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SUMMARY 
 

Today, mass customization has emerged as a manufacturing paradigm for a number 

of enterprises to efficiently and effectively satisfy customers’ requirements for product 

variety.  The competitive nature of today’s market makes it necessary for designers to 

have a methodology for designing customized products in such a dynamic environment. 

The Product Platform Constructal Theory Method (PPCTM), developed by Dr. 

Gabriel Hernandez, provides designers a methodical approach for synthesizing multiple 

modes of managing variety in the development of product platforms for customized 

products.  The use of the PPCTM results in a hierarchical organization of the modes of 

managing customization, as well as the specification of their range of application across 

the product platform. The focus in this thesis is to augment the PPCTM in order to 

develop an effective product platform design method that alleviates three of its major 

limitations: inability to deal with uncertain distributions of demand, changing design 

parameters and changing extents of marketplaces. The infusion of concepts of robustness 

helps to address the first two limitations making the product platforms unaffected by 

large variations in demand and design parameters. The compromise Decision Support 

Problem is proposed to address the third limitation of changing extents of marketplaces 

by making tradeoffs between objectives of the initial market extent and future probable 

extensions. 

The result of this work is an augmented PPCTM that facilitates the synthesis of 

multiple modes for managing product variety in the presence of a dynamic environment. 

The augmented method is used to design a line of customizable pressure vessels and hand 

exercisers. 



 1  

CHAPTER I 
 

1 THE CHALLENGES OF DESIGNING FOR MASS 
CUSTOMIZATION 

 
 

In this thesis the author’s objective is to augment the Product Platform 

Constructal Theory Method (PPCTM) in order to develop an effective product platform 

design method to provide a designer with the ability to synthesize multiple modes for 

managing customization in the development of product platforms for uncertain demand, 

changing design parameters and changing extents of marketplaces. 

Specifically, the three augmentations for handling uncertain demand, changing 

design parameters and changing extents of marketplaces, are divided into two parts. In 

the first part, concepts of robustness are infused into the method. These concepts are used 

to give the designer the power to design product platforms that are robust to changes in 

demand and design parameters. In the second part, the use of compromise DSP to make 

tradeoffs between objectives of the initial as well as the future, potential, extended 

marketplaces is presented. This makes it possible to design platforms strategically that 

are effective in the initial as well as the future marketplaces.  

The Product Platform Constructal Theory Method, developed by Gabriel 

Hernandez, provides designers a methodical approach for synthesizing multiple modes of 

managing customization in the development of product platforms for customized 

products (Hernandez et al., 2001).  As a result of the PPCTM’s theoretical foundations in 

both hierarchical systems theory and constructal theory, the design of platforms for 
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customizable products is represented as a problem of access in a geometric space.  The 

result of the use of the PPCTM is a hierarchical organization of the modes of managing 

customization, as well as the specification of their range of application across the product 

platform. 

 

1.1 BACKGROUND AND MOTIVATION – MASS CUSTOMIZATION 
 
1.1.1 What is Mass Customization? 
 

Joseph Pine II, author of Mass Customization: The New Frontier In Business 

Competition, defines mass customization as the production and distribution of 

customized goods and services on a mass basis. Pine quotes a Nissan Corporation 

manifesto of the Five A’s: "Any volume, Any time, Anybody, Anywhere, and Anything." 

Simply stated, mass customization is about choice. It is about giving customers a unique 

end product when, where and how they want it. During the last couple of years, choice 

has become an important ingredient of consumer purchasing decisions.  

Mass customization enables manufacturers to customize products quickly at a cost, 

efficiency and speed close to those of mass production. The core of mass customization is 

the ability to increase product variety and customization without corresponding increases 

in costs. This increase in product variety and customization is made possible through 

flexibility and quick responsiveness.  

Mass customization makes it possible to manufacture products as per customer’s 

desire or specifications, as opposed to producing a generic product to be placed in an 

inventory in hopes that some customer will later purchase it.  The mass production cost 

curve and the mass customized production cost curve is in Figure 1.1. It is observed that 
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the difference of these curves from the curve that depicts the price that customers are 

willing to pay is significant. Mass production has an economic advantage over high 

volume production rather than in low volume production. However, the profits obtained 

by these products are relatively less than the profits obtained by using mass customized 

production. Thus, the capability to satisfy individual customer needs can translate into 

higher profit margins. This is the key advantage of pursuing mass customization, which 

enables manufacturing enterprises to satisfy their customers’ demand for variety and at 

the same time minimize costs.  

Production Volume

$/Unit

Price  cus tomers  are  willing to pay

Mass  production cos t

Mass  cus tomized production cos t

Low  Medium High

 

Figure 1.1: The Economic Implications of Mass Customization (Tseng et al., 1998) 

 

1.1.2 Need of Mass Customization 
 

Mass customization was born by the convergence of need and capability. Markets 

are becoming highly volatile because of changing customer needs, technological 

advances, and diminishing product life cycles. Today, most companies are looking for 

different business strategies to redefine themselves in this changing environment. In order 
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to have a competitive edge and survive in a global economy where customer diversity is 

extreme, companies have to provide “personalized” products for individual customers. 

Successful enterprises are those who can use these new capabilities to satisfy these new 

needs. All these factors are expected to be even more influential in the future. Tomorrow, 

enterprises in all branches of industry would be forced to react to the growing 

individualization of demand, yet, at the same time, increasing competitive pressure would 

dictate that costs must also continue to decrease. These reasons have made it more 

necessary for companies to embrace mass customization. It makes it possible to 

customize products quickly for individual customers or for niche markets at better than 

mass production efficiency and speed. 

Due to better practices being used for mass customization, it has indirectly helped 

to reduce the cost of inventory, obsolescence, discounting, distribution, setup, equipment 

utilization, floor space, material overhead, and information systems. At the same time, 

the ability to give the customers what they want, when they want it enables the 

manufacturer to charge premium prices and thus earn more profits. 

 

1.1.3 Challenges of Mass Customization 
 

The challenges involved with designing a product and its manufacturing process 

for customization are inherent in the differences between mass production and mass 

customization.  These differences are detailed in Table 1.1. 
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Table 1.1: The Differences between Mass Production and Mass Customization (Pine, 1993) 

 Mass Production Mass Customization 

Focus Efficiency through stability and 
control 

Variety and customization through 
flexibility and quick responsiveness 

Goal 

Developing, producing, 
marketing, and delivering goods 
and services at prices low enough 
that nearly everyone can afford 
them 

Developing, producing, marketing, and 
delivering affordable goods and 
services with enough variety and 
customization that nearly everyone 
finds exactly what they want 

Stable demand Fragmented demand 
Large, homogeneous markets Heterogeneous niches 
Low-cost, consistent quality, 
standardized goods, and services 

Low-cost, high-quality, customized 
goods and services 

Long product development cycles Short product development cycles 

Key 
Features 

Long product life cycles  Short product life cycles 
 

The key differences outlined in Table 1.1 – mass customization’s uncertain 

demand, heterogeneous niches, and short product life cycles – are some of the key 

challenges in the design of a customized part.   

Firstly, uncertain demand poses a serious problem for design of products for 

customization. It is difficult to provide variety while being unsure of the demand of the 

large variety of products to be manufactured. Today enterprises need a production system 

that can adapt quickly to changing market conditions, provide the lowest costs, and give 

customers what they want, when they want it. The challenge for customization is to have 

techniques that are unaffected to varying demand of the products.  

Secondly, one needs to interact with customers and understand what they want. 

This interaction not only helps in providing products that will satisfy the customers but 

also getting to know the trends of customers. The challenge is to provide products that 

satisfy the changing requirements of the customers. The change in the customer 

requirements may be in terms of change in the required design parameters. During the 

life cycle of a product line, there are many times when the design parameters need to be 
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changed to suit the customer requirements. It is not possible to have a product line that 

would be perfectly satisfying all the customer requirements during the entire life cycle of 

the product family. In such cases, it is always beneficial to have some of the design 

parameters of the product family that can be tweaked to satisfy the customer needs. One 

of the main objectives of being able to change design parameters is to increase the 

demand in the existing products by customizing the product according to exact customer 

specifications. Moreover, new markets can also be explored by such variations.  

 Thirdly, since product life cycles are shortening, it is important to have the 

transition of old products into new products easily. Moreover, capturing of new markets 

to satisfy the needs of the customer must be possible. In this thesis, marketplace is the 

space in which the manufacturer has demand for his products and wishes to sell his 

products in this space. This is the space in which the manufacturer designs his product 

family. 

This need is better understood by analyzing the Figure 1.2. The figure helps to 

show the life cycle of a product family by plotting the market capture of variants of a 

product family over time. 
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Product Family Life Cycle

1
2

3
4

               5          6

7
8

9

10
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t
Time

Market capture

                Model Lifetime
Model Life-cycle

Product-family cycle

 

Figure 1.2: Product Family Life Cycle (Adapted from Uzumeri and Susan, 1997) 

 

One must first clearly distinguish between the terms of model and family. 

Uzumeri and Susan define a model to be a product design that differs sufficiently from 

other designs that the manufacturer assigns it a distinctive commercial designation, and a 

product family to be a set of models that a given manufacturer makes and considers to be 

related (Uzumeri and Susan, 1997). Simpson defines product family as a group of 

products which share common form features and function(s), targeting one or multiple 

market niches (Simpson, 1998). Here, form features refer generally to the shape and 

characterizing features of a product; function refers generally to the utilization intent of a 

product. A derivative or product variant or model is a specific instantiation of a product 



 

 8 

platform within a product family which possesses unique form features and function(s) 

from other members in the product family. In Figure 1.2, it is seen that every model or 

product variant has its own lifetime. This is the time that the model remains in the 

market. After its lifetime, that model is retired and a new variant is brought into the 

market. The model life cycle represents the rise and fall of market capture of the model. It 

is seen that model 5 had a large market capture before half its lifetime. At its conception 

and end, its market share is very less.  

In the early stages of the product family, less variety is provided, i.e., less models 

are present. As time passes, the variety increases to capture greater market share. After 

longer periods (not shown in figure), the market share of the products reduces. As more 

models that are targeted to distinct customer needs are developed, the market share of 

individual models tends to become smaller. So, it is not necessary that more variety will 

lead to larger market capture. However, the advantage is that increase of variety of the 

models leads to greater satisfaction of customers and hence major changes are not 

required in the models in the immediate future (Uzumeri and Susan, 1997).  To have this 

design longevity, the already existing variety must preferably evolve to satisfy future 

needs of individual customers. Accordingly, the major challenges for mass customization 

are to provide such variety that can evolve as time passes. Competition and other factors 

make it absolutely necessary to extend the marketplace and capture other adjacent market 

spaces.  

The above-discussed challenges of mass customization are also illustrated by 

considering the growth planning process of any company.  
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Seg A Seg B Seg C Seg D Seg E Seg F
Existing Products $20

Replacement Products $50
New Products $0

Services $10 Total
Total Growth Objective $80 $800

Growth Planning Template: 2004-2014
Future Customer SegmentsExisting Customer Segments

So
ur

ce
s

Growth Target: $800M

Table 1.2: Growth Planning Template 

 

 

 

 

Table 1.2 is a template that helps visualize the growth planning of any company 

X. It is seen that the company X has a growth target of $800M in the next 10 years. So 

how is it going to achieve this target? There are four types of sources of the company – 

existing products, replacement products, new products and services. Each of these 

sources has its one or more customer segments. The customer segments A, B and C are 

the existing markets, while customer segments D, E and F are the future markets. The 

total target from all these segments needs to come to $800M over the time period.  

There are two problems that the company X faces. 

1. The first problem that the company faces is how it should not only provide 

products in the existing customer segments but also plan for the future customer 

segments. The company may be able to achieve the targets in the existing 

customer segments by allocating resources for the short term; however, it is not 

able to achieve the targets of the future customer segments, due to lack of 

planning. Hence, at the end of 10 years, the growth target of $800M is not 

achieved. 

The important question to be answered is how can the company obtain a tradeoff 

between these two customer segments and achieve its 10 year goal. A part of this 

thesis addresses this question.  
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2. Company X faces another problem. It has projected the targets of each customer 

segment based on some distribution of demand. Now, what if the demand in that 

particular customer segment changes? The target objectives will not be met. It is 

necessary that the targets be achieved despite of changes in demand in that 

segment. A part of the thesis addresses this problem. 

If analyzed carefully, all the challenges discussed till now lead to the response 

that manufacturers must be able to extend the market lives of their product families. 

Design longevity plays a very important role in mass customization. It has been observed 

in history that there have been many such incremental design successes in which small 

changes have made product families to continue for years. Uzumeri and Susan (Uzumeri 

and Susan, 1997) have called such incremental design successes as “classics”. Examples 

include the Kodak slide projector, Levi’s jeans, the Coleman lantern, the grocery-store 

shopping cart, the Mason jar, the Harley-Davidson motorcycle, the Rolodex rotary card 

file and the original formula of Coca-Cola, rechristened Coke Classic. Any such long-

lived design that reduces the level of product-line uncertainty represents a lifeline of 

stability in today’s dynamic world. However, these ‘classics’ are very rare. Customer’s 

needs and preferences change very rapidly. Manufacturers wish to offer families that 

match those needs. So the question is how can one design such long-lived designs in 

today’s dynamic world? This question is addressed in the thesis by augmenting an 

existing method for product platform design to incorporate these needs.  

In this section, we started with some of the basic challenges of mass 

customization. Today’s key challenges of uncertain demand, heterogeneous niches and 

short product life cycles are identified and their importance analyzed in detail. At the end 
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of this section, the question of how should these challenges be tackled is put forward. 

Section 1.2 now deals with the existing product platform design methods in literature, 

their limitations and the requirements of the method for such a changing environment. 

 

1.2 THE NEED FOR SYSTEMATIC PRODUCT PLATFORM DESIGN 
METHODS 

 
1.2.1 Product Platform Design Methods in Literature 
 

Manufacturing enterprises are recognizing that product design presents the best 

control over offering variety (Anderson, 1997).  “Many companies are using platform-

based product development to create product families that provide sufficient variety for 

the market while maintaining economies of scale and scope within their manufacturing 

processes” (Simpson, 2003).  Product platforms are a set of common components, 

modules or parts from which a stream of derivative products can be created (Lehnerd, 

1987).  The reasoning behind platform design is to (1) simplify the product offering and 

reduce part variety by (2) standardizing components so as to (3) reduce manufacturing 

and inventory costs and (4) reduce manufacturing variability (i.e., the variety of parts that 

are produced in a given manufacturing facility) and thereby (5) improve quality and 

customer satisfaction (Simpson, 1998).  The development of product platforms enables 

customization to the customer with minimum internal component variety.  As such, 

platform design offers reduced development time and system complexity, reduced 

development and production costs, and improved ability to upgrade products (Simpson, 

2003). 

 Tseng has corroborated this need: “it is imperative to develop a coherent 

framework within which systematic approaches can be taken to enable the realization of 



 

 12 

mass customization” (Tseng et al., 1998).  Developing systematic approaches for product 

platform design is therefore a pressing need and a relevant research problem. 

Various engineering approaches have been proposed to develop product platforms 

and can be classified as either bottom-up or top-down (Simpson, 1999). Bottom-up 

approaches are the redesign and consolidation of existing products to create more 

competitive product families; thereby increasing economies of scale. Some of the 

different bottom-up approaches are modular based product family, group technology 

(Kalpakjian, 1997), product reasoning system (Siddique et al., 2000). For example, after 

working with individual customers to develop 100+ lighting control products, Lutron 

redesigned its product line around 15-20 standard components that can be configured into 

the same 100+ models from which customers could initially choose (Pessina & Renner, 

1998). Black & Decker (Lehnerd, 1987) and John Deere (Shirley, 1990) have used 

similar redesign efforts to reduce variety in their motor and valve lines, respectively. 

In top-down platform design, a company strategically manages and develops a 

family of products based on a common core and reduces redesign cost. The Product 

Platform Concept Exploration Method (Simpson et al., 2001) Variation-Based Platform 

Design Methodology (Nayak et al., 1999) fall in the category of top-down platform 

design. For example, Sony has strategically designed product platforms for the 

development of its Walkman® products (Sanderson & Uzumeri, 1997). Similarly, 

Kodak’s product platform-based response to Fuji’s introduction of the QuickSnap® 

single-use camera in 1987 enabled them to develop products faster and more cheaply. 

This made it possible to allow them to regain market share and eventually overtake Fuji 

(Wheelwright & Clark, 1995).  
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1.2.2 Limitations of Existing Platform Design Methods 
 

Simpson has pointed out that irrespective of the top-down or bottom-up 

approaches, the methods are divided into two main categories of Module-Based Product 

Family and Scale-Based Product Family (Simpson, 2003).  Module-Based Product 

Family is instantiated by adding, substituting, and/or removing one or more functional 

modules from the platform. Scale-Based Product Family uses one or more scaling 

variables to “stretch” or “shrink” the platform in one or more dimensions to provide 

variety. It has been noted that there are only a few platform design methods that can 

target both the categories. A summary of different features of methods in literature have 

been discussed in (Simpson, 2003) and is seen in Table 1.3. Almost two-thirds of the 

methods require specifying the platform a priori to the optimization in order to reduce the 

design space. This is not what is required in a good method since designers would like to 

use optimization to explore varying levels of platform commonality to help identify 

which variables to make common and unique within the family (cf., Simpson & D'Souza, 

2002). Simpson has pointed out that more than half of the approaches use multi-objective 

optimization to accomplish this. However, more than half of the approaches do not model 

the demand and manufacturing costs. It has also been noted that the majority of 

approaches that include costs or sales in their formulation use single objective 

optimization, rather than multi-objective. Another important feature which is needed in 

today’s uncertain environment is to consider changing extents of the marketplaces, as 

discussed in Section 1.1.3. The author has found only a few of the techniques tend to 

address this problem. 
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Table 1.3: Literature review of Product Platform Design methods (Adapted from Simpson, 2003) 
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(Allada & Jiang, 2002) x Y x x Y
(Blackenfelt, 2000b) x Y x x Y
(Cetin & Saitou, 2003) x N x
(Chang & Ward, 1995) x Y x Y
(D'Souza & Simpson, 2003) x Y x
(Farrell & Simpson, 2003) x Y x x
(Fellini, et al., 2000, 2002a, 2002b) x x Y x
(Fujita, et al., 1998,1999) x Y x x x
(Fujita & Yoshida, 2001) x x N x x x
(Gonzalez-Zugasti, et al., 2000, 2001) x Y x x x x Y
(Hernandez,et al.,2001-03)(Carone,2002)(Williams,2003) x x N x x x x -
(Jiang & Allada, 2001) x N x x x Y
(Kokkolaras, et al., 2002) x Y x
(Li & Azarm, 2002) x Y x x x x Y
(Messac, et al., 2002a, 2002b) x Y x
(Nayak, et al., 2002) x N x
(Nelson, et al., 2001) x Y x
(Ortega, et al., 1999) x N x x
(Rai & Allada, 2002) x N x x x
(Seepersad, et al., 2000, 2002) x Y x x x x Y
(Simpson, et al., 1999, 2001a, 2001b) x Y x

Features of Product Family Design

x represents that the method has a particular feature 
                      - or blank space indicates the feature is absent        

 

Apart from the lack of above mentioned features in existing platform design 

methods, there are two perceived major limitations of all top-down approaches listed. The 

first is related to the “extent” of commonality, the second, to the number of varied 
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specifications.  The first limitation is concerned with top-down approaches used to 

commonalize features or components across an entire product family (i.e., the feature is 

made common to all the relevant product variants).  This problem leads to a significant 

loss of performance, and has been discussed in the literature (e.g., (Nayak et al., 1999; 

Simpson et al., 1999; Seepersad et al., 2000; Nelson et al., 2001). 

In order to reduce the impact of commonality on performance, one should be able to 

specify different levels of commonality for the various features and components of the 

product family.  A method for determining platform extent that is based on the 

compromise Decision Support Problem (coupled with concepts derived from linear 

physical programming) has been listed in Table 1.3 (Seepersad et al., 2000).  

Unfortunately, this approach is only utilized with a limited number of products and does 

not consider Module-Based Product Family design.  Designing products for mass 

customization implies a very large number of product variants for which this approach is 

impractical. 

The second limitation is concerned with the number of varied specifications. Most 

of the product platform design methods have only one varied specification (e.g., the 

torque of a motor).  Typically, products are customized for multiple specifications (e.g., 

the torque and the power of the motor) using multiple approaches for managing product 

variety (e.g., modular design, adjustable features, dimensional customization with 

CAD/CAM technology, etc.).  

 Thus, it is concluded that each product platform design technique suffers from one 

or more limitations. In response to these limitations, Hernandez proposes a novel top-

down approach for developing product platforms that facilitates the realization of a 
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stream of customized product variants, and which accommodates the issue of multiple 

levels of commonality and multiple customizable specifications (Hernandez, 2001; 

Hernandez et al., 2002; Hernandez et al., 2003).  The Product Platform Constructal 

Theory Method (PPCTM) formulates product platform design as a problem of access in a 

geometric space.  Specifically, Hernandez shows that it is feasible and useful to formulate 

and solve systematically the design of hierarchic product platforms for customizable 

products as a problem of optimization of access in a geometric space (Hernandez et al., 

2002).  The result of the use of the PPCTM is a hierarchical organization of multiple 

approaches for offering variety, as well as the specification of their range of application 

across the product platform. Williams has been able to model demand and consider multi-

objectives in PPCTM (Williams, 2003). So Hernandez and Williams together in their 

respective works have been able to address most of the mentioned characteristics in 

Figure 1.3 needed for a good method. The only characteristics missing in the method are 

that of consideration of uncertainty and changing extents of marketplaces. As discussed 

in Section 1.1.3, both of these are key challenges for mass customization.  

Now that it is clear what is needed to make PPCTM alleviated of the major 

limitations, the requirements list is created (Table 1.4).  
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Table 1.4: Requirements list 

Requirements List 
Problem Statement: 
Augment the Product Platform Constructal Theory Method to deal with the 
uncertainty in distributions of demand, changing design parameters and extents of 
marketplaces? 
Demand/ 
Wish 

Requirements 

 Specifics 
D Product platform robust to uncertain distribution of demand 
D Product platform robust to changing design parameters 
D Product platform adjustable to changing extents of marketplaces 
  
 General 

D Must avoid costly process of redesigning product platforms 
D Must avoid costly process of designing replacements 
W Should obtain predictable sales 
D Give less strain on design resources 
D Free design resources for other innovation activities 
W Gives company time to realize reductions in design development 

costs and risks 
W Competitive flexibility 
D Simplify the management of product families 

 

As discussed in Section 1.1.3, design longevity or the capability to have a design 

that can last longer, is one of the major challenges of mass customization and in effect the 

need to deal with uncertainty in distributions of demand, changing design parameters and 

extents of marketplaces. By making the product platform robust to such changes, firms 

get time to realize reductions in design development costs and risks. Less strain must be 

put on design resources. Suppose that a competitor launches a product in a new 

marketplace, the manufacturer should have the flexibility to extend his existing market 

space. The method should facilitate savings in redesigning. Suppose that the average 
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model life for a product family is 2 years. A design that will serve the market for 4 years 

will mean eliminating one complete redesign effort. This will free design resources for 

other activities like innovation. It is desirable to have predictable sales and if needed the 

design of replacements must not be costly. There should be a simplified way of managing 

the product families that will stabilize the evolution of the models. Thus, through this 

thesis, the author has augmented the existing PPCTM to develop a method that is not 

hampered by any of the above mentioned limitations. 

 

 

1.3 RESEARCH QUESTIONS AND HYPOTHESES 
 

The challenges for mass customization are presented in Section 1.1.3. The 

limitations of the existing product platform design approaches are discussed in Section 

1.2.2. The key point coming out from the discussion in both the sections is the need of 

having a method that can: 

- Handle uncertain distributions of demand 

- Cope with changing design parameters 

- Handle changes in the extents of marketplaces 

In Section 1.2.2, it is observed that the Product Platform Constructal Theory 

Method covers most of the limitations of other methods except for the above mentioned 

requirements. Hence, the focus of the thesis is to augment PPCTM to alleviate it of these 

requirements. 

There are two major thrusts in this thesis: 

1. Augmentations to the PPCTM 
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- Infusion of concepts of robustness to deal with uncertain distribution of       

demand 

- Enable the designer to consider changing design parameters 

- Use of decision construct to consider objectives of initial as well as future               

possible extensions of marketplaces 

2. The application of the PPCTM to two example problems 

- The application of the PPCTM to the realm of product design for the 

development of a line of customizable pressure vessels 

- The application of the PPCTM to the realm of product design for the 

development of a line of customizable hand exercisers 

 

Primary Research Question 

How should the Product Platform Constructal Theory Method be augmented to 

deal with the uncertainty in distributions of demand, changing design parameters and 

extents of marketplaces? 

 

This primary research question is addressed by investigating a set of research 

questions and associated hypotheses. 
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Q1.1: “How should the Product Platform Constructal Theory Method be 

augmented in order to cope with the uncertainty and inherent changes in distributions of 

demand?” 

Q1.2: “How should the Product Platform Constructal Theory Method be 

augmented in order to cope with the changes in design parameters?” 

Hypothesis 1: The infusion of concepts of robustness into the Product Platform 

Constructal Theory Method enables to design platforms that are unaffected by variations 

in demand and design parameters. 

Q2 “How should the Product Platform Constructal Theory Method be augmented 

so that platforms are designed strategically considering future portfolio expansions?” 

Hypothesis 2: Compromise DSP can be used in the Product Platform Constructal 

Theory Method to make tradeoffs between objectives of the initial market extent and 

future probable extensions. 

 

The result of this work is an augmented PPCTM that handles uncertain 

distribution of demand, changing design parameters and changing extents of 

marketplaces.  

 

1.4 VALIDATION AND VERIFICATION STRATEGY FOR THIS THESIS 
 

The validation and verification strategy used in this thesis is based on the 

validation square introduced by Pedersen and coauthors (Pedersen, Emblemsvag et al., 

2000).  As noted by Pedersen and coauthors, validation (justification of knowledge 

claims, in a modeling context) of engineering research has typically been anchored in 
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formal, rigorous, quantitative validation based on logical induction and/or deduction.  

This approach works fine for engineering design based primarily on mathematical 

modeling. Engineering design methods, however, rely on subjective statements as well as 

mathematical modeling; thus, validation solely by means of logical induction or 

deduction is problematic.  Pedersen and coauthors propose an alternative framework in 

which “knowledge validation becomes a process of building confidence in its usefulness 

with respect to a purpose.”   

In this approach, the ‘usefulness’ of a design method is associated with whether 

the method provides design solutions correctly (structural validity) and whether it 

provides correct design solutions (performance validity).  This process of validation is 

represented in the Validation Square in Figure 1.3.   

(1) and (2)
THEORETICAL
STRUCTURAL

VALIDITY

(3)
EMPIRICAL

STRUCTURAL
VALIDITY

(4) and (5)
EMPIRICAL

PERFORMANCE
VALIDITY

(6)
THEORETICAL
PERFORMANCE

VALIDITY

DESIGN
METHOD

I
Input:
•information
•resources

I Output:
•Design Solution

PURPOSE :
Defined based on

Intuitive Knowledge
(i.e., experience)

USEFULNESS :
METHOD Efficient   and / or

Effective  in achieving the
articulated  purpose(s).

USEFULNESS :
METHOD Efficient   and / or

Effective in achieving the
articulated  purpose(s).

Effectiveness :
Qualitative Evaluation of

METHOD

Efficiency  :
Quantitative Evaluation of

METHOD

METHOD  VALIDITY
Criteria: USEFULNESS  with

respect to a PURPOSE

METHOD  VALIDITY
Criteria: USEFULNESS  with

respect to a PURPOSE

Appropriateness of
example problems used to

verify METHOD
usefulness

Correctness of METHOD-
constructs, both Separately

and I ntegrated

Performance of Design
Solutions and Method

beyond example problems

Performance of Design
Solutions and Method with

respect to example
problems

“a Leap of Faith ”

 

Figure 1.3: The Validation Square: Validating Design Theories or Methods (Pederson et al., 2000) 
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The specific manner in which the validation square is applied to this thesis is 

presented in Figure 1.4 and Figure 1.5.  Inspired by the MS thesis of Seepersad 

(Seepersad, 2001), the Figure 1.5 is arranged according to the quadrants of the validation 

square, and references are included for chapters and sections in which the validation is 

documented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.4: Chapters in the Validation Square 
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1.4.1 Theoretical Structural Validity 
 

Theoretical structural validity involves searching and referencing the literature 

related to each of the constructs employed in the design method as well as the internal 

consistency of their assembly into the theory/method. In this thesis theoretical structural 

validity is presented in Chapters 2 and 3.  This involves describing the PPCTM as well as 

the individual constructs in detail and critically reviewing each proposed augmentation.  

The analysis of the consistency of their combination and infusion into the PPCTM 

completes this quadrant of the validation square. 

 

1.4.2 Empirical Structural Validity 
 

Empirical structural validity involves building confidence in the appropriateness of 

the example problems chose for illustrating and verifying the performance of the design 

method.  This includes documentation that the example problems chosen for validation 

are similar to the problems for which the methods/constructs are generally accepted. In 

other words, it must show that the example problems represent actual problems for which 

the method is intended, and that the data associated with the example problems can be 

used to support a conclusion. 

Empirical structural validity is established in this thesis in Chapters 4 and 5.  In 

these chapters two example problems are developed: the product platform design of a line 

of customizable pressure vessels, and the product platform design of a line of 

customizable hand exercisers. 
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1.4.3 Empirical Performance Validity 
 

Empirical performance validity involves using representative example problems to 

evaluate the outcome of the design method in terms of its usefulness.  Metrics for 

usefulness should be related to the degree to which the method’s purpose has been 

achieved (e.g., reduced cost, reduced time, improved quality).  It is also important to 

establish that the resulting usefulness is, in fact, a result of applying the theory/method. 

In this thesis, empirical performance validity is also explored in Chapters 4 and 5.  

The usefulness of the augmentation is evaluated through the comparison of the results 

obtained from the use of the augmented PPCTM to results obtained without it. 

  

1.4.4 Theoretical Performance Validity 
 

Theoretical performance validity involves building confidence in the generality of 

the theory or method and accepting them as useful beyond the example problems.  This 

includes showing that the problems are representative of a general class of problems and 

that the theory or method is useful for these problems. Thus, the general usefulness of the 

theory or method is inferred.  The theoretical performance validity of the thesis is 

explored in the final chapter of this thesis. 

 

1.5 ORGANIZATION OF THESIS 
 

Theoretical Structural Validation is addressed in Chapter 2 and Chapter 3. 

Chapter 2 presents the theoretical foundation of the Product Platform Constructal Theory 

Method and its proposed augmentations. The Product Platform Constructal Theory 

Method is explained in detail to act as a foundation for other methods to augment it. The 
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theoretical foundations of Robust Concept Exploration Method and Compromise 

Decision Support Problem are then presented which are the bases of the augmentations 

proposed.  

In Chapter 3, the infusion of the augmentations into the PPCTM is presented. 

Emphasis is placed on verifying the internal consistency of the method as a combination 

of the constructs presented in Chapter 2. Firstly, the method proposing to handle 

uncertain demand and design parameters is explained in detail. In the latter part, the use 

of Compromise DSP to design product platforms for a changing marketplace has been 

discussed. Finally, the resulting augmented PPCTM is presented.   

Empirical structural and performance validity is offered in Chapters 4 and 5 

through the presentation of two example problems.  In the first section of Chapter 4, an 

example of the development of product platforms for customizable pressure vessels is 

discussed. The objective of using this example problem is to illustrate how one can 

design product platforms that handle uncertain demand. This is done using the method 

proposed in the first part of Chapter 3. The method is validated by showing the difference 

between product platforms designed without considering uncertain distributions of 

demand and platforms considering uncertain distributions of demand. The robust product 

platform designed is unaffected by changes in demand in the fixed market extent.  This 

example is relevant since pressure vessel is a classic mechanical engineering problem 

which has been used a couple of times for validation of work of product platforms and it 

involves four modes of managing variety useful to illustrate this method. 

In the second section of Chapter 4, an example of the development of product 

platforms for customizable hand exercisers is presented. The objective of using this 
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example problem is to illustrate how one can design product platforms that deal with 

changing design parameters. Similar concepts as in the first section of this chapter are 

used. The product platform is unaffected by changes in design parameters that may occur 

during the lifecycle of a platform. Hand exerciser is a product that often requires 

customization. It is a challenge for manufacturers to achieve such customization 

economically due to the competitive nature of the product. Therefore, this design problem 

is representative of a product that would benefit from the application of the theory and 

method proposed and is thus relevant. 

In Chapter 5, the problem of designing a line of pressure vessels for a market that 

has a variable extent is discussed. The manufacturer of pressure vessels needs a method 

to strategically design product platforms that not only consider the objectives of the 

initial market space but also those of the future potential market expansions. Product 

platforms with a fixed extent will be useful for a manufacturer of pressure vessels for 

only a fixed amount of time. So it will not be possible to design the product platform with 

the demand of future customers in mind. Thus, the problem involves determining product 

platform specifications that gives preferred expected outcomes over time.  The method is 

validated by considering two scenarios where in one case the platform is designed only 

for the current market space while in the other scenario the platform is strategically 

designed considering future potential expansions. It is seen that the strategically designed 

platform is much more effective in the longer run. The pressure vessel example helps to 

build on the method used to design a platform in the Chapter 4, where there was fixed 

market space. The author’s primary objective in this chapter is to address the second 

section of the primary research question and hypothesis. 
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In the final Chapter 6, the research questions and the validity of the hypotheses 

are reviewed. The achievements and limitations in this thesis are discussed. Potential 

avenues of future work are investigated and closing remarks are made.  
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CHAPTER II 
 

2 THEORETICAL FOUNDATIONS 
 
 
 
 
With the background and motivation of the thesis discussed in the previous 

chapter, the theoretical foundations required for designing platforms and the associated 

augmentations are discussed. So the author’s objective in this chapter is to present the 

Product Platform Constructal Theory Method and the fundamentals of the augments 

required to help answer the research questions presented in Section 1.3. After 

presentation of the PPCTM in Section 2.1, the theoretical foundations discussed are: 

- Robust Concept Exploration Method 

- Compromise DSP 

 

Towards the end of this chapter, the concept of strategic design is discussed. Each 

of the theoretical foundations is critically reviewed. This chapter acts as the basis for the 

method to be developed in Chapter 3 that combines all these constructs. 
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2.1 PRODUCT PLATFORM CONSTRUCTAL THEORY METHOD – PRODUCT 
PLATFORM DESIGN AS A PROBLEM OF ACCESS IN A GEOMETRIC 
SPACE 

 

In this section the Product Platform Constructal Theory Method is presented. 

Sections 2.1.1 and 2.1.2 is comprised of the history, underlying concepts (hierarchic 

systems theory and constructal theory) and formulation of the PPCTM. After a detailed 

background of the PPCTM, the six-step method is presented in Section 2.1.3. Each step 

of the method is explained using the example of designing a line of customizable fans. 

The entirety of this section is based on the work presented by Hernandez in his doctoral 

dissertation (Hernandez, 2001) and is cited where appropriate. 

2.1.1 Hierarchic Systems Theory 

Simon has observed that complex structures adapt and evolve more efficiently 

when they are organized hierarchically (Simon, 1996). This is the crux of Hernandez’s 

approach for organizing different modes of managing variety in a hierarchical manner. 

Specifically, Simon and Ando make two fundamental observations regarding an apparent 

tendency in the natural self-organization of complex systems (Simon et al., 1961): 

1. Complexity, both in natural and artificial systems, frequently takes the form of a 

hierarchy, whereby a hierarchic system is defined as being composed of 

interrelated subsystems that have in turn their own systems, and so on, until some 

elementary level of components is reached. 

2. In general, interactions inside subsystems (in a hierarchically-organized system) 

are stronger and/or more frequent than those interactions that occur between 

subsystems. 
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The concept of hierarchic systems is described as internal subsystems organized 

in ranks. One visualizes it better by considering aspects in the nature. Cells are 

considered as the building block, while higher in the hierarchy cell is organized into 

tissues, tissues into organs, organs into systems.  Within the cell are well-defined 

subsystems: nucleus, cell membrane, microsomes and mitochondria.   

A graphic example of a hierarchic system, and the counter example of a non-

hierarchic system, is provided in Figure 2.2. 

H1

H2H2

H3 H3

H1

H2H2

H3
H4

(A) (B)

H1

H2H2

H3 H3

H1

H2H2

H3 H3

H1

H2H2

H3
H4

H1

H2H2

H3
H4

(A) (B)  

Figure 2.2: Hierarchic (A) vs. Non-Hierarchic (B) Organization of Systems (Williams, 2003) 

 

Simon and Ando also present the concept of near-decomposability (Courtois, 

1985). This deals with the concept that favorable conditions arise when each stable 

subsystem operates nearly independently of the processes happening within the other 

subsystems.    

The concepts of hierarchic organization and near-decomposability are two 

fundamental posits of the PPCTM (Hernandez, 2001): 

Posit 1:  Potential for rapid adaptation and/or response is higher in 
complex systems when they are organized hierarchically. 



 

 32 

Posit 2: In hierarchically organized systems, the high-frequency (short 
run) responses tend to be associated with the lowest levels of hierarchy 
and the low-frequency (long run) ones with the interactions of these 
subsystems, i.e., the higher levels of the hierarchic organization. 
 

With the idea of organizing the modes of managing product customization as a 

hierarchy, Hernandez searched for a construct in which the modes could be efficaciously 

organized. 

 

 

2.1.2 Constructal Theory 

In Section 2.1.1, the use of concepts of hierarchical system theory that facilitate 

complex systems to adapt to changes in the environment of different magnitude and 

frequency are done (Posits 1 and 2).  In this sub-section, along with the Posits of the 

previous section, a series of postulates from constructal theory (Bejan, 2000) are 

identified that constitute the theoretic basis of a theory and method for designing product 

platforms.  

Constructal theory, initiated by Adrain Bejan in 1996, is a result of studying 

optimal access in a number of flow and traffic problems (Bejan, 1996). The principle 

behind this theory is the constrained optimization of global performance – as the 

generating mechanism of organization, complexity and hierarchic structure in nature, 

engineering and even management.  The concept is that hierarchic organizations observed 

in nature are the result of a sequential optimization process with the objective of the 

maximization of access (or minimization of resistance, or losses).  This optimization 

process should proceed in a specific time direction: from the optimization of the basic 
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elements to the higher-order assemblies of the structure.  For example, consider the 

formation of tree networks observed in nature such as blood vessels, tree branches, river 

tributaries, etc. All of these are considered as a hierarchic process of optimization: the 

shape that optimizes “access” at the most elementary volume occurs first, followed by an 

assembly of these innermost spaces into a second, larger, shape, which optimizes 

“access” at that level. These second shapes in turn are assembled into a third space, and 

so on.  This sequential process continues until each space is connected and the entire 

space is covered, as shown in Figure 2.3. 

S2

 

Figure 2.3: Organization in Nature as a Problem of Access Optimization (Bejan, 2000) 

 

Hernandez uses a similar approach to organize modes of managing product 

customization. The modes are arranged in a hierarchic manner based on the 

representation of platform design as a problem of optimization of access in a geometric 

space.  An optimal access problem is characterized by the need to determine the optimal 

“bouquet of paths” that links all points of an area S with a common destination O (Figure 

2.4). 
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O

P(x,y)y

x

 S

 

Figure 2.4: A Finite-Size Area with a Common Destination (Bejan, 1997) 

 

The arrangement of these paths is usually optimized towards some objective (i.e., most 

efficient, least resistance, minimal travel time).  The “access problem” and the constructal 

solution are better understood via a street-network example taken from (Bejan, 1996; 

Bejan, 1997; and Bejan, 2000).   Consider a finite-size geographical area S and a point O 

situated inside S or on its boundary (Figure2.5).  Each member of the population living 

on S must travel between a point of residence P(x,y) and the point O. The problem is to 

connect every point in the area S to this point O. The obvious solution would be to have a 

straight-lined street to every point from O. However, considering existence of faster 

modes of transportation (say at a velocity by an automobile V1 > Vo via walking) there is 

a limitation on the areas on which some modes cannot travel. As such, the solution then is 

to bring a finite number of streets near patches of land where inhabitants can access the 

streets (in order to travel at a velocity, V1) via walking (Vo).   

H1

L1

P(x,y).
V0

V1

D1

S1

y

x
E

 

Figure 2.5: The First Area Element (Bejan, 1997) 
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Fundamentally, the access problem of this example is allocating a finite length of 

street to each finite patch of area, and also connecting these street lengths in an optimum 

manner such that travel time is minimized.   

H2

L2

V2

D2

E

S1

S1 S1

S2
H1

L1

 

Figure 2.6: The Second Area Element (Bejan, 1997) 

 

The direction of the solution by constructal theory is to assemble geometrically optimized 

areas (from smallest to largest) until the entire area, S, is covered as shown schematically 

in Figure 2.6. 

It has been shown, however, that this sequential optimization process yields sub-

optimal results (Hernandez, 2001).  Bejan’s constructal theory, however, provides the key 

to formulate problems of access in geometric spaces as multi-stage optimization 

problems for which more effective solution algorithms can be utilized. 

 

The outcome of Hernandez’s research of constructal theory was three additional 

posits to the PPCTM (Hernandez, 2001): 

Posit 3: Systems complexity results from a natural process of systems to 
provide paths of easier access. 
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Posit 4: Each path of access within the optimized system structure is 
unique and does not cross with other paths: the resulting structure is 
hierarchic. 
 
Posit 5: The design of a hierarchic structure to provide easier access 
should proceed in a specific time direction: from the optimization of the 
basic elements at the smallest scale towards the optimal arrangement of 
these elements into higher-order assemblies, the process being one of 
repeated maximization of access (or minimization of losses) subject to 
constraints. 
 
 
With its theoretic foundation established, the Product Platform Constructal 

Theory Method itself is presented next.  

 

2.1.3 Steps in the Product Platform Constructal Theory Method 

 

In this section, the six steps of Hernandez’s PPCTM are discussed. The steps are 

explained using the examples of customizable fans and cantilever beams, similar to 

(Hernandez, 2001) and (Williams, 2003) respectively. Two examples are used for a 

couple of reasons. Firstly, fans and beams have one and two dimensional market spaces 

respectively, similarly, hand exercisers and pressure vessels also have one and two 

dimensional market spaces respectively. Hence it is easier to understand the examples in 

Chapters 4 and 5. Secondly, fans help to give a higher-level picture of development of 

platforms using the PPCTM while beams help to go into details of the method. Moreover, 

it helps to highlight the different limitations of the existing PPCTM by considering two 

different examples. 
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Step 1. Define the Market Space

Step 2. Formulate an Objective Function

Step 3. Identify Modes for Managing 
Product Variety

Step 4. Identify Number of Stages and 
Define a Baseline Decision for Each Stage

Step 5. Formulate the Multistage Decision 
Problem as a Dynamic Program

Step 6. Solve the Dynamic Program

Step 1. Define the Market Space

Step 2. Formulate an Objective Function

Step 3. Identify Modes for Managing 
Product Variety

Step 4. Identify Number of Stages and 
Define a Baseline Decision for Each Stage

Step 5. Formulate the Multistage Decision 
Problem as a Dynamic Program

Step 6. Solve the Dynamic Program
 

Figure 2.7: The Six Steps of the Product Platform Constructal Theory Method (Hernandez, 2001) 

 

Step 1: Define the Market Space 

In the first step of the PPCTM the space of customization is defined.  The space 

of customization is the set of all feasible combinations of values of product specifications 

that a manufacturing enterprise is willing to satisfy (Hernandez et al., 2002).  Consider 

that there are N independent product requirements r1, r2,…,rN identified that characterize 

the customer demands on a product. These requirements help to define the N-dimensional 

space of customization Mn = {(r1, r2, …, rN)}.    

The number of product specifications that will experience variety determines the 

dimension of the space.  The ranges of the specifications for which variety will be offered 

define the bounds of the geometric space to be analyzed.  This range is usually bounded 

by economic or technological limitations. 
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Example 1: Consider FanTech, a company that manufactures fans and satisfies customer 

needs by providing customizable products. The logic behind providing such a variety is 

that it will create a product of differentiation for the company and thus a competitive 

advantage. The embodiment design of their fan is presented in Figure 2.8.   

 

Figure 2.8: Three Possible Options for a Derived Product Realization (Hernandez, 2001) 

 

The defining requirement of the customers of FanTech is the airflow capacity. 

Market research carried out by FanTech shows that there is a demand for the capacity 

in between 20 and 500 L/s. Thus, the market space consists of a continuous set of one 

requirement, i.e., a one-dimensional market space M1 ={r1} with 20≤ r1≤ 500.  The fans 

require at least three components (the technology base): a motor, a set of blades and an 

electric cord (Figure 2.8). 

 

(a) Basic Components of an Existing Fan

Speed
Controller

Smaller
Motor

Smaller
Blades

Diameter
(b) Three Options for Varying the Capacity of the Fan
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Example 2: Consider another company BeamTech that provides a line of customizable 

cantilever. The embodiment design of their cantilever beam is presented in Figure 2.9.   

