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SUMMARY 

Friction-induced oscillations occur in many engineering systems, often resulting 

in noise, vibration, and excessive or uneven wear. This research addresses the 

suppression of such oscillations, especially with application to braking systems, through 

the use of high-frequency dither signals. Brake squeal is an annoying and elusive problem 

too often present in braking systems of automobiles, trucks and aircraft.  

In previous work, the effectiveness of high-frequency dither to eliminate squeal in 

an automotive disc brake assembly was demonstrated experimentally. The main features 

of the dither-squeal cancellation system was the application of a high frequency variation 

in the brake pressure force accomplished by means of a piezoelectric stack placed behind 

one of the brake pads. 

This thesis contains a theoretical and numerical treatment of the application of 

dither to frictional systems. Two types of systems are investigated. The first is a classic, 

mass-on-a-moving belt problem, which experiences friction-induced oscillations similar 

to those encountered in brake applications. The system is first studied using an analytical 

technique based on the method of averaging. It is shown that, depending on the system, 

friction, dither-waveform, and belt-speed parameters, dither can stabilize an unstable 

system. However, in some cases, dither can destabilize an initially stable system. These 

results are verified numerically using time integration. The second type of system 

analyzed in this thesis is an annular plate with a rotating frictional device. The method of 

multiple scales is used to predict subcritical regions of instability; the results are validated 

using Floquet theory.  The thesis treats both tangential and normal dither, the latter being 



xvi 

closer to the brake application.  It is found that normal dither, in addition to being harder 

to analyze, is much less effective than tangential dither. 

 



1 

CHAPTER 1 

INTRODUCTION 

Self-excited friction-induced oscillations are present in many engineering 

systems, provoking unwanted vibrations, noise and excessive wear. This research 

addresses the suppression of these types of oscillations, with an emphasis on braking 

system noise, through the use of high-frequency dither signals. 

Brake squeal is commonly defined as a sustained, high frequency noise due to 

vibrations of the braking components of a vehicle during a braking action. There are three 

types of brake noise, depending on the frequency range: brake “judder” (<100 Hz), brake 

“groan” (100 – 1000 Hz), and brake “squeal” (1 – 16 kHz), the latter being the focus of 

this work. 

 Brake squeal has been a problem in the automotive industry for a long time. In the 

last few years, brake noise has become a key issue for the rating of vehicle brake systems 

[1, 2]. Squeal is a very irritating noise to the vehicle passengers and to the passers-by. 

The comfort issue of audible noise and tactile vibrations of brakes has become a primary 

attribute and design differentiator. Although the level of theoretical, analytical and 

experimental effort in understanding and controlling brake noises has grown 

dramatically, a complete cure has not yet been found. 

After a century of study on brake squeal, it is not yet a fully understood 

phenomenon. There is no general theory to explain this complex and fugitive problem. 

However, a number of review papers, for example the articles of Kinkaid, et al. [3] and 

Mottershead [4], provide a good background introduction to the brake squeal literature. 
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The objective of this research is to understand the mechanisms of brake squeal 

and develop effective cancellation strategies using dither signals. 

BACKGROUND 

In this background section, a disc braking system will be a described, the main 

theories of brake squeal will be presented, as well as the related experimental work. Some 

of the different techniques to eliminate brake squeal will be listed. In particular, dither 

signals and different theories of stabilizability through the use of dither signals will be 

concentrated upon. Finally classical models in the literature of brake systems will be 

presented. 

Disc Braking System 

There are several main components to a disc brake system, which are illustrated in 

Figure 1.1. The rotor is a metal disc that is attached to the wheel hub and bearing by studs 

and lugnuts. An automobile is slowed by squeezing two brake pads, housed in a caliper, 

against the rotor. 
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Figure 1.1: Sketch of an automobile disc brake system [5] 

The brake caliper, a major component of a brake system, is shown in Figure 1.2. 

It shows a section of a brake system illustrating a “floating” caliper, which is used in 

most disc brake systems. This component houses the brake pads and pushes them against 

the rotor due to a reaction from the brake fluid in the reservoir during a braking 

application. When the brake system is installed in an automobile the portion of the caliper 

housing the piston is on the inboard side of the rotor. 

 

Wheel Hub 
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Figure 1.2: Section of a disc brake system showing the components of a “floating” caliper 
[5] 

Brake fluid enters the reservoir in the caliper from the master cylinder. Brake 

fluid pressure in the reservoir causes two things to happen as the pressure increases. First, 

the fluid pushes on the back of the caliper piston. The piston in turn puts pressure on the 

inboard brake pad, which contacts the rotor. As the brake fluid pushes on the piston, it 

also pushes the inboard side of the caliper further inboard. This part of the caliper 

contains two guide bolts, which slide in a contained region of the stationary portion of the 

caliper. The caliper wraps around the rotor and has “fingers” on the outboard side of the 

brake system, which contacts the outboard brake pad. The outboard pad is pushed toward 

the rotor as the inboard side of the caliper is pushed inboard by the increase in brake fluid 

in the reservoir. Thus, the brake line pressure is transferred into brake pad pressure on 

both sides of the rotor. 

Inboard 
Direction 

Outboard 
Direction 
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Brake Squeal Theory 

Mills [6] believed that brake squeal originated because the friction coefficient kµ  

is decreasing with increasing slipping velocity sv . It is known that this relationship can 

result in negative damping and lead to unstable oscillations. Although the brake squeal 

phenomenon is not completely explained, it is believed that the “stick-slip” action occurs 

between the rubbing surfaces. The variation of the friction force with the slipping 

velocity is the source of the self-sustained oscillations, like a violin string and its bow. 

This theory is commonly referred as the 0k

s

d

dv

µ <  theory of brake squeal. 

Spurr [7, 8] described a new theory for brake squeal, that he named sprag-slip. 

The elastic deformation of the system influences the frictional force, such that the 

interaction between the pad and disc generates frictionally induced oscillations. This 

action does not depend on a coefficient of friction varying with the relative slipping 

velocity, but results from the geometric arrangement and flexibility of the pad. 

Another theory of brake squeal contends that squeal occurs when certain types of 

modes coalesce. The model most often used to explore this mechanism of brake squeal 

uses a modal expansion for the vibration of the brake rotor [4, 9, 10]. When steady 

slipping is assumed, friction enters the model as a non-conservative follower force. Since 

the model is linear and time invariant, the stability is entirely dictated by the complex 

eigenvalues. If any of the eigenvalues has a positive real part, squeal is assumed to occur. 

Note that the magnitudes of the complex eigenvalue’s real part provide no insight into the 

magnitude of squeal that will result. The magnitude of the real part only determines the 
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rate at which the oscillations approach their limit. The theory has also been used to 

explain instabilities in computer disc models and band brake systems. 

Generic Squeal Elimination Methods 

Disc brake squeal suppression methods have been investigated extensively 

through experiments [11-14]. Many researchers attempted to understand the effect of 

friction coefficient, normal load, temperature, stiffness, and damping on squeal sound 

level. In many experimental studies, various methods to eliminate brake squeal have been 

tested and documented. They include shims, tuned vibration absorbers and active control. 

Shims are thin pieces of high damping material, placed between the brake pad and 

piston in order to dampen the vibration of the pads and rotor. The use and effectiveness 

of noise fix shims have been discussed by many authors [15-18]. Also, Heppes [19] and 

Nishizawa [20] looked at the effect of vibration damping devices. Earles [21] discussed 

the effects of several design changes, like the geometry and the amount of damping and 

stiffness in the different components of the brake. 

Tuned vibration absorbers (TVA) are devices implemented to suppress the 

system’s vibration by transferring energy to the absorber mass. They have also been 

employed to reduce squealing of disc brakes [22]. 

Active control methods have also been developed to cancel brake squeal, such as 

the Electronically Controlled Disc Brake Noise Canceling System proposed by 

Nishizawa [23]. The basis for this technique is to detect the out-of-plane vibration of the 

rotor and then apply a normal force so as to oppose the motion and thus reduce the 

amplitude of the rotor vibration. Since the system is closed loop, it must be carefully 
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designed to prevent control-induced instabilities from occurring. This adds to the cost, 

complexity and fail-safe aspects of the system. 

Dither Based Squeal Cancellation 

An innovative open-loop control method has been proposed by Cunefare and Graf 

[24]. This method involves using high-frequency disturbances, termed dither signals, to 

“smooth” the effect of frictional forces. This technique forms the basis of the thesis work. 

Dither is defined as a high-frequency (relative to the system’s characteristic 

frequency) low amplitude signal. Dither control is known for its ability to stabilize self-

excited oscillations in nonlinear systems, by effectively changing the low-frequency 

dynamics of the system. It has been used in a variety of applications, such as optics, 

image processing, controls and communications, as noted in the survey paper of 

Armstrong-Helouvry et al. [25]. 

 In the experimental setup of Cunefare and Graf [26], the dither signal was 

introduced through piezoceramic elements. These piezoceramic elements are small 

enough to fit into the brake caliper system, but able to withstand the pressure produced 

during braking events. A sectioned view of the caliper piston and the placement of the 

PZT system is shown in Figure 1.3. The caliper piston provided a convenient location for 

the PZT stack. The piston is a hollow cylinder with the open end in contact with the 

inboard brake pad, as was illustrated in Figure 1.2. 
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Figure 1.3: PZT control system assembled inside the caliper piston [27] 

When a sinusoidal voltage is applied to the PZT stack, it expands and contracts in 

a similar manner, thus inducing a vibration in the caliper. The vibration is induced 

directly on the inboard brake pad, but it is also applied to the outboard brake pad since 

the caliper is of the “floating” type. The reaction of the caliper piston moving back and 

forth causes the brake fluid to move in and out of the caliper. This in turn causes the 

outboard part of the caliper and the outboard brake pad to vibrate. Essentially, the PZT 

system creates a rapid fluctuation in the brake pad pressure, around the static brake line 

pressure. 

Although effective, the dither control did not cause an instantaneous cancellation 

of the brake squeal [24]. It was observed that the noise level of the squeal gradually 

decreased as the amplitude of the control signal was increased. Finally, the squeal was 

totally eliminated when the control signal reached a certain amplitude. This threshold is 

called synchronization. 
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The top graph in Figure 1.4 is the frequency spectrum from a nearby microphone 

during a 5.6 kHz squeal without dither control. The middle graph is the frequency 

spectrum of the noise emanating from the brake system with the activation of the 20 kHz 

dither control signal with an amplitude of 75 volts rms. This is a snapshot of the sound 

pressure from the brake system as the amplitude of the control signal was increased, but 

before synchronization occurred. Two distinct peaks can be seen, one at the squeal 

frequency and the other at the control signal frequency. Finally, the bottom graph is the 

frequency spectrum of the sound pressure level of the brake system with dither control 

once synchronization occurred for a control signal amplitude of 153 volts rms. The 

control system eliminated the 5.6 kHz brake squeal, leaving only the 20 kHz forced 

oscillations from the dither signal. 
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Figure 1.4: Frequency spectrum of the sound pressure level from the brake system during 
stages of control (top: before control activation, middle: during partial control, and 

bottom: after synchronization) [24] 

Other Applications of Dither 

The use of high frequency inputs to affect changes in system dynamics is a 

classical topic that has been studied for many years, dating back to the work of Floquet 

and Lord Rayleigh [28, 29]. 

Oldenburger et al. [30-32] looked at the effects of additional high frequency 

sinusoidal inputs to nonlinear systems. In particular, they looked at how to remove the 

self-oscillations of some common nonlinear systems. The authors used the “describing 
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function” analysis to formulate general rules concerning the effect of dither signal on the 

stability of given nonlinear systems with limit cycle oscillations. Their analysis 

concerned systems with a relay or a limiter; systems possessing a relay with dead band or 

a relay with hysteresis; systems with an absquare or dead band nonlinearity; and systems 

with a backlash element. The text by Gelb and Van Der Velde [33] further studies this 

analysis strategy for dual-input describing functions. 

 One particular strategy for this was pioneered by Meerkov [34, 35], who termed 

this technique vibrational control theory. In some cases, the introduction of vibration 

(with zero mean value) does not change the low frequency dynamics of the system. In 

other words, the integral dynamic properties of the system remain intact. In these cases, 

there is no improvement in system stability; the system remains unstable. One of 

Meerkov’s contributions was the development of specific conditions under which 

stabilization was possible. Due to its simplicity, the vibrational control method is useful 

when conventional methods based on feedback and feedforward principles are infeasible 

or too expensive and complex. 

The use of dither signals in frictional systems has been known for years by 

mechanical system designers, but it has not been extensively documented. Canudas de 

Wit et al. [36, 37] and Armstrong Helouvry et al. [25, 38] discussed dither signals with 

applications to friction control. 

Omer Morgul [39, 40] focused on controlling chaotic systems using dither. Three 

methods have been presented for the selection of dither parameters, in the case of piece 

constant dither signals. 
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 Thomsen [41-43] extensively studied how friction-induced self-excited 

oscillations are affected by high-frequency external excitation. The system of interest was 

a single degree of freedom mass on a moving belt. Analytical approximations were 

derived to obtain predictions of the self-excited oscillations, and predictions of the 

necessary frequency and amplitude of the dither signal in order to quench those self-

excited oscillations. 

Models of Brake Systems 

Numerous models have been proposed in the literature, attempting to capture the 

different effects that could cause brake squeal. This research focuses on two particular 

types of models: lumped models and continuous type models. 

Lumped Models 

Lumped models, which can be single degree of freedom (SDOF) or multiple 

degrees of freedom (MDOF) models, are approximations of the system, in the sense that 

the different components of the real system are “lumped” into rigid bodies connected by 

springs and dampers. Lumped models have the advantage of isolating the friction effect 

from the structural coupling effect. These models are relevant because they allow 

observation of the effect of dither on the frictional force and the system stability. 

The simplest model for a disc brake is a SDOF called the mass-on-moving-belt 

model, as depicted in Figure 1.5. It consists of a lumped mass restrained by a linear 

spring and viscous damping element. The mass is pressed into contact with a rigid 

moving surface. The SDOF model has been extensively investigated by many authors. 

Depending on system parameters and speed of the moving belt, sustained oscillations or 
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limit cycles can develop. These limit cycles are characterized by periodic oscillations 

having a sticking phase followed by a slipping phase. The exact nature of the limit cycle 

depends strongly on the friction law [22]. In fact, with some friction laws, the relative slip 

velocity never reaches zero. In this case, the discontinuity in the friction nonlinearity is 

avoided, and it is possible to apply perturbation methods to obtain analytical results. The 

best example of this is the work of Thomsen [41-43], who is able to derive the required 

threshold amplitude for which a tangential dither force can suppress the limit cycle. 

c 
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x(t) 

v0 

µ 
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Figure 1.5: SDOF model 

An extension of the SDOF model was proposed by Shin et al. [44], who 

developed a two-degree-of-freedom-model for a brake system. As depicted in Figure 1.6, 

the disc and the pad are modeled as single masses connected by a sliding friction 

interface. Linear and nonlinear stability analyses were performed to understand the effect 

of the disc and pad damping. Various limit cycles in the phase space were demonstrated. 
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Figure 1.6: “Two-degree-of-freedom” model by Shin et al. [44] 

Earles et al. [21] employed a pin-on-disc paradigm to understand brake vibration 

problems. They developed a five-degree-of-freedom model, as seen in Figure 1.7. The 

disc, represented by the central block, moves vertically upwards and its motion is resisted 

by the action of two pins acting on its vertical faces. The two pins are supported 

independently. The supports have stiffnesses normal and parallel to the disc face, and 

torsionally about the center. This model predicts states of unstable motions, as a function 

of the system parameters. 
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Figure 1.7: “Double-pin-on-disc” model by Earles et al. [21] 

Continuous Models 

Continuous, or distributed models, are richer approximations of the system 

compared with the lumped models. The model of the system components represents the 

real geometry more accurately. Typically finite element models and modal analysis 

techniques are employed. These more complicated models of the brake assembly permit 

an enrichment of the system understanding. They can exhibit the different modes 

coupling, and they allow interactions between normal and tangential direction 

displacements. These richer models should lead to more accurate results, closer to the 

experimental observations.  

Many researchers have used continuous models for brake rotor systems and 

computer disc drives. Two survey papers have summarized the research area: 

Mottershead [4] and Kinkaid et al. [3]. 

Mottershead [4] gave a thorough account of the understanding gained from recent 

research investigations in the dynamics of discs with moving loads. The typical system of 

interest is shown in Figure 1.8. Two variations have been studied: a stationary disc with a 

rotating spring-mass-damper (SMD) system, and a stationary SMD system contacting a 
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spinning disc. Due to relatively low speeds encountered in brake system, the disc is 

usually treated as stationary. Central to a study of disc/load systems are the concepts of 

critical speed instability, and forward or backward traveling waves. Once the plate 

motion is described with an eigenfunction expansion, a trigonometric identity can be used 

and the solution can be interpreted as two traveling waves of speed jn

j

ω
± . The frequency 

jnω  represents the natural frequency of mode shape with j  nodal diameters and n  nodal 

circles. The forward traveling wave is in the direction of advancing θ , and the backward 

wave travels in the opposite direction. When the speed of the disc is jn

j

ω
Ω = , the 

backward traveling wave remains stationary in space, leading the system to be unstable 

under the action of a static load. This speed is called the critical speed of the thjn  mode. 

Iwan and Stahl [9] investigated the dynamic response of a circular elastic disc 

excited by a moving mass-spring-dashpot system, similar to the one shown in Figure 1.8. 

Three distinct types of instability were observed. The first instability occurs at the 

minimum critical speed, denoted by critΩ . An instability region was located immediately 

above each critical speed, and was termed a stiffness instability. A final instability region 

was found for speeds above a certain limiting value, and was named a terminal 

instability. There are also many other instability regions arising as a consequence of 

modal interaction. Iwan and Moeller [10] extended this analysis by including the 

centrifugal stresses, induced by high-speed disc rotation. The main effect of rotation is to 

stiffen the disc, and thereby increasing its effective natural frequencies compared with 

those of a stationary disc.  
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Figure1.8: Continuous plate model with mass-spring-damper system 

Many variations on the Iwan and Stahl study [9] have been performed over the 

years. In many of the studies, the rotating SMD is treated as a small perturbation, and the 

method of multiple scales is used to predict analytically the unstable rotation speeds. 

Most studies assume steady sliding, so the friction force is constant in magnitude. Its 

direction, however, is always tangent to the disc surface. Thus, it manifests itself as a 

non-conservative follower force. Several researchers have investigated the effect of the 

frictional follower force [45, 46]. Ouyang et al. [47] extended the frictional follower force 

to include non-steady sliding. Their model also incorporated a friction coefficient that 

decreases with increasing velocity. 
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SCOPE OF THE THESIS 

Objective 

The goal of this research is the understanding of the effect of dither control. Using 

dither control as a mean for suppressing brake squeal requires the understanding of 

several different phenomena, such as friction, geometric instabilities and structural 

coupling. Characteristics of the dither signal in itself are investigated in order to obtain 

the best performances. 

The research described in the thesis is primarily theoretical and analytical in 

nature. Several types of models are developed, each designed to test some aspect of the 

problem or to facilitate some type of analytical technique. Although the experimental 

setup implements “normal dither”, i.e. dither in a direction normal to the rotor, the 

analytical study considers both normal and tangential dither. 

Lumped Model 

The primary use of a SDOF is to study the stick-slip phenomenon, and the effect 

of 0k

s

d

dv

µ < . Chapter 2 examines sinusoidal waveforms for tangential dither. The theory 

is extended to general waveforms for tangential dither in Chapter 3. Chapter 4 treats the 

same problem for the case of normal dither. This model is simple enough to permit the 

application of a Thomsen-type averaging technique to understand the effect of normal 

and tangential dither. 
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Continuous model 

While the above applies here too, to some extent, the primary use of continuous 

models is to study mode coalescence of the rotor and the resonance phenomena. In 

Chapter 5, a modal analysis of a continuous disc-brake model is implemented to 

understand the mechanisms of geometric and structural instabilities, preferred to finite 

element techniques for its richer basic understanding of the instability mechanisms. A 

stability analysis is performed to locate the unstable regions in the parameters space. 

Then dither signals are injected into the systems in order to understand their effect on the 

stability. 
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CHAPTER 2 

SDOF WITH TANGENTIAL DITHER 

This chapter examines how friction-induced oscillations are affected by high-

frequency dither signals. The traditional mass-on-moving-belt system is studied using 

two different friction models, both exhibiting a negative friction coefficient-velocity 

relationship. The method of averaging is implemented and compared with numerical 

simulations. It is shown that there is qualitative agreement between the two approaches, 

but there are significant quantitative differences. This study also demonstrates how 

tangential dither is capable of suppressing friction-induced oscillations in many cases. 

However, it is also shown that dither can destabilize an initially stable system in some 

circumstances. 

MODEL DEVELOPMENT 

In this section, the governing equations for a single-degree-of-freedom (SDOF) 

frictional system is developed and the parameters that characterize the dither inputs are 

defined. The section also describes the two friction models employed in this study. 

Finally, a typical stick-slip oscillation is shown, as well as a numerical result showing 

qualitatively how dither can eliminate a sustained, stick-slip oscillation. 

