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SUMMARY 

 
 

 As a hydrophilic biopolymer, a DNA molecule is surrounded by water molecules 

in aqueous solution. The charge hopping mechanism indicates the competition between 

cation quenching by water molecules and cation migration and trapping at guanine bases 

partially determines the distance and efficiency of charge transport in DNA. Lipid, with 

hydrophilic head group and hydrophobic tail group, can effectively bind DNA to induce 

hydrophobic environment around the DNA helix and exclude or reduce the water contact 

with bases in the DNA duplex. Therefore, the effect of water molecules on charge 

transport can be studied by comparison between nature DNA and DNA-lipid complexes. 

We synthesized several DNA-binding lipids in this research. The preliminary results 

show no significant difference in GG damage between pure DNA and DNA- N’-N’-

dioctylglycinamide complex which is attribute to no or little association between N’-N’-

dioctylglycinamide and DNA under UV irradiation conditions indicated by fluorescence 

quenching experiment. 

We further synthesized N’, N’-Diethyl(sperminecarbonyl)glycinamide, 

hydrofluoroacetate (C2GlySp4+)  N’, N’-Dioctadecyl(sperminecarbonyl)glycinamide, 

hydrofluoroacetate (C8GlySp4+) and N’, N’-Dioctyl(sperminecarbonyl)glycinamide, 

hydrofluoroacetate (C18GlySp4+) which posses improved DNA binding affinity due to 

their multi-charged spermine head-groups. Among those, C8GlySp4+ and C2GlySp4+ can 

form stable complex with DNA oligomer in aqueous solution, characterized by time 

dependent UV and CD spectra. C2GlySp4+ showed the similar inhibition on oxidative 

damage in GG steps as spermine while C8GlySp4+ showed much more significant effect 

at the same concentration. All the lipids bear the same binding headgroup, spermine. It 



 xx

has been shown that the major driving force for the binding is electrostatic interaction. 

Consequently all lipids and spermine should afford the similar binding affinity towards 

DNA duplex, we attributed the observation to the longer length of dialkyl group in 

C8GlySp4+, which can more effectively shield the DNA duplex from the water molecules 

than either spermine or C2GlySp4+.  A kinetic model based on phonon-assist polaron 

hopping mechanism was proposed to rationalize the experimental results.   

 The finding may give insight on the protection of DNA oxidative damage by 

reducing the access of the water molecule to DNA duplex. The final results may have 

potential impact on the application of DNA as conducting biopolymer and protection of 

DNA in biological system. 

 The mechanism of long range charge transfer in DNA has be studied extensively 

from the view point of mutagenesis and carcinogenesis induced by carcinogenic agents, 

ionizing radiation, photosensitization with endogenous photosensitizes and high-intensity 

laser irradiation. Guanine is primarily oxidized base among DNA nucleobases due to its  

low oxidation potential, compared to C, A and T. One-electron oxidation in various 

systems creates a positive charged hole in DNA, which migrates through the DNA π 

stack and ends up at a guanine (G) base. Many studies have shown that the reaction of a 

guanine radical cation with water or active oxygen species occurs primarily at Gn (n=2, 3) 

sequences. Noticeably 5’-G of 5’-GG-3’ sequences is selectively oxidized in B-form 

DNA in reaction systems using a variety of oxidizing agents. Recently experimental and 

theoretical studies have attributed this effect to the low oxidation potential of Gn (n=2, 3) 

sequences. 



 xxi

 In second part of this research work, we showed that substitution of G with Gm in 

DNA sequence traps the migration of radical cation, while substitution with Gbr, with an 

Eox above G, does not. However, both Gm and Gbr affect the relative reactivity of the 

guanine in Gn steps. Furthermore, the smaller effect of G3 sequence on efficiency of 

oxidative cleavage than Gm indicates the contradiction with theoretically calculated Eox 

results, which does not consider the flexible structure of DNA in aqueous solution and 

counter ion effects. Those calculations are questionable because non-canonical structures 

and surrounding environments of DNA can contribute significantly to the modulation of 

charge migration in DNA.  All these finding shows that the efficiency of charge transfer 

is controlled by Eox of the base and that steric effect play an important role in determining 

the relative reactivity of G in Gn sequences. 
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CHATER I  

 

INTRODUCTION 

 

 The mechanism of long range charge transfer in DNA has be studied extensively 

from the view point of mutagenesis and carcinogenesis induced by carcinogenic agents, 

ionizing radiation, photosensitization with endogenous photosensitizes and high-intensity 

laser irradiation. Guanine is primarily oxidized base among DNA nucleobases due to its  

low oxidation potential, compared to C, A and T. One-electron oxidation in various 

systems creates a positive charged hole in DNA, which migrates through the DNA π 

stack via multi-step hops in long distance and ends up at guanine (G) bases. Many studies 

have shown that the reaction of a guanine radical cation with water or active oxygen 

species occurs primarily at Gn (n=2, 3) sequences. Noticeably 5’-G of 5’-GG-3’ 

sequences is selectively oxidized in B-form DNA in reaction systems using a variety of 

oxidizing agents.  

 In first part of thesis, we study the DNA radical cation quenching reaction with 

water, a factor that governs oxidative damage in DNA charge transport process, by 

inducing hydrophobic environment around DNA upon binding of synthetic lipid 

compounds.  In second part of research work, we substituted G in XG (X= G, A, T) and 

GGG sequence with Gm and Gbr whose oxidation potential brackets that of normal G to 

investigate the thermodynamic and steric effect on charge transport and trapping in DNA. 

Those studies may help to reveal the crucial factors controlling oxidative damage pattern 

in DNA and afford a possible approach to protect such adverse effect in charge transport. 
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PART I  

 

STUDY ON CHARGE TRANSFER IN DNA-LIPID 

COMPLEXES 



 3

CHAPTER II   

 

INTRODUCTION AND BACKGROUND 

 

DNA π Stack Helix Structure 

 

In order to understand the charge transfer in DNA, the fundamental knowledge 

about DNA duplex helix structure is essential. DNA, deoxyribonucleic acid, is the carrier 

of human’s genetic information.  It is a very stable polymeric bio-molecule, consisting of 

nucleotide monomer units linked together by phosphate backbone. Four different bases, 

adenine (A), guanine (G), cytosine (C) and thymine (T), can form base pair through 

hydrogen bonding, which holds the DNA duplex and forms double helix structure. 

Each nucleotide has common structure of a sugar (deoxyribose) and one phosphate 

groups (Figure I-1). The difference between nucleotide lies in the nitrogenous 

heterocyclic bases. Adenine and guanine are pyrimidines while thymine and cytosine are 

purines. The glycosidic link is between carbon atom 1 of the sugar and nitrogen atom at 

the position 9 and 1, respectively, of the purine and pyrimidine rings. The linkage is β, i.e. 

above the plane of the ring. Phosphate group is linked at 5’ position of sugar. The 

phosphoric acid –OH groups are both ionized at physiological pH since one of the –OH 

groups has a pKa of around 2 and the second one has pKa of around 7, which means they 

are highly hydrophilic and DNA is highly negative charged in aqueous solution under 

such condition. Those negative charges are neutralized by positively charged proteins, 

metal ions and polyamines.1 The sugar moiety with hydroxyl groups is also highly 
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hydrophilic. The bases are essentially hydrophobic but at the edge of each there is 

hydrogen-bonding potentiality which affords the foundation of DNA duplex secondary 

structure. Polynucleotide chains are linked through sugar-phosphate-sugar backbone, in 

which the phosphate bridges between the 3’-OH of sugar moiety on one nucleotide to the 

5’-OH of sugar moiety on the next, with a base attached to each sugar residue on the 1’ 

position. 

DNA duplex structure was held together by complementary base pairing, i.e. 

hydrogen bonds between bases (Figure I-2). These base pairs, A:T and G:C,  are well-

known as Watson and Crick base pairs. In aqueous solution, hydrophobic forces cause 

the bases collapse together and stacked on top of each other, known as base stacking, 

which further stabilizes the duplex and form helix structure (Figure I-3). 

As depicted in Figure I-2, three hydrogen bonds hold the deoxyguanosine 

nucleotide to deoxycytidine nucleotide, whereas the other pair, A:T pair, is held by two 

hydrogen bonds. Thus, G:C hydrogen bonding is stronger by approximate 50%. Because 

of this additional strength and also because of base stacking interaction, regions of DNA 

that are rich in G:C bonds are much more resistant to denaturation, or “melting”, than 

A:T rich regions. 
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 Double-stranded DNA exists in more than one form. The right-handed B form is 

most commonly found under physiologic condition (low salt, high degree of hydration). 

DNA-RNA hybrid and double-stranded RNA are always found in A-form structure. 

Several other kinds of secondary structures are also possible under special circumstances, 

including left-handed Z form structure which is commonly seen in G/C rich sequence and 

sequence containing 8-methyl guanine and 5-methyl cytosine. A single turn of B-form 

DNA about the axis of the molecule contains 10 base pairs with spanning distance of 3.4 

nm. The width of the double helix in B-form is 2 nm.1  
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Figure I-3 Two anti-parallel polynucleotide strands of DNA 
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 Genetic information is hidden in DNA sequences. The damage or modification to 

DNA bases may cause genetic mutation in semi-conservative replication processes of 

DNA. For instance, it’s well known that mutation on guanine，like 8-oxo-7, 8-dihydro-

2’-deoxyguanosine (8-oxoG) among other oxidation products, leads to low fidelity in 

replication and enhances the probability of adenosine incorporation. Thus the mutation 

from G:C base pairs into T:A base pairs occurs. Oxidative agents such as riboflavin, 

cationic anthraquinone derivatives or active oxygen species generated by ionizing 

radiation and endogenous oxidation process react with deoxyguanosine (dG) residue in 

DNA to form 8-oxodeoxyguanosine.2,3 Therefore, the oxidative stress becomes an 

important mutagenic or carcinogenic lesion in vivo and is associated with as many as half 

of all human cancers.4 

 

Table I-1 Parameters of polynucleotide helices 1 

 

 A Form B Form Z Form 

Direction of helix rotation Right Right Left 

# of Residue per turn 11 10 12 (6 dimmers) 

Rotation per residue 33 36 -60 per dimmer 

Rise in helix per residue 0.255 nm 0.34 nm 0.37 nm 
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Hydrophilic DNA Duplex 

 

 DNA duplex consists of base, sugar and phosphate backbone (Figure I-3). The 

negative charges on phosphate, which are neutralized by positive ions in aqueous solution, 

make DNA a hydrophilic structure.  It has been shown that DNA is well hydrated in 

aqueous solution where nine to ten water molecules are associated with each nucleotide 

in the first hydration shell. Well-ordered water molecule is believed to be an integral part 

of DNA structure and mediates interaction between DNA and binding species, for 

instance, proteins and lipids. Counter ions can form an ionic atmosphere around the 

negatively charged DNA cylinders rather than bind directly to singular charges. 

 Hydration is very important for the conformation of nucleic acids. The strength of 

these aqueous interactions is far greater than those for proteins due to their highly ionic 

character.5 The DNA double helix can take up a number of conformations (e.g. A-DNA, 

B-DNA, C-DNA, D-DNA and the left handed Z-DNA). B-DNA requires the greatest 

hydration and requires about 30%, by weight, water to maintain its native conformation 

in the crystalline state. Partial dehydration converts it to A-DNA by decreasing the free 

energy required for A-DNA deformation and twisting, which is usefully employed by 

encouraging supercoiling but eventually leads to denaturation.6 Hydration is greater and 

more strongly held around the phosphate groups that run along the inner edges of the 

major grooves. The water molecules are not permanently situated however, due to the 

rather diffuse electron distribution of the phosphate groups. Hydration is more ordered 

and more persistent around the bases with their more directional hydrogen-bonding 

ability and restricted space. Water molecules are held relatively strongly with residence 
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times for the first hydration shell being about 0.5 - 1 ns. Because of the regular structure 

of DNA, hydrating water is held in a cooperative manner along the double helix in both 

the major and minor grooves which aids both the annealing and unwinding of the double 

helix. 

 Nucleic acids have a number of groups that can hydrogen bond to water. The 

bases in DNA, even involved in hydrogen-bonded pairing, are capable of one further 

hydrogen-bonding link to water within the major or minor grooves in B-DNA, except for 

the hydrogen-bonded ring nitrogen atoms (pyrimidine N3 and purine N1). Thus, in B-

DNA, guanine hydrogen bond to a water molecule from both the minor groove 2-amino- 

and major groove 6-keto-groups with further single hydration on the free ring nitrogen 

atoms (minor groove N3 and major groove N7). Cytosine hydrogen bond to a water 

molecule from both the major groove 4-amino- and minor groove 2-keto-groups. Adenine 

hydrogen bond to a water molecule from the major groove 6-amino-group with further 

single hydration on the free ring nitrogen atoms (minor groove N3 and major groove N7). 

Thymine hydrogen bond to a water molecule from both the minor groove 2-keto- and 

major groove 4-keto-groups. Phosphate hydration in the major groove is 

thermodynamically stronger but exchanges faster. There are six (from crystal structures)7 

or seven (from molecular dynamics)8 hydration sites per phosphate, not including 

hydration of the linking oxygen atoms to the deoxyribose or ribose residues. The 

deoxyribose oxygen atoms can hydrogen bond to one water molecule each. The total for 

all these hydrations, in a G/C duplex, would be about 26-27 but about 14 of these water 

molecules are shared. There are a number of ways in which these water molecules can be 

arranged with B-DNA possessing 22 possible primary hydration sites per base pair in a 
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G/C duplex but only occupying 19 of them.8 The DNA structure depends on how these 

sites are occupied; water providing the zip, holding the two strands together. It should be 

noted that about 2% of the hydrating water molecule sites may be transiently replaced by 

cations. 

 There may be a spine of hydration running down the bottom of the B-DNA minor 

groove particularly where there is the A=T duplex,9 known to favor B-DNA. Water 

molecules hydrogen-bond by donating two hydrogen bonds, bridging between thymine 2-

keto(s) and/ or adenine ring N3(s) in sequential opposite strands (i.e. not paired bases). 

This water is fully hydrogen bonded by accepting two further hydrogen-bonds from 

secondary hydration water, so fixing the primary hydration water more firmly in place 

such that they exchange slower (0.9 ns) than any other water hydrating the DNA. The 

primary hydration may occur regularly down the minor groove connecting the strands but 

any cooperative effect is through the secondary hydration. This secondary hydration is 

more strongly held than in the G:C duplex giving rise to greater apparent hydration. Such 

a spine of hydration may be important in stabilizing the B-DNA.10 The A:T base pairing 

produces the narrower minor groove and more pronounced spine of hydration, whereas 

the G:C base pairing produces a wider minor groove with more extensive primary 

hydration, due in part to the 50% greater hydration sites. Such solvent interactions are 

key to the hydration environment, and hence its recognition, around the nucleic acids and 

directly contributes to the DNA conformation. B-DNA possessing higher phosphate 

hydration, less exposed sugar residues and smaller hydrophobic surface, is stabilized at 

high water activity, whereas A-DNA, with its shared inter-phosphate water bridges, is 

more stable at low water activity.  
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Figure I-4 Hydrogen bonding sites on nucleic acid base pairs 

 

 Most of studies in charge transfer in DNA are in aqueous solution with Na+ or 

Mg2+ as the counter ion.11, 12 Effect of those ions on charge transfer in DNA has been 

previously studied and shown significant influence on modulating DNA conformation as 

well as oxidation potential on single base.13 In the study in Schuster’s group, to exclude 

the binding of positive ion, an d(5`-AAA-3'), (A)3, track’s phosphate backbone was 

modified with methylated phosphates where negative charges on phosphates were 

eliminated.13 A significant reduction on distal GG damage was observed in the UV light 

induced charge transport experiment because no counterions populates across the (A)3 

bridge as indicated by molecular dynamic simulation. Furthermore, quantum calculations 

for the (A)3 bridge yielded vertical ionization potential, 5.90 eV, for the (native) 

unmodified backbone, where 50% of the hole delocalized over the A bases and 20% over 

the complementary thymines and the rest distributed mainly over the sugar-phosphate 

backbone and some on the water molecules. The same (A)3  phosphornated bridge, no 

Na+ on the (A)3 strand but including a hydration shell, has the vIP value of 6.16 eV. The 
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hole is distributed 40% on the (A)3 and 25% on the complementary (T)3. The increased 

ionization potential of the phosphonated (A)3 bridge, together with its counterion-starved 

local environment, is predicted to reduce the probability for transfer of a hole into it. 

Thus, the higher energy bridge inhibits the transport and bounces back the charged hole.13 

Those findings prompt us to include water molecules and counterions in DNA coherent 

environments when we investigate the mechanism of charge transport in DNA. 
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Figure I-5 Quenching of guanine radical cation by proton transfer   

 

 It is noteworthy that the hole migration and trap at guanine in DNA can be 

quenched by water (Figure I-5).11 A study on charge transport in G:C mismatched DNA 

duplex, by Giese and coworkers,  revealed that this effect was so significant that it 

diminished the charge transport through the mismatch site, which is more accessible to 

surrounding water molecules.14 In aqueous solution there is always competition between 

the migration of charge (KCT) along the DNA helix and the irreversible quenching of 

charge by water (KH2O) and oxygen at most reactive sites, which partially determines the 

efficiency and distance of positive hole migration. It is of interest to build up a 

hydrophobic environment around DNA and examine the charge transport process in 

DNA without or with less interference from surrounding water molecules. This study can 
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not only give us the insight on the mechanism of charge migration in DNA helix and 

subsequent oxidative damage at oxidative labile sites, but also provide experimental 

support for the research on utilize DNA oligomers as new conducting nanoelectronic 

material15 in which the oxidative damage and radical quenching in DNA would be an 

important factor determining the conductivity of DNA polymer.  

 

Lipid Binding to DNA 

 

 A lipid is a kind of amphiphilic molecule with both a hydrophilic, “water loving” 

polar head, and a hydrophobic, “water hating” non-polar tail, functional group. It can self 

assemble and form ordered structures, thermodynamically stable in favor of enthalpy 

change, in aqueous solution. Soaps and detergents are single-chain amphiphiles that form 

spherical micelles where polar heads hidden the non-polar tail against water. Many nature, 

like phosphate lipid in cell membrane, and synthetic lipids used in gene transfer and drug 

delivery are bi-chain (two tail groups) structures.  They tend to form lipid bilayers, in 

which two polar surfaces shield the non-polar interior, because the bulky tail groups 

prohibit the formation of micelles. The common bilayer structure includes open bilayered 

lamellae and self-closed liposomes (Figure II-6).16 

 Lipids are widely used to improving the efficiency of DNA transfection process 

through the hydrophobic membrane of a cell, in which DNA is encapsulated as lipid-

DNA complex (lipoplex). Currently, the majority of studies reported only synthesis and 

activity of novel cationic lipid gene delivery system. However, there are only a few 

studies on the structure and structure-activity relationship of DNA-lipid complex. Early 
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studies proposed the formation of aggregation because of electrostatic attractive force and 

encapsulation of condensed DNA.17 Recently, electron microscopic observations show 

different images. Both cryoelectron microscopy (cryo-EM) and Freeze-Fracture 

microscopy shows similar aggregates surrounded by a halo of fibers of approximately 6.5 

nm diameter which matches the diameter of DNA and a bilayer.18, 19 These structures, 

obtained from different cationic lipid and DNA of various lengths, were given various 

name, such as spaghetti, medusas and sea urchins. Negative stain and metal-shadowing 

electron microscopy, however, shows the different anisotropic elongated DNA coated by 

lipid.20 It is still unknown if these different observations are due to various DNA and lipid 

system or preparation methods because of little knowledge about thermodynamics and 

kinetics of DNA-lipid complex. The question regarding which kind of structure is more 

effective in transfection is also under investigation. Therefore it is hard to relate the 

efficiency of a specific gene transfer vector with the structure of complex formed 

between this vector and DNA. This poses a problem on selecting candidate molecule to 

study in this research. 
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Figure I-6 Schematic Structure of Micelle, Liposomes and Lamellar Bilayer.16 
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 The binding of lipid molecule to DNA does not necessarily dehydrate the DNA 

complex completely. Even though few studies directly show the preservation of water 

molecule in lipid-DNA complex, the observation of 6.5 nm periodicity in electron 

microscopy as well as in small angle X-ray scattering (SAXS) measurement is consistent 

with a lipid bilayer thickness of 4 nm and hydrated (one water shell) DNA helix of 2.5 

nm.18, 21 If the dehydration happens, a smaller periodicity of 4-5 nm would be observed 

because of the lack of water layer and consequently tilted frozen hydrocarbon chain. 

Rädler and coworker also proposed existence of highly immobilized water located in the 

interfacial region between DNA double strands and lipid lamellae and formed the 

bifurcated bridge between DNA backbone and lipid headgroups.22 If this fact holds for all 

DNA-lipid complex, we may consider carrying out experiment in non-aqueous organic 

media to completely eliminate the effect of water molecule. Furthermore, this has to be 

done with the preservation of DNA secondary double-helix structure. Studies have shown 

that this is possible by substituting counter cations of phosphate anions in DNA with 

cationic amphiphiles.23, 24 

 Different from water molecules, some experiments prove that the counterions 

were entirely released from both lipid and DNA upon formation of lipid-DNA aggregate 

at isoelectronic point, where positive(lipid)/negative(DNA) charge ratio is 1:1. This was 

due to electrostatic demands and favorable entropic contribution to free energy.25 This 

characteristic of DNA-lipid complex extends us a chance to elucidate effect of 

counterions on modulation of charge transfer in DNA.  
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Introduction to Charge Transport in DNA 

  

Oxidative damage in DNA probably presents the most extensive lesions to 

mutagenesis, carcinogenesis and a number of degenerative diseases.26,27 Even though the 

damage may stem from diverse biological pathways in different biological system, there 

are three known major chemical sources leading to the oxidative damage in DNA. First, 

singlet oxygen or hydroxyl radical generated from an excited photonuclease as reactive 

intermediate;28 second, hydrogen atom abstraction from an intermediate free radical; at 

last, the loss of an electron from aromatic bases to form an intermediate radical cation. 

All three processes are most common mechanism to damage DNA via photosensitization. 

The last pathway, in particular, was studied extensively in past decade since it was 

noticed that the nucleobases as far as 200 Å away from the initial site of charge injection, 

the removal of an electron, was damaged through charge transport (CT) process.29  

 The interest in the charge transport in DNA are not only limited for its biological 

consequence, but also for the potential implication as microelectronic device.30 It has 

been reported that desiccated DNA, as long as 600 nm in length, are very efficient 

conductor.31 Therefore, we can envision the application of DNA as quantum wire in 

mesoscopic device. However, the other researchers presented the contrary experiment 

implying that DNA is insulator or semiconductor and conduct charge similar to regular 

protein.32-36 The unnatural condition required by those experiments may account for wide 

range of conducting properties. The impassionate debates around electronic property of 

DNA leads to several important questions: How does the charge migrate along DNA 

duplex? What are the dominate factors and their roles in this charge transport process?  
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 The occurrence of electron transfer over long distance in DNA duplex in aqueous 

buffer solution was well-established a decade ago.37-40 Recent extensive experimental and 

theoretical researches on the radical cation transport in DNA duplex from several 

laboratories have proposed several mechanisms. It is generally accepted that radical 

cation migrate through DNA by a series of hops instead of instant tunneling through well-

stacked DNA bases,41 especially for long distance charge transfer process. The several 

hopping mechanisms including hole resting model,42-44 A/G-hopping model 11,45, phonon 

assistant polaron hopping model 3, 12, 46 and conformation gated hopping model 47, among 

the others, have emerged and been enthusiastically debated. DNA dynamics, which could 

occur in the time scale of charge transport, was also incorporated into molecular 

simulation to elucidate the effect of DNA sub-environment (water and counterions 

molecule) on modulating the oxidation potential and charge distribution across the 

bases13 and the thermally induced fluctuation on achieving the optimal alignment for 

charge migration through DNA π stacking.48,49 

 

Photoinduced charge transfer in anthraquinone DNA conjugate 

 

Several different species can cause the oxidative damage in DNA. Most 

photonucleases and hydroxyl radical are two common species that cleave DNA with no 

or little sequence selectivity. The former target the hydrogen atom of the sugar and 

deoxyribose moiety and the latter directly abstracts a hydrogen atom from the DNA 

deoxyribose-phosphate backbone. Some nucleases, for instance riboflavin50, 

organometallic compounds51, naphtalimide derivatives52, 53 and certain anthraquinone 



 20

derivatives54 can selectively damage GG sequence, particularly 5’-G in GG sequence. It 

oxidizes the covalently-linked neighboring base to the radical cation that migrates 

through the DNA helix before it gets trapped at GG sequence, the one with the lowest 

oxidation potential. This preferential cleavage is the characteristic observation from the 

intra-strand charge migration, trapped and oxidation of DNA oligomer. 

