return dirty data Send data address and size for update in server

Patch

Interface
Command

Server

Interface
Command

SoftCacheChunk

Dirty
Data

Shadow
Memory
Map

Segment

Instruction

Segment
Data

Client

Memory

Virtual
(e.g. patch_memory)

Commnd

Command
(e.g. exception_address)

Figure 1: Execution Model of a SoftCache System.

The command patch memory is the key technique to support and enable an effective SoftCache

system. We use Figure 2 to demonstrate the patch memory operation based on instruction chunks

transferred at basic-block granularity. Figure 2(a) shows the control flow graph of our example

code. The server translates one basic block at a time and sends it back to the client for execution.

Each branch at the end of a basic block will be replaced with exception traps. For example, the exit

of a conditional branch with two possible exit conditions, taken or not-taken, will be guarded by two

exception trap instructions as shown in Figure 2(b). As the client reaches the end of the block (i.e.,

a trap execution), one path is resolved. This path-resolving exception invokes the interface wrapper

to again query the server for the missing chunks of code or data, with the client passing back the

address that generated the fault with the exception address command.

The server checks the shadow memory map tables that maintain a copy of the client memory

10

(c) Exception Address 2

b .L4

.L0:

cmp $3,$0
ble .L1

.L4:

cmp $8,100
ble .L0

.L0:

cmp $3,$0

(!le) trap
(le) trap

(!le) trap (le) trap

.L0:

cmp $3,$0

(!le) trap
ble .L1

.L1:

b .L4

(a) Original Program

(!le) trap

.L0:

cmp $3,$0

(!le) trap

(!le) trap

ble .L1

.L1:

.L4:

cmp $8,100

(!le) trap
ble .L0

.L1:

trap

 (before Server sends)

(b) Exception Address 1 (Client Code)

 (To the Client)(d) After Optimization

Figure 2: Dynamic Execution of a Client in SoftCache.

allocation map to determine the block to load for a given exception address. The server then trans-

lates, shadow-updates, and patches the remote client with the new chunks using the patch memory

command followed by a new resume execution command. Figure 2(c) shows the new code on the

client side with a newly patched basic block followed by the taken path. The taken-path guard trap

instruction of its predecessor basic block is now replaced with a translated branch instruction.

For unconditional branches, the server performs an optimization by eliminating the branch in-

struction during patching, a technique similar to trace construction using the fill unit in high per-

formance processors [43]. This optimization is illustrated in the transition from Figure 2(c) to

Figure 2(d). The whole process continues iteratively until the hot-state of the program is resident

in the client memory, at which point begins a full-speed execution. This execution may be even

faster than in a hardware cache model, given the faster access times SRAMs can sustain when the

11

cache overhead (e.g., tag look-up and compare) is removed. Additionally, based on the ARM in-

struction set limited range for immediate offsets with load/store instructions, it becomes possible to

periodically eliminate some instructions as discussed in Section 4.2.

Given sufficient time and a large application, the server will realize that insufficient space is

remaining in the SoftCache to load new chunks. In this case, the system performs memory inval-

idation eagerly2 to free up sufficient memory to continue execution. For dirty data that must be

extracted, the server sends the command return memory with a starting address and a size. Mul-

tiple commands are used to return non-contiguous information, such as functions, stack data, etc.

Also, for those instruction chunks that are evicted, trap instructions need to be patched back into all

predecessor basic blocks, replacing all branches to the now invalidated region. Similarly the stack

has return addresses that require invalidation to prevent unwinding the call stack into an invalidated

region.

One immediate benefit of the SoftCache strategy is the fully-associative nature of the SoftCache

system. Under explicit software management, truly variable chunk sizes (basic block, hyperblock,

function, etc.) can be employed for optimizing performance dynamically. The result is a highly flex-

ible virtualized caching system that runs at maximum performance, with the drawback of extremely

high miss latency.

3.4 Handling Data in SoftCache

The difficulty to safely handling data caching in such a scheme is that data addresses are not nec-

essarily known a priori by the server. Two basic categories of data operations exist – those with

static targets and those with dynamic targets. Static targets are those locations that never change,

regardless of how they are accessed, such as global variables. Dynamic targets may be pointers used

to traverse arrays, or heap-based memory objects.

By careful analysis the server can identify static targets. Similar to how chunks are loaded and

resolved on demand, load/store operations in the original program are replaced with trap instruc-

tions. When the client executes the trap, the server looks up the actual target of the load/store. If

2Our current implementation employs a FIFO invalidator. Other, more intelligent, algorithms could be used in future
work to further improve locality.

12

the target is resident on the client, only a patch is sent to replace the generating trap instruction with

a correct load/store operation. If the target is missing, it is first loaded into the client and then the

patch follows.

Dynamic targets come in two flavors, stable and unstable. Stable dynamic targets are not known

in advance, but the analysis of program data and control flow may indicate that the load/store target

is unchanging over large windows of computation. The server replaces a stable dynamic load/store

operation with a trap. Unlike static data references, these traps are not replaced with an updated

load/store instruction once the server discovers where the instruction is pointing in memory. Instead,

a test is inserted to determine if the target matches the expected value. If the comparison is true,

the load/store proceeds as expected. If the comparison fails, however, the trap is executed which

eventually reports to the server that the instruction is transitioning from one stable address to another.

Therefore, the original program load/store instruction is replaced with three instructions: compare;

trap on not-equal; and load/store.

Unstable dynamic targets can only be handled in a high overhead manner. Since it is not possible

to exploit temporary stability, the server must instrument every load/store instruction with up to 15

instructions that emulate the load/store operation. The end of the emulation resolves the target of

the memory operation, and local tables may be consulted to determine if the target is present. If it

is, the calculated address is modified to match the real location, and the load/store proceeds. If the

target is missing, a trap is triggered and the server once again helps the client resolve the problem.

In addition, dynamic memory allocation (i.e., malloc) is also translated into a trap operation.

In brief, the server is fully responsible for managing all aspects of memory on the client to keep the

entire system working correctly.

Complete details of data caching support are in Section 5.

3.5 Motivating Applications

In the embedded space, there are two primary classes of applications that motivate this work: ubiq-

uitous sensor networks and 3G cellular phone services. Although we propose the SoftCache as

an enabling technique for embedded devices, the concept could be applied to other domains. We

therefore describe several scenarios for application.

13

Ubiquitous sensor network. For such systems, the price point of each sensor node must be

minimal. The ability to dynamically load new code into motes is critical to support changing needs

in the environment. The SoftCache provides a virtual workstation to the programmer, thus speeding

development processes, and it transparently runs the virtual application on the restricted sensor

device.

Cellular phones. New features and service enhancements are constantly rolled out for cell

phones. Rather than requiring re-flashing of entire applications — an inherently risky process —

the SoftCache allows a micro-bootloader to be resident and load any application on demand. This

not only allows for security patches, new applications, and similar features – it also provides a

vehicle for pay-per-service on non-standard activities.

Network processors. When large corporations like Cisco write their switch software for a blade

with 16 ports, they would like that same software to run seamlessly on 4 ports or 8 ports. Rather

than spend precious developer hours revising applications and debugging one-offs, replete with the

maintenance headaches, systems like the SoftCache can seamlessly handle the change in underlying

hardware if coupled with domain specific knowledge.

Chip Multiprocessors. One emerging architecture for high performance systems is Chip Mul-

tiprocessors (CMPs). Processor powerhouses such as Intel, IBM, ARM, and AMD have unveiled

their respective multi-core products. With a future aim of 32, 64, or even 128 cores on a die,

instruction sets become less relevant. Edge cores of a CMP can run SoftCache-like systems, and

dynamically translate IA64, x86-64, ARM, MIPS, and SPARC all at the same time. This will enable

a new generation of incredibly flexible systems, able to run any program from any platform with

such dynamic translation systems. In the CMP model, the extremely high-speed on-board intercon-

nect at a fraction of the power for network links makes an immediate advantage for SoftCache when

compared to traditional caches. Internal cores are fed from edge cores, with specialized interrupt

mechanisms passing chunks of code and data around as necessary.

3.6 Related Work

This section explores how the SoftCache concept is related to prior and ongoing research work in

many areas. While the SoftCache may use techniques from the areas discussed, in several areas it

14

does not directly use the concepts presented. Instead, such areas of related work are tools that need

to be or would be built from the potential advantages the SoftCache presents to applications.

Given that caches are such pervasive units in modern computer architecture designs, substan-

tially changing how the cache is implemented of necessity touches on a wide body of indirectly-

and directly-related work.

While the techniques presented in this thesis for building the SoftCache are currently done in

a post-compiler fashion, it is clear that they could be implemented inside a modern compiler. A

compiler-based version of the SoftCache likely would be more impressive with its results due to

more precise analysis of the source code and knowledge of the generated binaries.

3.6.1 Overlays, Paging, and Caching

These three topics – overlays, paging, and caches – all attempt to answer the same problem: running

a large program in a limited memory space efficiently. The SoftCache, being a novel cache design,

is another solution in this fundamental problem space.

Initial efforts to run large programs in memory-limited systems resulted in varied implementa-

tions, mostly in software, of program overlaying (also known as segmentation or folding). Here, the

programmer is burdened with manual partitioning of program and data into regions that can be re-

placed or overlaid at critical points of program execution. As programmers were encouraged to use

high-level languages to focus more on abstract problem solving, the mechanics of managing low-

level details of the computer hardware were hidden in languages and compilers[112, 93, 28, 29].

The complexity of such management detracted from goals of simpler programming models and ma-

chine independence (e.g., the ability to run a program on the same machine with differing memory

configurations).

Virtual memory systems, a mechanism to support automatic paging of needed instructions and

data, were an attempt to redress this issue. The first working virtual memory system with automatic

paging can be traced back to the Atlas Computer in 1961-1962 [68]. While Denning [28] recalls

arguments for either manual- or automatic-memory management, Sayre [93] demonstrated that au-

tomatic management of memory via paging was equal to (or superior than) manual management

for inexperienced programmers and/or a significant class of applications. This observation resulted

15

in a move to support automatic memory management via virtual memory, away from programmer-

managed overlays, even though proficient programmers could outperform automatic systems.

With the growing rise in speed differences between a large main memory, a secondary memory

system such as disk or tape, and the central processing core, arguments were presented for a smaller,

faster memory located near the core [104]. This memory could be automatically managed, as Wilkes

described in depth [111]. What Wilkes called slave memories IBM adapted and renamed cache

memories and the widespread adoption followed soon thereafter. With the continuing growth of the

processor-memory performance gap [55], the utilization of cache memories as a tool in a memory

hierarchy has become increasingly important. As the memory-processor gap has increased, some

have begun calling for software management of L2 caches [48].

While the direct management of memory fell out of favor with the advent of virtual memory, a

large class of systems were later built without virtual memory – early Intel processors such as the

8086 and 80286, or the Motorola 68000 and 68020. Such devices, lacking hardware mechanisms

for automatic paging by an operating system, required programming languages and models that sup-

ported the classic model of the overlay. Even today, with DSPs such as the ASPS 812x, languages

and compilers support directives for program overlays.

Typically such devices are used in embedded platforms or simpler systems such as DSP filter

engines. Even though the programmer is using a high-level language, she must still concentrate

on partitioning the application program and data into blocks that can be switched in and out of the

primary access memory. However, Sayre [93] observed that manual management of memory by

skilled programmers can be 20% more efficient than automatic systems.

The key to such savings comes from the idea of working sets as presented by Denning [27].

Denning and Sayre, as well as others, showed that by varying the page size, more efficient utilization

of memory was possible (along with replacement policies and placement policies). Smaller page

sizes yield a more precise dynamic footprint of an application to just those instructions and data that

are necessary for steady-state program execution. As Denning [28] noted, “small page sizes permit

a greal deal of compression without loss of efficiency.” The drawback to small pages is the cost

overhead of managing page tables in computational effort and memory storage.

The SoftCache system presented in this work proposes to use the mechanism of binary rewriting

16

to achieve the same, or better, efficiency of paging in a hardware cache by software control. The

translation mechanism in the rewriting may keep the ISA of the original application, but will rewrite

the program to perform manual memory management in a small, on-chip SRAM region. Such a

system provides a programmer-transparent paging policy with a highy flexible manual management

system.

3.6.2 Binary Rewriting and Program Analysis

Binary rewriting or translation is one result of program analysis. Using the application source code

as a basis, compilers can perform a wide variety of static analysis techniques in code generation.

These can lead to dead-code and -data elimination, instruction block sequencing, and overall more

efficient binaries [21, 103]. Such analysis, while beneficial, fails to capitalize on possible optimiza-

tions that can only be determined dynamically with feedback from how the application is behaving

with live data.

Introducing dynamic feedback and translation provides a method of obtaining even more re-

fined program optimizations. Dynamic compilers can generate optimal instruction traces, which

may require sophisticated code cache management schemes [54, 53]. Based on input which cannot

be predicted statically, further dead-code and -data path elimination becomes possible [6], as well

as pointer disambiguation. Additional benefits can be found by rearranging the code or data lay-

outs based on dynamic performance for more optimal accesses in cache or main memory [80, 89].

Repeated application of such procedures can lead to successive program reduction that is quite

substantial.

However, the SoftCache operating by mechanism of dynamic binary rewriting does not have

the benefit of full knowledge of program source code. Rather, the SoftCache must reconstruct

knowledge of the program behavior from the binary alone – rebuilding control- and data-flow graphs

with no a priori knowledge. While a large body of work has been created around program analysis

for data-flow or control-flow [57, 11, 2, 99, 91, 100, 79], less has been done directly on binary

systems. Most “binary” analysis systems explored to date mandate certain restrictions, such as

availability of higher-level assembly [18, 19, 20, 24, 67] code or compiler-generated intermediate-

representation, while others place limitations on jump instruction types or pointer ambiguity. A few

17

toolkits have been released that support regeneration of this information if only the compilers and

libraries of the toolkit are used [15].

The power of these static and dynamic techniques have been used in other projects similar to

our SoftCache ideas. The Hot Pages system uses sophisticated pointer analysis with a compiler

that supports such transformations [76]. Shasta is a shared memory system that uses static binary

rewriting to share variables among multiprocessors [94]. While the SoftCache can yield equivalent

results, it offers more potential by use of dynamic program behavior resolution.

Many simulators also use binary rewriting in varying forms to achieve faster results compared to

strict interpretation simulators. Such systems as Talisman-2 [10], Shade [22], and Embra [113] sim-

ulators use this technique. These simulators have further burdens of modeling additional resources

and behaviors rather than a goal of pure execution as in the SoftCache.

Just-In-Time compilers, such as those supporting Java, with a distributed model of a JVM [101]

also have some commonality with the ideas behind the SoftCache. JIT systems generate unopti-

mized byte-code for programs, and when a “hot” trace is found, it is highly optimized and rewritten

into native platform instructions rather than JVM byte-code.

Other work with dynamic techniques that the SoftCache could capitalize on focus on removal of

redundant computations [13, 74]. Such systems depend on dynamic patterns to emerge and feedback

systems to isolate and replace redundant work with inlined results from earlier computations.

18

CHAPTER IV

SOFTCACHE SUPPORT FOR INSTRUCTION CACHING

Our work, documented in this thesis, centers around the ARM prototype implementation of the

SoftCache system. In this chapter, we explore the challenges and solutions to support a robust

instruction-caching based system that implements the SoftCache Architecture. This infrastructure

is expanded in the next chapter to support data caching as well. This chapter concentrates solely on

instruction caching, and particular problems that are encountered to support a SoftCache framework.

Specific examples of the dynamic translation are presented along with benchmark results.

4.1 Design Issues

We found several limitations of the ARM architecture which hampered the conceptual design for

the SoftCache client-server system. While we discovered these problems on the ARM platform,

other embedded targets may have some or all of these issues in addition to their own peculiarities.

The first challenge lies in the method of accessing data variables. Intermixed within the instruc-

tion stream are the addresses of data or bss segment variables or constants. An example of this

is shown in Listing ??. This has two interesting side-effects: (1) the same cache line will appear

in both the instruction and data caches, a less than optimal situation; and (2) without a complete

control- and data-flow reconstruction, it is impossible to distinguish instructions from data. To

work around this embedded data-in-text problem, there are two solutions: (a) make a code chunk

constitute an entire function and any associated data constants within it, or (b) perform control- and

data-flow reconstruction on the arbitrary ELF image. While our earlier work used solution (a), in

this thesis we explore solution (b). Details of the reconstruction are in Section 4.2.

The second challenge comes from a complete lack of consistency between instruction and data

caches, as well as the write-back buffer. Therefore, any time we need to modify the on-chip memory,

we flush the caches and buffers with software routines. This results in a substantial penalty every

time we must modify the client system. Some Intel XScale devices do have non-ARM instructions

19

Listing 4.1: A very simple C function and the ARM assembly output from gcc. To load register
r0 with the string reference, it actually loads a constant embedded in the text segment which the
instruction stream branches around.

1 i n t main (vo id) {
2 p r i n t f (” H e l l o World !\ n”) ;
3 r e t u r n 4 2 ;
4 }
5

6

7 s e c t i o n . r o d a t a
8 . a l i g n 2
9 LC0 :

10 . a s c i i ” H e l l o World !\012\000”
11 s e c t i o n . t e x t
12 . a l i g n 2
13 . g l o b a l main
14 . t y p e main , f u n c t i o n
15 main :
16 s tmfd sp ! , { l r }
17 l d r r0 , . L3
18 b l p r i n t f
19 mov r0 , # 4 2
20 b . L2
21 . a l i g n 2
22 L3 :
23 . word . LC0
24 L2 :
25 ldmfd sp ! ,{ pc}

for flushing the cache, but not all ARM devices support this type of operation. Ultimately this issue

will be irrelevant as we will not have caches present in our hypothetical hardware.

The third challenge lies in the encoding format for all ARM instructions. Every 32-bit encoded

instruction has a conditional leading nibble – that is, the first four bits indicate a conditional eval-

uation for every instruction. These conditions include the normal types (equal, greater than, less

than or equal, etc.) as well as never and always. The end result is that from a control-flow perspec-

tive, every instruction is potentially a conditional branch to itself or the following instruction. This

greatly expands the complexity of reconstructing control-flow information.

The fourth and last challenge is that in the ARM, the PC is a working register. Any instruction

can read or write to the PC by specifying r15 as the corresponding register to read/write. Therefore,

every instruction must have its operands evaluated to ensure that the PC is not involved.

20

4.2 Static Analysis

There exists no prior work on reconstruction of control- and data-flow information from arbitrary

ELF images. Prior work in this area has focused on two main strategies: dynamic compilation,

or custom toolchains and binary images. The dynamic compilation group uses the source code

directly to generate control- and/or data-flow information, emitting via dynamic compiler the actual

machine code as needed. Other methods in this category use debugging symbols in the binary

image to correlate back to the original program source, where the flow calculations are carried

out. The other primary solution, using custom toolchains, requires the binaries to be constructed

from modified compiler toolchains. These modifications generally embed within the binary image

the flow information determined by the compiler, such that by using a provided (generally closed-

source) library, the binary image can be evaluated during execution. Additional details for these

types of prior work are in Section 4.5.

Therefore, by implementing a control- and data-flow reconstruction system for arbitrary ELF

images for ARMv4 targets, we have a novel solution that fully supports existing programs without

requiring recompilation. Moreover, our solution can easily be expanded to translate any ARM in-

struction set into some other ARM instruction set (i.e., ARMv4 to ARMv3, or the converse). This

provides our primary objective of compatability while also enabling the typical range of optimiza-

tions that dynamic compilers or dynamic translators offer.

The following sections detail how we reconstruct the control- and data-flow information from

arbitrary ELF images.

4.2.1 Seeding and Simulating

The basic algorithm of flow reconstruction is trivially simple. However, as with all simple concepts,

the devil lies in the details of implementation. A basic pseudo-code algorithm for the main flow

generation is in Listing 4.2.

The analysis starts by reconstruction of the control-flow graph (CFG) information from the

ELF image. The premise is to seed the initial link register (LR) with a bogus value that will be

stored in the PC upon program completion. For the ARM, a bogus PC is any value ending with the

least significant bit set, as no odd-address instruction is tolerated. In “thumb” mode, instructions

21

Listing 4.2: A basic algorithm for control-flow reconstruction.
1 R e g i s t e r s [LR] = 0 xDEADBEEF / / seed r e t u r n PC
2 R e g i s t e r s [PC] = E x t r a c t E n t r y (ELFimage) / / s e t i n i t i a l PC
3 F i r s t = R e g i s t e r s [PC] / / s e t b a s i c b l o c k s t a r t
4 w h i l e (R e g i s t e r s [PC] ! = 0 xDEADBEEF) / / u n t i l t h e bogus PC . .
5 {
6 / / f i r s t , c o n t r o l−f low
7 E v a l u a t e (R e g i s t e r s [PC] , & Next , & A l t) / / g e t p o s s i b l e outcomes
8 Mark (R e g i s t e r s [PC] , FLAG , HIT) / / f l a g t h i s PC as seen
9 Mark (R e g i s t e r s [PC] , CFG1 , Next) / / i n d i c a t e c o n t r o l f low

10 i f (A l t) / / . . . A l t i s on ly s e t
11 {
12 PushQueue (A l t) / / . . . i f we s e e b r a n c h e s
13 Mark (R e g i s t e r s [PC] , CFG2 , A l t) / / . . . n o t e s e c o n d a r y
14 }
15 i f (Next ! = PC + 4) / / e x i t i n g b a s i c b l o c k ?
16 {
17 S e t B a s i c B l o c k (F i r s t , R e g i s t e r s [PC]) / / . . . s t o r e b a s i c b l o c k
18 F i r s t = Next / / . . . r e s e t s t a r t p o i n t
19 }
20

21 / / next , da t a−f low
22 i f (LoadS to re (R e g i s t e r s [PC]) / / I s t h i s a DFG op ?
23 {
24 Addr = E v a l L o a d S t o r e (R e g i s t e r s [PC]) / / . . . e x t r a c t t a r g e t
25 Mark (R e g i s t e r s [PC] , DFG , Addr) / / . . . s t o r e t a r g e t
26 }
27

28 / / l a s t , s e t t h e PC and move on
29 i f (Next ! = 0 xDEADBEEF) / / i f n o t s e t t o e x i t . . .
30 R e g i s t e r s [PC] = Next / / . . . keep go ing
31 e l s e / / o t h e r w i s e
32 do
33 { / / . . . check Q ; empty Q
34 Next = PopQueue () / / . . . r e t u r n s 0xDEADBEEF
35 } w h i l e (MarkTest (Next , F lag , HIT)) / / have we seen t h i s PC?
36 }

are two bytes, and in normal ARM mode, instructions are four bytes. Here, the value used is

0xDEADBEEF . This value also makes it easy to track the LR as it occurs in the stack.

Once the LR is set to a seed, the initial PC is set to the entry point of the ELF image which

is defined in the ELF header. Our SoftCache system ignores the typical setup of the bss and data

segments contained in the C Run-Time (CRT) support routines, and instead emulates these actions

internally.

As each instruction is in turn evaluated to see what the next PC should be set to, it becomes

necessary to capture two possible next PC choices. In the presence of conditional branches, the

next PC could be the taken or the not-taken case. Both eventualities need to be compensated for,

22

so the path that leads to a next PC other than PC+4 is pushed into a queue of pending evaluations.

Also during this stage, the conditional nibble of every instruction is checked to evaluate whether

this instruction should have an impact. While this conditional nibble is something the SoftCache

framework supports, in common practice only branches tend to use the leading conditional nibble.

To ensure that we skip already visited instructions, each instruction is decorated to indicate a

visited state. Later, when dequeuing pending PC targets from prior conditional instructions, each is

tested to ensure that the queued PC was not previously handled during normal execution.

The end result of this iterative process is a visit to every instruction in the text stream that

can be reached. This automatically performs the equivalent of dead-code elimination, and reduces

statically-linked multi-megabyte images to a small fraction of their initial size.

However, this technique fails under certain conditions. In specific, with object-oriented pro-

grams and the vtable configuration, or with rewritable arrays of function pointers, it becomes im-

possible to know exactly where control can move to. With the ARM design of the PC treated as a

working register, the ease of changing the PC becomes a secondary cause of unknown control-flow

change and is similarly unpredictable. For those cases where it is not possible to disambiguate the

change occuring, a special value is pushed into the decoration indicating that an unknown shift is

occuring.

During the translation stage, when an instruction decorated with an unknown control shift is

encountered, it is replaced with a trap instruction matching the same conditional nibble. The client

then emulates the control shift to determine what target is being accessed, before passing this infor-

mation back to the server for processing. The server has enough knowledge to determine whether

this shift is a one-time determination of a fixed path, or truly variable such that every transition

must be checked. In either case, the server will update the client as necessary before signalling for

execution to resume.

The construction of the data-flow graph (DFG) decorations is similar in nature to the control-

flow graph construction. As an iterative process, the DFG reconstruction simply looks for load/store

operations and then decorates each such operation with the data target if it is possible to predeter-

mine. For ambiguous targets, a special decoration is attached to cause the translation system to emit

emulation instructions as opposed to allowing the load/store to operate. This is the corresponding

23

action for an unknown control shift applied to the data flow behavior.

4.2.2 Tracking the Stack

In addition to the DFG reconstruction, the stack in use will grow with the function call graph. As

the function calls grow, it becomes possible to exhaust the on-die memory reserved for the stack.

Therefore, each basic block is annotated with how many bytes of stack usage are required. The

worst-case requirements of each function are then pushed back to a decoration on that function in

the internal state tables of the server. During translation, all function calls – typically effected with

the branch-and-link instruction, bl <offset> – are instrumented to verify that sufficient stack storage

remains.

The reserved on-die stack space is split into two pages, top and bottom. The stack pointer is

initially set to one of the pages, and program execution proceeds normally. When a worst-case stack

usage may trigger an exhaustion of the current stack page, then a page swap occurs as follows.

• Copy the alternate page to the server
• Construct a false function frame with a return address that restores the alternate page
• Set the LR to the false function frame
• Reset the alternate page to all 0x0000

• Reset the stack pointer to the alternate page
• Proceed with execution

Along with the stack monitoring, a further complication occurs in that programs compiled with

high optimization levels tend to drop the frame pointer (i.e., -fomit-frame-pointer in gcc). This frees

up one additional register for general use, while making use of a debugger nearly impossible. In

order to support arbitrary ELF images, the SoftCache must recreate a stack profile by watching the

stack pointer (SP) during the course of each basic block.

By further adding logic to watch the LR as it is stored or manipulated in registers, each basic

block is annotated with an offset into the stack where a copy of the LR is stored. When evictions

take place, by walking the chain of annotations it becomes possible to fix the stack without a frame

pointer.

However, this level of annotation requires partial evaluation during program analysis. That is,

where-ever possible instructions are evaluated when the result can be computed deterministically.

24

Ambiguous results are annotated as unknown, but all possible known values are decorated on each

operation. This annotation process for the LR allows the determination of where the LR may exist

in the stack. To date, no instances of LR storage in the stack have failed to be deterministically

resolved although hand-written test cases can be constructed that break our system. Empirical

evidence suggests that compilers do not generate code with a variable offset for storage of the LR

into the stack.

4.2.3 Trampolines

As previously discussed, many of the techniques we use resolve in a worst-case (ambiguous) sit-

uation to instrumenting load/store or control flow changes. These instrumentations can be quite

expensive and lead to large code growth, similar to the Code Cache system [53]. An alternative is to

use a trampoline system between control transfers and for ambiguous load/store operations. These

trampolines mimic the behavior of stack page swapping, where a false function frame is constructed

that will point the LR to a special handler.

The advantage of a trampoline is that it is very simple to use and debug. The drawback is that

hand-tuned assembly code to implement a robust trampoline can amount to a worst-case execution

path of 54 instructions, or a best-case execution path of 15 instructions. At the basic block level of

granularity, trampolines are ineffective. At a complete function level of granularity, trampolines are

effective so long as the function bodies are sufficiently large. However, increasing the granularity

of the trampoline management leads to inefficient use of the on-die memory, hence our decision to

use basic blocks and instrumentation as necessary.

4.3 Simulation Framework

The SoftCache system runs in two environments: a prototype implementation on an Intel XScale

based PDA, and a simulation environment derived from SimpleScalar/ARM as modified by Gilberto

Contreras at Princeton in his work on XTREM [23]. Contreras modified the ARM backend to

more closely model the actual XScale, and this forms the core of the XTREM project. Contreras

also generously shared his source code, facilitating a more rapid simulation framework for the

SoftCache.

25

The simulation environment uses gcc to generate ELF images. These images are then fed into an

analyzer program which reconstructs the CFG and DFG, along with stack annotations. The results

of this analysis are written out to a separate file to facilitate debugging and verification. The ELF

image and the annotations are then loaded into the actual server program, which opens a socket

on the local x86 platform host. The client runs as an XTREM process, which opens a socket to

the x86 host server process. Execution then proceeds as outlined previously. During the course

of execution, the modified XTREM engine keeps track of various statistics, and generates both an

instruction trace and a load/store behavior trace. These traces are used for later verification and

rapid prototype approximations to memory behavior. The replacement policy for managing the

instruction cache is strictly FIFO.