Equation of Motion 

The SDOF model consists of a mass pressed into contact with a rigid moving 

surface, restrained by a linear spring and a viscous damper, as shown in Figure 2.1. The 

normal force, i.e. the force normal to the friction interface, consists of a constant load N , 
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which models the applied braking force. The figure shows a sinusoidal tangential dither 

force of amplitude TA  and frequency Tω , which is typically very large compared to the 

natural frequency and/or the squeal frequency of the system. In Chapter 3, the theory is 

extended to other types of dither waveform. The belt is assumed to move at the constant 

speed  0V . 
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Figure 2.1: SDOF model 

The non-dimensional equation of motion of the SDOF system is given by 

 
2

2
2 sin( )T T

d x dx dx
x f D R

d d d
ζ τ

τ τ τ
 + + = +  

 (2.1) 

where 2
0 k mω =  is the system’s natural frequency, 0tτ ω=  is non-dimensional time, 

02c mζ ω=  is the damping ratio, and the tangential dither frequency and amplitude 

ratios are denoted by 0T TR ω ω=  and T TD A k= , respectively. Note that x  and TD  

have units of length. 

The scaled friction force f  is defined as 
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 ( )r

dx
f v F

d
µ

τ
  =  

 (2.2) 

where F N k=  is a scaled normal force, 0rv v dx dτ= −  is the relative velocity or “slip 

velocity” of the mass, and 0v  is a scaled belt velocity, 0 0 0v V ω= . Two friction models 

are considered in this study. 

Dynamics of Stick-Slip Transitions 

While equations (2.1) and (2.2) govern the dynamics of the mass during slip, a 

more convenient form is used during sticking episodes. Since the belt moves with 

constant velocity during sticking, the sticking dynamics can be written as 

 
2

2
0

d x

dτ
=       and      0

dx
v

dτ
=  (2.3) 

When the slip velocity is zero, the friction coefficient is undefined, thus it becomes an 

unknown. The resulting static friction force, called the sticktion force, needs to be 

determined. The unknown sticktion force, denoted by sf , prevents slip from taking place 

between the mass and the belt, and can be found by substituting (2.3) into (2.1) 

 ( )0=2 sin( )s T Tf v x D Rζ τ τ+ −  (2.4) 

When the maximum allowable sticktion force is exceeded, the friction is not able to 

sustain the sticking phase, and therefore the system transitions back to a slipping phase. 

During sticking, the mass will begin to slip again if 
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  s sf Fµ≥  (2.5) 

where sµ  is the magnitude of the friction coefficient at 0rv = . During slipping, the mass 

will stick again when 

 0

dx
v

dτ
=       and       s sf Fµ≤  (2.6) 

Thus conditions (2.5) and (2.6) are used to alternate between sticking dynamics and slip 

dynamics. 

Friction Models 

Stribeck Friction Law 

One of the friction laws that has received considerable attention is the Stribeck 

friction law [25]. The model is characterized by a low-velocity regime where the friction 

force magnitude decreases with increasing slip velocity. As the magnitude of the slip 

velocity increases, the friction force magnitude “flattens out.” However, as the slip 

velocity is further increased, the friction force magnitude grows in a manner similar to 

viscous friction. The increase is associated with light lubrication, a feature that may or 

may not be appropriate for brake systems. Although many functional forms have been 

proposed throughout the literature, the mathematical model used by Thomsen [41, 43] is 

used here. 
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sµ  can be interpreted as the “static” coefficient of friction, which applies when 0rv = . 

The parameter mµ  is the minimum coefficient of friction; the slip velocity at which this 

minimum friction coefficient is attained is denoted mv . As discussed previously, if the 

interface sticks and 0rv =  for a finite time, the friction force sf  must be determined by 

equilibrium considerations; this is indicated in equation (2.7) by sµ� , which can be 

thought of an unknown scaling factor between sf  and the normal load. Note that the 

friction coefficient ( )rvµ  can be positive or negative, depending on the instantaneous 

slip velocity rv .  

Decreasing Friction Law 

A second friction law that is considered in this study is characterized by a friction 

coefficient that smoothly decreases with slip velocity, given by 

 ( ) ( ) ( )exp  0

 0

r
m s m r r

r m

s r

v
sign v for v

v v

for v

µ µ µ
µ

µ

   
+ − − ≠   =     

 = �

 (2.8) 

As with the Stribeck model, sµ  can be interpreted as a static friction coefficient. Unlike 

the Stribeck model, this model does not have a high-velocity “lubricated regime” acting 

like a viscous friction. Instead the friction coefficient steadily decreases to a value of mµ , 

which could be interpreted as the dynamic friction coefficient. The parameter mv  now 
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denotes the slip velocity at which ( )mµ µ−  drops to 36.8% of its initial value, ( )s mµ µ− . 

Figure 2.2 depicts the described friction models, for the case of 0.4sµ =  and 

0.2587mµ = . 

  

Figure 2.2: Comparison of Stribeck and decreasing friction laws. Parameters: µs=0.4, 
µm=0.2857. 

Typical System Response 

Without dither, the SDOF system described above is well known to be prone to 

sustained stick-slip oscillations. Figure 2.3 shows typical numerical simulation results 

using the Stribeck friction model and 10TR = . The dashed lines denote the results for the 

system with no dither and the solid lines show the results for the dithered system for three 

different values of tangential dither amplitudes TD . 
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For small amplitudes of dither (cases (a) and (b) in Figure 2.3), the response 

settles into a stable limit cycle after a short transient. The middle time history plot shows 

that the velocity exhibits episodes of sticking where the mass’s velocity is exactly equal 

to the belt velocity. Over the same time intervals, the displacement increases linearly with 

time, as expected (top time history plot). This free-response stick-slip oscillation displays 

a fundamental frequency that is close, yet smaller than the natural frequency ( 00.666 ω≈  

with the Stribeck friction law). 
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Figure 2.3: System responses with the Stribeck friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 

of tangential dither amplitude DT. (…) Reference case without dither excitation; (-) 

Dithered system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, µs=0.4, µm=0.2857, 

RT=10, and (a) DT=0.3, (b) DT=0.4, (c) DT=0.5. 

Case (a) in Figure 2.3 shows the response of the SDOF system when subjected to 

a tangential dither force having frequency ratio of 10TR =  and amplitude 0.3TD = . It is 

noted that the durations of sticking have been decreased a great deal, but the system still 

experiences a stable and sustained stick-slip oscillation, but at a higher fundamental 

frequency ( 00.746 ω≈ ). When the tangential dither force amplitude is increased to 0.4 
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and then to 0.5, the stick-slip oscillations are gradually “cancelled,” as seen in cases (b) 

and (c) in Figure 2.3. After a brief sticking episode in the transient, the oscillations 

gradually decrease in amplitude. Note, however, that the oscillations do not disappear 

entirely. Instead, the self-excited free-response oscillations are replaced with a forced 

response at the frequency of the dither input. As will be shown in the following section, 

the amplitude of the steady-state response can be reduced further by decreasing the dither 

frequency ratio. 

One of the goals of this research is to determine the effectiveness of the tangential 

dither control process as various parameters are varied. Consider, for example, the 

scenario depicted in the top and middle plots of Figure 2.3, corresponding to a dither 

frequency ratio of 10. When the dither amplitude is increased from 0.4 to 0.5, the limit 

cycle was suppressed. Somewhere between the two dither amplitudes is a threshold 

amplitude, which separates successful, i.e. suppression of stick-slip oscillations, from 

unsuccessful dither inputs. In order to pinpoint this threshold, a number of numerical 

simulations must be generated for some range of dither amplitudes at a single frequency 

ratio. It is important to emphasize that as the threshold amplitude is approached, the time 

duration of the transient grows longer, necessitating longer time simulations before a 

determination can be made for stability or instability. This procedure is repeated at each 

frequency ratio in order to obtain the region in the T TD R−  plane corresponding to 

effective dither input parameters. Unfortunately, this region also depends on the belt 

velocity, the damping ratio, as well as the various parameters of the friction law. With 

such a large space of possibilities, it is extremely useful to have an approximate, 
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analytical result that predicts the performance of the dither control strategy. The next 

section develops such an analytical result, based on the method of averaging. 

Perhaps a preferable way to quantify the performance of the dither control method 

is using the frequency domain. The bottom plots of Figure 2.3 show the spectral estimates 

of the displacement signal with and without dither. Cases (a) and (b) depict “partial 

cancellations” because the magnitude of the signal in the vicinity of the self-excited 

oscillation has been reduced, but yet not completely eliminated. At the same time, there is 

a slight evidence of a forced response at a scaled frequency equal to TR . At the increased 

amplitude of dither, case (c) shows that the signal has almost no portion in the vicinity of 

the uncontrolled self-excited oscillation. The self-excited oscillations have been replaced 

by forced oscillations at the dither frequency (and its harmonics.) 

The spectral estimates reveal several aspects of the dither control strategy that 

must be considered in the development of a quantitative measure of effectiveness. First, 

as the dither amplitude is increased, the fundamental frequency of the self-excited 

oscillations changes slightly. Second, the stick-slip oscillations are gradually replaced by 

forced oscillations at the much higher dither frequency. In the brake squeal cancellation 

system proposed by Cunefare, et al. [26], this was not a drawback because the dither 

frequency that was used was in the ultrasonic frequency range. Therefore, an annoying 

squeal noise was replaced by an inaudible one. To measure the effectiveness of brake 

squeal dither control strategy, then, attention can be focused on a relatively narrow 

frequency range containing the squeal frequency. 
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METHOD OF AVERAGING 

As stated in the introduction, the method of averaging has been used by a number 

of authors to analyze the behavior of dynamical systems subjected to high-frequency 

inputs and/or parametric excitation. Here, the development of Thomsen [41] is followed. 

Effective Friction Law 

For convenience, the equation of motion can be restated as 

 
2

02
2 sin( ) 0T T

d x dx dx
x D R v F

d d d
ζ τ µ

τ τ τ
 + + − − − =  

 (2.9) 

The solution can be decomposed into a “fast” component, ϕ , and a “slow” component, 

Z , and written as 

 ( ) ( ) ( )1
, T

T

x Z R
R

τ τ ϕ τ τ= +  (2.10) 

Note that, for 1TR >> , the fast component is ( )1
TO R− . Also note that ϕ  depends on two 

time scales. The following shorthand notation for the partial derivatives is used: 
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Therefore, the total derivatives are given by: 
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Substitution of (2.12) in to (2.9), and grouping the terms according to orders of TR  yields 
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The dither amplitude is assumed to be of order TR , thus TD  can be expressed as 

   ( )     1T T T TD R with Oα α= =  (2.14) 

Equating terms of order ( )TO R  in equation (2.13) yields the relation 

 ( )1sin( )T T TR Rϕ α τ −′′ − = Ο  (2.15) 

Equation (2.15) can be solved for the fast component of the solution 

 ( ) ( )1, sin( )T T T TR R Rϕ τ τ α τ −= − + Ο  (2.16) 

From the terms of ( )1O  in equation (2.13), the next equation to be solved is 

  ( )( ) ( )1 1
02 2 2T TZ Z Z Z R v F Rζ µ ϕ ϕ ζϕ ϕ− −′ ′ ′+ + + + + − + + = Ο�� � � � �  (2.17) 

Using equation (2.16) and its partial derivatives, this yields 

 ( )( ) ( )1
02 cos( ) +2 cos( )T T T T TZ Z Z Z R v F R Rζ µ α τ ζα τ −+ + = − − − + Ο�� � �  (2.18) 

The averaging technique is used to solve equation (2.18). The fast-time-average operator 

is introduced, which time-averages over one period of the fast excitation, considering the 

slow time τ  to be fixed 
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 ( ) ( ) ( )
2

0

1
, ,  

2T T Tf R f R d R
π

τ τ τ τ τ
π

≡ ∫  (2.19) 

The fast solution is assumed to be periodic in the fast time ,TR τ  such that the fast time 

average of ( ), TRϕ τ τ  is zero 

 ( ) ( ) ( )
2

0

1
, ,  0

2T T TR R d R
π

ϕ τ τ ϕ τ τ τ
π

= =∫  (2.20) 

Applying the averaging operator to equation (2.18) produces the governing equation for 

the slow dynamics 

 ( )02 0Z Z Z Z v Fζ µ+ + + − =�� � �  (2.21) 

where µ  is called the “effective friction characteristic,” which can be thought of as a 

“smoothed” version of the discontinuous friction law. Using rv  to denote the slow 

component of the slip velocity, µ  can be expressed as 

 ( ) ( )cos( )r r T Tv v Rµ µ α τ= −  (2.22) 

Figures 2.4 and 2.5 depict the effective friction characteristic versus r mv v  for the 

Stribeck friction model and for the decreasing friction model, respectively, for five values 

of T mvα . Note that the effective Stribeck friction and effective decreasing friction 

characteristics exhibit some regions of negative sloping friction coefficient. This feature 

will have a strong influence on the determination of system stability. 
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Figure 2.4: Effective Stribeck friction model for five values of tangential dither amplitude 
αT. Parameters: µs=0.4, µm=0.2857, and (a) αT/vm=0, (b) αT/vm=0.25, (c) αT/vm=0.5, (d) 

αT/vm=0.75, (e) αT/vm=1. 

  

Figure 2.5: Effective decreasing friction model for five values of tangential dither 
amplitude αT. Parameters: µs=0.4, µm=0.2857, and (a) αT/vm=0, (b) αT/vm=0.25, (c) 

αT/vm=0.5, (d) αT/vm=0.75, (e) αT/vm=1. 
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Stability Criterion 

The static equilibrium, denoted Z , of the slow dynamics can be obtained by 

setting 0Z Z= =�� �  in equation (2.21) to yield 

 ( )0Z v Fµ= − −  (2.23) 

To study stability of the system, small perturbations about equilibrium are considered, 

( ) ( )z Z Zτ τ= − . Inserting ( )z τ  into equation (2.21) one finds 

 ( ) 0z h z z+ + =�� �  (2.24) 

where the function ( )h z�  incorporates the effective friction term and the viscous damping 

term 

 ( ) ( ) ( )( )0 0= 2h z z F z v vζ µ µ+ − − −� � �  (2.25) 

The system’s equivalent damping is obtained by taking the first derivative of ( )h z� . If it 

is negative, then (2.23) is unstable, and self-excited vibrations will take place. Thus, the 

criterion for instability is given by 

 
( ) ( )0 = 2 0

dh z
v F

dz
ζ µ ′+ <

�
�

 (2.26) 

For a particular spring-mass-damper system and for a particular friction model, 

equation (2.26) can be used to generate stability maps, in the 0T vα −  plane. Figure 2.6 

shows the stability map of the dithered system having the Stribeck friction model. 

Parameter combinations in the shaded region correspond to points where equation (2.26) 

is satisfied; i.e. where the averaging method predicts instability. The upper bound of the 
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unstable region decreases monotonically and the lower bound increases monotonically 

with Tα . This means that, if the undithered system experiences sustained oscillations, 

there exists a threshold level of dither *
T Tα α=  that is able to quench the limit-cycle 

oscillations. It is seen that the system is stable for all belt speeds greater than 0 0.2v =  

(approximately). For belt speeds roughly less than 0.16, it is seen that the threshold value 

*
Tα  grows linearly with 0v . As the belt speed increases from 0.16 to 0.2, *

Tα  decreases 

with 0v . Due to the downward sloping upper boundary of the shaded region, one can 

conclude that it is impossible for the system to become destabilized by an increase in the 

amplitude of the dither signal. On the other hand, Figure 2.7 shows that the decreasing 

friction model is characterized by having a band of instability in the 0T vα −  plane. The 

undithered system is seen to be stable for belt velocities greater than 0.8 (approximately). 

However, because the upper edge of the shaded region increases with Tα , it is now 

possible to destabilize a system by increasing the dither amplitude. For example, at a belt 

velocity of 0 1.0v = , the undithered system is stable, but dither amplitudes in the range   

are predicted to destabilize the system. The band shown in the Figure 2.7 extends far 

beyond the area displayed, however it gradually becomes more and more narrow as the 

belt velocity is increased. 
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Figure 2.6: Stability map for the Stribeck friction model. Parameters: �=0.005, F=1, 

vm=0.2, µs=0.4, and µm=0.2857. 

 

Figure 2.7: Stability map for the decreasing friction model. Parameters: �=0.005, F=1, 

vm=0.2, µs=0.4, and µm=0.2857. 
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NUMERICAL RESULTS 

In order to assess the accuracy of the averaging technique, an extensive numerical 

study was conducted. For a given set of system parameters, the response of the system 

was time simulated for a variety of dither amplitudes and frequencies. The simulations 

were performed using the Matlab function ode45, which uses an explicit Runge-Kutta 

algorithm with variable time steps. Sticking episodes are determined by careful 

determination of the times where the slip-velocity becomes zero. If sticking is found to 

take place based on the criterion of equation (2.5), the integration is continued using the 

“sticking dynamics” given by equations (2.3) and (2.4) until the interface breaks free 

again. 

Two different situations are considered below. In the typical situation, the 

undithered system is unstable, and dither is used to eliminate the self-excited oscillations. 

The effectiveness of dither in this type of application is considered in the first section. In 

the second section, numerical integration is used to explore the opposite situation, where 

dither causes a stable system to become unstable. 

Stabilizing Effect of Dither 

In order to quantify the effectiveness of the dither cancellation technique, a 

numerical metric was developed that expresses the relative improvement of the dithered 

system to the undithered system, named dither amplitude reduction ratio 
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 1

0

M
E

M
=  (2.27) 

where 1M  and 0M  are the maxima of the spectral estimates of the displacement with and 

without the dither signal applied, respectively. In each case, the maximum is found within 

a frequency range that encompasses the limit-cycle oscillation. Since it is not known 

exactly what the fundamental frequency of the limit cycle will be, the range goes from 0 

to 1.9 times the undamped natural frequency of the system.  

Figure 2.8 shows contour plots of the metric E  as a function of dither amplitude 

TD  and frequency ratio TR  for four different belt velocities, using the Stribeck friction 

model. The isoclines represent identical levels of reduction achieved by dither for pairs of 

dither parameters T TR D− . The numerical studies show that, for a constant frequency 

ratio, the performance increases ( E  decreases) as TD  is increased. On the other hand, for 

a constant dither amplitude, the performance increases as the frequency ratio is 

decreased. For sufficiently high dither frequency ratio, when 5TR > , small reduction 

ratios less than 20% exhibit approximately linear relationships between dither amplitude 

and frequency ratio. Moreover the 5% reduction ratio seems to correlate very well with 

the threshold dither parameter obtained using the method of averaging. Note that *
Tα  for a 

particular belt velocity 0v  will correspond to a straight line in the T TR D−  parameter 

space 

 *  T T TD Rα=  (2.28) 

The 5% isocline in the Figure 2.8 plots coincides almost exactly with the 

boundary predicted by (2.26). For Tα  less than *
Tα , the performance gets worse as 
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expected. Moreover, the isoclines become less straight as the performance worsens. For 

example, when 0.5E = , the contours are fairly distorted. 

Recall that the averaging results require 1 TR  to be a small quantity. As stated 

above, for 5TR > , there is fairly good agreement between the stability boundaries 

obtained from the averaging method and the 5% performance ratio from numerical 

integration. The lower edge of the stability boundary of Figure 2.6 shows that there is an 

approximately linear relationship between *
Tα  and 0v . In light of (2.26), this means that 

the slope of the 5% isocline should increase as 0v  increases. This is supported by the 

progression of plots in Figure 2.8. 

Figure 2.9 presents contour plots of the metric E  as a function of dither 

amplitude TD  and frequency ratio TR  for four different belt velocities, using the 

decreasing friction model. For the parameter values chosen and for the belt velocities 

shown in the four plots, the undithered system is unstable. For sufficiently high dither 

frequency ratios, when 5TR > , the isoclines for small dither amplitude reduction ratios 

(lower than 20%) exhibit approximately linear relationships between dither amplitude 

and frequency ratio. The 5% reduction ratio also seems to correlate well with the stability 

criterion derived from the method of averaging. 

While the averaging methods are relatively easy to obtain, they cannot provide 

any information about the performance of the dither technique aside from the stability or 

instability of the system. The numerical studies reveal a strong correlation between the 

5% performance ratio and the averaging method’s stability bound. Away from this 

boundary, the numerical study reveals the conditions under which different degrees of 

“partial cancellations” are achieved. 
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Figure 2.8: Efficiency metric using the Stribeck friction model for four values of belt 
velocity v0. (…) Efficiency metric isoclines;  (-) Stability boundary using the method of 

averaging. Parameters: ω0=1, �=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and (a) v0=0.05, 

(b) v0=0.1, (c) v0=0.125, (d) v0=0.15. 
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Figure 2.9: Efficiency metric using the decreasing friction model for four values of belt 
velocity v0. (…) Efficiency metric isoclines; (-) Stability boundary using the method of 

averaging. Parameters: ω0=1, �=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and (a) v0=0.05, 

(b) v0=0.1, (c) v0=0.125, (d) v0=0.15. 

Destabilizing Effect of Dither in the Case of the Decreasing Friction Law 

When the undithered system is stable, the metric E  of the previous method is not 

useful. In the case shown in Figure 2.7, however, it is seen that it is possible in some 

situations for dither to destabilize an initially stable system. To explore this further, 

numerical simulations are conducted holding the belt velocity and the dither frequency 

ratio constant, and observing the response as TD  is increased. For a system with the same 
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parameter values as those used in Figure 2.7, Figure 2.10 shows 6 different values of TD  

when the belt velocity is 0 1v =  and 10TR = . The top and middle rows show the 

displacement and velocity response to zero initial conditions, respectively. Note that at 

0T TD α= = , case (a) in Figure 2.7 shows that the undithered system is stable. Thus the 

system should settle into a steady-sliding condition after the transient vibration dies out. 

The averaging method predicts that the system should become unstable for 0.43Tα = , i.e. 