The anthraquinone derivatives, which cause the light-induced oxidative damage at 

GG site near to the attached site or far from its attachment as long as 200 nm,  were 

developed in Schuster’s group and have been widely applied in the study of charge 

transport process in DNA.  The quinone complexes bind to DNA by intercalation or fit 

into minor groove. The photoexcitation leads to the selective damage at 5’-G of GG 

sequences, which is revealed as the strand cleavage only upon alkali treatment.3 The 

nonselective and spontaneous cleavage occurs when the tethered anthraquinone 

chromophore was irradiated. The damage underwent the hydrogen abstraction from 

deoxyribose moiety pathway. 55  

The application of anthraquinone photosensitizer in the study of the charge 

transport in DNA has several key advantages over the other photosensitizers. The 

reduced quinone, gaining an electron to oxidize the DNA after the photo-irradiation, is 

recyclable through recombination with the base radical cation in back electron transfer 

(BET) process to regenerate the starting materials. Therefore, the anthraquinones 

demonstrate the ability to recyclization through reduced and oxidized form, a 

characteristic not evident in other photosensitizers. The excited singlet AQ undergoes 

intersystem crossing (ISC) rapidly to triplet excited states, which avoids the quick back 

electron transfer process to quench the radical cation reaction.(PII Figure I-1)  
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The quinone is a good oxidant at its excited state. The charge injection can occurs 

no matter which base it is attached to. Free anthraquinone associate with DNA duplex 

through either randomly intercalation or minor groove binding. The length of tether 

between covalently linked quinone and DNA restricts such binding mode can not occur. 

It has been proposed that covalent-linked AQ is end-capped over the terminal bases,56 

which affords the ability to inject the radical cation through either base at the terminal 

sites. 

Third, there is little side reaction or by product observed in photo excitation 

process, which is, on the contrary, evident in other photosensitizers. The anthraquinone 

derivatives only damage the DNA once they absorbs UV light at 350 nm region, which is 

about 100 nm away from the major absorption region of DNA.      

Finally, there is no evidence in inter strand conjugation between anthraquinone 

and DNA helix as shown in the other organometallic photosensitizer.57 This is critical to 

provide reliable experimental data on intra-strand charge transfer study especially when 

the experiments are carried out at high concentration. 

 In our study, anthraquinone (AQ) was covalently linked to DNA oligomer to form 

AQ-DNA conjugate. The synthesis of AQ is shown in Figure II-1, a modified method 

originated by Mori et.al.58 Generally, the synthesis of the AQ-oligomeric conjugate 

involves the attachment of the 3’-end of the DNA oligomer base to a commercial bead 

support. Chain grows at the 5’-end, one monomer at a time. Finally the AQ chromophore 

is covalently linked within the final steps of the solid phase synthesis of the oligomer. 

The length of the tether between AQ and oligomer confine the secondary binding mode 

of the AQ to DNA duplex. The aromatic planar structure makes it possible for AQ to 
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intercalate into DNA bases. However, the short ethyl linker will not allow this 

conformation. It is possible that the AQ positions over both strands of the duplex and 

injects the charge into either strand when it is excited by UV light. The subsequent 

oxidative cleavage will occurs on both strands at the sites sensitive to charge transfer 

damage.    
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CHAPTER III 
 

EXPERIMENTAL SECTION 

 

General Methods 

 

1H and 13C NMR spectra were recorded on a Varian 300 MHz Spectrometer. 

Radioactively labeled isotope [γ-32P] ATP was purchased from Amersham Bioscience. 

Synthetic oligonucleotides (gel filtration grade) were obtained either commercially from 

Dr. Nadia Boguslavsky of Georgia Institute of Technology or were synthesized on an 

Applied Biosystem DNA synthesizer and were, therein, purified by a Hitachi 7000 

reverse-phase HPLC system. Terminally-linked anthraquinone oligonucleotides were 

synthesized in the second way mentioned above and purified within the same manner as 

the native oligodeoxynucleotides. All native oligomer were PAGE purified to ensure the 

purity before photo-irradiation experiments. The mass of each oligonucleotide was 

determined by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) 

or electrospray ionization (ESI) mass spectrometry. The extinction coefficients of the 

oligonucleotides were calculated using nearest-neighbor values, and the absorbance was 

measured at 260 nm using a Hewlett-Packard Spectrometer. Anthraquinone-modified 

oligonucleotide solution concentrations were determined in same way except that an 

anthraquinone was replaced with adenine in the extinction coefficient determination. UV 

melting and cooling curves were recorded on a Cary 1E spectrophotometer equipped with 

a multi-cell block, temperature controller and sample transport accessory. The buffer 

used for all DNA experiments (PAGE, CD, UV denaturation) was 10 mM sodium 
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phosphate at pH 7.0. Graphics of the phosphoimagines and autoradiograms of the 

electrophoretic gels were obtained by Fuji 2340 BAS-Image System.  

 

Synthesis and purification of DNA oligomer 

  

 Oligodeoxynucleotides was synthesized by a standard, solid-phase β-cyanoethyl 

phosphoramidite chemistry on ABI expedite DNA synthesizer. The cartridge containing 

3’-terminal base on solid resin was purchased from Glen Research. The coupling of each 

base was monitored with trityl coupling yield. The cartridge was removed from the 

instrument and washed with 5 ml 30% concentrated ammonium hydroxide twice. The 

solution was incubated at 60 oC for at least 8 hours to ensure the complete deprotection of 

DMT group before it was dried on Labconco Centrivap concentrator under vacuum at 56 

oC over 12 hours, connected with a Labconco cold trap. The resulting yellow solid was 

re-dissolved in the 3-5 mL deionized water and filtered through Gelman 0.45 µm 

acrodisc filter to remove the insoluble impurity from the resin. The sample was purified 

on Hitachi 7000 HPLC system with Varian Dynamax 250x21.4 mm reverse phase C18 

column using 0-25% gradient water/acetonitrile (A: 5% acetonitrile in water, B: 50% 

acetonitrile in water) with 0.05 M triethylammonium acetate (TEAA). The collected 

DNA effluent was dried on Labconco centrivap concentrator under vacuum at 56 oC over 

8 hours and reconstituted in 1-2 mL deionized water for the desalting procedure.  

 A Waters Spec-Pak filter cartridge was washed with 10 mL deionized water, 10 

mL 20% acetonitrile before the DNA solution was loaded. The DNA solution was pushed 

through the filter slowly to ensure the majority of DNA sustain on the filter. 10 ml 
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deionized water was used to wash off the excess ions slowly. Finally, DNA was washed 

out from the cartridge with 10 mL acetonitrile solution and subsequently dried on 

Labconco centrivap concentrator.  Hewlett-Packard Ultra-violet spectrometer determined 

the concentration of purified DNA solution at the wavelength of 260 nm.   

 

Anthraquinone-oligonucleotide Conjugate Synthesis 

 

 DNA sequence synthesis was performed on the solid phase synthesis following 

standard conditions, using cyanophosphoramidite monomer. The resin was thoroughly 

washed before the conjugate was ready to be coupled to the AQ monomer. The cartridge 

(containing resin) was removed from the synthesizer. The AQ-phosphoramidite monomer 

was dissolved in 500 uL of dry CH3CN solution containing 0.1 M tetrazole. The 

monomer was taken into the cartridge by a syringe. Once the coupling was complete, the 

monomer solution was removed from the cartridge by pressure injection. The cartridge 

was placed back onto the synthesizer and the automated sequence was allowed to resume. 

The coupling efficiency was quantified by measuring the UV-absorption and the trityl 

cation released and comparing it to that of the pervious and subsequent step. 

 Removal of the oligomer from the solid support and subsequent purification by 

reverse phase HPLC proceed as usual. The dried and purified conjugates showed a light 

yellow color. Analytical HPLC, UV-vis and MALDI-TOF were used to determine the 

purity and identity of the conjugate.  
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Page Purification and Radiolabeling of DNA oligomer 

 

The T4 Polynucleotide Kinase, PNK buffer and [γ-32P]-dATP were purchased 

from Amersham pharmacia and used as received. Piperidine and buffer ingredients were 

purchases from Aldrich-Sigma and used without further purification. 

DNA oligomers were radiolabeled at 5’-end using [γ-32P] ATP and T4 

Polynucleotide kinase. 5.0 uM DNA samples were incubated with 1.0 uL [γ-32P] ATP, 2 

uL PNK buffer and 1 uL T4 Polynucleotide Kinase in the total volume of 20.0 uL at 37 

oC for 45 min. The labeled DNA sample was suspended in denaturing loading buffer dye 

and purified on 20% denaturing polyacrylamide gel. The labeled product was located 

with in the gel by autoradiography. The band corresponding to labeled DNA samples was 

excised from the gel and eluted in 800.0 uL elution buffer (0.5 M NH4OAc, 10.0 mM 

Mg(OAc)2, 1.0 mM EDTA and 0.1% SDS) at 37 oC for 4.0 hours. The supernatant from 

the samples was extracted with thin tip pipette and centrifuged at 12,000 g for 3 minutes 

on Thermo Forma Microcentrifuge. Radiolabeled DNA was precipitated from the 

supernatant solution by the addition of 1.0 uL glycogen and 700.0 uL cold absolute 

alcohol. The resulting solution was vortexed to homogenous solution and put on the dry 

ice for 45 minutes before it was spun for 30 minutes on microcentrifuge at 12,000 g. The 

supernatant was removed from centrifuge tube carefully without disturbing the DNA 

precipitate at the bottom. The resulting DNA pellet was washed twice with 80% ethanol 

at room temperature and spun to dryness with a Savant Speed Vac Plus for 45 minutes.  

The dried sample was reconstituted in deionized water for hybridization.  
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Cleavage Analysis by UV Irradiation and PAGE 

 

The samples for irradiation were prepared by hybridizing a mixture of “cold” 

(unlabeled) and radiolabeled oligonucleotide (5 uM) to a total volume of 20 ul each in 10 

mM sodium phosphate at pH 7.0. Hybridization was achieved by heating the sample up 

to 90 ºC for 5 minutes, followed by slow cooling to room temperature over the course of 

6 hrs or overnight. A small aliquot of concentrated lipid solution (2 mM) was added, if 

necessary, to make the samples with proper lipid concentration. Deionized water and 

NaPi buffer were used to adjust the volume of all samples such that all had the same 

DNA duplex and buffer concentration.  Samples were irradiated in microcentrifuge tubes 

in a Rayonet photoreactor (Southern New England Ultraviolet Company, Barnsford, CT) 

equipped with 8X350 nm lamps.  

After irradiation, the sample were precipitated once with cold absolute ethanol at 

the presence of 1 ul glycogen, washed twice with 80% ethanol and dried as described as 

above. Each sample was treated with 100 uL piperidine (1 M) and incubated at 90 ºC for 

30 minutes. After the evaporation of piperidine in Savant Speed Vac with medium 

temperature setting, nanopure water (2x20 uL) was added to each sample and drying 

process was repeated to ensure the complete removal of piperidine. Samples (3000 cpm), 

suspended in denaturing formamide-loading buffer, were electrophoresed on a 20 % 19:1 

acrylamide:bisacryamide gel containing 7 M urea. The gels were dried on HOEFER 

Scientific Slab Gel Dryer SE1160 over 2 hours and the cleavage sites were visualized by 

autoradiography.  
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Photocleavage by Singlet Oxygen from Rose Bengal 

 

 The samples for irradiation were prepared by hybridizing a mixture of “cold” 

(unlabeled) and radiolabeled oligonucleotide (5 uM) in 10 mM sodium phosphate at pH 

7.0. Hybridization was achieved by heating the sample up to 90 ºC for 5 minutes, 

followed by slow cooling to room temperature over the course of 6 hours or overnight. A 

small amount of concentrated lipid solution was added to DNA duplex samples to make 

the solution with the proper charge ratio between DNA and lipid. The resulting mixture 

was incubated at room temperature for 30 minute. Before the irradiation, an indicated 

amount of Rose Bengal (5 mM) solution was added to DNA-lipid complex solution.  The 

irradiation with low energy visible (λ> 400 nm) light was performed using an Oriel 250 

W Hg/Xe Lamp equipped with specific transmission cutoff-filter which block all the light 

with wavelength shorter than 490 nm. Visible light was focused approximately 15 cm 

from 50 uL sample solution containing in 120 uL ultra micro-centrifuge tubes. These 

Perkin-Elmer MicroAmp reaction tubes do not absorb light at wavelength above 390 nm. 

The instrument setup was kept in darkness to minimize the effect of scattering light. The 

specific concentration and buffers used per irradiation are indicated in each figured 

captions.  

 Post irradiation samples were proportioned and reserved for FPG enzyme or 

piperidine treatments. The samples subject to piperidine treatment was precipitated as 

described above and vacuum, spun-dried. A 100 µL of piperidine (1 M) was added to 

each sample which was subsequently vortexed and heated at 90 oC for 3 minutes. The 

samples were dried in the Savant over 1.5 hours at medium heat after pulsed for 10 
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seconds by Savant Speed Vac Plus. The dried samples were co-evaporated with 20 uL 

nanopure water twice to ensure the complete removal of piperidine. The final samples 

were dissolved in 5.0 uL of denaturing formamide-loading buffer and loaded on 20% 

polyacrylamide sequencing gel to separate the photocleavage products, which was 

detected by autoradiography.   

 

FPG Enzymatic Digestion of Photo-oxidized DNA 

 

 1 uL FPG enzyme and 10 µL standard buffer solution containing 50 mM TrisHCl 

(pH=7.5), 2 mM EDTA, 70 mM NaCl were incubated with 5 µM DNA at 37 ºC for 2 

hours. FPG enzyme was killed by heating at 70 ºC for 45 min and followed by ethanol 

precipitation at -20 ºC. The samples were dried and analyzed by 20% polyacrylamide 

sequencing gel as described above. 

 

UV Thermal Denaturation 

 

2.5 µM solutions of various oligonucleotide duplexes in 10 mM phosphate buffer, 

at pH 7.0, were prepared. The data was collected on a Varian Cary 3C-1E UV-Visible 

spectrometer equipped with temperature-regulated 6-cell sample block-holder. The 

samples were placed in quartz cuvettes (1.5 ml capacity. 1.0 cm path length) and sealed 

with tape to prevent the evaporation of water during heating/cooling cycles. Melting 

curves were obtained by monitoring the UV absorbance at 260 nm as the temperature was 

ramped from  90 ºC to 20 ºC at a rate of 0.5 ºC /min with 3 minute interval at the each 
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ending temperature for the complete equilibrium. Four ramps were performed to ensure 

consistent results. Data were exported to origin 3.78 where the absorbance at 260 nm was 

plotted against temperature for each sample and corresponding derivative curves were 

obtained. The melting temperatures (Tm) were determined as the maxima of the first 

derivative plots of absorbance versus temperature. Data obtained for cooling process was 

found to be same as that obtained from heating ramp with error value of ±0.5 oC.  

 

DNA Conformation Identification by Circular Dichroism Spectrometry  

 

The CD spectra were recorded on Jasco-720 instrument at room temperature. 5 

scan accumulations were collected for each sample at the scanning speed of 200 nm/min 

over 200 to 400 nm range. The spectral resolution and bandwidth were 0.2 nm and 1.0 

nm, respectively. The solution was prepared containing 2.5 µM DNA duplex in 10 mM 

sodium phosphate buffer at pH 7.0. After hybridization of DNA duplex, an appropriate 

amount of lipid solution was added to each DNA sample and the resulting solution was 

incubated at room temperature for 30 minutes prior to the CD measurement to allow the 

equilibrium of DNA-lipid complexes. The pre-hybridized samples in 1.0 cm path-length 

quartz cells were measured in a chamber flushed with dry N2 gas to prevent the moisture 

condensation on the surface of quartz cells. For time dependant study, a timer was set to 

measure the spectra at defined intervals.  
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Time Dependant UV Study  

 

 The solutions were prepared containing 2.5 µM DNA duplex in 10 mM sodium 

phosphate buffer at pH 7.0. UV spectra were monitored from 200 nm to 500 nm region 

every 30 min, up to 20 hours, after the addition of the proper amount of lipid into DNA 

duplex solution. The data were exported and process in Origin 4.0 to obtain the 

overlapped UV spectra for DNA duplexes with different charge ratio of lipids.  

 

Fluorescence Quenching of Ethidium Bromide 

 

 Fluorescence studies were carried out on SPEX 1681 Fluorolog spectrometer 

using 1 mL quartz cell with path length of 1 cm. The cell holder was maintained at room 

temperature. The excitation and emission slits were set at 0.25 mm. Sample containing 5 

µM DNA and 10 µM EB in 10 mM sodium phosphate buffer at pH 7.0 was titrated with 

small aliquot (2 µL) of concentrated lipid (2 mM). After the addition of each aliquot of 

lipid, the mixture was stirred and incubated for 20 min to allow the complete formation of 

DNA-lipid complex before the next measurement. The solution was monitored on the UV 

spectrum to ensure no aggregation within the measured lipid concentration and time scale. 

Spectra were obtained with excitation at 530 nm (546 nm for N’, N’-Dioctylglycinamide) 

and the emission was monitor from 550 to 750 nm. The intensity at 600 nm (595 nm for 

N’, N’-Dioctylglycinamide) was used to plot the variation curve of fluorescence intensity 

versus the increment of ratio between lipid and DNA duplex.  
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Anthraquinone Phosphoramidite Synthesis 

 

The Figure II-1 was followed for synthesis of anthraquinone phosphoramidite. 

O

O

NH

O

OH

+

O

O

NH

O

O
P

N

O
CN

2

3

O

O

Cl

O

4

O

O

OH

O

Et3N, CH2Cl2

H2N
OH

SOCl2

P Cl
N

O

NC

1

DIPA

CH2Cl2

CH2Cl2

 

Figure II-1 Synthesis of anthraquinone phosphoramidite. 

 

 

2-Carbonylanthraquinone chloride (2) A 5.5 mL thionyl chloride was added to 2.0 g 

(18.6 mmol) of anthraquinone-2-carboxyalic acid in a round bottom flask fitted with a 

water condenser leading to 1 M NaOH solution. The reaction mixture was heated at 

reflux for 5 hours while a yellow solid was formed. The solid was collected with a glass 
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frit and was rinsed several times with 5 mL cyclohexane to wash off excessive thionyl 

chloride. 2-charbonylanthraqunione chloride was obtained as pale yellow needles after 

air-dried overnight (1.98 g, 95% yield): Melting Pt: 146.5 oC (lit 147 oC)1 

  

N-(2-hydroxyethyl)-2-anthraquinonecarboxamide (3)  A solution of 687 mg (2.5 

mmol) of anthraquinone-2-carbonyl chloride in 20 mL of dry methylene chloride was 

added dropwise to a solution of 0.61 ml (10 mmol) of 2-aminoethanol and 0.37 ml (2.7 

mmol) of triethylamine in 90 ml of methylene chloride. The mixture, which became 

cloudy upon complete addition of the anthraquinone-2-carbonyl chloride solution, was 

stirred overnight at room temperature. The solution was filtered and a pale yellow solid 

was isolated. Recrystallization from hot isopropyl alcohol gave N-(2-hydroxyethyl)-2-

anthraquinonecarboxyamide as a dull yellow powder (545 mg, 73% yield). M.P. 199-200 

C; 1H NMR (300MHz, DMSO-d6) δ 3.40 (t, J=5.9 Hz, 2H), 3.56(t, J=5.9 Hz, 2H), 4.80(t, 

J=5.6 Hz, 1H), 7.93-7.99(m, 2H), 8.22-8.36(m, 4H), 8.66(d, J=1.7 Hz, 1H), 8.95(t, J=5.4 

Hz, 1H);  

 

N-(2-(O-methoxydiisopropylphosphityl)ethyl)-2- antraquinonecarbox-amide (4). N-

(2-hydroxyethyl)-2-anthraqhinonecarboamide (259 mg, 0.878 mmol) was dissolved in 

dried CH2Cl2 (2 mL), followed by addition of DIEA (0.67 mL). The mixture was stirred 

under N2 until everything dissolved. To this flask, diisoporpylmethylphosphoramidite 

(0.17 mL, 0.88 mmol) was added dropwise, yielding a clear orange-red solution upon 

complete addition, and the reaction was stirred at room temperature for additional 30 min. 

The mixture was poured into 5 ml of ethyl acetate containing 0.5 ml of triethylamine. The 
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organic layer was washed twice with 5 ml of 5% sodium bicarbonate, twice with 5 ml of 

brine and dried over sodium sulfate. Solvent was removed and then applied directly to 

silica gel column. Elution with CH2Cl2:EtOAc:Et3N (45:45:10) give one major fraction 

with Rf 0.65 compared to the starting materials Rf 0.55. The solvent was removed under 

reduced pressure to give dark red oil which was used directly in the DNA synthesis. 1H 

NMR(300 Mhz, CDCl3) δ 1.19 (dd, j=5.0 Hz, 1.8 Hz, 14 H), 3.46(d, J=13 Hz, 3H), 3.58-

3.76(m, 5H), 3.88-3.94(m, 2H), 7.37(br, t, 1H), 7.81-7.84(m, 2H), 8.30-8.41(m, 4H), 

8.64(d, J=1.5 Hz, 1H). 

 

Synthesis of CnGlySp4+ Lipids 

 

 Ornithine hydrochloride and other reagents for organic synthesis were purchased 

from Aldrich and Sigma (St. Louis, MO). Dioctadecylamine was purchased from Fluka 

(Milwaukee, WI). Homogeneity of synthetic products was assessed by thin-layer 

chromatography performed on 0.25 mm F254 silica gel 60 plates (VWR International). 

Mass spectra were recorded at the Mass Spectrometry Center by fast atomic 

bombardment mass spectrometry (FAB-MS) or electrospray ionization mass 

spectrometry (ESI-MS), using a VG Instruments 70SE and Micromass Quattro LC, 

respectively. 

Figure II-2 and II-3 were followed in synthesis of Diethylamidolglycylspermine 

(C2GlySp4+),Dioctylamidoglycylspermine (C2GlySp4+) and Dioctadecylamidoglycyl-

spermine (C2GlySp4+).2-5 
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Figure II-2 Synthesis scheme for L-5-carboxylspermine headgroup 
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5 diethyl (n = 0)
6 dioctyl (n = 6)
7 dioctadecyl (n = 16)

  8 n = 0   80%
  9 n = 6   85%
10 n =16  74%

11 n = 0   95%  
12 n = 6   95%
13 n = 16 95%

14 n = 0   85%
15 n = 6   53%  
16 n = 16 91%

17 n = 0   qunatitative yield
18 n = 6   quantitative yield 
19 n = 16 quantitative yield
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Figure II-3 Synthesis Scheme for diethylamidoglycylsperimine, dioctylamidoglycyl-
spermine and dioctadecylamidoglycylspermine. 
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Nα, Nσ-diethylcyanide ornithine (2) Method 1. To a stirred solution of 0.5 g (2.97 

mmol) L-ornithine hydrochloride dissolved in 12.5 ml MeOH were added 2.75 ml 

25wt%(2.2 equiv. 6.53 mmol) tetramethylammonium hydroxide. After dissolution of 

ornithine salt, MeOH was evaporated. The mixture was then dissolved in 17.5 ml of dry 

dimethylformamide and the residual ammonium salt ((CH3)4N+Cl-) was filtrated, yielding 

ornithine as its free base. Following the addition of 6.52 ml acrylonitrile (2.2.euqiv., 6.53 

mmol), the mixture was stirred for 16 hours in the dark to give 0.486 g crude product 

(brown solid). The crude product was never purified. No NMR spectrum reported. m/z 

239.5 (M+H)+   

 

Nα, Nσ-diethylcyanide ornithine (2) Method 2. To L-ornithine hydrochloride salt (0.5 g, 

2.97 mmol) dissolved in H2O (5 ml) in an ice bath was added 1 M NaOH (6 mL) and then 

acrylonitrile (0.429 mL, 6.52 mmol). Followed by stirring in ice bath for 0.5 h, the 

reaction mixture was stirring under room temperature for another 15-17 hours. To this 

solution was added concentrated HCl (0.5 mL, 16.8 M) and ethyl alcohol (17.5 mL). The 

resulting mixture was left standing at R.T. for 10 hours. The white precipitate was 

collected by filtration, washed with ethyl alcohol (5 mL) and vacuum dried for 4h, 

yielding 325 mg crude product 2 (61% yield), white solid. This reactant was used without 

further purification. 1H NMR (CDCl3) σ 1.48 (m, 4H CH2CH2CHCOOH ), 2.63 (m, 6H, 

3xCH2), 2.86 (2xt, J1= 5.9, J2=2.7 Hz, 4H, 2xCH2CN), 3.07 (t, J=7.2 Hz, 1H, -CHCOOH). 

m/z 239.4 (M+H)+ 
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5-Carboxyspermine (3).  0.275 g KOH (4.59 mmol) was dissolved in 3 mL 95% ethanol 

with vigorous stirring. 1.0 g crude Nα, Nσ-diethylcyanide ornithine was then added. The 

resulting mixture was placed under H2 at 40 psi in Burgess-Parry hydrogenator, using 

0.199 g Raney Nickel as catalyst.2-4 After 22 hours, Raney Nickel was removed by 

filtration and the solvent was evaporated in vacuo, yielding 1.03 g of the crude 5-

carboxyl-spermine potassium salt. Yellow oil;  1H NMR (CDCl3) σ 1.53 (m, 2H, 

CH2CHCOOH) 1.65 (m, 6H, CH2CH2CH2), 2.51 (m, 4H, 2xCH2NH2), 2.65 (m, 6H, 

CH2NH), 3.09 (t, J=5.7 Hz, 1H, CHCOOH). m/z 247.3 (M+H)+ 

 

Tetra-butoxycarbonyl-5-carboxyspermine (4). To a solution of 5-Carboxylspermine 

(520 mg, 2.11 mmol) and TEA (0.443 mmol, 3.17 mmol) in mixture of H2O(3 mL)/THF 

(6 mL) was added crystalline Boc-ON (2.31 g, 9.28mmol). After stirring for 2 hours the 

cloudy solution become clear. The mixture was stirred overnight at room temperature. 

