

Set-Based User Interaction

A Thesis
Presented to

The Academic Faculty

by

Michael Terry

In Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy in
Computer Science

Georgia Institute of Technology
August, 2005

Copyright © Michael Terry 2005

Set-Based User Interaction

Approved by:

Dr. Elizabeth D. Mynatt, Advisor
College of Computing
Georgia Institute of Technology

Dr. Gregory Abowd
College of Computing
Georgia Institute of Technology

Dr. Blair MacIntyre
College of Computing
Georgia Institute of Technology

Dr. Scott Hudson
HCI Institute
Carnegie Mellon

Dr. Kumiyo Nakakoji
RCAST
University of Tokyo

Date Approved: July 12, 2005

iii

ACKNOWLEDGEMENT

I owe a debt of gratitude to my younger cousins, Ellen and Cameron McKnight (8 and 11

at the time), who originally inspired this work. When I first came to Georgia Tech, I

rented an apartment in their house, and they would often come down to visit. To keep

them busy while I worked, I introduced them to the GNU Image Manipulation Program

(the GIMP). They quickly settled into a routine: Using one of the built-in scripts, they

generated a blue sphere, then proceeded to exhaustively try and undo filters until pleasing

results were found. Two things were noteworthy. First, they were able to generate some

amazing compositions using filters alone (often bearing no resemblance to the original

blue sphere), and second, the application seemed to have so much power hidden away –

one had to continually probe the application to discover what it was capable of. This

seemed the wrong model for creative work, and led me to investigate ways computer

interfaces could more easily support the creative process.

Knowing nothing about HCI research when I first arrived, I had the good fortune

of finding Beth Mynatt and joining her Everyday Computing Lab. I could not have asked

for a better mentor. Throughout the years Beth has supported my research in all ways

possible and been a model researcher and advisor. Her Everyday Computing Lab, too, is

an incredible collection of people. Its members – Jeremy Goecks Elaine Huang, Jessica

Paradise, Jim Rowan, Quan Tran, Joe Tullio, Amy Voida, and Steve Voida – have

offered guidance, support, and friendship in great abundance throughout the years. Lena

Mamykina, a former ECL member, deserves special mention for always providing last

minute feedback on papers and talks, and for showing me around NYC with her husband

Kliment on weekends away from Atlanta.

iv

While Beth Mynatt was my official advisor, Gregory Abowd served as my

unofficial co-advisor, always providing enthusiastic encouragement throughout the years.

His students, too, have lent a helping hand, especially Khai Truong.

In addition to Beth and Gregory, I had a fantastic committee to guide this work. I

was fortunate enough to join Kumiyo Nakakoji in Japan for one summer via NSF’s East

Asia Summer program, and Scott Hudson at CMU the next summer. Both experiences

helped shaped this work directly and indirectly. Blair MacIntyre, too, has influenced this

work through our many discussions, and is the person I turn to when I need to talk about

graphics, digital imagery, or photography.

A number of people have readily and selflessly offered their time to support this

work in various capacities. In particular, I thank Wendy Newstetter for grounding me in

the methods of anthropologists; Molly Stevens for always coming in on short notice to

test things out days before deadlines; Diane Gromala for opening my eyes to the world of

artists, digital art, and new media; Jeff Weese and Grace Ou, two artists who continually

inspire me to build more tools (and who also served as guinea pigs for tools-in-progress);

Laura Dabbish for lending her statistical expertise to analyze study data; Jim Davies for

keeping me laughing; Gabe Brostow for his model work ethic; and Ruomei Gao for her

support, delicious baked goods, and the time the work stole away from doing more fun

stuff.

Finally, I would like to dedicate this work to my family, who made everything

possible: My father Peter, my mother Sarah, my sister Alison, and my brother David; my

grandparents Sherwin and Jean Terry, and Frank and DeDe Reynolds; and Joe and

Margaret Dombrowski, my home-town grandparents.

v

TABLE OF CONTENTS

Acknowledgement iii

List of Tables vii

List of Figures viii

Summary x

Chapter 1: Introduction 1
1.1 Thesis Statement 4

Chapter 2: Background 10
2.1 Characteristics of Ill-Defined Problems 10
2.2 Strategies for Solving Ill-Defined Problems 12

Chapter 3: Needs and Practices When Solving Ill-Defined Problems With
Computer-Based Tools: Three Case Studies 20

3.1 Newspaper Image Control Desk: Image Toning 21
3.2 Interactive, Multimedia Software: User Interface Design 25
3.3 Amateur Artist: Coloring of a Pen Drawing 27
3.4 Relating Problem Solving Techniques to User Interface Support 29
3.5 Summary 35

Chapter 4: Interface-Level Support for Experimentation: Related Work 36
4.1 Theoretical Guidelines 36
4.2 Specific Tool Implementations 38
4.3 Additional Opportunities for Supporting the Exploration of Alternatives 41
4.4 Evaluation Needs 44
4.5 Summary 50

Chapter 5: Supporting the Generation, Manipulation, Evaluation, and
Management of Alternatives 51

5.1 The Set-Based Interface: Reasoning About Sets of Alternatives 51
5.2 Comparison to the subjunctive interface 55
5.3 Summary 55

Chapter 6: Set-Based Interface Tools: Side Views and Parallel Pies 56
6.1 Side Views 56
6.2 Parallel Pies 72
6.3 Summary 84

Chapter 7: Describing and Distinguishing Between Problem Solving Practices 85
7.1 Measures 85
7.2 Process Diagram 92

vi

7.3 Summary 98

Chapter 8: Assessing the Impact of set-based tools on the problem solving
process 99

8.1 Experimental Design 100
8.2 Research Questions 117
8.3 Results 118
8.4 Think-Aloud Study 141
8.5 Contrasting Results Between Studies 145
8.6 Comparison to Other Experimental Findings 147
8.7 Improving Side Views and Parallel Pies 148
8.8 Summary 154

Chapter 9: Impact and Opportunities for Future Work 155
9.1 Conclusions 156
9.2 Future Work 158

Appendix A: Top Three Results for Each Task in the Color Scheme Study 169

Appendix B: Partials 172

References 181

vii

LIST OF TABLES

Table 1. Mapping Practices to Interface Mechanisms 30

Table 2. Survey of process support tools 45

Table 3. Studies' research questions. 117

Table 4. Summary of results per each hypothesis. 120

Table 5. Solution fitness and problem solving process measures (color correction
study). 123

Table 6. Command usage (color correction study). 133

Table 7. Rated utility of interface mechanisms (color correction study). 134

Table 8. Solution fitness and problem solving process measures (color scheme study). 136

Table 9. Command usage (color scheme study). 138

Table 10. Cognitive load (color scheme study). 139

Table 11. Rated utility of interface mechanisms (color scheme study). 140

viii

LIST OF FIGURES

Figure 1. Set-based engineering. 1

Figure 2. Point-based engineering. 2

Figure 3. Set-based engineering. 16

Figure 4. Point-based engineering. 16

Figure 5. Four (out of eleven) alternative solutions produced for a website. 25

Figure 6. Sequence illustrating an on-demand Side View popping up. 57

Figure 7. A Side View for a toolbar item in a text editor. 57

Figure 8. Side Views automatically update as content changes. 58

Figure 9. A set of parameter spectrums for the Polar Coordinates command. 59

Figure 10. Parameter spectrums for the Hue/Lightness/Saturation command. 60

Figure 11. Two commands (Whirl & Pinch, and Polar Coordinates) chained together
in a composite Side View. 61

Figure 12. Side Views for the paint brush initially show a grid of paint strokes. 62

Figure 13. Side Views for the paint brush. 63

Figure 14. A generalization of on-demand help. 65

Figure 15. Basic architectural design of Side Views. 66

Figure 16. Narrowing the range previewed in Side Views. 70

Figure 17. Parallel Pies. Parallel Pies allow multiple alternatives to be embedded in
the same workspace. 72

Figure 18. Parallel Pies’ additions to dialog boxes. 75

Figure 19. Parallel Pies visualization tool. 77

Figure 20. Organizational architecture for Parallel Pies. 80

Figure 21. Set- and point-based interaction trees. 86

Figure 22. Two trees with different characteristics. 88

Figure 23. An example of backtracking in point-based problem solving. 90

Figure 24. Process diagram. 93

Figure 25. A process diagram illustrating undone nodes and chosen solution states. 96

Figure 26. Study task environment (cropped vertically). 103

Figure 27. A task environment with Side Views, but no Parallel Pies. 105

Figure 28. A task environment in which neither Side Views nor Parallel Pies
are available. 105

ix

Figure 29. Filter with Apply to All Selected Versions and Create New Version
buttons. 107

Figure 30. Image selection screen. 110

Figure 31. Common approaches to solving the color correction task. 114

Figure 32. Start state for the color scheme study. 116

Figure 33. Average and best solution fitness across the four different test conditions. 122

Figure 34. Example process diagrams for the color correction study. 127

Figure 35. Example illustrating Parallel Pies’ use to accumulate variations. 129

Figure 36. Example illustrating subjects’ states chosen earlier when Parallel Pies is
present. 131

Figure 37. Two slider redesigns that allow scanning of ranges. 150

Figure 38. A state space for holding alternatives. 153

Figure 39. Outline of a basic toolkit architecture for a set-based interface. 161

Figure 40. The initial state for the watch task. 169

Figure 41. The top three rated solutions for winter. 170

Figure 42. The top three rated solutions for spring. 170

Figure 43. The top three rated solutions for summer. 171

Figure 44. The top three rated solutions for fall. 171

x

SUMMARY

Compared to physical media, digital media are extremely plastic: Previews enable one to

experiment with a command before actually modifying data, while Undo provides the

ability to return to a previous state should an entire series of actions prove undesirable.

However, despite this plasticity, an observational study we conducted of artists and

graphic designers suggests that current user interfaces make it difficult to quickly develop

and explore sets of alternative solutions in parallel.

Exploring sets of alternatives is a common practice among expert practitioners

since it allows them to better understand the problem and its space of potential solutions.

Rather than think in the abstract, sets of alternatives enable one to directly compare and

contrast the relative merits of each possibility.

While it is not impossible to explore sets of alternatives with current interfaces, it

must be manually orchestrated by the user: Time must be spent preparing the user

interface for exploration (e.g., by making copies of a solution before deriving a new

standalone solution), and few mechanisms exist to ease the tasks of comparing the

alternatives and keeping them in sync. Ultimately, these costs can be high enough to

discourage users from exploring in both breadth and depth. As a result, current interfaces

tend to lead to highly linear problem solving processes whereby a single solution is

continually revised until deemed acceptable. We term such interfaces point-based

interfaces because of their focus on one solution at a time.

To better support exploration, we introduce the concept of a set-based interface,

or an interface that provides explicit support for simultaneously generating, manipulating,

evaluating, and managing sets of alternative solutions for the same problem. Such an

xi

interface is intended to enable a problem solving process characterized by broad

exploration and the simultaneous consideration of multiple solution instances.

We present two tools demonstrating the concepts of a set-based interface, Side

Views and Parallel Pies. Both are designed for use in image manipulation tasks. Side

Views is an enhanced previewing mechanism that simultaneously displays sets of

previews for one or more commands and their parameters. Parallel Pies, on the other

hand, streamlines the process of “forking” so one can more easily pursue promising

alternatives in parallel. In contrast to history-tracking tools that simply record all the

states a person has visited, Parallel Pies allows an individual to easily spawn new

standalone alternatives: As promising possibilities are discovered while interacting with a

command, individuals may use Parallel Pies to duplicate their current document, apply

the command to the copy, and insert the new result into the same workspace – all via a

single action. Parallel Pies’ visualization tool then allows one to compare and contrast the

generated alternatives.

To understand the impact these tools have on the problem solving process, we

conducted two controlled, within-subjects laboratory studies and a third think-aloud study.

In the first controlled study, subjects color-corrected images to make them match a

known (visible) target image. Though it employed a well-defined task, the solution path

was ill-defined, making experimentation essential to solving the problem well. In the

second controlled study, subjects developed color schemes for watches, offering a view

of how these tools perform in much more open-ended tasks. The final study paired

individuals to work cooperatively on the same color scheme task as the second study.

This third study design helped to externalize individuals’ thought processes as they

xii

worked through problems as subjects needed to communicate with one another to solve

each problem.

The collective results from these studies indicate that Parallel Pies leads to a

discernibly different problem solving process that subjects perceive to be more desirable.

In particular, Parallel Pies leads to broader exploration and the creation of more solution

alternatives in the same amount of time. The studies further indicate that this problem

solving process can result in more optimal solutions when solving tightly constrained

tasks, where optimality is measured by the number of operations required to derive a

solution state from a given start state.

While Parallel Pies can lead to broader exploration, we found that too much

exploration can actually lower solution quality under certain circumstances. In particular,

when solving open-ended problems under tight time constraints, individuals can initially

overuse the capability to broadly explore and not spend enough time maturing a single

solution. However, there are indications that this issue would disappear after users have

fully acclimated to this capability.

Parallel Pies was designed to enable broad exploration by increasing the ease with

which one can spawn a new, separate solution instance. One unexpected side-effect of

this capability is that it can increase the likelihood of backtracking. Specifically, as

individuals work, they sometimes use Parallel Pies to create back-up copies of different

stages of their work, thereby increasing the frequency with which they return to a

previous state to pursue alternative paths. Though the tool was not expressly designed to

support this practice, this use suggests the need for history mechanisms that more

completely track all states a user visits.

xiii

In contrast to Parallel Pies, our studies show that the multiple previews of Side

Views have a far more subtle effect on the problem solving process. While we find no

evidence that multiple sets of previews can affect one’s performance, we did find that

they can lead to individuals serendipitously discovering viable solution alternatives. That

is, while interacting with a command, the multiple previews can suggest ways of solving

a problem that the user had not originally considered.

Side Views’ multiple sets of previews per parameter can also reduce the need to

scan for settings of interest. In our studies, subjects moved commands’ sliders about half

as much when Side Views were present, suggesting that users can find values of interest

with less effort by using this tool.

Finally, our studies indicate that Side Views’ multiple previews can help ground

communication between individuals as they cooperatively solve problems. Rather than

abstractly describe how they wish to proceed, users can simply point to a Side View that

is close to the desired direction.

From these three studies, we conclude that user interface mechanisms that support

the rapid generation and automatic management of new standalone alternatives are highly

valued and useful facilities for solving complex, ill-defined problems. By making it easy

to create sets of potential solutions that are simultaneously active, these capabilities

streamline the process of exploring the design space and help users to perform concrete,

side-by-side comparisons of their options.

We also conclude that current interface designs lead to highly linear problem

solving processes due to their lack of mechanisms to support broad exploration. When

such mechanisms are available, they are eagerly adopted and lead to much wider

xiv

explorations of the problem space, despite them being completely optional components to

the problem solving process. Thus, this work argues for the need to more fully investigate

how process support tools (such as history mechanisms and previewing tools) impact the

problem solving process.

While this research has documented how Side Views and Parallel Pies can assist

in experimentation and exploration, this work also makes significant contributions in the

methodology and metrics used to perform the evaluations. For over 20 years, mechanisms

such as branching histories and enhanced versions of Undo have been proposed to

facilitate experimentation. However, very few evaluations have been performed on these

types of tools. The dearth of evaluations can be partially attributed to the lack of

analytical methods appropriate to evaluating how these types of mechanisms affect the

problem solving process.

Noting this lack of evaluation instruments, this work contributes a suite of metrics

that formalize concepts such as backtracking, breadth and depth of exploration, and

“dead-ends.” These metrics enable statistical comparisons to be performed across these

dimensions, allowing a researcher to investigate whether their user interface mechanisms

lead to significantly different problem solving strategies. A visualization called a process

diagram aids in conveying results by rendering an individual’s problem solving process

through a set of integrated directed graphs.

1

CHAPTER 1

INTRODUCTION

Toyota’s “2nd Paradox”: “delaying decisions, communicating ‘ambiguously,’ and

pursing excessive numbers of prototypes, enables Toyota to design better cars faster and

cheaper” [p.44, WAR95]

In the quote above, Ward et al. describe Toyota’s vehicle design practices:

Whereas many car designers attempt to develop precise design specifications early in the

design process, Toyota’s engineers delay commitment to final solutions and continually

explore the design space throughout the problem solving process. Solution development

thus progresses by constantly generating, evaluating, and pruning sets of possibilities

(Figure 1). This process provides a more comprehensive view of the solution space and,

correspondingly, what will, and will not, work in practice. It also increases the chance

that optimal solutions are found, while ensuring a back-up solution always exists.

Because of this emphasis on exploring several viable alternatives in parallel, the authors

dub the practice set-based concurrent engineering [WAR95, SOB99].

Figure 1. Set-based engineering. Set-based engineering generates many possibilities,
and gradually narrows the choices to a final solution.

2

Figure 2. Point-based engineering. Point-based engineering initially considers many
alternatives, but quickly commits to one that is revised until acceptable. Dead-ends
require backtracking.

The authors contrast Toyota’s practices with that of American car manufacturers, who

seek to quickly converge on a single, fixed solution point, a process Ward et al. term

point-based concurrent engineering. Point-based concurrent engineering uses the initial

conceptual design phase to explore alternatives, but at its conclusion, a single solution

target is chosen. The remainder of the design process consists of continual refinement of

that single solution until it reaches an acceptable end state (Figure 2).

Set-based and point-based concurrent engineering represent two philosophically

different approaches to decomposing and solving complex, ill-defined problems. At one

extreme, set-based practices intentionally generate alternatives so that more than one

possibility is always under investigation. At the other extreme, individuals commit to just

one solution instance that matures through continual revision.

These methods are not unique to car design, and can be easily found elsewhere.

Design disciplines have long advocated and practiced methodologies similar to set-based

practices, though they describe the process in other terms, such as ideation or design

space exploration [GUN99]. Recognizing that differences in both terminology and

process details exist, we nonetheless generally refer to problem solving methods that

3

emphasize investigating sets of alternatives as set-based problem solving, while referring

to the alternative in which a single solution is continually revised as point-based problem

solving.

In this dissertation, these alternative conceptualizations of the problem solving

process serve to frame the central problem investigated by this work. Based on results

from a field study of work practices [TER02a], we argue that current user interfaces cater

to point-based problem solving practices to the exclusion of fluidly supporting set-based

practices. In particular, we claim that current interfaces assume a highly linear problem

solving process in which a single solution instance is continually revised. As a result, few

facilities exist to support the rapid, broad exploration of possibilities, forcing users to

manually orchestrate the process when they wish to engage in set-based practices. While

set-based problem solving is not impossible, we provide evidence that the transaction

costs can be high enough to discourage its use.

These findings lead us to argue for the need to reconceptualize how interfaces

structure the problem solving process. In particular, we advocate an alternative type of

user interface, the set-based interface, which provides explicit support for generating,

manipulating, evaluating, and managing sets of alternatives. These facilities are intended

to enable one to more easily explore sets of alternatives in parallel by reducing the need

to commit to just one solution path at a time.

To explore this notion of a set-based interface, we constructed two tools in the

domain of image manipulation, Side Views and Parallel Pies. Side Views is an enhanced

previewing mechanism that affords the rapid, broad exploration of near-term possibilities

by automatically generating sets of previews for one or more commands and their

4

parameters [TER02b]. Parallel Pies, on the other hand, affords sustained, long-term

exploration of a select subset of alternatives via a combination of features that streamline

the process of “forking” a solution to explore divergent paths [TER04]. In contrast to

previous approaches that support exploration by maintaining a more complete history of

all states one has visited, this tool enables the proactive generation of alternatives,

allowing users to quickly spawn new standalone solution instances as they are discovered

when interacting with commands.

Given this backdrop, this research’s thesis statement is formulated below.

1.1 Thesis Statement

User interfaces that offer mechanisms to facilitate the generation,

manipulation, evaluation, and management of multiple solution

alternatives will enable individuals to develop a high quality solution in

less time and with lower cognitive load than interfaces that do not offer

these same services. These facilities will also lead to users developing

more alternatives in the same amount of time.

In exploring this thesis, we limit our scope to the domain of image manipulation.

To investigate the claims of the thesis, we evaluated Side Views and Parallel Pies

in two controlled laboratory studies and a think-aloud study. The first study utilized a

tightly-constrained task in which subjects color-corrected images given a start state and a

known (visible) target state. The second study changed the nature of the task to make it

more open-ended: Subjects were asked to develop color schemes for watches to make

them evocative of one of the four seasons of the year. Finally, the third study paired

5

individuals to work together on the color scheme task of the second study, asking them to

think aloud as they worked.

From these three studies, we conclude that Parallel Pies’ ability to quickly

generate new standalone alternatives results in individuals adopting problem solving

strategies more characteristic of set-based problem solving: They explore more broadly

and generate more solution alternatives when the tool is present. We also find evidence

that this strategy can lead to more optimal solutions, where optimality is measured by the

number of operations required to derive the solution state from a given start state.

However, results from one study indicate that this strategy of broadly exploring can

backfire if individuals are under a strict time constraint and they spend too much time

exploring, and not enough time maturing a single solution. Despite this negative result,

subjects in our study insist that the ability to broadly explore is highly desirable, and tools

that facilitate this process are welcome.

While Parallel Pies is often used as a catalyst for exploration, its ability to

generate new standalone alternatives can also lead to its use as a “bookmarking” facility.

That is, rather than rely on the undo stack, individuals accumulate open, accessible copies

of past states using Parallel Pies, leading to higher rates of backtracking when the tool is

present. This use argues for the need for histories that make past states highly visible and

accessible.

In contrast to Parallel Pies, we found Side Views to have a far more subtle effect

on the problem solving process. While there was no discernable effect on the quality of

solutions developed nor the problem solving strategy employed, four uses of the tool

became apparent. First, users can serendipitously discover new ways of solving a

6

problem via Side Views’ multiple previews. In our think-aloud study, this use became

apparent as subjects expressed surprise at some of the previews that appeared while

interacting with the tool. Second, Side Views can help one to quickly eliminate an entire

area of the design space. In our think-aloud study, we found individuals dismiss an entire

command if it was clear that no combination of parameter settings met their needs. Third,

Side Views can reduce the need to manually scan a parameter’s range of settings. Similar

in spirit to the previous finding, each study consistently found that individuals use sliders

approximately 50% less when Side Views are available, suggesting that multiple sets of

previews can help people find values of interest with less effort. Finally, our think-aloud

study revealed that Side Views can serve as a tool to help coordinate problem solving. As

people work cooperatively on a problem, the multiple sets of previews ground

communications by giving people concrete reference points to explain how they wish to

proceed.

Despite these observed effects, we found no support for the thesis claim that

either of these tools will lead to better solutions faster. However, we did find mixed

support for the claim that the tools will reduce cognitive load. In the open-ended task of

designing a color scheme for a watch, we found Parallel Pies can increase mental demand

while lowering frustration. Data collected from surveys and interviews explain these

results. When solving problems, subjects develop more solution alternatives when

Parallel Pies is present, leading to a decrease in frustration because of the greater number

of choices available for solving the problem. However, by the same token, these extra

choices increase mental demand because they result in more data on the screen at one

7

time. These findings again suggest the desirability of exploration, but also indicate that

the interface must take care not to overwhelm the user with information.

The unexpected negative results of these studies – the negligible impact of Side

Views’ multiple previews on performance and the discovery that broad exploration can

actually lower solution quality under some circumstances – are instructive in that they

underscore the need to critically examine how such mechanisms actually affect the

problem solving process. Intuitively, capabilities that facilitate experimentation and

exploration are desirable and useful. For example, few would argue with the utility of

Undo or a history mechanism that fully tracks every state visited. However, to date, these

types of user interface mechanisms have rarely been evaluated. These results are some of

the first to illustrate the potential benefits and drawbacks of such tools.

One of the barriers to evaluating such process support tools has been a lack of

analytical methods suitable for describing how these tools affect problem solving

practices. As such, one of the contributions of this work is a suite of metrics that

formalize concepts such as breadth and depth of exploration, backtracking, and “dead-

ends.” These formalizations enable one to perform statistical comparisons across these

dimensions to understand whether a given tool significantly affects how individuals solve

problems. A visualization called a process diagram aids in communicating these results

by highlighting aspects of the problem solving process such as branching, backtracking,

abandoned states, and the number of states active at any point in time.

In the rest of this dissertation, we develop the notion of a set-based interface in the

following phases. Chapter 2 reviews the literature examining ill-defined problems and

general problem solving practices, independent of any computer-based support. We also

8

discuss the Toyota studies in more detail, further delineating the differences between

point- and set-based problem solving practices.

Chapter 3 describes results from an observational study of expert users of an

image manipulation application and presents three representative case studies. These case

studies reveal problem solving strategies similar to those described in the general

problem solving literature, but also show how computer-based tools integrate into the

process. From these case studies, we synthesize a table mapping problem solving

techniques to specific interface tools, and consider the relative strengths and weaknesses

of each existing interface mechanism. This mapping uncovers a number of deficiencies in

current interfaces with respect to solving ill-defined problems. In particular, we argue that

interfaces are designed to support point-based problem solving at the cost of fluidly

supporting experimentation and exploration.

In Chapter 4 we review existing research in user interface design that attempts to

address some of these shortcomings. Three main types of tools are considered, each of

which allows individuals to work with sets of alternatives: augmented history tools, what-

if tools, and enhanced previewing mechanisms. We identify a number of ways this

existing research can be extended, which leads to the thesis and one of the contributions

of this work: The notion of a set-based interface. The principle components of a set-based

interface are defined and distinguished from other efforts in Chapter 5, and the concepts

of a set-based interface are illustrated in Side Views and Parallel Pies in Chapter 6.

With this foundation in place, we turn our attention to the task of evaluating the

claims of the thesis. In Chapter 7, we synthesize a set of metrics for describing the

problem solving process and present a visualization called a process diagram to aid in

9

comparing problem solving sessions. Chapter 8 covers three studies conducted to

evaluate the impact of Side Views and Parallel Pies on the problem solving process.

Results are presented in detail and interpreted with respect to the research questions of

this work. We conclude in Chapter 9 by enumerating the contributions of this work and

describing open research questions. Appendix A documents the best results from the

study in which subjects designed watch color schemes, while Appendix B speculates on

how these principles may apply to the design of a programming language.

10

CHAPTER 2

BACKGROUND

The ultimate goal of this work is to better support individuals as they solve ill-defined

problems. Ill-defined problems are highly complex, intricate problems with no single

right answer. They can be found in design disciplines (e.g., architecture, software

engineering, etc.), as well as in relatively common activities, such as writing a paper. In

this chapter, we review literature describing the nature of these problems and how

individuals approach their solution.

2.1 Characteristics of Ill-Defined Problems

Ill-defined problems are problems lacking clearly defined goals and solution methods.