4.4 MiBench Results

To evaluate the SoftCache system which we propose as a solution for the small embedded space, we

use the MiBench [47] embedded benchmark suite. This suite is comprised of six primary categories

of applications: automotive/industrial, consumer, office, network, security, and telecommunications.

For each benchmark, we use the large input data set where possible, and run each application from

beginning to end, omitting no instructions or data references.

The following subsections discuss the results for each of the 24 applications we evaluate. These

results include the miss rate during dynamic execution, as well as statistics on how many blocks are

executed, server-client bytes transferred, etc. Each benchmark also contains a reported result for

Subset Collisions, which represents a change in basic block structure for an already cached basic

block. As a micro-optimization, when a code hammock is evaluated it is rewritten into a straight-

line code sequence with an exception to catch a change in evaluation, allowing for contiguous code

placement. Each graph represents misses on the y-axis and the dynamic instruction number on the

x-axis. Each plot point represents the number of misses accumulated over the prior 250 instruction

blocks in summation.

Given that the SoftCache implementation under evaluation is aimed for devices that use Intel

XScale processors, our on-die storage is modeled after the XScale cache structures. The XScale has

dual 32KB storage regions, one for instructions and one for data. Therefore, our on-die SRAM for

26

instructions with the SoftCache is limited to 32KB. In order to avoid negative performance impacts,

the steady state or hot path in each benchmark must fit in this 32KB. Results based on data caching

support in the SoftCache are presented later in this thesis.

One drawback to using any benchmark is that no benchmark can accurately capture all realistic

behaviors. For our class of device target, the ubiquitous embedded device or sensor mote, each unit

can be expected to do one task well and not much else. Therefore, the MiBench suite represents a

realistic set of simple tasks for such devices. Unfortunately, like all benchmarks, the MiBench suite

is contrived and uses large arrays or input files. In our simulation framework, these arrays or input

files act as large memory regions that are essentially reached from the server. In reality, this is not

the case since such input would reside on the embedded platform. Therefore, while our results are

somewhat skewed with an inherent benchmark bias, this bias is universal to all benchmarks for our

target platform. All benchmarks are compiled with gcc -O2.

Of the 24 benchmarks in the MiBench suite, the performance for each application can be loosely

grouped into one of four categories: well-behaved, adjustable, minor capacity conflict, and major

capacity conflict. Table 4.4 presents the key characteristics of the MiBench suite for the instruction

cache behavior of the SoftCache system. Individual benchmark results and plots for the instruction

cache behavior are in Appendix B.1.

4.4.1 Well Behaved Applications

Many of the MiBench applications are well-behaved in the SoftCache framework. The inherent

design bias of the SoftCache requires that an application exhibit long periods of stability between

short periods of data transfer through the client-server interface. One representative example is the

application sha, with the miss rate plot shown in Figure 3.

This benchmark is an excellent application of the SoftCache. Once the initial setup of the appli-

cation is made, no misses occur until the very end when the result is being reported. This benchmark

also fits easily within the 32KB limitations of the on-die SRAM. The long stability between misses

– approximately 250 million instructions – is on the order of one second of execution time.

Other benchmarks that are well-behaved include: crc, madplay, math, pgp, say, search, susan,

and tiffbw. Each of these benchmarks could have their performance improved by employing the

27

Table 3: Instruction caching results summary for the MiBench suite.
benchmark Unique PCs Executed Blocks Bytes Transferred Evictions Subset Collisions

bf 2,588 104,141,294 18,036 0 35
bitcnts 3,818 171,578,140 17,528 0 66
cjpeg 8,399 14,095,128 40,944 366 148
crc 2,811 292,927,673 12,536 0 41

dijkstra 3,497 45,957,936 15,724 0 57
fft 3,864 51,389,101 18,804 0 75
gs 8,522 81,790 37,400 218 64

ispell 3,618 110,879 16,080 0 60
lame 21,332 50,883,969 55,520,712 1,651,653 85,301
lout 16,279 139,206 82,816 2,276 188

madplay 10,167 22,572,523 48,644 910 135
math 5,221 488,846,352 26,952 0 130

patricia 5,635 142,654,643 26,304 0 114
pgp 3,202 66,374 14,732 0 60

qsort 3,490 167,108,825 16,008 0 57
rawcaudio 1,820 2,135 8,128 0 28

rijndael 2,279 2,926 10,064 0 33
say 6,621 5,860,106 31,584 0 115

search 2,293 1,067,366 10,956 0 42
sha 2,916 9,811,056 13,136 0 34

susan 3,873 3,904,530 17,556 0 54
tiff2bw 5,568 11,386,109 24,404 0 65

tiffdither 7,564 200,054,165 35,736 0 211
toast 3,603 4,044 15,268 0 20

same adjusting techniques discussed in the next section.

4.4.2 Adjustable Applications

The bulk of the remaining MiBench applications can be made well-behaved in the SoftCache frame-

work by adjusting the fetch-on-demand system. The inherent design bias of the SoftCache requires

that an application exhibit long periods of stability between short periods of data transfer through the

client-server interface. However, these applications have sporadic misses that are cold-start misses,

not capacity misses. The adjustment required is to aggressively pre-fetch the next N misses. The

actual material to be pre-fetched can be determined either from static analysis or from dynamic

feedback. One representative example is the application tiffdither, with the miss rate plot shown in

Figure 4.

By pre-fetching the next N misses, the sporadic miss rate will can be converted to just one or

two misses throughout the entire program. Other benchmarks that fall into this category are: bf,

bitcnts, dijkstra, fft, ispell, patricia, qsort, rawcaudio, rijndael, tiffdither, and toast.

28

 0

 50

 100

 150

 200

 250

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 3: The miss rate over the full dynamic execution of the MiBench benchmark sha is repre-
sentative of well-behaved SoftCache applications.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 4: The miss rate over the full dynamic execution of the MiBench benchmark tiffdither.

4.4.3 Minor Capacity Conflicts

A few of the MiBench applications require slightly more than the (arbitrary) 32KB limit enforced

for code storage in this evaluation. Such applications will exhibit the latency of client-server com-

munications, which may be sufficiently large to make a solution like the SoftCache unattractive.

One representative example is the application gs, with the miss rate plot shown in Figure 5.

The first half of the program is continually missing due to cold start and capacity problems.

Eventually the program reaches a steady state interpreting the PostScript input file, but the delay

penalties incurred from the initial swapping are likely to be too great for the SoftCache to com-

pensate for. This category of problem includes the cjpeg and lout benchmarks, both of which also

require slightly larger on-die storage to avoid excessive swapping.

29

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000 600000 700000 800000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 5: The miss rate over the full dynamic execution of the MiBench benchmark gs.

4.4.4 Major Capacity Conflicts

The sole remaining MiBench application, lame, demonstrates the problem with major capacity miss

pressure. The miss rate plot shown in Figure 6.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 6: The miss rate over the full dynamic execution of the MiBench benchmark lame.

This benchmark is far too large to run in the SoftCache framework under any conditions. With

over 1.5 million evictions and 55MB of code transferred, this is a perfect representation of the

wrong class of application to run on a SoftCache framework. However, the excessive misses that

the SoftCache incurs will also be encountered by traditional hardware caches. The reason that

hardware cache solutions maintain an acceptable level of performance is the lower miss penalty to

the backing store – local DRAM in this case. This is purely an energy-delay trade off, which is

explored in more detail later.

30

4.5 Related Work

This section expands on the general related work outlined previous in Section 3.6. This chapter

focused on an implementation for instruction cache behavior in the SoftCache system, therefore the

related work presented here is a discussion on other cache implementations.

4.5.1 Alternate Caches

The eXtended Block Cache [66] proposed by Intel corporation adds an element of redundant in-

struction supression while lowering fragmentation. The XBC goals were to provide a method of

comparable performance to trace caches while being more efficient in design. Another modification

to the idea of a trace cache is the Block-Based Trace Cache [12]. The key idea of the block-based

design is to cache sequences of traces and then store a pointer to the translated sequence. Several

traces can then be buffered with only minor penalties due to the indirection encountered. While sim-

ilar techniques could be applied in the SoftCache, these types of designs still rely on hardware to

solve the performance problems. More complicated hardware results in a greater power dissipation.

Of more direct comparison to SoftCache are other schemes for placing the cache storage area

under software control, whether completely or partially. While different proposals have been made

with varying degrees of success in microbenchmarks, the common themes have focused on ei-

ther disabling unused sections of the cache or achieving better results through refinements of trace

caches.

The Span Cache [114, 115] explores a model of direct-addressing regions of the cache. It

exposes the cache storage area as directly addressable through additional registers, but has a fall-

back case of behaving exactly like a normal hardware cache if an entry is not found within the

direct-addressed system. A benefit of this system is that it allows variable cache block sizes with

only a minor penalty when compared to a traditional hardware cache design. The SoftCache also

provides variable block sizes, with full associativity, but involves a hardware reduction rather than

addition.

Intel has also begun providing with their new X-Scale processor, a derivative of the StrongARM,

the ability to convert associative-way regions of cache storage into addressable RAM [25]. This has

been offered as a solution to not only hard real-time guarantees, but also for situations where the

31

programmer knows more than the hardware can deduce via normal cache algorithms.

One interesting benefit of the SoftCache system implemented as a direct SRAM access lies in

the area of real-time computing. Systems that need hard real-time guarantees on program perfor-

mance can have serious problems with hardware caches, which can variable access times. With the

SoftCache, once an application is folded into the memory space and reaches steady-state, it runs

with exactly the same access times and performance with every loop through the program.

Exploring the possible usage of on-chip memories like the ScratchPad [25], Panda began a series

of experiments on the concept of Scratch-Pad usage for optimizing data accesses. This was later

expanded on by the efforts of many [83, 109, 7, 82, 8, 102] and hinged on the same fundamental

idea – adding a small on-chip RAM in addition to the hardware cache system.

Similarly the Cool-Cache project advocated using a scratchpad for scalars [108]. To manage

this on-chip memory, efforts have focused on modifying a C compiler to statically (or with profiling

feedback) determine the most-executed blocks of code or referenced data, and then generating in

the program stream the necessary load-to-scratchpad and evict-from-scratchpad instructions and

controls. While relevant in one sense for the usage of on-chip memory, the SoftCache uses a truly

dynamic method for placing code or data into on-chip memory, and removes the cache hardware.

Samsung recently published work similar to the SoftCache for instructions only [84]. Their

technique did not use a client-server system per se, but rather a transitional on-die memory manager

that was called on every function entry or exit. They reduced code size by an average of 33%

with moderate performance impact and power increases. Our system, by offloading the memory

management, is capable of more advanced analysis and higher performance.

Other strategies have hidden the cost of incorrect hardware guesses by providing a mechanism

for the programmer or compiler to generate prefetch instructions. Such instructions, as supported

by the UltraSPARC-II, Pentium-III, and other devices, allow via manual control a way to populate

instruction or data caches with what will soon be needed. The growing implementation of such

features in hardware suggests that the memory-processor gap has become sufficiently critical that

average-case “good” algorithms for automated memory management may no longer be acceptable.

32

CHAPTER V

SOFTCACHE SUPPORT FOR DATA CACHING

The simplistic technique of the prior chapter to support instruction caching behavior within the

SoftCache will not work for data caching support. The problem lies in the successful determination

of where, exactly, any data reference will go in memory. The presence of pointers, arrays, heaps, and

so forth greatly complicate the determination of possible memory locations for any given load/store

operation. The common sentiment1 is that data caching is too impractical to work for any system

like the SoftCache, and only traditional hardware mechanisms or complex programmer models are

viable.

The reason for this sentiment lies in the perception of pathological examples. One classic ex-

ample can be expressed in two short C lines:

scanf("%x", &funcptr);

*funcptr();

The reality of the situation, however, is that such code is seldom encountered. While this ex-

ample demonstrates a pathological control-flow analysis problem, the equivalent data-flow analysis

problem is dereferencing an input address. While these types of behaviors are useful for applica-

tions like debuggers, this type of behavior is rarely useful in a general computing framework since

it can lead to unpredictable results. This increases the burden of maintenance, which is already the

most expensive part of any real software project.

By carefully constructing the data-flow graph for input programs, most memory references can

be narrowed down to one of a few possible addresses. Some of these addresses are relative to a

register, such as the stack pointer. Other references are relative to an array base. Those addresses

that truly cannot be resolved to a small window of possibilities include heap accesses and pointer

castings.

1This sentiment is frequently expressed during paper reviews, discussions with colleagues, etc.

33

We propose to change this sentiment of impossibility by solving the underlying complexity of

tracking memory reference locations. We achieve this by combining two partial solutions into a

set of architectural enhancements. By using multiple strategies, we are able to cover all of the

problems that can be encountered by the SoftCache. Moreover, our system is flexible enough that

future strategies can easily be incorporated to make a more efficient and practical SoftCache.

First, we present a novel classification for distinguishing between stable and deterministic mem-

ory references, and unstable references. This classification is exploited to partially support data

caching in Section 5.1. The key idea is to examine the stability of load/store operations by enumer-

ation of the targets for each load/store instruction. Those operations that fit into the stable category

can easily be optimized into high-performance data caching similar to how the instruction caching

mechanism works from the prior chapter. However, all of the unstable operations require special

handling, which is a major performance impact.

Therefore, we then add as a second technique a specialized support mechanism to improve

performance for those memory references that are unstable and therefore cannot be optimized. This

support is detailed in Section 5.2. The fundamental principle of the support mechanism is to mimic

at a very primitive level the traditional hardware notion of cache tags. This support requires no

tag logic, however, and therefore does not incur the power and performance problems of traditional

caches.

5.1 UTI-MTI Classification

We propose to classify memory operations into two primary categories, Uni-Targeted Instructions

and Multi-Targeted Instructions, based on their reference behavior. A Uni-Targeted Instruction

(UTI) is a memory operation that only accesses one unique memory address over a dynamic trace

of instructions. A Multi-Targeted Instruction (MTI) accesses multiple memory addresses over the

the same trace.

Both UTI and MTI occurrences are identified by the PC of the instruction, as illustrated in

Figure 7. In the figure, the LD instruction at PC 0x1234 reads from the target address in [r1] ,

which is constant regardless of where the instruction is executed dynamically. This unchanging

target address is an example of UTI behavior. The LD instruction at PC 0x1244 reads from [r3] ,

34

yet the value in this register changes as the dynamic execution progresses. This changing target

address is an instance of MTI behavior. Conceptually the UTI may be using a global variable,

whereas the MTI may be traversing an array or chasing pointers.

UTI

...
LD r2, [r1]

...

...
Instr

LD r2, [r1]

Mem PC
...

0x1244
...

0x1244
...

0x1244
...

A

B
C
D

Instr
...

LD r2, [r3++]
...

...

...

MTI

...
0x1234

...
0x1234

...
PC

LD r2, [r3++]

LD r2, [r3++]

Figure 7: Basic concept of Uni-Targeted Instructions and Multi-Targeted-Instructions.

In a code examination, uni-targeted instructions have been traced back to operations that refer

to global variables such as data constants and semaphores, as well as some stack variables where

only one function call path chain can trigger the target instruction. With only one possible call path

for a function, the stack variables are essentially fixed with respect to the function address in the

stack, even though the stack itself is continuously changing. Multi-targeted instructions have been

traced back to stack variables reached from multiple function call paths, as well as more typical

array operations and linked list code. With benchmarks like gcc, MTI data can also be traced back

to garbage collection routines.

5.1.1 UTI/MTI Dynamic Distribution

To quantify the distribution of UTI and MTI targets in applications, Figure 8 (a) shows the break-

down for the SPEC2000 benchmark suite over the entire application. Figure 8 (b) shows the break-

down on 100M instruction traces from the interval chosen by SimPoint [85].

While these results have some particularly large individual variations (e.g., bzip, gcc), the av-

erage results are similar (31% dynamic UTI for the full run, 29% for the SimPoint version). To

accelerate our simulations, we use SimPoint with the expectation that individual IPC gains may

vary as suggested by these results, yet the geometric mean should be indicative of the result were

full benchmark runs used.

The differences between full application and SimPoint runs for the ratio of UTI presence is

35

Benchmark

am
m

p

ap
si

bz
ip

cr
af

ty

eq
ua

ke

ga
p

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

rk

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

A
V

G

P
er

ce
nt

0

20

40

60

80

100
UTI Refs MTI Refs

(a) Full application runs on reference inputs

Benchmark

am
m

p

ap
si

bz
ip

cr
af

ty

eq
ua

ke

ga
p

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

ra
ck

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

A
V

G

P
er

ce
nt

0

20

40

60

80

100
UTI Refs MTI Refs

(b) 100M instructions from SimPoint analysis

Figure 8: Distribution of UTI/MTI dynamic instances.

shown in Figure 9. An interesting implication is that SimPoint does not always accurately reflect

this type classification, which suggests future exploration to ensure that SimPoint considers the right

statistics to capture this type of behavior.

Benchmark

am
m

p

ap
pl

u

ap
si

bz
ip

cr
af

ty

eq
ua

ke

ga
p

gc
c

gz
ip

lu
ca

s

m
es

a

m
gr

id

pa
rs

er

pe
rl

si
xt

ra
ck

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

A
V

G

P
er

ce
nt

−50

−30

−10

10

30

50

70

Figure 9: The difference between full application UTI dynamic instruction percentage and the
SimPoint based 100M instruction benchmark subset.

5.1.2 UTI/MTI Static Distribution

Building on this separation at the instruction level of UTI and MTI traffic, a detailed simulation

demonstrates that the actual number of UTI targets is small despite the large dynamic instruction

36

percentage. Table 5.1.2 shows the results over the SPEC2000 benchmarks in classification of the

UTI-MTI behavior. The geometric mean unique UTI targets for the full run is merely 1031, and can

be as few as 301. For the SimPoint execution, this average drops to 270 (not shown in Table 5.1.2).

Table 4: The breakdown of MTI and UTI information over complete runs of SPEC2000 bench-
marks. The dynamic instruction count only reflects LD/ST traffic. The static instruction counts are
those actual PCs which correspond to either UTI or MTI over the program lifetime. The memory
addresses are those locations over the lifetime of all dynamic instructions that are classified as UTI
or MTI.

SPEC Dynamic Instructions Static Instructions Memory Addresses
2000 UTI MTI UTI % UTI MTI UTI % UTI MTI UTI %

ammp 56.0 B 115 B 32% 2.57 K 43.2 K 5.6% 638 2.63 M 0.0%
applu 74.6 B 94.3 B 44% 7.80 K 111 K 6.5% 1262 22.7 M 0.0%
apsi 12.8 B 168 B 7.1% 11.0 K 139 K 7.3% 1256 25.0 M 0.0%
bzip2 27.2 B 25.6 B 51% 2.27 K 28.2 K 7.4% 301 78.5 M 0.0%
crafty 28.1 B 55.4 B 34% 6.49 K 102 K 5.9% 1095 408 K 0.0%
eon 12.7 B 24.9 B 34% 15.2 K 127 K 10% 5637 101 K 0.1%
equake 12.1 B 46.5 B 21% 1.92 K 29.4 K 6.1% 490 6.88 M 0.0%
facerec 17.1 B 53.2 B 24% 3.76 K 72.6 K 4.9% 1032 4.08 M 0.0%
fma3d 58.0 B 77.6 B 43% 11.1 K 143 K 7.2% 3016 15.1 M 0.0%
galgel 2.19 B 169 B 1.3% 8.54 K 126 K 6.3% 1478 4.71 M 0.0%
gap 13.5 B 89.9 B 13% 4.08 K 77.3 K 5.0% 1551 25.0 M 0.0%
gcc 2.21 B 16.1 B 12% 19.2 K 599 K 3.1% 3312 41.1 M 0.0%
gzip 19.0 B 24.0 B 44% 2.04 K 29.5 K 6.5% 429 15.5 M 0.0%
lucas 30.6 B 22.4 B 58% 3.90 K 50.0 K 7.2% 722 20.8 M 0.0%
mcf 889 M 19.4 B 4.3% 1.33 K 20.9 K 5.9% 369 24.9 M 0.0%
mesa 113 B 22.5 B 83% 5.77 K 58.1 K 9.0% 1478 4.97 M 0.0%
mgrid 73.6 B 403 B 15% 2.63 K 48.0 K 5.2% 608 7.27 M 0.0%
parser 39.9 B 187 B 18% 37.7 K 79.9 K 32% 508 14.7 M 0.0%
perl 4.66 B 6.42 B 42% 6.82 K 89.4 K 7.1% 1436 173 K 0.0%
sixtrk 626 M 2.77 B 18% 12.0 K 159 K 7.0% 2548 2.79 M 0.0%
swim 58.4 B 92.6 B 39% 3.41 K 51.4 K 6.2% 770 25.0 M 0.0%
twolf 41.8 B 107 B 28% 8.10 K 111 K 6.8% 1004 1.00 M 0.0%
vortex 13.3 B 37.0 B 26% 12.4 K 216 K 5.4% 1573 17.2 M 0.0%
vpr 533 M 623 M 46% 3.27 K 47.6 K 6.4% 720 602 K 0.0%
wupw 26.8 B 81.2 B 25% 2.92 K 46.7 K 5.9% 589 23.1 M 0.0%

GEOMEAN 14.4 B 40.7 B 26% 5.56 K 76.3 K 6.8% 1031 8.01 M 0.0%

Of the actual program LD/ST instructions, UTIs are less than 7% as indicated by the static

instruction data in Table 5.1.2. However, these 7% of instructions comprise 26% of the dynamic

LD/ST references. This trend of very few actual PCs generating a substantial amount of memory

37

traffic should be readily identifiable. Since those same PCs only access a few hundred unique

memory locations, the data for these operations will fit into very small caches. Less than 4200 bytes

(1031 targets × 4 bytes) are required to hold the entire UTI data set for the full benchmark runs on

average. The MTI data set, however, comprises at least tens of megabytes.

Since approximately 4200 bytes can capture 26% of the dynamic LD/ST traffic, which is gener-

ated by relatively few instructions, a mechanism to capture this information in the memory hierarchy

may lead to performance gains through higher cache hit rates. As a minimum, isolation of such UTI

information will eliminate pollution in or by this 26% of memory traffic. Since the actual unique tar-

gets represent less than 0.01% of all memory targets, prediction mechanisms can be used to capture

this behavior.

5.1.3 Phasing

The consideration of MTI targets as a series of stable UTI targets may capture call-path locality

in the reference stream. Repeated chains of function calls may experience periods where local

variables are actually at constant addresses in the stack. We characterize such behavior as phasing,

since during dynamic execution the variables treated as UTI may change relative to an absolute

static division. We examine a few full benchmark runs to determine whether this concept of phasing

is valid. The observed MTI behavior in the stack suggests that discarding history (beyond a certain

age) may reveal that MTI memory operations may be temporally reclassified as UTI. Therefore an

age-based decay of history may reveal other trends inside of the UTI-MTI landscape. To illustrate

the concept of phasing, consider the function call graph of Figure 10.

1 2

BgB

lB

CgC

lC

A gA

lA

D gD

lD

E lE
gE

Figure 10: Example program structure to illustrate the concept of phasing and ratio changes.

Assume that all global variables, gi, are accessed via UTI memory operations and that all local

38

variables, li, are accessed via MTI. If the program control flow at the function level is a repeating

sequence alternating between the paths {1, 2}, such that ABCD → AED → ABCD → . . . , then

the local variables on the stack for the functions B, C , D, and E may change locations. Using a

shorthand of ΣXi to represent the total unique addresses of type X , we can define the UTI unique

target ratio RUTI of this call graph as:

RUTI =
Σgi

(Σgi + Σli)
(1)

The continuous oscillation between the execution paths {1, 2} prevents any local variable out-

side of A from acting as UTI. However, if the execution path were to continuously be only one of

the paths {1, 2}, such as ABCD → ABCD → . . . , then every pass through the loop will access

local variables at the same address on the stack. Even though we assume for this example that local

variables are MTI, if this single path executes sufficiently long we can treat these variables as UTI.

For this trivial example, the phasing behavior reduces RUTI to the constant 1 – indicating that

all memory references are effectively UTI during the window of observation. In reality, the actual

fluctuation based on array accesses, function call paths, and other variables will cause the RUTI to

fluctuate during any particular window of dynamic execution.

However, we can calculate based on Table 5.1.2 the expected ratio RUTI over the lifetime of

each benchmark. This ratio is what we expect to find if we pick a window of dynamic instructions

from that benchmark and re-compute the ratio over the memory access stream in that window.

By comparing the per-window RUTI to the full benchmark calculation, it becomes possible to

determine the relative increase or decrease of the unique UTI targets with respect to the total unique

targets in that window. If the window ratio is increasing, there are more UTI opportunities available

for our system to work with. If the window ratio is decreasing, there are fewer UTI for our system.

Therefore, the ratio RUTI can be used as an approximation to the phasing behavior in a window of

dynamic instructions.

By resetting the captured UTI-MTI state information every billion instructions, we analyze a

few benchmarks to determine how their UTI percentage changes compared to a full application

classification. Figure 11, using a log-scale Y axis, shows the results for gcc, mcf, and vpr, skipping

39

the first two billion instructions to avoid warm-up behavior. A value of 100% corresponds to the dy-

namic window exactly matching the UTI expectations based on the full application run. Substantial

phasing behavior appears with changes between 210-1200% in gcc, and a nearly constant 225% in

mcf and 4400% in vpr. The gcc oscillations are due to intermittent garbage collection. These few

benchmarks show the trends that are observed over all the benchmarks we run.

 100

 1000

 10000

 100000

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1

1
11

-1
2

12
-1

3
13

-1
4

14
-1

5

P
er

ce
nt

 U
T

I I
nc

re
as

e

Instruction Window (Billions)

vpr
gcc
mcf

Figure 11: By resetting all UTI-MTI state every billion instructions, the relative percentage of
UTI targets increases indicating phasing behavior.

As the UTI occurrence increases, any scheme we design for capturing UTI behavior should

have more opportunities for performance improvement. However, any decay of history which is

too aggressive may result in over pressuring the isolated cache, reducing performance. To obtain

the best performance possible, a support of phasing information may be useful in any solution to

capture the UTI-MTI behavior.

5.1.4 Capturing UTI-MTI Divisions

Given the insight that approximately 30% of the dynamic memory traffic for the entire SPEC2000

benchmark suite can be contained in 2-4KB of storage, this suggests that reserving a 4KB region of

the on-chip storage for storing UTI data is a performance effective solution. The drawback is that

the remaining 70% of dynamic memory traffic cannot be so easily captured, and requires some form

of instrumentation or other emulation to ensure proper dereferencing.

5.2 Unstable and Ambiguous References

While the UTI-MTI division provides a convenient mechanism for directly handling approximately

30% of dynamic memory, the remainder of load/store references must be emulated to ensure correct

40

Listing 5.1: Examples of standard load/store, expected value test load/store, and emulation load/-
store program fragments.

1 ;
2 ; D e f a u l t l o a d / s t o r e b e h a v i o r
3 ;
4

5 l d r r3 , 2 4 [r1] ; pe r fo rm l o a d / s t o r e
6

7 ;
8 ; Expec ted a d d r e s s v e r f i e d l o a d / s t o r e
9 ;

10

11 mov r3 , # e x p e c t e d v a l u e ; e x p e c t e d r1 v a l u e
12 e o r r3 , r3 , r1 ; t e s t e x p e c t e d
13 swine # 1 7 ; t r a p i f n o t e q u a l
14 l d r r3 , 2 4 [r1] ; pe r fo rm l o a d / s t o r e
15

16 ;
17 ; F u l l e m u l a t i o n v i a t r a p
18 ;
19

20 swi # 1 7 ; invoke s o f t w a r e i n t e r r u p t
21 l d r r3 , 2 4 [r1] ; now per fo rm l o a d / s t o r e op

operation of programs within the SoftCache framework. This emulation can be achieved in one of

two ways: (1) expected value test, or (2) full emulation. The basic options are represented in Listing

5.1.

The drawback to expected address checking is the instrumentation of the load/store operation

inflating code size by three additional instructions for every load/store operation. It also requires

extensive book-keeping and updates of the embedded constants on the part of the server, which will

cause additional network traffic impacting overall performance and power efficiency. Considering

that load/store operations occur very frequently, and typically 70% of these will be exploding to a

best-case situation of 3 additional instructions, this is a significant performance impact. In the case

where the expected value fails the check, it will invoke the same emulation system as skipping the

check entirely.

The emulation of load/store operations is very heavy, regardless of whether it occurs from an

expected value check failing or by design. Directly calling an emulation interface is much less

pressure on the code size, but the trap emulation is costly in performance – it requires a switch to

supervisor mode, preserving registers, and an additional 10-15 instructions depending on context.

This exception overhead in turn must be followed by a round-trip communications sequence with

41

Listing 5.2: An example of the guard instruction for an extended ARM ISA.
1 ;
2 ; D e f a u l t l o a d / s t o r e b e h a v i o r
3 ;
4

5 l d r r3 , 2 4 [r1] ; pe r fo rm l o a d / s t o r e
6

7 ;
8 ; Guard e v a l u a t i o n
9 ;

10

11 guard # 2 3 9 , # 1 7 ; e n s u r e l o a d / s t o r e i s r i g h t
12 l d r r3 , 2 4 [r1] ; now per fo rm l o a d / s t o r e op

the server to invoke additional resources to resolve the target and determine whether the target exists

locally. In essence, the expected value check is an optimization over pure emulation trading code

space for execution time.