After removing the solvent under reduced pressure, 2N HCl acidify solution to acidic 

pH=5. Added 15 mL ethylacetate to extract the product. Separated the organic phase and 

washed the aqueous phase with ethylacetate (2x15 mL). Combined organic phase was 

dried over MgSO4 and solvent was removed in vacuo. Crude product was purified on 

silica gel chromatography using EtOAc/Hexane/TEA (1:3:16) to EtOAc/Hexane(1:5), 

yielding 0.927 g pure tetra-Boc-5-carboxyspermine. Light yellow solid; 1H NMR (CDCl3) 

σ 1.32 (s, 32H, (CH3)3C from Boc), 1.40-1.90 (m, 8H, CH2CH2N), 2.90-3.20 (m, 10H, 

CH2N), m/z 647.3 (M+H)+ 
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N’, N’-Diethyl-N-(benzyloxycarbonyl)glycinamide (8). N-CBZ-glycine-p-

nitrophenylester (1.58 g, 4.79 mmol) was added to a solution of 0.497 g diethylamine (5) 

(4.79 mmol) and triethylamine (0.484 g, 0.667 mL, 4.79 mmol) in 5 ml of CH2Cl2. After 

the resulting yellow mixture was refluxed for 24 hours, 20 ml ethyl ether Et2O was added 

to mixture and extracted with 0.5 M Na2CO3 until the hydrolysis of unreacted ester was 

completed. The organic phase was washed by 1 M HCl (2x10 ml) and Brine (15mL), 

dried over MgSO4 and evaporated to afford crude product. The crude product was applied 

on silica gel chromatography and eluted with 1-3% MeOH/CH2Cl2, yielding 1.05 g pure 

pale yellow solid 83% . 1H NMR (CDCl3) σ 1.15 (2xt, 6H, J= 7.2Hz, 2xCH3), 3.21-3.43 

(2xq, 4H, J = 7.2 Hz, (CH2)2N-), 4.00 (d, 2H, J= 4.2 Hz, COCH2NH-), 5.12 (s, 2H, -

OCH2-), 5.85 (s, 1H, NH), 7.35 (m, 5H, C6H5-CH2). m/z = 265.2 (M+H)+ 

 

N’, N’-Diethylglycinamide (11). A solution of 1.05 g N’, N’-Diethyl-N-

benzyloxycarbonyl)glycinamide (8) (3.98 mmol) in 8 mL of CH2Cl2/EtOH (v:v 1:1) 

containing 150 mg of 10% Pd/C was hydrogenated during 48 hours at atmospheric 

pressure. The reaction mixture was filtered through Celite that was further washed with 

CH2Cl2/EtOH (1:1). The N’, N’-diethyl-glycinamide filtrate was evaporated, redissolved 

in CH2Cl2, and washed with 0.1 M NaOH. The organic phase was dried with MgSO4 and 

evaporated under reduced pressure. Crude, grey solid, was purified on silica gel 

chromatography using 0-3% MeOH/CH2Cl2, yielding 0.502g pure product 97%, light 

yellow solid; 1H NMR (CDCl3) σ 1.09-1.20 (m, 6H, J = 6.9 Hz, 2xCH3), 3.14-3.42 (2xq, 

4H, J = 7.2 Hz , CH3CH2N-), 3.46 (s, 2H, -COCH2N-). m/z = 131.1 (M+H)+   
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N’, N’-Diethyl[tetrakis(butoxycarbonyl)sperminecarbonyl]-glycinamide (14).  To a 

solution of 42.3 mg N’, N’-diethylglycinamide (0.325 mmol) in 2 ml CH2Cl2, were added 

water solution of Boc-5-carboxyl-spermine (200 mg, 0.309 mmol) and HOPO (35.1 mg, 

0.310 mmol). The mixture was cooled down to 0 ºC in ice bath, and then EDC (66.3 mg, 

0.340 mmol) was added. The resulting mixture was then stirred at 0-5 ºC for 3 hr before 

the ice bath was removed. 1 mL TEA was added. The resulting mixture was stirred at 

room temperature for another 24 hrs. 2 M HCl (2 mL) was added and the layer was 

partitioned. The organic phase was further washed sequentially with aqueous HCl (0.5 M, 

2x5 mL), Brine (10 mL), NaHCO3 (1M, 2x10 ml) and Brine (10 mL). It was then dried 

over NaSO4, filtered and concentrated under reduced pressure to dryness. The crude was 

applied on silica gel chromatography and eluted with CH2Cl2/MeOH(0%-5%), yielding  

mg oil, 0.20g 85.1%. 1H NMR (CDCl3) σ 1.15 (m, 6H, 2xCH3), 1.38-1.45 (m, 36H, 

4x(CH3)3C-), 1.48-2.01 (m, 12H, 4xCH2CH2N-), 3.05-3.35 (m, 14H, CH2CH2N-), 3.24 (s, 

1H, -NCOCHN-), 3.14-3.42 (2xq, 4H, J = 7.2 Hz , CH3CH2N-), 4.00 (s, 2H, COCH2NH-

). m/z = 759.9 (M+H)+   

 

N’, N’-Diethyl(sperminecarbonyl)glycinamide, hydrofluoroacetate.(17) 200 mg 

Compound (14) (0.26 mmol) was dissolved in 2 ml CH2Cl2. Trifluoroacetic acid (1 mL) 

was added. The resulting mixture was stirred for 30 min. Then the solvent was removed 

in vacuo. Procedure was repeated if there is no complete removal of butoxycarbonyl 

group. 214  mg light yellow oil, quantitative yield. 1H NMR (CD3OD) σ 0.87 (t, 6H, 

J=6.0 Hz, 2xCH3), 1.78-2.16 (m, 8H, CH2CH2N+), 3.00-3.20 (m, 14H, CH2N-, CH2N+), 

4.00(t, 1H, J=6.6 Hz, CHN+), 4.14(s, 2H, COCH2NH-). m/z = 359.5 (M+H)+   
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N’, N’-Dioctyl-N-(benzyloxycarbonyl)glycinamide (9). N-CBZ-glycine-p-

nitrophenylester (1.37 g, 4.14 mmol) was added to a solution of 1 g dioctylamine (6) 

(1.277 mL, 4.14 mmol) and triethylamine (0.419 g, 0.577 mL, 4.14 mmol) in 5 ml of 

CH2Cl2. After the resulting yellow mixture was refluxed for 24 hours, 20 ml ether Et2O 

was added to mixture and extracted with 0.5 M Na2CO3 until the hydrolysis of unreacted 

ester was completed. The organic phase was washed by 1 M HCl (2x10 mL) and H2O (15 

mL), dried over MgSO4 and evaporated to afford crude product. The crude product was 

applied on silica gel chromatography and eluted with 1-3% MeOH/CH2Cl2, yielding 

1.513 g pure light yellow oil 84.4%. 1H NMR (CDCl3) σ 0.876 (m, 6H 2xCH3), 1.27 (s, 

20H, 2x(CH2)5), 1.519 (s, 4H, 2xCH2CH2N), 3.14-3.31 (2xt, 4H, J = 7.8 Hz, (CH2)2N-), 

4.00 (d, 2H, J= 4.2, COCH2NH-), 5.12 (s, 2H, -OCH2), 5.84 (s, 1H, NH), 7.32 (m, 5H, 

C6H5-CH2). m/z = 433.5 (M+H)+ 

 

N’, N’-Dioctylglycinamide (12). A solution of 911 mg N’, N’-Dioctyl-N-

benzyloxycarbonyl)glycinamide (9) (2.11 mmol) in 10 ml of CH2Cl2/EtOH (v:v 1:1) 

containing 200 mg of 10% Pd/C was hydrogenated during 48 hours at atmospheric 

pressure. The reaction mixture was filtered through Celite that was further washed with 

CH2Cl2/EtOH (1:1). The N’, N’-dioctyl-glycinamide filtrate was evaporated, redissolved 

in CH2Cl2, and washed with 0.1 M NaOH. The organic phase was dried with MgSO4 and 

evaporated under reduced pressure. Crude was purified on silica gel chromatography 

using 0-3% MeOH/CH2Cl2, yielding 531 mg pure product 95.2%. Light yellow oil; 1H 

NMR (CDCl3) σ 0.87 (m, 6H, 2xCH3), 1.27 (s, 20H, 2x(CH2)5), 1.51 (s, 4H, 
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2xCH2CH2N-), 3.12-3.31 (2xt, 4H, J1 = 8.1 Hz , CH2CH2N-), 3.44 (s, 2H, -COCH2N-). 

m/z = 298.4 (M+H)+   

 

N’, N’-Dioctyl[tetrakis(butoxycarbonyl)sperminecarbonyl]glycinamide (15).  To a 

solution of 100 mg N’, N’-dioctylglycinamide (0.336 mmol) in 2 mL CH2Cl2, were added 

water solution of Boc-5-carboxylspermine (206.7 mg, 0.32 mmol) and HOPO (35.6 mg, 

0.32 mmol). The mixture was cooled down to 0 ºC in ice bath, and then EDC (67.3 mg, 

0.35 mmol) was added. The resulting mixture was then stirred at 0-5 ºC for 3 h before the 

ice bath was removed. Keep stirring at room temperature for another 36 hrs. 2 M HCl (2 

mL) was added and the layer was partitioned. The organic phase was further washed 

sequentially with aqueous HCl (0.5M, 5 mL), Brine (10 ml), NaHCO3 (1 M, 2x10 mL) 

and Brine (10 mL). It was then dried over NaSO4, filtered and concentrated under 

reduced pressure to dryness. The crude was applied on silica gel chromatography and 

eluted with Hexane/EtOAc(5%-25%), yielding 157 mg light yellow oil, 53.1%. 1H NMR 

(CDCl3) σ 0.87(m, 6H, 2xCH3), 1.27(s, 20H, 2x(CH2)5), 1.38-1.45(m, 36H, 4x(CH3)3C-), 

1.48-2.01(m, 12H, 6xCH2CH2N-), 3.05-3.35(m, 14H, CH2CH2N-), 3.24(s, 1H, -

NCOCHN-), 4.00(s, 2H, COCH2NH-). m/z = 927.8 (M+H)+   

 

N’, N’-Dioctyl(sperminecarbonyl)glycinamide, hydrofluoroacetate.(18) 157 mg 

Compound (15) was dissolved in 2 ml CH2Cl2. Trifluoroacetic acid (1 ml) was added. 

The resulting mixture was stirred for 30 min. Then the solvent was removed in vacuo. 

Procedure was repeated if there is no complete removal of butoxycarbonyl group. 165mg 

yellow oil, quantitative yield. 1H NMR (CD3OD) σ 0.87 (t, 6H, J=6.5 Hz, 2xCH3), 1.30 
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(bs, 20H, 2x(CH2)5), 1.45-1.70 (m, 4H, 2xCH2CH2N-), 1.78-2.16 (m, 8H, CH2CH2N+), 

3.00-3.20 (m, 14H, CH2N-, CH2N+), 4.00 (t, 1H, CHN+), 4.14 (s, 2H, COCH2NH-). m/z 

= 527.8 (M+H)+   

 

N’, N’-Dioctadecyl-N-(benzyloxycarbonyl)glycinamide (10). N-CBZ-glycine-p-

nitrophenylester (1.00 g, 3.03 mmol) was added to a solution of 1g dioctadecylamine (7) 

(1.581 g, 3.03 mmol) and triethylamine (0.306 g, 0.421 mL, 3.03 mmol) in 4 ml of 

CH2Cl2. After the resulting yellow mixture was refluxed for 24 hours, 20 ml ether Et2O 

was added to mixture and extracted with 0.5 M Na2CO3 until the hydrolysis of unreacted 

ester was completed. The organic phase was washed by 1 M HCl (2x10 ml) and H2O (15 

mL), dried over MgSO4 and evaporated to afford crude product. The crude product was 

applied on silica gel chromatography and eluted with 1-3% MeOH/CH2Cl2, yielding 

1.588 g pure light yellow solid (foam) 73.5% . 1H NMR (CDCl3) σ 0.877 (t, 6H, J= 

6.6Hz, 2xCH3), 1.26 (s, 60H, 2x(CH2)15), 1.522 (m, 4H, 2xCH2CH2N), 3.14-3.31 (2xt, 

4H, J = 7.8 Hz, (CH2)2N-), 4.00 (d, 2H, J= 4.2 Hz, COCH2NH-), 5.12 (s, 2H, -OCH2), 

5.84 (s, 1H, NH), 7.33 (m, 5H, C6H5-CH2). m/z = 713.6 (M+H)+ 

 

N’, N’-Dioctadecylglycinamide (13). A solution of 1.35g N’, N’-Dioctadecyl-N-

benzyloxycarbonyl)glycinamide (10) (1.89 mmol) in 10ml of CH2Cl2/EtOH (v:v 1:1) 

containing 200 mg of 10% Pd/C was hydrogenated during 48 hours at atmospheric 

pressure. The reaction mixture was filtered through Celite that was further washed with 

CH2Cl2/EtOH (1:1). The N’, N’-dioctadecyl-glycinamide filtrate was evaporated, 

redissolved in CH2Cl2, and washed with 0.1 M NaOH. The organic phase was dried with 
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MgSO4 and evaporated under reduced pressure. Crude, grey solid, was purified on silica 

gel chromatography using 0-3% MeOH/CH2Cl2, yielding 1.037g pure product 94.6%. 

Light yellow solid; 1H NMR (CDCl3) σ 0.87(m, 6H, J = 6.6Hz, 2xCH3), 1.25 (s, 60H, 

2x(CH2)5), 1.52 (s, 4H, 2xCH2CH2N-), 3.14-3.32 (2xt, 4H, J = 7.0Hz , CH2CH2N-), 3.76 

(s, 2H, -COCH2N-). m/z = 579.6 (M+H)+   

 

N’, N’-Dioctadecyl[tetrakis(butoxycarbonyl)sperminecarbonyl]-glycinamide (16).  

To a solution of 200mg N’, N’-dioctadecylglycinamide (0.345 mmol) in 2 ml CH2Cl2, 

were added water solution of Boc-5-carboxyl-spermine (226.1 mg, 0.35 mmol) and 

HOPO (38.9 mg, 0.35 mmol). The mixture was cooled down to 0 ºC in ice bath, and then 

EDC (73.6 mg, 0.385 mmol) was added. The resulting mixture was then stirred at 0-5 ºC 

for 3 hr before the ice bath was removed. 1 mL TEA was added. The resulting mixture 

was stirred at room temperature for another 3 days. 2 M HCl (2 ml) was added and the 

layer was partitioned. The organic phase was further washed sequentially with aqueous 

HCl (0.5 M, 2x5 mL), Brine (10 ml), NaHCO3 (1M, 2x10 mL) and Brine (10 mL). It was 

then dried over NaSO4, filtered and concentrated under reduced pressure to dryness. The 

crude was applied on silica gel chromatography and eluted with CH2Cl2/MeOH(0%-5%), 

yielding 378 mg light yellow oil, 90.7%. 1H NMR (CDCl3) σ 0.87 (m, 6H, 2xCH3), 1.27 

(s, 20H, 2x(CH2)5), 1.38-1.45 (m, 36H, 4x(CH3)3C-), 1.48-2.01 (m, 12H, 6xCH2CH2N-), 

3.05-3.35 (m, 14H, CH2CH2N-), 3.24 (s, 1H, -NCOCHN-), 4.00 (s, 2H, COCH2NH-). 

m/z = 1208.9 (M+H)+   
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N’, N’-Dioctadecyl(sperminecarbonyl)glycinamide, hydrofluoroacetate.(19) 378mg 

Compound (16) was dissolved in 2 mL CH2Cl2. Trifluoroacetic acid (1 mL) was added. 

The resulting mixture was stirred for 30 min. Then the solvent was removed in vacuo. 

Procedure was repeated if there is no complete removal of butoxycarbonyl group. 165mg 

yellow oil, quantitative yield. 1H NMR (CD3OD) σ 0.87 (t, 6H, J=6.0 Hz, 2xCH3), 1.30 

(bs, 60H, 2x(CH2)5), 1.45-1.70(m, 4H, 2xCH2CH2N-), 1.78-2.16 (m, 8H, CH2CH2N+), 

3.00-3.20 (m, 14H, CH2N-, CH2N+), 4.00(t, 1H, J=6.6 Hz, CHN+), 4.14(s, 2H, 

COCH2NH-). m/z = 808.9 (M+H)+   

  



 50

References 

 

1. Rei, B. R., Chou, S. H., Cheng, J. W. J. Mol. Biol. 1992, 228, 1037-1041 

2. Behr, J. P. J. Chem. Soc., Commun. 1989, 101-103 

3. Bergeron, R. J.; Garlich, J. R. Synthesis 1984, 782-784 

4. Remy J. S.; Sirlin, C; Vierling, P.; Behr, J. P. Bioconjugate Chem. 1994, 5 (6), 647-
654 
 
5. Siegel, C. S.; Lee, E. R.; Harris, D. J.; US Patent 5912239, 1997 
 



 51

CHAPTER IV 

 

RESULTS AND DISCUSSIONS 

 

Synthesis of Lipids 

 

 Many different types of cationic lipids have been synthesized and studied as gene 

transfection vector or drug delivery system since late 80’s.1, 2 However, most of early 

studies emphasis on the synthesis and transfection efficiency of novel cation lipid in vivo 

or in vitro experiment. The structures of the DNA-lipid complexes (lipoplex) were not 

well accessed in the literatures. Few researches have been done on the relationship 

between the transfection activity and DNA-lipid complex structures. Recent progress in 

DNA-lipid structure elucidation suggest three categories of complexes: one with a short-

range lamellar structure composed of flat lipid bilayers and DNA packed between them;3-

10 another form in which DNA is encapsulated inside a lipid bilayer, forming cylindrical 

complexes that are closely package on a hexagonal network;11 and finally the complexes 

where DNA attached to the outer surface of the positively charged liposome.12 This 

presents the question of the kind of lipid to synthesize in order to meet our research goal.  

  We selected our target compound based on simplicity and gene transfer 

efficiency. The higher gene transfer efficiency implies higher binding affinity and 

formation of the stable hydrophobic layer around the DNA, which consequently 

compacts DNA and allows DNA-lipid complexes to approach and penetrate the 

hydrophobic cell membrane effectively. In this research we successfully synthesized four 



 52

different lipids, compound 12, 17, 18, 19 (Figure II-3), in which 19 is well known as 

DOGS with significant activity in transfection. The binding moiety is either glycyl amine 

(compound 11-13) or spermine group (compound 17-19). The spermine was known for 

high non-specific binding affinity toward DNA backbond and grooves. At neutral pH, 

spermine group is protonated with stronger electrostatic interaction towards negatively 

charge DNA helix.13, 14 The dialkyl group was expected to act like a hydrophobic shield 

to reduce the exposure of DNA helix from water molecules. The longer alkyl chain’s 

length should provide the stronger hydrophobic protecting effect. The glycyl spacer 

allows the free motion of long dialkyl group and minimized the steric hindrance when 

lipid binds to DNA duplex. The amide functional groups on glycyl also afford it the 

ability to anchor itself in the grooves of DNA via hydrogen bonds.  

 Even thought it is expected that compound 17, 18 and 19 are straightforward to 

synthesize considering their limited synthetic steps and relative simple structures. 

However compound 19 is a patented compound lack of information on detailed 

description of synthetic procedure. We met two major obstacles in our experiment. In 

synthesis of Nα, Nσ-diethylcyanide ornithine, the reaction always yielded brown solid 

which is only slightly soluble in MeOH and hard to separate by following the procedure 

reported in literature.15-18 We could not identify the structure of impurity. At the 

beginning of synthesis, one equivalent amount of tetramethylammonium hydroxide was 

added to neutralize the HCl in L-ornithine hydrochloride via the formation of 

tetramethylammonium chloride salt which precipitated from MeOH and separated from 

the solution by filtration. Afterwards, the reaction proceeded with free L-ornithine. We 

speculated that the excess amount of tetramethylammonium triggered the polymerization 
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of acrylonitrile, which resulted in obtained brownish polymerized byproduct. By limiting 

the amount of tetramethylammonium in neutralizing the L-ornithine hydrochloride, the 

reaction afforded yellow solid with significant percentage of desired product, confirmed 

by Mass Spectrometry and NMR spectrum. However, we were not able to get product 

with higher purity. Revised procedure (Method 2) which proceeded without the 

utilization of tetramethylammonium hydroxide successfully yielded the pure target 

compound without further purification.  

 The second challenge came from the coupling of head group (5-

carboxylsperimine) and tail group (dialkyl chain). Following the scheme in literature,19-21 

we first applied dicyclohexylcarbodiimide (DCC) as direct coupling agent. The 

byproduct dicyclohexylurea (DCU) was difficult to be separated from product even after 

two silica gel column chromatography with MeOH/CH2Cl2 and EtOAc/Hexane 

respectively. We were unable to identify the exact reason since various references 

showed that the simple filtration could effectively remove the DCU because of its poor 

solubility in most solvents. Consequently, we attempted the approach other than normal 

silica gel chromatography to separate the product and DCU. With four amino groups in 

spermine headgroup, the product can be easily ionized at near neutral pH.15, 22 The 

difference in pKa between the product and DCU affords the feasibility to separate them 

using ion exchange (IE) column. By adjusting the pH of effluent it is possible to firstly 

elute the DCU, which is less likely to form cation at about neutral pH. On the other hand 

the ionized product at this pH would stay on cationic IE column because of electrostatic 

interaction with anionic resin, which can be subsequently flushed out using acidic 

solution. However, we could not achieve successful separation on IE Column either. The 
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recrystalization of the compound was attempted in petroleum ether, hexane/EtOAc. We 

could not get any solid precipitate from either solvent system. We ascribed this to the 

nature flexible structure of the compound. The long aliphatic chain moiety makes it less 

likely to sustain solid form. Finally, we decided to explore new coupling reagents. After 

looking into literatures several candidates were found (Figure 29).23-28 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) is the most appealing one because its 

similarity to DCC and easy separation of byproduct 1-ethyl-3-(3-dimethylaminopropyl)-

urea (EDU) that is water soluble at low pH. Most of EDC coupling reactions were carried 

out in the presence of additives to suppress the side reaction and reduce the racemization 

in peptide synthesis. Various additives were tested in peptide amide bond formation 

reaction, which showed HOPO and HOBt were superior in improving the yield and 

preservation of chiral integrity.29 We successfully carried out the coupling reaction with 

EDC/HOPO as the coupling agent and obtained final products in satisfactory yield. 
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Figure III-1 Several amide coupling agents 
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Preliminary Study on N’, N’-dioctylglycinamide Effect on Guanine Damage 

 

 N’, N’-dioctylglycinamide is the first compound we synthesized. Effect of this 

compound on charge transfer in DNA was investigated using DNA (I) (Figure III-5) 

sequence. The result was shown in Figure III-3. No significant difference was seen 

except that land 5 and 7 show slightly more proximal and distal damage than normal 

DNA without adding any lipid compound (lane 3).  Since this compound was not 

effective in gene transfection,17 it is possible there is little binding interaction between 

this lipid and DNA duplex. No protection from the reaction with the water could be 

provided if there were no association between lipid and DNA. We further investigated 

binding between N’, N’-dioctylglycinamide and DNA duplex using fluorescence 

quenching experiment.  
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Figure III-3 Autoradiogram of a denaturing gel electrophoresis for 5’-32P-labeled DNA(I) with N’, N’-
dioctylglycinamide. light control (Lane 1), dark control (Lane 2), irradiation with lipid/DNA ratio at 2:1, 
1:1, 1:2, 1:4, 1:8 (Lane 3, 4, 5, 6, 7). The last two Lanes are Maxam-Gilbert T and G sequencing lanes. All 
samples were irradiated at 350 nm for 5 min, followed by piperidine treatment at 90 °C for 30 min. 
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 No effect of lipid on charge transport in DNA can be attributed to several reasons. 