4.3T T TD Rα= = . The system should return to a stable state for 0.98Tα > , which 

corresponds to 9.8TD > . Figure 2.10 validates this qualitative behavior. However, the 

system becomes unstable at a lower dither amplitude, i.e. for 3TD ≥ . Nevertheless there 

is agreement with the averaging results for the return to stability prediction, as the system 

is stabilized for dither amplitudes 10TD ≥ . 

The bottom row of plots in Figure 2.10 shows the Poincaré plots as TD  changes. 

The Poincaré section is chosen to coincide with the time instants where the dither force 

has maximum positive slope; 2T nR nτ π=  for 0,  1,  2,  ...n =  During “stable” response, 

the Poincaré plot spirals down to a period-1 response. When the dither signal destabilizes 

the system, the Poincaré plot shows a closed-orbit, closely resembling a period-10 

response. It appears that the dither signal is successful in smoothing the nonlinearity, so 

that the low-frequency response is at or near 0ω , even though the limit-cycle oscillation 

occurs typically at a lower frequency. In the case of an unstable response, this sustained 

low-frequency response component is joined to a second component at the dither 

frequency. 
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Figure 2.10: System responses with the decreasing friction model, displacements x(τ) 
(top row), velocities v(τ) (middle row), and Poincaré maps (bottom row) for six values of 

tangential dither amplitude DT. Parameters: ω0=1, �=0.005, F=1, v0=1.0, vm=0.2, µs=0.4, 

µm=0.2857, RT=10, and (a) DT=0, (b) DT=2.5, (c) DT=3, (d) DT=4, (e) DT=9, (f) DT=10. 

For the same system studied in Figure 2.10, Figure 2.11 shows a progression of 

responses for a belt velocity of 0 1.5v =  and a dither frequency ratio of 10TR = . From 

Figure 2.7, it is seen that the averaging technique predicts that the system will be unstable 

for 10 15TD≤ ≤  (approximately). The numerical study shows the same qualitative trend, 
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but the instability occurs at a much smaller dither amplitude, 7TD = . Again, the Poincaré 

plots show that the unstable response is period-10 at times; in some cases, the two 

dominant frequencies are not exactly commensurate, but show an approximate 10 to 1 

ratio. In agreement with the averaging result, the system is stable again for dither 

amplitudes 15TD ≥ . 

It should be mentioned that it is very difficult to pinpoint the exact value of TD  

(or Tα ) at which the stability of the system switches. As the boundary is approached, the 

duration of the transients become longer and longer. Therefore, an exhaustive numerical 

study was not conducted on the potential destabilizing effects of dither. However, it is 

clear from the numerical simulations that it is indeed possible to destabilize a system by 

increasing the amplitude of the dither force. This somewhat surprising result can be 

explained if one considers the friction model shown in Figure 2. The decreasing friction 

law has a negative derivative with respect to all 0rv ≠ , however the gradient becomes 

more and more shallow as the slip velocity gets larger in magnitude. If the mass is in a 

state of steady sliding and the belt speed is high enough, the system would be expected to 

be stable for small perturbations. However if the dither signal disturbs the mass enough 

so that the magnitude of the slip velocity gets smaller over significant time durations, 

friction might overcome the positive damping due to viscous damping and drive the 

system unstable. In the case of the Stribeck friction model, the episodes of negative 

frictional damping are balanced against episodes of positive damping whenever dither 

disturbs the steady-sliding state. 
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Figure 2.11: System responses with the decreasing friction model, displacements x(τ) 
(top row), velocities v(τ) (middle row), and Poincaré maps (bottom row) for six values of 

tangential dither amplitude DT. Parameters: ω0=1, �=0.005, F=1, v0=1.0, vm=0.2, µs=0.4, 

µm=0.2857, RT=10, and (a) DT=0, (b) DT=6.5, (c) DT=7, (d) DT=10, (e) DT=14, (f) 
DT=15. 
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CONCLUSION 

It is found that unstable, self-excited oscillations in the system having the Stribeck 

friction model can be stabilized by applying tangential dither of sufficient amplitude. 

Amplitude-frequency combinations that cause the steady-state dithered response to 

decrease to 5% of the undithered response show a very repeatable correlation with the 

stability boundary predicted by the averaging technique. 

The behavior of the system with a decreasing friction law differs from that of the 

system with the Stribeck friction model in one important respect. While dither is found to 

always be a stabilizing influence in the case of the Stribeck friction model, the system 

with the decreasing friction model can be either stabilized or destabilized by dither. Both 

the averaging technique and numerical simulations show that a system undergoing stable, 

steady sliding can be destabilized by applying dither of intermediate strength. When the 

undithered system is unstable, it is always possible to find a tangential dither signal that 

stabilizes the system. In this case, the stability threshold predicted by the averaging 

technique again correlates well with the 5% performance level found using numerical 

integration. 
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CHAPTER 3 

SDOF WITH TANGENTIAL DITHER OF VARIOUS WAVEFORMS 

This chapter explores the effect on system stability of different waveforms for 

tangential dither excitation.  There are several reasons for this investigation. The first is 

that prior research performed using the Georgia Tech brake experiment examined a 

variety of waveforms (for normal dither). For example, in Dzirasa [48], dither 

cancellation was implemented in a “burst mode.” In order to reduce the power 

consumption, the waveform was comprised of an “on-segment” followed by an “off-

segment.” The on segment consisted of a prescribed number of cycles of a particular 

frequency. The frequency and number of cycles, the relative duration of the on-segment 

to the off segment as well as the period of the combined signal, were all varied to 

determine favorable squeal cancellation. One of the surprising findings of the waveform 

study was that when the duration of the on-segment was reduced below that of the off-

segment, dither was unable to control the brake squeal, regardless of the frequency of the 

dither on-segment. 

 Another motivation of this study is that dither signal characteristics have been 

mentioned in other applications. Most notably, the book of Gelb and Vander Velde [33]. 

For example, the book discusses the influence of bias in a sinusoidal input, the 

simultaneous use of two sinusoids (dual input), the use of Gaussian random inputs. 

Oldenburger and Nakada [31] compared triangular and sinusoidal waveforms in terms of 

stabilization of limit cycles. It should be emphasized that, due to the nonlinearities 

present in the system, the results for a single sinusoid cannot be directly applied to the 
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case of general-periodic or random-input dither. Instead, each waveform must be 

examined individually to obtain accurate predictions of performance. 

 This chapter compares three different periodic waveforms when used as tangential 

dither signals in the SDOF system studied previously in Chapter 2: a sinusoid, a 

triangular waveform, and a square waveform.  Each signal has zero-mean but differs in 

the ratio of RMS to peak value. Also, since Chapter 2 revealed different qualitative 

behavior for the Stribeck and decreasing friction laws, both of these friction laws are 

explored in this chapter. Thus, six different cases are analyzed and compared 

corresponding to the two different friction laws and the three different dither signals. For 

each of the three cases, the goal is to explore how combinations of dither amplitude and 

dither frequency (or dither period) influence the effectiveness of dither control strategies. 

 Because of the large number of different cases and parameters, it is important to 

have a relatively simple analytical technique so that widescale numerical simulation 

studies are not necessary. Here, the averaging technique of Chapter 2 is extended to 

general, periodic waveforms. The results are then specialized for particular waveforms 

and friction laws. The results from different waveforms are compared against themselves 

and against numerical simulation results to assess their relative performance. 

MODEL DEVELOPMENT 

The model used in this chapter is very similar to the one already described in 

Chapter 2. Here, the model is briefly stated, with the key differences highlighted. Figure 

3.1 shows that the SDOF system is subjected to a tangential dither force which is denoted 

( )T TA g tω , where TA  is the amplitude and ( ).g  is a unit-amplitude, zero-mean, periodic 
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waveform. The fundamental frequency of the periodic signal is given by Tω , which is 

typically very large compared to the natural frequency and/or the squeal frequency of the 

system.  In other words, the period of the periodic waveform is assumed to be 2 Tπ ω .   

The normal force N  is assumed to be constant in this chapter. 

 

c 

k 

V0 
µ 
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N

( )T TA g tω

x(t) 

 

Figure 3.1: SDOF model 

The non-dimensional equation of motion of the SDOF system is given by 

 ( )
2

2
2 T T

d x dx dx
x f D g R

d d d
ζ τ

τ τ τ
 + + = +  

 (3.1) 

where 2
0 k mω =  is the system’s natural frequency, 0tτ ω=  is non-dimensional time, 

02c mζ ω=  is the damping ratio, and the tangential dither frequency and amplitude 

ratios are denoted by 0T TR ω ω=  and T TD A k= , respectively. Note that x  and TD  

have units of length. 

The scaled friction force f  is defined as 
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 ( )r

dx
f v F

d
µ

τ
  =  

 (3.2) 

where F N k=  is a scaled normal force, 0rv v dx dτ= −  is the relative velocity or “slip 

velocity” of the mass, and 0v  is a scaled belt velocity, 0 0 0v V ω= . The friction models 

used in this chapter are the Stribeck and decreasing friction law, given previously in 

equations (2.7) and (2.8), respectively. 

MATHEMATICAL FORM OF THE DITHER WAVEFORMS 

In practice, the form and complexity of a dither waveform are limited only by the 

fidelity of the power electronics and the dynamics of the actuator. However, to limit the 

scope of this study, several assumptions are made regarding the dither signal ( )g x : 

1. ( )g x  has zero-mean. 

2. ( )g x  is periodic with period 2π ; i.e., )()2( xgnxg =± π , 0,1,2,...n =  

3. ( )g x  has unit amplitude; i.e., ( )max 1g = + , ( )min 1g = −  

4. ( )g x  is antiperiodic from [ ]0,π  versus [ ], 2π π ; i.e., )()( xgxg −=± π  

5. ( )g x  is odd; i.e., ( ) ( )g x g x− = −  

6. ( )g x  is of one sign over [ ]0,π  and is assumed to be positive 

Along with the function itself, the averaging technique requires an integral of the dither 

signal 

 ( )( )G x g x dx C= +∫  (3.3) 

where the constant of integration is chosen so that ( )G x  has zero mean. 
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After deriving the averaged results for the system subject to a generic signal g  

that meets the 6 assumptions above, the results are specialized to three waveforms: 

sinusoidal, triangular, and square. Two cycles of the signals and their respective zero-

mean integrals are shown in Figure 3.2. 

 

Figure 3.2: Two cycles of dither waveforms g(τ) (top row), and zero-mean integral G(τ) 
(bottom row). Parameters: (a) sinusoidal, (b) triangular, and (c) square. 

Before proceeding, it is necessary to give the precise mathematical form for the 

three waveforms under consideration. Although Fourier series can be used for this 

purpose, it is easier to use piecewise-defined expressions as follows. 
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Sinusoidal Waveform 

 ( ) ( )sing x x=  (3.4a) 

 ( ) ( ) ( )sin cosG x x dx C x= + = −∫  (3.4b) 

Triangular Waveform 

 ( ) ( )
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 − + ≤ ≤

 (3.5a) 

 ( ) ( ) ( )

( )

2

2

2

1
 0

4 2
1 3

 
4 2 2

1 3
2  2

4 2

x for x

G x triang x dx C x for x

x for x

π π
π

π π ππ
π

π ππ π
π

 − + ≤ ≤

= + = − − ≤ ≤

 − + − ≤ ≤

∫  (3.5b) 

Square Waveform 

 ( ) ( ) 1  0

1  2

for x
g x sqr x

for x

π
π π

≤ ≤
= =  − < ≤

 (3.6a) 

 ( ) ( )
 0

2
3

 2
2

x for x
G x sqr x dx C

x for x

π π

π π π

 − + ≤ ≤= + = 
 − < ≤

∫  (3.6b) 
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Note that the constants of integration have been determined such that the signals ( )G x  

have a zero average over one fundamental period. 

METHOD OF AVERAGING 

In this section, the averaging technique presented in Chapter 2 is generalized to 

consider a periodic dither signal satisfying assumptions 1 through 6.  As in Chapter 2, the 

solution to (3.1) is decomposed into a fast component, ϕ , and a slow component, Z , 

 ( ) ( ) ( )1
, T

T

x Z R
R

τ τ ϕ τ τ= +  (3.7) 

Note that, for 1TR >> , the fast component is ( )1
TO R− . Also note that ϕ  depends on two 

time scales. The following shorthand notation for the derivatives is used: 

 
x

x
τ

∂=
∂

�       and      ( )T

x
x

R τ
∂′ =

∂
 (3.8) 

Therefore, the derivatives are given by: 

 

1

2
1

2
2

T

T T

dx
Z R

d

d x
Z R R

d

ϕ ϕ
τ

ϕ ϕ ϕ
τ

−

−

′= + +

′ ′′= + + +

� �

�� �� �
 (3.9) 

Substitution of (3.9) in to (3.6), and grouping the terms according to orders of TR  yields 

 
( )( ){ }

( ) ( )

1
0

1

2 2 2

        2 ( )

T

T T T T

Z Z Z v Z R F

R R D g R

ζ ζϕ ϕ µ ϕ ϕ

ϕ ϕ ζϕ ϕ τ

−

−

′ ′ ′+ + + + − − + +

′′+ + + + =

�� � �� �

�� �
 (3.10) 

The dither amplitude is assumed to be of order TR , thus TD  can be expressed as 
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   ( )     1T T T TD R with Oα α= =  (3.11) 

Equating terms of order ( )TO R  in equation (3.10) yields the relation 

 ( )1( )T T Tg R Rϕ α τ −′′ − = Ο  (3.12) 

Equation (3.12) can be solved for the fast component of the solution 

 ( ) ( ) ( ) ( )1, T T T T TR G R d R Rϕ τ τ α τ τ −= + Ο∫  (3.13) 

From the terms of ( )1O  in equation (3.10), the next equation to be solved is 

  ( )( ) ( )1 1
02 2 2T TZ Z Z Z R v F Rζ µ ϕ ϕ ζϕ ϕ− −′ ′ ′+ + + + + − + + = Ο�� � � � �  (3.14) 

Using equation (3.13) and its partial derivatives, this yields 

 ( ) ( )( )( ) ( )1
02 2 T T T TZ Z Z G R Z G R v F Rζ ζ τ µ α τ −+ + = − − + − = Ο�� � �  (3.15) 

As before, the fast-time-average operator is introduced, which time-averages over one 

period of the fast excitation, considering the slow time τ  to be fixed: 

 ( ) ( ) ( )
2

0

1
, ,  

2T T Tf R f R d R
π

τ τ τ τ τ
π

≡ ∫  (3.16) 

The fast solution is assumed to be periodic in the fast time ,TR τ  such that the fast time 

average of ( ), TRϕ τ τ  is zero 

 ( ) ( ) ( )
2

0

1
, ,  0

2T T TR R d R
π

ϕ τ τ ϕ τ τ τ
π

= =∫  (3.17) 

Note that equation (3.17) validates the omission of integration constants from (3.13). 
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Applying the averaging operator to equation (3.15) produces the governing equation for 

the slow dynamics in terms of the effective friction characteristic, µ  

 ( )02 0Z Z Z Z v Fζ µ+ + + − =�� � �  (3. 18) 

Using rv  to denote the slow component of the slip velocity, µ  can be expressed as 

 ( ) ( )( )r r T Tv v G Rµ µ α τ= +  (3.19) 

Equation (3.19) applies to any zero-mean dither signal having sufficiently short period 

and any friction law. In the following section, the effective friction characteristics for the 

two friction laws under consideration are worked out in detail. 

Effective Friction Characteristic for Stribeck Friction Law 

The effective friction characteristic for the Stribeck friction law can be obtained 

analytically, using equations (2.7) and (3.16) into (3.19) 

 
( ) ( )( ) ( )( )

( )( ) ( )

2

0 1

0

3

3

1

2

                         

r r T T r T T

r T T T

v sign v G R v G R

v G R d R

π

µ α α τ α α τ
π

α α τ τ

= + + +

+ +

∫
 (3.20a) 

where 

 0 sα µ=         
( )

1

3

2
s m

mv

µ µ
α

−
= −         

( )
3 3

1

2
s m

mv

µ µ
α

−
=  (3.20b) 

Rearrangements of (3.20) lead to 
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( ) ( )( )

( )( ) ( )( )
0

3

1 3          

r r T T

r T T r T T

v sign v G R

v G R v G R

µ α α τ

α α τ α α τ

= +

+ + + +
 (3.21) 

Expanding the cubic term and organizing by powers of the dither fast average lead to  

 
( ) ( )( ) ( ) ( )

( ) ( )

2
0 1 3

2 33 2 3
1 3 3 3

3

          3

r r T T T r T T

r r r T T T T

v sign v G R v G R

v v v G R G R

µ α α τ α α α α τ

α α α α τ α α τ

= + + +

+ + + +
 (3.22) 

Note that, in addition to having zero average, the signals ( )TG R τ  are antiperiodic signals 

from 0 to π  versus π  to 2π ; this condition leads to the following property 

 ( ) 0      1,3,5,...
n

G x for n= =  (3.23) 

Using (3.23) in equation (3.22) yields 

 ( ) ( )( ) ( )( )22 3
0 1 3 33r r T T T T r rv sign v G R G R v vµ α α τ α α α τ α= + + + +  (3.24) 

Note that if maxr Tv Gα>  then ( )( )r T Tv G Rα τ+  has constant sign for all TR τ , whereas if 

maxr Tv Gα≤  then 

 ( ) [ ]
[ ] [ ]

1 2

1 1

0  ,

0  0, , 2
T T T

r T T
T T T

for R R R
v G R

for R R R

τ τ τ
α τ

τ τ τ π
 ≥ ∈+  ≤ ∈ ∪

 (3.25) 

where 1TR τ  and 2TR τ  are the solutions of ( ) 0r T Tv G Rα τ+ = , in the interval [ ]0, 2π . 

Note that 2 12T TR Rτ π τ= −  because the signals ( )TG R τ  are odd (assumption 5). 

Therefore the signum term in (3.24) is given by 
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 ( )( ) [ ]
[ ] [ ]

1 2

1 2

1  ,

1  0, , 2
T T T

r T T
T T T

for R R R
sign v G R

for R R R

τ τ τ
α τ

τ τ τ π
 + ∈+ =  − ∈ ∪

 (3.26) 

The fast time average of the signum function is thus given by 

 ( )( )
( )

1 max

max

2
1 T r T

r T T

r r T

R v G
sign v G R

sign v v G

τ α
α τ π

α

 − ≤+ = 
 ≥

 (3.27) 

The effective friction characteristic for the Stribeck friction law for any of the three 

waveforms under consideration is given by 

( )
( )( )

( ) ( )

22 3
0 1 1 3 3 max

22
3 max

2
1 3     

3                                         

T T T r r r T

r

r T T r r T

R G R v v for v G
v

v G R v for v G

α τ α α α τ α α
πµ

µ α α τ α

  − + + + ≤   = 
 + ≥

 (3.28) 

Sinusoidal Dither Waveform 

In the case of sinusoidal dither, max 1G = , 1 arccos r
T

T

v
R τ

α
 

=  
 

, and 

( )2 1

2TG R τ = . Using these relations combined with (3.4b), equation (3.28) reduces to 

the exact form given by Thomsen [41], 

 ( )

( )

( )

0

2 3
1 3 3

2
3

2
1 arccos

3
                                

2

3

2

r
r

T
r T

r
T r r

r T r r T

v
sign v

for v
v v v

v v for v

α
π α

α
µ α α α α

µ α α α

   
−        ≤  =  + + +   


 + ≥

 (3.29) 
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Triangular Dither Waveform  

In the case of triangular dither, max 4
G

π= , 
2

1 4
r

T
T

v
R

ππτ
α

= − , and 

( )
2

2

30TG R
πτ = . Using these relations combined with (3.5b), equation (3.28) reduces to 

 ( )

( )

( )

0

2
2 3

1 3 3

2
2

3

4
1 1

4
                                

10

10 4

r
r

T

r T

r
T r r

r T r r T

v
sign v

for v

v v v

v v for v

α
π α π α

πµ α α α α

π πµ α α α

  
  − −    ≤  =  + + +   
 + ≥

 (3.30) 

Square Dither Waveform 

In the case of square dither, max 2
G

π= , 1 2
r

T
T

v
R

πτ
α

= − , and ( )
2

2

12TG R
πτ = . 