 
 

 

 

Figure 2.9: Customizable Cantilever Beam (Williams, 2003) 

The defining requirements of BeamTech are the length (inches) and the maximum applied 

load it can withstand before yielding (lbs). The range of length demanded is from 100 to 

200 inches and the range of maximum end load demanded is from 1000 to 5000 lbs.  Thus, 

the space of customization consists of a two-dimensional market space M2 ={r1, r2} with 

1000≤ r1≤ 5000 and 100≤ r2≤ 200.  The design parameters involved are: 

- E: the modulus of elasticity (psi); a material property 

- σu: ultimate strength (psi); a material property 

- I: moment of inertia (in4); a property of the cross-section 

- c: largest distance from the neutral surface (in.); a property of the cross-section 

 
Figure 2.10: Space of Customization for Cantilever Beam Example 

 

Step 2: Define the Objective Function 

The second step of the method involves identifying the objective of this product 

platform to be designed. Some examples of such objective functions for product families 

L

P

L

P
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include the minimization of average cost, or the maximization of the profit; any other 

suitable design parameter such as quality or performance is acceptable. 

Example 1: Considering again the example of the fan manufacturer, FanTech 

wishes to minimize the average cost of the entire product family.  There could be 

any other objective possible related to the efficiency of the system, minimizing the 

weight of the fan, etc. The cost of a fan is assumed to be function of the motor, a 

set of blades and an electric cord C(M, B, E). 

The cost of the product platform for fans in the entire market space needs to 

be first defined in terms of the variable product parameter defined in Step 1 (air 

flow capacity).  Then it is integrated over the market space: 

max

min

( )
a

a

c C a da= ∫  [2.1]

 

If the example were taken for a market space of discrete values, the 

objective function would simply be calculated as the sum of the cost of all the 

product variants in the entire space: 

max

min
( )

a

i
a

c C a= ∑  [2.2]

 

For the PPCTM’s working assumption of uniform demand, the average cost 

is simply evaluated as the quotient of Equation 2.1 and the demand, D. 

max

min

1 ( )
a

a

c C a da
D

= ∫  [2.3]
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Example 2: Considering again the example of the beam manufacturer, BeamTech 

wishes to minimize the average cost of the entire product family.  The cost of a 

beam is assumed to be function of length, neutral surface distance, moment of 

inertia, and ultimate strength, C(L, c, I, σu). 

The cost of the product platform for fans in the entire market space needs to 

be first defined in terms of the variable product parameters defined in Step 1 

(length of beam and load).  Then it is integrated over the market space: 

max max

min min

( , )
L P

L P

c C P L dPdL= ∫ ∫  [2.4]

If the preceding example were taken for a market space of discrete values, the 

objective function would simply be calculated as the sum of the cost of all the 

product variants in the entire space: 

 
max max

min min

, ( , )
P L

i j
j P i L

c C P L
= =

= ∑ ∑  [2.5]

 

For the PPCTM’s working assumption of uniform demand, the average cost is 

simply evaluated as the quotient of Equation 2.1 and the demand, D. 

max max

min min

1 ( , )
L P

L P

c C P L dPdL
D

= ∫ ∫  [2.6]
 

 
Step 3: Identify the Modes for Managing Product Variety 
 

In the step, the question of how to vary a product concept in order to satisfy all the 

customized specifications of the market space is addressed. The modes of managing 

variety represent the ways in which one can provide variety to the customer in the market 

space. These are the linking mechanism between the product variants that compose the 

product family.  Some modes for managing product variety include dimensional 
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commonalization, component commonalization, modularity, and standardization. There 

is no defined way of carrying out this step. This step instead involves brainstorming and 

decision-making between design and manufacturing. 

 

Example 1: In the example of FanTech, the manufacturer considers the following 

three modes for managing product variety: 

Standardization of motors – This involves use of different standardized motors. 

Standardization of blades – The use of standardized sizes of blades helps to 

minimize costs. 

Customization of air flow capacity using a speed control – The use of standard 

speed controllers helps to control the air flow capacity. 

Example 2: In the example of BeamTech, the manufacturer considers the 

following three modes for managing product variety: 

1) Customization of beam length:  The manufacturer decides to order raw 

lengths of the beam material from which the customer’s desired length is cut-

to-order.  While this minimizes the cost associated with ordering, it will add a 

cost associated with waste.  This mode offers variety along the axis of length. 

2) Standardization of cross-section: This involves use of standardized cross-

section of the beam is standardized. This mode offers variety along the axis of 

maximum applied load. 

3) Standardization of material: The use of standardization of material offering 

variety along the axis of maximum applied load minimizes cost through 

discounts in ordering. 
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Step 4: Identify Number of Stages and Define a Baseline Decision for Each Stage 

 
Now that the space of customization and the objectives of the product platform 

are defined, one needs to identify the modes for managing product variety. This step 

involves the consideration of how a product will be varied in order to satisfy the 

customized specifications of the space of customization. The number of hierarchy levels 

can be equal to or less than the number of modes of managing variety. A hierarchy level 

can have one or more modes of managing variety. These modes of managing product 

variety are the linking mechanism between the product variants that compose the product 

family.  There is no rigid structure to the formulation of these modes; this step instead 

involves brainstorming and decision-making between design and manufacturing.  

From Hernandez’s second posit (Section 2.1.1) it is established that the modes for 

managing product customization capable of achieving the smallest variations in design 

parameters should be used first.  Some approaches, such as dimensional customization, 

can be used to satisfy very small variations in the product, but are normally expensive for 

large changes.  Other approaches, such as modularity, are not economically feasible for 

small changes.  As such, economical and technological considerations play an important 

role in establishing the hierarchic use of the modes for managing product variety. 

After the establishment of order of the use of the modes for managing product 

variety, the baseline decision to be made at each stage must be formulated.  This decision 

is simply the selection of the design parameters that minimize (or maximize) the given 

objective function for that specific stage.   
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The decision variables for a stage define the sub-space on which one or more 

modes for managing product variety are utilized.  For a problem with N product 

requirements, the decision-variables for any stage i are 

1 2( ) [ ( ), ( ),..., ( )]Ni r i r i r i∆ = ∆ ∆ ∆r                                        (2.7) 

In the formulation of the baseline decision for each stage it is required, in order to 

achieve a hierarchic design (Hypothesis 2.1), that 

( 1) ( )j jr i r i∆ + ≥ ∆                                                   (2.8) 

A generic template for formulating the baseline decision is shown in Figure 2.11.   

For Stage i 

Given  The N-dimensional market space ( ){ }1 2, ,...,N
NM r r r=  

  The decision variables of previous stages ∆r(1),…, ∆r (i-1)  

            The modes for managing product variety to be utilized at Stage i 

            The set of constraint functions g[∆r(1),…, ∆r (i-1)] ≥ 0 

              An objective function fi [∆r(1),…, ∆r (i)] 

Find  The value of the decision variables [ ]1 2( ) ( ), ( ),..., ( )Nx i r i r i r i= ∆ ∆ ∆  

Satisfy  Constraints ( ) ( )1j jr i r i∆ ≥ ∆ −  

  Bounds ( )min maxj j jr r i r∆ ≤ ∆ ≤ ∆  

Optimize The value of the objective function for that stage 

  ( ) ( )1 ,...,i if f r r i= ∆ ∆    

Figure 2.11: Baseline Decision for an Arbitrary Stage i (Hernandez, 2001) 
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There are constraints on the decision variables such that the increment in each 

design variable is not greater than the corresponding increment for the previous stage.  

Bounds exist in the decision to prevent the decision variable increment from being 

smaller than itself, or larger than the amount of variability desired. 

Example 1: In the case of the fan example, it is observed that trying to fulfill any possible 

capacity using a particular combination of motors and blades requires a very large number 

of variants of either motors or blades, which is not practical or economical.  The only 

mode that can be utilized to achieve efficaciously very small variations is the third mode, 

i.e., the use of a speed control.  Using the Equation 2.3, with the objective to minimize it, 

one obtains the appropriate speed control values keeping other values constant. 

Fundamentally, the crux of this decision is the identification of the range for which the 

speed controller will be commonalized (∆A1). 

For Stage 1 

Find  The value of the decision variable ∆A1 

Satisfy  Bounds ∆A1 ≤ Amax 

Optimize The value of the objective function for this stage: 

   
max

1 1

min

1 ( )
a

a

c C a da
D

= ∫  

Figure 2.12:  Baseline Decision for Stage 1 of Fan Example 

Now, for the second stage, consider that it is easier to provide variety in motors 

than variety in blades.  Hence, the second mode for managing product variety, 

standardization of motors, is now utilized for the second space element and the problem is 

how many of the space elements previously defined should be “connected” with a single 
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motor. Again, the Equation 2.3 is minimized and the optimal number is obtained.   

For Stage 2 

Given  The value of ∆A1 

Find  The value of the decision variable ∆A2 

Satisfy  Bounds ∆A1≤ ∆A2≤ Amax 

Optimize The value of the objective function for this stage: 

   
max

2 2

min

1 ( )
a

a

c C a da
D

= ∫  

Figure 2.13:  Baseline Decision for Stage 2 of Fan Example 

Fundamentally, the crux of this decision is the identification of the range for which 

the motor will be commonalized (∆A2). 

For Stage 3 

Given  The value of ∆A2, ∆A1 

Find  The value of the decision variable ∆A3 

Satisfy  Bounds ∆A2≤ ∆A3≤ Amax 

Optimize The value of the objective function for this stage: 

   
max

3 3

min

1 ( )
a

a

c C a da
D

= ∫  

Figure 2.14: Baseline Decision for Stage 3 of Fan Example 

Fundamentally, the crux of this decision is the identification of the range for which the 

blades will be commonalized (∆A3).  The result of this process is a hierarchic organization 

of the modes for managing product variety that maps any airflow capacity (the magnitude 

of the function specification) with a set of components (the product platform). 
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Example 2: In this step for the cantilever beam example, the previously proposed modes 

of managing customization need to be placed in a hierarchy.  For the first stage, the mode 

that offers the maximum variability in the most cost effective manner is the mode of 

customization of beam length (Mode L). Fundamentally, the crux of this decision is the 

identification of the range for which the raw beam length will be commonalized (∆L). 

For Stage 1 

Find  The value of the decision variable ∆L 

Satisfy  Bounds maxL L∆ ≤  

Optimize The value of the objective function for this stage: 

   
max max

min min

1 1
1 ( , )

L P

L P

c C P L dPdL
D

= ∫ ∫  

Figure 2.15:  Baseline Decision for Stage 1 of Cantilever Beam Example 

Since there are two parameters in which variety needs to be offered, the second 

stage involves the mode that provides most variability in the load.  Standardization of 

Cross-Section (Mode P1) provides such variety.  

For Stage 2 

Given  The value of ∆L 

Find  The value of the decision variable ∆P1 

Satisfy  Bounds 1 maxP P∆ ≤  

Optimize The value of the objective function for this stage: 

   
max max

min min

2 1 1
1 ( , )

L P

L P

c C P L dPdL
D

= ∫ ∫  

Figure 2.16:  Baseline Decision for Stage 2 of Cantilever Beam Example 
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Fundamentally, the crux of this decision is the identification of the range for which 

the cross-section of the beam will be commonalized (∆P1). 

Standardization of Material (Mode P2) is the third and last stage since it offers the 

smallest amount of variability and at the most expense. 

For Stage 3 

Given  The value of ∆L, ∆P1  

Find  The value of the decision variable ∆P2 

Satisfy  Bounds 1 2 maxP P P∆ ≤ ∆ ≤  

Optimize The value of the objective function for this stage: 

   
max max

min min

3 2 2
1 ( , )

L P

L P

c C P L dP dL
D

= ∫ ∫  

Figure 2.17:  Baseline Decision for Stage 3 of Cantilever Beam Example 

Fundamentally, the crux of this decision is the identification of the range of the 

commonality of the material choice (∆P2). 

 
Step 5: Formulate the Multistage Decision Problem as a Dynamic Program 
 

The baseline decisions of each stage established in the previous step are 

formulated as a multistage optimization problem in the implementation of the PPCTM.  

The fifth step of the PPCTM suggests the use of dynamic programming to solve this 

complex problem.  Dynamic programming (Jacobs, 1967) is an approach for optimizing 

multistage decision processes and is based on Bellman’s principle of optimality: 

Principle of Optimality: An optimal policy in a multi-stage optimization 
process has the property that regardless of the decisions taken to enter a 
particular stage, the remaining decisions must constitute an optimal policy 
for leaving that state. 
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For Each Stage i 
Given  The N-dimensional market space ( ){ }1 2, ,...,N

NM r r r=  
  The decision variables of previous stages ∆r(1),…, ∆r (i-1)  

The modes for managing product variety to be utilized at Stage i  
The set of constraint functions g[∆r(1),…, ∆r (i-1)] ≥ 0 

 An objective function fi [∆r(1),…, ∆r (i)] 
Find  The value of the decision variables [ ]1 2( ) ( ), ( ),..., ( )Nx i r i r i r i= ∆ ∆ ∆   

Satisfy  Constraints ( ) ( )1j jr i r i∆ ≥ ∆ −  

  Bounds ( )min maxj j jr r i r∆ ≤ ∆ ≤ ∆  
Optimize The value of the objective function for that stage 

  ( ) ( ) ( ) ( )* *
1,1 ,..., 1 ,...,i i i kf f r r i f r r i+= ∆ ∆ + ∆ ∆        

where the variable fi
* is the new objective function for any stage i. 

Dynamic programming begins with the last stage of an n-stage process and 

determines for each state the best policy for leaving the stage and completing the process, 

assuming that all preceding stages have been completed.  The decision maker then moves 

“backwards” through the process stage by stage.  

Formulating the multi-stage problem as a dynamic program involves: 

o Defining the optimal objective function for each stage 

o Formulating the general recurrence equation. 

o Developing a table or closed-form equation for the optimal objective function for 

each stage 

o Formulating the decision to be made at each stage of the solution process 

Dynamic programming is based on the concept that the optimal parameters for the 

global problem are based on the selection of the parameters through the knowledge of the 

optimal parameters at each stage of the decision problem.  The formulation of the 

multistage problem as a dynamic program is shown in Figure 2.18. 

Figure 2.18: Formulation of the Multi-Stage Problem as a Dynamic Program (Hernandez, 2001) 
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Example 1: There are three decision stages in the fan example which are formulated into an 

overall multi-stage formulation: 

Find  The value of the decision variable ∆Ε, ∆Μ, ∆Β 

Satisfy  Bounds ∆E ≤ ∆Emax 

           ∆M ≤ ∆Mmax 

          ∆B ≤ ∆Bmax 

Optimize The objective function (same as the third stage): 

   
max

3 3

min

1 ( )
a

a

c C a da
D

= ∫  

Figure 2.19:  The Multistage Problem for the Fan Example 

 
Example 2: There are three decision stages in the cantilever beam example which are 

formulated into an overall multi-stage formulation: 

Find  The value of the decision variable ∆L, ∆P1, ∆P2 
Satisfy  Bounds maxL L∆ ≤  

1 maxP P∆ ≤  

1 2 maxP P P∆ ≤ ∆ ≤  
Optimize The objective function (same as the third stage): 

   
max max

min min

3 2 2
1 ( , )

L P

L P

c C P L dP dL
D

= ∫ ∫  

Figure 2.20: The Multistage Problem for the Cantilever Beam Example 

 

Step 6: Solve the Dynamic Program 

In the final step of the PPCTM, the dynamic program established (previous step) 

is solved.  The solution involves the development of response surface in order to 
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approximate optimal objective functions for each stage by moving “backwards” through 

the problem and then in a forward manner through the use of these response surfaces. 

For Last
Stage k

For Stage i=k-1
To Stage i=2

i=i -1

x1

x2

y

Design 
Experiment

Run 
Experiment

Record 
Results

Fit Response
Surface

( )
min{ }kk

f
∆   r

( )l∆r

( )j∆r

* [ (1),..., ( 1)]kkf r r k∆ ∆ −
( )

min{ }kk
f

∆   r

( )
min{ }kk

f
∆   r

*
kkf
*

kkf

*
kkf

x1

x2

y
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Experiment

Run 
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*
1,( )

min{ }i i ki
f f +∆

+
   r

*[ (1),..., ( 1)]ikf r r i∆ ∆ −

( )j∆r

( )l∆r

*
,i kf

*
1,( )

min{ }i i ki
f f +∆

+
   r

*
1,( )

min{ }i i ki
f f +∆

+
   r

*
,i kf

*
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Figure 2.21: Developing Response Surface Approximations for Optimal Objective Functions in Dynamic 
Programming (Hernandez, 2001) 

 

As seen in Figure 2.21, the process for approximating optimal objective functions 

using the response surface method involves a multi-step process (Hernandez, 2001): 

1. For the last stage k of the process: 

a. An experiment is designed with the value of the decision variables from 

previous stages, ∆r(1), ∆r(2), …, ∆r(k-1) as independent factors and the value of 

the optimal objective function, ƒk as the response variable. 
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b. For each run (i.e., each combination of the decision variables ∆r(1), ∆r(2), 

… ∆r(k-1)) from the experimental design, the value of ƒk is optimized by 

choosing the appropriate value of ∆r(k) and the value of the optimized function 

obtained, referred to as *
kkf , is recorded. 

c. After all runs are completed, a response surface is fit to the optimized 

values of *
kkf  (recorded from the previous step) as a function of the decision 

variables of previous stages ∆r(1), ∆r(2), … ∆r(k-1).  This response surface is an 

approximation of the optimal objective function for Stage k. 

2. For Stage i = k-1 to Stage i = 2: 

a. An experiment is designed with the value of the decision variables from 

previous stages, ∆r(1), ∆r(2), … ∆r(i-1) as independent factors and the value of 

*
1,i i kf f ++  as the response variable, where the optimal objective function, 

*
1,i i kf f ++ , has been obtained in the preceding step. 

b. For each run (i.e., each combination of the decision variables ∆r(1), ∆r(2), 

…, ∆r(i-1)) from the experimental design, the value of *
1,i i kf f ++  is optimized by 

choosing the appropriate value of ∆r(i) and the value of *
1,i i kf f ++  obtained is 

recorded.  This value is referred to as *
,i kf . 

c. After all runs are completed, a response surface is fit to the values of *
,i kf  

recorded from the previous step as a function of the decision variables of previous 

stages ∆r(1), ∆r(2), …, ∆r(i-1).  This response surface is an approximation of the 

optimal objective function for Stage i-1. 
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d. i = i –1 and steps (a) through (c) are repeated. 

The solution of this dynamic program results in the selection of optimal ranges of 

application for each mode of managing product variety.  These values are then used to 

map the design parameters to a fixed set of components that can be varied using the 

modes of managing variety in order to meet individual customer specifications. 

 

Example 1: An exhaustive search of the different combinations of the decision variables 

is sufficient due to the simplicity of the examples. The three-loop iteration of the 

variables is shown in Figure 2.22.  

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.22:  The Solution Algorithm for the Fan Example 
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The objective in this search is the determination of the ranges of each mode for managing 

variety that provides the lowest average cost of the entire product platform.  Results are 

shown in Table 2.1. 

Table 2.1: Results of Fan Example 

Decision Variable Mode of Managing 
Variety 

Range of 
Commonality 

∆A1 
Customization of air flow 

capacity using a speed 
control 

48 L/s 

∆A2 Standardization of motor 96 L/s 
∆A3 Standardization of blades 192 L/s 

 

Assume for this example that the range of speed control (∆A1) found appropriate 

for changes of airflow capacity is 0 to 48 L/s.  In such a case, the market space should 

then be divided in ten “regions,” i.e., ten first space elements:  from 20 to 68, 68 to 116 

L/s, and so on, as shown in Figure 2.23a.    

For the second stage (∆A2), assume that two of the smallest space elements is the 

optimal number to be assembled, i.e., one different motor is to be used for each of the 

five ranges of airflow of 96 L/s: one motor is used for fans in the range (region or second 

space element) of 20 to 116 L/s, a second motor for the next range of 116 to 212 L/s, and 

so on, as shown in Figure 2.23b.  Finally, the only mode for managing product variety 

left is the standardization of blades, and the problem remaining is how many of the five 

second space elements previously obtained should be “connected” with one blade.  For 

this stage, assume that two is the optimal number. In such a case, there is need for three 

different blades:  two of the blades are used to connect two of the second space elements, 

and a third one is used for the space left as shown in Figure 2.23c.  
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(a) Synthesis of the First Space Element 

 

 

 
 
 
 

 
 

(b) Synthesis of the Second Space Element 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
 

(c) Synthesis of the Third Space Element 
 

Figure 2.23: Hierarchical Arrangement of the Modes of Managing Product Variety for the Fan Example 

 

Using the optimal arrangement and optimal ranges for each mode of managing variety, 

the specific design parameters for each product variant can be mapped, as shown in Table 

2.2. 
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Table 2.2: Mapping Modes of Managing Variety to Product Specifications 

Blades Motor Speed Controller Air Flow
SC 1 20-48L/s
SC 2 48-96L/s
SC 3 96-144L/s
SC 4 144-192L/s
SC 5 192-240L/s
SC 6 240-288L/s
SC 7 288-336L/s
SC 8 336-384L/s

B1

B2

M1

M2

M3

M4
 

 
 

 

The roadmap of design specification of a section of the entire product family of fans can 

be seen in the results above.  Suppose that a customer orders a fan providing air flow of 

130 L/s. From Table 2.2, the manufacturer is informed that by providing speed controller 

SC 3, motor M1 and number of blades B1 will meet the demand. 

 

 

 
 
 
 
Example 2:  The resulting three-loop iteration of the variables for the cantilever example 

is shown in Figure 2.24. 
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Figure 2.24:  The Solution Algorithm for the Cantilever Beam Example (Williams, 2003) 

 

The objective in this search is the determination of the ranges of each mode for 

managing variety that provides the lowest average cost of the entire product platform.  

Results are shown in Table 2.3. 

 

Table 2.3: Illustrative Results of Cantilever Beam Tutorial Example 

Decision Variable Mode of Managing 
Variety 

Range of 
Commonality 

∆L Customization of Length 
of Beam 50 in. 

∆P1 
Standardization of Cross 

Section 1000 lbs. 

∆P2 
Standardization of 

Material 2000 lbs. 
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From the results obtained, designers at BeamTech can now commonalize the raw beam 

length across a range of 50 in., standardize the cross section across a range of 1000 lbs., 

and standardize the material type across a range of 2000 lbs.; the cost to manufacture the 

entire product platform will be at a minimum.  The resulting hierarchical arrangement of 

the three modes of managing product variety is shown in Figures 2.25 and 2.26. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.25:  Sample Hierarchic Solution of the Cantilever Beam Example 
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Figure 2.26: Hierarchical Arrangement of the Modes of Managing Product Variety for the Cantilever 

Beam Tutorial Example (Williams, 2003) 
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Using the optimal arrangement and optimal ranges for each mode of managing variety, 

the specific design parameters for each product variant can be mapped, as shown in Table 

2.4. 

Table 2.4: Mapping Modes of Managing Variety to Product Specifications 

L(in.) P (lbs.) Lo (in.) Cross Section Material Type
2000 CS 1
3000 CS 2
4000 CS 3
5000 CS 4
2000 CS 1
3000 CS 2
4000 CS 3
5000 CS 4

Material 1

Material 2

Material 1

Material 2

150 Lo 1

200 Lo 2

 
 

 

The roadmap of design specification of a section of the entire product family of fans is 

seen in the results above.  Suppose that a customer orders a beam of length 185 in. that 

supports a load of 3000 lbs.  The results posted in Table 2.4 inform BeamTech that this 

need is met by cutting a beam of cross-section of CS 2 and material 1 from a raw length 

of Lo 1 . 

 

 

2.1.4 Critical Evaluation of the Product Platform Constructal Theory Method 

The Product Platform Constructal Theory Method is based on the foundation of 

hierarchic systems theory and constructal theory.  The concepts of hierarchic systems 

theory state that a hierarchic method of organization is the most efficient for complex 

systems.  It is possible to synthesize multiple modes of managing product variety for the 

development of a product platform for customized products; which is typically not 
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possible in other methods.  The resulting hierarchic organization of the modes of 

managing product variety provides a way to manage the tradeoff between performance 

and commonality by obtaining the optimal range for each mode.   

There are some limitations that have been overcome by the development of 

PPCTM-PLUS in (Williams et al., 2003). The limitations include inability to deal with 

multiple objectives, non-uniform demand and no consideration of the manufacturing 

process. Williams considers non-uniform demand by modeling it as a property of the 

geometric market space and solving the non-uniform optimal access problem through the 

discretization of the space. The infusion of the utility-based compromise Decision 

Support Problem provides a rigorous construct so that decisions with multiple, conflicted, 

and coupled objectives can be made. The work also applies PPCTM to the development 

of a “process platform” for the manufacture of customized products. The work in this 

thesis is largely based on augmenting the PPCTM-PLUS to develop PPCTM-RCM 

(Robust to Changes in Market).  
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Figure 2.27: PPCTM, PPCTM-PLUS and PPCTM-RCM 

 

However, there are some other limitations that still exist in the PPCTM.  

1. Unable to deal with uncertain demand: As the market becomes more uncertain, 

it is difficult to design a product platform. The PPCTM does not cope with 

such changes in demand. The PPCTM is only able to work if the demand is 

certain and fixed which is rarely the case.  

2. Unable to deal with changing design parameters: As time passes, the customer 

requirements may change as well as there is a need for some flexibility to the 
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manufacturer. PPCTM does not have any flexibility in the design parameters 

and the objectives are not met by any change in the design parameters. 

3. No consideration of changing marketplaces: PPCTM considers the 

marketplace to be fixed and the product platform is designed for only that 

market extent. The changing extents of marketplaces are not considered in the 

PPCTM. However, the manufacturer is bound to explore new areas of the 

market and capture them. Hence, there is a need for the PPCTM to consider 

such changes in the extents of the marketplaces. 

Example 1: In the case of the fan example, FanTech is able to design a platform for its 

market using the existing PPCTM but is facing a number of problems after sometime. 

First, for example, the demand assumed for the market was a snapshot of the probable 

demand. However, it is observed that the demand changes rapidly and the objectives of 

the product platform are no longer met due to the uncertain nature of demand.  

Secondly, market research observes that the customers are looking for 

comparatively smaller sizes of fans having nearly the same air flow capacity. However, 

it is not possible to have such a change in the product platform since it will increase the 

costs. The reason is that the objectives of the platform are achieved for this particular 

variety of fans only. So FanTech is looking for some flexibility in the design 

parameters.  

Thirdly, now that the demand in this particular market of air flow capacity has 

saturated, FanTech is looking for suitable extensions to the existing market. At the 

same time, it wishes to continue in the existing market. Since it is not economically 

possible to have a totally new product platform in the adjacent market, the question 



 

 63 

before FanTech is that how should it extend the existing product platform to the new 

market and remain profitable. 

Example 2: In the case of BeamTech, it is also facing similar problems. It is observed 

that the demand of the beams fluctuates and providing variety in such circumstances 

does not meet the objectives of the company. The reason is that the product platform is 

designed for a fixed demand in the market space. So BeamTech is looking to make its 

next product platform robust to such changes.  

Secondly, the existing product platform specifies the exact cross section that 

needs to be manufactured. However, if the customer is looking for some other cross 

section, the manufacturer is not flexible enough to provide him with that particular 

cross section keeping his other requirements constant.  So BeamTech needs some 

flexibility to such changes in design parameters caused by uncertain factors later on.  

Thirdly, BeamTech is right now providing beams with load capacity of 1000 to 

5000 lbs. Market research has observed that there is a large demand for beams with 

higher load capacity. So BeamTech wishes to extend its platform in the adjacent higher 

load capacity area. By simple extension, BeamTech will not be able to continue to 

achieve the objectives of the entire new market space. The other option of developing a 

different product platform in the adjacent area will be very expensive. So the problem 

that BeamTech is facing is that how it should enter this new market space. 

  

 

This completes the explanation of PPCTM and its critical evaluation. In the next section, 

the first theoretical foundation for augmenting PPCTM is discussed.  
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2.2 ROBUST DESIGN 

In the thesis, robust design forms the basis in augmenting the PPCTM. Robust 

design concepts are used to make the product platform unaffected by variations in 

demand and design parameters. 

Taguchi first proposed the concept of robust design that stressed on improving the 

quality of a product or process by not only striving to achieve performance targets but 

also by minimizing performance variation. Taguchi’s methods have been widely used in 

industry (Byrne and Taguchi, 1987; Phadke, 1989) for parameter and tolerance design.  

In robust design, a P-diagram (P represents either product or process) as shown in 

Figure 2.28 is used to show the relationship between different types of design parameters 

or factors, where (Phadke, 1989).  

 

 

Figure 2.28: P-Diagram of a Product/Process in Robust Design (adapted from Phadke, 1989 – Simpson, 
1998) 

 

The three types of factors which serve as inputs to the P-diagram and that 

influence the (output) response y are as follows: 
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• Control Factors (x) – parameters that can be specified freely by a designer; the 

settings for the control factors are selected to minimize the effects of noise factors 

on the response y. 

• Noise Factors (z) – parameters not under a designer’s control or whose settings 

are difficult or expensive to control. Noise factors cause the response, y, to deviate 

from their target and lead to quality loss through performance variation.  

• Signal factors (M) – parameters set by the designer to express the intended 

value for the response of the product; signal factors are those factors used to 

adjust the mean of the response but which no effect on the variation of the 

response. 

 

According to this classification of parameters, in robust design, x, is a control 

factor that can be adjusted by the designer. M is the target and z is the noise factor. If the 

only objective is to be as close as possible to M, the designs at levels x=a and x=b are 

both acceptable because their means are on target. It is observed from Figure 2.29 that 

when x=a the performance varies significantly with the deviation of the noise factor, z; 

however, the performance deviates considerably less when x=b. Now considering both 

objectives of robust design, it is concluded that x=b is more robust than x=a. By selecting 

the control factor settings which best minimize the effects of noise on the system 

performance, it is possible to develop specifications which are robust with respect to a 

given noise factor (Chen et al., 1996b). 
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Figure 2.29: A comparison of two types of robust design (Chen et al., 1995) 

 

There are two categories of robust design problems classified in (Chen et al., 

1996b). These categories are based on the source of variation: 

• Type I – minimizing variations in performance caused by variations in 

noise factors (uncontrollable parameters) 

• Type II – minimizing variations in performance caused by variations in 

control factor (design variables). 

There are a number of limitations to the Taguchi methodology that have been 

discussed in literature so far. Taguchi has not been able to handle design problems with 

highly nonlinear behavior accurately (Nair, 1992). It is argued that Taguchi’s statistical 

methods such as orthogonal arrays, linear graphs, etc. are not statistically efficient (Tsui, 

1992). Welch et al., (1990) propose to model responses instead of expected loss by 
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combining the control and noise factors into a single array.  Robust Concept Exploration 

Method (RCEM) (Chen et al., 1996a) has been able to alleviate these limitations. In the 

RCEM the authors have proposed to integrate the response surface method (RSM) with 

the compromise Decision Support Problem in developing a general robust design 

procedure (Chen et al., 1996a). 

 

2.2.1 Robust Concept Exploration Method 
 

The RCEM is a step-by-step approach for the evaluation of design alternatives 

and generation of top-level design specifications with quality considerations (Chen, et al., 

1996a). It facilitates computationally expensive design analysis and design of complex 

systems. It is the integration of several methods and tools - robust design methods 

(Phadke, 1989), the Response Surface Methodology (Myers and Montgomery, 1995), 

Suh's Design Axioms (Suh, 1990) and the compromise DSP (Mistree, et al., 1993). 

The method is comprised of four major steps: 

1. Classify design parameters: The process starts with the overall design 

requirements fed as input into Processor A. Each factor is classified into control 

factors, noise factors and responses. The concept exploration space is then 

defined. 

2. Screening Experiments: Processors B, C and D perform initial screening 

experiments and analysis of results to fit low order response surface models and 

reduce the design space. Processor B is the point generator, Processor C is the 

simulation programs and Processor C is an experiment analyzer. 
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3. Elaborate the Response Surface Model: This step also involves Processors 

B, C and D that help perform secondary experiments and analysis of results. The 

results from the secondary experiments are used to (a) fit second-order response 

surface models (using Processor E), (b) identify key design drivers and the 

significance of different design factors and their interactions, and (c) quickly 

evaluate different design alternatives and answer "what-if" questions in Step 4. 

4. Generate Top-Level Design Specifications with Quality Considerations: In 

this step, top-level design specifications with quality considerations are 

determined using compromise DSP (Processor F). The response surfaces, 

functions of control and noise factors, replace the original analyses or simulation 

programs. Then the compromise DSP is formulated and solved to obtain top-level 

design specifications.  

 

Figure 2.30: Computer Infrastructure of RCEM (Simpson, et al., 1996) 
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2.2.2 Critical Evaluation of the Robust Concept Exploration Method 
 
 

There are a number of advantages of the Robust Concept Exploration Method. It 

makes it possible to have multiple constraints and objectives while also considering the 

tradeoff between these objectives. Compared to Taguchi’s linear model approach, it gives 

more accurate results. The compromise DSP addresses the issues of bringing the mean to 

target and minimizing the variation. This makes it possible for the designer to make 

decisions based on detailed analysis of the system for different values of weights of the 

objectives.    

 There are some limitations in the method. The problems of size associated with 

screening and model building affect RCEM if a complex design problem becomes too 

large. (Koch, 1997) defines the difference between the class of problems for which 

RCEM is appropriate, and those which cannot be solved using the method. In the method, 

the goal and constraint functions are approximated using the methods of statistical design 

of experiments and specifically quadratic models. Although the approximations have 

shown to work in a number of engineering problems (Chen, 1995), there are instances in 

which the performance is highly non-linear and a second-order model is not good enough 

(Chen, 1996 min.).  

Some of the steps in the RCEM have been modified in the thesis to suit the 

requirements of the problem at hand. In Section 2.3, the next theoretical foundation 

Compromise DSP has been introduced. 
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2.2.3 Other Approaches in Literature 
 

There are many other approaches in literature that address the dual objective of 

“bringing mean to target” and “minimize deviation”. There are certain drawbacks in the 

approach of minimizing weighted sums of objectives (Das, I. and Dennis, J.E., 1997).  

Messac develops the method of physical programming which eliminates the need for 

weight setting or utility function building in multicriteria optimization (Messac et al., 

1996). Chen proposes to use Compromise Programming (CP) (Yu, 1973 and Zeleny, 

1973) to address the multiple aspects of robust design (Chen et al., 2000). In some cases 

in literature, though the multiple aspects of the objective in robust design are 

acknowledged (Sundaresan et al., 1993), single robust design objective function is often 

utilized. Sundaresan et al. employ a single objective function that utilizes weighting 

factors for target performance and variance represented by the Sensitivity Index (SI). 

Ramakrishnan and Rao, formulate the robust design problem as a nonlinear optimization 

problem with Taguchi's loss function as the objective (Ramakrishnan and Rao, 1991). 

 

The use of design capability indices for robust design is proposed in (Chen et al., 

1999). This is one of the approaches analyzed by the author in this section to design 

robust product platforms. Similar difficulties as stated in the discussion later, on using 

design capability indices to design a robust product platform, may have to be faced in 

most other approaches for robust design. 
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Figure 2.31: Design Capability Indices (Chen et al., 1999) 

 

Design capability indices are based on process capability indices from Statistical 

Process Control (SPC), an approach for quality control rooted in manufacturing. A stable 

process is represented by a measure of its variation; six σ standard deviation is commonly 

chosen. The simplest measure of process capability, Cp, compares the variation of a 

process to the customer specifications through the equation: 

 

Where USL is the upper specification limit, LSL is the lower specification limit, and σ is 

the estimated standard deviation of the process. Although Cp is a measurement of the 

spread of the process in relation to specification width, it does not measure how well the 

process average is centered about the target value. The process capability indices Cpl, Cpu 

and Cpk are used to measure both process variation with respect to customer 

specifications and the location of the process average. Cpl and Cpu are process capability 
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indices for single-sided specification limits while Cpk measures process capability for 

two-sided specification limits. The process capability indices, Cpl, Cpu and Cpk, become 

design capability indices Cdl, Cdu and Cdk which measure the portion of the range of 

designs that satisfies the ranged design requirement (Chen et al., 1999). In Figure 2.31, 

the upper and lower specification limits used with Cpk are replaced by upper and lower 

requirement limits (URL and LRL, respectively) since the emphasis is on satisfying 

design requirements and not machining specifications. Consequently, Cd, which is based 

on Cp and does not account for the mean being off target, is not used as a design 

capability index; only Cdl, Cdu and Cdk are used for different design situations. 

Now consider applying the concepts of design capability indices in the product 

platform design problem. Assuming the goal of maximizing an objective of the product 

platform, the rightmost part of the figure is considered where ‘larger is better’. Here, 

designs with a Cdk≥1 are capable of meeting this requirement, and Cdk is equal to Cdl as 

shown in Figure 2.31. Distributions with a Cdl<1 will have designs which do not meet the 

robust design requirement.  

However, to apply design capability indices to the PPCTM, there are three main 

difficulties: 

1. In a product platform problem, there are a number of products in the marketplace. 

For every product that is present, there is a need to check robustness. In the case 

of design capability indices this means that for every product the corresponding 

design capability index is determined. So one has to compare every product 

platform comprising of products, each having an index, with other possible 

product platforms. In the current approach, the principle of summation of 
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variances helps to get a quantity that considers the variation of the entire product 

platform. However, using design capability indices it is not possible to get a 

quantity for every product platform that can be compared; individual indices for 

every product are only obtained.  

2. In a product platform design using PPCTM, at the beginning, one does not know 

how many products are present in the product platform. So predicting the upper 

and lower requirement limits for every product is difficult. This is needed to find 

out the index for every product.  

3. The indices can be used to a certain extent where one can check for all the 

products in the product platform if Cdk≥1. If yes, the product platform is achieving 

the robust design objectives. However, it is not possible to find the most robust 

product platform if there are more than one product platform satisfying Cdk≥1. 

 

So based on these difficulties one can say that using design capability indices in PPCTM 

may not be feasible.  

For modeling the designer’s preference structure regarding the two aims of robust 

design, different methods have been proposed, which follow different paradigms for 

multiobjective decision making. Iyer and Krishnamurty (1998) present a preference-

based metric for robust design using concepts from utility theory (von Neumann and 

Morgenstern, 1947; Keeney and Raifa, 1976; Hazelrigg, 1996) to capture the designer’s 

intent and preference when making the tradeoffs between mean and variation of 

performance. Utility theory can be another approach to consider uncertainty. Under the 

notion of utility theory, the ultimate overall worth of a design is represented by a 
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multiattribute utility function which is assumed to incorporate designer intent. The major 

difficulty while using a utility function is it is often impossible to obtain a reliable 

mathematical representation of the decision-maker’s actual utility function.  

Steuer writes regarding utility functions (Steuer, 1989 – p. 4) “One expects [the 

utility function] to be nonlinear. However, this is not the main difficulty with this 

approach. The main difficulty is that with many problems it is not possible to obtain a 

mathematical representation of the decision maker’s utility function U. It is about such 

problems that we are concerned.” Steuer further writes (Steuer, 1989 – p. 146) “In this 

book, we are assuming that, in practice, we will never know a mathematical 

representation of the DM’s utility function U.” These comments point to the lack of 

practical usefulness of utility theory in the effort of uncovering the appropriate utility 

function (Chen et al., 2000).  

Based on this, it is the author’s opinion that control of the weights of the two 

objectives of robust design is more effective than relying on the mathematical 

representation of the utility function in a product platform design problem. However, it 

would be interesting to compare the results obtained with results from other approaches.  

 

2.3 THE COMPROMISE DECISION SUPPORT PROBLEM (C-DSP) 

The compromise DSP is a multiobjective decision model that is a hybrid 

formulation based on Mathematical Programming and Goal Programming (Mistree, 

Hughes et al., 1993).  It is used to determine the values of design variables that satisfy a 

set of constraints and achieve a set of conflicting goals as well as possible.  In general, 

the compromise DSP facilitates the improvement of a feasible alternative through 
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modification.  The compromise DSP is similar to goal programming. In a compromise 

DSP, the objective is to minimize the deviation function, which is a function of the goal 

deviation variables. System goals are formulated in terms of system and deviation 

variables.  On the other hand, in traditional mathematical programming objectives are 

functions of the system variables only.  However, the compromise DSP retains the 

system constraints employed in traditional optimization. 

The mathematical form of the compromise DSP is shown in Figure 2.32. The 

system descriptors, namely, system and deviation variables, system constraints, system 

goals, bounds and the deviation function are described in detail in (Mistree, Hughes et al., 

1993).  System variables (X1, X2, …, Xn) are independent, in control of the designer and 

usually describe attributes of the system. A Compromise DSP formulation must have at 

least two system variables that may be continuous, discrete, and/or Boolean variables. 

Bounds help to represent the region in which a search is to be made for a feasible 

solution. Each of the system and deviation variables has a lower an upper bound 

associated with it. System constraints model the relationships between capabilities of the 

system and demands placed upon the system.  Feasible designs always satisfy the set of 

system constraints; thus defining the feasible design space.  System constraints are 

functions of the system variables only. System goals are used to model the aspiration a 

designer has for a system.  They relate the goal (aspiration level), Gi, of the designer to 

the actual attainment Ai(X) of the goal.  The deviation variables d di i
− +,  indicate the extent 

to which the goals are achieved.  di
−

 and di
+

 represent the level of underachievement and 

overachievement of a goal, respectively.  Two constraints as shown in Equation are 
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placed on deviation variables to ensure that the deviation variables are never negative and 

that one of the deviation variables will always be zero.   

d di i
− +• = 0 and d di i

− + ≥, 0      [2.1] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32: Mathematical Formulation of the Compromise DSP (Mistree, Hughes, et al., 1993) 
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The fundamental idea behind the compromise DSP is to minimize the difference 

between that which is desired and that which can be achieved. Hence the formulation 

minimizes the deviation function, Z d di i( , )− + , which is in terms of deviation variables.  

Smaller the value of the deviation function, closer is the goal to the ideal value.  Since 

multiple deviation variables are combined in the deviation function, it is desirable to have 

the deviation variables of the same order of magnitude.  This is achieved by normalizing 

the goals before combining them into a deviation function.  A set of rules has been 

established for formulating the system goals in a manner such that the deviation variables 

will be of the same order of magnitude.   

1) If a designer wishes to maximize achievement, Ai(X), he/she chooses a target 

value Gi greater than or equal to the maximum expected value of Ai(X).  

Thus, the ratio Ai(X)/Gi will always be less than or equal to 1, and the 

system goal may be formulated as follows:  

A X G d di i i i( ) / + − =− + 1    [2.2] 

where di
+  will always be zero and the objective is to minimize the 

underachievement di
−  to ensure that the design is as close as possible to 

the goal. 

2) If a designer wishes to minimize achievement of a goal, he/she chooses a 

target value Gi less than or equal to the minimum expected value of Ai(X).  

The system goal becomes: G A X d di i i i/ ( ) + − =+ − 1  where di
− will always be 

zero,  and the objective is to minimize overachievement, di
+  to ensure that 

the design is as close as possible to the desired goal.   
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3) If a designer wishes to achieve a target value, he/she may use formulation 1 if 

the target value is approached from below by Ai(X) or formulation 2 if the 

target value is approached from above.  In both cases the sum ( )d di i
− ++  is 

minimized.   

The use of compromise DSP in making a tradeoff between multiple conflicting 

goals makes it effective in having a compromise between different objectives in product 

family design. Similarly, compromise DSP has been used in several problems of robust 

design. The conflicting goals in robust design are “bringing the mean to target” and 

“minimizing the variance”; compromise DSP is used to make a tradeoff between these 

goals. So it manages to have a tradeoff between obtaining the objectives as well as 

minimizing the deviation of the objectives in the presence of noise. 

 

Critical Evaluation of the Compromise DSP 
 

As discussed in Section 2.3, the compromise DSP is a flexible decision support 

construct that facilitates the search for satisficing compromises among multiple, 

conflicting goals.  It also accommodates multiple constraints and bounds on the system 

variables and implementable with reasonable effort.  It is domain independent. Also, the 

compromise DSP is applicable along a design timeline, including during the early stages 

of design or under other conditions when decisions must be made quickly and/or with 

limited information.  The compromise DSP has also been used for the design of product 

platforms (Seepersed et al., 2002). In addition, Archimedean deviation functions are 

useful for exploring tradeoffs among multiple goals, and preemptive deviation functions 

do not require weights—an advantage in the early stages of design.  
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The limitations of the baseline compromise DSP include iterative weight setting 

and sensitivity to goal target values.  In addition, for considering uncertainty with respect 

to goal values, modifications need to be made to the baseline compromise DSP.  Using 

weights or priority levels, there is no rigorous, axiomatic way to quantify and consider 

designer preferences for uncertain goal values (Seepersed, 2002).   