They arose as a focused topic of research in the 1960’s when Walter Reitman made an

important distinction between well-defined problems, and what he termed ill-defined

problems, or problems with poorly defined operators and goals [REI65]. Prior to making

this distinction, research in problem solving primarily concentrated on well-defined tasks.

For example, studies conducted by Newell and Simon (summarized in [NEW72])

investigated how people solved problems with well-defined goals and states, such as

cryptarithmetic. In differentiating these different types of problems, Reitman claimed that

most real-world problems, such as design tasks, are ill-defined and qualitatively different

from well-defined problems in form, complexity, and method of solution.

Subsequent research has refined Reitman’s distinctions and added weight to his

claims. For example, Goel and Pirolli [GOE92] identified a number of common

11

characteristics of design problems through studies of designers in three different

disciplines, architecture, mechanical engineering, and instructional design. Their findings

echo a number of other related research efforts (e.g., [RIT84, SCH83, SIM73]), and thus

serve as a useful summary of the characteristics of ill-defined problems. In describing

design problems, they claim these problems:

• are large and complex with a number of interconnected parts that affect one

another;

• have underdefined start and goal states, with equally underdefined transformation

functions; and

• lead to solutions that can only be described as “better or worse,” as opposed to

“right or wrong.”

These characteristics have some important corollaries that further define the nature of

these types of problems. For example, since there is no “right” answer, a solution can

always be improved upon [REI65, RIT84]. Thus, declaring a problem “solved” is as

much a function of the availability of resources (e.g., time, money) as it is a measure of

the suitability of the solution to the task [SIM73].

The lack of well-defined goals also means that the goals themselves are flexible

and subject to reinterpretation. This further increases the set of possible solutions. As an

example, Goel and Pirolli found that individuals often attempt to negotiate the problem’s

goal to make it better match their skills and experience.

Finally, the underdefined nature of these problems requires a practitioner to

develop the solution method itself, which is itself an ill-defined problem [REI65] – there

is no “textbook” method that can be blindly applied to solve these problems.

12

In sum, the lack of a single “best” solution leads to a significant space of

possibilities for individuals to consider. This large space of possibilities is critical to keep

in mind when we later consider user interface support for these problems.

2.2 Strategies for Solving Ill-Defined Problems

In their study, Goel and Pirolli also identified a number of common problem solving

strategies. They found:

• Distinct problem-solving phases: Preliminary design, refinement, and detailed

design;

• Structuring and decomposition of the problem into smaller subcomponents;

• Incremental development of the solution and its subcomponents;

• The practice of limiting commitment to precise solutions; and

• Personalized stopping rules and evaluation functions.

These findings correlate with many other descriptions of problem solving practices. We

highlight two relevant characterizations, one by Donald Schön, the other by Ward et al.

[WAR95] and Sobek et al [SOB99].

2.2.1 Schön’s Theory of Reflection-In-Action

Through studies of professional designers, Donald Schön developed the theory of

reflection-in-action, a characterization of the design process that likens it to a kind of

informed improvisational act [SCH83]. As he describes it, reflection-in-action is the

process by which skilled practitioners act on the problem, reflect on the consequences of

that action, then modify their future actions accordingly. These individual acts can thus

be thought of as a series of small experiments to discover how to solve the problem most

13

effectively. Notably, throughout the process, the practitioner is not applying a set of

predefined rules to solve the problem, but rather is calling upon a repertoire of past

experiences to guide experimentation with the solution.

In his observations, Schön found that individuals use what he calls “virtual

worlds,” or alternative representations of the problem and its solution. As he uses the

term, a virtual world is a “context for experiment within which practitioners can suspend

or control some of the everyday impediments to rigorous reflection-in-action” [SCH83, p.

162]. Often, these virtual worlds are highly ambiguous representations, allowing a

designer to continually reinterpret the ambiguity and delay commitment to precise

solutions [GRO96]. Casting the solution into another representation can also exploit the

characteristics of the alternative media by suppressing some details of the problem while

highlighting others. For example, when designing a building, an architect may employ

hand-drawn sketches, physical models, or 3D mock-ups. Each has its own unique

affordances and enables the problem to be considered from alternative viewpoints.

In relation to Goel and Pirolli’s characterizations, Schön’s characterizations add

further support for the notion that solving these types of problems is a highly iterative and

unpredictable process: it is not a straightforward path from beginning to end. Rather, the

solution path must be slowly discovered and constructed. In effect, the challenge is not

only in constructing a path to the goal, but also developing an understanding of what that

goal should actually be. A comparative study of the design practices of Toyota and other

Japanese and American car manufacturers makes this point clear, while uncovering two

fundamentally different philosophies to constructing this solution path.

14

2.2.2 Set-Based Concurrent Engineering vs. Point-Based Concurrent Engineering

In an attempt to understand how Toyota produces cars faster, more efficiently, and with

fewer people than its competition, a set of studies conducted by Ward et al. [WAR95]

and Sobek et al. [SOB99] uncovered a design culture unique to Toyota. In comparison to

its competitors in the US and Japan, Toyota generates a significant number of prototypes

throughout the design process. Further, they design to sets of possibilities, rather than to

precise specifications. The authors term this problem-solving strategy set-based

concurrent engineering. In contrast, Toyota’s competitors initially explore a number of

alternatives, but quickly converge on a single target that is developed into the final

product. The authors dub this process point-based concurrent engineering because of its

emphasis on pushing towards one envisioned, uncompromising goal1.

Point-based concurrent engineering strives to determine, with great precision, the

exact specifications of the vehicle as early as possible. For example, CAD diagrams are

created and sent to suppliers to create the parts or subcomponents exactly as prescribed.

As the authors note, “key decisions are made early on in order to simplify interactions

among subsystems. These decisions maximally constrain design to achieve the desired

effect” (emphasis added).

Toyota, on the other hand, deals with ranges of tolerable values for every part of

the car. Suppliers are given general targets, and components can be built anywhere within

the given design tolerance. As a result, a number of alternatives are developed and

explored. For example, Toyota’s supplier of exhaust systems prototypes 10-50 different

1 In this context, “concurrency” refers to multiple groups of people working on different
sub-problems simultaneously.

15

systems while its competition normally prototypes just one. Additionally, while

American car manufacturers derive and fix CAD drawings early on in the process, it is

only after the right fit for a component has been found in practice that Toyota updates its

CAD drawings to reflect the desired specifications.

Toyota’s design process explicitly acknowledges limitations of human cognition

when solving complex, ill-defined problems:

The engineers recognize that even though they are familiar with this

product, they cannot know everything about it. There are subtle

relationships between parts of the system that can be explored only

through tests of real prototypes. In set-based terms, experimentation is a

way of exploring the design space. Decisions are made only after such

experimentation. [WAR95, p. 56]

To arrive at a final solution, Toyota begins with a set of viable alternatives, bounded by

experience and knowledge of what is feasible, then gradually narrows this set by

eliminating sub-optimal alternatives. A large tree of possibilities is originally developed,

then gradually pruned until the best fit can be found amongst all the sub-components

(Figure 3). American manufacturers, on the other hand, start with a range of theoretical

alternatives, but quickly prune to a single design that is iterated upon (Figure 4). When

aspects of that vision do not work as planned, a new offshoot must be created to develop

a workable alternative. In the end, both Toyota and its competitors explore multiple

alternatives; the difference is that Toyota explores more, and does so in an informed,

purposeful way, rather than as a reaction to unexpected circumstances.

16

Figure 3. Set-based engineering.

Figure 4. Point-based engineering.

To be clear on our use of the terminology, we consider an alternative solution to be a

separate, unique solution to the same problem. This is in contrast to an iteration, which

simply represents a revision to a single solution. While we make a distinction between

these two types of solution instances, we are not claiming they are mutually exclusive.

For example, a previous iteration can sometimes be considered an alternative solution if it

is sufficiently different from the current solution state. The critical difference is the role

the solution instance plays for an individual at a specific point in time.

17

A similar distinction can also be made with regard to how solution alternatives

arise. In set-based problem solving, alternatives are proactively generated as part of a

purposeful process, while alternatives in point-based are retroactively generated, after a

particular solution path proves inadequate. These two solution types have also been

referred to as generative variations and corrective variations [GUN99], respectively,

because one either generates the alternatives in parallel (with the intention of comparing

them), or as a result of correcting past actions through a serial process. Generative

variations lead to multiple solution possibilities that are simultaneously active, while

corrective variations typically result in a single solution instance being active at a time.

Point- and set-based concurrent engineering represent two alternative

philosophies for how to solve an ill-defined problem. As previously mentioned, these

methods are not unique to car design, and instances of each can be readily found in

descriptions of design practice (e.g., [CRO01, GUN99]). Again, recognizing that

differences in both terminology and process details exist, we nonetheless refer to problem

solving methods that emphasize investigating sets of alternatives as set-based problem

solving, while using the phrase point-based problem solving to refer to strategies typified

by the continual revision of a single solution instance.

In contemplating these different problem solving approaches, an important

consideration is which method will generally yield better solutions. Ward et al. and

Sobek et al. argue that set-based practices help Toyota develop better solutions faster and

cheaper, and many design disciplines advocate practices akin to set-based practices.

However, evidence of the existence of this strategy does not, by itself, indicate its

optimality.

18

A theoretical comparison of search algorithms suggests that exploring sets of

alternatives in parallel does indeed lead to better solutions faster, at least in a highly

idealized environment. In work comparing the expected performance of algorithms

intended to find an optimal solution, Aldous and Vazirani [ALD94] prove that

consideration of several alternatives in parallel results in the discovery of an optimal

solution faster, on average, than depth-first searches. The key, as they put it, is to “go

with the winners”: When exploring alternatives in parallel, paths that lead to sub-optimal

solutions should be abandoned with the resources reallocated to exploring derivations of

an already “good” solution. Compared to depth-first search strategies, they prove that this

strategy has a significantly higher probability of finding an optimal solution faster. While

this example draws upon an idealized world in which state transitions are discrete

functions that yield states that can perfectly assessed (conditions which don’t exist when

solving ill-defined problems), it does provide evidence that, all other things equal, set-

based approaches have the potential to outperform point-based approaches.

2.2.3 Summarizing Basic Attributes of Ill-Defined Problems and Problem Solving
Strategies

Ill-defined problems lack concrete goals and well-defined evaluation criteria. As a result,

any number of solutions can be developed, each with its own unique set of strengths and

weaknesses. Solving these types of problems thus requires experimentation and

exploration of multiple alternatives, with the continual evaluation of one’s progress

towards the envisioned goal.

Set-based and point-based problem solving represent two philosophically

different approaches to solving ill-defined problems. The former explicitly considers and

develops ranges of possibilities throughout the design process, while the latter attempts to

19

define a single goal early in the process. Multiple solution alternatives arise in both cases,

though for different reasons. Set-based problem solving results in generative variations,

or solution alternatives that are proactively created to explore the design space. Point-

based problem solving, on the other hand, results in corrective variations, or solution

alternatives that arise due to backtracking. There is evidence, from real-world practices

and theoretical perspectives, that set-based practices yield a more optimal problem

solving process, making it worthwhile to consider how to better support this process in

user interfaces.

20

CHAPTER 3

NEEDS AND PRACTICES WHEN SOLVING ILL-
DEFINED PROBLEMS WITH COMPUTER-BASED

TOOLS: THREE CASE STUDIES

To understand how current interfaces support solving ill-defined problems, we conducted

an observational study of users of an image manipulation application [TER02a]. Though

we focused on the use of one particular application, our goal was to identify domain-

independent needs and practices. A modest degree of generality was achieved by

studying how the tool is used across a variety of tasks, from color correcting images for a

newspaper, to the design of user interfaces for multimedia software.

Eight users, all but one expert users of the application, were interviewed using

open-ended, qualitative interviewing techniques [SEI98, WEI94]. In these interviews, our

goal was to understand subjects’ typical day-to-day workflow, including the types of

problems they must solve and how they solve them. Importantly, interviews were not

structured to elicit information regarding perceived strengths and weaknesses of the

application, but rather, were intended to uncover how the tool integrates into their work

process.

After obtaining a general sense of the type of work performed, we asked each

subject to demonstrate how they solved a recent problem. As they solved the problem, we

videotaped their actions, capturing the computer screen, keyboard, mouse, and person in

the same frame.

21

The results of this study uncovered problem solving practices and strategies

similar to those enumerated in the previous chapter. Furthermore, we found evidence of

both set-based and point-based practices. However, we also discovered that current

interfaces tend to be aligned with the point-based problem solving philosophy, creating a

gap between practices desired by users and those well supported by current interfaces.

We present three representative case studies here to illustrate these points, then

summarize and reflect on the findings.

3.1 Newspaper Image Control Desk: Image Toning

In the first case study, we convey the work practices of a former employee of a major

metropolitan newspaper. At the newspaper, her primary task consisted of toning (color

correcting) images so they print well on the newspaper’s printing press.

When toning images for a newspaper, employees must improve the quality of the

images without altering the editorial content. This process includes cropping and sizing

the image, and adjusting its colors so they print well on newsprint. Because newsprint

tends to soak up ink in unique ways, new employees must continually monitor how their

images print to cater their toning process to idiosyncrasies of the newspaper’s printing

press and paper.

To achieve consistent results, employees rely on a set of color-toning heuristics

they develop through experience. An overarching goal is to apply as few changes as

possible, because each change causes original visual information to be lost. Therefore,

individual operations must be chosen with care so that the total number of operations is

minimized. Furthermore, each operation should contribute as much as possible, without

causing side-effects that make subsequent corrections difficult or impossible. These

22

constraints and goals necessitate a highly iterative process that often requires users to

explore and evaluate several different approaches before arriving at an acceptable result.

Because experimentation and evaluation play such crucial roles in toning images well, we

describe how they instantiate these activities next.

Settings for commands are typically explored by “scrubbing” commands’

parameter sliders back and forth. With real-time previews, scrubbing a slider enables the

user to scan the range of possibilities for a particular parameter before committing to any

one value. We found three distinct types of scrubbing.

In the first case, users do not know which parameter value will produce desirable

results, so they make broad sweeps with the slider to quickly sample possibilities. These

broad sweeps are gradually narrowed until a final value is chosen.

In the second case, users know the approximate value they are seeking and

immediately move the slider to that vicinity. To confirm their choice and evaluate nearby

settings, they scrub the control within a narrow range to refine the parameter setting.

In the final case, a value has been found, but the user wishes to verify that another,

completely different setting would not provide better results. In these situations, the user

quickly moves the slider to the opposite side, then typically returns to a narrow scrub

around the original value of interest. We call these “sanity checks” because they help the

user confirm she is on the right track.

Each instance of parameter scrubbing enables experimentation and allows the user

to delay commitment to a final value until a set of alternatives have been evaluated.

However, since only one preview is available, comparisons must be made in time, rather

than side-by-side in space.

23

After applying a command, progress is evaluated in a number of ways. Since

image toning is essentially an optimization task, evaluation is most critical between

consecutive states, that is, immediately after applying a command. Thus, we found users

engage in undo-redo cycles whereby they would repeatedly invoke Undo and Redo in

quick succession to “flash” the current and previous versions of the image on the screen.

This evaluation technique has the advantage that comparisons can be made on the entire

image at any scale. Furthermore, since the two versions occupy the same space, users do

not need to perform any spatial reorientation as would be necessary if the two versions

were placed side-by-side.

If earlier states have previously been saved, users sometimes reopen them to

evaluate how much the image has improved, or, potentially, degraded. This type of

evaluation can reveal when details of the original image have been lost as a result of

improving other aspects of the image (such as its overall tonal quality). In such situations,

users must decide whether the result is an acceptable trade-off or whether they should

backtrack and try an alternative approach.

Progress is also assessed by viewing alternative representations of the image. For

example, users sometimes examine their work by viewing each color channel separately,

as a grayscale image. These views provide information that may be hidden or difficult to

discern in the normal representation.

Though users continually evaluate their progress at every step, a state can still be

reached that proves unsatisfactory. To support backtracking to a previous state,

individuals create several back-ups of the image at critical points, often before doing

something risky or drastic. However, though several copies of different image states may

24

be created, attention is still typically focused on one image state at a time. That is,

problem solving usually progresses by continually revising one solution instance at a time,

with users backing up to a previous state when dead-ends are encountered.

3.1.1 Relating Practices to Problem Solving Styles

Mapping this description of work practice to those previously described, we find that it

most closely resembles point-based problem solving and Schön’s theory of reflection-in-

action: It is a highly iterative process that evaluates only one path to the goal at a time.

When results do not meet expectations, users must backtrack and redo their work to find

a better solution. Thus, alternative solutions represent corrective variations rather than

generative variations. Because backtracking occurs so frequently, back-up copies of one’s

work are routinely generated and stored in separate files.

Evaluation is critical throughout this task. Every action is closely scrutinized,

from the selection of commands and their parameters, to the results that appear after

applying a command. Comparisons between consecutive states are performed the most

frequently, with comparisons occasionally made between the current state and a previous

milestone.

25

Figure 5. Four (out of eleven) alternative solutions produced for a website.

3.2 Interactive, Multimedia Software: User Interface Design

Our second case study considers how a professional graphic designer uses the image

manipulation program as part of producing interactive, multimedia websites and CD-

ROMs. While the designer uses the tool for a range of tasks (including image toning), we

focus on the portion of her work involving the design of graphical user interfaces.

When designing interfaces, the designer uses the image manipulation application

primarily as a drawing and painting program. In this prototyping phase, she develops sets

of alternatives for the user interface, exploring possibilities at all levels of granularity.

26

For example, she initially creates variations of the entire interface that explore alternative

layouts for the content. These explorations result in sets of coarse-grained, high-level

alternatives. When the general layout has been established, she may then turn her

attention to exploring potential designs for individual components of the interface, such

as buttons. This leads to much finer grained alternatives for the project. Figure 5 displays

a collage of four interfaces prototyped for a website where both large- and small-scale

differences are visible.

As with the previous case study, exploration and evaluation are critical processes.

However, because of the nature of the task, we found a different set of strategies

employed.

When exploring alternatives for small items such as buttons, the designer often

does so by creating a large, blank canvas and laying out each possibility side-by-side.

These variations enable her to discover and develop the right “look and feel” for the

particular object by facilitating direct comparisons.

The art director with whom she works also creates variations of her work, but

often embeds each alternative in a separate layer of the image, instead of placing them on

the same canvas. By using layers, she can selectively evaluate the alternatives in the

context of the entire interface by turning the layer with each variation on or off.

Finally, like the newspaper employee, alternatives are also stored in separate files.

As such, three methods are used to manage variations: They are created and stored side-

by-side in large canvases, within layers, and in multiple files. Because of this range of

possibilities, a common protocol must be agreed upon when sharing alternatives. Given

the art director’s preference for layers, layers often serve this purpose. Across these

27

strategies, it is important to note that the application does not provide native support for

managing these alternatives, so ad-hoc strategies and protocols must be developed.

3.2.1 Relating Practices to Problem Solving Styles

While the user in the previous case study generates alternatives only after obtaining

disappointing results, the designer in this study explicitly creates sets of alternatives to

explore the design space, making her work practices most closely resemble set-based

problem solving. Thus, her alternatives can be considered generative variations that are

proactively created.

Like the previous study, evaluation of solutions is critical. However, evaluation

occurs by comparing sets of alternatives after they are all developed. That is, evaluation

of consecutive states of the same solution is not as important as the evaluation of separate

solution instances that are more fully developed.

3.3 Amateur Artist: Coloring of a Pen Drawing

Our final case study considers the practices of an amateur artist using the image

manipulation application to color a scanned-in pen drawing of a science-fiction scene.

His goal is to decide on a color scheme for a line drawing before using real paints to paint

a permanent version on wood. Since he has little experience painting in color, he uses the

image manipulation program to help him iterate through variations before committing to

using real paints.

To paint the pen-drawing, the artist uses the application to fill regions of the

drawing with color. After making a change, the artist sits back and contemplates the

changes. If the operations prove satisfactory, he continues. Otherwise, he undoes the

28

operation and tries another variation. We call these small experiments try-undo cycles

because he repeatedly tries and undoes commands until he finds a satisfactory result.

When results are uninspiring, the artist sometimes challenges himself by painting

the drawing using the same palette as another painting, for example, one by Matisse. For

these explorations, he creates folders labeled with the type of experiment (e.g., grayscale-

only, versions based on a palette by Matisse, etc.) and names each file with a version

number.

To evaluate the image, he often sits at a distance and squints his eyes. In so doing,

he blurs the image in an attempt to get an overall sense of the balance of the composition.

Less frequently, he prints out a grayscale version to reflect on the overall tonal quality of

the image. Both techniques thus use alternative representations of the solution to aid in

evaluation.

On occasion, we observed the artist consciously refuse to try and fix an

unsatisfactory result. For example, after applying one command, he sat back and

considered the state, commented that it was not as good as hoped, but remarked that he

did not want to take the effort to undo it and try another alternative. In short, he forced

himself to be satisfied with a suboptimal solution when it may have been advantageous to

go back and try another alternative.

3.3.1 Relating Practices to Problem Solving Styles

Again, exploration and evaluation are common themes in this individual’s work. This

case study also reveals a combination of point- and set-based problem solving practices:

The try-undo cycles are indicative of a point-based problem solving strategy and recall

29

Schön’s reflection-in-action, while the proactive exploration of different paint palettes

reflect a set-based strategy that yields generative variations.

The subject’s use of squinting and black-and-white printouts is similar to Schön’s

description of the use of “virtual worlds” (alternative representations) to facilitate the

process of evaluating a solution and its overall fitness. In both cases, it is worth noting

that only one state is considered at a time, rather than many in parallel.

While experimentation is just as common as in the previous cases, we also note

that it is sometimes cut short when the cost of experimentation is perceived to be too high,

even when the subject is dissatisfied with the result of the most recent action. This

indicates that the transactional costs of experimenting can be too great, even when they

may be beneficial.

3.4 Relating Problem Solving Techniques to User Interface Support

Table 1 lists each general problem solving strategy identified above, the method to enact

that strategy (including user interface mechanisms employed), and the advantages and

disadvantages associated with each approach. From this chart, we can consider how

certain decisions in user interface designs can adversely affect the problem solving

process.

30

Table 1. Mapping Practices to Interface Mechanisms

Problem Solving
Practice

Methods and Interface
Mechanisms Used

Advantages Deficiencies/Limitations

Short-term
experimentation
(temporary
generation of
variations)

Undo: Try and undo
different commands.

Strategy is easy to learn
and enact.

Must invoke a command
before getting a sense of
its effect.

Cannot compare multiple
commands
simultaneously.

 Parameter scrubbing with
real-time previews.

Practice is part of
process of setting
parameter’s values.

Modal dialog boxes
prevent simultaneous
previews of multiple
commands.

Single preview limits
ability to survey multiple
options for a command’s
parameters: Can only
scan/compare alternatives
for one parameter at a
time.

Scrubbing allows
comparison of nearby
parameter values, but
comparisons can be made
only in time and across
only one dimension
(parameter) at a time.

“Forking” current
state to apply
same command
differently to
copies of the same
state

Duplicate current state, re-
invoke command, find
parameter settings of
interest, apply command,
repeat for each alternative.

 Alternatives cannot be
produced (forked) at
moment of operating on
data, such as when
interacting with a
command.

(Continued on next page…)

31

Table 1 (continued).

Problem Solving
Practice

Methods and Interface
Mechanisms Used

Advantages Deficiencies/Limitations

Long-term
exploration:
Creating new
standalone
solution instances

Separate files: Each
variation saved in a
separate file.

Alternatives are
separated into distinct
files, achieving a 1:1
correspondence between
an alternative and its
existence.

File names can indicate
their contents.

Separate document
instances can be created,
but are treated as
unrelated items by
interface: Multiple states,
whether stored in the file
system or the undo stack,
are nominally mutually
exclusive states of which
only one can be active at
a time.

Content from several files
cannot be simultaneously
manipulated.

Evaluation tools typically
not available for
comparing alternatives
stored in separate files
(with the notable
exception of textual data
and corresponding diff
tools).

 Embedded variations:
Document is enlarged to
hold multiple variations
(e.g., through layers, side-
by-side in a large canvas,
etc.).

Separate, common
content can be
manipulated
simultaneously.

Little time required to
duplicate data in same
document (essentially
requires “copy and
paste” of data).

Multiple solutions in
same document breaks
WYSIWYG model: User
must remove/hide
undesired variations from
document when
evaluating overall
solution.

 Undo stack: Restoring
previous state using Undo.

Requires no extra effort
on part of user to “store”
an alternative.

Backing up to a
previous state a
relatively easy
operation.

Easy to lose alternatives
(undoing to previous state
then applying a new
action; going beyond
limits of undo stack;
application clearing undo
stack when document
saved, etc.).

Alternatives cannot be
compared side-by-side.

User must mentally track
all variations in undo
stack since there are no
persistent reminders in
the user interface.

(Continued on next page…)

32

Table 1 (continued).

Problem Solving
Practice

Methods and Interface
Mechanisms Used

Advantages Deficiencies/Limitations

Simultaneous
manipulation of
separate
alternatives

Select all alternatives,
apply an operation to them
(only possible when
variations embedded in the
same document).

 If alternatives exist in
separate documents, they
cannot be simultaneously
manipulated in the user
interface (non-interactive
batch processing
sometimes possible, but
lacks rich feedback loop).

Evaluation:
Comparison of
two different
states

Comparisons in time:
Undo and Redo used in
quick succession to flash
two different states on the
screen.

Clicking on previews
temporarily displays
current version, rather than
preview.

Method works well
when comparing
discrete changes to
small portions of
document (user does not
need to reestablish
spatial context to
perform comparisons).

Cannot quickly survey
many options at the same
time.

Limited to comparing two
contiguous states in
history.

Multiple commands
cannot be simultaneously
compared.

 Side-by-side comparisons
of different documents.

Document windows can
be arbitrarily arranged
for comparisons.

Highly manual process
unless appropriate version
control/diff’ing software
available for domain.

 Side-by-side comparisons
of embedded alternatives.

Alternatives ready-at-
hand.

Breaks the WYSIWYG
model, requiring users to
eventually prune lesser
alternatives from
document.

Evaluation:
Isolated analysis
of a single state
(e.g., judging
result of last
action)

Pan and zoom for holistic
analysis or detailed
investigation.

Using alternative
representations, such as
separate color channels or
grayscale print-outs.

Squinting.

 Some methods are ad-hoc
approaches that repurpose
existing functionality for
evaluative purposes. In
these cases, evaluation
mechanisms are not
standardized for the
benefit of everyone.

In general, deficiencies listed above result from interfaces lacking capabilities to treat

alternatives as first-class objects. That is, there is an emphasis on displaying and

manipulating only one state at a time, with few facilities to generate, manipulate, and

33

evaluate multiple possibilities through streamlined operations. We call interfaces

embodying this philosophy point-based interfaces.