Using these relations combined with (3.6b), equation (3.28) reduces to 

 ( )
( )

2
2 30

1 3 3

2
2

3

2

4 2

4 2

T r r r T
T

r

r T r r T

v v for v

v

v v for v

α π πα α α α α
π αµ

π πµ α α α

  
+ + + ≤    = 

 + ≥

 (3.31) 

Effective Friction Characteristic for Decreasing Friction Law 

The effective friction characteristic for the decreasing friction law can be obtained 

analytically, substituting equations (2.8) and (3.16) into (3.19) 
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 ( ) ( ) ( ) ( )
2

0 1

0

1
exp  

2r T
m

u
v sign u sign u d R

v

π

µ α α τ
π

 
= + − 

 
∫  (3.32a) 

where 

 0 mα µ=         1 s mα µ µ= −         ( )r T Tu v G Rα τ= +  (3.32b) 

Rearrangements of (3.32) lead to 

 ( ) ( ) ( )0 1 expr
m

u
v sign u sign u

v
µ α α

 
= + − 

 
 (3.33) 

Note that if maxr Tv Gα>  then u  has the same sign as rv  for all TR τ , then 

 ( ) ( )rsign u sign v=  (3.34a) 

 

( ) ( )

( ) ( ) ( )

exp

                exp exp

r T T

m

r T
r T r

m m

v G R
sign u

v

v
sign v G R sign v

v v

α τ

α τ

 +
−   

   
= − −   

  

 (3.34b) 

On the other hand, if maxr Tv Gα≤  then the signum function in (3.33) is determined by 

equation (3.26), because it is dependent on the dither waveform only, then 
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 ( ) ( )1

2
1 T rsign u R sign vτ

π
 = −  

 (3.35a) 

 

( ) ( ) ( ) ( )

( ) ( )

( )

1 2

1

2

2

0

0

2

1
exp exp  

2

1
                      exp exp

2

                                 exp

T T

T

T

T
m m

R R

T T
m mR

T
mR

u u
sign u sign u sign u d R

v v

u u
d R d R

v v

u
d R

v

π

τ τ

τ

π

τ

τ
π

τ τ
π

τ

   
− = −   

  
    

= − + −    
    

 
−  

  

∫

∫ ∫

∫

 (3.35b) 

The effective friction characteristic for the decreasing friction law for any of the three 

waveforms under consideration is given by 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2

1

2

0 1

1

0

max
1

2
1

2
1

         exp
2

   
         exp

2

         exp
2

T

T

T

T

r r T

R
r T T

T
m

R r T
r T T

T
mR

r T T
T

mR

v sign v R

v G R
d R

v
for v G

v G R
d R

v

v G R
d R

v

τ

τ

τ

π

τ

µ α τ
π

α τα τ
π

αα τα τ
π

α τα τ
π

  = −   
+ 

−  
 

≤+ 
+ − 

 
+ 

−  
  

∫

∫

∫

 (3.36a) 

 

( ) ( )

( ) ( ) ( )

1
0

max2

0

exp
2

            exp

r
r r

m

r T

T
r T T

m

v
v sign v

v
for v G

sign v G R d R
v

π

αµ α
π

α
α τ τ

  
= + −  

   ≥
 

× −  
  

∫
 (3.36b) 

Sinusoidal Dither Waveform 

Dither with sinusoidal waveforms requires the calculation of integrals of the type 

( )( )exp cosI a b x dx= +∫ . Only integral (3.36b) has an analytical solution, for the case 

r Tv α≥ . When r Tv α≤ , no closed-form integration is possible for (3.36a), thus the 

effective friction characteristic in this case must be evaluated numerically. 

The effective friction characteristic in the case of sinusoidal waveforms, when 

r Tv α≥ , can be expressed as 

 ( ) ( ) 0 1 0 exp rT
r r r T

m m

v
v sign v I for v

v v

αµ α α α
    = + − ≥   
     

 (3.37) 

where ( )0 .I  is the modified Bessel function of order zero. The detailed derivation is 

given in Appendix A. 
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Triangular Dither Waveform 

The effective friction characteristic in the case of triangular waveforms can be 

expressed as 

 

( )

( ) ( )

( )

1
0

1

4
1 1 exp

2

               
4

              exp
2

r rm
r

T T m

r
r T

m

r rm
r

T m m

v vv
v

v

v
erf erf erfi for v

v

v vv
erfi sign v

v v

αµ α γ
πα α

πγ γ γ α

α γ γ
α

      = − − + − −       
  
  × − − + ≤    

    − − −        

 (3.38a) 

 

 

( ) ( )

( ) ( ) ( ) ( )

1
0 exp

2

4
              exp exp

r m
r r

m T

r T

v v
v sign v

v
for v

erf erfi

αµ α
α π α

γ γ γ γ

  = + −  
  

≥
 × + −   

 (3.38b) 

where 
4

T

mv

παγ = , where ( ).erf  is the error function, defined as ( ) 2

0

2 x
terf x e dt

π
−≡ ∫ , and 

( ).erfi  is the imaginary error function, defined as ( ) 2

0

2 x
terfi x e dt

π
≡ ∫ . The detailed 

derivation is given in Appendix B. 

Square Dither Waveform 

The effective friction characteristic in the case of square waveforms can be 

expressed as 
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 ( ) 0 12 2
exp sinh           

2 2
m T r

r r r T
T T m m

v v
v v for v

v v

α α πα πµ α
πα π α

   
= + − ≤   

   
 (3.39a) 

 ( ) ( ) 1
0

2
exp sinh

2 2
rm T

r r r T
T m m

vv
v sign v for v

v v

α πα πµ α α
πα

     = + − ≥    
    

 (3.39b) 

The detailed derivation is given in Appendix C. 

Figures 3.3 shows the effective friction characteristic versus r mv v  for the 

Stribeck friction model for 5 different values of dither amplitude. Parts (a), (b), and (c) of 

the figure correspond to the sinusoidal, triangular, and square dither waveforms, 

respectively. Several interesting things may be discerned from these figures. First, it is 

seen that, in each case, dither acts to smooth the friction discontinuity in the vicinity of 

the zero-slip point, i.e. maxr Tv Gα≤ . As the amplitude of the dither waveform is 

increased, the discontinuity is smoothed over a wider range of slip velocities. Secondly, it 

is seen that the slope of effective friction law is dependent both on the amplitude and type 

of dither waveform. Recall from Chapter 2 that the instability of the averaged system is 

dictated by the slope of the effective friction characteristic, in particular, by the extent of 

the negative-sloping region. It is seen that the effective friction law exhibits a negative 

slope in the approximate range of maxT r mG v vα ≤ ≤ . Thus, the higher maxG  is, the smaller 

the slip-velocity range for negative slope. For the three dither signals under consideration, 

max 1,  ,   
4 2

G and
π π=  respectively, for the case of sinusoidal, triangular, and square dither 

waveforms. 

Figure 3.4 shows the corresponding effective friction characteristics for the 

decreasing friction law. Note that the effective characteristic for the decreasing friction 
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model with sinusoidal dither has been obtained via a numerical evaluation of equation 

(3.36a). 

 

Figure 3.3: Effective Stribeck friction model for three waveforms (a) sinusoidal,           
(b) triangular, (c) square, for five values of tangential dither amplitude αT. Parameters: 
µs=0.4, µm=0.2857, and (i) αT/vm=0, (ii) αT/vm=0.25, (iii) αT/vm=0.5, (iv) αT/vm=0.75,  

(v) αT/vm=1. 

 

Figure 3.4: Effective decreasing friction model for three waveforms (a) sinusoidal,         
(b) triangular, (c) square, for five values of tangential dither amplitude αT. Parameters: 
µs=0.4, µm=0.2857, and (i) αT/vm=0, (ii) αT/vm=0.25, (iii) αT/vm=0.5, (iv) αT/vm=0.75,  

(v) αT/vm=1. 
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Stability Boundaries 

It may be noted that, except for the form of µ , the slow dynamics are given by 

(3.18), which is exactly the same as in equation (2.21). Thus instability is indicated by 

(2.26): 

 
( ) ( )0 = 2 0

dh z
v F

dz
ζ µ ′+ <

�
�

 (3.40) 

This relation is now specialized for particular friction laws and for particular dither 

waveforms. 

Stribeck Friction Law 

The stability boundary for the Stribeck friction law can be obtained analytically 

using equation (3.40) and the first derivative of the effective friction characteristic, given 

by equations (3.29), (3.30) and (3.31), for sinusoidal, triangular and square waveforms, 

respectively. 

The first derivative of the effective friction characteristic in the case of sinusoidal 

waveforms can be obtained using equations (3.29) 

 ( ) 2 20
1 3 32 2

2 3
3

2r T r r T

T r

v v for v
v

αµ α α α α α
π α

′ = + + + ≤
−

 (3.41a) 

 ( ) ( ) 2
3

3

2r r T r Tv v for vµ µ α α α′ ′= + ≥  (3.41b) 

where ( ) ( )2 2
33r r mv v vµ α′ = − . 
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From (3.41a), it can be shown that ( )0 0vµ′ ≥  for 0 Tv α≤ , thus the system is always 

stable in that belt velocity range. For higher belt velocity, i.e. in the range 0 Tv α≥ , the 

criterion for instability, using (3.40), in the case of sinusoidal waveforms can be written 

as 

 2 2 2
3 0 0

1
2 3 0

2m T TF v v for vζ α α α + − + < ≥  
 (3.42) 

Therefore, the system will be unstable if 

 
( )

2

0

41
1

2 3
mT

T m
m s m

v
v v

v F

ζαα
µ µ

 
≤ ≤ − −  − 

 (3.43) 

In other words, the system with sinusoidal dither will be stable at any belt velocity if 

L
T Tα α≥ , where 

 
( )
42

1
3 3

L m
T m

s m

v
v

F

ζα
µ µ

= −
−

 (3.44) 

The first derivative of the effective friction characteristic in the case of triangular 

waveforms can be obtained using equations (3.30) 

 ( )
2

2 20
1 3 3

2
3

16 44
r T r r T

T T r

v v for v
v

α π πµ α α α α α
α π πα

′ = + + + ≤
−

 (3.45a) 

 ( ) ( )
2

2
316 4r r T r Tv v for v

π πµ µ α α α′ ′= + ≥  (3.45b) 

where ( ) ( )2 2
33r r mv v vµ α′ = − . 
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Due to the fact that 1 0α < , it is difficult to determine the sign of (3.45a) for all values of 

rv . Nevertheless, for the parameter values chosen, it can be shown that ( )0 0vµ′ ≥  for 

0 4 Tv
π α≤ , thus the system is always stable in that belt velocity range. For higher belt 

velocity, i.e. in the range 0 4 Tv
π α≥ , the criterion for instability, using (3.40), in the case 

of triangular waveforms can be written as 

 
2

2 2 2
3 0 02 3 0

48 4m T TF v v for v
π πζ α α α 

+ − + < ≥ 
 

 (3.46) 

Therefore, the system will be unstable if 

 
( )

22

0

4
1

4 48 3
mT

T m
m s m

v
v v

v F

ζαπ πα
µ µ

 
≤ ≤ − −  − 

 (3.47) 

In other words, the system with triangular dither will be stable at any belt velocity if 

L
T Tα α≥ , where 

 
( )
42

3L m
T m

s m

v
v

F

ζα
π µ µ

= −
−

 (3.48) 

The first derivative of the effective friction characteristic in the case of square 

waveforms can be obtained using equations (3.31) 
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 ( )
2

2 20
1 3 3

2
3

4 2r T r r T
T

v v for v
α π πµ α α α α α

π α
′ = + + + ≤  (3.49a) 

 ( ) ( )
2

2
34 2r r T r Tv v for v

π πµ µ α α α′ ′= + ≥  (3.49b) 

where ( ) ( )2 2
33r r mv v vµ α′ = − . 

Due to the fact that 1 0α < , it is difficult to determine the sign of (3.49a) for all values of 

rv . Nevertheless, for the parameter values chosen, it can be shown that ( )0 0vµ′ ≥  for 

0 2 Tv
π α≤ , thus the system is always stable in that belt velocity range. For higher belt 

velocity, i.e. in the range 0 2 Tv
π α≥ , the criterion for instability, using (3.40), in the case 

of triangular waveforms can be written as 

 
2

2 2 2
32 3 0

12 2r m T r TF v v for v
π πζ α α α 

+ − + < ≥ 
 

 (3.50) 

Therefore, the system will be unstable if 

 
( )

22

0

4
1

2 12 3
mT

T m
m s m

v
v v

v F

ζαπ πα
µ µ

 
≤ ≤ − −  − 

 (3.51) 

In other words, the system with square dither will be stable at any belt velocity if 

L
T Tα α≥ , where 
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( )
4

3L m m
T

s m

v v

F

ζα
π µ µ

= −
−

 (3.52) 

Setting 0Tα =  in equations (3.43), (3.47) and (3.51), it can be deduced that the 

undithered system is stable for all belt velocities greater than 
( )2

4
1

3
S m

m
s m

v
v v

F

ζ
µ µ

≡ −
−

. 

For belt velocities less than 2
Sv , the undithered system experiences sustained oscillations. 

It may be noted that, for light damping, 2
S

mv v� . Thus, when the belt velocity is higher 

than mv , the undithered system is stable, a fact that might have been anticipated by the 

shape of the Stribeck friction law. 

The upper bounds on 0v  in equations (3.43), (3.47) and (3.51) show that the upper 

bounds of the unstable regions decrease monotonically with Tα . Moreover the lower 

bounds on 0v  in equations (3.43), (3.47) and (3.51) show that the lower bounds of the 

unstable regions increase linearly with Tα . This means that, if the undithered system 

experiences sustained oscillations, there exists a threshold level of dither, denoted by *
Tα , 

where * L
T Tα α≤ , that is able to quench the limit-cycle oscillations. Also, from the lower 

bounds in equations (3.43), (3.47) and (3.51), one can deduce that the square waveform is 

better than the sinusoidal waveform, which is better than the triangular waveform. 

For belt velocities less than 1 max
S L

Tv Gα≡ , the threshold value *
Tα  grows linearly 

with 0v . As the belt velocity increases from 1
Sv  to 2

Sv , *
Tα  decreases with 0v . Due to the 

downward sloping upper boundary of the unstable region, one can conclude that it is 
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impossible for the system to become destabilized by an increase in the amplitude of the 

dither signal. 

For a particular spring-mass-damper system, equations (3.43), (3.47) and (3.51) 

can be used to compute the stability boundaries and generate stability maps for the 

Stribeck friction model in the 0T vα −  plane for sinusoidal, triangular and square dither 

signals, respectively. Figure 3.5 shows the stability map of the dithered system having the 

Stribeck friction model. Parameter combinations in the unstable region correspond to 

points where equation (3.40) is satisfied. 

 

Figure 3.5: Stability map for the Stribeck friction model for three waveforms (a) 

sinusoidal, (b) triangular, (c) square. Parameters: �={0.1, 0.05, 0.005}, F=1, vm=0.2, 

µs=0.4, and µm=0.2857. 

Decreasing Friction Law 

The stability boundary for the decreasing friction law can be obtained analytically 

using equation (3.40) and the first derivative of the effective friction characteristic, given 

by equations (3.38) and (3.39), for triangular and square waveforms, respectively. Note 

that the case of sinusoidal waveforms will also require a numerical evaluation. 
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The first derivative of the effective friction characteristic in the case of triangular 

waveforms can be obtained using equation (3.38) 
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Equation (3.53a) shows that ( )0 0vµ′ ≥  for 0 4 Tv
π α≤  (for the chosen parameter values), 

thus the system is always stable in that belt velocity range. For higher belt velocity, i.e. in 

the range 0 4 Tv
π α≥ , the criterion for instability, using (3.40), in the case of triangular 

waveforms can be written as 

 01
02 exp 0

2 4
m

T
m T m

vv
F for v

v v

α δ πζ α
α

  
+ − − < ≥  

   
 (3.54) 

Therefore, the system will be unstable if 
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In other words, the system with triangular dither will be stable at any belt velocity if 

L
T Tα α≥ , where L

Tα  is the solution of the following 
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The first derivative of the effective friction characteristic in the case of square 

waveforms can be obtained using equations (3.39) 
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Equation (3.57a) shows that ( )0 0vµ′ ≥  for 0 2 Tv
π α≤  (for the chosen parameter values), 

thus the system is always stable in that belt velocity range. For higher belt velocity, i.e. in 

the range 0 2 Tv
π α≥ , the criterion for instability, using (3.40), in the case of square 

waveforms can be written as 

 01
0

2
2 sinh exp 0

2 2
T

T
T m m

v
F for v

v v

α πα πζ α
πα

   
+ − − < ≥   

     
 (3.58) 

Therefore, the system will be unstable if 
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In other words, the system with square dither will be stable at any belt velocity if 

L
T Tα α≥ , where L

Tα  is the solution of the following 
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Using equations (3.55) and (3.59), it can be deduced that the undithered system is 

stable for all belt speeds greater than 
( )2

2
lnD m

m
s m

v
v v

F

ζ
µ µ

 
≡ −   − 

. For belts speeds less 

than 2
Dv , the undithered system experiences sustained oscillations. 

The lower bounds on 0v  in equations (3.55) and (3.59) show that the lower 

bounds of the unstable regions increase monotonically with Tα . This means that, if the 

undithered system experiences sustained oscillations, there exists a threshold level of 

dither, denoted by *
Tα , where * L

T Tα α≤ , that is able to quench the limit-cycle oscillations. 

For belt speeds less than 2
Dv , the threshold value *

Tα  grows linearly with 0v . 

Unlike in the case of Stribeck friction, the upper bounds on 0v  in equations (3.55) 

and (3.59) show that the upper bounds of the unstable regions increase monotonically 

with Tα . Due to the upward sloping upper boundary of the unstable region, it is now 

possible to destabilize a stable, undithered system by injecting dither in the system. For 

example, at a belt velocity such that 0 2
Dv v> , the undithered system is stable, but 



74 

triangular dither amplitudes in the range given by (3.58), i.e. with ,1 ,2Triang Triang
T T Tα α α< <  

where ,2
0

4Triang
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where 
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παγ = , and square dither amplitudes in the range given by (3.59), i.e. with 
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are predicted to destabilize the system. 

For a particular spring-mass-damper system, equations (3.55) and (3.59) can be 

used to compute the stability boundaries and generate stability maps for the decreasing 

friction model in the 0T vα −  plane for triangular and square dither signals, respectively. 

A stability map for sinusoidal dithers requires a numerical evaluation of (3.37) in order to 

exploit inequality (3.40). Figure 3.6 shows the stability map of the dithered system 

having the decreasing friction model. Parameter combinations in the unstable region 

correspond to points where equation (3.40) is satisfied. Note that the band shown in the 

Figure 3.6 extends far beyond the area displayed for very light damping; however it 

gradually becomes more and more narrow as the belt speed is increased. 
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Figure 3.6: Stability map for the decreasing friction model for three waveforms (a) 

sinusoidal, (b) triangular, (c) square. Parameters: �={0.07, 0.05, 0.005}, F=1, vm=0.2, 

µs=0.4, and µm=0.2857. 

NUMERICAL SIMULATION STUDY 

Typical system responses are first presented, and in order to assess the validity 

and accuracy of the predictions of the averaging technique, an extensive numerical study 

was conducted, similar to that conducted in Chapter 2.  

Two different situations are considered below. In the typical situation, the 

undithered system is unstable, and dither is used to eliminate the self-excited oscillations. 

The effectiveness of dither in this type of application is considered in the first section. In 

the second section, numerical integration is used to explore the opposite situation, where 

dither causes a stable system to become unstable. 

Typical System Response 

Without dither, the SDOF system described above is well known to be prone to 

sustained stick-slip oscillations, as discussed in Chapter 2. The undithered system settles 
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into a stable limit cycle after a short transient at a fundamental frequency that is close to, 

yet smaller than, the natural frequency ( 00.666 ω≈  with the Stribeck friction law). 

Figure 3.7 shows typical numerical simulation results using the Stribeck friction 

model and 10TR = . The dashed lines denote the results for the system with no dither and 

the solid lines show the results for the dithered system for three different values of 

tangential dither amplitudes TD , and having a sinusoidal waveform, i.e. ( ) ( )sing x x= . 

Figures 3.8 and 3.9 show typical numerical simulation results using the same system 

parameters as for Figure 3.7, except that dither signals have triangular and square 

waveforms of different amplitudes, respectively. 

For small amplitudes of dither (cases (a) and (b) in Figures 3.7, 3.8 and 3.9), the 

responses exhibit partial control, i.e. the magnitude of the signal in the vicinity of the 

self-excited oscillation has been reduced, but it is not yet completely eliminated. 

Furthermore although the durations of sticking have been decreased a great deal, the 

system still experiences a stable and sustained stick-slip oscillation, but at a fundamental 

frequency that is slightly higher than that of the undithered system ( 00.746 ω≈ ). When 

the tangential dither force amplitude is increased from 0.4TD =  to 0.5TD =  for 

sinusoidal dither, from 0.5TD =  to 0.7TD =  for triangular dither, and from 0.3TD =  to 

0.4TD =  for square dither, depicted in case (c) in Figures 3.7, 3.8 and 3.9, respectively, 

the system is fully controlled by dither. In other words, the self-excited free-response 

oscillations are replaced with a forced response at the frequency of the dither input. 
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Figure 3.7: System responses with the Stribeck friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 

of sinusoidal tangential dither amplitude DT. (…) Reference case without dither 

excitation; (-) Dithered system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, 

µs=0.4, µm=0.2857, RT=10, and (a) DT=0.3, (b) DT=0.4, (c) DT=0.5. 
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Figure 3.8: System responses with the Stribeck friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 

of triangular tangential dither amplitude DT. (…) Reference case without dither 

excitation; (-) Dithered system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, 

µs=0.4, µm=0.2857, RT=10, and (a) DT=0.4, (b) DT=0.5, (c) DT=0.7. 
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Figure 3.9: System responses with the Stribeck friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 
of square tangential dither amplitude DT. (…) Reference case without dither excitation;  

(-) Dithered system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, µs=0.4, 

µm=0.2857, RT=10, and (a) DT=0.2, (b) DT=0.3, (c) DT=0.4. 

The essential feature of using different dither waveforms is that dither achieves 

different level of control for a given value of dither amplitude TD  for different 

waveforms. Consistent with the results of the averaging technique, sinusoidal waveforms 

achieve a higher level of control than triangular waveforms, but a lower level of control 

than square waveforms, for a given dither amplitude. 
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Stabilizing Effect of Dither 

In order to quantify the effectiveness of the dither cancellation technique, the 

numerical metric that expresses the relative improvement of the dithered system to the 

undithered system, denoted by E  was developed in Chapter 2. 