 

2.4 STRATEGIC DESIGN 
 

The PPCTM has been augmented in Chapter 5 considering the objectives of 

strategic design. 

The concept of ‘strategic design’ was first introduced in (Seepersad, Cowan, et 

al., 2002). The subtle difference between design and strategic design was explained in 

Chamberlain, 2002. Strategy involves positioning resources ahead of time, or “prior to 

actual engagement.” Most design is concerned with fulfilling specific customer 

requirements.  

In some design practices, changes in those requirements are taken into account by 

making products flexible, customizable, or modular. Few if any methods take specific 

changes in requirements into account. Strategic design is meant to take those specific 

changes over time into account, forecasting trends and taking action in accordance with 

them well in advance. Chamberlain in (Chamberlain, 2002) recognizes that the company 

should develop forecasts of future market trends to make sure that the money invested in 

a new product platform or in the development of a new piece of technology continues to 

pay dividend when the next big market shift occurs a few months or years down the line. 

All of the actions that the company needs to take at the current time to recognize and 
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account for future trends fall under the general heading of an activity that is defined as 

strategic design.  

Seepersad and coauthors have proposed the following definition of strategic 

design (Seepersad, Cowan, et al., 2002): 

“Strategic design is a comprehensive approach for forecasting shifts or changes in 

markets, associated customer requirements, and technical capabilities, and for devising 

artifacts that accommodate these shifts efficiently and effectively. It is a marriage of 

strategic product planning and market analysis, methods for leveraging and adapting 

existing products, procedures for assessing and infusing technological innovations, and 

systematic evaluation techniques for comparing and selecting among a portfolio of 

options.” 

The strategic design process is divided into four steps. Each of these steps 

involves a number of activities to be carried out (Seepersad, Cowan, et al., 2002): 

 

Step 1 – Identification of Current Product Capabilities  

This involves identifying relevant capabilities and characteristics of the existing 

products. This introspection helps to know at what stage is the design capability 

currently. 

 

Step 2 – Identification of Need and Opportunities  

This step involves the design team to look at opportunities for the future. This is 

done by careful analysis of market trends and customer demands and assessing what 

opportunities exist for expanding the market coverage of its current product line. Current 
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trends and future trends from extrapolation need to be studied. This would in turn involve 

prioritizing the projects to discard the not so favorable projects and picking up the 

favorable ones. 

 

Step 3 – Identification of Strategies for Fulfillment of Market Demand 

Now, with the capabilities and need identified, it is important to identify the 

different options available for the design team. The options could include simple 

redesigning of existing products using current technology, redesigning the products with 

existing technology or investing in disruptive technologies that may get good returns by 

expanded product capabilities in the long run. Hence, in this step the team must identify 

such strategies for fulfillment of market demand.  

 

Step 4 – Selection of Technology Options  

After identifying a number of feasible strategies, the next step is to select the best 

using criteria that takes into account costs, performance, time, and any changes in 

performance over the useful life of the product. This involves using a systematic 

evaluation and selection method. The team must also have the steps for implementing the 

selected option planned out.  

  

The augmented steps in the PPCTM involve exploring potential portfolio expansions 

and considering its objectives, which help to take action in accordance with the future 

well in advance. Relating to strategic design concepts, this makes sure that the money 
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invested today is made worth of by getting dividends even when the next big market shift 

occurs in future. 

 

2.5 A LOOK BACK AND A LOOK AHEAD 
 

In Chapter 2, the author broadly presents two important discussions in the thesis: 

the presentation, discussion and critical analysis of (1) the Product Platform Constructal 

Theory Method, and (2) the constructs that will be used to augment this method to enable 

it to cope with uncertain demand, changing design parameters and changing extents of 

marketplaces. Hence it establishes partly the Theoretical structural validity for 

Hypotheses 1, 2, and 3 through the discussion of the advantages, limitations, and 

accepted domains of the constructs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33: Theoretical Structural Validity 
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The Product Platform Constructal Theory Method is presented in Section 2.1. 

This involves first discussing the hierarchic systems theory and constructal theory. Based 

on this discussion, Hernandez’s abstraction into the realm of product family design is 

presented in Section 2.1.2.  In Section 2.1.3, the six steps of the PPCTM are presented. 

The discussion of the PPCTM is ended by its critical analysis in Section 2.1.4. The 

limitations existing in the PPCTM such as the inability to consider uncertain demand, 

changing design parameters and changing extents of marketplace are presented in this 

section. The alleviation of these limitations forms the basis of the thesis.  

The Robust Concept Exploration Method is presented in Section 2.2, which will 

address the limitation of uncertain demand and changing design parameters. The 

compromise DSP, discussed in the next section also plays an important role in alleviation 

of the aforementioned limitations as well as the problem of changing extents of 

marketplaces. The idea of strategic design which forms the basis of considering changing 

extents of marketplaces while designing is discussed in Section 2.4. Each of the 

constructs is discussed in detail along with its critical analysis at the end.  

In Chapter 1, the need and motivation for developing a systematic approach for 

the design of product platforms that alleviates the existing limitations is presented. In this 

chapter, what are the constructs that will help to alleviate the limitations are discussed. 

The method developed using the constructs discussed in this chapter is presented in 

Chapter 3. The application of the augmented method is applied to two example problems 

in Chapters 4 and 5. 
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CHAPTER III 
 

3 A METHOD FOR DESIGNING PRODUCT PLATFORMS 
FOR UNCERTAIN DISTRIBUTION OF DEMANDS, 

CHANGING DESIGN PARAMETERS AND EXTENTS OF 
MARKETPLACES 

 

The author’s primary objective in this thesis is the augmentation of the Product 

Platform Constructal Theory Method. This augmentation is achieved by extending the 

formulation and the approach of the PPCTM to overcome some of its limitations. The 

aim is to answer the primary research question posed in Section 1.3. 

How should the Product Platform Constructal Theory Method be augmented to 

deal with the uncertainty in distributions of demand, changing design parameters and 

extents of marketplaces? 

 

As is seen from the research question, the author wishes to augment the PPCTM 

so that it handles uncertain distribution of demand, changing design parameters and 

extents of marketplaces. In this competitive environment of customization, there is a need 

to deal with uncertain distribution of demand and changing extents of marketplaces. At 

the same time, there are changes in customer requirements that make changing design 

parameters during the product life cycle necessary. These three major research thrusts 

(uncertain distribution of demand, changing design parameters, and changing extents of 

marketplaces) are the focus in the augmentation of the PPCTM. 
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In Section 3.1 of this chapter, integration of aspects of RCEM into PPCTM that 

make it possible to design a product platform robust to changes has been presented. In the 

Section 3.2, the steps that should be combined into the PPCTM to consider changing 

extents of marketplaces have been presented. In the last Section 3.3, the steps of previous 

two sections have been integrated into the PPCTM and the augmented PPCTM is 

presented. 

At the end of this chapter, theoretical structural validity is provided to show 

internal consistency of infusing the proposed augmentations into the PPCTM. The 

author’s role in this chapter is to provide theoretical structural validity as shown in the 

Figure 3.1 and Figure 3.2. 
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Figure 3.3: Augmentations to the PPCTM 
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considered. The proposed approach is to integrate RCEM and the PPCTM to make the 

entire process robust to changes. The explanation of the integrated PPCTM and RCEM is 

presented below.  

Figure 3.4: Infusion of Robust Design Principles 

 

The infusion of robust design principles into the PPCTM is shown in Figure 3.4. 
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Compromise Decision Support Problem is used to resolve the tradeoff between the two 

conflicting goals. Each of these augmented steps is explained in detail in the next part. 

 

Steps to be Incorporated for Robust Design of Product Platforms (See Figure 3.4) 
 
Step B - Classify Design Parameters (Module A – Section 2.2)  
 

As is seen in Figure 3.4, after defining the geometric space and demand scenario, 

this step is needed. This step remains the same as in the Step 1 (module A) of RCEM. In 

this step, the initial concept exploration space is defined and the problem is formulated as 

a robust design. Design variables are grouped as either control factors or noise factors. 

Ranges of values are specified. The responses, i.e., objective functions that need to be 

studied are also identified.   

A. Factors and ranges
------------------------------------------------------

Noise

   Control        Response
   Factors

Product/
Process

 

Figure 3.5: Parameter diagram 

 

The method facilitates handling of both the types of robust design problems: Type 

1 and Type 2 (discussed in Section 2.2). In the method, Type 1 problem involves demand 

as a noise factor, the product specifications as the control factors and the response as the 

objectives of that platform. The Type 2 problem involves deviation of the design 

parameters that are the control factors.  

Thus, in this step the classification of terms in the product platform is done.  
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As discussed in Section 2.1.4, BeamTech is facing the problem of uncertain distribution of 

demand. So it has decided to rectify the problem for its next product platform offering. To 

do this, in this step, it needs to first classify its design parameters. The classification is 

shown in Figure 3.6.  

 

 

 

 

 

Figure 3.6: Classification of Design Parameters of Cantilever Beam Example 

This is a Type 1 robust design problem. Demand is considered as the noise.  

 
PPCTM Step 2 - Define the objective functions (Development of the variance 
objective function) (See Figure 3.4) 
 
 The existing step of PPCTM also needs to include the development of the 

variance objective function. This is explained in detail below: 

Perform experiments and evaluate variance in response (Module C – Section 2.2): 

This part is fundamentally the same as Step 2 and 3 (module B, C, D, E) of 

RCEM. However, it is modified significantly to suit the requirements.  

The steps of RCEM need to be modified due to the problem of size (discussed in 

Section 2.2.2). Efficiency of exploration with RCEM is made possible by incorporating 

approximate models. The experimentation necessary for building these models requires 

fewer number of design variables or else efficiency and accuracy are sacrificed. Consider 

an experiment for building a second order response surface model in 10 factors. A full 

central composite design (CCD) for 10 factors requires 1045 experiment cases (Koch, 
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1997). In PPCTM, the entire market space is comprised of a number of products. Every 

product has a particular set of control factors. Since the number of products in the family 

is large, the number of levels required for each factor is large. So the number of 

experiments to be performed is very high. Moreover, the response surface model 

developed from the results of these experiments performed is not accurate enough to give 

any useful information. This in turn hinders further calculations of finding the variance of 

the model. Hence, alternate steps need to be looked into to suit our requirement. 

Now, the function of these steps in RCEM is noted. Typically, these steps of 

RCEM help in developing system goals for “moving the mean to target” and “minimizing 

variation”.  As discussed previously, the goal of “moving the mean to target” has already 

been done in (Williams, 2003). It is suggested that the development of the other goal of 

“minimizing variation” could also be achieved by using the PPCTM. The development of 

this goal of “minimizing variation” is explained below: 

 

Development of the variance objective function:  

For every product that is considered, some amount of noise (in case of demand) is 

provided. The amount of noise that is provided can have any value.  The variation in 

response due to the noise is noted. From these values of responses, the variance in 

response is calculated. 
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Figure 3.7: Noise and Response – Mean and Standard Deviation 

 

So, for a product (keeping all other design variables constant) with certain values 

of noise, the corresponding variance in response is calculated. Hence for every product 

considered in the PPCTM, corresponding variance in response is calculated. The 

objective is to minimize such variance. The variance in response is calculated by the 

following formula (Hayter, 2002): 

   σ2 = ∑ (Ri – R)2 / (n-1)     [3.1] 

Where Ri is the response calculated after giving variance σP to parameter Pi 

 R is the response at mean level of parameter Pi 

 n is the number of levels of the noise factor  

Considering the entire market space, the sum of variances of all considered 

products in the market space is calculated. This sum for a particular product platform 

should be minimized. The final aim is to get a range of commonality of the design 

parameters that have minimum variation in the response regardless of changes in the 

demand or design parameters.  

 

Noise

σP σP 
Response 

σσ 
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The Market research team at BeamTech has a snapshot of distribution of demand. Based 

on this distribution, the product platform is designed. Now, according to the augmented 

method, during the process of designing the platform, there is a slight variation to the 

demand of every product in the family. Based on these variations in demand with other 

design variables constant, the corresponding variations in the cost objective are calculated. 

Hence for every beam considered in the PPCTM, corresponding variance in cost is 

calculated. The objective is to minimize such variance. The variance in cost is calculated 

by the following formula: 

   σ2 = ∑ (Ci – C)2 / (n-1)      

Where Ci is the response calculated after giving variance to demand  

 C is the response at mean level of demand  

 n is the number of levels of the noise factor, i.e., demand 

Considering the entire market space, the sum of variances of all considered beams in the 

market space is calculated. This sum for a particular product platform should be 

minimized. The final aim is to get a range of commonality of the design parameters that 

have minimum variation in the cost objective regardless of changes in demand. This is 

achieved by running the PPCTM model with the objective of minimizing the variation in 

cost. 

 
PPCTM Step 5 - Formulate a Multi-Stage Compromise Decision Support Problem 
(Manage tradeoff between ‘bringing mean on target’ and ‘minimizing deviation’) 
(See Figure 3.4) 

Step F of managing tradeoff between ‘bringing mean on target’ and ‘minimizing 

deviation’ needs to be integrated into Step 5.  
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This step is similar to the one in Step 4 (module F) of RCEM (Section 2.2). The 

evaluation of the two goals of “moving the mean to target” and “minimizing deviation” is 

completed in Step 4. These are the two goals that need to be satisfied to get a robust 

design. Under the first goal of “moving the mean to target”, there can be a number of 

objectives that the product platform must achieve. A decision has to be made that would 

give the best possible combination of the objectives of the product platform, i.e., “moving 

the mean to target” and “minimizing deviation”. The Compromise DSP is used to 

formulate this problem.  

The system goals are formulated for each decision stage of PPCTM. The goal for 

each stage is based on the individual objective functions of response and variance in 

response.  The values of response and variance are found using the average value of 

response and summation of variances of response, calculated in each decision stage.   

The author’s aim behind using cDSP is to find values for the system variables that 

satisfy the constraints and bounds on the design and achieve as closely as possible two 

system goals: 

1) moving the mean to target 

2) minimizing the deviation in response 

The extent to which each goal is achieved is modeled by the system goals-  

Response/Ideal Value + di
- - di

+ = 1 

Ideal Value/Variance + di
- - di

+ = 1 

These relations are obtained from (Mistree et al., 1993). If objective is to be 

minimized, goal is formulated as follows: ( )i i i iA x d d G− ++ − = .   The normalized form is 
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( ) 1i
i i

i

A x d dG
− ++ − =

.  If the objective is to be minimized and the goal is non-zero, it is 

formulated as follows: ( )i i i iG d d A x− ++ − = . The normalized form is 

1( )
i

i i
i

G d dA x
− ++ − =

 where,  

iG - Goal value for a particular objective i 
( )iA x  - Achievement of objective i for a particular design x 

 

In this case, the first goal is to maximize the objective and the second goal is to 

minimize the objective. A designer would like to achieve the ideal value of 1, but does 

not expect to achieve it necessarily. Deviation variables (d- and d+) indicate the extent to 

which each goal achieves its target value. The deviation function is a weighted sum of 

deviation variables for both goals and measures the extent to which both goals are 

achieved (Seepersad et. al., 2002). The weights for each goal (W1 and W2) are used to 

emphasize achievement of one goal more than another. The deviation function is 

minimized in the solution process. 

Z = W1 d1
- + W2 d2

- 

With the general formulation of the cDSP presented, the details of each stage’s 

specific formulation are presented in the examples. A general solution algorithm is used 

to solve the formulated cDSP. The solution process of the robust design is illustrated in 

the examples. 
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BeamTech has completed formulating the objective functions – minimizing the cost, 

minimizing the deflection and minimizing the variation in costs. The first two objectives 

of minimizing the cost and deflection “bring the mean to target” and third objective of 

minimizing the variation in costs “minimizes deviation”. “Bringing the mean to target” 

and “minimizing deviation” are the two goals that need to be satisfied to get a robust 

design. A decision has to be made that would give the best possible combination of the 

objectives of the product. BeamTech formulates Compromise DSP for each decision 

stage of PPCTM to find values for the system variables that satisfy the constraints and 

bounds on the design and achieve as closely as possible. 

The extent to which each objective is achieved is modeled by the system goals-  

Ideal Value/Cost + d1
- - d1

+ = 1 

Ideal Value/Variance + d2
- - d2

+ = 1 

Ideal Value/Deflection + d3
- - d3

+ = 1 

The aim is to achieve the value of the objective function as close to the ideal 

value as possible. The deviation function is a weighted sum of deviation variables for the 

three objectives and measures the extent to which both goals are achieved (Seepersad et. 

al., 2002). The weights for each objective (W1, W2 and W3) are used to emphasize 

achievement of one goal more than another. The deviation function is minimized in the 

solution process. 

Z = W1 d1
- + W2 d2

-+ W3 d3
- 
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3.2 STRATEGIC DESIGN OF PRODUCT PLATFORMS USING COMPROMISE 
DSP 

 

In this section, the steps needed to augment the PPCTM so that strategic design of 

product platforms is possible, are discussed. As discussed in Section 2.4, strategic design 

involves taking action in accordance with the future trends well in advance. Chamberlain 

recognizes that the company should develop forecasts of future market trends to make 

sure that the money invested in a new product platform or in the development of a new 

piece of technology continues to pay dividend when the next big market shift occurs a 

few months or years down the line (Chamberlain, 2002). All of the actions that the 

company needs to take at the current time to recognize and account for future trends fall 

under the general heading of an activity that is defined as strategic design. In this section, 

the author augments the PPCTM with certain steps that helps design strategically. These 

steps involve exploring potential portfolio expansions and considering its objectives. 

 

 

 

 

 

 

 

 In the next Section 3.2.1, the augmented steps are discussed in detail.  

 

 

BeamTech has forecasted that the present market in which they plan to sell their beams

will get saturated in about 2 years. The demand will become lesser as time progresses.

Moreover, smaller companies that can compete will further decrease their market share.

They would also not want to develop a product line in the same market that will result in

cannibalization of demand. So, BeamTech wishes to invest in a product line such that it

can be leveraged into neighboring markets after 2 years. Thus BeamTech wants to

strategically design their new product platform such that it continues to pay dividend

when the next big market shift occurs after 2 years. 
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PPCTM-PLUS  
Figure 3.8: Augmentations made to PPCTM-PLUS, for a changing marketplace 

 
 
 
 
 
Steps to Design Product Platforms for Changing Marketplaces  
 
 
Step A - Explore potential portfolio expansions (See Figure 3.8) 
 

In this step, the future portfolio expansions are explored. This involves 

forecasting the market and assigning probabilities to the probable market expansions. The 

bounds of which product specifications are limited and need to be expanded are studied. 

The extent to which this product specification needs to be extended is found. The 
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probability of the demand for that extension is calculated. Hence the result of this step is 

that a number of potential portfolio expansions are identified, their extent is found and 

the probability of that situation to arise in the future determined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Leveraging Product Platforms 
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In this step, the market research team at BeamTech explores different options for 

BeamTech to expand its base. BeamTech has three options: expand only the market 

extent of the load capacity (Figure 3.10a), keeping the extent of length space constant, or 

expand only the extent of length space (Figure 3.10b), keeping the extent of load 

capacity constant or expand both length and load capacity market extents (Figure 3.10c). 

Based on their study, the probabilities are assigned to each of the expansion depending 

on it to happen. Also, the demand generated in that area needs to be considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3.10: Different Possibilities of Expansion of Cantilever Beam Market 
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It is assumed that market research at BeamTech found that there is a probability of 

0.2 for the expansion to take place in the vertical direction, 0.4 to take place in the 

horizontal direction and 0.4 to continue in the existing market. 

 
 
 
 
 
 
 
 
 
 
PPCTM Step 2 - Define the Objective Functions (Define objectives for Potential 
Portfolio Expansions (See Figure 3.8) 

 

Step C of defining objectives for potential portfolio expansions needs to be 

integrated into Step 2.  

Hernandez and Williams have focused on the goal of achieving the performance 

objectives, i.e., bring mean on target. This goal includes typical objectives such as 

minimizing average cost, maximizing average profit, and improving design performance 

objectives (i.e., strength, mass, etc.). Now, we need to consider the future potential 

marketplaces. So here apart from the objectives of the initial marketplace, one needs to 

consider the objectives of the potential marketplaces. The objectives of these potential 

portfolios of the future may be same or different than the objectives of the initial product 

portfolio. However, normally the objectives of the future product portfolios will remain 

the same. Thus in this step, one needs to define the objective functions of the initial 

product portfolio as well as the future potential portfolios.  
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It is not necessary that the objectives of BeamTech in the new extension are 

necessarily the same as the objectives in the old market space. In this step, the objectives 

in the potential portfolio expansion are defined. For example, in the case of expansion of 

the extent along the load (vertical direction), BeamTech wishes to add another objective 

of increasing the life of the beam. Hence, it is seen that a different set of objectives can 

be defined for the expansions. 

 
 
 
 
PPCTM Step 5 - Formulate a Multi-Stage Compromise Decision Support Problem 
(Consider objectives of initial portfolio as well as potential portfolio expansions) 
(See Figure 3.8) 

 

Step E that considers objectives of initial portfolio as well as potential portfolio 

expansions needs to be integrated into Step 5. 

There are a number of sets of objectives that need to be achieved. Every potential 

product portfolio will have its own set of objectives. The cDSP is used to determine the 

ranges of the modes for managing variety that provide the best compromise between 

these conflicting goals.  

Following the tenets of constructal theory, the determination of the range of the 

modes for managing variety that compose a level of the hierarchy represents one stage in 

a multi-stage decision.  With the order of the use of the modes established, a designer 

defines a cDSP for each decision stage in this step. The values of decision variables ∆r 

are the ranges of application of each mode. The manner in which the ranges of 

application of each mode are determined at each stage when one needs to consider the 

different extents of the product platforms is explained below. 
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At every stage in the PPCTM, the size or range of the element of that stage is 

determined. Previously, the size of the element that best achieves the objective is 

determined. However, now the problem becomes complex. One needs to find the size of 

the element for different extents of the market. So for every market extent the size of the 

element in order to maximize their objectives is determined. Depending on the 

probability of each of these expansions determined in the beginning, the weights of each 

market extent and hence each objective is determined. This problem to obtain the 

resultant first stage element is formulated using the compromise DSP.  

Consider a case in which there are two possible expansions that are likely in the 

future. The probabilities of the expansion are p1 and p2. Considering the first stage, the 

size of the element for each extent of market space is considered. If considered 

individually, every market space will have its own size. However, we need to find a 

compromise between the objectives of the product platforms. For instance, if the current 

or initial market space is only considered, one obtains X1 and Y1 as the size of the 

element for that space. Similarly now consider potential expansion 1 and 2 individually. 

For potential expansion 1, since the leveraging takes place only in the horizontal 

direction, Y1 remains the same, however; a different value of X2 is obtained that 

achieves the desired objectives. Similarly, for potential expansion 2, since the leveraging 

takes place only in the vertical direction, X1 remains the same, however; a different value 

of Y2 is obtained that achieves the desired objectives. Depending on the probabilities of 

the initial and potential expansions, a compromise is developed between the sizes of the 

elements. Formulating and solving the compromise DSP, the size of the first stage 
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element as X and Y is determined. This cDSP manages the tradeoff between the 

objectives of the current market space and potential expansions for the first stage. 

 

    X1

Y1

   X2

   Y1

    X1

   Y2

   Y

X

                       Initial Potential Expansion 1

Potential Expansion 2

Determination of
First Stage Element  

Figure 3.11: First stage element 

 

Now, consider the second stage that involves change of mode of product variety 

in only one direction. Since in the potential expansion 1 there is leveraging only in the 

horizontal direction, the size of the second stage element for potential expansion 1 and 
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the initial/current market space remains same, i.e., P1 and Q1. However, in the potential 

expansion 2 there is leveraging in the vertical direction, hence the size of the second stage 

element for potential expansion 2 is different – P2 and Q1.  Again, a compromise DSP is 

formulated and solved to determine the second stage element.  

Similarly, for different stages, a compromise DSP is formulated and solved to get 

the sizes of different elements. 

                       Initial Potential Expansion 1

Potential Expansion 2

Determination of Second
Stage Element

P1

   P2

   P1

  Q1      Q1   Q1

  Q

  P

 
Figure 3.12: Second stage element 
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The goal for each stage is based on the individual sets of objective functions of 

each product portfolio. The deviation function is a weighted sum of deviation variables 

for every objective and measures the extent to which both goals are achieved (Seepersad 

et. al., 2002). The weights for each goal are used to emphasize achievement of one goal 

more than another.  The aim is to minimize the deviation function developed from the 

deviation variables and weights. A generalized formulation of the multi-stage cDSP is 

illustrated in Figure 3.13. 

For Each Stage i 

Given:      The N-dimensional market space MN = {(r1, r2, … rN)} 

                 The N-dimensional future potential market space MN = {(r1, r2, … rN)} 

                 Probability of the future market scenario 

                 The decision variables of the previous stages ∆r(1), …, ∆r(i-1) 

                 The modes of managing product variety to be utilized at Stage i 

Find:         The value of decision variable x(i)=[∆r1(i), ∆r2(i), ∆rN(i)] 

                  The deviation variables, ,x id −  and ,x id +  

Satisfy:      Bounds:           ,min ,max( ) ( )j j jr i r i r∆ ≤ ∆ ≤ ∆  

                  Constraints:     ( ) ( 1)j jr i r i∆ ≥ ∆ − ,    
, ,

, ,

, 0

0
x i x i

x i x i

d d

d d

− +

− +

≥

=i
 

                  Goals:              Gi + ,x id −  + ,x id +  = 1 

Minimize:   Zj = ∑ Wix (d-
x,j + d+

x,j)   

Figure 3.13: Formulation of the Multi-Stage Compromise Decision Support Problem 
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In the case of BeamTech, the expansions are in the horizontal and vertical 

directions. So determination of the first stage and second stage elements will be 

identical to the explanations given above using Figure 3.11 and 3.12. X and Y signify 

∆L and ∆P1 respectively, while P and Q signify ∆L and ∆P2. So in the first stage, 

determination of ∆L and ∆P1 takes place, while in the second stage, determination of 

∆P2 takes place. There is no mode of variation of length in the second stage. Basically, 

at every stage the ranges of application of the modes are found based on the different 

objectives of the existing and possible expansions of the market. 

 

 

3.3 A METHOD FOR DESIGNING PRODUCT PLATFORMS FOR AN 
UNCERTAIN DISTRIBUTION OF DEMAND, CHANGING DESIGN 
PARAMETERS AND CHANGING EXTENTS OF MARKETPLACES 

 

A number of augmentations are needed to the existing PPCTM so that it handles 

uncertain distribution of demand, changing design parameters and changing extents of 

marketplaces (challenges discussed in Section 1.1.3). The augmented steps have been 

shown in Sections 3.1 and 3.2. Now these steps are combined into PPCTM-PLUS to 

present PPCTM-RCM (Robust to Changes in Market) (Figure 3.14). 
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Figure 3.14: Augmented PPCTM 
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3.3.1 Step 1: Define the Geometric Space and the Demand Scenario (See Figure 

3.14) 
 

In the first step of the PPCTM the space of customization is defined.  The space 

of customization is the set of all feasible combinations of values of product specifications 

that a manufacturing enterprise is willing to satisfy (Hernandez et al., 2002).  Consider 

that there are N independent product requirements r1, r2,…,rN identified that characterize 

the customer demands on a product. These requirements help to define the N-dimensional 

space of customization Mn = {(r1, r2, …, rN)}.   A space of customization definition 

involves the following components: 

- identifying which parameters of the product should be varied depending 

on the needs of the customer, 

- the range of variety that is needed to be offered for each parameter,  

- the customer demand in the space of customization, 

- the possible variability in demand in the future. 

Each dimension of the geometric space represents one of the product parameters 

in which variety will be offered.  The bounds of each dimension of the geometric space 

are determined by the range of each varied parameter.  The PPCTM is capable of 

handling non-uniform demand scenario (Williams, 2004). 
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3.3.2 Step 2: Explore Potential Portfolio Expansions (See Figure 3.14) 
 

In this step, the future portfolio expansions are explored. This involves 

forecasting the market and assigning probabilities to the probable market expansions. The 

bounds of which product specifications are limited and need to be expanded are studied. 

For example, in the topmost part of Figure 3.15, the market (product specifications 

requirements) are expanded in all the directions while in the lower part expansion takes 

place in only one direction. The extent to which this product specification needs to be 

extended is found. The probability of the demand for that extension is calculated. Hence 

the result of this step is that a number of potential portfolio expansions are identified, 

their extent is found and the probability of that situation to arise in the future estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Leveraging Product Platforms 
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3.3.3 Step 3: Classify Design Parameters (See Figure 3.14) 
 

In this step, the initial concept exploration space is defined and the problem is 

formulated as a robust design. Design variables are grouped as either control factors or 

noise factors. Ranges of values are specified. The responses, i.e., objective functions that 

need to be studied are also identified.   

Classify design parameters
----------------------------------------------------

        Noise

   Control        Response
   Factors

Product

 

Figure 3.16: Parameter Diagram 

 

As discussed in Section 3.1.1, the method facilitates handling both the types of 

robust design problems: Type 1 and Type 2. In the method, Type 1 problem involves 

demand as a noise factor, the product specifications as the control factors and the 

response as the objectives of that platform. The Type 2 problem involves deviation of the 

design parameters that are the control factors.  

Thus, in this step the classification of different terms in the product platform is 

done.  

 

 

 



 

 112 

3.3.4 Step 4: Define the Objective Functions for Initial and Potential Product 
Portfolios (See Figure 3.14) 
 

The original PPCTM developed in (Hernandez et al., 2001) focused on the goal of 

achieving the performance objectives, i.e., bringing mean on target. Williams in 

(Williams, 2003) infused the utility based compromise Decision Support Problem to 

handle multiple objectives in the PPCTM. An objective function is formulated by a 

discretized analysis of the space using a summation equation (Equation 3.2), or through a 

continuous analysis of the space using an integral (Equation 3.3). 

1,max 2,max ,max

1,min 2,min ,min

1, 2, ,... ( , ,... )
N

N

r r r

i j N k
i r j r k r

o O r r r
= = =

= ∑ ∑ ∑
 

[3.2] 

1,max 2,max ,max

1,min 2,min ,min

1 2 1 2... ( , ,... ) ...
N

N

r r r

N N
r r r

o O r r r dr dr dr= ∫ ∫ ∫
 

[3.3] 

where the min and max subscripts refer to the upper and lower bounds,  

respectively, of each dimension of the space. 

Changing demand and design parameters - Development of the variance objective 

function: 

As discussed previously in Section 3.1.1, the goal of “moving the mean to target” 

has already been presented in (Williams, 2003). It is suggested by the author that the 

development of the other goal of “minimizing variation” could also be achieved by using 

the PPCTM.  

Here, the calculation of the variance objective function for the Type 1 design 

problem to handle changing demand is presented. The changes to be made in the variance 
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objective function for the Type 2 design problem to handle changing design parameters 

are discussed after this explanation. 

For every product that is considered, some amount of noise is provided. This 

noise represents the uncertainty in distribution of demand. The variation in response due 

to the noise is noted. From these values of responses, the variance in response is 

calculated. The amount of noise that is provided can have any value.  

So, for a product (keeping all other design variables constant) with certain values 

of noise, the corresponding variance in response is calculated. Hence for every product 

considered in the PPCTM, corresponding variance in response is calculated. The 

objective is to have minimum such variance. The variance in response is calculated by 

the following formula: 

   σ2 = ∑ (Ri – R)2 / (n-1)    [3.4] 

Where Ri is the response calculated after giving noise Ni  to demand 

 R is the response at mean level of demand 

 n is the number of levels of the noise factor 

 

Considering the entire market space, the sum of variances of all considered 

products in the market space is calculated. This sum for a particular product platform 

should be minimized. The final aim is to get a range of commonality of the design 

parameters that have minimum variation in the response regardless of changes in 

demand. This is achieved by running the PPCTM model with the objective of minimizing 

the variation in objective.  
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Similar analysis needs to be done to calculate the variance objective function for 

the Type 2 design problem involving changing design parameters. Here, the deviation is 

provided in one or more of the design parameters (control factors). For every product in 

the platform, the effect of the deviation in the design parameter on the response is 

determined. Considering the entire market space, the sum of variances of all considered 

products in the market space is calculated. This sum for a particular product platform 

should be minimized. 

Changing marketplaces – Initial and potential product portfolios: 

The goals discussed in the previous section includes typical objectives such as 

minimizing average cost, maximizing average profit, and improving design performance 

objectives (i.e., strength, mass, etc.) for the current marketplace. Now, we need to also 

consider the future potential marketplaces. So here apart from the objectives of the initial 

marketplace, one needs to consider the objectives of the potential marketplaces. The 

objectives of these potential portfolios of the future may be same or different than the 

objectives of the initial product portfolio. However, normally the objectives of the future 

product portfolios will remain the same. Thus in this step, one needs to define the 

objective functions of the initial product portfolio as well as the future potential 

portfolios.  

 

 

3.3.5 Step 5: Identify the Modes for Managing Variety (See Figure 3.14) 
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There is no difference between this step and the original formulation of this step 

in (Williams et al., 2003) and (Hernanadez et al., 2001). The modes of managing variety 

represent the ways in which one can provide variety to the customer in the market space. 

These are the linking mechanism between the product variants that compose the product 

family.  Some modes for managing product variety include dimensional 

commonalization, component commonalization, modularity, and standardization. There 

is no defined way of carrying out this step. This step instead involves brainstorming and 

decision-making between design and manufacturing. 

 

3.3.6 Step 6: Identify the Number of Hierarchy Levels and Allocate the Modes of 
Managing Variety to the Levels (See Figure 3.14) 

 
Now that the space of customization and the objectives of the product platform 

are defined, one needs to identify the modes for managing product variety. This step 

involves the consideration of how a product will be varied in order to satisfy the 

customized specifications of the space of customization. The number of hierarchy levels 

can be equal to or less than the number of modes of managing variety. A hierarchy level 

can have one or more modes of managing variety. These modes of managing product 

variety are the linking mechanism between the product variants that compose the product 

family.  There is no rigid structure to the formulation of these modes; this step instead 

involves brainstorming and decision-making between design and manufacturing. The 

allocation of the modes to appropriate hierarchy levels is done by achieving the smallest 

variations in the varied design parameters at the lower levels of the hierarchy.  
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3.3.7 Step 7: Formulate a Multi-Stage Compromise Decision Support Problem 
(See Figure 3.14) 

 
According to the principles of constructal theory, each stage in a multi-stage 

decision represents a level of the hierarchy and each level determines the range of the 

modes for managing variety. This step is comprised of defining a cDSP at each decision 

level.  

Each decision at every stage involves finding out the range of commonality of 

each mode for managing variety, ∆r(i).  In other words, this involves determining the size 

and shape of each subspace. For a problem with N varied parameters, the decision 

variables for any stage i, are 

1 2( ) [ ( ), ( ),..., ( )]Nr i r i r i r i∆ = ∆ ∆ ∆  [3.4]

 

In the formulation of each cDSP, there exists a constraint on the selection of the 

range of commonality for each mode of managing variety so that a hierarchic design is 

achieved: 

( 1) ( )j jr i r i∆ + ≥ ∆  [3.14]

 

The cDSP helps to find values for the system variables that satisfy the constraints 

and bounds on the design and achieve as closely as possible the system goals. A 

generalized formulation of the multi-stage cDSP is illustrated in Figure 3.17. 
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For Each Stage i 

 

Given:      The N-dimensional market space MN = {(r1, r2, … rN)} 

                 The N-dimensional future potential market space MN = {(r1, r2, … rN)} 

                 Probability of the future market scenario 

                 The decision variables of the previous stages ∆r(1), …, ∆r(i-1) 

                 The modes of managing product variety to be utilized at Stage i 

Find:         The value of decision variable x(i)=[∆r1(i), ∆r2(i), ∆rN(i)] 

                  The deviation variables, ,x id −  and ,x id +  

Satisfy:      Bounds:           ,min ,max( ) ( )j j jr i r i r∆ ≤ ∆ ≤ ∆  

                  Constraints:     ( ) ( 1)j jr i r i∆ ≥ ∆ −  

                                          
, ,

, ,

, 0

0
x i x i

x i x i

d d

d d

− +

− +

≥

=i
 

                  Goals:              Gi + ,x id −  - ,x id +  = 1 

Minimize:   Zj = ∑ Wix (d-
x,j + d+

x,j)   

Figure 3.17: Formulation of the Multi-Stage Compromise Decision Support Problem 

 

Changing distributions of demand and design parameters 

As stated in Section 3.1.1, this step is similar to the one in Step 4 (module F) of 

RCEM (Section 2.2). The evaluation of the two goals of “moving the mean to target” and 

“minimizing deviation” is discussed in Step 4 of this section. These are the two goals that 

need to be satisfied to get a robust design. Under the first goal of “moving the mean to 
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target”, there can be a few objectives that the product platform must achieve. A decision 

has to be made that would give the best possible combination of the objectives of the 

product platform, i.e., “moving the mean to target” and “minimizing deviation”. The 

Compromise DSP is used to formulate this problem.  

The aim of the cDSP is to find values for the system variables that satisfy the 

constraints and bounds on the design and achieve as closely as possible two system goals: 

 

1) moving the mean to target 

2) minimizing the deviation in response 

 

The extent to which each goal is achieved is modeled by the system goals-  

Response/Ideal Value + di
- - di

+ = 1 

Ideal Value/ Variance + di
- - di

+ = 1 

The aim is to maximize the value of each individual objective function (i.e., reach 

the RHS, 1). A designer would like to achieve the ideal value of 1, but does not expect to 

achieve it necessarily. Deviation variables (d- and d+) indicate the extent to which each 

goal achieves its target value. The deviation function is a weighted sum of deviation 

variables for both goals and measures the extent to which both goals are achieved 

(Seepersad et. al., 2002). The weights for each goal (W1 and W2) are used to emphasize 

achievement of one goal more than another. The deviation function is minimized in the 

solution process. 

Z = W1 d1
- + W2 d2

- 
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Changing extents of marketplaces 

There are a number of sets of objectives that need to be achieved in a changing 

environment. Every potential product portfolio will have its own set of objectives. The 

cDSP is used to determine the ranges of the modes for managing variety that provide the 

best compromise between these conflicting goals.  

The manner in which the ranges of application of each mode are determined at 

each stage, when one needs to consider the different extents of the product platforms is 

explained below. 

At every stage, in the PPCTM the size or range of the element of that stage is 

determined. Previously, the size of the element that best achieves the objective is 

determined. However, now the problem becomes complex. One needs to find the size of 

the element for different extents of the market. So for every market extent the size of the 

element in order to maximize their objectives is determined. Depending on the 

probability of each of these expansions determined in the beginning, the weights of each 

market extent and hence each objective is determined. This problem to obtain the 

resultant first stage element is formulated using the compromise DSP as shown in Section 

3.1.1. 

 

3.3.8 Step 8: Solve the Multi-Stage Compromise Decision Support Problem (See 
Figure 3.14) 

 
 

The final step of the augmented PPCTM is solving the multi-stage cDSP 

formulated in the previous step. Solution of the different stages of the cDSP helps to 

obtain the values of the ranges of each mode for managing product variety that achieve 
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closest to the ideal value of the objectives. Although the solution method proposed in the 

formulation of the original PPCTM is the use of dynamic programming to approximate 

the relationship between each decision stage (Hernandez, 2001), Hernandez has moved to 

a more generic description of his sixth step, “Solve the Multi-Stage Optimization 

Problem” in his recent publications (Hernandez et al., 2002).  The difficulties in dynamic 

programming due to the exhaustive search of combinations of combinations of design 

parameters and their influence on the objectives are noted down in (Williams, 2003). 

Following this trend, this step involves the implementation of “an appropriate solution 

algorithm” for the determination of the main decision variables of the multi-stage cDSP. 

This solution method (modified from Williams, 2003) involves iterating through 

values of the modes of managing variety (∆r) establishing the dimensions of the sub-

spaces, commonalizing the design parameters across each sub-space, evaluating the 

objective functions, and calculating and comparing the resulting overall utility of each 

iteration.   
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Figure 3.18: Solution Algorithm (Modified from Williams, 2003) 
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- A particular combination of sub-space element sizes is taken as input (A). 

The input also includes demand scenario (B) (present and future) (Step 1), current 

geometric space (market space) (Step 1) and future potential expansion of the 

market with its probability (C) (Step 2) and the objective functions (D) (Step 4).  

- From the sizes of the sub-space elements (E), the bounds of each sub-

space are established (F). The values of parameters to be commonalized are 

determined from the bounds of the sub-space (G). This involves calculation of the 

parameters from their respective modes (I, J). This step of calculation of the 

parameters can also be done by formulating cDSPs and finding out the parameters 

with the goal of achieving the objectives (1, 2, 3, 4, 5, 6). There is a need to 

generate different combinations of the standard materials or components if 

available for a particular mode (i, ii). Then objective functions are determined 

based on this combination. 

- These parameters are then commonalized across the respective sub-spaces 

(H). The objective function is determined for every variant considering the 

parameter values across each sub space (L).  

- For calculation of the variance in response, the first step involves 

calculation of the response of the system for the particular parameter values (M) 

and assessing the selling price (N) and demand for each variant. Then variance is 

provided in the form of noise or deviation to the control factors.  The response is 

then calculated while keeping other parameters constant. From the responses 

obtained due to different values of the deviation in control factors or noise, the 
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variance in response is calculated (O).  Approximately, ±20% noise is provided to 

the values of demand or deviation in control factors.  

- After obtaining the variance in response for each variant, it is added up to 

get the total variance. Similarly, the response of each variant is summed and 

averaged across the space (P). The objectives are found for the initial as well as 

potential expansion of the market.  

- The deviation variables of each of the objectives are obtained (Q, R, S, T). 

Depending on the probability of the future expansion, the weights for each of the 

objectives of the cDSP are decided. The deviation variables and the weights of 

profit and variance for the initial and potential market spaces help to obtain the 

deviation function as the output of this algorithm (U). 

- The value of the deviation function obtained from the deviation variables 

is returned from the analysis and is compared with previous output.  After each 

feasible combination of ranges of the modes for managing variety is explored, the 

input that provides the smallest deviation from the goal is selected.   

 

This is a general algorithm by which the decision variables for the multi-stage 

cDSP formulated in Step 7 is determined. Using this algorithm, any solution technique 

can be used to get the decision variables. Although this solution method is not the most 

efficient, it is rigorous and is capable of providing empirical structural validity to the 

research goals of this work. The research goal of this thesis is not to explore different 

solution algorithms or find the best solution technique.  
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In recent publications of Hernandez (Hernandez et al., 2003), exhaustive search is 

used for multi-stage, simple problems. In his thesis, Williams has analyzed different 

optimization techniques along with the exhaustive search. It has been found that not only 

exhaustive search technique gives better results than other methods, but the 

computational intensiveness is also manageable. Hence, the author follows the trend to 

use exhaustive search technique in this thesis comparing it with optimization techniques 

in one of the examples.  

This augmented PPCTM facilitates design of products that are robust to uncertain 

distribution of demand, changing design parameters and extents of marketplaces. 

 

3.4 A LOOK BACK AND A LOOK AHEAD 
 

The author’s objective in this thesis is to augment the PPCTM to enable it to 

handle: 

- uncertain distribution of demand 

- changing design parameters 

- changing extents of marketplaces 

 

In Chapter 2, the different constructs on which the augmentations of the PPCTM 

are proposed are discussed. The constructs discussed are: 

- Robust Concept Exploration Method 

- Compromise DSP 

- Strategic Design 
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In this chapter, the different augmentations are proposed using the constructs in 

Chapter 2. The augmented PPCTM has also been presented that overcomes the 

limitations stated in Section 2.4. 

The first two sections deal with proposing the steps that are needed to handle the 

above mentioned augmentations. In the first section, the author addresses the first two 

augmentations – uncertain distribution of demand and changing design parameters. This 

section helps to integrate aspects of the RCEM into product platform design to handle 

robustness. The steps needed for Type 1 and Type 2 robust design problems have been 

discussed in this section. 

The author’s objective in the second section is to address the third augmentation – 

changing extents of marketplaces. This section helps to propose steps by which 

compromise DSP is used to strategically design product platforms. This involves 

exploring new portfolio expansions and designing product platforms considering current 

as well as future product portfolio objectives.  

In the third section, the augmented PPCTM has been presented. The augmented 

eight-step method facilitates handling of the above-mentioned three objectives of this 

thesis. Thus it enables a designer to design product platforms that are robust to changes in 

demand, design parameters and extents of marketplaces. 

Looking at the theoretical structural validity of the thesis, it started in Chapter 2 

where the different underlying constructs that are going to be used were discussed. In this 

chapter, the theoretical structural validity is established by showing how the constructs 

are combined together to achieve the objectives of this thesis. The theoretical structural 
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validity is established in this chapter by considering the author’s three objectives in the 

thesis: 

- The steps making the product platform robust to changing demand and design 

parameters involve using the basic principles of robust design. The aspects from 

RCEM remain intact through the infusion and hence the resulting augmentation is 

sound. The incorporation of multiple objectives has already been established in 

William 2003 and hence PPCTM remains structurally sound after the incorporation of 

robustness. 