3.4.1 Point-Based Interfaces

Point-based interfaces, like the problem solving technique from which their name is

derived, assume that a user’s mode of working is to choose a single goal (point) and

continually revise a single solution instance until it matches the envisioned end state. In

this scheme, a document can be in one, and only one, state at a time; users progress

through tasks by applying an operation, then working on the new state that results.

Though conceptually simple for both user and implementer, point-based

interfaces impose a serial, linear progression through a task that leaves little opportunity

to engage in the non-linear, experimental practices typified by set-based problem solving.

Thus, while a user may need to simultaneously explore multiple alternatives, point-based

interfaces constrain one’s ability to efficiently produce and navigate several possibilities

in parallel. Specifically, the following attributes of point-based interfaces can impede set-

based problem solving:

• Interface tunnel vision. Point-based interfaces display only one preview at a time,

making it difficult to quickly and broadly assess multiple, potential future states.

Thus, users cannot compare options within commands (i.e., different parameter

settings), nor can they simultaneously perform comparisons between commands.

Similarly, alternatives coincident in history can be evaluated using Undo-Redo in

quick succession, but users must devise their own strategies to compare

alternatives further back in the history or in separate documents.

34

• Impaired ability to generate and pursue alternatives in parallel. Point-based

interfaces require that the interface be prepared for exploration. For example,

users must explicitly save copies of the current state before exploring new,

standalone alternatives. This setup-time detracts from the main task and

introduces barriers to exploration.

• Premature commitment to commands and arguments. At times, multiple

commands or parameter settings may seem equally viable. However, point-based

interfaces require commitment to just one course of action at a time, since the

underlying assumption is that a single state is continually revised until a solution

is found. When users wish to deviate from this model, they must take the time to

back up and prepare to explore by making copies of their current state.

• Highly modal interfaces. Highly modal interfaces are acceptable for point-based

interfaces since it is assumed only one state can be considered at a time. However,

modal interfaces are primarily of convenience to user interface implementers and

not to users, as they constrain the ability to do things such as compare previews of

multiple commands simultaneously.

When users wish to engage in set-based activities, these aspects of point-based interfaces

create a tension between desired problem solving practices and those supported by the

interface. Experimentation and exploration are costly to enact, and may be avoided

simply because the transaction costs are perceived to be too high, as seen in the last case

study with the artist.

To address these limitations, we suggest the need for interface tools that support

set-based practices – mechanisms that support the simultaneous production, manipulation,

35

evaluation, and management of alternatives. Before fully developing this concept, we

first consider how previous efforts have addressed these needs in the HCI community.

3.5 Summary

Results from our observational study indicate that individuals wish to engage in both

point- and set-based problem solving practices: We observed users develop corrective

and generative variations, and found a great need to compare multiple solution states,

whether they were consecutive instances of the same solution, or separate, standalone

alternatives. However, we found that current interfaces cater to point-based practices,

making it difficult and costly to generate, evaluate, and manage alternatives. Users were

thus required to develop ad-hoc workarounds to achieve desired practices. To explore

potential future states, they engaged in try-undo cycles and “scrubbed” commands’

parameters to find desired settings. Users stored alternatives in files, within the same

canvas, or within layers in the document. Finally, to evaluate the alternatives, they

repeatedly invoked Undo-Redo to compare consecutive states, physically arranged the

alternatives side-by-side, or cast the data into other representations (including grayscale

versions and those that result from squinting one’s eyes). Each of these activities could be

streamlined with appropriate user interface-level support.

36

CHAPTER 4

INTERFACE-LEVEL SUPPORT FOR
EXPERIMENTATION: RELATED WORK

The need to explore alternatives has been recognized by many within the HCI community,

and is often seen as one of the ideal ways in which computers can assist the problem

solving process. A number of interface design recommendations and tools suggest the

forms this assistance may take. We review this existing work, and conclude the chapter

by analyzing how these proposed tools have been evaluated.

4.1 Theoretical Guidelines

Drawing upon a wide range of studies of highly creative individuals, Shneiderman has

created a framework of items interface designers should consider when seeking to

support the creative process [SHN99, SHN00]. Most related to the practice of developing

alternative solutions are suggestions that interfaces include support for tracking a user’s

history, offer what-if tools, and provide data visualizations. History tracking tools allow a

user to more easily branch from past states, while what-if tools offer a structure for

experimentation. Data visualizations can provide alternative representations of one’s data

similar in spirit to Schön’s virtual worlds, thereby facilitating evaluation and

understanding.

Thomas Green has developed a set of heuristics for user interface design, many of

which are relevant to designing interfaces that enable exploration [GRE]. In particular,

the notion of viscosity considers the amount of “resistance” the interface presents when

37

users wish to make changes and revisions to data; visibility and juxtaposibility indicate

the ease with which users can make comparisons between data; and premature

commitment embodies the idea of an interface forcing users to commit to a state or action

before having enough information to make an informed decision. These concepts echo

many of the concepts of set-based problem solving, and many of these concepts can be

seen in the findings of our observational study. For example, the notion of delaying

commitment to a single solution is central to set-based practices. As related to our

observational study, we found the interface particularly “viscous” when users were

unsatisfied with a result and reluctant to undo it to pursue an alternative. These heuristics

thus not only assist in evaluating user interfaces and the degree to which point-based or

set-based practices are supported, but also provide a language for describing observed

behaviors.

A number of researchers have translated findings from situated observations of

domain experts into specific interface-level guidelines. For example, a study of website

designers by Newman [NEW00] confirms that designers explore multiple alternatives in

the initial conceptual phases of design. The various practices observed in this study led to

a number of suggested applications and interface design guidelines. In particular, the

authors advocate applications that afford rapid, informal prototyping, and enhanced

history tools that more fully capture all states visited.

38

4.2 Specific Tool Implementations

Given the range of recommendations and guidelines offered for supporting exploration,

and the types of tools that have been constructed, we cluster existing tool offerings into

three primary categories:

1. Augmented histories

2. What-if tools

3. Enhanced previewing mechanisms.

Many improvements to the traditional stack-based history have been proposed.

Automated history tracking tools, such as Timewarp [EDW97] or the Designer's Outpost

[KLE02], replace the undo stack with a tree-like data structure that automatically records

all states visited. With these tools, users do not need to take any explicit action to store

states visited, enabling them to freely explore with the knowledge that they can access

any point in the past. Other approaches retain the undo stack, but attempt to overcome

some of its limitations by letting users easily record snapshots of important states [ADO,

VER02]. These tools lower the barrier to exploration by streamlining the process of

saving states prior to embarking on a path that may prove unsatisfactory.

Some approaches to augmenting histories seek to increase the ease with which

one can make changes to past actions. Tools such as Editable Graphical Histories

[KUR90], Timewarp [EDW97], and Selective Undo [BER94] all enable users to directly

edit past actions, without needing to undo to the previous state. Changes made to earlier

actions “trickle down” the history, automatically updating later, dependent states. These

tools are especially valuable for point-based problem solving processes, because they

39

allow more convenient revision of past states in place (i.e., users do not need to undo to a

past state, make changes, then replicate their former steps). These capabilities also make

them ideal for optimization tasks that require precise tuning of each step.

What-if tools, in contrast, enable users to more easily explore sets of alternatives

in parallel. The common spreadsheet is often considered the best example of a what-if

tool [CHI98a, JAN01]. In terms of set-based problem solving, its primary virtues are in

providing the structure to embed alternatives (for example, alternative financial scenarios,

each in its own column), and the tools to evaluate these differences (e.g., a graph plotting

both columns and their scenarios). The basic principles of a spreadsheet, particularly its

grid and cell-based semantics, have been imitated and applied to other domains, such as

scientific visualization [CHI98a, JAN01]. In these latter cases, multiple views of a large

data set are simultaneously presented to a user. These visualizations provide the ability to

explore a problem from multiple angles.

Other tools maintain the spirit of a what-if tool, but instantiate the core concepts

in a different way. Aran Lunzer’s subjunctive interface [LUN98, LUN99] allows user

interface objects to exist in multiple states at the same time. For example, a cannon in a

physics simulator can be set to multiple angles, then “fired” to simultaneously view the

trajectory of a cannonball for each angle specified.

The ART system [NAK00] is a what-if tool geared towards supporting writing

practices. In contrast to conventional word processors, ART offers users three concurrent

views and modes of working with text: a WYSIWYG document view, a text editing

panel, and a two-dimensional space that allows free-form spatial organization of

segments of text. In this latter view, the vertical ordering of the text segments determines

40

their ordering in the WYSIWYG view. Apart from this application-imposed meaning of

spatial relationships, users are free to arrange the text segments in whatever way best fits

their particular needs and work styles. Thus, the free-form space provides the structure to

store, consider, and manipulate multiple alternatives. These same concepts have been

extended to the design of interfaces for dealing with other types of data, such as video

data [YAM01, NAK02].

Magic Lenses and other see-through tools [BIE93, BIE94, HUD97, FOX98]

facilitate experimentation without forcing commitment to any particular path. However,

their use of physical metaphors (e.g., overlapping lenses), can make it difficult to

simultaneously consider multiple alternatives for the same region.

Informal prototyping tools (e.g., [LAN01, KLE01, LI04]) also enable the rapid

production of alternative solutions, but, in general, these applications do not provide the

mechanisms for managing and comparing sets of alternatives in parallel.

While what-if tools provide explicit structure for holding alternatives, the creation

of these alternatives is, by-and-large, manual – users must indicate which alternatives

they would like to create and compare. Enhanced previewing mechanisms take a more

proactive stance and automatically generate sets of potential future states for a user to

consider. Design Galleries [MAR97, QUI02] are a good example of this concept. Design

Galleries automatically generate hundreds of alternatives for a particular task, then select

the most semantically distinct elements to present to the user. For example, in lighting a

3D scene, a Design Gallery will systematically vary the number, location, and intensity of

lights, then present users with the most visually distinct results. Similar approaches can

41

be found in systems that employ genetic algorithms to generate the alternatives [HEP02,

HEP03].

The Suggestive Interface [IGA01] also generates multiple previews for users, but

does so by attempting to infer the user’s intentions from her most recent actions. The

most probable future actions are then presented to the user to speed up her workflow.

This concept has been instantiated in domains other than the original 3D modeling

environment, as well [TSA04].

4.3 Additional Opportunities for Supporting the Exploration of Alternatives

All of these tools provide a valuable starting point for better supporting problem solving

practices. However, there are a number of ways we can build upon these concepts to

improve the caliber of user interface support for working with sets of alternatives.

4.3.1 Better Support for the Production and Management of Alternatives

In general, the most significant deficiency in existing approaches is the lack of tools to

streamline the production of sets of alternatives that are simultaneously active.

Augmented histories can more fully capture explored states, but are retrospective, passive

tools that do not take an active role in the generation of new, standalone alternatives. As

such, they are most likely to be used as safety-nets for point-based problem solving,

facilitating the ease with which users can backtrack to a previous state. This use of the

tool will lead to corrective variations being produced, rather than generative variations.

What-if tools offer the structure to hold alternatives, but current implementations

provide little more than copy-and-paste operations to generate individual alternatives.

Lunzer’s subjunctive interface is one notable exception since it automatically generates

sets of alternatives based on the set of potential values the user has specified.

42

Enhanced previewing tools generate sets of possibilities, but these sets are

transient: users cannot instantiate multiple, standalone alternatives from these tools.

Instead, they must commit to just one state at a time. If multiple viable alternatives are

discovered and the user wishes to explore them in parallel, she must repeatedly

reestablish the originating context to manually spawn each alternative. This is

cumbersome, and discourages in-depth exploration. Thus, an opportunity exists for

providing the ability to instantiate a new standalone alternative at the moment of data

manipulation.

4.3.2 Simultaneous Manipulation of Alternative States

Alternative solutions can range from being highly divergent with respect to one another,

to being more similar than different. For example, the sample of variations shown in

Figure 5 present the four most distinct alternatives, but are, in many ways, more similar

than they are different.

When variations are produced that share a number of commonalities, it is likely

they will be manipulated in similar ways as they are further developed. Thus, at times, it

may be helpful to conceptualize these alternatives as “the same thing” so that they can be

interactively manipulated as one object. However, few interfaces allow one to easily

apply operations to sets of solutions simultaneously. More typically, operations are

provided that facilitate merging alternatives (e.g., [EDW97, KLE02]) or for creating a

script that can be repeatedly run on different source states (e.g., [ADO]). Thus, while one

can typically manipulate several objects in the same document simultaneously, this

capability does not hold across sets of solutions.

43

4.3.3 Extracting and Displaying Embedded Alternatives as Standalone Entities

What-if tools provide the structure to hold alternatives, but in general, existing

implementations do not provide mechanisms for the selective extraction of individual

alternatives to form a final, standalone version. For example, embedding alternatives in

different columns of a spreadsheet provides a convenient storage and comparison

mechanism, but is more akin to the practice we observed in which the designer placed

alternative user interface elements side-by-side on the same canvas. Providing the

structure for holding alternatives is an important first step, but interfaces must go full

circle and offer facilities to selectively display each alternative on its own.

4.3.4 Tighter Feedback Loops and Better Navigation Mechanisms

Enhanced previewing mechanisms produce several options for users to consider, but do

not always have a tight feedback loop or the ability to arbitrarily navigate the space of

possibilities. For example, Design Galleries relies on heuristics to determine which

alternatives will be of most interest to users. One of the primary limitations of this

approach is that it must be customized to a particular task, making the tool less amenable

to other, unforeseen tasks. Generally lacking, then, are navigation tools that grant the user

more agency in navigating the possibilities.

Most previewing mechanisms also preview only one step “ahead” – strings of

commands cannot be arbitrarily composed to explore several steps ahead. When multiple

steps can be previewed, as with Magic Lenses, only one path can be followed at a time; it

is not possible to compare two separate paths in depth.

44

4.3.5 Weak Previews for Direct Manipulation Actions

A significant class of operations – those involving direct manipulation, such as painting

on a canvas – have weak preview support. When support does exist, it is generally a static,

“canned” preview unrelated to the user’s actual data [BAE91]. Thus, there is an

opportunity to devise ways in which users can adjust these tools’ parameters while

viewing dynamic previews of how these tools will affect their data.

4.4 Evaluation Needs

For over 20 years, various history tools, permutations of Undo, what-if tools, and

previewing mechanisms have been proposed. However, despite the range of mechanisms

developed and suggested over this period of time, few have been evaluated in terms of

their impact on the problem solving process.

Table 2 presents a survey of these tools, whether they have been evaluated, and a

brief synopsis of the evaluation method. We restrict ourselves to considering only those

tools designed for single-user use in solving a problem. We thus exclude tools primarily

developed to support collaboration, or tools developed to support tasks in which

something is not being created (such as web browsing).

45

Table 2. Survey of process support tools

Tool Type Reference Evaluated? Evaluation method

History: Command
interpreter history
manipulation

How users repeat their
actions on computers:
Principles for design of
history mechanisms
[GRE88]

Yes Log analysis of shell
command history

 Investigations into history
tools for user support
[LEE92]

Yes Log analysis of shell
command history

History: Branching
history

Papyrus: A history-based
VLSI design process
management system
[CHI94]

No

 Zodiac: A history-based
interactive video
authoring system
[CHI98b]

No

 Data exploration across
temporal contexts
[DER00]

No

 Where do web sites come
from? Capturing and
interacting with design
history [KLE02]

Yes Qualitative evaluation
with 6 designers

 A history mechanism for
visual data mining
[KRE04]

No

History: History
summarization

Translucent history
[GEN95]

No

History: Manipulable
history

An editor for revision
control [FRA87]

No

 A visual language for
browsing, undoing, and
redoing graphical
interface commands
[KUR90]

No

 Segmented interaction
history in a collaborative
interface agent [RIC97]

No

 Manipulating history in
generative hypermedia
[KHA04]

No

(Continued on next page...)

46

Table 2 (continued).

Tool Type Reference Evaluated? Evaluation method

History: Linear histories TimeScape: A time
machine for the desktop
environment [REK99]

No

 Snapshots and bookmarks
as a graphical design
history [VER02]

No

Undo User recovery and
reversal in interactive
systems [ARC84]

No

 US&R: A new framework
for redoing [VIT84]

No

 Concepts and implications
of undo for interactive
recovery [GOR85]

No

 A formal approach to
undo operations in
programming languages
[LEE86]

No

 A selective undo
mechanism for graphical
user interfaces based on
command objects
[BER94]

No

 Object-based nonlinear
undo model [ZHO97]

No

 A temporal model for
multi-level undo and redo
[EDW00]

No

 Dynamic hierarchical
undo facility in a fine-
grained component
environment [WAS02]

No

 A usability study of an
object-based undo facility
[VAR03]

Yes Compared preference,
task performance, for
using Undo in tasks
requiring user to return
to a previous state.

 Regional undo for
spreadsheets [KAW04]

No

(Continued on next page...)

47

Table 2 (continued).

Tool Type Reference Evaluated? Evaluation method

Previewing mechanisms Toolglass and magic
lenses: The see-through
interface [BIE93]

No

 A Taxonomy of see-
through tools [BIE94]

No

 Design galleries: A
general approach to
setting parameters for
computer graphics and
animation [MAR97]

No

 Composing magic lenses
[FOX98]

No

 A suggestive interface for
3D drawing [IGA01]

Yes Informal user study to
assess tool’s usability.

 Semi-automatic antenna
design via sampling and
visualization [QUI02]

No

 Interactive evolution for
systematic exploration of
a parameter space
[HEP03]

No

 A suggestive interface for
image guided 3D
sketching [TSA04]

Yes Informal user study
with two users.

(Continued on next page...)

48

Table 2 (continued).

Tool Type Reference Evaluated? Evaluation method

What-if Tools Reconnaissance support
for juggling multiple
processing options
[LUN94]

No

 Principles for information
visualization spreadsheets
[CHI98a]

Yes Results not reported.

 Towards the subjunctive
interface: General support
for parameter exploration
by overlaying alternative
application states
[LUN98]

No

 Choice and comparison
where the user wants
them: Subjunctive
interfaces for computer-
supported exploration
[LUN99]

No

 A spreadsheet interface
for visualization
exploration [JAN00]

No

 Two-dimensional
positioning as a means for
reflection in design
[NAK00]

Yes Qualitative study of tool
use with eye-tracking.

 Subjunctive interface
support for combining
context-dependent semi-
structured resources
[LUN01]

No

 Usability studies on a
visualization for parallel
display and control of
alternative scenarios
[LUN04]

Yes Two controlled
laboratory studies
measuring task
performance, accuracy,
and cognitive load.

49

Of the 40 published papers we found meeting our criteria, 8 (20%) report user studies.

However, this number is optimistic since only 4 report lessons learned from the

evaluation [NAK00, KLE02, VAR03, LUN04]. Of these, only 2 [VAR03, LUN04] are

comparative in nature, both being controlled laboratory studies. The study conducted by

Lunzer and Hornbaek [LUN04] stands out by virtue of the host of measures collected to

understand the tools’ effect on task performance, accuracy, and cognitive load.

From this survey, we conclude that a considerable number of mechanisms have

been proposed to facilitate looking into the future, reaching into the past, and comparing

alternative possibilities in the present. Yet, we are left with a very incomplete picture of

how these tools actually influence the problem solving process. Lunzer’s study indicates

that these types of tools can reduce the time and number of operations required to find a

solution, though he found no effect on solution correctness. Furthermore, both Vargas

[VAR03] and Lunzer’s [LUN04] studies indicate that users like the functionality their

respective tools offer. However, none of these studies provide any indication of how the

problem solving process changes as a result of using these types of tools. For example,

do subjects explore more broadly, more frequently, or longer when a previewing or

enhanced history tool is available? Since many of these tools are intended to support this

more exploratory behavior, these are important questions to consider during evaluation.

Also left unanswered by these studies is how these tools impact the process of

solving ill-defined problems. Nakakoji et al. [NAK00] and Klemmer et al. [KLE02] both

evaluate their tools in the context of solving an ill-defined problem, but neither study

employs controls to enable comparisons to be made. Lunzer’s study does employ controls,

but the tasks are well-defined tasks with verifiably correct answers.

50

In sum, there is not only a need to deepen our knowledge regarding the influence

of these tools on the problem solving process, but also a need for more standardized

methods with which to perform evaluations. We will address both issues in subsequent

chapters.

4.5 Summary

Computers have long been viewed as excellent vehicles for experimentation. Three

classes of general-purpose user interface mechanisms have been proposed to facilitate

this process: augmented history tools, what-if tools, and enhanced previewing

mechanisms. While each can assist in problem solving, there are a number of research

opportunities for extending interface-level support for experimentation. In particular,

there is little support for producing and managing sets of alternatives that are

simultaneously active; one cannot interactively manipulation sets of alternative solutions;

and few interfaces offer previews for direct manipulation operations. Finally, despite 40

different instantiations of these types of tools over two decades, few have investigated

how these tools affect the problem solving process. There is thus a real need to more fully

evaluate the impact of these tools on the problem solving process.

51

CHAPTER 5

SUPPORTING THE GENERATION,
MANIPULATION, EVALUATION, AND
MANAGEMENT OF ALTERNATIVES

The goals of this research are to instantiate the concepts of set-based problem solving in

the context of a set-based interface and to evaluate the impact such an interface has on

the problem-solving process. In this chapter, we develop the concepts of a set-based

interface in full. We conclude by comparing these concepts to the subjunctive interface, a

research effort similar in spirit to the set-based interface.

5.1 The Set-Based Interface: Reasoning About Sets of Alternatives

The intention of a set-based interface is to support the parallel development of sets of

alternative solutions. Interfaces can be loosely categorized according to this relatively

simple concept: The degree to which a user interface supports the parallel production,

development, and evaluation of alternative solutions corresponds to the degree to which

the interface is set-based. Conversely, the degree to which users must adopt a serial

problem solving process corresponds to the degree to which the interface is point-based.

Importantly, these distinctions are not meant to be absolute, but rather, intended to

sensitize designers to how their interface designs may influence the problem solving

process.

52

5.1.1 Principle Components of a Set-Based Interface

We consider an idealized set-based interface to provide the following capabilities:

1. Set Management. Users can designate, add, remove, access, organize, and

selectively view viable alternatives within the same workspace.

2. Set Generation. The generation of sets of alternatives is streamlined, and can

result in sets that are:

a. Largely transient in nature, or

b. Relatively persistent over time.

3. Set Manipulation. Multiple states can be operated upon simultaneously as if they

were the same object.

4. Set Evaluation. Facilities exist to assist the process of evaluating several

possibilities at once.

While we list each of these capabilities separately, the divisions are not absolute. In fact,

much of the functionality must, out of necessity, interoperate to ensure a uniform

interaction experience for users. However, it is useful to conceptualize this functionality

separately when considering what kinds of facilities are necessary to support set-based

problem solving practices. We consider each of these capabilities in more detail next.

5.1.1.1 Set Management

When users wish to explore separate, standalone alternatives with current interfaces, they

must prepare the interface for exploration by making copies of their data prior to

exploration. This activity requires the user to choose how and where to store these

alternatives since no infrastructure exists to manage sets of possibilities.

53

Set management seeks to address this issue by providing the basic services and

infrastructure necessary for designating, organizing, storing, selecting, removing, and

activating solution alternatives. For example, the interface could provide an area

containing snapshots of solution states, offering the user one location to turn to when

storing or retrieving possibilities. In essence, set management seeks to elevate solution

alternatives to first-class objects that can be as easily manipulated as the domain-specific

data itself.

5.1.1.2 Set Generation

Set generation mechanisms facilitate the production of alternatives, making it easier to

create both transient and permanent variations. Transient sets are realized through

previews, which allow users to rapidly survey the space of possibilities through “scouting

missions” [LUN94]. Permanent variations, on the other hand, allow one to create a

handful of persistent possibilities worthy of longer-term exploration. In the former case,

the interface can facilitate set generation by automatically generating navigable sets of

previews, while in the latter case, the interface can assist with production by streamlining

the process of “forking” and creating new standalone alternatives.

Conceptually, a user could identify the need to generate alternatives at three

different times with respect to data manipulation: before, during, or after data

manipulation. In the first case, a user may realize she needs to generate a number of

alternatives to compare them, and thus prepares for this process by creating copies of the

source data (generative variations). Later, while actively manipulating the data, she may

discover additional, unexpected sets of possibilities that she wishes to explore in greater

depth (serendipitous variations). Finally, after applying an operation, she may realize that

54

other alternatives should be explored because results are unsatisfactory (corrective

variations). A set-based interface seeks to provide support for generating alternatives at

any of these times.

5.1.1.3 Set Manipulation

Sets of possibilities can by highly diverse, or may share a fair number of similarities.

Where appropriate, users should be able to interactively manipulate these sets as a whole.

For example, when developing a handful of alternatives, it may be necessary to adjust a

common aspect shared by all. Rather than sequentially apply the same operation to each

in turn, the set should be addressable as a single entity. In essence, this concept extends

the existing convention of being able to select and operate on multiple objects in a single

document so that users can operate on multiple solution alternatives simultaneously.

5.1.1.4 Set Evaluation

The final component in a set-based interface is the ability to evaluate any of the

alternatives produced, whether they are transient or permanent in nature. Explicit tools

should be provided so that any and all alternatives can be compared with one another.

Evaluation tools may take many forms, from simple mechanisms that afford side-

by-side comparisons, to those that allow comparisons in time. They may also be

proactive and explicitly highlight the differences, as “diff” utilities do for text. Finally,

evaluation mechanisms may alter the representational form of the data to facilitate

comparisons, as suggested by Schön’s virtual worlds.

55

5.2 Comparison to the subjunctive interface

Aran Lunzer’s formulation of the subjunctive interface [LUN98, LUN99, LUN01,

LUN04] shares a number of similarities with the concept of a set-based interface. Both

research agendas recognize the need to develop and explore multiple alternatives in

parallel. The primary difference between these two research tracts lies in how multiplicity

is realized in the user interface. In his work, Lunzer has focused primarily on allowing

user interface mechanisms to exist in multiple states simultaneously. For example, a user

may be able to simultaneously select multiple values in a drop-down menu, resulting in

the generation of a set of alternatives [LUN04]. As we will see most clearly in the next

chapter, a set-based interface focuses more on providing facilities for managing sets of

data; it maintains the convention that a function, when invoked, accepts only one set of

parameters at a time. The subjunctive interface, on the other hand, relaxes this

requirement, and allows multiple parameter values to be passed to a function, resulting in

several output values being generated.

5.3 Summary

A set-based interface provides explicit support for the generation, manipulation,

evaluation, and management of separate, standalone solution alternatives. It is not a

specific implementation, but rather, represents a set of concepts to guide interface design.

56

CHAPTER 6

SET-BASED INTERFACE TOOLS:
SIDE VIEWS AND PARALLEL PIES

In this chapter, we describe the design and implementation of Side Views [TER02b] and

Parallel Pies [TER04], two tools that instantiate the concepts of a set-based interface.