One possibility can be no or little binding affinity of this particular lipid toward DNA 

duplex. One effective way to identify the binding interaction between DNA and lipid 

compound is to investigate the displacement of DNA bound ethidium bromide by target 

compound, which would subsequently quench the fluorescence if the ethidium bromide 

was expelled from the intercalation into DNA helix. 3, 19-21  
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Figure III-4 Effects of N’, N’-Dioctylglycinamide on the fluorescence of DNA-lipid 
complex. As a function of total positive charge (lipid) and negative charge (nucleotides), 
DNA concentration was kept at 5.0 µM with 10 µM EB. 
 

 

 The result from fluorescence experiment provides the answer to the question why 

there was little difference in UV irradiation experiment between DNA and DNA-lipid 

mixture. There was no significant decrease in fluorescence intensity with the addition of 
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N’, N’-Dioctylglycinamide. Many studies reported the reduction of fluorescence intensity 

to about 20%-40% of original fluorescence intensity with the titration of lipid 

compound.19-21 In our experiments, the slight variant is expected as the function of 

instrumental fluctuation and dilution of overall DNA-EB concentration while adding lipid 

solution. This compound failed to replace EB in DNA-EB complex to quench the 

fluorescence, which implied that the origin of PAGE experiment results stem from the 

lack of binding affinity of this particular molecule to DNA.  

 With the preliminary result we further synthesized three new lipids compounds, 

C2GlySp4+, C8GlySp4+ and C18GlySp4+ with improved binding affinity towards DNA 

duplex so that we can move forward to perform more extensive studies to characterize the 

charge transport in DNA-lipid complexes. 
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Characterization of DNA-spermine and DNA-lipid Complexes 
 

UV Absorption Spectra: The proof of AQ coupling with DNA oligomer 

 

 All non-AQ containing synthetic DNA oligomers were identified with Mass 

Spectrometry and subject to Maxam-Gilbert A/G and T sequencing in order to make sure 

the desired sequences were obtained. AQ-DNA conjugate can be further determined by 

screening the Ultra-violet absorption spectra at 350 nm besides the methods mentioned 

above. The DNA oligonucleotides are characterized by a strong absorbance at 260 nm 

shown in Figure III-6. The molar absorptivity is related to the base sequence in oligomers, 

which is ε260 = 246,500 Lmole-1cm-1 for DNA(I) and ε260 = 280,800 Lmole-1cm-1 for AQ-

DNA(I). (Figure III-5) The AQ photosensitizer also has a significant absorbance at this 

particular wavelength, with ε260 = 55,600 Lmole-1cm-1. (Table III-1) The additional 

absorbance wavelength at 350 nm distinguished the AQ coupled DNA from non-AQ 

DNA oligomer. However, the extinction coefficient (ε334 = 6,900 Lmole-1cm-1) is much 

lower at this wavelength. The covalent-binding of anthraquinone to the DNA 

oligonucleotide can be confirmed by inspecting the UV-visible spectra at this wavelength 

as pointed by arrows in Figure III-6. The AQ are expected to associate with DNA 

terminus by end capping.30, 31 Majima and coworkers also reported a similar association 

mode with respect to naphthalimide and phenothiazine derivatives attached to 5’ and 3’-

end of DNA duplex respectively.32, 33 The short ethyl linker between AQ and 5’ terminal 

base prohibits the intercalation into the DNA helix but allows the radical cation injection 

into either strand of the DNA duplex. The injection efficiency is dependent on G:C or 
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A:T pair but irrelevant to whether the AQ is attached to purine or pyrimidine of the 

pair.34   

 

 

5’-AQ-AAATG CC GGTACAAACATGG CC GTACG-3’ 

   3’-TTTAC GG CCATGTTTGTACC GG CATGC-5’ 
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Figure III-5 DNA (I) sequence and 5’-linked anthraquinone photosensitizer. 

 

 

Table III-1 Molar extinction coefficient of oligonucleotides and anthraquinone 35 

 

Molar Extinction Coefficient (M-1cm-1) Wavelength 
(nm) 

A C G T AQ 

260 nm 15400 7400 11500 8700 18900 
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Figure III-6 AQ-DNA(I) Absorption Spectrum. The sample contains 5 µM DNA single 
strand. The enlargement of the absorbance spectrum between 350 nm and 370 nm was 
shown to indicate the covalent-binding of the chromophore to the oligomer.  
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Thermal denaturation: Stabilization of DNA duplex by lipids 

 

 Thermal denaturation behavior of DNA can reveal the stability and cooperativity 

of the oligonucleotides, in which two complimentary DNA sequences are subject to 

repeated heating and cooling cycles. The UV absorbance at 260 nm is monitored as the 

temperature ramps between 15 oC and 90 oC. DNA duplex will begin denaturation and re-

naturation when the temperature is near its “melting” temperature (Tm), at which 50% of 

oligonucleotide and its complement are in duplex. The melting effect results in the 

increase in the UV absorption by about 40% due to the release of hyperchromicity in the 

base stacking with nearby bases. Once the duplex completely unraveled to two single 

strands, the increase in absorption is no longer evident. In the cooling cycle, the two 

single strands revert back to the duplex form and the cooperativity is measured. Because 

the stronger hydrogen bonds between G:C base pairs, one more hydrogen bond than that 

between A:T base pairs, (Figure I-2) DNA sequences with more G:C base pairs generally 

show higher melting temperature than those with the same length but less G:C base pairs. 

The melting behavior depends not only on the duplex itself, i.e. sequence and length, but 

also the salt concentration, solvation effect, modification and the present of other 

compounds with affinity to DNA duplex. The negatively charged phosphate groups in the 

DNA double helix are close together and will tend to repel one another unless they are 

neutralized. Since the concentration of salt (cations) in solution will affect the degree of 

neutralization, the stability of DNA double helices also depends on the salt concentration. 

In the cell, neutralization is achieved through salt ions, polyamines and special DNA-

binding proteins.  
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Previous research established that some cationic surfactants/lipids have the ability 

to accelerate the re-naturation of DNA duplex and stabilize the formation of DNA helix.36 

Berg et al. showed that simple cationic detergents significantly enhanced the re-

naturation rates by more than 2000-fold than the rate in 1 M NaCl at 68 oC in the 

presence of up to 106-fold excess of noncomplementary sequences, which is very similar 

to nuclear ribonucleoprotein A1 protein. They attributed the observation to their ability to 

bind to nucleic acid strands and present flexible, weakly interacting domains with a 

repeating structure.  

 We examined the thermal denaturation behavior of DNA (I) (Figure III-7) upon 

the addition of spermine and lipids. (Figure III-2) The addition of 1 to 4 equivalents 

(charge ratio) of spermine or lipids to solution containing DNA(I) shows an expected 

increase in observed Tm only when the concentration of additives is low, below 1:2 

charge ratio in most cases. Only spermine and C2GlySp4+ showed consistent increase in 

Tm even when the concentration of additive increased up to 1:4 charge ratio, i.e. 135 µM 

with 2.5 µM 27-base paired DNA duplex. The Tm of DNA(I)-spermine increases from 

58.9 oC to 72.9 oC when the concentration of spermine rise from 0 to 4.0 charge ratio. 

C2GlySp4+ lipid helped to stabilize the DNA by 11 oC, from 58.5 oC to 69.3 oC, under the 

same condition.   On the other hand, C8GlySp4+ lipid stabilized DNA duplex by 4 oC once 

the concentration increased from 1:0 to 1:2 charge ratio with DNA. (Figure III-10) But no 

melting behavior was obtained with higher concentration of C8GlySp4+ lipid. In the case 

of DNA-C18GlySp4+ the denaturation transition was not observed once lipid 

concentration was higher than 2:1 charge ratio. These findings indicate that lipids 

stabilize the formation of DNA duplex at lower concentration but may denature the DNA 



 65

or destabilize the DNA duplex in aqueous solution at higher concentration. The latter 

effect may be related to hydrophobic tail group of lipids since the longer the alkyl chains 

are, the more significant the hydrophobic effect is. If the lipids packages DNA duplex 

inside a hydrophobic micelles, the resulting lipoplex can aggregate into water insoluble 

particle where no melting transition can be observed in our experiment. 
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Figure III-7 DNA(I) denaturation UV absorbance curve and its first derivative curve. The 
sample contains 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer at pH 7.0. 
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Figure III-8 Thermal denaturation of DNA(I) duplex with addition of spermine. Each 
sample contains 2.5 µM DNA duplex in 10 mM sodium phosphate buffer at pH 7.0 and 
the corresponding amount of spermine as indicated. The increase in melting temperature 
is a clear indication of stabilized DNA helix structure induced by spermine. 
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Figure III-9 Thermal denaturation of DNA(I) duplex with addition of C2GlySp4+ lipid. 
Each sample contains 2.5 µM DNA duplex in 10 mM NaPi buffer (pH 7.0) and 
corresponding amount of C2GlySp4+ as indicated. The curves are first derivative of 
absorbance against temperature.  
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Figure III-10 Thermal denaturation of DNA(I) duplex with addition of C8GlySp4+ lipid. 
Each sample contains 2.5 µM DNA duplex in 10 mM NaPi buffer (pH 7.0) and 
corresponding amount of C8GlySp4+ as indicated. The increasing melting temperature is 
an indication of stabilized DNA helix structure induced by C8GlySp4+ lipid. The flat 
curve for higher charge ratio indicated the no thermal transition of DNA duplex. 
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Figure III-11 Thermal denaturation of DNA(I) duplex with addition of C18GlySp4+ lipid. 
Each sample contains 2.5 µM DNA duplex in 10 mM NaPi buffer (pH 7.0) and 
corresponding amount of C18GlySp4+ as indicated. The increase in melting temperature is 
an indication of stabilized DNA helix structure induced by C18GlySp4+ lipid. The flat 
curve for higher charge ratio indicated no thermal transition of DNA duplex 

 

Table III-2 Tm Data for DNA(I) with addition of various lipids at different concentrations 

 

Tm (oC)  

Lipid 1:0 2:1 1:1 1:2 1:4 

Spermine 58.9 66.9 69.8 71.9 72.9 

C2GlySp4+ 58.5 61.0 62.8 64.8 66.9 

C8GlySp4+ 57.9 58.9 60.9 61.9 N/A 

C18GlySp4+ 58.8 57.4 N/A N/A N/A 

 

Note: All samples contain 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer at pH 7.0. 
The ratio represents the charge ratio between DNA(I) duplex (54 negative charges) and lipids ( 4 
positive charges)
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Circular Dichroism: DNA conformation determination 
  

 Circular dichroism is an extremely useful tool in detecting the secondary 

structural alteration in DNA helical conformation because its spectra are very sensitive to 

any chirality change in optically active molecules. The chiral nature of the DNA helix 

gives rise to a strong CD signal which is seen to vary under certain condition, e.g. state of 

hydration, temperature, binding of macromolecules. Therefore, we can detect the 

secondary structure transition in DNA duplex by inspecting the corresponding CD 

spectra. Typical CD spectra for B-form DNA show one positive OD at 270 nm and one 

negative OD at 240 nm. Both are in ultraviolet wavelength because these are the regions 

where the electronic transition of purine and pyrimidine base in DNA occurs. 

 Native DNA (I) oligomer shows typical CD spectrum for B-form DNA. Not much 

change was observed for DNA-spermine and DNA-C2GlySp4+ solution. However, it is 

evident that both peaks at 240 nm and 270 nm diminished with increasing C8GlySp4+ and 

C18GlySp4+ concentration when DNA was hybridized with those lipids (Figure III 11-12) 

This indicates either a significant structural change in DNA helix or a significant lower 

DNA concentration in aqueous phase of the solution. It is well known that A-form DNA, 

as well as C-form DNA, which generally form under dehydrated condition or high salt 

concentration, possesses the different CD signal from B-form DNA.37-40 If C8GlySp4+ or 

C18GlySp4+ reduces the water accessibility as we expected and disturbs the hydration 

spine along the DNA grooves, it is likely that some of DNA helixes switch towards A-

like or C-like conformation and yield overlapping spectrum with that from B-form DNA 

that shows diminished signal at both peak wavelength. Lipids were widely used as gene 

transfer factors and DNA condensing agents to facilitate the transfection through cell 



 70

membrane. The high concentration of lipids can not only condense DNA to compact form 

but also accelerate the formation of aggregate, which is unstable in aqueous solution.10, 41 

In such case, the concentration of DNA in aqueous phase decreases dramatically that 

eventually leads to the weaker signal in CD spectra in an alternative way. 

Our further examination using UV spectrum eliminates the former possibility and 

supports the second explanation that DNA precipitates out from the aqueous solution 

during the hybridization process at the presence of lipids. (Figure III-14-18)  
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Figure III-12 CD spectra of DNA(I) solution) with various amount of C8GlySp4+ lipid. 
2.5 µM DNA(I) in 10 mM sodium phosphate, pH 7.0 after co-hybridization. The spectra 
were monitored from 200 nm to 400 nm and a drastic decrease in CD signal change was 
observed.  
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Figure III-13 CD spectra of DNA(I) solution with various amount of C18GlySp4+ lipid . 2.5 µM 
DNA(I) in 10 mM sodium phosphate, pH 7.0 after co-hybridization. The spectra were monitored 
from 200 nm to 400 nm and a drastic decrease in CD signal change was observed.  
 

 

UV Time-Dependent Experiment: lipids induced aggregation 

  

 The melting temperature data were obtained from first derivative curves of 

absorbance-time UV data as shown in Figure III-7. The native DNA duplex yields well-

defined transition stage and a relative sharp peak indicating the melting temperature. In 

order to get comparable results, all the samples consist of 2.5 µM DNA duplex in 10 mM 

sodium phosphate buffer. The only difference between samples lies in the type and 

concentration of lipids added into the solution. By inspecting the original UV data, those 

samples, from which no obvious transition was obtained, showed much lower UV 

absorbance during heating and cooling process. This is an indication of loss of DNA in 
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aqueous phase. Polyamines were widely used to condense long sequence DNA and 

genome to form condensate.42 It is possible that oligomer-lipid complex grow into an 

aggregate form that is insoluble in aqueous phase due to hydrophobic effect when the 

concentration of lipid is above certain critical point. Therefore, UV absorbance dropped 

dramatically upon adding the large amount of lipid solution.  

 We further evaluated the stability of DNA-lipid complex by monitoring the UV 

spectrum over the long period of time. In this experiment DNA duplex was hybridized 

prior to the addition of lipid to prevent the possible effect on DNA hybridization process. 

The spermine and C2GlySp4+ do not affect the UV spectra of DNA duplex even at high 

concentration as much as 1:4 charge ratio (135 µM). (Figure III-14) At a stark contrast, A 

remarkable enhance at the first three hours followed by a sharp decrease in absorbance 

was observed for both C8GlySp4+ and C18GlySp4+ lipids at the high concentrations. At 

lower concentration, DNA-C8GlySp4+ is stable at up to 1:2 charge ratio (67.5 µM) and 

DNA-C18GlySp4+ is stable at 1:1 charge ratio but with significant rise in UV signal, 

which is interpreted as light scattering from the small liposome and aggregate formed by 

excessive lipids.43 

Those findings explained the experimental results from melting temperature and 

circular dichroism measurement. The dramatic decrease in UV absorbance indicates the 

lower concentration of DNA duplex in solution which, consequently, yields flat 

denaturation transition and lower CD signal.    

C18GlySp4+ affects the stability of DNA duplex in aqueous solution most 

effectively while C8GlySp4+ has less profound outcome. When the length of alkyl tail 

group was reduced to diethyl or none, in case of spermine, no effect was observed. 



 73

Considering the same DNA-binding head group possessed by all lipids and spermine, this 

trend clearly points out the root of destabilization lies in the dialkyl moiety in lipids’ 

structure. C18GlySp4+, know as DOGS, is a very efficient gene transfection vector with 

high affinity to the DNA and ability to induce DNA into compact form.1 In our 

experiment, its long didodecyl chains make it easily to form secondary bilayer or micelle 

structure to prevent the exposure to high polar water solution and stability itself. However, 

this effect also leads to the aggregation of DNA-C18GlySp4+ complex that is not very 

soluble in aqueous phase. Herein, the precipitation of aggregate was observed with loss 

of UV absorbance. 
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Figure III-14 UV spectra of DNA(I) solution after the addition of 1:4 charge ratio 
spermine. There are 2.5 µM  DNA(I) and 135 µM spermine. The spectra were monitored 
over 24 hours and no significant change was observed.  
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Figure III-15 UV spectra of DNA(I) solution after the addition of 1:4 charge ratio 
C2GlySp4+ lipid. There are 2.5 µM DNA(I) and 135 µM C2GlySp4+ The spectra were 
monitored over 24 hours and no significant change was observed.  
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Figure III-16 UV spectrum of DNA(I) duplex solution after the addition of 1:2 charge 
ratio C8GlySp4+ lipid. The sample contains 2.5 µM  DNA(I) and 67.5 µM C8GlySp4+ in 
10 mM NaPi buffer at pH 7.0.  The spectra were monitored over 24 hours and no 
significant change was observed.  
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Figure III-17 UV spectra of DNA(I) duplex solution after the addition of 1:4 charge ratio 
C8GlySp4+ lipid. The sample contains 2.5 µM DNA(I) and 135 µM C8GlySp4+ in 10 mM 
NaPi buffer at pH 7.0. The spectra were monitored over 24 hours and a drastic decrease 
in UV absorbance was observed.  
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Figure III-18 UV spectra of DNA(I) duplex solution after the addition of 1:1 charge ratio 
C18GlySp4+ lipid. The sample contains 2.5 µM DNA(I) and 33.8 µM C18GlySp4+ in 10 
mM NaPi buffer at pH 7.0.The spectra were monitored over 24 hours and a drastic 
decrease in UV absorbance was observed.  
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Figure III-19 UV spectra of DNA(I) duplex solution after the addition of 1:4 charge ratio 
C18GlySp4+ lipid. The sample contains 2.5 µM DNA(I) and 135 µM C18GlySp4+ in 10 
mM NaPi buffer at pH 7.0.The spectra were monitored over 24 hours and a drastic 
decrease in UV absorbance was observed.  
 

 

Time Dependent Circular Dichroism: monitor the structural alteration in DNA-lipid 

complexes 

 

 From previous CD experiments, it was observed that DNA-lipid complexes were 

not stable even at low concentration, i.e. the charge ratio of 1:2, if we hybridized the 

DNA in the presence of lipids. The decline in both CD and UV signal intensity 

demonstrated unstable DNA-lipid complexes in aqueous solution. However, UV spectra 

did not show significant change over the course of 24 hours provided the lipid was added 

after the hybridization of DNA duplexes. The different preparation method afforded the 

different stability of DNA-lipid complexes. The further experiment was carried out to 

investigate if there is the similar effect in CD spectrometry and if the complexes formed 
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in the latter approach possess any different structure from the regular native DNA 

duplexes. 

 CD spectra of DNA duplex solutions were monitored for over the period of 24 

hours after the addition of spermine and lipid compounds.(Figure III-20-III-23) No 

significant change was observed for spermine, C2GlySp4+ and C8GlySp4+, up to 1:4, 1:4 

and 1:2 charge ratio respectively. With 1:3 charge ratio of C8GlySp4+, CD spectrum 

started to show the decrease at positive peak around 220 and 270 nm where the maximum 

of both peaks shifted toward blue region, whereas the negative peak at around 240 nm did 

not shift or decrease. This is a prominent indication of DNA’s secondary structure 

transformation. This transformation is even more profound for the samples with 

C18GlySp4+, two positive maxima and one negative maximum started declining and blue 

shifting even at relative low concentration of lipid, which extended when we increased 

the concentration of C18GlySp4+. The observation from those CD experiment is 

complimentary to the data from time dependant UV measurement and confirmed that the 

concentration of lipid is critical to control the formation of stable DNA-lipid complex in 

aqueous solution without significantly disturbing DNA’s secondary structure.  

 The conditions under which stable DNA-lipid complexes exist in aqueous 

solution were summarized in Table III-3. Those conditions only apply when we prepared 

the DNA-lipid complexes by adding lipid solution into pre-hybridized DNA duplex 

solutions.  However, provided DNA duplexes were hybridized in the presence of lipids, 

the unstable complexes can form at even lower concentration of lipid. This was attributed 

to the slow hybridization process in which the DNA solution with lipids was heated up to 

90 oC and cooled down slowly to room temperature. The slow process is more likely to 
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afford the thermodynamically stable complex structure, an aggregate form of DNA 

complexes which is not soluble in aqueous solution. On the other hand, kinetically 

favorable complexes were formed by adding lipid directly into DNA duplex solution. 

(Appendix Figure A-4) Furthermore, the binding of lipid to single strand DNA prior to 

the hybridization can slow the annealing of DNA duplex and impede the complete duplex 

formation.  

 

 

Table III-3 Summary of DNA-lipid complexes’ stability. 

 

Sp4+ C2GlySp4+ C8GlySp4+ C18GlySp4+  

2:1 1:1 1:2 1:4 2:1 1:1 1:2 1:4 2:1 1:1 1:2 1:4 2:1 1:1 1:2 1:4 

Tm + + + + + + + + + + + - + + - - 

UV + + + + + + + + + + + - + - - - 

CD + + + + + + + + + + + - - - N/A N/A 

SUM + + + + + + + + + + + - + - - - 

 

 

Note: +: stable, positive results were obtained; -: unstable, negative results were obtained; 
N/A: not measured) 
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Figure III-20 CD spectra of DNA-spermine at various concentrations as indicated. Each sample 
contains 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer. Spermine was added to the 
duplex solution prior to measuring CD spectra. The spectra were monitored over 24 hours. 
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Figure III-21 CD spectra of DNA-C2GlySp4+ at various concentrations as indicated. Each sample 
contains 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer. C2GlySp4+ lipid was added 
to the duplex solution prior to measuring CD spectra. The spectra were monitored over 24 Hours. 
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Figure III-22 CD spectra of DNA-C8GlySp4+ at various concentrations as indicated. Each 
sample contains 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer. C8GlySp4+ 
lipid was added to the duplex solution prior to measuring CD spectra. The spectra were 
monitored over 24 hours. 
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Figure III-23 CD spectra of DNA-C18GlySp4+ at various concentrations as indicated. 
Each sample contains 2.5 µM DNA(I) duplex in 10 mM sodium phosphate buffer. 
C18GlySp4+ lipid was added to the duplex solution prior to measuring CD spectra. The 
spectra were monitored over 24 hours. 
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Fluorescence quenching experiment: tight binding of lipids on DNA helix 

 

 The stable DNA-lipid complexes were achieved by controlling the proper sodium 

phosphate salt, lipid concentration and preparative method based on previous 

experiments, in which no significant change was observed in both UV and CD spectra for 

DNA-lipid complexes compared with native DNA duplexes. In order to quantify the 

effectiveness and affinity of lipids’ binding to DNA we further assessed the fluorescence 

quenching ability of lipid on ethidium bromide (EB) intercalating in DNA double helix.  

