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flew all the way from San José, CA to attend my defense? I still remember those journeys

to Atlanta diner at 4 or 5 am to have a quick bite before calling it a night. Shabbir has also

been a great friend and roommate for the last year.

Beyond these, I have made a great number of friends in Georgia Tech, with whom I

shared many a good time. Ashwini and Preeti were always there to help me; I don’t know

how I could have survived the last six months without them. I have met many nice people

and made great friends in Georgia Tech and Purdue. Since this is not an autobiography, I

will not mention their names.

Finally, I would like to thank my grandparent, my parents, my aunts Shobhana and

Kamal, my uncle Mohan and my cousin Umesh for their love and support. I could not have

possibly come this far had it not been for their strength and their belief in my abilities.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTER I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Reverse-Flow Microreactor . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Control of steady state switching in a bioreactor . . . . . . . . . . . 4

1.3 Thesis Objectives and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 6

PART I PERIODIC PORT SWITCHING

CHAPTER II HYDROGEN GENERATION IN A REVERSE-FLOW MI-
CROREACTOR: MODEL FORMULATION AND SCALING . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Reactor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Description and model equations . . . . . . . . . . . . . . . . . . . 12

2.2.2 Computing velocity and pressure fields . . . . . . . . . . . . . . . . 14

2.2.3 Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Solution Method and Validation . . . . . . . . . . . . . . . . . . . . 18

2.3 Time Scale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Analysis of Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Unidirectional and Reverse-Flow operation: GOS model . . . . . . 21

2.4.2 Simulation using NK Model . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Effect of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



CHAPTER III SIMULATION AND ANALYSIS OF THE REVERSE-FLOW
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Adiabatic reactor: Base case . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Effect of Reactor Length . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Effect of Heat Losses . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Analysis of the Reverse-Flow Operation . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Nominal Reactor: Favorable thermodynamic conditions . . . . . . . 40

3.3.2 Better thermal utilization in a short reactor . . . . . . . . . . . . . 44

3.3.3 Using reactor as a regenerative heat exchanger . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER IV SENSITIVITY AND OPERABILITY ANALYSIS OF THE
MICROREACTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Sensitivity to kinetic parameters . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Optimal feed conditions . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Improved Catalyst Placement . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Kinetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Operability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Hydrogen throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Catalyst loading and Catalyst deactivation . . . . . . . . . . . . . . 70

4.4.3 Reactor material of construction . . . . . . . . . . . . . . . . . . . . 72

4.5 Opposed Flow reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

PART II SWITCHING BETWEEN MULTIPLE STEADY STATES

CHAPTER V CYBERNETIC MODEL PREDICTIVE CONTROL OF
BIOREACTORS WITH MULTIPLE STEADY STATES . . . . . . . . 83

5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



5.2 Reactor Modeling using Cybernetic Framework . . . . . . . . . . . . . . . 85

5.2.1 Bacterial growth on two substrates . . . . . . . . . . . . . . . . . . 87

5.2.2 Continuous Hybridoma culture . . . . . . . . . . . . . . . . . . . . 90

5.3 Successive Linearization-based MPC . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Model prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Control implementation . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Microbial reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Steady state switching in hybridoma reactor . . . . . . . . . . . . . 102

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER VI SIMULATION-BASED METHOD FOR OPTIMAL STEADY
STATE SWITCHING IN A BIOREACTOR . . . . . . . . . . . . . . . . 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Receding horizon control . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.3 Conventional DP algorithms . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Simulation-based Approximate Dynamic Programming . . . . . . . 115

6.3 Application of simDP to a Microbial Cell Reactor . . . . . . . . . . . . . . 116

6.3.1 Suboptimal control law: slMPC . . . . . . . . . . . . . . . . . . . . 117

6.3.2 Obtaining optimal cost-to-go function approximator . . . . . . . . . 117

6.3.3 Online implementation . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.4 Improvement in the Strategy . . . . . . . . . . . . . . . . . . . . . . 119

6.3.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

CHAPTER VII ON THE CHOICE OF COST APPROXIMATOR AND
ITERATION ALGORITHM IN SIMDP . . . . . . . . . . . . . . . . . . 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Background and Key Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.1 Cost-to-go function approximator . . . . . . . . . . . . . . . . . . . 132

7.2.2 Iteration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



7.2.3 Coverage and exploration . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Linear Quadratic Control Example . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.2 Numerical comparison . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.1 Constrained linear system . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.2 Linear system with “soft” state constraints . . . . . . . . . . . . . . 142

7.4.3 Nonlinear bioreactor . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.4 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

CHAPTER VIII CONTRIBUTIONS AND FUTURE WORK . . . . . . . 154

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

APPENDIX A FINITE AREA VIEW FACTORS . . . . . . . . . . . . . . 161

APPENDIX B SIM-DP ALGORITHMS . . . . . . . . . . . . . . . . . . . 164

APPENDIX C PROOF OF (87) . . . . . . . . . . . . . . . . . . . . . . . . . 168

APPENDIX D REACTION KINETICS FOR VARIOUS CATALYSTS 169

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ix



LIST OF TABLES

Table 1 Nominal operating conditions for simulations . . . . . . . . . . . . . . . . 14

Table 2 Reaction kinetics of [43], denoted as “GOS.” . . . . . . . . . . . . . . . . 17

Table 3 Reaction kinetics represented as “NK” in [26] . . . . . . . . . . . . . . . . 17

Table 4 Time scales of various processes within the microreactor . . . . . . . . . . 19

Table 5 Reactor performance for experimental conditions with GOS and NK kinetics. 24

Table 6 Reactor performance for various inlet feed ratios for baseline case . . . . 34

Table 7 Reactor performance with various inlet feed ratios for poorly insulated
reverse-flow reactor case with switching time of 5 sec. . . . . . . . . . . . 40

Table 8 Variations in reactor performance with changes in kinetic parameters . . 59

Table 9 Rate constants and activation energies for oxidation, reforming and water
gas shift reactions on various catalysts. Cat1, Cat2 and Cat3 are primarily
oxidation, reforming and water gas shift catalysts respectively. . . . . . . 64

Table 10 Key variables and parameters of the system . . . . . . . . . . . . . . . . . 89

Table 11 Rate constants and model parameters for the bacterial system . . . . . . 89

Table 12 Steady state values for input conditions D = 0.8, s1f = 0.078, s2f = 0.146. 91

Table 13 Rate constants and model parameters for the hybridoma system . . . . . 94

Table 14 Details of slMPC and various NDP based approaches . . . . . . . . . . . 120

Table 15 Si values for unconstrained linear system . . . . . . . . . . . . . . . . . . 140

Table 16 λ-policy iteration schemes applied to the unconstrained linear system, for
various values of λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Table 17 Convergence properties during offline learning of cost-to-go function for
linear system with soft constraints . . . . . . . . . . . . . . . . . . . . . . 147

Table 18 Comparison of value and policy iteration using neural network and Gaus-
sian kernel-based averager for the nonlinear bioreactor. . . . . . . . . . . 149

Table 19 Reaction kinetics for oxidation, reforming and shift reactions from the
literature. See the text for description. . . . . . . . . . . . . . . . . . . . . 171

x



LIST OF FIGURES

Figure 1 Interaction of various individual processes within the reactor and their time
scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2 Temperature profiles in the microreactor for UD and RF operation for
GOS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3 Mole fractions of various species in gas phase just prior to flow reversal in
RF operation with 5 sec flow reversal time. . . . . . . . . . . . . . . . . . 23

Figure 4 Effect of radiation on solid temperature in the baseline case reactor. . . . 25

Figure 5 Ring-ring and ring-end view factors, shown as a function of the dimension-
less axial coordinate, diminish rapidly with the axial distance . . . . . . . 26

Figure 6 Radiation flux at steady state within the reactor. . . . . . . . . . . . . . . 27

Figure 7 Radiation has a significant effect on temperature and hydrogen yield in a
5 cm reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 8 A schematic representation of three conditions where RF operation pro-
vides improved performance over UD operation . . . . . . . . . . . . . . . 32

Figure 9 Comparison of UD and RF operation for various CH4 : O2 feed ratios. . . 35

Figure 10 Effect of varying inlet velocity on H2 yield. Autothermal UD state cannot
be obtained for v0 = 1.8m/s or higher. . . . . . . . . . . . . . . . . . . . 36

Figure 11 The effect of varying inlet gas temperature (Tg0) for v0 = 1.68 m/s and
CH4 : O2 = 1 : 1 on hydrogen yield . . . . . . . . . . . . . . . . . . . . . . 37

Figure 12 Effect of varying feed ratios in a 5cm reactor. RF operation (– –) provides
significant improvement over UD (—) operation in this shorter reactor. . 39

Figure 13 Reaction rates and temperature profile at UD steady state for base case . 41

Figure 14 Temperature profiles at various times after flow reversal in the reactor with
switching time of τc/2 = 200 sec. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 15 Hydrogen yield in RF operation as a function of the switching time. Fast
switching of the reactor provides greater hydrogen yields. . . . . . . . . . 43

Figure 16 Reaction rates and temperature profile just prior to input-output port
switching in RF operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 17 Rate of water gas shift reaction in UD and RF operation for both GOS
and NK models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 18 Hydrogen yield in RF operation as a function of the switching time for
a 5 cm reactor. The maxima observed at τc/2 ≈ 4 sec corresponds to the
time scale of reaction heat release. . . . . . . . . . . . . . . . . . . . . . . 46

xi



Figure 19 Temperature profile for various switching times in the 5 cm reactor after
attaining periodic steady state. . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 20 Hydrogen yield in RF operation as a function of the switching time for
poorly insulated reactor case shows that infrequent switching is optimal. 48

Figure 21 A cartoon explaining the concept of an opposed flow (OF) reactor. . . . . 54

Figure 22 Sensitivity of hydrogen yield to variations in kinetic constants . . . . . . 55

Figure 23 Effect of varying kinetic constants for oxidation and reforming reactions.
The maximum temperature increases monotonically as kref is decreased.
When kox is increased, the temperature increases initially. However, be-
yond a certain point, the maximum temperature decreases again. . . . . . 56

Figure 24 Steady state temperature profiles for various values of kinetic rate con-
stants. Thick lines: increased kox; thin lines: reduced kref . At higher kox,
the temperature profiles shift towards the entrance, resulting in a lower
Ts,max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 25 Hydrogen yield for UD operation as a function of inlet feed ratio for various
values of kinetic constants kox and kref . . . . . . . . . . . . . . . . . . . . 58

Figure 26 Hydrogen yield in the RF reactor as a function of inlet feed ratio for various
values of kinetic constant kox for the oxidation reaction. . . . . . . . . . . 60

Figure 27 Hydrogen yield in the RF reactor as a function of inlet feed ratio for various
values of kinetic constant kref for the reforming reaction. . . . . . . . . . 61

Figure 28 Hydrogen yield as a function of switching time for variations in kref . . . . 62

Figure 29 Effect of Ru-Pt-Ru catalyst patterning . . . . . . . . . . . . . . . . . . . 65

Figure 30 Temperature profile at periodic steady state for [10% Pd]-[80% Ni]-[10%
Pd] catalyst patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 31 Effect of Pt-Ni-Pt catalyst patterning . . . . . . . . . . . . . . . . . . . . 68

Figure 32 Hydrogen throughput variations with variations in catalyst effectiveness.
Left part: catalyst deactivation, right part: increased catalyst loading . . 71

Figure 33 Operation diagram showing the maximum velocity for autothermal UD
operation as a function of CH4 : O2 feed ratio, for various values of kinetic
rate constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 34 Operation diagram showing the maximum velocity for autothermal UD
operation (—) and the corresponding hydrogen yield (– –) for variations in
the reactor thermal conductivity. Operating conditions: CH4 : O2 = 1.25 :
1 and v0 = 1.68m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 35 Hydrogen yield as a function of time scale of channel-to-channel heat trans-
fer τc−c for the OF reactor and switching time τc/2 for the RF reactor. . . 77

xii



Figure 36 Comparison of the temperature profiles in the RF operation with that in
the OF operation for various time scales of channel-to-channel heat transfer
τc−c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 37 Hydrogen yield as a function of inlet feed ratio for OF operation for two
different reaction kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 38 Possible designs of a single MEMS opposed flow reactor and an assembly
consisting of a reactor stack (adapted from [92]), with arrows indicating
the flow directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 39 The competing metabolic pathways in Klebsiella oxytoca (a) and the ab-
stracted metabolic network of hybridoma (b) . . . . . . . . . . . . . . . . 88

Figure 40 Steady state bifurcation diagram for Klebsiella Oxytoca growing on glucose
and arabinose [81] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 41 Experimentally observed multiple steady states in a hybridoma reactor [32] 91

Figure 42 Step disturbance in s2f leading to drifting of the reactor to the other steady
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 43 Results of controlling cell concentration using dilution rate and inlet s1f

concentration. Although the cell concentration reaches its desired value,
the system is in a physiologically different steady state. . . . . . . . . . . 100

Figure 44 Same as Figure 43, except that effluent s2 concentration is also measured
in addition to the biomass. In this case, the system is controlled at the
desired steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 45 Response of the hybridoma reactor to 10% step change in dilution rate at
the low biomass yield steady state . . . . . . . . . . . . . . . . . . . . . . 103

Figure 46 Driving the hybridoma reactor from low biomass steady state to the high
biomass steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 47 The controller is unable to drive the reactor switching from the high to the
intermediate biomass yield steady state. . . . . . . . . . . . . . . . . . . . 105

Figure 48 Open loop response of the hybridoma reactor to a 20% step up change in
dilution rate at the high biomass yield steady state. . . . . . . . . . . . . 106

Figure 49 Switching from the high biomass steady state to the intermediate biomass
steady state is achieved using modified penalty weights for the controlled
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 50 Comparison of the online performance of slMPC control law and simDP
approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 51 State space plot of states visited during online implementation (¦) and the
offline training data (·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 52 Performance of the various simDP schemes (thick line: slMPC) . . . . . . 122

xiii



Figure 53 State space plot of states visited during online implementation when simDP
was restricted to the visited region of the state space. . . . . . . . . . . . 123

Figure 54 State space plot of states visited during online implementation (¦) with
additional training data (*) . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 55 State space plot of states visited during online implementation of the “pol-
icy update” simDP scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 56 Online performance of value iteration (—) and policy iteration (– –) are
significantly better than original PID control (· · ·). The online performance
is comparable to the optimal LQR (—). . . . . . . . . . . . . . . . . . . . 142

Figure 57 Optimal cost-to-go values and cost-to-go predictions by value and policy
iteration. The overall structure of cost-to-go is obtained accurately. Value
iteration overestimates the cost-to-go for states at the constraint. . . . . . 143

Figure 58 Relative error for learning using MLP and kNN. The learning in case of
MLP is unstable while it is stable and monotonic for kNN. . . . . . . . . 145

Figure 59 Online performance of sim-DP with the two approximators is compared
with the optimal ∞-horizon control and the original suboptimal PI control 146

Figure 60 Online performance of value iteration (—), original PI controller (– –) and
∞-horizon MPC (· · ·). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 61 State space plot (c vs s2) showing original MPC data points (dots) and
points visited during online control using cost-to-go approximator from
value iteration using i. Neural Network (♦) and ii. K-mean clustering (×) 151

Figure 62 State space plot (c vs s2) for policy iteration using neural network. Data
points added during “policy update” (×) increases the coverage of state
space and results in optimal control performance (♦) . . . . . . . . . . . 152

Figure 63 Cartoon depicting benefits of exploration. . . . . . . . . . . . . . . . . . . 153

Figure 64 Surfaces considered for view factor calculation. . . . . . . . . . . . . . . . 161

Figure 65 Architecture for offline computation of cost-to-go approximation using
value iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 66 Architecture for offline computation of cost-to-go approximation using pol-
icy iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xiv



NOMENCLATURE

Part I: Periodic Port Switching

a surface area per unit volume of solid m2/m3
s

â surface area per unit void volume m2/m3
g

cpg average specific heat of the gas J/(kg.K)

cs specific heat of solid J/(kg.K)

C concentration mol/m3

Dim diffusivity m2/s

E activation energy J/mol

F radiation view factor —

hv heat transfer coefficient W/(m2.K)

k0 Arrhenius rate constant (mol/m3)−ιsec−1

kgi mass transfer coefficient m/s

l reactor length m

Mi molecular weight kmol/kg

nrxn # of reactions —

nsp # of species —

p pressure bar

qrad radiation heat flux W/(m2.K)

r reaction rate mol/(m2 surface.s)

R gas constant J/(mol.K)

T temperature K

v gas velocity m/s

∆H heat of reaction J/mol
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Greek Notations

α coefficient to split reaction heat between gas and solid —

ε Emissivity of the reactor wall —

λ thermal conductivity W/(m.K)

ν stoichiometric coefficient —

φ any state variable units vary

ρ density kg/m3

Subscripts and superscripts

0 condition at reactor inlet

i ith species

j jth reaction

g gas phase

s solid surface

Part II: Switching Between Multiple Steady States

Controller

c biomass concentration

cSP setpoint

D dilution rate

h sampling interval

J cost-to-go function or value

J̃ neural network expressing cost-to-go function

Ji cost incurred in going from state xp−i to terminal state xp

J i cost-to-go function for ith iteration

J i
j cost-to-go function for ith iteration corresponding to the state xj

p control horizon

Q output penalty weight

xvi



R input penalty weight

si concentration of ith substrate

sif feed concentration of ith substrate

u manipulated variable

x state vector

xp terminal state

φ single stage cost

φ̄ terminal cost

Cybernetic model

ei concentration of ith key enzyme

Kei saturation constant for expression of ith key enzyme

Ki saturation constant for ith reaction

rei enzyme expression rate for ith reaction

r∗ei constitutive rate of enzyme expression for ith reaction

rmax
ei maximum rate enzyme expression rate for ith reaction

ri rate of ith reaction

rmax
i maximum rate of ith reaction

rg growth rate

ui cybernetic regulation variable governing expression of ith key enzyme (Note:

not to be confused with manipulated variable u)

vi cybernetic regulation variable governing activity of ith key enzyme

Yi yield coefficient for ith reaction

βi turnover rate for ith key enzyme
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SUMMARY

The first part of this two-part thesis examines the reverse-flow operation of au-

tothermal methane reforming in a microreactor. Most of the conventional processes are run

under unidirectional steady state conditions. However, forced unsteady state operation can

provide significant advantages over steady state operation. A reverse-flow operation, where

the input and output ports are periodically switched resulting in a periodic reversal of flow

direction, exploits the dynamic nature of catalytic processes and thermal inertia of the re-

actor to give better reactor performance. The performance improvement in a reverse-flow

reactor may be due to one or more of the following reasons: favorable thermodynamic con-

ditions for water-gas shift reaction at the exit, improved thermal utilization of the reactor,

and using the reactor as a regenerative heat exchanger.

In this thesis, a theoretical study is undertaken to explain the physical origins of the

experimentally observed improvements in the performance of the reverse-flow operation of

a microreactor. First, a scaling analysis is presented to understand the effect of various

time scales existing within the reactor, and to obtain guidelines for the optimal reverse-flow

operation. Then, the effect of kinetic parameters, transport properties, reactor design and

operating conditions on the reactor operation is parametrically studied through numerical

simulations. The reverse-flow operation is shown to be more robust than the unidirectional

operation for variations in these system parameters, with respect to both optimal operating

conditions as well as variations in hydrogen throughput requirements. A rational scheme

for improved catalyst placement in the microreactor, which exploits the spatial temperature

profiles in the reactor is also presented. Finally, a design modification called the “opposed

flow” system, similar to countercurrent heat exchanger with reacting streams flowing in

adjacent channels, is suggested. The opposed flow microreactor retains the performance

benefits of the reverse-flow operation without requiring the input / output port switching,

thereby potentially simplifying practical implementation.
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In the second part of this thesis, a novel simulation-based Approximate Dynamic Pro-

gramming framework is presented for optimal control of steady state switching in a biore-

actor. The multiple steady states are characterized by different metabolic states within

the bacterial cells. The cybernetic modeling framework is used to capture these cellular

metabolic switches. These switches are associated with significant nonlinearities and non-

differentiability (discontinuity in the first derivative) of the model equations. Additionally,

the bioreactor exhibits long-lived transient dynamics (ie. small variations in the system state

for extended periods of time) punctuated by relatively fast-time metabolic switches. Model

Predictive Control (MPC), one of the most popular advanced control methods, is able to

drive the system to the desired set-point. However, the nonlinearity and non-differentiability

cause computational problems with MPC. Furthermore, the MPC solution is suboptimal

due to using shorter time horizons in the presence of long-lived dynamics. Approximate

Dynamic Programming has an advantage over MPC as the closed-loop optimal policy is

computed offline in the form of so called “value” or “cost-to-go” function. Value function

is a function of the system state and it expresses the long-term desirability of each state.

Through the use of the value function, the infinite horizon problem is converted into an

equivalent single-stage problem, which can be solved online.

The aim of Approximate Dynamic Programming is to obtain an approximation to the

value function using closed-loop simulations under suboptimal policies, function approxima-

tion to express cost-to-go values as a function of the system state, and learning algorithms to

iteratively improve the cost-to-go approximation until convergence. The offline learning and

online control are restricted to the subset of the state space defined by the points visited by

suboptimal simulations. The function approximation is used to interpolate cost-to-go values

within this visited subset. This method is applied to the steady state switching problem.

Extrapolation to the unvisited regions is shown to provide performance problems. Hence

different methods to restrict the state trajectories to the visited subset, and to expand the

subset through systematic exploration of the state space are considered. A comparison of

various function approximators used within this framework is presented. Finally, two pop-

ular algorithms for obtaining an optimal value or cost-to-go function, viz. value iteration
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and policy iteration are compared.
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CHAPTER I

INTRODUCTION

1.1 Background

There has been a lot of interest in the study of hybrid dynamical systems in recent years,

motivated by a growing number of practical systems involving interaction between contin-

uous variables and discrete events / decisions. Hybrid dynamical systems are the systems

that involve both continuous and discrete dynamics. Branicky et al. [19] presented a unified

framework for analysis and control of hybrid systems. Switching systems can be considered

as a subclass of hybrid systems. By switching system, we refer to the case where the un-

derlying model is a continuous model, with an “event” triggering a “switch.” In general, a

hybrid system may be represented as

x(t + 1) = fi(x(t), u(t), w(t); θi(t)) (1)

Here, each vector field fi(.) represents a continuous-time model of the system. A switching

is triggered at discrete intervals, represented through binary variables θi.

The switching systems can be classified based on the “trigger” as:

• External or input-driven switching: This case arises when external inputs to the

system undergo a switch. In a number of cases, the time of switching is either known

or is a decision variable. An example of this is the reverse-flow operation, where the

input / output ports are periodically switched. Another example is the gear shifting

in an automobile. Disturbance switching can also be classified in this category. For

example, the change from soft-wood to hard-wood chips in a pulp digester introduces

abrupt jumps in disturbance characteristics.

• Internal or state-driven switching This is also known as autonomous switching,

wherein the switching is triggered when state vector hits certain boundaries. Linear
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hybrid systems, piece-wise affine systems and switching between multiple metabolic

states of a bioreactor are examples of autonomous switching. Another example of

autonomous switching is collision between two bodies.

The switching systems can also be classified based on the type of response of the system

to the trigger as follows:

• Jump: In this case, the state or input vector itself switches, but the same vector field

fi(.) is applicable. An example of this is collision between two bodies, wherein the

velocity instantaneously switches but the underlying dynamical model remains the

same.

• Impulse: In case of an impulse, the underlying system model fi(.) itself switches,

such as that seen in piecewise affine models.

In this thesis, we do not aim to obtain a unified method for analysis or control of

switching systems. Instead, two examples of switching systems are considered separately

in the two parts of the thesis. These examples are motivated by experimental work on a

reverse-flow reactor [59] and a continuous bioreactor with multiple steady states [32]. Part-

I of this thesis considers modeling, analysis and design of the reverse-flow microreactor.

The flow direction is periodically reversed by switching the input / output valves, which is

modeled as input-driven jumps in the system. Part-II of this thesis considers optimal control

of switching between multiple metabolic states in a bioreactor. The steady state switching

is accompanied by changes in the metabolic state of the biomass. In different metabolic

states, different metabolic pathways are fully activated or deactivated, represented in the

model by the so-called cybernetic regulation variables that switch between the values of

vi = 1 for fully active and vi = ri/rmax for deactivated states. Thus, metabolic switches

are examples of state-dependent or autonomous impulses.
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1.2 Motivation and Past Work

1.2.1 Reverse-Flow Microreactor

Last few years have seen significant advances in Micro Electro Mechanical Systems (MEMS)

technology including applications to chemical reaction engineering. Following advances in

µTAS (micro Total Analysis Systems), it is now possible to produce microsystems with

complex geometries, flow patterns, and spatial placement of catalyst, sensor and actuator

elements [110]. The microreactor technology has several advantages for chemical production

[29, 54]. These include increased heat and mass transfer rates, possibility of performing

reactions under more aggressive conditions, allowing new reaction pathways and integration

of sensors and actuators. A number of examples of microreactors were developed to use for

generation of hydrogen-for-fuel-cells using partial oxidation [95], ammonia decomposition

[40], water gas shift reactions [85], etc. [54]. However, most of these papers have looked at

steady state operation of the reactors. Only recently have forced unsteady state applications

of the microreactors, such as concentration cycling [92], temperature cycling [18] or reverse-

flow operation [59], been reported.

On the other hand, forced unsteady state operation of well-mixed [6] and fixed bed

systems [50] has been an area of great interest over three decades [72, 73, 30, 74, 94]. The

significant know-how and theoretical studies on this subject is largely attributed to the

Novosibirsk group of Matros [73]. Recently, Silveston and Hudgins [97] reviewed state of

the art on periodic temperature cycling in a reactor. They reported that although a large

body of theoretical results exist, practical applications of fast temperature switching in

conventional reactors have been elusive. Due to the high inertia of the conventional reactors,

the attainable range of frequencies is rather low and in the order of 10−4 − 10−2 Hz [92].

As a result, theoretically predicted performance improvements could not be obtained in the

conventional reactors. However, lower thermal inertia, faster heat (and mass) transfer rates

and significantly faster dynamics of a microreactor means that fast switching of the reactor

is possible, and thus theoretically predicted improvements may become possible. Rouge et

al. [92] were able to obtain theoretically predicted improvement in the rates of dehydration

of isopropanol using concentration cycling, while Brandner et al. [18] were able to provide
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temperature modulation employing 5 seconds cycles at 50◦C amplitude, something that is

not possible in a macro-reactor.

Since a large body of theoretical and experimental investigation of reverse-flow opera-

tion exists for fixed bed reactor, it remains to be understood how these results translate to

a microreactor. The salient features of a microreactor are high rates of heat and mass trans-

fer, lower thermal inertia and faster response times. High frequency switching is possible in

a microreactor to reap benefits of unsteady state or reverse-flow operations. Additionally,

different reactor configurations that yield performance equivalent to infinitely fast switch-

ing can be produced and tested. Recently, Sheintuch and Nekhamkina [96] compared the

reverse-flow operation with an internal loop reactor and a countercurrent reactor on a con-

ventional (macro-) scale. Elaborate reactor / heat exchanger designs were required to ensure

sufficient heat transfer between the cold inlet and the hot effluent streams. In contrast, heat

transfer rates in a microreactor are very high. Thus, theoretical and experimental inves-

tigation into the reverse-flow operation is required to corroborate or modify the unsteady

state operation results for larger scale reactors.

This work draws its motivation from an experimental study, where Kikas et al. [59]

showed that hydrogen productivity can be increased by operating the microreactor in a

reverse-flow manner. Their results and related work from the literature is further reviewed

in individual chapters.

1.2.2 Control of steady state switching in a bioreactor

Steady state multiplicity is the condition in which a reactor exhibits two or more output

conditions for the same set of input conditions. A prerequisite for steady state multiplicity

is the nonlinearity of a system. A simplest example is that of an adiabatic reactor carrying

out exothermic reactions, wherein the multiplicity arises due to the nonlinear dependence

of reaction rate on temperature [37]. Typically, in systems with multiple steady states, one

of the states is the desired state. Often, control of the system at the steady state becomes

important because the alternate steady states can either result in reactor quenching, or

cause a runaway conditions in the worst case, or result in a significant loss of productivity
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towards the desired product.

Recently, Hu and coworkers [32], and Stephanopolous and coworkers [36] reported strik-

ing cases of steady state multiplicity in continuous cultures of mammalian hybridoma cells.

Namjoshi et al [79] modeled the system of Europa et al. [32] and presented a nonlinear

bifurcation analysis of the same [80]. Experimental and model results show that the desired

steady state can be obtained only by carefully starving the biomass so that they direct

their metabolism towards producing the desired product instead of the waste intermedi-

ates. Namjoshi et al. [79] also used their model to numerically determine improved feeding

profiles for the start up of the reactor in the desired steady state. The feed rates varied

significantly with variations in the inlet concentrations of the reactor. Due to the propensity

of the hybridoma cells to prefer the (undesirable) low yield steady state, a control scheme

that drives the reactor to the desired steady state is needed.

While the work on hybridoma cultures show a striking case, other examples of have

been found [81, 82]. One of the simplest bioreactor to display steady state multiplicity is

a chemostat containing bacterium growing simultaneously on two substitutable substrates

[62]. While control of continuous bioreactors using cybernetic model predictive control

(MPC) has been considered [39], control of multiple steady states in bioreactors has not

been studied yet.

The control of bioreactors is made difficult by the nonlinear dynamics, operation con-

straints, lack of reliable models and long-ranged transients [22]. As a result, model-based

control schemes such as MPC suffer from significant computational burden in solving the

control problem online. Hence, linear assumptions are employed or shorter horizons are

considered, leading to a loss in the control performance. Only recently have our colleagues

started developing simulation-based approximate Dynamic Programming methods as an

alternative to MPC [66]. This method reduces the infinite horizon problem in MPC to an

equivalent one-stage problem through the use of the so-called “cost-to-go approximator.”

The cost-to-go is calculated offline for all the relevant states in the state space, and is used

online to reduce the computational burden and improve the optimality of optimal control.

Specific discussions on this method and related work from the literature will be deferred

5



until Chapter 6.