Side Views is a set generation mechanism for rapidly exploring a large terrain of transient

possibilities. Parallel Pies, on the other hand, affords more prolonged exploration of a

select set of alternatives. Either of these tools can easily exist on its own, but they work

particularly well in concert with one another: Side Views can be used to find the most

attractive possibilities, while Parallel Pies can turn them into permanent, standalone

solution instances.

6.1 Side Views

Side Views provide on-demand, persistent previews of one or more commands and their

parameters. They initially appear as a transient pop-up window, similar to the common

tool-tip mechanism (Figure 6 and Figure 7). However, they can be made to persist by

clicking on the preview window, or invoking the command. Multiple Side View windows

can be instantiated simultaneously, affording side-by-side comparisons of commands

(Figure 8).

57

Figure 6. Sequence illustrating an on-demand Side View popping up.

Figure 7. A Side View for a toolbar item in a text editor.

58

Figure 8. Side Views automatically update as content changes.

Side Views continually update their previews to reflect the current state of the active

document. For example, as modifications are made to a document, or the active document

is switched to another document, Side Views automatically update their previews to

reflect the new active content (Figure 8).

Side Views for commands with parameters initially show a single preview using

the default (or the user’s last) settings for a command. When a user desires to see and/or

59

interact with a broader range of possibilities for a single command, Side Views can be

expanded into parameter spectrums (Figure 9 and Figure 10).

Parameter spectrums show a series of previews across the range of values for each

parameter. Initially, the range displayed is a sampling of all possible values for a

parameter. However, the user can vary the range previewed to focus on a smaller set of

values.

Figure 9. A set of parameter spectrums for the Polar Coordinates command.

60

Figure 10. Parameter spectrums for the Hue/Lightness/Saturation command.

Each spectrum varies its previews only on the parameter it represents. For example, if

there are two parameters for an oval – height and width – the parameter spectrum for

height uses the current setting of the width parameter, and varies its previews in the

height dimension. When one parameter’s current value is changed, all other parameter

spectrums update their previews to reflect this new value. This behavior enables a user to

interactively vary one parameter’s settings to understand how it affects the other

parameters.

61

Figure 11. Two commands (Whirl & Pinch, and Polar Coordinates) chained
together in a composite Side View.

To view previews of two or more Side Views combined (function composition), users

can chain Side Views together. In our current implementation, chaining commands is

supported by dragging and dropping one preview on the other. Performing this action

causes a new Side View to appear that previews the effect of both commands at once

(Figure 11).

As with Side Views for a single command, users can view and vary each

command’s parameters individually. Changing the parameters in a Side View early in the

chain causes subsequent previews to update, since later Side Views are dependent on the

62

output of former Side Views. The effect is one in which users can view changes “ripple”

down the chain of Side Views.

Many operations require direct input, such as text entry or mouse input, and some

settings affect how that input is interpreted. For example, the size, color, and opacity of a

paint brush influence how a user’s mouse strokes will be “painted” on a canvas.

Figure 12. Side Views for the paint brush initially show a grid of paint strokes.
These are replaced by a custom stroke when the user moves the cursor over the
original image.

Side Views for commands that require direct input present a unique challenge in that the

data to be previewed has not yet been entered. Yet it is desirable to be able to preview the

settings for the tool before actually using it. In these circumstances, Side Views mimic

user input in their initial previews, then allow user interaction to create data to preview.

For example, the Side View for a paint brush initially shows an overlapping grid of

63

strokes that enables the user to see the effects of both single and overlapping paint strokes

on her image (Figure 12). If the grid does not provide the information needed, the user

can move the cursor over the original image. This action clears the default grid in the

Side View and replaces it with the user’s mouse strokes (Figure 13). These strokes persist

after the cursor has left the image, allowing the user to interactively vary parameters and

view the effect in the sample paint stroke drawn. This capability effectively enables users

to retroactively vary the parameters for previews of commands with direct input.

Figure 13. Side Views for the paint brush. Characteristics of the paint brush can be
interactively previewed and manipulated as with any other command.

64

6.1.1 Affordances of Side Views

Side Views’ feature set makes them amenable to a range of tasks. At a high level, Side

Views enable users to more easily perform breadth- and depth-first searches of

possibilities without committing to any one course of action. They can thus be considered

a set-generation mechanism that enables the rapid creation of lots of (relatively) transient

previews for quick exploration. Within the context of this use, users can continually

evaluate results via direct comparisons.

Side Views also have some properties that facilitate sequential manipulation of

sets of alternatives. When separate, standalone variations must be developed in similar

ways, users may need to slightly modify the command to the particularities of each

variation. That is, they may not be able to blindly apply the exact same command to each

variation. In these cases, persistent Side Views can ease this process through their

parameter spectrums. After applying the command to one variation, a Side View will

retain its settings as the user switches to another variation. Users can then refer to the

parameter spectrums to adjust the command for the nuisances of the new variation.

6.1.2 Architecture

To date, we have implemented Side Views in two applications, a rich text editor and an

image manipulation program. Both were written in Java, with the GNU Image

Manipulation Program (the GIMP) [GIMP] used as the image manipulation engine for

the latter application.

Side Views’ architecture is shared between the two applications, and its design is

intended to be flexible and extensible. It makes use of a modular, pluggable design built

on a set of design patterns [GAM94] to factor out behavior and functionality that may

65

differ across applications and user needs. While our first implementation is within a

graphical user interface, the design itself is not explicitly tied to a GUI, and could be used

within other interfaces, such as one whose primary mode of input is speech. We explain

its design next.

Figure 14. A generalization of on-demand help. A specific example of tool tips is
given on the right.

The design of the architecture is driven by the observation that on-demand help is

triggered by a specific event, but that this event and the form of help may vary (see

Figure 14). For example, a traditional tool-tip is shown after the mouse hovers over an

interface object for a short period of time. However, it is reasonable to assume that the

trigger event could arise from keystrokes, and that the help given could take another form,

such as synthetic speech, rather than visual cues alone. Thus, the design of Side Views

breaks the architecture into components that monitor an interface for events, and factory

66

classes to generate and activate application-specific Side Views when needed. Figure 15

shows an overview of this design.

Figure 15. Basic architectural design of Side Views. A trigger event
causes factory objects to compose the Side View for the user.

Given this overview of the basic architectural design, we turn now to the specific

interaction semantics of Side Views, followed by implementation issues.

6.1.3 Interaction Semantics

6.1.3.1 Invocation

The initial invocation of Side Views within our two sample applications is identical to

that of normal tool-tips: Hovering over a user interface object (such as a menu command)

causes a Side View to appear after a delay. Existing tool-tips typically appear after a

750ms delay. However, in our informal tests, users requested a shorter delay because they

wanted faster access to Side Views when sampling the interface. Thus, our current

67

implementation uses a much shorter 400ms delay. Our hypothesis is that the additional

utility of Side Views for experts motivates the request for a shorter delay.

6.1.3.2 Instantaneous Display of New Side Views after Initial Display

As with normal tool-tips, if a transient Side View is visible, other Side Views will

instantly appear if the cursor moves to a new object. This instantaneous appearance of

new Side Views is important as it facilitates rapid sampling of options within the

interface: After one Side View has been made visible, users can simply sweep the

interface with their cursor, pausing over items of interest to discern their effect, rather

than having to wait the default delay for each interface object.

6.1.3.3 Making a Side View Persistent

To make a Side View persistent, users click in the title bar of a Side View. This behavior

changes the Side View into a “regular” window that does not automatically disappear.

Persistent Side Views dynamically update their previews to reflect the current state of the

active document.

6.1.3.4 Extended and Suspended Dismiss Delays

Normal tool-tips automatically hide themselves after a certain amount of time (~7

seconds), called a dismiss delay. However, Side Views offer a much more information-

rich preview, and thus can require more time to view. Thus, we extend Side Views’

dismiss delay to 10 seconds, but also add the ability for the delay to be temporarily halted.

When a user’s cursor enters a transient Side View, the dismiss timer is stopped until the

cursor leaves the Side View.

68

6.1.3.5 Supporting Interaction

Supporting interaction within a transient Side View requires a modification to typical

tool-tip implementations, because normal tool-tips hide themselves whenever the user

moves the cursor out of the component that generated the tool-tip. For transient Side

Views to support interaction, we introduce a “grace period” whereby the Side View

remains visible for a short period of time after the cursor leaves the triggering object.

Currently, we use a 750ms delay for this value: After the cursor leaves the object that

initiated the Side View, the Side View will remain visible for an additional 750ms to give

the user time to enter a transient Side View. If the cursor enters another interface object

(e.g., another menu item), then the original Side View is immediately hidden and a Side

View for the second object is shown.

After the cursor enters the transient Side View, an identical 750ms delay is used

before dismissing a Side View when the user’s cursor leaves the Side View. This delay

takes care of the case in which the user accidentally enters and exits a transient Side View

when she actually intends to interact with it.

6.1.4 Implementation Issues

6.1.4.1 Preview Content

Determining what information to preview can be challenging for some commands. For

commands that produce a visual change in the interface, one challenge is choosing how

to render previews for changes that are too large for a Side View window. For example, if

a user selects all the text in a multi-page document and wishes to preview a style change

(such as a different font size), there is a question of how the Side View should render this

rather large preview.

69

For commands for which there are no visual changes in the interface (such as the

print icon in a toolbar, which automatically prints the current document using the last

settings), the choice of what to preview is also unclear. There are a number of approaches

one could take to address these concerns. For example, for changes to large selections in

a text document, the Side View could show the most recently edited text, the beginning

or end of the current text selection, a scaled-down version, and so on. However, through

the design, development, and use of Side Views, it appears that no single heuristic can

reliably predict the content of most interest to the user at any point in time – there are

simply too many special cases to consider. Therefore, in our implementation, we chose to

apply a consistent, predictable algorithm to the initial display of each Side View, but

allow the user to modify the preview.

For Side Views in the text editor, we align the beginning of the text selection in

the top-left corner of the Side View, unless the content is at the right margin, in which

case we right-align the preview (as in Figure 7). In the image manipulation application,

transient Side Views always appear at a fixed thumbnail-size that displays a before and

after preview. These previews can later be resized to show larger previews, and users can

choose to view the parameter spectrums as well.

For commands that do not produce a visual change, our rule of thumb is to present

a summary of the effect of the command. For example, the Side View for the print icon

could show a print preview, but this is largely unnecessary since most applications are

WYSIWYG. Instead, the Side View could display the printer settings that will be

applied: the printer that will be used, the number of copies, the quality, etc.

70

Figure 16. Narrowing the range previewed in Side Views. Clicking on a value
narrows the range of previews shown. Above, the user clicks on the middle value,
which forces its nearest neighbors to become the new boundary values.

6.1.4.2 Parameter Spectrums

As described above, parameter spectrums originally display a sampling of previews

across the full range of possible values for each parameter. Users can vary the range

shown in two ways. First, they can directly vary the boundaries of the range via a slider

that has three handles. The center handle acts as a normal handle in a slider, selecting the

current value. The outer handles – the range handles – serve to vary the boundaries of the

range of values shown (see Figure 16).

Second, users can click on a preview of interest. When a user clicks a preview, the

values of the previews to the left and right of the one chosen become the new boundaries

for the range of values shown (again, refer to Figure 16.)

71

6.1.4.3 Computationally Expensive Commands

Not all commands can be instantly previewed. Generating a preview might be

computationally costly, by virtue of the operations performed, the amount of data that

needs to be copied, etc.

In our implementations, we have addressed this problem in several ways. First,

we create threads that perform background rendering. These threads enable the interface

to remain responsive, while providing updated previews as they become available.

Second, in the image manipulation application, we first scale an image down to its

thumbnail size, then apply the required filter. This procedure quickly produces accurate

previews for most operations (such as those that modify an image’s colors, its rotation,

etc.), but not all – some filters are not commutative with respect to scaling

transformations. (That is, a filter will produce different results if the image is first scaled

then transformed, rather than vice versa.) Thus, another background rendering thread is

required to apply these filters to a full-scale version of the image before scaling. Because

we have been working primarily with operations that are commutative with respect to

scaling transformations, we have only implemented the first tier of rendering threads at

this time.

72

Figure 17. Parallel Pies. Parallel Pies allow multiple alternatives to be embedded
in the same workspace.

6.2 Parallel Pies

While Side Views provides an explicit mechanism to generate and survey one’s options,

Parallel Pies provides the structure to generate, manage, and simultaneously manipulate a

smaller, more permanent set of solution states. Parallel Pies consists of a visualization

tool that facilitates evaluations of alternatives (Figure 17) and a number of smaller

changes made throughout the interface to enable variations to be added or removed from

the workspace. At a high level, Parallel Pies allows users to:

73

• Create new alternatives before, during, and after invoking a command (set

management and generation),

• Embed alternative solutions within the solution workspace (set management and

evaluation), and

• Manipulate each alternative independently or collectively (set manipulation).

To realize this tool, a number of changes were necessary across the interface. In our

implementation, the interface is augmented in the following ways:

• Command dialog boxes introduce a new option, Add Variation1, which allows

users to add the currently previewed result as a new alternative to the given

solution (Figure 18)

• Any variation can be duplicated to create a new alternative

• Each variation maintains a complete history of all its prior states, initially

adopting the history of its source. Thus, users can duplicate a variation, then

return to a previous state to pursue an alternative path

• Alternatives are embedded directly within the same solution workspace and

viewable through the Parallel Pies visualization (Figure 17). This visualization

evenly divides the workspace to show portions of each alternative side-by-side

• Commands are augmented to allow users to modify one or more alternatives

simultaneously

We describe each of these features, and their motivation, in turn.

1 In the implementation used for our controlled studies, this feature was renamed to
“Create New Version.” Originally, we chose “Add Variation” to distinguish it from
revision control systems, but later settled on “Create New Version” to better convey the
functionality to the end user.

74

6.2.1 Set Generation

As discussed in Chapter 5, there are three conceptually different situations in which a

user may discover it is necessary to explore alternatives:

1. Before a command is invoked. In this situation, the user realizes that the current

state of the problem will necessitate exploring a number of alternatives

2. While interacting with the command. At this point, the user may discover a

number of interesting alternatives, or be unable to find one that perfectly fits the

problem

3. After a command has been applied. In this case, the results obtained are not as

hoped, though not without value. This realization may come immediately after

invoking a command, or several steps later, when it becomes clearer that earlier

actions must be refined

To support the generation of variations under these three conditions, users must be able to

duplicate a document state, create a variation while interacting with a command, and

revisit past states of a document without losing the current state. We describe how

Parallel Pies supports each activity next.

6.2.1.1 Document Duplication

In our application, users can duplicate the current state by invoking the Duplicate

Variation command from a pull-down menu. The entire document state, including its

history, is copied and embedded within the same solution workspace. Visualization of the

multiple alternatives is handled by the Parallel Pies visualization tool, described below.

75

6.2.1.2 Adding Variations within Commands

To support the creation of variations while modifying data through a command dialog

box, users can insert the currently previewed result as a new variation to the workspace.

Invoking the Add Variation command (Figure 18) duplicates the document, applies the

command with its current settings, and inserts the result in the solution workspace.

Exploration of variations while manipulating data is further enhanced via Side

Views. Side Views presents a broad overview of the set of options available from a

particular command, while Parallel Pies enables users to quickly add any and all relevant

results to the solution workspace via the Add Variation command.

Figure 18. Parallel Pies’ additions to dialog boxes. Command dialog boxes include
the ability to add a variation or apply the command to all variations.

76

6.2.1.3 Duplicating Lineages and Skating Through Time

To support the creation of variations after a command has been applied, each variation

maintains a history of all prior states and commands leading to its current state. When

users duplicate a particular variation, its lineage is also duplicated. By copying the history

of a state, users can more easily backtrack to a previous state while retaining the most

recent state. However, rather than use the Undo mechanism to return a previous state, we

introduce a function called skating.

Skating allows users to traverse the timeline of a solution instance independent of

actions performed in the interface. For example, consider a scenario where a user has

applied three operations to a document, but would like to explore an alternative path from

a previous state of the document. In this instance, she may duplicate the document,

resulting in two, identical variations, each of which has an identical history of past states.

With either variation, she can then skate through its lineage to access previous states.

Note that using Undo in this situation would not achieve the desired effect, as Undo

would be interpreted as undoing the last action, in this case the Duplicate operation. (This

issue is similar to those encountered in the design of Flatland, a whiteboard application

that hosts self-contained workspaces that can also interact with one another [EDW00].)

6.2.2 Set Evaluation and Manipulation

One advantage of manually embedding variations within the same solution workspace

(for example, two versions of a paragraph, one after the other) is that the alternatives are

ready-at-hand: There is no intermediate layer required to load or save them. Instead, they

are highly accessible, making basic comparisons straightforward. They also allow other

parts of the solution to be manipulated independent of the variations: Changes do not

77

need to be merged or duplicated as they would be if separate document instances were

created for each variation in a history tracking system.

Figure 19. Parallel Pies visualization tool. The central hub of Parallel Pies can be
rotated and moved selectively to display and compare separate alternatives.

Building on these concepts, Parallel Pies embeds alternatives directly within the same

solution workspace and slices the space to show a different variation in each slice.

Wedges radiate outwards from a central hub that can be repositioned and rotated to reveal

different areas of the individual variations (Figure 19). A gutter surrounding the image

provides space for the hub to be dragged off to the side. When pulled into the gutter, the

wedge affords a larger view of a variation, allowing users to focus on only one at a time.

Notably, using other schemes to divide the space (such as a grid), would not provide this

same affordance.

78

The Parallel Pies visualization also acts as the mechanism by which users select

the default variation when applying commands to only one state at a time. Users select a

variation by allocating it the most screen space (for example, by pulling the hub to the

side). The choice of this mechanism was driven through user testing that revealed that

users expected their actions would be applicable to only the most visible variation.

The visualization provided by Parallel Pies works particularly well when the

differences between images are relatively minor. When alternatives are more divergent,

the ability to reposition the hub in the gutter helps reduce visual confusion by showing

only one variation at a time.

6.2.2.1 Selective Manipulation of One or More Variations

Users can choose to modify a single variation or all variations at once. An Apply button

in a command’s dialog box affects the most visible variation without dismissing the

window, while all variations can be modified at once by pressing the Apply to All

Variations button. This capability helps users keep the sets of alternatives in sync.

6.2.3 Distinguishing Between Variations

Moving to a set-based interface with Parallel Pies necessitates a few other changes to the

interface. Most obviously, it requires additional feedback to the user so they know what

variations they have created and which they will effect when applying a command.

Accordingly, we provide a number of cues throughout the interface.

A thumbnail-based summary of all variations is placed on the right side of the

document window (Figure 17). As an additional cue, we decorate variations with tags

throughout the interface to help users differentiate between them when they are visually

similar. Small black boxes with a unique letter are positioned over the variations’

79

thumbnails on the side of the window, in the before view of a preview, and on the edge of

variations’ slices in the workspace.

6.2.4 Discussion: Design Rationale for Selecting the Default State

In our initial design, users clicked on pie slices to select the default variation in the

workspace. While this approach had the advantage that users could directly click on the

item to manipulate it, it also had the consequence of adding an extra layer of selections:

Users could now select variations as well as individual objects in the document. This was

an obvious point of confusion, so we explored alternatives.

The next mechanism we implemented allowed users to select the variation from

within the command’s dialog box. Buttons in the shape of arrows below the before

preview let users cycle between variations. However, users did not readily understand the

buttons’ functionality, nor could they easily discover this method for switching between

variations.

Our current design builds on a behavior that emerged through testing, namely

moving the pie’s hub to the side to concentrate on one variation at a time. When the

interface showed only one variation at a time, users expected that commands would only

affect that variation, since others were not visible. Therefore, we adopted this convention

and modified commands to update their previews accordingly.

6.2.5 Architecture

Normally, a document is assumed to be the high-level organizational structure for a

solution. Parallel Pies extends this concept to create a hierarchical ordering of alternatives

within a single entity called a solution (Figure 20). In this scheme, what is usually

considered a document becomes a document state (shown on the right side of Figure 20).

80

References to these separate document states are contained with document sets.

Document sets provide the set management infrastructure in a set-based interface by

clustering all viable alternatives together. A solution maintains references to the active

document set (the set of document states currently active) and to the default document

state (the state that will be modified when applying a command to a single state).

Figure 20. Organizational architecture for Parallel Pies.

When an operation is applied to a solution, it is applied to the default document state.

Two new objects result. First, the result of the operation yields a new document state.

Second, a new document set is created to contain both the new document state, and any

unmodified document states contained in the previously active document set. Thus, a new

document set is created each time an operation is performed. These sets form the history

of operations to support Undo and Redo, and are maintained in a document set history.

81

When an operation is applied to a document state, the resultant document state

also includes a lineage of all states prior to reaching this particular state. This lineage

enables a user to duplicate a document state, then traverse its history via skating.

Figure 20 makes these abstract concepts more concrete. In this example,

Document Set 1 is composed of references to Document States A and B. However, the

user has applied an operation to Document State A, yielding Document State C. While

the operation is not shown in the diagram, we can infer that the operation was an Add

Variation command because the resultant document set, Document Set 2, includes

references to states A, B, and C. That is, state C was added to the solution and did not

replace the previous version, A.

Undoing this last operation would reload Document Set 1 and its references.

Since a document set is composed of references to document states, the creation of

Document Set 2 minimally increases memory in this example: Only Document State C is

created; the other two document states (A and B) already exist, and are merely referenced.

Cast in terms of the model-view-controller (MVC) user interface design pattern

[KRA88], the solution represents the model, and its corresponding window the view and

controller. In our implementation of Parallel Pies, there are two external, visual

representations of a solution: the Parallel Pies visualization and the solution window’s

thumbnails. The latter represent each document state and toggle their visibility in the

visualization, making them both views and controllers. Users can also move the

visualization tool to selectively dedicate screen real estate to one particular solution at a

time. The version with the most screen real estate becomes the default version in the

solution.

82

6.2.6 Discussion: Considerations for Toolkits and Interaction Semantics

One of the greatest challenges in developing Parallel Pies was deciding the granularity of

support to offer for creating new alternatives. For example, should the interface support

alternatives at the level of the document, the layer, or even individual objects within a

layer?

In our current scheme, we duplicate an entire document state when spawning a

new standalone alternative. This is perhaps the simplest way to deal with alternatives

architecturally, but it is also somewhat wasteful of memory in cases where two or more

alternatives share most of their data. For example, in editing a text document, one may

devise multiple alternatives for a paragraph, but keep all other content the same. If a word

processor enabled one to generate new document states for each paragraph and used our

scheme as a model, these alternatives would yield separate, standalone document states

with a significant amount of duplicated content.

To be more efficient, this scheme could be enhanced with a copy-on-write scheme

in which two or more document states with identical data share that data until it is

changed in one of the alternatives. This would allow a developer to continue to work with

and reason about alternatives at the level of entire document states, rather than fragments

of document states, even though these document states may be internally represented via

references to shared data. Therefore, at the toolkit level, we believe the preferable

solution is to allow the developer to present the toolkit with a state, the operation to apply

to that state, and an indication of whether the operation should replace the existing state

or spawn a new standalone alternatively. Internally, the toolkit should then decide, given

the operation requested and the state provided, how to derive the new state most

83

efficiently. We elaborate on a potential architecture for realizing this scheme in the final

chapter.

A second challenge in the design of these features was deciding how much to

transform interaction semantics to account for multiple, co-existent possibilities. For

example, should an operation apply to one alternative, all alternatives, or only those that

are visible? Should we allow these alternatives to exist in different interaction states? For

example, should we allow the user to select a particular region in one image, another

region in another image, then allow the same operation to be applied to both

(incongruent) selections? Similarly, what should the interface do if the user tries to apply

an operation to multiple document states, but the operation is not compatible with all

document states?

While our current prototype does not allow document states to assume

incompatible interaction states (e.g., one cannot make selections on a per-document-state

basis), our experience suggests that the way to handle these ambiguities is very similar to

the way interfaces handle this issue when applying commands to multiply-selected

objects. For example, visual user interface builders often allow the user to modify the

properties of multiple, selected objects (such as buttons, scrollbars, and labels)

simultaneously. When there are properties that are not shared (e.g., buttons and labels

have a “text” property, but scrollbars do not), the interface does not allow unshared

properties to be set. In other words, only those operations which can be applied to all

selected objects are available for invocation. This model seems the most reasonable,

though there are ways it could be enhanced for the benefit of the user. For example, the

84

interface may preview which document states are compatible with one another with

respect to a particular operation before the user attempts to apply the command.

6.3 Summary

This chapter has introduced two tools illustrating the concepts of a set-based interface:

Side Views and Parallel Pies. Their specific implementations have been described, as

have general architectural considerations.

85

CHAPTER 7

DESCRIBING AND DISTINGUISHING
BETWEEN PROBLEM SOLVING PRACTICES

Up to this point, we have described point- and set-based problem solving practices,

interfaces, and interaction in fairly abstract terms. However, if we are to understand

whether tools truly influence the problem solving process as desired, we need ways of

measuring how they influence the process. In this chapter, we synthesize a set of metrics

and a visualization designed to help one distinguish between point- and set-based

problem solving when using computer-based tools. These techniques are not meant to

specify hard boundaries between what constitutes point- and set-based problem solving,

but rather are intended to serve as metrics by which comparisons can be made.

We construct these measures and the visualization by first reviewing Ward et al.

[WAR95] and Sobek et al.’s [SOB99] original work describing point- and set-based

problem solving, then consider prior techniques used to depict branching histories in web

browsing and other applications.

7.1 Measures

In the original formulation of set-based concurrent engineering, the following activities

most clearly distinguish set-based approaches from point-based:

• Sets of alternatives are simultaneously developed and considered, and

• The alternatives are continually evaluated and pruned in order to narrow the space

of possibilities under consideration.

86

Point-based problem solving, in contrast, is marked by the continual refinement of a

single solution instance, leading to a linear solution process with occasional episodes of

backtracking.

Given these descriptions, one way to distinguish between approaches in user

interaction is to construct a tree (i.e., a directed graph) representing all states visited. In

such a tree, each node refers to a particular document state, and arcs between a parent and

child node represent the function used to derive the child state from the parent state.

For set-based approaches, trees will appear wide at top and gradually narrow to

the final solution. In contrast, point-based approaches will yield, in the extreme, highly

linear trees with no branches at all (Figure 21).

Figure 21. Set- and point-based interaction trees.

87

These expected differences suggest that the following attributes of the trees are important

in distinguishing between practices:

• Number of leaf nodes, as a measure of overall breadth of exploration

• Average number of children per node, as a measure of breadth of exploration as

related to the overall tree size

• Height of the tree, (the longest path from the root node to a leaf node) as a

measure of overall depth of exploration

• Total number of nodes, as a measure of the total number of states considered

The total number of nodes can be divided by the total problem solving time to derive:

• The problem solving rate: The number of states visited per a period of time

Within these trees, we can decorate the individual nodes with additional information to

help us better distinguish between practices. In particular, the following measures are

relevant:

• Node birth time: The absolute time the node was first visited/created (e.g., 12

seconds from the start, 30 seconds from the start, etc.)