- Compromise DSP has been used to strategically design product platforms in the 

thesis. The use of compromise DSP for product platforms design has been done in 

(Seepersad, 2002). The combination of the use of compromise DSP for strategic 

design and PPCTM for design of platforms has been presented in this chapter without 

violating any of the individual formulations. 

 

Looking back, the challenges that need to be faced in design of product platforms 

for customization has been discussed in Chapter 1. The constructs that are used to 

overcome some of the limitations identified in Chapter 1 has been presented in Chapter 2. 

Using those constructs, the PPCTM has been augmented to address the key issues and the 

resulting eight step method is presented in this chapter. The application of this method for 

empirical structural and empirical performance, are presented in Chapters 4 and 5. In 

Chapter 4, the method is applied to the design of customizable pressure vessels and hand 

exercisers to show the method’s ability to handle uncertain demand and changing design 
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parameters respectively. In Chapter 5, the augmented method is used in the design of a 

line of pressure vessels to deal with the changing extents of the market. 
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CHAPTER IV 

 

4 DESIGN OF A FAMILY OF CUSTOMIZABLE 
PRESSURE VESSELS AND HAND EXERCISERS TO 
DEAL WITH UNCERTAIN DEMAND AND CHANGING 

DESIGN PARAMETERS 
 

 

In Chapter 2, the underlying constructs that are going to be used in this thesis are 

presented. In Chapter 3, the augmented PPCTM is established using the constructs 

discussed in Chapter 2. The theoretical structural validity has been established in this 

thesis till now. This chapter and Chapter 5 apply this method to examples to provide 

empirical and theoretical performance validity of the work.  

The main focus of the author in this chapter is to answer the first section of the 

primary research question: 

 

Q1.1: “How should the Product Platform Constructal Theory Method be augmented in 

order to cope with the uncertainty and inherent changes in demand?” 

Q1.2: “How should the Product Platform Constructal Theory Method be augmented in 

order to cope with the changes in design parameters?” 

Hypothesis 1: The infusion of concepts of robustness into the Product Platform 

Constructal Theory Method enables to design platforms that are unaffected by changes in 

demand and design parameters. 
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This chapter is comprised of two example problems – pressure vessel and hand 

exerciser. The pressure vessel problem helps to address the Q1.1, which deals with the 

uncertainty and inherent changes in demand. The hand exerciser problem helps to address 

the Q1.2, which deals with the changes in design parameters. The concepts of robustness, 

as explained in Chapter 2 and 3, are used to design platforms that are unaffected by such 

changes.  The position of this chapter in the thesis is seen in Figure 4.1 and Figure 4.2. 
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Figure 4.2: Thesis Roadmap 
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third section deals with the application of the augmented method to the example problem. 

The fourth and fifth sections present the results and the analysis and validity of the 

results. This chapter helps to present a method that designs product platforms robust to 

changes in demand and design parameters. 

 

4.1 ROBUST DESIGN OF A FAMILY OF CUSTOMIZABLE PRESSURE 
VESSELS TO DEAL WITH UNCERTAIN DEMAND (TYPE I ROBUST 
DESIGN PROBLEM) 

 
This example problem of designing a family of customizable pressure vessels has 

been presented in previous applications of the PPCTM (Hernandez, 2001; Carone et al., 

2003; Williams, 2003; Hernandez et al., 2003).  As such, it is an appropriate example for 

the validation of the augmentations provided in this work since comparison of results is 

made. Through this example problem, the section of the method to handle uncertain 

demand is tested.  

 

4.1.1 Problem Statement – Uncertain Demand 
 

A manufacturer of pressure vessels wishes to customize the vessels to gain more 

customers and has a competitive advantage over other leading manufacturers. As is 

typical of markets of customizable products, the demand is highly fragmented and 

uncertain.   As such, the manufacturer wishes to develop a product family that can 

efficiently offer customizable pressure vessels in a market of uncertain demand. 

For this example, it is assumed that the conceptual design phase and the beginning 

of the embodiment phase of the pressure vessel have already been completed.  Each 
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vessel consists of a cylindrical container capped on both ends by hemispherical heads.  A 

schematic of the basic design is presented in Figure 4.3. 

L

R

Th Ts

 

Figure 4.3:  Schematic of Pressure Vessel Embodiment (Hernandez, 2001) 

 

The manufacturer wants to specify for each possible combination of pressure and 

volume the following design variables: length (L), radius (R), and the head and shell 

thickness (Th and Ts).  The manufacturer wishes to offer vessels that range in volume 

from 10 to 30 m3, and in pressure from 10 to 30 MPa. The manufacturer’s aim is to have 

a robust product platform that will give maximum average profit despite changing 

product demand.  

Some of the assumptions in this example are noted down below: 

- The development of the product platform is by scaling product components and 

not by changing functionality of the product. 

- In this chapter, the extents of the marketplace are assumed to be fixed. There is no 

extension of the market in future. However, in Chapter 5, the future extensions of 

markets are also considered. 

- Due to the customization provided in the vessels, it is assumed that the resulting 

product family will be of high demand and therefore profitable.   
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4.1.2 Modeling of Pressure Vessel Product 

The pressure vessels are produced from carbon steel ASME SA 203 grade B.  

Sheets of this material are available in thicknesses ranging between 6.35mm and 

76.2mm.  Available equipment limits the maximum radius to 1.5m and the maximum 

length to 7m. 

The design of the vessels must satisfy the following constraints on the minimum 

allowable thickness of the shell and for a given pressure (Bednar, 1986): 

 

0.6s
y

PT R
Pσ

 
≥   −   

[4.1] 

2 0.2h
y

PT R
Pσ

 
≥   −   

[4.2] 

where P is the pressure, σy is the yield strength of the material (1077 MPa). 

In order to assess the profit of the product platform, a means of modeling the selling 

price and the cost of the vessels is needed.  The analysis of the cost is similar to that used 

by Hernandez in his original application of the PPCTM to the pressure vessel example 

(Hernandez, 2001) and (Williams, 2003) in his augmentation.  The total cost of the 

manufacturing of the pressure vessel (ignoring all labor and plant costs) includes four 

components: material cost, welding cost, order cost, and equipment cost.  

The material cost is determined by the amount of material that is going to be needed 

to build the vessel.  This is in turn the amount of material purchased. This cost is 

comprised of two parts - the cost of the material used in each vessel and the cost of the 

material wasted by cutting the raw steel plates to the required dimensions.  The cost of 

material (Cmaterial) is therefore given by: 
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22 ( )material s s h h wasteC C RT L C R T Cπρ= + +  [4.3]
where ρ is the density of the material (7800 kg/m3), Cs is the cost per kg of processed 

shell steel ($0.8 per kg), and Ch is the cost per kg of forged steel for the head ($2 per kg).  

The cost of wasted material (Cwaste) is given by: 

2 ( )waste p s oC C T R L Lπρ= −  [4.4]
where Lo and Cp are the length and cost per kg ($0.3 per kg), respectively of a raw steel 

plate.   

All welds in the manufacturing process are single-welded butt joints with a backing 

strip.  The welding cost (Cweld) is composed of the cost of the longitudinal weld and the 

cost of the circumferential weld.  The longitudinal welding cost (Clongweld) is given as: 

longweld l wC V Cρ=  [4.5]
where the volume of the welding material, Vl is given by 

2
260 42

cos30 360 9
s

l s
TV L T Lπ π   = =  

  D
 [4.6]

and Cw is the approximate cost of welding material ($15/kg hand welded). 

The circumferential welding cost (Ccircweld)is given as: 

circweld s wC V Cρ=  [4.7]
where the volume of the welding material, Vs, is given by 

2
22 260 84

cos30 360 9
s

s s
TV R T Rπ π   = =  

  D
 [4.8]

The total welding cost becomes 

2 22 42
9 9weld w s w sC C T L C T Rπρ π = + 

 
 [4.9]

 

The total cost for a single pressure vessel, without including equipment costs is 

therefore, 
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( )2 22 2 4( , , , ) 2
9 9s h s s h h w s w s p s oC L R T T C RT L C R T C T L C T R C T R L Lπρ π = + + + + − 

   
[4.10]

There is also a cost associated with ordering the material, Corder.  Each time an order 

for raw material is placed, a fee of $250 is assessed in order to cover shipping, handling, 

and stocking in the inventory.  This cost is based on the number of different sized sheets 

of raw material in order; it is not related to the quantity of sheets ordered.  This cost is 

tabulated using Equation 4.11. 

1
$250

m

order
i

C
=

= ∑
 

[4.11]

where m is the number of distinct sheets of metal required for the manufacturing process 

(i.e., the number of distinct values of Lo). 

The cost Ct of manufacturing a different value of thickness amounts to an additional 

fee of $50 in order to make the necessary changes.  

The cost of purchasing manufacturing equipment (Cequip), namely the forging 

presses and the associated dies to make the heads of the vessels, is evaluated with 

( )
1

500000 50000
pN

equip p
p

C R
=

= +∑
 

[4.12]

where Np is the number of presses needed, and Rp is the radius of the die used with each 

press.  The cost equation presented in Equation 4.3 is the total cost of producing one 

vessel; the ordering cost and equipment cost (Equations 4.11 and 4.12, respectively) are 

calculated for the entire family of vessels and their required manufacturing needs.  It is 

assumed that each forging press has a very large production capacity; one press for each 

individual radius is sufficient to meet any demand. 

+ Ct
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This completes the modeling of cost. Now a manner for determining the selling 

price of each product variant is determined in order to find out the total profit.   For this 

example the selling price is established as a function of volume and pressure: 

v pSelling Price C V C P= +  [4.13]

 

where Cv and Cp are the cost constants for volume (255 $/m3) and pressure (255 $/MPa) 

respectively.  Finally, total profit is established by summing the difference of the selling 

price and cost for all of the product variants, n, as well as subtracting the cost of the 

orders, and the cost of the manufacturing equipment needed for the production process. 

 

[ ]( , , , )
n

total i i s h order equip
i

Profit SellingPrice C L R T T C C= − − −∑
 

[4.14] 

 

     

4.1.3 Product Platform Constructal Theory Method for the Design of a Pressure 
Vessel Product Platform to deal with Uncertain Demand 

 

This section helps to discuss the steps relevant to deal with uncertain demand in 

the PPCTM-RCM (augmented PPCTM) (Figure 3.11) by applying it to the pressure 

vessel problem. PPCTM-PLUS is useful in situations where the demand is well defined 

and there are no changes foreseen in future and so the platform does not give favorable 

results with uncertain demand. In this section, the pressure vessel platform is designed by 

using the PPCTM-RCM and the results are compared with PPCTM-PLUS to show that 

the platform is now robust to changes in demand.  
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Figure 4.4: PPCTM-RCM (Augmented PPCTM) 

 

 

Step 1: Define the 
Geometric Space and the 

Demand Scenario

Step 4: Define the 
Objective Functions of 

Initial and Potential 
Product Portfolios

Step 5: Identify the Modes 
for Managing Variety

Step 6: Identify the 
Number of Hierarchy 

Levels and Allocate the 
Modes for Managing 
Variety to the Levels

Step 7: Formulate a Multi-
Stage Compromise 

Decision Support Problem

Step 8: Solve the 
Multistage Compromise 

Decision Support Problem

Step 2: Explore Potential
Portfolio Expansions

Step 3: Classify Design
Parameters

Step 1: Define the 
Geometric Space and the 

Demand Scenario

Step 4: Define the 
Objective Functions of 

Initial and Potential 
Product Portfolios

Step 5: Identify the Modes 
for Managing Variety

Step 6: Identify the 
Number of Hierarchy 

Levels and Allocate the 
Modes for Managing 
Variety to the Levels

Step 7: Formulate a Multi-
Stage Compromise 

Decision Support Problem

Step 8: Solve the 
Multistage Compromise 

Decision Support Problem

Step 2: Explore Potential
Portfolio Expansions

Step 3: Classify Design
Parameters



 

 138 

 

Step 1: Define the Geometric Space and the Demand Scenario 

Product customization is offered in two independent design specifications – the 

volume and pressure of the vessel. The resulting two-dimensional continuous space of 

customization along with the demand is shown in Figure 4.5. 

D=150 vessels

D=250 vessels

                                D=400 vessels

P          30
(MPa)

V (m3)

3010

10

 

Figure 4.5: Pressure Vessel Space of Customization 

 
The demand in the market space can take any form – discrete, concentric square, linear 

continuous, gaussian distribution or any random model of demand. It is assumed to be 

concentric square in this case. 

 

Step 2: Explore potential portfolio expansions 

In Section 4.1.1, it is assumed that in this chapter there are no changes in the extents of 

the marketplaces. Hence, there is no need of exploring potential portfolio expansions and 

so this step is skipped. 
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Step 3: Classify Design Parameters 

This step begins the formulation of the problem by classifying the design factors.  

The classification is illustrated in Figure 4.6. Here, the demand is considered as the noise 

factor, while the control factors are the length, thickness of head and shell and radius of 

the vessel. Hence, providing some variation in demand to a product, in the form of noise, 

one can study the response i.e., profit obtained keeping the control factors constant.  

 

 

 

 

 

 

 

 

Figure 4.6: Factors and Response for Pressure Vessel Design 

 

Step 4: Define the Objective Functions 

The manufacturer has two conflicting goals – one is maximizing the profit and the 

other is to minimize the deviation in profit due to fluctuations in demand. The primary 

objective, maximizing the profit, is the goal that the manufacturer wishes to “move the 

mean to target.”   

The average profit AvgProfit is calculated by dividing the total profit obtained in 

Equation 4.15 by the total demand of the products of the market space.  

1

1 ( )
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i i i order equip
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where SellingPricei is the selling price of each product variant, Ci is the cost of each 

pressure vessel, Corder and Cequip are the costs associated with ordering and manufacturing 

equipment, respectively, and Di is the demand of the specific product variant i, and Dtot is 

the total demand of the products of the market space. 

As seen in Figure 4.6, demand is considered as the noise factor for this example.  

The other goal of this problem is to determine the control factors that minimize the 

variance of profit that typically arise from fluctuations in demand.  The variance in profit 

is calculated by the following formula: 

σ2 = ∑ (Pi – P)2 / (n-1) [4.16]

where Pi is the profit calculated for demand Di, 

 P is the profit at mean demand, and 

 n is the number of levels of the noise factor. 

Considering the entire market space, the sum of variances of all considered products in 

the market space is calculated. The objective is to minimize the sum of variances for a 

particular product platform. 

 

Step 5: Identify the Modes for Managing Variety 

After brainstorming, designers have identified four different modes of managing 

product variety in pressure and volume. 

 

Dimensional Customization of Shell Length (V1) 

For this mode, the radius is kept constant while changes in volume are achieved by 

cutting each shell length from a stock piece of raw material.  Hence, for a certain range of 
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volumes, there is a common stock length of material with the radius remaining same.  

While it is cheaper to offer the minimum required length for a given radius, there is an 

ordering cost associated with each different length of raw material. 

L2L1  
Figure 4.7: Dimensional Customization of the Length of the Shell (Hernandez, 2001) 

 

Commonalization of Radius (V2) 

The changes in volume in this mode are achieved by modifying the radius of a 

vessel.  Since each different radius used leads to a new press and a die purchase, there is 

an increase in equipment cost.  At the same time, it is obvious that there also exists a cost 

savings in material and waste costs by having radii that closely match that which is 

required. 

 

Modular Combination of Vessels (V3) 

In this mode, modular combination of vessels is used to achieve discrete changes in 

volume.  This is done by combining vessels of two lesser volumes.  This mode affects the 

costs of manufacturing equipment as well as the material costs. There is a saving on the 

purchase of manufacturing equipment costs while the material costs associated with using 

two smaller vessels may offset this savings. Hence, in this mode one determines the range 

of volumes for which modularity is used.  
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Figure 4.8: Modular Combination of Vessels (Hernandez, 2001) 

 

 

Standardization of Thickness of Head and Shell (P1) 

In this mode of managing variety in pressure, the modifications in the thickness of 

both the shell and the head of the vessel provide a way of changing the pressure.  It is 

based on the fact that if a shell with dimensions R and L, and thickness Ts and Th satisfy 

the pressure constraints for a pressure P1, it also satisfies these constraints for any 

pressure P ≤ P1. There is also an additional charge for use of different thicknesses. 

 

Step 6: Identify the Number of Hierarchy Levels and Allocate the Modes for 
Managing Variety to the Levels 

 

In this step, the different modes of managing product variety are ordered 

hierarchically.   

 

The First Stage and the First Space Element 
 

As stated in Section 2.1, the first stage in the hierarchy is held by the mode that 

offers the smallest variations in the design parameters. Hence, out of the different modes 

available for managing variety, the mode with the highest fidelity is selected for this 

stage. For this first space element, Modes V1 (dimensional customization of shell length) 
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and P1 (standardization of head and shell thickness) are used together to achieve variety 

in both volume and pressure.  Dimensional customization of shell length makes small 

variations in volume possible. By cutting the raw material, of length Lo, to any length 

desired, L, this mode achieves continuous changes of volume. 

The value of the variables ∆V1 and ∆P1 determines the size and shape of the first 

space element, S1 (Figure 4.9).  ∆V1 and ∆P1 represent the extent to which these modes of 

managing variety are applied to the platform. These need to be determined at this stage 

and are therefore the decision variables for this first stage. 

(V2, P2)

(V1, P1)

(R constant)

∆V1
∆P1

L2L1

Mode V1: Cutting Length L

Mode P1: Standard (Common)
Thicknesses Ts and Th

S1S

V

P

 

Figure 4.9: The First Space Element of the Pressure Vessel Space for Customization (Hernandez, 2001) 

 
The Second Stage and the Second Space Element 
 

The second space element, S2, is composed by a number of first space elements, S1, 

in the volume dimension. The mode after dimensional customization of shell length that 

offers small variation in volume is the commonalization of radius (Mode V2).  Hence, for 

this second space element, commonalization of the radius (Mode V2) is used to achieve 

variety in volume. The value of the variable ∆V2 determines the size and shape of the 

second space element, S2 (Figure 4.10).  ∆V2 represents the extent to which the radius is 



 

 144 

commonalized across the platform and is therefore decision variable for this second 

stage. 

 

 

 

 

 

Figure 4.10: The Second Space Element of the Pressure Vessel Space for Customization 

 

The Third Stage and the Third Space Element 
 

The third space element, S3, is composed by a number of second space elements, 

S2, in the volume dimension. For this third space element, modularity of vessels (V3) is 

used to achieve variety in volume (Figure 4.11). The value of the variables ∆V3 

determines the size and shape of the third space element.  ∆V3 represents a point in the 

space in which modular combination of vessels begins, and is therefore decision variable 

for this third stage. 

 For example, if there exist customizable vessels in a range Vmin to V’, volumes 

larger than V’ (up to 2V’) are achieved by combining vessels within this range.  In Figure 

4.11, V’ is 20 m3, so all vessels with volumes greater than V’ are achieved by combining 

two vessels. Hence, the variable to be determined in this case is the cut-off point (V’) – a 

point where vessels with larger volumes are composed of two smaller vessels below the 

cut-off point.  

(V1,P1)

(V2,P2)

∆V2

∆P1

V

P

S2

Mode V2
Commonalization
Of Radius

(V1,P1)

(V2,P2)

∆V2

∆P1

V

P

S2

Mode V2
Commonalization
Of Radius
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V min=10

(25,P)P

30

L

+

12.5

V’=20

L

12.5

 
Figure 4.11: An Example of the Modular Combination of Vessels (Hernandez, 2001) 

 

All the three subspaces with the decision variables are seen together in the Figure 

4.12 below. 

dV2

       dP1

dV1 dV3

S1

S2

S3

 

Figure 4.12: Product platform in terms of dV3, dV2, dP1, dV1 

 

 A graphical representation of the different modes of managing variety is seen in 

the Figure 4.13 below. 
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Figure 4.13: Hierarchic Organization of the Modes for Managing Product Customization for the Pressure 
Vessel (Williams, 2003) 

 

Step 7: Formulate a Multi-Stage Compromise Decision Support Problem 

There are two goals that need to be satisfied to get a robust design – maximizing 

profits and minimizing variation in profit. Since there are two goals, a decision has to be 

made that gives the best possible combination of both. The compromise DSP is used to 

formulate this problem.  The system goals are formulated for each decision stage of 

PPCTM because their focus is in achieving these two goals.  The goal for each stage is 

based on the individual objective functions of profit and variance.  The values of profit 

and variance to be used are found using average value and summation respectively, 

calculated in each decision stage.   
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In the formulation of the compromise Decision Support Problem, the goals are 

measured in terms of the deviation of the objective function from the ideal value. In this 

case, the first objective is of maximizing profit and the second objective is to minimize 

variation. As discussed in Section 3.1, the average profit AvgProf is divided by the 

maximum possible profit IP and the deviation of this ratio from the ideal value of 1 is 

calculated. Similarly, the minimum possible variance IV is divided by the actual variance 

and the deviation of this ratio from the ideal value of 1 is calculated.  Each set of 

objective function is represented by: 

(AvgProf / IP) + di
- - di

+ = 1 [4.10] 

( IV / Variance) + di
- - di

+ = 1 [4.11] 

 The deviation variables are thus found. Using the weights of each objective as 

discussed above, along with the deviation variables forms the deviation function.  

Z = kAvgProfit d1
- + kvariance d2

- 

The First Stage and the First Space Element 
 

The decision variables of the first space element are ∆V1 and ∆P1, the range of 

application of Modes V1 and P1 respectively.  Three design variables are commonalized 

in the first space element through the application of these two modes of managing 

customization: the raw length, Lo, the head thickness, Th, and the shell thickness, Ts. 
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Decision 1: ∆V1, ∆P1 

Given:       The two-dimensional market space S = {(V, P)} 

                  Mode V1: Dimensional Customization of the Shell Length 

                  Mode P1: Standardization of the Head and Shell Thickness 

                  Mean and variance of the noise factor 

Find:         The value of decision variable ∆V1, ∆P1 

                  The deviation variables, d1
- and d1

+, d2
- and d2

+ 

Satisfy:    Bounds:    10 20V≤ ∆ ≤  

                                  10 20P≤ ∆ ≤  

            Constraints: 
0.6s

y

P
T R

Pσ
≥

−

 
 
 

,    
2 0.2h

y

P
T R

Pσ
≥

−

 
 
 

 

                                          d1
-, d1

+ 0≥       ;       d1
- . d1

+ = 0 

                                          d2
-, d2

+ 0≥       ;       d2
- . d2

+ = 0 

                  Goals:            (AvgProf / IP ) + d1
- - d1

+ = 1 

                                         (IV / Variance )] + d2
- - d2

+ = 1 

Minimize:  Z = kAvgProfit d1
- + kvariance d2

- 

                         where:    AvgProf is calculated as in [4.15] for market space 

                                       IP = Maximum profit of market space 

                                       Variance = Variance of market space 

                                      IV = Minimum variance of market space         

Figure 4.14: Formulation of the Multi-Stage cDSP for the First Space Element 
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The Second Stage and the Second Space Element 
 

The decision variable of the second space element is ∆V2, range of application of 

Mode V2.  Only design variable, radius R is commonalized in the second space element. 

Decision 2: ∆V2 

Given:       The two-dimensional market space S = {(V, P)} 

                  The value of ∆V1, and ∆P1 from the first stage 

                  Mode V2: Commonalization of the Radius 

                  Mean and variance of the noise factor 

Find:         Value of decision variable ∆V2 , deviation variables, d3
- d3

+, d4
- , d4

+ 

Satisfy:      Bounds:            0≤∆V2≤20,       Constraints:      ∆V1≤∆V2≤20 

                                          d3
-, d3

+ 0≥ ; d3
- . d3

+ = 0; d4
-, d4

+ 0≥ ; d4
- . d4

+ = 0 

                  Goals:            (AvgProf / IP ) + d3
- - d3

+ = 1 

                                         (IV / Variance ) + d4
- - d4

+ = 1 

Minimize:  Z = kAvgProfit d3
- + kvariance d4

- 

                         where:    AvgProf is calculated as in [4.15] for market space 

                                       IP = Maximum profit of market space 

                                       Variance = Variance of market space 

                                       IV = Minimum variance of market space 

Figure 4.15: Formulation of the Multi-Stage cDSP for the Second Space Element 

 
The Third Stage and the Third Space Element 
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The third and final space element is defined by the range of application of Mode 

V3: Modular Combination of Vessels.  The decision associated with this mode is the 

selection of “cut-off” point – a point where vessels with larger volumes are composed of 

two smaller vessels below the cut-off point.  The space element S3 is composed of a 

number of spaces S2 from the minimum volume of the space, Vmin, to a cut-off point, V’ . 

Decision 3: ∆V3 

Given:       The two-dimensional market space S = {(V, P)} 

                  The value of ∆V1, ∆P1, ∆V2 from the first and second stages 

                  Mode V3: Modular Combination of Vessels 

                  Mean and variance of the noise factor 

Find:         Value of decision variable ∆V3 , deviation variables, d5
- , d5

+, d6
- , d6

+ 

Satisfy:      Bounds:            0≤∆V3≤20,   Constraints:      ∆V1≤∆V2≤∆V3≤≤20 

                      d5
-, d5

+ 0≥ ; d5
- . d5

+ = 0;  d6
- ,d6

+ 0≥  ; d6
- . d6

+ = 0 

                  Goals:            (AvgProf / IP ) + d5
- - d5

+ = 1 

                                         (IV / Variance ) + d6
- - d6

+ = 1 

Minimize:  Z = kAvgProfit d5
- + kvariance d6

- 

                         where:    AvgProf is calculated as in [4.15] for market space 

                                       IP = Maximum profit of market space 

                                       Variance = Variance of market space 

                                       IV = Minimum variance of market space 

Figure 4.16: Formulation of the Multi-Stage cDSP for the Third Space Element 
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With the multi-stage cDSP formulated, we move on to the solution of the augmented 

PPCTM, which is the last step. 

Step 8: Solve the Multi-Stage Compromise Decision Support Problem 

There are two ways in which this problem can be tackled – continuous or discrete 

analysis. In continuous analysis, one needs to express the objectives in terms of the 

design parameters. This includes expressing the demand in terms of the design 

parameters. As identified in (Williams, 2003), the continuous analysis becomes complex 

and mathematically demanding due to the consideration of multiple objectives and 

changing demand.  

In discrete analysis, the analysis is done on a discrete set of points in the space 

which helps to approximate the entire space. For discretization of the space, a certain 

resolution is chosen by the designer. Considering this resolution, nodes are established in 

the space of customization and objective function at every node is calculated. This 

method was also used in (Williams, 2003) and seems to be appropriate for such problems 

in which expressing the objective function in terms of the design variables is difficult due 

to consideration of multiple objectives and changing demand.  

Now the formulation of an appropriate solution technique needs to be determined. 

Any appropriate solution algorithm can be used; its primary goal is the determination of 

the extent of application of the modes that provides the least deviation from the ideal 

value, from which the commonality of design parameters of the product platform is 

determined.   

Our solution technique is illustrated in Figure 4.17 (modified from Williams, 2003). 

This solution method involves iterating through values of the modes of managing variety 
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(∆V1, ∆V2, ∆V3, and ∆P1), establishing the dimensions of the sub-spaces, commonalizing 

the design parameters (Lo, Ts, Th, and R) across each sub-space, evaluating the objective 

functions, and calculating and comparing the deviation function of each iteration.  

Specifically: 

- A particular combination of sub-space element sizes is taken as input. The input 

also includes demand scenario, geometric space (market space) and the objective 

functions (maximize profit, minimize variance). 

- From the sizes of the sub-space elements, the bounds of each sub-space are 

established. The values of parameters to be commonalized are determined from the 

bounds of the sub-space. This involves calculation of the parameters from their 

respective modes. 

- These parameters are then commonalized across the respective sub-spaces. The 

objective function is determined for every variant considering the parameter values 

across each sub space.  

- For calculation of the variance in profit, the first step involves calculation of cost 

from the parameter values and assessing the selling price and demand for each 

variant. Then variance is provided to demand in the form of noise.  The profit is then 

calculated while keeping other parameters constant. From the profit obtained from 

different values of demand, the variance in profit is calculated.  It is assumed in this 

problem that the demand can vary ±20% from the predicted snapshot of demand. 

Hence, ±20% noise is provided to the values of demand in four discrete levels (i.e., 

Demand (Noise) = {0.8D, 0.9D, 1.1D, 1.2D}, where D is the mean demand), this is 

illustrated in Figure 4.18.   
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- After obtaining the variance in profit for each variant, it is added up to get the 

total variance. Similarly, the profit of each variant is summed and averaged across the 

space. 

- The values of variance and profit help to obtain the deviation function as the 

output of this algorithm. 

- The value of the deviation function is returned from the analysis and is compared 

with previous output.  After each feasible combination of ranges of the modes for 

managing variety is explored, the input that provides the smallest deviation from the 

goal is selected.   
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 Figure 4.17: Solution Algorithm for Minimizing Variance in the Pressure Vessel example 
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Figure 4.18: Demand and Profit – Mean and Standard Deviation 

 

As the pressure vessel example is relatively simple, and reasons discussed in 

Section 3.3.8, an exhaustive search of different combinations of values of ∆V1, ∆V2, ∆V3, 

and ∆P1 is done. It is illustrated in Figure 4.19. The input for the solution algorithm is 

different combinations of the ranges of the modes. After taking the ranges of the modes, 

the solution algorithm explained above calculates the value of the deviation function. 

This deviation function value is compared with the previous values. This is continued for 

different combinations of the ranges of the modes.  The instantiation of this algorithm for 

the pressure vessel example problem is provided in Appendix A as a Java computer 

program. 

The main benefit of using the exhaustive search is that one is able to explore all the 

possible combinations of the solutions. The number of computations is manageable and 

hence benefit of exploration of the entire space outweighs the computation intensity of 

the method. Moreover, this has been observed in (Williams, 2003) by comparing with 

techniques other than exhaustive search.   
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Figure 4.19: Exhaustive Search of Design Parameters for the Pressure Vessel Example (Modified from 
Williams, 2003) 

 

The formulation of the PPCTM for the pressure vessel example is completed and its 

solution algorithm is outlined. The Section 4.1.4 presents the results. 

 

4.1.4 Results – Scenarios in the Pressure Vessel Problem 

The objective of using this example problem is to test the section of the augmented 

method that handles uncertain demand. So in order to test it, the demand is varied from 

values in between 0.8 and 1.2 of its mean value. Given this variance in demand, the 
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product platform is designed using the above-discussed augmented method. Results in 

terms of the mean profit and the variance in profit of the product platform due to 

changing demand are observed. 

In order to better observe the effects of the infusion of robust design principles, 

there are three scenarios in which the pressure vessel product platform is designed. In the 

first scenario, there is non-uniform demand; however there is no uncertainty in the 

distribution of demand. In the second scenario, there is not only non-uniform demand but 

also there is a certain uncertainty in the distribution of demand. The third scenario is 

similar to the second scenario in terms of demand; however, the weights assigned to the 

objectives of the product platform are changed and results analyzed for comparison 

purposes.  

Scenario 1 – Certain Distribution of Demand 

In this scenario, it is assumed that there is a predicted snapshot of demand and there 

are no changes expected in this distribution of demand. In other words, there is non-

uniform demand; however there is no uncertainty in the distribution of demand. This is a 

similar situation as in (Williams, 2003). In this case, the weight assigned to the objective 

of ‘minimizing the variance’ is given zero, while the weight given to other objective of 

maximizing profits, i.e., ‘bringing the mean to target’ is one. This gives similar results as 

obtained by using PPCTM-PLUS in (Williams, 2003). 

Table 4.1: Scenario 1 Product Platform Results 

Profit  Scenario 
# 

kvariance kprofit 
∆V3 
(m3) 

∆V2 
(m3) 

∆P1 
(MPa)

∆V1 
(m3) 

($) 
Total 

Variance 
($2) Z 

1 0 1 20 5 0.5 5 4698.75 4.22E+16 0.00027
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The large values of variances in each of the scenarios are due to three factors. 

Firstly, since variance in profit for every product is considered, the quantity gets 

magnified by the demand of every product. Secondly variance as stated in the formula is 

the square of the difference in varied profit and profit from mean demand. Thirdly, the 

total variance is the sum of the variances of every product in the product platform.  

 

 

 

 

 

 

Figure 4.20: Platform ∆V1, ∆P1, ∆V2 and ∆V3 – Scenario 1 Product Platform Results 

 

 

 

 

 

 

 

 

 

Figure 4.21: Hierarchical Arrangement of the Product Platform 
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Table 4.2: Section of the Scenario 1 Product Platform Specifications 

10 7.311 3.638
10.5 7.679 3.821
11 8.047 4.003

11.5 8.415 4.185
12 8.783 4.367

12.5 9.151 4.549
13 9.520 4.731

13.5 9.889 4.914
14 10.258 5.096

14.5 10.628 5.278
15 10.997 5.460

15.5 11.367 3.638
16 11.737 3.821

16.5 12.107 4.003
17 12.478 4.185

17.5 12.848 4.367
18 13.219 4.549

18.5 13.590 4.731
19 13.961 4.914

19.5 14.333 5.096
20 14.704 7.284

20.5 15.076 5.460
21 15.448 5.643

21.5 15.820 5.825
22 16.193 6.007

22.5 16.566 6.189
23 16.938 6.372

23.5 17.312 6.554
24 17.685 6.737

24.5 18.058 6.919
25 18.432 9.109

25.5 18.806 7.284
26 19.180 7.466

26.5 19.555 7.649
27 19.929 7.831

27.5 20.304 8.014
28 20.679 8.196

28.5 21.054 8.379
29 21.430 10.570

29.5 21.805 8.744
30 22.181 10.936

15 0.783 6.744

Th (mm) 
(∆P1=0.5MPa)

Lo (m) 
(∆V1=5m3)

V P
R (m) 

(∆V2=5m3)
Ts (mm) 

(∆P1=0.5MPa)

 

 

In Table 4.1, the values of ∆V1, ∆V2, ∆V3, and ∆P1 in Scenario 1 define a product 

family; the corresponding profit, variance and deviation Z of that particular family are 
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noted in the last three columns. To assist the reader with the interpretation of ∆V1, ∆V2, 

∆V3, and ∆P1 as a product family, the following tutorial is provided. The results inform 

the manufacturer that the best configuration of the modes of managing variety which 

closely matches his/her preferences is to commonalize the raw length for every 5 m3 of 

volume, commonalize the head and shell thickness for every 0.5 MPa of pressure, 

commonalize the radius for every 5 m3, and to not modularly combine the vessels.  It is 

seen that the market space is divided into subspaces and the size of the subspaces depend 

on the values of ∆V1, ∆V2, ∆V3, and ∆P1 (Figure 4.20). 

Consider a customer having volume and pressure requirements of a pressure vessel 

as 14m3 and 11MPa respectively (denoted by star in Figure 4.20). Using the different 

modes of managing variety at each hierarchical level (Figure 4.21), one obtains the 

product platform specifications involving R, Ts, Th and L from the particular values of 

∆V1, ∆V2, ∆V3, and ∆P1. A section of the design specification of the product family of this 

scenario is presented in Table 4.2. The columns in Table 4.2 represent the extent of 

commonalization for each design variable. It is observed that the figures in bold in Table 

4.2 satisfy the requirements of the customer. The detailed specifications of the product 

platform of this scenario are provided in Appendix B. 

Scenario 2 – Uncertain Distribution of Demand - A 

In this scenario, there is not only non-uniform demand but also there is a certain 

uncertainty in the distribution of demand. The demand distribution is varied in between 

0.8 and 1.2 of its mean value. Given this variance in demand, the product platform is 

designed. The method used is the PPCTM-RCM as discussed in Section 3.3. The weight 

assigned to both the objectives is equal. The results for this scenario are seen in Table 
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4.3. Two customer examples are provided (Table 4.4 and Table 4.5). The specific values 

of the design variables are provided as results of the application of the PPCTM to this 

example.   

Table 4.3: Scenario 2 Product Platform Results 

Profit  Scenario 
# 

kvariance kprofit 
∆V3 
(m3) 

∆V2 
(m3) 

∆P1 
(MPa)

∆V1 
(m3) 

($) 
Total 

Variance 
($2) Z 

2 0.5 0.5 20 2.5 2 0.5 4680.51 4.14E+16 0.38110

 

 
 

 

 

 

 

 
 

Figure 4.22: ∆V1, ∆P1, ∆V2 and ∆V3 – Scenario 2 Product Platform Results 

 
Table 4.4: Section of the Scenario 2 Product Platform Specifications (12m3 and 15MPa) 

 

10 6.701 3.335
12 8.050 4.003
14 9.403 4.671
16 10.758 5.339
18 12.116 6.008
20 13.478 6.676
22 14.842 7.345
24 16.210 8.015
26 17.581 8.684
28 18.955 9.354
30 20.331 10.024

12 0.718 6.459

Th (mm) 
(∆P1=2MPa)

Lo (m) 
(∆V1=0.5m3)

V P
R (m) 

(∆V2=2.5m3)
Ts (mm) 

(∆P1=2MPa)
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Figure 4.23: Hierarchical Arrangement of the Product Platform (12m3 and 15MPa) 

 

Table 4.5: Section of the Scenario 2 Product Platform Specifications (26m3 and 21MPa) 

10 1.043 9.739 4.847
12 11.699 5.817
14 13.665 6.788
16 15.634 7.759
18 17.608 8.730
20 19.587 9.702
22 21.570 10.675
24 23.557 11.647
26 25.549 12.620
28 27.546 13.593
30 29.547 14.567

Th (mm) 
(∆P1=2MPa)

Lo (m) 
(∆V1=0.5m3)

26 6.217

V P
R (m) 

(∆V2=2.5m3)
Ts (mm) 

(∆P1=2MPa)
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Figure 4.24: Hierarchical Arrangement of the Product Platform (26m3 and 21MPa) 

 

The results help the manufacturer in the following manner. The best configuration 

of the modes of managing variety which closely matches his/her preferences is to 

commonalize the raw length for every 2.5 m3 of volume, commonalize the head and shell 

thickness for every 2 MPa of pressure, commonalize the radius for every 0.5 m3, and not 

to modularly combine the vessels (Table 4.3).   

Here, two customer examples are shown.  

- Consider a customer having volume and pressure requirements of a pressure 

vessel as 12m3 and 15MPa respectively (denoted by left star in Figure 4.22). 

Using the different modes of managing variety at each hierarchical level (Figure 

4.23), one obtains the product platform specifications involving R, Ts, Th and L 

from the particular values of ∆V1, ∆V2, ∆V3, and ∆P1. A section of the design 

specification of the product family of this scenario is presented in Table 4.4. It is 

observed that the figures in bold in Table 4.4 satisfy the requirements of the 
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customer. The vessel of the product family that will satisfy the customer 

requirements is the one having volume as 12m3 and pressure as 16MPa. The 

radius of this vessel is 0.718m, thickness of shell is 10.758mm, thickness of head 

is 5.339mm and raw length of sheet is 6.459m.  

- Consider another customer having volume and pressure requirements of a 

pressure vessel as 26m3 and 21MPa respectively (denoted by right star in Figure 

4.22). A section of the design specification of the product family of this scenario 

is presented in Table 4.5. It is observed that the figures in bold in Table 4.5 satisfy 

the requirements of the customer. The vessel of the product family that will 

satisfy the customer requirements is the one having volume as 26m3 and pressure 

as 22MPa. The radius of this vessel is 1.043m, thickness of shell is 21.57mm, 

thickness of head is 10.675mm and raw length of sheet is 6.217m. 

 

It is important to note in both the examples the customer is satisfied by having the 

pressure and volume of a pressure vessel higher than his/her requirements. Table in 

Appendix B serves as a “roadmap” for a designer; any potential combination of pressure 

and volume for the considered space of customization is connected to the specific design 

parameters, including dimensions of raw material. Both the above mentioned examples 

(Table 4.4 and Table 4.5) are extracted from table in Appendix B and are highlighted in 

bold. 
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Scenario 3 – Uncertain Distribution of Demand - B 

The third scenario is similar to the second scenario in terms of demand; however, 

the weights assigned to the objectives of the product platform are changed and results 

analyzed for comparison purposes. The weight assigned to the costs objective is zero, 

while the weight assigned to the variance objective is one.  

Table 4.6: Scenario 3 Product Platform Results 

Profit  Scenario 
# 

kvariance kprofit 
∆V3 
(m3) 

∆V2 
(m3) 

∆P1 
(MPa)

∆V1 
(m3) 

($) 
Total 

Variance 
($2) Z 

3 1 0 10 10 10 10 1297.59 1.35E+16 0.25780
 
 
 
 
 
4.1.5 Analysis of the Results 
 

A comparative study similar to the one done in (Mistree, et al., 2002) has been 

presented. The design that is most unaffected by changes in demand, i.e., the most robust 

design is the one with the least variances in Table 4.1, Table 4.3 and Table 4.7. 

Increasing robustness is measured by the magnitude of the variance of profit, and the 

degree of robustness in a design is adjusted by varying the weights represented by 

kAvgProfit and kvariance on both mean and variance.  It is observed that in the first scenario 

(Table 4.1) the weight given to the variance objective is zero and hence it is the least 

robust design having variance as 4.22E+16. The first scenario design however offers 

higher profits $4,698.75.  As the weight of the variance objective increases, the 

robustness increases to have maximum robustness in the third scenario with variance as 
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1.35E+16 (Table 4.7). In the third scenario design, weight placed on the goal of 

maximizing profit is zero; thus, this design is generated considering only minimizing 

variance. Hence, the third scenario design tends to be more robust to variation in the 

demand; however, it exhibits lower average profits ($1,297.59). In Scenario 2, a natural 

trade-off between the mean and variance of profit is obtained as seen in Table 4.3 with 

profit as $4,680.51 and variance as 4.14E+16. Thus, it is seen that according to the 

manufacturer’s preference for “moving the mean to target” or “minimizing deviation”, 

the weights can be changed and the augmented PPCTM would give appropriate results. 

The value of ∆P1 is dependent on the mode of standardizing thickness of head and 

shell. There is a tradeoff between less cost due to the use of same thickness material and 

more cost due to use of more material. However, the cost saved by same thickness 

material is much less as compared to cost saved by using less material. Hence, when cost 

is given maximum weight in Scenario 1, the lowest possible range of commonalization 

for thickness is selected. As the weight of cost is reduced in Scenario 2 and variance is 

also considered, the range of commonality of ∆P1 increases.  

For Scenarios 1 and 2, the value of ∆V3 remains constant at 20 and hence 

commonalization across the entire space is suggested. The reason is that the equipment 

costs are very high to enable the use of more than one vessel to satisfy the requirement. 

However, in Scenario 3, when profit is not at all considered due to zero weight, the value 

of ∆V3 changes to achieve the variance objective. 

Apart from the above discussed scenarios, the sensitivity of the results to different 

weights is studied. A scenario is run in which the weight is in between 0 and 0.5 for 

maximizing profit and in between 0.5 and 1 for minimizing variance. This scenario is 
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Total
Variance ($2)

4 0.65 0.35 20 10 10 10 2859.49 1.77E+16 0.41940
Z

Scenario #
k variance k profit

∆V3 
(m3)

∆V2 
(m3)

∆P1 
(MPa)

∆V1 
(m3)

Profit ($)

seen in Table 4.7 where the weight for maximizing profits is 0.35 and weight for 

minimizing variance is 0.65. It is observed that the profit obtained ($2859.49) is less than 

the profit obtained ($4680.51) in Scenario 2 and variance (1.77E+16) is less than the 

variance obtained (4.14E+16) in Scenario 2. Also, the profit obtained ($2859.49) is more 

than the profit obtained ($1297.59) in Scenario 3 and variance (1.77E+16) is more than 

the variance obtained (1.35E+16) in Scenario 3. The reason is that the weight in this 

scenario is in between that of Scenario 2 and Scenario 3. 

Table 4.7: Scenario 4 Product Platform Results 

 

Another scenario is run in which the weight is in between 0.5 and 1 for maximizing 

profit and in between 0 and 0.5 for minimizing variance. In this case the product platform 

obtained is the same as in Scenario 2 for values of weights close to that scenario while 

the product platform obtained is the same as in Scenario 1 for values of weights close to 

that scenario. The values of profit and variance in Scenario 1 and 2 are close to each other 

and hence change of weight does not lead to development of a new product platform. 

This can be better analyzed by considering the variation of the two objectives for 

different weights.  
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Figure 4.25: Plot of Objectives for Different Settings of Weights 

 

The two objectives of maximizing profit and minimizing variance are plotted for 

different settings of the weight (Figure 4.25). It is observed that the slope of the line is 

greater in the range of weight 0 to 0.5 for maximizing profits while it is horizontal for 0 

.5 to 1 for same objective. This was observed in Scenario 1, 2, 3 and 4. There were more 

changes in the objectives in the range of 0.5 to 1 for maximizing profits than 0 to 0.5. 

Based on this plot and his/her preferences, the manufacturer can choose the appropriate 

weights to design the product platform. 