1.3 Thesis Objectives and Outline

This objectives of this thesis are two-fold: (1) to provide a mathematical framework for

analyzing operation of a microreactor with periodic switching of flow direction, and (2) to

develop an algorithmic framework for control of switching between multiple steady states in

a bioreactor. The specific goals of this thesis are posed in the form o f following questions:

• What are the physical / chemical origins of the performance improvement of a reverse-

flow microreactors over unidirectional ones?

• Can we define the guidelines for optimal operation of a reverse-flow reactor using

simple scaling rules, by relating the reactor performance with time scales of individual

processes taking place within the reactor?

• What is the importance of transport properties, reaction parameters, and thermo-

physical properties of the reactor structural support? How does the optimal reactor

operation depend on these parameters?

• How does one obtain robust operation by operating in the reverse-flow mode, as

compared to the unidirectional mode, and what are the performance limits? Can we

make design changes to make the unidirectional operation more robust?

• How do the methods used in Reinforcement Learning (RL) and Neuro-Dynamic Pro-

gramming (NDP) literature to solve the DP problem in an approximate sense, trans-

late for optimal chemical and biochemical control problems?

• What are the issues involved in the simulation-based Approximate DP framework?

What are the options for improving the function approximator in ADP; how do the

various learning algorithms compare; what restrictions are brought about by working

in the visited subset of the state space and how can we systematically expand this

subset?
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The rest of the thesis is organized as follows. The case study of hydrogen generation

by methane partial oxidation in a microreactor with periodic port switching is presented

in Part-I. In chapter 2, a one-dimensional (1-D) model of the microreactor is developed;

a critical comparison of methane oxidation and reforming kinetics from the literature is

performed; an analysis of the time scales of individual processes within the reactor is pre-

sented in order to gain fundamental insight into the reactor operation; finally, the effect of

radiation heat transfer is also considered. Chapter 3 presents parametric simulation and

analysis for the reverse-flow operation of the microreactor. The effect of varying operating

conditions such as the inlet CH4 : O2 feed ratio, the inlet velocity and the inlet gas temper-

ature, as well as design parameters such as the reactor length and heat losses to the ambient

are parametrically investigated. The issue of choosing the optimal switching time is also

addressed in order to obtain design and operation guidelines based on simple time-scale

analysis. Chapter 4 presents sensitivity and operability analysis of the reactor. The sensi-

tivity to variations in the transport parameters and the kinetic rate constants is presented

and a method for improved placement of various catalysts in the reverse-flow reactor is con-

sidered. Next, the reactor operability and robustness is analyzed and operating diagrams

for autothermal unidirectional and autothermal reverse-flow operation are presented; and

design changes to improve the robustness of unidirectional operation are suggested.

Part-II of this thesis considers control of optimal switching between two different steady

states within a continuous bioreactor using the Approximate Dynamic Programming method.

Chapter 5 introduces the problem of switching between multiple steady states in contin-

uous microbial and mammalian reactors, and presents successive linerization-based Model

Predictive Control algorithm for control of steady state switching. Motivated by the need

to reduce computational load and improve the performance of MPC, the approximate DP

framework is employed in Chapter 6. A comparison between the online performance of the

two methods (ADP and MPC) is presented. Finally, Chapter 7 addresses several specific

issues in implementation of ADP, viz. the choice of function approximator, comparison of

the learning algorithms and the issue of judicious exploration in the state space.
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Finally, the contributions of this thesis and suggestions for the future work are summa-

rized in Chapter 8.
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PART I

Periodic Port Switching
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CHAPTER II

HYDROGEN GENERATION IN A REVERSE-FLOW

MICROREACTOR: MODEL FORMULATION AND

SCALING

2.1 Introduction

Conversion of methane or natural gas to synthesis gas via endothermic steam reforming or

autothermal partial oxidation has been investigated extensively [7]. The changing geopoliti-

cal situation and the growing need to power emerging civilian, space or military applications

have ensured that hydrogen generation remains an active research area, although the tech-

nology, scales of operation and the end use keeps changing. Traditionally, hydrogen is

considered a useful raw material for manufacture of ammonia, urea, methanol and other

petrochemical applications. Following the energy crisis in the 1970s and more recently the

Gulf wars, conversion of synthesis gas to liquid fuels using Fischer-Tropsch synthesis gained

significant attention [1, 103]. More recently, hydrogen is being used in fuel cells for applica-

tions varying from powering portable electronic devices, to providing vehicle motive power

to large scale power generation [48].

Two main types of micro fuel cells currently researched as possible replacements for the

existing portable energy sources are hydrogen-based fuel cells and direct methanol-based

fuel cells. One of the important challenges in making the former a viable technology is the

on-demand and energy efficient generation of hydrogen. Successful commercialization of

this technology requires the reactor to run unattended for long periods of time and operate

autothermally, i.e. without external addition of heat. Recently, Fedorov and coworkers

[59] demonstrated experimentally a possibility of autothermal reforming of methane in a

tubular microreactor, when run in either unidirectional (UD) or reverse-flow (RF) mode.

They showed that running the reactor with periodic reversal of flow direction results in an
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increase in the hydrogen yield compared to the unidirectional operation. The reactor feed

consisted of methane and oxygen at room temperature and Pt wire was used as a catalyst.

In this chapter, we develop a one-dimensional (1-D) model that combines heat and mass

transfer with heterogeneous catalytic reactions for the reactor of Kikas et al. [59]. We first

present the formulation of the model equations and selection of reaction kinetics for partial

oxidation. Currently, there is no consensus whether the reactions proceed via direct partial

oxidation [47] or via indirect oxidation-reforming steps [43]. In this paper, the latter reac-

tion chemistry comprised of oxidation, reforming and water-gas shift reactions is assumed

and the kinetic equations developed by Gosiewski et al. [43] are used. The sensitivity to

the kinetic equations is demonstrated by comparing the above kinetics with those consid-

ered by de Smet et al. [26]. The main reaction generating hydrogen is the endothermic

reforming reaction (CH4 + H2O ⇀↽ CO + 3H2 ∆H0
298 = 206.2kJ/mol), which is catalyzed

at elevated temperatures, and therefore requires addition of heat to sustain the reaction. In

autothermal operation, this heat is provided by the highly exothermic oxidation of methane

(CH4 + 2O2 ⇀↽ CO2 + 2H2O ∆H0
298 = −802.3kJ/mol). The overall global reaction occur-

ring in the reactor (CH4 + 0.5O2 ⇀↽ CO + 2H2 ∆H0
298 = −35.7kJ/mol) being only slightly

exothermic, reverse flow reactors have been used to maintain autothermal operation of the

reactors by using the catalyst bed as a regenerative heat exchanger [14, 25].

The comparison of UD and RF operation of the reactor is the main focus of this study.

Blanks et al. [14] provided one of the first experimental and simulation study of autothermal

methane partial oxidation in a pilot-scale fixed bed reverse-flow reactor (RFR). Later, de

Groote et al. [25] and Gosiewski et al. [43] performed simulation study of methane partial

oxidation in a fixed bed RFR. In both cases, a thermal wave with moving reaction zone

was observed in UD operation; thus a RF operation was required to trap the thermal wave

within the reactor and maintain autothermal operation. This study differs from the above

mentioned papers on two accounts. First, the reactor being a microchannel reactor, reagents

need to diffuse over a shorter distance. The reactions may therefore proceed close to their

intrinsic rates. The catalyst loading in this reactor is significantly lower than a fixed bed

reactor as the catalyst is not in a well dispersed state. Secondly, autothermal operation was
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possible in the microreactor for both UD and RF operation. To our knowledge, this is the

first study on the comparison of UD and RF operation of methane partial oxidation in a

microreactor. Further, a review of the literature indicates that radiation heat transfer has

largely been neglected in previously reported simulations of partial oxidation. Therefore,

section 2.5 is devoted to modelling the effect of radiation heat transfer. In spite of high

emissive power in the reactor, the overall effect of radiation is demonstrated to be marginal

in the longer reactor with high aspect ratio (l/d = 232); however, the effect of radiation on

a shorter reactor (l/d = 100) is quite significant.

2.2 Reactor Model

2.2.1 Description and model equations

In the experiments reported by Kikas et al. [59], the reactor consists of a ceramic tube with

four cylindrical channels of 500 microns inner diameter and 11.6 cm length. The center of

each reactor channel contains Pt/13%-Rh wire that acts as a catalyst. The ceramic tube is

housed in a steel casing with heating elements wrapped around it, which are used to ignite

the partial oxidation reactions during reactor startup. The entire setup is insulated to

minimize the heat losses. We attempt to analyze numerically these experiments to develop

an insight into the advantage offered by RF operation observed in experiments [59].

To this end, a one-dimensional (1-D), two phase model is developed for simulating the

autothermal operation of the reactor. The process properties (temperatures, concentrations,

etc.) are assumed to be uniform in cross-sectional directions. The flow is one dimensional

and laminar, and the reactants and products are assumed to be ideal gases. Heterogeneous

reaction chemistry consisting of oxidation, reforming and water gas shift reactions is consid-

ered. The pseudo-steady state assumption is employed for species balance on solid surface.

Radiation effects are neglected at first, and included in the analysis in the last section of

this paper.

The resulting conservation equations for species and energy are:

∂

∂t
Ci +

∂

∂z
vCi = −kgiâ [Ci − Cis] (2)
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0 = kgi [Ci − Cis] +
nrxn∑

j=1

νijrj (3)

∂

∂t
Tg + v

∂

∂z
Tg =

hvâ

ρgcpg
[Ts − Tg] +

(1− α)â
ρgcpg

nrxn∑

j=1

(−∆Hj)rj (4)

∂

∂t
Ts =

λs

ρscs

∂2

∂z2
Ts − hva

ρscs
[Ts − Tg] +

a

ρscs



α

nrxn∑

j=1

(−∆Hj)rj + q̇rad + q̇∞



 (5)

In the full 3-D model, the reaction heat term appears as a boundary condition. For 1-D

models, its customary to attribute the heat of reaction to the solid heat balance (i.e. α = 1).

However, for the sake of generality, we consider splitting the heat of reaction term between

the solid and gas phases in Eq. (4) and (5) through the parameter α.

The mass and heat transfer coefficients are computed using the Nusselt and Sherwood

number correlations for laminar flow in cylindrical channels, based on constant heat flux

and surface concentration boundary conditions, respectively.

NNu =
hvd

λg
= 4.36 NSh =

kgid

Di
= 3.66

The pertinent boundary conditions are as follows:

Ci(0, t) = Ci0

Tg(0, t) = Tg0

λ
∂Ts

∂z

∣∣∣∣
0,t

= hin [Ts(0, t)− Tg0] + εσ
[
T 4

s (0, t)− T 4
g0

]

∂Ts

∂z

∣∣∣∣
l,t

= 0

The mole fractions of methane and oxygen are obtained from the feed ratio (0.7 to 1.2)

used in the experiments [59]. All other species are assumed to be present in very small

quantities to prevent singularities in numerical computations, as some of them appear as

denominators in reaction rates. As initial condition, the reactor is assumed to be preheated

to Tinit = 1173K. The nominal operating conditions are summarized in Table 1.

During the reverse-flow operation, the input and output ports of the reactor are switched

periodically. In computations, the same governing equations and boundary conditions apply

in forward and reverse directions. The states are switched according to

φ(z, mτ+) = φ(l − z, mτ−) (6)

13



Table 1: Nominal operating conditions for simulations

Reactor length l 11.6 cm
Channel diameter d 500µ
Ceramic tube o.d. dt 0.254 cm
Number of channels 4
Inlet temperature Tg0 300K
Inlet velocity v0 1.68m/s
Feed compositions

yCH4 0.5
yO2 0.5
yi 10−8 to 10−5

Preheat temperature Tinit 1173K
Switching time τc/2 5 sec

where φ(z, t) represents any state variable, τ is the half-cycle period and the superscripts

+ and − represent the system after and before switching.

2.2.2 Computing velocity and pressure fields

In order to solve the model equations (2–5), the velocity field needs to be computed, which

is typically done by solving the momentum conservation equation simultaneously with the

mass and energy conservation. The 1-D momentum conservation equation is given by

∂

∂t
ρv +

∂

∂z
ρvv = −∂p

∂z
+ µ

∂2v

∂z2
(7)

where the ideal gas assumption yields us

p =
nsp∑

i=1

CiRTg (8)

Solving equations (2–5) and (7) simultaneously is computationally very demanding. As a

result, one often resorts to making certain assumptions regarding the velocity field.

One possible assumption is to consider the velocity to be constant along the length of

the reactor [90]. In reality, for a compressible fluid under quasi-steady state conditions,

the total mass flux remains constant within the reactor. The increasing temperature and

species generation by reaction affects the density of the system, which consequently changes

the velocity through the continuity equation. As a result, constant velocity assumption may

lead to incorrect results.
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Other possibility is to use an empirical pressure drop relationship to specify the pres-

sure field within the reactor and then obtain the velocity field using the overall continuity

equation [25]. For laminar flow of gases in cylindrical channels, the pressure drop along

the reactor length is less than 1% of the total pressure. Indeed, solving the energy, mass

and momentum conservation (2–5) and (7) simultaneously revealed that the pressure drop

along the length of the reactor is less than 0.1 to 0.5% of the total pressure. Hence, it is

reasonable to make an assumption that the pressure is constant along the reactor. Sum-

ming the species balance (2) over all species and neglecting the time-dependent term due

to very fast mass equilibrium (see time scale analysis in the next section), we obtain the

relationship for the change in molar flow rate due to reaction [25] as

∂F

∂z
= −

nsp∑

i=1

kgiâ[Ci − Cis] (9)

Coupling (9) with (2–5) and noting that the molar flow rate F mol/(m2.s) is given by

F = v
p

RTg
(10)

the problem formulation becomes complete.

We found that indeed solving (2–5) with (9) gives accurate results, while requiring much

lesser computational time. Hence, in the following discussion, we employ the constant

pressure assumption and use the continuity equation (9) to obtain the velocity within the

microreactor.

2.2.3 Reaction Kinetics

The indirect partial oxidation of methane is considered to take place through the following

three reactions [43, 26] on the catalyst surface:

Oxidation: CH4 + 2O2 → CO2 + 2H2O ∆H0 = −802.0 KJ/mol (11)

Reforming: CH4 + H2O ⇀↽ CO + 3H2 ∆H0 = +206.1 KJ/mol (12)

W. G. Shift: CO + H2O ⇀↽ CO2 + H2 ∆H0 = −41.15 KJ/mol (13)

The other reactions that possibly occur in the system, such as CO2 reforming, CO oxidation,

methane reforming to CO2 etc. are neglected.

15



The first set of kinetic equations we consider were developed by Gosiewski et al. [43]

for methane partial oxidation and were expressed per kg of catalyst for a dispersed Pt on

porous alumina pellets. The catalyst loading in the microreactor used in [59] was computed

to be 28.9 mg Pt per channel. However, the catalyst in the microreactor was not dispersed;

instead a wire was used. Hence the kinetic equations were modified to account for the fact

that only a fraction of Pt catalyst is actually available for surface reactions. We converted

the kinetic equations to per m2 catalyst surface basis. We then noted that the density of

catalyst particle for the fixed bed system was 2130 kg/m3, while the density of catalyst wire

for our microreactor was 19640 kg/m3. Hence, we multiplied all the kinetic rate constants

with a factor of 9.22, which is equal to the density ratio. The resulting kinetic equations

are summarized in Table 2. Hereafter, we will call these kinetic equations as GOS model.

The effect of the choice of kinetic equations was also considered. Recently, de Smet et al.

[26] compared the reforming kinetics of Xu and Froment [119] (denoted by XF) with those

of Numaguchi and Kikuchi [83] (denoted by NK) for indirect partial oxidation of methane.

They used oxidation kinetics of Trimm and Lam [108] for both cases. In this paper, the

GOS model is compared with the NK model. The XF model could not be used for for the

following reason. In the XF model, the rate of reforming reaction has the form

r =
k

p2.5
H2

pCH4pH2O − p3
H2

pCO/Keq

[1 + KCH4pCH4 + KH2OpH2O + KCOpCO + KH2pH2]
2

As the system contains no hydrogen or water in the inlet, this model is not applicable; even

with 2% hydrogen and water present in the feed, negative values of pH2O were predicted. In

the NK model, on the other hand, the rate of reforming reaction has an inverse dependence

on pH2O. As a result, at higher CH4 : O2 ratios, the reforming rate is non-zero even at zero

H2O concentrations. Hence, a “saturation” term was added to the denominator to ensure

that the rate approaches 0 as pH2O → 0. Another modification was that instead of oxida-

tion kinetics for Pt on porous alumina, the kinetics published for the non-porous catalyst

[108] was used. The procedure suggested in [26] was followed to obtain rate expressions

shown in Table 3. In these expressions, the equilibrium constant is computed using the
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thermodynamic relationship

∆Gj = −RTs ln(Keq,j) (14)

where ∆Gj , the free energy change for the reaction j, is computed using standard thermo-

dynamic correlations obtained from ChemKin database1. The value of Ksat was chosen to

be 10−4 bar.

Table 2: Reaction kinetics of [43]. This model is denoted as “GOS”. All concentrations
are in mol/m3 and pressures are in bar.

Reaction Rate of Reaction mol / (m2.sec)

Oxidation r1 = 23.06 exp
(−100320

RT

)
CCH4CO2

Reforming r2 = 76.16 exp
(−114120

RT

)
CCH4CH2O

(
1−

nsp∏

i

p
νi,2

i /Keq,2

)

W. G. Shift r3 = 0.412 exp
(−38130

RT

)
CCOCH2O

(
1−

nsp∏

i

p
νi,3

i /Keq,3

)

Table 3: Reaction kinetics represented as “NK” in [26]. Oxidation kinetics is from [108]
and reforming kinetics is from [83]. All pressures are in bar.

Reaction Rate of Reaction mol / (m2.sec)

Oxidation r1 = 157.7 exp
(−75500

RT

)
pCH4pO2

(1 + KCH4pCH4 + KO2pO2)

KCH4 = 2.28× 10−3 exp
(

25100
RT

)

KO2 = 6.41× 10−4 exp
(

45900
RT

)

Reforming r2 = 72.8 exp
(−106900

RT

)
pCH4 − pCOp3

H2
/ (Keq,2pH2O)

(Ksat + pH2O)0.596

W. G. Shift r3 = 0.068 exp
(−54500

RT

) (
pCO − pCO2pH2

Keq,3 (Ksat + pH2O)

)

1Available from http://www.reactiondesign.com/
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2.2.4 Solution Method and Validation

The control volume method with a non-uniform staggered grid was used to discretize the

model equations in the spatial domain to obtain a system of differential algebraic equations

(DAE). A standard DAE solver called DASPK [20] was used to integrate the resulting

DAE system. DASPK uses a fully implicit fifth order backward difference formula (BDF)

with adaptive step size to solve the DAE system. The velocities were computed at grid

boundaries and the other variables were computed at nodes (i.e. grid centers). The grid

was chosen to be symmetric about the center of the reactor, with the grid boundaries lying

at l
2 ×

(
i

int(N/2)

)γ
, for i = 1 to N/2, starting at either ends of the reactor. For the value of

γ = 1.0, a uniformly-spaced grid is obtained. Grid independence study was performed with

γ value ranging between 1.0 and 2.0, and the optimum values of γ = 1.2 and N = 175 were

obtained for good accuracy and a reasonable speed of computation.

During simulations, absolute and relative errors of 10−5 were employed for all variables.

The consistency of the converged results was checked by computing the residuals of the

mass and energy balance equations and verifying that they were less than the desired er-

ror tolerance. Prior to using the code for simulation of this system, it was tested against

standard examples. Specifically, a standard heat conduction problem and a standard heat

transfer problem with first order reaction (with Tg = Ts) were solved by making mini-

mum changes to the codes. Satisfactory agreement was obtained between simulations and

analytical solutions for standard problem.

2.3 Time Scale Analysis

Consider a small volume element within the reactor. Figure 1 shows the interactions between

various individual processes occurring within this element. The material and energy enter

and exit this element by advection; transfer of species occurs from the bulk gas to the

catalyst surface by convection and vice versa; several reactions occur on the surface of the

catalyst; these reactions result in a net release or consumption of heat; and there is also

heat exchange between the solid and the bulk gas. Each of these processes is associated

with its own time scale. In addition, the thermal capacity of the reactor is also associated
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with an ‘inertial’ time scale of thermal relaxation. A time scale is defined as “the time

required for an individual process to occur assuming that all other processes do not affect

the reactor performance.”

Catalyst - Elementary Reactions

Conversion Heat Release

Mass Xfer Heat Xfer

IN OUT
Ci

Cis

Rrxn

Rrxn

HRrxn

HRrxn

Solid Surface

Bulk Gas

Element of
mass capacity

Element of
heat capacity

Tg

Ts

τ

ττ

τ
diff conv

rxn Hrxn

τadv

Control Volume
τth

Figure 1: Interaction of various individual processes within the reactor and their time
scales

Table 4: Time scales of various processes within the microreactor

Process Time scale Value (sec)

Advection τad = l/v 0.013

Diffusion τdiff = (kga)−1 0.00014

Oxidation τox, numerical 0.002

Reforming τref , numerical 0.008

W. G. Shift τwgs, numerical 0.006

Reaction Heat Eq. (15) 3.2

Thermal Inertia τth, numerical 168

The time scales of various processes are listed in Table 4. Naturally, the time scales

are computed at the locations where their effect is the highest; i.e. at or near the reactor

hot spot where the reaction rates are the highest. These conditions were obtained from the

simulation results for the nominal case, presented in the next section. The reaction time

19



scale was numerically computed as the time required for the reaction to reach equilibrium

(or complete conversion for oxidation), starting at concentrations and temperature existing

in the bulk gas. The time scale of heat release was computed as shown in [72] by linearizing

the reaction heat source term:

dTs

dt
=

a

ρscs

nrxn∑

j=1

[−∆Hj ]rj(C, Ts)

resulting

τHrxn =
ρscs

a




nrxn∑

j=1

[
Ej

RT 2
s

]
[−∆Hj ]rj(C, Ts)



−1

(15)

Thus, the time scale of heat source is the time required for the solid temperature to increase

by the value RT 2
s /E due to heat release. It is the combined effect due to various reactions

concurrently taking place within the system.

The time scale of thermal relaxation was also calculated numerically. The system was

simulated assuming no reaction, radiation or heat losses. The energy balance equations

for the solid and gas phase were solved simultaneously with Ts(z, t = 0) = 1173K and

Tg(0, t) = 300K. The τth is the time taken for the temperature of an element in the interior

of the reactor to drop from Ts = 1130K (5% of the temperature difference) to 343K (95%

of the temperature difference). Note that τth is the response time of a single volume element

in the reactor, which is much less than the time it takes for the reactor to reach steady state.

The simple time scale analysis can give some very important information about the

system. First, the time scale of diffusion is smaller than that of the reactions, meaning

that the reactions occur at their intrinsic rates. Further, as the time scale for advection

is higher than that of all the reactions, the reactions reach their equilibrium (quasi-steady

state), and the overall thermal effects within the system are critical in defining the reactor

operation in UD or RF modes.

2.4 Analysis of Reaction Kinetics

In this section, the simulation of the reactor in unidirectional (UD) and reverse-flow (RF)

operation using the GOS and NK models is compared. The axial variations in the velocity

are incorporated using the constant pressure assumption as discussed in section 2.2.2. The
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operating conditions for the simulation of the “baseline case” are taken from those reported

in the experiments [59], and are summarized in Table 1.

2.4.1 Unidirectional and Reverse-Flow operation: GOS model

We first consider the comparison of UD and RF operation of the adiabatic reactor for the

GOS model. Figure 2 shows the temperature profiles in the reactor. In the UD operation,

the temperature reaches a maximum in the middle of the reactor, where highly exothermic

oxidation dominates. A stable, autothermal steady state is obtained for UD operation of

the reactor. For feed ratio of CH4 : O2 = 1 : 1, inlet velocity of v0 = 1.68m/s and inlet gas

temperature Tg0 = 300K, the maximum temperature reached was 2008K and the hydrogen

yield at steady state was 71.1%.

In RF operation with 5 seconds flow reversal time (the period used in experiments),

the temperature peak is attained closer to the reactor ends (Figure 2). The central section

of the reactor is maintained at a more uniform temperature, with a sharp drop in the

temperature at the reactor end. The widening of the high temperature region also results

in a lower temperature peak. The sharp temperature drop at the end of the reactor favors

water gas shift reaction, resulting in an improvement in hydrogen yield. Figure 3 shows the

mole fractions of all the species in RF operation after attainment of a periodic steady state,

just prior to switching of the flow direction. Table 5 shows the comparison between UD

and RF operations. The GOS model predicts a 2.3% improvement in the hydrogen yield

and a 120K decrease in the peak temperature for CH4 : O2 = 1 : 1 and a 4.2% increase

in the yield for CH4 : O2 = 0.7 : 1. These values are consistent with those reported in the

experiments [59].

2.4.2 Simulation using NK Model

The effect of kinetic rate equations was considered by simulation of indirect partial ox-

idation using the NK model (see Table 3). The simulations results using this model are

compared with those from the GOS model. The results of UD and RF operations are shown

in Table 5. The maximum temperature reached in this case was well over 2300K. This
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Figure 2: Temperature profiles in UD (at steady state) and in RF (just prior to flow
reversal) for the GOS model. The temperature profile is more uniform and the peak lower
in RF operation.

is significantly higher than that predicted by the GOS model due to the low rates of en-

dothermic reforming reactions in the NK model. Increasing the rate of reforming reactions

(to assess the sensitivity of the results) resulted in disappearance of the autothermal steady

state in UD operation. Moreover, RF operation did not result in an increase in hydrogen

yield over UD mode, even for CH4 : O2 = 0.7 : 1. Thus, this model was unable to predict

the experimentally observed behavior of the microreactor reported in [59]. Varying the re-

action rates within the order of magnitude (by a factor of 10) did not predict the observed

behavior either. This is because the rate of water gas shift reaction is significantly lower in

this model. The shift reaction is thermodynamically favored at low temperatures that exist

in RF operation at the reactor exit. The exit temperatures in the NK model are still quite

high. The rate of water gas shift reaction is significantly lower than in the GOS model.
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operation with 5 sec flow reversal time.

Hence, no difference between UD and RF operations was observed for the NK model.

2.5 Effect of Radiation

At high temperatures such as those observed in this system, heat transfer by radiation

becomes comparable to (or even dominant over) heat transfer by conduction or convection,

due to the fourth order dependence of the radiative heat flux on the temperature. In addition

to this nonlinear dependence on temperature, radiation heat transfer in a non-participating

medium is a long range phenomenon and has complex dependence on properties of the

medium and the reactor surface. Thus, incorporating radiation involves solving highly

nonlinear integro-differential equations. As a result, radiation has often been ignored in the

literature dealing with partial oxidation / reforming.

With a conservative estimate of solid temperature of 1500 K, the radiation to conduction
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Table 5: Reactor performance for experimental conditions [59] with GOS and NK kinetics.
The experimentally observed trends are matched by the GOS model but not by the NK
model.

Unidirectional Reverse-FlowModel CH4 : O2 ratio

Ts,max %H2 yield Ts,max Ts,out %H2 yield

GOS 0.7 : 1 2160 57.3 2023 1280 61.5

GOS 1 : 1 2008 71.1 1880 1191 73.4

NK 0.7 : 1 2561 57.8 2479 1648 58.2

NK 1 : 1 2308 75.3 2207 1421 74.9

heat transfer parameter Nrad = εσT 3d/λ [77] takes the value of 0.65, indicating that the

radiative heat transfer is comparable to solid conduction. In this section, we evaluate the

effects of radiation using the net radiosity method [77] to compute the radiation flux within

the reactor. We make an assumption that the walls are diffuse gray emitters and reflectors

of radiation, and that the medium is essentially transparent (i.e. non-participating) due to

the small channel diameters. All the results reported here are for reactor wall emissivity of

ε = 0.8.

For channels with high aspect ratio (in our system l/d = 232), the finite-difference

version of the net radiosity equation can be used instead of the Fredholm integral equation

[15]. The finite-difference version ties up well with the spatial discretization used in solving

the other conservation equations. The outgoing (leaving the wall) radiation flux at any

point zn within the reactor channel is given by

qr(zn) =
N∑

m=0
(1− ε)qr(zm)Fn−m +

ε ·
[
Eb(zn)−

N∑
m=0

Eb(zm)Fn−m − σT 4
inFre(zn)− σT 4

outFre(l − zn)

] (16)

where Fn−m is ring-to-ring view factor and Fre is ring-to-end view factor. The finite view

factors are derived using a procedure similar to that presented by Rankin et al. [90] and is

given in Appendix A.

Figure 4 compares the solid temperatures in the system with and without radiation
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Figure 4: Effect of radiation on solid temperature. The temperature profile shifts upstream
by 2 diameters (inset: zoomed-in at temperature peak, dimensionless length z/d is the
abscissa). Radiation loss at the reactor end causes a drop in temperature. Concentration
profiles (not shown) are almost same in both cases.

accounted for. For the reactor with high aspect ratio, the effect of radiation is not significant.

The figure shows that the peak temperature is shifted towards the reactor inlet by about 2

diameters, which for the simulated system is less than 1% of the reactor length. The inset

shows a zoom-in plot near the temperature peak. The abscissa for this plot is normalized

length, which clearly shows an upstream shift of about 2 diameters in Ts. These results

are consistent with the published literature [15, 38], where the temperature curve shifts

upstream by 1 to 2 diameters. Moreover, the heat loss due to radiation at the reactor outlet

causes a drop in the temperature at the outlet.

Although the total black body emissive power Eb(z) = σTs(z)4 is high (same order of

magnitude as convection flux), radiation does not seem to have a marked effect. The reason
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for such a behavior can be easily seen in the view factor plot 5. The ring-ring view factor,

which determines what fraction of total radiation emitted by a ring element is incident on

another surface ring element, diminishes to 0 rapidly near the reactor hot spot. Almost 70%

of the radiation emitted by a differential ring element of the reactor is incident on itself.

Hence, the computed radiation flux (Figure 6) is two orders of magnitude less than the heat

release by reaction and the convective flux.
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Figure 5: Ring-ring (solid line, bottom abscissa) and ring-end (dashed line, top abscissa)
view factors as a function of the dimensionless axial coordinate. The view factors diminish
rapidly with the axial distance.