The explosive code growth and application delays these systems force upon dynamic transla-

tion systems like the SoftCache are the primary reasons why data caching is classically held as

impractical. We propose to change this by adding a new instruction to the ARM ISA to guard the

following load/store operation. In specific, the idea is to approximate the tag arrays of traditional

hardware caches in the on-die SRAM. Unlike traditional hardware caches, however, these are pure

SRAM cells and not CAM cells, eliminating the power and delay penalties of traditional tag arrays.

Moreover, by using the on-die SRAM storage space to contain the pseudo-tag array no additional

storage overhead is required.

The proposed new instruction is the guard instruction, followed by two immediate data fields.

The representative assembly code is written as guard 501, 34 . The first immediate data field is

the index of the load/store effective address being guarded. The second immediate data field is the

interrupt value to trigger if the guard check fails. An example usage is in Listing 5.2.

The premise is that when a guard instruction is encountered, the next load/store operation checks

that the effective address falls within the guard base address range given an assumed line size. After

each load/store instruction, the internal microprocessor flag for guard checking is cleared until the

next guard operation sets it again.

For a 64-byte line size, the least significant 5 bits are dropped to generate the base address. The

specified guard index is used as a pointer into an array of 4-byte values stored at a fixed location in

42

on-chip SRAM. For a 32KB data cache with a 64B line size, 512 entries are required for 2KB of

guard storage overhead. In principle, the array would be structured similarly to Figure 12.
Valid Base Address

MR0

MR1

MRN

Figure 12: The guard address table to approximate tags.

Since the bottom bits of the base address are not used, they can store control information such

as a valid bit or special annotations indicating mutex/lock, dirty data, etc.

5.2.1 Capturing Unstable References

In order to handle ambiguous memory references and MTI situations, the server transfers the equiv-

alent of MTI cache lines to the embedded client. As the MTI cache fills to capacity, conflicts occur

and old data is discarded while new data is loaded from the server. Each load/store operation that

cannot be determined as stable is preceded by a guard instruction using the appropriate index into

the guard array. Since the actual guard array is just in on-chip SRAM, the server’s standard memory

patch operation is sufficient to update the indices. During a datacache eviction, the server already

has sufficient book-keeping details that guard instructions dependent upon the just-evicted data can

be replaced with a generic trap instruction to re-fetch the data on demand.

5.3 Simulation Framework

The SoftCache system runs in two environments: a prototype implementation on an Intel XScale

based PDA, and a simulation environment derived from SimpleScalar/ARM as modified by Gilberto

Contreras at Princeton in his work on XTREM [23]. Contreras modified the ARM backend to more

43

closely model the actual XScale during an internship at Intel, and this forms the core of the XTREM

project. Contreras also generously shared his source code, facilitating a more rapid simulation

framework for the SoftCache.

The simulation environment uses gcc to generate ELF images. These images are then fed into an

analyzer program which reconstructs the CFG and DFG, along with stack annotations. The results

of this analysis are written out to a separate file to facilitate debugging and verification. The ELF

image and the annotations are then loaded into the actual server program, which opens a socket

on the local x86 platform host. The client runs as an XTREM process, which opens a socket to

the x86 host server process. Execution then proceeds as outlined previously. During the course

of execution, the modified XTREM engine keeps track of various statistics, and generates both an

instruction trace and a load/store behavior trace. These traces are used for later verification and

rapid prototype approximations to memory behavior. The replacement policy for the data cache is

strictly FIFO with respect to the guard table and the UTI storage pool.

5.4 MiBench Results

We again evaluate the SoftCache system using the MiBench [47] embedded benchmark suite. As

with the instruction caching evaluation, we use the large input data set where possible, and run each

application from beginning to end, omitting no instructions or data references.

The following subsections report the results for each of the 24 applications we evaluate. These

results include the miss rate during dynamic execution, as well as statistics on how many unique

load/store instructions were encountered, quantities and classes of load/store operations, etc. Each

graph represents Misses on the y-axis and the dynamic load/store instruction number on the x-axis.

The x-axis does not represent every dynamic instruction, only load/store instructions. Each plot

point represents the number of misses accumulated over the prior 250 load/store instructions in

summation.

Table 5.4 presents the key characteristics of the MiBench suite for the data cache behavior of

the SoftCache system. Individual benchmark results and plots for the data cache behavior are in

Appendix B.2.

Given that the SoftCache implementation under evaluation is aimed for devices that use Intel

44

Table 5: Data caching results summary for the MiBench suite.
benchmark MTI PCs UTI PCs MTI Refs UTI Refs Misses Evictions

bf 421 476 334,302,552 54,224,742 378 0
bitcnts 366 999 164,265,629 19,133,795 187 0
cjpeg 1,221 1,857 23,084,552 16,138,543 122,477 121,965
crc 335 702 825,250,413 159,960,596 228 0

dijkstra 484 799 42,979,220 74,326,910 237,372 236,860
fft 438 902 89,430,352 41,886,360 141,542 141,030
gs 1,689 2,139 173,734 29,601 3,576 3,064

ispell 535 783 152,808 49,774 6,830 6,318
lame 5,045 3,486 599,509,141 31,865,406 3,270,672 3,270,160
lout 1,767 6,588 224,988 48,990 2,212 1,700

madplay 1,472 2,213 76,344,468 35,120,382 32,550 32,038
math 610 1,225 569,474,694 101,613,946 205 0

patricia 649 1,299 183,565,348 96,640,079 131,405 130,893
pgp 482 575 30,717 11,267 216 0
qsort 413 820 114,137,996 63,425,373 430,952 430,440

rawcaudio 182 465 3,306 676 119 0
rijndael 237 574 4,277 911 141 0

say 837 1,795 8,205,453 36,735,235 20,127 19,615
search 273 525 1,265,998 400,836 28 0

sha 322 723 32,563,258 4,020,084 266 0
susan 507 816 3,351,885 6,431,816 7,814 7,302

tiff2bw 851 1,299 57,981,267 313,557 7,010 6,498
tiffdither 1,096 1,523 166,737,501 91,260,043 26,247 25,735

toast 431 971 7,534 1,640 206 0

XScale processors, our on-die storage is modeled after the XScale cache structures. The XScale has

dual 32KB storage regions, one for instructions and one for data. Therefore, our on-die SRAM for

data with the SoftCache is limited to 32KB. The additional 2KB for the guard virtual tag array, as

well as the 2KB for the UTI memory region and the 4KB for the two stack pages comes from the

mini data cache, mini instruction cache, and fill buffer SRAM regions.

The MiBench suite represents a realistic set of simple tasks for such devices. Unfortunately,

like all benchmarks, the MiBench suite is contrived and uses large arrays or input files. In the

simulation framework we have, these arrays or input files act as large memory regions that are

essentially reached from the server. In reality, this is not the case since such input would reside

on the embedded platform. Therefore, while our results are somewhat skewed with an inherent

benchmark bias, this bias is universal to all benchmarks for our target platform.

With respect to data caching, all benchmark suites will exhause the limited on-die data storage

facilities since they assume reading and writing files. Real ubiquitous embedded systems will read

and write from local memory on peripheral support circuitry, such as a digital camera ASIC. All

benchmarks are compiled with gcc -O2.

45

Of the 24 benchmarks in the MiBench suite, the performance for each application can be loosely

grouped into one of four categories: well-behaved, adjustable, minor capacity conflict, and major

capacity conflict.

5.4.1 Well Behaved Applications

Several of the MiBench applications are well-behaved in the SoftCache framework with respect to

data caching behavior. The inherent design bias of the SoftCache requires that an application exhibit

long periods of stability between short periods of data transfer through the client-server interface.

One representative example is the application search, with the miss rate plot shown in Figure 13.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

M
is

se
s

Dynamic Instruction Number

Misses

Figure 13: The miss rate over the full dynamic execution of the MiBench benchmark search.

This benchmark is an excellent application of the SoftCache. Once the initial setup of the

application is made, no misses occur until the very end when the result is being reported. This

benchmark also fits easily within the 32KB limitations of the on-die SRAM. The long stability

between misses – approximately 3 million load/store operations, or 18 million instructions – is on

the order of 100ms of execution time.

Other benchmarks that are well-behaved include: bf, crc, and sha. Each of these benchmarks

could have their performance improved by employing the same adjusting techniques discussed in

the next section.

5.4.2 Adjustable Applications

Many of the remaining MiBench applications can be made well-behaved in the SoftCache frame-

work by adjusting the fetch-on-demand system. The inherent design bias of the SoftCache requires

46

that an application exhibit long periods of stability between short periods of data transfer through the

client-server interface. However, these applications have sporadic misses that are cold-start misses,

not capacity misses. The adjustment required is to aggressively pre-fetch the next N misses. The

actual material to be pre-fetched can be determined either from static analysis or from dynamic

feedback. One representative example is the application math, with the miss rate plot shown in

Figure 14.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 14: The miss rate over the full dynamic execution of the MiBench benchmark math.

By pre-fetching the next N misses, the sporadic miss rate will can be converted to just one or

two misses throughout the entire program. Other benchmarks that fall into this category are: bitcnts,

pgp, rawcaudio, rijndael, and search.

5.4.3 Minor Capacity Conflicts

A few of the MiBench applications require slightly more than the (arbitrary) 32KB limit enforced

for data storage in this evaluation. Such applications will exhibit the latency of client-server com-

munications, which may be sufficiently large to make a solution like the SoftCache unattractive.

One representative example is the application susan, with the miss rate plot shown in Figure 15.

Throughout the program, the application is regularly missing due to cold start and capacity

problems. The delay penalties incurred from the initial swapping are likely to be too great for the

SoftCache to compensate for. This category of problem includes the other benchmarks fft, gs, lout,

say, tiff2bw, and toast.

47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 15: The miss rate over the full dynamic execution of the MiBench benchmark susan.

5.4.4 Major Capacity Conflicts

The remaining MiBench applications demonstrates the problem with major capacity miss pressure.

One representative example is the benchmark ispell, with the miss rate plot shown in Figure 16.

 0

 10

 20

 30

 40

 50

 60

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 16: The miss rate over the full dynamic execution of the MiBench benchmark ispell.

This benchmark is too large to run in the SoftCache framework under any conditions. With

a continuous stream of cache misses requiring the lengthy client-server communications process,

this is a perfect representation of the wrong class of application to run on a SoftCache framework.

The other benchmarks that fit this category are cjpeg, dijkstra, lame, madplay, patricia, qsort, and

tiffdither.

48

5.5 Related Work

The architecture community has invested much effort into reducing the memory bottleneck. More

outstanding achievements are branch predictors, value prediction, and non-blocking caches. How-

ever, we are far from the first group to consider the information content of the reference stream to

memory directly. In addition to those works cited earlier in this thesis, there are several other groups

which have covered some aspects of this work.

Perhaps one of the earliest studies on memory reference behavior, by Hammerstrom and David-

son [50], considered the theoretical amount of information that could be gleaned by data-dependent

behavior in reference streams. Using the ideas of entropy and statistical analysis, they found that

the addressing overhead is much higher than the actual data content, a result that still holds today as

various address compression techniques are now used to reduce power consumption.

Farkas and Jouppi [39] considered the benefits of non-blocking loads, which is the baseline for

non-blocking caches. Using a variety of different designs, they were able to reduce miss stalls by

up to a factor of 2 for integer applications. Other numeric applications had more substantial gains.

These earlier works are the foundation behind the classification of delinquent load operations –

those operations which cause a miss in such a way that performance is dramatically impacted. Even

today, the identification and elimination of delinquent loads is a pressing issue [81]. Industry is

also exploring mechanisms to avoid these penalties, including Intel’s Virtual Multithreading [110]

to automatically begin prefetching during delinquent stalls hoping to avoid future stalls.

Tyson et al [107] considered the reference pattern from LD/ST operations, and found that by

controlling cache line allocation, memory traffic could be reduced up to 60%. However, Tyson

et al were unable to turn this memory pressure reduction into measurable performance improve-

ment. Tyson and Austin [106] later considered memory renaming, which uses a similar concept to

our UTI/MTI division. They predicted, based on the PC, an index to speculative values to accel-

erate memory operations. Their idea of a load-store cache is similar to our isolation of the UTI

information, yet our technique is complementary such that combining both methods should attain

better results than either alone. Other work attempted to capitalize on similar ideas to reduce energy

signatures in caches or otherwise alleviate critical load/store misses [90, 65, 71].

49

Moshovos and Sohi [77] designed a system to predict and capitalize on dependent memory

operations with memory cloaking and bypassing. Their system of reducing the memory latency

attained between 3.2 - 4.3% IPC improvements.

All of these techniques focus on reducing the memory bottleneck from modern processors. Our

methods offer a new avenue for exploration, by highlighting the potential exploitation of the dy-

namic behavior in LD/ST operations. Our methods also appear to be complementary to existing

techniques, such that additional gains are possible when our system is applied on top of other meth-

ods.

One study by Driesen and Hölzle [30] used a similar approach to enumerating the actual targets

of instructions, but they only consider branch instructions. Their scheme relied on preventing overall

branch-predictor pollution. This is similar to our desire to not mix UTI and MTI data, since UTI is

stable.

50

CHAPTER VI

ANALYTICAL PERFORMANCE MODEL

The prior chapters introduced and explored the implementation details and empirical results of the

SoftCache for both instructions and data. What we propose, however, is a fairly radical departure

from traditional designs and has necessarily garnered critical peer reviews questioning the feasibility

of such a system. The next two chapters represent the study of different aspects which we propose

to change. First, a series of analytical models that represent bounds on performance impacts are

constructed in Chapter 6. Once the theoretical exploration is complete, real hardware data based on

the Intel PXA255 processor is covered in depth in Chapter 7.

Prior to designing an experimental setup for measuring power, performance, and delays on real

hardware, it is necessary to gain insight into the underlying issues. This insight will focus the

actual measurements of real systems to only those components strictly necessary for a feasibility

evaluation of the SoftCache framework. To study the limits and problems, we examine several

aspects in turn. First, we consider the network impact in Chapter 6.1. Next, changes necessary in

the core processor architecture are explored in Chapter 6.2. With approximations for the network

and processor changes, Chapter 6.3 explores the penalties of the SoftCache system overhead.

6.1 Network Impact

This section explores the energy and delay trade-offs that occur when some or all of the local storage

is moved out of the embedded device, and into a remote network server. Contrary to designer

intuition, we demonstrate that this can be more power efficient than local storage.

6.1.1 Device Models

To investigate the possible performance effect of using the network as a mechanism for accessing

remote storage, we consider different device models and characteristics. There are three fundamen-

tal models of embedded computing devices that we examine: Legacy, Pull, and Push. Each model

51

is characterized by the type of network link and communications model incorporated. We assume

that any applications exhibit sufficient locality such that there are well-defined “working sets” that

change infrequently [1, 9].

Each model we consider independently. While general comparisons can be made across models,

each has different design-time characteristics making direct comparison difficult. The underlying

hardware design behind each model is the same, however, and an example baseline is shown in

Figure 17 (a). The classical mode of operation in such a device is that the program and data values

are copied from Flash to local DRAM for performance reasons. This copying requires sufficient

DRAM for holding all or part of the Flash contents, in addition to all the data.

We suggest that by utilizing the network link to access the equivalent contents of Flash from

a remote server, a more energy efficient model can be constructed at a lower cost. This efficiency

is achieved by reducing the Flash component to just a boot-block sized unit, and removing some

part of DRAM from the local storage. The DRAM we remove normally contains the contents of

Flash copied on boot-up or during application mode change. Instead, we propose that a space large

enough to hold the worst-case working set of code and data be reserved in the local DRAM. This

concept for reduction is shown in Figure 17 (b).

DRAM DRAM

Network Module

DRAM

FlashCPU

DRAM
DRAM DRAM

Network Module

DRAM

Flash

CPU

Figure 17: Basic 3G cell phone or other ubiquitous networked device. On the left is part (a) a
typical mobile embedded device. Part (b) on the right shows the small reduction proposed in this
work.

While we suggest removal or resizing of the DRAM chip(s) and the reduction of the Flash

storage, these actions are not strictly necessary. By carefully using VDD gating, each DRAM and

Flash unit could be disabled when not needed. This VDD gating would result in power trade-

offs similar to our results, but would not intrinsically provide the increased flexibility for future

52

application insertion and patching. Moreover, the total manufacturing cost of our design decreases,

whereas VDD gated units do not (and may even increase).

Next, we introduce each of the three embedded system models and the notation we use to

analyze the energy and delay issues inherent in each. Full analysis of each model is in Section

6.1.5. Additional details on the equations are available in [44].

6.1.2 Legacy

The Legacy device was originally conceived and constructed without expectation for ever needing

communication to other systems. We examine the issues of energy and delay in this model by

assuming a network link is added and local storage is reduced. The legacy application remains

unchanged, but the code and data now come from network memory via a SoftCache mechanism.

The original design expected a certain amount of normal energy consumption during compu-

tation and sleep or idle times. To see how adding a network link impacts this, we model the extra

energy incurred by using the network link to fetch new code and data, as well as the energy con-

sumed by the network link when in a sleep or idle state. We assume the network link is only used

for fetching new code and data, and that the legacy application itself is not attempting to commu-

nicate to other devices. We also model the extra time the CPU now spends waiting for network

transactions to complete.

In order to “request” new code or data, a message must be generated and sent to the remote

server. This transmission time (TTX) will consume energy as determined by the type of network

link (ETX). Once the request is received at the remote server, there is some interval of time spent

processing the request (TSrv), during which there will be additional energy consumption on the local

device monitoring the network (ESrv). Once processed, the server will reply with the necessary

information, which takes time to receive (TRX), consuming more energy (ERX). The “payload”

of the transmission will consist of some number of bits, which consume power in proportion to the

rate of the network communications.

In comparison, local storage only incurs a very minor time to access (TDRAM), with a corre-

spondingly small energy use (EDRAM). Whether transferred by network or from local storage, the

53

CPU will be idle1 during these transfers, consuming some amount of energy.

Regardless of which method is used – network or local storage – after transferring the payload,

time is spent in computation (TC) before the next request is generated. During this time, the CPU

will consume a different amount of energy while busy (EC), and the backing store can be put into

a powered-down or sleep mode. Thus, during the work period, the network link and local storage

will consume their respective sleep or idle power.

The network link energy components in the legacy model are defined by the individual power

terms in use during each system mode. These individual terms are expressed in equations 2 through

5. The total energy consumed by the network link (EN) in the Legacy model is shown in equation

6.

ETX = TTX (PTX + PCpuIdle) (2)

ES = TSrv (PRX + PCpuIdle) (3)

ERX = TRX (PRX + PCpuIdle) (4)

ECNET
= TC (PNetIdle + PCpuBusy) (5)

EN = ETX + ES + ERX + ECNET
(6)

The local storage energy terms are shown in equations 7 through 8. The total energy for the

local storage (EL) is shown in equation 9.

EDRAM = TDRAM (PDRAMbusy + PCpuIdle) (7)

ECDRAM
= TC (PDRAMidle + PCpuBusy) (8)

EL = EDRAM + ECDRAM
(9)

The two terms ECNET
and ECDRAM

both use the same value for computation time between

memory accesses, TC . The principal idea is that regardless of where the necessary code or data is

coming from, there is some constant amount of time TC spent in computation between accesses to

1The CPU could be working on other tasks during this time, thus having a different energy signature. This is addressed
later in section 7.4.

54

off-chip code or data. The difference in these terms stems from the difference between the idle or

sleep energies of the network link compared to the DRAM.

In terms of energy, the network model is equivalent to the local storage model when EN = EL,

but to consider the delay impact on application performance, we construct the energy-delay product2

in equation 10.

EN · (TTX + TSrv + TRX + TC) = EL · (TDRAM + TC) (10)

Solving equation 10 for TC provides the energy-delay equilibrium point where using a network

backing store is equivalent to using local DRAM. When TC is greater than this equilibrium value,

the network link is more energy-delay efficient from a total system perspective. That is, so long as

the next application page fetched from the network occurs after computation for a time period of

TC , the network memory model is more energy-delay efficient.

6.1.3 Pull

Unlike the isolated Legacy model, the Pull model assumes a network link has been incorporated in

the embedded device since creation. The critical point is that in the Pull model, the original design

engineers already budgeted power for a network link to be present and at least in sleep state. The

characterization Pull comes from how the network is used: the local device, on its own initiative,

pulls information from the network. External network devices cannot arbitrarily send information

to a device operating in a Pull mode.

Using the same basic notation as the Legacy model, there are only minor differences in the

energy analysis. The link is classically designed to be in a power-down sleep or idle state during

normal operation, except when the running application requests remote activity. Therefore, we

only calculate the impact of new behavior (our additional network traffic) over the original expected

behavior (sleep state). We need only consider the difference between the network link being in sleep

state as opposed to actively sending and receiving messages.

2When to use which variant of the ED
k metric is an issue of contention; in general, for pure circuit modification

techniques, the value to use is k = 2 which will indicate whether fabrication process improvements will outweigh any
circuit improvement. For our analysis of system-level changes, the more appropriate value is k = 1, since no process
shrink will address the entire system uniformly nor the significant power necessary for activities like wireless network
communications.

55

The result is that the original Legacy model assumption (all network link energy is a new burden)

is invalidated. Instead, we subtract the energy required for sleep-mode from the energy required to

transmit and receive information. This change in the additional energy needed represents the new

burden on the power source. The modifications to the original equations 2 through 5 are the new

equations 11 through 14, which we substitute into the total network energy model of equation 6.

ETX = TTX (PTX + PCpuIdle − PNetSleep) (11)

ES = TSrv (PRX + PCpuIdle − PNetSleep) (12)

ERX = TRX (PRX + PCpuIdle − PNetSleep) (13)

ECNET
= TC (PNetIdle + PCpuBusy − PNetSleep) (14)

The equations for total local storage energy (9) and the energy-delay product (10) are otherwise

the same, given these substitutions.

6.1.4 Push

Similar to the Pull model, the Push model also assumes a network link was built-in originally.

In contrast with the Pull model, the network link is always on so that if a device is not actively

transmitting, it is in receive-listen mode. Thus external network services can immediately push

information to the local device, such as e-mail notices, software patches, etc.

As the Pull model reduces the energy drain to store information in the network compared to the

Legacy model, the Push model reduces the drain further. Since the device was designed assuming

an always active receive mode network, the original design allotted sufficient power for this pur-

pose. Therefore, we subtract the power term for normal receive-mode network links, rather than

the smaller power term for a sleep-mode link as in the Pull model. That is, we only account for the

additional energy of both sending extra messages out and idling the CPU during responses.

We again replace the original equations 2 through 5 with our new equations 15 through 18,

which we substitute into the total network energy model of equation 6.

56

ETX = TTX (PTX + PCpuIdle − PRX) (15)

ES = TSrv (PRX + PCpuIdle − PRX) (16)

ERX = TRX (PRX + PCpuIdle − PRX) (17)

ECNET
= TC (PNetIdle + PCpuBusy − PRX) (18)

As with the Pull model, the equations for total local storage energy (9) and the energy-delay

product (10) are otherwise the same, given these substitutions.

6.1.5 Analysis

We now analyze in detail both the energy equilibrium point as well as the energy-delay product for

each of the three modes discussed in Section 6.1.1. In order to have a quantitative analysis, we use

technical data on current market products for both DRAM and Flash memory.

Current data sheets available from vendors (including Elpida, Fujitsu, Intel, Micron, NEC, and

Samsung) for low-power or “mobile” parts represent typical market performance. We calculate the

energy consumption in terms of pJ per bit by computing the best-case power consumption listed in

the electrical characteristics of each product. This gives us a relative measure of how much energy

is used in a best-case situation to read or write to the local storage device. During sleep mode,

these devices consume very low current but still require some power for refresh functions. These

calculations are shown for DRAM in Table 6, and for Flash in Table 7.

Similarly, we calculate energy information from the data sheets published by several network

link vendors. Unlike the DRAM, we determine the worst-case power per bit consumed, and the

standby or sleep-mode power. In this situation, the transmit (TX) and receive (RX) modes are

considered separately, as some links display different profiles by operating state. We restrict our

search to monolithic, fully-integrated network modules to ensure valid power measurements. Using

multiple chip solutions requires external components and glue logic which make analytical power

calculation difficult if not impossible. The components we consider and their power calculations

are shown in Table 8.

57

For our analysis, we demonstrate a conservative extreme: best-case local storage vs. worst-

case network links for remote storage. While neither of these models is generally realistic, they

demonstrate the conservative bounds where network storage is more effective than local storage.

Thus in actual application, network links will be more efficient than we demonstrate here.

Next we define our memory, network, and platform CPU models and specify exact characteris-

tics. Then we observe the basic trade-off between local storage and network storage of information.

Finally, we examine whether these trends hold across alternate network choices and the implications

for system designers.

6.1.6 Best-Case Memory

To construct the best-case memory power model, we carefully choose to ignore certain effects in

the CPU-to-memory interaction.

Since Flash is substantially slower than DRAM, the application is copied from Flash to DRAM

for faster execution, and then Flash is placed in deep-sleep mode or VDD gated off. Therefore,

we ignore the contribution of Flash to the total energy. We also ignore the effects of initiating

and waiting for memory access, and assume all accesses begin instantaneously at the maximum

supported rate of the DRAM device.

Moreover, we define the transition from idle or sleep mode to active mode as instantaneous. We

choose minimal VDD and current consumption at all times, and ignore refresh operations. We also

define that any code or data accessed is in the DRAM, and does not load from Flash.

This selection constitutes a best-case memory model. For analysis arguments, we use for the

DRAM device the Fujitsu FCRAM model MB82D01171A, a 2MB part with the lowest power

consumption of all devices measured in pJ/bit.

6.1.7 Worst-Case Network

For this analysis we restrict the additional traffic needed to support the network memory model to

unalterable content such as programs, static global data, etc.

We further model the request for code or data to a remote server as fully encapsulated in a 64-

byte packet. This packet size could be reduced or expanded based on the network topology and

error handling needs, but has sufficient storage space for a range requests. The response packet,

58

being a variable-payload version of the request packet, consists of 20 bytes for control information

followed by the actual payload of variable size. These values are based on our implementations of

such a client-server SoftCache system [58].

We assume that for the total count of DRAM chips, at least one is for mirroring part or all of

Flash. Based on the working set principle, only a small fraction of this space is actually needed

at any given moment. Rather than store a large mirror image, only sufficient space for the worst-

case working set should be reserved in local DRAM, with excess DRAM then removed. By using

the network link to access applications, we could also shrink the Flash such that it contains only

a boot image, and not all applications that could ever be run. This non-volatile memory reduction

also reduces the burden of pushing massive code patches out to all systems in the network. Since

steady-state mode changes occur relatively infrequently [1, 9], the need to load new code and data

from the network will also occur infrequently.

The worst-case network model uses typical VDD with worst-case current consumption in all

cases. With slower transfer rates, higher current consumption, and a long duration of remote server

processing TSrv , the network appears unattractive for energy savings at first glance. We will now

demonstrate that this is not the case.

The analysis that follows will implicitly use the concept of one computational task running on

the mobile device. Since the CPU would normally be busy during the additional network transac-

tions to receive new code (using the best-case zero-overhead local memory access), we model the

CPU as completely idle during these periods. If multiple tasks were present, the CPU could simply

switch to the next task and continue processing. This switch would not add the energy overhead of

sitting idle and delaying all work, and thus is not the worst-case scenario for network impact.

Our analysis uses the idea that one DRAM chip is removed, although it could include reducing

Flash as well as multiple DRAM chips. Our network link model is the CSR BC2-Ea, a fully inte-

grated Bluetooth module. This module exhibits a starting time of 10µs and a settling time of 5µs in

the internal ADC for gain control. A transition from Active to Sleep mode in the network module

is sub-1ms. As we will demonstrate later, the server processing time for requests is set to 10ms.

With such a large time for server processing, we ignore these second and third-order effects of the

network module design.

59

6.1.8 Mobile CPU

Our CPU model for the mobile device is the DEC SA-110, a 0.5W processor during high computa-

tion and 0.02W during idle periods when operating at 160MHz [75]. While not the most contem-

porary processor in the Intel ARM-based line, this model has the most exhaustive published power

data. Chapter 7 explores using more modern devices, such as the Intel PXA255 processor, as a

basis.

Several interesting factors arise from using the SA-110 processor as our representative model.

The SA-110 can transition between Idle and Active mode with effectively no delay. This transition

is accomplished by the two separate clock domains within the SA-110 – in Idle mode, the internal

bus clock and clock grid stop signaling. The actual steps to enable Idle mode are toggling a register,

loading an uncachable address, and waiting for an interrupt – a few instructions. The recovery is

achieved after receiving an interrupt, and restoring the original register values. Since the transition

between Active and Idle mode is nearly instantaneous, we do not model the time necessary for such

transitions in the CPU.

6.1.9 Initial Impact

Given that network transmission speeds lag substantially behind the bandwidth of local memories,

the bounds on TC will be dependent on the network speed. With increasing payload in transfers,

the remote server processing time becomes less important than the overall network performance.

Figure 18 illustrates the boundaries as TSrv varies from zero to one second.