Having seen the results for different scenarios, let us now find out what is the 

economic gain by designing according to the augmented method. Two more scenarios are 

analyzed to highlight the profits that a company makes by using this method.  
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4.1.6 Economic Gains using the method 
 
Scenario A – Product platform without considering uncertain demand 

Table 4.8: Profit Comparison without Augmentations 

Total
Variance ($2)

A.1 0 1 20 5 0.5 5 4698.75 4.22E+16 0.00027
A.2 1875.28

2823.5

Profit ($)

Difference

∆P1 
(MPa) Z

∆V3 
(m3)

∆V2 
(m3)

∆V1 
(m3)

Scenario # k variance k profit

 

 

Consider a manufacturer of pressure vessels who wishes to maximize his/her 

profits. He assumes that the demand is constant and thus has only one objective in mind 

to design a platform that will maximize his profits. The result is the Scenario A.1, which 

is the same as Scenario 1 in Table 4.1.  

Now, consider that the demand of pressure vessels has reduced to 40%. Now the 

profit obtained by the manufacturer obviously reduces as shown in Scenario A.2; 

however, the point to note is the amount of difference between the two profits. This is 

analyzed in more detail while considering the difference in profits of Scenario B. 

 

Scenario B – Product platform considering uncertain demand 

Table 4.9: Profit Comparison with Augmentations 

Total
Variance ($2)

B.1 0.5 0.5 20 2.5 2 0.5 4680.51 4.14E+16 0.381
B.2 1863.79

2816.7

Profit ($)

Difference

∆V2 
(m3)

∆P1 
(MPa) Z

∆V1 
(m3)

∆V3 
(m3)

Scenario # k variance k profit

 

 

Now consider a manufacturer of pressure vessels who is aware of the uncertain 

demand and hence designs the product platform accordingly. The design of the product 
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platform takes place by considering both the objectives of increasing the profit and 

reducing the variance in costs due to changing parameters. The resulting product platform 

is seen in Scenario B.1 along with the costs associated with it. This is the same scenario 

as in Scenario 2 of Table 4.3. 

Consider that the demand has changed to similar conditions as in Scenario A.2. 

Now if the manufacturer uses the existing product platform to incorporate these changes 

the profits associated with it are noted down in Scenario B.2. The profits are lower; 

however the point to note is the amount of difference between the two profits.  

Now one sees the difference between Scenario A and B. The difference in costs of 

Scenario B is less than that of difference in costs of Scenario A. Hence it is observed that 

if the product platform is designed considering the uncertain demand, the costs associated 

with using the existing product platform for the changed demand later on will be less. 

Thus the product platform in Scenario B is robust to such changes in demand and will 

give favorable results despite of unforeseen changes in market. 

 

The validity of results is established by three ways: 

1. Checking the constraints 

2. Comparison of a robust and non robust product platform 

3. Minimizing variance in objectives due to uncertain demand leads to more 

commonality 

 

1. Checking the constraints - There are three constraints in the problem. Firstly, the 

range of modes at lower levels must be smaller than the range of modes at higher 
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levels. This is seen from Table 4.10 that all the lower levels (e.g., V1) are smaller 

than the higher levels (e.g., V2). Secondly, the constraint that , 0i id d− + ≥  needs to 

be satisfied. Again, it is seen all the values in the Table 4.10 show that , 0i id d− + ≥ . 

The third constraint is that 0i id d− + =i . From the column of d+, it is seen that all 

the values are zero. Thus, one always obtains the product of d+ and d- as zero. 

Table 4.10: Constraint Verification 

∆V3 (m3) ∆V2 (m3) ∆P1 (MPa) ∆V1 (m3) d- d+ d- d+
20 5 2 0.5 0.00624 0 0.7569 0
20 10 1 10 0.07194 0 0.73172 0
20 1 2 0.5 0.00647 0 0.7588 0
10 1 2 0.5 0.2782 0 0.6382 0
20 1 2 1 0.01148 0 0.7568 0
10 2 2 1 0.2838 0 0.6326 0
20 4 2.5 0.5 0.0207 0 0.7504 0
10 10 5 10 0.5057 0 0.4418 0

Profit Variance

 

 

 
2. Comparison of a robust and non-robust product platform – The scenarios A 

and B help to validate the results. In these scenarios, one actually validates the 

results in Scenarios 1, 2 and 3. Scenario 1, 2 and 3 show that the reduction in 

variance in profit leads to less effect on profit due to changes in demand. The 

scenario A shows a non-robust product platform and the effect of having an 

uncertain demand on it is noted. Now the platform is made robust in Scenario B. 

Again the effect on the platform due to the change in demand is determined. 

According to the model as shown in Scenario 1, 2 and 3, since the reduction in 

variance in profit leads to less effect on profit due to changes in the demand, one 

should obtain results such that the robust product platform in Scenario 2 should 
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have lesser change in cost than the non-robust product platform in Scenario 3. 

This is exactly what the results indicate. 

 

3. Minimizing variance in objectives due to uncertain demand leads to less 

variety - It is seen in the pressure vessel example for Scenario 3 in Table 4.7 

there are large values of each of the decision variables, ∆V1, ∆P1, ∆V3, ∆V2. This 

implies that there is more commonality in this scenario where the only objective 

is to minimize the variation (since the other objective of bringing the mean to 

target has a weight of 0). One can try to analyze these results in more detail. For 

instance, consider the case that the manufacturer goes for less commonality and 

more variety in such an uncertain demand. Now, it has been shown in (Williams, 

2003) and logically one can say that large demand leads to more variety. 

However, if this demand is highly uncertain, more variety will lead to 

unnecessary losses for the manufacturer due to the possible decrease of demand in 

future. So the manufacturer would not opt for taking the risk of providing a large 

product line but stick to fewer products. Hence the results make sense. 

 

In this example problem, demand is varied and the platform is designed in such a 

situation using the augmented method. Appropriate results are obtained depending on the 

weights assigned to each goal. Also, the platform is designed without using this method 

and with using this method and it is observed that better economic gains are obtained in 

the latter case. Thus, after this example problem, the section of the method that deals with 
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uncertain demand has been tested. Some more insight and validity with respect to this 

example is provided towards the end of this chapter 

 In the next section, the method is applied to a line of customizable hand 

exercisers. The method is now tested if it can handle changing design parameters.  

 

4.2 ROBUST DESIGN OF A FAMILY OF CUSTOMIZABLE HAND 
EXERCISERS TO DEAL WITH CHANGING DESIGN PARAMETERS 
(TYPE II ROBUST DESIGN PROBLEM) 

 

In this section, the Q1.2 is addressed. The method is tested if it gives robust 

results to changing design parameters. So now it becomes a Type 2 robust design 

problem.  

 

4.2.1 Problem Statement – Changing Design Parameters 
 

Consider a manufacturer of hand exercisers. The manufacturer has considerable 

demand for the hand exercisers. However, competitors are catching up and the 

manufacturer wishes to provide the customers with custom-made hand exercisers that suit 

different sections of the market. At the same time, the manufacturer is not sure if the 

product platform that he/she designs will continue to suit customer needs for a long 

period. Hence, he/she also wishes to have flexibility in designing the product platform. If 

there are changes in the design parameters of the hand exerciser, the platform must still 

achieve its objectives. 

There are three key assumptions in the formulation of the customizable hand 

exerciser problem: 
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1. The demand of the hand exerciser is assumed to be constant. Since the objective 

of this example is to provide a method for designing platforms that are robust to 

changing design parameters, the example is not made unnecessarily complicated 

by considering uncertain demand. The uncertain demand was considered in the 

previous example of this chapter. Also, the market space is assumed to be fixed. 

Changing extents of marketplaces is explored in Chapter 5. 

2. We do not discuss the design and manufacturing of the plastic handle and we 

focus only on the design of the torsion spring in the hand exerciser. The modeling 

of the exerciser considers the cost of material, tooling, processing and packaging 

involved. 

3. The design of the product platform is achieved by scaling of the product 

parameters. Customization is not achieved changing product functionality. 

 

The example of the hand exerciser helps to illustrate the above-mentioned method 

of designing product platforms for changing design parameters. In a hand exerciser, there 

are a number of parameters such as coil diameter D, height H of the exerciser that must 

satisfy customer specific requirements. Depending on the age, size, using style, 

portability requirements of the customer, the design parameters needed will be different. 

So after the development of a product platform, it must be possible to have some freedom 

in changing these parameters during the product life cycle without affecting the 

profitability of the platform. In this example, the platform is designed to make it robust to 

changes in the coil diameter of the exerciser. The cost objective of the platform needs to 

be unaffected by changes in this parameter. 



 

 175 

4.2.2 Modeling of Hand Exerciser Product 
 

We illustrate the design of a line of custom-made hand exercisers similar to the 

one shown in Figure 4.20. The total demand of the exercisers is assumed to be 5000 per 

year.  

 

Figure 4.26: Sketch of a Hand Exerciser 

 

It should be noted that this is a simplified example problem and the models used 

here do not represent those used in the actual design and production of these devices. 

This example has been developed in (Hernandez et al., 2003). 

The manufacturing of the exerciser takes place in the following manner: First, a 

metallic wire is wound around a mandrel a certain number of turns.  Then the ends of the 

wire are cut and a transition bend is made manually between the turns and the legs of the 

wire.  Later on, the stresses in the wire are relieved in an oven.   Then, the plastic handles 

are molded on, the grip squeezed together and a clip placed around the legs to bring the 

legs to the required initial position.   

 

The exercisers are to be customized in the force F required to close the grip.  F is 

calculated as in (Shigley and Mischke, 1996):  

Hh

w

Dd

Hh

w

Dd
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[4.12] 

 

Where d is the diameter of the wire, E is the elastic modulus of the wire material, D is the 

coil winding diameter, N is the number of coil turns, R is the distance from the coil circle 

center to the point where the concentrated force F is applied, and θ is the angular 

deflection from the no-load position to closing the grip.  If we neglect changes in the coil 

diameter from the free position to the closed position, the angle θ can be approximated 

as: 
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[4.13] 

 

int(N) represents a function that returns the greatest integer ≤ N.  Substituting Equation 

(4.13) into Equation (4.12) yields: 
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[4.14] 

 

The stress associated to the force F is approximated as: 

 

3
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[4.15] 

where 
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and 

d
Dk =

 
[4.17] 

 

R is considered here constant and approximated as: 

2
hHR −≈

 
[4.18] 

 

We design the spring subject to the following geometric and structural constraints: 

 

DhH +≥  [4.19] 

 

yS≤σ  [4.20] 
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[4.21] 

 

Where Sy, Se and Su are the yield, endurance and tensile strength of the wire.   

 

The range of force considered in this example is: 

10 ≤ F ≤ 110 Newtons [4.22] 
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For this example we utilize values of w=90 mm and h=100 mm.   

 

 

4.2.3 Product Platform Constructal Theory Method for the Design of a Hand 
Exerciser Platform to deal with Changing Design Parameters 

 

In this section, the design of the hand exerciser platform using the augmented 

Product Platform Constructal Theory Method (PPCTM) is presented. Each of the eight 

steps discussed in Section 3.3 are explained using the example of a hand exerciser. The 

eight steps of the augmented PPCTM are presented in Figure 4.4. 

 
Step 1: Define the Geometric Space and the Demand Scenario  

The parameter that characterizes a hand exerciser is force that can be applied to it. 

The customizable spring is designed for 101 different forces: 10, 11, 12,…, 110 Newtons.  

This is a one-dimensional, discrete space of customization.  The total annual demand of 

products is 5000 and we assume that all 101 forces have the same expected demand 

(5000 products per year for each force).  Hence, the distribution of demand is uniform.  

 

Step 2: Explore potential portfolio expansions 

In Section 4.2.1, one of the assumptions noted is that there are no changes in the 

extents of the marketplaces in this example. Hence, there is no need of exploring 

potential portfolio expansions and so this step is skipped. 
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Step 3: Classify Design Parameters 

This step differs in the pressure vessel example where one has demand as the 

noise factor. Here, the variation is present in one of the control factors. Hence, this is a 

Type 2 robust design problem. The coil-winding diameter D is one of the control factors 

to which variation is provided and its response (cost) is noted. The other values of control 

factors remain constant. The classification is illustrated in Figure 4.26.  

 
Figure 4.27: Classification of factors 

 

Step 4: Define the Objective Functions 
 
One of the objectives that are considered in this example is minimization of cost.  Cost is 

typically formed by the costs of material, labor, tooling, inventory, packaging and others. 

Using similar analysis as in (Hernandez et al., 2003), we assume that most costs can be 

considered fixed or constant among spring variants and, therefore, do not need to be 

included in the optimization problem.  The cost we consider is as follows: 

 

Cost = Cmat + Ctool + Cproc + Cpack [4.23] 
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where Cmat is of the material used in the springs, Ctool is the cost of the mandrels, 

Cproc is the cost of processing associated with each wire used and Cpack is the cost of 

packaging of the exerciser.  All these costs are estimated as total cost in a year. 

 

The annual cost of material is estimated here as: 
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[4.24] 

 

Where F represents each force of the space of customization, δ(F)  is the annual demand 

of the spring used with F, CW is the cost in dollars per kg of the required wire, ρ  is the 

density in kg/m3 of the wire, d is the wire diameter and L(F,D,W,H) is the required length 

of wire used in the spring as a function of the other design variables: D, the coil diameter, 

the wire selection W; and H, the distance from the bottom of the leg to the coil circle 

center (Figure 4.20).  L(F,D,W,H) is approximated as:   
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[4.25] 

 

In Equation (4.25) transition bend and other factors account for an extra 20% of wire.  N 

is expressed in Equation (4.25) not as independent variable but as a function of F, D, W 

and H because N is always chosen as the minimum number of turns that satisfies Equation 

(4.12) for a given F: 
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)},,,(min{),,,( HWDFNHWDFN =  [4.26] 

 

The wires available for selection are shown in Table 4.7. 

Table 4.11: Available Wires 

Wire E [MPa] ρ 

[kg/m3] 

d [mm] Sy [MPa] Su [MPa] Se [KPa] C 

[dollars/kg] 

1 200x103 7860 0.79 1978 2274 540 3.53 

2 200x103 7860 1.30 1816 2088 540 2.48 

3 200x103 7860 1.60 1756 2019 540 2.39 

4 200x103 7860 1.91 1702 1957 540 2.37 

5 200x103 7860 2.59 1618 1860 540 2.22 

6 200x103 7860 3.18 1565 1798 540 2.18 

7 200x103 7860 4.11 1493 1716 540 2.16 

8 200x103 7860 0.89 1678 1929 540 2.42 

9 200x103 7890 1.22 1559 1791 540 2.26 

10 200x103 7890 1.60 1499 1723 540 2.15 

11 200x103 7890 2.69 1349 1550 540 1.36 

12 200x103 7890 3.18 1319 1516 540 0.91 

13 200x103 7890 4.17 1139 1309 540 0.89 

14 200x103 7890 4.88 1330 1550 540 1.25 

15 200x103 7890 5.26 1310 1520 540 1.15 
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The cost of tooling Ctool is mainly determined by the number of mandrels m required. In 

order to determine m we make the following assumptions: 

• A different mandrel is needed for each different coil diameter D. 

• A mandrel is replaced every Z number of springs, where Z=50,000 for this 

example. 

 

The maximum yield capacity Y per mandrel to maintain a utilization of 90% is 10 

springs per hour, and the facility works 16 hours a day.  Neglecting down time, Y=58,400 

springs per year per mandrel.   

With the assumptions noted, the annual cost of tooling is calculated as follows:  

Since all springs with the same coil diameter D can share the same mandrel, the total 

demand for each different diameter D is obtained as the sum of the demand for the 

various forces with springs with the same coil diameter: 
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The minimum number of mandrels needed at anytime, mD, is the nearest integer 

higher than the ratio of δD to the yield capacity Y of a mandrel: 
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The total production per mandrel, pD, is then: 

 

D

D
D m

p δ
=

 
[4.29] 

 

Now, let us assume that the cost of a mandrel, Cmandrel, is the same for all 

diameters and equal to 1000 dollars.  The cost per year of mandrels used to manufacture 

coils with diameter D, considering the need to replace mandrels every Z number of 

springs is then: 

   

Z
pmCCtool D

DmandrelD =
 

[4.30] 

 

In addition to the cost of Equation (4.30), we add to the tooling cost an 

opportunity cost due to the “non-ideal” utilization of equipment.  We estimate this tooling 

opportunity cost as follows: 
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[4.31] 

 

where r is a annual interest rate (equal to 0.1 for this example).  The ratio of pD to Y 

yields the percent of time the mandrel is “idle” relative to the “ideal” production Y. 

 

The total cost per year of tooling is then: 
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The processing costs involve purchase processing, warehouse space and other 

factors associated with each wire used.  Let us say that the extra cost is $2000 for each 

different type of wire used.  

   The cost of packaging involves the costs associated with packing each exerciser 

having different heights. This cost is assumed to be $350 for every different height of 

exerciser used. We do this to examine how our solution changes as the cost due to the 

height variety changes.   

The total cost per year is then calculated by substituting Equations (4.24) and 

(4.32) in Equation (4.23).   We proceed now to the third step of the method. 

 

Step 5:  Identify Modes for Managing Product Variety 
 
  Customization of the exercisers is achieved through the following modes for 

managing product variety: 

 

1. Varying the distance H 

2. Varying the number of turns N 

3. Varying the coil diameter D 

4. Varying the wire selection (i.e., the wire diameter d and its material properties) 

 



 

 185 

Now we proceed to Step 6 to determine how many hierarchic levels to utilize and 

which modes should be used in which hierarchy level.   

 

 

Step 6: Identify Number of Hierarchy Levels and Allocate the Modes for Managing 
Product Variety to These Levels 
 

In this example, three hierarchic levels are used. The smallest divisions are 

referred to as first-space divisions, ∆F1; the assembly of these as second-space divisions, 

∆F2; and, finally, the assembly of the later as third-space division, ∆F3.  

 
First Space Division 

As discussed in Section 2.1, the lowest level of the hierarchy is comprised of the mode of 

managing variety that is most flexible and economical providing with high frequency and 

short-scope changes. For exercisers, this level needs to be fixed at manufacturing, unlike 

other products where flexible features can be provided.  For a given w and h, it is 

economical and easy to vary the number of turns N and the distance H since no additional 

tooling or operations are required.  At this level, each first space division has a common 

value of H between all products and adjusting the number of turns satisfies the required 

customization force of each exerciser contained in the space division.   

 

Second Space Division 

The second space element is composed by a number of first space elements. It has been 

shown in (Hernandez et al., 2003), that the variation of coil diameter provides better 

results than that of variation of wire diameter at this level. Hence, for this second space 
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element, commonalization of the coil diameter D is used to achieve variety with each first 

space division having its own value of H.  

 

 

Third Space Division 

The remaining mode for managing product variety available is varying the diameter of 

wire. We use this mode at the third level, i.e., highest hierarchy level, which is therefore 

allocated to the third space division, ∆F3.   

In summary, the space of customization is “accessed” through a hierarchic 

construct of modes for managing product variety as follows: 

1. Varying the value of D at the third (largest) space divisions that contain a number 

of second space divisions. 

2. Varying the wire selection at the second space divisions, which in turn contain a 

number of first space divisions. 

3. Varying the height H at the first (smallest) space divisions. 

4. Adjusting the number of coils for any specified force given the values of D, W 

and H.  

A sketch of the hierarchic organization of modes for managing product variety is 

shown in Figure 4.28.  Using this construct we proceed to formulate our problem 

mathematically in Step 7. 
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Figure 4.28 : Hierarchic Organization of the Modes for Managing Product Variety for Hand Exercisers 

 

 

 

Step 7: Formulate a Multi-Stage Compromise Decision Support Problem 

There are two broad level goals that need to be achieved for a robust design – 

“bringing the mean on target” and “minimizing deviation”. In this problem, the former 

goal is to minimize the costs, while the latter goal is to minimize the variation in cost due 

to changing design parameters. Since there are two goals, a decision has to be made that 

gives the best possible combination of both. The compromise DSP is used to formulate 

this problem.  The system goals are formulated for each decision stage of PPCTM 

because their focus is in achieving these two goals.  The goal for each stage is based on 

the individual objective functions of cost and variance.  The values of cost and variance 

to be used are found using average value and summation respectively, calculated in each 

decision stage.   

In the formulation of the compromise Decision Support Problem, the goals are 

measured in terms of the deviation of the objective function from the ideal value. In this 

case, the minimum possible cost IC is divided by the actual cost Cost and the deviation of 

this ratio from the ideal value of 1 is calculated. Similarly, the minimum possible 
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variance IV is divided by the actual variance and the deviation of this ratio from the ideal 

value of 1 is calculated.  Each set of objective function is represented by: 

(IC / Cost ) + dc1
- - dc1

+ = 1 [4.33] 

(IV / Variance )] + dv1
-- dv1

+ = 1 [4.34] 

 The deviation variables are thus found. Using the weights of each objective as 

discussed above, along with the deviation variables forms the deviation function.  

Z = W1 dc1
- + W2 dv1

- 

 

The First Stage and the First Space Element 

The decision variable of the first space element is ∆ fi, the range of application of 

mode is to commonalize height H.  The constraint is that the decision variable should be 

in the bounds of the force limits. 

 

Decision 1: ∆f1 

Given:       Market Space of hand exerciser 10 - 110 Newtons 

                  Mode to commonalize height H 

Find:         The value of decision variable ∆f1 

                 The deviation variables, dc1
- and dc1

+, dv1
- and dv1

+ 

Satisfy:      Bounds:       10 ≤ ∆f1 ≤ 110 Newtons 

           Constraints:                  yS≤σ                                                     

                                      
111

≤







+

ue SS
σ
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…Contd.                            dc1
-, dc1

+ 0≥  

                                          dv1
- , dv1

+ 0≥  

                                          dc1
-. dc1

+ = 0 

                                          dv1
- . dv1

+ = 0 

                Goals:            (IC / Cost ) + dc1
- - dc1

+ = 1                        [4.35] 

                                        (IV / Variance )] + dv1
- - dv1

+ = 1              [4.36]                             

Minimize:  Z = W1 dc1
- + W2 dv1

-  

                         where:    Cost is calculated as in [4.23] for current market space 

                                        IC = Minimum cost for a year 

                                        Variance = Variance of cost due to changes in D 

                                        IV = Minimum variance of cost                                                     

Figure 4.29: Formulation of the Multistage Compromise Decision Support Problem for the Hand 
Exerciser; First Stage Element 

 

The Second Stage and the Second Space Element 

The decision variable of the second stage is ∆f2. The range of application of the 

mode is to commonalize coil diameter D.  One of the decision variable constraints is that 

it should be greater than the first stage decision variable ∆f1 or the lower limit of force 

and lesser than the upper limit of force. 
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Decision 2: ∆f2 

Given:       Market Space of hand exerciser 10 - 110 Newtons 

                  Mode to commonalize coil diameter D 

                  Value of ∆f1 from first stage                               

Find:         The value of decision variable ∆f2 

                 The deviation variables, dc2
- and dc2

+, dv2
- and dv2

+ 

Satisfy:      Bounds:       10 ≤ ∆F2 ≤ 110 Newtons 

                 Constraints:        ∆f1 ≤ ∆f2 ≤ 110 Newtons 

                                           yS≤σ  

                                      
111

≤







+

ue SS
σ

 

                                           dc2
-, dc2

+ 0≥ , dv2
- , dv2

+ 0≥  

                                          dc2
-. dc2

+ = 0,  dv2
- . dv2

+ = 0                                           

                  Goals:            (IC / Cost ) + dc2
- - dc2

+ = 1                      [4.37] 

                                        (IV / Variance )] + dv2
- - dv2

+ = 1              [4.38]                              

Minimize:  Z = Wc2 dc2
- + W2 dv2

-  

                         where:    Cost is calculated as in [4.23] for current market space 

                                        IC = Minimum cost for a year 

                                        Variance = Variance of cost due to changes in D 

                                        IV = Minimum variance of cost                                                        

Figure 4.30: Formulation of the Multistage Compromise Decision Support Problem for the Hand 
Exerciser; Second Stage Element 
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The Third Stage and the Third Space Element 

The decision variable in this stage is ∆f3. The range of application of the mode is to 

commonalize the wire diameter.   

Decision 3: ∆F3 

Given:       Market Space of hand exerciser 10 - 110 Newtons 

                  Different types of wires available (Table 4.11) 

                  Value of ∆f2 from second stage                               

Find:         The value of decision variable ∆f3 

                 The deviation variables, dc3
- and dc3

+, dv3
- and dv3

+ 

Satisfy:      Bounds:       10 ≤ ∆f3 ≤ 110 Newtons 

      Constraints:             ∆f2 ≤ ∆f3 ≤ 110 

                                                    yS≤σ ,    
111

≤







+

ue SS
σ

 

                                           dc3
-, dc3

+ 0≥ ,  dv3
- , dv3

+ 0≥ ,  dc3
-. dc3

+ = 0, dv3
- . dv3

+ = 0            

                  Goals:            (IC / Cost ) + dc3
- - dc3

+ = 1                     [4.39] 

                                        (IV / Variance )] + dv3
- - dv3

+ = 1             [4.40] 

Minimize:  Z = Wc3 dc3
- + W2 dv3

-  

                         where:    Cost is calculated as in [4.23] for current market space 

                                        IC = Minimum cost for a year 

                                        Variance = Variance of cost due to changes in D 

                                        IV = Minimum variance of cost                                                       

Figure 4.31: Formulation of the Multistage Compromise Decision Support Problem for the Hand 
Exerciser; Third Stage Element 
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Step 8: Solve the Multi-Stage Compromise Decision Support Problem 

Similar to the pressure vessel example reasons, a discrete analysis is used here. In 

discrete analysis, the analysis is done on a discrete set of points in the space, which helps 

to approximate the entire space. For discretization of the space, the designer chooses a 

certain resolution. Considering this resolution, nodes are established in the space of 

customization and objective function at every node is calculated.  

In discrete analysis, the analysis is done on a discrete set of points in the space 

which helps to approximate the entire space. For discretization of the space, the designer 

chooses a certain resolution. Considering this resolution, nodes are established in the 

space of customization and the objective function at every node is calculated. This 

method was also used in (Williams, 2003) and seems to be appropriate for such problems 

in which expressing the objective function in terms of the design variables is difficult due 

to consideration of multiple objectives and changing design parameters.  

Now the formulation of an appropriate solution technique needs to be determined. 

Similar solution algorithm as in the pressure vessel example is used; its primary goal is 

the determination of the extent of application of the modes that provides the least 

deviation from the ideal value, from which the commonality of design parameters of the 

product platform is determined.   

Our solution technique is illustrated in Figure 4.31 (modified from Williams, 2003). 

This solution method involves iterating through values of the modes of managing variety 

(∆f1, ∆f2, ∆f3), establishing the dimensions of the sub-spaces, commonalizing the design 
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parameters (d, D and H) across each sub-space, evaluating the objective functions, and 

calculating and comparing the deviation function of each iteration.  Specifically: 

 

- A particular combination of sub-space element sizes is taken as input. For example,  
 

    ∆f1 

   ∆f2 

   ∆f3 

5N 
10N 
20N 

 

These values must satisfy the bounds of these variables mentioned in the three 

compromise DSPs. The input also includes demand scenario, geometric space 

(market space) and the objective functions (minimize cost, minimize variance). 

- From the sizes of the sub-space elements, the bounds of each sub-space are 

established. The values of parameters to be commonalized are determined from the 

bounds of the sub-space. This involves calculation of the parameters from their 

respective modes. For example, using the bounds of 5, 10, 15…. of ∆f1 the 

corresponding values of H are determined. Similarly such values of other 

specifications are determined at each level. For each specification, one needs to 

consider the assumed ranges at the start to obtain the value. Different combinations of 

the standard wires available need to be generated and corresponding objective 

functions calculated. 

- These parameters are then commonalized across the respective sub-spaces. 

Hence, for any value of force in that range, the parameter value determined at the 

bound is used. The objective function is determined for every variant considering the 

parameter values across each sub-space.  
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- For calculation of the variance in cost, the first step involves calculation of cost 

from the parameter values. Then variance is provided to coil winding diameter D.  

The cost is then calculated while keeping other parameters constant. From the cost 

obtained from different values of coil diameter, the variance in cost is calculated.  

Specific to this example problem, ±20% variation is provided to the values of D in 

four discrete levels (i.e., Different values of D = {0.8D, 0.9D, 1.1D, 1.2D}, where D 

is the coil diameter), this is illustrated in Figure 4.33. P is the corresponding value of 

the objective function with variance σ.  

- After obtaining the variance in cost for each variant, it is added up to get the total 

variance. Similarly, the cost of each variant is summed across the space. 

- From the values of variance and cost, one obtains the deviation function as the 

output of this algorithm. 

- The value of the deviation function is returned from the analysis and is compared 

with previous output.  After each feasible combination of ranges of the modes for 

managing variety is explored, the input that provides the smallest deviation from the 

goal is selected.   

 

So at the end of this solution process, the input ∆f2, ∆f2 and ∆f2 that gives the least 

deviation function Z is the product platform that best achieves the objectives. From these 

inputs, one obtains the corresponding specifications of the product family as shown in 

Table 4.12. If the customer wants a hand exerciser having force 12N, from Table 4.12, it 

is seen that the company will have to manufacture a hand exerciser having d=d1mm, 
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D=D2mm, L=H3mm. One can observe that a hand exerciser of 15N is provided to the 

customer having 12N requirement. 

 

Table 4.12: Interpretation of ∆f1, ∆f2 and ∆f3 

Force(∆f3=20N) Force(∆f1=5N) Force(∆f2=10N) d (mm) D (mm) H (mm) 

5 H1 
 

10 

10 D1 

H2 

15 H3 

20 

20 

20 

d1 

D2 

H4 
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 Figure 4.32: Solution Algorithm for Minimizing Variance in the Hand Exerciser example 
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Figure 4.33: Coil Diameter and Cost – Mean and Standard Deviation 

 

The solution to this problem is obtained by using optimization techniques or exhaustive 

search. First, the problem is solved with the exhaustive search method. Then optimization 

method is applied to obtain the solution and the solutions are compared.  

 

Exhaustive Search 

Due to reasons discussed in Section 3.3.8, an exhaustive search of different 

combinations of values of ∆f1, ∆f2, and ∆f3 is done. It is illustrated in Figure 4.34. 

However, the number of combinations is not restricted to these three variables. Since ∆f3 

is for the determination of the type of wire, it is a decision to find an appropriate wire 

from Table 4.11 for particular sub spaces. So if ∆f3 sub space is 25N, there are 4 wires 

that need to be chosen and which wire will be used for which sub-space also needs to be 

decided. However, the large number of permutations is decreased by recognizing that the 

costs increase rapidly for smaller sub spaces of ∆f3. There are two reasons. The first 

reason is that more number of wires leads to more processing cost. The second reason is 

that having smaller sub spaces of ∆f3 leads to smaller sub-spaces of ∆f1 and ∆f2. This 
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increases the respective costs and there are no chances of getting a product platform with 

minimum cost with such combinations. It was observed that there are a maximum of 4 

wires after which the costs increase drastically. Hence, one considers that there are 6 

variables (∆f1 and ∆f2 and 4 possible wires for ∆f3). There are more than 8000 such 

feasible combinations.  

The input for the solution algorithm is different combinations of the ranges of the 

modes. After taking the ranges of the modes, the solution algorithm explained above 

calculates the value of the deviation function. This deviation function value is compared 

with the previous values. This is continued for different combinations of the ranges of the 

modes.  The instantiation of this algorithm for the hand exerciser example problem is 

provided in Appendix C as a Java computer program. 

The main benefit of using the exhaustive search is that one is able to explore all the 

possible combinations of the solutions. The number of computations is manageable and 

hence exploration of the entire space outweighs the computation intensity of the method. 

Moreover, it has been observed in (Williams, 2003) that this method gives better results 

than the other optimization techniques discussed.   
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Figure 4.34: Exhaustive Search of Design Parameters for the Hand Exerciser example (Modified from 
Hernandez, 2003) 

 

With the formulation of the PPCTM completed and its solution algorithm outlined, 

the results are presented in Section 4.2.4. 
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4.2.4 Results and Analysis – Scenarios in the Hand Exerciser Problem 
 

Table 4.13: Section of the Results 

∆ f3  (N) ∆ f 2  (N) ∆ f1  (N) Material Tools Processing Packaging Total Cost Variance Z
25 (5 6 13 6) 1 1 72337 9571 4000 35000 120909 3.63E+10 0.873

50 (6 5) 25 1 74673 5171 2000 35000 116845 3.91E+10 0.869
 50 (6 5) 25 25 90779 5171 2000 1400 99351 7.99E+10 0.851

25 (6 5 6 13) 25 5 141220 5171 4000 7000 157392 1.88E+11 0.906
100 (6) 50 1 52422 5071 0 35000 92494 1.65E+10 0.828
100 (6) 50 10 56627 5071 0 3500 65199 3.01E+10 0.769
100 (14) 25 5 113534 5171 0 7000 125706 1.22E+11 0.882

Cost ($)

 
 

Table 4.13 above shows a section of the results. Cost involves four terms – 

material, tools, processing and packaging costs. All these terms have been explained in 

the modeling of the hand exerciser in Section 4.2.2. In the end, the total cost and the 

variance in cost due to changes in coil diameter is determined. The objective function Z is 

then calculated from these two goals. 

One observes that changes in ∆f1 mainly affect the packaging costs. The reason is 

that more variety in heights of the exerciser leads to more cost of packaging. At the same 

time, it must be noted that each of the hierarchical stages affect the cost of material. It is 

obvious that more the commonality more is the material used and more is the costs. 

The change in ∆f2 mainly affects the tooling costs. Different types of diameters 

lead to the cost of purchasing different sizes of mandrels and hence tooling costs 

increases. At the same time, more commonality in the value of the diameter will lead to 

increase in material costs of the exerciser. All these effects are observed in the results in 

Table 4.13. 

The column of ∆f3 is comprised of different types of wires used for that iteration. 

The number in the brackets denotes the type of wire listed in Table 4.11. The change in 
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∆f3 mainly affects the processing costs. It is seen that more the different types of wires 

used, more is the cost of processing.  

Three scenarios, similar to the pressure vessel example are run. In the first 

scenario, the design parameters are assumed to be constant throughout the product 

platform life cycle. In the second scenario, it is expected that the customer requirements 

and hence design parameters will vary. The third scenario is similar to the second 

scenario; however, for comparison purposes, the only objective that is considered is 

reduction in the variance of the objective function.  

Scenario 1 – Design Parameters Constant 

In this scenario, the design parameters are assumed to be constant throughout the 

product platform life cycle. Hence the objective of variance of costs is not considered, as 

there is no variance in the design parameters. The weight for the variance objective is 

zero while for reduction of costs is one. This is similar to the scenario in (Hernandez et 

al., 2003). As expected, the results show that this scenario has high variance and low 

costs. A detailed interpretation of the product platform is given in Scenario 2. 

Table 4.14: Scenario 1 Product Platform Results 

Cost  Scenario 
# kvariance kcost 

∆f3 (N) ∆f2 (N) ∆f1 (N) 
($) 

Total 
Variance 

($2) Z 
1 0 1 50 50 25 32726.27 5.57E+09 0.114 

 

The cost of material increases as the commonality of the ∆f1 increases. However, 

similarly to other scenarios, the increase in commonality reduces the cost of packaging 

considerably. Similar to Scenario 2, the cost of tooling also decreases due to the use of 

only two types of coil diameters. It is observed that the value of ∆f3 remains same in all 

three cases. The reason is that there is a balance between the costs of processing 
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associated with changing diameters and changes in the material costs due to different 

diameters. 

 

Scenario 2 – Changing Design Parameters – A 

In this scenario, the design parameter (diameter) does not remain constant 

throughout the product platform life cycle but the requirements change. So the designer 

needs to take care that the objectives of the product platform continue to be achieved 

despite changes in the design parameter. Hence in this scenario, both the objectives are 

considered. It has equal weight for both the goals – reduction in costs and minimization 

of variance. Hence, this scenario tries to balance both the objectives. 

Table 4.15: Scenario 1 Product Platform Results 

Cost  Scenario 
# kvariance kcost 

∆f3 (N) ∆f2 (N) ∆f1 (N) 
($) 

Total 
Variance 

($2) Z 
2 0.5 0.5 50 50 10 32940.95 4.43E+09 0.503 

 

 

Figure 4.35: Hierarchical Arrangement of the Product Platform 
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Table 4.16: Section of the Scenario 2 Product Platform Specifications (LHS: 15N, RHS: 55N) 

        A                                                      B 

 

 

 

 

 

 

The results inform the manufacturer that the best configuration of the modes of 

managing variety which closely matches his/her preferences is to commonalize the force 

at the lowest level for every 10N, at the second level for every 50N and the third level for 

every 50N.  

Here, two customer examples are shown.  

- Consider a customer having force requirements of a hand exerciser as 15N 

(denoted by left star in Figure 4.35). Using the different modes of managing 

variety at each hierarchical level (Figure 4.35), one obtains the product platform 

specifications involving d, D and H from the particular values of ∆f1, ∆f2 and 

∆f3. Design specification of the product family of this scenario is presented in 

LHS of Table 4.16. It is observed that the figures in bold in Table 4.16 satisfy the 

requirements of the customer. The hand exerciser of the product family that will 

satisfy the customer requirements is the one having wire diameter as 3.18mm, coil 

diameter as 34.89mm and height as 285.84mm.  

- Consider another customer having force requirements of a hand exerciser as 55N 

(denoted by right star in Figure 4.35). The design specification of the product 

d (mm) D (mm) H (mm)
51.70985
79.85674
107.5559
135.0875
162.5431

285.84
326.9416
368.0615
409.2043
450.3725

5.26

3.18

52.7024

34.8951

d (mm) D (mm) H (mm)
51.70985
79.85674
107.5559
135.0875
162.5431

285.84
326.9416
368.0615
409.2043
450.3725

5.26 52.7024

3.18 34.8951



 

 204 

family of this scenario is presented in RHS of Table 4.16. It is observed that the 

figures in bold in Table 4.16 satisfy the requirements of the customer. The hand 

exerciser of the product family that will satisfy the customer requirements is the 

one having wire diameter as 5.26mm, coil diameter as 52.7mm and height as 

79.85mm 

The cost of packaging decreases considerably due to larger value of ∆f1. At the 

same time, as the commonality of height increases, the cost of materials increases but not 

to the same extent as the cost of packaging. Different types of diameters lead to the cost 

of purchasing different sizes of mandrels and hence more variety is not preferred. At the 

same time, more commonality in the value of the diameter will lead to increase in 

material costs of the exerciser. The weight on the variance is in between Scenario 1 and 3 

and so the variance obtained in this case lies in between these two values.   

 

Scenario 3 – Changing Design Parameters - B 

The third scenario is similar to the second scenario; however, for comparison 

purposes, the only objective that is considered is reduction in the variance of the 

objective function. The third scenario has no importance for reducing costs. Hence it has 

low variance and high costs.  

Table 4.17: Scenario 3 Product Platform Results 

Cost  Scenario 
# kvariance kcost 

∆f3 (N) ∆f2 (N) ∆f1 (N) 
($) 

Total 
Variance 

($2) Z 
3 1 0 50 25 1 65839.38 1.69E+09 0.703 

 

It is observed from the small value of ∆f1 that this product platform is comprised 

of a number of products, providing a large amount of variety in height of the exerciser. 
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Cost 
($)

4 0.75 0.25 50 50 5 35877.97 3.75E+09 0.698

∆ f 2  (N) ∆ f1  (N) Total Variance 
($2) Z

Scenario #
k variance k cost

∆ f3  (N)

Although this leads to a low value of cost of the material, the costs associated with the 

packaging increases much more significantly. Moreover, the costs of tooling associated 

with the use of different mandrels due to varying coil diameters also increases. Hence the 

total cost is considerably high. In this case, since the only objective is to reduce the 

variance in the costs, the reduction of the total costs is not considered and so the platform 

with the value of variance closest to the ideal value is found, irrespective of the cost 

associated with that platform.  

Apart from the above discussed scenarios, the sensitivity of the results to different 

weights is studied. Scenarios are first run in which the weight is in between 0 and 0.5 for 

minimizing cost and in between 0.5 and 1 for minimizing variance. The Scenario 4 is 

seen in Table 4.18 where the weight for minimizing costs is 0.25 and weight for 

minimizing variance is 0.75. It is observed that the cost incurred ($35877.97) is less than 

the cost incurred ($65839.38) in Scenario 3 and variance (3.75E+09) is more than the 

variance obtained (1.69E+09) in Scenario 3. Also, the cost incurred ($35877.97) is more 

than the cost incurred ($32940.95) in Scenario 2 and variance (3.75E+09) is more than 

the variance obtained (4.43E+09) in Scenario 2. The reason is that the weight in this 

scenario is in between that of Scenario 2 and Scenario 3. 

Table 4.18: Scenario 4 Product Platform Results  

 

The Scenario 5 is seen in Table 4.19. In this case the weight for minimizing cost is 

0.15 and the weight for minimizing variance is 0.85. Here again, similar observations can 

be made as discussed earlier. This scenario falls in between Scenario 3 and Scenario 4. 
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Cost 
($)

5 0.85 0.15 50 50 2 46063.51 2.48E+09 0.734

∆ f 2  (N) ∆ f1  (N) Total Variance 
($2) Z

Scenario #
k variance k cost

∆ f3  (N)

Table 4.19: Scenario 5 Product Platform Results 

 

Another scenario is run in which the weight is in between 0.5 and 1 for minimizing 

cost and in between 0 and 0.5 for minimizing variance. In this case the product platform 

obtained is the same as in Scenario 2 for values of weights close to Scenario 2 while the 

product platform obtained is the same as in Scenario 1 for values of weights close to 

Scenario 1. The values of cost and variance in Scenario 1 and 2 are close to each other 

and hence change of weight does not lead to development of a new product platform. 

This can be better analyzed by considering the variation of the two objectives for 

different weights.  

Variation of Objectives with Weights
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Figure 4.36: Plot of Objectives for Different Settings of Weights 
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The two objectives of minimizing cost and minimizing variance are plotted for 

different settings of the weights (Figure 4.36). It is observed that the slope of the line is 

greater in the range of weight 0 to 0.5 for minimizing cost while it is horizontal for 0.5 to 

1 for same objective. This was observed in Scenario 1, 2, 3 and 4. There are more 

changes in the objectives in the range of 0 to 0.5 for minimizing cost than 0.5 to 1. So one 

can imagine that the manufacturer will tend to choose a platform having variance around 

4E+09 since it gives him/her less penalty on cost while variance decreases by large 

amount. Based on this plot and his/her preferences, the manufacturer can choose the 

appropriate weights to design the product platform. 

 

The type of wire chosen for each of the third stage element in every scenario is 6 

and 15 as in Table 4.11. Now, instead of exhaustive search, the results are found using 

optimization techniques for comparison purposes. Different optimization techniques are 

used and their appropriateness for the problem discussed.  

 

Optimization Techniques 

Genetic Algorithms 

Genetic algorithms, GA, (Goldberg, 1989) are inspired by Darwin's theory of 

evolution. Solution to a problem solved by genetic algorithms uses an evolutionary 

process (it is evolved).  

Algorithm is started with a set of solutions (represented by chromosomes) called 

population. In the beginning a set of possible solutions are randomly generated. Solutions 

from one population are taken and used to form a new population. Solutions that are 
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selected to form new solutions (offspring) are selected according to their fitness - the 

more suitable they are the more chances they have to reproduce. Hence the chances of the 

new population to be better than the old one are higher. This is repeated until terminating 

condition (number of populations or improvement of the best solution) is satisfied. GA 

can handle real, integer and discrete types of variables. 

In the chapter, Multi Island Genetic Algorithm (Abramson et al., 1992) is used. 

This divides the population into several islands. Then traditional genetic operations are 

performed on each island separately. Later, migration of individuals between the islands 

takes place. This helps to search many designs and multiple locations of the design space. 

Two parameters control the migration process – migration interval which is the number 

of generations between each migration, and migration rate which is the percentage of 

individuals migrated from each island at the time of migration. 

In the method, each design point, i.e., every combination of ∆f1, ∆f2 and ∆f3, is 

perceived as an individual with a certain value of fitness based on the value of objective 

function, i.e., value of Z, and constraint penalty. A combination with a better value of 

objective function has a higher fitness value. The selection operation in Multi-Island 

Genetic Algorithm uses the ‘tournament selection’ scheme (Goldberg et al., 1991). 

 

Simulated Annealing 

Simulated Annealing method (Kirkpatrick et al., 1983) has been used in 

optimization in a number of applications. The concept of this technique is based on the 

manner in which liquids freeze or metals recrystalize in the process of annealing. In an 

annealing process a melt, initially at high temperature and disordered, is slowly cooled so 
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that the system at any time is approximately in thermodynamic equilibrium. As cooling 

proceeds, the system becomes more ordered and approaches a "frozen" ground state at 

T=0. Hence the process is thought of as an adiabatic approach to the lowest energy state. 