Finally, the effect of radiation on the shorter (5 cm long) reactor was also studied. The

reactor length of 5 cm was chosen to give an aspect ratio of l/d = 100. The temperature

and mole fractions of hydrogen obtained in this reactor are shown in Fig. 7. Again, there is

a 2-diameter shift in the temperature profile. This is in agreement with Fu et al. [38], for

the aspect ratio l/d < 10, the effect of radiation was significant at temperatures lower than
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Figure 6: Radiation flux at steady state within the reactor. Except at the reactor end,
radiation flux is 1 to 2 orders of magnitude lower than convection or reaction heat fluxes.

in our system. However, the temperature drop at the reactor end causes a significant drop

in hydrogen yield. The decrease in the hydrogen yield was about 2 − 3%. We also found

that changing the emissivity resulted in temperature and concentration profiles similar to

those obtained with ε = 0.8. Thus, one can use the black body assumption to reduce

computational burden in calculating the radiation flux, without increasing the error by

much. All these results are consistent with those reported in the literature [15, 38].

2.6 Conclusions

A 1-D model for simulation of autothermal partial oxidation of methane in a microre-

actor with unidirectional (UD) and reverse-flow (RF) modes of operation was developed.

Two different kinetic models for methane oxidation and reforming from the literature were
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Figure 7: Effect of radiation in a 5cm reactor. Thick lines: Ts, thin lines: yH2 ; solid line:
without radiation, dashed line: with radiation. Temperature drop at the reactor end causes
a decrease in H2 yield.

compared; an analysis of time scales of individual processes occurring in the reactor was

presented; and the effect of radiation heat transfer on reactor performance was analyzed.

Specific results of this work include:

• The reaction kinetics presented by Gosiewski et al. [43] (GOS model) and de Smet et

al. [26] (NK model) were compared. The GOS model was able to reproduce the ex-

perimental results reported by Kikas et al. [59]. In the best case, a 4.2% improvement

in hydrogen yield in RF operation was predicted. The NK model, on the other hand,

did not show any improvement in the reactor performance in RF operation.

• An analysis of time scales of individual processes occurring within the reactor was

presented. The time scale of diffusion was lower than that of reactions. Hence, the

reactions occurred at their intrinsic rates.
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• Based on the time scales, the species concentrations were found to be under quasi-

steady state and the overall thermal dynamics of the reactor were critical in defining

the reactor operation in UD or RF modes.

• Radiation heat transfer did not have a significant impact on the performance of the

longer reactor. Consistent with the published literature [15, 38], radiation resulted in

1 to 2 diameter shift in the temperature profile and a sharp drop in the temperature

at the reactor exit. However, due to the large aspect ratio (l/d = 232) in the reactor,

the overall effect was insignificant.

• In contrast to this, the hydrogen yield in a shorter reactor (aspect ratio l/d = 100)

with radiation included was about 2% lower than that without radiation.
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CHAPTER III

SIMULATION AND ANALYSIS OF THE

REVERSE-FLOW OPERATION

3.1 Introduction

Forced unsteady state operation (see [74] for an excellent review) of chemical reactors and

separation processes often lead to an improved performance over the steady state opera-

tion. For example, Horn and Lim [50] used a variational approach to determine the optimal

periodic operation of a CSTR; Horn [49] showed an improvement in efficiency of a peri-

odically operated separation processes; Sterman and Ydstie [100, 101] used the so-called

‘pi-criterion’ to analyze the feasibility of a periodic operation; Bailey [6] employed convex

set theory for optimization in periodic control; Eigenberger and Nieken [30] examined com-

bustion of volatile organics at low concentrations in reverse-flow reactors (RFRs), while

Haynes et al. [45] proposed a procedure for the design of RFRs. The last two examples in

this list involve operating a reactor in a reverse-flow (RF) mode through periodic switching

of the input and output ports resulting in a reversal of the flow direction. Matros and Buni-

movich [75] provide a comprehensive review of theoretical and experimental developments

in RFRs. The RF operation often leads to transient patterns in a catalytic system which are

not found in steady state operation. The opportunity for improvement in the performance

of an RFR occurs due to dynamic properties on the catalyst and/or due to the dynamic

properties of the whole reactor [73].

In this work, partial oxidation of methane in a reverse-flow microreactor is considered.

Previous work on RF operation of methane partial oxidation has mostly focussed on fixed

bed reactors or catalytic monoliths. Blanks et al. [14] were amongst the first to provide

experimental and simulation study on a pilot scale RFR for methane partial oxidation. de

Groote et al. [25] showed that a thermal wave is formed in a fixed-bed partial oxidation
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reactor, which travels along the length of the reactor. They showed that this travelling wave

in an RFR goes through three different stages in each semi-cycle: the wave development

stage, wave widening stage and the wave propagation stage. Gosiewski and coworkers

compared the performance of an RFR [43] with a unidirectional reactor with periodic feed

cycling [42]. Fissore et al. [34] used their model for simulation of periodic changing of feed

location in a three-reactor network to vary the sequence of reactors.

Modelling of methane partial oxidation for autothermal operation of a microreactor

running in unidirectional (UD) and reverse-flow (RF) modes and an analysis of time scales

of individual processes occurring within the reactor was presented in chapter 2. Using

the reaction kinetics adapted from Gosiewski et al. [43], we were able to reproduce the

experimental result of Kikas et al. [59] that the RF operation of the reactor provides higher

hydrogen yield and lower maximum temperature as compared to the UD operation of the

microreactor. In this chapter, we use the time-scale analysis to obtain the origins of the

observed improvement in the performance with RF operation. As the reaction and diffusion

time scales are very fast, species concentration reach a quasi-steady state. Therefore, there

are the dynamic thermal properties of the entire reactor that are exploited to obtain process

intensification in RF operation of the microreactor. Specifically, the RF operation may result

in one or more of the following advantages [75]:

• Creating conditions that are thermodynamically favorable for reversible reactions

• Efficient energy utilization resulting in a more uniform temperature pattern, conse-

quently resulting in better performance at a smaller reactor size and lower average

reactor temperature

• Using the RFR as a regenerative heat exchanger that allows the autothermal operation

of weakly exothermic processes

These three benefits are highlighted in Fig. 8. Figure 8-(a,b,c) show the schematic of

temperature profiles for three different situations in UD operation, while Fig. 8-(d) shows

the corresponding temperature profile for RF operation. Figure 8-(a) shows the case wherein

autothermal UD state is obtained and the reactor is long enough for the desired reaction
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Figure 8: Temperature profiles in UD operation for three possible conditions: (a) reactions
proceed to equilibrium, (b) poor utilization of reactor, (c) thermal wave travels and exits
the reactor. In RF operation (d), there is an extended region (2) of high temperature where
reactions reach equilibrium flanged between the shaded regions (1) of thermodynamically
favorable conditions at reactor ends.

to reach equilibrium. The gas exits the reactor at a relatively high temperature, which is

thermodynamically unfavorable for an exothermic reaction. In RF operation, however, the

sharp drop in the temperature at the reactor exit provides a thermodynamically favorable

condition, shifting the equilibrium towards the desired product. A similar trend is also

observed in an RFR with high temperature feed for an endothermic reversible reaction.

The second case (Fig. 8-(b)) is usually found when endothermic and exothermic reactions

are coupled and the reactions do not reach equilibrium within the reactor. The temperature

decreases on the either sides of the hot spot in UD operation, resulting in lower rates of

reactions and a poor utilization of the reactor. In an RFR, flanged between the two hot spots

near the reactor ends is an extended region of high temperature. The rates of endothermic

32



reactions are high in this region. Consequently, the conversion and yield of the desired

product are also higher. The third and perhaps the most widely studied example is that

of a slightly exothermic high temperature reaction, which is unable to to provide sufficient

heat to maintain UD steady state. In such a situation, a travelling wave is usually formed.

The RFR is then used as a regenerative heat exchanger, trapping the thermal wave within

the reactor by flow reversal before the reaction front exits the reactor.

The rest of the chapter is organized as follows. The simulation results are presented in

the section 3.2: the effects of changing the CH4 : O2 feed ratio, presence of water in the feed,

and the variations in velocity or gas temperature at the inlet are studied. We also consider

the effect of reactor length and the reactor heat losses on the reactor performance. The

analysis of the RF operation is presented in section 3.3. All three circumstances for process

intensification mentioned in the previous paragraph were observed for different conditions in

the simulated reactor and are discussed in this section. The effect of varying the switching

time is studied and guidelines for optimal reactor operation based on the scale analysis are

presented. Finally, the key findings are summarized in the concluding section.

3.2 Simulation Results

3.2.1 Adiabatic reactor: Base case

The “base case” refers to simulations of the adiabatic reactor for the parameters used in

the experiments [59]. These conditions are summarized in Table 1 and simulation results

presented in Table 5. The reactor consists of four channels 500 microns in diameter and

11.6 cm long. In this section, simulation results for varying input conditions for the reactor

in unidirectional (UD) and reverse-flow (RF) operation are discussed.

3.2.1.1 Inlet feed concentrations

The effect of varying feed ratios CH4 : O2 is shown in Table 6 and in Fig. 9. As the feed

ratio CH4 : O2 is increased, the selectivity to hydrogen increased, resulting in an increase in

hydrogen yield. This happened until CH4 : O2 = 1.15 : 1. Beyond this point, the hydrogen

yield decreased again and an optimal feed ratio was found to be CH4 : O2 = 1.15 : 1. This

compares favorably with the experimentally reported optimal ratio of ≈ 0.9 : 1 [59]. This
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is a departure from the published literature [43, 25], where a ratio closer to the partial

oxidation (CH4 + 0.5O2 ⇀↽ CO + 2H2) stoichiometric ratio of 2 : 1 is generally used. In

the best case, a 4% improvement in the yield in RF over UD operation was observed. At

CH4 : O2 feed ratios of 1.25 : 1 and higher, the model predicted lower hydrogen yield in RF

operation compared to the UD operation. A slowly creeping thermal wave was observed

for CH4 : O2 = 1.5 : 1. Due to low speed of wave propagation within the reactor, stable

UD operation was possible for 2–3 hours before the reactor quenched. Finally, with water

present in the feed, autothermal UD operation was not obtained. In contrast, at lower

amounts of water in the feed, autothermal RF operation was possible although there was

a drop in the hydrogen yield. When the amount of water was increased further, it resulted

in disappearance of autothermal operation even in the RF operation of the reactor. These

results are consistent with those observed experimentally [59].

Table 6: Reactor performance for various inlet feed ratios. A travelling thermal wave is
formed at feed ratio of 1.5 : 1 and higher. ∗: The wave creeps through the reactor, and the
reported hydrogen yield is obtained for over 2 hours of operation. tw : travelling wave, no
UD autothermal state is observed.

Unidirectional Reverse-FlowCase CH4 : O2 ratio

Ts,max %H2 yield Ts,max Ts,out %H2 yield

1 0.7 : 1 2160 57.3 2023 1280 61.5

2 1 : 1 2008 71.1 1880 1191 73.4

3 1.15 : 1 1951 77.5 1816 1132 77.4

4 1.25 : 1 1914 77.0 1779 1093 76.6

5 1.5 : 1 1841 74.4∗ 1703 1007 72.6

6 1.75 : 1 tw tw 1660 939 65.2

7 2 : 1 tw tw 1608 890 59.2

CH4 : O2 = 1 : 18

CH4 : H2O = 3 : 1

tw tw 1734 861 67.9
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Figure 9: Comparison of UD (—) and RF (– –) operation for various CH4 : O2 ratios. UD
steady state cannot be obtained for feed ratios of 1.5 : 1 or greater. Also see Table 6

3.2.1.2 Influence of the inlet velocity

Figure 10 shows the variation in hydrogen yield in UD and RF operation with the inlet

velocity for constant feed ratio of CH4 : O2 = 1 : 1 and inlet gas temperature Tg0 = 300K.

Changing the velocity had substantial effect on the reactor performance. In UD operation,

hydrogen yield showed almost a linear dependence on the inlet velocity. Increasing the

velocity to 1.8m/s resulted in the formation of a thermal wave and the autothermal UD

steady state disappeared. When the inlet velocity was increased further, the speed of

propagation of the thermal wave increased almost linearly with an increase in the inlet

velocity. On the other hand, even when the velocity was decreased to 0.5m/s, the movement

of the reaction front opposite to the direction of the flow (flash back) was not observed.
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Figure 10: Effect of varying inlet velocity on H2 yield. Autothermal UD state cannot be
obtained for v0 = 1.8m/s or higher.

The effect of inlet velocity on RF operation was quite different. Increasing v0 resulted in

a decrease in hydrogen yield until about 1.8m/s. Recall that this is the point where thermal

wave was formed in UD operation. When the inlet velocity was increased beyond this

point, the hydrogen yield also increased and finally reached a “saturation” at v0 ≈ 3.5m/s.

The effect of velocity on solid temperature (not shown) in UD and RF operation was

more predictable: increasing the inlet velocity resulted in a monotonic increase in the

solid temperature due to higher throughput of the reactants through the microreactor.

Consequently, for low velocities (eg. v0 < 0.75m/s), overall conversion to hydrogen dropped

due to lower peak temperatures.
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3.2.1.3 Influence of the inlet gas temperature

The effect of varying the inlet gas temperature on UD operation, as seen in Fig. 11 for a

constant inlet velocity v0 = 1.68m/s was less significant than that of the inlet velocity.

Hydrogen yield decreased slightly with an increase in Tg0 in both UD and RF operations;

however, the hydrogen yield in RF operation decreased more noticeably than the UD opera-

tion. Around Tg0 = 573K, the RF operation provided little improvement over UD operation

(Fig. 11). In addition to this, increasing the Tg0 had an effect of stabilizing travelling ther-

mal wave; in fact, when Tg0 was increased to 573K, an autothermal UD steady state was

observed for CH4 : O2 = 2 : 1 with inlet velocity of v0 = 1.68m/s.
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Figure 11: The effect of varying inlet gas temperature (Tg0) for v0 = 1.68m/s and
CH4 : O2 = 1 : 1 on hydrogen yield. H2 yield decreases as the inlet temperature increases.
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3.2.2 Effect of Reactor Length

The effect of varying the reactor length was studied by comparing the results obtained for

the 11.6 cm-long reactor in the previous section with those for a 5 cm-long reactor. Figure 12

shows the performance of a 5 cm long reactor in UD and RF operation. This reactor length

is insufficient for the reactions to attain equilibrium. Hence, the hydrogen yield for UD

operation is much lower for the 5 cm reactor compared to the longer reactor. The optimum

feed ratio also changed: for UD operation of the shorter reactor, CH4 : O2 ≈ 0.9 : 1 was

optimal. What is interesting to note that the improvement in the performance for RF over

UD operation was greater in the shorter 5 cm reactor. For the entire range of feed conditions,

the RF operation provided much better hydrogen yield than UD operation for this shorter

reactor. Unlike the UD operation, the optimum feed ratio for RF operation did not change

much from that found in long (base case) reactor (i.e., optimal CH4 : O2 ≈ 1.1 : 1).

3.2.3 Effect of Heat Losses

One of the main concerns in maintaining the autothermal operation of a microreactor is

managing heat losses to the surroundings. For the reactor under consideration, the heat

transfer coefficient for heat loss to the surroundings, expressed based on the inner channel

diameter was estimated to be 0.32W/m2K. Simulations were performed for this case. The

overall trends observed were similar to the ones reported for the adiabatic reactor case and

are therefore skipped for the sake of brevity.

Next, we considered the case where the system is poorly insulated. In such a situation,

the heat transfer coefficient expressed based on the inside channel diameter could be as high

as 3.2W/m2K. In this situation, the reactor did not exhibit an autothermal UD operation.

However, the autothermal operation can be maintained in RF mode. The pertinent results

are given in Table 7. This is a significant result because it shows that the RF operation is

a robust method for on-demand generation of hydrogen even in the presence of large heat

losses.
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Figure 12: Effect of varying feed ratios in a 5cm reactor. RF operation (– –) provides
significant improvement over UD (—) operation in this shorter reactor.

3.3 Analysis of the Reverse-Flow Operation

In this section, we attempt to provide plausible explanations of process intensification in a

microreactor under RF operation over UD operation. As the reaction and diffusion time

scales are fast, the reactor operation is governed by the thermal dynamics of the microreac-

tor. The time scale of reaction heat release (τHrxn = 3.2 sec) and the time scale of thermal

relaxation of a volume element of the reactor (τth = 168 sec) are critical parameters that

provide approximate handles for selection of switching time τc/2. There are three different

possibilities for selecting the switching time:

• switching faster than time of heat release by reaction (τc/2 ≤ τHrxn),

• switching slower than the thermal relaxation time scale (τc/2 ≥ τth), and
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Table 7: Reactor performance with various inlet feed ratios for poorly insulated reverse-
flow reactor case with switching time of 5 sec.

Case CH4 : O2 ratio Ts,max Ts,out %H2 yield

1 0.7 : 1 1598 750 47.2

2 1 : 1 1566 696 44.5

3 1.25 : 1 1474 634 38.0

4 1.5 : 1 1445 610 31.6

5 2 : 1 1436 595 25.2

• switching between the two time scales (τHrxn < τc/2 < τth).

Investigating the reactor conditions for various times allows us to analyze the reactor oper-

ation.

3.3.1 Nominal Reactor: Favorable thermodynamic conditions

As the first example, we investigate the performance of the microreactor for the base case

(case 2 in Table 6). As the approximate time scales for the reactions are smaller than

the advection time scale, the reactions attain equilibrium within the reactor. The rates of

oxidation, reforming and water gas shift at UD steady state are plotted in Fig. 13 with the

temperature profile shown in the background as a thick gray line. Most of the reactions

take place near the temperature maxima, which occurs about 3.5 cm from the reactor inlet,

while the rest of the reactor is utilized in reaching equilibrium. The portion of the reactor

upstream of this zone gets cooled by the incoming stream and virtually goes unutilized as

no reaction takes place there.

Figure 14 shows the temperature profile at various times after the flow reversal for a

half-cycle time of τc/2 = 200 sec. Immediately after the flow reversal, the temperature at

the reactor inlet (outlet in the previous half-cycle) is high, while that at the outlet is low.

As the time progresses, the temperature at the inlet drops due to the incoming cold feed

and that at the outlet increases due to the heat released on reaction and heat transfer from

the hot gas flow. The time taken for this is governed primarily by the time scale of solid

40



0 0.02 0.04 0.06 0.08 0.1 0.12
−0.1

−0.05

0

0.05

0.1

0.15

axial location z (m)

R
ea

ct
io

n 
ra

te
 m

ol
/(

m
2 .s

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

2000

2500

r
oxi

r
ref

r
wgs

5 cm reactor 

Figure 13: Reaction rates at UD steady state for the Base Case. The temperature profile
is shown as thick gray line. Most of the reactions take place approximately 3.5 cm from the
reactor inlet. Profiles for the shorter 5 cm-reactor are similar. The vertical line represents
the 5 cm mark.

thermal inertia (τth) as well as the time scale of reaction heat release (τHrxn). At 5 sec

after the flow reversal (dotted line), which is an order of magnitude lower than τth, the

outlet temperature is still quite low. As the time progresses, the inlet temperature drops

and the outlet temperature increases progressively (dashed line – 50 sec after flow reversal).

At 200 sec, which is greater than τth, the temperature profile is similar qualitatively to the

UD steady state. Thus, if the switching time is large, e.g. τc/2 = 200 sec comparable to τth,

the reactor has enough time to respond thermally to the temperature changes. As a result,

the conditions in RF operation approach that in UD operation, thus hardly any change in

hydrogen yield is observed at higher switching time. This is illustrated in Fig. 15, where

the RF yield asymptotically approaches the UD yield as τc/2 is further increased beyond

τth.

The temperature profile (thick grey line) and the rates of reactions in RF operation
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Figure 14: Temperature profiles at various times after flow reversal in the reactor with
switching time of τc/2 = 200 sec.

with a fast switching time of 5 sec are shown in Fig. 16. A low temperature region that

appears at the reactor end is thermodynamically favorable for the water gas shift (WGS)

reaction, resulting in an improved H2 yield. Although low temperature is unfavorable for

the endothermic reforming reaction, the equilibrium constant for reforming reaction is still

high enough to ensure that the reaction essentially proceeds to completion and does not

adversely affect the H2 yield. As the switching time increases, there is a decrease in H2 yield,

with the optimal switching time in the range 2− 5 sec. Switching at very high frequencies

(< 1 sec) is also undesirable as hydrogen concentration requires some time to respond and

attain pseudo-steady state after the port switching.

To ensure that indeed the favorable thermodynamic conditions for WGS reaction were

responsible for the observed phenomenon, we simulated the reactor assuming no WGS
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Figure 15: Hydrogen yield in RF operation as a function of the switching time. Fast
switching of the reactor provides greater hydrogen yields.

occurs within the reactor. With WGS ‘turned off’, the H2 yield on RF operation was

similar to that of UD operation (a small decrease in H2 yield was observed on the account

of reforming reaction).

Another interesting outcome is that the “NK” kinetics model considered in part-1 of this

report [56] could not reproduce the observed differences in UD and RF operations. Figure

17 shows the rates of WGS: thick lines represent RF operation, thin lines represent UD

operation; solid lines represent the GOS model and dashed lines represent the NK model.

The rate of WGS reaction in the NK model is an order of magnitude lower than the GOS

model. In RF operation, no significant WGS reaction occurs in the small end region of

lower temperature in the reactor (thick, dashed line). As a result, the difference in UD and

RF yields is not significant for the NK model.
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Figure 16: Rates of reactions and temperature profile (thick gray line) just prior to input-
output port switching for a switching time of 5 sec. High temperature central region allows
reactions to reach equilibrium. Lower temperature at the reactor end favors water gas shift
reaction.

3.3.2 Better thermal utilization in a short reactor

Figure 18 shows the hydrogen yield for RF operation in a 5 cm-long reactor as a function

of the time of flow reversal. As in the previous case, faster switching in the reactor gives

higher hydrogen yield, while the hydrogen yield asymptotically approaches that in the UD

operation at larger switching times. A clear maxima is observed at switching time of about

4 sec.

For the shorter reactor, the advection time scale is comparable to that of the reform-

ing reaction. The rates of reactions and temperature profile are similar to those seen in

the previous example (Fig. 13); the temperature maxima is observed at 3.5 cm from the

reactor inlet. Consequently, the reactor length is not sufficient for the reforming and WGS

reactions to reach equilibrium. This results in a lower hydrogen yield in UD operation. As
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Figure 17: Rate of water gas shift reaction in UD (thin lines) and RF (thick lines) oper-
ation. For the GOS model (—), low Ts at the reactor end favors shift reaction, while it is
insignificant for NK model (– –).

temperature peak occurs close to the reactor exit, the entire length of the microreactor is

not properly utilized.

Reverse-flow operation with fast switching results in a more uniform temperature profile

at the center of the reactor. Figure 19 shows the temperature profiles within the reactor

just prior to switching of the input and output ports for three different switching times

of 1 sec (τc/2 < τHrxn), 3 sec (τc/2 ≈ τHrxn) and 20 sec (τc/2 > τHrxn). The temperature

profile for fast switching time of τc/2 = 1 sec is shown as a solid line in the figure. As

the switching time is increased, the peak temperature increases, resulting in an increase in

conversion to hydrogen. This happens approximately until switching time reaches the time

scale of reaction heat release. When the switching time is further increased, the reactor

enters a wave development stage [25], wherein a single reactor hot-spot is formed and it
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Figure 18: Hydrogen yield in RF operation as a function of the switching time for a 5 cm
reactor. The maxima observed at τc/2 ≈ 4 sec corresponds to the time scale of reaction heat
release.

starts migrating towards the center of the reactor. In this stage, the output hydrogen

concentration starts falling as the reforming reaction is unable to proceed to completion

as the hot-spot approaches its UD steady-state location. Consequently, a maxima in the

hydrogen yield is observed at τc/2 = 4 sec, which corresponds to the approximate time-scale

of reaction heat release τHrxn, due to the optimal thermal utilization of the reactor.

3.3.3 Using reactor as a regenerative heat exchanger

One of the most widely studied application of RF operation is to utilize the reactor struc-

ture as a regenerative heat exchanger to trap a creeping thermal wave within the reactor

and maintain autothermal operation in systems where the heat released on reactions is

insufficient to maintain autothermal UD operation. This situation is indeed observed in
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Figure 19: Temperature profile for various switching times in the 5 cm reactor after at-
taining periodic steady state.

simulations if the microreactor is poorly insulated and has significant heat losses to the

surroundings. Methane oxidation is unable to provide adequate heat to maintain autother-

mal operation in presence of heat losses. If the reactor temperature exceeds the ignition

temperature, oxidation reaction takes place and a hot spot is formed. The incoming cold

stream cools the reactor upstream of this hot spot and pushes it further inside the reactor.

This results in a thermal wave that travels in the direction of flow. The flow direction

is switched before the wave exits the reactor, trapping it within the reactor to provide

autothermal operation.

Fast switching in this case results in significantly lower peak temperatures, due to the

large heat losses. Consequently, the reactions do not proceed to completion and the hy-

drogen yield is low. As the switching time is increased, the peak temperature increases, a

thermal wave develops and starts propagating along the length of the reactor. Switching
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at the wave propagation stage gives the maximum yield. Hydrogen yield is plotted as a

function of switching time τc/2 in Fig. 20. Optimum RF performance is obtained as the

switching time approaches the time scale of thermal inertia. Increasing the switching time

beyond τth does not cause any significant increase in hydrogen yield. The maximum limit

for switching time is given by the time required for the reaction zone to travel through the

reactor, which was found to be approximately 1200 sec for this case.
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Figure 20: Hydrogen yield in RF operation as a function of the switching time for poorly
insulated reactor case. Infrequent switching on the scale approaching the time scale for the
reactor thermal inertia provides maximum yield for this case.

3.4 Conclusions

Parametric simulation results of autothermal partial oxidation of methane in a microreactor

were presented in this paper. It was demonstrated that reverse-flow operation of the reactor
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provides better hydrogen yields and lower temperatures for most cases considered. An

analysis of the observed improvement in the reactor performance in reverse-flow operation

over unidirectional operation was presented and approximate guidelines on operating the

reverse-flow reactor based on simple time scale analysis were developed. Specific results of

this work include:

• The thermal dynamics of the reactor was found to be the dominant effect in this

system, which can be exploited through reverse-flow operation.

• The time scale of heat release due to reactions was found to be an important parameter

for the system. The optimum reactor yield was obtained when the switching time was

close to this time scale.

• In addition to some improvements in reactor yields, the main advantages of the reverse-

flow operation were lower reactor temperature and robustness of the reactor perfor-

mance under various operating conditions. The unidirectional autothermal steady

state disappeared at higher inlet velocities, higher methane content in the feed and

poor reactor insulation (significant heat losses). However, autothermal operation was

maintained in the reverse-flow mode.

• The improvement in hydrogen yield in RF operation was much greater in case of the

shorter 5 cm-long reactor.

• Three different cases for process intensification in reverse-flow operation were observed

in the system.

– For the 11.6 cm-long reactor, the improvement in hydrogen yield occurred due to

better thermodynamic conditions at the reactor exit. In this case, fast switching

(τc/2 = 2 to 5 sec) was found to be optimal.

– Better thermal utilization of the shorter reactor was responsible for improved hy-

drogen yield. The optimal reactor performance was obtained when the switching

time approached the time scale of reaction heat release.
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– For the large heat loss case, the microreactor was used as a regenerative heat

exchanger to trap the travelling thermal wave by flow reversal.

• Not all cases are guaranteed to provide improvement in hydrogen yield on reverse-flow

operation. For CH4 : O2 = 1.25 : 1 and higher, the unidirectional steady state was in

fact better than the reverse-flow operation.
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CHAPTER IV

SENSITIVITY AND OPERABILITY ANALYSIS OF THE

MICROREACTOR

This chapter considers operability analysis and design of a microreactor for hydrogen gener-

ation via methane partial oxidation. The microreactor is used in both unidirectional (UD)

and reverse-flow (RF) modes of operation. We show that the reverse-flow operation is more

robust to various changes in reaction and transport parameters. Autothermal operation can

be maintained only in the RF operation and not in the UD operation at higher hydrogen

throughput or with partial deactivation of the catalyst. Increasing the catalyst loading

and using reactor with higher solid thermal conductivity is shown to increase the region

of autothermal UD operation. An analysis of model sensitivity to the kinetic parameters

is performed. Based on this, a rational scheme for improved catalyst placement in the RF

reactor is proposed. Finally, an opposed-flow operation is suggested to improve reactor

robustness. It’s performance is compared with that of the reverse-flow operation.

4.1 Introduction

Forced unsteady state operation (FUSO) has been shown to provide improved performance

over the conventional steady state operation in many chemical systems [74, 75]. An example

of FUSO is the reverse-flow (RF) operation of tubular or fixed bed reactors [14, 25, 43]. The

RF operation is achieved by periodically switching the input and output ports to reverse

the flow direction. Recently, the advantages of the reverse flow (RF) operation over the

unidirectional (UD) operation for methane partial oxidation in a microreactor were demon-

strated experimentally [59]. A theoretical study aimed at explaining the physical origins of

the observed improvement was presented in the previous chapters. Under various different

conditions, the RF operation provided improved performance due to several reasons, such

as favorable thermodynamic conditions, better thermal utilization of the reactor and using
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the reactor as a regenerative heat exchanger [57].

In Chapters 2 and 3, we observed that the RF operation does not necessarily provide

higher hydrogen yields than the UD operation under all circumstances. For example, under

nominal operating conditions, the UD operation provided better hydrogen yield than the RF

operation for CH4 : O2 ratio of 1.2 : 1 and higher. However, at higher velocities and higher

amounts of methane in the feed, a travelling thermal wave was formed and the autothermal

UD operation was no longer possible. On the other hand, the autothermal operation could

be maintained in the RF mode. This condition (disappearance of an autothermal UD state)

is likely to further deteriorate with several hours of reactor operation due to a decrease in

the effectiveness of the catalyst (catalyst deactivation). The aim of this paper is to provide

an operability analysis for the UD and RF operations of the microreactor, with respect

to both hydrogen yield and hydrogen throughput within the reactor. Design changes to

improve the robustness of the UD operation will also be considered, so that higher amounts

of hydrogen is generated under increased load conditions.