It is unreasonable to assume zero processing overhead on the remote storage system. The in-

coming network request has to be received, interrupt handlers invoked, memory searched, etc. Using

our already existing client-server system as a basis [58], an Intel PIII 800MHz system running Red-

Hat Linux 8.0 is capable of processing and responding to requests in sub-10ms times. During this

time the server is also running a fully interactive X desktop with multiple applications running.

Therefore, we use 10ms as an approximate remote server processing time. While the remote server

could be optimized and made arbitrarily powerful, it will still be serving multiple targets and similar

response times may be realistic.

To compare the Legacy, Pull, and Push models using our established TSrv of 10ms, we again plot

60

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

T
-B

us
y

tim
e

(s
)

Data Transferred (kilobytes)

Tsrv = 1s
Tsrv = 100ms
Tsrv = 10ms
Tsrv = 1ms
Tsrv = 0ms

Figure 18: Each line represents the busy-computation time TC equilibrium point for different
remote server processing times TSrv. The network transmission speed is the limiting factor during
payload transfers, shown as the asymptote when TSrv = 0ms.

the necessary TC to reach energy-delay equilibrium compared to local storage accesses. Figure 19

demonstrates the trade-offs between the three models. Any value of TC beyond the times shown in

this figure are a “win” for using remote storage instead of local storage.

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32 64 128 256

T
-B

us
y

tim
e

(s
)

Data Transferred (kilobytes)

Legacy
Pull

Push

Figure 19: Comparing the energy-delay equilibrium characteristics of Legacy, Pull, and Push
models when TSrv = 10ms.

The Legacy model presents the worst energy-delay product result. We have added a network

link to a design that did not expect it. For the network link to be more efficient than local DRAM, it

requires a significant amount of time spent in computation, TC .

The Pull model provides better energy-delay results than the Legacy model, as can be expected

from subtracting the sleep mode power. The improvement turns out to be small compared to the

61

energy costs associated with transferring the data as well as the remote server processing time TSrv.

The actual difference between the Legacy and Pull models is slightly less than 8%. This result does

indicate that adding a network link to a legacy system when using a pull-based communications

model will have a small impact when compared to the energy consumed by local storage devices.

The Push model uses the least additional energy and thereby benefits most from using remote

storage. Since the network link is already expected to be in a receive-mode state at all times, the

only extra energy used to access remote storage is the energy of the transmit operations.

The energy-delay benefit for a 1KB “page” change with a TSrv of 10ms in the Legacy model

requires 4.33s as a minimum change interval. With the Pull model, the required busy time falls

to 3.99s. When considering the Push model, the time is reduced to 0.69s. In relative comparison,

this same 1KB “page” of code loaded across the network with TSrv = 10ms will present a total

application delay of 16ms to the user while accessing the network. This result includes the sending,

processing, and return of payload through the network.

A larger “page” size to transfer may be more realistic to consider, however. For a 16KB change

with TSrv = 10ms, the Legacy model requires 26.6s between transfers, and the Pull model requires

24.5s. The Push model reduces this time to a mere 4.2s. The delay the user experiences while the

network transfer occurs is 185ms.

6.1.10 Portability

In order to compare these results based on a very low-power Bluetooth integrated module to other

network types, we now consider two alternate network models. Neither of these alternatives come

in complete monolithic solutions, but instead comprise two or three highly integrated chips with

some minimal external glue logic. The estimates for the Cypress Wireless USB chipset and the

Bermai Integrated 802.11a chipset include only the main chip components. Power consumption of

the glue logic is not considered, and therefore these numbers are slightly smaller than they should

be in a worst-case scenario. In particular the 802.11a chipset has particularly large currents in any

mode of operation before considering the glue components.

Using the Push model as a baseline, we compare the CSR BC2-Ea solution to both the Cypress

and Bermai solutions. Figure 20 displays the results of this comparison. The surprising result from

62

this figure is that the very power-hungry 802.11a network is a much better selection than low-power

Bluetooth or similar modules. The substantially higher data rate causes the limiting factor not to be

the network link speed, but rather the remote server processing time.

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16 32 64 128 256

T
-B

us
y

tim
e

(s
)

Data Transferred (kilobytes)

Wireless USB
Bluetooth

802.11a 6Mbps
802.11a 54Mbps

Figure 20: Comparing the Push model energy-delay equilibrium characteristics with Bluetooth,
Wireless USB, and 802.11a network modules when TSrv = 10ms.

This comparison is against a Push model, where sufficient power was built-in to support the net-

work in constant-receive mode. A more illustrative example of the substantial power drain involved

in 802.11 chipsets can be seen by comparing to the Pull model, shown in Figure 21. Note that the

initial energy cost of the 802.11 network far exceeds other options, but that if the typical payload

transferred in the network is ≥ 24 kilobytes then the 802.11 network is a better design choice.

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16 32 64 128 256

T
-B

us
y

tim
e

(s
)

Data Transferred (kilobytes)

Wireless USB
Bluetooth

802.11a 6Mbps
802.11a 54Mbps

Figure 21: Comparing the Pull model energy-delay equilibrium characteristics with Bluetooth,
Wireless USB, and 802.11a network modules when TSrv = 10ms.

63

While these results do not specifically tie to any estimated average transfer size, they show inter-

esting trends. Ultimately the typical payload size will be entirely dependent upon the applications

and network support by commercial providers. This work shows that by performing careful analysis

on what types of applications and data will be used in the network, and the characteristics of those

applications, increasing local storage may be the wrong approach to longer battery life.

6.2 ARM Processor

Considering the power numbers previously presented for the SA-110 processor, a SoftCache im-

plementation on an SA-110 core would result in immediate and obvious power savings. Given the

specifications and implementation details of the SA-110 [75], we can observe the following using

typical memory cell layouts [51]:

• The SA-110 uses a fully-associative 32-way tag system

• A typical FA tag bit is implemented as a CAM cell

• Modern CAM cells typically use a 9 or 10T design

• There are 23 address bits in a SA-110 tag, plus a valid bit

• Each SA-110 cache line contains 32 data bytes + 4 physical address bytes + 4 control bits

• Typical uni-ported SRAM cells use a 6T layout, with each additional port using at least 2T

• The SA-110 cache tags consume 12.2% of the total cache T count

Recall that the I+D caches alone consume 43% of the total die power in the SA-110. Using even

a rough 50% switching activity model and trying these observations for crude estimation, which are

unrealistic assumptions, it is apparent that a drop of 5.2% of the total die power would be achieved

by removing the tag storage alone. Further, the SoftCache would remove entirely the I+D MMU

systems, resulting in additional power saving of 17%, for a total power saving of 22.2%. In return, a

small additional requirement for the extra control logic and necessary additional instructions would

be present, reducing this power savings by some amount. This extra power spending we believe is

64

an order of magnitude less than the power saved. Note that such crude estimations fail to account

for logic required to implement comparators, multi-hit resolution in the tag CAMs, etc.

Additional power savings can be achieved by using a detailed static analysis of applications

and/or dynamic feedback mechanisms of program performance. By using such analysis informa-

tion, it is possible to convert the multi-banked SRAM storage on die to permit “drowsy” or “sleep”

modes that consume less energy [117, 3, 40]. Different layouts and implementation details for sup-

porting these constructs could present a novel feature such that control over bank power is explicitly

exposed to applications for self-optimization – either high performance or low power.

This section investigates these issues of power, keeping focus not only on power but also on

performance such that overall application speed is comparable to an unmodified design. Different

design approaches for the SoftCache achieve different balances in power and performance.

6.2.1 Cache Overhead

Cache overhead is a comparison of the hidden costs in a hardware cache and the hidden costs of

the SoftCache. Hardware caches must store tags, control bits, and other state information for each

cache line. The SoftCache has no tags to store, but does carry an overhead for the miss-handler

instructions, communications interface, and extra program instructions.

To understand the overhead for hardware cache memory management, we consider the cache

structures of several current processors. The overhead calculation is only the extra bits stored with

each cache line, without calculating impact in other locations such as locking bits in a TLB. We

deliberately exclude parity and ECC bits from our calculations, for if these are needed in the hard-

ware cache they will likely be needed in the generic SRAM replacement the SoftCache uses in the

same process. The primary drawback to studying actual processors is that each one implements

cache control in a different manner. The XScale, for example, stores the physical address on every

cache line since it is a virtually-indexed, virtually-addressed cache. Therefore we use a “baseline”

for comparison assuming a 32-way associative cache, of 32-byte line size, with a 32-bit address to

memory.

To compute the overhead of the SoftCache, we use details of our real system [46, 58]. In the

unoptimized ARM SoftCache, a best-case miss-handler will execute 54 instructions, and worst-case

65

73. There is also a small primitive communications interface written in C. We require just under 100

instructions for the miss handler and raw UDP network interface, using 32-bit instructions. We use

basic blocks as a unit size of instructions in both the SPARC and ARM SoftCache implementations.

This approximates to a branch occurring every 5-7 instructions. For conservative analysis, we define

the basic block as five working instructions followed by one branch. The SoftCache carries an extra

storage penalty of one additional branch, given that there is no guarantee of contiguous basic block

alignments when compared to the original program continuity. Both the taken and not-taken paths

must be stored as branch or exception instructions, since no fall-through case may be permissible.

This indicates for every six program instructions, one additional branch instruction must be inserted.

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256

O
ve

rh
ea

d
S

iz
e

(K
B

yt
es

)

Cache Size (KBytes) [logscale]

Basic HW$
SC for BB=6
SC for BB=8

SC for BB=10

Figure 22: Overhead storage costs by cache size.

Figure 22 shows the results of this comparison. The SoftCache pays a measurable penalty for

its 100-instruction miss-handler that make it a losing proposition for caches below 16KB in size. At

the 16KB size, the SoftCache is a lower overhead solution. These trends, however, are not typical

of real processors. To make a more direct comparison, we consider real cache implementations, as

shown in Figure 23.

The microprocessors used for comparison are contemporary embedded system low-power de-

vices, including: the Intel XScale which uses the same cache line structure as the DEC (now Intel)

SA-110 [25]; the Motorola PowerPC850 [78, 95] and the MIPS R4Kp [73]. The XScale runs with

an overhead of 24%. The MIPS has 22% overhead, and the PowerPC has 19%. Our basic hardware

cache model is only using 12% overhead, clearly a generous comparison. The SoftCache, however,

has overhead directly proportional to the size of the block it operates with. Assuming a basic block

66

Cache Implementation

X
S

ca
le

M
IP

S

M
P

C

S
C

:6

S
C

:8

S
C

:1
0

P
er

ce
nt

 O
/H

0

5

10

15

20

25

Figure 23: Different real cache overhead costs.

of 6 instructions, the overhead is 16.7%. For basic blocks of 8 or 10 instructions, the overhead drops

to 12.5% and 10% respectively.

If the SoftCache were to move from a basic block unit to a larger hyper-block or super-block

size, it would attain even better competitive performance. The SoftCache penalty is not constant due

to the extra (worst-case) assumption of storing an additional branch with every basic block coupled

with the baseline miss handler. While storing these additional branch instructions with every basic

block consumes resources, it takes substantially less than the extra storage used by hardware caches.

Our existing SoftCache design focuses on small embedded processors and ignores issues that

arise with multiple cache levels. There is potential for treating both L1 and L2 as SoftCaches,

or constructing a SoftCache/hardware hybrid for performance reasons, such as a hardware L1 and

SoftCache L2.

6.2.2 Area

Given that the SoftCache exhibits storage overhead usage that is variably better than the small

hardware caches we are comparing it to, as shown in Section 6.2.1, we ignore any arguable area

savings in the physical storage within banks. For larger cache sizes (above 32KB), the storage

overhead savings may become significant. For smaller embedded processors, the obvious benefits

of area savings come from removal of other logic, such as MMU, write buffers, cache control

logic, and similar circuits. Based on the published technical data of the SA-110 from DEC [75],

the MMUs and write buffer consume approximately 11% of the total die area. These units also

consume 19% of the total die power when running a computationally intensive program such as

Dhrystone [75]. While the tag structure in the SA-110 is using fully associative CAMs, which

67

contain higher transistor counts than SRAMs, we lack implementation details (9/10/11-T, sizing,

process parameters) to establish the potential degree of savings from this structure.

Saving 19% of the total die power by removing 11% of the used area is a significant reduction

by itself. The SoftCache design will save area when compared to a traditional hardware cache.

While these measurements may not be equivalent with respect to other microprocessors, given the

complex cache of the SA-110 it is indicative that a quantifiable area savings would occur.

6.2.3 Bank Power

In addition to the area reduction, the SoftCache system also has the advantage of lower power dis-

sipation due to the removal of these hardware components. First, to understand how the SoftCache

model alters the energy used within the cache, we consider the hardware cache structure and a

corresponding SRAM used in both traditional processors and a SoftCache equivalent.

CACTI 3.2 [96], the de facto standard for evaluating cache models, generates energy and timing

information for all components in a cache structure. The SRAM power generated by CACTI is

based on just those components needed for SRAM operation: address decoding, wordline and bitline

driving, senseamp output, and output driver. The CACTI cache structure report adds onto the SRAM

information the tag CAM cell matching and resolution logic. Typically, the SoftCache could operate

faster without the additional hardware of tags, which slow down the timing.

With CACTI, we model varying cache sizes with 32-byte line sizes and 32-way associativity in

180nm, which is the XScale cache structure. Figure 24 presents our results. It clearly demonstrates

the energy advantage of SoftCache due to the removal of the tag arrays and control bits in a con-

ventional cache. The trend in this figure is that for small caches, approximately 5% of the power

can be saved by removing tag logic. As the caches increase to 256KB, up to 10% energy is saved.

For 64KB, the combined instruction and data cache storage capacity of the XScale, the savings are

approximately 6%. This estimated 6% saving tracks well with our earlier gross approximation of a

5.2% reduction (based on switching activity, section 6.2).

For the MMU and write buffers, it is more difficult to measure without a complete real proces-

sor implementation, thus we use the published power data of SA-110 as a reference. As shown by

68

Cache Size (KB)

8 16 32 64 12
8

25
6

E
ne

rg
y

(n
J)

4.5

5

5.5

6

6.5

7 Cache Energy SRAM Energy

Figure 24: CACTI Power Comparison of SoftCache vs. Conventional Cache

Montanero et al [75], these units consume 19% of the total die power when running a computa-

tionally intensive program such as Dhrystone. In other words, by removing these components in a

SoftCache system, 20% potential energy savings can be achieved. The study of real hardware power

savings is in section 7.

6.2.4 Local vs. Remote Store

The SoftCache model seems counterintuitive since it recommends the reduction (or removal) of

local storage (DRAM, NVM) and utilization of the network link for remote storage. The underlying

issue is how the energy consumption of local storage compares to that of using a network. Intuitively

we expect local DRAM to be much more energy efficient than any network.

Our work [45] demonstrates that this is not the case from a purely energy-delay standpoint.

Network links are 10 to 100 times more expensive in power than accessing local memories, a fact

in agreement with common beliefs. Surprising, keeping DRAMs active without accesses are 10 to

100 times more expensive in power than idling or sleeping network interfaces. We use our prior

analytical model for network impact (section 6.1) and incorporate additional terms to track the extra

instructions executed in time and energy, as well as the payload transfers during SoftCache chunk

loading/rewriting.

One of the key principles behind the SoftCache design is that there are several modes of opera-

tion, and changing modes is an infrequent event. This suggests that if the time between mode switch-

ing is sufficiently long, the aggregate consumption of active- and sleep-mode energy by DRAM will

exceed the active- and sleep-mode energy consumption of the network link. Finding the amount of

69

time that must be spent in computation (hence leaving the DRAM or network link in sleep mode)

before switching modes is an exercise in the energy-delay benefit, with the answer given after anal-

ysis in section 6.3.1. Before this answer can be determined, we explore additional aspects of the

problem.

6.3 SoftCache Penalties

This section continues the comparison of a best-case DRAM solution against a worst-case network

link solution. Consideration of the hidden overhead involved in SoftCache is ignored, as is the

hidden overhead of a hardware cache. The two models being compared are (a) µP with hardware

cache and local DRAM storage, and (b) µP with SoftCache and a network link.

It is clear that additional instructions must be executed in the SoftCache to effect a hardware

cache equivalent. These instructions come in two flavors: miss handlers, and penalty branches. We

can compare these penalties to the actual work being done during any given mode of computation

to understand the penalty that each model incurs.

The total amount of time spent in a given computational mode is the arbitrary amount of time

doing actual work, as opposed to moving data around in order to perform work. This time for

the computation itself is denoted TC . Assuming our worst-case expectation of executing some

100 instructions in a miss handler every time we need to fetch another basic block, the SoftCache

performance and power penalty could be substantial.

Hardware caches use integrated controllers that fetch cache lines from memory at high speed.

Since the SoftCache uses the basic block size for transfer, it transfers instructions in 6-instruction

blocks on average. This transfer requires accessing the network to send a request to the server,

waiting for the server to process the request, and then the time and network required to receive

the correct response. However, the transfer rate for the network is substantially slower than for

DRAM. The additional time the CPU is “idle” and waiting for the network activity to change must

be factored in a well.

Using the SA-110 as the hardware baseline model, we can assume a reduction to idle-mode

during these times at 20mW for idle power [75]. The time spent in different states of transfer can

be represented as a function of the network link rate. The SA-110 core consumes 0.5W during CPU

70

intensive programs that run primarily from on-chip cache, such as Dhrystone. The same core in

a SoftCache model – where MMU and write buffers have been discarded – would consume 0.4W.

After factoring in the energy consumption in the cache banks, this number will be in the range

[0.25,0.35]W. For our analysis we have used the reduced value of 0.35W.

The “penalty” branch instructions occur when a basic block is brought into the client, and one

branch path is resolved. At a later point, the alternate branch path may be resolved as well, but the

target address for the hot path may not be the sequentially next instruction as it was in the original

program. Therefore, some form of extra branch is required to move to the correct location. In an

extreme case, we would have to execute every penalty branch instruction, which would cause the

CPU to consume extra energy. In the following section, we combine all of these issues for penalties

and power to demonstrate the viability of our SoftCache system.

6.3.1 Energy and Delay

While the prior discussion explains penalty instructions and network link usage, they do not portray

the energy trade-offs with respect to overall performance. Instead we introduce a set of equations to

show how energy is impacted by the primary variables network link speed, RL, time for the server

to process a request (not counting TX/RX times), TS , and total bits transferred for a mode change,

BN .

With respect to the network link and the power savings in the SoftCache model shown in sec-

tion 6.2.2, we can derive equations to represent the total energy spent as well as the total time for

a typical mode. These are dependent on which model is being used – DRAM or link. The total

energy for DRAM, ED, and total time for DRAM, TD, corresponds to the total energy and time

for the link version, EL and TL. Note that prefetching, mispredictions, and other pressures that

increase memory traffic are not considered – that is, we consider a perfect access model to memory

for best-case performance of memory, with perfect CPU utilization.

We find the equilibrium point for the total computation time, TC , by equating the energy of

DRAM and network link. This equilibrium point is the minimum time span that TC must encom-

pass for the two models (local DRAM and hardware cache vs. SoftCache and network link) to be

71

equivalent. Beyond this equilibrium point, the SoftCache is more energy efficient due to the differ-

ences in idle and sleep energy. That is, solving the equation ED = EL gives the average amount

of time that must be spent in any given mode before changing. (Each term uses TC to compute the

total energy consumed during the mode.)

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr

1 hr

2 hrs

4 hrs

Ts = 1s
Ts = 100ms
Ts = 10ms
Ts = 1ms

Figure 25: Duration of computation TC that must pass for the network link to be more energy
efficient, where TS and BN vary.

Evaluating this result for various values of bits required for the mode change, BN , we obtain

a plot of BN vs. TC as shown in Figure 25. The result is sensitive to variances of TS , the server

processing time. While the server can be made powerful enough to keep the TS response time low,

it will be non-zero. With one server controlling multiple clients, it can also be expected that some

contention may exist for the server attention. This figure indicates how the penalty changes with

increasing contention. Moreover, this equilibrium equation includes the worst-case branch penalty

behavior (every penalty instruction executed). The same graph with the branch penalty removed

can be seen in Figure 26.

The surprising result is not that the SoftCache does become an energy win given sufficient time,

but that it can do so in seconds! In reality, the VDD supply for the network link could be passed

through a cutoff-transistor to completely disconnect the link device, thereby reducing sleep current

to 0A [92]. This reduction is possible only if the client initiates connections to the server – the

server cannot spuriously send commands to the client. This restriction would make the link power

model more quickly a win in net energy.

Given that the network link can be more energy effective in seconds, the rationale for mode

72

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr

1 hr

2 hrs

4 hrs

Ts = 1s
Ts = 100ms
Ts = 10ms
Ts = 1ms

Figure 26: Duration of computation TC that must pass for the network link to be more energy
efficient, where TS and BN vary and branch penalty is removed.

changes being infrequent (on the order of tens of minutes) does not initially seem correct. Closer

examination reveals why finding the equilibrium point is not sufficient to understand the problem.

Ideally, the additional time spent in the slow network link to switch modes should not adversely

affect application performance. The goal is to fix the application slowdown due to network traffic

to a maximum of 1% penalty.

Factoring in the rate of the network link, RL, to create an energy-delay equation, we realize that

the relatively slow speed of the network can force a tremendous impact on application performance.

Figure 27 shows the effect of these additional considerations. This figure includes the original

equilibrium values, marked as “EQ”, and the consideration for slowdown in the network affecting

application run-time versus the original equilibrium point, marked “APP”.

As Figure 27 illustrates, over slow network links applications can transfer 32KB every minute,

and be more efficient than traditional designs. The high power and slow speeds of the network are

the limiting factors in this analysis. For the proposed application of massive CMP-binary translation,

both of these terms would improve significantly. For the embedded cell phone system, this result

suggests that loading a “new application” remotely, such as Mario Bros (approximately 128KB), is

a better solution than loading it from local memory as long as the average time the game is played

exceeds two minutes. On a smaller scale, a transfer of 16KB pages from the network is more energy

efficient than local DRAM after four seconds of use, and is more energy-delay efficient after 16

seconds.

73

 0.1

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16 32 64 128 256 512

T
c

tim
e

(s
)

Data Transferred (KBytes)

0.25 hr

0.5 hr

1 hr

2 hrs

4 hrs

EQ: Ts = 10ms
APP: Ts = 10ms

Figure 27: Comparison of time for equilibrium energy win (“EQ”) and energy-delay product win
(“APP”) on application performance. TS = 10ms.

74

Vendor Model MB width MHz VDD access mA sleep mA pJ/bit pJ/bit/MB

Elpida EDL1216AASA 16 16 133 2.3-2.7 80 1.5 86.5 5.4

Fujitsu MB82D01171A-80 2 16 125 2.3-2.7 20 0.2 23.0 11.5

Micron MT48V4M32-10 16 32 100 2.3-2.7 100 0.35 71.9 4.5

Micron MT48V16M16-10 32 16 100 2.3-2.7 80 0.35 115.0 3.6

NEC µPD4664312 8 16 150 2.7-3.3 45 0.1 49.6 6.2

Samsung K4S643233-75 8 32 100 2.3-2.7 85 5 61.1 7.6

Samsung K4S283233-75 16 32 100 2.7-3.6 220 6 185.6 11.6

Samsung K4S561633-1H 32 16 100 2.7-3.6 130 6 219.4 6.9

Table 6: Mobile DRAM characteristics: size, bit-width, speed, voltage, best-case access current, best-case sleep-mode, current use, pJ per bit in
accessing, and a normalized pJ per bit per megabyte of memory. Refresh impact not included.

75

Vendor Model MB width MHz VDD access mA sleep mA pJ/bit pJ/bit/MB

Fujitsu MBM29LV320xE 32 16 12.5 2 7 0.005 70.0 2.19

Fujitsu MBM29DS163xE 16 16 10 1.8 8 0.005 90.0 5.63

Intel 28F256K3 32 16 75 2.7 24 0.030 54.0 1.69

Intel 28F64OW30 8 16 40 1.7 8 0.007 21.3 2.66

Intel 28F32OW18 4 16 66 1.7 7 0.008 11.3 2.82

Micron MT28S2M32B1LC 8 32 133 3 130 0.300 91.6 11.45

Micron MT28F642D18 8 16 54 1.7 10 0.025 19.7 2.46

NEC UPD29F032203AL-X 4 16 12.5 2.7 16 0.005 216.0 54

NEC uPD29F064115-X 8 16 12.5 1.8 15 0.025 135.0 16.88

Samsung K9F2816x0C 16 16 20 1.65 8 0.010 41.3 2.58

Samsung K9F2808x0B 16 8 20 1.7 5 0.010 53.1 3.32

Samsung K9F6408x0C 8 8 20 1.65 5 0.010 51.6 6.45

Table 7: Low-power Flash characteristics: size, bit-width, speed, voltage, best-case access current, best-case sleep-mode, current use, pJ per bit in
accessing, and a normalized pJ per bit per megabyte of memory.

76

Vendor Type Range Model kbps VDD TX mA RX mA sleep uA TX µJ/bit RX µJ/bit

AMI Semi SpreadS 300m ASTRX1 40 3.3 14 25.0 10.0 1.155 2.063

AMI Semi Modem n/a A519HRT 1.2 5.0 0.6 0.6 n/a 2.500 2.500

CSR Bluetooth 100m BC2-Ea 1500 1.8 53 53.0 20.0 0.064 0.064

MuRata Bluetooth 100m LMBTB027 1000 1.8 60 58.0 30.0 0.108 0.104

NovaTel Wireless n/a Expedite 38.4 3.3 175 130.0 5.0 15.039 11.172

OKI Semi Bluetooth 100m MK70 921.6 3.3 115 72.0 n/a 0.412 0.258

Option GSM n/a GlobeTrotter 116 3.3 550 50.0 50.0 15.647 1.422

Radiometrix UHF 30m BiM-UHF 40 5.0 21 16.0 1.0 2.625 2.000

Siemens Bluetooth 20m SieMo S50037 1500 3.3 120 120.0 120.0 0.264 0.264

UTMC Bus n/a UT63M1xx 1000 5.0 190 40.0 n/a 0.950 0.200

Vishay IrDA Varies TFBS560x 1152 5.0 120 0.9 1.0 0.521 0.004

Wireless Futures Bluetooth 100m BlueWAVE 1 115.2 3.3 60.9 60.9 50.0 1.745 1.745

Cypress W-USB 10m CYWUSB6941,2 1000 3.3 120 135 20.0 0.396 0.446

Bermai 802.11a 50m BER7000 54000 3.3 454 364 3030 0.028 0.022

Table 8: Network link characteristics: speed, voltage, current draw in various states, and worst-case µJ per bit power consumption for TX and RX.
The last two entires (Cypress and Bermai) are only approximations.

77

CHAPTER VII

REAL HARDWARE EVALUATION

Using the results and insights gleaned from Chapter 6, a second study for more contemporary hard-

ware power information is necessary. The prior estimations and component characterizations lack

any correlation to modern real hardware, which makes for a weakness in the overall argument. In

this section, we use an Intel PXA255 Reference PDA design, the Sitsang-400, to evaluate different

characteristics of performance and power consumption by careful application of microbenchmarks.

However, this necessarily requires an evaluation of a proper experimental setup in order to have

valid power and performance data. This section will explore both proper technique as well as the

actual hardware measurements.

Appendix A contains an overview of the proper methods for power measurement, including

common fallacies and pitfalls. This appendix also presents sample circuits and error estimations

when expensive facilities are unavailable. Chapter A.3 also details the hardware modifications made

to facilitate real hardware power measurements. Chapter 7.1 explores the internal architecture of

the Sitsang’s PXA255 processor, as well as the state of the system board layout. Finally, Chapter

7.3 provides a record of the results from measuring power and performance on the Sitsang platform.

7.1 Sitsang Architecture

The basic power distribution system, simplified for discussion in this thesis, is illustrated in Fig-

ure 28. The four tap points for collecting Iload and Vsupply previously mentioned are marked in this

figure.

With this power distribution logic, disabling the LCD, Backlight, Audio, and USB eliminates the

extraneous peripheral drains from “SYS PWR”. Thus, the system power is driving only the other

regulators for the PXA255 processor, DRAM, etc. Similarly, by disabling all peripherals except

the Ethernet interface unloads the 4.2V supply except when network activity is taking place. As

previously mentioned, the CPLD on the Sitsang motherboard provides a board-level power control

78

MAX
1703

MAX
1793

MAX
1820

Power Switch

Vbatt

Tap

"SYS_PWR"

4.2V

3.3V

V Core

Tap

Tap

Tap

Backlight (5V), Audio (5V),
Audio (3.3V), USB (5V)

LCD (3.3V), CF (3.3V),
ACC (3.3V), IrDA (3.3V),
USB (3.3V), SD (3.3V),
Ethernet (3.3V)

PXA 255 I/O, Flash, SDRAM,
CPLD, UARTs, SD Data,
Bus Drivers/Transceivers,
Joystick, LEDs, Switches

PXA 255 Core Logic

Figure 28: The simplified Sitsang power distribution logic.

register. This control register includes a bit for toggling power to the Ethernet interface, an SmSC

LAN91C96 module. By careful isolation of a quiescent system, to a system with the network chip

enabled, to a system in active transmit or receive mode, isolation of the various power terms involved

in supporting a 10Mbps twisted pair LAN is possible.