If the initial temperature of the system is too low or cooling is done insufficiently slowly 

the system may become quenched forming defects or freezing out in metastable states 

(i.e., trapped in a local minimum energy state). 

 

Optimization Techniques applied to the Problem 

The different optimization methods in this section are implemented using iSIGHT 

(Engineous, 2003). Engineous’ iSIGHT software enables rapid integration of programs 

and automates their execution to accelerate the exploration of design alternatives. In this 

project, it is used to automate the iterative cycle of inputting variables, performing a 

simulation program, getting the output, interpreting it and accordingly adjusting the input, 

and so on.  This cycle is illustrated in Figure 4.37. 
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Figure 4.37: iSIGHT Automated Solution Cycle 

 

As seen in the figure, ∆f1, ∆f2 and ∆f3, which represent a product platform as 

explained in Section 4.3.7, are taken as input. For this particular platform (combination of 

∆f1, ∆f2 and ∆f3), the cost and variance is calculated for the entire space as shown in 

Section 4.3.3. The weighted average of the deviations is taken and this value Z 

determined needs to be minimized. Based on the analysis used and output obtained, ∆f1, 

∆f2 and ∆f3 are reconfigured and the process is repeated. The Java program for this is 

presented in Appendix C. For each of the optimization techniques, finding out the lowest 

value of Z is the sole objective. The product platform with the lowest possible value of Z 

will have the two goals of minimizing cost and variance best achieved. 

In the proceeding sub sections, different optimization techniques are applied to 

the problem. In all cases, after solving the problem once, the output is taken as the 
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starting point and that particular optimization technique is used again to search for a 

better solution.  

 

Genetic Algorithms - Simulated Annealing 

In this case, genetic algorithms are used as the first step and then the optimum 

solution is obtained by using simulated annealing as the next step.  

The specifications of the Multi-Island Genetic Algorithm are: 

Table 4.20: Specifications of the Multi-Island Genetic Algorithm 

Size of Sub Population 10
Number of Islands 10
Number of Generations 10  

The specifications of the Adaptive Simulated Annealing algorithm are: 

Table 4.21: Specifications of the Adaptive Simulated Annealing algorithm 

Max. number of generated designs 10000
Number of Designs for Convergence Check 50
Convergence Epsilon 1.00E-08
Relative Rate of Parameter Annealing 1
Relative Rate of Cost Annealing 1
Relative Rate of Parameter Quenching 1
Relative Rate of Cost Quenching 1
Max. number of Failed designs 5  

It is seen that as mentioned previously, the output obtained after the first run is 

taken as input for the next run to check if a better solution is obtained. It is seen in Table 

4.22 that the value of Z reduces from 1 to 0.796466 in the first run. Later, further running 

of genetic algorithms is not able to achieve a lower Z.  

The next step of simulated annealing is then applied. One observes that Z reduces 

to 0.5825895 in the first run. In the next run with this as starting point Z reduces to 

0.512011. Later, further running of simulated annealing is not able to achieve a lower Z. 
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Thus, this is the lowest possible value of Z that can be achieved. The plot of deviation 

function versus the number of runs is shown in Figure 4.38. 

Table 4.22: GA-Simulated Annealing Results 1 

 

Start End
Genetic Algorithms ∆f3=100(15 15 15 15) ∆f3=50(11 11 13 13)

∆f2=10 ∆f2=50 
∆f1=5 ∆f1=2
Ζ=1 Ζ=0.796466

Simulated Annealing ∆f3=50(11 11 13 13) ∆f3=50(11 11 6 6)
∆f2=50 ∆f2=50 
∆f1=2 ∆f1=25
Ζ=0.796466 Ζ=0.583595
∆f3=50(11 11 6 6) ∆f3=50(15 15 6 6)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.583595 Ζ=0.512011  

Genetic Algorithms - Simulated Annealing
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Figure 4.38: Deviation Function vs. Number of Runs 1 

 

Second Case with Different Starting Point 

In this case, again the same two steps are used with different starting points. It is 

seen in Table 4.23 that the lowest value of Z in this case is 0.659194. Thus one sees in 
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Table 4.23 that the method is not able to achieve the lowest value or close to the lowest 

value very regularly.  

Table 4.23: GA-Simulated Annealing Results 2 

Start End
Genetic Algorithms ∆f3=100(1 1 1 1) ∆f3=50(4 4 2 2)

∆f2=25 ∆f2=25 
∆f1=1 ∆f1=25
Ζ=1 Ζ=0.730344

Simulated Annealing ∆f3=50(4 4 2 2) ∆f3=50(7 7 2 2)
∆f2=25 ∆f2=50 
∆f1=25 ∆f1=10
Ζ=0.730344 Ζ=0.659194  
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Figure 4.39: Deviation Function vs. Number of Runs 2 

 

There are a couple of lessons to be learned from this. First of all, both genetic algorithms 

and simulated annealing being exploratory techniques have the capability to search for 

solutions in the entire design space. It is observed that the method is robust enough to 

come closer to the actual solution, regardless of the starting point. Both the methods are 
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independent of the gradient. They are well-suited for discontinuous design spaces. 

Sequential Quadratic Programming is also used to solve the problem (Appendix D). Not 

being an exploratory technique it is able to obtain a good solution only if the starting 

point is close to the optimum. However, at the same time it is noted that the exploratory 

techniques are not able to obtain the product platform with the lowest value of Z, i.e., 

0.5033 achieved by exhaustive search method. The author’s aim is not to reduce the 

number of iterations and get a solution close to the best possible solution, but to obtain 

the product platform that will achieve the objectives in the best possible manner. The 

results from the optimization techniques are in line with the claims in (Williams, 2003). 

Similar differences in the results between optimization and exhaustive search method 

were obtained.  

The author considers another discrete optimization technique Mixed Integer 

Programming combined with Genetic Algorithms to see if the product platform with the 

best possible achievement of objectives is obtained using it. A mixed-integer program is 

the minimization or maximization of a linear function subject to linear constraints. Mixed 

integer programs can be used to formulate just about any discrete optimization problem. 

They are heavily used in practice for solving problems in transportation and 

manufacturing: airline crew scheduling, vehicle routing, production planning, etc.  

 

Mixed Integer Programming – Genetic Algorithms 

In this case, a combination of Mixed Integer Programming (Belegundu, 1999) and 

Genetic Algorithms is used. It is seen in Table 4.24 that the value of Z is reduced from 

0.891936 to 0.51201 in two runs. However, the number of iterations is more than that of 
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the combination of Genetic Algorithms and Simulated Annealing. Moreover, the platform 

obtained is close to the minimum and not the minimum.  

Table 4.24: Mixed Integer Programming-GA Results 

Start End
∆f3=100(15 15 15 15) ∆f3=50(15 15 13 13)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.891936 Ζ=0.717896
∆f3=50(15 15 13 13) ∆f3=50(15 15 6 6)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.717896 Ζ=0.51201

Mixed Integer 
Programming-
Genetic 
Algorithms
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Figure 4.40: Deviation Function vs. Number of Runs 
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4.2.5 Economic Gains using the Method 
 
Scenario A – Product platform without considering changing design parameters 

Table 4.25: Cost Savings without Augmentations 

Cost  

Scenario  kvariance kcost 

∆f3 (N) ∆f2 (N) ∆f1 (N) 

($) 

Total 
Variance 

($2) Z 

A.1 0 1 50 50 25 32726.27 5.57E+09 0.114 

A.2           33692     

     Difference 966   

 

Consider a manufacturer of hand exercisers who designs a product platform to 

minimize the costs associated with it. Since there is only one objective, the manufacturer 

does not consider shifts in customer requirements by changing design parameters. The 

resulting product platform is seen in Scenario A.1 of Table 4.25 along with the costs 

associated with it. This is the same scenario as in Scenario 1. 

Now consider that customers’ requirements have changed and they are looking 

for hand exercisers with a larger diameter, viz., 1.2 times the original diameter. Now if 

the manufacturer uses the existing product platform to incorporate these changes the costs 

associated with it are noted in Scenario A.2. The costs are obviously higher; however, the 

point to note is the amount of difference between the two costs. This is analyzed in more 

detail while considering the difference in costs of Scenario B. 
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Scenario B – Product platform considering changing design parameters 

Table 4.26: Cost Savings with Augmentations 

Cost  

Scenario  kvariance kcost 

∆f3 (N) ∆f2 (N) ∆f1 (N) 

($) 

Total 
Variance 

($2) Z 

B.1 0.5 0.5 50 50 10 32940.95 4.43E+09 0.503 

B.2           33752     

     Difference 812   

 

Now consider a manufacturer of hand exercisers who is aware of the changing 

customers’ requirements and hence designs the product platform accordingly. The design 

of the product platform takes place by considering both the objectives of reducing the 

cost and reducing the variance in costs due to changing parameters. The resulting product 

platform is seen in Scenario B.1 of Table 4.26 along with the costs associated with it. 

This is the same scenario as in Scenario 2. 

Again consider that customers’ requirements have changed and they are looking 

for hand exercisers with a larger diameter viz., 1.2 times the original diameter. Now if the 

manufacturer uses the existing product platform to incorporate these changes the costs 

associated with it are noted in Scenario B.2. The costs are obviously higher; however the 

point to note is the amount of difference between the two costs.  

Now one sees the difference between Scenario A and B. The difference in costs of 

Scenario B is less than that of difference in costs of Scenario A. Hence it is observed that 

if the product platform is designed considering the future changing customer 

requirements, the costs associated with using the existing product platform for the 

changed design parameter later on will be less. Thus the product platform in Scenario B 
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is robust to such changes in design parameters and will give favorable results despite of 

unforeseen changes in customer requirements. 

 

The validity of results is established by four ways: 

1. Checking the constraints 

2. Comparison of a robust and non robust product platform 

3. Values of objective function making small changes in design variables  

4. Comparison of solution obtained by optimization techniques and exhaustive 

search 

1. Checking the constraints - There are three constraints in the problem. Firstly, the 

range of modes at lower levels must be smaller than the range of modes at higher 

levels. This is seen from Table 4.27 that all the lower levels (e.g., ∆f1) are smaller 

than the higher levels (e.g., ∆f2). Secondly, the constraint that , 0i id d− + ≥  needs to 

be satisfied. Again, it is seen all the values in the Table 4.27 show that , 0i id d− + ≥ . 

The third constraint is that 0i id d− + =i . From the column of d+, it is seen that all the 

values are zero. Thus, one always obtains the product of d+ and d- as zero. 

Table 4.27: Constraint Verification 

   Cost Variance 
∆f3 (N) ∆f2 (N) ∆f1 (N) d- d+ d- d+ 

25 1 1 0.7601 0 0.9862 0 
50 25 1 0.7518 0 0.9872 0 
50 50 1 0.6803 0 0.9634 0 
25 25 1 0.7405 0 0.9838 0 
50 25 5 0.7908 0 0.9965 0 
25 25 25 0.6737 0 0.9915 0 
50 50 10 0.7111 0 0.9932 0 
25 25 5 0.3441 0 0.9231 0 
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2. Comparison of a robust and non-robust product platform – The Scenarios A 

and B help to validate the results. In these scenarios, one actually validates the 

results in Scenarios 1, 2 and 3. Scenario 1, 2 and 3 show that the reduction in 

variance in cost leads to less effect on cost due to changes in the coil diameter D. 

The Scenario A shows a non-robust product platform and the effect of having a 

different coil diameter on it is noted. Now the platform is made robust in Scenario 

B. Again the effect on the platform due to the use of some different coil diameter 

is determined. According to the model as shown in Scenario 1, 2 and 3, since the 

reduction in variance in cost leads to less effect on cost due to changes in the coil 

diameter, one should obtain results such that the robust product platform in 

Scenario 2 should have lesser change in cost than the non-robust product platform 

in Scenario 1. This is exactly what the results indicate. 

 

3. Values of objective function making small changes in design variables  

The values of the decision variables are changed by a small extent from the 

solution obtained by exhaustive search and the change in the objective function is 

observed. It is seen that all the values of deviation function Z are higher than the 

obtained minimum. 

Table 4.28: Small Changes in Deviation Variables and its Effect on Deviation Function 

50(15 15 13 13) 50 10 0.71945
50(15 15 6 6) 50 25 0.51201
50(15 15 6 6) 50 5 0.52912

∆ f3  (N) ∆ f 2  (N) ∆ f1  (N)
Z
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4.  Comparison of solution obtained by optimization techniques and exhaustive 

search 

The solution obtained by Multi-island Genetic Algorithms-Simulated Annealing 

(Table 4.22) and Mixed Integer Programming-Genetic Algorithms (Table 4.24) 

gave the same results with Z as 0.512011. The results of the optimization 

techniques were close to the exhaustive search solution having Z as 0.5033. 

 

Some points from the discussion of the example problems of pressure vessel and 

hand exerciser are noted down. 

Appropriate balance between objectives needs to be obtained according to situation 

In the hand exerciser problem for changing design parameters, use of the product 

platform from the compromise case although increases the cost by a small amount 

($32,940-$32,726) but decreases the difference shown in Scenario B ($966-$812) (Table 

4.25 and Table 4.26). This difference indicating savings caused due to robustness to 

changes will overcome the increase in costs in a short amount of time.  

However, one may argue if the chances of the design parameters to vary are less, 

then the platform is getting penalized by having to incur more costs. Here, the question of 

selecting a proper balance between the two objectives of bringing the mean to target and 

minimizing the variation arises. If the manufacturer knows that the design parameters 

variance is going to be very small, he/she can select appropriate weighing factors that 

will consider this situation. Hence, in such a situation, the platform will be penalized less 

however which will lead to fewer saving if there are changes of design parameters.  
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Consider the example of pressure vessel problem with uncertain demand. In this 

case there is a very small penalty ($4,698-$4,680) to the goal of bringing the mean to 

target. However, the difference in profits ($2,823-$2,816) due to significant variance in 

demand shown in Scenario 2 is also not very high (Table 4.8 and Table 4.9). So again one 

may argue if there are no such significant variances in demand in the future, why should 

one penalize the profit even by a small amount? In today’s changing environment, the 

demand varies considerably and one would always try to handle such changing demand 

in the future. At the same time, as explained in the hand exerciser problem, one can vary 

the weighing factors to suit the appropriate problem at hand. So according to the problem 

if minimizing variation is a vital part of the problem, this objective will be given a high 

weight; however, if there is very less variation predicted in the future, this objective will 

be given a low weight and thus less penalty to costs. 

 

Allocation of modes of managing variety in a hierarchical manner 

 Right now, there is no well defined systematic procedure for the allocation of 

modes of managing variety done in Step 5 of PPCTM-RCM. This has been missing in 

previous versions of PPCTM also. This is a limitation of the PPCTM. However, one can 

argue that although there is no such algorithm that is present for determining the right 

mode of managing variety at every level, it is possible to find the right allocation of 

modes of managing variety at each level. There are two steps to find the right allocation 

of modes.  

1. As discussed in Step 4 of PPCTM in Chapter 2, the modes for managing product 

customization capable of achieving the smallest variations in design parameters 
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should be used first.  Some approaches, such as dimensional customization, can 

be used to satisfy very small variations in the product, but are normally expensive 

for large changes.  Other approaches, such as modularity, are not economically 

feasible for small changes.  As such, economical and technological considerations 

play an important role in establishing the hierarchic use of the modes for 

managing product variety. In the example of pressure vessels, it is not possible to 

use the modular combination of vessels at a lower hierarchy since it is not 

economically feasible. Based on technological considerations, one can say that 

cutting different sheet lengths would cost less than having a different radius vessel 

and hence customization of length is at a lower level than commonalization of 

radius. However, one can argue that there could be modes of managing variety 

that are not as obvious in this case. For example, in the case of the hand exerciser, 

there is no such obvious reasoning to choose varying of coil diameter at a lower 

hierarchy than varying diameter of wire. In such situations, one needs to go to 

Step 2. 

2. Consider that there is a doubt in the mind of the designer regarding allocation of 

two of the modes of managing variety. There are two possible hierarchies possible 

in such a situation. In this step, the designer should consider one such hierarchy 

and design a product platform based on it. Now, one should observe the subspace 

elements, ∆r(1),…, ∆r (i) (Figure 2.18). For instance, ∆r(2) and ∆r(3) are the 

subspace elements and the corresponding modes in question. If both the subspace 

elements are equal, (∆r(2) = ∆r(3)),  this means that the subspace element at the 

higher level is being restricted by the subspace element at the lower level. This is 
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checked by the constraint ( ) ( )1j jr i r i∆ ≥ ∆ −  in the formulation of the 

compromise DSP at every stage. So in this case, the modes in the hierarchy need 

to be swapped and this would lead to a better product platform than the previous 

case. In the case of the hand exerciser example, similar analysis has been shown 

in (Hernandez et al., 2003). The variation of wire diameter is allocated at a lower 

hierarchy than variation of the coil diameter at the start. This hierarchical 

representation results in equal values of the subspace elements for the modes. 

Hence, swapping is done and the variation of coil diameter is put at a lower 

hierarchy than variation of wire diameter, which gives better results. Hence, in the 

hand exerciser example in this chapter also, similar hierarchy is used.  

The author realizes that this is not an efficient way of finding out the allocation; however, 

it helps to get the right allocation in this manner. The way to address this problem is 

partly discussed in the Future work in Chapter 6. 

 

Minimizing variance in objectives due to uncertain demand leads to less variety  

In the pressure vessel example problem validation, it was noted that in Scenario 3 

in Table 4.7 there are large values of each of the decision variables, ∆V1, ∆P1, ∆V3, ∆V2. 

After analyzing this in more detail, the reasoning was explained as follows.  For instance, 

consider the case that the manufacturer goes for less commonality and more variety in 

such an uncertain demand. Now, it has been shown in (Williams, 2003) and logically one 

can say that large demand leads to more variety. However, if this demand is highly 

uncertain, more variety will lead to unnecessary losses for the manufacturer due to the 

possible decrease of demand in future. So the manufacturer would not opt for taking the 
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risk of providing a large product line but stick to fewer products. Hence the results make 

sense. However, one can argue that in the hand exerciser example no such trend is 

observed. The reason for it is as follows. In the hand exerciser example, variation is given 

to the design parameters and not the demand. Hence, it is a Type 2 robust design problem 

and not Type 1 where the noise is from outside. Moreover, the coil diameter to which the 

variation is given is a part of the hierarchy of modes of managing variety. So in 

determining the product platform in the hand exerciser example, the formulation of the 

example problem also needs to be considered. Hence, the result in Scenario 3 in the 

pressure vessel and hand exerciser problem cannot be compared.  

 

4.3 A LOOK BACK AND A LOOK AHEAD 
 

The purpose of this chapter along with Chapter 5 is to provide empirical structural 

and performance validity to the thesis. In Chapter 3, the augmented PPCTM is presented. 

The method is able to address the key issues of uncertain demand, changing design 

parameters and changing marketplaces. This chapter helps to focus on the former two 

issues.  The augmented method presented in Section 3.3 is applied to the design of a line 

of customizable pressure vessels and hand exercisers.  

The pressure vessel problem addresses the problem of uncertain demand in the 

design of product platforms. The pressure vessel is a classic mechanical engineering 

problem, which has been used for validations of the work of product platforms.  

The hand exerciser problem addresses the problem of changing design parameters 

in the design of product platforms. It is a product that often requires customization. It is a 

challenge for manufacturers to achieve such customization economically due to the 
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competitive nature of the product. Customers are on the lookout for exercisers that 

exactly fit their requirements. So considering the importance of low cost to the customer 

as well as customized feel of the product, it is very important to be able to have a 

platform robust to any changes in the design parameters as per customer requirements. 

Therefore, this design problem is representative of a product that would benefit from the 

application of the theory and method proposed. 

 Hernandez and Williams have used the same examples in their previous work 

(Hernandez, 2003, Williams, 2003). Hence, it is useful to compare the results and 

analysis with previous methods. In each of the example problem, the Scenario 1 does not 

consider the augmentations suggested in this thesis. It is based on the method previously 

developed. Scenario 2 uses the augmented method PPCTM-RCM and shows the 

significance of the results compared to Scenario 1. If the original PPCTM is assumed to 

be a valid method, then the use of a similar example problem to test an augmented 

PPCTM is also valid. 

Though the modeling of the problems looks relatively simple, the presence of a mix 

of continuous and discrete variables and non-linear functions and models make selection 

of design variables a complex task. At the same time, the main focus of the thesis is to 

concentrate on the method than concentrating on the complex modeling of examples. 

Hence, the selection of the example problems is relevant. The empirical structural and 

performance validity of the thesis (Figure 1.4) is partly provided in this chapter. The 

analysis and validity of the results have been discussed in Sections 4.2.5. It is shown that 

the method provides better results than a non-robust product platform design.  
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In Chapter 5, the issue of changing marketplaces is addressed by using the 

example of pressure vessels. It addresses the second part of the primary research 

question. The empirical structural and performance validity of the thesis is thus further 

examined in the forthcoming chapter.  
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CHAPTER V 
 

5 DESIGN OF A FAMILY OF CUSTOMIZABLE 
PRESSURE VESSELS FOR A CHANGING 

MARKETPLACE 
 

 

In Chapter 3, the augmented PPCTM is presented. This completes the theoretical 

structural validity of the thesis. In Chapter 4, the method is then applied to the design of a 

line of pressure vessel and hand exerciser problem to deal with uncertain demand and 

changing design parameters respectively. In this chapter, the augmented method is 

applied to handle changing extents of a pressure vessel market. This involves 

strategically designing a line of customizable pressure vessels that will consider 

objectives of current as well as potential future expansions of the market. This example 

helps to build on the method used to design a pressure vessel platform in the previous 

chapter, where there was fixed market space. As discussed in Section 2.4, strategic design 

involves taking action in accordance with the future trends well in advance. It is 

recognized in (Chamberlain, 2002) that the money invested by a company in a new 

product platform or in the development of a new piece of technology should continue to 

pay dividends when the next big market shift occurs a few months or years down the line. 

Strategic design, involving all such actions necessary for the company, plays a vital role.   

In this section, the author augments the PPCTM with certain steps that helps 

design strategically. As discussed in Section 1.1.3, marketplace is the space in which the 

manufacturer has demand for his products and wishes to sell his products in this space. 
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This is the space in which the manufacturer designs his product family. The range of 

derivative products and associated customer requirements that are generated from a 

particular product platform is termed the extent of the product platform (Seepersad et al., 

2002). However, in future the extent of the product platform may need to be expanded. 

So how would the manufacturer adjust to such changes in the marketplaces in the future? 

Based on concepts of strategic design, it would be right to take action in accordance with 

the future trends well in advance. Strategic design is meant to take those specific changes 

over time into account, forecasting trends and taking action in accordance with them well 

in advance. Chamberlain recognizes that the company should develop forecasts of future 

market trends to make sure that the money invested in a new product platform or in the 

development of a new piece of technology continues to pay dividends when the next big 

market shift occurs a few months or years down the line. The augmented steps in this 

chapter to PPCTM involve exploring potential portfolio expansions and considering its 

objectives, which help to take action in accordance with the future well in advance.  

The author’s primary objective in this chapter is to address the second section of 

the primary research question and hypothesis: 

 

Q2 “How should the Product Platform Constructal Theory Method be augmented so that 

platforms are designed strategically considering future portfolio expansions?” 

Hypothesis 2: Compromise DSP can be used in the Product Platform Constructal Theory 

Method to make tradeoffs between objectives of the initial market extent and future 

probable extensions. 
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The focus of this chapter is also to provide empirical structural and empirical 

performance validity of the augmented PPCTM.  The positioning of this chapter in the 

thesis is understood from Figure 5.1 and Figure 5.2. 
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Figure 5.2: Thesis Roadmap 

 

In Section 5.1, the problem statement is presented. In Section 5.2, some of the 

aspects of modeling of the pressure vessel have been discussed. Section 5.3 presents the 
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application of the augmented method to the problem in hand. Section 5.4 is comprised of 

the results and its analysis. Section 5.5 helps to validate the results. In the end, a look 

back and ahead is made.  

This example problem of designing a family of customizable pressure vessels has 

been presented in previous applications of the PPCTM (Hernandez, 2001; Carone et al., 

2003; Williams, 2003; Hernandez et al., 2003).  As such, it is an appropriate example for 

the validation of the augmentations provided in this work since it is useful for comparison 

purposes. 

 

5.1 PROBLEM STATEMENT – CHANGING EXTENTS OF PRESSURE VESSEL 
MARKET 

 
A manufacturer of pressure vessels seeks a competitive advantage over other 

leading manufacturing enterprises through offering customized vessels. The manufacturer 

wishes to offer vessels that range in volume from 10 to 30 m3, and in pressure from 10 to 

30 MPa.  By providing customers the opportunity to choose a pressure vessel suited to 

their specific needs, it is assumed that the resulting customized product family (and all of 

its variants) will be in high demand and therefore profitable.  As is typical of markets of 

customizable products, the demand is highly fragmented and uncertain. The basic 

structure of the demand is assumed to be concentric square.  As such, the manufacturer 

wishes to develop a product family that can efficiently offer customizable pressure 

vessels in a market of uncertain demand as well as a market having variable extents. 

In this problem two scenarios are considered: 
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Scenario 1 – Design considering present market OR future market:  

The first scenario has two cases – designing only for the present market and 

designing only for the future market. In the first case, we consider a manufacturer of 

pressure vessels having a market defined by volume in the range of 10-30 m3 and 

pressure in the range of 10-30 MPa. This is the current market situation for the 

manufacturer. So the manufacturer designs a product platform using the original PPCTM 

in this marketplace.  

Now consider that after a certain time interval, the demand for pressure vessels 

increases in the neighboring market. So the manufacturer wishes to extend his market 

space so that his new market includes the old as well as the new, high demand market 

space. In other words, the manufacturer wishes to have the market place having the 

pressure in the range of 10-40MPa. The manufacturer has two options. 

 

Option 1: Now the problem that the manufacturer faces is that if the existing platform is 

extended to also include the new market, it will not continue to give favorable results. 

The reason is that the existing product platform is designed to achieve maximum profits 

in the range of 10-30MPa, so extending the same platform to give favorable results in the 

extended market is not possible.  

Option 2: Redesigning the entire product platform for this extension of the market is not 

feasible. It will involve a lot of restructuring costs that makes it not possible.  Thus, in 

this scenario, the results obtained for a manufacturer considering only the current market 

situation are analyzed. 
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Scenario 2 – Design considering present and future markets: 

 In the second scenario, while designing the initial product platform for the current 

market space, the manufacturer considers the possible future market condition. 

Considering the probability of different market situations in future, the manufacturer 

predicts the most probable market extension of the future. Here, let us assume that the 

demand will be higher in the range of 30-40MPa. So in this case, the manufacturer 

strategically designs the initial product platform using the augmented method proposed in 

this paper. This consideration helps the manufacturer not to fall into problems discussed 

in Scenario 1. Section 4.2 helps to solve the problem in second scenario. 

 

L

R

Th Ts

 

Figure 5.3:  Schematic of Pressure Vessel Embodiment (Hernandez, 2001) 

 

For this example, it is assumed that the conceptual design phase and the beginning 

of the embodiment phase of the pressure vessel have already been completed.  Each 

vessel consists of a cylindrical container capped on both ends by hemispherical heads.  A 

schematic of the basic design is presented in Figure 5.3. 

The manufacturer wants to specify for each possible combination of pressure and 

volume the following design variables: length (L), radius (R), and the head and shell 

thickness (Th and Ts).  The manufacturer has determined that there are two objectives in 
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the design of the robust product platform: the maximization of the average profit, and the 

minimization of its deviance from changes in product demand. 

The basic modeling of the pressure vessel example remains the same as in Section 

4.1.2.  Hence it is not repeated here.  

 

5.2 STRATEGIC DESIGN OF A PRESSURE VESSEL PLATFORM TO HANDLE 
CHANGING EXTENTS OF MARKETPLACES 

In this section, the different steps of the augmented PPCTM are applied to the 

pressure vessel example.  

Step 1: Define the Geometric Space and the Demand Scenario 

Product customization is offered in two independent design specifications – the 

volume and pressure of the vessel. The resulting two-dimensional continuous space of 

customization is shown in LHS of Figure 5.5. The demand in the market space can take 

any form – discrete, concentric square, linear continuous, gaussian distribution or any 

random model of demand. In this case, concentric square variation of demand is 

considered as shown in Figure 5.4. 
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Figure 5.4: Pressure Vessel Space of Customization 

 

Step 2: Explore potential portfolio expansions 

 In this step, the manufacturer needs to explore the different future potential 

markets for the pressure vessels. It is assumed that the manufacturer finds the market of 

pressure vessels will increase in the vertical direction. One also needs to consider for how 

long the market situation will remain in that manner and the probability of it to actually 

be profitable. It is assumed that the market will remain in the expanded position for a 

longer time and more profitable than the current situation and thus the manufacturer 

would want to extend it. Considering all such factors, the probability for the manufacturer 

of such a market expansion in the future is 80%. The extent of this potential expansion of 

the market is from 30MPa to 40MPa. After this extension, the manufacturer wishes to 

continue in the existing market space.  
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Figure 5.5: Initial and potential market extents 

 

Step 3: Classify Design Parameters 

This step begins the formulation of the problem by classifying the design factors.  

The classification is illustrated in Figure 5.6. 

 

 

 

 

Figure 5.6: Factors and Response for Pressure Vessel Design 

 

Step 4: Define the Objective Functions for Initial and Potential Product Portfolios 

The manufacturer has four conflicting goals – two for the initial product platform 

and two for the future potential expansion. Here, the two objectives of each product 

platform are maximizing the profit and the other is to minimize the deviation in profit due 
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to fluctuations in demand. The primary objective, maximizing the profit, is the goal that 

the manufacturer wishes to “move the mean to target.”  From (Williams, 2003) the 

average profit of the market space is calculated as: 

1

1 ( )
n

i i i order equip
itot

AvgProfit D SellingPrice C C C
D =

  
= − − −  

  
∑  [5.1] 

where, SellingPricei is the selling price of each product variant, Ci is the cost of each 

pressure vessel, Corder and Cequip are the costs associated with ordering and manufacturing 

equipment, respectively, and Di is the demand of the specific product variant i, and Dtot is 

the total demand of the products of the market space (a detailed derivation is provided in 

the Section 4.1.2). As seen in Figure 5.6, demand is considered as the noise factor for this 

example.  The other goal of this problem is to determine the control factors that minimize 

the variance of profit that typically arises from fluctuations in demand.  The variance in 

profit is calculated by the following formula: 

σ2 = ∑ (Pi – P)2 / (n-1) [5.2] 

where Pi is the profit calculated for demand Di, 

 P is the profit at mean demand, and 

 n is the number of levels of the noise factor. 

Considering the entire market space, the sum of variances of all considered products in 

the market space is calculated. The objective is to minimize the sum of variances for a 

particular product platform.  

Step 5: Identify the Modes for Managing Variety 

After brainstorming, designers have identified four different modes of managing 

product variety in pressure and volume. 
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Dimensional Customization of Shell Length (V1) 

For this mode, the radius is kept constant while changes in volume are achieved by 

cutting each shell length from a stock piece of raw material.  Hence, for a certain range of 

volumes, there is a common stock length of material with the radius remaining same.  

While it is cheaper to offer the minimum required length for a given radius, there is an 

ordering cost associated with each different length of raw material. 

L2L1  
Figure 5.7: Dimensional Customization of the Length of the Shell (Hernandez, 2001) 

 

Commonalization of Radius (V2) 

The changes in volume in this mode are achieved by modifying the radius of a 

vessel.  Since each different radius used leads to a new press and a die purchase, there is 

an increase in equipment cost.  At the same time, it is obvious that there also exists a cost 

savings in material and waste costs by having radii that closely match that which is 

required. 

Modular Combination of Vessels (V3) 

In this mode, modular combination of vessels is used to achieve discrete changes in 

volume.  This is done by combining vessels of two lesser volumes.  This mode affects the 

costs of manufacturing equipment as well as the material costs. There is a saving on the 

purchase of manufacturing equipment costs while the material costs associated with using 

two smaller vessels may offset this savings. Hence, in this mode one determines the range 

of volumes for which modularity is used.  
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Figure 5.8: Modular Combination of Vessels (Hernandez, 2001) 

 

Standardization of Thickness of Head and Shell (P1) 

In this mode of managing variety in pressure, the modifications in the thickness of 

both the shell and the head of the vessel provide a way of changing the pressure.  It is 

based on the fact that if a shell with dimensions R and L, and thickness Ts and Th satisfy 

the pressure constraints for a pressure P1, it also satisfies these constraints for any 

pressure P ≤ P1. There is also an additional charge for use of different thicknesses. 

Step 6: Identify the Number of Hierarchy Levels and Allocate the Modes for 
Managing Variety to the Levels 

In this step, the different modes of managing product variety are ordered 

hierarchically.   

The First Stage and the First Space Element 

As stated in Section 2.1, the first stage in the hierarchy is held by the mode that 

offers the smallest variations in the design parameters. Hence, out of the different modes 

available for managing variety, the mode with the highest fidelity is selected for this 

stage. For this first space element, Modes V1 (dimensional customization of shell length) 

and P1 (standardization of head and shell thickness) are used together to achieve variety 

in both volume and pressure.  Dimensional customization of shell length makes small 
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variations in volume possible. By cutting the raw material, of length Lo, to any length 

desired, L, this mode is able to achieve continuous changes of volume. 

The value of the variables ∆V1 and ∆P1 determines the size and shape of the first 

space element, S1 (Figure 5.9).  ∆V1 and ∆P1 represent the extent to which these modes of 

managing variety are applied to the platform. These need to be determined at this stage 

and are therefore the decision variables for this first stage. 

 

(V2, P2)

(V1, P1)

(R constant)

∆V1
∆P1

L2L1

Mode V1: Cutting Length L

Mode P1: Standard (Common)
Thicknesses Ts and Th

S1S

V

P

 

Figure 5.9: The First Space Element of the Pressure Vessel Space for Customization (Hernandez, 2001) 

 

The Second Stage and the Second Space Element 

The second space element, S2, is composed by a number of first space elements, S1, 

in the volume dimension. The mode after dimensional customization of shell length that 

can offer small variation in volume is the communalization of radius (Mode V2).  Hence, 

for this second space element, commonalization of the radius (Mode V2) is used to 

achieve variety in volume. The value of the variable ∆V2 determines the size and shape of 

the second space element, S2 (Figure 5.10).  ∆V2 represents the extent to which the radius 

is commonalized across the platform and is therefore decision variable for this second 

stage. 
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Figure 5.10: The Second Space Element of the Pressure Vessel Space for Customization 

 

The Third Stage and the Third Space Element 

The third space element, S3, is composed of a number of second space elements, 

S2, in the volume dimension. For this third space element, modularity of vessels (V3) is 

used to achieve variety in volume (Figure 5.11). The value of the variables ∆V3 

determines the size and shape of the third space element.  ∆V3 represents a point in the 

space in which modular combination of vessels begins, and is therefore decision variable 

for this third stage. 

 For example, if there exist customizable vessels in a range Vmin to V’, volumes 

larger than V’ (up to 2V’) are achieved by combining vessels within this range.  In Figure 

5.11, V’ is 20 m3, so all vessels with volumes greater than V’ is achieved by combining 

two vessels. Hence, the variable to be determined in this case is the cut-off point (V’) – a 

point where vessels with larger volumes are composed of two smaller vessels below the 

cut-off point.  
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Figure 5.11: An Example of the Modular Combination of Vessels (Hernandez, 2001) 

 

 

All the three subspaces with the decision variables are seen together in the Figure 

5.12 below. 

dV2
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Figure 5.12: Product platform in terms of dV3, dV2, dP1, dV1 
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 A graphical representation of the different modes of managing variety is seen in 

the Figure 5.13 below. 

Figure 5.13: Hierarchic Organization of the Modes for Managing Product Customization for the Pressure 
Vessel (Williams, 2003) 

 

Step 7: Formulate a Multi-Stage Compromise Decision Support Problem 

There are two sets of objectives in this problem. Every set is comprised of two 

objectives that need to be satisfied – maximizing profits and minimizing variation in 
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profit. Since there are totally four goals, a decision has to be made that gives the best 

possible combination of them. The compromise DSP is used to formulate this problem.   

Following the tenets of constructal theory, the determination of the range of the 

modes for managing variety that compose a level of the hierarchy represents one stage in 

a multi-stage decision.  With the order of the use of the modes established in Step 6, a 

designer defines a cDSP for each decision stage in this step.  

The manner in which the values of decision variables of the first stage ∆P1 and ∆V1 

are obtained is explained in detail. There is a future potential expansion from 30MPa to 

40MPa. In the first stage, if one considers only the current or initial market space, a 

particular size of the smallest element is obtained. For a particular case, assume the size 

is ∆P1 and ∆V1. Simultaneously, the potential expansion also needs to be considered. For 

the potential expansion, since the leveraging takes place only in the vertical direction, V1 

remains the same, however; a different value of P2 is obtained that achieves the desired 

objectives for that extent. Depending on the probabilities of the initial and potential 

expansions, a compromise is developed between the sizes of the elements. From Step 2, 

the probability of future potential expansion is 80%. Hence, the set of objectives for the 

initial market space has a weight of 0.2 while the other set of objectives for the potential 

expansion has a weight of 0.8. Now inside each set there are two objectives. For the 

initial market space, the objective of maximizing profits is given a higher weight than the 

objective of minimizing variations, summing it up to 0.2. For the potential expansion of 

market space, the objectives are given equal weights of 0.4 each.  
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Figure 5.14: Determination of first stage element – pressure vessel 

  

In the formulation of the compromise Decision Support Problem, the goals are 

measured in terms of the deviation of the objective function from the ideal value. In this 

case, the average profit AvgProf is divided by the maximum possible profit IP and the 

deviation of this ratio from the ideal value of 1 is calculated. Similarly, the minimum 

0.2 0.8 
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possible variance IV is divided by the actual variance and the deviation of this ratio from 

the ideal value of 1 is calculated.  Each set of objective function is represented by: 

(AvgProf / IP) + di
- - di

+ = 1 [5.3] 

( IV / Variance) + di
- - di

+ = 1 [5.4] 

 The deviation variables of the total four objectives are thus found. Using the 

weights of each objective as discussed above, along with the deviation variables forms 

the deviation function.  

Z = Wc1 dc1
- + Wc2 dc2

- + W1 d1
- + W2 d2

-   [5.5] 

 Using the formulation of the compromise DSP in this step, the size of the first 

stage element as P and V is determined in the next step where it is solved.  

 

The First Stage and the First Space Element 

The decision variables of the first space element are ∆V1 and ∆P1, the range of 

application of Modes V1 and P1 respectively.  Three design variables are commonalized 

in the first space element through the application of these two modes of managing 

customization: the raw length, Lo, the head thickness, Th, and the shell thickness, Ts. 
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Decision 1: ∆V1, ∆P1 

Given:       Current market space S = {(V, P)} 

                  Future extended market space S1 = {(V1, P1)}                              

                  Probability of  future extended market space S1   

                  Mode V1: Dimensional Customization of the Shell Length 

                  Mode P1: Standardization of the Head and Shell Thickness 

                  Mean and variance of the noise factor for each market space 

Find:         The value of decision variable ∆V1, ∆P1 

                  The deviation variables, dc1
- and dc1

+, dc2
- and dc2

+, d1
- and d1

+                   

Satisfy:    Bounds:           10 20V≤ ∆ ≤  

                                  10 20P≤ ∆ ≤  

                Constraints:  
0.6s

y

PT R
Pσ

 
≥   − 

 

                               
2 0.2h

y

PT R
Pσ

 
≥   − 

 

                                          dc1
-, dc1

+ 0≥ ,  dc2
- , dc2

+ 0≥  

                                          d1
-, d1

+ 0≥ ,  d2
- , d2

+ 0≥  

                                          dc1
-. dc1

+ = 0,  dc2
- . dc2

+ = 0 

                                          d1
-. d1

+ = 0,  d2
- . d2

+ = 0 

            Goals:            (AvgProf / IP ) + dc1
- - dc1

+ = 1                                        …Contd.  
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…Contd.                        (IV / Variance ) + dc2
- - dc2

+ = 1 

                                        (AvgProf1 / IP1 ) + d1
- - d1

+ = 1    

                                        (IV1 / Variance1) + d2
- - d2

+ = 1                  

                                             

Minimize:  Z = Wc1 dc1
- + Wc2 dc2

- + W1 d1
- + W2 d2

-  

                         where:    AvgProf is calculated as in [5.1] for current market space 

                                        IP = Maximum profit of current market space 

                                        Variance = Variance of current market space 

                                        IV = Minimum variance of current market space 

                                        AvgProf1 is calculated as in [5.1] for future market space S1 

                                        IP1 = Maximum profit of future market space S1 

                                        Variance1 = Variance of future market space S1 

                                        IV1 = Minimum variance of future market space S1                   

                       

Figure 5.15: Formulation of the Multistage Compromise Decision Support Problem for the Pressure 
Vessel; First Stage Element 

 

The Second Stage and the Second Space Element 

The decision variable of the second space element is ∆V2, the range of application 

of Mode V2.  Only one design variable is commonalized in the second space element: the 

radius, R. 
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Decision 2: ∆P2 

Given:       Current market space S = {(V, P)} 

                  Future extended market space S1 = {(V1, P1)} 

                  Probability of  future extended market space S1   

                  The value of ∆V1, and ∆P1 from the first stage 

                  Mode P2: Commonalization of the Radius 

                  Mean and variance of the noise factor for each market space 

Find:         The value of decision variable ∆P2 

                  The deviation variables, dc1
- and dc1

+, dc2
- and dc2

+, d1
- and d1

+ , d2
- and d2

+          

Satisfy:    Bounds:    0 ≤ P2 ≤ 20 

                  Constraints:      1 2 20P P∆ ≤ ∆ ≤  

                                     
0.6s

y

PT R
Pσ

 
≥   − 

 

                                    
2 0.2h

y

PT R
Pσ

 
≥   − 

 

                                          dc1
-, dc1

+ 0≥  

                                          dc2
- , dc2

+ 0≥  

                                          d1
-, d1

+ 0≥  

                                          d2
- , d2

+ 0≥  

                                          dc1
-. dc1

+ = 0                                                         …Contd. 
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…Contd.                           dc2
- . dc2

+ = 0 

                                          d1
-. d1

+ = 0 

                                          d2
- . d2

+ = 0                                           

                  Goals:            (AvgProf / IP ) + dc1
- - dc1

+ = 1 

                                        (IV / Variance ) + dc2
- - dc2

+ = 1 

                                        (AvgProf1 / IP1 ) + d1
- - d1

+ = 1    

                                        (IV1 / Variance1) + d2
- - d2

+ = 1                                                       

Minimize:  Z = Wc1 dc1
- + Wc2 dc2

- + W1 d1
- + W2 d2

-  

                         where:    AvgProf is calculated as in [5.1] for current market space 

                                        IP = Maximum profit of current market space 

                                        Variance = Variance of current market space 

                                        IV = Minimum variance of current market space 

                                        AvgProf1 is calculated as in [5.1] for future market space S1 

                                        IP1 = Maximum profit of future market space S1 

                                        Variance1 = Variance of future market space S1 

                                        IV1 = Minimum variance of future market space S1                        

Figure 5.16: Formulation of the Multistage Compromise Decision Support Problem for the Pressure 
Vessel; Second Stage Element 

 

The Third Stage and the Third Space Element 

The third and final space element is defined by the range of application of Mode 

V3: Modular Combination of Vessels.  The decision associated with this mode is the 

selection of “cut-off” point – a point where vessels with larger volumes are composed of 

two smaller vessels below the cut-off point.  As such, the space element S3 is composed 
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of a number of spaces S2 from the minimum volume of the space, Vmin, to a cut-off point, 

V’.  The cDSP for this stage is presented in Figure 5.17. 

 

Decision 3: ∆V2 

Given:       Current market space S = {(V, P)} 

                  Future extended market space S1 = {(V1, P1)} 

                 Probability of  future extended market space S1   

                  The value of ∆V1, ∆P1, ∆P2 from the first and second stages 

                 Mode V2: Modular Combination of Vessels 

                  Mean and variance of the noise factor 

Find:         The value of decision variable ∆V2 

                  The deviation variables, dc1
- and dc1
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 …Contd.                            d2
- , d2

+ 0≥  

                                          dc1
-. dc1

+ = 0 

                                          dc2
- . dc2

+ = 0 

                                          d1
-. d1

+ = 0 

                                          d2
- . d2

+ = 0 

             Goals:            (AvgProf / IP ) + dc1
- - dc1

+ = 1 

                                        (IV / Variance ) + dc2
- - dc2

+ = 1 

                                        (AvgProf1 / IP1 ) + d1
- - d1

+ = 1    

                                        (IV1 / Variance1) + d2
- - d2

+ = 1             

                                                  

Minimize:  Z = Wc1 dc1
- + Wc2 dc2

- + W1 d1
- + W2 d2

-  

                         where:    AvgProf is calculated as in [5.1] for current market space 

                                        IP = Maximum profit of current market space 

                                        Variance = Variance of current market space 

                                        IV = Minimum variance of current market space 

                                        AvgProf1 is calculated as in [5.1] for future market space S1 

                                        IP1 = Maximum profit of future market space S1 

                                        Variance1 = Variance of future market space S1 

                                        IV1 = Minimum variance of future market space S1 

 

Figure 5.17: Formulation of the Multistage Compromise Decision Support Problem for the Pressure 
Vessel; Third Stage Element 
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With the multi-stage cDSP formulated, we move on to the final step of the 

augmented PPCTM: its solution. 