Eigenberger and Nieken [31] proposed various reactor designs, which integrate regenera-

tive heat exchange with catalytic oxidation, to maintain autothermal operation for catalytic

air purification of very dilute fuel effluent streams. In the case of the RF operation, the

thermal energy liberated by the mildly exothermic process gets stored in the solid reactor

body due to its high heat capacity and large time scale of thermal relaxation. This heat

is released to the inlet cold gas after the flow reversal. Thus, the reactor itself acts as a

regenerative heat exchanger and an autothermal operation is maintained. In our microre-

actor system, we found that the overall thermal dynamics of the system were critical in

obtaining performance improvement [56]. Motivated by the similarity between Eigenberger

and Nieken’s system and a RF reactor, we consider an alternate design of reactor, which we

term as “opposed flow” (OF) system. The key idea of an OF reactor is similar to that of a

countercurrent heat exchanger, as shown in Figure 21. The reactant gases flow in opposite

directions in adjacent channels. If we assume that there is no thermal interaction between

the adjacent channels, the temperature profiles will be as shown in the top plot in Figure 21.

The temperature profile in an actual OF reactor can be thought of some superposition of
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the two UD profiles. As shown in the bottom plot, the temperature profile is similar to that

observed in the RF operation. Several authors have previously shown that for infinitely

large coefficient of heat transfer, internal loop reactors and countercurrent opposed flow

reactors are analogous to the reverse flow reactor with infinitely fast switching [60, 61]. In

a recent special issue on FUSO [94], Sheintuch and Nekhamkina [96] presented simulation

and experimental results comparing these systems. This motivates us to consider the OF

operation as an alternative to the RF operation to maintain robust autothermal reactor

operation.

The rest of this report is organized as follows. Section 4.2 considers parametric sensitiv-

ity analysis of the reactor to identify the key transport and reaction parameters affecting

the system, and their effect on the optimal feed conditions and switching time. A rational

scheme for optimal placement of various catalysts, which exploits the spatial temperature

patterns in the RF reactor, is presented in section 4.3. Section 4.4 considers operability

analysis of the UD and RF operations; the response to hydrogen throughput changes, the

robustness of the reactor to catalyst deactivation, the effect of catalyst loading and thermal

conductivity of the reactor are considered. Section 4.5 proposes some design changes in

the system for improved UD operation. Finally, results of this work are summarized in the

concluding section.

4.2 Sensitivity Analysis

The aim of the sensitivity analysis is to identify the various model parameters that have

a significant influence on the reactor operation. The reactor model was discussed in our

previous paper [56]. The key system parameters are the kinetic rate constants, the transport

coefficients, and the parameter α that splits heat of reaction between gas and solid energy

conservation equations. As the system is limited by the rate of catalytic reactions, the mass

transfer coefficient kg does not have a strong influence on the reactor performance. The

heat transfer coefficient is also very high due to the small channel diameters. Hence, the

temperatures of the solid and gas (Ts and Tg) do not differ significantly. As a result, the

parameter α was also found to have little effect on the reactor performance. Also, the effect
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Figure 21: A cartoon explaining the concept of an opposed flow (OF) reactor.
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Figure 22: Sensitivity of hydrogen yield to variations in kinetic constants

of varying the heat transfer coefficient hv, although higher than those of kg and α, was still

insignificant. Therefore, we only consider variations in kinetic parameters and its effect on

reactor performance.

4.2.1 Sensitivity to kinetic parameters

The kinetic constants of oxidation, reforming and water gas shift reactions were varied

individually by a factor of 4. The sensitivity of hydrogen yield on the variations in these

parameters for the UD and RF operations is shown in Figure 22. The autothermal UD

state disappeared when the rate of oxidation was reduced or the rate of reforming reactions

was increased. On the other hand, increasing the rate of oxidation or decreasing the rate of

reforming reaction stabilized the UD operation, although hydrogen yield was significantly

lower. Variations in the rate of water gas shift reaction did not result in significant variations

in hydrogen yield.

Additionally, we also studied how the variations in the kinetic constants affected the
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Figure 23: Effect of varying kinetic constants for oxidation and reforming reactions. The
maximum temperature increases monotonically as kref is decreased. When kox is increased,
the temperature increases initially. However, beyond a certain point, the maximum tem-
perature decreases again.

temperature profiles in the reactors. An increase in the rate of the exothermic oxidation

and a decrease in the rate of endothermic reforming reaction are expected to increase the

maximum temperature in the reactor. Figure 23 shows that the maximum temperature

increases, as expected, when the reforming rate is progressively decreased. In contrast,

when the oxidation rate is increased, the maximum temperature increases initially and the

temperature peak shifts towards the entrance of the reactor. A further increase in the

temperature pushes the temperature peak further towards the reactor entrance. As the

solid temperature at the reactor entrance increases, so does the loss of energy by convection

and radiation at the reactor entrance. Thus, beyond a certain point, the temperature starts

decreasing as the rate of oxidation is increased. Figure 24 shows the temperature profiles

for various kinetic constants.
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Figure 25: Hydrogen yield for UD operation as a function of inlet feed ratio for various
values of kinetic constants kox and kref .

Based on the observations presented here, further analysis of reactor operability is fo-

cussed primarily on the variations in kinetic rate constants of oxidation and reforming

reactions.

4.2.2 Optimal feed conditions

The variations in the optimal CH4 : O2 feed ratio with the kinetic parameters for both the

UD and RF operations are analyzed in this section. The rate constants of oxidation and

reforming reactions were increased and decreased individually up to a factor of 2 and the

simulations were performed for various choices of inlet feed ratios. As noted earlier, we

found that decreasing the rate of oxidation kox or increasing the rate of reforming reaction

kref resulted in disappearance of the autothermal UD steady state. Figure 25 shows the
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Table 8: Variations in reactor performance with changes in kinetic parameters

Reverse Flow Unidirectional

[%H2]1:1 [%H2]max Opt Feed [%H2]1:1 [%H2]max Opt Feed

Base 73.5 77.5 1.16 : 1 71.1 77.5 1.20 : 1

kox ∗ 2.0 66.6 70.5 1.16 : 1 65.3 78.4 1.36 : 1

kox ∗ 1.5 69.5 73.5 1.18 : 1 67.1 76.8 1.38 : 1

kox ∗ 0.75 76.9 79.1 1.16 : 1 tw tw —

kox ∗ 0.5 78.9 80.0 1.16 : 1 tw tw —

kref ∗ 2.0 80.5 82.3 1.16 : 1 tw tw —

kref ∗ 1.5 77.8 80.4 1.18 : 1 tw tw 0.7 : 1

kref ∗ 0.75 71.0 74.7 1.20 : 1 69.2 75.5 1.28 : 1

kref ∗ 0.5 67.0 71.0 1.18 : 1 65.2 73.5 1.32 : 1

[%H2]1:1 : % hydrogen yield for the feed ratio CH4 : O2 = 1 : 1

[%H2]max : Maximum % hydrogen yield obtained

Opt Feed : Optimal CH4 : O2 feed ratio

variations in hydrogen yields as a function of CH4 : O2 feed ratios in the UD operation.

The maximum hydrogen yields are also indicated for the various kinetic constants. The

optimal feed ratio varied between 1.1 : 1 to 1.4 : 1. An increase in kox and a decrease

in kref resulted in an increase in the relative amount of CH4 in feed. These results are

summarized numerically in Table 8. The table shows hydrogen yields for nominal value of

CH4 : O2 = 1 : 1, the optimal hydrogen yields and the optimal feed ratios for the various

changes in the kinetic parameters discussed earlier.

In contrast to UD, autothermal operation was maintained in the RF mode. Figures 26

and 27 show the variations in hydrogen yields for different values of kox and kref respectively,

for the RF operation. Autothermal operation was possible in the RF mode for all the

variations in the kinetic parameters. Unlike the UD operation, the optimal feed ratio

CH4 : O2 in the RF operation stayed in the vicinity of 1.16 : 1 for various changes in the

kinetic constants. Thus, we see that the optimal RF operation does not change with changes

in the system parameters. These results are summarized numerically in Table 8.
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Figure 26: Hydrogen yield in the RF reactor as a function of inlet feed ratio for various
values of kinetic constant kox for the oxidation reaction.
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values of kinetic constant kref for the reforming reaction.
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Figure 28: Hydrogen yield as a function of switching time for variations in kref .

Next, we considered the optimal switching time for the RF operation. Figure 28 shows

the hydrogen yield as a function of the switching time τc/2 for CH4 : O2 ratio of 1 : 1. The

rate of reforming was decreased by a factor of 0.25 (fourth case in Figure 22). As in the

baseline case, the optimal τc/2 was found to be 5 sec. A similar analysis was performed

for couple more variations in the rate constants; each time the optimal switching time was

found to be about 4− 5 sec. Thus, variations in kinetic constants did not have a significant

effect on the optimal switching time. These results are important because they demonstrate

that the optimal conditions for the RF operation do not vary significantly under modest

variations in the reactor parameters. Thus, a RF reactor designed at nominal conditions

will yield good performance if the kinetic parameters undergo some changes.
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4.3 Improved Catalyst Placement

In the previous section, we observed that decreasing the rate of oxidation or increasing the

rates of reforming or water gas shift reactions resulted in an improved hydrogen yield. As

various noble metals are known to catalyze methane reforming and partial oxidation at

different rates [114], an opportunity exists to optimally place various catalysts along the

length of the reactor. In case of the RF operation, catalyst placement gains prominence

due to the spatial temperature pattern obtained [57]. Specifically, the RF reactor contains

an extended central zone of high temperature flanged by end zones of low temperatures.

We propose that higher hydrogen yield can be obtained by carrying out the endothermic

reforming reactions at the reactor center and slightly exothermic water gas shift reaction

at the reactor exit.

Avci et al. [5] and Ma and Trimm [71] reported simulation and experimental studies

respectively, comparing the performance of methane oxidation-reforming in a fixed bed

reactor containing Pt/Al2O3 as an oxidation and Ni/Al2O3 as a reforming catalyst. Both

reported that a mixed bed reactor (the two catalysts were mixed in the same catalyst bed)

provides better hydrogen yield than a dual bed system (oxidation catalyst placed upstream

of the reforming catalyst). In both these cases, the authors concluded that better heat

and mass transfer between the two catalysts in a mixed bed configuration was responsible

for higher hydrogen yields. In contrast, the gas-solid heat and mass transfer coefficients

in a microreactor are large due to the small channel diameters. Hence, it stands to be

determined if consecutive placement of catalysts would provide higher yields than using a

single catalyst. We also note that the previous authors [5, 71] considered UD fixed bed

systems, while this section considers the RF microreactor.

4.3.1 Kinetic Expressions

Ever since Fischer and Trospch [33] reported activity of noble metals towards catalyzing

methane reforming reactions, studying the kinetics of methane oxidation, reforming and

water gas shift reactions has been a topic of great interest for the last century. While nickel

has been predominantly used as an industrial reforming catalyst [91], it tends to form
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Table 9: Rate constants and activation energies for oxidation, reforming and water gas
shift reactions on various catalysts. Cat1, Cat2 and Cat3 are primarily oxidation, reforming
and water gas shift catalysts respectively.

Reaction Oxidation Reforming Shift

Catalyst k0 Ea k0 Ea k0 Ea

Base 23.06 100.32 76.16 114.12 0.412 38.13

Cat1 55.69 83.32 3.05 114.12 1.648 58.13

Cat2 2.31 100.32 952.0 141.12 32.96 43.13

Cat3 11.53 112.32 180.0 130.12 6.59 38.13

carbon residues at higher temperatures and loses its activity under oxidizing conditions [23]

that exist at the reactor inlet. Recent studies on steam/dry reforming of noble metals by

Wei and Iglesia [113, 114, 116, 115, 112] indicate these to be good candidates for possible

microreactor catalysts [33]. Additionally, Wheeler et al. [117] recently performed kinetic

studies on water gas shift reaction on these noble metal catalysts at high temperatures.

Based on these sources, we conclude that

• Pd is a good oxidation catalyst (Cat1)

• Ni is a good reforming catalyst (Cat2)

• Ru is a good water gas shift catalyst (Cat3)

We compare the results of placement of these catalysts as compared to the baseline case

of Pt or Pt/Rh catalyst used in our system. As our aim is to obtain a rational means to

study improved catalyst placement, exact reaction kinetics for each catalyst are not critical.

The kinetic rate constants are shown in Table 9 and the procedure used to obtain them is

elaborated in Appendix D.

4.3.2 Results

The analysis for improving reactor productivity was done in a step-wise manner. First, we

studied the effect of using Ruthenium catalyst at the reactor ends. Next, we studied the
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Figure 29: Effect of Ru-Pt-Ru catalyst patterning

effect of patterning Palladium and Nickel catalysts. Finally, we combined these results to

obtain an optimal catalyst patterning for the microreactor

• Patterning of water gas shift catalyst

The effect of patterning water gas shift catalyst (Ru) with the nominal Pt catalyst

was studied. The catalysts were placed symmetric about the center of the reactor.

Figure 29 shows the hydrogen yield obtained as a function of percentage of Pt catalyst

at the center for Ru-Pt-Ru configuration. As Ru is a good oxidation and reforming

catalyst as well, the performance of pure Ru catalyst is comparable to that of pure Pt

catalyst. The optimum hydrogen yield was obtained when Ru catalyst occupied 15%

at the two ends of the reactor and Pt occupied the central 70% of the reactor length.

• Patterning oxidation and reforming catalysts
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We now consider the effect of patterning Pd and Ni catalyst. Pd is an excellent

oxidation catalyst, but a very poor reforming catalyst. Conversely, Ni is a poor

oxidation catalyst, but a good reforming catalyst. As a result, pure Pd or Ni catalysts

give very poor performance. Like Avci et al. [5], we found that a mixed catalyst

consisting of Pd/Ni performs better than spatial patterning. For the latter, Pd was

placed upstream and Ni placed downstream, resulting in a Pd-Ni-Pd configuration.

The Pd/Ni mixed catalyst gave 54.7% hydrogen yield. On the other hand, Pd-Ni-Pd

configuration performed very poorly. The maximum hydrogen yield obtained was only

23.7% when Ni occupied the central 80% of the reactor length.

The reason for this can be seen from Figure 30, which shows the temperature profile

for a Pd-Ni-Pd catalyst. The oxidation takes place on Pd catalyst resulting in a

steep rise in temperature at the initial section of the reactor. However, in the central

section, endothermic reforming reaction causes a steep drop in temperature. As little

oxidation reaction takes place in this region, the temperature drops significantly. This

results in very low reaction rates in the central section of the reactor causing poor

conversion of methane.

• Using reforming catalyst to improve baseline performance

Next, we thought that patterning Pt and Ni catalysts might provide significantly

better results than patterning Pd and Ni. This is because Pt is a better reforming

catalyst than Pd. Figure 31 shows the hydrogen yield as a function of Ni loading in

the Pt-Ni-Pt catalyst. The plot clearly shows that pure Pt catalyst performs better

than the patterned system.

• Patterning all catalysts

Based on the above results, we learnt two things: 1. Ru catalyst at the reactor ends

provides improved hydrogen yields, and 2. pure Pt or Pt/Ni mixed catalyst provides

better hydrogen yield than spatially patterned case. Hence we considered the following

configuration: [10% Ru]–[80% Pt/Ni mixed]–[10% Ru]. This particular case gave the

best hydrogen yield of 86.1% amongst all the cases considered.
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Figure 30: Temperature profile at periodic steady state for [10% Pd]-[80% Ni]-[10% Pd]
catalyst patterning
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4.4 Operability Analysis

The RF operation was shown to be more robust, in that the autothermal operation is

maintained under variations in kinetic parameters and feed conditions. The optimal feed

ratio was also found to be in the vicinity of CH4 : O2 = 1.15 : 1. However, the UD operation

has an upper limit on the inlet velocity and/or the relative amount of methane in feed,

beyond which an autothermal operation is not possible in the UD mode. The operability

analysis presented in this section aims to address the following questions:

• What is the maximum hydrogen throughput we can expect from the system under

various conditions? (Section 4.4.1)

• How robust is the reactor operation to catalyst deactivation? How much performance

do we sacrifice in order to ensure robustness of the reactor operation? (Section 4.4.2)

• What is the effect of increasing catalyst loading or reactor parameters on the reactor

performance? (Section 4.4.2)

• What is the effect of properties of the reactor material of construction? (Section 4.4.3)

4.4.1 Hydrogen throughput

The comparison of the UD and RF operations has so far focussed on hydrogen yield, ie.

the number of hydrogen molecules obtained for every half a molecule of methane input to

the reactor (since CH4 ≡ 2H2). Another important criteria is the throughput of hydrogen,

ie. milliliters of hydrogen obtained per minute at standard temperature 298K and pres-

sure 1 atm from the reactor. As the load increases, the hydrogen throughput requirement

increases, which then requires higher amount of methane feed into the reactor. We had

seen earlier that either increasing the velocity beyond a certain value at constant feed ratio

or increasing the relative amount of methane in the feed at constant velocity results in

disappearance of the autothermal UD state. For the microreactor, we found that the feed

conditions for obtaining maximum hydrogen throughput were inlet velocity v0 = 1.75m/s

and CH4 : O2 = 1.15 : 1, and the maximum throughput was 74.9ml H2/min at standard

conditions. For the same inlet conditions, the hydrogen throughput from the RF operation
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is hardly any higher, at 75.1ml H2/min. However, autothermal operation can be main-

tained in the RF mode at much higher inlet velocities; hydrogen throughput well in excess

of 100ml H2/min can be obtained in the RF operation, if the inlet velocity is increased

beyond 2.3m/s.

4.4.2 Catalyst loading and Catalyst deactivation

Next, we considered the robustness of the UD and RF operations to loss in catalyst activities.

The partial oxidation process in the microreactor is kinetically limited. Hence, catalyst

deactivation, which is expected to happen over a period of reactor use, will severely affect

the reactor operation. In fact, if the kinetic constants were reduced to 25% of the nominal

value, no autothermal UD operation was obtained for any relevant feed conditions. Figure

32 shows how the maximum hydrogen throughput decreases with catalyst effectiveness.

One can clearly see a substantial decrease in hydrogen throughput with a drop in catalyst

effectiveness. The region below the solid line is the region of autothermal UD operation. In

order to operate in a region above this curve, one needs to run the reactor in the RF mode.

The nominal design conditions call for operating the UD reactor close to CH4 : O2 =

1.15 : 1 and v0 = 1.75m/s, which provides 74.9ml/min of hydrogen, with the yield being

75.6%. To give leeway for catalyst deactivation or presence of impurities in the feed, the

reactor is designed conservatively to work away from this optimum. We designed the reactor

to account for 50% decrease in catalyst activity. Under these conditions, the feed conditions

of CH4 : O2 = 1 : 1 and v0 = 1.25m/s gave the maximum yield. If the reactor is operated at

these input conditions to ensure robustness of the UD operation, the hydrogen throughput

(for nominal values of kinetic constants) will drop to 64.1ml/min of hydrogen (down from

the optimal value of 74.9ml/min) and the hydrogen yield will drop to 71.8% (from the

optimal value of 77.5%).

Next, increasing the catalyst loading per unit reactor volume was investigated to improve

the range of the reactor operation in the UD mode. Increased catalyst loading can be

achieved by depositing the catalyst on the walls of the reactor channels and/or by using

thin catalyst springs instead of using a straight wire. Assuming that the void volume is
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Figure 32: Hydrogen throughput variations with variations in catalyst effectiveness. Left
part: catalyst deactivation, right part: increased catalyst loading
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not affected, increasing the catalyst loading can be equivalently represented by increasing

the kinetic rate constants. As expected, higher hydrogen throughput can be obtained at

higher catalyst loading by increasing the inlet velocity and the amount of methane in feed.

The right-hand part of Figure 32 shows the effect of increasing the catalyst loading. With

a four-fold increase, a hydrogen throughput in excess of 100ml H2/min can be obtained.

In fact, the highest hydrogen throughput for this case is 115ml/min, with inlet velocity

v0 = 2.0m/s and feed CH4 : O2 = 1.5 : 1. Providing leeway for robust operation, as was

done in the previous section1, a hydrogen throughput of 87.5ml/min can be obtained, with

79.8% H2 yield (as opposed to 82.5% H2 yield at optimal throughput conditions). For the

same kinetics, the optimal hydrogen yield in RF operation was 79.5%; at a similar CH4 : O2

ratio of 1.18 : 1 as described in section 4.2.2.

Figure 33 shows the operation diagram for the UD reactor operation for various kinetic

conditions. The lines in the figure show the maximum velocity that provides an autothermal

UD operation as a function of inlet feed ratio, each line representing different kinetic rate

constants. The region below and to the left of each line is the region of autothermal UD

operation for the corresponding kinetic constant. No autothermal operation is possible

for velocities or feed ratios greater than these values. The operating condition that gives

maximum hydrogen yield for particular kinetic condition is shown as a diamond. For

example, we previously noted that the maximum hydrogen throughput was obteined at

nominal operating conditions for feed ratio of CH4 : O2 = 1.15 : 1 and inlet velocity of

v0 = 1.75 m/s, is indicated as a diamond on the solid line.

4.4.3 Reactor material of construction

We now consider the reactor operation with different materials of construction, such as steel

or silicon. Changing the reactor material changes the heat capacity (ρscs) and thermal

conductivity (λs). We analyzed the effect of varying these two parameters independently.

We found that varying the heat capacity (ρscs) of the reactor did not have any significant

effect on the reactor performance. In contrast, thermal conductivity had a very strong

1By operating at optimal conditions for catalyst effectivity of 50%
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Figure 33: Operation diagram showing the maximum velocity for autothermal UD oper-
ation as a function of CH4 : O2 feed ratio, for various values of kinetic rate constants.
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effect on the reactor performance. When λs was reduced, the region of autothermal UD

operation also reduced. Similarly, increasing λs resulted in stabilization of the autothermal

UD operation, as well as decreasing the maximum temperature Ts,max. For example, when

λs was increased to 12W/m2K, we obtained autothermal UD operation even with v0 = 2.0

and CH4 : O2 = 1.25 : 1. This is because higher λs results in a higher axial distribution

of thermal energy. The maximum temperature is thus reduced, and the temperature at

the entrance is increased. Thus, the hot-spot is shifted closer to the entrance, resulting in

stabilization of the UD operation. This gain in the operation window comes at the expense of

hydrogen yield attainable. For example, at nominal conditions and CH4 : O2 = 1.25 : 1, the

hydrogen yield decreased from 77.0% for λs = 6.0W/m2K to 74.6% for λs = 12.0W/m2K.

Figure 34 shows the operation diagram for the UD operation for various changes in the

solid thermal conductivity, for a feed ratio of CH4 : O2 = 1.25 : 1. The maximum inlet

velocity (solid line, left ordinate) that gives autothermal UD operation and the correspond-

ing hydrogen yields achieved at these operating conditions (dashed line, right ordinate) are

plotted as a function of the solid thermal conductivity. The region below the solid line

represents the UD operating region, while the one above it represents the region where a

travelling thermal wave is formed.

4.5 Opposed Flow reactor

Finally, we considered an alternate “opposed flow” (OF) reactor operation to maintain

autothermal steady state without the need of flow reversal. The gases flow in adjacent

channels flow in opposite directions in the OF reactor. The incoming cold stream in one

channel gets heated due to the hot effluent stream. The reactor itself acts as a regenerative

heat exchanger [31] and is analogous in some respects to the RF operation (Figure 21). The

main motivation for considering the OF operation is that RF reactor requires complicated

valve assembly (such as a 4-way valve) or moving reactor parts to achieve flow reversal. An

RF reactor also has large dead volumes during flow reversal, although microreactor designs

that minimize dead volume [59] in RF or sequential switching of a reactor network [34]

for which dead volumes is not an issue have been proposed. Finally, dynamic analysis and
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Figure 34: Operation diagram showing the maximum velocity for autothermal UD oper-
ation (—) and the corresponding hydrogen yield (– –) for variations in the reactor thermal
conductivity. Operating conditions: CH4 : O2 = 1.25 : 1 and v0 = 1.68m/s.
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control issues in a RF system are complex due to the repetitive or periodic nature of these

processes. On the other hand, the OF reactor usually has stationary (non-periodic) steady

state and the control issues are likely to be simpler than a RF reactor.

All the reactor mass and energy balance equations and boundary conditions remain the

same as discussed in [56] except an additional channel-channel heat transfer term gets added

to the solid heat balance. We note that the two adjacent channels are alike in all respect,

giving symmetry to the system. If we represent any state variable in the two adjacent

channels as φ1 and φ2, the symmetry results in

φ1(z, t) = φ2(l − z, t) (17)

The thermal interaction between the two channels is accounted in the energy balance equa-

tion as

∂

∂t
Ts(z) =

λs

ρscs

∂2

∂z2
Ts(z)− hva

ρscs
[Ts(z)− Tg(z)]−

hc−ca

ρscs
[Ts(z)− Ts(l − z)] (18)

The only additional term compared to the previous model is the channel-to-channel heat

transfer term hc−c [Ts(z)− Ts(l − z)]. An alternative way to model this system is to consider

separate sets of balance equations for the opposing flow directions. The channel-to-channel

heat transfer term in this case becomes hc−c [T1s(z)− T2s(z)].

We consider the performance of OF reactor for various values of the channel-to-channel

heat transfer coefficient hc−c, the time constant which is given by

τc−c =
ρscs

hc−ca
(19)

Figure 35 shows the hydrogen yields for the baseline case for various changes in the time

constant τc−c. The hydrogen yield for the OF operation is slightly better than the RF

operation. Additionally, the hydrogen yield does not vary significantly for comparatively

large changes in the channel-channel heat transfer coefficient. The temperature profiles in

the OF and RF operations are shown in Figure 36. Qualitatively, the temperature profiles

in the two cases are similar; ie., there is an extended region of high temperature at the
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Figure 35: Hydrogen yield as a function of time scale of channel-to-channel heat transfer
τc−c for the OF reactor and switching time τc/2 for the RF reactor.

reactor center flanked by regions of comparatively lower temperatures at the reactor ends.

The maximum temperature in the OF operation was higher than the RF operation. Thus

the OF operation therefore is similar to the RF operation under the limit of high frequency

of flow reversal.

Finally, we evaluated the performance of the OF operation under conditions simulating

catalyst deactivation, for a range of input CH4 : O2 ratios. We found that autothermal op-

eration was maintained in the OF operation for higher hydrogen throughput requirements,

even for lower reaction rates. However, the optimal feed ratio changed for various changes

in the kinetic constants. For example, the optimal feed ratio was CH4 : O2 = 1.23 : 1 for

the nominal case, while it changed to 1.18 : 1 when the kinetic constants were reduced by

half. The change in the optimal feed ratio, however, is not as significant as observed in
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Figure 37: Hydrogen yield as a function of inlet feed ratio for OF operation for two
different reaction kinetics.

the UD operation. The opposed flow reactor therefore retained the simplicity of the uni-

directional operation, while providing higher hydrogen throughput and robustness of the

reverse-flow operation. Fabrication of the OF reactor is not significantly difficult compared

to an UD reactor, as displayed in Figure 38-a. Often, increased throughput is obtained by

stacking these planar MEMS assemblies, such as the one in Figure 38-b, which is based on

the periodic microreactor of Rouge et al. [92].

4.6 Conclusions

A sensitivity and operability analysis of the unidirectional (UD) and reverse-flow (RF)

operations of methane partial oxidation in a microreactor was presented in this report. The

reactor operation was found most sensitive to the rate constants of oxidation and reforming

reactions, and to the thermal conductivity of the reactor material. We found that the
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optimal feed ratio varied significantly with variations in the kinetic rate constants for the

UD operation. In contrast, it remained more or less constant at about CH4 : O2 = 1.15 : 1

for the RF operation.

There was an upper limit on the inlet velocity and the relative methane content in the

feed for which an autothermal operation could be maintained in the UD mode. The range

of conditions for autothermal operation increased with an increase in catalyst loading and

and increase in thermal conductivity of the reactor. Similarly, the range of autothermal

operation reduced when catalyst deactivation was accounted for maintaining robust opera-

tion. Based on this, operation diagrams were developed for the UD mode, expressing the

maximum inlet velocity as a function of inlet feed ratio, and thermal conductivity of the

reactor. In contrast, we did not observe an upper limit on the velocity for autothermal RF

operation (hence pressure drop, maximum temperature and other criteria would determine

the maximum velocity in the RF operation).

An improved catalyst placement scheme based on the temperature profiles in the RF

operation was also suggested. We found that placing water gas shift catalyst like Ruthenium

at the reactor ends and a mixed oxidation-reforming catalyst of Platinum and Nickel at the

center gives the most optimal performance amongst the noble metal catalysts investigated.

Finally, an opposed flow scheme was suggested to maintain autothermal operation with-

out the complicated flow reversal. In the opposed flow reactor, gas flows in opposite di-

rections in adjacent channels (like a counter-current heat exchanger). This reactor behaves

like the RF reactor under the limit of infinitely fast port switching.
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PART II

Switching Between Multiple

Steady States

82



CHAPTER V

CYBERNETIC MODEL PREDICTIVE CONTROL OF

BIOREACTORS WITH MULTIPLE STEADY STATES

The control of bioreactors displaying steady state multiplicity is considered in this chapter.

Steady state multiplicity occurs due to the ability of microbial and mammalian cultures

to regulate their metabolic pathways in response to the environment. Cybernetic mod-

eling framework is used to capture these metabolic regulations associated with switching

between multiple steady states. Two different examples, viz. a microbial reactor and a

mammalian cell culture are considered. Preliminary results on optimal switching between

metabolic states of the bioreactors using sequential linearization-based Model Predictive

Control (slMPC) are presented.

5.1 Background and Motivation

Multiplicity of steady states is a condition in which a system displays two or more distinct

states and output conditions for the same set of input conditions. A classical example of this

phenomenon is seen in a non-isothermal stirred tank reactor with exothermic reaction [4, 37].