With the 3.3V supply, disabling the LEDs, switches, and joystick minimize the drain. The bus

drivers/transceivers cannot be disabled, nor can the CPLD. The primary problem then becomes

isolation of the power components on the 3.3V supply for the SDRAM, Flash, and CPLD. The

V Core voltage is easily measured independent of the rest of the system. Not shown in Figure

28 is the ability to alter the core voltage with on-board software controlled selectors. At this time,

experiments in DVS/DFS/DVFS are ignored, and this area is left for future exploration.

To isolate the individual power terms for the different primary components, it becomes neces-

sary to run a series of empirical tests and perform linear regression analysis [17] as well as model

fitting [17] to extrapolate each device’s power profile. The mechanisms for obtaining the empirical

data are dependent upon the internal architecture of the PXA255. A simplified view of the PXA255

SoC internals [32] is shown in Figure 29.

Of particular importance in the internal block digram of the PXA255 is the system bus that sits

between the XScale microarchitecture core and the rest of the system. While exact specifications

for the system bus are not published, this diagram shows that the XScale core running from caches

touches nothing else in the SoC. However, any time the XScale core goes to memory, it travels

the system bus to the memory controller prior to going off-chip (assuming no DMA involvement).

79

Intel XScale
Microarchitecture

LCD
Controller Memory

Controller

GPIO
Bus

Var.
Latency

CF &
PCMCIA

SDRAM
(Dyn.)

ROM/
Flash

DMA
Engine

Peripheral
Bus

RTC
OS Timer
PWM1
PWM2
Ctrl1
Clk/Pwr
I2S
I2C
AC97
UART1
UART2
UART3
NSSP
IrDA1
IrDA2
SSP
USB
MMC

System
Bus

PXA255
SoC

Figure 29: A simplified internal diagram of the PXA255 processor.

Similarly, to read or write the network, the XScale core goes through the system bus to the peripheral

bus to the SSP controller and then off-chip. To better illustrate the internal workings of the XScale

core, Figure 30 shows the major functional blocks [34, 32, 33].

F1 F2 ID RF

D1 D2 DWB

X1 X2 XWB

M1 M2 Mx

Memory Pipe

Main Pipe

MAC Pipe

Bpred
& BTB
(128)

Instruction
Cache (32KB)

Data
Cache (32KB)

IMMU

DMMU Mini DataCache

Mini Instr.Cache

Write
Buffer (8)
Fill
Buffer (4)
Pend
Buffer (4)

Fetch
Buffer 1 (8)

Fetch
Buffer 2 (8)

Figure 30: A simplified internal diagram of the XScale microarchitecture inside the PXA255
processor.

The XScale microarchitecture allows for a substantial amount of internal state configuration,

including the enable/disable of caches, MMUs, the BTB, and other minor elements. However, it

is not possible to disable the fetch buffers. Each fetch buffer is a sequential 32-byte block from a

80

“missed” instruction target. Therefore, even with the caches disabled, the XScale core will continue

to execute any instructions that it can which exist in the fetch buffers. During this period, any

miss will cause the next fetch buffer in a rotating basis to be evicted and the new target instruction

sequence loaded.

With the fetch buffers always active, it is possible to have a quiescent system that is continuously

executing up to 16 instructions from the two fetch buffers while never touching caches or main

memory. This is a useful quirk in the system design that will enable us to perform microbenchmark

studies to achieve our goal of linear regression with model fitting to accurately construct a power

model to examine the SoftCache system.

The primary components we must characterize in power to evaluate the SoftCache are: (1)

data and instruction caches; (2) data and instruction MMUs; (3) PXA255 busy and idle states; (4)

SDRAM access and idle states; (5) ethernet receive, transmit, and idle states. In the next section,

we sketch our microbenchmark approaches for each of these tasks.

7.2 Tuned microbenchmarks

To design a microbenchmark that will behave exactly as expected requires a safe operating environ-

ment. Running microbenchmarks under complex operating systems or interrupt-driven embedded

environments may allow non-deterministic behavior which inhibits repeatibility of results. To solve

this problem, we ported the U-Boot1 boot loader framework to the Sitsang platform. U-Boot is an

entirely polling-based bootloader environment, with the added feature of allowing programs linked

against the U-Boot binaries to be loaded and run from the command line as extensions to U-Boot.

Therefore, after successfully porting U-Boot and enabling the minimal necessary features for the

PXA255, SDRAM, and ethernet, microbenchmarks are loaded as U-Boot extensions.

To ensure that the microbenchmarks run as intended, each microbenchmark is hand-coded in

ARM assembly language and then compiled with gcc -O0 to prevent compiler optimizations. These

microbenchmark binaries are then loaded via Motorola S-record format over the serial port, and

executed. Upon completion of the microbenchmark, execution returns to the U-Boot environment.

1The open-source U-Boot project is located at http://u-boot.sourceforge.net. Our patches are in revision for acceptance
to the mainline release.

81

While U-Boot does not support interrupts directly, this lack of support is a feature where all the

hooks are in place but are not activated. For any microbenchmark that needs to use interrupt-based

behavior, that microbenchmark can enable interrupts on startup and disable them on exit. Therefore,

there is no impediment per se to working with interrupts, but the microbenchmark must do all the

required work of managing the interrupts.

We now sketch the pseudo-code for each of the microbenchmarks used. The default U-Boot

status is to disable all MMUs, caches, etc. Similarly, all peripherals are disabled except the serial

port for host communications. Each microbenchmark will activate only those resources of interest.

7.2.1 Caches

The first problem is to classify the baseline power consumption of each cache in an idle state,

captured by the microbenchmark in Listing 7.1. This short program simply alternates the caches

which are enabled, but is careful to avoid actually running from the caches. A particular problem

with the XScale implementation from Intel is that even when the caches are disabled internally, they

are still accessed for every miss in instruction or data reference. Therefore, enabling or disabling

a cache will have zero net power impact. This first microbenchmark is to confirm this detail of

implementation.

Listing 7.1: Idle cache power classification
1 f o r (i = 0 ; i <= COUNT ; i ++)
2 ; / / busy i d l e , c a c h e s o f f
3 cacheOn (ICACHE)
4 f o r (i = 0 ; i <= COUNT ; i ++)
5 ; / / busy i d l e , I c a c h e on ly
6 cacheOf f (ICACHE)
7 cacheOn (DCACHE)
8 f o r (i = 0 ; i <= COUNT ; i ++)
9 ; / / busy i d l e , Dcache on ly

10 cacheOn (ICACHE)
11 f o r (i = 0 ; i <= COUNT ; i ++)
12 ; / / busy i d l e , I +Dcaches on
13 cacheOf f (ICACHE)
14 cacheOf f (DCACHE)

Understanding the cache miss event is clouded by the behavior of the various buffers. For the

instruction cache, any miss will allocate one of the two instruction fetch buffers. The target address

is loaded as part of the 32-byte cache line that would occur for the target. Once the fetch buffer

has been loaded, if the instruction cache is enabled, the fetch buffer will be written into the cache.

82

Therefore, there are two components to instruction cache miss power – fetch buffer loading, and

fetch buffer to cache line transfer. The microbenchmark to capture this behavior is shown in Listing

7.2.
Listing 7.2: Instruction cache miss power classification

1 / /
2 / / c l a s s i f y j u s t t h e f e t c h b u f f e r l o a d c o s t
3 / /
4 f o r (j = 0 ; j <= COUNT ; j ++)
5 {
6 f o r (i = 0 ; i <= COUNT ; i ++)
7 ; / / busy i d l e , c a c h e s o f f
8 go to miss1
9 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)

10 miss1 :
11 f o r (i = 0 ; i <= COUNT ; i ++)
12 ; / / busy i d l e , c a c h e s o f f
13 go to miss2
14 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)
15 miss2 :
16 f o r (i = 0 ; i <= COUNT ; i ++)
17 ; / / busy i d l e , c a c h e s o f f
18 go to miss3
19 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)
20 miss3 :
21 f o r (i = 0 ; i <= COUNT ; i ++)
22 ; / / busy i d l e , c a c h e s o f f
23 c o n t i n u e ;
24 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)
25 }
26 / /
27 / / now , c l a s s i f y f e t c h b u f f e r t o cache l i n e t r a n s f e r
28 / /
29 cacheOn (ICACHE)
30 f o r (j = 0 ; j <= 1 0 2 4 ; j ++)
31 {
32 f o r (i = 0 ; i <= COUNT ; i ++)
33 ; / / busy i d l e , I c a c h e s on
34 go to miss1
35 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)
36 miss1 :
37 f o r (i = 0 ; i <= COUNT ; i ++)
38 ; / / busy i d l e , I c a c h e s on
39 go to miss2
40 asm (”nop , nop , nop , , nop”) / / 3 2 b y t e s o f no−op (8 nop ’ s)
41 [. . .]
42 miss128 :
43 f o r (i = 0 ; i <= COUNT ; i ++)
44 ; / / busy i d l e , I c a c h e s on
45 i n v a l i d a t e C a c h e (ICACHE)
46 }
47 cacheOf f (ICACHE)
48 i n v a l i d a t e C a c h e (ICACHE)

The first part of this listing has three short loops that each occupy one fetch buffer, forcing

83

a continual collision and buffer refetch. The second part of the listing models the transfer from

the fetch buffer to the cache line, with a periodic invalidate with the goal of capturing the power

signature of just one transfer on the oscilloscope.

Instruction cache hit behavior is easily established by repeating the miss characterization and

eliminating line 48 – the cache invalidation. The end result is that after one iteration through the

outter loop, the cache will be warm with the code. All cache accesses after that point are hits.

The data cache is easier to characterize than the instruction cache. While the data cache is

always accessed regardless of the enabled status, it has no fetch buffers to interfere with miss mea-

surements. However, evictions do travel through the write buffer, which has 8 entries of 16 bytes

each. Each cacheline has two dirty bits, each corresponding to 16 bytes on the line, to reduce

write-back memory pressure.

To capture the states of the datacache, the benchmark of listing 7.3 is sufficient. One drawback

to the XScale implementation is that the datacache cannot be activated with the MMU disabled,

otherwise undefined behavior occurs. To correct for the MMU overhead, we determine the MMU

power signature later in this section.

The use of these microbenchmarks will isolate power terms to distinguish between various cache

hits and cache misses, as well as supporting buffers. However, the inability to full deactivate the

cache lookups suggests it is not possible to determine the exact cache energies.

84

Listing 7.3: Data cache power classification
1 / /
2 / / run a loop t o do cache m i s s e s
3 / /
4 i n t x , y , ∗ p = 0 x0 ;
5 cacheOn (ICACHE)
6 cacheOn (DCACHE)
7 f o r (j = 0 ; j <= COUNT ; j ++)
8 {
9 f o r (i = 0 ; i <= COUNT ; i ++)

10 ; / / busy i d l e , c a c h e s o f f
11 x = ∗ (p + j ∗ 3 2) ; / / l o a d n e x t cache l i n e (f o r c e miss)
12 }
13 / /
14 / / run a loop f o r cache h i t s
15 / /
16 p = & x ;
17 f o r (j = 0 ; j <= COUNT ; j ++)
18 {
19 f o r (i = 0 ; i <= COUNT ; i ++)
20 ; / / busy i d l e , I c a c h e s on
21 y = ∗ p ; / / load−h i t
22 }
23 / /
24 / / run a loop f o r w r i t e−backs
25 / /
26 f o r (j = 0 ; j <= COUNT ; j ++)
27 {
28 f o r (i = 0 ; i <= COUNT ; i ++)
29 ; / / busy i d l e , I c a c h e s on
30 y + + ; / / w r i t e a new v a l u e
31 i n v a l i d a t e C a c h e (DCACHE) ; / / f o r c e w r i t e b a c k
32 }
33 cacheOf f (DCACHE)
34 i n v a l i d a t e C a c h e (DCACHE)
35 cacheOf f (ICACHE)
36 i n v a l i d a t e C a c h e (ICACHE)

7.2.2 MMUs

The primary goal of interest is to establish how much power each of the two MMUs consume.

For the SoftCache implementation, these units will be simply removed. Therefore, we are less

interested in the possible energy consumption in exceptional cases, and focus only on establishing

their consumption during steady state. With the XScale/StrongARM design, it is important to realize

that the virtual-index, virtual-tag system makes TLB operations off the critical path. Instead, the

TLBs are checked in parallel with the cache access. On each cache line, the physical address is

stored that represents where the cacheline was loaded from. After the TLB physical address is

85

generated, it is then compared to the cacheline copy of the physical address. The primary goal is to

establish how much overhead the TLB lookups on every cache access – instruction or data – add to

the basic cache access.

Both the instruction and data MMUs are identical in nature and implementation. Isolation of

just one such MMU will give the consumption for both units. Since the XScale implementation

allows for independent manipulation of the instruction cache and instruction MMU, we study the

IMMU interaction behavior to determine the power overhead. The microbenchmark to capture this

is shown in Listing 7.4.

Listing 7.4: Isolation of the IMMU power consumption
1 / /
2 / / t e s t t h e IMMU power overhead
3 / /
4 cacheOn (ICACHE)
5 f o r (j = 0 ; j <= COUNT ; j ++)
6 {
7 f o r (i = 0 ; i <= COUNT ; i ++)
8 ; / / busy i d l e , I c a c h e s on
9 MMUsetup (IMMU, AllMem , CACHABLE)

10 MMUenable (IMMU)
11 f o r (i = 0 ; i <= COUNT ; i ++)
12 ; / / busy i d l e , I c a c h e s on
13 MMUdisable (IMMU)
14 MMUinvalidate (IMMU)
15 }
16 cacheOf f (ICACHE)
17 i n v a l i d a t e C a c h e (ICACHE)

7.2.3 PXA255 States

We are primarily interested in the different states of the PXA255 for busy and idle. This is somewhat

complicated since the PXA255 can run in one of three modes – turbo, run, and bus. Typically, the

PXA255 has clock multipliers set up such that the turbo speed is 400MHz, run speed is 200MHz,

and bus speed is 100MHz. A third mode exists beyond busy and idle, the sleep mode, but we ignore

this as unrelated to the SoftCache design. Any time the CPU would be in sleep mode, the user

application has requested it. The SoftCache switches from busy to idle mode while waiting for the

remote server to respond to queries, and thus these two modes are sufficient. To establish an upper

bound of the busy power, we need to hand-craft an assembly code microbenchmark to fully utilize

each pipeline in the PXA255. Based on Figure 30, this should balance the multiply-accumulate

86

(MAC) execution with load/store operations and traditional instructions. The microbenchmark we

use to approximate maximum busy power behavior is shown in Listing 7.5 based on a run mode,

not the turbo mode.
Listing 7.5: Approximating maximum CPU utilization for the PXA255

1 / /
2 / / Load up t h e CPU t o be very , ve ry busy
3 / /
4 cacheOn (ICACHE)
5 asm {
6 l d r r0 , # 1
7 l d r r1 , # 2
8 l d r r2 , # 3
9 l d r r3 , # 4

10 l d r r4 , #COUNT
11 L1 :
12 mla r6 , r2 , r3 , r1
13 add r7 , r0 , r1
14 l d r r9 , Ld
15 mul r8 , r2 , r3
16 subs r4 , # 1
17 b l e L1
18 b L2
19 Ld :
20 . word #0
21 L2 :
22 }
23 cacheOf f (ICACHE)
24 i n v a l i d a t e C a c h e (ICACHE)

Switching to the idle mode on the PXA255 is quite trivial. The behavior in idle mode is that

the core CPU logic is suspending, pending an external event including reset, interrupt, or peripheral

requests. During the idle mode, all peripherals include the DMA controller, LCD engine, etc., work

as though the CPU were in ones of the standard run modes. Therefore, the only task for moving to

idle mode is to write a co-processor register. The CPU core will suspend execution at that point. The

next instruction after the co-processor write will not take effect until the idle mode is deactivated by

an external request. Listing 7.6 illustrates this simple test.

Listing 7.6: Putting the PXA255 into idle mode
1 / /
2 / / Swi t ch t h e CPU t o i d l e mode , and w a i t f o r t h e
3 / / co−p r o c e s s o r w r i t e t o f i n i s h
4 / /
5 setMode (IDLE) ;
6 asm {”CPWAIT”) ;

87

7.2.4 Ethernet

The nature of the SmSC LAN91C96 ethernet unit’s connection to the power subsystem makes

it remarkably easy to isolate the power consumption of the network module. The ethernet chip

and associated logic draws its power from the 4.2V supply of Figure 28. To observe the power

consumption of the ethernet in the three states idle, receive, and transmit is simply a matter of

driving the power control register in the CPLD as well as carefully writing or polling the ethernet

device. While this unit is not a wireless connection as dicussed in Section 6.1.7, the same types of

applications exist for wired networks as wireless. Of particular interest in the power study here is

the ability to isolate the I/O driving power for the PXA255 based on the three separate supply lines

involved. On the PXA255, the core logic power comes from one supply line, whereas the I/O pad

power comes from the 3.3V regulated supply. The fluctuations in the 3.3V supply will correspond

to the activation of the I/O pins during transactions to the network interface, which is exclusively

driven from the 4.2V supply. The microbenchmark in Listing 7.7 shows the isolation of the three

ethernet states, which as a side effect offers an estimate of the PXA255 I/O power use.

88

Listing 7.7: Isolating the Ethernet power states
1 / /
2 / / i s o l a t e t h e ne twork power t e r m s f o r t h e 1 0 Mbps TP LAN c h i p
3 / /
4 cacheOn (ICACHE)
5 f o r (j = 0 ; j <= COUNT ; j ++)
6 {
7 powerOn (ETHERNET)
8 f o r (i = 0 ; i <= COUNT ; i ++)
9 ; / / busy i d l e , I c a c h e s on

10 f o r (k = 0 ; k <= COUNT ; k ++)
11 {
12 e t h e r n e t R e a d (DATAREGISTER)
13 f o r (i = 0 ; i <= COUNT ; i ++)
14 ; / / busy i d l e , I c a c h e s on
15 }
16 f o r (k = 0 ; k <= COUNT ; k ++)
17 {
18 e t h e r n e t W r i t e (DATAREGISTER)
19 f o r (i = 0 ; i <= COUNT ; i ++)
20 ; / / busy i d l e , I c a c h e s on
21 }
22 powerOff (ETHERNET)
23 f o r (i = 0 ; i <= COUNT ; i ++)
24 ; / / busy i d l e , I c a c h e s on
25 }
26 cacheOf f (ICACHE)
27 i n v a l i d a t e C a c h e (ICACHE)

7.2.5 SDRAM

The problem with isolating the SDRAM access energy is that the SDRAM chips themselves are

powered from the same supply line as the PXA255 I/O pads. Therefore, in order to determine how

much power is being consumed from a fetch buffer as opposed to the SDRAM, it is necessary to

eliminate the I/O pad power. By establishing the I/O pad power from the network microbenchmark,

we can approximate the actual power consumption of the SDRAM alone.

There are four primary modes of interest with the SDRAM on the Sitsang – idle, short burst

fetch with a row buffer hit, a row buffer miss, and a sustained burst DMA style transaction. The first

three of these are easily obtained by using the same microbenchmarks as the cache hit/miss tests.

The last of these is obtained by setting up the DMA engine to copy a short region of memory from

to an adjacent location. There is, essentially, no real microbenchmark necessary as the DMA engine

configuration is simply a linked list construction and insertion.

89

7.3 Sitsang Measurements

Combining the actual instruction and data caching overheads, along with the results of the mi-

crobenchmark studies, yields a comparison of the Sitsang as a test platform for all three scenarios –

legacy, pull, and push. The plot of results is shown in Figure 31.

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128 256

T
-B

us
y

tim
e

(s
)

Data Transferred (kilobytes)

Legacy
Pull

Push

Figure 31: Comparison of the three possible evaluations – Legacy, Pull, and Push – on the actual
Sitsang hardware, when TSrv = 10ms.

The exceptionally low busy-time required for computation between transfers is a function of the

actual network link in use. The wired ethernet port draws substantial power during transmission,

but uses very little power during reception. The idle state is equal to the receive state, and VDD

gating is not considered at this time.

The end result is that for a Sitsang board with a 10Mbps wired network connection many ap-

plications are quite viable, assuming all DRAM is removed and running a projected set of modifi-

cations to the PXA255 processor as previously outlined. This also assumes that the LCD panel and

other peripherals are not in use.

Based on these power numbers, the following MiBench applications are all energy-delay wins

on the Sitsang platform: bf, bitcnts, crc, math, pgp, rawcaudio, rijndael, search, and sha. These

9 benchmarks represent definitive wins for the SoftCache. Two additional benchmarks – toast and

lout – may be wins depending on the actual data set used and network delays.

If the only area under consideration was the instruction cache, then all but the MP3 application

lame would be definitive wins for the SoftCache solution. Due to the design of the benchmarks,

however, and the very large input files, the data cache is easily overrun with misses and evictions.

90

7.4 Multi-tasking

In a SoftCache system where all virtual memory support is eliminated, an issue of how to handle

multi-tasking arises. Fundamentally, there are three basic approaches to handle multiple applica-

tions, but the simplest answer is to simply not allow it. The version of the SoftCache in this thesis

is a first-pass mechanism to support the idea of flexible low-power ubiquitous devices. Our initial

target has no requirement for multi-tasking. The next generation of SoftCache system may need to

provide this feature, however, and we sketch three solutions briefly.

The first option is to design applications such that the need for context switching is infrequent. If

the rate of switching is sufficiently low, then moving from one application to another is no different

from the SoftCache perspective of a single application loading additional code and data. When

the timer interrupt occurs, the entire state of the current SoftCache system is swapped out in one

large transaction, and the new process is swapped in. The primary implication from the data in this

section is that with current wireless network technologies, the power penalty of such a swap would

necessitate a context switch time measured in tens of seconds.

The second option is to increase the SoftCache storage space locally to hold up to N process

working sets. The clear drawback is that on-die SRAM is expensive in terms of real estate and

power, with leakage power increasingly a problem as processes plunge below 180nm. A more

effective variant is to use multi-threshold logic or different oxide thicknesses for on-die SRAM as

opposed to the core logic of the microprocessor iteself.

The third option strikes a compromise for the second option, namely the increase of local stor-

age. With current generation XScale parts like the PXA270-family [26], each processor package

is actually a stacked set of three wafers: an XScale layer similar to the PXA255, a moderate ca-

pacity DRAM up to 32MB, and a moderate capacity StrataFlash up to 32MB. The implementation

detail of accessing the stacked package is that the on-die XScale cache is as fast as always. This

would be the “working set” of the currently running application. The in-package DRAM or Flash

is a minimum of 10 cycles away, across several intervening busses. While this distance makes the

access of on-package storage access fast compared to a main memory or network memory, it is far

too slow for a per-instruction or per-load/store operation basis. Therefore, when a timer interrupt

91

occurs: (1) the local client copies the active working set into the on-chip storage, then (2) sends a

message to the server indicating what the final state of the just-switch application was, and (3) loads

the next application from on-package memory, and finally (4) notifies the server which application

was reloaded for the next increment of execution. This will be a very high-performance context

switch, providing a balance of local and remote storage uses. The remote server will manage the

on-package memories and juggle the migration of tasks in and out of remote devices.

These three solutions are far from the only solutions possible. Hybrid approaches with a mixture

of SoftCache and traditional cache or virtual memory support are also possible, as well as mixtures

of our own solution sketches. The primary point is that context switches present no additional

complexity to support than supporting the SoftCache itself – the question lies in how to handle the

energy-delay side effects, which will be application specific.

7.5 Related Work

Utilization of the network for accessing backing store as a low-power mechanism is novel. Prior

work concentrated on using remote memories for high-performance reasons, avoiding accesses to

slow disks or to expand memory for working sets of code or data [59, 60, 31, 41, 72, 86]. Other

work examining the network in power-limited devices has concentrated and minimizing the usage

[52] and optimizing protocols.

A significant amount of effort is being spent to find ways of improving the overall energy ef-

ficiency of networks. WLANs can improve their efficiency by using ad-hoc relaying [70], while

others look at tying battery level with ad-hoc routing methods to increase network robustness as

well as node run-times [69].

Using the availability of low-power short-range devices such as Bluetooth, researchers are build-

ing larger networks in an energy-efficient manner. These new systems compete with more traditional

network options [5]. Such prototypes strengthen the viability of using limited embedded hardware

for larger projects.

With each generation of network technology, data rates increase and power consumption de-

creases. Next-generation technology such as Ultra-Wideband is anticipated to be higher data rate

and lower power than current Bluetooth devices, with similar if not better range. As network links

92

approach the performance characteristics in bandwidth and power of local DRAM, the argument for

moving to network-based storage becomes more compelling.

A large body of research [23, 61, 62, 16, 87, 88, 49, 105, 98, 116, 14, 97] has explored power

simulations, measurements, and simulators. Different groups take different approaches, ranging

from cycle-accurate simulators to trend-predicting approximations. Regardless of the methodology

and scale of most studies, few groups examine the error terms or implicit assumptions about how

their underlying models are constructed. While no one group can cover every detail, more effort

should be put into constructing valid accurate and precise power models and simulators, where

results are consistent with a small variance across many runs.

93

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, we presented a novel architecture called SoftCache to address the issues of power, cost,

and complexity for embedded systems. We reduced the on-die memory controller infrastructure

which reduces both power and space requirements, using the ubiquitous network device arena as a

proving ground of viability. In addition, the SoftCache achieved further power and area savings by

converting on-die cache structures into directly addressable SRAM and reducing or eliminating the

external DRAM.

To avoid the burden of programming complexity this approach presents to the application devel-

oper, we provided a transparent client-server dynamic binary translation system that runs arbitrary

ELF executables on a stripped-down embedded target. The drawback to such a scheme lay in the

overhead of hundreds of additional instructions required to effect cache behavior, particularly with

respect to data caching. Another substantial drawback is the power use when fetching from remote

memory over the network. The SoftCache was built upon this dynamic client-server translation

system on simplified hardware, targeted at Intel XScale (ARM) client devices controlled from Intel

x86 servers over the network.

Reliance upon a network server as a “backing store” introduced new levels of complexity, yet

also allowed for more efficient use of local space. The explicitly software managed aspects created

a cache of variable line size, full associativity, and high flexibility. This thesis explored these partic-

ular issues, while approaching everything from the perspective of feasibility and actual architectural

changes.

The novel contributions of this thesis to the existing body of research are briefly summarized as:

• A distributed client-server dynamic binary translator/rewriter, a framework that is used to

implement the SoftCache system in a ubiquitous network environment

94

• A novel memory characterization based on target address enumeration, a technique that facil-

itates solving the previously intractable problem of software emulation for data caching

• A novel energy-delay study comparing remote network accesses to local main memory, indi-

cating that local memory is less than ideal

These techniques partially relaxed the problems faced with current and next-generation designs.

Reduction of the logic required for memory controllers and simplification of on-die memories

shrinks die size and reduces latency effects. Application growth and corresponding complexity

is transparently solved with dynamic binary translation, and manufacturing cost for the embedded

domain is reduced with simpler device development models.

8.2 Future Work

Several of the results in this thesis are early results dependent on simulation and analytical models.

While working prototypes exist, they are not sufficiently robust to run truly any arbitrary ELF binary.

There are several avenues for future exploration and growth in the SoftCache framework.

8.2.1 Program Analysis

One major issue is that the current program analysis is overly conservative. There may be other

opportunities in the CFG and/or DFG reconstruction to reduce ambiguity and unknown branching.

Further studies in particular should focus on the semantic division of data references, and attempt to

find patterns similar to the UTI-MTI division to further break up data segments into simpler units.

8.2.2 Cache Implementations

The SoftCache support for both instruction and data regions uses a FIFO replacement model, along

with the basic block subset collision problem solely in instruction cache regions. The next steps for

research should investigate the ability to use larger block sizes effectively, such as hyperblocks or

superblocks. Another avenue for exploration is whether entire phase changes can be predicted, such

that the full working set can be swapped between the client and server to avoid the on-demand grad-

ual replacement that presently transpires. Lastly, algorithms other than FIFO replacement should be

considered.

95

8.2.3 Analytical Hardware Models

While the power and space data presented in this section shows a trend, it lacks calibration with

modern processors and modern fabrication techniques. Recent studies have been launched to de-

velop full power models of processors like the XScale [23]. However, the results to date have

marginal validity, given the methods employed. A precise, complete-system with detailed processor

power model which is a cycle-accurate simulator is missing. Therefore, we propose to first develop

such a simulator with as much precision as possible based on the reference Intel Sitsang platform,

with a PXA-255 processor. The resulting model should be a cycle-accurate simulator that incor-

porates power data for every component in all modes of operation – DRAM, CPU, caches, MMU,

etc.

Once such a simulator exists that has been calibrated exhaustively to real hardware, the Soft-

Cache may be run inside of the simulator to observe its true power signature. Running the SoftCache

on existing hardware will always result in misleading information, since it is not possible to fully

disable the logic we propose to remove. While real performance approximations can come from

real hardware, expected power consumption can only come from such detailed simulations.

The other area which should be studied is the network utilization and timing impact. The power

signature of the network traffic will be contained in the power model. However, different methods

and types of network transmission will impact the practicality of the SoftCache.