Figure 3.10 shows contour plots of the metric E  as a function of dither amplitude   

and frequency ratio TD  for three different belt velocities, using the Stribeck friction 

model. The isoclines represent identical levels of reduction achieved by dither for pairs of 

dither parameters T TR D− . The numerical studies show that, for a constant frequency 

ratio, the performance increases ( E  decreases) as TD  is increased. On the other hand, for 

a constant dither amplitude, the performance increases as the frequency ratio is 

decreased. For sufficiently high dither frequency ratio, when 5TR > , small reduction 

ratios (less than 20%) exhibit approximately linear relationships between dither 

amplitude and frequency ratio. Moreover the 5% reduction ratio seems to correlate very 

well with the threshold dither parameter obtained using the method of averaging. Note 

that *
Tα  for a particular belt velocity 0v  will correspond to a straight line in the T TR D−  

parameter space 

 *  T T TD Rα=  (3.63) 

The 5% isocline in the Figure 3.10 plots coincides almost exactly with the 

boundary predicted by (3.40). For Tα  less than *
Tα , the performance gets worse as 

expected. Moreover, the isoclines become less straight as the performance worsens. For 

example, when 0.5E = , the contours are fairly distorted. 
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Recall that the averaging results require 1 TR  to be a small quantity. As stated 

above, for 5TR > , there is fairly good agreement between the stability boundaries 

obtained from the averaging method and the 5% performance ratio from numerical 

integration. The lower edges of the stability boundaries in Figure 3.10, given by 

inequalities (3.43), (3.47) and (3.51), show that there is a linear relationship between *
Tα  

and 0v . In light of (3.63), this means that the slope of the 5% isocline should increase as 

0v  increases. This is supported by the progression of plots in Figure 3.10. 
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Figure 3.10: Efficiency metric using the Stribeck friction model for three waveforms: 
sinusoidal (top row), triangular (middle row), and square (bottom row), for three values 

of belt velocity v0. (…) Efficiency metric isoclines; (-) Stability boundary using the 

method of averaging. Parameters: ω0=1, �=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and 

(a) v0=0.05, (b) v0=0.1, (c) v0=0.15. 

Figure 3.11 presents contour plots of the metric E  as a function of dither 

amplitude TD  and frequency ratio TR  for three different belt velocities, using the 

decreasing friction model. For the parameter values chosen and for the belt velocities 

shown in the 9 plots, the undithered system is unstable. For sufficiently high dither 

frequency ratios, when 5TR > , the isoclines for small dither amplitude reduction ratios 

(lower than 20%) exhibit approximately linear relationships between dither amplitude 

and frequency ratio. The 5% reduction ratio also seems to correlate well with the stability 

criterion derived from the method of averaging. 
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Figure 3.11: Efficiency metric using the decreasing friction model for three waveforms: 
sinusoidal (top row), triangular (middle row), and square (bottom row), for three values 

of belt velocity v0. (…) Efficiency metric isoclines; (-) Stability boundary using the 

method of averaging. Parameters: ω0=1, �=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and 

(a) v0=0.05, (b) v0=0.1, (c) v0=0.15. 

While the averaging methods are relatively easy to obtain, they cannot provide 

any information about the performance of the dither technique aside from the stability or 

instability of the system. The numerical studies reveal a strong correlation between the 

5% performance ratio and the averaging method’s stability bound. Away from this 

boundary, the numerical study reveals the conditions under which different degrees of 

“partial cancellations” are achieved. 
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Destabilizing Effect of Dither in the Case of the Decreasing Friction Law 

As described in a previous section, it is possible to destabilize a stable undithered 

system with the decreasing friction law by injecting dither in the system. To explore this 

further, numerical simulations are conducted holding the belt velocity and the dither 

frequency ratio constant, and observing the response as TD  is increased. For a particular 

spring-mass-damper system, Figures 3.12 and 3.13 show 6 different values of TD  when 

the belt velocity is 0 1v =  and 10TR = , for dither with triangular and square waveforms, 

respectively. 

The top and middle rows show the displacement and velocity response to zero 

initial conditions, respectively. Note that at 0T TD α= = , cases (a) in Figures 3.12 and 

3.13 show that the undithered system is stable. Thus the system should settle into a 

steady-sliding condition after the transient vibration dies out. 

Using equation (3.61), the averaging method predicts that triangular dither should 

make the system unstable for 0.54Tα = , i.e. 5.4T T TD Rα= = . The system should return 

to a stable state for 1.27Tα > , which corresponds to 12.7TD > . Figure 3.12 validates this 

qualitative behavior. However, the system becomes unstable at a lower dither amplitude, 

i.e. for 4TD ≥ . Nevertheless there is agreement with the averaging results for the return 

to stability prediction, as the system is stabilized for dither amplitudes 13TD ≥ . 
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Figure 3.12: System responses with the decreasing friction model, displacements x(τ) 
(top row), velocities v(τ) (middle row), and Poincaré maps (bottom row) for six values of 

tangential dither amplitude DT with triangular waveforms. Parameters: ω0=1, �=0.005, 

F=1, v0=1.0, vm=0.2, µs=0.4, µm=0.2857, RT=10, and (a) DT=0, (b) DT=3, (c) DT=4, (d) 
DT=11, (e) DT=12, (f) DT=13. 

The bottom row of plots in Figure 3.12 shows the Poincaré plots as TD  changes. 

The Poincaré section is chosen to coincide with the time instants: 2T nR nτ π=  for 

0,  1,  2,  ...n =  During “stable” response, the Poincaré plot spirals down to a period-1 

response. When the dither signal destabilizes the system, the Poincaré plot shows a 

closed-orbit, closely resembling a period-10 response. It appears that the dither signal is 

successful in smoothing the nonlinearity, so that the low-frequency response is at or near 

0ω , even though the limit-cycle oscillation occurs typically at a lower frequency. In the 
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case of an unstable response, this sustained low-frequency response component is joined 

to a second component at the dither frequency. 

For the same system studied in Figure 3.12, but for square dither waveforms, 

Figure 3.13 shows a progression of responses for a belt velocity of 0 1.0v =  and a dither 

frequency ratio of 10TR = . Using equation (3.62), the averaging method predicts that 

square dither should make the system unstable for 3.3 6.3TD≤ ≤ . The numerical study 

shows the same qualitative trend, but the instability occurs at a much smaller dither 

amplitude, 2.5TD = . Again, the Poincaré plots show that the unstable response is period-

10 at times; in some cases, the two dominant frequencies are not exactly commensurate, 

but show an approximate 10 to 1 ratio. In agreement with the averaging result, the system 

is stable again for dither amplitudes 6.5TD ≥ . 

As mentioned in Chapter 2, it is very difficult to pinpoint the exact value of TD  

(or Tα ) at which the stability of the system switches. Therefore, an exhaustive numerical 

study was not conducted on the potential destabilizing effects of dither. It is clear from 

the numerical simulations that it is indeed possible to destabilize a system by injecting 

sinusoidal dither, as shown in Chapter 2, but it is also true in the case of triangular and 

square dither signals. However, just as the square dither was more effective in canceling 

self-excited oscillations, it is unfortunately more effective in its destabilizing tendencies. 

For example, at 0 1.0v = , the triangular dither destabilizes the system at 4TD ≥ ; the 

sinusoidal dither destabilizes the system at 3TD ≥ ; and the square dither destabilizes the 

system at 2.5TD ≥ . 
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Figure 3.13: System responses with the decreasing friction model, displacements x(τ) 
(top row), velocities v(τ) (middle row), and Poincaré maps (bottom row) for six values of 

tangential dither amplitude DT with square waveforms. Parameters: ω0=1, �=0.005, F=1, 

v0=1.0, vm=0.2, µs=0.4, µm=0.2857, RT=10, and (a) DT=0, (b) DT=2, (c) DT=2.5, (d) 
DT=5, (e) DT=6, (f) DT=6.5. 

CONCLUSION 

In Chapter 2, it was found that self-excited oscillations in the system having the 

Stribeck friction or the decreasing friction model could be stabilized by applying 

sinusoidal tangential dither of sufficient amplitude. This result is extended to tangential 

dither signals with triangular and square waveforms. 

The effect of various waveforms on stability has been quantified and can be 

predicted using the averaging technique. The averaging technique shows that sinusoidal 
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waveforms requires a higher dither force than square waveforms, but a lower force than 

triangular waveforms in order to achieve stability of an undithered unstable system, at 

any belt velocity. 

Amplitude-frequency combinations of dither with triangular and square 

waveforms that cause the steady-state dithered response to decrease to 5% of the 

undithered response show a very repeatable correlation with the stability boundary 

predicted by the averaging technique, as found in Chapter 2 for sinusoidal dither signals. 

Numerical simulations show that, for a given dither force amplitude, triangular 

waveforms achieve a lower level of control than sinusoidal waveforms, and square 

waveforms achieve a higher level of control than sinusoidal waveforms. 

As found in Chapter 2, the system with the decreasing friction model, unlike with 

the Stribeck friction model, can also be destabilized by dither. Both the averaging 

technique and numerical simulations show that an undithered stable system can be 

destabilized by applying dither with triangular and square waveforms of intermediate 

strength, as found in Chapter 2 for sinusoidal dither signals. For a given belt velocity, the 

range of dither amplitudes that destabilizes the system is broad and within high amplitude 

levels for the triangular waveforms, and is narrow and within low amplitude levels for the 

square waveforms. The range of destabilizing dither amplitudes for sinusoidal waveforms 

lies between that of the triangular and the square waveforms. 
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CHAPTER 4 

SDOF WITH NORMAL DITHER 

This chapter explores the effect of normal dither excitation on system stability. 

Although there are many similarities between normal and tangential dither, the normal 

dither case is much more difficult to analyze. Furthermore, it is shown that normal dither 

is not as effective as tangential dither. 

In this Chapter, the equations of motion for the vibration of a mass on a moving 

belt problem described in Chapter 2 are restated. A numerical procedure is employed to 

study the stability of the system with normal dither. 

MODEL DEVELOPMENT 

In this section, the governing equations for a single-degree-of-freedom (SDOF) 

frictional system are restated for convenience. The section also restates the two friction 

models, used in Chapter 2, that will be employed in this study. 

Equation of Motion 

The SDOF model consists of a mass pressed into contact with a rigid moving 

surface, restrained by a linear spring and a viscous damper, as shown in Figure 4.1. The 

normal force, i.e. the force normal to the friction interface, consists of a constant load N , 

which models the applied braking force, plus an oscillatory force representing normal 

dither. The figure shows a normal dither force of amplitude NA  and frequency Nω , 

which is typically very large compared to the natural frequency and/or the squeal 
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frequency of the system. Initially, only sinusoidal dither is considered. The belt is 

assumed to move at the constant speed  0V . 

 

c 

k 

V0 
µ 

m 

x(t) 

sin( )N NN A tω+

  

Figure 4.1: SDOF model 

The non-dimensional equation of motion of the SDOF system is given by 

 
2

2
2

d x dx dx
x f

d d d
ζ

τ τ τ
 + + =   

 (4.1) 

where 2
0 k mω =  is the system’s natural frequency, 0tτ ω=  is non-dimensional time, 

02c mζ ω=  is the damping ratio. Note that x  has unit of length. 

The scaled friction force f  is defined as 

 ( ) ( )sin( )r N N

dx
f v F D R

d
µ τ

τ
  = × +  

 (4.2) 

where F N k=  is a scaled normal force, 0rv v dx dτ= −  is the relative velocity or “slip 

velocity” of the mass, 0 0 0v V ω=  is a scaled belt velocity, and the normal dither 

frequency and amplitude ratios are denoted by 0N NR ω ω=  and N ND A k= , 
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respectively. Note that the normal dither force ND  cannot be higher than F , as normal 

dither cannot create a negative friction force. Two friction models are considered in this 

study. 

Dynamics of Stick-Slip Transitions 

While equations (4.1) and (4.2) govern the dynamics of the mass during slip, a more-

convenient form are used during sticking episodes. Since the belt moves with constant 

velocity during sticking, the sticking dynamics can be written as 

 
2

2
  0

d x

dτ
=      and     0

dx
v

dτ
=  (4.3)  

When the slip velocity is zero, the friction coefficient is undefined, thus it becomes an 

unknown. The resulting static friction force, called the sticktion force, needs to be 

determined. The unknown sticktion force, denoted by sf , prevents slip from taking place 

between the mass and the belt, and can be found by substituting (4.3) into (4.1) 

 0  =  2   ( )sf v xζ τ+  (4.4) 

When the maximum allowable sticktion force is exceeded, the friction is not able to 

sustain the sticking phase, and therefore the system transitions back to a slipping phase. 

During sticking, the mass will begin to slip again if 

  sin( )s s N Nf F D Rµ τ≥ × +  (4.5) 

where sµ  is the magnitude of the friction coefficient at 0rv = . During slipping, the mass 

will stick again when 
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 0

dx
v

dτ
=      and      sin( )s s N Nf F D Rµ τ≤ × +  (4.6) 

Thus conditions (4.5) and (4.6) are used to alternate between sticking dynamics and slip 

dynamics. 

Friction Models 

The two friction models that are used for this study are given by equations (2.7) 

and  (2.8), and are restated in this section for convenience. 

Stribeck Friction Law 

 ( ) ( ) ( )
3

3 1
 0

2 3

 0

r r
s r s m r

r m m

s r

v v
sign v for v

v v v

for v

µ µ µ
µ

µ

     − − − ≠   =    
= �

 (4.7) 

 

where sµ  is the static coefficient of friction that applies when 0rv = , and mµ  is the 

minimum coefficient of friction, which occurs at slip velocity mv . As discussed 

previously, if the interface sticks and 0rv =  for a finite time, the friction force sf  must 

be determined by equilibrium considerations; this is indicated in equation (4.7) by sµ� , 

which can be thought of an unknown scaling factor between sf  and the normal load. 

Note that the friction coefficient ( )rvµ  can be positive or negative, depending on the 

instantaneous slip velocity rv . 
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Decreasing Friction Law 

A second friction law that is considered in this study is characterized by a friction 

coefficient that smoothly decreases with slip velocity, given by 

 ( ) ( ) ( )exp  0

 0

r
m s m r r

r m

s r

v
sign v for v

v v

for v

µ µ µ
µ

µ

   
+ − − ≠   =     

 = �

 (4.8) 

As with the Stribeck model, sµ  is the static friction coefficient, and mµ  can be 

interpreted as the dynamic friction coefficient. Figure 4.2 depicts the described friction 

models, for the case of 0.4sµ =  and 0.2587mµ = . 

 

Figure 4.2: Comparison of Stribeck and decreasing friction laws. Parameters: µs=0.4, 
µm=0.2857. 



94 

Typical System Response 

Without dither, the SDOF system described above is well known to be prone to 

sustained stick-slip oscillations, as discussed in Chapter 2. With dither, the system 

exhibits responses very similar to the one shown in Chapter 2. The essential difference is 

that normal dither cannot achieve the same level of control as tangential because the 

normal dither amplitude ND  is limited to a maximum value of F . The other major 

difference is that the modulated tangential force is dependent on the stick/slip state of the 

interface. 

Figures 4.3 and 4.4 show typical numerical simulation results using the Stribeck 

friction model with 10NR =  and decreasing friction model with 7NR = , respectively. 

The dashed lines denote the results for the system with no dither and the solid lines show 

the results for the dithered system for three different values of normal dither amplitudes 

ND . 

Figure 4.3 exemplifies the inability of normal dither with frequency ratio 10NR =  

to suppress self-sustained oscillations in a system with Stribeck friction. The dither 

amplitude is increased from 0.3ND =  in case (a), to 0.6ND =  in case (b), and to 

0.9ND =  in case (c), but none of these cases leads to complete suppression of the self-

sustained oscillations. The best case is case (c) where normal dither of amplitude 

0.9ND =  manages to cancel approximately 50% of the stick-slip oscillations. 

Figure 4.4 shows a case where normal dither is able to cancel self-sustained 

oscillations in a system with the decreasing friction law. For small amplitudes of dither 

(cases (a) and (b) in Figure 4.4), the responses exhibit partial control, i.e. the magnitude 
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of the signal’s spectrum in the vicinity of the self-excited oscillation has been reduced, 

but yet not completely eliminated. When the normal dither force amplitude is increased 

from 0.6ND =  to 0.9ND =  with a frequency ratio 7NR = , as depicted in case (c) in 

Figure 4.4, the system is fully controlled by dither, i.e. the self-excited free-response 

oscillations are replaced with a forced response at the frequency of the dither input. 
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Figure 4.3: System responses with the Stribeck friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 

of normal dither amplitude DN. (…) Reference case without dither excitation; (-) Dithered 

system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, µs=0.4, µm=0.2857, RN=10, 

and (a) DN=0.3, (b) DN=0.6, (c) DN=0.9. 
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Figure 4.4: System responses with the decreasing friction model, displacements x(τ) (top 
row), velocities v(τ) (middle row), and magnitude of X(ω) (bottom row) for three values 

of normal dither amplitude DN. (…) Reference case without dither excitation; (-) Dithered 

system. Parameters: ω0=1, �=0.005, F=1, v0=0.05, vm=0.2, µs=0.4, µm=0.2857, RN=7, and 

(a) DN=0.3, (b) DN=0.6, (c) DN=0.9. 

METHOD OF AVERAGING 

As in Chapter 2, an approximate solution is sought using the method of averaging. 

Then, an effective friction characteristic is obtained from which stability can be 

predicted. 

Effective Friction Characteristic 

For convenience, the equation of motion can be restated as 
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 ( )
2

02
2 sin( ) 0N N

d x dx dx
x v F D R

d d d
ζ µ τ

τ τ τ
 + + − − × + =  

 (4.9) 

As before, the solution is decomposed into a “fast” component, ϕ , and a “slow” 

component, Z , and written as 

 ( ) ( ) ( )1
, N

N

x Z R
R

τ τ ϕ τ τ= +  (4.10) 

Note that, for 1NR >> , the fast component is ( )1
NO R− . Also note that ϕ  depends on two 

time scales. The following shorthand notation for the derivatives is used: 

 
x

x
τ

∂=
∂

�       and      ( )N

x
x

R τ
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∂
 (4.11) 

Therefore, the derivatives are given by: 
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Substitution of (4.12) in to (4.9), and grouping the terms according to orders of NR  yields 
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�� �
 (4.13) 

Note that, unlike the tangential dither case, the ( )NO R  terms do not yield a solution that 

is consistent with the observed behavior of Figures 4.3 and 4.4. In particular, if ND  and 

F  are ( )1O  then the ( )NO R  term is simply 0ϕ ′′ = , whose solution is not oscillatory. In 

fact if ϕ  is restricted to be zero on average over one period, then 0ϕ = . In order to 
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proceed with this analysis, the normal dither force ND  is temporarily allowed to be 

higher than the normal load F . Although this violates one of the assumptions, it 

facilitates a solution. The reasonableness of this approach and the predictions from this 

analysis are further discussed below. 

If the dither amplitude is assumed to be of order NR , then ND  can be expressed as 

   ( )     1N N N ND R with Oα α= =  (4.14) 

Equating terms of order ( )NO R  in equation (4.13), and noting that 1 1NR ϕ− <<� , yields the 

relation 

 ( )( ) ( )1
0 sin( )N N Nv Z R O Rϕ α µ ϕ τ −′′ ′− − − =�  (4.15) 

Equation (4.15) cannot be solved exactly. If 1Nα ε= << , then 1ϕ ′′ <<  and thus ϕ ′  will 

not change very much. Consequently, if ϕ ′  is initially small, it will remain small. 

Therefore an approximate solution for (4.15) can be obtained when ( )Oϕ ε′ = . Assume a 

solution of the form 

 ( )2 3
1 2 Oϕ εϕ ε ϕ ε′ ′ ′= + +  (4.16) 

Assuming that ( )0 0v Z− ≠� , then a Taylor series can be used to approximate the 

nonlinearity in (4.15) as follows 

 ( )( ) ( ) ( ) ( )2
0 0 0v Z v Z v Z Oµ ϕ µ ϕ µ ε′ ′ ′− − − − − +� � ��  (4.17) 

Substituting (4.16) and (4.17) into (4.15) yields 
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 ( ) ( ) ( ) ( )( )2 2
1 2 0 1 2 0 sin( ) 0N Nv Z v Z Rεϕ ε ϕ α µ εϕ ε ϕ µ τ′′ ′′ ′ ′ ′+ − − − + − =� �  (4.18) 

Equating terms of order ( )O ε  in equation (4.18) 

 ( )1 0 sin( ) 0N Nv Z Rεϕ α µ τ′′ − − =�  (4.19) 

Thus 1εϕ ′  is given by 

 ( )1 0 cos( )N Nv Z Rεϕ α µ τ′ = − − �  (4.20) 

Equating terms of order ( )2O ε  in equation (4.18) and using (4.20) yields 

 ( ) ( )2 2
2 0 0 cos( )sin( ) 0N N Nv Z v Z R Rε ϕ α µ µ τ τ′′ ′− − − =� �  (4.21) 

Thus 2
2ε ϕ ′  is given by 

 ( ) ( )
2

2
2 0 0 cos(2 )

4
N

Nv Z v Z R
αε ϕ µ µ τ′ ′= − − −� �  (4.22) 

Therefore an approximate solution for (4.15) can be written as 

 ( ) ( ) ( )3
0 0cos( ) cos(2 )

4
N

N N N Nv Z R v Z R O
αϕ α µ τ µ τ α ′ ′= − − + − + 

 
� �  (4.23) 

From the terms of ( )1O  in equation (4.13), the next equation to be solved is 

  ( )02 2 2Z Z Z v Z Fζ µ ϕ ζϕ ϕ′ ′ ′+ + = − − − −�� � � �  (4.24) 

The averaging technique can be used to solve equation (4.24). The fast-time-average 

operator is introduced, which time-averages over one period of the fast excitation, 

considering the slow time τ  to be fixed. As before, 
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 ( ) ( ) ( )
2

0

1
, ,  

2N N Nf R f R d R
π

τ τ τ τ τ
π

≡ ∫  (4.25) 

The fast solution is assumed to be periodic in the fast time ,NR τ  such that the fast time 

average of ( ), NRϕ τ τ  is zero 

 ( ) ( ) ( )
2

0

1
, ,  0

2N N NR R d R
π

ϕ τ τ ϕ τ τ τ
π

= =∫  (4.26) 

Applying the averaging operator to equation (4.24) produces the governing equation for 

the slow dynamics 

 ( )02Z Z Z v Z Fζ µ+ + = −�� � �  (4.27) 

The effective friction characteristic µ  can be thought of as a “smoothed” version of the 

discontinuous friction law. Using 0rv v Z= − �  to denote the slow component of the slip 

velocity, µ  can be expressed as 

 ( ) ( )( ), ,r r N rv v R vµ µ ϕ τ τ′= −  (4.28) 

Note that this analysis will be physically meaningful only if the normal dither 

force ND  is lower than the normal load F . Thus the equation (4.28) is taken to hold for  

 N
N

F

R
α <  (4.29) 

It is also important to realize that equation (4.28) has been derived in the limit of NR  

going to infinity, which is inconsistent with (4.14) where ( )1N Oα = . Still, as 
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demonstrated below, the results of this section are shown to be quite useful, both as 

means of interpreting numerical results and as a predictive tool. 