It is a subject of great interest to chemical engineers and has been observed in many process

systems, such as distillation [44], polymerization reactors [109], fixed-bed reactors [55],

enzymatic reactors [21] etc. Steady state multiplicity arises due to the nonlinearity of the

chemical process. For example, in a non-isothermal reactor with exothermic reaction, the

conversion of reactants has a nonlinear dependence on temperature; in turn, the conversion

affects the rate of heat release and consequently the temperature. At low temperature, the

conversion of reactants is lower and the amount of heat generated balances the amount of

heat loss. For the same inlet conditions, another steady state with higher temperature may

coexist: the higher conversion results in higher heat generation, which balances the heat

loss (which also depends on temperature).
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Multiplicity of steady states in continuous bioreactors — which are operated isother-

mally — arises from the nonlinearity of the governing kinetics. For a simple unstructured

growth model, the necessity of substrate or product inhibition kinetics to obtain steady

state multiplicity was demonstrated theoretically by Agarwal et al. [2] and experimentally

by Lei et al. [70]. However, the real source of steady state multiplicity in continuous biore-

actors lies in the tendency of living cells to regulate metabolic pathways in response to

environmental pressures [81]. The different steady states have cells with widely varying

metabolic activities. The metabolic activities in the different pathways determine the rates

of substrate uptake, cell growth and product formation. A striking example of such steady

state multiplicity was observed in hybridoma cell cultures [36, 52] for producing monoclonal

antibodies. Three distinct steady states with different concentrations of cell and antibodies

were obtained [52].

The difficulty in controlling systems with steady state multiplicity lies in their inher-

ent nonlinear nature. Often, the desired steady state may have only a limited region of

attraction and/or the dynamic response of these system in two steady states may be very

different. For example, Hernández and Arkun [46] considered control of a stirred tank

reactor displaying steady state multiplicity at the unstable steady state. A linear model

was insufficient to capture the reactor dynamics and a nonlinear ARMA model was identi-

fied and used instead. The necessity of nonlinear models in controlling reactive distillation

columns with multiple steady states has also been demonstrated [98]. The authors report

that controlled perturbations or manipulating column material balance were ineffective in

steady state transition. Steady state transition can only be obtained, conceptually, by a

“catastrophic shift” meaning that the manipulated variable (MV) is moved to a value be-

yond the range of multiplicity to cause the transition and brought back to the nominal

value. However, this method was infeasible in practice as it lead to destabilization of the

distillation column. On the other hand, Jacobsen and Skogestad [53] reported that tight

feedback control of either tray temperature or a single product composition was required to

stabilize the unstable operation of a distillation column. The open loop instability, specifi-

cally the unstable poles and zeros, determine whether closed loop performance is achievable
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or not.

In addition to the nonlinear dynamics, the long-lived transient response, especially in the

case of metabolic switches in bioreactors, provides another control challenge. In other words,

the trajectories of system response to the input manipulations are flat for large periods of

time, followed by a relatively short period when the steady state switch actually occurs.

Physically, the cellular regulatory processes change slowly in response to the environment:

key enzymes catalyzing certain reactions are produced and activated, while some other

enzymes are repressed. This is a sluggish process, following which the system responds

rapidly and the metabolic switch takes place. Such long range phenomena require a longer

prediction horizon for control, resulting in increased computational complexity. Another

issue is relates to the model, which could become discontinuous or non-differentiable at the

“boundaries” where the switching occurs.

In this chapter, the optimal switching of a well-mixed bioreactor from an undesirable

low yield state to the desirable high yield state is studied. Two different systems are

considered: a bacterial culture growing on two substitutable substrates and a mammalian

hybridoma culture. The system is modeled using the cybernetic modeling framework [102,

111], which is described in section 5.2. A Model Predictive Control (MPC) scheme based

on successive linear approximations of the model [65] at each time in the prediction horizon

is presented in section 5.3. Simulation results of applying this successive linearization-based

MPC (slMPC) to the bacterial and hybridoma cultures are presented in section 5.4. Finally,

general conclusions and remarks are presented in the final section of this chapter.

5.2 Reactor Modeling using Cybernetic Framework

Continuous bioreactors often display steady state multiplicity, and significant delayed re-

sponses to changes in the environment due to the tendency of living cells to switch metabolic

states in response to environmental pressures. A model framework that captures mecha-

nisms of cellular regulation is required to numerically reproduce the observed steady state

multiplicity. The cybernetic modeling framework of Ramkrishna and coworkers [102, 111]

is specifically designed to address the metabolic regulations in cells. The model postulates
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that cells have learnt to utilize the limited resources available to them in some kind of

an optimal way. Thus, when faced with a nutritional choice, the cells regulate metabolic

pathways by altering the enzyme synthesis rate and by modulating the enzyme activity.

This regulation of enzyme synthesis and activity is governed by the so-called cybernetic

regulation variables ui and vi respectively.

The first step in obtaining a model is abstraction of the complex metabolic network into

a small set of key metabolic processes and intermediates. These metabolic processes are

catalyzed by key enzymes, which represent an “investment” of the limited cellular resources

(such as amino acids, carbohydrates, energy, cofactors etc). At a local level, cell modulates

enzyme production and activity between several processes that compete for the same shared

resources so as to maximize the products of the competing metabolic pathways. This is

done through the cybernetic regulation variables ui and vi. For example, an unmodified

rate of ith metabolic reaction catalyzed by key enzyme Ei is given by

ri = µmax
i

si

Ki + si

ei

emax
i

(20)

The rate of formation of the enzyme is similarly given by

re,i = ke,i
si

Ke,i + si
(21)

Here, we have considered the simplest Monod-type kinetics for the key metabolic reaction.

The rate of metabolic reaction and enzyme production are modulated by the cybernetic

regulation variables as:

net rate = rivi enzyme production rate = re,iui (22)

If the aim of the metabolic competition is to maximize the rate of product formation,

these cybernetic variables take the form [111]:

ui =
ri∑
j rj

vi =
ri

maxj rj
(23)

This forms a local control mechanism in cells. A global feedback mechanism also exists,

which modulates metabolic rates through cofactors, coenzymes, ATP molecules, etc. The

knowledge of such global interactions is also incorporated in writing the balance equations
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through the use of global cybernetic variables, in addition to the local cybernetic variables

described above. A metabolic switch is governed by these cybernetic regulation variables.

From Eq. (23), one can see that both ui and vi take a value between 0 and 1, 0 representing

completely deactivated state and 1 representing completely activated state. A metabolic

switch is often associated with a large change in the values of some of the cybernetic

regulation variables. Especially, the variable vi often becomes non-differentiable (i.e. the first

derivative is discontinuous) during metabolic switches; wherein one or more key enzymes

go from fully active state (vi = 1) to a partially active state (vi = ri/rsup) or vice versa.

The cybernetic principles described above were employed to obtain models for a micro-

bial and a mammalian system, as discussed in the remainder of this section.

5.2.1 Bacterial growth on two substrates

The first example considered is a continuous stirred tank containing bacterial cells such

as Klebsiella oxytoca growing on a mixture of two substitutable nutrients: glucose and

arabinose. This system was originally studied for a batch reactor by Kompala et al.[62]

for modeling the diauxic behavior of the system. The model utilized data obtained from

growth of the bacterium on single substrates and did not require a priori specification of the

order in which the substrates are consumed. This model does not account for maintenance

phenomenon occurring at low dilution rates; it simulates continuous bioreactors at dilution

rates close to the maximum growth rates.

The metabolic pathway for cell growth is condensed into a single reaction representing

the assimilation of each substrate Si by biomass C. This reaction is catalyzed by the enzyme

Ei, which is induced in the presence of Si. The limited cellular resources are utilized in an

optimal manner by regulating the fluxes through the two competing pathways, as shown in

Figure 39-(a). The five states of the system correspond to substrate concentrations (s1, s2),

biomass concentration (c) and concentration of the two key enzymes (e1, e2) within the

cells. The capital case symbols represent specific species and the corresponding lower case

symbols represent their concentrations. Table 10 shows key variables and parameters for
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Figure 39: The competing metabolic pathways in Klebsiella oxytoca (a) and the abstracted
metabolic network of hybridoma (b)

this system. The model consists of five ODEs:

ds1

dt
= D[s1f − s1]− Y1[r1v1]c (24)

ds2

dt
= D[s2f − s2]− Y2[r2v2]c (25)

de1

dt
= re1u1 + r∗e1 − β1e1 − rge1 (26)

de2

dt
= re2u2 + r∗e2 − β2e2 − rge2 (27)

dc

dt
= rgc−Dc (28)

where the rates are given by

ri = rmax
i

si

Ki + si

(
ei

emax
i

)

rei = αi
si

Kei + si

rg = r1v1 + r2v2

As seen in equations (24) and (25), the Monod type kinetics are modified by cybernetic

regulation variables of the second type vi, that modify enzyme activity. Similarly, the

cybernetic regulation variables ui in equations (26) and (27) modify the rates of enzyme
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Table 10: Key variables and parameters of the system

State Variables s1 glucose (gm/L)

s2 arabinose (gm/L)

e1 key enzyme(s)-1 (gm/gm dry wt.)

e2 key enzyme(s)-2 (gm/gm dry wt.)

c biomass (gm/L)

Manipulated Variable D dilution rate (hr−1)

Controlled Variable c biomass

Parameter s2f s2 feed rate (gm/L)

synthesis. Mathematically, the cybernetic regulation functions are related to the reaction

rates as follows:

ui =
ri

r1 + r2
vi =

ri

max(r1, r2)

Rate constants and model parameters are given in Table 11

Table 11: Rate constants and model parameters for the bacterial system

rmax
1 K1 α1 β1 Ke1 (Y1)−1 r∗e1

1.08 0.01 0.001 0.05 0.01 0.52 10−6

rmax
2 K2 α2 β2 Ke2 (Y2)−1 r∗e2

0.94 0.01 0.001 0.05 0.01 0.52 10−6

Numerical bifurcation analysis of the above-mentioned cybernetic model of bacterial

growth on substitutable substrates revealed the existence of two stable steady states in a

certain range of operating parameters [81], which arise due to cells’ ability to switch their

physiological states under nutritional pressures. In fact, five steady states are predicted by

the bifurcation analysis, two of which are stable. Figure 40 shows the bifurcation diagram

of steady state concentration of s1 at a dilution rate of 0.8hour−1 for various values of the

relative concentration of S1 in feed. The steady state which results in high biomass yield

is the desired state. Values of the state variables for the two different steady states are

shown in Table 12. One can observe that the “working steady state” is close to turning
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point bifurcation. Thus, relatively small changes in dilution rate and/or substrate feed

concentrations could cause the reactor to drift to the other steady state.

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1
Bifurcation Diagram at D = 0.8 hour -1

Stable S.S.
Unstable S.S.

s1f

+ s2f

s 1

s1f

working steady state

Figure 40: Steady state bifurcation diagram for Klebsiella Oxytoca growing on glucose and
arabinose. Note the proximity of the steady states to turning point bifurcation. Adapted
from [81]

5.2.2 Continuous Hybridoma culture

The second example is of a continuous culture of hybridoma cells. The hybridoma cells

considered in this study are hybrids of monoclonal antibody (MAb) producing mammalian

B-lymphocyte cells and myeloma cells. Glucose and glutamine are the chief nutrients for

hybridoma cells. The desired products of interest are monoclonal antibodies, which are se-

creted within the cells and are therefore not modeled separately. Hu and coworkers [52, 32]

reported that carefully starving the cells in a continuous culture resulted in higher antibody

yield. On the other hand, if the culture was not carefully controlled, the mammalian cells
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Table 12: Steady state values for input conditions D = 0.8, s1f = 0.078, s2f = 0.146.

State s1 s2 e1 e2 c

High biomass 0.035 0.081 0.0004 0.0006 0.0565

Low biomass 0.0447 0.1425 0.0007 0.0003 0.02

tended to produce larger amounts of lactate and other byproducts and lower amounts of anti-

bodies. Three different states with low, intermediate and high viable cell mass concentration

were reported for the same set of input conditions [32]. This steady state multiplicity was

reproduced numerically by Namjoshi et al. [79]. We use an older version of the hybridoma

model [Namjoshi, A. A., personal communication] in this work. Fig. 41 shows the three

distinct steady states observed experimentally in the continuous hybridoma cultures. MAbs

are not secreted by the cells, but remain within the cells. Hence, the amount of MAbs is

directly proportional to the concentration of viable cells in the reactor.
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Figure 41: Experimentally observed multiple steady states in a hybridoma reactor [32]

Figure 39-b shows the metabolic network of the hybridoma cells. Glucose (S1) and

glutamine (S2) are the main nutrients for the cells. Glucose enters the glycolytic pathway

to form pyruvate (M1), as well as enters the pentose phosphate pathway (M3). Glutamine

provides the essential amino acid precursors (M4) that glucose cannot provide. Both glucose
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and glutamine can provide energy requirements of the cell by entering the TCA cycle (M2

represents TCA cycle intermediates). Lactate (L) is formed as a waste byproduct of the

process. Glucose, glutamine and lactate are species external to the cell. They are expressed

in terms of gm/l and their balances are given by:

ds1

dt
= D (s1f − s1)−

[
r1v

sc
1 vsd

1 + rm
1 + r2v

sd
2 + rm

2

]
c (29)

ds2

dt
= D (s2f − s2)−

[
r3v

sc
3 vsd

3 + rm
3 + r7v

sd
7 + rm

7

]
c (30)

dl

dt
= D(−l) + y6

[
r6v

sd
1

]
c (31)

As in the previous model, the Monod-type reaction rates are modified by the cybernetic

regulation variables vi. The term rm
1 is a maintenance term (m superscript stands for

maintenance) for the glycolysis pathway. The maintenance term ensures that flux in all

essential pathways remain non-zero and that they are never “turned off.”

The rate expressions in Eq. (29–31) are as follows

ri = rmax
i

ξ

Ki + ξ

c′

K ′
g + c′

(
ei

emax
i

)
(32)

rm
i = rm,max

i

ξ

Kim + ξ

c′

K ′
g + c′

(33)

where ξ = s1 when i = 1, 2; s2 when i = 3, 7; m1 when i = 4, 6; and m2 when i = 5.

The growth intermediates Mi are internal to the cell. Their concentrations mi are

expressed as grams per gram dry weight of biomass. The rest of the cellular mass, in

addition to these intermediates is clubbed together as C ′. Since these internal species are

normalized with respect to the total cell mass, they satisfy the relation
∑

i mi + c′ = 1. The

balances for these cellular intermediates are given by:

dm1

dt
= y1

[
r1v

sc
1 vsd

1 + rm
1

]
− r6v

sd
1 − r4v

sc
4 + y5r5v

sc
5 − ym1gr

′
g − rgm1 (34)

dm2

dt
= y3

[
r3v

sc
3 vsd

3 + rm
3

]
+ y4r4v

sc
4 − r5v

sc
5 − ym2gr

′
g − rgm2 (35)

dm3

dt
= y2

[
r2v

sd
2 + rm

2

]
− ym3gr

′
g − rgm3 (36)

dm4

dt
= y7

[
r7v

sd
7 + rm

7

]
− ym4gr

′
g − rgm4 (37)

dc′

dt
= r′g − rgc

′ (38)
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where

r′g = r′max
g

4∏

i=1

mi

Kg + mi
(39)

and the growth rate rg is the sum of rates of formation and consumption of all internal

cellular species.

Finally, the balance for cell mass c is straightforward

dc

dt
= rgc−Dc (40)

Enzyme Balances: for all the key enzymes are given by

dei

dt
= reiui + r∗ei

− βiei − rgei ∀i = 1, 3−−7 (41)

The significance of each term in the above balance is same as in the previous case. Enzyme

balance is required for all enzymes except E2. This is because in glucose limiting situations

seen in the system, the pentose phosphate pathway is always saturated.

Cybernetic Variables:

usd
1 =

r1

r1 + r2
vsd
1 =

r1

max(r1, r2)

usd
2 =

r2

r1 + r2
vsd
2 =

r2

max(r1, r2)

usc
1 =

y1r1

y1r1 + y5r5
vsc
1 =

y1r1

max(y1r1, y5r5)

usc
5 =

y5r5

y1r1 + y5r5
vsc
5 =

y5r5

max(y1r1, y5r5)

Key parameters of the model are summarized in Table 13. More details about the

model can be found in [79]. The overall structure of metabolic pathways and the model

equations in [79] is similar to that presented here. The difference is that they refined the

model according to the metabolic flux analysis of the experimental system to make the

results physically meaningful. For example, the reaction S1 → M1 is composed of two

paths in the new model [79]; some reactions follow the substrate inhibition kinetics instead

of simple Monod-type kinetics and the parameters have been optimized to closely model

the experimental behavior. However, the overall structure of the model remains similar to

the one considered in this work. The model used in this work captures the experimentally
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Table 13: Rate constants and model parameters for the hybridoma system

rmax
1 rmax

2 rmax
3 rmax

4 rmax
5 rmax

6 rmax
7

0.05 0.032 0.05 0.003 0.01 0.05 0.032

K1 K2 K3 K4 K5 K6 K7

0.004 0.0003 0.003 0.01 0.0001 0.05 0.0003

rm,max
i = 0.032 and Kim = 0.007 for i = 1, 2, 3, 7

αi = 0.001 for all i

βi =





0.05 if i = 5, 6

0.001 otherwise

r∗ei = 10−7 for all i

Ke1 Ke2 Ke3 Ke4 Ke5 Ke6 Ke7

0.0001 0.0001 0.0001 0.00001 0.000001 0.00001 0.0001

y1 y2 y3 y4 y5 y6 y7

1 0.7 0.5 1.65 0.6 1 0.72

r
′max
g K

′
g ym1g ym2g ym3g ym4g

0.0575 0.01 0.4 0.1 0.1 0.4

Kg1 Kg2 Kg3 Kg4

5× 10−7 5× 10−7 0.005 0.005

observed steady state multiplicity, although it may not be as accurate quantitatively as the

newest model of [79].

5.3 Successive Linearization-based MPC

The cybernetic models are highly nonlinear due to the Monod-type growth kinetics, depen-

dence of metabolic rates on enzyme levels and cybernetic regulation variables. As a result,

MPC scheme based on a single linear model could not be used for control of steady state

switching in the reactor. A full nonlinear MPC was computationally infeasible to solve in

a reasonable period of time because the model equations form a set of stiff ODEs. Hence,

an MPC scheme based on successive linearization (represented as slMPC) of the model

along the state trajectory in the prediction horizon was used [65]. The resulting prediction
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equation was linear and the control move was computed by solving a Quadratic Program

(QP), with the hessian and the gradient computed at each sample time based on the new

linear approximation.

5.3.1 Model prediction

Let the governing model equations be represented as ẋ = f(x, u). The discrete form of the

model equations can be obtained by integrating the equations for one time step:

xk+1 = fh(xk, uk)
∆=

h·(k+1)∫

h·k
f(x, u)dt (42)

One-step ahead prediction: In the model prediction step, the current state information

is used to compute the information about the model trajectory in the future. The one-step

prediction is given by

xk+1|k = fh(xk|k, uk) (43)

At this stage, the control action uk to be implemented is not known. In order to avoid

solving a nonlinear optimization problem in determining this control action, a the model is

linearized at the input value uk−1 to yield

xk+1|k = fh(xk|k, uk−1) + Bk|k(uk − uk−1) (44)

where, the continuous-time model is linearized

Ac
k|k =

∂f(x, u)
∂x

∣∣∣∣
xk|k,uk−1

Bc
k|k =

∂f(x, u)
∂u

∣∣∣∣
xk|k,uk−1

and the resulting model discretized as (Ak|k,Bk|k) = c2d1(Ac
k|k,Bc

k|k).

Multi-step Prediction: Following the same idea as above, we can write

xk+2|k = fh(xk+1|k, uk−1) + Bk+1|k(uk+1 − uk−1) (45)

We linearize the above equation further with respect to xk+1|k:

xk+2|k = fh

(
fh(xk|k, uk−1), uk−1

)
+

Ak+1|k
[
xk+1|k − fh(xk|k, uk−1)

]
+ Bk+1|k(uk+1 − uk−1) (46)

1This MATLAB function converts continuous models to discrete form
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Using Eq. (44), the term in square brackets above is just Bk|k(uk − uk−1). Thus, we can

write the two-step prediction as

xk+2|k = f2h(xk|k, uk−1) +


 Ak+1|kBk|k Bk+1|k







uk − uk−1

uk+1 − uk−1




(47)

Noting that

uk+1 − uk−1 = (uk+1 − uk) + (uk − uk−1) = ∆uk+1 + ∆uk,

we get

xk+2|k = f2h(xk|k, uk−1) +


 Ak+1|kBk|k + Bk+1|k Bk+1|k







∆uk

∆uk+1




(48)

We next make a simplification that the linearized matrices Ak+i|k and Bk+i|k are kept

constant at their initial values Ak|k and Bk|k. We will also drop the part ·|k for notational

convenience. Thus,

xk+2|k = f2h(xk|k, uk−1) +


 AkBk + Bk Bk







∆uk

∆uk+1




(49)

Continuing further, we can write the multi-step prediction as:

xk+i|k = fi·h(xk|k, uk−1) +


 i−1∑

j=0
Aj

kBk · · · Bk







∆uk

...

∆uk+i−1




(50)

5.3.2 Control implementation

A sequence of optimal moves that minimize the expected future error are computed based

on the prediction equation. The controlled variable is a linear function of the system state:

yk = Cxk. Hence, the desired prediction equation can be written as

Yk = Sx + Su∆U (51)
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where Yk = [yT
k+1|k, · · · , yT

k+p|k]
T is the vector of future predictions of the controlled

variable, ∆U = [∆uT
k , · · · , ∆uT

k+m−1]
T is the vector of future control moves, and the

sensitivity matrices are given by

Sx =




Cfh(xk, uk−1)

Cf2h(xk, uk−1)

...

Cfp.h(xk, uk−1)




Su =




CBk 0 · · · 0

C(AkBk + Bk) CBk · · · 0

...
...

. . .
...

C
p−1∑
i=0

Ai
kBk · · · · · · C

p−m∑
i=0

Ai
kBk




The following quadratic minimization is solved

min
∆Uk

‖ΛQ[Yk −R]‖2
2 + ‖ΛR∆Uk‖2

2 (52)

to obtain the desired set of control moves within the horizon. Only the current control

move ∆uk is implemented and the procedure is repeated at each sample time in a receding

horizon fashion.

The steps in implementing the slMPC algorithm are summarized below.

• At each sample time, linearize the model equations described in sections 5.2.1 or 5.2.2

using the state estimate x(k|k) and the previous control move uk−1 to obtain Ak and

Bk.

• Obtain the model predictions under constant input conditions within the prediction

horizon by integrating the governing model equations to obtain the sensitivity matrix

Sx.
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• Using the model predictions and the linear approximation, formulate and solve the

optimization problem as a QP (quadratic program).

• Implement the current control move uk and discard the other control moves computed.

Repeat the process at each sample time.

• At the next time step, an observer such as extended Kalman filter may be used

to obtain a state estimate based on fresh measurements. Using this estimate, the

procedure is repeated all over again in a receding horizon manner. For a deterministic

case, state estimation is not required because x(k|k) = x(k).

5.4 Preliminary Results

Preliminary results of applying the slMPC algorithm for control of the microbial and the

mammalian reactor are presented in this section. Two different cases of

• disturbance rejection in presence of step disturbances in the nutrient feed concentra-

tion, and

• optimal switching to drive the reactor to the desired steady state

are evaluated. The problem of steady state switching is especially challenging because of the

non-differentiability of cybernetic regulation variable v associated with a metabolic shift.

5.4.1 Microbial reactor

As seen in Fig. 40, the working region in the microbial reactor is close to the turning point

bifurcation. As a result, step disturbances in s2f can drive the uncontrolled reactor to the

undesirable steady state. We therefore consider the problem of disturbance rejection in

presence of series of step changes in s2f . Another interesting and more challenging problem

is one of steady state switching. The problem of switching of steady states also assumes

significance during start up of the reactor. Typically steady state switching is a difficult

problem due to hard nonlinearity associated with the switch. The control objective is,

therefore, to drive the reactor from the low biomass steady state to the desirable high

biomass yield state. It may be viewed as a step change in the setpoint at time t = 0 from
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the low biomass to the high biomass yield steady state. The performance of the controller

is evaluated under step disturbances of various magnitude in parameter s2f .

5.4.1.1 Disturbance rejection

First, we consider the problem of disturbance rejection in the microbial reactor. Disturbance

enters the system in the form of step variations in the feed s2f concentration. We consider a

specific case of a series of step changes that result in a catastrophic shift in the steady state,

causing the reactor to go to the other steady state if left uncontrolled. Figure 42 shows the

input step disturbance to the system and its catastrophic effect on the uncontrolled reactor.
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Figure 42: Step disturbances in feed s2f concentration. If left uncontrolled, the reactor
drifts to the other steady state.

After performing a number of simulation studies, we found that slMPC was able to

give a satisfactory control performance for the system, and that a full nonlinear MPC was

not required. In all the simulations, a measurement noise was added and changes in s2f

were assumed to be known or measured. All the results represent a control horizon of
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m = 10 and prediction horizon of p = 40. Figure 43 shows the control result when only the

cell concentration was controlled using both dilution rate D and glucose feed rate s1f as

manipulated variables. The output penalty weight used was λy = 1 and penalty for input

rate was λu = diag[2.5, 0.5]. This results in an interesting scenario. The cell concentration is

kept at the steady state. However, the cells are in a different metabolic state, as indicated

by other output variables (s1 and s2) and the cybernetic regulation variables v1 and v2.

Thus, the reactor displays input multiplicity in addition to the output multiplicity and the

desired control goal is not achieved.
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Figure 43: Results of controlling cell concentration using dilution rate and inlet s1f con-
centration. Although the cell concentration reaches its desired value, the system is in a
physiologically different steady state.

Next, we considered a multi-output single-input control strategy. In this case, effluent

s2 concentration was also controlled in addition to the cell mass. Only the dilution rate was

used as a manipulated variable. In this situation, as indicated in Figure 44, the system was

maintained at the appropriate steady state.

The results of applying slMPC for the practically relevant problem of controlling the
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Figure 44: Same as Figure 43, except that effluent s2 concentration is also measured in
addition to the biomass. In this case, the system is controlled at the desired steady state

system at the desired high biomass steady state are skipped. This steady state does not

display input multiplicity, and the control results are similar to those observed in case 2

discussed here. A more interesting problem, that of optimal switching from the low biomass

to the high biomass yield state, is considered next.

5.4.1.2 Steady state switching

Figure 40 shows the proximity of the working steady state to the turning point bifurcation.

As a result, the reactor could reach the undesirable steady state either due to the effect

of disturbances or during reactor startup. The aim is therefore to optimally drive the

reactor to the desired steady state. One can view this as a step change in the setpoint. A

deterministic problem will be considered, with known / measured variations in s2f acting as

disturbance to the system. Again, for this problem, we considered m = 10, p = 40, λy = 1

and λu = 2.5. The results of applying slMPC for steady state switching problem are shown

in Figure 52 as a thick solid line.
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The main issue in application of slMPC for this system lie in the large computational

burden and the sluggish controller behavior. Computational burden is large because a

nonlinear model has to be employed to make predictions within the horizon for computing

the optimal control moves online. Additionally, the long-ranged transients of the system

demand larger horizon sizes. While a controller can be more aggressively tuned (lower λu)

for faster steady state switching, this affects the disturbance rejection performance (previous

subsection) adversely.

5.4.2 Steady state switching in hybridoma reactor

After considering the steady state switching in a microbial reaction, we turn our attention

to a more difficult problem of a mammalian reactor. Compared to the microbes, mam-

malian cells have a more sluggish response, greater nonlinearity, lower tolerance to external

factors (temperature, pH etc) and higher sensitivity to abrupt changes in the environment.

Hence, control of mammalian cultures is significantly tougher than a microbial reactor. The

cybernetic model, discussed in section 5.2.2, reproduces the experimentally observed three

distinct steady states. We label these steady states as “low,” “intermediate” and “high”

biomass yield steady states. From the point of view of the model, a hybridoma system

is tougher to control and analyze than the microbial system because it consists of fifteen

states, four local cybernetic competitions, one global cybernetic competition and slower

dynamics.

First, we consider driving the reactor from the low biomass steady state to the high

biomass steady state. Figure 45 shows the response of the model to a step change in

dilution D at the low biomass steady state. The long-range transient response of the system

is evident from this figure: the output trajectories are nearly flat for a long time, until a

catastrophic shift is encountered around t = 460, which causes a change in the metabolic

state and a sharp change in the measurable outputs, viable cell concentration and effluent

substrate concentration(s). Note also the non-differential nature of the cybernetic variable

v7, which abruptly takes a value of v7 = 1 (fully activated enzyme state) and triggers a

catastrophic event.
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Figure 45: Response of the hybridoma reactor to 10% step change in dilution rate at the
low biomass yield steady state

Figure 46 shows the results on applying slMPC for switching of the hybridoma reactor

from the low biomass steady state to intermediate and then to the high biomass yield

steady state. The dilution rate was used as the manipulated variable, while the viable cell

concentration and glucose concentration were used as control variables. In this case, we

chose m = 15, p = 50, λy = diag[1, 0.1], λu = 0.2 and appropriate constraints for the

dilution rate (0.01 ≤ D ≤ 0.05, and |∆D| ≤ 0.0033). The “oscillatory” input response can

be perhaps avoided by increasing the penalty on input moves, but that makes the controller

very sluggish.

Next, we used the same tuning parameters for steady state switching from high biomass

yield steady state to the intermediate biomass yield steady state. Figure 47 shows that

the controller is unable to drive the reactor to the desired steady state. The manipulated

variable saturates at the constraint (D = 0.01). The reason for this can be seen in Fig. 48,

which shows that the system exhibits long-range transient inverse response to a step change

in dilution rate. With an increase in dilution rate, the viable cell concentration increases
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Figure 46: Driving the hybridoma reactor from low biomass steady state to the high
biomass steady state.

until a certain point. Then, there is a sharp drop in the cell concentration due to metabolic

shift. As a result, the controller decreases the dilution rate until it saturates at the lower

constraint. No change in the metabolic state is therefore observed. In order to accurately

track the system behavior, a very long prediction horizon will be needed.