8.2.4 Real Hardware Feasibility

While the analytical model is accurate to the standards of datasheets from manufacturers, most

datasheets are actually analytical model results themselves. This introduces a source of compound-

ing error, as none of the analytical models use data that are necessarily calibrated to real hardware.

However, no existing chips exist to actually enable a full SoftCache hardware implementation for

empirical study. Future research should try to experiment with other designs or even custom mi-

croprocessors in order to get a more accurate picture of actual power consumption. Reports in the

literature for power consumption in microprocessors is typically derived from Synopsys PowerMill

simulations, with extremely loose correlation to the actual hardware.

96

8.3 Future Vision

The techniques and ideas developed in the course of our SoftCache system have novel properties

that are not constrained to just use within the embedded ubiquitous network space. The concept of

a client-server communications layer to emulate caches is equally useful in large-scale chip multi-

processors (CMPs), where not all cores will have uniform access to memory and other resources.

This suggests the idea of edge translation, where cores that sit near memories process applications

into smaller pieces that are then run on distant cores. The on-die interconnects possible in large-

scale CMPs, with 64 or 128 cores on one die, will act as extremely high bandwidth and low-latency

networks.

Moreover, the idea of the UTI/MTI memory characterization is highly applicable to high perfor-

mance hardware caches as well. The idea that 30% of dynamic memory traffic can be encapsulated

in a very small 1-2KB storage SRAM suggests that new hardware cache strategies could improve hit

rates by protecting UTI data from the mass pollution by MTI data. This same concept can also be

applied to any caching medium, from Internet routing tables to directory tables in shared memory

computers.

Most importantly, we challenge the inherent assumption that using a network is detrimental to

power consumption. As a general heuristic, it is entirely context driven based on applications and

application data characteristics. By demonstrating a large class of applications where this com-

mon belief is inaccurate, other common belief laws also become prone to challenges. In a field

where most of the major contributions were developed during the 1960’s, it is necessarily time to

reconsider whether the assumptions from that era still hold true today.

97

APPENDIX A

PROPER POWER MEASUREMENT METHODS

In any scientific publication, there are two explicit objectives: (1) to explain the research, and (2)

to provide sufficient detail that others may reproduce the exact experiment and verify the published

results. A key problem lies in reproducibility, since it carries implicit requirements that the setup

used by the original research group is both accurate and precise.

Accuracy is a measure of correctness in the experimental setup, such that if the real value is

92.3mV, the measured value is as close to 92.3mV as possible. Precision is the consistency of

the apparatus, such that if the experiment were performed N times (where N is a large value), the

variance in the measured value is very small. Having just one of accuracy or precision is useless for

research efforts.

How to obtain both accuracy and precision at the same time is a context-sensitive problem.

While each scientific field has unique problems and solutions, we restrict our discussion to just

power studies of real computer hardware – in specific, we will examine real embedded system

hardware in a PDA platform.

Our objective is to provide a rigorous method for accurate and precise power measurements in

real hardware. While we explore the problems and our proposed solution using a PDA reference

design, these techniques apply equally well to all domains that require a power study.

In prior work by many groups, experimental analysis has been used to evaluate new methods

for saving power in embedded systems. However, each group has used different methods, different

equipment, and different equations resulting in uncertainty when trying to compare ideas. Our

system for power analysis will account for differences in equipment and scope of study, providing

error estimates that can be used to ensure that results are meaningful when substitutions are used.

In this work, we base our study on the Intel Sitsang-400 PDA Reference Design Platform ver-

sion B1-1-3 (hereafter, Sitsang). This reference design is an advanced PDA model, with a wide

variety of expansion options. The base unit consists of the Intel PXA255 XScale processor (model

98

ABC400), 64MB of Flash as four Intel E28F128J3A159 chips, and 64MB of SDRAM as two

Samsung K4S561632D-TC75 chips. The PXA255 is also connected to a Toshiba LTM04C380K

640x480x18bpp LCD panel. The Toshiba LCD has a resistive touchscreen connected to a Burr-

Brown ADS7846. The Sitsang battery is a Panasonic CGP345010G prismatic lithium ion rechar-

gable pack rated for a nominal 3.7V at 1500mAh, with an operating output between 3.5V and 4.2V.

The Sitsang motherboard includes an SMSC LAN91C96 10Mbps Ethernet chip along with the

twisted pair physical interface and magnetics module. Other features include three USB ports, a CF

socket, a SD memory stick socket, UARTs, JTAG header, AC’97 codec, speaker and microphone.

An expansion header that straddles the address and data buses provides the necessary features for

custom daughterboard interfacing. While there are many features and possibilities, this work will

concentrate on the core PXA255 processor, SDRAM, Flash, and Ethernet. Some discussion of the

LCD panel will also be presented. Therefore, we omit the exact specifications of the other features

for brevity.

The Sitsang is an ideal platform for power research due to the unique design of the mother-

board with respect to power supply controls. The PXA255 address and data buses are intercepted

by a Xilinx XCR3384XL CPLD. This CPLD implements per-block VDD gating at the chip level.

It is possible to individually enable or disable the power to: the CF slot, UART, USB, Bluetooth

UART, SD socket, accelerometer, LCD, backlight, IrDA, AC’97 codec, and 10Mbps ethernet. Addi-

tional settings enable self-wakeup after changing the core voltage, as well as disabling all peripheral

power. Such fine-grained power control is a result of individual power regulators with dedicated en-

able lines out of the CPLD. Actual supply voltage and current consumption can be measured either

at the battery interface, or at the output of of any regulator to a logic area (such as the ethernet

interface) with minor circuit modifications.

Prior to exploring the exact methods we use in our study, it is necessary to discuss issues with

precise power measurements in general. While we necessarily relate our discussion to other publi-

cations [23, 61, 62, 16, 87, 88], this is not indicative of errors in other research efforts. Instead, our

comments should be understood within the framework of prior research such that on a case-by-case

basis, future researchers will use the most appropriate methods for their studies.

99

A.1 VDC is not a constant

Many power studies on real hardware tend to treat the supply voltage under consideration as con-

stant. While this simplifies the calculations and reduces the equipment overhead necessary for

detailed power measurements, treating the voltage as constant may lead to significant error.

As an illustration of the error that may result, Figure 32 is a snapshot of power analysis on the

Sitsang platform. The screen capture from our Tektronix TDS5104B (1GHz, 5GS/s) shows three

traces. The bottom (orange) trace shows the real power consumption of a Sitsang unit sitting idle in

our modified U-Boot bootloader with the backlight set at 75% intensity. The scale is in 1.0Ws/div

steps1, with 0Ws below the displayed region. The power calculation internal to the TDS5104B with

its Advanced Math option comes directly from monitoring the battery supply. We use a Tektronix

P6139A voltage probe to monitor the actual battery supply voltage, and a Tektronix TCP202 current

probe to capture the real current use by the platform directly from the battery output. The internal

power calculation is the product of the Vbatt supply and the Ibatt consumption.

Figure 32: Error (middle red trace) introduced in an idle XScale PDA by treating VDC from the
battery as a constant.

Similarly, the top (purple) trace shows the power consumption if we instead treat Vbatt as a con-

stant value, set from a Tektronix PS503A variable DC power supply. For the Sitsang platform, with

the unit idle (under load) in U-boot, the “constant” voltage of a fully charged battery is measured at

1The Tektronix calculates power in Watt · second, shown as Ws, the normal unit of which is Joules. To keep the
text of this discussion consistent with the figures, we also refer to Ws when discussing the figures.

100

approximately 4.0V. This top trace is the product of that unchanging voltage and the actual current,

as measured for the bottom trace. The scale of the top trace is also 1.0Ws/div.

The difference or error between these traces is shown in the middle (red) trace, with a scale of

0.25Ws/div. A difference of zero is perfect agreement. A difference that is positive indicates that

treating the Vbatt as constant results in a higher power measurement than using the real Vbatt. The

converse is that a negative error indicates that the real power consumption exceeds the expected if

the battery is considered at a constant voltage. The zero-axis for the middle trace is indicated by the

“M3→” on the left edge of the displayed grid.

The implication of Figure 32 is that if discussions about power savings or expenditures are less

than some minimum threshold, treating VDC as a constant may be a substantial source of error.

To calculate the error term introduced in the idle state of the Sitsang, we use the measurements

provided from the power calculations and the maximum current drawn as shown in Figure 32. The

area calculations are limited to the cursor range, such that at 96.53Hz an error of 1.329mWs is

introduced per event. Thus the error can be calculated as shown in Equation 19.

(Error Area) · (Frequency) = (1.329 mWs)

(

96.53
cycles

s

)

= 128.3 mW (19)

For the idle state in U-boot with a 75% backlight intensity, any modification resulting in a new

power value, K , should be expressed as K ± 128.3 mW . While we have illustrated the possible

error with measurements from Vbatt, the same holds true for any supply line on the system board,

from Vcore to Vuart. Moreover, it also holds true when a power supply other than a battery is used.

For example, Figure 33 shows the error where a precision HP 3610A power supply is used to mimic

the battery.

Measurement devices of less capability than the Tektronix 5104B, such as Fluke DMMs or in-

expensive oscilloscopes, are incapable of showing the variance induced into VDC as the current

changes in such detail. To provide a mechanism for error estimation when treating VDC as a con-

stant, we use a test circuit to simulate Vbatt and Ibatt as shown in Figure 34. The circuit stimulus

is a Tektronix FG5010 function generator running through a voltage-follower circuit on a National

Semiconductor LF-353N op-amp to protect the generator. The voltage follower output is then run

101

Figure 33: Error (middle red trace) introduced in an idle XScale PDA by treating VDC from an
HP precision power supply as a constant.

through two gain amplifiers, where the first stage gain is 10 and the second stage is variable as con-

trolled by the 100kΩ potentiometer. For our study, we adjust the potentiometer until we can obtain

the maximum current draw Iload without inducing clipping of the stimulus waveform after the gain

stages. We use two gain stages to reduce amplifcation errors.

−

+

−

+

−

+

+5V

100uF

KEC SA5-30

10uF10uF

+15

+15
+15

+15

-15

-15
-15

-15

1k 1k

10k 100k
1 Ohm,
10W, 1%

TIP41C

TIP41C

Tektronix
FG5010

Tektronix PS503A

+

-

VloadI load

LF-353N OpAmps

Figure 34: Test circuit to calibrate error terms in power measurements.

The output from the final op-amp is connected to the base of a Fairchild TIP41C transistor. This

transistor acts as a buffer to prevent burning out of the final op-amp stage, and it in turn drives the

base of a second and final TIP41C. The TIP41C collectors connect to a KEC Electronics SA5-30

power supply which is capable of providing 30A at 5V DC. The current sinking TIP41C emitter

connects to a 1Ω 10W high precision resistor. The large capacity transistors and resistor permit

high current load profiling without inducing significant element breakdown effects. The op-amps

are all driven from the same Tektronix PS503A power supply, set to generate dual outputs of +15V

102

and -15V concurrently.

By varying the frequency and type of stimulus (square-, triangle-, or sine-wave) from the

FG5010, oscillations of current load are induced. Modifying the driving amplification from the

FG5010 changes the magnitude of the current load. Changing the frequency and amplitude of the

wave stimulus also provides a guide to approximate the error based on what any research project is

observing. Sweeping the current load from 0.5 to 2A, with a per-load frequency sweep from 100Hz

to 100kHz, generates the resulting error terms shown in Table 9.

Due to temperature and ambient noise, these error terms carry their own approximate 10% error

on the values shown, as observed over multiple trials. At frequencies above 25kHz, the sine and

triangle waveforms become more similar as the power supply cannot match the load demand. Above

the 50kHz frequency target, the square wave also degenerates to a more sinusoid shape. These error

terms of Table 9 are not directly applicable to measured circuits. Rather, they suggest issues that

careful researchers must check to ensure accurate results.

For example, the Linux kernel with pre-emption patches applied and the context switching time

increased to 1kHz generates a complex square-wave pattern at 1kHz when the scheduler is activated.

If two tasks are running, such as an MPEG decoder and a network streaming application, the square

wave will oscillate by up to 0.5-1.0A on the Sitsang platform. Studies that attempt to show energy

reduction by mechanisms that also treat the power supply of the battery constant are introducing

between 180-565 mW of error.

These error estimation results are also particular to the precision HP power supply we use.

Substitution for a different power supply will result in different characteristics, but the same general

effect will be directly observable – that is, voltage lines are not constant.

This is slightly more problematic since real systems do not fluctuate in trivial patterns such as

the ones we demonstrate. Real systems have complex fluctuations, as shown in Figure 32. While the

overall shape is a stretch square wave, the representative regions of “high” and “low” are actually

compound signals themselves.

A closer view of the complex behavior is shown in Figure 35. In this figure, the top blue line is

the battery supply voltage at 500mV/div. The middle yellow line is the current consumption from the

battery at 500mA/div. The bottom gold line is the power consumption at 1.0W/div. This waveform

103

Figure 35: A close view of the complex component of real system power use.

corresponds to the first “high” time of the full waveform from Figure 32. The high frequency

component shows power fluctuations of nearly 800mW with current fluctuations of approximately

225mA.

Since Table 9 represents simple functions, real system error estimates are of necessity built

up from these values. A complex waveform such as Figure 32 can be approximated by a square

wave error term for the measured frequency, coupled with the high-frequency error term that can be

based on observations like Figure 35. Lacking the equipment for accurate and precise measurements

directly, such error terms are useful approximations to evaluate the significance of experimental or

simulation results.

A.2 Sample rate and repeatability constraints

The basic mechanics and versatility of oscilloscopes are well known and explained in published

literature [36, 38, 37, 35, 64, 56], yet some aspects bear closer inspection in our discussion of power

studies. We briefly explore the more salient points, and then characterize additional error terms

introduced by failing to comply with the heuristics presented.

104

A.2.1 Bandwidth

The bandwidth of an oscilloscope corresponds to the attenuation of the input waveform. For a

100MHz bandwidth, an input sinusoid of 100 MHz will display at approximately 70% of the true

waveform amplitude. In general, higher bandwidth for an oscilloscope provides a more accurate

representation of the input stimulus. Tektronix recommends the 5 Times Rule [36], where the band-

width should be no less than five times the highest expected frequency component. This ensures a

±2% error term in measurements. A secondary consideration is that aggressive rise or fall times

may require higher bandwidth. The rise time rule of thumb divides 0.35 by the rise time [35, 36].

With a rise time of 1ns, the oscilloscope requires 350MHz of bandwidth.

With respect to the Sitsang, we can easily induce major oscillations like the square-wave LCD

backlight or task-switching among different resource bound jobs to reach 1kHz variations. The

higher frequency oscillations, as shown in Figure 35, can be induced up to approximately 250kHz –

but this is not a real maximum. Using the 5 Times Rule suggests a minimum bandwidth of 1.25MHz

on any oscilloscope is essential for power studies of such platforms. Power studies regarding modern

workstations or laptops would, of course, have even higher bandwidth requirements. By compari-

son, considering the rise time we can observe in Figure 35, a measured rise time of 110µs for the

square-wave portion translates to a bandwidth of 3.2kHz. However, the high frequency components

exhibit a rise time of as little as 250ns, resulting in a bandwidth of 1.4MHz. This is comparable to

the 5 Times Rule result.

A.2.2 Sample Rate and Waveform Buffer

Many modern oscilloscopes of all price ranges use digital sampling from an analog-digital converter

(ADC) device. The premise is that at a regular clock interval, the ADC value is copied into a

waveform memory buffer. Once the memory buffer is full, the screen is redrawn to reflect the most

recent data, and if necessary the data is exported to other devices or computers. There are two

key hazards to accurate and precise measurements with digital oscilloscopes – analog units have

equivalent problems which we do not discuss.

The primary difficulty with digital sampling is the sample rate clock. Between clock transisitons,

the oscilloscope is effectively blind to any changes in the input signal. Regardless of how much

105

the signal changes, nothing will be observed until the next rising clock edge. By the well-known

Nyquist-Shannon sampling rate, to reconstruct a signal the sampling rate must exceed two times the

highest frequency expected. Since the highest frequency expected is at least 250kHz, the sampling

rate must exceed 500kSa/s. Any lower value will result in aliasing artifacts. In reality, however,

modern oscilloscopes use different methods to interpolate the data between two sample points.

Depending on whether the interpolation is linear or a function [36] such as sin(x)
x

, the sampling rate

multiplier is heuristically in the range of 2.5-10. This translates to a minimum sampling rate of

625kSa/s to 2.5MSa/s.

These high sample rates result in the problem of managing the waveform buffer size. While

some oscilloscopes can be configured with multiple megabytes of sample buffer per channel, many

economical scopes can not. Instead, these may employ fixed buffers of a few hundred to a few

thousand samples per channel. With most power studies, however, the time of interest is measured

in seconds or minutes. With an 8-bit ADC resolution, a buffer of 32KB for 2.5MSa/s would last

0.013s. Clearly, higher-resolution ADCs which provide better signal sensitivity exacerbate this

problem.

A second impact from the waveform buffer is that once the buffer has been collected, all col-

lection is disabled while the screen is in update. Similarly, if the data is exported to other devices

or computers, the collection is stopped until all updates finish. Only then, if the oscilloscope is set

to continuous-run mode, will collection resume. Much like with the sample clock, in this period of

time the oscilloscope is blind to any changes in the input signal.

A.2.3 Measuring Comparison

For a brief comparison, several measurement devices including oscilloscopes and advanced digital

multi-meters (DMMs) commonly used in active research literature have their primary characteristics

summarized in Table 10. Some vendors, such as Picotech, emphasize their repeatable-run sampling

rates and tolerances, but the values presented here are single-shot. Single-shot values represent a fair

comparison to the actual hardware support inside the oscilloscope, as repeated-run requires features

described below.

All of the oscilloscopes, which cover a spectrum of pricing from $400 to $20,000, meet the

106

prior estimated needs of 2.5 MSa/s and a bandwidth of at least 1.25MHz. The DMMs shown are

insufficient in resolution to have reliable results. However, not all researchers have the luxury of

high-end oscilloscopes and current probes. This can be compensated for by using low-end oscillo-

scopes, such as the Bitscope 300N, coupled to a custom circuit for current sensing. We present an

inexpensive circuit for this type of work later in this section.

A.2.4 Repeatibility

Many power studies are concerned with long-running events, particularly those that look at dynamic

voltage scaling (DVS) or dynamic frequency scaling (DFS) or both (DVFS). With the need to collect

data for multiple seconds or even minutes, there is no waveform sample buffer commercially avail-

able that can capture sufficient data. At a minimum 2.5MSa/s, capturing 60 seconds of information

would require a 150 MSa buffer. For the lower-end oscilloscopes in Table 10, even capturing one

second is beyond the local buffer capacity.

This problem can be handled in essentially one of two ways: (1) continuous looping of experi-

ments coupled with low-sampling, or (2) high-sampling short periods in succession over continuous

looping of experiments. In either case, the key is continuous looping of experiments, or repeatibil-

ity. In private conversation with several researchers, approximately half admit that their research is

based on non-repetition of experiments for the reason, “it’s too hard to make consistent.” Sources

to their predicament are the variability of OS schedulers, precise control over network parameters,

and so forth. The point of this section is that failure to construct environments that allow for exact

repeatibility will result in meaningless data.

Waveform
Update

Signal
Input

Clock
Sample

Waveform
Reconstructed

Figure 36: An illustration of the sampling error and need for repeatibility.

To understand the basic problem visually, Figure 36 illustrates the problem of sampling and

107

waveform updates in oscilloscopes. Without a sufficient sample rate, much of the input waveform

shape will be lost during sampling. During waveform updates, no acquisition occurs, resulting in

a loss of the entire input signal as shown by the arrow extensions. Both of these issues must be

accounted for.

The principle of aggregate collection is that the sample window is set to be the duration of the

experiment of interest, such as one minute. During this period, the data is collected as quickly

as possible at different time offsets. By repeating the experiment many times, and using either a

random or gradually increasing start offset to capture data, eventually sufficient detail is captured

to reconstruct the proper input signal. Each reptition adds a small amount of measurements to the

reconstructed waveform. Proper construction of such an apparatus will overcome any limitations

on both sample rate and the waveform update blackout in any setup.

As a practical example, consider the Bitscope 300N in Table 10. To capture at 2.5MSa/s for

60 seconds requires 150MSa. With a limited buffer of only 32KSa/chan in the Bitscope, and by

transferring data back to the PC at 115.2kbps, each “capture” takes 4.56 seconds to upload each

waveform to the host PC. Assuming that each capture can be perfectly started such that no over-

lap with previous captures occurs, it requires a minimum of 4,688 repetitions of the experiment

with perfect synchronization – at 4.56 seconds per repetition, this amounts to 5.93 hours of con-

tinuous collection. In the worst-case of a random collection start-point, it requires approximately

13, 952, 178 repetitions2 or approximately 2.02 years if the experiments could be run perfectly back-

to-back. This random average does not assure perfect coverage, but it does assure at least 99.99%

coverage. A conservative upper bound to collect N unique data points in 32k blocks is 2N ln(2N),

based on the Coupon Collector’s Problem [42], which for our example resolves to 5.86 × 109 itera-

tions at 4.56 seconds per iteration – roughly 847 years. A mechanism to avoid this lengthy problem

is presented in the next section.

2Based on a short C program to simulate this behavior, run for 10 iterations, with an average of the results. The
random() linux function is used with the srandom() seed set from /dev/urandom.

108

A.3 Equipment and Circuits

To alleviate the $2,000 cost of current probes like the TCP202, many researchers use sense resistors

in the voltage supply line to obtain current measurements. However, any use of a sense resistor in

a supply line that draws ≥ 500mA is likely to corrupt the circuit under study. Using the basic law

V = IR, a sense resistor of 1Ω will drop the supply line by 1V if the current drawn is 1A. This

1V drop may cause a brown-out or outright failure of the test circuit. Alternately, knowing a system

such as the Sitsang can draw up to 1.5A, and knowing that the maximum voltage drop sustainable

is 0.2V to prevent brown-out, the ideal sense resistor value can be found as 0.13Ω. The drawback

to using such a small value for Rsense, however, is that small fluctuations in current draw are not

visible with high precision by most low-end oscilloscopes. For example, a fluctuation of 50mA for

a 3.8V supply (190mW) will result in a voltage drop of only 6.5mV. This can be compensated for

with a series of op-amps to differentially amplify the voltage across Rsense, as shown in Figure 37.

For those situations that require higher current capacity, additional reduction in the Rsense value

below 0.1Ω is risky for the typical low voltages involved in embedded digital systems. The effects

of wire impedance and sensitivity may cause too much error in measurements.

−

+

−

+

10uF10uF

+15

+15

-15

-15

-15

10k

0.1 Ohm,

2N4400

Tektronix PS503A

LF-353N OpAmpsVload

I load

1k

1k

+15

+

-

V_signal

100 Ohm,

1%

1%

Rsense

Figure 37: Measuring current with a sense resistor, Rsense.

Instead of using sense resistors and worrying about voltage drops, a better solution is to use an

integrated circuit with a current sensor, such as the CUI, Inc., SCDxxPUR series. These devices

generate an output voltage in linear proportion to the current load between two points. For example,

the SCD10PUR generates a signal of 0 to 5V for current values between -10 to +10A. The minor

drawback of these devices is their very low current capabilities on the linear output, requiring a

109

voltage-follower op-amp circuit. Moreover, for platforms like the Sitsang, there will never be a dis-

cernable negative current in the supply lines, so the output could be biased such that 0A corresponds

to 0V. By adding a voltage-subtractor op-amp circuit based on potentiometers, an adjustable offset

is easily added. In addition, the window of interest can similarly be gained with an amplifier op-amp

circuit again serviced with potentiometers. The result of these three stages – follower, subtractor,

and positive amplifier – present a linear signal with no perturbation of the supply line. Moreover,

an entire circuit can be built for under $20, avoiding the high costs of current probes. Our design of

such a circuit is shown in Figure 38. We over-bias the subtractor to obtain the full resolution of the

oscilloscope by setting 0A to match -5V, and 1.5A to match +5V. This yields a dynamic range of

10V for a maximum of 1.5A fluctuation.

−

+

10uF

+15

+15

-15

Tektronix PS503A

LF-353N OpAmpsVload

I load

1k

+

-

V_signal

2.2k−

+

-15
−

+

-15

+15
+15

+5

+5

SCD10PUR

10k

10k

10k

220

2.2k

220

10uF

-15

10uF

+5

Figure 38: Measuring current with a current sensor like the SCD10PUR.

The problem of repeatibility, as discussed in Section A.2.4, suggests the obvious result that de-

tailed sampling to capture precision power measurements is only effective for short events, typically

of less than one second in duration. For long-running events, where instantaneous fluctuations are

less interesting than aggregate power consumption, a better solution is to use an integrator circuit.

The basic premise of an integrator is to construct a current mirror that generates a very small output

current in proportion to the actual load current. This minor current is stored in a capacitor with a

carefully selected time constant. At regular intervals, an ADC samples the capacitor charge and

then resets the integrator circuit. Such a conceptual circuit [56] is illustrated in Figure 39. This type

of design can be used to take periodic samples during long-running experiments, or just to take an

end-of-experiment reading on the total current consumption. The paired FETs provide a leakage-

free reset path to the integrator, a problem with single-FET reset designs. The selection of the τ

110

constant for the circuit is dependent on the expected sampling interval for the experiment.

10uF

+15

AD549 OpAmp

Vload

I load

+

-

V_signal

−

+

-15

+15

Tektronix PS503A

10uF

-15

1M -15V

10k

R

Reset
+/-15V

C

2N45312N4531

1N914

Figure 39: An example integrator circuit for long-running experiments.

A simpler design for integrator circuits can remove the op-amp and sense resistor from Figure

39. Devices like the MAXIM-IC MAX471 are current mirrors built around a precision internal

Rsense on the order of 35 mΩ. The primary drawback of these integrator-based designs is the loss

of voltage fluctuation information, which requires careful error estimation based on results such as

Table 9. Alternatively, adaptations on the integrator circuits here could be used to integrate voltage

as well as current, thereby avoiding some of the error. However, any use of an integrator will require

careful evaluation to determine the error of measurement.

The use of op-amp components in these circuits can lead to interesting problems. The op-amps

introduce a slight delay, causing the observed current to be slightly out of phase or skewed with

the observed voltage. Advanced digital oscilloscopes typically offer a mechanism for time-delay in

channels to de-skew the signals, eliminating this source of error. For high-frequency oscillations,

this can become a significant source of error. For our target circuit up to 100kHz, it’s less than ±1%

error as compared to the oscilloscope with a current probe. Additional error sources arise from too

much gain in the op-amp circuit, or bandwidth/slew rate limitations of the op-amp in use. For this

reason, it is important to carefully select each component to avoid unnecessary error sources.

While both the Rsense and SCD10PUR circuits are workable models for handling current mea-

surement under the right conditions, our studies use a Tektronix TDS5104B and Tektronix TDS3034B

oscilloscope, each with two P6139A voltage probes and two TCP202 current probes attached, to

avoid any introduction of these types of error. This provides us with a deep waveform buffer as

111

well as high precision measurements with excess bandwidth available. The trigger output of the

TDS5104B is connected to the external trigger input on the TDS3034B to provide synchronized

data results. The timing of the current readings are de-skewed to match the voltage readings based

on our square wave test circuit in section A.1.

We altered a Sitsang platform by removing the ferrite bead and 0Ω resistor components at J20,

R26, R30, and R43. These were replaced with minimal wire segments to connect TCP202 current

probes to, as well as the P6139A voltage probes. This provided us with the voltage and current

measurements for the battery and three regulated supplies: 4.2V, 3.3V, and the PXA255 processor

core. To understand how each of these supplies is used in the Sitsang design, we next present a high

level view of the physical circuit layout on the Sitsang.

112

Sinusoid Frequency (Hz)

Waveform 100 1k 5k 10k 25k 50k 100k

Iload Peak (A)

0.5 ±75mW ±80mW ±85mW ±90mW ±90mW ±90mW ±90mW

1.0 ±315mW ±345mW ±360mW ±425mW ±440mW ±565mW ±570mW

1.5 ±650mW ±810mW ±840mW ±950mW ±960mW ±1.35W ±1.35W

2.0 ±1.15W ±1.35W ±1.45W ±1.65W ±1.95W ±2.80W ±3.60W

Triangle Frequency (Hz)

Waveform 100 1k 5k 10k 25k 50k 100k

Iload Peak (A)

0.5 ±50mW ±55mW ±60mW ±70mW ±70mW ±85mW ±85mW

1.0 ±200mW ±255mW ±260mW ±325mW ±455mW ±540mW ±560mW

1.5 ±445mW ±530mW ±585mW ±900mW ±920mW ±1.25W ±1.20W

2.0 ±755mW ±900mW ±1.15W ±1.30W ±1.85W ±2.95W ±3.45W

Square Frequency (Hz)

Waveform 100 1k 5k 10k 25k 50k 100k

Iload Peak (A)

0.5 ±165mW ±180mW ±185mW ±195mW ±200mW ±250mW ±330mW

1.0 ±550mW ±565mW ±635mW ±680mW ±695mW ±900mW ±1.10W

1.5 ±1.24W ±1.40W ±1.45W ±1.75W ±1.75W ±2.15W ±2.50W

2.0 ±2.05W ±2.10W ±2.15W ±2.30W ±2.35W ±3.40W ±3.65W

Table 9: The error terms introduced in power measurements for various stimulus waveform types, frequencies, and amplitudes through the test
circuit if VDC is considered constant. VDC is 0-15V, 2-3A precision HP E3610A power supply.