Step 8: Solve the Multi-Stage Compromise Decision Support Problem 

The final step of this method is the formulation of an appropriate solution 

technique.  Any appropriate solution algorithm can be used; its primary goal is the 

determination of the extent of application of the modes that provides the least deviation 

function, from which the commonality of design parameters of the product platform is 

determined.  Our solution technique, an exhaustive search, is illustrated in Figure 5.18 

(modified from Williams, 2003). 

This solution method involves iterating through values of the modes of managing 

variety (∆V1, ∆V2, ∆V3, and ∆P1), establishing the dimensions of the sub-spaces, 

commonalizing the design parameters (Lo, Ts, Th, and R) across each sub-space, 

evaluating the objective functions, and calculating and comparing the resulting overall 

deviation function for each iteration.  Specifically: 

- A particular combination of sub-space element sizes (∆V1, ∆V2, ∆V3, and ∆P1) is 

taken as input (A). The input also includes demand scenario (B) (present and 

future) (Step 1), current geometric space (market space) (Step 1) and future 

potential expansion of the market with its probability (C) (Step 2) and the 

objective functions (D) (maximize profit, minimize variance) (Step 4). 

- From the sizes of the sub-space elements (E), the bounds of each sub-space are 

established (F). The values of parameters to be commonalized are determined 

from the bounds of the sub-space (G). This involves calculation of the parameters 

from their respective modes (I, J, K) (as shown in Section 4.1.2). 
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- These parameters are then commonalized across the respective sub-spaces (H). 

The objective function is determined for every variant considering the parameter 

values across each sub space (L).  

- For calculation of the variance in profit, the first step involves calculation of cost 

from the parameter values (M) and assessing the selling price (N) and demand for 

each variant. Then variance is provided to demand in the form of noise.  The 

profit is then calculated while keeping other parameters constant. From the profit 

obtained from different values of demand, the variance in profit is calculated (O).  

Specific to this example problem, ±20% noise is provided to the values of demand 

in four discrete levels (i.e., Demand (Noise) = {0.8D, 0.9D, 1.1D, 1.2D}, where D 

is the mean demand).    

- The total profit (Equation 5.1) and variance in profit (Equation 5.2) is calculated 

for that particular combination of sub-space element taken as input (P). The 

objectives are found for the initial as well as potential expansion of the market.  

- The deviation variables of each of the objectives are obtained (Q, R, S, T). 

Depending on the probability of the future expansion, the weights for each of the 

objective of cDSP are decided. The deviation variables and the weights of profit 

and variance for the initial and potential market spaces help to obtain the 

deviation function as the output of this algorithm (U). 

- The value of the deviation function is returned from the analysis and is compared 

with previous output.  After each feasible combination of ranges of the modes for 

managing variety is explored, the input that provides the smallest deviation from 

the goal is selected. 
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Figure 5.18: Solution Algorithm for Minimizing Variance in the Pressure Vessel example 
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5.3 RESULTS AND ANALYSIS IN THE PRESSURE VESSEL PROBLEM 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Product Platform Design Alternatives 

 

There are two scenarios that are analyzed. The first scenario considers two 

different cases. In one case, the platform is designed considering only the present market, 

while in the other case only the future market is considered. Basically, the first scenario 

deals with product platform design where one can only consider a particular extent of the 

market space. The results of this scenario act as a comparison to the second scenario 

where the platform design is done considering both present as well as future markets 

simultaneously. In this second scenario, the product platform is designed using the 

method proposed in this paper. This scenario helps to show how a compromise between 
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the objectives of the present and future markets is made to design a strategic product 

platform. 

 

5.3.1 Scenario 1 – Design considering Present Market OR Future Market 
 

 

In the first scenario, we consider a manufacturer of pressure vessels having a 

market defined by volume in the range of 10-30 m3 and pressure in the range of 10-30 

MPa. This is the current market situation for the manufacturer. So the manufacturer 

designs a product platform using the PPCTM in this marketplace and obtains the results 

as shown in Table 5.1.  

In Figure 5.20, the values of ∆V1, ∆V2, ∆V3, and ∆P1 define a product family; the 

corresponding value of the deviation function Z of that particular family is also noted 

down. The results inform the manufacturer that the best configuration of the modes of 

managing variety which closely matches his/her preferences is to commonalize the raw 

length for every 0.5 m3 of volume, commonalize the head and shell thickness for every 5 

MPa of pressure, commonalize the radius for every 2.5 m3, and to not modularly combine 

the vessels.  It is seen that the market space is divided into subspaces and the size of the 

subspaces depend on the values of ∆V1, ∆V2, ∆V3, and ∆P1.  
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Figure 5.20: ∆V1, ∆P1, ∆V2 and ∆V3 – Scenario 1 Product Platform Results 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Hierarchical Arrangement of the Product Platform 
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Table 5.1: Section of the Scenario 1 Product Platform Specifications 

29.5 10 1.086 10.140 5.046 6.514
10.5 10.650 5.299
11 11.160 5.552

11.5 11.671 5.804
12 12.182 6.057

12.5 12.693 6.310
13 13.204 6.562

13.5 13.716 6.815
14 14.228 7.068

14.5 14.740 7.320
15 15.253 7.573

15.5 15.766 7.826
16 16.279 8.079

16.5 16.792 8.332
17 17.306 8.585

17.5 17.820 8.837
18 18.334 9.090

18.5 18.849 9.343
19 19.364 9.596

19.5 19.879 9.849
20 20.394 10.102

20.5 20.910 10.355
21 21.426 10.608

21.5 21.942 10.862
22 22.459 11.115

22.5 22.976 11.368
23 23.493 11.621

23.5 24.011 11.874
24 24.529 12.127

24.5 25.047 12.381
25 25.565 12.634

V (m3) P (MPa) R (m) 
(∆V2=2.5m

Ts (mm) 
(∆P1=2MPa

Th (mm) 
(∆P1=2MP

Lo (m) 
(∆V1=0.5

 

 

 

 

 

 

Figure 5.22: Profits when designing only for the Initial Market Space 
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Consider a customer having volume and pressure requirements of a pressure vessel 

as 29.5m3 and 24MPa respectively (denoted by star in Figure 5.20). Using the different 

modes of managing variety at each hierarchical level (Figure 5.21), one obtains the 

product platform specifications involving R, Ts, Th and L from the particular values of 

∆V1, ∆V2, ∆V3, and ∆P1. A section of the design specification of the product family of this 

scenario is presented in Table 5.1. The columns in Table 5.1 represent the extent of 

commonalization for each design variable. It is observed that the figures in bold in Table 

5.1 satisfy the requirements of the customer. The detailed specifications of the product 

platform of this scenario are provided in Appendix B. 

The total profit obtained by the manufacturer in this current marketplace is given in 

the LHS of Figure 5.22. If the same values of ∆V1, ∆V2, ∆V3, and ∆P1 are used in the 

extension of the market space in the pressure range 30-40MPa, the total profit obtained in 

the entire market space is given in the RHS of Figure 5.22. 

The problem is better analyzed by considering Figure 5.23 where the product 

platform is designed for the future market and what if the same results are used in the 

present market is analyzed. The product platform for the new market of pressure range 

10-40MPa is designed and the values of ∆V1, ∆V2, ∆V3, and ∆P1 are obtained as shown in 

Figure 5.23. Considering the future market, the profit obtained by this new product 

platform in the market space having pressure range 10-40MPa (RHS of Figure 5.23) is 

obviously greater than the profit obtained by extension of the platform designed for 

pressure range 10-30MPa (RHS of Figure 5.22). The reason is that the new platform is 

designed for the bounds of this new market place, while the previous one was just an 

extension of the existing platform designed for the present market place. Considering the 
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present market, the profit obtained by the product platform designed for the present 

market having pressure range 10-30MPa (LHS of Figure 5.22) is greater than the profit 

obtained by the product platform designed for the extended market space having pressure 

range 10-40MPa (LHS of Figure 5.23).  

 
 
 

 

  A    B       C 

Figure 5.23: Results when designing only for potential market space 

 
5.3.2 Scenario 2 – Design considering Present AND Future Markets 

 

In this scenario, while designing the initial product platform for the current market 

space, the manufacturer considers the possible future market condition. Considering the 

probability of different market situations in future, the manufacturer predicts the most 

probable market extension of the future. Here, let us assume that the demand will be 

higher in the range of 30-40MPa. So in this case, the manufacturer strategically designs 

the initial product platform using the augmented method discussed in Section 3.3. This 

consideration helps the manufacturer not to fall into problems discussed in Scenario 1.  

Table 5.2: Product Platforms Generated during Iterations 

     Current Market Potential Market 

  
∆V3 
(m3) 

∆V2 
(m3) 

∆P1 
(MPa) 

∆V1 
(m3) 

Profit    
($) 

Variance 
($2) 

Profit    
($) 

Variance 
($2) 

Deviation 
function 

1 10 0.5 0.5 0.5 1.148E+09 3.117E+16 2.037E+09 9.381E+16 0.743 
2 20 1 0.5 1 1.522E+09 4.515E+16 2.220E+09 9.780E+16 0.837 
3 10 5 0.5 2.5 1.103E+09 2.949E+16 2.526E+09 1.067E+17 0.700 
4 10 1 1 0.5 1.117E+09 2.995E+16 2.823E+09 1.214E+17 0.676 
5 10 2 5 1 8.789E+08 2.161E+16 4.183E+09 2.494E+17 0.561 
6 20 10 5 1 1.298E+09 3.305E+16 4.223E+09 2.600E+17 0.769 
7 20 10 10 10 8.933E+08 1.768E+16 2.343E+09 1.352E+17 0.845 
8 20 0.5 10 0.5 1.067E+09 2.372E+16 3.428E+09 1.900E+17 0.604 
9 20 5 0.5 5 1.123E+09 3.000E+16 4.327E+09 2.709E+17 0.547 

∆V3 (m3) 10 
∆V2 (m3) 5 
∆P1 (MPa) 0.5 
∆V1 (m3) 5 
Deviation f 0.5487 
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In Table 5.2, some of the possible different product families obtained during the 

iterations is noted down. As explained in Scenario 1, it is seen in Table 5.2 that each of 

the rows represents a product family. The values of the two objectives of profit and 

variance in the case of current market and potential market for each product family are 

calculated. The compromise DSP helps to achieve a compromise between these values 

according to the weights assigned to each of the objectives.  The lower the value of the 

deviation function, the product family is closer to the ideal values of the objectives. As 

discussed in Step 7, the weight given to the future potential expansion is more than the 

current market situation and hence better results for the potential market are preferred. 

Moreover, between the objectives of profit and variance, higher profit is preferred. For 

better understanding, further results are analyzed considering the profits of each situation. 

It is seen that in some of the product families in Table 5.2 (Example 8), one is able to get 

high profit for the potential market situation however since the current market profit 

values are low, the deviation function is high. In some of the cases (Example 2), the 

current market profit is high however since the potential market profit is not so high as 

well as the weight for the potential market being high the deviation function is high. In 

cases where both the profits are considerably high, the variance values also come into 

consideration. The Example 9 in Table 5.2 has the lowest deviation function and thus 

makes the best possible compromise between the different values. Now this product 

family is explained in more detail in Figure 5.24 and compared with the Scenario 1 to see 

its effectiveness. 
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Figure 5.24: ∆V1, ∆P1, ∆V2 and ∆V3 – Scenario 2 Product Platform Results 

 

 
Table 5.3: Section of the Scenario 2 Product Platform Specifications (14m3 and 12.5MPa) 
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Figure 5.25: Hierarchical Arrangement of the Product Platform (14m3 and 12.5MPa) 

 

Table 5.4: Section of the Scenario 2 Product Platform Specifications (24m3 and 14MPa) 
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Figure 5.26: Hierarchical Arrangement of the Product Platform (24m3 and 14MPa) 

 

 

 

 

 

                                                   A B 

Figure 5.27: Profits when Designing Considering the Initial and Potential Market Space (Compromise) 

 

The results inform the manufacturer that the best configuration of the modes of 

managing variety which closely matches his/her preferences is to commonalize the raw 

length for every 5 m3 of volume, commonalize the head and shell thickness for every 0.5 

MPa of pressure, commonalize the radius for every 5 m3, and to modularly combine the 

vessels if the volume is greater than 15 m3.   

Here, two customer examples are shown.  
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- Consider a customer having volume and pressure requirements of a pressure 

vessel as 14m3 and 12.5MPa respectively (denoted by left star in Figure 5.24). 

Using the different modes of managing variety at each hierarchical level (Figure 

5.25), one obtains the product platform specifications involving R, Ts, Th and L 

from the particular values of ∆V1, ∆V2, ∆V3, and ∆P1. A section of the design 

specification of the product family of this scenario is presented in Table 5.3. It is 

observed that the figures in bold in Table 5.3 satisfy the requirements of the 

customer. The vessel of the product family that will satisfy the customer 

requirements is the one having volume as 15m3 and pressure as 12.5MPa. The 

radius of this vessel is 0.783m, thickness of shell is 9.151mm, thickness of head is 

4.549mm and raw length of sheet is 6.744m 

- Consider another customer having volume and pressure requirements of a 

pressure vessel as 24m3 and 14MPa respectively (denoted by right star in Figure 

5.24). A section of the design specification of the product family of this scenario 

is presented in Table 5.4. It is observed that the figures in bold in Table 5.4 satisfy 

the requirements of the customer. The vessel of the product family that will 

satisfy the customer requirements is the one having volume as 25m3 and pressure 

as 14MPa. The radius of this vessel is 0.998m, thickness of shell is 13.069mm, 

thickness of head is 6.492mm and raw length of sheet is 6.668m. 

It is important to note in both the examples the customer is satisfied by having the 

pressure and volume of a pressure vessel higher than his/her requirements. The total 

profit obtained by the manufacturer in this current marketplace is given in the LHS of 

Figure 5.27. If the same values of ∆V1, ∆V2, ∆V3, and ∆P1 are used in the extension of the 
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market space in the pressure range 30-40MPa, the total profit obtained in the entire 

market space is given in the RHS of Figure 5.27. 

After a certain time interval, when the market needs to be extended to have pressure 

in the range of 10-40MPa, the existing product platform is extended to capture this new 

market. There will not be any restructuring costs to move into the market space since it is 

continuing with the same product platform (Option 1 – Section 1.2, 4.1). It is seen by 

comparing RHS of Figure 5.27 with the RHS of Figure 5.22 the profit has been greater 

than the profit that would have been obtained by extension of the product portfolio 

designed for the present market without consideration of the future extension (Option 2 – 

Section 1.2, 4.1). However, since a compromise is achieved between the objectives of the 

two product platforms, it is seen that the profit obtained in the initial market extent for 

scenario 2 (LHS of Figure 5.27) is less than that of scenario 1 (LHS of Figure 5.22). It 

must also be noted that the profit obtained in the initial market extent for scenario 2 (LHS 

of Figure 5.27) is more than the profit obtained in the present market using the product 

platform designed for the extended market space (LHS of Figure 5.23). 

Table 5.5: Product Platform Specifications for Scenario 2 

V (m3) P (MPa) R (m) 
(∆V2=5m3) 

Ts (mm) 
(∆P1=0.5

MPa) 

Th (mm) 
(∆P1=0.5

MPa) 

Lo (m) 
(∆V1=5m3) 

15 10 0.783 7.311 3.638 6.744 
 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
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 15  10.997 5.460  
 15.5  11.367 3.638  
      
 16  11.737 3.821  
 16.5  12.107 4.003  
 17  12.478 4.185  
 17.5  12.848 4.367  
 18  13.219 4.549  
 18.5  13.590 4.731  
 19  13.961 4.914  
 19.5  14.333 5.096  
 20  14.704 7.284  
 20.5  15.076 5.460  
 21  15.448 5.643  
 21.5  15.820 5.825  
 22  16.193 6.007  
 22.5  16.566 6.189  
 23  16.938 6.372  
 23.5  17.312 6.554  
 24  17.685 6.737  
 24.5  18.058 6.919  
 25  18.432 9.109  
 25.5  18.806 7.284  
 26  19.180 7.466  
 26.5  19.555 7.649  
 27  19.929 7.831  
 27.5  20.304 8.014  
 28  20.679 8.196  
 28.5  21.054 8.379  
 29  21.430 10.570  
 29.5  21.805 8.744  
 30  22.181 10.936  

20 10 0.898 8.385 4.173 6.697 
 10.5  8.806 4.382  
 11  9.228 4.591  
 11.5  9.650 4.799  
 12  10.073 5.008  
 12.5  10.496 5.217  
 13  10.918 5.426  
 13.5  11.342 5.635  
 14  11.765 5.844  
 14.5  12.189 6.053  
 15  12.612 6.262  
 15.5  13.036 6.471  
 16  13.461 6.680  
 16.5  13.885 6.889  
 17  14.310 7.098  
 17.5  14.735 7.308  
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 18  15.160 7.517  
 18.5  15.586 7.726  
 19  16.012 7.935  
 19.5  16.438 8.144  
 20  16.864 8.353  
 20.5  17.290 8.563  
 21  17.717 8.772  
 21.5  18.144 8.981  
 22  18.571 9.191  
 22.5  18.999 9.400  
 23  19.426 9.609  
 23.5  19.854 9.819  
 24  20.282 10.028  
 24.5  20.711 10.237  
 25  21.139 10.447  
 25.5  21.568 10.656  
 26  21.997 10.866  
 26.5  22.427 11.075  
 27  22.856 11.285  
 27.5  23.286 11.494  
 28  23.716 11.704  
 28.5  24.147 11.913  
 29  24.577 12.123  
 29.5  25.008 12.332  
 30  25.439 12.542  

25 10 0.998 9.318 4.638 6.659 
 10.5  9.787 4.870  
 11  10.256 5.102  
 11.5  10.725 5.334  
 12  11.195 5.566  
 12.5  11.664 5.798  
 13  12.134 6.030  
 13.5  12.605 6.263  
 14  13.075 6.495  
 14.5  13.546 6.727  
 15  14.017 6.960  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
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 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
 24.5  23.017 11.377  
 25  23.493 11.610  
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  

30 10 1.087 7.313 3.639 14.523 
 10.5  7.681 3.822  
 11  8.049 4.004  
 11.5  8.417 4.186  
 12  8.785 4.368  
 12.5  9.154 4.550  
 13  9.523 4.733  
 13.5  9.892 4.915  
 14  10.261 5.097  
 14.5  10.630 5.279  
 15  11.000 5.462  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
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 24.5  23.017 11.377  
 25  23.493 11.610  
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  

 

Thus, it is observed from the results of Scenario 2 that a compromise is achieved 

between the objectives of initial and potential market situations. The product platform 

designed will have desirable performance not only for the starting period but also later on 

when market extension takes place. Thus one saves on restructuring costs and extends 

his/her market according to requirements. 

 

Additional Scenarios 

In Scenario 2, the probability for the future extension considered is 80%, while 

the probability for the manufacturer to continue in the same market extent is 20% (as 

stated in Step 2 of PPCTM-RCM). In this part, some additional scenarios are run for 

different market probabilities of extension and towards the end all the scenarios are 

analyzed together. 

 

Scenario 3 – Probability of current extent 80% and future extent 20% 

In this scenario, manufacturer assigns a probability of 80% for the market to 

continue in the same current extent. The probability to extend into the neighboring 
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∆V3 (m3) 20
∆V2 (m3) 1
∆P1 (MPa) 2.5
∆V1 (m3) 1
Deviation Z 0.4842

market space is 20%. In this case the product platform is designed and the results are seen 

in Figure 5.28. 

 

 

 

 

  A                                           B                                    C                                

Figure 5.28: ∆V1, ∆P1, ∆V2 and ∆V3 – Scenario 3 Product Platform Results 

 

It is seen in Figure 5.28 that the current extent profit ($1.396E9) is more than the 

profit for the current extent ($1.123E9) obtained in Scenario 2 (Figure 5.27) and the 

profit for the future extent ($4.033E9) is less than the corresponding profit ($4.328E9) in 

Scenario 2. This is the case because now the probability of the current extent has been 

increased from 20% in Scenario 2 to 80% in this scenario and probability of the future 

extent is decreased from 80% in Scenario 2 to 20% in this scenario. One can note that the 

profit for the current extent obtained in this scenario is closer to the maximum profit 

($1.533E9) that can be obtained for the current extent in Scenario1 – Product Platform 

Design for the Present (Figure 5.22). Also, the profit for the future extent obtained in this 

scenario is further away from the maximum profit ($4.33E9) that can be obtained for the 

future extent in Scenario 1 – Product Platform Design for the Future (Figure 5.23). 

 

Scenario 4 – Probability of current extent 40% and future extent 60% 

In this scenario, manufacturer assigns a probability of 40% for the market to 

continue in the same current extent. The probability to extend into the neighboring 
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market space is 60%. In this case the product platform is designed and the results are seen 

in Figure 5.29. 

 

 

∆V3 (m3) 20
∆V2 (m3) 2.5
∆P1 (MPa) 5
∆V1 (m3) 0.5
Deviation Z 0.5263  

     A     B   C 

Figure 5.29: ∆ V1, ∆P1, ∆V2 and ∆V3 – Scenario 4 Product Platform Results 

 

It is seen in Figure 5.29 that the current extent profit ($1.2196E9) is more than the 

profit for the current extent ($1.123E9) obtained in Scenario 2 (Figure 5.27) and less than 

corresponding profit ($1.396E9) in Scenario 3 (Figure 5.28) and the profit for the future 

extent ($4.283E9) is less than the corresponding profit in Scenario 2 ($4.328E9) and 

more than the corresponding profit ($4.033E9) in Scenario 3. This is the case because 

now the probability of the current extent and future extent are in between that in Scenario 

2 and Scenario 3.  

 

Economic Gains over a Five Year Period 

Based on the different scenarios, one can now analyze the results over a five year 

period. Here, what is done is two manufacturers A and B placed in different situations are 

imagined. In each of the situation, the profits that the manufacturer would have gained 

after 5 years if he/she uses PPCTM-RCM (with different probabilities of market 

extension) and if he/she did not use the method are considered. This helps to understand 
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how much exactly the manufacturers would gain after 5 years based on their market 

prediction. 

First, consider a manufacturer A designing a pressure vessel platform who 

predicts the current extent and future extent of the market having a probability of 20% 

and 80% respectively. We assume that the manufacturer is correct in his prediction and 

the higher pressure market is profitable after a year and he/she extends his platform in the 

neighboring market. He/she gains profits in the extended market space for the next four 

years.  

The manufacturer A has a number of options for designing the product platform 

in the current market space at the start of the five year period. As discussed previously in 

this section, he/she can use the non-augmented PPCTM and design the product platform 

as shown in the two cases of Scenario 1 or he/she can use the augmented PPCTM-RCM 

and design the product platform. All the possible cases are compared by using the results 

obtained in different scenarios considered till now (Table 5.6). The final profit obtained 

by the manufacturer after the five year period is calculated for the different scenarios.  

Table 5.6: Total Profits in Different Probability Scenarios after 5 Years for Manufacturer A 
Scenario 1 - Present Scenario 2 Scenario 3 Scenario 1 - Future

Current 100% Future 0% Current 20% Future 80% Current 80% Future 20% Current 0% Future 100%
Year 1 1.533E+09 1.123E+09 1.396E+09 8.742E+08
Year 2 2.425E+09 4.328E+09 4.033E+09 4.330E+09
Year 3 2.425E+09 4.328E+09 4.033E+09 4.330E+09
Year 4 2.425E+09 4.328E+09 4.033E+09 4.330E+09
Year 5 2.425E+09 4.328E+09 4.033E+09 4.330E+09

1.753E+10 1.819E+10Total Profit 
After 5 Years 1.123E+10 1.843E+10  
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Figure 5.30: Total Profits in Different Probability Scenarios 

 

Consider the first column of Table 5.6 where the manufacturer designs the 

product platform for the current market space only (probability of future extension is 

0%). This is as in Scenario 1 – Product Platform Design for the Present. The profit 

obtained for the current market space is $1.533E+09 as obtained in Scenario 1 (LHS of 

Figure 5.22). Now, as discussed, the manufacturer wishes to extend his market space 

after the first year as it is more profitable. The profit obtained by the manufacturer for 

second year is the profit obtained by extending the same product platform designed for 

the present in Scenario 1 (RHS of Figure 5.22). The same profit continues for the next 3 

years. The total profit obtained after 5 years is $1.123E+10.  
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Similarly, in the second column, the results in Scenario 2 are considered where 

the probability of the manufacturer to continue in the same market space is 20% while to 

extend into the adjacent space is 80%. This involves using PPCTM-RCM with the 

probabilities predicted by the manufacturer to be correct.  

In the third column, the results in Scenario 3 are considered where the probability 

of the manufacturer to continue in the same market space is 80% while to extend into the 

adjacent space is 20%. This involves using PPCTM-RCM with the probabilities predicted 

by the manufacturer to be wrong. Here, the manufacturer predicted that the future market 

space would not be that profitable and hence he/she would continue in the same current 

market space for a longer time, as opposed to what actually happens. 

In the fourth column, the manufacturer designs the product platform for the future 

market space only. This is as in Scenario 1 – Product Platform Design for the Future. 

It is observed that the total profit after 5 years obtained in the second column 

where the probabilities predicted by the manufacturer are correct and the design is done 

using PPCTM-RCM is the highest profit ($1.843E+10). This helps to verify and 

understand the significance of the economic gain achieved by using the method.  

 

Now, consider another manufacturer B designing a pressure vessel platform in a 

different situation who predicts the current extent and future extent of the market having 

a probability of 80% and 20% respectively. We assume that the manufacturer is correct in 

his prediction and the current pressure market is only profitable for 4 continuous years 

and he/she extends his platform in the neighboring market only in the fifth year. Hence, 
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he/she gains profits in the current market extent for 4 years and in the extended market 

space for one year.  

 

The manufacturer has a number of options for designing the product platform in 

the current market space at the start of the five year period. As discussed previously in 

this section, he/she can use the non-augmented PPCTM and design the product platform 

as shown in the two cases of Scenario 1 or he/she can use the augmented PPCTM-RCM 

and design the product platform. All the possible cases are compared by using the results 

obtained in different scenarios considered till now (Table 5.7). The final profit obtained 

by the manufacturer after the five year period is calculated for the different scenarios. 

 

Table 5.7: Total Profits in Different Probability Scenarios after 5 Years for Manufacturer B 
Scenario 1 - Present Scenario 2 Scenario 3 Scenario 1 - Future

Current 100% Future 0% Current 20% Future 80% Current 80% Future 20% Current 0% Future 100%
Year 1 1.533E+09 1.123E+09 1.396E+09 8.742E+08
Year 2 1.533E+09 1.123E+09 1.396E+09 8.742E+08
Year 3 1.533E+09 1.123E+09 1.396E+09 8.742E+08
Year 4 1.533E+09 1.123E+09 1.396E+09 8.742E+08
Year 5 2.425E+09 4.328E+09 4.033E+09 4.330E+09

8.557E+09 8.820E+09 9.617E+09 7.827E+09Total Profit 
After 5 Years  
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Figure 5.31: Total Profits in Different Probability Scenarios 

 

Consider the first column of Table 5.7 where the manufacturer designs the 

product platform for the current market space only (probability of future extension is 

0%). This is as in Scenario 1 – Product Platform Design for the Present. The profit 

obtained for the current market space is $1.533E+09 as obtained in Scenario 1 (LHS of 

Figure 5.22). Now, as discussed, the manufacturer wishes to extend his market space only 

after four years as it is more profitable. The profit obtained by the manufacturer for fifth 

year is the profit ($2.425E9) obtained by extending the same product platform designed 

for the present in Scenario 1 (RHS of Figure 5.22). The total profit obtained after 5 years 

is $8.557E+09.  

Similarly, in the second column, the results in Scenario 2 are considered where 

the probability of the manufacturer to continue in the same market space is 20% while to 

extend into the adjacent space is 80%. This involves using PPCTM-RCM with the 
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probabilities predicted by the manufacturer to be wrong.  Here, the manufacturer 

predicted that the future market space would be profitable and hence he/she would not 

continue in the same current market space for a long time. 

In the third column, the results in Scenario 3 are considered where the probability 

of the manufacturer to continue in the same market space is 80% while to extend into the 

adjacent space is 20%. This involves using PPCTM-RCM with the probabilities predicted 

by the manufacturer to be correct.  

In the fourth column, the manufacturer designs the product platform for the future 

market space only. This is as in Scenario 1 – Product Platform Design for the Future. 

It is observed that the total profit after 5 years obtained in the third column where 

the probabilities predicted by the manufacturer are correct and the design is done using 

PPCTM-RCM is the highest profit (9.617E+09). This helps to verify and understand the 

significance of the economic gain achieved by using the method.  

 

Thus from both manufacturers A and B, one observes that using PPCTM-RCM 

helps to design a product platform that is going to give more profit in the coming years. 

 

5.4 VALIDITY OF THE RESULTS 
 

The results can be validated in five ways: 

1. Comparison with results of the newly designed product platform  

2. Checking the constraints 

3. Relation between Market Forecasts and Final Results 
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4. Larger marketplaces lead to larger extent of commonalization than smaller 

marketplaces 

5. Relation of Modularity and Extent of Marketplace 

 

1.  Comparison with Results of Product Platform with Different Probabilities- 

The results is verified by considering the platform designed for the 10-40 MPa 

market shown in Scenario 1 - Figure 5.23. It is seen that the profit obtained by this 

new product platform in the after extension market is greater than the profit 

obtained by extension of the existing platform shown in RHS of Figure 5.22. The 

reason is that the new platform is designed for the bounds of this new market 

place, while the previous one was just an extension of the existing platform 

designed for a different market place. However, as discussed earlier, the problem 

in redesigning the product platform involves high restructuring costs.  

 At the same time, it is observed that the profit shown in LHS of Figure 5.22 is 

greater than that obtained from the results in this platform designed only for the 

future shown in LHS of Figure 5.23. This again helps in validating the work. The 

results obtained by compromising between the initial and potential market spaces 

will give lower profits in the latter case than when the product platform is 

designed especially for the potential market space.  

 

2. Checking the Constraints - There are three constraints in the problem. Firstly, 

the range of modes at lower levels must be smaller than the range of modes at 

higher levels. This is seen from Table 5.2 that all the lower levels (e.g., V1) are 
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smaller than the higher levels (e.g., V2). Secondly, the constraint that , 0i id d− + ≥  

needs to be satisfied. Again, it is observed that all the values in the Table 5.4 

show that , 0i id d− + ≥ . The third constraint is that 0i id d− + =i . From the column of 

d+, it is seen that all the values are zero. Thus, one always obtains the product of 

d+ and d- as zero. 

    Profit Variance 
∆V3 
(m3) 

∆V2 
(m3) 

∆P1 
(MPa) 

∆V1 
(m3) d1

- d1
+ d2

- d2
+ 

20 0.5 0.5 0.5 0.106 0 0.7805 0 
20 1 0.5 0.5 0.1002 0 0.7804 0 
20 1 0.5 1 0.1044 0 0.7786 0 
10 2 0.5 1 0.3298 0 0.6742 0 
20 2.5 5 2.5 0.114 0 0.772 0 
20 1 1 0.5 0.1141 0 0.774 0 
10 5 1 2.5 0.368 0 0.647 0 
20 2.5 2 2.5 0.1569 0 0.7498 0 
20 5 2.5 0.5 0.155 0 0.75 0 
20 4 10 2 0.3825 0 0.554 0 

Figure 5.32: Constraint verification 

 

3. Relation between Market Forecasts and Final Results - The usefulness of the 

results in the pressure vessel example for changing marketplaces depends on the 

market situation that is predicted. In Section 5.3.2, it was analyzed that in the 

compromise case, the profit for the current market situation ($1.123E09) is lesser 

than that of profit in the previous case ($1.533E09), while profit for the future 

market situation ($4.328E09) is higher than the profit in the previous case 

($2.426E09). These results reflect the weights assigned to each of the objectives 

in the formulation of the compromise DSP in Section 5.2 Step 7. It was stated that 

the market situation is going to change quickly and the product platform needs to 
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be designed such that it can quickly adjust to the new market situation. So the 

results are obtained accordingly.  

This also helps to assess the importance of proper market forecasts. Now, 

consider that the future potential expansion of the market is not definite and it can 

take more time. So by using the same results, the manufacturer is obtaining lesser 

profit for greater amount of time than it could have obtained by designing the 

platform only for the current market situation. This was observed while 

considering manufacturers A and B. Hence, the step of forecasting the market and 

assigning appropriate weights to the initial and potential marketplaces is 

important 

4. Larger marketplaces lead to larger extent of commonalization than smaller 

marketplaces - In the pressure vessel problem of changing marketplaces, in the 

first case of Scenario 1, one notices that the number of products for a certain area 

of the market is high (subspace elements are small and hence commonalization 

less). In the second case of Scenario 2, the number of products for the same area 

of the market decreases (subspace elements are large and hence commonalization 

more). The difference in both the cases is that the first one is the design of a 

product platform for the extent of market having pressure range from 0-30MPa, 

while the third one is design of a product platform for the extent of market having 

pressure range from 0-40MPa. Hence, if the design of the product platform is for 

a larger extent of marketplace, the extent of commonalization of the product 

platform increases as compared to design of a product platform for a smaller 

marketplace. This trend makes sense since one cannot expect to provide large 
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amount of customization if the market extent to be covered by the manufacturer is 

large and demand does not increase in same proportion.  

It is seen in Scenario 2, the number of products for the same area of the 

market is in between that of case 1 and 2 of Scenario 1. The reason is obvious 

since this scenario represents a compromise between both the other scenarios. 

5. Relation of Modularity and Extent of Marketplace – The decision variable 

∆V3 represents the modularity of the product platform. It is observed that in 

Scenario 1, in the case where the platform is designed for the present market 

(Figure 5.20) the value of ∆V3 is 20, while in the case where the platform is 

designed for the future market (Figure 5.23) the value of ∆V3 is 10. This means 

that when the market space is small (Figure 5.20) modularity of pressure vessels 

is not desired, while when the market space is large, for volumes greater than 

30m3 modularity is favorable. Moreover, it is also seen in Scenario 2 when a 

compromise is obtained between the two possible extents of market, the value of 

∆V3 is 15m3, which is in between the above two cases.  

It makes no sense to manufacture two vessels for a small requirement of 

pressure and volume. However, as the requirement increases, it is much more 

profitable to manufacture two smaller vessels satisfying the requirement. Thus the 

results make sense. 

 

5.5 A LOOK BACK AND A LOOK AHEAD 

In the previous Chapter 4, the first part of the primary research question was 

addressed. This involved designing product platforms robust to uncertain demand and 
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changing design parameters. With the help of this chapter, part of the empirical and 

performance validity was established.  

In this chapter, the last part of the primary research question is addressed.  

“How should the Product Platform Constructal Theory Method be augmented so that 

platforms are designed strategically considering future portfolio expansions?” 

The method discussed in Section 3.3 is applied to the pressure vessel example 

problem. It is better to use this example, since one can build on the previous chapter’s 

problem as well as focus on the method at hand than focus on the modeling of the 

example. This example provides a two dimensional space of customization as a market. 

So it provides a good example where changes in the extent of marketplace are easily 

visualized. There have been many difficulties in getting the best design variables for this 

problem in literature. Moreover, in this case, since there are an infinite number of 

products to be designed, the complexity increases. Also, due to the reasons discussed in 

Section 4.3, one can say that this example is relevant to the problem. The empirical 

performance validity is demonstrated by showing that this method produces better results 

than a method without considering future potential expansions. The analysis and validity 

of the results have been discussed in Sections 5.3 and 5.4. Thus along with Chapter 4, the 

empirical structural and performance validity of the thesis is established.  
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      CHAPTER VI 
 

6 CLOSURE 
 

 

 In the thesis, the Product Platform Constructal Theory Method (PPCTM) has been 

augmented. The augmentations involve infusion of robustness into the method to handle 

uncertain demand, changing design parameters and changing extents of marketplaces. 

The third chapter presents the method, while the fourth and fifth chapters apply the 

method to examples.  

 

 In this chapter, the thesis is brought to a close. In Section 6.1, the research 

questions and the validity of the hypotheses are reviewed. In Section 6.2, the 

achievements in this thesis are discussed. The limitations of the method are noted in 

Section 6.3. In Section 6.4, potential avenues of future work are discussed and in Section 

6.5, closing remarks are made.  
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Figure 6.1: Thesis Roadmap 
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6.1 A LOOK BACK  - WHAT HAS BEEN PRESENTED 

In this section, the work presented in the thesis has been revisited through the validation 

square. First, the primary research questions and the hypotheses are presented. Next, the 

validation strategy used in the thesis to validate the hypothesis is summarized together. 

 

6.1.1 Revisit – Research Questions and Hypotheses 
 

Research involves posing appropriate questions, formulating answers to these 

questions as a set of hypotheses, and demonstrating that the proposed answers are valid.  

In order to build confidence in the usefulness of the proposed augmentations for meeting 

the challenges posed by the research questions, one must validate it.  First of all the 

research questions and the hypothesis discussed in Chapter 1 are revisited. Then the 

validation strategy is reviewed. 

The primary research question posed in this thesis is: 

 

Primary Research Question 

How should the Product Platform Constructal Theory Method be augmented to 

deal with the uncertainty in demand, changing design parameters and marketplaces? 

 

This primary research question is addressed by investigating a set of research 

questions and associated hypotheses. 
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Q1.1: “How should the Product Platform Constructal Theory Method be 

augmented in order to cope with the uncertainty and inherent changes in demand?” 

Q1.2: “How should the Product Platform Constructal Theory Method be 

augmented in order to cope with the changes in design parameters?” 

Hypothesis 1: The infusion of concepts of robustness into the Product Platform 

Constructal Theory Method enables to design platforms that are unaffected by changes in 

demand and design parameters. 

Q2 “How should the Product Platform Constructal Theory Method be augmented 

so that platforms are designed strategically considering future portfolio expansions?” 

Hypothesis 2: Compromise DSP can be used in the Product Platform Constructal 

Theory Method to make tradeoffs between objectives of the initial market extent and 

future probable extensions. 

 

 The validation of the thesis has been done in different sections throughout the 

work. All the appropriate sections are brought together to review and renew the 

validation square in the proceeding section.  

 
6.1.2 Validation of the Method 

 
An overview of the validation strategy followed in this thesis is presented in 

Section 1.4 and observed in Figure 6.1 and 6.2. The strategy is formulated according to 

the validation square (Pederson et al., 2000) as shown in Figure 6.1.  The theoretical 

structural validity, empirical structural validity, and empirical performance validity have 

already been discussed in sections throughout the thesis. The review of this validity and 
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along with discussion of the last component of theoretical performance validity is 

presented in this section.  

 Inspired by the Masters thesis of Carolyn Seepersed (Seepersed, 2002) and 

Christopher Williams (Williams, 2003), a similar validation format is used in the thesis.  

 

 

Figure 6.2: Chapters in the Validation Square 
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Figure 6.3: Validation Strategy Related to Thesis Format 

 
 
 

Theoretical Structural Validity 
 

Theoretical structural validity involves the consideration of advantages, limitations, 

and accepted domains of application for each of the constructs constituting the theory or 

method as well as accepting the validity of the internal consistency of their assembly 

Literature review of existing product platform design methods, detailed description of PPCTM  
(foundation of this work, developed by Hernandez) and the theoretical foundations of the  
constructs that are to be used to handle uncertain demand, changing design parameters and  
changing extents of marketplaces. 
 
Note down the steps needed for each of the augmentations and then provide a detailed step-by- 
step augmented PPCTM with implementation flowchart that alleviate all the limitations. 

Discuss the appropriateness of the hand exerciser problem: 
-Document that the abstracted ideas of the constructs presented are relevant to the application  
of the hand exerciser problem. 
-Document that the hand exerciser problem is representative of an actual problem for which the 
method is intended.  
-Document that the data associated with the hand exerciser problem can support a conclusion or 
conclusions for Hypothesis 1. 
 
Discuss the appropriateness of the pressure vessel problem: 
-Document that the abstracted ideas of the constructs presented are relevant to the application  
of the pressure vessel problem. 
-Document that the pressure vessel problem is representative of an actual problem for which the 
method is intended.  
-Document that the data associated with the pressure vessel problem can support a conclusion or 
conclusions for Hypothesis 1 and 2. 

Build confidence in the usefulness of the method using the pressure vessel and hand exerciser 
Problems. 

Build confidence in the generality of the approach or in the usefulness of the approach beyond 
the specific example problems. 

Chapter 2

Chapter 3

Chapter 4

Chapter 4, 5

Chapter 4, 5

Chapter 6

Theoretical Structural Validity  

Empirical Structural Validity  

Empirical Performance Validity  

Theoretical Performance Validity 
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together. This is accomplished through a literature review and a critical review of each of 

the building blocks considered.  

 There are two major decisions involved with accepting the theoretical structural 

validity of this work; they are explained below. 

1) Are the constructs themselves valid? Have they been cited in literature before? 

This question is addressed in Chapter 2 where the theoretical foundation of this work is 

established.  Some highlights of this presentation include: 

• The core focus in this work is the augmentation of the Product Platform 

Constructal Theory Method.  In Chapter 2, firstly the hierarchic systems theory 

and constructal theory, building blocks of PPCTM, are discussed. Based on this 

discussion, Hernandez’s abstraction into the realm of product family design is 

presented in Section 2.1.2.  In Section 2.1.3, the six steps of the PPCTM are 

presented. The discussion of the PPCTM is ended by its critical analysis in Section 

2.1.4. The limitations existing in the PPCTM such as the inability to consider 

uncertain demand, changing design parameters and changing extents of 

marketplace are presented in this section. This section also provides a series of 

citations documenting its previous domains of application.  

• The theoretical structural validity of the constructs to augment PPCTM is 

discussed in Section 2.2, 2.3 and 2.4.  The Robust Concept Exploration Method is 

presented in Section 2.2, which addresses the limitation of uncertain demand and 

changing design parameters. The compromise DSP, discussed in the next section 

also plays an important role in alleviation of the aforementioned limitations as well 

as the problem of changing extents of marketplaces. The idea of strategic design, 
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which forms the basis of considering changing extents of marketplaces while 

designing, is discussed in Section 2.4. Each of the constructs are discussed in detail 

along with its critical analysis at the end 

2) Is the resulting combination of these constructs method valid?  Is the combination 

consistent with the constructs themselves?  

This question is discussed in Chapter 3 where the augmented Product Platform 

Constructal Theory Method is presented.  Some salient points of this discussion include: 

• In Section 3.1, some of the steps of RCEM are integrated into the PPCTM to 

present a product platform design method that is able to handle uncertain demand 

and changing design parameters. The RCEM has been used previously in the 

domain of product platform design. 

• In Section 3.2, the steps to be incorporated into the PPCTM so that it is able to 

handle changing extents of marketplaces are discussed. Specifically, the use of 

compromise DSP to make a tradeoff between the current market objectives and 

future potential markets is presented. The application of compromise DSP in the 

domain of product platform design is also noted (Seepersed, 2000). 

• In Section 3.3, the augmented PPCTM is presented.  Each of the eight steps is 

explained in detail in Sections 3.4.1 through 3.4.8, wherein the new augmentations 

are highlighted. 

• In the end in Section 3.4, the theoretical structural validity of the augmented 

PPCTM is provided.  The validity of infusing the robust design principles and 

compromise DSP into the existing PPCTM is discussed.  
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Thus, confidence in the correctness and consistency of the constructs of the PPCTM, 

RCEM and the cDSP, as well as their combination to create the augmented PPCTM, is 

developed. 

 

Empirical Structural Validity 
 

Empirical structural validity involves building confidence in the appropriateness of 

the example problems chosen for illustrating and verifying the performance of the design 

method.  One decision is required for the completion of this portion of the validation 

square: Are the example problems appropriate? Three steps are suggested for answering 

this question: 

1) Are these example problems similar to the domain of which the constructs are 

generally accepted? 

 2) Do the example problems accurately represent the real world situations they attempt 

to portray? 

3) Can the data obtained from the example problems support a conclusion with respect to 

the research hypotheses? 

 In Chapter 4, the application of the augmented PPCTM in context of uncertain 

demand and changing design parameter is discussed. This chapter provides empirical 

structural validity to the first hypotheses.  

This chapter is comprised of two example problems – pressure vessel and hand 

exerciser. The pressure vessel problem helps to address the Q1.1, which deals with the 
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uncertainty and inherent changes in demand. The hand exerciser problem helps to address 

the Q1.2, which deals with the changes in design parameters. The chapter is divided into 

two parts 4.1 and 4.2. Section 4.1 deals with the pressure vessel example while the 

Section 4.2 deals with the hand exerciser example. Each part has five sections in it. The 

first section is comprised of the problem statement. Then the modeling of the example is 

presented. The third section helps to address the application of the augmented method to 

the example problem. The author in the fourth and fifth sections present the results and 

the analysis and validity of the results. The aforementioned questions are addressed in 

Sections 4.3 and 5.5 after the presentations of each of the example problems. 