 Ethidium bromide is a fluorescer with two absorbance peaks around 260 nm and 

490 nm. (Figure III-24) Because its flat aromatic ring structure, it can intercalate into 

DNA base stacking with an equilibrium constant, Kb of approximately 104 M-1.44  

Previous research by Henderson in Schuster’s group showed that two distinctive binding 

mode were observed for some sequences, which is distinguished by two transition plateau 

at intermediate concentration of EB. However one specific binding mode dominates at 

either low or high concentration.45  

Since the water is a major quenching species of fluorescence from ethidium 

bromide, EB will yield much stronger fluorescence once it intercalates into DNA helix 

which has a more hydrophobic environment. In addition, the intercalation restricts the 

conformational change in ethidium bromide ring structure, the excited ethidium bromide 

can not easily return to ground state via vibrational relaxation, which makes photo-

emitting fluorescence the most feasible alternative route.46 

 UV spectrum of ethidium bromide and ethidium bromide bound DNA was shown 

in Figure III-24. The EB’s spectrum shows two main transitions, a strong UV band with a 
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maximum below 300 nm, overlapping with the absorbance of DNA, and a weaker visible 

band with a maximum near 470 nm. The band at 470 nm are significantly shifted in EB-

DNA(I) spectrum due to the electronic interaction between EB and the DNA helix.47 The 

absorbance at 510 nm was the wavelength where we excited ethidium bromide with DNA 

solution and monitored  the emission spectra between 540 nm and 750 nm. (Figure III-25, 

III-26) Both excitation and emission spectra showed dramatic increase in fluorescence 

intensity when DNA duplex was mixed with EB solution. A red shift in maximum is 

evident in excitation spectrum while a blue shift is observed in emission spectrum. To 

eliminate the possible effect of lipids on the excitation and emission of ethidium bromide, 

the fluorescence emission spectra of ethidium bromide were recorded in the presence of 

lipids. (Figure III-27)  Neither the intensity nor the maximum variation in emission 

spectrum was observed, indicating no association and effect conveyed on ethidium 

bromide from lipids. This is reasonable considering the positive charge on both ethidium 

bromide and lipids where unfavorable electrostatic interactions prohibit the effective 

complex formation.  

 Figure III-28 shows the emission spectra of DNA-EB solution in 10 mM sodium 

phosphate buffer titrating with 2 mM C8GlySp4+ lipid. After each aliquot of lipid was 

added, the solution was mixed well and incubated at room temperature for 15 minutes 

before the next measurement to allow the solution to reach equilibrium. It is noteworthy 

that the fluorescence intensity significantly dropped to almost 10% of DNA-EB without 

lipid once we slowly added up to two times charge ratio of the lipid. The emission band 

also shifted towards that of free ethidium bromide which indicated that the diminished 

emission band results from the exclusion of DNA-bound EB instead of precipitation of 
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DNA-EB-lipid complex from the solution because the latter would also show a 

decreasing emission band but in the absence of band shift.   

 The UV absorption spectra were recorded for each fluorescence measurement to 

ensure the stable solution we have in aqueous phase and less than significant scattering of 

light. (Appendix Figure A-2) This is proven to be necessary from our previous 

experiments to demonstrate the integrity and stability of the complex system.    
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Figure III-24 UV Absorption Spectrum for Ethidium Bromide and EB-DNA(I) solution. 
The samples contains 2.5 µM DNA(I) and 5 µM EB in 10 mmol NaPi buffer, pH 7.0. 
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Figure III-25 Fluorescence excitation spectra of DNA, EB and DNA-EB. The samples 
contain 2.5 µM DNA(I) duplex, 5.0 µM EB and 2.5 µM DNA(I) duplex with 5.0 µM EB, 
respectively, in 10 mM sodium phosphate, pH 7.0  
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Figure III-26 Fluorescence emission spectra of DNA, EB and DNA-EB. The samples 
contain 2.5 µM DNA(I) duplex, pH 7.0, 5.0 µM EB and 2.5 µM DNA(I) duplex with 5.0 
µM EB, respectively, in 10 mM sodium phosphate. Excitation wavelength is 510 nm.  
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Figure III-27 Fluorescence emission spectra of EB with no lipid, C2GlySp4+ and 
C8GlySp4+. Lipids’ concentration is 33.8 µM. Excitation wavelength is 510 nm.  
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Figure III-28 Fluorescence emission spectra of EB quenching by C8GlySp4+. The sample 
contains 2.5 µM DNA(I) and 5 µM ethidium bromide. Excitation wavelength is 510 nm.  
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We examined the EB fluorescence quenching property with our synthetic lipids and two 

other surfactants. The results was normalized to DNA-EB complex without any additives 

and shown in Figure III-29. C8GlySp4+ show most significant quenching ability among 

all the lipids and surfactants, followed by didodecyldimethylammonium (DDDA) and 

C18GlySp4+. C2GlySp4+ and dodecyltrimethylammonium (DTMA) hardly showed any 

quenching ability if we consider the factor that we slightly diluted the solution by 

approximately 5% during our titration process. Nevertheless the fluorescence quenching 

effect of those two lipids is much less than the lipids with bulkier and longer alkyl chains. 

The observation is due to two equilibriums among DNA, EB and lipids. In original DNA-

EB solution, there is equilibrium between DNA-EB complex and free EB with free DNA. 

By adding lipid, we disturb the equilibrium by binding lipids around DNA double helix 

and block the re-intercalation of free EB into DNA. The first equilibrium moves towards 

the side of free EB and free DNA. The second equilibrium between DNA-lipid and free 

DNA with free lipid favors the formation of stable DNA-lipid complex. If the second 

equilibrium has a higher association constant Ka2 than the first one Ka1, the dissociation 

of DNA-EB becomes favorable and the equilibrium moves towards free EB and free 

DNA which binds to lipid in irreversible mode. Herein, we observed much less 

fluorescence intensity due to the dissociation of DNA-EB complexes.   

 

EB + DNA DNA-EB
+

Lipid

ka2kd2

DNA-Lipid + EB

ka1
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 CD measurement eliminates the structure distortion of DNA helix that could lead 

to reducing the binding affinity of EB to DNA. Therefore, the outstanding fluorescence 

quenching ability of lipids can be treated as an indicator of either tighter binding with 

DNA helix or a stronger ability to reduce the intercalation of ethidium bromide. All the 

synthetic lipids consist of the same DNA-binding head group, spermine, therefore the 

binding affinity of those lipids towards DNA should  be within the similar range,  which 

conversely emphasis the important function of alkyl chains in term of blocking access of 

other molecules to DNA helix structure. 
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Figure III-29 Fluorescence quenching by the addition of spermine and lipids. Each 
sample contains 2.5 µM DNA duplex in 10 mM sodium phosphate, pH 7.0. A small 
aliquot of concentrated lipid solution (2 mM) was added to DNA and the spectra were 
recorded over the course of stable condition which is monitored by UV spectrometer.   
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Photo-induced cleavage in DNA-spermine and DNA-lipid Complex 

 

Oxidative damage in DNA-lipid aggregate 

 

 Photoexcitation of anthraquinone photosensitizer creates a radical cation, a 

positive charged hole, in DNA helix. The radical cation can migrate through the DNA via 

base stacking and get trapped at certain bases which are labile to oxidative stress. 5’-GG-

‘3 sequence is common damaged site because the lowest oxidation potential of guanine 

among four bases.48 In general 5’-G subjects to more damage than 3’-G in GG step. This 

is a characteristic observation with damage induced by intra-strand charge transport 

process. Many DNA cleavage agents, like active oxygen species, would damage the 

guanine base without specificity.  

We examined the effect of lipids on charge transport in DNA(I) in parallel with 

the characterization experiments. The autoradiograms of DNA-C8GlySp4+ and DNA-

C18GlySp4+ were reported in Figure III-30. As the radical cation migrates through DNA 

helix, the cleavage is revealed at guanine sites in GG steps with the lowest oxidation 

potential. 

 The damage at the proximal and distal GG-sequence step and at an isolated G site 

is observed in Figure III-30 after hot piperidine treatment and revealed by gel 

electrophoresis analysis. The strand breakage within AQ-conjugated duplex locates 

mainly at the 5’-G of each GG step. The damage at 3’-G of each GG site and at isolated 

G site is not as significant. Those are the characteristic observation with the oxidative 

damage caused by photo-induced intra-strand charge transfer process. As we increased 
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the concentration of either C8GlySp4+ or C18GlySp4+ lipid, the less damage at both GG 

steps was seen in the autoradiogram. 

 The initial irradiation experiment showed very significant effect of our synthetic 

lipids on inhibiting the damage at GG sites. (Figure III-30) The damage at both proximal 

and distal GG sites was reduced dramatically in the samples containing C8GlySp4+ and 

C18GlySp4+ lipid. When the concentration of lipids increased above 1:4 charge ratio (135 

uM), the oxidative damage was completely absent from the gel. The quantified damage 

analysis revealed that the damage at proximal GG sites in DNA(I) containing 1:2 charge 

ratio of C18GlySp4+ (63.5 uM) is 50-fold less than the oxidative cleavage observed in 

pure native DNA(I) samples. (Figure III-31) Whereas the samples containing C8GlySp4+ 

showed less effect than C18GlySp4+, the damage was still significantly reduced to 10 

percentage of that in pure DNA(I) sample with 137 µM C8GlySp4+ (1:4 charge ratio). 

This finding initially gave credence to the speculation that the binding of lipid forms a 

hydrophobic layer surrounding the DNA helix structure which could reduce the reaction 

of water with radical cations. This is achieved by either loosing the binding of water 

molecule with phosphate backbond and bases via hydrogen bond13-14 or reducing the 

access of surrounding water molecules to the helical duplex. 
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Figure III-30 Autoradiogram of DNA (I) with various concentrations of C8GlySp4+ and 
C18GlySp4+ lipids. Lane 1 corresponds to dark control samples without irradiation. All 
other samples were incubated with lipids for 30 min prior to 5 min irradiation at 30 oC. 
Land 2-6 corresponds to DNA (I) with 0, 0.5, 1, 2, 4 charge ratio of C8GlySp4+. Lanes 8-
10 corresponds to DNA(I) with 0.5, 1, 2 charge ratio of C18GlySp4+. Lane 7 contains the 
sample hybridized with the presence of 1:1 C8GlySp4+ lipid. 
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 5'-Gp Damage in DNA(I)-C8/C18 Lipid
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Figure III-31 The photo-induced oxidative damage at 5’-G in proximal GG sequence. 
Each sample contains 2.5 µM DNA duplex in 10 mM sodium phosphate pH 7.0 and lipid 
as indicated. 
 

 However, the complication of heterogeneous DNA samples became obvious after 

we examined thermal denaturation data, time dependant CD and UV-vis spectra. Our 

characterization experimental results indicated alternative possible explanation for the 

observed reduction in photo-induced oxidative damage. The thermal denaturation, UV 

spectra and CD spectra unveiled no evidence for stable DNA-C18GlySp4+ and DNA-

C8GlySp4+ complexes at high lipids’ concentration, above 1:1 charge ratio for C18GlySp4+ 

and 1:2 charge ratio for C8GlySp4+ respectively, in 10 mM sodium phosphate buffer, a 

condition under which we ran the photo-irradiation experiment on DNA-lipid samples. 

The further investigation using time-dependent UV and CD measurement confirmed the 

results acquired in previous regular experiment and clarified the borderline condition for 

obtaining stable DNA-lipid complexes.(Table III-3) For C8GlySp4+, the stable DNA-lipid 
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complex was obtained at up to 1:2 charge ratio. The distortion and decrement in CD 

spectra were observed for DNA-lipid complex at higher charge ratio. Time-dependent 

UV spectra showed the slow formation of aggregation and precipitation of DNA-lipid 

complex at high lipid concentration. (Figure III-17, III-22) For C18GlySp4+ the stable 

DNA-lipid complex was only obtained at charge ratio up to 1:1 according to CD spectra. 

However, even at this concentration a significant enhancement in UV spectrum was 

observed, which is associated with the formation of aggregate (Figure III-18, III-23)  

 Base on those data, DNA-lipid complexes at high lipid concentration did not 

maintain a stable water soluble structure. Aggregation, precipitation and conformation 

alteration, which causes by hydrophobic effect of lipids binding, were supported by those 

experiments. If the large amount of DNA duplex exists in aggregate form, the photo 

irradiation efficiency would be much lower due to lower exposure volume to UV light 

and stronger light scattering. Furthermore, we can not identify the DNA duplex 

conformation in such aggregate structure because of the lack of CD spectrum. There was 

even no convincing evident for DNA duplex structure. It is well established that charge 

transfer occurs through π-π stacking between base pairs.49,50 DNA helix structure is 

critical for the efficiency in charge transfer, any alteration in helix may has the significant 

effect on charge transport51,52 Some previous research showed that the aggregate formed 

between DNA and cationic lipids tend to have dehydrated structure and compact form.4-8, 

17 Therefore, any data obtained under such condition are questionable and not comparable 

with native DNA duplex soluble in aqueous solution. Herein, we have to perform the 

photoinduced oxidative damage experiment with stable and water soluble DNA-lipid 

complex with no or little conformation change.   
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 If DNA-lipid complexes form aggregate and precipitate from aqueous phase, it 

can account for the decrease of damage. First, the excitation of AQ would be strongly 

less efficient in solid phase compared to that in liquid phase due to strong light scattering. 

The charge transport process can be drastic different in aggregate form than in normal 

form because the duplex are well-packed and in rigid helix formation. In polaron hopping 

model, the relaxation and distortion of DNA segment is helping delocalize and stabilize 

the radical cation and the migrating of the radical cation.53, 54 We can not easily determine 

the conformation of DNA duplex, which has tremendous effect on charge transport 

process, in such aggregate form by the inspection of CD spectrum. Therefore the 

comparison between normal DNA and aggregate DNA-lipid complex would be invalid or 

improper at least.  Too much variable prevents us from uniquely and independently 

interpreting the data and subsequently attributing the observation to a particular origin. 

As a consequence we had to restrict our experimental condition to eliminate the possible 

aggregation of DNA-lipid complexes so that the oxidative damage from charger transport 

in DNA-lipid complex can be compared with that in nature DNA duplex without any 

ambiguity.  

The stability of DNA-lipid complex depends not only on the concentration of 

lipid and DNA duplex but also the salt concentration. Lipoplex formation and 

aggregation process accelerates in the presence of high salt concentration. Even though 

DNA-lipid complexes can be stabilized at higher lipid concentration by lowering the salt 

concentration, we can not reduce salt concentration to the extent where DNA duplex 

structure is not stable or denatured. It is well known that salt is crucial driving force for 

the annealing of DNA duplex and maintaining the structure integrity and stability of 
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DNA secondary helical structure. For instance, Z-form DNA only exists at high salt 

concentration while A-form DNA prevails under dehydrated condition and low salt. It 

also has strong impact on the DNA melting behavior. After experimenting with thermal 

denaturation of DNA(I) in various salt and lipid concentration, we decided to keep the 

salt condition consistent with previous photoinduced charge transport experiments in 

Schuster’s group.  

 The characterization experiments elaborated above, including circular dichroism, 

thermal denaturation and time-dependent UV measurement, provide a tool to fully 

examine the stability and structure of DNA-lipid complex. Combining all the data, we 

were able to find the limiting concentration for each lipid to maintain a stable complex 

with DNA.(Table III-3) The further photoinduced charge transport in DNA-lipid 

complexes experiment was carried out under such stable condition to provide comparable 

and reliable results 

 

Oxidative damage in stable DNA-lipid complexes 

 

The photo-irradiation experiment was repeated under the condition where the 

stable soluble DNA-lipid complex presents as indicated by time dependent UV and CD 

spectra. The results were shown in Figure III-32.  

It is undoubted that the oxidative damage at both proximal and distal GG steps 

had been dramatically reduced by the addition of spermine, C2GlySp4+ and C8GlySp4+ 

lipid compound. However, C8GlySp4+ lipid yields more dramatic effect than the others. 

The only major difference between three compounds lies in the dialkyl tail group. 
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C8GlySp4+ has two longer hydrophobic eight-carbon chains while C2GlySp4+ has only 

two-carbon chains and spermine has none. This is the strong evidence for our hypothesis 

mentioned earlier.    

There are three major factors contributing to the charge transport efficiency in 

DNA, radical cation injection, charge migration and the irreversible trapping of radical 

cation through the reaction with water and reactive oxygen species.  

The radical cation injection is determined by the efficiency of photoexcitation of 

anthraquinone and the nucleotide linked to anthraquinone.34 As observed in Figure III-11, 

DNA-C8GlySp4+ exhibits small but distinctive baseline enhancement over the time 

possibly due to the light scattering by the small amount of aggregate accumulated in the 

solution. However, this did not affect the photoexcitation of anthraquinone in DNA-

C8GlySp4+ complex as shown in Figure III-33. The samples were incubated with 

C8GlySp4+ lipid from 3 minutes up to 24 hours before the 3 minute UV irradiation. The 

samples were in the same condition as those in time-dependent UV measurement. No 

significant difference in oxidative damage between samples was observed. Since the 

incubation time is the only variant between samples, which is related to the amount of 

scattering light as described above, the influence of the scattered light on photo-excitation 

of anthraquinone is negligible under our experimental condition.  
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Figure III-32 Autoradiogram of a denaturing gel electrophoresis for DNA(I) with 
spermine, C2GlySp4+ and C8GlySp4+ lipids. Lanes 1 is sample w/o irradiation. Lane 2 is 
the sample w/o lipid. Lanes 3-8 correspond to the samples incubated with 1.0, 2.0 
equivalent spermine, C2GlySp4+, C8GlySp4+ lipid (charge ratio), respectively for 30 min 
before the 2.5 min irradiation and cleaved by treatment with  hot piperidine at 90 oC for 
30 min. Lane 9, 10 corresponds to Maxam-Gilbert T and A/G sequencing lanes. All 
samples contain 2.5 µM DNA in 10 mM sodium phosphate buffer.  
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Figure III-33 Autoradiogram of a denaturing gel electrophoresis for DNA(I) with 
C8GlySp4+ ( charge ratio of 2.0) lipids at different incubation time. Lanes 1 is sample w/o 
irradiation. Lane 2 is the sample w/o lipid. Lanes 3-8 correspond to the samples incubated 
with C8 lipid for 3 min, 30 min, 60 min, 6 hrs, 12 hrs and 24 hrs respectively before the 3 
min irradiation using 8x350nm Rayonet lamps and cleaved by treatment with 1M hot 
piperidine at 90 oC. Lane 9 and 10 correspond to Maxam-Gilbert T and A/G sequencing 
lanes. All samples contain 2.5 µM DNA in 10 mM sodium phosphate buffer at pH 7.0.  
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Oxidative damage induced by singlet oxygen 

  

 In aqueous solution the radical cation in DNA was not only trapped by water 

molecules but also reactive oxygen species. Molecular oxygen (3O2) is a very important 

molecule in the energy metabolism of all aerobic organisms, either as terminal electron 

acceptor in oxidative phosphorylation or as a product of photosynthesis in cyanobacteria 

and the chloroplasts of plants and green algae. Even though molecular oxygen itself is not 

very reactive, it can give rise to the formation of reactive oxygen species (ROS) which 

are superoxide radicals (O2
-), hydrogen peroxide (H2O2), hydroxyl radicals (OH•) and 

singlet oxygen (1O2).55 These molecules are highly reactive and can damage the cell 

seriously by mutating the genome, disturbing the plasma membrane integrity or 

inactivating essential proteins.56 The reactivity is determined by the amount and state of 

the electrons in the π* orbitals, which is responsible for the stability of a specific 

molecule. Triplet molecular oxygen has two electrons with parallel spins, one in each of 

its π* orbital (Figure A-4). This is the most stable state of oxygen and therefore does not 

oxidize spontaneously biological molecules. If a single electron is added to the ground 

state 3O2, the electron must enter one of the π* antibonding orbitals, which destabilizes 

the molecule by decreasing the strength of the double bond. The resulting superoxide 

radical is very reactive and reduces many molecules to get rid of the extra electron and to 

return to the stable ground state. The addition of a second electron results in O2
2- 

molecule with four electrons in the π* orbitals. This would destabilize the molecule 

completely if it would not accept two protons to form a more stable hydrogen peroxide 

molecule. The same is true for the O2•
- molecule, which is protonated to form water.56 



 100

 Instead of accepting additional electrons, molecular oxygen can be excited by 

absorbing energy. In this case the spin of one of the two parallel electrons in the π* 

orbital is reversed resulting in an electron pair with anti-parallel spins, either in the same 

orbital (1g O2) or in the higher energy form with the electrons in separate orbitals (1g+ 

O2). This oxygen form is called singlet oxygen (1O2) and is very reactive due to its 

excited state.56 The form with higher energy (1g+) is very unstable and rapidly returns to 

the lower energy form (1 g), which is therefore the only form of 1O2 with biological 

relevance.57 It can be produced either chemically by redox reactions or by 

photosensitizers, which absorb energy from UV, visible or high-energy radiation and 

transfer it to ground state oxygen converting it to singlet oxygen. Thus O2 is quenching 

the excited state of the photosensitizer. Many endogenous compounds can act as 

photosensitizers, such as flavins (FMN and FAD), porphyrins, chlorophylls, bilins, retinal, 

quinones, pterins and reduced pyridine nucleotides (NADH and NADPH).58, 59 Beside 

these, many synthetic photosensitizers are known, of which some can successfully be 

used to produce elevated concentrations of singlet oxygen in a liquid media. The most 

prominent of them are rose Bengal, methylene blue, acridine orange and neutral red.60 

Oxidation of guanosine by singlet oxygen has been the focus of considerable interest 

because of its importance in cancer etiology and its cure via photodynamic therapy.61, 62  

 In our previous study, we showed that lipids effectively reduced oxidation 

damage by binding to DNA duplex and constructing a hydrophobic layer around DNA. 

The influence of lipids on oxidative damage induced by singlet oxygen was also studied 

using rose bengal, which generates singlet oxygen when it is irradiated with light. (Figure 

III-34, III-35) In our experiment, the visible light region was chosen because DNA and 
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AQ absorb around 260 nm and 350 nm, respectively. The irradiation with visible light 

can prevent the excitation of AQ such that no intramolecular charge transport would 

occur. The singlet oxygen reaction with guanine presents a plethora of pathways and 

potential products depending upon the reaction conditions and structural context, 

nucleoside versus double strand DNA.63, 64 The studies showed that the primary product 

from guanosine in DNA duplex reacting with singlet oxygen was mainly 7,8-dihydro-8-

oxo-deoxyguanosine (8-oxoG), a species that is not alkali-labile by hot piperidine 

treatment.64 FPG enzymatic cleavage was carried out to reveal the damaged sites after 

irradiation and the results was showed in Figure III-36.  

 

 

 
 
Figure III-34 Proposed mechanism for the reaction of 1O2 with guanine in DNA duplex.64 
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Figure III-35 UV Spectrum of Rose Bengal in 10 mM sodium phosphate at pH 7.0. 
  
 
 All the Gs, either in GG steps or singlet, were damage during irradiation, a 

characteristic symptom of oxidative damage occurred via intermolecular reaction instead 

of intramolecular charge transport followed by radical cation trapping through the 

irreversible reaction with water or oxygen species. In those reactions, singlet oxygen, 

generated by rose bengal, directly attacked most oxidative liable site, guanine in DNA. 

Therefore, the extent of damage is only determined by the reaction rate of singlet oxygen 

with guanine, which is controlled by the abundance of reactants and the diffusion rate. 

There is no obvious difference in G damage among the samples with different lipid 

concentration. (Figure III-36) This can be attributed to the lack of repelling force between 

DNA-bound lipid and singlet oxygen.  
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 The finding in study further supports the hypothesis that hydrophobicity is the 

foundation of reduced oxidation damage at GG sites. The observation that lipid has no 

effect on singlet oxygen reaction with guanine is, at least partly, due to the impotency of 

holding singlet oxygen, ahydrophobic species, away from the DNA duplex.  

 

 

 

Figure III-36 Autoradiogram of a denaturing gel electrophoresis for DNA DNA(I) 
damaged by singlet oxygen from Rose Bengal at the presence of C8GlySp4+. Lanes 1 is 
sample w/o irradiation. Lane 2 is the sample w/o lipid. Lanes 3-8 correspond to the 
samples incubated with 0.1, 0.2, 0.5, 1.0, 1.3, 2.0 equivalent C8 lipid before the 15 min 
irradiation using Oriel lamps equipped with a filter and cleaved by treatment with FPG 
enzyme. All samples contain 2.5 µM DNA and 10 µM rose bengal in 10 mM sodium 
phosphate buffer.  
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Investigation on the effect of lipid concentration on charge transfer in DNA 

 

 We finally carried out photo-excitation experiment in a series of samples with 

increasing lipid concentration from 0 to 2 charge ratio. The oxidative damage at guanine 

sites was quantified (both proximal and distal G) with phosphorimagery. The damage 

was normalized to the total damage account in the sample without lipid and plotted 

against the concentration of lipids (in charge ratio). The results of 5’-G at proximal distal 

GG sequence was shown in Figure III-37. DNA-spermine and DNA-C2GlySp4+ 

demonstrated the similar damage pattern where the damage at 5’-G decreased with the 

increase in spermine or C2GlySp4+ concentration, respectively. A significantly less 

oxidative damage was observed for C8GlySp4+ when the concentration was enhanced 

above 0.5 charge ratio, i.e. 16.9 µM. This added protection against oxidative damage was 

a solid indication of hydrophobic effect from long dioctyl chains considering the structure 

similarity, the same binding group spermine, and difference, the length of dialkyl chains, 

between three compounds.  