113

Vendor Model Type Bandwidth Max. Sample Rate Min. Sample Rate Max. Waveform Buffer

Agilent 34401A DMM 300 kHz 1 KSa/s n/a 0.5 kSa

Fluke 8508A DMM 100 kHz/1MHz 100 Sa/s n/a n/a

Bitscope 300N O’s 100 MHz 40 MSa/s 4 kSa/s 32 kSa/chan

Picotech ADS-212/100 O’s 50 MHz 100 MSa/s n/a 5.4 kSa/chan

Tektronix TDS3014B O’s 100 MHz 1.25 GSa/s n/a 10 KSa/chan

Tektronix TDS5104B O’s 1 GHz 5 GSa/s n/a 2 MSa/chan

Table 10: Different test and measurement manufacturers advertise products with different criteria. By using the single-shot baseline with oscil-
loscope models, each is compared by the same metric. The Tektronix 5104B allows user- specified waveform buffer lengths, providing variable
durations.

114

APPENDIX B

MIBENCH RESULTS

The following sections contain the results for each of the 24 MiBench benchmark applications. Each

benchmark application is briefly described, and the key characteristics are presented in table format.

The miss rate over dynamic execution time, as measured by dynamically executed instructions,

is presented in graph format. Each benchmark is presented twice, once for instruction caching

behavior and once for data caching behavior.

115

B.1 Instruction Caching Results

B.1.1 bf

Table 11: MiBench bf performance results.

Unique PCs 2,588
Executed Blocks 104,141,294
Bytes Transferred 18,036

Evictions 0
Subset Collisions 35

 0

 50

 100

 150

 200

 250

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 40: The miss rate over the full dynamic execution of the MiBench benchmark bf.

The bf. or blowfish, benchmark is the Blowfish symmetric block cipher with a variable length

key. With a key size that can be set from 32 to 448 bits, it is commonly used as a technology that

can be exported from the United States. The input data is a large ASCII file.

The required footprint for actual code executed is at most 18KB, as this number is skewed

slightly higher due to the presence of subset collisions discussed previously. In reality, the hot-path

code will be less than this value. However, given the 32KB on-die SRAM storage reserved for the

instructions in our simulation, this demonstrates that the blowfish algorithm is a perfect application

for the SoftCache framework with longs periods of stable execution briefly interrupted by a few

cache misses.

116

B.1.2 bitcnts

Table 12: MiBench bitcnts performance results.

Unique PCs 3,818
Executed Blocks 171,578,140
Bytes Transferred 17,528

Evictions 0
Subset Collisions 66

 0

 50

 100

 150

 200

 250

 300

 350

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 41: The miss rate over the full dynamic execution of the MiBench benchmark bitcnts.

The bitcnts, or bitcount, benchmark tests bit manipulation of integers exhaustively. By employ-

ing various methods, different patterns and evaluations are obtained. The input is a set of arrays

with equal counts of 1’s and 0’s in the binary strings.

The amount of storage transfer between the server and client is only 17KB, easily fitting in the

32KB maximum for instruction space. This number is slightly higher than what is essential due to

the subset collisions causing additional transfers. This is not the hot-code size, merely the actual

transfer size.

117

B.1.3 cjpeg

Table 13: MiBench cjpeg performance results.

Unique PCs 8,399
Executed Blocks 14,095,128
Bytes Transferred 40,944

Evictions 366
Subset Collisions 148

 0

 50

 100

 150

 200

 250

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+08 2e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 42: The miss rate over the full dynamic execution of the MiBench benchmark cjpeg.

The cjpeg benchmark implements the standard, lossy JPEG compression algorithm. This is a

typical algorithm based on discrete cosine transformations (DCTs) that computationally is similar

to most image format routines. The input is a large color image.

This application fails to fit well in the limited 32KB on-die instruction space. A slightly larger

execution space would reduce the conflicts that start to appear in the middle of the execution. There

is a minor oscillation or behavior paging from the instruction range 100M - 160M. With a few

additional KB of on-die storage, or perhaps a more efficient code representation, this application

would fit well in the SoftCache framework.

118

B.1.4 crc

Table 14: MiBench crc performance results.

Unique PCs 2,811
Executed Blocks 292,927,673
Bytes Transferred 12,536

Evictions 0
Subset Collisions 41

 0

 50

 100

 150

 200

 250

 300

 350

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 43: The miss rate over the full dynamic execution of the MiBench benchmark crc.

The crc benchmark is a 32-bit cyclic redundancy check (CRC) implementation for a test file. In

general, CRC checks are used widely in communications system to verify files transferred such as

in digital television signals. The input data is the sound test file from the ADPCM benchmark.

This benchmark is an excellent SoftCache application, generating the bulk of all misses during

the initial execution of a few thousand instructions. After the initial misses, no misses occur until

the end of the application at which point results are reported. The CRC algorithm fits in less than

12.5KB of space out of the 32KB reserved on-die.

119

B.1.5 dijkstra

Table 15: MiBench dijkstra performance results.

Unique PCs 3,497
Executed Blocks 45,957,936
Bytes Transferred 15,724

Evictions 0
Subset Collisions 57

 0

 50

 100

 150

 200

 250

 300

 350

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 44: The miss rate over the full dynamic execution of the MiBench benchmark dijkstra.

The dijkstra benchmark constructs an adjacency matrix representation of a large graph. It then

uses Djikstra’s algorithm to compute the shortest path between every pair of nodes. This algorithm

is O
(

n2
)

in time.

This benchmark also easily fits in the allocated 32KB space, using only 16KB of it without

compression to just the steady-state code.

120

B.1.6 fft

Table 16: MiBench fft performance results.

Unique PCs 3,864
Executed Blocks 51,389,101
Bytes Transferred 18,804

Evictions 0
Subset Collisions 75

 0

 50

 100

 150

 200

 250

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 45: The miss rate over the full dynamic execution of the MiBench benchmark fft.

The fft benchmark is an implementation of the fast Fourier transform (FFT) as applied to a

large array of data. This kernel is commonly used to isolate the frequencies in input signals to

facilitate operations such as audio compression or noise cancellation. The array input is a series of

pseudorandom amplitude and frequency values.

The benchmark easily fits in the 32KB on-die storage space, incurring a few misses as slight

changes in program execution occur. Preloading of the known hot path would easily overcome all

of these misses. The relatively long time between miss regions indicates that the FFT algorithm

would work well in the SoftCache system.

121

B.1.7 gs

Table 17: MiBench gs performance results.

Unique PCs 8,522
Executed Blocks 81,790
Bytes Transferred 37,400

Evictions 218
Subset Collisions 64

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000 600000 700000 800000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 46: The miss rate over the full dynamic execution of the MiBench benchmark gs.

The gs benchmark is the open source PostScript intepreter known as GhostScript. This inter-

preter lacks a graphical interface, and is strictly the language interpreter. PostScript is a defacto

standard for printers and some display devices such as Apple computers.

This benchmark is similar to the cjpeg benchmark in that a slightly larger on-die storage is

necessary to avoid excessive swapping. The first half of the program is continually missing due to

cold start and capacity problems. Eventually the program reaches a steady state interpreting the

PostScript input file, but the delay penalties incurred from the initial swapping are likely to be too

great for the SoftCache to compensate for.

122

B.1.8 ispell

Table 18: MiBench ispell performance results.

Unique PCs 3,618
Executed Blocks 110,879
Bytes Transferred 16,080

Evictions 0
Subset Collisions 60

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 47: The miss rate over the full dynamic execution of the MiBench benchmark ispell.

The ispell benchmark is a fast spell checker similar to the UN*X “spell” but designed to run

much faster. This application supports context-based checking, alternate spelling suggestions, and

multiple languages. The input is a large document from the Internet as a web page.

This application easily fits in the on-die storage for instructions, and exhibits few periods of

misses in the SoftCache framework. The long runtime between misses makes this a good application

for the SoftCache.

123

B.1.9 lame

Table 19: MiBench lame performance results.

Unique PCs 21,332
Executed Blocks 50,883,969
Bytes Transferred 55,520,712

Evictions 1,651,653
Subset Collisions 85,301

 0

 50

 100

 150

 200

 250

 300

 350

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 48: The miss rate over the full dynamic execution of the MiBench benchmark lame.

The lame benchmark is the open source MP3 encoder that supports both constant and variable

bitrate encoding of audio files to MP3 format. This is a lossy compression algorithm similar to the

JPEG algorithm. The input is a large wave file.

This benchmark is far too large to run in the SoftCache framework under any conditions. With

over 1.5 million evictions and 55MB of code transferred, this is a perfect representation of the wrong

class of application to run on a SoftCache framework.

124

B.1.10 lout

Table 20: MiBench lout performance results.

Unique PCs 16,279
Executed Blocks 139,206
Bytes Transferred 82,816

Evictions 2,276
Subset Collisions 188

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200000 400000 600000 800000 1e+06 1.2e+06

M
is

se
s

Dynamic Instruction Number

Misses

Figure 49: The miss rate over the full dynamic execution of the MiBench benchmark lout.

The lout benchmark is actually the MiBench typeset benchmark which is a typesetting tool for

HTML. This benchmark captures the processing required to render an HTML page without actually

rendering anything. This is similar to a simplistic web browser engine, such as Gecko from the

Mozilla Foundation. The input is a large web page.

This benchmark is another example of a program that requires more than the 32KB on-die

instruction area. With intermittent events causing large misses, and then a long-running period of

misses, this application requires more storage than is available.

125

B.1.11 madplay

Table 21: MiBench madplay performance results.

Unique PCs 10,167
Executed Blocks 22,572,523
Bytes Transferred 48,644

Evictions 910
Subset Collisions 135

 0

 50

 100

 150

 200

 250

 300

 350

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 50: The miss rate over the full dynamic execution of the MiBench benchmark madplay.

The madplay benchmark is a high-quality MP3 audio decoder. This decoder supports Layer I,

Layer II, and Layer III MPEG audio decoding. The input file is a large MP3 test file.

Unlike the MP3 encoder lame, the decoder runs quite well in the SoftCache once the initial

hot-code path is found. From the range of 100M - 550M instructions, almost no SoftCache misses

occur. This is excellent behavior for a SoftCache application.

126

B.1.12 math

Table 22: MiBench math performance results.

Unique PCs 5,221
Executed Blocks 488,846,352
Bytes Transferred 26,952

Evictions 0
Subset Collisions 130

 0

 50

 100

 150

 200

 250

 300

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 51: The miss rate over the full dynamic execution of the MiBench benchmark math.

The math benchmark, called basicmath in MiBench, consists of simple calculations that gen-

erally lack dedicated hardware support in embedded processors. These calculations are tasks like

square root, angle unit conversions, cubic function solutions, etc. The input data is a fixed set of

constants.

As can be seen from Table 22, the actual amount of storage required for the program is only

27KB out of the possible 32KB maximum. This is not the hot-code size, merely the amount of

actual code transfer. The subset collisions skews this number to be higher than it normally would

be. This benchmark would easily run in the SoftCache framework with no penalty once steady-state

is reached. All misses are cold start misses.

127

B.1.13 patricia

Table 23: MiBench patricia performance results.

Unique PCs 5,635
Executed Blocks 142,654,643
Bytes Transferred 26,304

Evictions 0
Subset Collisions 114

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 52: The miss rate over the full dynamic execution of the MiBench benchmark patricia.

The patricia benchmark is an evaluation of the Patricia trie data structure for sparse leaf nodes

in trees. This type of construct is common in network routing tables. The input set is a list of IP

traffic captured from a network over a period of time, with the IP numbers disguised.

This benchmark also easily fits in the 32KB of allocated space. In terms of application code,

almost no misses occur once the initial program is loaded to the client, with a minor increase when

a particularly complex region of the input data is parsed causing several subset collisions.

128

B.1.14 pgp

Table 24: MiBench pgp performance results.

Unique PCs 3,202
Executed Blocks 66,374
Bytes Transferred 14,732

Evictions 0
Subset Collisions 60

 0

 50

 100

 150

 200

 250

 300

 0 50000 100000 150000 200000 250000 300000 350000 400000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 53: The miss rate over the full dynamic execution of the MiBench benchmark pgp.

The pgp benchmark is an implementation of the pretty good privacy (PGP) public key encryp-

tion system. This uses RSA encryption with digital signatures, a method developed by Phil Zim-

merman. The input is a small text file, as the primary purpose of PGP is to securely exchange keys

for a normal block cipher algorithm which is much faster than the PGP algorithm.

Regardless, the benchmark fits well in the SoftCache on-die SRAM for instructions and is well

behaved with respect to misses. Preloading the initial misses would further improve performance.

129

B.1.15 qsort

Table 25: MiBench qsort performance results.

Unique PCs 3,490
Executed Blocks 167,108,825
Bytes Transferred 16,008

Evictions 0
Subset Collisions 57

 0

 50

 100

 150

 200

 250

 300

 350

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 54: The miss rate over the full dynamic execution of the MiBench benchmark qsort.

The qsort test sorts a large array of strings with the quick sort algorithm. The input data set is a

grouping of three-tuples, meant to represent points of data.

The entire code footprint fits into 16KB of the 32KB instruction region of on-die SRAM.

Preloading of the misses that occur in the middle of the execution would further boost the ap-

plication behavior with respect to the SoftCache system.

130

B.1.16 rawcaudio

Table 26: MiBench rawcaudio performance results.

Unique PCs 1,820
Executed Blocks 2,135
Bytes Transferred 8,128

Evictions 0
Subset Collisions 28

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 55: The miss rate over the full dynamic execution of the MiBench benchmark rawcaudio.

The rawcaudio benchmark is actually an implementation of the adaptive differential pule code

modulation (ADPCM) encoder. The input is a series of 16-bit linear samples which are converted

to 4-bit samples. The actual input file is a large speech sample.

This application only requires 8KB of storage in the on-die SRAM. Active preloading of the hot

path would eliminate all misses entirely.

131

B.1.17 rijndael

Table 27: MiBench rijndael performance results.

Unique PCs 2,279
Executed Blocks 2,926
Bytes Transferred 10,064

Evictions 0
Subset Collisions 33

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 56: The miss rate over the full dynamic execution of the MiBench benchmark rijndael.

The rijndael benchmark is an implementation of Rijndael’s secure encryption system. This

is the algorithm selected by the National Institute of Standards and Technologies (NIST) for the

Advanced Encryption Standard (AES). This block cipher algorithm is run on the same large ASCII

input file as sha.

This benchmark fits easily into the on-die 32KB SRAM region for instructions. Moreover, it is

a perfect model of the SoftCache mechanism where the application runs for a long period of time

before encountering a minor phase adjustment and continuing.

132

B.1.18 say

Table 28: MiBench say performance results.

Unique PCs 6,621
Executed Blocks 5,860,106
Bytes Transferred 31,584

Evictions 0
Subset Collisions 115

 0

 50

 100

 150

 200

 250

 300

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 57: The miss rate over the full dynamic execution of the MiBench benchmark say.

The say benchmark is actually a speech-based benchmark built on the sphinx speech decoder.

The large input is a long sequence of speech, which is handled one sequence at a time.

This application fits well within the 32KB on-die storage space. While it transfers nearly 32KB

through the client-server interface, this number is inflated due to the subset collisions which over-

write some of the same code sequences.

133

B.1.19 search

Table 29: MiBench search performance results.

Unique PCs 2,293
Executed Blocks 1,067,366
Bytes Transferred 10,956

Evictions 0
Subset Collisions 42

 0

 50

 100

 150

 200

 250

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

M
is

se
s

Dynamic Instruction Number

Misses

Figure 58: The miss rate over the full dynamic execution of the MiBench benchmark search.

The search benchmark is the stringsearch benchmark. This searches for specific words or

phrases in a case insensitive manner. The input is a large ASCII file.

This benchmark fits well within the SoftCache on-die memory space, and exhibits excellent

behavior with respect to misses. The very long period of program stability between misses is the

ideal characteristic of any SoftCache application.

134

B.1.20 sha

Table 30: MiBench sha performance results.

Unique PCs 2,916
Executed Blocks 9,811,056
Bytes Transferred 13,136

Evictions 0
Subset Collisions 34

 0

 50

 100

 150

 200

 250

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 59: The miss rate over the full dynamic execution of the MiBench benchmark sha.

The sha benchmark is the secure hash algorithm (SHA) that generates 160-bit message digests

for a given input. Aside from digital signatures, the SHA algorithm is also used to exchange cryp-

tographic keys. The input data is a large ASCII file.

This benchmark is an excellent application of the SoftCache. Once the initial setup of the

application is made, no misses occur until the very end when the result is being reported. This

benchmark also fits easily within the 32KB limitations of the on-die SRAM.

135

B.1.21 susan

Table 31: MiBench susan performance results.

Unique PCs 3,873
Executed Blocks 3,904,530
Bytes Transferred 17,556

Evictions 0
Subset Collisions 54

 0

 50

 100

 150

 200

 250

 300

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 60: The miss rate over the full dynamic execution of the MiBench benchmark susan.

The susan benchmark is designed to recognize corners and edges in images – specifically, in

Magnetic Resonance Images (MRIs) of the brain. This benchmark can perform rudimentary image

smoothing, brightness and threshold adjustments, etc. The large input data is a complex picture.

This is another benchmark that easily fits in the allocated 32KB of space, using a maximum of

17.5KB. This is also skewed by the subset collisions. The large initial miss rate is due to reaching

steady state in the application. By using profile information, this hump could be removed by pre-

loading the entire first range of misses as the code is not particular input data sensitive.

136

B.1.22 tiff2bw

Table 32: MiBench tiff2bw performance results.

Unique PCs 5,568
Executed Blocks 11,386,109
Bytes Transferred 24,404

Evictions 0
Subset Collisions 65

 0

 50

 100

 150

 200

 250

 300

 350

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 61: The miss rate over the full dynamic execution of the MiBench benchmark tiff2bw.

The tiff2bw benchmark converts a TIFF image from color to black-and-white. This type of

downsampling is common in remote image processing applications to reduce bandwith and simplify

feature recognition. When necessary, the raw or color version can be offloaded to upstream devices

for a more complex algorithm such as selective attention.

This benchmark is another well behaved application for the SoftCache framework. This pro-

gram easily fits in the 32KB on-die space allocated for programs, and has no misses beyond the

initial starting of the program and the conclusion when the result is written back to a file.

137

B.1.23 tiffdither

Table 33: MiBench tiffdither performance results.

Unique PCs 7,564
Executed Blocks 200,054,165
Bytes Transferred 35,736

Evictions 0
Subset Collisions 211

 0

 50

 100

 150

 200

 250

 300

 350

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 62: The miss rate over the full dynamic execution of the MiBench benchmark tiffdither.

The tiffdither benchmark is similar to the tiff2bw as a TIFF downsampling algorithm. The

resolution and size are reduced by application of a dithering algorithm, resulting in a loss of clarity.

This is another useful algorithm for more complex systems such as selective attention programs.

This benchmark needs a very small increase in the on-die storage for instructions. It encounters

a minor period of thrashing in the middle of the application due to insufficient space within the

32KB limit. With a slightly larger space reserved for instructions, this benchmark would also be

well behaved for the SoftCache framework.

138

B.1.24 toast

Table 34: MiBench toast performance results.

Unique PCs 3,603
Executed Blocks 4,044
Bytes Transferred 15,268

Evictions 0
Subset Collisions 20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000 30000 35000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 63: The miss rate over the full dynamic execution of the MiBench benchmark toast.

The toast benchmark is actually the global standard for mobile (GSM) communications en-

coder engine. The GSM standard is the standard for cellular communications in Europe and other

countries. The GSM algorithm is based on a combination of time- and frequency-division multiple

access (TDMA/FDMA) methods to encode data streams. The input is a large speech sample.

This benchmark fits well within the SoftCache on-die storage space. To avoid the misses en-

countered during the middle of execution, preloading the hot path would enhance the program

behavior. This is another good application to run in the SoftCache framework.

139

B.2 Data Caching Results

B.2.1 bf

Table 35: MiBench bf performance results.

Unique PCs 897
MTI PCs 421
UTI PCs 476

MTI References 334,302,552
UTI References 54,224,742

Misses 378
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 64: The miss rate over the full dynamic execution of the MiBench benchmark bf.

The bf. or blowfish, benchmark is the Blowfish symmetric block cipher with a variable length

key. With a key size that can be set from 32 to 448 bits, it is commonly used as a technology that

can be exported from the United States. The input data is a large ASCII file.

This application easily fits in the 32KB storage space for data on-die. Moreover, all the misses

are cold-start misses and preloading the known execution path would eliminate all later misses.

140

B.2.2 bitcnts

Table 36: MiBench bitcnts performance results.

Unique PCs 1,365
Unique Addresses 1,590

MTI PCs 366
UTI PCs 999

MTI References 164,265,629
UTI References 19,133,795

Misses 187
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 65: The miss rate over the full dynamic execution of the MiBench benchmark bitcnts.

The bitcnts, or bitcount, benchmark tests bit manipulation of integers exhaustively. By employ-

ing various methods, different patterns and evaluations are obtained. The input is a set of arrays

with equal counts of 1’s and 0’s in the binary strings.

This application easily fits in the 32KB storage space for data on-die. Moreover, all the misses

are cold-start misses and preloading the known execution path would eliminate all later misses. This

program consumes a very small fraction of the available memory space.

141

B.2.3 cjpeg

Table 37: MiBench cjpeg performance results.

Unique PCs 3,078
Unique Addresses 815,720

MTI PCs 1,221
UTI PCs 1,857

MTI References 23,084,552
UTI References 16,138,543

Misses 122,477
Evictions 121,965

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 66: The miss rate over the full dynamic execution of the MiBench benchmark cjpeg.

The cjpeg benchmark implements the standard, lossy JPEG compression algorithm. This is a

typical algorithm based on discrete cosine transformations (DCTs) that computationally is similar

to most image format routines. The input is a large color image.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

142

B.2.4 crc

Table 38: MiBench crc performance results.

Unique PCs 1,037
MTI PCs 335
UTI PCs 702

MTI References 825,250,413
UTI References 159,960,596

Misses 228
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09 2e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 67: The miss rate over the full dynamic execution of the MiBench benchmark crc.

The crc benchmark is a 32-bit cyclic redundancy check (CRC) implementation for a test file. In

general, CRC checks are used widely in communications system to verify files transferred such as

in digital television signals. The input data is the sound test file from the ADPCM benchmark.

This application easily fits in the 32KB storage space for data on-die. Moreover, all the misses

are cold-start misses and preloading the known execution path would eliminate all later misses.

143

B.2.5 dijkstra

Table 39: MiBench dijkstra performance results.

Unique PCs 1,283
Unique Addresses 17,480

MTI PCs 484
UTI PCs 799

MTI References 42,979,220
UTI References 74,326,910

Misses 237,372
Evictions 236,860

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 68: The miss rate over the full dynamic execution of the MiBench benchmark dijkstra.

The dijkstra benchmark constructs an adjacency matrix representation of a large graph. It then

uses Djikstra’s algorithm to compute the shortest path between every pair of nodes. This algorithm

is O
(

n2
)

in time.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

144

B.2.6 fft

Table 40: MiBench fft performance results.

Unique PCs 1,340
Unique Addresses 136,156

MTI PCs 438
UTI PCs 902

MTI References 89,430,352
UTI References 41,886,360

Misses 141,542
Evictions 141,030

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 69: The miss rate over the full dynamic execution of the MiBench benchmark fft.

The fft benchmark is an implementation of the fast Fourier transform (FFT) as applied to a

large array of data. This kernel is commonly used to isolate the frequencies in input signals to

facilitate operations such as audio compression or noise cancellation. The array input is a series of

pseudorandom amplitude and frequency values.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

145

B.2.7 gs

Table 41: MiBench gs performance results.

Unique PCs 3,828
Unique Addresses 32,111

MTI PCs 1,689
UTI PCs 2,139

MTI References 173,734
UTI References 29,601

Misses 3,576
Evictions 3,064

 0

 20

 40

 60

 80

 100

 120

 140

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 70: The miss rate over the full dynamic execution of the MiBench benchmark gs.

The gs benchmark is the open source PostScript intepreter known as GhostScript. This inter-

preter lacks a graphical interface, and is strictly the language interpreter. PostScript is a defacto

standard for printers and some display devices such as Apple computers.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

146

B.2.8 ispell

Table 42: MiBench ispell performance results.

Unique PCs 1,318
Unique Addresses 71,362

MTI PCs 535
UTI PCs 783

MTI References 152,808
UTI References 49,774

Misses 6,830
Evictions 6,318

 0

 10

 20

 30

 40

 50

 60

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 71: The miss rate over the full dynamic execution of the MiBench benchmark ispell.

The ispell benchmark is a fast spell checker similar to the UN*X “spell” but designed to run

much faster. This application supports context-based checking, alternate spelling suggestions, and

multiple languages. The input is a large document from the Internet as a web page.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

147

B.2.9 lame

Table 43: MiBench lame performance results.

Unique PCs 8,531
Unique Addresses 93,088

MTI PCs 5,045
UTI PCs 3,486

MTI References 599,509,141
UTI References 31,865,406

Misses 3,270,672
Evictions 3,270,160

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

M
is

se
s

Dynamic Instruction Number

Misses

Figure 72: The miss rate over the full dynamic execution of the MiBench benchmark lame.

The lame benchmark is the open source MP3 encoder that supports both constant and variable

bitrate encoding of audio files to MP3 format. This is a lossy compression algorithm similar to the

JPEG algorithm. The input is a large wave file.

This benchmark is far too large to run in the SoftCache framework under any conditions. With

over 3.2 million evictions and 55MB of code transferred, this is a perfect representation of the wrong

class of application to run on a SoftCache framework.

148

B.2.10 lout

Table 44: MiBench lout performance results.

Unique PCs 8,355
Unique Addresses 32,493

MTI PCs 1,767
UTI PCs 6,588

MTI References 224,988
UTI References 48,990

Misses 2,212
Evictions 1,700

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100000 200000 300000 400000 500000 600000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 73: The miss rate over the full dynamic execution of the MiBench benchmark lout.

The lout benchmark is actually the MiBench typeset benchmark which is a typesetting tool for

HTML. This benchmark captures the processing required to render an HTML page without actually

rendering anything. This is similar to a simplistic web browser engine, such as Gecko from the

Mozilla Foundation. The input is a large web page.

This benchmark is another example of a program that requires more than the 32KB on-die

instruction area. With intermittent events causing large misses, and then a long-running period of

misses, this application requires more storage than is available.

149

B.2.11 madplay

Table 45: MiBench madplay performance results.

Unique PCs 3,685
Unique Addresses 52,797

MTI PCs 1,472
UTI PCs 2,213

MTI References 76,344,468
UTI References 35,120,382

Misses 32,550
Evictions 32,038

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 74: The miss rate over the full dynamic execution of the MiBench benchmark madplay.

The madplay benchmark is a high-quality MP3 audio decoder. This decoder supports Layer I,

Layer II, and Layer III MPEG audio decoding. The input file is a large MP3 test file.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

150

B.2.12 math

Table 46: MiBench math performance results.

Unique PCs 1,835
Unique Addresses 2,636

MTI PCs 610
UTI PCs 1,225

MTI References 569,474,694
UTI References 101,613,946

Misses 205
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 75: The miss rate over the full dynamic execution of the MiBench benchmark math.

The math benchmark, called basicmath in MiBench, consists of simple calculations that gen-

erally lack dedicated hardware support in embedded processors. These calculations are tasks like

square root, angle unit conversions, cubic function solutions, etc. The input data is a fixed set of

constants.

This application would easily fit in the 32KB data storage SRAM on-die. Each miss is a cold-

start miss, and preloading the hot path would eliminate the later misses entirely.

151

B.2.13 patricia

Table 47: MiBench patricia performance results.

Unique PCs 1,948
Unique Addresses 696,967

MTI PCs 649
UTI PCs 1,299

MTI References 183,565,348
UTI References 96,640,079

Misses 131,405
Evictions 130,893

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 76: The miss rate over the full dynamic execution of the MiBench benchmark patricia.

The patricia benchmark is an evaluation of the Patricia trie data structure for sparse leaf nodes

in trees. This type of construct is common in network routing tables. The input set is a list of IP

traffic captured from a network over a period of time, with the IP numbers disguised.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

152

B.2.14 pgp

Table 48: MiBench pgp performance results.

Unique PCs 1,057
MTI PCs 482
UTI PCs 575

MTI References 30,717
UTI References 11,267

Misses 216
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 77: The miss rate over the full dynamic execution of the MiBench benchmark pgp.

The pgp benchmark is an implementation of the pretty good privacy (PGP) public key encryp-

tion system. This uses RSA encryption with digital signatures, a method developed by Phil Zim-

merman. The input is a small text file, as the primary purpose of PGP is to securely exchange keys

for a normal block cipher algorithm which is much faster than the PGP algorithm.

This application easily fits in the 32KB storage space for data on-die. Moreover, all the misses

are cold-start misses and preloading the known execution path would eliminate all later misses.

153

B.2.15 qsort

Table 49: MiBench qsort performance results.