• Node birth order: The relative order in which the node was first visited/created

(1st, 2nd, 3rd, etc., derived from an ordering of node birth time)

• Solution fitness: The node’s judged proximity to an ideal solution

• Abandonment: Whether the node was ultimately undone

Arcs within the tree can also be augmented by noting:

• Command destructiveness: Whether the resultant state replaced the parent node by

way of its creation (i.e., the function was applied to the parent and the child

88

resulted), or whether the child represents a new, standalone state in addition to the

parent state

A timeline can also be kept to maintain:

• An active state list, or the number of states active at any point in time

At first glance, it may seem that some of these measures are somewhat redundant. For

example, we use the number of leaf nodes as well as the average number of children per

node to indicate breadth of exploration. Figure 22 demonstrates why these multiple

perspectives are necessary: Both trees have the same number of leaf nodes, but the tree

on the left has a higher number of children per node than the tree on the right.

Figure 22. Two trees with different characteristics.

89

Given these attributes, we can now describe expected differences between trees

representing the two different problem solving processes. Across these dimensions, set-

based approaches will yield trees with more leaves and a higher average number of

children per node. If a constant pace is assumed across problem solving processes, the

same number of states (nodes) will be generated across trees. Thus, if the problem

solving rate is constant between two trees, but one tree is broader, this implies that it will

also be shorter. Set-based approaches will also result in more states being active at any

point in time, and fewer instances of backtracking.

Measures of solution quality (fitness) help determine when and where (in a tree)

acceptable solutions are developed. In general, set-based approaches should yield good

solutions closer to the root node since users more thoroughly explore nearby state spaces.

(Whether these solutions should appear earlier in time is unclear.) Set-based approaches

should also result in fewer nodes undone, since the expectation is that people are

proactively exploring the design space, and not retroactively exploring it after a particular

path proves inadequate.

For set-based approaches, sibling nodes should be generated at approximately the

same time, one right after the other, as users explore sets of alternatives at a particular

point (Figure 21). For point-based approaches, on the other hand, sibling nodes are more

likely to be separated in time, since the expectation is that siblings only arise after

backtracking (Figure 23), a concept we develop next.

90

Figure 23. An example of backtracking in point-based problem solving.

7.1.1 Backtracking

Backtracking refers to revisiting a past state to derive a new state. Since a new child is

derived from a parent after a previous child’s path proves less than adequate, we measure

backtracking events based on birth order differences of nodes.

To calculate birth order differences, we first order children of a node according to

when they were born, then calculate the differences between adjacent pairs. Successive

siblings born one right after the other have a birth order difference of 1, as in Figure 22.

Siblings with a birth order greater than 1 indicate that the user first derived the first

sibling, turned their attention to deriving other states, then returned to derive a new

91

sibling. Figure 23 provides an example of this where birth order differences between the

root nodes’ children is 3.

We treat all birth order differences greater than one to be instances of

backtracking. This requirement filters out try-undo cycles and alternatives generated via

mechanisms such as Parallel Pies’ Add Variation command.

We consider the magnitude of a backtracking effort to be the difference in birth

order between two nodes.

Given these definitions of backtracking, we use the following measures to fully

characterize it:

• Total number of backtracking occurrences (number of birth order differences > 1)

• Average magnitude of backtracking (sum(all birth order differences) / number of

birth order differences)

• Degree of backtracking as a function of the number of sibling pairs (number of

backtracking events / number of sibling pairs in a tree)

• Degree of backtracking as a function of the tree size (number of backtracking

events / number of nodes in the tree)

All measures should be self-explanatory, except perhaps the degree of backtracking as a

function of sibling pairs. This measure provides an indication of why people are

constructing alternatives: If this ratio is high, it indicates that when branching occurred in

the problem solving process, it was a result of what we define to be backtracking.

7.1.2 Dead-ends

Our definition of backtracking captures any moment when a user returns to a previous

state after exploring other states in depth. We can also consider a more extreme version

92

of backtracking in which all previous states are abandoned prior to pursuing a new branch

from a common parent. We call these abandoned states dead-ends.

Dead-ends can be identified by examining the birth and death times of nodes,

where a node’s death is the time at which it no longer exists in the interface. If the death

times of child’s lineage are all less than the birth time of a sibling’s lineage, then the

former is considered to be a dead-end. As an example, consider Figure 23: If the death

times of nodes 2, 3, and 4 all occur before the birth of state 5, then this is an abandoned

branch of the tree, and thus a dead-end.

Given these measures of the problem solving process, we turn now to a

visualization that highlights these concepts.

7.2 Process Diagram

To visualize one’s problem solving process, we build on previous efforts for visualizing

website navigation [COC96, AYE99], histories of collaborative editing [EDW97],

histories of design points visited [KLE02], and common conventions for drawing tree-

based data structures. The overall result is a diagram of a user’s actions that we call a

process diagram (Figure 24).

A process diagram is composed of three interrelated components:

A. A state tree depicting nodes visited

B. An active state timeline, where each entry represents a set of actives states at that

point in time

C. A command timeline, indicating every command issued by the user

93

Figure 24. Process diagram.

We describe the various components in detail next, then describe the overall affordances

of process diagrams.

Like previous history visualization systems, each unique state is represented by a

node. Thus, as a document is modified, each modification results in a new state

corresponding to a new node.

Each node contains two numbers, its birth order and a measure of its overall

solution quality. For tasks in which the start and ideal solution states are known and

quantifiable (that is, solution quality can be quantified in terms of its relation to the start

and ideal target state), a normalized value can be used for solution quality. In our work,

94

we use the convention of assigning the start state a normalized value of 1, and the target

state a normalized value of 0. Thus, as a solution approaches the target state, its solution

quality approaches 0. (This can be conceptualized as the distance of a given state from

the ideal solution state. Under this scheme, if a state is worse than the start state, it takes

on values greater than 1, and values are non-negative.) The use of normalized values aids

in comparisons within and between studies, such as comparing rates of change.

The root node represents the starting point with a birth order of 0 and a solution

quality of 1. It is placed at the top of the process diagram.

Active states appear directly to the right of every node in the active state timeline.

Since node numbers correspond to nodes’ birth order, one can analyze an active state set

to see when each state was derived in the overall problem solving process and how long it

lived. If more than one instance of a state is currently active (e.g., it has been duplicated),

the node is followed by a number in parentheses representing the number of instances of

that particular state currently active.

Arcs represent state transitions from parent to child states. The function

responsible for this transition is listed in the command timeline on the right.

Every element in all three components is vertically aligned to the same relative

timeline, with a top-down, oldest-newest temporal ordering of events. Command timeline

entries are aligned to the node that they produce.

If states are derived by invoking a function that replaces the current state with the

resultant state (the normal mode of interaction in user interfaces), the parent-child edge is

represented using a dashed line. This visual indicator serves to identify when an operation

is partially destructive (that is, when it causes the current state to be replaced by the

95

resultant state). If the original state is preserved (for example, the state was first

duplicated in some manner before applying the operation), a solid edge is used and

labeled according to how the new state was spawned from the parent state. For example,

if the parent state was originally duplicated, the edge is labeled with a “D.” If Add

Variation was used, it is labeled “AV.” The width of an active state box grows every time

a new state is added providing additional confirmation of when new states are generated.

When a state is undone, a dashed edge returns to the parent state. If the state is

permanently undone and never returned to (i.e., one does not redo back to it), then the

state’s node is depicted using a dashed line (Figure 25). This convention indicates which

states and paths have been permanently abandoned by way of Undo.

96

Figure 25. A process diagram illustrating undone nodes and chosen solution states.
The octogonal node is the best state visited, while the double-ringed gray state is the
state chosen by the user.

97

At the conclusion of a task, a user may identify the state which she think best solves the

problem. For some tasks, the best solution can also be judged computationally by

comparing all states with an ideal solution state. We use two methods to help identify and

distinguish between these two node types. User-selected solutions are highlighted and

include a double border, while computationally-chosen nodes are also highlighted, but

assume an octagonal shape rather than a circle (Figure 25). If the two chosen states

coincide (that is, both the human and the computer choose the same state), it becomes a

highlighted, double-ringed octagon (Figure 24).

7.2.1 Affordances

Process diagrams are designed to explicitly highlight aspects of the problem solving

process that distinguish point- and set-based problem solving practices.

The active state timeline draws attention to the number of possibilities under

consideration at any point in time, information not available in traditional tree-based

representations of task progression. Thus, the addition or removal of states is clearly

visible as the width of an active state set grows or shrinks, respectively. This allows one

to obtain, at a glance, a sense of whether people are engaging in point- or set-based

problem solving by examining how the active state timeline’s elements change over time.

In point-based problem solving, their sizes will mostly remain constant, whereas in set-

based approaches, the sizes will expand and contract over time.

The use of dashed lines in arcs highlights operations that result in states becoming

partially or fully removed from active consideration. This information gives the viewer a

sense of how many explorations result in dead-ends, and the degree to which they keep

sets of alternatives under active consideration.

98

Aligning tree nodes’ vertical ordering to a timeline has the advantage of exposing

when each path is explored. In the context of point- and set-based problem solving, this

helps to draw out whether sets of alternatives are explored close to one another in time, or

as the result of backtracking. In the former case, when nodes are explored close to one

another in time, they cascade evenly, whereas is in the latter case, children nodes are

greatly separated in vertical space.

 Given these sets of measures and the process diagram visualization, we will

apply these analytical tools to the analysis of data from two studies, described next.

7.3 Summary

This chapter has developed a set of measures for aiding in distinguishing between point-

and set-based problem solving. The following concepts have been formalized to enable

statistical comparisons:

• Breadth of exploration

• Depth of exploration

• Degree and magnitude of backtracking

• Dead-ends

• When high quality solutions are developed

• How many solution alternatives are developed

Furthermore, a visualization called a process diagram has also been introduced to help

one visually distinguish between point- and set-based problem solving.

99

CHAPTER 8

ASSESSING THE IMPACT OF SET-BASED TOOLS
ON THE PROBLEM SOLVING PROCESS

In this chapter, we turn to the evaluation of Side Views and Parallel Pies. This analysis

considers these tools from a number of perspectives: How they influence the problem

solving process, how they affect performance, and how they may be redesigned to better

accommodate user needs. Two controlled laboratory studies and one think-aloud study

serve as the foundations for these analyses.

We begin with the two controlled laboratory studies. These studies evaluate the

impact of the tools under two typical tasks, a tightly constrained color-correction task and

a more open-ended problem in which subjects must devise a color scheme for a product.

The results of these studies provide strong evidence that users wish to engage in set-based

practices and readily do so when tools are available to facilitate this process. Most

notably, we will show that the ability to quickly spawn new standalone alternatives via

Parallel Pies is the most heavily used and highly rated feature of the tools, having greater

impact than the multiple previews of Side Views.

We then turn to a think-aloud study that paired subjects to work collaboratively

on the open-ended task of producing a color scheme for a product. This think-aloud

design was modeled on constructive interaction [MIY86], and served to reveal people’s

thought processes as they worked with the tools. These data were largely absent from the

controlled studies, providing us with additional information to aid in the interpretation of

100

the quantitative data from the first two studies. The data also point to a number of ways

the tools could be improved.

Following the presentation of results from individual studies, we highlight the

ways in which the tools differently affect each task. These comparisons suggest the roles

the tools play in the problem solving process, and the type of user interface support that is

most useful for well-defined optimization tasks versus those that are useful for open-

ended, ill-defined tasks.

We conclude this chapter by comparing our results with those from Lunzer and

Holbaek’s [LUN04] study of a subjunctive interface, then summarize how these tools

may be better designed in the future.

8.1 Experimental Design

The central thesis of this work is that interface mechanisms designed to support set-based

practices will:

• Result in high quality solutions in less time, with lower cognitive load

• Lead to users developing more alternatives in the same amount of time

We hypothesize that these effects will result from users adopting more set-based practices

when these mechanisms are present than when absent.

To investigate these hypotheses in the domain of image manipulation, we needed

two tasks that were representative of real-world problems and amenable to measurement

(e.g., we would like to be able to precisely measure the quality of a solution developed by

a subject). However, these two requirements are somewhat at odds with one another:

Representative tasks, in this context, are ill-defined problems, but ill-defined problems

lack concrete evaluation criteria, preventing us from precisely measuring solution quality.

101

Conversely, a task in which the solution can be unambiguously judged as “right or

wrong” does not, by definition, represent an ill-defined problem since it has a well-

defined goal. Thus, in the strictest definition of an ill-defined problem, we can either have

an ill-defined problem with a subjective evaluation metric, or a well-defined problem

with objective evaluation criteria.

As a compromise, we can choose tasks with well-defined evaluation criteria, but

extremely ill-defined solution paths. Simon, in outlining the differences between well-

defined and ill-defined problems, points to chess as an example of this type of problem:

While one can readily assess whether a current board configuration results in an end-of-

game (e.g., checkmate), evaluation of all other states is rather ill-defined, leading to an

ill-defined solution path [SIM73].

In our chosen domain of image manipulation, color correction tasks with known

goal states represent a problem that possess these desirable traits. From a given start

image, we can successively apply operations to derive a goal state, making the subject’s

task one of transforming the start state to match the goal state. Because the goal state is

known (to both subject and evaluator), we can compute the difference between a

subject’s solution and the goal state to arrive at a measure of how close a given state is to

the goal state. (We later describe how the end state can be derived in such a way that the

choice and order of operations are non-obvious, resulting in an ill-defined solution path.)

This color correction task with a known, given target serves as the task for our

first study. For our second study, we relax the requirement of matching a known goal

state, and instead ask subjects to transform an image until it is indicative of an abstract

theme. For example, given a start state, users are asked to create a color scheme

102

indicative of winter. A set of independent judges rate solution quality to provide an

overall assessment of how well each subject performs in each task. This second task thus

trades the well-defined goal state (and correspondingly well-defined evaluation function)

for a task that is more open-ended and subjective in nature. These two tasks are designed

to simulate two types of ill-defined problems: those that are relatively constrained (where

the overall task can be considered an optimization task), and those that are much more

open-ended and subject to interpretation.

From this overview of the tasks, we turn now to the details of the studies’ designs.

We begin by describing the commonalities between the controlled laboratory studies,

then describe features unique to each. We then present the specific research questions the

studies are intended to answer, along with our method of answering each question.

8.1.1 Basic Study Design

Both studies employ a within-subjects design. There are four conditions that correspond

to the presence or absence of our two tools:

1. Neither tool is available

2. Side Views is available

3. Parallel Pies is available

4. Both Side Views and Parallel Pies are available

The order of conditions follows a Latin square design to systematically vary the order of

tool availability. Each subject performs a trial with each condition, for a total of four

trials.

Separate from the tool conditions, there are four different tasks, where each task

represents a different goal. For example, in the color correction study, there are four

103

different images to color correct. The order of these tasks is varied using a second Latin

square. To ensure that pairings of tools and task conditions vary over all subjects, Latin

squares were randomly generated with respect to one another.

Figure 26. Study task environment (cropped vertically).

Subjects have five minutes for each task in both studies. A countdown timer window

(Figure 26) displays the time remaining, and, taking a cue from Time Aura [MAM01],

gradually changes color from blue to red as time runs out. The countdown timer window

is configured to always appear in the top window layer, so it is always visible, even if

other windows occupy the same space. Pilot testing indicated that this timer window was

not sufficient to keep people informed about remaining time (since their visual attention

was focused on the images), so two sonic alarms were added. A single warning bell

sounds one minute before time is up, and a double-bell sounds when 10 seconds remain.

Subjects can end the task early by invoking the End Task command from the File

menu. They are prompted to confirm they wish to end the task early. Otherwise, if time

104

runs out, the application window automatically closes, and a dialog box appears to inform

them that they will next need to choose their best solution.

8.1.2 Application Design

The application employs the multiple document interface (MDI) [MDI] paradigm

common to products such as Adobe Photoshop [ADO]. In this scheme, one application

window houses all documents as sub-windows. Using this scheme, we can ensure that all

windows remain within our control, rather than under the operating system’s control.

A basic set of application services are available to enable people to engage in their

common problem solving practices. Documents can be saved to disk via a Save command,

a “Save As…” command allows documents to be saved under a new name, and

documents can be closed and re-opened. Unlimited Undo and Redo are available, and

subjects can duplicate the entire document with a Duplicate command. Selections cannot

be made, and data cannot be cut, copied, or pasted.

The application offers three filters that operate holistically on the entire image:

Hue, Saturation, and Lightness; Brightness and Contrast; and Color Balance. These three

commands provide the only means for modifying image data, and one can only apply

them to the entire image. This restricted means of modifying an image was intentionally

chosen for methodological reasons: In most image manipulation applications, users have

the ability to selectively apply commands by making selections or by using tools that

enable their precise application (for example, paint brush-like tools). While these are

clearly useful tools for the tasks in both studies, we did not include them for two primary

reasons. First and foremost, excluding these tools makes the task inherently more difficult,

forcing people to spend more time experimenting with how to achieve desirable results.

105

Secondly, these tools would provide additional variables to account for when determining

the effect our tools have on the problem solving process.

Figure 27. A task environment with Side Views, but no Parallel Pies.

Figure 28. A task environment in which neither Side Views nor Parallel Pies are
available.

106

The three filters are implemented using modeless dialog boxes, meaning more than one

dialog box can be open at a time. In all conditions, a before and after preview are

available for each command. In the Side Views condition, sets of previews (parameter

spectrums) are available for each command parameter. Sliders are also augmented with

range handles to allow one to control the range of values previewed by the parameter

spectrums. In conditions with no Side Views, the space occupied by the parameter

spectrums is blank, and takes up the same amount of space (see Figure 27 and Figure 28

for a comparison). Thus, there is no difference in layout of controls or dialog box size

between conditions with and without Side Views. Filter dialog boxes cannot be resized

and can only be closed by using the Close button (i.e., no window embellishments are

available to close the window, and one cannot use keyboard shortcuts such as the Esc key

to close the filter dialog box).

Response time of filters is controlled for in all conditions. Sets of previews take

more time to produce than a single preview, so to control for this time difference,

previews for all parameter spectrums are always rendered, regardless of whether they are

displayed or not. Additionally, white rectangles are rendered to the window in conditions

without Side Views to ensure constant rendering time.

When the active document changes, a filter’s previews update to show new before

and after previews based on the new document. Because multiple dialog boxes can be

open simultaneously (since they are modeless), we again control for preview production

time by rendering previews for all commands, regardless of whether they are visible or

not. Thus, whenever a document changes, before, after, and Side View previews are

rendered for all filters, no matter the experimental condition.

107

Figure 29. Filter with Apply to All Selected Versions and Create New Version
buttons.

In conditions in which Parallel Pies’ features are present, two additional buttons are

available within the filter dialog box: Apply to All Selected Versions and Create New

Version (Figure 29). The Create New Version button1 performs a number of operations

normally performed manually: It duplicates the currently active document state, applies

the filter to that copy, and inserts the result into the same document window. The Parallel

1 As previously mentioned, this button serves the function of the “Add Variation” button
described in Chapter 6. In our research, we refer to alternative solutions as “variations” to
differentiate from versions, the latter of which are typically associated with previous
instances of the same solution in revision control systems. However, for the study, we felt
that the phrase “Create New Version” would better convey the function of the command
to the subjects.

108

Pies visualization automatically splits to show both the original and new version, and a

new thumbnail is placed in the side of the document window.

In all conditions, thumbnails of every embedded document state are present in the

side of the document window (that is, even when Parallel Pies is not available in the

interface, a thumbnail of the current state is still present in the document window). The

thumbnails are toggle buttons that allow one to turn the visibility of a particular state on

or off. If only one version is visible, the toggle button cannot be deactivated, ensuring

that at least one document version is always visible.

Like filter dialog boxes, document windows cannot be closed via a keyboard

shortcut or through any window embellishments. Instead, one must choose Close from

the File menu. However, unlike filter dialog boxes, document windows can be resized,

though they cannot be minimized or maximized.

No keyboard shortcuts are available for any commands, requiring a mouse to

initiate any action (the one exception being that users can type file names in file dialog

boxes). This restriction was intended to control for some people’s tendency to use

keyboard shortcuts to streamline workflow. An optical mouse was provided for subjects,

which they were instructed to use instead of the trackpad on the study’s computer.

For each session, a unique folder is created on the file system to contain all

subject-generated files. Within this folder, four additional folders are created,

corresponding to each trial. Within each of these four trial-specific folders, a Documents

folder is created. This Documents folder serves as the default directory that appears when

opening or saving a document. Providing a fresh, new Documents folder as the default

folder for every task presents an uncluttered, consistent file system to subjects, preventing

109

them from the need to take time to organize the existing file system for saving or loading

files.

The initial state is automatically saved in the Documents folder prior to the task

starting. However, this file is not associated with the initial active document window

(even though the initial window represents this start state). This design ensures a back-up

of the original start state is always present for the subject’s use should she mistakenly

close all document windows without first saving any of her work. Subjects are instructed

that this file is available should they wish to return to the start state at some point during

the trial.

Documents with multiple states are saved as one file. Thus, the entire state of the

document window is saved and available when re-opened.

As mentioned, subjects are allotted five minutes to perform each task. At the

conclusion of the task, subjects are presented with a list of all active, open states, as well

as any states that have been saved in files (Figure 30). They are given an unlimited

amount of time to choose their best solution.

110

Figure 30. Image selection screen.

All command and control usage are logged and timestamped via custom, internal

logging routines within the application. These data enable us to recreate every state

visited, and know when each command or user interface mechanism was used.

The software is implemented in Java, with Intel’s IPP library [IPP] providing the

back-end for image manipulation operations. JIPP [JIP] provides the Java-to-C interface.

Custom C-based functions were implemented for Brightness/Contrast and Hue (but not

Saturation/Lightness) since these functions are not directly supported by IPP.

All experiments were conducted on the same computer with no other applications

running. The computer was a Pentium IV 1.6GHz laptop with 512MB of RAM. Java

111

JDK 1.4.2_06 was the VM used. With this configuration, preview generation time was

highly responsive (no subjects complained of slow response times).

8.1.3 Experimental Procedure

Subjects were recruited through email advertisements to architecture, industrial design,

and digital media programs at a university, and by word-of-mouth through contacts at a

local newspaper and local design firms. The advertisement requested individuals who

were proficient in using image manipulation software.

The first study offered $5 compensation to participants, with the top performer

being awarded an additional $75. We found this base compensation too low, so for the

second study, we raised the base compensation to $15, with the top performer receiving

an additional $50. 24 subjects were recruited for the color correction study, and 10 for the

color scheme study.

After providing consent, subjects filled out a questionnaire to assess their

experience in the visual arts and design disciplines. Separate questions gauged their

experience in these domains with both traditional and computer-based media. A series of

questions also inquired about experience with specific software applications such as

Adobe Photoshop.

After finishing the questionnaire, subjects were shown a training video to acquaint

them with the software and the task. In the first study, no written instructions were

provided. However, after the first study, it became clear that some information needed to

be reinforced outside the video, such as the fact that saved states were also available to

choose from at the end of the task. Accordingly, a small set of written instructions were

created to accompany the video developed for the second study.

112

Following the video, subjects began the first of four tasks. Subjects had five

minutes for each task and an unlimited amount of time to choose their best solution. After

choosing their best solution, they were asked to complete the NASA TLX workload self-

assessment [HAR88]. They could start the next task whenever they were ready.

At the conclusion of the four tasks, subjects were asked to fill out an exit

questionnaire about the software. This questionnaire is composed of four sections.

Sections one and two present 5-point Likert scale questions about using one or many

previews, respectively. Section three asks subjects to rate the utility of software features

such as Undo or Create New Version on a 5-point scale. Section four gauges subjects’

preferences for using tools in solving the tasks.

8.1.4 Task Descriptions

In this section, we describe the tasks specific to each study.

8.1.4.1 Color Correction Study

In the color correction study, four different images of flowers were chosen and cropped

to the same dimensions. Four different scripts were developed to transform each flower to

a goal state. Scripts were paired with images so that the same script was always applied

to the same image. All scripts share an identical set and sequence of operations, though

parameter settings vary between scripts. Each filter is applied once, in this order: Color

Balance; Hue, Saturation, and Lightness; and Brightness and Contrast. Parameter settings

were chosen so that the total RMS (root-mean-square) difference of all parameter settings

is roughly equivalent for each task.

The order of operations was determined through the pilot study. During one pilot,

the same script was mistakenly applied to each image. However, despite the exact same

113

transformation being applied in all cases, the subject found it difficult: Not only was he

not able to detect a pattern, he did not improve his performance from task-to-task. Upon

closer inspection, we found that by performing a color balance prior to shifting the hue,

we created a very difficult end-state to replicate. We briefly describe why this

combination is especially difficult.

Applying color balance first selectively changes the relative proportions of a

particular color channel in the image. A subsequent hue operation shifts all colors,

creating a color distortion that can no longer be corrected by the color balance filter. Thus,

when the subject first views the start and goal states, her inclination invariably is to first

shift the hue, but after doing so, portions of the image remain incorrect, since the hue

shift was not preceded by the color balance operation (Figure 31). The incorrect elements

of the image cannot be corrected by applying the color balance after the hue shift,

because the remaining differences no longer align with the RGB channels of the color

balance filter. Consequently, subjects must experiment to fix these problem spots, though

few discern that they must back up to the original state to first perform a color balance to

truly correct the problem.

114

Figure 31. Common approaches to solving the color correction task. Start state (top),
target state (middle), and a common first attempt at reaching the target state
(bottom). While the overall hue is better matched, interior portions of the flower are
off (the middle blue portions in the bottom image), requiring further
experimentation.

115

To assess solution quality, all images are first converted into the LUV color space

[FOL96], a color space designed to match the human perceptual system. After converting

the images into this color space, an RMS difference is performed between all pixels in the

images. We derive RMS differences for every state visited by a subject, in addition to the

final solution state chosen by the subject. By computing the RMS difference of every

state visited, we can find the best state developed, even if it is not the same as the one

chosen by the subject.

8.1.4.2 Color Scheme Study

The task for the color scheme study is to transform the initial color scheme of a watch

(Figure 32) to make it evocative of one of the four seasons (winter, spring, summer, and

fall). For each of the tasks, the same start state is supplied. Since the task is open to

interpretation, there is no target state, but rather, a window that provides a textual

description of the desired the target state. All other characteristics of the study software

are identical.

116

Figure 32. Start state for the color scheme study.

As can be seen in the figure above, the start state for the watch is composed mostly of the

primary colors of red, green, and blue, with a yellow face and a few small yellow areas.