Numerical Procedure 

Equation (4.15) is highly nonlinear and cannot be solved exactly. Instead, 

equation (4.1) is time-simulated using the procedure previously described. From the 

computed response, a numerical procedure can be employed to obtain an approximation 

of the effective friction characteristic. The effective friction coefficient is computed by 

time-averaging, in the sense of (4.25), the ratio of instantaneous tangential force over 

instantaneous normal force over one period of the fast excitation. 

At a particular time instant iτ , the effective friction coefficient can be defined as 

 
( )

( )
( )

( )
, , , ,

 
sin 2 sin

i N

i Ni

R

N
i

N N N NR

f x dx d f x dx dR
d

F D R F D R

τ π

τ πτ τ

τ τ τ τ
µ τ

τ π τ

+

−=

≡ =
+ +∫  (4.30) 

where ( ), ,f x dx dτ τ  is the friction force, regardless of the system stick/slip state. 

In a similar fashion, the average slip velocity near iτ τ=  can be obtained by time-

averaging the instantaneous slip velocity over one period of the fast excitation. 

 ( ), 0  
2

i N

i

i N

R

N
r i r

R

R dx
v v v d

d

τ π

τ τ
τ π

τ τ
π τ

+

=
−

 ≡ = −  ∫   (4.31) 

Thus the numerical effective friction characteristic can be visualized by plotting iµ  

versus ,r iv  at each time iτ  in a time simulation. 

The numerical effective friction characteristics can be plotted along with the 

result from the method of averaging and with the friction law itself. Figures 4.5 and 4.6 



103 

show such a plot for four different values of N N ND Rα = , for the Stribeck friction 

model and for the decreasing friction model, respectively. Note that the friction 

characteristic in Figures 4.5 and 4.6 has been calculated over one period of the 

fundamental frequency when the self-excited oscillations have been canceled and the 

system is in its steady state. Also for the sake of clarity, the graphs show only those 

results for times iτ τ=  for which sticking did not occur over the interval 

[ ],  i N i NR Rτ π τ π− + .  

A comparison of equations (4.23) and (2.16) shows that there is a strong 

similarity between the fast solution of the normally and tangentially dithered friction 

systems. In particular, if terms of order 2
Nα  are dropped and (4.23) is integrated, the fast 

response is found to be ( )0 sin( )N Nv Z Rϕ α µ τ= − − � , which corresponds the fast solution 

found in the tangential dither case, i.e. equation (2.16) where ( )0T N v Zα α µ= − � . 

The approximate solution derived from the method of averaging differs from the 

numerical computation in the convexity of the curve in low slip velocities region. 

However, there is strong agreement between the effective friction laws in the negative-

sloping region. In other words, although effective friction characteristics obtained 

numerically and from the method of averaging differ in the low slip velocities region, 

they strongly agree in the prediction of where the friction coefficient slope changes sign. 

Therefore, the effective friction law from the method of averaging accurately predicts the 

change in stability in the limit of small dither amplitude, i.e. Nα  is order ( )O ε . Recall 

that the assumption of small Nα  was made to approximate the solution in the method of 

averaging. Therefore, the location of the friction coefficient slope change in sign using 
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the method of averaging gets closer and closer to the numerical prediction as ND  gets 

smaller, or as NR  gets larger. This may be seen in Figures 4.5 and 4.6 by the fact that the 

stability predictions (slope change) by method of averaging are more accurate in cases (a) 

than (d). 

 

Figure 4.5: Effective Stribeck friction characteristic ( ), Stribeck friction law ( ), and 

averaging approximation (…). Parameters: ω0=1, �=0.005, F=1, µs=0.4, µm=0.2857, 

vm=0.2, F=1, RN=5, and (a) DN=0.1, (b) DN=0.3, (c) DN=0.6, (d) DN=0.9. 
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Figure 4.6: Effective decreasing friction characteristic ( ), decreasing friction law ( ), 

and averaging approximation (…). Parameters: ω0=1, �=0.005, F=1, µs=0.4, µm=0.2857, 

vm=0.2, F=1, RN=5, and (a) DN=0.1, (b) DN=0.3, (c) DN=0.6, (d) DN=0.9. 

Stability Boundaries 

The stability criterion is exactly the same as that used in Chapter 2: 

 ( )02 0v Fζ µ ′+ <  (4.32) 

In this Chapter, the derivative of the effective friction characteristic must be 

approximated numerically in order to use (4.32). 
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Stribeck Friction Law 

The stability boundary for the Stribeck friction law was obtained analytically in 

Chapter 3, given by equations (3.51), (3.55) and (3.59) for sinusoidal, triangular and 

square waveforms, respectively. Based on the results of a previous section, this criterion 

can be extended to a system with normal dither, by replacing Tα  in equations (3.51), 

(3.55) and (3.59) by ( )0 Nvµ α . Note that this extension is valid in the limit of small 

dither amplitudes, where the cos(2 )NR τ  term in (4.23) can safely be neglected. 

Replacing Tα  in (3.51) with ( )0 Nvµ α , the system with sinusoidal normal dither 

will be unstable if 

 ( ) ( )
( )

2

0
0 0

41
1

2 3
N m

N m
m s m

v v
v v v

v F

µ α ζµ α
µ µ

 
≤ ≤ − −  − 

 (4.33) 

In other words, the system with normal dither with sinusoidal waveforms will be stable at 

any belt velocity if L
N Nα α≥ , where 

 
( ) ( )0

42
1

3 3
L m m
N

s m

v v

v F

ζα
µ µ µ

= −
−

 (4.34) 

The case of tangential dither with triangular waveforms, given by equation (3.55), 

can be adapted to normal dither. It follows that the system will be unstable if 

 ( ) ( )
( )

22
0

0 0

4
1

4 48 3
N m

N m
m s m

v v
v v v

v F

µ α ζπ πµ α
µ µ

 
≤ ≤ − −  − 

 (4.35) 

In other words, the system with normal dither with triangular waveforms will be stable at 

any belt velocity if L
N Nα α≥ , where 
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( ) ( )0
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3L m m

N
s m

v v

v F

ζα
µ π µ µ

= −
−

 (4.36) 

The case of tangential dither with square waveforms, given by equation (3.59), 

can be adapted to normal dither. It follows that the system will be unstable if 

 ( ) ( )
( )

22
0

0 0

4
1

2 12 3
N m

N m
m s m

v v
v v v

v F

µ α ζπ πµ α
µ µ

 
≤ ≤ − −  − 

 (4.37) 

In other words, the system with normal dither with square waveforms will be stable at 

any belt velocity if L
N Nα α≥ , where 

 
( ) ( )0

4
3L m m

N
s m

v v

v F

ζα
µ π µ µ

= −
−

 (4.38) 

For a particular spring-mass-damper system, equations (4.33), (4.35) and (4.37) 

can be used to compute the stability boundaries and generate stability maps for the 

Stribeck friction model in the 0N vα −  plane for sinusoidal, triangular and square dither 

signals, respectively. Figure 4.7 shows the stability map of the dithered system having the 

Stribeck friction model. Parameter combinations in the unstable region correspond to 

points where equation (4.32) is satisfied. 

The main difference between normal and tangential dither can be seen in 

comparing Figure 4.7 and Figure 3.5. The lower boundary of the unstable region is 

slightly more curved in the normal dither case. Also, the required amplitude to stabilize 

the system is much greater for normal dither than for tangential dither. 
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Figure 4.7: Stability map for the Stribeck friction model for three waveforms                    

(a) sinusoidal, (b) triangular, (c) square. Parameters: �={0.1, 0.05, 0.005}, F=1, vm=0.2, 

µs=0.4, and µm=0.2857. 

Decreasing Friction Law 

The stability boundary for the decreasing friction law was obtained analytically in 

Chapter 3, given by equations (3.63) and (3.67) for triangular and square waveforms, 

respectively. The case of sinusoidal waveforms requires a numerical evaluation. Based on 

the results of the previous section, this criterion can be extended to a system with normal 

dither, by replacing Tα  in equations (3.63) and (3.67) by ( )0 Nvµ α . 

The case of tangential dither with triangular waveforms, given by equation (3.63), 

can be adapted to normal dither. It follows that the system will be unstable if 

 ( ) ( )
( )

0
0 0

4
ln

4
N m

N m
s m

v v
v v v

F

ζ µ απ µ α
µ µ δ

 
 ≤ ≤ −
 − 
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where ( ) ( ) ( ) ( )0 0 0 0exp exp
4 4 4 4

N N N N

m m m m

v erf v v erfi v
v v v v

πα πα πα παδ µ µ µ µ
      

≡ + −               
. 
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In other words, the system with normal dither with triangular waveforms will be stable at 

any belt velocity if L
N Nα α≥ , where L

Nα  is the solution of the following 

 ( )
( ) ( )0 04

ln 0
4

L L
N Nm

s m m m

v vv

F v v

µ α µ αζ π
µ µ δ

 
  + =
 − 

 (4.40) 

The case of tangential dither with square waveforms, given by equation (3.67), 

can be adapted to normal dither. It follows that the system will be unstable if 

 ( ) ( )
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2 sinh 2
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In other words, the system with normal dither with square waveforms will be stable at 

any belt velocity if L
N Nα α≥ , where L

Nα  is the solution of the following 
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For a particular spring-mass-damper system, equations (4.39) and (4.41) can be 

used to compute the stability boundaries and generate stability maps for the decreasing 

friction model in the 0N vα −  plane for triangular and square normal dither signals. The 

stability boundaries for sinusoidal normal dither signals are evaluated numerically. Figure 

4.8 shows the stability map of the dithered system having the decreasing friction model. 

Parameter combinations in the unstable region correspond to points where equation 

(4.32) is satisfied. 
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Figure 4.8: Stability map for the decreasing friction model for three waveforms              

(a) sinusoidal, (b) triangular, (c) square. Parameters: �={0.07, 0.05, 0.005}, F=1, vm=0.2, 

µs=0.4, and µm=0.2857. 

NUMERICAL RESULTS 

In order to assess the validity and accuracy of the predictions of the averaging 

technique, an extensive numerical study was conducted, similar to the one conducted in 

Chapter 2. 

Two different situations are considered below. In the typical situation, the 

undithered system is unstable, and dither is used to eliminate the self-excited oscillations. 

The effectiveness of dither in this type of application is considered in the first section. In 

the second section, numerical integration is used to explore the opposite situation, where 

dither causes a stable system to become unstable. 

Stabilizing Effect of Dither 

In order to quantify the effectiveness of the dither cancellation technique, a metric 

of performance was calculated for a variety of signal and system parameters. The 
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performance metric, denoted by E , is the same as that used in Chapter 2 and stated in 

(2.27). 

Figure 4.9 shows contour plots of the metric E  as a function of dither amplitude   

and frequency ratio ND  for a belt velocity 0 0.05v = , using the Stribeck friction model. 

The isoclines represent identical levels of reduction achieved by dither for pairs of dither 

parameters N NR D− . The numerical studies show that, for a constant frequency ratio, the 

performance increases ( E  decreases) as ND  is increased. On the other hand, for a 

constant dither amplitude, the performance increases as the frequency ratio is decreased. 

For sufficiently high dither frequency ratio, when 3NR > , small reduction ratios (less 

than 40%) exhibit approximately linear relationships between dither amplitude and 

frequency ratio. Moreover the 5% reduction ratio seems to correlate very well with the 

threshold dither parameter obtained using the method of averaging. Note that *
Nα  for a 

particular belt velocity 0v  will correspond to a straight line in the N NR D−  parameter 

space 

 *  N N ND Rα=  (4.36) 

The 5% isocline in the Figure 4.9 plots coincides almost exactly with the 

boundary predicted by (4.32). For Nα  less than *
Nα , the performance gets worse as 

expected. Moreover, the isoclines become less straight as the performance worsens. For 

example, when 0.5E = , the contour is fairly distorted. 

Recall that the averaging results require 1 NR  to be a small quantity. As stated 

above, for 3NR > , there is fairly good agreement between the stability boundaries 
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obtained from the averaging method and the 5% performance ratio from numerical 

integration. The lower edge of the stability boundary of case (a) in Figure 4.7 shows that 

there is an approximately linear relationship between *
Nα  and the belt velocity 0v . 

 

Figure 4.9: Isocline E=5% using the Stribeck friction model. (…) Efficiency metric 
isocline; (-) Stability boundary using the method of averaging. Parameters: ω0=1, 

�=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and v0=0.05. 

Figure 4.10 presents contour plots of the metric E  as a function of dither 

amplitude ND  and frequency ratio NR , using the decreasing friction model. For the 

parameter values chosen and for the belt velocity shown, the undithered system is 

unstable. For sufficiently high dither frequency ratios, when 3NR > , the isoclines for 

small dither amplitude reduction ratios (lower than 40%) exhibit approximately linear 

relationships between dither amplitude and frequency ratio. The 5% reduction ratio also 

seems to correlate well with the stability criterion derived from the method of averaging. 
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Figure 4.10: Isocline E=5% using the decreasing friction model. (…) Efficiency metric 
isocline; (-) Stability boundary using the method of averaging. Parameters: ω0=1, 

�=0.005, F=1, vm=0.2, µs=0.4, µm=0.2857, and v0=0.05. 

While the averaging methods are relatively easy to obtain, they cannot provide 

any information about the performance of the dither technique aside from the stability or 

instability of the system. The numerical studies reveal a strong correlation between the 

5% performance ratio and the averaging method’s stability bound. Away from this 

boundary, the numerical study reveals the conditions under which different degrees of 

“partial cancellations” are achieved. 

Destabilizing Effect of Dither in the Case of the Decreasing Friction Law 

As described in the section discussing stability with the decreasing friction law, it 

is possible to destabilize a stable undithered system by injecting normal dither. To 

explore this further, numerical simulations are conducted holding the belt velocity and 

the dither frequency ratio constant, and observing the response as ND , and thus Nα , is 

increased. For a particular spring-mass-damper system, Figure 4.11 shows the response 
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for 6 different values of ND  for normal dither with square waveforms when the belt 

velocity is 0 0.075v =  and frequency ratio 5NR = . In order to maintain a positive normal 

force, we must ensure that ND F< . For the system under examination in Figure 4.11 

having 5NR =  and 1F = , this requires that 1 5Nα < . 

The top and middle rows in Figure 4.11 show the displacement and velocity 

response to zero initial conditions, respectively. Note that at 0N ND α= = , case (a) in 

Figure 4.11 shows that the undithered system is stable. Thus the system should settle into 

a quasi-steady equilibrium after the transient vibration dies out. 

Using equation (4.41), the averaging method predicts that normal dither with 

square waveforms should make the system unstable for 0.115Nα = , i.e. 

0.575N N ND Rα= = . The system should return to a stable state for 0.13Nα > , which 

corresponds to 0.65ND > . Figure 4.11 qualitatively validates this behavior. However, the 

system becomes unstable at a higher dither amplitude, i.e. for 0.7ND ≥ , and the system is 

stabilized for dither amplitudes approximately in the range 0.9 0.95ND≤ ≤ . 
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Figure 4.11: System responses with the decreasing friction model, displacements x(τ) 
(top row), velocities v(τ) (middle row), and Poincaré maps (bottom row) for six values of 

normal dither amplitude DN with square waveforms. Parameters: ω0=1, �=0.2, F=1, 

v0=0.075, vm=0.2, µs=0.4, µm=0.2857, RN=5, and (a) DN=0, (b) DN=0.6, (c) DN=0.7, (d) 
DN=0.8, (e) DN=0.9, (f) DN=0.95. 

The bottom row of plots in Figure 4.11 shows the Poincaré plots as ND  changes. 

The Poincaré section is chosen to coincide with the time instants 2N nR nτ π=  for 

0,  1,  2,  ...n =  During “stable” response, the Poincaré plot spirals down to a period-1 

response, like cases (a), (b) and (f). When the dither signal destabilizes the system, the 

Poincaré plot shows a closed-orbit, closely resembling a period-5 response. It appears 

that the dither signal is successful in smoothing the nonlinearity, so that the low-

frequency response is at or near 0ω , even though the limit-cycle oscillation occurs 

typically at a lower frequency. In the case of an unstable response, this sustained low-
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frequency response component is joined to a second component at the dither frequency 

and harmonics thereof. 

As mentioned in Chapter 2, it is very difficult to pinpoint the exact value of ND  

(or Nα ) at which the stability of the system switches. Therefore, an exhaustive numerical 

study was not conducted on the potential destabilizing effects of dither. It is nonetheless 

clear from the numerical simulations that it is indeed possible to destabilize a system by 

injecting dither into a system. The dither can be tangential or normal in nature, and need 

not be sinusoidal. 

Robustness to a Variety of Initial Conditions 

A numerical study has been performed to assess the robustness of normal dither 

efficacy to a variety of initial conditions. The system has been time-integrated using a 

grid of initial conditions in the 0 0x x− �  plane. 

Although multiple solutions have not been encountered in this study, their 

existence in other parameter regions is still an open question. 

CONCLUSION 

It is found that unstable, self-excited oscillations in the system having the Stribeck 

friction and with the decreasing friction models can be stabilized by applying normal 

dither for some system parameters, but not in general. 

The averaging technique developed in Chapter 2 for tangential dither has been 

extended to normal dither. A numerical procedure for computing effective friction 

characteristic when normal dither is injected in the system has been implemented. The 
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effective friction characteristics obtained with the extended averaging technique are in 

agreement with the ones obtained with the numerical procedure. 

Amplitude-frequency combinations that cause the steady-state dithered response 

to decrease to 5% of the undithered response show a very repeatable correlation with the 

stability boundary predicted by the averaging technique. 

As found in Chapter 2, the system with the decreasing friction model, unlike with 

the Stribeck friction model, can also be destabilized by dither. Both the averaging 

technique and numerical simulations show that an undithered stable system can be 

destabilized by applying dither for some system parameters. When the undithered system 

is unstable, unlike the case of tangential dither, it is not always possible to find a normal 

dither signal that stabilizes the system, since the dither amplitude is limited by the 

requirement that the total normal force be positive. 



118 

CHAPTER 5 

CONTINUOUS PLATE MODEL 

 This chapter derives the governing equations of motions for the vibration of a 

stationary disc under a rotating friction load. The disc rotor is modeled by a thin, 

clamped-free annular plate. The plate model is described in terms of a finite modal 

summation. The frictional contact load is represented by a follower force. The stability of 

the combined system, with and without dither signals, is assessed using multiple-scale 

analysis. 

For modeling purposes, the combined rotor-caliper model is shown in Figure 5.1. 

The brake rotor is modeled using thin plate theory and a modal procedure. In reality, an 

automotive brake rotor is not that thin; for example a typical h a  value would be 0.15. 

Also, brake rotors are usually not homogeneous due to the presence of cooling fins 

(channels) incorporated into the cast-iron part. Although the thin plate assumption may 

not be highly accurate, it provides an analytical framework that can lead to a deeper 

physical understanding of the squealing mechanism. In particular, through the inclusion 

of many modes, it is possible to study the stability mechanisms tied to modal coupling or 

mode coalescence. It also allows considering resonance type phenomena when a dither 

frequency is near a system natural frequency. 
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Figure 5.1: Annular plate with rotating spring-mass-damper system 

Since the dither frequencies can be quite high, the model uses the exact modes of 

a clamped free annular plate, having an arbitrary number of nodal circles and nodal 

diameters. In contrast, mode-based models usually utilize the exact dependence on θ (in 

terms of azimuthal harmonics cos( )nθ  and sin( )nθ ) but only use a cubic approximation 

for the radial dependence of each mode. Another requirement satisfied by this model is 

that it displays the correct qualitative trends in the natural frequencies as a function of 

thickness, inner and outer radii, number of nodal diameters and number of nodal circles.  