An alternate way is to realize that the response of s1 to the step change in dilution rate

is relatively monotonic. In other words, as seen in the top plot of Figure 48, a step up

change in dilution rate increases the effluent s1 concentration gradually until the metabolic

shift takes place causing a large increase in s1. Hence, at the high biomass yield state,

we decided to penalize only the substrate concentration s1. Thus, if the system is at high

biomass steady state, we use λy = diag[0, 1]. When a metabolic shift is detected though the

cybernetic variable v1, we change the penalty terms back to λy = diag[1, 0.1]. The result

of applying this strategy is shown in Figure 49. Clearly, with this strategy, the controller

drove the system to the intermediate steady state.
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Figure 47: The controller is unable to drive the reactor switching from the high to the
intermediate biomass yield steady state.

5.5 Conclusions

The control of a microbial bioreactor and a mammalian bioreactor, both displaying steady

state multiplicity was considered in this chapter. The reactors were modeled using the

cybernetic modeling framework and sequential linearization-based Model Predictive Con-

troller (slMPC) was applied for this system. Although slMPC shows a reasonable control

performance, the nonlinearity and the long range transient response of the system results

in large computational load. In the subsequent chapters, we will address the issue of opti-

mality and online computation for optimal steady state switching in the microbial reactor

for a deterministic case of step disturbances in s2f .
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Figure 48: Open loop response of the hybridoma reactor to a 20% step up change in
dilution rate at the high biomass yield steady state.
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Figure 49: Switching from the high biomass steady state to the intermediate biomass
steady state is achieved using modified penalty weights for the controlled variables.

106



CHAPTER VI

SIMULATION-BASED METHOD FOR OPTIMAL

STEADY STATE SWITCHING IN A BIOREACTOR

The problem of driving a bioreactor to the desired steady state using slMPC was presented in

the previous chapter. For the culture of bacterial cells, the controller performance was slug-

gish and the online computational time was significantly large. To alleviate these problems,

a simulation-based approximate Dynamic Programming (simDP) method is introduced in

this chapter and applied to the Klebsiella oxytoca example.

6.1 Introduction

In optimal control, one is often faced with the task of solving nonlinear optimization prob-

lems — either off-line or more commonly on-line. An example is the popular method of

Model Predictive Control (MPC) [78, 76, 63], which requires a nonlinear dynamic optimiza-

tion problem cast over a prediction window to be solved at each sample time when applied

on a nonlinear process model. Such problems also arise in batch processes where operating

recipes that minimize the batch time or maximize the product quantity and quality are

desired. Optimization problems involving nonlinear dynamic models are intrinsically hard

problems and it is difficult to assure the attainment of quick, reliable solutions, which are

needed in most of the practical applications. Difficulties exist even in off-line optimization,

when the problem involves a model of high dimension and a large time window, thus yield-

ing a large set of optimization variables and constraints. In practice, these problems are

often solved in a highly approximate sense (by using a linear approximation of the model,

for example) or are avoided by adopting heuristic policies instead.

One approach for solving dynamic optimization is Dynamic Programming (DP). Here,

the aim is to find the optimal ‘cost-to-go’ function, which can be used to parameterize

the solution with respect to system state – either as a continuous function or as a lookup
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table – thereby simplifying the task of obtaining on-line solutions. However, the approach is

largely considered impractical as analytical solution of resulting dynamic program is seldom

possible and numerical solution suffers from the ‘curse of dimensionality’ [8].

Neuro-Dynamic Programming (NDP) was proposed as a way to alleviate the curse of

dimensionality [12]. It uses simulated process data obtained under suboptimal policies to

fit an approximate cost-to-go function – usually by fitting artificial neural networks, hence

the name. In value iteration approach of NDP, the initial approximate cost-to-go function

is further improved by an iteration procedure based on the so called Bellman equation.

In this context, the simulation’s role is two-fold. First, by simulating the process under a

reasonably chosen suboptimal policy and all possible operating parameters / disturbances, it

provides a set of data points that define the relevant or “working” region in the state space.

Second, the simulation provides the cost-to-go value under the suboptimal policy for each

state visited, with which iteration of the Bellman equation can be initiated. This method is

closely related to the efforts of Artificial Intelligence community in Reinforcement Learning

(RL), where an agent learns by interacting with the environment and recording a fitness

value as a function of the system state. The NDP / RL approach has received significant

attention for its successes in several applications such as elevator dispatch problem and

a program that plays Backgammon at the world championship level. Extension of these

approximate DP concepts to the control of process systems is not a trivial task. Recently,

the key issues involved in implementing the simulation-based approximate DP method were

addressed by a colleague Jong Min Lee in his PhD thesis [66].

In this chapter, the simulation-based DP approach is applied to optimal control of

steady state switching in a continuous bioreactor. We consider the growth of bacterial cells

(such as Klebsiella oxytoca) on multiple substitutable nutrients. The cybernetic modeling

framework developed by Ramkrishna and coworkers (see [62], [111] and references therein)

is used to model the system. This non-linear system is characterized by multiple steady

states and long-lived transient behavior, which demands that a nonlinear optimization cast

over a large time window be solved at each sample time. In the previous chapter, we had

applied a MPC method based on successive linearization of the nonlinear model [65] to this
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system. Long prediction and control horizons were shown to be necessary to control the

reactor at desired steady state because of certain peculiar dynamics of the bioreactor, e.g.,

quickly settling to an almost stable behavior that lasts for a long period followed by a sharp

drift to another steady state, which is “triggered” by a change in the cells’ metabolic states.

We seek to use this approach not only to reduce the on-line computational demand but

also to improve the controller performance, through the use of cost-to-go approximator. A

neural network is chosen as an approximator to obtain cost-to-go as a function of system

states. While a properly trained neural network has good interpolation capabilities, one may

not use it to extrapolate over regions of state space not covered during its training. Extrap-

olation by neural network is shown to result in deteriorated performance of the controller.

In turn, we discuss possible remedies, either by confining the control calculations to the

visited regions of the state space or by expanding coverage through additional simulations.

6.2 Mathematical Preliminaries

Optimal control involves finding control actions that minimize certain multi-stage objective

function for a horizon of size p. Mathematically, the resulting general dynamic optimization

problem for a given initial state x0 may be represented as follows:

min
u0,...,up−1

p−1∑

i=0

φ(xi, ui) + φ̄(xp) (53)

subject to

Path Constraint: gi(xi, ui) ≥ 0, 0 ≤ i ≤ p− 1

Terminal Constraint: ḡ(xp) ≥ 0

Model Constraint: xi+1 = fh(xi, ui)

In the above, xi represents the state at the ith sample time, φ(x, u) is the single stage cost

function and φ̄ is the terminal cost. The path/terminal constrains as well as the system

model may be nonlinear. A continuous model ẋ = f(x, u) can be discretized by integrating

it over the sampling time; i.e., fh(xi, ui) ≡
∫
h f(xi, uτ )dτ , with piece-wise constant input

u(τ) = ui for i · h ≤ τ < (i + 1) · h.
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The above problem (53) is a general representation of a stagewise dynamic optimization

problem. It may be solved offline to obtain an open loop optimal target trajectory as in

batch or semi-batch systems. It can also be used to generate a state feedback policy, which

relates a system state to optimal actions. It can also be solved at the end of an episode in

run-to-run or period-to-period control. This problem is also encountered in planning and

scheduling, stochastic shortest path problems, agent-based learning, etc. The focus of this

part of the thesis is on online optimal control of discrete-time systems with continuous state

and action (input) space.

6.2.1 Receding horizon control

For a continuous system, the problem (53) above is often reinitialized using the feedback

update of the current state and solved online at each sample time in order to find the optimal

input adjustment for the given state — as in ‘Receding Horizon Control’ [78, 76, 63]. The

slMPC algorithm is an example of such a method, which employs quadratic performance

criteria and linear approximations of the model within the prediction window.

Often, it is shown to be advantageous to solve an infinite horizon problem (in which p

is set to infinity). The ∞-horizon equivalent of (53) can be expressed as

min
u0,...

∞∑

i=0

φ(xi, ui) (54)

The same set of model and path constraints should be enforced here. Terminal constraints

and penalty function may be imposed to convert the above infinite horizon problem into an

equivalent but numerically tractable finite horizon problem. However, the computational

load can be significant, especially when the window size is large and nonlinear dynamics are

involved. Often, its impossible to solve a nonlinear optimization problem; hence suboptimal

strategies such as linearization (eg. slMPC) or heuristic control schemes are employed. Fi-

nally, the receding horizon control is an open loop optimal technique with frequent feedback

correction; it is not closed loop optimal.
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6.2.2 Dynamic Programming

Dynamic Programming (DP) is an elegant way to solve the previously introduced (closed

loop) optimization problem. It is based on Bellman’s optimality principle, which states that

if a control policy ui = µ∗i (xi) (i = 0, . . . , p−1) is the optimal policy for the original problem

(53), then the truncated policy {µ∗k, . . . , µ∗p−1} is also optimal for the subproblem:

min
uk,...,up−1

p−1∑

i=k

φ(xi, ui) + φ̄(xp) (55)

irrespective of how we reach a state xk at time k.

Intuitively, this means that for a path going from a point A to another point B, passing

through a point X at some stage k to be optimal, the path from X to B also has to be

optimal. This is true irrespective of how one reaches X. If it isn’t, then the cost can be

reduced by taking the more optimal path from X to B. The theoretical proof of the above

statement can be found in any standard DP text [10, 87].

At this point, we formally introduce the concept of “policy” as a rule by which control

actions are chosen. A policy is in general dependent on the system state. Thus uk = µ(xk)

represents the control action taken at time k according to the policy µ(x), where µ maps

the states xi to the control actions ui.

6.2.2.1 Cost-to-go function

Taking control actions based on any policy µ is associated with certain cost according to the

performance function (53). The total cost incurred from time k to the end of the horizon is

called cost-to-go. The performance function in Eq. (53) consists of two parts: the current

cost φ(xk, uk) incurred at the current state xk on implementing control action uk and the

sum of future costs incurred until the end of horizon. The latter is expressed as value or

cost-to-go function, which expresses the desirability of state xk+1.

For Eq. (53), the cost-to-go at each stage is defined as

Ji = min
up−i,...,up−1





p−1∑

j=p−i

φ(xj , uj) + φ̄(xp)



 (56)

Then, the calculation of the cost-to-go function at each stage can be done recursively as

Ji(x) = min
u
{φ(x, u) + Ji−1(fh(x, u))} , (57)
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where fh(x, u) denotes the successor state generated by the state transition model. The

above is sequentially solved from i = 1 through i = p with the initialization of J0 = φ̄(x),

with the pertinent terminal / path constraints imposed at each stage.

For the infinite horizon problem of (54), cost-to-go can be similarly calculated as

J∞(x) = min
u
{φ(x, u) + J∞(fh(x, u))} (58)

6.2.2.2 The objective of DP

The objective of DP is to calculate the optimal cost-to-go function J∗(x) ∀x ∈ X , the ∗
representing optimality. The optimal cost-to-go function can be computed offline, either

analytically (as in Linear Quadratic Regulator, LQR) or numerically. Optimal cost-to-go

can be shown to satisfy some form of the Bellman Equation [10]

J∗(x) = min
u
{φ(x, u) + J∗(fh(x, u))} (59)

The cost-to-go function, once obtained, represents convenient means to compute the

optimal control action for any general state x0 by solving the following equivalent one-stage

problem:

µ∗(x0) = arg min
u0

{φ(x0, u0) + J∗(fh(x0, u0))} (60)

In general, the DP solution would represent a much smaller online computational load than

the receding horizon control approach by characterizing the optimal solution of (53) or

(54) as a cost-to-go function and converting the multi-stage problem (53) to an equivalent

single-stage problem (60).

6.2.3 Conventional DP algorithms

In this section, two popular algorithms used in DP to obtain the optimal cost-to-go function

are introduced; viz. value iteration and policy iteration. Some key properties of the DP

operator are first defined. Let T be the infinite-horizon α-discounted DP operator for a

system

xk+1 = fh(xk, uk)
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defined as:

(TJ)(xk) = min
uk

{φ(xk, uk) + αJ(fh(xk, uk))} (61)

The DP operator has following properties [10, 12]

• Monotonicity: If J ≥ J̄ , then TJ ≥ T J̄

• Convergence: The sequence {TNJ} converges for any J

• Optimality: J∗ = lim
N→∞

TNJ

Lee [66] provides an excellent review of conventional DP methods and issues related to the

implementation of approximate DP. The proofs of above properties can be found elsewhere

[10, 66]. The implications of the above properties in conventional DP are that DP operator

is guaranteed to improve the cost-to-go function and that the DP sequence approaches the

optimal cost-to-go asymptotically. The algorithms given below can therefore be used to

obtain evolutionary improvement in cost-to-go.

6.2.3.1 Value Iteration

Value iteration, as the name suggests, iterates on the cost-to-go or value function for each

state until convergence. In other words, it sequentially improves the cost-to-go function

starting from a suboptimal cost-to-go J0 using the Bellman equation (59) as an update

rule. For any state x, value iteration can be written as:

J i+1(x) = min
u

{
φ(x, u) + J i (fh(x, u))

}
(62)

The cost-to-go function J i+1 is an improvement over J i, except when J i is optimal, in

which case both are equal [12]. Value iteration thus generates a sequence of monotonically

improving cost approximations [104]:

J0(x) min−→ J1(x) min−→ · · ·J i(x) min−→ · · · min−→ J∗(x)

6.2.3.2 Policy Iteration

Policy iteration is a two step procedure that involves finding an improving policy µi+1(x)

using cost-to-go function J i(x), followed by updating the cost-to-go function J i+1(x) based
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on this policy. We thus obtain a sequence of monotonically improving policies and cost

approximations [104]:

µ0(x) Jµ−→ J0(x) min−→ µ1(x) Jµ−→ J1(x) min−→ · · ·µ∗(x) Jµ−→ J∗(x) min−→

The first step, known as policy improvement, involves solving a minimization problem

to find an improved policy:

µi+1 = arg min
u

{
φ(x, u) + J i (fh(x, u))

}
(63)

The second step involves following the policy to compute cost-to-go function and is known

as policy evaluation. Policy evaluation itself is an iterative step, in which starting from

J i+1,0 = J i(x), we use

J i+1,j+1 = φ(x, µi+1(x)) + J i+1,j
(
fh(x, µi+1(x))

)
(64)

until convergence. The cost-to-go obtained on convergence of policy evaluation is repre-

sented as J i+1.

Policy improvement and policy evaluation are performed sequentially until convergence.

It can be proved that µi+1 obtained according to (63) is better than policy µi. Indeed when

the cost-to-go function J i is optimal, the two are equal.

6.2.3.3 Temporal Difference-Based λ-Policy Iteration

Its well known that the value iteration converges asymptotically to the optimal cost-to-

go function. On the other hand, policy iteration converges finitely and requires lesser

iterations than value iteration [12]. However, policy evaluation required to obtain the cost-

to-go function Jµ for the policy µ is an iterative process and it may converge very slowly1.

This is especially true when the number of states is large. The λ-policy iteration method

proposed by Bertsekas and Ioffe [11] aims at accelerating the policy evaluation step by

introducing a “discount factor” λ ∈ [0 1].

The underlying idea is that the discount factor does not alter the cost structure for a

given policy if the one-stage cost for that policy is 0. The concept is based on Temporal

1This is a standard result in DP. See chapter 2 in [12] for more discussion
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Differences (TD), which are at the heart of powerful algorithms called “TD learning” that

were introduced by the RL community.

We will use TD associated with each state transition xk to xk+1:

d(xk)
∆= φ(xk, µ(xk)) + J(xk+1)− J(xk) (65)

to update the cost-to-go. Using this transformation, we can perform policy evaluation as:

J i+1(xk) = J i(xk) +
∞∑

m=0

λmd(xk+m) (66)

where d(xk) and λ are as defined above. Note that when cost-to-go function converges,

d(xk) as defined by (65) equals 0. Thus the overall cost structure is not altered. Clearly,

this is a λ-weighted DP problem and is appropriately named λ-policy iteration [11] and not

TD learning. Bertsekas and Ioffe [11, 12] prove convergence properties for this method and

show that it reduces to value iteration for λ = 0 and policy iteration for λ = 1.

6.2.4 Simulation-based Approximate Dynamic Programming

In very few cases can we solve the stagewise optimization analytically to obtain a closed-

form expression for the cost-to-go function. With notable exception of linear quadratic

control (LQG) applicable for unconstrained linear systems, analytical solutions to Bellman

equation (59) cannot be found. The numerical approach to the problem involves gridding

the state space, calculating and storing the cost-to-go for each grid point as one marches

backward from the last stage to the first using Eq. (57). Alternatively, conventional value

or policy iteration techniques described in the previous section can be used iteratively to

solve the optimization problem for each point in the state space. As the state dimension

increases, the memory requirements for storage of the computed cost-to-go values as well

as the computational requirements in solving the iterative optimization grow exponentially.

Thus, this approach suffers from the famous curse of dimensionality due to this exponential

increase in computational requirements with increasing state dimension.

Researchers in NDP and RL community have developed various model-based and model-

free algorithms that avoid the curse of dimensionality associated with conventional DP. The

common features of these algorithms are
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• They aim to obtain an approximation of the optimal cost-to-go function.

• They start with a suboptimal policy and a suboptimal cost-to-go, using each to re-

cursively improve the other.

• They do so through synergistic use of simulations and function approximations. The

iterations are performed in a restricted region of the state space defined through

simulations and the function approximator is used to interpolate the cost-to-go values

within this restricted region.

Given a state transition model, a conceptually straightforward method is to use the

conventional value or policy iteration algorithms. Exhaustive sampling of state space is

avoided by identifying relevant regions of the space through simulation under judiciously

chosen suboptimal policies. The role of suboptimal policies is two-fold: to provide an initial

policy and cost-to-go approximation, and to define the visited region of the state space over

which the iterations are performed. The algorithms are described in Appendix B.

In this chapter, simulation-based Dynamic Programming (simDP) method is applied

to the steady state switching in the bioreactor considered in section 5.2.1. Value iteration

algorithm is used to obtain the cost-to-go function. The cost-to-go function so obtained

is then used for online control. We demonstrate the need to have adequate coverage of

the state space and restrict the controller to the visited regions of the state space for good

performance. In the next chapter, we further investigate the salient features of simulation-

based value and policy iteration algorithms and point out the key issues involved with

implementation of simDP.

6.3 Application of simDP to a Microbial Cell Reactor

Application of simDP method to optimal control of steady state switching in a continuous

culture of Klebsiella oxytoca growing on a mixture of two nutrients glucose and arabinose is

considered in this section. This system model was described in section 5.2 and control using

successive linearization-based MPC (slMPC) was analyzed in section 5.4. In this section,

the efficacy of simDP method over slMPC is presented.
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6.3.1 Suboptimal control law: slMPC

The successive linearization based slMPC algorithm [65] was used as the initial suboptimal

control law. This method linearizes the nonlinear model at each current state and input

values to compute a linear prediction equation. The control moves are computed by solving

a QP, with the hessian and the gradient computed at each sample time based on the new

linear approximation. Detailed description of this method was provided in the previous

chapter (section 5.3).

The closed loop simulation with the slMPC algorithm under a parameter conditions

s2f = 0.146 and cSP = 0.055 is shown in Figures 50, 52 as thick line. At time t = 0, the

system was at the low biomass steady state, when a step change in the set point to the high

biomass steady state was applied. The constraints on the dilution rate were chosen to be

umin = 0.6, umax = 1.0 and ∆umax = 0.05, keeping in mind that the model is not valid for

low dilution rates and to avoid washout condition that occurs at high dilution.

6.3.2 Obtaining optimal cost-to-go function approximator

6.3.2.1 Simulations using suboptimal controller

The suboptimal slMPC controller described above, was used to obtain closed loop sim-

ulation data for the proposed strategy. It was implemented for four values of s2f =

[0.14 0.145 0.15 0.155], to cover the possible range of variations. For each of the parameter

values, the reactor was started at three different x(0) values around the low biomass yield

steady state. We obtained 100 data points for each run. Thus a total of 1200 data points

were obtained. The infinite horizon cost-to-go values were computed for all the 1200 points.

Note that the calculated cost-to-go value is approximate infinite horizon cost, as described

in Appendix B.1.

6.3.2.2 Cost approximation

States were augmented with the parameter s2f (see Table 10). A functional approximation

relating cost-to-go with augmented state was obtained by using neural network — a multi-

layer perceptron with five hidden nodes, six input and one output node. The neural network
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showed a good fit with mean square error of 10−3 after training for 1000 epochs. This is

the zeroth iteration, denoted as J̃0(x).

6.3.2.3 Improvement through Bellman iterations

Improvement to the cost-to-go function is obtained through iterations of the Bellman equa-

tion (62). This method, known as value iteration (or value iteration), is described in Ap-

pendix B.1. The solution of the one-stage-ahead cost plus cost-to-go problem, results in

improvements in the cost values. The improved costs were again fitted to a neural network,

as described above, to obtain subsequent iterations J̃1(x), J̃2(x), and so on . . . , until con-

vergence. Cost was said to be “converged” if the sum of absolute error was less than 5% of

the maximum cost. The cost converged in 4 iterations for our system.

6.3.3 Online implementation

The converged cost-to-go function from above was used online in solving the one stage ahead

problem. The control move was calculated as in 67 and implemented online in a receding

horizon manner.

u(k) = arg min
u(k)

{
φ (x(k), u(k)) + J̃4 (fh(x(k), u(k)))

}
(67)

The results are shown as broken line in Figure 50 and a numerical comparison is shown

in Table 14. The method was tested for various s2f values. Representative results for

a single s2f value of 0.146 are shown. First two rows in the table represent the online

performance of the two approaches, viz. slMPC and the proposed simDP scheme. In the

table, the last two columns show the comparison between the two schemes; the first four

columns represent the control algorithm, the number of data points used in obtaining cost-

to-go function, the number of cost-iterations and the number of hidden nodes in the neural

network approximation of converged cost function.

Clearly, the new scheme performs worse than the original slMPC scheme. An overshoot

is observed and the total cost is also increased. However, there is a dramatic reduction in

computational time — from almost half an hour to under 2 minutes, for 100 time steps (50
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Figure 50: Comparison of the online performance of slMPC control law and simDP ap-
proach. The simDP controller gives faster response initially, but causes significant over-
shoot, as compared to more sluggish slMPC controller. Numeric comparison between the
two approaches is shown in table 14.

hours). In the next section, we evaluate the possible reasons for the worse behavior and

discuss possible solutions.

6.3.4 Improvement in the Strategy

The policy improvement theorem, described earlier, indicates that the use of converged

solution from Bellman iterations is expected to improve the performance over the suboptimal

controller. At worst, the performance of the proposed scheme should be at par with the

original suboptimal scheme. The logical reasoning behind this is that Bellman iterations

should choose the original policy over all other policies that lead to a less optimal result

(for mathematical proof, please see [104] or references therein).

The possible causes of error could either be presence of local minima, poor fitting of

the cost approximations (by the neural network), or extrapolation to previously unvisited
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Table 14: Details of nonlinear MPC algorithm v/s new scheme and its modifications.
†Additional simulations for increasing data coverage; ‡Intel Pentium III, 800 MHz processor,
512 MB RAM, running Matlab 6 Release 12 on Windows 2000.

Control Number of Cost Number of Total cost CPU Time

Algorithm data points Iterations hidden nodes (at x(0)) (seconds)‡
slMPC - N.A. - - N.A. - - N.A. - 22.54 1080.3

New Scheme 1200 4 5 24.18 98.7

w/ Restricting 1200 2 4 9.06 127.7

w/ Add Sim† 2088 4 5 9.37 79.5

w/ Policy update 1395 7 9 10.32 74.12

regions in state space. An investigation of the state space plot in Figure 51 suggests that

extrapolation to previously unvisited regions of the state space could have resulted in de-

terioration of the controller performance. The system spans 6-D space (5 states and 1

parameter s2f ). All the state space plots are projections of the 6-D space on a 2-D plot,

with [s2] as the abscissa and biomass [c] as the ordinate. Possible remedies, which are

discussed in this section, could be to restrict the control calculations to the visited part of

state space or include additional data to increase the coverage as necessary.

6.3.4.1 Gridding and restricting the working region

In this method, the optimizer was restricted to search only in the visited region of the

state space during both offline Bellman iterations as well as online implementation. The

state space was grid into 10 grid points per state (105 cells) and each cell was identified

as “visited” or “unvisited”. A cell was said to be “visited” if it contained at least one

data point. The neural network was used for the visited cells, whereas unvisited cells were

associated with a very high cost, thus creating an artificial boundary to restrict the search

within visited cells.

In this case, convergence of the Bellman equation occurred in 2 iterations. The neural

network approximation required 4 hidden nodes. The results are shown in Figure 52 and

numeric values in Table 14. The method is a clear improvement over the slMPC control
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Figure 51: State space plot of states visited during online implementation (¦). The
data from slMPC control law used for training the cost approximation is shown as dots.
Extrapolation to the unvisited states during online implementation is likely to be the cause
of overshoot.

law, both in performance of the controller as well as significant reduction in computation

time. Corresponding state space plot is shown in Figure 53. Dots represent data points used

for obtaining the cost-to-go function approximation. Diamonds represent the points visited

during online implementation of the simDP control law. Comparing this with the previous

state space plot (Figure 51), it is evident that by artificially constraining the control moves

to the visited region, one obtains improved controller performance. Also note that the

online optimization does not select the best among the suboptimal trajectories. Instead, it

gives a trajectory which results from interpolating in the region defined by these suboptimal

trajectories.
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Figure 52: Performance of the various simDP schemes (thick line: slMPC)

6.3.4.2 Increasing data coverage through additional simulations

In the previous method, we sought to restrict our controller to the visited regions of the

state space. An alternative solution is to increase the coverage of the training data through

additional simulations of the initial slMPC control law. Additional data is obtained from

some more simulations of the slMPC law and value iteration is performed again.

During online implementation of “unmodified” simDP algorithm, the controller drove

the system to the unvisited region of the state space (dots in Figure 51 represent the

visited region, rest is unvisited). Three such points — shown as solid discs in Figure 51

— were selected from the unvisited region. These represent x(0) values for the additional

simulations. We applied the original slMPC control, as before, for all the four values of

s2f . These 12 additional simulations resulted in 880 more data points. Value iteration was

carried out again for all the 2088 (including 1200 from the previous case) data points.
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Figure 53: State space plot of states visited during online implementation when simDP
was restricted to the visited region of the state space.

In this case, the Bellman equation converged in 4 iterations. The converged cost ap-

proximation was used in online control. Numerical and visual comparison indicate that this

modification of simDP algorithm also results in highly improved control performance. In

Figure 54, asterisks represent the 888 data point added to the original 1200 data (shown

as dots). The resulting cost-to-go function approximation in this case is valid over a larger

region. With these additional data points, the controller successfully avoids overshoot by

identifying it as a suboptimal performance.

6.3.4.3 Generalized Policy Update

This technique is used to increase the coverage of the state space as in section 6.3.4.2.

Unlike the previous scheme that requires addition of new data points and performing the

entire set of iterations all over again, new points are added through policy update performed
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Figure 54: State space plot of states visited during online implementation (¦) with addi-
tional training data (*)

within the value iteration loop. The need for this generalized policy update arises because

in real situations, we may not want to wait for deteriorated behavior of the controller to

direct additional simulations of the initial slMPC law. Moreover, the above method involves

redoing the entire value iteration procedure all over again.

The central theme of generalized policy update is to add more data points within the

value iteration loop itself through closed loop simulation of the current suboptimal controller

(J i). In value iteration, the improved cost-to-go value J i+1(x) is obtained directly from the

minimization step by using Bellman equation (59) as an update rule. Alternatively, policy

iteration seeks to improve the policy by implementing it and evaluating the cost-to-go with

this policy, instead of just updating the cost-to-go value [12]. In this sense, policy update

can be considered a hybrid between value iteration approach and policy iteration. During
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the value iteration procedure, solving the corresponding equation (62) for each of the 1200

states (x(k)) gives us an improved cost-to-go (J i+1) and input argument u(k). If this input

move was to be implemented, the system would reach a particular state xi(k + 1|k) (which

means the state reached by implementing control move calculated using cost-to-go function

approximation J̃ i at time k). If this state lies in the unvisited region, following procedure

is implemented

• Current state is initialized as xi
0 = xi(k + 1|k)

• Control move is computed as ui
0 = arg min[φ + J̃ i]. Implementing this move results

in xi
1 = Fh(xi

0, u
i
0)

• If xi
1 lies in the visited region, cost-to-go at this state is given by the neural network

J̃ i(xi
1). Otherwise, control moves ui

1, ui
2, . . .ui

Ni and corresponding states xi
2, xi

3,

. . . xi
Ni+1 are computed according to the steps described above until xi

Ni+1 lies in

visited region or reaches the set point.

• Cost-to-go values J i+1
j for state xi

j are given by J i+1
j =

∑Ni
l=j+1 {φ(x(l), u(l))} +

J̃ i(xi
Ni+1)

The cost-to-go value is computed and this state is added to the original 1200 states. This

is done for each state xi(k + 1|k) that lies in the unvisted region. In other words, policy

update and cost-to-go evaluation is carried out within the value iteration loop, hence the

name. Then, a new functional approximator J̃ i+1 is fitted and (equation 62) is solved again

for the expanded data set. This is done iteratively until convergence. Iteration is said to

be converged if sum of absolute error was less than 5% and number of data points added

during the iteration was less than 6 (0.5% of 1200).

In this case, the Bellman equation and policy update converged in 7 iterations. Numer-

ical and visual comparison (Table 14, Fig. 52) indicate that this modification of simDP

algorithm also results in highly improved control performance. Extrapolation to the un-

visited states is avoided due to increased coverage by adding 195 data points (Fig. 55).

We believe that this method is more rigorous and general than the previous two methods.
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The optimal path may lie outside the region visited by the initial slMPC control law, which

would not be considered if we were to restrict the online controller by gridding. Likewise,

we do not need deteriorated behavior of the controller to direct additional simulations of

initial slMPC controller to increase the data coverage, which may or may not work in a

generalized scenario.
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Figure 55: State space plot of states visited during online implementation of the “policy
update” simDP scheme(¦). Also shown are the data from the original suboptimal slMPC
(·) and the data points added during policy update (+). In all, 195 data points were added
in the 7 iterations performed until convergence of cost-to-go function.