A neutral gray forms the bevel. The primary colors are pure, having no other color

channels mixed in. Thus, when the user adjusts one of the color channels (red, green, or

blue) using the color balance filter, it does not affect any of the other primary colors,

though yellow is affected when red or green is adjusted.

Assessment of subjects’ results was obtained through a set of four independent

judges. Two rounds of evaluations were conducted. First, each judge independently gave

each solution state a rating from 1-5 based on how well it solved the particular problem.

Second, judges collectively rank-ordered the solutions for each season. This second

evaluation required the group to come to a consensus on what the best solution was for

each task.

117

8.2 Research Questions

Through these studies, we sought to answer the following research questions, through the

following means.

Table 3. Studies' research questions.

Research Question Color Correction Study
Measure

Color Scheme Study
Measure

Do Side Views and/or
Parallel Pies yield better
solutions?

RMS differences between
subject-derived image states
and the target state

Independent judges’
ratings

Do subjects find better
solutions faster?

All states visited are
timestamped according to
when created, and compared
to the goal state

Not applicable

Are desired settings found
faster using Side Views?

Distance of slider travel1 Distance of slider travel1

Do Side Views and/or
Parallel Pies affect
cognitive load?

NASA TLX self-report NASA TLX self-report

Do Side Views and/or
Parallel Pies affect the
overall problem solving
process?

Point- and set-based
measures (from Chapter 7)

Point- and set-based
measures (from Chapter 7)

What are subjects’ opinions
of the utility of Side Views
and Parallel Pies?

Exit questionnaire Exit questionnaire

These research questions translate into the following set of hypotheses. When an

experimental tool is available (Side Views or Parallel Pies), we expect:

1. Subjects’ final solutions will be of higher quality

1 Temporal measures are not used since one cannot cleanly segment when a subject starts
and stops considering a parameter value.

118

2. Subjects will converge upon high quality solutions faster

3. Subjects will report lower cognitive load

Additionally, we hypothesize that subjects will rate the tools as useful.

Specific to Side Views, we hypothesize that:

1. Subjects will move parameters’ sliders significantly less when Side Views is

available

Specific to Parallel Pies, we hypothesize that:

1. Subjects will generate more alternatives when Parallel Pies is available

2. Subjects will explore more broadly when Parallel Pies is available

8.3 Results

8.3.1 Subjects

24 subjects were recruited for the color correction study. 10 of these subjects came back

at a later date to participate in the color scheme study. Subjects ranged from students to

professionals. Average Photoshop use reported was 10-15 hours per week, indicating a

high degree of familiarity with image manipulation tasks.

8.3.2 Results Summary: Both Studies

Table 4 summarizes the overall results with respect to each hypothesis. We provide a

brief summary here in addition to the table, then describe individual results in greater

detail.

In the color correction study, no significant differences were found in solution

quality, but in the color scheme study, Parallel Pies led to solutions that were rated worse.

No differences were found in the speed with which solutions were developed – good

solutions appeared at the same time, no matter the experimental condition. However,

119

Parallel Pies led to more optimal solutions in the color correction study, as measured by

the number of operations required to derive the chosen solution state. In the color

correction study, no differences were found in any measure of cognitive load for either

tool, though the color scheme study did yield results indicating that Parallel Pies

increased perceived mental demand while lowering frustration levels.

In both studies, there is considerable evidence that the tools led to subjects

adopting strategies more characteristic of set-based problem solving when Parallel Pies

was present. Also, in both studies, the availability of Side Views resulted in 50% less

slider usage, but otherwise had no measurable effect on solution quality or development.

Other influences of this tool became apparent through the third study.

We discuss these results in greater detail next and interpret reasons why they

arose.

120

Table 4. Summary of results per each hypothesis.

Hypothesis Color Correction Study Color Scheme Study

Subjects’ final solutions will be
of higher quality when an
experimental tool is available

No significant differences were
found in the presence of either
tool

Side Views: No effect on
solution quality

Parallel Pies: Evidence
that tool led to lower-
ranked solutions

Subjects will converge upon
high quality solutions faster
when an experimental tool is
available

Side Views: No evidence found
by any measure

Parallel Pies: No differences as
measured by time. Evidence for
more optimal solutions, as
measured by proximity to root
node

Not applicable

Subjects will report lower
cognitive load when an
experimental tool is available

No significant differences found
in the presence of either tool

Side Views: No effect on
cognitive load

Parallel Pies: Found to
increase perceived mental
demand, while lowering
frustration

Subjects will rate experimental
tool as useful

Side Views: Highly rated in both studies

Parallel Pies: Create New Version highly rated. Ability to embed
versions in same window also highly rated in both studies

Subjects will use sliders less
when Side Views are available

Subjects moved slider 50% less when Side Views were available in
both studies

Subjects will generate more
alternatives when Parallel Pies
are available

Overall number of states visited was not significantly different between
conditions, in both studies

The number of final states to choose from was significantly greater
when Parallel Pies was present, in both studies. Thus, we find partial
support for this hypothesis

Subjects will explore more
broadly when Parallel Pies are
available

By several measures (number of end states, number of leaf nodes in
process diagram, and average number of children), subjects explored
significantly more broadly in both studies

121

8.3.3 Color Correction Study Results

In the first two minutes of the color correction study, subjects were able to make rapid

progress towards the solution state, as illustrated in Figure 33. Across the top of the graph,

the average performance is shown for each tool condition, while the bottom lines chart

the best performances observed across all subjects (better solutions have lower values).

After the initial leap towards the goal, the rest of the time was spent on refining the

solution. As can be seen from the figure, no subject reached the goal state (which would

be noticeable should one of the best performances hit zero on the y-axis), so nearly every

subject spent the full five minutes experimenting with potential solutions.

Table 5 presents the results of measures of solution fitness (how well subjects did

in solving the problem), measures of their problem solving process, and any statistically

significant differences. These data were analyzed using a mixed model analysis of

variance controlling for subject, trial number, and the image to color-correct.

122

Figure 33. Average and best solution fitness across the four different test conditions.
This graph emphasizes the ability to make a quick leap towards the solution state,
with the subsequent need to refine. The y-axis corresponds to the distance to the
target solution, while the x-axis is time, in seconds.

123

Table 5. Solution fitness and problem solving process measures (color correction
study). All counts represent averages.

Measure No Side
Views

Side
Views

Significance No
Parallel
Pies

Parallel
Pies

Significance

Normalized
solution fitness,
subject’s
chosen state.
Lower numbers
are better

0.62 0.68 None 0.64 0.67 None

Normalized
solution fitness,
algorithmically
chosen best
state. Lower
numbers are
better

0.58 0.65 None 0.60 0.63 None

Total number of
states visited

9.0 10.2 None 9.7 9.4 None

Number of
states available
to choose from
at the end

3.0 2.8 None 2.1 3.6 p < 0.0001

Number of leaf
nodes in tree

2.2 2.3 None 2.0 2.5 p < 0.05

Height of tree
(in nodes)

7.3 7.8 None 8.3 6.8 p < 0.01

Average
number of
children per
node

1.26 1.22 None 1.16 1.32 p < 0.01

Chosen state
birth time, in
seconds

229 223 None 248 205 p < 0.01

Chosen state
birth order

6.8 7.5 None 7.7 6.6 None

Chosen state
depth in tree
(number of
nodes from root
node)

5.5 5.7 None 6.6 4.6 p < 0.001

Best state birth
time, in seconds

207 200 None 218 189 None

(Continued on next page…)

124

Table 5 (continued).

Measure No
Side
Views

Side
Views

Significance No
Parallel
Pies

Parallel
Pies

Significance

Best state
birth order

5.4 6.3 None 6.0 5.6 None

Best state
depth in tree
(number of
nodes from
root node)

4.4 4.7 None 5.2 3.8 p < 0.01

Number of
backtracking
events

0.4 0.5 None 0.2 0.6 p < 0.01

Number of
backtracking
events
normalized
to number of
sibling pairs

0.2 0.2 None 0.1 0.3 None

Number of
backtracking
events
normalized
to tree size

0.05 0.04 None 0.02 0.06 p < 0.01

Average
backtracking
magnitude

1.0 1.3 None 0.8 1.4 None

As we can see, neither Side Views nor Parallel Pies had a significant effect on solution

quality. This is true whether we consider end states chosen by the subject or by the

computer. Similarly, neither tool led subjects to develop better solutions faster, as

measured in terms of absolute time or in terms of how many states were visited prior to

arriving at the best state, for computer-chosen best states.

That neither solution quality nor speed of development were influenced by the

tools was somewhat surprising, since it was expected that Side Views would enable

subjects to develop better solutions faster by virtue of displaying a broader range of

options simultaneously. One likely explanation for this negative finding is that the

125

application’s commands and their parameters are relatively straightforward, and previews

(whether one or many) are rendered fast enough to create a tight feedback loop. Thus, in

the absence of multiple previews, one can still quickly find values of interest because of

the responsiveness of the user interface. Another potential factor could be that the

parameters for the filters are also conceptually orthogonal to one another: It is easy to

separate out the effects of hue, saturation, and lightness on an image. If the interactions

between parameter settings had been more complex, we might have seen more

pronounced effects on solution quality and speed of development related to the presence

of Side Views.

Subjects visited the same number of states regardless of condition. On average,

1.5 more states were available to choose from at the conclusion of each task when

Parallel Pies was available. In Table 6 below, we see that we can attribute this effect to

the Create New Version operation, which was used more often than Duplicate to derive

new, active states. These results provide partial support for the hypothesis that Parallel

Pies would result in subjects developing more solutions. However, we are hesitant to

consider it full support for this hypothesis simply because it is unclear how many of these

end states were truly perceived to be viable solution alternatives, and how many served as

“back-ups” during the problem solving process (more on creating back-ups below).

There is also considerable evidence that Parallel Pies influenced problem solving

strategies, leading to behavior more characteristic of set-based problem solving.

Specifically, subjects explored more broadly (as measured by the number of leaf nodes in

the process diagrams and by the average number of children per node) and explored less

deeply (as measured by the height of the process diagrams). Prototypical process

126

diagrams highlight these differences in Figure 34, which displays the process diagrams

for one subject’s four tasks. As mentioned, the differences in problem solving strategies

can be attributed to the Create New Version capability, which made it easy to spawn new

alternatives. When present, subjects used this capability more often than Duplicate (1.7x

more, on average).

127

Figure 34. E
xam

ple process diagram
s for the color correction study. T

asks in w
hich Parallel Pies w

ere present
yielded broader exploration w

ith m
ore states accum

ulating (visible in active state tim
eline).

128

Create New Version not only made it easier to branch out and explore, but it also made it

easier to accumulate possibilities to choose from at the end of the task. When this

capability was present, subjects would sometimes still engage in highly linear, point-

based problem solving practices with little exploration, but use the Create New Version

feature to accumulate all states visited. This strategy may be partially a result of the

study’s design: Since any open, active state is available to choose from at the end,

creating a new version for each new step provides a range of options to choose from at

the conclusion of each trial. This practice is visible in the process diagram for the second

task in Figure 35.

Because our measures consider several attributes of the subject’s tree, we can

easily distinguish between this snapshotting use of Parallel Pies and its use to more

broadly explore: Snapshotting leads to a high number of active states at the end of the

task, but yields trees with few leaf nodes and 1 child per node, on average.

129

Figure 35. Example illustrating Parallel Pies’ use to accumulate variations. In this
example, Parallel Pies was present in the first two trials (text can otherwise be
ignored in this process diagram). The use of the Apply to All Selected Versions
command is visible in the first task (leftmost process diagram), apparent wherever
more than one node appears on a row (indicating they were all created at the same
time). Use of Parallel Pies as a method to accumulate all states visited is visible in
the second task.

130

When Parallel Pies was present, we found subjects’ chosen states were created

significantly earlier in the task. This should not be interpreted as subjects developing

better solutions faster. Rather, when Parallel Pies was used to accumulate states visited,

earlier states were more likely to be available at the end of the task. If an optimal state

was found early on, and subsequent operations veered away from the ideal solution,

subjects could always pick the earlier, better example if it was still available. Figure 36

shows an example of chosen states appearing early in time and closer to the root node in

tasks in which Parallel Pies is present.

131

Figure 36. Example illustrating subjects’ states chosen earlier when Parallel Pies is
present. Parallel Pies was available in the first two trials (text can otherwise be
ignored in this process diagram). Branching is clearly visible in Parallel Pie tasks, as
is the accumulation of states. This subject also pruned states in the first task (visible
via the shrinking active state boxes in the active state timelines). Also noticeable is
that chosen states in Parallel Pies conditions are earlier in time and closer to the
root node.

132

In contrast to our expectations, Parallel Pies led to significantly more backtracking

overall (3x more, on average), though the magnitude of backtracking was not statistically

different. These data indicate that people revisit past states after a similar amount of time

in all cases (since the backtracking magnitudes are statistically equivalent), but they do so

more frequently when Parallel Pies is present. This finding is again likely the result of

more states being available as a result of the Create New Version command.

Another unexpected finding was subjects deriving more optimal states when using

Parallel Pies, where optimality here is measured by proximity to the root node in the state

tree. On average, the best states, as determined algorithmically from all states visited,

were 1.4 nodes closer to the root node when Parallel Pies was present (meaning 1.4 fewer

operations were required to get to the best state from the root node). This finding is

noteworthy because it suggests that the broader exploration ultimately led to better

solutions, as measured by the fewest number of operations required.

While we did find that Parallel Pies had some effect on the location of high

quality solutions within the process diagram, we found no effect on solution quality or

speed of development. However, it could have had an effect in this particular task:

Because one must first perform a color balance prior to shifting the image’s hue, the

optimal way to approach this task is to generate a number of standalone alternatives, each

with a different color balance applied to them. From these, one can then experiment with

hue shifts to discover which of the previously generated variations gets closest to an

optimal solution. However, no subjects discovered this strategy, leading to no significant

effects of Parallel Pies on solution quality.

133

Table 6. Command usage (color correction study). All counts represent averages.

Measure No Side
Views

Side
Views

Significance No Parallel
Pies

Parallel
Pies

Significance

Number of
undos

0.9 1.0 None 1.2 0.8 None

Number of
redos

0.0 0.0 None 0.0 0.0 None

Number of
duplicate
operations

0.7 0.7 None 1.0 0.4 p < 0.001

Number of
Save As
operations

0.2 0.2 None 0.2 0.1 None

Slider
distance
traveled, in
slider units

2695 5847 p < 0.0001 3909 4648 None

There were no measurable differences in the use of Undo, Redo, Save, or Save As

operations across conditions. Apply to All Variations was used less than 10% of the time,

suggesting subjects found little need to develop sets of alternatives in parallel. (However,

the first trial shown in Figure 36 represents an instance where the Apply To All

Variations command was used.)

While Side Views had no discernable effect on solution quality, it did have a

significant effect on slider usage. When present, Side Views resulted in 46% less slider

movement, on average. This effect can be accounted for by the fact that subjects did not

need to move the slider in the wrong direction before discovering the correct area to

move towards.

134

In this study, no significant differences were found in overall cognitive load, nor

any of its constituent dimensions, for any condition in this study. We had hypothesized

(and hoped) that these tools would result in lower cognitive loads, but were also

concerned that they could increase cognitive load by virtue of adding more information to

contemplate at any point in time. That they did not decrease cognitive load may again be

partially due to the nature of the task and the operations available. For example, if more

sophisticated filters were available (and required), we might have noticed a drop in

reported cognitive load in the presence of Side Views.

Table 7. Rated utility of interface mechanisms (color correction study).

Feature Useless (%) Neutral (%) Useful (%)

Undo 17 8 75

Save As 38 21 42

Multiple versions in
same window

5 21 75

Just one preview 13 46 42

Create New Version 4 0 96

Multiple previews 8 13 79

Table 7 presents ratings of the utility of various features of the interface (values are

aggregated into three groups). The Create New Version feature stands out as a highly

rated feature, which is understandable given the effect it had on the problem solving

process. Multiple previews, multiple versions embedded within the same window, and

Undo were also all rated fairly highly.

135

8.3.4 Color Scheme Study

In contrast to the color correction study, this study does not allow us to objectively

measure solution quality. Instead, we must rely on human judges. Because of the time it

takes to rate solutions, and the number of states each subject typically visits, judges rated

only subjects’ chosen solutions, and not every state they visited. Consequently, we cannot

consider the quality of states as a function of time, nor can we consider where the best

solution state existed in the state trees. However, all other measures are applicable.

136

Table 8. Solution fitness and problem solving process measures (color scheme study).
All counts represent averages.

Measure No Side
Views

Side
Views

Significance No Parallel
Pies

Parallel
Pies

Significance

Judged
solution
quality.
Lower
numbers are
better

0.48 0.47 None 0.43 0.53 p < 0.05

Total
number of
states visited

9.5 9.6 None 9.7 9.5 None

Number of
states
available to
choose from
at the end

4.7 4.6 None 3.4 5.9 p < 0.0001

Number of
leaf nodes in
tree

2.0 2.2 None 1.6 2.6 p < 0.001

Height of
tree

7.9 7.9 None 8.6 7.2 None

Average
number of
children per
node

1.1 1.3 None 1.1 1.3 p < 0.05

Chosen state
birth time,
in seconds

232 186 None 226 193 None

Chosen state
birth order

6.9 5.6 None 6.8 5.6 None

Chosen state
depth in
tree, as
measured
from root
node

6.8 4.8 None 6.3 4.3 p < 0.05

Number of
backtracking
events

0.4 0.3 None 0.2 0.6 p < 0.01

(Continued on next page…)

137

Table 8 (continued).

Measure No Side
Views

Side
Views

Significance No Parallel
Pies

Parallel
Pies

Significance

Number of
backtracking
events
normalized
to number of
sibling pairs

0.2 0.2 None 0.1 0.2 None

Number of
backtracking
events
normalized
to tree size

0.04 0.03 None 0.02 0.05 p < 0.05

Average
backtracking
magnitude

1.0 0.7 None 0.5 1.2 None

In contrast to the previous study, this study provides evidence that Parallel Pies can

significantly affect solution quality, though not in the way expected. Lower rated

solutions resulted, on average, when it was present. The data suggest that subjects spent

more time exploring alternatives in breadth, and less time maturing a single solution in

depth. In essence, the ability to spawn new alternatives was welcomed, but overused.

Results from the follow-up think-aloud study (described in next section) provide

evidence for these interpretations and further suggests that, in time, people will adjust

their workflow to better integrate the tools into their everyday practices.

As in the previous study, subjects kept a similar pace, visiting the same number of

states regardless of experimental condition, though, like the previous study, the number

of end states available was significantly higher when Parallel Pies was present.

In contrast to the previous study, subjects’ chosen solutions were not developed

earlier in absolute time nor in terms of birth order when Parallel Pies was available.

138

These differences are likely a result of the differences in tasks: In the color correction

task, one can quickly make a few changes to get a state closer to the target state (Figure

33). In the color scheme task, in contrast, it takes several operations and more time to

explore before acceptable results can be found. Thus, acceptable solutions are likely to be

discovered later in time.

Set-based strategies were again apparent in the results of this study: State trees

were broader (as measured by the average number of children per node and the number

of leaf nodes) but not significantly shorter. Subjects also heavily used the Create New

Version feature as a mechanism to accumulate potential states. Thus, there were, on

average, 1.7x more states to choose from in comparison to the color correction study.

As in the color correction study, we see about three times as much backtracking,

overall, when Parallel Pies is present.

Table 9. Command usage (color scheme study). All counts represent averages.

Measure No Side
Views

Side
Views

Significance No Parallel
Pies

Parallel
Pies

Significance

Number of
undos

0.2 0.3 None 0.4 0.1 None

Number of
redos

0 0 None 0 0 None

Number of
duplicates

1.5 1.5 None 2.2 0.8 p < 0.01

Number of
Save As
operations

0.2 0.1 None 0.3 0.0 p < 0.05

Slider
distance
traveled

4284 9735 p < 0.0001 6679 7340 None

139

As in the previous study, no significant effect of Side Views was found on

solution quality, though subjects again used sliders less when Side Views was present

(44% less, in this case). The Apply to All Variations was used less than 2% of the time in

this study.

Table 10. Cognitive load (color scheme study). All values represent averages for the
NASA TLX scales, with each measure out of a total of 100.

Measure No Side
Views

Side
Views
Available

Significance No
Parallel
Pies

Parallel
Pies
Available

Significance

Total
Cognitive
Load

42 44 None 42 45 None

Mental
Demand

25 28 None 21 32 p < 0.05

Physical
Demand

11 13 None 11 13 None

Temporal
Demand

18 27 None 20 25 None

Performance 22 21 None 18 24 None

Effort 32 30 32 30 None

Frustration 19 17 None 24 12 p < 0.05

In this study, an effect on some dimensions of cognitive load was observed due to

Parallel Pies. Mental demand was rated higher, while frustration was found to be lower.

Given the data collected, these results can be explained by Parallel Pies placing a higher

mental demand on users as the number of embedded alternatives increases in the same

document window. At the same time, the increased number of alternatives lowers

frustration (described on the survey as being insecure or discouraged), since more

alternatives are available to choose from at the conclusion of this task. This interpretation

140

is not necessarily in conflict with the lack of similar findings in the previous study, for a

number of reasons. First, in this color scheme study, subjects created more standalone,

active alternatives than in the color correction study. Second, the nature of the task places

different demands on the subject: In the color correction study, there was one goal to

focus on, while in this study, the subject could continually reinterpret what their ideal

solution may be. As such, they could potentially consider more goal states in their head

than in the color correction study, which had a single visible goal. Our findings from the

think-aloud study lend weight to this interpretation.

Table 11. Rated utility of interface mechanisms (color scheme study).

Feature Useless (%) Neutral (%) Useful (%)

Undo 20 30 50

Save As 30 40 30

Multiple versions in
same window

20 0 80

Just one preview 10 30 60

Create New Version 20 0 80

Multiple previews 0 0 100

We notice less distinction between the rated utility of the various features in this study,

though the experimental features are again highly rated. Across the studies, we conclude

that the experimental features are highly desirable, and consistently more so than current

offerings.

141

8.4 Think-Aloud Study

Following data collection and analysis in the two controlled studies, several questions

arose. First, we saw no measurable effect of Side Views on the problem solving process,

despite it being highly rated (and leading to less slider usage). What, then, was its

perceived value, if any? Second, what could explain Parallel Pies leading to lower-ranked

solutions in the color scheme study? Finally, did subjects perceive changes in their

problem solving strategies due to tool availability? That is, did they consciously modify

their problem solving process?

To answer these questions, we conducted a think-aloud study using the watch

color scheme problem as the task. In this study’s design, inspired by a similar

methodology employed by Miyake [MIY86], a pair of subjects work collaboratively on

the same computer to develop the color schemes; one individual operates the computer

for the first two tasks, then the subjects switch for the last two. Audio is recorded and

subjects are encouraged to think aloud as they work.

Two pairs of subjects were recruited for this study. One pair of subjects had

previously participated in the laboratory studies, while the other pair had assisted in

piloting the laboratory studies. Subjects were not compensated.

The same study application was used as in the color scheme study, but time limits

were extended to 10 minutes per task to allow subjects more time to develop solutions.

No questionnaires nor workload assessments were administered. However, we conducted

a semi-structured interview after all four tasks were completed.

In this study, the value of Side Views became apparent. Specifically, Side Views

led to the following three behaviors:

142

1. Subjects quickly eliminating large portions of the solution space

2. Subjects serendipitously discovering viable alternatives, and

3. Use as a coordination mechanism when communicating.

We discuss each of these findings in turn.

On several occasions, subjects opened several filter windows at once, then, after

reviewing the sets of previews for a particular filter, completely removed the filter from

consideration. For example, in one trial, the Brightness and Contrast filter was opened,

adjusted somewhat, but then closed after a subject said that the results were all “mud”

and thus not worth considering. In this way, Side Views allowed subjects to contemplate

a set of options then quickly dismiss an entire class of possibilities deemed unacceptable.

In cases when Side Views was not available, subjects were not afforded this luxury and

often asked each other to “see what happens if” a particular parameter is moved in a

certain way. These findings indicate that Side Views was being used by subjects in the

ways intended (i.e., to guide them in finding values of interest), and that its lack of

apparent effect in the laboratory studies was likely due to subjects being able to

compensate through quick, iterative cycles with the single preview and sliders.

We also found evidence of Side Views leading to the serendipitous discovery of

new possibilities, a phenomenon our design intended to facilitate. On occasion, changes

in one parameter led to unexpected changes in the previews of other parameters, leading

subjects to shout and point at surprising results. These findings ultimately added to the

repertoire of potential solutions under consideration.

Side Views also served as a task coordination tool in this cooperative task. In

working through the problem, subjects described, in abstract terms, the effect they

143

wanted, but then quickly grounded their thoughts by pointing to examples generated by

Side Views. In its absence, subjects expressed what they wanted, but then needed to

suggest ways they might be able to achieve the result. In interviews, subjects

spontaneously reported using Side Views in this way (as a communication vehicle), and

suggested it could also help ground conversations when consulting remotely, if both

parties could see the same sets of previews simultaneously. This use of Side Views – as a

mechanism to support collocated or remote collaboration – was unexpected, but suggests

additional ways this tool could be extended and applied.

One area of improvement for Side Views became apparent in this study. In

particular, subjects often narrowed the range of values shown in a parameter spectrum,

but then forgot that the range of previews shown was a small subset of the overall

possibilities. This typically happened after “drilling down” to a smaller range, switching

to another filter, then returning to the original (still open) filter. Based on their

conversation, it became clear that they thought they were analyzing the full range of

possibilities when it was in fact a small subset. In interviews, subjects reported forgetting

about the ability to reset the range of values shown, which suggests a need to reconsider

this particular design choice.

As in the laboratory studies, Parallel Pies and its features were heavily used and

appreciated. Several episodes illustrate that its use coincides with its intended uses, and

that it was addressing the needs we had identified earlier (namely, quickly generating and

comparing alternatives). However, we also learned that subjects sometimes felt

overwhelmed with the amount of information on the screen at one time.

144

The Create New Version feature was designed to allow people to spawn new

alternatives as they are found while using Side Views. There is evidence that subjects

used this capability for precisely this purpose, and one case illustrates this well. In one

instance without Parallel Pies available, a team adjusted parameter settings of a command

until they were satisfied. However, they then realized that they wanted to create a new

standalone version to hold this new state. At this point they stopped prior to applying the

command, and said, “Oh, we need to duplicate the document first.” Thus, they were taken

off task to prepare the interface to create a new alternative. When Parallel Pies was

present, on the other hand, they freely created new alternatives, and when results proved

unsatisfactory, they made comments such as “no harm done,” switched to another version,

and moved on.

The freedom Parallel Pies grants users to broadly explore was a common theme in

the interviews. Even when we suggested that this broad exploration could lead to worse

solutions (as in the second controlled study), they insisted that it is better to have this

large number of possibilities to choose from when solving these types of problems.