Although disc rotation is not explicitly included, previous researchers have shown that 

this effect is small in typical brake rotor applications [49]. 
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EQUATIONS OF MOTION 

The equation of transverse vibration of a stationary disc excited by a rotating 

spring-mass-damper (SMD) system with dry friction may be expressed 

 
2

* 4 4
2

( , , ) ( , , )
( , , ) ( , , )

w r t w r t
h D D w r t F r t

t t

θ θρ θ θ∂ ∂+ ∇ + ∇ =
∂ ∂

 (5.1) 

where ( )
3

212 1

Eh
D

υ
=

−
, E  is the elastic modulus, h  is the thickness, υ  is Poisson’s ratio, 

ρ  is the mass density, and ( , , )F r tθ  is the force per unit area applied by the brake pad, 

or by other external means. *D  is a linear damping coefficient meant to account for light 

structural damping. In this Chapter, all cases considered use the following parameter 

values: 111.95 10  E Pa= × , 0.3υ =  and 37700 .kg mρ −= . 

The term 4∇  is the bi-harmonic operator, given in polar coordinates as 
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As seen in Figure 5.1, it is assumed that the plate is clamped at its inner radius, r b= : 

 ( , , ) 0w r b tθ= =  (5.3a) 

 
( , , )

0
w r b t

r

θ∂ = =
∂

 (5.3b) 

At the plate’s outer radius, r a= , boundary conditions of zero moment and zero shear are 

applied: 
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SOLUTION OF THE HOMOGENEOUS EQUATION 

The exact solution to the homogeneous annular plate equation was developed by 

Vogel and Skinner [50]. Once the eigenfunctions have been found, the displacement of 

any point of the plate can be expanded as 

 ( )
1 0

( , , ) ( ) ( ) cos( ) ( )sin( )
r NN

c s
ij ij ij

i j

w r t R r q t j q t j
θ

θ θ θ
= =

= +∑∑  (5.6) 

where ( )ijR r  contains the radial dependence of the eigenfunction, the index i  designates 

the number of nodal circles, including the clamped location along the inner radius, the 

index j  designates the number of nodal diameters, and 0 ( ) 0s
iq t ≡  for 1,  2,  ...i =  

The eigenfunctions are assumed to be normalized so that: 

 ( )
22

0
( ) cos( )   1

a

ijb
h R r j r dr d

π
ρ θ θ =∫ ∫  (5.7a) 

 ( )
22

0
( ) sin( )   1

a

ijb
h R r j r dr d

π
ρ θ θ =∫ ∫  (5.7b) 

and 
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 ( ) ( )2 4 2

0
( ) cos( ) ( ) cos( )    

a

ij ij ijb
R r j D R r j r dr d

π
θ θ θ ω∇ =∫ ∫  (5.8a) 

 ( ) ( )2 4 2

0
( )sin( ) ( )sin( )    

a

ij ij ijb
R r j D R r j r dr d

π
θ θ θ ω∇ =∫ ∫  (5.8b) 

where ijω  is the natural frequency of mode ( ),i j , i.e. having i  nodal circles and j  nodal 

diameters. 

The orthogonality property of the eigenfunctions implies that: 
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 ( ) ( )2 4

0
( ) cos( ) ( )sin( )    0    , , ,

a

ij pqb
R r j D R r q r dr d i j p q

π
θ θ θ∇ = ∀∫ ∫  (5.9d) 

where 1ijδ =  if i j=  and is zero otherwise. 

Samples of the modal functions, also referred to as eigenfunctions or mode 

shapes, for a clamped-free annular plate with 0.5b a =  are shown in Figures 5.2. 
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Figure 5.2: Annular plate modes with b/a=0.5, (a) i=1, j=2, (b) i=2, j=0, (c) i=2, j=3 

SOLUTION OF THE FORCED EQUATION 

The forcing ( , , )F r tθ  on the right hand side of equation (5.1) provides a means 

by which the annular plate model can be coupled to a contacting dynamic system. In this 

case a rotating mass-spring-damper (SMD) system similar to the one studied by Iwan et 

al. [9, 10] is considered. The SMD system rotates at a (dimensional) angular velocity Ω� . 

The downward contact force is dependent on m , k , and c  as well as on the vertical 

motion of the plate at the contact point. Note that for disc brake system applications, 
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there are normal forces on both the inboard and outboard sides of the rotor. It is assumed 

that there is no net normal force due to the static brake pressure. 

It is known that friction can have a destabilizing effect in rotational systems. To 

understand this phenomenon, a friction follower force is included at the contact point. 

The follower force, denoted as Fθ , is assumed initially to be constant in magnitude but 

tangent to the local contact surface at all times. The assumption of constant magnitude 

follower force is consistent with the assumption that the brake force is much larger than 

the variable forces due to ,m  ,c  and k . (When dither is considered, the assumption of 

constant magnitude will be relaxed.) In this case, ( , , )F r tθ can be expressed as 

 

2
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( , , ) ( )

                                                  ( , , )

r r
F r t t m

r t

F
c k w r t

t r
θ

δθ δ θ
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θ
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− ∂ ∂ = − − Ω + Ω  ∂ ∂ 
∂ ∂ ∂  + + Ω + −  ∂ ∂ ∂  

� �

�
 (5.10) 

where (.)δ  denotes the Dirac delta function. At this point, the modal expansion (5.6) can 

be substituted into (5.10) with the result being substituted into (5.1). Invoking the 

orthogonality of the eigenfunctions would result in a set of coupled, linear ordinary 

differential equations in time. Unfortunately, these equations would have periodic 

coefficients, making the determination of stability more difficult to ascertain. Later, this 

formulation is used as a basis for approximate analyses. Alternatively, Iwan and Stahl [9] 

introduced a rotating reference frame, where the location of the mass-spring-damper 

system is fixed at 0φ =  

 tφ θ= − Ω�   (5.11) 

Using the angle φ , expansion (5.6) can be re-written in the form 
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It must be realized that derivatives with respect to t  must include the effect of the 

rotating frame; in light of (5.11) the partial derivatives in the moving reference frame 

become: 
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φ φ
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Substitution of (5.13) into (5.1) and (5.10) yields 
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When the expansion (5.12) is substituted into (5.14) and orthogonality of the 

eigenfunctions is invoked, a set of linear ordinary differential equations in time is 

obtained. Unlike in the fixed reference frame, the equations have constant coefficients, so 

stability can be determined by a mere eigenvalue calculation. The form of the differential 

equations is 
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where the generalized coordinate 0pB  may be discarded for 1, 2,...p =  

The following new variables are introduced, as defined in Chan et al. [51]. 
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where the critical frequency is defined as 
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The scaled equations of motion are 
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(5.18) 

It is noted that equation (5.18) constitutes ( )2 1tot rN N Nθ= +  linear, second-order 

differential equations with constant coefficients.  A vector of generalized coordinates, 

denoted by y� , may be defined as 
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Then, a state vector x�  can be formed from y�  and its derivative with respect to τ  

 
y

x dy

dτ

 
 =  
  

�
� �  (5.20) 

Using x� , equation (5.18) can be cast in the form 

 [ ]( )
dx

A x
dτ

= Ω
�

�  (5.21) 

where [ ]( )A Ω  is a 2 2tot totN N×  matrix function of the scaled rotation speed, Ω . The 

eigenvalues of (5.21) can be computed as a function of scaled rotation speed and 

examined for stability. 

STABILITY WITHOUT DITHER 

The supercritical range of the scaled rotational speed, i.e. 1Ω > , is generally not a 

concern for engineering applications such as brake systems. The only influential 

parameter in the subcritical range of the scaled rotational speed, i.e. 0 1< Ω ≤ , is the 

friction follower force amplitude Fθ . Figures 5.3 to 5.5 show typical stability maps. 

Figure 5.3 depicts a stability map for a plate having 0.01h a = , 0.05b a = , 

0 0.5r a = . Two sets of values for the SMD properties m , critc ω , and 2
critk ω  are 

examined. The stability of this system is computed using one radial mode and three 

azimuthal modes, i.e. 1rN =  and 2Nθ = . Figure 5.3 shows a region mostly stable for the 

scaled friction force 2
0 critf F rθ ω=  lower than 51 10−×  and 61 10−× , in case (a) and case 
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(b), respectively. Nevertheless, several thin bands of instability arise as the scaled friction 

force is increased.  

 

Figure 5.3: Stability map as a function of scaled rotational speed Ω and scaled friction 
force f=Fθ/r0ω2

crit. Parameters: h/a=0.01, b/a=0.05, r0/a=0.5, Nr=1, Nθ=2, (a) 
m=c/ωcrit=k/ω2

crit=0.1, and (b) m=c/ωcrit=k/ω2
crit=0.01. 

Figure 5.4 depicts a stability map for identical system parameters, except that the 

model has been enriched to represent up to six azimuthal modes, i.e. 5Nθ = . The same 

bands of instability are found in this plot, but additional unstable regions are also present. 

The addition of azimuthal modes seems to have created additional instability regions. 

Figure 5.5 depicts a stability map for identical system parameters as Figure 5.4, except 

that the model has been enriched to represent up to two radial modes, i.e. 2rN = . The 

same bands of instability are found in this plot, and additional unstable regions are also 

present now. It may be concluded that both radial and azimuthal modes add new unstable 

rotational speeds to the system. 

• •
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Figure 5.4: Stability map as a function of scaled rotational speed Ω and scaled friction 
force f=Fθ/r0ω2

crit. Parameters: h/a=0.01, b/a=0.05, r0/a=0.5, Nr=1, Nθ=5, (a) 
m=c/ωcrit=k/ω2

crit=0.1, and (b) m=c/ωcrit=k/ω2
crit=0.01. 

 

Figure 5.5: Stability map as a function of scaled rotational speed Ω and scaled friction 
force f=Fθ/r0ω2

crit. Parameters: h/a=0.01, b/a=0.05, r0/a=0.5, Nr=2, Nθ=5, (a) 
m=c/ωcrit=k/ω2

crit=0.1, and (b) m=c/ωcrit=k/ω2
crit=0.01. 

• •

• •
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EQUATION FOR THE DITHERED SYSTEM 

Normal Dither 

Applying a dither signal to the normal load in the system results in a time varying 

normal force, which in turn induces a time varying friction force. Thus the friction 

follower force has both a constant and an oscillatory component. In this case the force 

( , , )F r tθ  can be expressed as 
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where α , ω  and 0ψ  denote the normal dither amplitude, frequency, and initial phase 

angle, respectively. It is important to note that the dither amplitude parameter α  cannot 

exceed unity because it would give rise to time intervals of negative friction force. This 

physical constraint for normal dither can be stated as follows 

 0 1          with α α< < ∈ �  (5.23) 

Substitution of (5.13) into (5.1) and (5.22) yields 
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 (5.24) 

When the expansion (5.12) and the variables (5.16) are substituted into (5.24) and 

orthogonality of the eigenfunctions is invoked, a set of linear ordinary differential 
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equations in time is obtained. Unlike in the case without dither excitation, the equations 

now have time dependent coefficients. The form of the scaled differential equations is 
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where  
cr

R
ω

ω
=  is the dither frequency ratio. 

Tangential Dither 

Applying a dither signal tangentially to the plane at the contact point corresponds 

to effectively forcing the mass into a tangential oscillatory motion around its mean 

rotational motion on the plate. If the mass can be forced into an angular displacement 

( )tϕ  such that its effect on the mass total rotation are negligible, i.e. ( )t t tϕΩ + Ω� , and 

its slip velocity is mainly oscillatory, i.e. ( ) ( )t tϕ ϕΩ + � � , then the follower friction force 

will be periodic. Both conditions can be fulfilled if the angular displacement engendered 

by tangential dither is taken as follows 

 ( ) ( ) ( )1
0 0 1sin          1 0nt t with O and nϕ ϕ ω ϕ ω= = − < <  (5.26) 

where 0ϕ  is the amplitude of the angular displacement and ω  is the tangential dither 

frequency. If the tangential dither frequency is high enough, the mass’ total rotation and 

slip velocity in the limit of dither frequency going to infinity is given by 
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 ( ){ } ( ){ } ( )0lim lim cost t t
ω ω

ϕ ω ϕ ω ϕ
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Note that the tangential dither force TD  required to create an oscillatory friction follower 

force could be very high as 

 ( )( ) ( )2
2   1 2n

TD O t O and nϕ ω= = < <��  (5.29) 

Since the slip velocity is changing sign, the friction force becomes oscillatory, 

alternating values between Fθ+  and Fθ−  if a constant friction coefficient is assumed. 

The friction follower force is then a square wave with fundamental frequency equal to 

that of the tangential dither frequency. In order to proceed with this analysis, only the 

fundamental frequency is considered. In other words, the friction follower force is 

assumed to be sinusoidal of the form 0cos( )F tθ ω ψ+ . 

Forced by a tangential dither as defined in (5.29), the rotating spring-mass-

damper system force ( , , )F r tθ  can still be expressed as 
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where ω  and 0ψ  denotes the tangential dither frequency and the initial phase angle, 

respectively. 

Substitution of (5.13) into (5.1) and (5.30) yields 
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When the expansion (5.12) and the variables (5.16) are substituted into (5.31) and 

orthogonality of the eigenfunctions is invoked, a set of linear ordinary differential 

equations in time is obtained 
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2 0               

r NN
pq pq

pq pq ij pq
i j

pq pq
ij ij

cr cr cr

pq pq
pq pq

d A dB
q q A R r R r

d d

d A dA F jc k
m A R B

d d r

d B dA
q q B

d d

θ

θ

β
τ τ

τ ψ
τ ω τ ω ω

β
τ τ

= =
− Ω + − Ω = −

 
× + + − + 

  

+ Ω + − Ω =

∑∑

  1,2,...;  0,1,2,...for p q= =

 (5.32) 

where  
cr

R
ω

ω
=  is the dither frequency ratio. 

STABILITY OF THE DITHERED SYSTEM 

Unlike in the equations of motion without dither (5.18), equations (5.25) and 

(5.32) have time dependent coefficients, so stability cannot be determined by an 

eigenvalue calculation. A crucial feature of the coefficients of equations (5.25) and (5.32) 

is that they are periodic with period 2T Rπ= . The periodicity in the coefficients allows 

the use of Floquet theory to obtain the system stability. 

When the parameters of the rotating spring-mass-damper system are very small, a 

perturbation method may be used to approximate the solution. The method of multiple 
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scales is used to infer stability in an analytical fashion. The validity of the stability 

predictions lies in the assumption of small parameters. 

Floquet Theory 

Floquet theory is described in many dynamics textbooks, for example see [28, 29, 

52] for an in-depth treatment. The following definitions and theorems are taken from 

Jordan and Smith’s textbook [29]: 

Definition 5.1: 

Let ( ) ( ) ( )1 2,  ,  ..., nt t tφ φ φ  be n linearly independent solution vectors of the 

homogeneous system ( )x A t x=� . Then the matrix 

 ( ) ( ) ( ) ( )
11 12 1

21 22 2
1 2

1 2

,  ,  ..., 

n

n
n

n n nn

t t t t

φ φ φ
φ φ φ

φ φ φ

φ φ φ

 
 
 Φ = =    
 
  

�
�

�

 (5.33) 

is called a fundamental matrix of the homogeneous system ( )x A t x=�
� �

. 

Theorem 5.1: 

The solution of the homogeneous system ( )x A t x=�
� �

 with initial conditions 

( )0 0x t x=
� �

 is given by ( ) ( ) ( )1
0 0x t t t x−= Φ Φ

� �
, where Φ  is any fundamental 

matrix of the system. 

Theorem 5.2: (Floquet’s theorem) 

The regular system ( )x A t x=� , where ( )A t  is an n n×  matrix with minimal 

period T , has at least one non-trivial solution ( )x tχ=
� �

 such that 
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 ( ) ( )          t T t tχ µ χ+ = ∀ ∈ �
� �

 (5.34) 

where µ  is a constant. 

Definition 5.2: 

The constants µ  in Theorem 5.2 are the eigenvalues of matrix E , defined as 

( ) ( )1
0 0E t t T−= Φ Φ + , are called characteristic numbers or multipliers of the 

equation ( )x A t x=�
� �

. 

Theorem 5.3: 

The constants µ  in Theorem 5.2 are independent of the choice of Φ . 

Definition 5.3: 

A solution of the equation ( )x A t x=�
� �

 satisfying (5.34) is called a normal solution. 

Definition 5.4: (Characteristic exponent) 

Let µ  be a characteristic number of equation ( )x A t x=�
� �

 corresponding to the 

minimal period T  of ( )A t . Then ,ρ  defined by  

 Teρ µ=  (5.35) 

is called the characteristic exponent of the system. Note that ρ  is defined only to 

within an additive multiple of 2 i Tπ . It will be fixed by requiring 

( )Im Tπ ρ π− < ≤ , or by ( )ln Tρ µ= , where the principal value of the 

logarithm is taken. 

Theorem 5.4: 
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Suppose that matrix E  of Definition 5.2 has n distinct eigenvalues 

,   1,  2,  ...,  i for i nµ = . Then the equation ( )x A t x=�
� �

 has n linearly independent 

normal solutions of the form 

 ( ) iT
i ix p t eρ=
� �

 (5.36) 

where the iρ  are the characteristic exponents corresponding to iµ , and the 

( )ip t
�

 are functions with period T . 

Equations (5.25) and (5.32) are particular examples of a general n-dimensional first-order 

systems 

 ( ) ( )          with ,  n n nx P t x x P t ×= ∈ ∈�
� � �

 (5.37) 

where ( )P t  is periodic with minimal period 2T Rπ= , that is 

 ( ) ( )=            P t T P t t+ ∀ ∈ �  (5.38) 

The systems of equations (5.25) and (5.32) can be time simulated for a variety of 

frequency ratios ,R  and dither amplitudes α  in the case of normal dither, and over a 

time interval with duration 2T Rπ= , i.e. [ ]0 0 0, , t t T t+ ∀ ∈ � . For a n n×  matrix P , n  

different initial conditions must be used. In this study, the n  Cartesian axes vectors are 

used. Using the set of Theorems 5.1-5.4, the stability can be inferred from the sign of the 

characteristic exponents ,   1,  2,  ...,  i for i nρ = . If all characteristic exponents have 

negative real parts, then the Floquet multipliers iµ  have magnitude less than one. Thus 

using Theorem 5.2, it can be shown that the system response is a contracting mapping, 

and the system response only gets smaller with time. On the other hand, when there is at 
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least one positive characteristic exponent, the corresponding Floquet multiplier has 

magnitude greater than one, and the system response grows as time increases. Figure 5.6 

depicts typical responses of a single degree of freedom system in cases where the 

characteristic exponent is positive, zero, and negative. 

 

Figure 5.6: Typical SDOF system responses, (a) Re(ρi)>0, (b) Re(ρi)=0, and (c) Re(ρi)<0. 

The stability for the system without dither determined numerically using Floquet 

theory is in strong agreement with the eigenvalue analysis described in the previous 

section. The downside of the Floquet method is that it is computationally very intensive 

compared to the eigenvalue analysis. 

Multiple Scales Method 

When the parameters of the rotating spring-mass-damper system are very small, 

the method of multiple scales may be used to approximate the solution. Therefore the 

mass, damping, stiffness and friction are assumed very small in this section. 
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The multiple scales method is used to assess the effects on system stability of both 

normal and tangential dither signals. Finally, the special case of tangential dither 

excitation in the presence of a high amplitude friction force is discussed. 

Normal Dither Excitation 

The development in this section will be made for the case of normal dither, as it is 

a more restrictive case. Results for tangential dither will then be easily derived from that 

analysis. It will be shown that the instabilities at subcritical rotation rates are caused by 

interactions of various disc modes. To show this, it is much easier for the derivation to 

start with a complex form of the modal expansion: 

 ( ) ( )
1

( , , ) ( ) exp  
r NN

kl kl
k l N

w r t R r il q t
θ

θ

θ θ
= =−

= ∑ ∑  (5.39) 

where the ( )klq t  are now complex. As with the real-valued modal expansion, it is 

possible to normalize the eigenfunctions and to demonstrate their orthogonality. 