 The damage at 5’-G at proximal GG sequence and distal GG sequence were 

compared over the series of samples (Figure III-38). The ratio between the damage at 5’-

G at proximal and distal GG sequence was plotted versa the concentration of lipid. In the 

samples containing either spermine or C2GlySp4+, the data showed little difference in the 

damage ratio over the range of concentration. As stark contrast, a dramatic decrease in 

the ratio is evident in the presence of C8GlySp4+ lipid. This is not a surprise if C8GlySp4+ 

slowed the radical cation quenching reaction with water by limiting the access from 
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radical cation to water molecule. A radical cation was injected into DNA duplex upon 

irradiation with UV light, the injected radical cation can migrate along the DNA helix π-π 

stack followed by trapping at a specific labile site or back electron transfer (BET) to 

return to initial state. Our experiment was carried out under single hit condition where 

only a small amount of DNA was involve in the reaction such that every DNA molecule 

was subject to only one photoexcitation during the experiment. The increasing damage at 

the distal site can only be the consequence of two possible reasons.  

 First, a more efficient charge transport pathway through DNA helix. It is well 

established that DNA π-π stacking, especially purine bases are the major charge carrier in 

DNA charge transport process.  The change in DNA secondary structure can disturb this 

well-defined extended π orbital in DNA helix and, therefore, affect the charge transport 

efficiency. However, the conformation change is not evident in CD spectra, which is very 

sensitive to any alteration in DNA secondary structure. (Figure III-19-III-21)  

 Second, the slower reaction rate at the first GG step allows the farther migration 

of the radical cation to reach, get trapped and react at distal GG step. The slower radical 

cation trapping rate, cooperated with the consistent charge injection and hopping rate, 

results in the enhanced 5’-G damage ratio at the distal GG step.  
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Figure III-37 Normalized proximal 5’-Gp damage in DNA at the presence of spermine, 
C2GlySp4+ and C8GlySp4+ lipid. 
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Figure III-38 Oxidation damage ratio of 5’-Gp/5’-Gd in DNA at the presence of spermine, 
C2GlySp4+ and C8GlySp4+ lipid. 
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Proposed mechanistic scheme for oxidative damage in DNA-lipid complex 

 
Charge hopping mechanisms and kinetic model 

 

 DNA mediated charge transport over a wide range of distance and time regimes 

has been under extensive investigation.65 After a decade of experimental and theoretical 

study in charge transport process, two distinct mechanisms prevail in rationalizing 

various features of DNA charge transport.  

 The superexchange-mediated tunneling mechanism, only applicable in short 

distance, was used to explain the deep distance dependence and fast transport process in 

neighboring bases. In this model the radical cations are localized on individual guanines 

because these have the lowest oxidation potential among four DNA bases,48 and tunnel 

from guanine to guanine, either on same strand or complementary strand with some 

kinetic penalty, without reside on the intervening A/T bridges.  A positive injection 

barrier for migration of guanine hole exists because of different oxidation potentials of 

DNA bases (G: Eox ≈1.3 V, A: Eox≈1.4 V). When the A/T bridge separating G “stepping 

stone” is longer than three bases, the tunneling through the energy barrier was found to be 

unrealistic by experimental data.66-68 The occupation of higher energy Adenine Bridge is 

invoked to rationalize long-range charge transport between guanines. However, the 

charge was proposed to hop along the adenines in an essentially distance-independent 

fashion.     

 Superexchange mechanism failed to explain experimental observation of distance-

dependent long distance charge transport and relatively slow radical migration rates. 

Recently time-resolved spectroscopic measurements have yielded results suggesting that 
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tunneling is not rate determining step even for short migration distance.69-72 Lewis, 

Wasielewski and coworkers have assigned the fastest isoenergetic hop, from G to G 

through a single A bridge, rate constant that is two order magnitudes less than expected 

values for tunneling theory.73, 74 The hopping rate in GTG sequence is even slower than 

that in GAG sequence. The time scope of charge transport is far greater than that large 

amplitude structural motions of DNA occurs. Those rapid motion have been shown to 

dramatically modulate electronic coupling between DNA bases.75-77 Therefore, the 

mechanism with slower rating determining step than tunneling must be sought for charge 

transport in DNA.  

 Several charge hopping mechanisms are under extensive studies to explain the 

experimental findings in long distance charge transport in DNA, for instance A-hopping 

model by Giese and coworkers,78 phono-assisted polaron hopping model by Schuster and 

coworkers 53, 54 and most recently conformationally gated hopping model by Barton and 

coworkers79. All these different views base their roots on the dynamics of DNA duplex in 

the time scale of the charge transport. During the process the thermally induced base 

fluctuations was proposed to facilitate the optimal alignment of bases 80, 81 to stabilize the 

charge and promote the migration of radical cations.  

 The phonon-assisted polaron hopping model proposed by Schuster envisions the 

polaron, a self-stabilized distortion of DNA sequence induced by charge injection, is the 

entity propagating through DNA helix, which is also gated by its nearby environments, 

such as water molecules and counterions to the phosphate anions of the backbone. The 

hopping from one site to the neighboring site is thermally activated (phonon) to 

overcome the energy barrier associated with self-trapping of the charge. In this model, 
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the number of hopping is determined by the extent of charge delocalization, size of the 

polaron, and the time scale of hopping is controlled by the height of energy barriers, the 

energy difference between polarons and bridging bases.  The latter is related to the 

natural and number of bases involved in delocalization of charge, the low energy sites, 

and bases comprised the bridge barriers, the high energy sites. Consequently the rate 

determining step for charge migration in the model is the modulation of free energy to 

overcome the energy barriers, which is associated with collective motion of DNA bases 

and its environments during each hopping time frame.75  

 Schuster group investigated the oxidative damage induced by radical cation 

transport in a series of DNA with regular repeating sequences and proposed a simple 

kinetic model to illustrate the distance and sequence dependence observed from 

experimental data.54 The model, shown in Figure III-39, takes into account of the two 

factors governing the charge transport rate through DNA helix, the radical cation trapping 

rate, ktrap and the radical migration rate, khop. The irreversible trapping rate is treated as 

constant regardless the neighboring based around GG sequence. This assumption has 

experimental supports and has been generally made for the analysis of relative reactivity 

data for radical cation in DNA. 49-50, 82-83 The khop rate was independent of directions in 

the DNA. In other words, the hopping rate from GG to GG across either (A)n or (T)n 

bridge is the same from 5’ to 3’ as it is from 3’ to 5’ which is supported by previous 

experimental data.84 The kinetic model is simple yet fits into experimental results.  

 The model predicts different charge distribution in DNA with various sequences, 

revealed by oxidative cleavage on GG sites in DNA, is a consequence from different kratio, 

equal to khop/ktrap. The ratio is not only determined by intrinsic DNA characteristic but 
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also by its environment like solvent and counterions.  However, it is important to note 

that overall lifetime of the radical cation (1/ktrap) is expected to be same for GG steps in 

native DNA because the values is solely determined by the rate of the irreversible 

trapping reaction with water and oxygen species.54,84 The trapping reaction is bimolecular 

reaction but the concentration of the water and molecular oxygen are large and 

unchanging during the reaction which is included in rate constant ktrap, a pseudo-first-

order rate constant.  

 

Figure 39 Kinetic model for radical cation hopping. 54 

 

Experimental result discussions 

 

 The irradiation of AQ-DNA in buffer solution causes reaction of the guanines at 

the GG steps. The amount of strand cleavage at the proximal GG step, 20 Å from the 

AQ-linked terminus, is 11±1 times greater than at the distal GG step, 70 Å from the AQ. 

(Lane 2 of Figure III-32)  The relative amount of reaction at GG and GG is controlled by 
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the magnitude of the rate for radical cation hopping (khop) from GG to GG (and vice versa) 

compared with the rate for irreversible trapping (ktrap) of the radical cation by reaction 

with H2O or O2.54, 84 When khop and ktrap are of comparable value, Kratio≈1 and the amount 

of strand cleavage seen at GG steps falls off approximately exponentially with distance, 

as is the case for DNA(I).  In competition with the trapping reactions that lead eventually 

to strand cleavage, annihilation of the radical cation by back electron transfer 53 from 

superoxide in solution removes the radical cation from the DNA with no net reaction.90 

 The ratio of 5’-Gp/5’-Gd in DNA without the addition of lipid and spermine is 

about 11. It is easy to postulate the kratio is somewhere close to 1 or smaller in native 

DNA used in our study based on the theoretical kinetic model described earlier. When 

kratio is close to 1 or smaller, the rate of hopping is comparable to rate of irreversible 

trapping. Consequently most of radical cations are consumed at proximal GG site before 

a significant population reaches the distal GG sites. The ratio 5’-Gp/5’-Gd in DNA does 

not significantly change at the presence of increasing amount of spermine and C2GlySp4+. 

For example, at a charge ratio of 2, for Sp4+ the amount of cleavage at proximal GG is 12 

times that at distal GG step, and for C2GlySp4+ the ratio is 10 times. This indicates slight 

change in kratio. However, when C8GlySp4+ is present at a charge ratio of 2, the amount of 

cleavage at proximal GG is only 4 times greater than it is at distal GG. This finding 

reveals that in the presence of C8GlySp4+ the rate of irreversible trapping of the radical 

cation that leads to strand cleavage decreases relative to the rate of radical cation hopping; 

that is, kratio increases, which results in relatively more reaction at the distal GG step. 

When khop and ktrap are proximately equal value, the distribution of radical cations among 
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the GG steps is determined by both thermodynamic stability on each of the GG steps and 

the rate of radical cation hopping, i.e. distance and energy barrier between bases.  

  Further evidence for the unique properties of C8GlySp4+ is revealed by 

combining the result of the total amount of reaction at the 5'-G of the proximal GG step 

(Figure III-37). Addition of Sp4+, C2GlySp4+ or C8GlySp4+ up to a charge ratio of 0.5 to 

the AQ-DNA solution causes the amount of cleavage at proximal GG resulting from 

irradiation to decrease systematically until it reaches ca. 50% of that observed in the 

absence of spermine. Further additions of Spermine or C2GlySp4+ up to a charge ratio of 

2.0 do not affect the amount of strand cleavage at proximal GG. However, the amount of 

strand cleavage continues to decrease with increasing amounts of C8GlySp4+, and at a 

charge ratio of 2.0 it is reduced to only 10% of its zero-lipid value. Clearly, radical cation 

hopping, trapping or annihilation in DNA are affected when the polycations, Sp4+, 

C2GlySp4+ replace Na+, but there is an additional effect that protects the DNA oligomers 

from reaction observed only when the long alkyl chains of C8GlySp4+ are incorporated in 

the polycations.  

 

Kinetic rate constants in charge transport 

 

 The results from charge transport in DNA-lipid complexes supports the previous 

model and indicate the back electron transfer can play an role once the rate (kbet) is 

comparable with khop and ktrap. Lewis and coworkers reported the time-resolved 

spectroscopic measurement of charge transport in DNA using stilbene as radical injector. 

In the studies, the guanine is separate from the stiblene by one or two A/T base pairs and 
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the life time of first-formed guanine radical cation is estimated to be 90 ps and 2 ns, 

respectively. The time scale is limited by the charge recombination of the radical ion pair 

once formed (back electron transfer process), which is expected to occur rapidly because 

the reaction is exothermic and not prohibited by spin conservation rules (both base 

radical and stilbene radical are in singlet state). Herein, any hopping process significantly 

slower than radical cation annihilation will not be competitive and observed subsequently. 

A similar experimental result was observed in charge transport that conducted with 

thionine. Even though  G loses an electron to generate the G radical cation in the 

presence of photoexcited thionine, the fast BET suppress the decomposition of G radical 

because of lower irreversible reaction rate consuming G radical cation, i.e. kbet >> ktrap. 

However, the integration of N2-cyclopropylguanosine (cpG ), a much faster hole trapper, 

in DNA  reveals the occurrence of charge transfer because the rapid ring opening reaction 

is fast enough to be competitive with BET, i.e. kbet <≈ ktrap.(ref 92, 93) 

 In such cases the back electron transfer plays the deterministic role in charge 

transfer process. On the other hand, the excited anthraquinone in singlet state, formed 

upon UV irradiation, undergoes rapid intersystem crossing (ISC) yielding anthraquinone 

radical in triplet state, which remove an electron from neighboring purine base to form 

AQ radical cation.  Molecular oxygen in solution will remove an electron from AQ 

radical cation and no charge annihilation will occur. Therefore the long distance charge 

transport occurs and the life time of radical cation is restricted by the irreversible trapping 

and quenching reaction (ktrap). Even though there is no report of direct determination of 

ktrap, Giese and coworker deduced that its value is in the order of 6x 104 s-1at pH 7.0 by 

analysis of kinetic data in combination with product yield.85 The slow rate constant 
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permits the long distance migration that could not be observed in Lewis’s time-resolved 

spectroscopic system. Based on ktrap and kratio value from previous experiments Schuster 

calculated the hopping rate constant in long distance charge transport from GG to GG 

sequence separated by (A/T)n bridges. The value of khop ranges from 106 to 104 s-1 as the 

length of (A/T)n bridge increase, which indicated the slow radical cation migration rate 

with the life time between 0.1 µs and 15 µs.54 

 Recently Majima and coworkers reported a first direct observation of the hole 

transfer through double-helical DNA using time-resolved transient measurement. They 

concluded that the hole transfer process over long distance in DNA occurs at the apparent 

rate constants of 1.2x104- 5.7x107 in the time scale of microsecond to milliseconds.86 The 

experimental results perfectly match the estimated value from Schuster based on ktrap and 

kratio values.  This is a much longer time scale than that required for large-amplitude 

motions of DNA and its water and counterions environment.75 This supports the notion 

that ions and water molecule ‘gate’ the dynamics of radical cation.77, 87 Any factors that 

influence the distribution of ions and water molecule surrounding DNA and the 

interaction between them should have an impact on the radical cation migration and 

quenching. 

 

Kinetic model with back electron transfer effect 

 

 After all, we integrate the rate of back electron transfer (kbet) into kinetic model to 

fully understand observed reduced oxidative damage in both GG step in DNA-lipid 

complexes. Barton and coworkers recently reported that BET can be a critical factor in 
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rationalizing the various sequence dependent damage pattern from different research 

group using different photo-oxidants. When GG step is so close to photooxidant that kbet 

is comparable to ktrap and khop, reverse damage pattern was reported, the photocleaveage 

is more intense at GG sequence distal to photooxidants than that proximal to 

photooxidants.   

 Recent theoretical investigations have suggested that the dynamics of the DNA 

environment, particularly the water molecules, may modulate the relative redox potential 

of DNA bases.91 Thermal movements of the water molecules significantly dominate the 

variation of hole state energy. This fluctuation in radical cation state energy is significant 

even at the absence of counterions in the case of DNA with methylphosphate in backbone.   
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Figure III-40 Kinetic model for the charge hopping and annihilation mechanism 

  

 Higher damage ratio at distal GG site was observed in the samples containing 

C8GlySp4+ lipid. This can be attributed to the smaller value of kratio such that radical 

cation population can distribute along DNA sequence evenly.  
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Mechanism of water reaction with guanine radical 

 

 The ratio of the proximal GG/ distal GG sequence depends not only upon the 

charge transfer but also upon the water trapping reaction rate 54, 85 as described earlier. 

Some researches have been done to address how water quenching reaction affects ktrap. 

This water trapping of a guanine radical cation should change if the reaction conditions 

are modified. For example, Giese and coworkers observed that the water trapping of the 

guanine radical cation G•+, which competes with the hole transfer to GGG, is more 

efficient at pH 7.0 than at pH 5.0, which can be explained by an increase of the water’s 

nucleophilicity.  

 The deprotonation of guanine radical without base pair yields guanosyl radical, 

which is a much poorer oxidant than a guanine radical cation, and therefore slows down 

the charge transport. In perfectly paired G:C base pairs the proton transfer from G•+ to 

water is too slow to compete with the hole transfer because the protons are fixed between 

the heterocyclic bases (Figure III-40).88 A substitution of guanine with 3’-methyl guanine 

eliminates deprotonation and enhances the charge transfer efficiency. 

 Theoretical molecular dynamic calculation by Schuster indicated that phosphate 

may play a role in modulate the reaction of phosphate with water molecule. Energy 

barrier limits the reaction rate between water molecule and guanine radical cation. The 

phosphate on the DNA backbond can interact with H2O through hydrogen bonding and 

lower the ∆G to accelerate the water quenching reaction. A substitution of phosphate 

with methyl phosphate backbone effectively quenches the strand cleavage (lower ktrap) at 
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guanine bases containing methylated phosphate without significantly alter the damage at 

the distal sites (no change in khop).   
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Figure III-41 Deprotonation of Guanine radical with and without complimentary bases.89 

 

 As described earlier, the binding of Sp4+ and lipid slows down the radical cation 

trapping and quenching rate hereby reduces the oxidative damage at GG sites. The 

mechanism of the reduced reaction rate at GG steps can not be interpreted accurately 

from our experimental data.  This is attributable to several reasons. The binding of our 

synthetic lipid toward DNA is not well defined in our experiments. A plethora of 

experimental and theoretical researches have tried to elucidate the binding affinity and 

sites of spermine on DNA duplex. Electrostatic interaction with negative charged 

phosphate backbond was commonly considered as a major driving fore for the 

interaction.13, 14 However, the polyamine binding sites in DNA have been observed 

within both the minor and major groove of DNA,95-97 slightly favoring the minor groove 
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rich in (A/T) track as shown in experimental study.98 Theoretical molecular simulation 

suggested that spermine possibly had binding locations to major groove of GC-rich 

duplexes99 and to minor groove of AT-rich duplexes.13, 100 Recent molecular dynamic 

simulation indicates that the presence of spermine makes significant influence on the 

DNA hydration and on the interaction of the sodium ions with DNA. Water molecules 

were pushed out of the minor groove by spermine which displayed a high presence in the 

minor groove and competing with sodium ion in binding to DNA phosphate and minor 

groove.101 In such case, when the spermine replaces the sodium ion to neutralize 

phosphate anion, the ion-gated modulation would be affected as the consequence of 

energetic reconfiguration of excited radical cation orbital. Native B-form DNA maintains 

a well-hydrated minor groove. The groove binding of spermine can lead to the 

redistribution of ions and waters residing the grooves and possibly closely associated 

with nucleobases through hydrogen bonding. Those microenvironments of DNA have 

been shown to modulate the nucloebases’ oxidation potential significantly.94 Spermine 

may act as a ligand to alter the distribution of sodium ion and water molecules along the 

backbone and grooves that subsequently changes the charge hopping and quenching rate.  

 Because all synthetic lipids have a spermine core as binding group for DNA, It is 

reasonable to postulate that individual lipid would bind to DNA in the similar mode as 

spermine does.  C8GlySp4+, additionally, has the ability to form a dense hydrophobic 

layer surrounding the DNA duplexes, comparing to either spermine or C2GlySp4+. The 

experimental results from singlet oxygen reaction with DNA rule out the effect of lipid 

on reducing the reaction with oxygen species. Thus, the added hydrophobic layer from 

C8GlySp4+ becomes the apparent factor to block guanine radical cation reaction with the 
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water to reduce ktrap. The slower reaction at proximal GG not only gives radical cation 

more chance to hopping to next GG steps, yielding lower 5’-Gp/5’-Gd ratio but also make 

BET, slower rate constant in AQ-conjugate system, competitive. The latter could occur 

through charge recombination with excited AQ* or the removal of an electron from 

superoxide (O2•-) in bulk media, affording no net reaction at GG sites. 

 

Summary and Perspectives 

 

 Since the determination of the molecular structure of DNA by Watson and Crick, 

the ability of the base pairs to support charge transport through π-stack array has been 

conclusively delineated by numerous investigation. Studies revealed that charge transport 

process occurs over remarkable distance at relative fast rate with shallow dependence on 

distance. Additional investigations have found it to be exquisitely sensitive to 

perturbation in the π-stack, oxidation potential of radical traps and solvation 

environments. DNA binding protein, mismatches or bulges in the base pairs has all been 

found to attenuate charge transport. The wealth of experiment evidence provoked the 

shift in the charge transfer field from whether it occurs towards ruminations about the 

mechanism of the process. The work described in this dissertation commenced in this 

highly intellectual controversial environment.  

 During this time, a super-exchange model that described DNA charge transport as 

that of hopping among easily oxidizable guanine steps and tunneling through higher 

energy adenine/thymine steps was being touted as a dominant mechanism. However, this 

mechanism did not appear to elucidate the slower rates of charge transport observed over 
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a range of distances or the shallow dependence on distance. An investigation utilizing 5’-

covalented linked anthraquinone assemblies and varying lengths of A/T sequences in 

Schuster’s group does not show marked decreases in oxidative damage yield, as would be 

expected for increasing the number of tunneling steps, but hints at a mechanism that is far 

more complicated than the proposed model of single nucleotide tunneling. A phonon-

assisted polaron hopping model, in which charge is injected into extended, transiently 

formed base distortion to stabilize the charge and the hopping occurs adiabatically, has 

been proposed as an alternative DNA CT mechanism and is more encompassing in 

describing experimental data. A kinetic scheme based on the model provides accurate 

estimation of hopping rate in long distance charge transport. The competition between 

charge hopping rate (khop) and charge trapping rate (ktrap) is deterministic in the observed 

oxidative damage at labile guanine sites due to charge transport.  In order to investigate 

the factors that affects charge trapping rate we developed a system in which DNA is 

coated with lipid to form a hydrophobic environment.  

 DNA-lipid complexes naturally occur in biological systems and have been widely 

applied to facilitate the gene transfection through cell membrane. The lipids with various 

lengths of hydrophobic alkyl chains (C2, C8 and C18) and a spermine core binding group 

were synthesized and their complexes with a 27-mer DNA were characterized by 

spectroscopic methods. Hydrophobic aggregate formation is evident at high lipid 

concentration and carefully avoided in UV-irradiation experiment to ensure the stable 

complex formation in aqueous solution and the valid comparison between native DNA 

and DNA-lipid complexes. The aggregation effect was attributed to the association of 

complexes at high concentration due to the hydrophobic effect. The fluorescence 
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quenching assay indicates the strong affinity of spermine and lipids to DNA, in which the 

intercalating ethidium bromide was replaced and excluded from DNA duplexes. The 

oxidative damage at GG sequences at either proximal or distal sites was dramatically 

reduced with no indication of DNA π-stack disturbance. The lipid with longer dialkyl 

chain, C8GlySp4+, demonstrates stronger ability to quench the reaction but enhance the 

distal/proximal damage ratio at GG sites, compared to spermine and C2GlySp4+. Since the 

amount and ratio of photocleavage is related to the radical cation hopping and the 

subsequent reaction with water and oxygen species, this led us to consider the factors that 

may explain the experimental observation. Circular dichroism spectra provide no 

evidence for the conformational transformation induced by binding of either spermine or 

lipids, which undermines the significant alteration π stacking in base pairs. Singlet 

oxygen (1O2), created by irradiation of rose bengal, damage the DNA guanine site in 

dramatic different pattern from that of photoexcitation of anthraquinone. The yield of 

oxidative damage is independent of the presence of spermine and synthetic lipids, thus 

indicating the reaction rate with oxygen species is unaffected in DNA-lipid complexes. 