Further, they indicated that they knowingly modified their problem solving process as a

result, but were still learning how to best integrate the tool and its capabilities into their

workflow. Thus, we believe that the lower rated solutions in the color scheme study were

partially due to this unfamiliarity with the tool and expect that with increased proficiency,

the differences in results would disappear.

Despite subjects’ expressed desire to have multiple options to choose from, they

did report feeling somewhat overwhelmed at times with the number of choices that Side

Views and Parallel Pies generated. For example, one subject reported feeling that there

145

was “too much color on the screen at once,” making it difficult for him to focus

exclusively on the problem at hand. This finding lends support to our interpretation of the

cognitive load results of the color scheme study: Subjects found multiple versions highly

desirable for solving the problem (lower frustration), but, at the same time, a bit

overwhelming (higher mental demand) because of the multitude of options

simultaneously visible. Consequently, alternative schemes such as Elastic Windows

[KAN97] may be necessary to help better manage the sets of previews that Side Views

generates to avoid clutter.

8.5 Contrasting Results Between Studies

Between studies, we find fairly consistent results: Subjects explore more broadly with

Parallel Pies, and Side Views leads to markedly less slider usage when adjusting

parameter settings. However, some differences between study results suggest that the

tools serve different purposes according to the nature of the task. We summarize salient

differences then consider their implications for designing future user interface

mechanisms intended to support the problem solving process.

In the color scheme (watch) study, subjects produced approximately 1.5x more

solution alternatives than in the color correction task. The use of Parallel Pies also led to

increases in perceived mental demand, whereas such increases were not observed in the

color correction task. These differences indicate that subjects were attempting to

simultaneously contemplate multiple ways of solving the problem in the watch study,

while being much more focused on one solution alternative in the color correction study.

The greater use of Undo in the color correction study (3x more than for the watch study)

146

further indicates that subjects were not trying to generate sets of alternatives as much as

optimize a single solution instance.

These differences point to an important distinction between the prerequisites to

solving the problems. In the color scheme (watch) study, subjects had to spend more time

defining the form of an ideal solution. In the color correction task, the ideal solution was

given, so no time was needed to solve this sub-problem. In general, when solving ill-

defined problems, one must initially devote time to discovering what forms a desirable

solution can take. That is, there is a need to create and define the boundaries and

parameters of an acceptable solution. Consequently, individuals explore alternatives in an

attempt to define what the goal can be. In contrast, when the solution space is much more

constrained, either because the problem is well-defined to begin with, or because a target

has been established for an ill-defined problem, the problem solving process becomes an

optimization task where one attempts to achieve the envisioned solution as best as

possible. Across these stages of the problem solving process, some types of user interface

support are more appropriate than others.

When one is attempting to establish the boundaries of the solution space for an ill-

defined problem, there is less of a need for history tools, because one is attempting to

generate sets of viable solutions rather than refine a single solution. Thus, tools that

streamline the process of creating new standalone alternatives are most appropriate in

these phases of the problem solving process. As it becomes clear what an ideal solution is,

iterative refinement of a solution instance becomes essential to successfully reaching this

ideal. At these stages, tools that facilitate backtracking or that streamline editing past

actions (such as editable histories) are most appropriate.

147

8.6 Comparison to Other Experimental Findings

Lunzer’s subjunctive interface attempts to facilitate the simultaneous development and

evaluation of sets of alternatives in ways similar to the set-based interface, but at the level

of allowing individual user interface mechanisms to assume multiple states

simultaneously. In a recent pair of studies, he compares performance of his toolset with

conventional interface mechanisms in a task involving census data [LUN04]. Despite the

differences between his study and ours (most notably, the nature and type of tasks), it is

useful to compare study designs and outcomes.

In Lunzer’s study, subjects must answer questions using census data, both with

and without use of subjunctive interface mechanisms. He measured solution correctness,

time to find the right answer, cognitive load, and user satisfaction with the tools. Notably,

the task has a right answer that the subject can easily verify, making it much more well-

defined than either of the tasks in our studies.

Like our study, his interface mechanisms did not significantly affect task accuracy,

but, unlike our study, his mechanisms did improve task completion time after an interface

redesign. He also found his tools lowered cognitive load. However, a detailed analysis of

how the tools influenced the overall problem solving process is not given.

The subjunctive interface and set-based interface both attempt to increase the ease

with which people can generate and explore alternatives in parallel. Our respective

studies confirm that this capability is desired and used, when available. They also provide

some evidence that these tools can lower cognitive load under some conditions, though

one of the questions that arises is whether cognitive load would be lowered under less

stressful conditions (e.g., when time limits are less of a factor).

148

While both studies suggest the utility of providing capabilities that enable users to

explore alternatives, neither research effort has arrived at tool designs that reliably lead to

higher quality solutions. Thus, a remaining question is, given that people want these tools,

how can they be better designed to truly increase solution quality?

8.7 Improving Side Views and Parallel Pies

In addition to the quantitative data from the controlled laboratory studies, we have also

accumulated information suggesting ways of improving the design of Side Views and

Parallel Pies. This information comes from early formative evaluations of the tools, the

controlled studies, and the think-aloud study. In this section, we summarize the findings

from these separate evaluations to develop a list of aspects that should be considered

when building similar tools in the future.

8.7.1 Side Views

Our experience building and deploying Side Views suggests the following issues should

be considered in future designs:

• Preview sizes

• Quick switching of preview source states when Parallel Pies is used to manage

sets of alternatives

• Attention to use of screen real estate

• Avoidance of user interface clutter

• Tri-slider zoom-in/out issues

• Interactive exploration of a range of values

149

Subjects sometimes complained that previews were too small, and that they would prefer

the preview modifying the actual document itself, as Adobe Photoshop does [ADO]. This

request could easily be accommodated when only one document state is embedded within

the same window, but otherwise breaks the current Parallel Pies model. One potential

way around this is to use a device such as a fisheye view technique [FUR86] to

temporarily push states other than the default state to the edges when previewing through

the document. Or, one could simply hide the other states while actively modifying

parameter values for the default state.

The converse of this problem is that subjects sometimes desired to see sets of

previews for all the alternatives in a Parallel Pies visualization. Side Views does not

currently support this, but it could be modified to add an additional, row of previews

(similar to the parameter spectrums) where each preview corresponds to an alternative.

Displaying sets of previews necessarily takes additional screen real estate, making

Side Views windows compete with the document window. Some subjects lamented the

loss of screen real estate, though they admitted to the utility of the multiple previews. To

alleviate this tension, it would be worthwhile to consider one more state a Side Views

window could be in. In the original design and implementation of Side Views, a before

and after preview is initially shown, with all parameters and parameter spectrum

previews hidden. Opening up the Side Views reveals all of this additional information.

The third state could be an intermediate state that corresponds to current dialog box

designs that offer just a single preview and the controls for setting parameter values. This

would yield a smaller area for the dialog box, since the space occupied by the parameter

spectrums would be freed. Together, these three states would enable quick previews of

150

the function (tool-tips), broad overviews conducive to exploration of the problem space

(via parameter spectrums), and the focused refinement of parameter settings with a

minimally sized dialog box (traditional dialog box layout).

Users often take advantage of Side Views’ modelessness, leading to several filters

being open simultaneously. To combat screen clutter, techniques such as Elastic

Windows [KAN97] could provide a single window in which to house all Side Views.

Figure 37. Two slider redesigns that allow scanning of ranges.

Two issues arose with respect to the parameter spectrum’s slider and its depiction of the

range of values on the control itself. First, users sometimes forgot that it was zoomed in

to a very narrow range of values, with their attention focused on the previews themselves.

Thus, they did not realize they were seeing only a small portion of the command’s

capabilities. Second, users expressed a desire to be able to interactively explore a

function by moving the entire range at one time. That is, after narrowing down to a

particular range, they wanted the ability to then move the entire range across the slider.

A redesign of the slider mechanism may be able to address both issues. Rather

than provide three separate parts to the slider, it could be rendered as a single element

whose width represents the range displayed. For example, it could be represented as a bar

whose edges can be resized to modify the ranges (Figure 37A) or as a wireframe (Figure

151

37B). In this latter design, both the range’s span and its location could be varied by

interacting with the center piece (the box that joins the two sides). Vertical movement of

the center piece could increase or decrease the range previewed, while horizontal

movement could vary the position of the range on the slider. Either of these designs

might make the ranges previewed more visible, while enabling scanning of ranges.

8.7.2 Parallel Pies

The primary issues with Parallel Pies’ design center around management of the

alternatives. In particular, these issues stood out:

• Slice sizes are fixed

• Thumbnail buttons poorly represent document states

• One cannot generate entire sets of new alternatives at one time

Currently, Parallel Pies creates a circular visualization whose wedges all share the same

arc angle. As the number of alternatives grows beyond four, this even division of the

space makes it increasingly difficult to completely see a single alternative, even if the

tool is moved to the far side of the window. At present, the only way to deal with this

issue is to turn off alternatives by depressing their corresponding thumbnails.

Subjects expressed a desire to manually modify the arc angle, but a more elegant

solution may be to automatically increase the arc angle for the default state (i.e., the one

most visible) as the visualization tool is pulled off to the side. As the tool is brought back

into the center, it could return to its original, equal division of space.

Another solution is to allow at most four alternatives to be visualized at once

within the document window, with no rotation of the visualization tool allowed. With this

scheme, users could simply move the center hub to one corner of the document to

152

completely display a particular variation. However, limiting the visualization to at most

four alternatives would then require a secondary mechanism to choose which four, in the

event that the user generates a large number of alternatives.

At times, subjects had some difficulty understanding whether a particular

variation’s thumbnail button was active or inactive. Stronger visual cues that do not

embellish the scaled-down image, but rather the area around it on the button, would help.

(The image’s thumbnail cannot be embellished because there is no one scheme that

works for all images. For example, if disabled variations are represented by being grayed

out, this scheme would not be particularly effective for images that are largely gray.)

Thus, if future designs retain thumbnail-sized toggle buttons as the convention for

activating and deactivating variations, they may need to be further enhanced to convey

state.

One design that potentially addresses both of these issues is to create a two-

dimensional space for holding the variations, similar in spirit to the ART system

[NAK00]. Within this space, users could arbitrarily arrange the thumbnails representing

the alternatives, and use a lens to frame those they wish to consider at any point in time.

For example, in Figure 38, the state space holds eight alternatives, though only four fall

in the lens in the middle. Thus, only these four would be visible in the document window.

With some care, users could physically arrange the alternatives to make it easy to switch

between batches of variations that are closely related.

153

Figure 38. A state space for holding alternatives.

Finally, users sometimes asked whether they could create an entirely new set of

alternatives with a filter, rather than just one at a time. That is, they wanted a “Create

New Set of Versions” command in addition to the Create New Version command. How

often such a command would be used is unclear, but is worth testing out.

154

8.8 Summary

Results from our studies indicate that tools designed to support set-based interaction can

have a significant effect on the problem solving process, despite being entirely optional

components of the user interface. In particular, Parallel Pies’ ability to automatically

duplicate and apply a command to a document resulted in subjects exploring more

broadly and developing more solution alternatives. In a tightly constrained task, subjects

also developed more optimal solutions with Parallel Pies, but in an open-ended task,

subjects initially overused this feature, leading to lower-rated solutions. Side Views, on

the other hand, led to reduced slider usage (about 50% less, on average), and also

facilitated the serendipitous discovery of alternative solutions. In a collaborative setting,

the tool facilitated communication while enabling subjects to quickly dismiss entire areas

of the design space by virtue of its multiple previews.

155

CHAPTER 9

IMPACT AND OPPORTUNITIES
FOR FUTURE WORK

This dissertation makes the following contributions:

1. We provide evidence that individuals often wish to explore alternative

possibilities when solving complex problems (that is, engage in set-based problem

solving practices), though few facilities exist in current user interfaces to

expressly support this practice

2. We provide evidence that the lack of tools to explore alternatives can lead to a

linear problem solving process marked by continual revision of a single solution

instance (point-based problem solving). Evidence for this phenomenon can be

found in our initial exploratory study as well as our laboratory studies, where

linear problem solving processes are prominent when our tools are absent

3. To facilitate exploration of alternatives, we present the concept of a set-based

interface. A set-based interface refers to an interface that provides services

intended to facilitate the generation, manipulation, evaluation, and management of

sets of alternatives. We contrast this concept with point-based interfaces, which

we argue most accurately describe current interface designs

4. We provide specific means (visualizations and metrics) for distinguishing

between point- and set-based problem solving

5. We present two tools designed to support set-based problem solving, Side Views

and Parallel Pies

156

6. Based on results from two controlled laboratory studies and a think-aloud study,

we conclude that set-based interface mechanisms, when available, are adopted

and can influence an individual’s problem solving process in the following ways:

a. Users more broadly explore a problem space, sometimes at the cost of

going in less depth

b. Users can find more optimal solutions, where optimality is measured by

the fewest number of operations required to derive a chosen solution from

a given start state

7. With respect to Side Views, we find that the presence of Side Views leads to

approximately 50% less slider usage when adjusting parameter settings

8. With respect to Parallel Pies, we find that this tool can:

a. Lead to worse solution states if overused in time-constrained tasks

b. Both positively and negatively impact cognitive load in open-ended tasks,

while showing no effect in more tightly constrained tasks

9. With respect to Side Views and Parallel Pies, we find users highly rate the ability

to quickly generate new standalone alternatives and the ability to broadly survey

one’s options through the guise of enhanced previewing mechanisms

10. We find no evidence that Parallel Pies or Side Views enable a user to develop a

high quality solution faster, counter to expectations that multiple previews would

lead to better solutions faster

9.1 Conclusions

Based on our research, we reach the following conclusions about set-based interfaces. Of

the four proposed characteristics of a set-based interface (generation, manipulation,

157

evaluation, and management), the capabilities to quickly spawn a new standalone,

permanent alternative (generation) that is automatically managed by the interface

(management) and easily comparable with other states (evaluation), constitute the most

important and influential features of the tools we built. These capabilities are largely

absent from current applications (especially the degree to which they are integrated in our

application), but our results provide compelling evidence that they should be considered

for future applications: Their presence consistently resulted in subjects exploring more

broadly, a tactic they consciously embraced and prized, and also resulted in more optimal

solutions for a tightly constrained task. Notably, this feature set is distinct from history

and Undo mechanisms, in that it allows for the proactive generation of alternatives as

data are actively manipulated, allowing for the inclusion of serendipitously discovered

results.

From our study data, the ability to manipulate sets of alternatives simultaneously

(i.e., apply an operation to all of them at the same time) seems less vital. Further research

may demonstrate when and how this capability may prove most useful.

Multiple sets of previews, while highly prized, had no effect on solution quality,

though they significantly reduced slider usage in our studies. However, our subject pool

was composed of highly experienced, expert users. Thus, the utility of multiple previews

may be much greater and more noticeable for novice users. Their utility may also be

greater for functions whose parameters have complex interactions that cannot be easily

predicted by users.

Our results suggest that future work should focus primarily on exploring ways of

supporting the rapid generation, management, and evaluation of standalone alternatives

158

in other task domains. In the next section, we consider open research problems, and

suggest some additional studies that could be performed.

9.2 Future Work

Future work for set-based interaction research can be divided into three broad categories:

Exploring additional problem domains, tool-level support for each aspect of a set-based

interface, and further studies.

9.2.1 Problem Domains

In this body of work, we have focused primarily on the domain of image manipulation.

Many opportunities remain to explore how these principles can be more fully realized in

other domains. For example, how could one support experimentation with time-based

media, such as audio or video, where parallel evaluations are not practical? How should

these alternatives be represented? How could the interface represent alternative temporal

sequences?

Experimenting with alternatives is vital to developing a good solution in any

domain, but little explicit support has been developed for this process in current user

interfaces. The primary challenge for user interface research is to develop a set of

domain-independent services that a user can expect to exist in any application when they

feel the need to explore. That is, just as services such as Undo or Cut/Copy/Paste are

expected to exist in any application, a similar set of services should be available to

support exploration.

159

9.2.2 Better Support for Generating Alternatives

As we have argued, generating alternatives is one of the key aspects of a set-based

interface. We can consider this process from both the user interface implementer’s and

user’s perspective. From the implementer’s perspective, we are interested in making it

easy to create new alternatives without unnecessarily wasting memory. From the user’s

perspective, we wish to make it easy to designate and generate a new alternative with

little effort. We discuss possibilities for future research from both perspectives.

As discussed in Chapter 6, Parallel Pies creates a copy of the entire document

state when generating a new alternative. However, for some applications, this deep copy

could be wasteful of resources, especially if only a small part of two or more solutions

differ. Toolkits could provide useful abstractions to facilitate the developer’s task of

generating alternatives that are not wasteful of resources.

Figure 39 presents a UML class diagram [BOO99] that extends the Parallel Pies

architecture shown in Figure 20. This architecture is virtually identical to the one

discussed earlier in Chapter 6, with the exception of a new type, DocumentElement. A

DocumentElement is intended to store meaningful segments of data in the document state.

In an image editing application, these may correspond to layers in the image; in a text

document, they could be paragraphs. The goal is to provide an abstraction for these

chunks of data to make it easier to conserve memory when generating alternatives.

Conservation of memory can thus occur in the following manner.

When creating an alternative to a given DocumentState, the new DocumentState

can, at first, contain references to all of the DocumentElements of the original

160

DocumentState. When a DocumentElement in either the original or new state is modified,

it can be converted from a reference to a true copy by calling its dereference() method.

161

Figure 39. O
utline of a basic toolkit architecture for a set-based interface.

162

Ideally, these details – creating new references and dereferencing

DocumentElements when modified – would be hidden from developers, so that they can

simply supply an operation and its parameters to the Solution’s applyOperation() or

createNewVersion() methods (where applyOperation() replaces the existing state with the

resultant state, and createNewVersion() applies the operation to a copy of the original

state to produce a new, standalone state). For applications in which the

DocumentElements logically correspond to objects within the document (e.g., layers in

an image manipulation application, or objects within a vector-based drawing program)

and operations are conceptually discrete and well-defined (i.e., there is a well-defined

start and end to an operation), it is reasonable to assume that we can shield developers

from these lower-level memory management details via this architecture. However, for

problem domains such as text editing, where objects and operations are more fluid and

less discrete, it is not clear if this design is optimal. Thus, one of the research threads to

pursue in the future is to examine how appropriate this scheme is for problem domains

with data objects and operations less discrete in nature.

From the user’s perspective, we would like to support the creation of new

standalone alternatives at any level of granularity. For example, in a word processor, we

would like to allow a user to create alternatives at the level of an individual word, all the

way up to alternative story flows. Supporting these various levels of generation may be as

easy as allowing the user to select all or part of a document, then applying the Create

New Version operation to that selection. However, how these alternatives are managed

and presented to the user is an open research problem that we consider next.

163

9.2.3 Better Support for Managing Alternatives

One of the most critical components of a set-based interface is the infrastructure it

provides to manage the alternatives – the facilities that allow variations to be stored,

organized, and retrieved. This infrastructure creates a richer organizational structure than

the notion of a document to offer explicit services to maintain all the solution variations.

In our work in the domain of image manipulation, Parallel Pies provided this

infrastructure through the thumbnail representation of the variations and the visualization

tool within the document window. However, this organizational scheme is obviously not

appropriate for all task domains. In this section, we consider potential methods of

visualizing and organizing alternatives based on where the user can expect to find them

within the application. These can be summarized as placing the alternatives:

• Within the solution itself

• In an entirely separate space within the application

The first method of organizing alternatives is to place them directly within the solution

itself, as Parallel Pies does. Microsoft Word [MIC] also takes this approach with its

change-tracking mechanisms: Changes are displayed within the document itself and

differentiable by virtue of the text’s color. To remove clutter, these changes can be

hidden; tool-tip windows provide a transient, on-demand view of the changes. The Fluid

Documents interaction mechanism [BAY98] provides another mechanism by which

alternatives can be embedded directly within the data itself.

Placing alternatives within the data has the advantage of making them readily

accessible and directly associated with the data that is varied. This technique also works

well for alternatives that are of very fine granularity. However, for variations that span

164

large amounts of data (say, alternative story flows for a document), this method starts to

break down because it becomes more difficult to place the alternatives side-by-side. This

is a general problem with embedding alternatives within the data itself: This method can

complicate the user’s view of the overall solution by overloading the type and meanings

of the data shown in the document window. The WYSIWYG metaphor is also

compromised by virtue of embellishing the document with additional information, not all

of which is desirable in the final version. Currently, this problem is partially handled

through mode switches (e.g., turning “on” or “off” alternatives), though a better solution

may be to move the variations outside the main data view, as we discuss next.

Alternatives can be placed outside the document data, in another, well-defined

space. Parallel Pies does this via the thumbnails situated next to the data view. With this

method, the alternatives are represented as separate, unique objects that are easily

discernable, but still grouped according to the data that is varied. They are also tightly

coupled to the document window itself. However, as currently implemented in Parallel

Pies, this technique is most appropriate for variations of relatively coarse granularity

since very small differences are difficult to notice in the thumbnails.

The ART system [NAK00] creates an entire space that can be used to experiment

with segments of a text document. Next to a WYSIWYG view of the document, ART

provides an ElementsMap that allows sections of text to be arranged in a 2D space. The

vertical ordering of these text segments determines their ordering in the WYSIWYG view,

but the user is otherwise free to interpret the spatial meanings of the text segments. With

this scheme, one can create alternative text segments, then use spatial positioning along

the x-axis to contemplate and compare alternatives.

165

The primary advantage of moving alternatives into their own, separate space is

that they can more easily become first-class, manipulable objects. User interface

designers are also freed from many of the constraints that arise when trying to represent

the alternatives within the data itself (e.g., they do not need to worry about organizing the

alternatives in a way that respects the WYSIWYG presentation of the data).

These methods of managing alternatives – placing them within the data or in their

own separate, dedicated space – represent a continuum of possibilities. Moving forward,

there are a number of opportunities to better scope out this design space and the

affordances, strengths, and weaknesses of the various approaches. For example, do users

prefer the alternatives within the data, or do they find it more helpful to have them

isolated in separate windows? Does one method work better for one type of data than

others? Which techniques work well for finely-grained alternatives, and which work well

for alternatives that span the entire solution? The overall goal in answering these

questions should be to develop a single, well-defined mechanism that is generally

applicable across application domains so that users can have an expectation of this

service being available in any application.

9.2.4 Better Support for Evaluation

In our work in the image manipulation domain, alternatives are physically laid out to

enable side-by-side comparisons. However, this tactic does not work for time-based

media, nor data such as text. This tactic also does not work well for extremely large

documents or sets of data. Tools that summarize differences between two documents (e.g.,

[NEU92]) can assist in comparisons of larger documents by virtue of providing a very

166

fine, localized view of the differences, but these types of tools lose their value when a

user explores highly divergent alternatives.

There are thus a number of opportunities to investigate additional mechanisms for

enabling the evaluation of sets of alternatives. Time-based media present one challenge,

but the other primary challenge is in providing the ability to summarize and compare

multiple alternatives at various levels of granularity. For example, for two extremely long

documents, neither of which overlaps in any significant way, it may be more

advantageous to perform semantic summarizations of the documents to reduce the

amount of information to contemplate when making comparisons.

9.2.5 Better Support for Manipulation

Parallel Pies allows users to apply a command across all currently active document

variations. Similarly, Lunzer has investigated the possibility of “multiplexing” user input

so that the same input is replicated across multiple document instances [LUN99]. In both

systems, the intent is to reduce the need for users to replicate actions when working with

multiple alternatives. That is, these facilities attempt to increase the ease with which one

can keep alternatives in sync. Apart from these research examples, other applications

facilitate the process of keeping two or more document states in sync via mechanisms

such as scripts or merge commands.

While a number of mechanisms exist to help keep different document versions in

sync with one another, it is not clear which are the most useful. For example, do users

prefer to proactively keep variations up-to-date using mechanisms such as those found in

Parallel Pies or the subjunctive interface? Or do they prefer to focus on one alternative

167

exclusively, then transfer the fruits of their labor to other alternatives (either by copying

data or replicating command usage)? Studies are needed to answer these questions.

9.2.6 Further Studies

In our studies, we found that Parallel Pies’ Create New Version command heavily

influences subjects’ problem solving process. One of the questions that remains

unanswered is whether we would observe similar effects if we replaced Parallel Pies with

branching histories or snapshot mechanisms. The intuition is that we would not, because

neither provides the ability to quickly spawn a new alternative the moment it is found

when interacting with a command. This, alone, seems to be the primary reason that

people adopted more set-based practices in our studies, and neither of the aforementioned

mechanisms provides this capability. However, further studies are needed to understand

how all of these types of tools influence the problem solving process across a wider range

of task domains.

It would also be beneficial to better understand how various design choices for

these process support tools affect the problem solving process. For example, Dix

describes a number of parameters to consider for implementations of Undo [DIX96]: The

size of the undo stack, what actions are undoable, whether a series of actions get chunked

together into one undoable operation, and so on. Each property of a tools’ design has the

potential to influence its usage. However, there is little understanding of what ranges of

values are suitable or desirable for each of these properties. For example, do users need

unlimited undo, or is it sufficient to provide only the last 100 actions? Would Side Views

be just as effective with three previews per parameter? For functions that take a

significant amount of time, at what point does waiting for Side Views’ multiple previews

168

become a liability? How many alternatives should be readily accessible and viewable at

one time?

For over 20 years, process support tools such as Undo mechanisms or enhanced

histories have been proposed and built. Intuitively, many of these tools are invaluable: It

would be difficult to imagine using any application without Undo being available.

However, few have studied the true impact these tools have on the problem solving

process. This research provides one of the first investigations of how these types of

process support tools can influence the problem solving process and provides a base from

which others can continue to explore how to build and evaluate computational tools

designed to complement human problem solving across problem domains.

169

APPENDIX A

TOP THREE RESULTS FOR EACH TASK
IN THE COLOR SCHEME STUDY

This appendix shows the top three rated results for each season of the color scheme task.

Subjects could only vary the hue, saturation, lightness; color balance; and contrast of the

image. Furthermore, they could only modify the entire image – selective application of a

function was not possible.

Figure 40. The initial state for the watch task.

170

Figure 41. The top three rated solutions for winter.

Figure 42. The top three rated solutions for spring.

171

Figure 43. The top three rated solutions for summer.

Figure 44. The top three rated solutions for fall.

172

APPENDIX B

PARTIALS

The focus of this dissertation has been on exploring the concept of a set-based interface

in the domain of image manipulation. In this appendix, we broaden our scope to consider

how these principles might apply to a completely different domain: programming.

As with any other ill-defined task, there is no one right way to solve a

programming problem. Thus, programmers must experiment with their code at all levels

of granularity – from individual expressions, to algorithms, to the overall architecture.