Unique PCs 1,233
Unique Addresses 505,276

MTI PCs 413
UTI PCs 820

MTI References 114,137,996
UTI References 63,425,373

Misses 430,952
Evictions 430,440

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 78: The miss rate over the full dynamic execution of the MiBench benchmark qsort.

The qsort test sorts a large array of strings with the quick sort algorithm. The input data set is a

grouping of three-tuples, meant to represent points of data.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

154

B.2.16 rawcaudio

Table 50: MiBench rawcaudio performance results.

Unique PCs 647
Unique Addresses 694

MTI PCs 182
UTI PCs 465

MTI References 3,306
UTI References 676

Misses 119
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 79: The miss rate over the full dynamic execution of the MiBench benchmark rawcaudio.

The rawcaudio benchmark is actually an implementation of the adaptive differential pule code

modulation (ADPCM) encoder. The input is a series of 16-bit linear samples which are converted

to 4-bit samples. The actual input file is a large speech sample.

This application only requires a few KB of storage in the on-die SRAM. Active preloading of

the hot path would eliminate all misses entirely.

155

B.2.17 rijndael

Table 51: MiBench rijndael performance results.

Unique PCs 811
Unique Addresses 1,047

MTI PCs 237
UTI PCs 574

MTI References 4,277
UTI References 911

Misses 141
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 80: The miss rate over the full dynamic execution of the MiBench benchmark rijndael.

The rijndael benchmark is an implementation of Rijndael’s secure encryption system. This

is the algorithm selected by the National Institute of Standards and Technologies (NIST) for the

Advanced Encryption Standard (AES). This block cipher algorithm is run on the same large ASCII

input file as sha.

This benchmark fits easily into the on-die 32KB SRAM region for instructions. Moreover, it is

a perfect model of the SoftCache mechanism where the application runs for a long period of time

before encountering a minor phase adjustment and continuing.

156

B.2.18 say

Table 52: MiBench say performance results.

Unique PCs 2,632
Unique Addresses 572,708

MTI PCs 837
UTI PCs 1,795

MTI References 8,205,453
UTI References 36,735,235

Misses 20,127
Evictions 19,615

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 81: The miss rate over the full dynamic execution of the MiBench benchmark say.

The say benchmark is actually a speech-based benchmark built on the sphinx speech decoder.

The large input is a long sequence of speech, which is handled one sequence at a time.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

157

B.2.19 search

Table 53: MiBench search performance results.

Unique PCs 798
Unique Addresses 10,370

MTI PCs 273
UTI PCs 525

MTI References 1,265,998
UTI References 400,836

Misses 28
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

M
is

se
s

Dynamic Instruction Number

Misses

Figure 82: The miss rate over the full dynamic execution of the MiBench benchmark search.

The search benchmark is the stringsearch benchmark. This searches for specific words or

phrases in a case insensitive manner. The input is a large ASCII file.

This benchmark fits well within the SoftCache on-die memory space, and exhibits excellent

behavior with respect to misses. The very long period of program stability between misses is the

ideal characteristic of any SoftCache application.

158

B.2.20 sha

Table 54: MiBench sha performance results.

Unique PCs 1,045
Unique Addresses 2,887

MTI PCs 322
UTI PCs 723

MTI References 32,563,258
UTI References 4,020,084

Misses 266
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 83: The miss rate over the full dynamic execution of the MiBench benchmark sha.

The sha benchmark is the secure hash algorithm (SHA) that generates 160-bit message digests

for a given input. Aside from digital signatures, the SHA algorithm is also used to exchange cryp-

tographic keys. The input data is a large ASCII file.

This benchmark is an excellent application of the SoftCache. Once the initial setup of the

application is made, no misses occur until the very end when the result is being reported. This

benchmark also fits easily within the 32KB limitations of the on-die SRAM.

159

B.2.21 susan

Table 55: MiBench susan performance results.

Unique PCs 1,323
Unique Addresses 226,662

MTI PCs 507
UTI PCs 816

MTI References 3,351,885
UTI References 6,431,816

Misses 7,814
Evictions 7,302

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

M
is

se
s

Dynamic Instruction Number

Misses

Figure 84: The miss rate over the full dynamic execution of the MiBench benchmark susan.

The susan benchmark is designed to recognize corners and edges in images – specifically, in

Magnetic Resonance Images (MRIs) of the brain. This benchmark can perform rudimentary image

smoothing, brightness and threshold adjustments, etc. The large input data is a complex picture.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space

reserved for the input data, this benchmark would also be well behaved for the SoftCache frame-

work. The interesting behavior of this application is that the very large range of addresses touched

result in a consistent low miss rate. This is due to the iterative walk through the image, continuously

fetching new data at a fixed rate to the application without revisiting old data.

160

B.2.22 tiff2bw

Table 56: MiBench tiff2bw performance results.

Unique PCs 2,150
Unique Addresses 27,892

MTI PCs 851
UTI PCs 1,299

MTI References 57,981,267
UTI References 313,557

Misses 7,010
Evictions 6,498

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 85: The miss rate over the full dynamic execution of the MiBench benchmark tiff2bw.

The tiff2bw benchmark converts a TIFF image from color to black-and-white. This type of

downsampling is common in remote image processing applications to reduce bandwith and simplify

feature recognition. When necessary, the raw or color version can be offloaded to upstream devices

for a more complex algorithm such as selective attention.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

161

B.2.23 tiffdither

Table 57: MiBench tiffdither performance results.

Unique PCs 2,619
Unique Addresses 27,135

MTI PCs 1,096
UTI PCs 1,523

MTI References 166,737,501
UTI References 91,260,043

Misses 26,247
Evictions 25,735

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

M
is

se
s

Dynamic Instruction Number

Misses

Figure 86: The miss rate over the full dynamic execution of the MiBench benchmark tiffdither.

The tiffdither benchmark is similar to the tiff2bw as a TIFF downsampling algorithm. The

resolution and size are reduced by application of a dithering algorithm, resulting in a loss of clarity.

This is another useful algorithm for more complex systems such as selective attention programs.

This benchmark needs a large increase in the on-die storage for instructions. It encounters a

thrashing in the application due to insufficient space within the 32KB limit. With a larger space re-

served for the input data, this benchmark would also be well behaved for the SoftCache framework.

162

B.2.24 toast

Table 58: MiBench toast performance results.

Unique PCs 1,402
Unique Addresses 1,469

MTI PCs 431
UTI PCs 971

MTI References 7,534
UTI References 1,640

Misses 206
Evictions 0

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
is

se
s

Dynamic Instruction Number

Misses

Figure 87: The miss rate over the full dynamic execution of the MiBench benchmark toast.

The toast benchmark is actually the global standard for mobile (GSM) communications en-

coder engine. The GSM standard is the standard for cellular communications in Europe and other

countries. The GSM algorithm is based on a combination of time- and frequency-division multiple

access (TDMA/FDMA) methods to encode data streams. The input is a large speech sample.
This benchmark fits well within the SoftCache on-die storage space. To avoid the misses en-

countered during the middle of execution, preloading the hot path would enhance the program
behavior. This is another good application to run in the SoftCache framework.

163

REFERENCES

[1] Gheith A. Abandah and Edward S. Davidson. Configuration Independent Analysis for Char-
acterizing Shared-Memory Applications. Technical report, EECS Department, Univerisity of
Michigan, CSE-TR-357-98 1998.

[2] Hiralal Agrawal. On Slicing Programs with Jump Statements. In PLDI, pages 302–312, June
1994.

[3] Gianluca Albera and R. Iris Bahar. Power and Performance Tradeoffs using Various Cache
Configurations. In ISLPED, August 1998.

[4] Gene M. Amdahl. Validity of the single processor approach to achieving large scale comput-
ing abilities. In Proc. AFIPS 1967 Spring Joint Computer Conf. 30 (April), pages 483–485,
1967.

[5] Simon Baatz, Christoph Bieschke, Matthias Frank, Carmen Kühl, Peter Martini, and
Christoph Scholz. Building Efficient Bluetooth Scatternet Topologies from 1-Factors. In
Proceedings of the IASTED Intl Conference on Wireless and Optical Communications, July
2002.

[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A Transparent Dynamic
Optimization System. In PLDI, Vancouver, Canada, 2000.

[7] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel.
Comparison of Cache- and Scratch-Pad based Memory Systems with respect to Performace,
Area and Energy Consumption. Technical report, Universität Dortmund, September 2001.

[8] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel.
Scratchpad Memory: A Design Alternative for Cache On-chip memory in Embedded Sys-
tems. In 10th International Workshop on Hardware/Software Codesign, May 2002.

[9] Ravi Batchu, Saul Levy, and Miles Murdocca. A Study of Program Behavior to Establish
Temporal Locality at the Function Level. Technical report, Rutgers University, DCS TR-475
2001.

[10] Robert Bedichek. Talisman-2 — A Fugu System Simulator. http://bediche k. or g/ -
robert/talisman2 / , August 1999.

[11] David Binkley. Slicing in the presence of parameter aliasing. In Software Engineering Re-
search Forum, pages 261–268, Orlando, Florida, November 1993.

[12] Bryan Black, Bohuslav Rychlik, and John P. Shen. The Block-Based Trace Cache. In ISCA-
26, May 1999.

[13] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete Removal of Redundant Ex-
pressions. In PLDI, pages 1–14, 1998.

164

[14] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. In Proceedings of the International Symposium on
Computer Architecture, pages 83–94, 2000.

[15] Bruno De Bus, Dominique Chanet, Bjorn De Sutter, Ludo Van Put, and Koen De Bosschere.
The design and implementation of FIT: a flexible instrumentation toolkit. In Workshop on
Program Analysis for Software Tools and Engineering, 2004.

[16] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-Accurate Energy Measurement
and Characterization With a Case Study of the ARM7TDMI. In IEEE Transactions on Very
Large Scale Integration Systems, April 2002.

[17] Samprit Chatterjee and Bertram Price. Regression Analysis by Example. Wiley and Sons,
ISBN 0-471-88479-0, 1991.

[18] Cristina Cifuentes and Antoine Fraboulet. Interprocedural Data Flow Recovery of High-
Level Language Code from Assembly. Technical Report 421, University of Queensland,
December 1997.

[19] Cristina Cifuentes and Antoine Fraboulet. Intraprocedural Static Slicing of Binary Executa-
bles. In Proceedings of the International Conference on Software Maintenance, pages 188–
195, 1997.

[20] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to High-Level Language
Translation. Technical Report 439, University of Queensland, August 1998.

[21] Andrea G.M. Cilio and Henk Corporaal. A linker for effective whole-program optimizations.
In HPCN, pages 643–652, Amsterdam, The Netherlands, April 1999.

[22] Robert F. Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execution
Profiling. Technical Report CSE-93-06-06, University of Washington, 1993.

[23] Gilberto Contreras, Margarent Martonosi, Jinzhan Peng, Roy Ju, and Guei-Yuan Lueh.
Xtrem: A power simulator for the intel xscale core. In LCTES, 2004.

[24] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. Building a Control-flow Graph
from Scheduled Assembly Code. Technical Report TR02-399, Rice University, June 2002.

[25] Intel Corporation. Intel XScale Microarchitecture Technical Summary. Technical report,
Intel WWW Site, 2000.

[26] Datasheet. Intel PXA27x Family. Technical report, Intel, http://www.intel.com/design/-
embeddedpca/applicationsprocessors/302302.htm 2004.

[27] Peter J. Denning. The working set model for program behavior. In Communications of the
ACM, volume 11, No. 5, pages 323–333, May 1968.

[28] Peter J. Denning. Virtual Memory. In Computing Surveys, volume 2, No. 3, pages 153–189,
September 1970.

[29] Peter J. Denning. Before Memory was Virtual. In In the Beginning: Recollections of Software
Pioneers. Robert Glass, ed., IEEE Press, 1997.

165

[30] Karel Driesen and Urs Holzle. Improving Indirect Branch Prediction With Source- and Arity-
based Classification and Cascaded Prediction. Technical report, UC-Santa Barbara, March
1998.

[31] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis, Rishiyur Nikhil, and
Robert Stets. Cashmere-VLM: Remote Memory Paging for Software Distributed Shared
Memory. In Proceedings of the Intl Parallel Processing Symposium and the Symposium on
Parallel and Distributed Processing, pages 153–159, 1999.

[32] Intel Engineering. Intel PXA255 Processor Design Guide. Technical report, Intel Corp.,
278964-001, March 2003.

[33] Intel Engineering. Intel PXA255 Processor Developer’s Manual. Technical report, Intel
Corp., 278693-001, March 2003.

[34] Intel Engineering. Intel XScale Microarchitecture for the PXA255 Processor (User’s Man-
ual). Technical report, Intel Corp., 278796, March 2003.

[35] LeCroy Engineering. Accurate Instantaneous Power Measurements. Technical report,
LeCroy, Inc., AN29 0499 5M TECH 1999.

[36] Tektronix Engineering. XYZs of Oscilloscopes. Technical report, Tektronix, Inc., 03W-
8605-2 2001.

[37] Tektronix Engineering. Bandwidth Alone 6= Measurement Accuracy. Technical report, Tek-
tronix, Inc., 55W-19248-2 2005.

[38] Tektronix Engineering. Power Measurement and Analysis Primer. Technical report, Tek-
tronix, Inc., 55W-18412-0 2005.

[39] Keith I. Farkas and Norman P. Jouppi. Complexity/Performance Tradeoffs with Non-
Blocking Loads. Technical report, DEC, March 1994.

[40] Kristián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor Mudge. Drowsy
Caches: Simple Techniques for Reducing Leakage Power. In International Symposium on
Computer Architecture, 2002.

[41] M.D. Flouris and Evangelos P. Markatos. The Network RamDisk: Using Remote Memory
on Heterogeneous NOWs. In Cluster Computing, volume 2, pages 281–293, 1999.

[42] Dominique Foata and Doron Zeilberger. The Collector’s Brotherhood Problem Using the
Newman-Shepp Symbolic Method. In Algebra Universalis, 49(2003), 387-395.

[43] Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Putting the Fill Unit to Work: Dy-
namic Optimizations for Trace Cache Microprocessors. In Proceedings of the International
Symposium on Microarchitecture, 1998.

[44] Joshua B. Fryman, Chad M. Huneycutt, Hsien-Hsin S. Lee, Kenneth M. Mackenzie, and
David E. Schimmel. Energy Efficient Network Memory for Ubiquitous Devices. Technical
report, Georgia Institute of Technology, GIT-CERCS-03-05, 2003.

[45] Joshua B. Fryman, Chad M. Huneycutt, Hsien-Hsin S. Lee, Kenneth M. Mackenzie, and
David E. Schimmel. Energy Efficient Network Memory for Ubiquitous Devices. In IEEE
MICRO, Sep/Oct 2003.

166

[46] Joshua B. Fryman, Chad M. Huneycutt, and Kenneth M. Mackenzie. Investigating a Soft-
Cache using Dynamic Rewriting. In FDDO-4, November 2001.

[47] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and
Richard B. Brown. MiBench: A free, commercially representative embedded benchmark
suite. In IEEE 4th Annual Workshop on Workload Characterization, December 2001.

[48] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-Managed Cache
Design. In 27th Annual International Symposium on Computer Architecture, 2000.

[49] William R. Hamburgen, Deborah A. Wallach, Marc A. Viredaz, Lawrence S. Brakmo, Carl A.
Waldspurger, Joel F. Bartlett, Timothy Mann, and Keith I. Farkas. Itsy: Stretching the bounds
of mobile computing. In IEEE Computer, volume 34, pages 28–37, 2001.

[50] Dan W. Hammerstrom and Edward S. Davidson. Information Content of CPU Referencing
Behavior. In Proceedings of the International Symposium on Computer Architecture, 1977.

[51] Tegze P. Haraszti. CMOS Memory Circuits, pages 113–124,146–150. Kluwer Academic
Publishers, Norwell, Massachusetts, 2000.

[52] Paul Havinga and Gerard Smit. Energy-efficient wireless networking for multimedia appli-
cations. In Wireless Communications and Mobile Computing. Wiley and Sons, 2000.

[53] Kim Hazelwood and James E. Smith. Exploring Code Cache Eviction Granularities in Dy-
namic Optimization Systems. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, 2004.

[54] Kim Hazelwood and Michael D. Smith. Code Cache Management Schemes for Dynamic
Optimizers. In Sixth Annual Workshop on Interaction between Compilers and Computer
Architectures, 2002.

[55] John L. Henneessy and David A. Patterson. Computer Architecture: A Quantitative Approach
(2nd Ed), page Chapters 1 and 5. Morgan Kaufmann, San Francisco, California, 2000.

[56] Paul Horowitz and Winfield Hill. The Art of Electronics (2nd Ed.). Cambridge University
Press, Cambridge, United Kingdom, 1989.

[57] Susan Horowitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence
graphs. In ACM TOPLAS, volume 12, No. 1, January 1990.

[58] Chad M. Huneycutt, Joshua B. Fryman, and Kenneth M. Mackenzie. Software Caching
using Dynamic Binary Rewriting for Embedded Devices. In Proceedings of the International
Conference on Parallel Programming, 2002.

[59] Livia Iftode, Kai Li, and Karin Petersen. Memory Servers for Multicomputers. In Proc. of
the IEEE Intl Computer Conference, pages 543–547, 1993.

[60] Sotiris Ioannidisgif, Evangelos P. Markatosgif, and Julia Sevaslidou. On Using Network
Memory to Improve the Performance of Transaction-Based Systems. In Intl Conference on
Parallel and Distributed Processing Techniques and Applications, 1998.

[61] Canturk Isci and Margaret Martonosi. Identifying Program Power Phase Behavior Using
Power Vectors. In Workshop on Workload Characterizations, November 2003.

167

[62] Canturk Isci and Margaret Martonosi. Runtime Power Monitoring in High-End Processors:
Methodology and Empirical Data. In IEEE International Symposium on Microarchitecture,
November 2003.

[63] NTT Japan. BLUEBIRD Project. 2003. http://www.ntt s. co. jp /j av a/ -
bluegrid/en/ .

[64] Howard Johnson and Martin Graham. High-Speed Digital Design: A Handbook of Black
Magic. Prentice Hall PTR, New Jersey, USA, 1993.

[65] Teresa L. Johnson and Wen-Mei W. Hwu. Run-Time Adaptive Cache Hierarchy Management
via Reference Analysis. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997.

[66] Stephen Jourdan, Lihu Rappoport, Yoav Almog, Mattan Erez, Adi Yoaz, and Ronny Ronen.
eXtended Block Cache. In HPCA-6, January 2000.

[67] Daniel Kästner and Stephan Wilhelm. Generic Control Flow Reconstruction From Assembly
Code. In LCTES, pages 46–55, 2002.

[68] T. Kilburn, D.B.G. Edwards, M.J. Lanigan, and F.H. Sumner. One-level storage system. In
IRE Transactions, EC-11(2):223–225 1962.

[69] Dongkyun Kim, J.J Garcia-Luna-Aceves, Katia Obraczka, Juan-Carlos Cano, and Pietro
Manzoni. Power-Aware Routing Based on The Energy Drain Rate for Mobile Ad Hoc
Networks. In Proceedings of the IEEE Intl Conference on Computer Communication and
Networks, Oct 2002.

[70] Martin Kubisch, Seble Mengesha, Daniel Hollos, Holger Karl, and Adam Wolisz. Applying
ad-hoc relaying to improve capacity, energy efficiency, and immission in infrastructure-based
WLANs. Technical report, Technical University Berlin, July 2002.

[71] Hsien-Hsin S. Lee and Gary S. Tyson. Region-Based Caching: An Energy-Delay Efficient
Memory Architecture for Embedded Processors. In Proceedings of the International Confer-
ence on Compilers, Architectures, Syntesis on Embedded Systems, 2000.

[72] Evangelos P. Markatos and George Dramitinosgif. Implementation of a Reliable Remote
Memory Pager. In USENIX, pages 177–190, 1996.

[73] MIPS. MIPS32 R4Kp Core Datasheet, Rev. 01.07. Technical report, MIPS Technologies,
2002.

[74] Carlos Molina, Antonio González, and Jordi Tubella. Dynamic Removal of Redundant
Computations. Technical Report UPC-DAC-1998-022, Universitat Politècnia de Catalunya,
Barcelona, Spain, April 1998.

[75] James Montanaro and et al. A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor. In IEEE
JSSC, volume 31, No. 11, pages 1703–1714, November 1996.

[76] Csaba Andras Moritz, Matthew Frank, Walter Lee, and Saman Amarasinghe. Hot Pages:
Software Caching for Raw Microprocessors. Technical Report MIT-LCS-TM-599, Mas-
sachusetts Institute of Technology, 1999.

168

[77] Andreas Moshovos and Gurindar S. Sohi. Speculative Memory Cloaking and Bypassing. In
International Journal on Parallel Programming, 1999.

[78] Motorola. MPC850 Family User’s Manual, Rev. 1. Technical report, Document
MPC850UM/D, 2001.

[79] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Effects of Pointers on Data De-
pendences. In 9th International Workshop on Program Comprehension, 2001.

[80] Krishna V. Palem and Rodric M. Rabbah. Bridging Processor and Memory Performance in
ILP Processors via Data-Remapping. Technical Report GIT-CC-01-014, Georgia Institute of
Technology, June 2001.

[81] Vlad-Mihai Panait, Amit Sasturkar, and Weng-Fai Wong. Static Identification of Delinquent
Loads. In Proceedings of the International Symposium on Code Generation and Optimiza-
tion, 2004.

[82] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient Utilization of Scratch-
Pad Memory in Embedded Processor Applications. In European Design and Test Conference,
March 1997.

[83] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. Off-chip Memory:
The Data Partitioning Problem in Embedded Processor-Based Systems. In ACM Transactions
on Design Automation of Electronic Systems, pages 682–704, July 2000.

[84] Chanik Park, Junghee Lim, Kiwon Kwon, Jaejin Lee, and Sang Lyul Min. Compiler-Assisted
Demand Paging for Embedded Systems with Flash Memory. In International Conference on
Embedded Software, 2004.

[85] Erez Perelman, Greg Hamerly, and Brad Calder. Picking Statistically Valid and Early Simu-
lation Points. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, 2003.

[86] Dionisios N. Pnevmatikatos and Evangelos P. Markatos. On Using Network RAM as a Non-
volatile Buffer. In Cluster Computing, pages 295–303, 1999.

[87] Christian Poellabauer and Karsten Schwan. Power-Aware Video Decoding using Real-Time
Event Handlers. In IEEE International Conference on Pervasive Computing and Communi-
cations, September 2002.

[88] Christian Poellabauer and Karsten Schwan. Energy-Aware Media Transcoding in Wireless
Systems. In International Workshop on Wireless Mobile Multimedia, March 2004.

[89] Rodric M. Rabbah and Krishna V. Palem. Design Space Optimization of Embedded Mem-
ory Systems via Data Remapping. Technical Report GIT-CC-02-011, Georgia Institute of
Technology, March 2002.

[90] Jude A. Rivers and Edward S. Davidson. Reducing Conflicts in Direct-mapped Caches with a
Temporality-based Design. In Proceedings of the 1996 International Conference on Parallel
Processing, 1996.

[91] John L. Ross and Mooly Sagiv. Building a Bridge between Pointer Aliases and Program
Dependences. volume 1381, pages 221–?, 1998.

169

[92] Kaushik Roy and Sharat Prasad. Low-Power CMOS VLSI Circuit Design. Wiley-Interscience,
USA, 2000.

[93] D. Sayre. Is Automatic “Folding” of Programs Efficient Enough to Displace Manual? In
Communications of the ACM, volume 12, No. 12, pages 656–660, December 1969.

[94] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta: A Low
Overhead, Software-Only Approach for Supporting Fine-grain Shared Memory. In ASPLOS-
7, pages 174–185, 1996.

[95] Digital Semiconductor. SA-110 Microprocessor Technical Reference Manual, Rev. C. Tech-
nical report, Order No. EC-QPWLC-TE, 1996.

[96] P. Shivakumar and Norman P. Jouppi. CACTI 3.0: An Integrated Cache T iming, Power, and
Area Model. Technical report, Compaq WRL, August 2001.

[97] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Energy-efficient design of battery-
powered embedded systems. In International Symposium on Low Power Electronics and
Design, August 1999.

[98] Amit Sinha and Anantha Chandrakasan. Jouletrack - a web based tool for software energy
profiling. In Design Automation Conference, pages 220–225, 2001.

[99] Saurabh Sinha and Mary Jean Harrold. Interprocedural Control Dependence. In International
Symposium on Software Testing and Analysis, 1998.

[100] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. Systems-Dependence-Graph-
Based Slicing of Programs with Arbitrary Interprocedural Control Flow. In International
Conference on Software Engineering, pages 432–441, 1999.

[101] Emin G. Sirer, Robert Grimm, Arthur J. Gregory, and Brian N. Bershad. Design and Im-
plementation of a Distributed Virtual Machine for Networked Computers. In 17th ACM
Symposium on Operating Systems Principles, pages 202–216, 1996.

[102] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Balakrishnan, and
Peter Marwedel. Reducing Energy Consumption by Dynamic Copying of Instructions onto
Onchip Memory. In International Symposium on System Synthesis, October 2002.

[103] Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, and Saumya Debray. Combining global
code and data compaction. In Workshop on LCTES, 2001.

[104] S. Takahashi, H. Nishino, K. Yoshihiro, and K. Fuchi. System design of the ETL Mk-6
computers. In Information Processing (Proc. IFIP Congress 62), volume Amsterdam, The
Netherlands: North Holland Publishing Co., page 690, 1963.

[105] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software: a
first step towards software power minimization. Readings in hardware/software co-design.
Kluwer Academic Publishers, Norwell, MA, USA, 2001.

[106] Gary S. Tyson and Todd M. Austin. Improving the Accuracy and Performance of Mem-
ory Communication Through Renaming. In Proceedings of the International Symposium on
Microarchitecture, 1997.

170

[107] Gary S. Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun. A Modified
Approach to Data Cache Management. In Proceedings of the International Symposium on
Microarchitecture, 1995.

[108] Osman S. Unsal, Raksit Ashok, Israel Koren, C. Mani Krishna, and Csaba Andras Moritz.
Cool-Cache for Hot Multimedia. In Proceedings of the International Symposium on Microar-
chitecture, 2001.

[109] Manish Verma, Stefan Steinke, and Peter Marwedel. Data Partitioning for Maximal Scratch-
pad Usage. In Asia South Pacific Design Automated Conference, January 2003.

[110] Perry H. Wang, Jamison D. Collins, Hong Wang, Dongkeun Kim, Bill Greene, Kai-Ming
Chan, Aamir B. Yunus, Terry Sych, Stephen F. Moore, and John P. Shen. Helper Threads via
Virtual Multithreading On An Experimental Itanium 2 Processor-based Platform. In Proceed-
ings of the International Conference on Architectural Support for Programming Languages
and Operating Systems, 2004.

[111] Maurice V. Wilkes. Slave Memories and Dynamic Storage Allocation. In IEEE Transactions
EC-14, pages 270–271, April 1965.

[112] Maurice V. Wilkes. Computers Then and Now. In Journal of the Association for Computing
Machinery, pages 1–7, January 1968.

[113] Emmet Witchel and Mendel Rosenblum. Embra: Fast and Flexible Machine Simulation. In
SIGMETRICS, 1996.

[114] Emmett Witchel and Krste Asanovic̀. The Span Cache: Software Controlled Tag Checks and
Cache Line Size. In Workshop on Complexity-Effective Design, June 2001.

[115] Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste Asanovic̀. Direct Addressed
Caches for Reduced Power Consumption. In MICRO-34, pages 124–133, December 2001.

[116] W. Ye, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and Mary Jane Irwin. The design
and use of simplepower: a cycle-accurate energy estimation tool. In Design Automation
Conference, pages 340–345, 2000.

[117] Michael Zhang and Krste Asanović. Highly-Associative Caches for Low-Power Processors.
In Kool Chips Workshop, 33rd International Symposium on Microarchitecture, 2000.

171

VITA

Josh Fryman was born someplace in rural Kentucky, USA. Moving like a gypsy while his parents

were climbing the corporate ladder, Josh managed to live in several states, from coast to coast. Josh

obtained his B.S. degree in Computer Engineering from the University of Florida, and his Ph.D.

degree from Georgia Institute of Technology. Josh is married to Hathai Sangsupan, and has one

child, Brieana Fryman.

172

DOCUMENT

This document was typeset in LATEX, using the Georgia Institute of Technology thesis template de-

signed by Chuck Wilson. All development, simulation, numerical analysis, etc., was done on a set of

Linux workstations running on various platforms. Graphs and plots were made using a mixture of

gnuplot (www.gnuplot.info) and ploticus (ploticus.sourceforge.net). Numerical analysis was done

in a mixture of gnumeric (www.gnome.org/projects/gnumeric), maple (www.maplesoft.com), and

hand-coded C programs. Circuit diagrams were made using xcircuit (xcircuit.ece.jhu.edu/xcircuit.html).

Other figures were made with a combination of dia (www.gnome.org/projects/dia), xfig (www.xfig.org),

sketch a.k.a. skencil (www.skencil.org), and tgif (bourbon.usc.edu:8001/tgif).

No Microsoft products were used in any way during the creation of this document.

No Microsoft products were used in this research.

173