We attribute the effect of lipids on reducing oxidative damage at GG sites to theirs ability 

to change microenvironment around DNA by replacing the counterions associated with 

phosphates backbone and weaken the hydration spine along minor and major groove as 

well as the backbone. The longer dialkyl chain in C8GlySp4+ acts as an additional 

hydrophobic shield from bulk aqueous media providing extra protection from the water 

quenching of radical cation. The overall slower radical trapping rate makes back electron 

transfer (BET) to anthraquinone or superoxide (O2
•-) a competitive pathway leading to no 

net reaction. 
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 With the burgeoning interest in the use of DNA in the field of microelectronics 

and the creation of effective biological sensors, it has become increasingly imperative to 

comprehend the mechanism(s) of DNA charge transport and those factors that attenuate 

the process. The work described in this project provides insight into a salient parameter 

that reduces the oxidative damage induced by charge transport and hence enhances the 

ability of DNA to support charge transport to the distal sites. Many crucial questions 

remain to be answered. Is there the relevance of the phenomenon to living systems and 

biological implications? How can we directly observe the charge transport through DNA 

without creating the strand cleavage? What is the detailed mechanism of the quenching of 

guanine radical by water molecule? Is it possible to create the high efficient DNA 

nanowire if the trapping and quenching reaction is completely eliminated? Only further 

study will elucidate the answers to these and other questions. It is essential to thoroughly 

investigate and understand the various factors governing the DNA charge transport 

process such that an accurate and general mechanism(s) can be formulated. 
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CHAPTER I 

 

INTRODUCTION 

 

Charge Transfer in DNA 

 

 One-electron oxidation of guanine base is a common cause of damage in DNA. In 

many studies damage sites far away from initial oxidation site have been reported.  How 

the electron or charge transfer through the DNA duplex structure to reach the damage site 

is still under debate.1 Two mechanisms, namely coherent superexchange for short-

distance transport 2,3 and hole 4 or polaron 5 multi-step hopping for long-range transport 

are evoked to describe this observation.6 Experimentally, it is becoming clear that long-

range hole transfer requires intermediate guanines and also adenines, to a lesser extent,  

to function as temporary charge carrieres.7,8 Much research has been done to investigate 

the mechanism of charge transfer in DNA. Photosensitizers, for instance anthraquinone 

derivatives,9,10 riboflavin,11, 12 and napthalimides,13   are often used in such research to 

intensify the damage so that the mechanism can be studied.  A unique feature of the 

cleavage is that it predominates at the 5’-G of the GG sequence, with a ratio of 

approximately 5:1 to 11:1. Selective guanine reactivity is not unique to charge transfer 

processes. It has been observed in many systems involving singlet oxygen,14 hydroxyl 

radical,15 superoxide 16 and other alkylating agents such as dimethyl sulfide and 

piperidine formate (Maxam and Gilbert sequencing reagents for G and A+G, 

respectively).17 However, these reagents showed no particular selectivity in 5’-GG-3’ 
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steps. One electron transfer from DNA base to photosensitizer, resulting in radical cation, 

may be the first step in DNA cleavage in these systems. In this process the base serves as 

electron donors, while photosensitizer acts as excited state oxidants.  

 

P* + B +P - B +  

 

 DNA’s unique secondary structure, i.e. stacking and overlapping of the π 

electrons of the DAN bases, provides a path for efficient electron/charge transfer over 

long distances. The oxidative damage at GG steps due to charge transfer as far as 180 Å 

away has been reported by Schuster and Henderson.18  

 Anthraquinone derivatives are one of such kind of intercalating photosensitizer. It 

has been well studied and proven to be very effective initiator of charge transfer in 

duplex DNA.9, 10, 19, 20 The excitation wavelength of the anthraquinone at 334 nm is far 

apart from DNA absorption band at 260 nm, which makes selective excitation feasible. 

After photoexcitation, several competing reactions will carry on leading to either 

quenching the excited AQ and base pair or charge transfer in DNA (Figure I-1). Previous 

work by Schuster has demonstrated that the fast cation hole transfer process, less than 20 

ps, effectively precludes reaction by other pathway.21 The slow back electron transfer 

(BET), 200 ps, and fast intersystem crossing from singlet state to triplet state, less than 20 

ps, attribute to the stable radical anion of triplet state AQ, in which BET is prohibited due 

to the same spin direction on both AQ and base’s unpaired electron. Oxygen further 

removes the electron from DNA helix and leaves the radical cation which undergoes 

either quenching by superoxide (O2•-) to reproduce AQ and oxygen or hole trapping and 
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migration. The latter will subsequently cause the damage of base far from radical cation 

injection site via irreversible reaction with water and oxygen. 

 

< 20 ps
AQ  +  B hυ 1AQ*  +  B isc 3AQ*  +  B

et< 20 ps < 20 ps et

1( AQ - +  B + ) 3( AQ - +  B + )

10 µs
O2

O2 -

AQ  +  B

O2 O2 -

Hole Migration

Hole Trapping

bet
200 ps

isc

AQ  +  B +

 

Figure I-1 The mechanism of anthraquinone photoexcitations (Armitage, B. Chem. Rev. 
1998, 98, 1188) 

 

 

Formation and Reaction of Guanine Radical Cation 

 

 Guanine is the predominate target of oxidation damage in long distance charge 

transfer in DNA because of its lowest one electron oxidation potential, i.e. 1.29 V at pH 

7.0, in four natural bases, shown in Table I-1,22, 23 The oxidation potential of the 

nucleoside guanosine has been studied extensively by Steenken.24, 25 It has been observed 

that the reduction potential is highly pH dependent because of the rapid deprotonation of 

the corresponding radical cation at neutral or basic pH.  However, the oxidation potential 
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of guanine in a DNA helix is very likely to be different from that of an isolated 

nucleoside due to base stacking and surrounding solvent environment. It has been 

proposed that G•+ (pKa = 3.9)25 formed in duplex DNA has more cation character than an 

isolated G due to proton transfer to N3 of cytosine which has slightly higher pKa (4.3) 

than  G•+ and result in a small equilibrium constant Keq = 2.5. This also affects the 

oxidation potential of guanine in charge transfer. 

 

Table I-1 Oxidation potentials of the DNA bases at pH 7.0. 

 

 Guanosine Adenosine Cytidine Thymidine 

E0 (V)a 1.29 1.42 1.6 1.7 

 

 

 In aqueous solution, guanosine has several pathways to produce the final 

oxidation product. After guanine loses one electron to form radical cation, it subsequently 

loses hydrogen. Following addition of oxygen, CO2 and formamide quickly fragment 

from the ring structure and lead to the observed product imidazolone and oxazolone.26 

The second pathway involves the addition of H2O to the guanine radical which followed 

by loss of hydrogens and one more electron, resulting in the formation of 8-oxoG, a 

predominately product of G radical cation quenching in DNA duplex. 8-oxoG can also be 

formed through the reaction with singlet oxygen or hydroxyl radical (Figure 5).24, 27, 28 

Both imidazolone and oxazolone are piperidine labile species whereas the 8-oxoG is the 

good target of enzymatic cleavage by formamidopyrimidine glycosolase (FPG). On the 
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other hand 8-oxoG is resistant to the cleavage by hot piperidine treatment. A rough 

estimation of ratio of 8-oxoG product to other products from irradiation damage can be 

obtained using these two complimentary measurements. In the oxidation process of 

guanosine, addition of H2O is preferred in duplex DNA, but deprotonation and reaction 

with O2 are preferred in nucleosides. 

 

NH

N

N

N

O

NH2
Sugar
phosphate

NH

N

N

N

O

NH2
Sugar
phosphate

NH

N

N

N

O

NH2
Sugar
phosphate

H

HO

1) H2O
2) - H+

- e-

- H+
NH

N

N

N

O

NH2
Sugar
phosphate

HO

-e-

1O2

NH

N

N

N

O

NH2
Sugar
phosphate

HOO [H]

- H+

NH

N

N

N

O

NH2
Sugar
phosphate

NH

N

N

N

O

NH2
Sugar
phosphate

NH

N

N

N

O

NH2
Sugar
phosphate

O
O

O2

H2O

ring fragmentation

N

N OH2N

N

R
imidazolone

N

N O

N

R

H2N

H2N

oxazolone

NH

N

N

N

O

NH2
Sugar
phosphate

O O

H

OH

NH

N

N

N

O

NH2
Sugar
phosphate

O

H

 

Figure I-2 Oxidation of deoxyguanosine 

 

 As early as 1985 Rubin and coworkers had found the reactivity of guanine toward 

photo-oxidation was sequence dependent.29 Guanines located on the 5’-side of at least 

one other purine, especially a G, are strongly preferred over all the other cleavage sites.  
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 Sugiyama and Saito have applied ab initio molecular orbital calculation on G, XG 

sites and showed that GG site has the lowest ionization potential, shown in Table 3, 

among the 10 possible stacked bases examined. They concluded the π-stacking effect of 

the purines in which the HOMO resides predominately on the 5’-G in a purine stack, thus 

the electron should be kinetically removed from the 5’-G of the sequence.30 Further 

studies revealed that 5’-GGG-3’ is a more effective trap in hole migration than 5’-GG-3’ 

due to its low ionization potential of 6.34 V.31-33 Selectivity in guanine damage of triple 

G segment is highly sequence-dependent 11, 34-36 which is attributed to different stability 

of neutral radicals (5’-XGGGX-3’)• according to ab initio molecular orbital calculations 

by Saito group.37 It is shown that 5’-TGG•G-3’ has lower energy than 5’-TG•GG-3’ 

which causes observed more damage in the middle guanine. On the other hand the G1 

orbital in 5’-CG1G2G-3’  radical is delocalized as opposite to G2 which is essentially 

localized on middle guanine which was ascribed to  stacking interaction with 5’-side G of 

the opposite strand. This explains the favorable reactivity on G1 over G2. 

 Prat et al. also performed the similar ab initio calculation and suggested that the 

origin of the GG stacking effect lies in the favorable orientation of N7 of the 3’-G 

compared to the site of oxidation of the 5’-G.  In particular, the N7 is aligned, in B-DNA, 

beneath carbonyl group of the 5’-G.38    

 These theoretical calculations were also supported by other kinetic experimental 

studies in electrochemistry.39, 40 Thus the observed order of reactivity of G sequences is 

GGGG > GGG > GG > AG > TG ≈ CG. Experimentally a guanine radical cation is the 

implied intermediate because of the observed products. 
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Table I-2 Ionization potential of stacked guanosines 

 

Sequence I.P. (eV)a E0 (V vs. NHE)b 

3’-GGGG-5’ 6.98 0.57 

3’-GGG-5’ 7.07 0.64 

3’-GG-5’ 7.28 0.82 

3’-AG-5’ 7.51 1.00 

3’-CG-5’ 7.68 1.15 

3’-TG-5’ 7.69 1.16 

G 7.75 1.20 

 

a From Reference 30 

b Calculated from IP data using E0=0.827xI.P. – 5.20 (adjusted for V vs. NHE) 
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Inquiry into the Modified Guanines 

 

 Guanine is the oxidation damage target of one electron transfer in DNA. 

Therefore modified guanine species or analogues are of great interest to investigate the 

various aspects of mechanisms of charge transfer in DNA, such as effect of oxidation 

potential, selectivity and efficiency of transport. 

 Several researches have demonstrated that 8-methyl guanine (8-MeG), a product 

of methyl radical attack on guanine residue, is one of product of DNA base free radical 

damage, both in vivo and vitro.26, 41-43 A detectable level of 8-MeG was observed in liver 

and stomach of rat treated with t-butyl hydroperoxide (t-BOOH) whose behavior is very 

likely to be shared by cumene hydroperoxide, consumed 7 billion pounds per year in 

United States.42 8-MeG has been identified as mutagenic lesion, which is capable of 

generating  G-C and G-T transversions and deletion in vitro.44 8-MedG is able to form 

base pairs with dG and dA in syn conformation(Figure 6). It has been shown that DNA 

duplex containing 8-MedG:dG and 8-MedG:dA is thermodynamically more stable than 

corresponding duplex with dG:dG and dG:dA. This fact presents a threat to the genomic 

fidelity. 

 Both 8-MeG and 8-bromoguanine (8-BrG) are known to stabilize Z-form DNA. It 

was showed 8-MeG acquires syn/C3’-endo conformation 45, 46 to pair with cytidine 

residue which is in anti/C2’-endo conformation. In such structure the hydrophobic 8-

methyl group is located in the periphery of the helix and prominently exposed to the 

solvent region.(Figure I-3)  
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Figure I-3 Structures of 8-MedG:dG and 8-MedG:dA base pairing. 

 

 One interesting feature of 8-MeG and 8-BrG is that their Eox bracket that of 

guanine,47 which makes them good candidates to investigate the effect of oxidation 

potential and structure on the electron transfer in DNA.  This research focuses on the 

synthesis of 8-methylguanine and incorporation of modified guanosine moiety to DNA 

sequences to study the electronic and steric effect on charge transport in DNA duplex. 
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CHAPTER II 

 

EXPERIMENTAL SECTION 

 

General Methods 

 

1H and 13C NMR spectra were recorded on a Varian 300 MHz Spectrometer. 

Radioactively labeled isotope [γ-32P] ATP was purchased from Amersham Bioscience. 

Synthetic oligonucleotides (gel filtration grade) were obtained either commercially from 

Midland Certified Reagent Company or were synthesized on an Applied Biosystem DNA 

synthesizer and were, therein, purified by reverse-phase HPLC. Terminally-linked 

anthraquinone oligonucleotide and oligonucleotide containing modified bases (Gm or Gbr) 

were synthesized in the second way mentioned above. The mass of each oligonucleotide 

was determined by matrix assisted laser desorption ionization time-of-flight (MALDI-

TOF) mass spectrometry. The extinction coefficients of the oligonucleotides were 

calculated using nearest-neighbor values, and the absorbance was measured at 260 nm. 

Anthraquinone-modified oligonucleotide solution concentrations were determined in 

same way except that an anthraquinone was replaced with adenine in the extinction 

coefficient determination. UV melting and cooling curves were recorded on a Cary 1E 

spectrophotometer equipped with a multi-cell block, temperature controller and sample 

transport accessory. The buffer used for all DNA experiments (Gel PAGE, CD and Tm) 

was 10 mM sodium phosphate at pH 7.0. 
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UV Thermal Denaturation 

 

2.5 µM solutions of various oligonucleotides in 10 mM phosphate buffer, pH 7.0, were 

prepared. The samples were placed in cuvettes (1.5 mL capacity. 1.0 cm path length) and 

sealed with tape to prevent evaporation of water during heating/cooling cycles. Melting 

curves were obtained by monitoring the UV absorbance at 260 nm as the temperature was 

ramped from ~90 ºC to 20 ºC at a rate of 0.5 ºC /min. Data obtained for cooling process 

was found to be same as that obtained from heating. Data was exported to origin 3.78 

where first derivative curves were obtained. The melting temperatures (Tm) were 

determined as the maxima of the first derivative plot of absorbance versus temperature. 

 

Cleavage Analysis by Radiolabeling and PAGE 

 

DNA oligomers were radiolabeled at 5’-end using [γ-32P] ATP and T4 Polynucleotide 

kinase. The labeling was performed according to the standard procedures. Radiolabeled 

DNA was purified by 20% PAGE. The DNA band was excised from the gel, eluted 

overnight and ethanol-precipitated in the presence of 1 µL glycogen. The sample for 

irradiation were prepared by hybridizing a mixture of “cold” (unlabeled) and radiolabeled 

oligonucleotide (5 µL) to a total volume of 20 uL each in 10 mM sodium phosphate, pH 

7.0. Hybridization was achieved by heating the sample up to 90 ºC for 5 min, followed by 

slow cooling to room temperature over the course of 6 hours or overnight. Samples were 

irradiated in microcentrifuge tubes in a Rayonet photoreactor (Southern New England 

Ultraviolet Company, Barnsford, CT) equipped with 8X 350 nm lamps. After irradiation, 
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the sample were precipitated once with cold absolute ethanol with presence of 1ul 

glycogen, washed twice with 80% ethanol, dried and treated with piperidine at 90 ºC for 

30 min (samples with Gbr were treated at 70 ºC for 30 min). After evaporation of 

piperidine, drying and suspension in denaturing loading buffer, samples (3000 cpm) were 

electrophoresed on a 20 % 19:1 acrylamide:bisacryamide gel containing 7 M urea. The 

gels were dried and the cleavage sites were visualized by autoradiography.  

 

FPG Enzymatic Digestion 

 

1 ml FPG enzyme and 10 µL standard buffer solution containing 50 mM TrisHCl (pH 

7.5), 2 mM EDTA, 70 mM NaCl were incubated with 5 µM DNA at 37 ºC for 1 hour. 

FPG enzyme was killed by heating at 70 ºC for 30 minutes and followed by ethanol 

precipitation at -20 ºC. The samples were analyzed by 20% gel as described above.  

  

Circular Dichroism 

 

CD spectra were recorded on Jasco-720 instrument. 5 accumulations were collected for 

each sample. Solutions were prepared containing 2.5 µM DNA duplex in 10 mM sodium 

phosphate buffer (pH 7.0). Spectrums were recorded from 200 to 350 nm.  

 

8-methylguanosinephosphoramidite Synthesis 

 

The figure II-1 was followed in synthesis of 8-methylguanosinephosphoramidite. 
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2N-isobutyryl-8-methyl-2’-deoxyguanosine (2).  2N-isobutyryl deoxyguanosine (1) (1 g, 

3.8 mmol) was added to an ice-cold solution of FeSO4.7H2O (6.7 g, 22 mmol) in 160 mL 

1N H2SO4 with stirring. Add 100 ml aqueous solution containing 6ml tert-Butyl 

hydroperoxide (70 %)   dropwise during 10 min. Keep solution under 0 ºC stirring for 1h. 

Aqueous saturated KOH solution was then added to neutralize the mixture to pH 7.0. The 

reaction mixture was filtered and the residue was washed with MeOH. Remove H2O from 

aqueous phase and wash residue with MeOH. Combine the organic phase. The crude 

product was applied to silica gel column chromatography and eluted with CH2Cl2:MeOH 

(9:1) to yield 2N-isobutryl-8-methyl-2’-deoxyguanosine (512 mg, 49%). 1H NMR 

(Me2SO-d6) o 1.13 (d, 6H, C(CH3)2), 2.06-2.15 (m, 1H, 2’-Hb), 2.51(s, 3H, 8-CH3), 2.75-

2.86(m, 2H, 2’-Ha and CH(CH3)2), 3.52-3.60(m, 2H, 5’-CH2), 3.78(m, 1H, 4’-H), 4,84(t, 

1H 5’-OH), 5.28(d, 1H, 3’-OH), 6.26(t, 1H, 1’-H).   
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5’-O-(4, 4’-Dimethyloxytrityl)-2N-isobutyryl-8-methyl-2’-deoxyguanosine (3).  After 

N2-isobutyryl-8-Methyl-2’-deoxyguanosine (2, 250 mg, 0.71 mmol) was coevaporated 

with dry pyridine (10 mL) twice under vacuum pump. It was suspended in 5 ml of dry 

pyridine when 4, 4’-Dimethyoxytrytyl chloride (95%, 304 mg, 0.85 mmol), triethylamine 

(138 µL, 0.99 mmol) were added to the solution and the mixture was stirred at room 

temperature for 2.5h. After 5 ml H2O was added, the product was extracted with diethyl 

ether (3X20 mL). The combined organic extracts were dried over MgSO4, filtered and 

concentrated at reduced pressure. The crude product was purified on silica gel column 

chromatography and eluted with CH2Cl2:MeOH (19:1) yielded 3 381 mg (82%). 1H-

NMR (Me2SO-d6) o 1.11 and 1.12 (each d, each 3H, C(CH3)2), 2.20 (m, 1H, 2’-H), 2.48 

(s, 3H, 8-CH3), 2,73 (m, 1H, CH(CH3)2), 2.99 (m, 1H, 2’-H), 3.08-3.38 (m, 2H, 5’-CH2), 

3.70 and 3.71 (each s, each 3H, O-CH3), 3.96 (m, 1H, 4’-H), 4.45 (m, 1H, 3’-H), 5.24 (d, 

1H, J = 4.9  2’-OH), 6.28 (t, 1H, J = 7.0Hz, 1’-H), 6.72-7.31 (m, 13H, phenyl of trityl), 

11.3 and 12.0 (each brs, each 1H, 1-NH and 2-NH), m/z 352(M+H)+ 

 

3’-O-[(2-Cyanoethyoxy)(diisopropylamino)phosphino]-5’-O-(4,4’-dimethyoxytrityl)-

2N-isobutyryl-8-methyl-2’-deoxyguanosine (4).  N2- and 5’-O-diprotected 8-methyl-2’-

deoxyguanosine (3, 120 mg, 0.19 mmol) was dried over P2O5. After compound 3 was 

coevaporated with dry CH2Cl2-Benzene, CH2Cl2(1 mL), diisopropylethylamine (60 µL, 

0.43 mmol, 2.3 equiv mol), and 2-cyanoethyl N, N-diisopropylchlorophosphoramidite 

(60 µL, 0.27 mmol, 2.4 equiv mol) were added, and the mixture was stirred at room 

temperature for 30 min. Formation of the product was monitored by TLC (silica gel, 

CH2Cl2/MeOH = 19/1, Rf values of product(R/S) were 0.40 and 0.51 and that of 3 was 
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0.18). After solvent was removed by evaporation, 6 mL of dry tetrahydrofuran-

benzene(1:4) was added and the mixture was stirred for 10 min. The precipitate was 

removed by filtration and evaporated to remove the solvent. Coevaporation of residue 

with dry benzene yields 4 155 mg (98%). Without further purification, the product was 

dried under vacuum pump overnight and used for subsequent oligodexoynucleotide 

synthesis. 

 

Anthraquinone-oligonucleotide Conjugate Synthesis 

 

 DNA sequence synthesis was performed on the solid phase synthesis following 

standard conditions, using cyanophsophoramidite monomer. The resin was thoroughly 

washed before the conjugate was ready to be coupled to the AQ monomer. The cartridge 

(containing resin) was removed from the synthesizer. The AQ-phosphoramidite monomer 

was dissolved in 500 µL of dry CH3CN solution containing 0.1 M tetrazole. The 

monomer was taken into the cartridge by a syringe. Once the reason was complete, the 

monomer solution was removed from the cartridge by pressure injection. The cartridge 

was placed back onto the synthesizer and the automated sequence was allowed to resume. 

The coupling efficiency was quantified by measuring the UV-absorption and the trityl 

cation released and comparing it to that of the pervious and subsequent step. 

 Removal of the oligomer from the solid support and subsequent purification by 

reverse phase HPLC proceed as usual. Dr. Nadia Bogusiavsky in Biology department 

performed solid phase synthesis and HPLC purification. The dried and purified 
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conjugates showed a light yellow color. Analytical HPLC, UV-vis and MALDI-TOF 

were used to determine the purity and identity of the conjugate.  
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Chapter III 

 

RESULTS  

 

UV Melting Experiment of DNA sequences 
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Figure III-1 Melting temperature curves of DNA duplexes (DNA 1- 5) 

 

 From melting temperature curves (Figure III-1, B-2, B-3) we can see there are 

few changes in melting temperatures (Table III-1) in each series, which is an indication 
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of the conservation of DNA secondary structure within DNA sequences containing 

modified guanine bases.  

 

Table III-1 Tm data of all DNA sequences 

 

DNA Sequence Tm (oC) 

DNA(1) 57.6 

DNA(2) 54.7 

DNA(3) 55.2 

DNA(4) 53.7 

DNA(5) 54.2 

DNA(6) 57.7 

DNA(7) 56.1 

DNA(8) 57.5 

DNA(9) 55.7 

DNA(10) 60.1 

DNA(11) 61.2 

DNA(12) 60.1 
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CD Spectrum of DNA Sequences 
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Figure III-2 CD spectrum of DNA duplexes 

 

A slight shift in DNA containing 8-BrG at 270 nm was observed. (Figure III-2, B-4, B-5) 

An increase of signal at 240-250 nm region was obtained in DNA strands containing 

modified guanine. However all the sequences still pertain the B-form (or B-like) DNA 

structures.  
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GmG and GG Comparison 

 

 The following duplexed DNA sequences were synthesized and studied to 

determine the reaction of Gm comparing to the normal G and the effect of oxidation 

potential on reactivity. The proximal and distal GG step damage were measured by 

radioactivity imaging. Two GG steps are presented in bold text to emphasize the key 

sequence differences and monitoring part between the duplexes.  

 

3’-TTTACGpGpCCATGTTTGTACCGdGdCATGC-5’ DNA(1) 

3’-TTTACGpGmCCATGTTTGTACCGdGdCATGC-5’ DNA(2) 

Figure III-3 DNA sequences studied in Gm and G full duplex comparison 

 

 After irradiation at average temperature around 30 ºC, the duplexes were treated 

with hot piperidine (90 ºC) and then analyzed by PAGE and autoradiography. When 

irradiated for identical time, the cleavage efficiency of duplex DNA(1) at proximal GG 

step is much higher than that of duplex DNA(2). The distal GG step is undetectable for 

DNA(1). One the other hand ratio of 3’-G over 5’-G damage is significant higher in 

DNA(1) than in DNA(2) as shown in Figure 13. Oxidation potential of Gm was reported 

as a.k.a. 0.5 v lower than that of G. it’s was postulated that it was lower oxidation 

potential causing Gm more easily oxidized and damaged.  
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GmGm and GG Doublet Comparison 

  

 In order to further evaluate the effect of Gm on charge transfer through DNA, the 

following two duplexes were designed, two Gs in proximal GG step in DNA(3) and two 

Gs in distal GG step in DNA(4) were substituted by Gm. Would two Gm further lower the 

oxidation potential and cause more damage on GG step?  