6.3.5 Comments

In this paper, we suggested a Simulation-Approximation-Evolution (simDP) strategy based

on ideas from Neuro-Dynamic Programming and Reinforcement Learning literature, to con-

trol a continuous reactor with multiple steady states — a highly nonlinear control problem.
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Traditional linear controllers are usually inadequate for such systems as the system dynam-

ics may vary drastically at the different steady states and during transition from one type of

steady state to another. The suggested simDP method transfers the computational burden

of solving multistage nonlinear optimization problem to offline; instead, an equivalent single

stage optimization is solved online — through the use of cost-to-go function approximation.

In Table 14, the four simDP algorithms suggested differ from each other in several

aspects. The basic method as well as gridding method uses only the original 1200 point for

computing cost-to-go approximation. In the other two methods, additional data points are

added to increase the coverage of state space.

The different number of hidden nodes in the cost-to-go neural network suggests that

the structure of cost approximation is different in the four simDP cases considered. The

minimum number of hidden nodes that gave a mean square error (MSE) of 10−3 was selected

(see Table 14).

6.4 Concluding Remarks

Application of general ideas from NDP and RL literature to improving performance of

MPC for a highly nonlinear problem of steady state switching in a microbial reactor was

considered. The results indicate that the simDP scheme developed provides a promising

framework for nonlinear optimal control in a computationally amenable way. The proposed

controller does not select the best amongst original suboptimal trajectories; instead it seems

to interpolate in the region defined by these trajectories, directed by cost-to-go function

approximation, to yield substantially improved performance. An important outcome of

this work is that while the method shows great promise, one needs to be careful in using

the cost-to-go function approximation. In this study, extrapolation to previously unvisited

states resulted in poor performance of the “vanilla” simDP controller. Three different

modifications were suggested. We are, however, biased towards the generalized policy update

as a more systematic method of increasing the coverage and searching for more optimal

policy even in the regions unvisited by the original suboptimal controller.

This also points to an important function initial suboptimal strategy plays. We think
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that it is not necessary for initial suboptimal strategy to be close to optimal — Bellman

iterations will take care of this issue. However, it is imperative that the suboptimal strat-

egy covers all relevant portions of the state space. Spanning relevant parts of state space

becomes increasingly difficult with an increase in state dimension. Hence Principal Com-

ponent Analysis (PCA), Self-Organizing Maps (SOM) or other feature extraction schemes

may be used to reduce the state dimension or better identify relevant regions of the state

space.
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CHAPTER VII

ON THE CHOICE OF COST APPROXIMATOR AND

ITERATION ALGORITHM IN SIMDP

Key issues in implementation of simulation-based Dynamic Programming (sim-DP) are the

addressed in this chapter. First, a comparison between a parametric “global” approximator

like neural network and a local averager with respect to convergence during offline learning

and online performance is presented. The local averager shows stable learning of the cost

function and robust performance during online control. Next, the convergence properties of

policy iteration are empirically investigated. We demonstrate that policy iteration requires

lesser iterations than value iteration to converge, but requires more function evaluations to

generate cost-to-go approximations in the policy evaluation step. Two different alternatives

to policy evaluation, based on iteration over simulated states and simulation of improved

policies are presented. We then demonstrate that the λ-policy iteration method, with

λ ∈ [0, 1], is a tradeoff between value and policy iteration. Finally, the issue of exploration

to expand the coverage of the state space during offline iteration, and its impact on online

performance is also considered.

7.1 Introduction

Dynamic Programming (DP), introduced by Bellman [8], generated a lot of interest as

it provides a theoretically sound framework for solving multi-stage dynamic optimization

problems. Such stagewise optimization is encountered in optimal control problems, Markov

Decision Processes, planning and scheduling, etc. DP aims to characterize the optimal

solution to the dynamic optimization in the form of “cost-to-go” or “value” function, which

expresses the desirability of any state x in the state space with respect to the long-term

performance that can be achieved.
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Simulation-based approximate Dynamic Programming (sim-DP) methods were intro-

duced in the previous chapter to alleviate the curse of dimensionality in conventional DP.

According to Sutton and Barto [104], the main idea of these methods is that they aim to

obtain good suboptimal solutions to the DP problem, starting with suboptimal policies and

suboptimal cost-to-go function, iteratively using each to improve the other. These methods

use selective sampling through simulations to identify relevant subset of the state space, a

function approximator to interpolate the cost-to-go values in this “visited” subset, and an

iterative learning algorithm to improve the cost-to-go values. This chapter highlights the

importance of these three components: function approximator, iteration algorithm and the

state space coverage.

First, the issue of choosing an appropriate algorithm is addressed. Reinforcement Learn-

ing literature has seen a chequered history with the use of an appropriate approximator:

there have been successful implementation of neural networks as function approximators in

difficult problems such as TD-gammon [107], as well as notable failures in relatively simpler

cases [17]. Boyan and Moore [16] showed that the iteration algorithms that use parametric

approximations of the value functions fail to converge stably in several cases. Gordon [41]

presented a class of function approximators with “non-expansion” property to guarantee

stable learning of the cost-to-go function, whereas Ormoneit and Sen [84] adopted non-

parametric Kernel-based averaging schemes that always converges to a unique solution. We

extend this result to systems with continuous state and action spaces, and show that local

averagers provide stable offline learning and improved online performance. An interested

reader is referred to [66] and [67] for more details on this issue.

The next issue we address is the offline convergence properties of iteration algorithms. Of

particular interest in this chapter is simulation-based approximate policy iteration. Policy

iteration, often attributed to Howard [51], generates an improving sequence of policies

from the corresponding cost-to-go functions, followed by updating the cost-to-go function

by evaluating the generated policy. Our aim is to compare the policy iteration approach

with value iteration. Recently, Santos and Rust [93] proved that under certain regularity

conditions, policy iteration shows superlinear or quadratic rate of convergence. In contrast,
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value iteration has only a linear rate of convergence. De Farias and Van Roy [24] argued that

approximate value iteration need not converge under some cases. Based on their studies of

temporal difference learning (which, like policy iteration, iterates in the policy space), they

suggested a variation of approximate value iteration that is guaranteed to converge.

Clearly, approximate policy iteration algorithm converges faster than value iteration.

However, the policy evaluation step itself is an iterative step, which sometimes fails to

converge in a reasonable amount of time [12]. Unlike policy improvement, each iteration

within policy evaluation does not require any minimization and is therefore computationally

less intensive that policy improvement. We investigate this tradeoff between lesser number of

iterations (and therefore lesser number of minimizations) and a greater number of iterations

during policy evaluation. The results of convergence behavior observed in Markov Decision

Processes are extended to control of systems with continuous state and action spaces. We

also investigate the following alternative ways to perform policy evaluation:

• Computing cost-to-go iteratively over the data points determined by the initial sub-

optimal control simulations (iter-PI)

• Through simulation of the improved policies generated during the policy iteration.

Cost-to-go values are directly calculated as the sum of individual costs until steady

state (sim-PI)

• Using temporal difference based λ-policy iteration (λ-PI of Bertsekas and Ioffe [11])

Finally, we allude to the issue of state space coverage. As the cost-to-go approximators

are built with data occupying a limited subset of the state space, we need to avoid extreme

extrapolations during online control. Additionally, policy iteration can be extended to

provide exploration of the unvisited regions of the state space during offline learning phase,

through input dithering.

7.2 Background and Key Issues

The background for Dynamic Programming (DP) is briefly summarized and key issues in

implementation of sim-DP are presented in this section. The main aim of DP is to obtain
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an optimal value or cost-to-go function for any state x ∈ X . The optimal cost-to-go is

shown to satisfy the Bellman equation (59). The Bellman equation can be represented in

the form of DP operator T as

J∗ = TJ∗ (68)

Blackwell [13] was amongst the first authors to rigorously prove that the DP operator T is a

contraction mapping. This is an important result as it guarantees convergence to a unique

solution J∗ through the use of iterative algorithms.

The conventional DP suffers from the curse of dimensionality as the cost-to-go values

need to be computed for each state in the state space. Sim-DP alleviates this curse of

dimensionality by restricting the iterative computation of cost-to-go to a limited subset of

state space, and using a function approximator to interpolate within this subset. The three

key issues, viz. the approximator, iteration algorithm and state space coverage are discussed

here.

7.2.1 Cost-to-go function approximator

The choice of cost approximator is an important issue in simDP methods. The cost approx-

imator should provide good interpolation within the visited subset of the state space, and

avoid over-extrapolation of cost-to-go. At the same time, it should also allow for guarded

exploration beyond the visited subset. Two main classes of approximators compared are

global parametric approximator, and a local averager.

7.2.1.1 Global approximator

A global approximator uses parametric representation to approximate the cost-to-go as a

function of state variables, such as linear combination of basis vectors, neural networks,

etc. We chose a feedforward neural network with one hidden layer as the first choice. The

neural network takes in augmented state as the inputs and the cost-to-go as the output.

The network is trained after each value iteration and after each policy evaluation using

Levenberg-Marquardt method (using the trainlm command in the Matlab neural network

toolbox).
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7.2.1.2 Local averagers

Local averagers are memory-based methods that find cost-to-go values for a query point as

a weighted average of its neighboring points. Let xq be a query point and x̂1, . . . , x̂i, . . .

be the neighboring points in the memory. In this chapter, we consider two different local

averagers.

The first averager is the k-nearest neighbor. Here, the cost-to-go value of a query point

xq is approximated as the distance weighted mean of its nearest neighbors x̂1, . . . , x̂k. For

all the examples, we chose k = 4. The cost-to-go value of xq is given by

J̃(xq) =

k∑
i=1

γiJ(x̂i)

k∑
i=1

γi

where
1
γi

= [xq − x̂i]T W [xq − x̂i] (69)

Here W is a feature weighting matrix. If W = I, the γis become inverse of the square of the

euclidian distance between the two points. Typically, we choose the feature weight matrix

as W = diag[w1, . . . , wk]. This allows us to emphasize the state variables that are more

important than others.

A Gaussian kernel-based local averager is the other approximator used in this work.

The cost-to-go value for xq is obtained as a weighted average of all the points lying within

a pre-defined threshold distance from it. Let x̂i, i = 1, . . . , N be the N data points within a

hyper-sphere of radius ρ around the query point xq. The cost-to-go for xq was then defined

as as:

J̃(xq) =





N∑
i=1

Kλ(xq ,x̂i)J(x̂i)

N∑
i=1

Kλ(xq ,x̂i)

if N > Nmin

Jmax otherwise

(70)

where the kernel is given by

Kλ(xq, x̂i) = exp

(
−‖xq − x̂i‖2

2

λ2

)
(71)

The design parameters ρ, Nmin, λ and Jmax are chosen considering the coverage of state

space. If there are less than Nmin visited data points within the threshold distance ρ, the
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query point is assigned a large cost. Thus, the Gaussian kernel-based averager prevents

extrapolation.

7.2.2 Iteration algorithm

Value iteration uses the Bellman equation (59) as an update rule to sequentially improve the

cost-to-go values, starting from a suboptimal cost-to-go J0(x). Therefore, value iteration

is also called “the method of successive approximations.” In contrast, policy iteration is a

two step procedure. First, policy improvement is used to find an improving policy µi+1(x)

using cost-to-go function J i(x) according to:

µi+1(x) = arg min
u

{
φ(x, u) + J i (fh(x, u))

}
(72)

The second policy evaluation step involves following the policy µi+1(x) to compute cost-to-go

function. The updated cost-to-go function is given by the following implicit equation

J i+1(x) = φ(x, µi+1(x)) + J i+1
(
fh(x, µi+1(x))

)
(73)

The details of the two algorithms are presented in Appendix B.

Puterman and Brumelle [88] showed the equivalence between policy iteration and New-

ton’s method. They proved that policy iteration has super linear or quadratic rate of

convergence, while value iteration has only a linear rate of convergence. Thus, policy itera-

tion converges faster than value iteration. Additionally, due to the super linear rate, policy

iteration converges to the exact solution, whereas value iteration converges asymptotically.

Santos and Rust [93] extended this result to approximate DP. While policy iteration con-

verges faster, the policy evaluation itself is an iterative step. This represents a tradeoff

between lesser number of iterations (which means lesser minimization steps) and a larger

number of function evaluations for policy evaluation step. The following three alternative

choices for policy evaluation are considered

• Iterative evaluation: In the policy iteration algorithm mentioned above (and in

Appendix B), we perform the iterations over all data points in the memory using

one-step ahead simulation of the improved policy. The policy evaluation is then
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iteratively performed using Eq. (64). We call this method iterative evaluation-based

policy iteration or iter-PI.

• Simulation-based evaluation: An alternative method is to start with some selected

initial points and perform simulations using the updated policy µi+1(x) until steady

state. Instead of generating a single successor state (fh(x, µ(x))), a series of states

from the selected initial points to the setpoint are generated. The policy evaluation

for the simulated policy is simply the sum of single stage costs until steady state:

J i+1(xsim,i+1
k ) =

∞∑

l=1

φ(xsim,i+1
k+l , uk+l) (74)

Here, the superscript sim is used to identify that the states visited during the simula-

tions. We call this method sim-PI.

• λ-Policy Iteration The λ-policy iteration was proposed by Bertsekas and Ioffe[11] as

a method to accelerate the policy evaluation step by introducing a “discount factor”

λ ∈ [0 1] that does not alter the cost-to-go. In λ-policy iteration, we use the temporal

difference for the state transition xk → xk+1 to modify policy evaluation as

J i+1(xk) = J i(xk) +
∞∑

m=0

λmd(xk+m) (75)

This method, which was described in the previous chapter, reduces to pure value

iteration for λ = 0 and policy iteration for λ = 1. Thus, one can view this as some

form of “interpolation” between value and policy iteration.

7.2.3 Coverage and exploration

One of the important features of simDP is that the iterations are performed in a restricted

region of the state space defined by the simulation data X sim. Often, the coverage of the

state space may not be adequate, and more simulations may be required to increase the

coverage. There are two alternative ways to do this:

• After convergence, the cost-to-go function can be used to simulate online performance.

Additional states visited can guide additional suboptimal simulations to generate more
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data. The learning iterations can be performed again with the additional data. This

case was considered in section 6.3.4.2.

• Cautious exploration of the state space can be performed with policy iteration, either

by allowing the controller to visit previously unvisited regions or by adding extraneous

dithering signal.

7.3 Linear Quadratic Control Example

Before moving to sim-DP examples for offline convergence and online performance of policy

iteration, a comparison of value and policy iteration for a linear unconstrained system is

presented in this section. Consider the problem of regulating a linear unconstrained system

xk+1 = Axk + Buk (76)

to the origin. The single stage cost for this system is φ(x, u) = xT Qx+uT Ru. An analytical

solution of DP exists in the form of Linear Quadratic Regulator (LQR). It can be proved

that the optimal cost-to-go function is a quadratic function of the system state [10]. Hence,

the cost-to-go function at ith iteration is denoted as

J i(x) = xT Six (77)

where i is the iteration index. The infinite-horizon problem of (53) can be equivalently

represented as

min
uk

{[
xT

k Qxk + uT
k Ruk

]
+ xT

k+1S
∞xk+1

}
(78)

7.3.1 Analytical Solutions

We can show that the input that minimizes the above objective (78) is given by

uk
∆= −L · xk

= −(BT S∞B + R)−1BT S∞A · xk

(79)

Value iteration involves updating the cost function J = xT Sx with the minimizer

function obtained by solving Eq. (78) above. Thus,

J∞(xk) = min
uk

[
xT

k Qxk + uT
k Ruk

]
+ J∞(xk+1)
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xT
k S∞xk = min

uk

[
xT

k Qxk + uT
k Ruk

]
+ xT

k+1S
∞xk+1

Substituting uk from Eq. (79), the solution of above equation is given by Ricatti Difference

Equation (RDE) as in the famous LQR problem:

S∞ = AT S∞A + Q−AT S∞B[BT S∞B + R]−1BT S∞A (80)

Therefore, each value iteration is equivalent to solving one step of this Ricatti Difference

Equation.

Policy iteration is a two-step procedure. First, the improved policy is computed

according to Eq. (79) as µi+1(xk) = −Li+1 ·xk given current estimate of cost-to-go function

J i(x) = xT Six. Next, policy evaluation (Eq. 73) is used to compute the updated cost-to-go

function as:

xT
k Si+1xk = xT

k [Q + L(i+1)T RLi+1]xk + xT
k+1S

i+1xk+1 (81)

Since µ(xk) = −Li+1 · x, we can write the successor state value as

xk+1 =
[
A−BLi+1

]
xk

Thus, policy evaluation is equivalent to solving a discrete Lyapunov equation:

Y Si+1Y T − Si+1 + Z = 0 (82)

where Y = [A−BLi+1]T

and Z = [Q + L(i+1)T RLi+1].

(83)

sim-PI was introduced as an alternative method, which generates new cost-to-go func-

tion through simulations of the policy µi+1(x). The policy improvement step remains the

same, whereas we apply policy evaluation for the ∞-horizon cost as:

J i+1(xk) =
∞∑

m=0

φ
(
xk+m, µi+1(xk+m)

)
(84)

=
∞∑

m=0

xT
k+m

[
Q + L(i+1)T RLi+1

]
xk+m, (85)
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Since µ(xk) = −Li+1 · xk,

xk+1 = [A−BLi+1]xk

xk+2 = [A−BLi+1]xk+1 = [A−BLi+1]2xk

...

xk+m = [A−BLi+1]mxk

Using this, we get

xT
k Si+1xk = xT

k

{ ∞∑

m=0

Y TmZY m

}
xk (86)

where Y and Z are as defined previously in Eq. 83. This reduces to the same Lyapunov

equation (87) as before.

In λ-Policy Iteration, policy improvement step is performed as before (Eq. 79). How-

ever, policy evaluation is modified using a discount factor λ, which does not alter the cost-

to-go structure for a given policy. Policy evaluation reduces to solving a different Lyapunov

equation

Ỹ Si+1Ỹ T − Si+1 + Z = 0 (87)

where Ỹ = λ0.5[A−BLi+1]T ,

Z̃ = λ[Q + L(i+1)T RLi+1 + (1− λ)Si,rd

and Si,rd = AT SiA + Q−AT SiB[BT SiB + R]−1BT SiA

Si,rd is the solution of one step of RDE, just like that given by Eq. (80). Proof is provided

in Appendix C.

λ-policy iteration is a balance between value iteration and policy iteration:

• When λ = 0, Ỹ = 0. Thus, Eq. (87) reduces to −Si+1+Si,rd = 0; ie. 0-policy iteration

is nothing but value iteration.

• When λ = 1, Ỹ = Y and Z̃ = Z; ie. 1-policy iteration is the standard policy iteration.
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Comparing Eq. (87) with Eq. (82), we can see that λ-policy iteration involves the following

modified policy evaluation step:

J i+1(xk) = (1− λ)
[
φ(xk, uk) + J i(xk+1)

]

+ λ
[
φ(xk, uk) + J i+1(xk+1)

]
(88)

7.3.2 Numerical comparison

The following numerical example is used to illustrate the difference between convergence

property of value and policy iteration:

A =




1 0

0.1 1




B =




1

0




The weighting matrices for one-stage cost were chosen as Q = I2 and R = 0.01. The optimal

S∗ matrix was obtained using dlqr function in MATLAB. The matrix S0 used to initialize

value and policy iteration and the optimal S∗ matrix are shown below:

S0 =




1 0.1

0.1 1




S∗ =




1.117 1.062

1.062 11.522




Convergence criterion used was that the Frobenius norm of the difference between consec-

utive cost-to-go functions, ‖Si+1 − Si‖ ≤ 0.001. Value and policy iteration converged in 43

and 7 iterations respectively. The converged S43 and S7 matrices shown in Table 15 indi-

cate that the convergence of value iteration is asymptotic, while that of policy iteration is

exact. However, policy evaluation itself is an iterative step. We did not use dlyap function

in Matlab but iterated using

Si+1,j+1 = Y Si+1,jY T + Z (89)

to perform policy evaluation; it took 346 evaluations for just the first policy iteration to

converge. This indicates a potential problem with policy iteration—policy evaluation can

be very slow in converging.
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Table 15: Si values for unconstrained linear system

Value Iteration Policy Iteration

S1 S43 S1 S7




1.02 0.1

0.1 1.99







1.117 1.061

1.061 11.518







1.528 5.126

5.126 55.76







1.117 1.062

1.062 11.522




Table 16: λ-policy iteration schemes applied to the unconstrained linear system, for various
values of λ.

λ λ = 0 λ = 0.05 λ = 0.25 λ = 0.5 λ = 0.75 λ = 0.95 λ = 1

Iterations 43 41 34 25 16 8 7

PEval1∗ – 4 6 11 24 99 346

∗PEval1: number of policy evaluations required during the first policy iteration

Table 16 demonstrates that the λ-policy iteration is a balance between value iteration

and policy iteration. As the λ value decreased to 0, more iterations are needed for cost-to-

go function to converge, while the number of policy evaluations required for single policy

iteration is reduced.

7.4 Numerical Examples

7.4.1 Constrained linear system

The first system considered for the comparison of value and policy iteration is a two-state

constrained linear system, described by y = 2
(
2s2 + 3s + 2

)−1. The system is sampled

every ts = 0.1 seconds. The resulting state space representation is

x(k + 1) =




0.7326 −0.0861

0.1722 0.9909




x(k) +




0.0609

0.0064




u(k) (90)

The input is constrained within the values −2 ≤ u(k) ≤ 2. Bemporad et al. [9] developed

the constrained LQR for this system using their parametric programming approach.
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First, we applied a PI controller1 (Kc = 2, τi = 1.2, |u(k)| ≤ 2) to this system. Regula-

tion of the state to the origin was the control objective. Starting with 6 different x0 values,

we simulated the system until it reached the desired set point. A total of 420 data points

were obtained using the PI controller, represented as policy µ̃0.

A neural network with two input nodes, four hidden nodes and one output node was used

as the cost approximator. The iterations were said to have converged when the mean square

error between the subsequent cost-to-go approximator was less than 0.01. The learning with

neural network is non-monotonous. Hence, a mean square error criterion was used instead

of using maximum relative error criteria. The results from using gaussian kernel-based

averager were similar and are hence skipped for brevity.

It took nine iterations for value iteration to converge. Each iteration involved solving the

minimization to get the updated cost-to-go value, followed by training the neural network.

Policy iteration, on the other hand, converged in just three iterations. However, the total

number of policy evaluations required were sixteen (8 in first, 5 in second and 3 in third

policy iteration). Each policy iteration involves solving the minimization problem (policy

improvement), which was solved only 3 times. However, after each policy evaluation, the

neural network was trained again with the new cost-to-go values. Thus the computational

requirement is higher for policy iteration.

The converged cost-to-go approximator was then used for online control. Figure 56 shows

the online performance using cost-to-go function obtained by value and policy iteration

methods. Both these methods show online performance similar to Bemporad’s constrained

LQR [9] and significantly better than the original suboptimal PI control. Another interesting

result is that value iteration “over estimates” the cost-to-go values in the region where

control actions hit the constraints. Figure 57 shows comparison between the prediction of

cost-to-go approximators obtained by the two methods. This is attributed to the unstable

learning of cost-to-go function with neural network. Such an “over estimation” was not

observed with the local averager. The figure also shows that the cost-to-go surface is

1PI stands for Proportional Integral control. To avoid ambiguity, we use the terms iter-PI, sim-PI or
λ-PI for policy iteration.
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Figure 56: Online performance of value iteration (—) and policy iteration (– –) are
significantly better than original PID control (· · ·). The online performance is comparable
to the optimal LQR (—).

smooth. For such systems, although neural network shows unstable learning, the online

performance is similar to that with a local averager.

7.4.2 Linear system with “soft” state constraints

An example of a system with “soft” state constraints is used for comparing local averager

and a parametric approximator. In this example, we consider the problem of disturbance

rejection for a linear system

y(s) =
9.62

s2 + 2.4s + 5.05
u(s) +

−19s− 57.3
s2 + 2.4s + 5.05

d(s) (91)

with state and input constraints. The model originally refers to the control of engine rpm

(y) using a bypass valve (u) in the presence of step disturbance in torque load (d). The
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Figure 57: Optimal cost-to-go values and cost-to-go predictions by value and policy iter-
ation. The overall structure of cost-to-go is obtained accurately. Value iteration overesti-
mates the cost-to-go for states at the constraint.

system was sampled every 0.2 seconds, resulting in the following state space model:

x(k + 1) =




−0.04223 −0.3932 −0.08433

0.04299 1.035 −0.3984

0.08795 0.4352 0.4681




x(k) +




0.06815

0.2912

0.6062




u(k)+




−0.2026

1.68

−0.468




d(k)

y(k) =


 0.2999 −2.021 0.9494


 x(k)

(92)
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The pertinent constraints imposed were −5 ≤ u ≤ 5 and −5 ≤ y ≤ 5. The disturbances

are assumed to be known or measured. For d > 0.84, the system cannot be controlled

at the setpoint y = 0 with the given constraints. We looked at an interesting case of

d = 0.8. Starting at the origin, no sequence of control actions u(k) can be found to satisfy

state constraints. Thus, constraint softening, by assigning larger cost penalty for constraint

violation, was necessary.

Two different PI controllers (Kc = 0.25, Ki = 0.15; Kc = 0.5, Ki = 0.08) were used as

initial suboptimal policy, with the input moves truncated to satisfy the constraint |u| ≤ 5.

The simulations were performed for two different starting points and four different d values.

75 data points were obtained from each of the 16 scenarios (2 controllers, 2 initial conditions,

4 disturbances). The weighting matrices for one-stage cost were chosen to be Q = 1 and

R = 0.04. For the points where constraints are violated, one-stage cost were weighed 100

times (i.e. Q = 100, R = 4 if |y(k)| > 5). For this constraint softening case, the cost-to-go

function has a very stiff structure. This is because some regions of the state space that

violate (or are likely to violate) state constraints are associated with very high cost-to-go,

while other regions of the state space are associated with lower cost-to-go.

7.4.2.1 Choice of the cost approximator

The cost-to-go was expressed as a function of the augmented state, consisting of the system

state, disturbance and deviation from the setpoint; i.e. x = [x1, x2, x3, d, (r − y)]T .

The system response depends on the state as well as disturbance. Deviation from set

point was added to the augmented state for integral action of the controller. Two different

approximators were used to obtain cost-to-go as a function of the augmented state:

• A multi-layer perceptron neural network (MLP) with 7 hidden nodes, and

• k-nearest neighbor (kNN), with k = 4 neighbors. As the disturbance (d) and error

(r − y) are more critical than the three system states, a feature weighting matrix

W = diag[1, 1, 1, 6, 10] was used to compute the approximation according to Eq.

69.
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Figure 58: Relative error for learning using MLP and kNN. The learning in case of MLP
is unstable while it is stable and monotonic for kNN.

The neural network was unable to provide a good approximation of the stiff cost-to-go

function. The cost-to-go function did not converge even after 150 iterations. As shown in

Figure 58-a, the learning with MLP is unstable. On the other hand, the learning of cost-

to-go function with kNN was stable and the relative error monotonically decreased with

increasing number of value iterations (Figure 58-b). The cost-to-go function was said to be

converged when the infinity norm of the relative error between subsequent value iterations

was less than 0.005. Value iteration converged in 27 iterations with kNN.

The accuracy of the cost-to-go function was tested by using them for online control.

None of the 150 trained neural networks were able to control the system. The dash-dot

line in Fig. 59 shows the performance of the best MLP cost approximator. The online

performance of simDP with kNN (solid line in Fig. 59) is comparable to that of the truly

optimal ∞−horizon MPC. The specific plots are for d = 0.8, wherein constraint softening
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is required as at least one point violates the constraint. Note that d = 0.8 is a “new point”,

i.e. this condition was not used in learning the cost function.
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Figure 59: Online performance of sim-DP with the two approximators is compared with
the optimal ∞-horizon control and the original suboptimal PI control

7.4.2.2 Convergence of policy iteration

We performed VI and iter-PI, this time using the Gaussian kernel-based averager, for this

example. The algorithms were said to be converged when the absolute error between two

consecutive iterations satisfied

eabs
∆= max

k;k=1,...,1200
|J i+1

k − J i
k| < 0.001

Table 17 shows the comparison between VI, iter-PI and sim-PI. VI required 17 iterations

and a computation time of 6641 seconds to converge during offline learning. On the other

hand, iter-PI took 5 iterations and a total of 53 policy evaluations. The policy evaluation
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Table 17: Convergence properties during offline learning of cost-to-go function for linear
system with soft constraints

Value Iteration iter-PI sim-PI

Iterations 17 5 6

Policy Evaluations — 53 —

Offline computation time (s) 6641 2012 986

step requires computation of cost-to-go values for all visited states under the new policy.

However, it does not require solving of a minimization problem. Hence, the overall compu-

tational requirement for policy iteration was lower than value iteration. For this example,

sim-PI converged in 6 iterations. The significantly lower computation time was because

simulation of this linear system, starting from an arbitrary x0 to the setpoint is very fast.

Figure 60 shows the online performance of sim-DP using Gaussian kernel-based aver-

ager. The sim-DP method showed significant improvement over the starting suboptimal

PI controllers, but was not as good as the optimal ∞-horizon MPC, or sim-DP with kNN.

This is because the Gaussian kernel-based averager assigns a high cost Jmax if there are less

than Nmin points within a hyper-ellipse of radius ρ. The optimal controller visits regions

of the state space not previously visited by the suboptimal schemes. Hence the controller

avoided this region during online control. In contrast, kNN approximates the cost-to-go of

a query point as a weighted average of cost-to-go of its k nearest neighbors. The relative

distances of these neighbors are important, not the actual distances from the query point.

Hence, the controller using kNN give nearly optimal performance. We then modified the

kNN as:

J̃(xq) =





l∑
i=1

γiJ(x̂i)

k∑
i=1

γi

if N > k

Jmax otherwise

(93)

where N is the number of data points within hyper-ellipse of radius ρ, k is the number of

nearest neighbors, and γi are defined in (69). With this modification, sim-DP with kNN

performed similar to the Gaussian kernel-based example.
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Table 18: Comparison of value and policy iteration using neural network and Gaussian
kernel-based averager for the nonlinear bioreactor.