Informally, we have observed individuals’ experimentation supported through a number

of devices: some principled, some ad-hoc; some clearly documented, and others less so.

At the most principled level, the use of globally-accessible variables provides a

way to factor out elements that are uncertain and likely to change due to experimentation.

For example, when developing a network server, the programmer may be faced with

several implementation choices that affect the overall performance of the server, such as

the maximum number of clients to service at one time, how large to make read/write

buffers, and so on. In this case, these unknown quantities represent atomic values that can

be factored out into globally accessible and configurable variables. At least three

approaches are possible for setting these variables: They can be directly set within the

code, requiring a recompile and re-link each time they are changed; they can be read in

from a configuration file; or they can be set by prompting the user. The latter two avoid

the need to recompile when changing values, but require significantly more effort to

enact since both require additional support code (code to read a file, or code to interact

173

with a user). However, once in place, all three methods make it somewhat easier to

experiment with quantities whose values may change. But these methods do not, by

themselves explicitly document the likely alternatives for a given quantity. That is, one

must manually document that a value such as the maximum number of threads could be

any number between 20 and 30.

The C language’s preprocessor facility (as realized through #define, #ifdef, and

#else) affords the explicit expression of alternatives by enabling entire blocks of code to

be conditionally included or excluded. Software developers can experiment by

developing several sets of alternatives in code (either contiguous on non-contiguous) that

are demarcated via these preprocessor directives. However, testing each alternative

requires a recompilation and re-linking of the executable.

Another method of supporting experimentation is to save a copy of the code

before developing an alternative. This copy could be a snapshot in a revision control

system (e.g., RCS [TIC82]), or simply a copy of the file in the file system. Both tactics

have the advantage of fully preserving a previous state, but only the revision control

system provides a well-defined mechanism for documenting and swapping alternatives in

and out. However, with either of these two mechanisms, the differences are not visible in

the code itself – one must compare and contrast two or more separate files using tools

such as diff [DIFF]. Additionally, like the preprocessor facility, one must recompile and

re-link after developing an alternative.

A more ad-hoc practice of generating and storing alternatives is to comment code

in and out. This method of experimentation is universally available in every language and

readily accessible without the need for any additional tools. However, it is prone to error

174

since one must carefully remove and re-introduce complete blocks of code when

switching between alternatives. Furthermore, unless the developer explicitly states her

intentions, the commented-out code does not necessarily communicate to others that it is

an alternative. Finally, as with other methods, a recompilation and re-linking is required

to test out different versions.

Given this need to experiment and these current methods, we set out to devise a

scheme that allowed one to explicitly express uncertainty within the language itself. The

intent was to formalize this process of experimentation, require as little effort as possible

to experiment (e.g., no need to create support code), and enable the developer to delay

commitment to a final value until runtime. In this spirit, we developed a language

enhancement for the Java language called a partial.

A partial describes a portion of code that is uncertain. A partial expression has the

following syntax:

partial(type : alternative1 [, alternative2]*)

Where type represents the type of the expression, and alternative represents one or more

expressions that evaluate to that type. For example, if the value for an int is unknown, we

could create the following expression:

int myValue = partial(int : 1, 5, 8, 100);

At runtime, a user can choose between assigning myValue the value 1, 5, 8, 100, or a

custom value.

Similarly, we could create a partial for a String:

175

System.out.println(“Hello ” + partial(String: “World”,
“Mundo”, “Mom”));

Arbitrary objects are supported as well:

Vector a = getSomeVector();
Vector b = getSomeOtherVector();
Vector c = partial(Vector : a, b);

Using a modified version of IBM’s jikes compiler [JIK], this construct is translated into

code that invokes a function in a runtime library. When the resultant application is

executed, a dialog box appears at the point in execution when a partial line of code is

encountered. For example, for “Hello World” example above, the following dialog box

displays:

At runtime, the user receives context about the line executing (the actual code at that line,

the method that is executing, and the class of the object), and a drop-down list of the

potential values specified. Importantly, the user can also manually input a new value for

expressions that evaluate to numbers or Strings (we discuss how to deal with manually

Figure 45. A partials dialog box.

176

creating arbitrary objects in the future work portion of this section). Once a value has

been chosen, pressing the Set button assigns the chosen value to the expression, and

execution resumes.

9.2.7 Affordances

Partials provides an explicit mechanism for specifying (generating and managing) sets of

alternatives at the level of the programming language itself. At runtime, evaluation can be

performed serially each time a partial is executed. (In our current implementation,

parallel evaluation is not supported, though one could potentially fork the process

[SIL02] to derive a separate standalone application instance. However, this method

would require careful consideration of how to handle code that affects open resources

such as network sockets or files.) Currently, we have focused on grammar-level support

for experimentation, and have not investigated interface-level support for specifying or

simultaneously manipulating the alternatives in an editor.

Compared to other mechanisms in use to support experimentation, partials

provides a clearly identifiable mechanism for designating uncertainty. Furthermore,

because the compiler “knows” that this expression represents a set of alternatives, it

serves as a hook to provide explicit support for exploration at this point. With the current

strategies, this intent is missing in the representations of the alternatives, as are

mechanisms designed to help people evaluate these different paths.

9.2.8 Related Work

We use the term “partial” to describe this technique to evoke the sense that the software

is partially constructed, and that details still need to be worked out. Most related to this

concept in the field of HCI are user interface continuations [QUA03]. User interface

177

continuations allow a user to partially specify the information for a dialog box or form,

and continue working. Each incomplete piece of information is collected and made

available to be completed at a later time.

Like user interface continuations, partials allows one to delay commitment to

particular values. However, continuations primarily address those circumstances when a

single value is unknown, whereas partials is designed to allow sets of alternatives to be

specified.

9.2.9 Implementation

Partials has been implemented by modifying the Java grammar and Jikes compiler, and

by providing a new run-time library. The canonical JavaCC Java grammar [JAV] was

modified to include two new constructs: partial and partialBlock (described in future

work below). A custom preprocessor (a parser derived from the modified grammar)

converts instances of these constructs into executable code that calls our runtime support

library. The modified Jikes compiler automatically loads and calls this preprocessor when

reading in files. The resultant bytecode is compatible with any JVM, but requires the

runtime library at execution time.

9.2.10 Evaluation and Discussion

We have had the opportunity to evaluate partials in the context of developing a Java-

based chat client [VOI05]. As part of the testing of this client, we found that a remote

user was encountering a bug we could not reproduce on our own machines. Based on the

description of the problem, we were able to identify the probable cause, and wrote several

partials for the expressions we suspected were causing the bug. After compiling the

application with the partials, we shipped it to the remote user and, via a phone

178

conversation, were able to guide her through trying the different alternatives until we

discovered the problem and its fix. In this case, partials served as an embedded

“debugging environment” that took very little effort to create on the part of the developer.

While we can relate this one success story, our other experiences suggest that

partials, as currently implemented, is most useful for debugging individual API calls that

are poorly documented or not working as expected. Exploration of alternatives at the

level of classes or the overall software architecture are not well supported by partials, and

would be better served by other means.

9.2.11 Future Work

The partial feature, as described, could be implemented without modifying the Java

grammar: A normal function call and a custom library could be created that enabled one

to achieve similar functionality. However, providing this service at the level of the

language provides us with capabilities not available otherwise, helping to increase the

ability to experiment at runtime.

Since partials is implemented at the level of the grammar itself, it can receive, at

compile-time, the complete state of the parse tree. Thus, at the point it executes, it can

“know” all variables accessible to it in its context (i.e., all local variables, all parameters,

all member variables, etc). Our preprocessor currently collects all this information so that

it can pass these data on to a scripting environment, such as Jython [JYT]. For example,

for each partial, a new Jython environment could be created and attached to the process,

and variables could be set within that environment to correspond to all variables available

in the current executing context. Through this mechanism, users could write custom code

at runtime to derive the value for the partial expression. Additionally, users could

179

instantiate new objects rather than limiting themselves to the object choices specified at

compile time. For example, for a partial that expects a Vector, custom Jython code could

be written at runtime to create a new Vector to set the partial to.

The partial construct was designed to work at the level of individual expressions.

To achieve exploration at a slightly higher level, we also devised a second, untested

construct for expressing uncertainty. A partial block provides developers the capability to

specify blocks of code that can be executed 0 or more times in succession. The basic

syntax of a partial block is as follows:

partialBlock(
 [type identifier : alternative1 [, alternative2]*]

 [, type identifier2 : alternative1 [,
alternative2]*]*

) {
 // Code to execute

}

In this expression, zero or more variables and their alternatives can be specified in

the specification of a partialBlock. For example:

partialBlock (int aValue: 1, 3, 10) {
 System.out.println(“Value: ” + aValue);
}

This expression creates a block of code in which aValue can assume the values 1,

3, 10, or a custom value prior to the block’s execution. This subsequent block of code can

execute zero or more times, and each time the block is executed, users can re-specify the

values for the variables specified. For example, in the example above, this partial block

allows one to specify the value for aValue each time the proceeding block of code is

executed.

180

This construct was designed to facilitate fine-tuning the details of entire

algorithms, rather than individual expressions. At present, the entire preprocessor has

been implemented, though the runtime support is currently absent.

181

REFERENCES

ABO92 Abowd, G., and Dix, A. J. Giving undo attention. Journal of Interactive
Computing, v. 4, no. 3, 1992. pp. 317-342.

ADO Adobe Photoshop. http://www.adobe.com

ALD94 Aldous, D., and Vazirani, U. “Go with the winners” algorithms. In
Proceedings of the Symposium on Foundations of Computer Science, pp.
492-501. 1994.

ARC84 Archer, J.E.Jr., Conway, R., and Schneider, F.B. User Recovery and Reversal
in Interactive Systems. ACM Trans. Programming Language Systems, v6,
number 1, 1984. pp. 1-19.

AYE99 Ayers, Eric, and Stasko, John. Using graphic history in browsing the World
Wide Web. In Proceedings of the 4th International World Wide Web
Conference. 1999.

BAE91 Baecker, R., Small, I., and Mander, R. Bringing icons to life. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’91), 1991. pp. 1-6.

BAY98 Bay-wei, C., Mackinlay, J., Zellweger, P., and Igarashi, T. A negotiation
architecture for fluid documents. In Proceedings of the 11th annual ACM
symposium on User interface software and technology, 1998 (UIST ’98). pp.
123-132.

BER94 Berlage, T. A selective undo mechanism for graphical user interfaces based
on command objects. ACM Transactions on Computer-Human Interaction,
1(3):269-294, 1994.

BIE93 Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and DeRose, T.D. Toolglass
and Magic Lenses: The see-through interface. In Computer Graphics, 27
(Annual Conference Series), 1993, 73-80.

BIE94 Bier, E.A., Stone, M.C., Fishkin, K., Buxton, W., and Baudel, T. A
Taxonomy of See-Through Tools. In CHI, pages 358-364. Addison-Wesley,
April 1994.

BOO99 Booch G., Rumbaugh J., and Jacobson I. The Unified Modeling Language
User Guide. Addison-Wessley 1999.

CHI94 Chiueh, T., and Katz, R. Papyrus: A history-based VLSI design process
management system. In Proceedings of the Tenth International Conference
on Data Engineering, 1994. pp. 385-392.

182

CHI98a Chi, E.H., Riedl, J., Barry, P., and Konstan, J. Principles for information
visualization spreadsheets. In IEEE Computer Graphics & Applications, vol.
18, no. 4, pp. 30–38, July-August 1998.

CHI98b Chiueh, T., Mitra, T., Neogi, A., and Yang, C.K. Zodiac: a history-based
interactive video authoring system. In Proceedings of the sixth ACM
international conference on Multimedia, 1998 (Multimedia ’98). pp. 435-444.

COC96 Cockburn, A. and Jones, S. Which way now? Analysing and easing
inadequacies in WWW navigation. International Journal of Human Computer
Studies, 44 (1996)

CRO01 Cross, N. Design cognition: Results from protocol and other empirical studies
of design activity. Chapter 5 in Design Knowing and Learning: Cognition in
Design Education. Eastman, C., McCracken, M., and Newstetter, M. (eds.).
Elsevier Science, 2001, 79-103.

DER00 Derthick, M., and Roth, S. Data exploration across contexts. In Proceedings
of the 5th international conference on Intelligent user interfaces, 2000
(IUI ’00). pp. 60-67.

DIFF Diffutils. http://www.gnu.org/software/diffutils/diffutils.html

DIX96 Dix, A., Mancini, R., and Levialdi, S. Alas I am undone - Reducing the risk
of interaction? In HCI '96 Adjunct Proceedings (Imperial College, London,
UK, 1996), 51-56. Available as http://www.soc.staffs.ac.uk/~cmtajd/
talks/risk/

EDW00 Edwards, W.K., Igarashi, T., LaMarca, A., and Mynatt, E.D. A temporal
model for multi-level undo and redo. In Proceedings of UIST 2000, 31-40.

EDW97 Edwards, W.K., and Mynatt, E.D. Timewarp: Techniques for autonomous
collaboration. In Conference Proceedings on Human Factors in Computing
Systems (CHI 1997), 218-225.

FOL96 Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. Computer Graphics
– Principles and Practice. Addison Wesley, 1996.

FOX98 Fox, D. Composing magic lenses. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’98), 1998. pp. 519-525.

FRA87 Fraser, C.W., and Myers, E.W. An editor for revision control. In ACM Trans.
Program. Lang. System., v.9, number 2, 1987. 277-295.

FUR86 Furnas, G.W. Generalized fisheye views. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 1986 (CHI ’86). pp. 16-
23.

183

GAM94 Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

GEN95 Genau, A., and Kramer, A. Translucent History. In Conference companion on
Human factors in computing systems, 1995, (CHI ’95). pp. 250-251

GIMP The GNU Image Manipulation Program (GIMP). http://www.gimp.org

GOE92 Goel, V., and Pirolli, P. The structure of design problem spaces. Cognitive
Science, 16(3), 1992, 395-429.

GOR85 Gordon, R.F., Leeman, G.B. Jr., and Lewis, C.H. Concepts and implications
of undo for interactive recovery. In Proceedings of the 1985 ACM annual
conference on The range of computing : mid-80's perspective, 1985. pp. 150-
157.

GRE Green, T.R., and Blackwell, A.F. A tutorial on cognitive dimensions.
Available at: http://www.thomas-green.ndtilda.co.uk/workStuff/Papers

GRE88 Greenberg, S., and Witten, I.H. How users repeat their actions on computers:
principles for design of history mechanisms. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 1988 (CHI ’88). pp.
171-178.

GRO96 Gross, M.D., and Do, E.Y.L. Ambiguous intentions: A paper-like interface
for creative design. In Proceedings of the 9th annual ACM symposium on
User interface software and technology (UIST ’96), 1996. pp. 183-192

GUN99 Gunther, J., and Ehrlenspiel, K.. Comparing designers from practice and
designers with systematic design education. In Design Studies, 20 (1999), pp.
439-451.

HAR88 Hart, S.G. and Staveland, L. E. Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research. Chapter in Human
mental workload. North-Holland, 1988.

HEP02 Hepting, D.H. Towards a Visual Interface for Information Visualization. In
Proceedings of the 6th International Conference on Information Visualization,
IEEE Computer Society, 2002. pp. 295-302.

HEP03 Hepting, D.H. Interactive evolution for systematic exploration of a parameter
space. In Intelligent Engineering Systems through Artificial Neural Networks,
Volume 13, 2003. pp. 125-131.

HUD97 Hudson, S., Rodenstein, R., and Smith, I. Debugging lenses: A new class of
transparent tools for user interface debugging. In Proceedings of the 10th
Annual Symposium on User Interface Software and Technology (UIST 97),
1997. pp. 179-187.

184

IGA01 Igarashi, T. and Hughes, J.F. A suggestive interface for 3D drawing. In
Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology, pages 173-181. ACM Press, 2001.

IPP Intel Performance Primitives (IPP).
http://www.intel.com/software/products/ipp

JAN01 Jankun-Kelly, T.J., and Ma, K.L. Visualization exploration and encapsulation
via a spreadsheet-like interface. IEEE Transactions on Visualization and
Computer Graphics, 7(3), 2001, 275-287.

JAV JavaCC. https://javacc.dev.java.net

JGI JGimp. http://jgimp.sourceforge.net

JIK IBM Jikes compiler. http://www.research.ibm.com/jikes

JIP JIPP Java Interface and Wrappers to IPP.
http://www.cssip.uq.edu.au/staff/bamford/JIPP

JYT Jython. http://www.jython.org

KAN97 Kandogan, E, and Shneiderman, B. Elastic Windows: Evaluation of multi-
window operations. In Proceedings of the SIGCHI conference on Human
factors in computing systems, 1997 (CHI ’97). pp. 250-257.

KAW04 Kawasaki, Y., Igarashi, T. Regional undo for spreadsheets. Part of the demo
presentations at the Symposium on User Interface Software and Technology,
2004 (UIST ’04). Available at:
http://www-ui.is.s.u-tokyo.ac.jp/~kwsk/undo/kawasaki_uist04_regional.pdf

KHA04 Khandelwal, M., Kerne, A., and Mistrot, J.M. Manipulating history in
generative hypermedia. In Proceedings of the Fifteenth ACM Conference on
Hypertext & Hypermedia, 2004. pp. 139-140.

KLE01 Klemmer, S.R., Newman, M.W., Farrell, R., Bilezikjian, M., and Landay, J.
The designer’s outpost: A tangible interface for collaborative web site design.
In Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology (UIST 2001). pp. 1-10.

KLE02 Klemmer, S.R., Thomsen, M., Phelps-Goodman, E., Lee, R., and Landay,
J.A. Where do web sites come from? Capturing and interacting with design
history. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI 2002), 1-8.

KRA88 Krasner, G.E., and Pope, S.T. A cookbook for using the model view
controller user interface paradigm in Smalltalk-80. In Journal of Object-
Orientated Programming, 1(3):26-49, August/September 1988.

185

KRE04 Kreusler, M., Nocke, T., and Schumann, H. A History Mechanism for Visual
Data Mining. In Proceedings of Information Visualization, 2004 (NFOVIS
2004). Pp. 49-56.

KUR90 Kurlander, D., and Feiner, S. A visual language for browsing, undoing, and
redoing graphical interface commands. In Visual Languages and Visual
Programming. S.K. Chang (ed.). Plenum Press, New York, NY, 1990, 257-
275.

LAN01 Landay, J., and Myers, B. Sketching Interfaces: Toward More Human
Interface Design. In IEEE Computer, 34(3), March 2001, 56-64

LEE86 Leeman, G.B. Jr. A formal approach to undo operations in programming
languages. In ACM Trans. Program. Lang. Syst., vol. 8, no. 1, 1986. pp. 50-
87.

LEE92 Lee, A. Investigations into history tools for user support. Ph.D. thesis,
University of Toronto, Ontario, Canada. 1992.

LI04 Li, Y., Hong, J., and Landay, J. Topiary: A tool for prototyping location-
enhanced applications. In Proceedings of the 17th Annual Symposium on
User Interface Software and Technology (UIST 2004), 2004. pp. 217-226.

LUN94 Lunzer, A. Reconnaissance support for juggling multiple processing options.
In Proceedings of the Symposium on User Interface Software and Tools,
1994 (UIST ’94). pp. 27-28.

LUN98 Lunzer, A. Towards the subjunctive interface: General support for parameter
exploration by overlaying alternative application states. In Late Breaking Hot
Topics, IEEE Visualization 1998, 45-48.

LUN99 Lunzer, A. Choice and comparison where the user wants them: Subjunctive
interfaces for computer-supported exploration. In Proceedings of IFIP TC, 13
International Conference on Human-Computer Interaction (INTERACT '99),
474-472.

LUN01 Lunzer, A. Subjunctive Interface Support for Combining Context-Dependent
Semi-Structured Resources. In Proceedings of IFIP TC. 13 International
Conference on Human-Computer Interaction (INTERACT '01), Tokyo, Japan,
Jul 2001, pp. 761-762.

LUN04 Lunzer, A., and Hornbaek, K. Usability studies on a visualization for parallel
display and control of alternative scenarios. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pp. 125-132. ACM Press, 2004.

MAM01 Mamykina, L, Mynatt, E, and Terry, M. Time Aura: Interfaces for pacing. In
Proceedings of the SIGCHI Conference on Human Factors in Computing.
2001, pp 144-151.

186

MAR97 Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S.,
Hodgins, J., Kang, T., Mirtich, B., Pifster, H., Ruml, W., Ryall, K., Seims, J.,
and Shieber, S. Design galleries: A general approach to setting parameters for
computer graphics and animation. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, 1997, 389-
400.

MIC Microsoft Word. http://www.microsoft.com

MDI Multiple Document Interface. Available as:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/windowing/multipledocumentinterface/
aboutthemultipledocumentinterface.asp

MIY86 Miyake, N. Constructive Interaction and the Iterative Process of
Understanding. Cognitive Science, Vol. 10, 1986, pp. 151-177.

NAK00 Nakakoji, K., Yamamoto, Y., Reeves, B.N., and Takada, S. Two-
Dimensional Positioning as a Means for Reflection in Design. Design of
Interactive Systems (DIS 2000), 145-154.

NAK02 Nakakoji, K., Yamamoto, Y., and Aoki, A. Interaction design as a collective
creative process. In Proceedings of the 4th Conference on Creativity and
Cognition, 2002. pp. 103-110.

NEU92 Neuwirth, C.M., Chandhok, R., Kaufer, D.S., Erion, P., Morris, J., and Miller
D. Flexible Diff’ing in a Collaborative Writing System. In Proceedings of the
1992 ACM conference on Computer-supported cooperative work
(CSCW ’92). 147-154.

NEW72 Newell, A., and Simon, H.A. Human Problem Solving. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1972.

NEW00 Newman, M., & Landay, J. Sitemaps, Storyboards, and Specifications: A
Sketch of Website Design Practice. In Proceedings of Designing Interactive
Systems (DIS 2000), 263-274.

QUA03 Quan, D., Huynh, D., Karger, D., and Miller, R. User Interface
Continuations. In Proceedings of the Symposium on User Interface Software
and Technology, 2003 (UIST ’03). pp. 145-148.

QUI02 Quigley, A., Leigh, D.L., Lesh, N.B., Marks, J.W., Ryall, K., and
Wittenburg, K. Semi-automatic antenna design via sampling and
visualization. In IEEE AP-S International Symposium and USNC/URSI
National Radio Science Meeting (APS/URSI), 2002.

REI65 Reitman, W.R. Cognition and Thought. John Wiley & Sons, Inc., 1965.

187

REK99 Rekimoto, J. TimeScape: a time machine for the desktop environment. In
Extended Abstracts on Human Factors in Computing Systems, 1999
(CHI ’99). pp. 180-181

RIC97 Rich, C., and Sidner, C.L. Segmented interaction history in a collaborative
interface agent. In Proceedings of the 2nd international conference on
Intelligent user interfaces, 1997 (IUI ’97). pp. 23-30.

RIT84 Rittel, H.W.J., and Webber, M.M. Planning Problems are Wicked Problems.
Chapter in Developments in Design Methodology, 1984, 135-144.

SAL97 Salvendy, G. (Ed.). Handbook of Human Factors and Ergonomics. John
Wiley & Sons, Inc., Second Edition, 1997.

SCH83 Schön, D. The Reflective Practioner: How Professionals Think in Action.
Basic Books, New York, NY, 1983.

SEI98 Seidman, I. Interviewing as Qualitative Research. Teachers College Press,
1998.

SHN99 Shneiderman, B. User interfaces for creativity support tools. In Proceedings
of the 3rd Conference on Creativity & Cognition, 1999. pp.15-22.

SHN00 Shneiderman, B. Creating creativity: User interfaces for supporting
innovation. ACM Transactions on Computer-Human Interaction, 7(1):114-
138, March 2000.

SIL02 Silberschatz, A., Gagne, G., Galvin, P.B. Operating System Concepts. Wiley,
2002.

SIM73 Simon, H. The structure of ill-structured problems. Artificial Intelligence,
4:181-203, 1973.

SOB99 Sobek II, D.K., Ward, A.C., Liker, J.K. Toyota’s principles of set-based
concurrent engineering. Sloan Management Review, Winter 1999, pp. 67-83.

TER02a Terry, M. and Mynatt, E.D. Recognizing creative needs in user interface
design. In Proceedings of the Fourth Conference on Creativity & Cognition,
2002, 38-44.

TER02b Terry, M. and Mynatt, E.D. Side Views: Persistent, on-demand previews for
open-ended tasks. In Proceedings of the 15th Annual ACM Symposium on
User Interface Software and Technology (UIST 2002), 71-80.

TER04 Terry, M., and Mynatt, E.D. Variation in Element and Action: Supporting
Simultaneous Development of Alternative Solutions. To appear in
Proceedings of CHI 2004.

188

TIC82 Tichy, W. Design, implementation, and evaluation of a revision control
system. In Proceedings of the 6th International Conference on Software
Engineering, 1982. pp. 58-67.

TSA04 Tsang, S., Balakrishnan, R., Singh, K., and Ranjan, A. A suggestive interface
for image guided 3D sketching. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI04), 2004. pp. 591-598.

VAR03 Vargas, I., Borgres, J., and Pérez-Quiñones, M.A. A Usability Study of an
Object-Based Undo Facility. In Proceedings of HCI International, 2003.

VER02 Verlinden, J.C., Igarashi, T., and Vergeest, J.S.M. Snapshots and Bookmarks
as a Graphical Design History. In Proceedings of International Design
Conference 2002, Dubrovnik, Kroatia, 567-572.

VIT84 Vitter, J.S. US&R: A new framework for redoing. In Proceedings of the First
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, 1984. pp. 168-176.

VOI05 Voida, A., and Mynatt, E.D. Six themes of the communicative appropriation
of photographic images. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2005 (CHI ’05). pp. 171-180.

WAR95 Ward, A., Liker, J.K., Cristiano, J.J., Sobek II, D.K. The second Toyota
paradox: How delaying decisions can make better cars faster. Sloan
Management Review, Spring 1995, pp. 43-61.

WAS02 Washizaki, H. and Fukazawa, Y. Dynamic hierarchical undo facility in a
fine-grained component environment. In Proceedings of the Fortieth
International Confernece on Tools Pacific, 2002 (CRPITS '02). pp. 191-199.

WEI94 Weiss, R.S. Learning from Strangers. Free Press, 1994.

YAM01 Yamamoto, Y., Aoki, A., and Nakakoji, K. Time-ART: A tool for
segmenting and annotating multimedia data in early stages of exploratory
analysis. In CHI ’01 Extended Abstracts on Human Factors in Computing
Systems, 2001. pp.113-114.

ZHO97 Zhou, C., Imamiya, A. Object-based nonlinear undo model. In Proceedings of
21st International Computer Software and Applications Conference, 1997
(COMPSAC '97). pp. 50-55.