Substitution of (5.22) into (5.1) yields 

 

( )

2
4 0

2

2
*

( )
( , , ) ( )

    1 ( , , )i t i t

r r
h D w r t t

t r

F
m c k e e w r t

t t r
ω ωθ

δρ θ δ θ

α α θ
θ θ θ

−

  −∂ + ∇ = − − Ω ∂ 
 ∂ ∂ ∂ ∂ ∂    × + Ω + + Ω + − + +     ∂ ∂ ∂ ∂ ∂    

�

� �
(5.40) 

When the expansion (5.39) is substituted into (5.40) and orthogonality of the 

eigenfunctions is invoked, a set of linear ordinary differential equations in time is 

obtained 
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( )

( ) ( )

( )

2
0 0

1

2 2

*

0

( ) ( ) exp

                         2

                                           1

r NN

kl kl kl kl rs
r s N

rs rs rs rs rs

i t i t
rs

q q R r R r i s l t

m q i s q s q c q is q

sF
k i e e q

r

θ

θ

ω ωθ

ω

α α

= =−

−

 + = − − Ω 

× + Ω − Ω + + Ω
 

+ − + + 
 

∑ ∑ ���

� � ��� � �





 (5.41) 

The following new variables, as defined in [51], are introduced 

 
2 2

0

,    ,    ,    
cr cr cr

Fc k
m f

r
θεγ εζ εκ ε

ω ω ω
= = = =  (5.42) 

The ε  is used to remind the reader that the quantities are assumed very small, which will 

be referred to as order ( )O ε  quantities. Using (5.16) and (5.42), the differential equation 

can be written as 

 

( )

( )

2
2

0 02
1

2
*

( ) ( ) exp

          1

r NN
kl

kl kl kl rs
r s N

iR iR
rs

d q
q R r R r i s l

d

d d
is is isf e e q

d d

θ

θ

τ τ

β ε τ
τ

γ ζ κ α α
τ τ

= =−

−

+ = − − Ω  

    × + Ω + + Ω + − + +         

∑ ∑
 (5.43) 

Following the standard procedure outlined by Nayfeh and Mook [52], new independent 

variables, or time scales, are introduced in terms of integer powers of ε  

       0,1, 2,...n
nT for nε τ= =  (5.44) 

The derivatives with respect to τ  become expansions of partial derivatives with respect 

to the nT  according to 
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 20 1
0 1 2

0 1

... ...
dT dTd

D D D
d d T d T

ε ε
τ τ τ

∂ ∂= + + = + + +
∂ ∂

 (5.45a) 

 ( ) ( )
2

2 2 2
0 0 1 1 0 22

2 2 ...
d

D D D D D D
d

ε ε
τ

= + + + +  (5.45b) 

One assumes that the solution of equation (5.43) can be represented by the following 

expansion 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 22
0 1 2 0 1 2 0 1 2, , ,... , , ,... + , , ,... ...kl kl kl klq q T T T q T T T q T T Tε ε= + +  (5.46) 

Substituting (5.45) and (5.46) into (5.43) and equating the coefficients of orders ( )1O , 

and ( )O ε  to zero yields: 

 ( ) ( )02 2
0 0kl klD qβ+ =  (5.47) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0 0

1 02 2
0 0 1 0 0 0

1

2 0*
0 0

2 ( ) ( ) exp

                   1

r NN

kl kl kl kl rs
r s N

iRT iRT
rs

D q D D q R r R r i s l T

D is D is isf e e q

θ

θ

β

γ ζ κ α α

= =−

−

+ = − − − Ω  

 × + Ω + + Ω + − + + 

∑ ∑
 (5.48) 

The solution of (5.47) can be written in the form 

 ( ) ( ) ( ) ( ) ( )0
1 2 0 1 2 0, exp , expkl kl kl kl klq A T T i T B T T i Tβ β= + −  (5.49) 

where klA  and klB  are unknown complex functions, depending on the other time scales 

,   1, 2,...nT for n =  

Substituting (5.49) into (5.48) leads to 
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( ) ( ) ( ) ( )( )

( )

( ) ( )

12 2
0 0 1 0 0

0 0 0
1

2

0 0

2 exp exp
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r
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NN
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∑ ∑
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0 0
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rs rs rs rs

isf e e

A i T B i T

κ α α

β β

− + − + + 
× + −

 (5.50) 

This latter equation can be rearranged in the form 
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( ) ( )
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0 0 0
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R r R r e isf A e B e

θ

θ

θ

θ

β β

β β

β β

β β

α

−

− Ω −+ −

= =−

− Ω + − −

= =−
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∑ ∑
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( ) ( ) ( ) ( )( )0 0 0*
0 0
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r

rs rs

NN
i s l T i R T i R T

kl rs rs rs
r s N

R r R r e isf A e B e
θ
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 (5.51) 

where 

 
( )
( )

2

2

    

    

rs rs rs rs rs

rs rs rs rs rs

D C i C sf C s

D C i C sf C s

κ γ ζ β

κ γ ζ β

+ + + +

− − − −

 = − + − = + Ω 

 = − − + = − Ω 
 (5.52) 

Tangential Dither Excitation 

Equations (5.51) and (5.52) can be adapted to the case of tangential dither. The 

term ( )*1 iR iRf e eτ τα α −+ +  in equation (5.43) is replaced with ( )*iR iRfe f eτ τ−+ . This 

procedure yields: 
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 (5.53) 

where 

 
( )
( )

2

2

    

    

rs rs rs rs rs

rs rs rs rs rs

D C i C C s

D C i C C s

κ γ ζ β

κ γ ζ β

+ + + +

− − − −

= − + = + Ω

= − − = − Ω
 (5.54) 

Effect of Normal and Tangential Dither on Stability 

Following the methodology used by Shen [53], it is found that single-mode 

resonances will occur at rotation speeds close to 

 2 2         0kll for lβΩ = >  (5.55a) 

 2         0,  0kl kll R for l Rβ βΩ = ± ± ± > >  (5.55b) 

and that combination-mode resonances will occur at rotation speeds close to 

 ( )         ,  0rs kls l for s l lβ β± Ω = ± > ≥  (5.56a) 

 ( )         ,  0,  0rs kls l R for s l l Rβ β± Ω = ± ± ± > ≥ >  (5.56b) 

It is seen that neither normal nor tangential dither can suppress the system parametric 

resonances induced by the rotating spring-mass-damper system, given by conditions 

(5.55a) and (5.56a). In other words, R  has no effect on these resonances. Furthermore 
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both normal and tangential type dither forces have a destabilizing effect on the system by 

adding additional instability bands at rotation speeds given by conditions (5.55b) and 

(5.56b). 

Special Case of High Amplitude Friction Force 

The special case of high amplitude friction force is considered in this section. The 

amplitude is chosen such that 

 ( )2
0cr

F
O

r
θ ε

ω
=  (5.57) 

Therefore the system parameters used in (5.42) can be rewritten as 

 
1
2

2 2
0

,    ,    ,    
cr cr cr

Fc k
m f

r
θεγ εζ εκ ε

ω ω ω
= = = =  (5.58) 

New time scales are introduced as multiples of half-integer powers of ε  

 2’       0,1, 2,...
n

nT for nε τ= =  (5.59) 

The derivatives with respect to τ  become expansions of partial derivatives with respect 

to the ’
nT  according to 

 
1
2

’ ’
’ ’ ’0 1
0 1 2’ ’

0 1

... ...
dT dTd

D D D
d d T d T

ε ε
τ τ τ

∂ ∂= + + = + + +
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 (5.60a) 

 ( ) ( )1
2

2
’2 ’ ’ ’2 ’ ’
0 0 1 1 0 22

2 2 ...
d

D D D D D D
d

ε ε
τ

= + + + +  (5.60b) 

One assumes that the solution of equation (5.43) can be represented by the following 

expansion 
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 ( ) ( ) ( ) ( ) ( ) ( )1
20 1 2’ ’ ’ ’ ’ ’ ’ ’ ’

0 1 2 0 1 2 0 1 2, , ,... , , ,... + , , ,... ...kl kl kl klq q T T T q T T T q T T Tε ε= + +  (5.61) 

Equation (5.43) can be adapted to the case of tangential dither excitation as follows 
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 (5.62) 

Substituting (5.60) and (5.61) into (5.62) and equating the coefficients of orders ( )1O , 

and ( )1
2O ε  to zero 

 ( ) ( )0’2 2
0 0kl klD qβ+ =  (5.63) 
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 (5.64) 

Equation (5.63) is the same as equation (5.47); therefore the solution for the order ( )1O  

is also of the form (5.49), i.e. 

 ( ) ( ) ( ) ( ) ( )0 ’ ’ ’ ’ ’ ’
1 2 0 1 2 0, exp , expkl kl kl kl klq A T T i T B T T i Tβ β= + −  (5.65) 

where klA  and klB  are unknown complex functions, depending on the other time scales 

’,   1, 2,...nT for n =  

Substituting (5.65) into (5.64) leads to 
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r NN
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 (5.66) 

Following the methodology used by Shen [53], equation (5.66) shows that tangential 

dither will suppress the initial parametric resonances occurring at rotation speeds given 

by (5.55a) and (5.56a), but will induce additional resonances at rotation speeds given by 

(5.55b) and (5.56b). 

Numerical Results 

The stability for the system without dither has been assessed calculating the 

eigenvalues of (5.21), whereas the system with dither has been determined numerically 

using Floquet theory. The scaled rotation speeds that have been considered in the 

numerical simulations are exclusively subcritical, i.e. 0 1< Ω ≤ , as this range is the most 

relevant to many engineering problems like brake systems. 

The undithered system exhibits resonances induced by the rotating SMD. They 

occur at scaled rotation speeds denoted by iΩ , given in table 5.1, and obtained using 

equations (5.55a) and (5.56a). Additional resonances are induced by dither excitation. 

They occur at scaled rotation speeds denoted by *
iΩ , given in table 5.2, and obtained 

using equations (5.55b) and (5.56b). 
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Table 5.1: System scaled rotation speeds. Parameters: h/a=0.01, b/a=0.05, Nr=1, Nθ=2. 

0.036 0.064 0.114 0.192 1
1Ω 2Ω 3Ω 4Ω 5Ω

 

 

Table 5.2: Dither induced scaled rotation speeds. Parameters: h/a=0.01, b/a=0.05, Nr=1, 
Nθ=2, R=2.7. 

0.325 0.369 0.458 0.536 0.675 0.836 0.879 0.964

*
1Ω *

2Ω *
3Ω *

4Ω *
5Ω *

6Ω *
7Ω *

8Ω

 

 

Normal Dither Excitation 

Figures 5.7 and 5.8 show the stability maps for a given set of system parameters 

with and without normal dither, for no plate damping and modal damping ξ=10-3, 

respectively. The initial parametric resonances iΩ  induced by the SMD system are still 

present in the dithered system. However normal dither seems to stabilize the system over 

a very small range of friction parameter values near rotation speeds 0.7Ω =  and 

0.88Ω = . But overall, it is seen that normal dither is not capable to suppress the system 

unstable region. The importance of plate damping in stabilizing the system is also clearly 

evident. 
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Figure 5.7: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with normal dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=0, (a) α=0, and (b) α=1, R=2.7 

 

Figure 5.8: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with normal dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=10-3, (a) α=0, and (b) α=1, R=2.7 

Tangential Dither Excitation 

Figures 5.9–5.11 show the stability maps for a given set of system parameters 

with and without tangential dither, for no plate damping and a variety of SMD parameters 

( ),    andεγ ες εκ  ranging from 0.1 to 0.3.  

••

••
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The stability maps of the undithered system are depicted in the left plots of 

Figures 5.9–5.11. The initial parametric resonances induced by the SMD system, listed in 

Table 5.1, are present in the undithered system, as predicted by equations (5.55a) and 

(5.56a). Also, note that the system is unstable for all rotation speeds when 52 10fε −≥ ×  

for 0.1εγ ες εκ= = = , when 53.5 10fε −≥ ×  for 0.2εγ ες εκ= = = , and when 

55 10fε −≥ ×  for 0.3εγ ες εκ= = = . 

The stability maps of the system excited with tangential dither of amplitude 1α =  

and frequency ratio 2.7R =  are depicted in the right plots of Figures 5.9–5.11. The initial 

parametric resonances induced by the SMD system are still present in the dithered 

system, but they occur only when friction reaches a high value, i.e. when 41 10fε −×�  for 

1Ω  and 53 10fε −×�  for 4Ω . Moreover these instability bands, associated with the 

scaled rotation speeds iΩ , are very narrow. As predicted by equations (5.55b) and 

(5.56b), additional resonances are induced by dither excitation. As can be seen in the 

right plots of Figures 5.9–5.11, they occur at scaled rotation speeds *
1Ω , *

2Ω , and *
3Ω . The 

instability band associated with the rotation speed *
4Ω  is also present in Figure 5.9 in the 

case 0.1εγ ες εκ= = = . Therefore, it can be concluded that tangential dither can 

substantially reduce the parametric resonances induced by the SMD system, but leads to 

additional resonances at different rotation speeds. 
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Figure 5.9: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.1, ες=0.1, εκ=0.1, Nr=1, Nθ=2, ξ=0, (a) α=0, and (b) α=1, R=2.7 

 

Figure 5.10: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.2, ες=0.2, εκ=0.2, Nr=1, Nθ=2, ξ=0, (a) α=0, and (b) α=1, R=2.7 

••

••
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Figure 5.11: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=0, (a) α=0, and (b) α=1, R=2.7 

Figures 5.12–5.15 show the stability maps for a given set of system parameters 

with and without tangential dither, for 0.3εγ ες εκ= = =  and a variety of plate modal 

damping ranging from 0ξ =  to 310ξ −= . 

The stability maps of the undithered system are depicted in the left plots of 

Figures 5.12–5.15. All the initial parametric resonances induced by the SMD system are 

present in the undithered system with light damping, i.e. 0ξ = and 510ξ −= , as predicted 

by equations (5.55a) and (5.56a) and listed in Table 5.1. When the plate modal damping 

is increased to 410ξ −= , only instabilities associated with rotation speeds 2Ω  and 3Ω  are 

remaining, as seen in Figure 5.14. The instability associated with only the rotation speed 

2Ω  is left when the plate modal damping is increased up to 310ξ −= , as seen in Figure 

5.15.  

The stability maps of the system excited with tangential dither of amplitude 1α =  

and frequency ratio 2.7R =  are depicted in the right plots of Figures 5.12–5.15. The 

••
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initial parametric resonances induced by the SMD system are still present in the dithered 

system with no plate damping, as seen in Figure 5.12. However they occur only when 

friction reaches a high value, i.e. when 41 10fε −×�  for 1Ω  and 53 10fε −×�  for 4Ω .  

When the plate modal damping is increased to 510ξ −= , only instabilities 

associated with rotation speeds 3Ω  (when 41.4 10fε −×� ) and 4Ω  (when 

41.8 10fε −×� ) are remaining, as seen in Figure 5.13. When the plate modal damping is 

increased further, i.e. 410ξ −=  and 310ξ −= , the initial parametric resonances induced by 

the SMD system are completely removed from the system in the range of friction 

considered, i.e. for 40 2 10fε −≤ ≤ × , as seen in Figures 5.14 and 5.15. As predicted by 

equations (5.55b) and (5.56b), additional resonances are induced by dither excitation. As 

can be seen in the right plots of Figures 5.12–5.15, they occur at scaled rotation speeds 

*
1Ω , *

2Ω , and *
3Ω . Therefore, it can be concluded that in a more realistic model including 

light plate modal damping tangential dither can effectively cancel the parametric 

resonances induced by the SMD system, but leads to additional resonances at different 

rotation speeds. 
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Figure 5.12: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=0, (a) α=0, and (b) α=1, R=2.7 

 

Figure 5.13: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=10-5, (a) α=0, and (b) α=1, R=2.7 

••

••
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Figure 5.14: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=10-4, (a) α=0, and (b) α=1, R=2.7 

 

Figure 5.15: Stability map as a function of scaled rotational speed Ω and scaled friction 
force εf=Fθ/r0ω2

crit for a system with tangential dither. Parameters: h/a=0.01, b/a=0.05, 
r0/a=0.5, εγ=0.3, ες=0.3, εκ=0.3, Nr=1, Nθ=2, ξ=10-3, (a) α=0, and (b) α=1, R=2.7 

••

••
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CONCLUSION 

In light of the multiple scale analysis, it can be concluded that normal dither 

cannot suppress the system parametric resonances induced by the rotating spring-mass-

damper system. 

On the other hand, tangential dither can substantially reduce the parametric 

resonances induced by the SMD system, but leads to additional instability regions at 

different rotation speeds. In addition, if a more realistic model including light plate modal 

damping is used, tangential dither can effectively cancel the initial parametric resonances 

induced by the SMD system. 

Numerical simulations using Floquet theory confirm the predictions made by the 

multiple scale analysis, for both normal and tangential dither excitations. 

An important feature of the tangential dither capability to stabilize the system is 

that there is no constraint on the excitation frequency R . Thus, as R  can be arbitrarily 

chosen, it can be used to cancel squeal arising at a particular rotor speed. 
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CHAPTER 6 

CONCLUSION 

The objective of this research was to study the influence of dither on self-excited 

frictional oscillations. More precisely, the “stick-slip” and the “mode coalescence” 

theories for brake squeal have been investigated. 

The “stick-slip” explanation for brake squeal has been studied using the mass-on-

moving-belt single degree of freedom model. Two representative friction models have 

been selected: the decreasing friction model that has a decreasing friction coefficient with 

increasing slip velocity, and the Stribeck friction that also have a decreasing friction 

coefficient with increasing slip velocity, but also a “lubricated” regime, where the friction 

force is similar to viscous friction. 

SDOF WITH STRIBECK FRICTION MODEL 

It is found that unstable, self-excited oscillations in the system having the Stribeck 

friction model can always be stabilized by applying tangential dither of sufficient 

amplitude. This result holds for tangential dither with sinusoidal, triangular and square 

waveforms. On the other hand, normal dither can stabilize the system for some system 

parameters, but not in general. 

The effect of tangential dither with various waveforms on stability has been 

quantified and can be predicted using the averaging technique. The averaging technique 

shows that sinusoidal waveforms requires a higher dither force than square waveforms, 

but a lower force than triangular waveforms in order to achieve stability of an undithered 

unstable system, regardless of belt velocity. 
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 The averaging technique developed for tangential dither has been extended to 

normal dither. A numerical procedure for computing effective friction characteristic 

when normal dither is injected in the system has been implemented. The effective friction 

characteristics obtained with the extended averaging technique are in agreement with the 

ones obtained with the numerical procedure. The averaging technique shows that normal 

dither requires a higher dither force than in the tangential dither case. 

Amplitude-frequency combinations that cause the steady-state dithered response 

to decrease to 5% of the undithered response show a very repeatable correlation with the 

stability boundary predicted by the averaging technique. This result holds for tangential 

and normal dither with sinusoidal, triangular and square waveforms. 

Numerical simulations show that, for a given dither force amplitude, triangular 

waveforms achieve a lower level of control than sinusoidal waveforms, and square 

waveforms achieve a higher level of control than sinusoidal waveforms. 

SDOF WITH DECREASING FRICTION MODEL 

The behavior of the system with a decreasing friction law differs from that of the 

system with the Stribeck friction model in one important respect. While dither is found to 

always be a stabilizing influence in the case of the Stribeck friction model, the system 

with the decreasing friction model can be either stabilized or destabilized by dither. 

Both the averaging technique and numerical simulations show that a system 

undergoing stable, steady sliding can be destabilized by applying dither of intermediate 

strength. When the undithered system is unstable, it is always possible to find a tangential 

dither signal that stabilizes the system. These results hold for tangential dither with 

sinusoidal, triangular and square waveforms. 
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For a given belt velocity, the range of dither amplitudes that destabilizes the 

system is broad and within high amplitude levels for the triangular waveforms, and is 

narrow and within low amplitude levels for the square waveforms. The range of 

destabilizing dither amplitudes for sinusoidal waveforms lies between that of the 

triangular and the square waveforms. 

When the undithered system is unstable, unlike the case of tangential dither, it is 

not always possible to find a normal dither signal that stabilizes the system, since the 

dither amplitude is limited by the requirement that the total normal force be positive. 

In this case, the stability threshold predicted by the averaging technique again 

correlates well with the 5% performance level found using numerical integration. 

CONTINUOUS PLATE MODEL 

In light of the multiple scale analysis, it can be concluded that normal dither 

cannot suppress the system parametric resonances induced by the rotating spring-mass-

damper system. 

On the other hand, tangential dither can substantially reduce the parametric 

resonances induced by the SMD system, but leads to additional instability regions at 

different rotation speeds. In addition, if a more realistic model including light plate modal 

damping is used, tangential dither can effectively cancel the initial parametric resonances 

induced by the SMD system. An important feature of the tangential dither capability to 

stabilize the system is that there is no constraint on the excitation frequency R . Thus, as 

R  can be arbitrarily chosen, it can be used to cancel squeal arising at a particular rotor 

speed. 
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FUTURE RESEARCH SUGGESTIONS 

There is a legitimate need for experimental validations of the results obtained in 

this thesis. The results obtained for the SDOF model should be verified using a simple 

experimental setup. 

The dynamics of the caliper needs to be understood in order to model the brake 

system more accurately. This requires measuring precisely the motion of the caliper in 

the brake system experimentally. This knowledge can be used to include additional 

modes of displacement of the contacting pads and caliper system. Thus a more refined 

model of the pad and caliper assembly could then be used for simulation. 

The plate model represents the pad/caliper interface by a single point. A natural 

extension is to model the interface in a more distributed nature. Another interesting 

feature for the modeling of the contact interface is to allow for both sticking and slipping 

regions at the same time. 
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APPENDIX A - SINUSOIDAL WAVEFORMS 

 

Sinusoidal waveforms can be expressed as 

 ( ) ( )sing x x=  (A.1) 

The integral of this signal is given by 

 ( ) ( ) ( )sin cosG x x dx x= = −∫  (A.2) 

Using equation (A.2) into (3.36b) leads to the following integral 
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where ( )0 .I  is the modified Bessel function of order zero. 

Therefore, the effective friction characteristic in the case of sinusoidal waveforms, when 

r Tv α≥ , can be expressed using equations (A.3) into (3.36b) 
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APPENDIX B - TRIANGULAR WAVEFORMS 

 

Triangular waveforms can be expressed as 
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The integral of this signal is given by 
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Using equation (B.2) into (3.36) leads to the following integrals 
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where the function ( ).erfi  is the imaginary error function, defined as 
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0

2 x
terfi x e dt

π
≡ ∫  (B.7) 

and can be expressed as a series of odd polynomials 
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Its derivative is given by 
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e
x π

∂
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∂
 (B.9) 

Therefore, the effective friction characteristic in the case of triangular waveforms can be 

expressed using equations (B.3) to (B.6) into (3.36) 
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APPENDIX C - SQUARE WAVEFORMS 

 

Square waveforms can be expressed as 
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The integral of this signal is given by 
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Using equation (C.2) into (3.36) leads to the following integrals 
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Therefore, the effective friction characteristic in the case of triangular waveforms can be 

expressed using equations (C.3) to (C.6) into (3.36) 
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