Approximator Gaussian kernel neural network

Algorithm VI iter-PI λ-PI (λ = 0.5) VI VI-Restrict iter-PI

Offline cost-to-go calculation

Iterations 33 3 14 4 4 7

Pol Evaluation — ∗ 58 — — 16

States Added — Not Applicable — 0 0 245

Comput. Time (hr) 22.9 > 60∗ 11.0 — Not Applicable† —

Online performance

Total Cost J(x0) 9.9 9.9 9.9 24.2 9.4 9.1

Sim. Time (s) 141.9 134.1 134.1 98.7 127.7 69.3

VI-Restrict: Restricting the neural network to visited subset
∗ Truncated after 40,000 evaluations
† Computation time for neural network wasn’t computed

This highlights the importance of data coverage and appropriate approximator choice.

If adequate data is not available in the region that the optimal controller visits, the per-

formance of sim-DP will not be optimal. As the true optimal controller is unknown in

most problems, a robust exploration scheme would be necessary to improve the controller

performance.

7.4.3 Nonlinear bioreactor

We revisit the problem of steady state switching in a continuous bioreactor presented in

the previous chapter. The control objective is the optimal switching from the low to high

biomass yield steady state. The results are summarized in Table 18 and are discussed here.

7.4.3.1 Convergence of policy iteration

We first compare the offline convergence behavior of value and policy iteration with Gaussian

kernel-based averager. The top half of Table 18 shows the comparison of offline convergence
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results. Value iteration converged in 33 iteration, taking about 23 hours. On the other

hand, for the first iteration of iter-PI, policy evaluation did not converge even after 2 days of

simulation and 40,000 iterations. At this stage, we truncated policy evaluation and used the

cost-to-go approximator available at this stage to continue policy iterations. We found that

only two more iterations (with 18 more policy evaluations) were required for convergence.

Next, we considered λ-PI with λ = 0.5, which converged in 14 iteration requiring 11 hours

of offline computation time. All the three approximators yielded optimal performance when

used for online control with comparable online simulation times.

7.4.3.2 Exploration of the state space

In previous chapter, we observed that value iteration using a neural network was sensitive

to over extrapolation in the region with no data, resulting in a poor performance. By

restricting the search to the visited subset of the state space, over extrapolation problem of

neural network was avoided, and the control performance improved. Gaussian kernel-based

sim-DP controller, on the other hand, showed optimal performance due to its non-expansion

properties. Figure 61 shows the state space plot for neural network-based (diamonds) and

Gaussian kernel-based control, with the original data shown as dots.

We also incorporated guarded exploration of the state space within the neural network-

based policy iteration. Since the approximator is valid only in the visited subset of the state

space, it cannot be reliable used to obtain J
(
fh(x, µi+1(x))

)
if an improved policy visits

region with inadequate data during offline learning. In such a case, we perform simulations

of the policy µi+1(x) until the set point is reached. The cost-to-go is then calculated as

in sim-PI and all the “new” points visited added to the original data. Figure 62 shows

that the policy iteration with neural network sufficiently explore state space beyond the

visited region. Crosses (×) represent the additional 245 data points added by exploration.

Increased coverage improved the cost-to-go approximations provided by neural network,

resulting in optimal online performance. Recall that this result is similar to the “policy

update” modification of the original value iteration, where single sweeps of policy iteration

were used within each value iteration for each state-action pair that visited regions of state
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Figure 61: State space plot (c vs s2) showing original MPC data points (dots) and points
visited during online control using cost-to-go approximator from value iteration using i. Neu-
ral Network (♦) and ii. K-mean clustering (×)

space with insufficient data.

7.4.4 Further Examples

Figure 62 shows that the optimal trajectory for the bioreactor steady state switching prob-

lem lies within the visited subset of the state space. As a result, even though exploration of

the state space improves control performance, conservative schemes with safeguards against

extrapolation work equally well. However, this will not always be the case. One is likely

to encounter situation like the one shown in Figure 63, where the optimal trajectory lies

beyond the visited subset of state space. In such a case, guarded exploration during policy

iteration is likely to produce significantly better performance than value iteration restricted

to the visited subset.
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Figure 62: State space plot (c vs s2) for policy iteration using neural network. Data
points added during “policy update” (×) increases the coverage of state space and results
in optimal control performance (♦)

7.5 Conclusions

In this paper, we first compared global parametric approximator such as neural network with

local averager for approximating the cost-to-go function. The local averagers — k-nearest

neighbor and Gaussian kernel-based averager — provided stable and monotonic learning of

the cost-to-go function and more robust online performance than the global approximator.

The speed of convergence of value and policy iteration were compared next. Through

an analytical linear quadratic control example, as well as constrained linear / nonlinear

systems example, we showed that policy iteration takes lesser number of iteration, but

requires more function evaluations in the policy evaluation step. Two alternate ways to

perform policy evaluation — based on iterative evaluation, and simulation-based calculation

— were presented. We also showed that the λ-policy iteration scheme of Bertsekas and Ioffe
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Figure 63: Cartoon depicting benefits of exploration.

[11] effectively uses value iteration to reduce the number of policy evaluations.

Finally, we discussed the ability of policy iteration to perform guarded exploration in

the unvisited subset of the state space, can lead to more optimal results. This exploration

can be guided by extrapolation of the function approximator, or by using dithering input

signal during offline learning.
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CHAPTER VIII

CONTRIBUTIONS AND FUTURE WORK

8.1 Summary of Contributions

The two vignettes of switching systems, viz. the switching of the flow direction in a microre-

actor and optimal switching between metabolic states of a bioreactor were considered in this

thesis. An analysis of the reverse-flow operation and its comparison with the unidirectional

operation of the microreactor was presented in the first part of the thesis. The part-II

of the thesis looked into the implementation of a simulation-based Approximate Dynamic

Programming (ADP) approach for optimal steady state switching. The major contributions

of this thesis are:

• Developing a physical understanding of the observed improvement in the performance

of the reverse-flow microreactor over a unidirectional one. A simple scaling analysis

was employed to demonstrate that the thermal dynamic properties of the reactor

were critical in determining the optimal reverse-flow operation. Parametric study was

undertaken to study the effect of various input parameters, system properties and

reaction / transport parameters, and to define the performance limits of the reactor

operation.

• Understanding the issues of coverage of the state space, the choice of the function ap-

proximator and the choice of the iteration algorithm in implementation of simulation-

based Approximate Dynamic Programming for optimal switching of steady states in

a bioreactor. It was shown that avoiding extrapolation beyond the visited subset (the

“training set”) of the state space and / or exploration within the unvisited subset are

critical in obtaining a good control performance.

The specific achievements are summarized in the remainder of this section.
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Part-I of this thesis was motivated by the experimental observation that the reverse-

flow (RF) operation of a micro-channel reactor provided better hydrogen yield than the

unidirectional (UD) operation [59]. The aim of this work was to investigate the physi-

cal origins of this observation, and to obtain operating and design guidelines for methane

partial oxidation in a microreactor. The overreaching objective was to arrive at a general

framework, which would be system independent, though the specific results pertained to

the experimental example.

In chapter 2, a 1-D mathematical model of methane partial oxidation in a microreac-

tor was presented. Reaction kinetics rate equations from various sources were critically

compared and the experimentally observed improvement in hydrogen yield was reproduced

through simple kinetic equations. An analysis of time scales of various processes operating

within the reactor was presented in order to gain more insight into the reactor operation.

Radiation heat transfer, which has largely been neglected in the partial oxidation / re-

forming literature, in spite of high operating temperatures, was considered. The radiation

model demonstrated that although the radiation flux is substantial, the large aspect ratio

(l/d = 232) of the channels precludes any significant radiation effects. This effect however

becomes more significant in a shorter reactor with smaller aspect ratio (l/d = 100).

The microreactor model so developed was then used for a detailed analysis of the mi-

croreactor operation in Chapter 2 and for operability and sensitivity analysis in Chapter

4. The effect of various input parameters such as the inlet feed ratio, input velocity, and

inlet temperature, as well as that of the switching time was investigated. The three key

advantages of the RF operation — viz. favorable reaction thermodynamics, better ther-

mal utilization, and exploitation of regenerative heat exchange — were shown to provide

process improvement in the microreactor under various operating conditions. The optimal

switching of the inlet-outlet ports was shown to occur near the time scale of the reaction

heat release. This thesis demonstrated that the main advantage of the reverse-flow oper-

ation is its robustness to various changes in the kinetic and transport parameters in the

system, which is a critical consideration for any practical system operated under real-life

conditions. For higher hydrogen throughput, the reverse-flow operation is required as the
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unidirectional autothermal state quenches at higher velocities. A rational means of im-

proved catalyst placement that exploits the spatial temperature patterns in the reverse-flow

microreactor was also presented. An opposed flow reactor that retains some of the advan-

tages of the reverse-flow operation, without requiring flow reversal or moving reactor parts,

was demonstrated.

Part-II of this thesis considered a novel simulation-based Approximate Dynamic Pro-

gramming (ADP) framework for optimal control of switching between multiple steady states

in a bioreactor. The cybernetic modeling framework of Ramkrishna and coworkers was used

for modeling continuous microbial [62] and mammalian [79] reactors. A sequential lineariza-

tion based MPC algorithm was used for optimal switching between multiple steady states

in both the systems. While MPC was able to drive the reactors to the desired steady state

from the undesirable one, it suffered from two drawbacks: high computational load and

suboptimal performance due to the short horizon size. Therefore, the ADP method, moti-

vated by work in AI field of Reinforcement Learning, was developed [69] and applied [58]

to the optimal steady state switching problem in the microbial bioreactor.

Chapter 6 presented the results of applying the ADP method to the optimal steady

state switching problem. The computational burden of solving an infinite horizon control

problem is avoided through the use of “value” or “cost-to-go” function, which is obtained as

a function of the system state offline using a learning algorithm on a restricted subset of the

state space defined by simulations. The online control problem is reduced to an equivalent

single stage problem. As the function approximator is obtained over this subset of state

space, guarding against extrapolation is required to ensure good online control performance.

Chapter 6 also presents a way for judicious exploration of the unvisited regions of the state

space.

Finally, Chapter 7 investigated the key issues in implementation of ADP through various

linear and nonlinear examples: viz. choice of function approximator, learning algorithm used

and exploration of the state space during offline learning. A local averager gave superior

performance than a global parametric approximator (see [67] for details). The convergence

properties and exploration abilities of value iteration and policy iteration algorithms were
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also discussed.

8.2 Future Work

The possible avenues for extension of the work on a reverse-flow microreactor include:

• Experimental verification

The initial results presented in Chapter 2 reproduced the experimental observations

of Kikas et al. [59]. The experimental verification of other results pertaining to the

optimal feed conditions, optimal switching time and the operating diagrams (Fig. 33)

would greatly increase their fidelity. The catalyst placement results and the effects

of changing the reactor material of construction from Chapter 4 will benefit greatly

if backed by experimental data. With advances in Micro Electro Mechanical Systems

(MEMS) technology, an experimental reactor based on planar design shown in Fig.

38 can also be built and tested.

• Development of multidimensional CFD models

The straightforward extension of this work includes considering a full-scale 3-D tran-

sient CFD (computational fluid dynamics) model for the reactor. While a 3-D model

may not necessarily provide greater insight into the basic physics of the problem (as

compared to 1-D simulations or scale analysis), it allows to study the spatial effects

and is useful in analyzing the interaction of transport and reaction processes for the

complex reactor geometries of the flow channels. It would also allow to study the

effect of reactant mal-distribution, as well as different conditions seen by the channels

inside the reactor core as compared to those near the periphery.

Finally, the assumption of diffuse-grey emission of radiation in a single channel may

also be relaxed. Radiation effects considering interaction between different channels

can also be considered [106].

• Development of multi-scale models

Since the system is kinetically limited, incorporating detailed microkinetic models

[47, 27] is likely to provide more accurate results. The microkinetic models for surface
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reactions can be combined with gas phase reaction chemistry and flow simulations. A

hierarchical multi-scale simulation approach [89] can be applied to this effect.

• Improved reactor design

An integrated theoretical-experimental approach will greatly help in improved design

of a microreactor with complex flow geometries and spatial patterning of catalytic,

sensor or actuator elements. Due to the significant advances in MEMS, it is now

possible to build such systems. In this regard, it is expedient and economical to

employ detailed models to analyze various different spatial flow / element patterns

for selecting an optimal reactor design [110].

• Optimization and control

Optimization of periodic systems is still an open issue. As the system dynamics have

a fast response, an online optimization scheme is not suitable. However, newton-

picard algorithm can be employed to obtain quick periodic steady state solutions and

employ them within an optimization framework. Recently, there has been some work

on control of reverse-flow reactors. For example, Dufour et al. [28] considered an MPC-

IMC (Internal Model Control) scheme for control of a reverse-flow catalytic oxidation

process, while Fissore et al. [35] developed a control-relevant neural network model

for their “ring” reactor. Instead of the more computationally cumbersome MPC-IMC

scheme of Dufour, a repetitive MPC scheme [64] can be implemented instead using

a linearized model or a neural network-based NARX (nonlinear auto regressive with

exogenous input) model. The next step would be to use the approximate Dynamic

Programming in a hierarchical control scheme [68].

There are two directions for continuing the work on bioreactor control: algorithmic ap-

proach and systematic approach. The former one involves development of algorithms, using

the bioreactor system as a “test bed,” while the latter one treats the specific class of biore-

actors as a common system for generating “tailored” optimization and control solutions.

The several avenues for extension of the work on bioreactor are as follows:
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• Cybernetic Model based Control

One of the weak points of the work presented in Part-II is that a consistent algorith-

mic or systematic approach was not employed. Chapter 5 was devoted to obtaining

problem-specific MPC solutions for the two systems; Chapters 6 and 7 focused on

the ADP algorithms to solve the highly nonlinear optimal control problem. With

some maturity reached in ADP methods [66], a systematic approach for developing

model-based control techniques for control of bioreactors described by the cybernetic

model framework can be undertaken. The hybridoma system can be used as an ex-

ample and techniques geared at addressing specific issues (see Chapter 5) common to

the cybernetic modeling framework can be developed. Specifically, a multiple model

based MPC guided by a supervisory ADP scheme [66, 68] can be employed.

• Optimal Control of Batch Reactors and Reactor Startup

Optimal control of batch and fedbatch reactors has mainly focussed on obtaining

open-loop optimal solutions. The optimal open loop trajectory is obtained offline,

and sometimes a shrinking horizon control is used to track this trajectory [99]. An

alternative is to use the ADP approach, as was shown in our previous paper [86], to

obtain a closed-loop optimal policy, expressed as a function of system state. In case

of a fixed end-time problem, one of the issues is that the Bellman equation does not

have a fixed point solution, but a fixed trajectory solution; i.e. individual cost-to-go

functions at each sample time in the horizon. Judicious exploration of state space

and choice of learning algorithm are important properties that can be investigated.

Finally, the possibility of learning the optimal cost-to-go during online implementation

of the policy (on-policy sim-DP) is another issue to be investigated.

• Policy Gradient Scheme

The sim-DP schemes investigated so far aimed at obtaining the cost-to-go function

approximator. An alternative to encoding the cost function is to directly express the

optimal policy as a function of system state. A parametric function is used to ap-

proximate the current policy µ̃i(x), and the Bellman iterations are used to determine
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the new policy based on the gradient of the current policy. Hence the name policy

gradient. While this method has been investigated in the artificial intelligence com-

munity [118, 105], several modifications need to be made to adapt it to the control

problems. Translation of this method to continuous state / action spaces and selection

of appropriate approximation schemes are the specific issues to be addressed.
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APPENDIX A

FINITE AREA VIEW FACTORS

Consider two ring elements at locations m and n as shown in Figure 64. Let zm represent

the distance from the left end of the channel to the right boundary of mth grid and ∆zm

represent the axial extent of the grid element (i.e. ∆zm = zm − zm−1). Let p, q, r and s

represent the cylindrical surfaces and 0, m− 1, m, n− 1 and n represent the faces.

0 m-1 m n-1 n

Face - 0 Face - (n-1)

Ring - "p" "q" "r" "s"

Figure 64: Surfaces considered for view factor calculation.

The dimensionless lengths are defined as

Xn =
zn

d
, ∆Xn =

∆zn

d

The cross sectional areas are A0 = Am = An = πd2/4 and the ring surface area is As =

πd∆zn. Hence, the ratio of areas is

A0

As
=

1
∆Xn

(94)

The view factors satisfy the following equations

For an enclosure
∑

j

Fi−j = 1; AiFi−j = AjFj−i

The above equations are known as the “summation rule” and the “reciprocity rule” respec-

tively [77].
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Finally, the view factor between two parallel coaxial disks of radii r separated by a

distance z is given by [77]:

G = 0.5
(

ξ −
√

ξ2 − 4
)

(95)

where G represents the end-end view factor, and ξ = 2 + (z/r)2 = 2 + 4X2. Thus,

Gi−j = 1 + 2(Xi −Xj)2 − 2
√

(Xi −Xj)4 + (Xi −Xj)2 (96)

A.1 Ring-End View Factor

We seek to obtain Fre(zn) ∆= Fs−0. We note the reciprocity rule:

Fs−0 =
A0

As
F0−s (97)

The summation rules for cylindrical enclosures from z0 to zn, and that from z0 to zn−1 are

given as:

F0−(pqr) + F0−s + G0−n = 1

F0−(pqr) + G0−(n−1) = 1

(98)

F0−s = G0−(n−1) −G0−n (99)

Using the reciprocity rule (97), we obtain

Fre(zn) =
1

2∆Xn

[√
X4

n + X2
n −

√
X4

n−1 + X2
n−1 + X2

n−1 −X2
n

]
(100)

A.2 View Factor from Ring to Itself

To find the view factor for the nth ring to itself, we use the summation rule for the enclosure

formed by the ring s and its faces n− 1 and n:

Fs−(n−1) + Fs−s + Fs−n = 1 (101)

We note that due to the symmetry, Fs−(n−1) = Fs−n. They represent the view factor

from a ring element to one of its faces. Equation (100) represents the view factor from

the ring to face located at z = 0. The view factor from the ring to face located at zn−1
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is just Fre (|zn − zn−1|) (ie. in (100), replace Xn with ∆Xn and Xn−1 with 0). Through

straightforward manipulations, one can verify that

Fn−n
∆= Fs−s = 1 + ∆Xn −

√
∆X2

n + 1 (102)

A.3 Ring-Ring View Factor

To obtain the ring-ring view factor Fn−m
∆= Fs−q, we apply the summation rule to the

cylindrical enclosures from zm−1 to zn, and from zm to zn

Fs−n + Fs−s + Fs−r + Fs−q + Fs−(m−1) = 1 (103)

Fs−n + Fs−s + Fs−r + Fs−m = 1 (104)

Subtracting the two and rearranging, we get

Fs−q = Fre(|zn − zm|)− Fre(|zn − zm−1|) (105)

From Eq. (100), for i = m− 1,m

Fre(|zn − zi|) =
1

2∆Xn

[
(Xn−1 −Xi)2 − (Xn −Xi)2 + Ξn−i − Ξ(n−1)−i

]
(106)

where Ξi−j
∆=

√
(Xi −Xj)4 + (Xi −Xj)2 (107)

After straighforward manipulations, we obtain the ring-ring view factor:

Fn−m =
1

2∆Xn

[
2∆Xm∆Xn + Ξn−m + Ξ(n−1)−(m−1) − Ξ(n−1)−m − Ξn−(m−1)

]
(108)
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APPENDIX B

SIM-DP ALGORITHMS

Following notations are used in this thesis. J(x) represents cost-to-go values for a state

x; J∗ represents the optimal cost-to-go; J̃ represents function approximation of cost-to-go;

and µ(x) represents control policy. Superscript ()i represents iteration index. Jµ represents

cost-to-go obtained on following a policy µ(x). J(k) and φ(k) are shorthand representations

of J(x(k)) and φ(x(k), u(k)) respectively, where k is the time index.

B.1 Value Iteration

Data
x(k), u(k), J(k)

Suboptimal
Control Law

Closed-Loop
Simulations

Fcn. Approximator

J i(x) = x(k)      J(k)~

J (x)~

u
Ji = min φ(x,u) + J i-1(Fh(x,u))

∼
Bellman Equation

convergedno

yes

cost-to-go
function

VALUE ITERATION

Figure 65: Architecture for offline computation of cost-to-go approximation using value
iteration

Figure 65 demonstrates the value iteration algorithm. Various steps in implementation
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of the algorithm are

• Perform simulations of the process with chosen suboptimal policies for a set of rep-

resentative conditions. The states xk visited by the suboptimal policies µ0
k(xk) form

the “visited” region of the state space X sim.

• Evaluate the cost-to-go J0(xk) for each xk ∈ X sim:

J0(xk)
∆=

N∑

j=k+1

φ
(
xj , µ

0
j (xj)

)

The cost-to-go is the sum of single-stage costs until the end of horizon. N is chosen

sufficiently large for the system to reach equilibrium, so that J0(xk) calculated above

is the ∞-horizon cost-to-go for the state xk.

• Train the neural network or the cost-to-go approximator of choice; represent the ap-

proximate cost-to-go as a function J̃0(xk) of the state xk.

• Perform the following iteration:

– For each xk ∈ X sim, calculate the new cost-to-go as:

J i+1(xk) = min
uk

{
φ(xk, uk) + J̃ i (fh(xk, uk))

}

which is based on the Bellman equation 62.

– Fit a new cost-to-go approximator J̃ i+1 to the xk vs. J i+1(xk) data

– Increment i; calculate δ = ‖Ji+1−Ji‖
‖Ji‖

until convergence, i.e. δ < tol

In case of a local averager such as k-nearest neighbor method, the state-cost information

is retained in the memory and the training of cost approximation is not required. Cost-to-go

values are computed by averaging over the cost-to-go values of neighboring states in the

memory.
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Data
x(k), u(k), J(k)

Suboptimal
Control Law

Closed-Loop
Simulations

Fcn. Approximator

J i(x) = x(k)      J(k)~

J (x)~

Ji
j+1 =  φ(x,µi) + Jj

i(fh(x,µi))
∼

Policy Evaluation

convergedno

yes

cost-to-go
function

POLICY ITERATION

J i(x)
~no

yes

converged

µi = argmin φ(x,u) + J i(fh(x,u))∼
u

Policy Improvement

Figure 66: Architecture for offline computation of cost-to-go approximation using policy
iteration

B.2 Policy Iteration

Figure 66 demonstrates the policy iteration algorithm. This algorithm consists of two

distinct steps: policy improvement step and an iterative policy evaluation step. Various

steps in implementation of the algorithm are

• Initialize J̃0(xk) and X sim using suboptimal policies µ0
k(xk) as shown in the first three

steps in the previous algorithm.

• Perform policy improvement for each xk ∈ X sim

µi+1(xk) = arg min
uk

{
φ(xk, uk) + J̃ i (fh(xk, uk))

}

• Initialize the cost-to-go approximator for policy evaluation as J̃ i+1,0 = J̃ i

• Perform the policy evaluation by repeating

– If fh

(
xk, µ

i+1(xk)
) ∈ X sim, then calculate the new cost-to-go

J i+1,j+1(xk) = φ
(
xk, µ

i+1(xk)
)

+ J̃ i+1,j
(
fh

(
xk, µ

i+1(xk)
))
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– Fit a new cost-to-go approximator J̃ i+1,j+1 to the xk vs. J i+1(xk) data

– Increment j; calculate δ = ‖Ji+1,j+1−Ji+1,j‖
‖Ji+1,j‖

until convergence, i.e. δ < tol. We represent this cost-to-go as J̃ i+1.

• Terminate the policy iteration if µi+1 ≈ µi. Otherwise, go to the second step and

perform policy improvement and policy evaluation again.

Remark 1 If fh

(
xk, µ

i+1(xk)
)

/∈ X sim, we use additional simulations to perform policy

evaluation and update X sim accordingly. We call this method “policy update” and is dis-

cussed in section 7.2.3.

Remark 2 The convergence criterion µi+1 ≈ µi can be equivalently stated as ‖Ji+1−Ji‖
‖Ji‖ <

tol. While this isn’t completely accurate, its a acceptable for our examples.
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APPENDIX C

PROOF OF (87)

For the linear system, we have

φ(xk+m) = xT
k

[
A−BLi+1

]mT [
Q + L(i+1)T RLi+1

] [
A−BLi+1

]m
xk (109)

J(xk+m) = xT
k

[
A−BLi+1

]mT
Si

[
A−BLi+1

]m
xk (110)

We will drop the superscript from Li+1 and Si for notational convenience, but any other

superscript will be denoted explicitly. As shown in Eq. (83), we will write [A − BL] = Y

and [Q + LT RL] = Z. For the linear system, TD becomes

d(xk+m) = xT
k

{
Y mT ZY m + Y (m+1)T SY m+1 − [A−BL]mT S[A−BL]m

}
xk (111)

Using (111), we can verify that

∞∑

m=0

λmd(xk+m) = xT
k

{ ∞∑

m=0

λm
[
Y mT ZY m + Y (m+1)T SY m+1

]

−S −
∞∑

m=1

λm[A−BL]mT S[A−BL]m
}

xk (112)

We note that
∞∑

m=0
λmd(xk+m) + xT

k Sxk is the new cost-to-go xT
k Si+1xk. In the last

summation in (112), we replace m = l + 1 to obtain

Si+1 =
∞∑

m=0

λm
[
Y mT ZY m + Y (m+1)T SY m+1

]
− λ

∞∑

l=0

λl[A−BL](l+1)T S[A−BL]l+1

=
∞∑

m=0

λm
[
Y mT ZY m + (1− λ)Y (m+1)T SY m+1

]
(113)

=
∞∑

m=0

[λ0.5Y ]mT
[
λZ + (1− λ)[Z + Y T SY ]

]
[λ0.5Y ]m

Through straightforward algebra and using Eq. (79), we can show that

[Z + Y T SY ] = AT SA + Q−AT SB[BT SB + R]−1BT SA
∆= Si,rd (114)

We write Ỹ = λ0.5[A−BL] and Z̃ = λ[Q+LT RL] + (1−λ)Si,rd, and the proof is complete
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APPENDIX D

REACTION KINETICS FOR VARIOUS CATALYSTS

The kinetic rate expressions from Gosiewski et al. [43] that were used for our microreactor

are shown in Table 2. For all the reactions, the rate expressions are of the form

rj = k0,je
−Ej/R.Ts

[
1−

nsp∏

i=1

p
νij

i /Keq,j

]

Note that in case of irreversible oxidation reaction, 1/Keq,1 = 0. Table 9 shows the values of

k0,j and Ej for the three different catalysts for each of the three reactions. Here we describe

the procedure used to obtain these values.

Different sources in the literature report widely varying rate constants and activation

energies for the same reaction on the same catalyst. The rates of oxidation, reforming and

water gas shift reactions from specific sources [120, 114, 117] are shown in Table 19. We

assumed that the ratio of arrhenius rate constants, while the difference between activation

energies for a single reaction on different catalysts remains the same. Examples follow.

D.1 Oxidation catalyst

Yao [120] reported activation energies and turnover rates for methane oxidation for average

condition of 1% O2 and 0.1% CH4 at 500◦C for Pt and 400◦C for Pd. Based on this, we

estimated the arrhenius constant to be 1.822× 103 for Pt and 4.4× 103 for Pd. The ratio

of the two was 0.414. Assuming that the ratio remains the same, the Arrhenius constant

for Pd is given as

k0,Pd = k0,Pt/0.414 = 55.69mol/m2.sec

In case of activation energies, we assumed that the difference in the activation energies

remains the same. Yao [120] reported the difference in activation energies for Pt and Pd to

be −17KJ/mol. Thus, activation energy for Cat1 is 83.32KJ/mol.
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Pd is known to be a poor reforming catalyst. As reliable kinetic data for reforming using

Pd catalyst is not readily available, we assumed the rate of reforming to be 25 times lower

and the activation energy to be the same as that of the nominal case. According to Table

19, the ratio of rate constants for water gas shift reactions was 0.25 and the difference in

activation energies −20KJ/mol. Therefore for Cat1, k0 = 1.648 and Ea = 58.13.

D.2 Reforming catalyst

While kinetics of methane oxidation have been extensively studied for noble metal catalysts,

relatively few studies were carried out using Ni [26]. Recently, Angelidis and Tzitzios [3]

reported Pt/alumina was ten-fold more active than Ni/alumina towards methane oxidation

at the stoichiometric point. Hence, we assumed the same activation energy and a ten-

fold lower rate constant for oxidation on Ni. Rate constants and activation energies for

reforming and water gas shift reactions on Ni are shown in Table 19. Keeping the ratio of

rate constants (0.08 for reforming and 80 for water gas shift) and the difference of activation

energies (0.0 for reforming and −27KJ/mol for water gas shift) the same in our system,

we obtain the rates reported in Table 9.

D.3 Shift catalyst

Yao [120] reported oxidation kinetics for Pt, Pd and Rh. Therefore, in this study, we assume

Ru to have the same activation energy as Rh (Ea,Pt − Ea,Rh = −12KJ/mol) towards

oxidation and half the rate constant of Pt. The resulting kinetic constants are k0 = 11.53

and Ea = 112, 32. For reforming reaction, the ratio of kinetic constants on Pt and Ru is

0.426 and the difference of activation energies is −16KJ/mol. For shift reaction, the Ru

catalyst is 16 times more active than Pt and has the same activation energy. Using this

information, the remaining kinetic constants in Table 9 were derived.
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Table 19: Reaction kinetics for oxidation, reforming and shift reactions from the literature.
See the text for description.

Catalyst m n Ea k0f Turnover

Oxidation [120] r = k0 exp (−Ea/R.T ) pm
O2p

n
CH4

Pt -0.6 1.0 88 ? 0.13

Pd 0.1 0.8 71 ? 5.4

Reforming rf = k0f exp (−Ea/R.T ) pm
H2Opn

CH4

Pt 1.0 1.0 75 2.0× 104 13.1

Ru 1.0 1.0 91 4.7× 104 4.2

Ni 1.0 1.0 102 2.5× 105 4.1

Water gas shift [117] rf = k0f exp (−Ea/R.T ) pm
COpn

H2O

Pt 1.0 * 80 1.0× 106 13.1

Ru 1.0 * 80 1.6× 107 4.2

Ni 1.0 * 85 8.0× 107 4.1

Pd 1.0 * 100 4.0× 106 13.1

∗ pseudo zero order

Ea in (KJ/mol), and k0 in (sec−1.kPa−m−n+1)

pi in (kPa)
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