 

3’-TTTACGpGpCCATGTTTGTACCGdGdCATGC-5’ DNA(1) 

3’-TTTACGmGmCCATGTTTGTACCGdGdCATGC-5’ DNA(3) 

3’-TTTACGpGpCCATGTTTGTACCGmGmCATGC-5’ DNA(4) 

Figure III-4 DNA sequences studied in two Gm experiment 

 

 Duplex were irradiated for 5 min at 30 ºC. After being subjected to piperidine 

treatment and then analyzed by PAGE and autoradiography, there is even more 

noteworthy difference between those two modified G containing duplexes and normal 

DNA duplex. DNA(3), with two Gm in proximal step, had significantly high damage in 

both Gm while the damage in distal GG step was not detectable. DNA(4), with two Gm in 

distal step, had more damage in distal than that in normal strand. One interesting 

observation is that both Gm in GG step showed similar damage. In other words 5’-G 

selectivity in normal DNA sequence was absent.(Figure III-5) 
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Figure III-5 Autoradiograms of a denaturing gel electrophoresis for 5’-32P-labeled DNA(1)(Lane 1, 2), 
DNA(2)(Lane 3, 4), DNA(3)(Lane 5, 6), DNA(4) (Lane 7, 8). The first lane in each sample is dark control 
(without irradiation but with hot piperidine treatment) while the second lane is irradiation sample. Lane 9, 
10 are T and G Maxam-Gilbert sequencing lane for DNA(1). All samples are irradiated at 350 nm for 5 min, 
followed by piperidine treatment at 90 °C for 30 min. 
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 There is no doubt that incorporated Gm in GG step cause significant more damage. 

Two Gm may even lower the oxidation potential at GG step and cause more damage than 

those in GG step containing single Gm. However, if this effect is thermodynamic or steric 

is still unclear. Whether oxidation potential of Gm itself is good enough to induce the 

more damage or it is the “well-known GG step effect” is next question to investigate. 

 

 Isolated AGm and TGm Full Duplex Comparison 

  

 Every duplex we have studied so far has Gm incorporated into GG step. Whether 

this effect stems from special configuration of GG step or from oxidation potential of 

guanine is still unknown. If latter is true, it would be expected that isolated Gm in duplex 

would cause more damage than normal isolated G too. Four more duplexes were 

designed to test this proposal (Figure III-6) 

 

3’-TTTAGpGpCCATGTTTGTACCGdGdCATGC-5’ DNA(1) 

3’-TTTAApGpCCATGTTTGTACCGdGdCATGC-5’ DNA(6) 

3’-TTTAApGmCCATGTTTGTACCGdGdCATGC-5’ DNA(7) 

3’-TTTATpGpCCATGTTTGTACCGdGdCATGC-5’ DNA(8) 

3’-TTTATpGmCCATGTTTGTACCGdGdCATGC-5’ DNA(9) 

 

Figure III-6 DNA sequences studied in the A Gm and T Gm duplex comparison. 
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Figure III-7 Autoradiograms of a denaturing gel electrophoresis for 5’-32P-labeled DNA(1)(Lane 1, 2),  
DNA(2) (Lane 3, 4 ), DNA(6)(Lane 5, 6), DNA(7)(Lane 7, 8), DNA(8) (Lane 9, 10), DNA(9)(Lane 11, 12).  
The first lane in each sample is dark control (without irradiation but with hot piperidine treatment) while 
the second lane is irradiation sample. The others are Maxam-Gilbert T and G sequencing lanes. All samples 
are irradiated at 350 nm for 5 min, followed by piperidine treatment at 90 °C for 30 min. 
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 Note that the DNA(7) has AmG at the same position as GG step in DNA(1) and 

DNA(9) has TGm at same position as proximal GG step in DNA(1). Other than these 

there is no difference in other base sequences. These four new duplexes were irradiated 

for longer time, i.e. 15 min, than for DNA(1) but under the same condition used 

previously. The cleavage efficiency of Gm containing strands was proved to be higher 

than those of duplexes containing normal G.(Figure III-7) 

 

Gbr and G Full Duplex Comparison 

 

 In order to investigate more thermodynamic effect of base on charge transfer on 

DNA, Gbr (8-BrG), with higher oxidation potential (∆E0 = 0.06 v) than normal G, was 

linked into to proximal GG step in DNA. If the damage at GG step is controlled by 

thermodynamic effect, it should be expected that damage at GbrGbr step will be smaller 

than normal GG and GmGm. Note the proximal and distal GG steps were shown in bold 

text. 

 

3’-TTTAC Gp Gp CCATGTTTGTACCGdGdCATGC-5’ DNA(1) 

3’-TTTAC GbrGbrCCATGTTTGTACCGdGdCATGC-5’ DNA(5) 

 

Figure III-8 DNA sequences studied in Gbr duplex comparison 

  

 Following the irradiation, the Gbr containing duplex was treated with piperidine 

and then analyzed by PAGE and autoradiography. The efficiency of proximal GbrGbr step 
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in Gbr containing duplex was much reduced compared to normal GG step. Note that in 

this experiment, the Gbr duplex was subjected to piperidine treatment at 70 ºC., instead of 

90 ºC due to significant damage to Gbr by hot piperidine at 90 oC. A further experiment 

showed that treatment at 70 ºC could reflect the similar damage as treatment at 90 ºC 

caused by irradiation but would not lead to overwhelming damage to non-irradiated Gbr. 

(Figure III-10) 

    

DNA with Triple G Step Comparison 

 

 Several earlier researches showed that triple G (GGG) step is a much deeper trap 

(E0= 0.64v much lower than calculated E0 of GG) than GG for radical cation migrating 

through the DNA duplex.13, 31, 37 What is the effect of Gm compared to GGG is an 

interesting question since the difference in E0 between Gm and G is smaller than that 

between GGG and G.  Therefore we synthesized the DNA sequences containing a GG, 

GGG and GGmG sequence between the other two GG steps. (Figure III-9) 

 

3’-TCACTGpGpCTT GpGp TTCGdGdTGCAT-5’ DNA(10) 

3’-TCACTGpGpCTT GGG TTCGdGdTGCAT-5’ DNA(11) 

3’-TCACTGpGpCTT GGmG TTCGdGdTGCAT-5’ DNA(12) 

Figure III-9 DNA sequences studied in triple G duplex comparison 

 

 Following the 15 min irradiation, the duplexes were treated with piperidine and 

then analyzed by PAGE and autoradiography. The efficiency of proximal GG step in 

triple G containing duplex was much reduced compared to normal GG step. DNA(10) has 
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three GG steps. It is used as a comparison with DNA(11) and DNA(12). DNA(11) 

showed little difference from DNA(10) except that there was more damage in the middle 

G in G triplet. On the other hand, damage at both proximal and distal GG step was 

significantly reduced in DNA(12) and an increase of damage at 5’-G of the G triplet was 

observed. (Figure III-10) 

 

Radioactivity Counts Results 

 

 All the sequences of DNA studied are listed in Table III-2. The corresponding 

phosphorimagery count results are shown in Table III-3. 
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Figure III-10 Autoradiograms of a denaturing gel electrophoresis for 5’-32P-labeled DNA(10)(Lane 3, 
4), DNA(11)(Lane 5, 6), DNA(12)(Lane 7, 8), DNA(5) (Lane 11,12).  The first lane in each sample is dark 
control (without irradiation but with hot piperidine treatment) while the second lane is irradiation sample. 
The others are Maxam-Gilbert T and G sequencing lanes. All samples are irradiated at 350nm for 15 min, 
followed by piperidine treatment at 90 °C (DNA(10)-(12)) or 70 °C (DNA(5 ) for 30 min.  
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Table III-2 The sequences of DNA in experiment 

 

AQ-DNA(I) 5’-AQ- A A A T G C C G G T A C A A A C A T G G C C G T A C G -3’ 

DNA(1) 3’- T T T A C GP GP C C A T G T T T G T A C C G G C A T G C -5’ 
DNA(2) 3’- T T T A C G Gm C C A T G T T T G T A C C G G C A T G C -5’ 

DNA(3) 3’- T T T A C Gm Gm C C A T G T T T G T A C C G G C A T G C -5’ 

DNA(4) 3’- T T T A C G G C C A T G T T T G T A C C Gm Gm C A T G C -5’ 

DNA(5) 3’- T T T A C GB GB C C A T G T T T G T A C C G G C A T G C -5’ 

AQ-DNA(I) 5’-AQ- A A A T G Z C G G T A C A A A C A T G G C C G T A C G -3’ 

DNA(6/8) 3’- T T T A C X G C C A T G T T T G T A C C G G C A T G C -5’ 
DNA(7/9) 3’- T T T A C Y G C C A T G T T T G T A C C G G C A T G C -5’ 

AQ-DNA(IV) 5’-AQ- A G T G A C C G A A C C A A G C C A C G T A      -3’ 
DNA(10) 3’- T C A C T Gp Gp C T T G G T T C G G T G C A T      -5’ 

AQ-DNA(V) 5’-AQ- A G T G A C C G A A C C C A A G C C A C G T A     -3’ 

DNA(11) 3’- T C A C T G G C T T G G G T T C G G T G C A T     -5’ 

DNA(12) 3’- T C A C T G G C T T G Gm G T T C G G T G C A T     -5’ 

159 
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Table III-3 Efficiency of strand cleavage in DNA oligomers measured by PAGE and 
phosphorimagery 
 

.  
DNA 3’-Gp 5’-Gp 5’-Gp 

/3’-Gp 
3’-Gd 5’-Gd 3’-Gc m-Gc 5’-Gc Gp/Gd b 

DNA(1) 6,500 57,00 9 1,400 3,500    10 
DNA(2) 30,000 94,000 7.4 5,00 1,200    70 
DNA(3)  101,000 180,000 1.8 <100 770    >100 
DNA(4) 23,000 172,000 7.4 74,000 124,000    1.4 
DNA(5) 9,600 14,500 1.5 1,200 4,600    4.2 
DNA(6) NA 10,300  900 2,000    5 
DNA(7) NA 61,000  520 5,100    11 
DNA(8) NA 1,200  1,000 700    1 
DNA(9) NA 7,000  80 150    37 
DNA(10) 1,100 13,800 13 500 6,400 500 NA 7,000 2.2 
DNA(11) 860 14,200 16 2,000 10,700 950 12,400 9,000 1.3 
DAN(12) 1,300 6.800 5.2   500 2,400 20,500 3.0 

 
 
 
a. The data are the number of counts measured at the indicated base by phosphorimagery 
For instance, 3’-Gp refers to the 3’-G in the proximal GG step of DNA oligomers 1-12. 
The number of counts is proportional to the amount of damage of strand cleavage at the 
nucleotide.  
 
b. The ratio of the number of counts at two sites, as indicated, which is a measure of the 
relative yield of radical cation reactions at those locations, subsequently resulting in the 
strand damages. 
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CHAPTER IV 

 

DISCUSSIONS 

 

 In normal DNA duplexes, long distance charge transfer was visualized up to 

about 22 base pairs from the AQ as alkali labile damage at G22, although the intensity of 

damage is reduced at the distal GG step. Several theoretical calculations have reported 

the IP of G is highly dependent on the flanking sequences and stacked Gs, such as G in 

doublet (GG) and triplet (GGG) possessing much lower IPs than that of single G (Table 

I-2).13, 31, 30, 41 In principle, it should be possible to trap the radical cation by introduction 

of a residue with an oxidation potential known to be lower than that of the natural DNA 

bases. On the order hand, a residue with higher oxidation potential than that of the natural 

base should lead to less trapping of radical cations, i.e. less damage at that residue. Those 

residues should cause little distortion to the DNA structure in order to preserve the 

original overall π-stack, which is critical for charger transfer study and comparison with 

original DNA duplex. 8-MeG and 8-BrG, shown in Figure IV-1, are two promising 

candidates. 

 The proposed chemical decomposition of guanine radical cation has been 

described in Figure I-2. A reasonable postulation induced from this mechanism is that 8-

methyl guanine, which has a methyl group blocking C8 position of guanine, will 

eliminate the pathway through the intermediate radical species to yield 8-oxoguanosine. 

It’s well known that 8-oxoguanosine is not susceptible to hot piperidine treatment and 

gives cleavage at this position. However, it can undergo other routes to produce 
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piperidine liable products. This can enhance the damage shown under piperidine 

treatment. In addition 8-methyl guanosine has lower oxidation potential than normal 

guanosine. It is supposed to be more easily oxidized thermodynamically.  
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Figure IV-1 Guanosine and 8-MeG, 8-BrG and 8-oxoG derivatives. 

 

 Several studies49, 50 on 8-oxoG (Figure IV-1) containing duplex supported the 

formation of hydrogen bonds between 8-oxoG and C. Similarly it is quite reasonable to 

predict that 8-MeG and 8-BrG can form hydrogen bonds with C (Part I Figure I-2). Both 

the CD (Figure III-1) and the melting temperature data (Figure III-2) indicate that there is 

little difference between normal DNA duplex and DNA duplexes containing 8-
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methylguanosine and 8-bromoguanosine. It suggests that 8-MeG and 8-BrG are able to 

from Watson-Crick base pair with C and preserve the overall duplex structure with minor 

structural change localized around modified guanosine.  

 One electron oxidation of DNA has been studies extensively. The primary 

damage site in DNA duplex is Gn( n = 2, 3) which has been attribute to lower oxidation 

potential of G in Gn based on theoretical calculation.30,31,37,38,48 Most calculations indicate 

that IP of G in a Gn( n = 2, 3) sequence is much lower than that of isolated G (Table IV-1) 

 

Table IV-1 The IP differences between isolated G and that of Gn 

 

 G  in GG G in GGG 

∆IP (V) -0.5 -0.7 

 

 

 Recently, Ratner and coworkers incorporated these estimates into analysis of 

charge hopping in DNA.51 The experimental finding is not totally in agreement with the 

calculation.  

 Here we examine the effect of Eox and structure on the transport and reactions of 

radical cation in duplex DNA. In our experiments radical cation introduced at 5’-terminus 

of AQ-DNA(I) migrate through the proximal GG step in normal duplex and cause the 

damage at the distal GG step. After introducing one 8-MeG at 5’-position of proximal 

GG Step it significantly reduced the damage at distal GG step and more strikingly cause 

more damage at 3’-G in proximal GG step. One more step further, we found more 
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efficient charge transfer in DNA duplex with two 8-MeGs in proximal GG step. No 

detectable strand cleavage can be observed at distal GG step and no significant difference 

between two 3’- and 5’-MeG. Apparently, two factors, electronic or steric, have to be 

considered for the difference between normal GG and Gm containing strands. From 

thermodynamic perspective, 8-MeG has lower oxidation potential than normal G while 8-

BrG has higher oxidation potential. Comparing the experimental data between DNA(3), 

two Gm in proximal GG step,  and DNA(5), two Gbr in proximal GG step, we saw 

tremendous impact of oxidation potential on the oxidation damage at the modified GG 

site and charge transport to the distal GG step. 

 

Table IV-2 Oxidation Potential of 8-substituted Guanosine Derivatives 

 

 Gm G Gbr 

Ep/2(V vs. AgCl) 1.16 1.28 1.34 

 

 

 Gn has been proposed to be a deep trap of charge transfer both experimentally 32,52 

and theoretically.13,30,31,37,48 Ratner and coworkers contributed the difference between GG 

and GGG to relaxation which is around 30 times faster in GGG than that in GG. Saito 

and coworkers claim the base stacking effect and stability of neutral radical play an 

important role in controlling the oxidative damage. In our experiment, there is significant 

difference in the efficiency of proximal GG strand cleavage. The normal DNA (1) gives 

the cleavage at both the proximal and distal GG steps. We have more distal damage when 

we have two Gm in distal GG step while keeping proximal GG with normal G. On the 
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other hand, there is little perturbation of damage at proximal GG observed for sequence 

containing GGG step. This demonstrates that GGG is not a very deep trap as many 

calculations indicated, which is also supported by other studies on different synthetic 

DNA system.52  

 In DNA(5) 3’- and 5’-Gbr has similar efficiency which indicates the change in 

structure also influences the relative reactivity of two GG in GG step. Results from the 

others Gm containing strands also yielded the similar observation.  

 Overall, Gm, even with relative modest lower Eox difference compared to normal 

G, is clearly a deeper trap for radical cation migration in DNA than G triplet and 

introduction of either modified guanine (Gm or Gbr) reduced the selectivity of 5’-G over 

3’-G, which is commonly observed in normal GG step. Electronic properties of the 

substituted guanines affect transport of the radical cation and steric effects influence the 

relative amounts of reaction at the 3’- and 5’-guanines. Most calculations only consider 

the effect of geometry (many from crystal structure) and base stacking. Studies have 

shown that radical cation introduction on DNA structure, solvent (H2O in aqueous 

solution) organization and distribution and association of counter ion around DNA 

significantly attributes to DNA structure and charge transport in DNA.53-55 We have to 

take into account flexible DNA secondary structure and environment at transition state 

structure to give more accurate estimation on IP of guanine radical in DNA charge 

transport process.  

 One surprising phenomena observed in this studies is that incorporation of either 

modified nucleobases cause the loss of selectivity of 5’-G in GG step. Prat et al. proposed 

that stacking orientation of the 3’-G on 5’-G lower the oxidation potential of 5’-guanine. 
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If this proposal holds, we should obtain different geometry in 5’-GGm-3’ and 5’-GGbr-3’ 

stacking with similar ab initio calculation. We can further include counter ions and H2O 

into calculation model to explore the effect of solvent environment on the charge transfer 

in DNA.  
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APPENDIX A 
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Figure A-1 The mechanism for DCC coupling reaction 
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Figure A-2 UV spectra of DNA(I)-EB-C8GlySp4+. The sample contains 2.5 µM DNA(I) 
duplex, 5 µM Ethidium Bromide in 10 mM sodium phosphate at pH 7.0. C8GlySp4+ was 
titrated into DNA solution in small aliquot and incubated for 15 min before the 
measurement.  
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Figure A-3 Autoradiograms of a denaturing gel electrophoresis for  DNA(I) with C2GlySp4+, C8GlySp4+, 
C18GlySp4+ lipid. Lanes 1-4, 6-9, 11-14 correspond to the samples incubated with 0.5, 1.0, 1.5, 2.0 
equivalent C2GlySp4+, C8GlySp4+, C18GlySp4+ lipid (charge ratio), respectively. Lane 5, 10, 15 correspond 
to the samples hybridized with 1 equivalent C2GlySp4+, C8GlySp4+, C8GlySp4+ lipid respectively. All 
samples was incubated for 30 min before the 2.5 min irradiation using 8x350nm Rayonet lamps and 
cleaved by treatment with 1M hot piperidine at 90 oC. All samples contain 2.5 uM DNA in 10 mM NaPi 
buffer.  
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Figure A-4 Scheme for the formation energy of DNA-lipid complexes via two different 

routes. 

 

 
 

Figure A-5 Electron configuration of active oxygen species. 

ss-DNA + lipid 
ds-DNA + lipid 

DNA-lipid Aggregate 
DNA-lipid complexes
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Figure A-6 Autoradiogram of a denaturing gel electrophoresis for DNA(I) damaged by 
singlet oxygen from Rose Bengal at the presence of spermine. Lanes 1 is sample w/o 
irradiation. Lane 2 is the sample w/o lipid. Lanes 3-8 correspond to the samples incubated 
with 0.1, 0.2, 0.5, 1.0, 1.3, 1.7, 2.0 equivalent spermine before 15 min irradiation using 
Oriel lamp and cleaved by treatment with FPG enzyme. All samples contain 2.5 µM 
DNA in 10 mM sodium phosphate buffer.  
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Figure A-7 Autoradiogram of a denaturing gel electrophoresis for DNA(I) damaged by 
singlet oxygen from Rose Bengal at the presence of C2GlySp4+. Lanes 1 is sample w/o 
irradiation. Lane 2 is the sample w/o lipid. Lanes 3-8 correspond to the samples incubated 
with 0.1, 0.2, 0.5, 1.0, 1.3, 1.7, 2.0 equivalent C2GlySp4+ before 15 min irradiation using 
Oriel lamp and cleaved by treatment with FPG enzyme. All samples contain 2.5 µM 
DNA in 10 mM sodium phosphate buffer.  
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Figure A-8 Autoradiogram of a denaturing gel electrophoresis for DNA(I) at various 
concentration of spermine. Lanes 1 is sample w/o irradiation. Lane 2 is the sample w/o 
lipid. Lanes 3-11 correspond to the samples incubated with 0.1, 0.2, 0.35, 0.5, 0.75, 1.0, 
1.3, 1.7, 2.0 equivalent spermine  for 30 min before the irradiation for 2.5 min using 
8x350nm Rayonet lamps and cleaved by treatment with 1M hot piperidine at 90 oC. All 
samples contain 5 uM DNA in 10 mM sodium phosphate buffer.  

1         2           3       4          5         6         7         8       9        10       11 
 
 
 
G 
G 
 
 
 
 
 
 
 
 
 
 
 
 
 
G 
 
G 



 173

 

 
 
Figure A-9 Autoradiogram of a denaturing gel electrophoresis for DNA(I) at various 
concentration of C2GlySp4+ lipid. Lanes 1 is sample w/o irradiation. Lane 2 is the sample 
w/o lipid. Lanes 3-11 correspond to the samples incubated with 0.1, 0.2, 0.35, 0.5, 0.75, 
1.0, 1.3, 1.7, 2.0 equivalent C2GlySp4+ lipid (charge ratio) for 30 min before the 
irradiation for 2.5 min using 8x350nm Rayonet lamps and cleaved by treatment with 1M 
hot piperidine at 90 oC. All samples contain 5 uM DNA in 10 mM sodium phosphate 
buffer.  
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Figure A-10 Autoradiogram of a denaturing gel electrophoresis for DNA(I) at various 
concentration of C2GlySp4+ lipid. Lanes 1 is sample w/o irradiation. Lane 2 is the sample 
w/o lipid. Lanes 3-11 correspond to the samples incubated with 0.1, 0.2, 0.35, 0.5, 0.75, 
1.0, 1.3, 1.7, 2.0 equivalent C8GlySp4+ lipid (charge ratio) for 30 min before the 2.5 min 
irradiation using 8x350nm Rayonet lamps and cleaved by treatment with 1M hot 
piperidine at 90 oC. All samples contain 5 uM DNA in 10 mM sodium phosphate buffer.  
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Table A-1 Normalized proximal 5’-Gp DNA(I) damage at the presence of spermine, 
C2GlySp4+ and C8GlySp4+ lipid 
 
 

Charge Ratio Spermine C2GlySp4+ C8GlySp4+ 
0.0 1.00 1.00 1.00 
0.1 0.80 0.74 0.76 
0.2 0.63 0.64 0.67 

0.35 0.54 0.61 0.65 
0.50 0.48 0.56 0.30 
0.75 0.59 0.49 0.34 
1.0 0.53 0.49 0.17 
1.3 0.50 0.48 0.15 
1.7 0.55 0.48 0.12 
2.0 0.48 0.46 0.10 

 
 
 
Table A-2 Oxidation damage ratio of 5’-Gp/5’Gd in DNA(I) at the presence of spermine, 
C2GlySp4+ and C8GlySp4+. 
 
 
 

Charge Ratio Spermine C2GlySp4+ C8GlySp4+ 
0.0 10.5 10.7 11.0 
0.1 10.8 10..3 12.0 
0.2 11.0 9.7 11.6 

0.35 11.5 10.3 10.8 
0.5 11.6 9.3 10.9 

0.75 11.5 9.6 9.7 
1.0 12.3 9.0 8.1 
1.3 12.3 9.1 6.8 
1.7 12.1 10.4 6.1 
2.0 12.6 9.8 5.1 
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Figure A-11 UV transmittance profile of the filter 51 used for Rose Bengal experiment 
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APPENDIX B 
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Figure B-1 Anthraquinone 5’-linked DNA 
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Figure B-2 Tm Experiment of DNA Sequences 6-9. 
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Figure B-3 Tm experiment of DNA sequences 10-12.  
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 Figure B-4 CD spectra of DNA sequence 6-9 
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CD spectrum of DNA 10-12
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Figure B-5 CD spectra of DNA sequence 10-12 
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