The pressure vessel problem helps to address the problem of uncertain demand in 

the design of product platforms. The pressure vessel is a classic mechanical engineering 

problem that has been used to validate work on product platforms.  

The hand exerciser problem helps to address the problem of changing design 

parameters in the design of product platforms. It is a product that often requires 

customization. It is a challenge for manufacturers to achieve such customization 

economically due to the competitive nature of the product. Therefore, this design problem 

is representative of a product that would benefit from the application of the theory and 

method proposed. 

 Hernandez and Williams have used the same examples in their previous works 

including dissertation and thesis (Hernandez, 2001 and Williams, 2003). Hence, it is 

useful to compare the results and analysis with previous methods. If the original PPCTM 

is assumed to be a valid method, then the use of a similar example problem to test an 

augmented PPCTM is also valid. 
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Though the modeling of the problems looks relatively simple, the presence of a mix 

of continuous and discrete variables and non linear functions and models make selection 

of design variables a complex task. At the same time, the main focus of the thesis is to 

concentrate on the method than concentrating on the complex modeling of examples. 

Hence, the selection of the example problems is relevant. 

In Chapter 5, the augmented method is applied to handle changing extents of a 

pressure vessel market. This involves strategically designing a line of customizable 

pressure vessels that will consider objectives of current as well as potential future 

expansions of the market. This example helps to build on the method used to design a 

pressure vessel platform in the previous chapter, where there was fixed market space.  

The author’s primary objective in this chapter is to address the second section of 

the primary research question and hypothesis. In Section 5.1, the problem statement is 

presented. In Section 5.2, some of the aspects of modeling of the pressure vessel have 

been discussed. Section 5.3 presents the application of the augmented method to the 

problem in hand. Section 5.4 is comprised of the results and its analysis. Section 5.5 

helps to validate the results. In the end, a look back and ahead is made.  

In Chapter 5, the application of the augmented PPCTM in context of changing 

marketplaces, thus providing empirical structural validity (Section 5.5) to the third 

hypothesis is discussed. It is better to use the pressure vessel example, since one can 

build on the previous chapter’s problem as well as focus on the method at hand than 

focus on the modeling of the example. This example provides a two dimensional space of 

customization as a market. So it provides a good example where changes in the extent of 

marketplace are easily visualized. There have been many difficulties in getting the best 
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design variables for this problem in literature. Moreover, in this case, since there are an 

infinite number of products to be designed, the complexity increases. 

Thus after this discussion, the augmentations proposed in Hypotheses 1, and 2, are 

declared empirically structurally valid. 

Empirical Performance Validity 

 
Empirical performance validity involves building confidence in the usefulness of 

the augmented method. It indicates the degree to which the method’s purpose has been 

achieved. The other aim is to establish that the resulting usefulness is, in fact, a result of 

applying the theory/method.  For example, solutions obtained with and without the 

construct, theory and/or method can be compared. 

The empirical performance validity is established in Sections 4.3 and 5.4 for the 

pressure vessel and hand exerciser example problems. 

• The results and their analysis of the application of the augmented PPCTM to the 

pressure vessel example problem are presented in Sections 4.1.4 and Section 4.1.5 

respectively.  The usefulness of the method is observed by comparing the results of 

a robust product platform and a non robust product platform. Specifically, the 

scenarios of product platforms without considering uncertain demand and 

considering uncertain demand are compared. It is seen that profit obtained is 

comparatively less affected despite of changing demand in the robust product 

platform scenario. 

•  The results and their analysis of the application of the augmented PPCTM to the 

hand exerciser example problem are presented in Sections 4.2.4 and Section 4.2.5 
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respectively.  The usefulness of the method is observed by comparing the results of 

a robust product platform and a non robust product platform. Specifically, the 

scenarios of product platforms without considering changing design parameters 

and considering design parameters are compared. It is seen that cost incurred is 

comparatively less affected despite of changing design parameters in the robust 

product platform scenario. 

• The results and their analysis of the application of the augmented PPCTM to the 

hand exerciser example problem are presented in Sections 5.3 and Section 5.4 

respectively.  The usefulness of the method is observed by comparing the results of 

the product platform considering changing extents of marketplaces with product 

platforms designed for only existing markets. The comparison is done with 

platforms designed in the initial marketplace as well as newly designed platforms 

for the new marketplaces. The economic gains by use of the method over a five 

year period are noted. The usefulness in obtaining a compromise between these 

two is observed in the results.  

Thus, from the discussion of the usefulness of the augmentations proposed in 

Hypotheses 1, 2, and 3, it is concluded that the augmented PPCTM is valid in terms of 

empirical performance, for the chosen example problems. 

Theoretical Performance Validity 

 
Theoretical performance validity involves building confidence in the generality of 

the augmented method and accepting it as useful beyond the example problems.  This is 
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done by showing that the example problems are representative of a general class of 

problems and that the augmented method is useful for these problems. 

The general class of problems for which the constructs of this augmented PPCTM 

are valid are defined by the following characteristics: 

For product platform development: 

• Design problems having uncertain demand 

• Design problems considering changing design parameters 

• Product platform development problems involving changing extents of 

marketplaces 

• Design problems involving multiple conflicting objectives 

• Design problems involving a market of non-uniform demand 

• Product platform development problems that integrate systematically and 

coherently the utilization of multiple approaches for managing product variety, 

such as modular design, dimensional customization, parametric scaling, etc.   

• Product platform development in which the products are functionally similar, but 

with different performance requirements 

• Product platform development problems involving a distinct tradeoff for 

commonalizing a design parameter for the sake of performance 

• It can be applied to any number of customizable specifications. 

 

As part of the requirements of establishing empirical structural validity, it has 

been shown that the example problems are representative of a class of general problems 

with the preceding characteristics.  In order to establish empirical performance validity, it 
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has been shown that the methods are useful for the example problems.  By induction, it is 

argued here that the methods are useful for a general class of problems identified by the 

preceding characteristics. 

Thus in this section, each portion of the validation square has been reviewed.  It is 

therefore asserted that the primary research question has been answered.  The Product 

Platform Constructal Theory Method is augmented in order to deal with the uncertainty 

in demand, changing design parameters and marketplaces. This has been achieved by the 

infusion of concepts from Robust Concept Exploration Method and the use of 

compromise Decision Support Problem.  

 
 
 
 
6.2 LIMITATIONS 
 

While the goals established at the beginning of this thesis are close to being 

accomplished, there are a number of limitations of this work that must first be addressed. 

A large portion of this critical analysis is presented throughout this thesis, specifically in 

the application of the augmented PPCTM to the two example problems in Chapters 4 and 

5. These criticisms are summarized again here.  It should be noted that many of the 

limitations of this research will be transformed into avenues for future work in the 

following section. 

Several limitations of this research are derived from the series of assumptions listed 

at the beginning of the description of each of the example problems: 

 
• In the application of the augmented PPCTM to the development of product 

platforms, only scalable product components are considered.  In other words, 
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variations of product functionality are not considered. One possibility that can be 

investigated is applying the proposed theory and method independently to 

functional modules. A way to represent this would be that each functional module 

would have its own market space for which an individual module platform is 

designed and the overall market space for the complete product would be the 

union of all the market spaces of the modules. With respect to the examples in the 

thesis, only a few modes of managing variety are modeled. Specifically, 

dimensional customization, parametric scaling, and modular combination are the 

only modes considered. Functional based, conventional modularity, etc. are not 

considered in the examples. Also, it is important to note that since in the method a 

tradeoff is obtained between commonality and performance, every mode needs to 

consider both these aspects or else that mode is ignored in the method. 

• The limitation of the work is that if the number of future probable extensions is 

more, the method becomes computationally extensive. It is assumed that the 

probable future extensions are limited to a small number. So if it is not possible to 

narrow down the probable extensions to a small number, the computational 

analysis increases since now one has to consider a couple of more objectives 

simultaneously. 

• A limitation of the work is in the approximations of the examples to adapt to the 

research. The example problems are modeled as effectively as possible while 

keeping the size of the resultant approximation in check.   

 
It is the author’s opinion that these limitations provide an effective way to explore the 

three principle tasks in the completion of this research and do not reduce the overall 
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utility and validity of the augmented PPCTM.   In addition to these limitations, there are 

some areas that the author considers potential future work, which is discussed in the next 

section. 

6.3 ACHIEVEMENTS AND CONTRIBUTIONS 
 
The primary research question stated in Chapter 1 is: 

How should the Product Platform Constructal Theory Method be augmented to 

deal with the uncertainty in demand, changing design parameters and marketplaces? 

 

From the primary research question as well as the corresponding sub-questions asked, it 

is clear that there are three core objectives of this research.  

1. Deal with uncertain demand 

2. Cope with changing design parameters 

3. Handle changing extents of marketplaces 

Based on addressing these objectives, there are a number of contributions made in the 

thesis: 

1. Deal with uncertain demand and changing design parameters: The method helps 

to enable the designer to deal with uncertain demand and changing design 

parameters. Robust design principles have been infused into the Product Platform 

Constructal Theory Method so that the resulting product platforms have minimum 

variance with fluctuations in demand and design parameters over time.  The 

proposed method is able to handle the inherent uncertainty present in markets of 

customizable products. This method is used to design product families that 

improve the performance objectives and minimize their variation to market and 
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design parameter uncertainties. The integration of RCEM enables addressing 

individually the issues of bringing the mean on target and reducing variation. This 

provides designers more flexibility to make decisions based on different robust 

design criteria and help them focus on major hurdles and make improvements. 

The authors have also explored the sensitivity of the configuration of the proposed 

platform design to different weightings of the objectives. It has been shown that 

the use of the PPCTM gives appropriate results according to the manufacturer’s 

preference for “moving the mean to target” and “minimizing variation.”  

2. Handle changing extents of marketplaces: The authors propose a method to 

strategically design product platforms that not only consider the objectives of the 

initial market space but also those of the future potential market expansions. This 

helps to develop a product family life cycle instead of getting restricted to a fixed 

extent of marketplace. This is especially useful in today’s world where changes in 

the market are very rapid. This method makes it possible to obtain the best 

possible performance values of the product platforms in the initial as well as the 

future expansions. The use of the compromise DSP helps in making tradeoffs 

between the conflicting objectives of the initial product portfolio and the future 

potential product portfolios. Hence one is able to obtain specifications of the 

initial product platform that will also give favorable results for future expansions. 

The need of restructuring the initial product platform or redesigning the entire 

product platform again is avoided. 

3. Product Platform Design Method: As discussed in Section 1.2.2, although there 

are a number of methods to design product platforms, all but a few suffer from a 
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number of limitations. After the work in this thesis, it is the author’s opinion that 

PPCTM is able to overcome all of the limitations and is able to design product 

platforms with almost all of the needed characteristics discussed in Section 1.2.2. 

Moreover, from the augmentations suggested, the author has also noted down the 

key lessons learned in the domain of product platforms.  

 

6.4 FUTURE WORK 
 

• Functional module capability – As discussed in the limitations, using PPCTM  

the designer does not consider variety with respect to functional module 

capabilities. In the case of modules, since a module in one product is a module in 

another product, commonalization means that the module slot must be compatible 

with each other. Functional compatibility means the same interface of the module 

against the other part of a product, technologically and geometrically. There are 

two important questions that need to be addressed.  

1. Right now, PPCTM considers the commonalization of design parameters that 

help provide variety. In the case of modular architecture, one needs to 

consider commonalization of modules in different products. Here, one 

considered different modes of managing variety in a hierarchical manner, in 

the case of modular architecture, there would be a functional hierarchy (main 

functions, sub functions, primitive functions) and a corresponding module 

hierarchy (main system, sub systems). How could one use constructal theory 

concepts to define and commonalize the modules at each level of the 

hierarchy? 
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2. Each functional module would have its own market space. The overall market 

space for the complete product platform would be the union of all the market 

spaces of individual modules. So an important factor for consideration while 

deciding the modules of a platform would be maximization of this union of 

market spaces.  

• Functional Domain to Physical Domain – In Section 4.2.5, the limitation of 

PPCTM of not having a well defined procedure for allocation of modes of 

managing variety has been discussed. Moreover, it does not have a defined 

procedure for getting these modes. A possibility of future work is in extending 

PPCTM to explore the system architecture level of design. Apart form the scaling 

based approach in developing platforms; it is important how product architecture 

is built based on change from functional domain to physical domain.  

Every product concept that is generated at the conceptual level needs to be 

evaluated based on its feasibility on a platform level. There is no point in 

developing the optimal concept for a single product when a product platform 

needs to be developed. The modes of managing variety will vary based on the 

concept selected. So instead of defining the concept and working on a limited 

number of modes, one needs to develop a method that evaluates different concepts 

based on different hierarchies of modes possible for every concept and determine 

the extent of application of modes for the hierarchy selected.  

• Qualitative to Quantitative Analysis - There is a need to convert the subjective 

and qualitative data of the customers into quantitative and useful data. This will 

help to define the market space more accurately and thus the design of product 
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platform would be according to needs. This in turn would help to predict the 

potential expansions of market spaces more accurately. Approaches like the 

conjoint analysis can be explored in this area. Right now, it is assumed that the 

market research has already been done and is not a part of the development of the 

method. Integrating such analysis into the method could help in designing 

platforms closer to user needs.  

 

6.5 CLOSING REMARKS 
 

In this section, I will like to think loud – about the method discussed, its future 

and some other parting ideas. 

 The first question that arises in the reader’s mind is that “Why should I use this 

method for product platform design?”  It is necessary to note some features of the 

PPCTM that makes it really different from the existing platform design methods. First 

and foremost, it is the only method that enables the designer to synthesize multiple modes 

of managing product customization. Normally, other methods only have the platform 

designed on one or two modes of managing variety. Secondly, this method makes it 

possible to have a tradeoff between commonality and performance. Here, at the 

beginning stage, one does not know how many products need to be provided, which is an 

implicit assumption in some other methods. The abstraction of the concepts of constructal 

theory in this field of product platform is a novel and effective way to tackle the 

problems. The augmentations of the PPCTM have made it possible to consider non-

uniform and uncertain demand, changing design parameters and extents of marketplaces. 

Through PPCTM, the novel idea of process platforms has also been introduced. No other 
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method is able to consider all these different aspects of product platform design. No other 

method provides such a systematic and methodical procedure for product platform 

design.  

 The future of PPCTM is bright. The above-mentioned advantages really provide a 

vector of differentiation to this method. I would be excited to see this method being 

implemented in the actual design of a product. Only then will the exact problems that the 

designer faces would come forward and one could improve further. I find this method not 

only to give great results in the product platform field but with some modifications I 

foresee that this method can be really useful in other fields also. Wherever there is a need 

to commonalize things, this constructal theory based approach can be really useful. For 

example, in project management, one could very well commonalize projects so that 

allocation of resources can be much simpler. Instead of allocating resources to individual 

projects, it will always be better to commonalize projects and allocate resources to the 

entire group. I am excited about the future of the method in such diverse applications. 
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APPENDIX A 
 

JAVA CODE FOR THE PRESSURE VESSEL EXAMPLE 
PROBLEM 

 
 

 In this appendix, the computer program for the pressure vessel example is 

presented. The program is written in Java. A brief description of the classes and functions 

written is followed by the actual code. 

 The solution algorithm used for this example is as explained in Section 4.1.3, 

which is modified from Williams, 2003. A brief description of the classes and functions 

are as follows: 

Classes 

cudPV                 This is the main class of the program for uncertain demand. 

From this class different functions are called. The solution 

algorithm is implemented in this class. 

cMS This class deals with all the details of developing a market space. 

This involves discretization of the market space. 

cDetailsOP This class helps to write the output. i.e., detailed specifications of 

the product families into a file.  

cResultsOP This class is used to display the results of the product platform 

having lowest deviation. 
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ccmPV This is the main class for the changing extent of market program. 

From this class different functions are called. The solution 

algorithm is implemented in this class. 

Functions 

Cost To calculate the cost of a pressure vessel 

normProf To calculate the normalized profit for the entire market space 

normVar To calculate the normalized variance for the entire market space 

Rmin To find out the minimum radius given a volume using the 

bisection method root-finding technique 

fCheck To check if one number is a multiple of other 

z To calculate the deviation function helping to make compromise 

updateR To print ∆V3, ∆V2, ∆V1 and ∆P1 of platforms in the file 

updateR2 To print profits, variances and deviations of platforms in the file  

updateD To print details of each node of the product platforms in the file  

updateDp To print the final results in the file  

close To close the file 

estNodes To establish nodes in the market space 

DemandDist To define the demand distribution of the market 

calcPrice To calculate the selling price of the vessel 

getTDemand To find the total demand in the market 

getnarray To return the array containing nodes 

XDim To return the volume dimension of the market space 

YDim To return the pressure dimension of the market space 
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NodeDim      To return the number of nodes in the market space 

initCost      To initialize the cost of each node 

initVmax    To initialize the maximum volume of each node for first stage 

initVmax1            To initialize the maximum volume of each node for second stage 

initPmax       To initialize the maximum pressure of each node  

initRmin        To initialize the radius of each node  

 

cudPV 
 
//////////////// cudPV (Class Uncertain Demand Pressure 
Vessel)/////////////////// 
import java.lang.*; 
public class cudPV { 
 
 ////////Initialization///////// 
 double dP1compr = 0.0; 
 double dV2compr = 0.0; 
 double dV1compr = 0.0; 
 double dV3compr = 0.0; 
 double Profitcompr = 0.0; 
 double Varcompr = 0.0; 
 double Dev= 0.0;  
 
 /////////Bounds//////////// 
 double Tl = 6.35; //max possible thickness 
 double Tu = 76.2; //min possible thickness (multiples of 6.35) 
 double Lu = 7.0; //max possible length  
 double Ru = 4.0; //min possible radius  
 double pi = java.lang.Math.PI;  
 
 public static void main (String[] args) 
 { 
  new cudPV(); 
 } 
 
 ///////cudPV constructor////// 
 public cudPV() 
 { 
  double averageprofit = 0.0; //temperory variable to find 
best platform 
                //double averagev=1E30; 
  double averageu=100000.0; //temperory variable to find best 
platform 
 
  ////Market space bounds and inner resolution 
  double res = 0.5; //resolution of discretization   
  double vor = 10.0; //origin of v-axis - x dimension 
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  double vlen = 20; //v-length of market 
  double por = 10.0; //origin of v-axis - x dimension 
  double plen = 20; //p-length of market 
 
  //call MS class constructor to create node array 
  cMS MS = new cMS(res, vor, vlen, por, plen); 
    
  //call cDetailsOP and cResultsOP class constructor for 
output   
  cDetailsOP DetailsOP = new cDetailsOP(res); 
  cResultsOP ResultsOP = new cResultsOP(res); 
 
  /*Start with dP1, go through different values of dP1, 

each node is assigned the max pressure according to the 
discretization of P-axis. From value of max pressure, find 
minimum thicknesses for each node. Then start iterating 
different values of dV2 which is for finding out the 
radius. Then by iterating values of dV1 the length is 
determined. In the end, dV3 is also iterated to find out 
the cutoff point for combination. From the different values 
obtained, find the profit of each node. Go on storing 
profits larger than previous iteration and print and send 
to output file. 

  */ 
   
  double dP1=0; //size of first-stage pressure element 
  double P2=0; //largest pressure of the considered 
space 
  double narray[][] = MS.getnarray(); 
  int Y = 0; 
  int X = 0; 
  int T = 0; 
  Y = MS.YDim();   
  X = MS.XDim(); 
  T = MS.NodeDim(); 
    
  //start going through dP1 
  for (int i=1; i<((Y/2)+1) ; i++) 
  {  
   P2 = narray[i*X][2]; 
   dP1 = P2 - narray[0][2]; 
  
   //check to see if dP1 is a multiple of dP2 
   int dP1factor = fCheck(plen, dP1); 
   if (dP1factor != 1) 
   { 
   int dP1node = i; //number of nodes in dP1 
   //number of elements in P direction 
   int P1element = (Y-1)/dP1node; 
   double Pmax=0; 
   //Assign each node its max pressure 
   narray[0][6] = P2; 
   narray[0][10] = 1.0;  
   for (int a=0; a<P1element; a++) 
   { 
   int PmaxNode = X*dP1node + a*dP1node*X; 
   Pmax = narray[PmaxNode][2]; 
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   narray[PmaxNode][6] = narray[PmaxNode][2]; 
   narray[PmaxNode][10] = 1.0; 
   //assign nodes the pressure below Pmax line 
   int d = PmaxNode; 
   while (d > 0) 
   { 
   d = d - X; 
   if (narray[d][10] != 1.0) 
   { 
   narray[d][6] = Pmax; 
   narray[d][10] = 1.0; 
   } 
   else {;} 
   } 
   }//end of Pmax loop 
   //assign nodes on horizontal line with Pmax 
   int b = 0; 
   while (b < (T - X)+1) 
   { 
   for(int e=1; e<X; e++) 
   { 
   narray[b+e][6] = narray[b][6]; 
   narray[b+e][10] = 1.0; 
   } 
   b = b + X; 
   } 
 
  double dV2=0; 
  double V2h=0; 
 
  for (int h=1; h<((X/2)+1); h++) 
  { 
   V2h = narray[h][1]; 
   dV2 = V2h - narray[0][1]; 
   int dVnodeh = h; //number of nodes in dV1 
 
   //check to see if dV is a multiple of x dimension 
   int dVhfactor = fCheck(vlen, dV2); 
   if (dVhfactor != 1) 
   { 
   //number of elements in V direction 
   int Velementh = (X-1)/dVnodeh; 
 
   //assign each node its maximum Volume 
   double Vmaxh=0; 
   double Rminh=0;        
   for (int m=1; m<Velementh+1; m++) 
   { 
   Vmaxh = narray[m*dVnodeh][1]; 
   Rminh = Rmin(Vmaxh); 
   //assign nodes with max volume 
   for (int n=0; n<((m*dVnodeh)+1); n++) 
   { 
   if(narray[n][9]!=1.0) 
   { 
   narray[n][7] = Rminh; 
   narray[n][10] = 1.0; 
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   } 
   else {;} 
   //assign nodes above 1st line  
   for(int p=1; p<Y; p++) 
   { 
   if(narray[n+p*X][9]<1.0) 
   { 
   narray[n+p*X][7] = Rminh; 
   narray[n+p*X][9] = 1.0; 
   } 
   else{;} 
   } 
   } 
   }//end of Vmax loop 
 
  double dV1; //size of first-stage volume element 
  double V2; //largest Volume of the considered space 
   
  MS.initVflag(); 
 
  //go through dV1s 
  for (int j=1; j<((X/2)+1); j++) 
  { 
   V2 = narray[j][1]; 
   dV1 = V2 - narray[0][1]; 
   int dVnode = j; //number of nodes in dV1 
 
   //check to see if dV is a multiple of the v-dimension  
   int dVfactor = fCheck(dV2, dV1); 
   if (dVfactor != 1) 
   { 
   //number of elements in V direction 
   int Velement = (X-1)/dVnode; 
 
   //assign each node its max Volume 
   double Vmax=0; 
   double Rmin=0;        
   for (int z=1; z<Velement+1; z++) 
   { 
   Vmax = narray[z*dVnode][1]; 
   Rmin = Rmin(Vmax); 
   //assign nodes with Vmax  
   for (int y=0; y<((z*dVnode)+1); y++) 
   { 
   if(narray[y][9]!=1.0) 
   { 
   narray[y][5] = Vmax; 
   narray[y][9] = 1.0; 
   } 
   else {;} 
   //assign nodes above v axis line  
   for(int x=1; x<Y; x++) 
   { 
   if(narray[y+x*X][9]<1.0) 
   { 
   narray[y+x*X][5] = Vmax; 
   narray[y+x*X][9] = 1.0; 
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   } 
   else{;} 
   } 
   } 
   }//end of Vmax loop 
 
   /*Start iterating through dV3. Assume cutoff point 
and recalculate 
   profit considering that many vessels. Find the best 
combination of 
   different parameters 
   */ 
   double dV3; //size of third space element 
   double V3; //cutoff point 
   //first try when there is no dV3 - no cutoff 
   dV3 = vlen; 
   //calculate cost for each node 
   for (int n=0; n<T; n++) 
   { 
   double maxV = narray[n][5]; 
   double maxP = narray[n][6]; 
   double V = narray[n][1]; 
   double R = narray[n][7]; 
   double Lo = (maxV / (pi*R*R)) - ((4.0/3.0)*R); 
   double L = (V / (pi*R*R)) - ((4.0/3.0)*R); 
   double cost = Cost(maxP, V, R, L, Lo); 
   narray[n][4] = cost; 
   } 
  
   //find avg profit of entire space 
   double newprofit = 0; 
   double totalDemand = 0; 
 
   double de[]; 
   double pr[]; 
   double newv=0.0; 
   de=new double[5]; 
   pr=new double[5]; 
   double v=0.0; 
   double unewv=0.0; 
   double unewprofit1=0.0; 
   double combou=0.0; 
   double dunewv=0.0; 
   double dunewprofit1=0.0; 
 
   for (int q = 0; q<T; q++) 
   { 
   //demand * (selling price - cost) 
   //provide noise  
   de[0]=narray[q][3];    
   de[1]=0.8*narray[q][3]; 
   de[2]=0.9*narray[q][3]; 
   de[3]=1.1*narray[q][3]; 
   de[4]=1.2*narray[q][3]; 
 
   pr[0]=de[0]*(narray[q][8] - narray[q][4]); 
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   for(int g=1; g<5; g++) 
   { 
    pr[g]=de[g]*(narray[q][8] - narray[q][4]);  
    v=v+((pr[g]-pr[0])*(pr[g]-pr[0]))/3; 
 
   } 
 
   newv=newv+v; 
 
    
   newprofit = newprofit + (narray[q][3]*(narray[q][8] - 
narray[q][4])); 
   totalDemand = narray[q][3] + totalDemand; 
   } 
   // CEquip for each dV1 
   double CEquip = 0;       
   for (int p=1; p<(Velementh+1); p++) 
   { 
   double rad = narray[p*dVnodeh][7]; 
   CEquip = CEquip + (500000 + (50000*rad)); 
   } 
         
   //Cost of each Lo and each dP1 
   double Locost = 250*Velement+100*P1element; 
   double newprofit1 = newprofit - CEquip - Locost; 
      
   //divide by total demand of space to take average 
   newprofit1 = newprofit1 / totalDemand; 
 
   //unewprofit1 = normProf(newprofit1, unewprofit1); 
   //unewv = normVar(newv, unewv); 
    
   unewprofit1=newprofit1/4700; 
 
   unewv=1E16/newv; 
 
   if((unewprofit1<0)||(unewprofit1>1)) 
    unewprofit1=0; 
 
   if((unewv<0)||(unewv>1)) 
    unewv=0; 
    
   dunewprofit1=1-unewprofit1; 
   dunewv=1-unewv; 
 
   //combou = z(0.5, 0.5, dunewprofit1, dunewv) 
   combou=0.5*dunewv+0.5*dunewprofit1; 
 
    
   if (combou < averageu) 
   { 
   averageu = combou; 
   dP1compr = dP1; 
   dV2compr = dV2; 
   dV1compr = dV1; 
   dV3compr = vlen; 
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   Profitcompr = newprofit1; 
   Varcompr = newv;  
   Dev= averageu; 
 
   //output to file 
   DetailsOP.updateD(dV3, dV2, dV1, dP1, narray, 
MS.NodeDim()); 
   DetailsOP.updateDp(newprofit1, newv, averageu); 
   }     
 
          
   ResultsOP.updateD(dV3, dV2, dV1, dP1, newprofit, 
CEquip, totalDemand, newprofit1, newv, unewprofit1, unewv, combou); 
 
    
   //iterate through dV3s 
   for (int c=((X/2)+1); c<X; c++) 
   { 
   int dV3node = c; 
   V3 = narray[dV3node-1][1]; 
   dV3 = V3 - narray[0][1]; 
          
   //check to see if dV3 is a multiple of dV1 
   int dV3flag = fCheck(dV3, dV2); 
   if (dV3flag > 0) 
   {;} 
   else //if it is a multiple iterate 
   {  
        
   //calculate cost for each node 
   for (int n=0; n<MS.NodeDim(); n++) 
   { 
   double V = narray[n][1]; 
   double R = narray[n][7]; 
   double maxV = narray[n][5]; 
   double maxP = narray[n][6]; 
   double Lo = (maxV / (pi*R*R)) - ((4.0/3.0)*R); 
   double L = (V / (pi*R*R)) - ((4.0/3.0)*R); 
   double cost = Cost(maxP, V, R, L, Lo); 
   narray[n][4] = cost; 
 
   
   } 
 
   for (int d = dV3node; d<X; d++) 
   { 
   for (int e=0; e<Y; e++) 
   { 
    int node = d/2 + (e*X);  
   //location of half of current node 
   narray[(d+(e*X))][4] = 2 * narray[node][4]; 
    } 
   } 
     
   //find average profit 
   
   newprofit = 0; 
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   totalDemand = 0; 
   v=0; 
   newv=0; 
   for (int q = 0; q<T; q++) 
   { 
 
   de[0]=narray[q][3];    
   de[1]=0.8*narray[q][3]; 
   de[2]=0.9*narray[q][3]; 
   de[3]=1.1*narray[q][3]; 
   de[4]=1.2*narray[q][3]; 
 
   pr[0]=de[0]*(narray[q][8] - narray[q][4]); 
    
   for(int g=1; g<5; g++) 
   { 
    pr[g]=de[g]*(narray[q][8] - narray[q][4]);  
    v=v+((pr[g]-pr[0])*(pr[g]-pr[0]))/3; 
   } 
 
   newv=newv+v; 
    
   //demand * (selling price - cost) 
   newprofit = newprofit + (narray[q][3]*(narray[q][8] - 
narray[q][4])); 
   totalDemand = narray[q][3] + totalDemand; 
   } 
            
     
   //CEquip for each dV3 
   CEquip = 0; 
   int o = 1; 
   int onode = dVnode; 
   while (onode < dV3node) 
   {         
   double rad = narray[onode][6]; 
   CEquip = CEquip + (500000 + (50000*rad)); 
   o++; 
   onode = o*dVnode; 
   } 
         
   newprofit1 = newprofit - CEquip - Locost; 
       
   //divide by total demand of space to take average  
   newprofit1 = newprofit1 / totalDemand; 
 
   //unewprofit1 = normProf(newprofit1, unewprofit1); 
   unewprofit1=newprofit1/4700; 
   //unewv = normVar(newv, unewv); 
   unewv=1E16/newv; 
 
     
   dunewprofit1=1-unewprofit1; 
   dunewv=1-unewv; 
    
   //combou = z(0.5, 0.5, dunewprofit1, dunewv) 
   combou=0.5*dunewv+0.5*dunewprofit1; 
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   if (combou < averageu) 
   { 
   averageu = combou; 
   dP1compr = dP1; 
   dV2compr = dV2; 
   dV1compr = dV1; 
   dV3compr = vlen; 
   Profitcompr = newprofit1; 
   Varcompr = newv;  
   Dev= averageu; 
   //output file 
   DetailsOP.updateD(dV3, dV2, dV1, dP1, narray, T); 
   DetailsOP.updateDp(newprofit1, newv, combou); 
   } 
     
   ResultsOP.updateD(dV3, dV2, dV1, dP1, newprofit, 
CEquip, totalDemand, newprofit1, newv, unewprofit1, unewv, combou); 
     
 
   MS.initCost(); 
   }//end of else in dV3 iteration 
 
   }//end of dV3 iteration 
 
   //initialize flags for next iteration 
    
   MS.initVmax(); 
   MS.initVflag(); 
  
  } //end of else of dV1 
  }//end of dV1  
 
   
  MS.initVflag(); 
   
  }//end of else of dV2 
  } //end of dV2 
  MS.initPmax();    
  MS.initPflag(); 
 
  }//end of else of dP1 
  }//end of dP1 
 
  //final results 
  DetailsOP.updateR(dV3compr, dV2compr, dV1compr, dP1compr); 
  DetailsOP.updateR2(Profitcompr, Varcompr, Dev); 
   
  //close output files 
  DetailsOP.close(); 
  ResultsOP.close(); 
   
  } //end of cudPV() constructor 
  
   
 public int fCheck(double n, double m) 
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 { 
  Double x = new Double(n/m); 
  int y = x.intValue(); 
  double z = y+0.0; 
  double fractioncheck = (n/m) - z; 
  int flag = 0; 
  if (fractioncheck < 0 || fractioncheck > 0) 
  { 
   flag = 1; 
  } 
  return flag; 
 }//end of fCheck() 
  
  
 public double Cost(double xP, double xV, double xR, double xL, 
double xLo) 
 { 
  double P = xP; //Pressure, MPa 
  double V = xV; //Volume, m^3 
  double R = xR; //Radius, m 
  double L = xL; //Length, m 
  double Lo = xLo; //Raw Length, m 
   
  //---- Constants ----// 
  double sigy = 1077; //Yield strength, MPa 
  double dens = 7800; //density, kg/m^3 
  double Cs = 0.8; //processed shell stell cost, $/kg 
  double Ch = 2.0; //cost of forged steel for head, $/kg 
  double Cp = 0.3; //cost of raw steel plate, $/kg 
  double Cw = 15; //cost of welding material, $/kg 
 
  double Ts = (R*1000)* (P / (sigy - (0.6*P))); //shell 
thickness, mm 
  double Th = (R*1000)* (P / ( (2*sigy) - (0.2*P) )); //head 
thickness, mm 
 
  double CWaste = 2 * pi * dens * Cp * (Ts/1000) * R * (Lo - 
L); //cost of wasted material, $ 
  double CMat = 2 * pi * dens * ( (Cs*R*(Ts/1000)*L) + 
(Ch*R*R*(Th/1000)) ) + CWaste; //material cost, $  
  double VLWeld = (4.0/9.0) * pi * (Ts/1000) * (Ts/1000) * L; 
//volume of long weld, m^3 
  double CLongWeld = VLWeld * dens * Cw; //cost of long weld 
  double VCWeld = (8.0/9.0) * pi * pi * (Ts/1000) * (Ts/1000) 
* R; //volume of circ. weld, m^3 
  double CCircWeld = VCWeld * dens * Cw; //cost of circular 
weld, $ 
  double CWeld = CLongWeld + CCircWeld; //total cost of weld 
 
  double CTotal = CMat + CWeld; //total cost excluding 
equipment cost, $ 
  return CTotal; 
 } //end of Cost 
  
  
 public double Rmin(double xV) 
 { 
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  //find the minimum feasible radius for a vessel 
  //with given Volume 
  double V = xV; 
  double Verr = 0.0; //used to compare with given V 
  double R1 = 0.0; 
  double R2 = Ru; 
  double Rmin = 0.0; //minimum radius 
  double error = 1.0; //error used for testing convergence 
  //iterate through volume quation with bisection method 
  for(int i=0; i<30; i++) 
  { 
   Rmin = (R1+R2)/2; 
   Verr = (4/3)*pi*(Rmin*Rmin*Rmin) + pi*Rmin*Rmin*Lu; 
   error = java.lang.Math.abs(Verr - V); 
   if (error < 0.01) { break; } 
   if (Verr < V) 
   { 
    R1 = Rmin; 
   } 
   else 
   { 
    R2 = Rmin; 
   } 
  } 
  return Rmin; 
 }//end of Rmin 
  
 public double normProf(double newprofit1, double unewprofit1) 
 { 
  unewprofit1=newprofit1/4700; 
  return unewprofit1; 
 } 
 
 public double normVar(double newv, double unewv) 
 { 
  unewv=1E16/newv; 
  return unewv; 
 } 
 
 public double z(double w1, double w2, double dunewprofit1, double 
dunewv) 
 { 
  double zcombou=0.0; 
  zcombou = w1*dunewprofit1 + w2*dunewv; 
  return zcombou; 
 } 
 
 
} //end of cudPV 
 
cMS 
 
//////////cMS///////Class Market Space//////// 
 
  
 import java.lang.Number.*; 
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 public class cMS 
 { 
  
 ////////Definition/////// 
 double xor; //x origin 
 double yor; //y origin 
 double lenx; //length of x axis  
 double leny; //length of y axis 
 double res; //resolution variable 
 
 //Initialization 
 int xint = 0; //dimension of x-axis array 
 int yint = 0; //dimension of y-axis array 
 double narray[][]; //array to store data of each node 
  
  //constructor cMS 
 public cMS(double dres, double dxor, double dlenx, double dyor, 
double dleny) 
 { 
  res = dres; 
  xor = dxor; 
  lenx = dlenx; 
  yor = dyor; 
  leny = dleny; 
 
  estNodes();  //establishes number of nodes 
  //rows = nodes  
  //columns = xloc, yloc, demand, cost, maxV, maxP, Rmin, 
Price, Vflag, Pflag, Rflag 
   
  narray = new double[xint*yint][12]; 
 
  narray[0][1] = xor; 
  narray[0][2] = yor; 
 
  //assign narray with x and y locations 
  for (int k=1; k<(xint*yint); k++) 
  { 
   for (int i=1; i<xint; i++) 
   { 
    narray[k][1] = narray[k-1][1] + res; 
    narray[k][2] = narray[k-1][2]; 
    k++; 
   } 
   if (k<(xint*yint)) 
   { 
    narray[k][1] = xor; 
    narray[k][2] = narray[k-1][2] + res; 
   } 
  } 
     
  DemandDist(); //Concentric square  
  
  calcPrice(); //calculate selling price  
   
 } //end constructor cMS() 
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 public void estNodes() 
 { 
  //find number of nodes 
  Double x = new Double (lenx / res); 
  Double y = new Double (leny / res); 
  xint = x.intValue() + 1; 
  yint = y.intValue() + 1; 
   
  double xd = xint+0.0; 
  double yd = yint+0.0; 
  double decimaltestx = (lenx/res) - xd; 
  double decimaltesty = (leny/res) - yd; 
 
 }//end  
  
  
 public void DemandDist() 
 { 
  //assign appropriate demand scenario by putting in narray 
array 
     
  //Demand Scenario 
  double D1 = 150.0; //demand level 1 of 3 
  double D2 = 250.0; //demand level 2 of 3 
  double D3 = 400.0; //demand level 3 of 3 
 
  double x1 = 14; //1st cut-off for D1 on x-axis 
  double x2 = 18; 
  double x3 = 22; 
  double x4 = 26; 
  double y1 = 14; //1st cut-off for D2 on y-axis 
  double y2 = 18; 
  double y3 = 22; 
  double y4 = 26; 
 
  for (int k=0; k<(xint*yint); k++) 
  { 
  if (narray[k][1] < (xor + lenx + 1.0)  && narray[k][2] < 
(yor + leny + 1.0)) 
   { 
    narray[k][3] = D1; 
   } 
  if (narray[k][1] < x4 && narray[k][2] < y4 && narray[k][1] 
> x1 && narray[k][2] > y1) 
   { 
    narray[k][3] = D2; 
   } 
  if (narray[k][1] < x3 && narray[k][2] < y3 && narray[k][1] 
> x2 && narray[k][2] > y2) 
   { 
    narray[k][3] = D3; 
   } 
  }   
 } //end of DemandDist 
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 ////calcPrice()//// 
 public void calcPrice() 
 { 
  //Price = $x*V + $x*P 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][8] = 255*narray[i][1] + 255*narray[i][2]; 
  } 
 } //end of calcPrice() 
 
 
  
 public double getTDemand() 
 { 
  double tDemand = 0.0; 
  for (int i = 0; i<(xint*yint); i++) 
  { 
   tDemand = tDemand + narray[i][3]; 
  } 
  return tDemand; 
 } //end of getTDemand()  
  
  
 public double[][] getnarray() 
 { 
  return narray; 
 } //end of getnarray 
 
 
  
 public int XDim() 
 { 
  return xint; 
 }//end XDim 
  
  
 public int YDim() 
 { 
  return yint; 
 } //end of YDim 
  
  
   
 public int NodeDim() 
 { 
  return xint*yint; 
 } //end of NodeDim() 
  
  
 public void initCost() 
 { 
  //initializes the cost column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][4] = 0.0; 
  } 
 }//end of initCost() 
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 public void initVmax() 
 { 
    //initializes the maxV column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][5] = 0.0; 
  } 
 }//end of initVmax() 
  
 
  
 
 public void initVmax1() 
 { 
    //initializes the maxV column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][12] = 0.0; 
  } 
 }//end of initVmax1()  
 
 
  
 public void initPmax() 
 { 
    //initializes the maxP column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][6] = 0.0; 
  } 
 }//end of initPmax() 
  
  
 public void initRmin() 
 { 
    //initializes the Rmin column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][7] = 0.0; 
  } 
 }//end of initRmin() 
 
  
 public void initR() 
 { 
    //initializes the R column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][8] = 0.0; 
  }   
 }//end of initR()  
 
  
 public void initVflag() 
 { 
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    //initializes the Vflag column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][9] = 0.0; 
  } 
 }//end of initVflag()  
 
 
  
 public void initPflag() 
 { 
    //initializes the Pflag column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][10] = 0.0; 
  } 
 }//end of initPflag() 
 
 
 public void initRflag() 
 { 
    //initializes the Rflag column in the array 
  for (int i=0; i<(xint*yint); i++) 
  { 
   narray[i][11] = 0.0; 
  } 
 }//end of initRflag() 
  
 }//end cMS 
 
 
cDetailsOP 
 
 
 import java.io.*; 
  
 public class cDetailsOP 
 { 
  BufferedWriter out; 
    
  public cDetailsOP(double res) 
 { 
  try 
  { 
   out = new BufferedWriter(new 
FileWriter("NodeDetails.txt")); 
   out.write("\n");    
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end of cDetailsOP constructor 
  
 public void updateR(double dV3, double dV2, double dV1, double 
dP1) 
 { 
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  try 
  { 
   out.write("dV3 = " + dV3 + "\n"); 
   out.write("dV2 = " + dV2 + "\n"); 
   out.write("dV1 = " + dV1 + "\n"); 
   out.write("dP1 = " + dP1 + "\n"); 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 } 
  
 public void updateR2(double Profit, double Variance, double Dev) 
 { 
  try 
  { 
   out.write("Profit = " + Profit + "\n"); 
   out.write("Variance = " + Variance + "\n"); 
   out.write("Deviation = " + Dev + "\n"); 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }   
   
 public void updateD(double dV3, double dV2, double dV1, double 
dP1, double[][] narray, int arrayl) 
 { 
  try 
  { 
   out.write("\n"); 
   Double ddV3 = new Double(dV3); 
   String sdV3 = ddV3.toString(); 
   out.write("dV3: "); 
   out.write(sdV3); 
   out.write("   ");    
   Double ddV2 = new Double(dV2); 
   String sdV2 = ddV2.toString(); 
   out.write("dV2: "); 
   out.write(sdV2); 
   out.write("   "); 
   Double ddV1 = new Double(dV1); 
   String sdV1 = ddV1.toString(); 
   out.write("dV1: "); 
   out.write(sdV1); 
   out.write("   "); 
   Double ddP1 = new Double(dP1); 
   String sdP1 = ddP1.toString(); 
   out.write("dP1:  "); 
   out.write(sdP1); 
   out.write("\n"); 
 
   out.write("Node  XLoc   Yloc   Demand   Cost                   
MaxV   MaxP   Rmin   Price"); 
   out.write("\n"); 
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   for (int i=0; i<arrayl; i++) 
   { 
    Integer k = new Integer(i); 
    String r = k.toString(); 
    out.write(r); 
    out.write("        "); 
      
    for (int j= 0; j<8; j++) 
    { 
     Double d = new Double(narray[i][j]); 
     String s = d.toString(); 
     out.write(s); 
     out.write("     "); 
    }   
    out.write("\n"); 
   } 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end updateD() 
  
  
 public void updateDp(double profit, double variance, double 
avedev) 
 { 
  try 
  { 
   Double d = new Double(profit); 
   String s = d.toString(); 
   out.write("Avg. Profit = $" + s); 
   out.write("\n"); 
 
   Double dv = new Double(variance); 
   String sv = dv.toString(); 
   out.write("Avg. Variance = " + sv); 
   out.write("\n"); 
 
   Double du = new Double(avedev); 
   String su = du.toString(); 
   out.write("Deviation = " + su); 
   out.write("\n"); 
    
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 } 
  
  
 
 public void close() 
 { 
  try 
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  { 
   out.close(); 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end close() 
  
 }//end of cDetailsOP 
 
 
cResultsOP 
 
import java.io.*; 
  
 public class cResultsOP 
 { 
  BufferedWriter out; 
    
  public cResultsOP(double res) 
 { 
  try 
  { 
   out = new BufferedWriter(new 
FileWriter("Result2.txt")); 
   out.write("\n");    
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end of cResultsOP constructor 
  
  
  
 public void updateD(double dV3, double dV2, double dV1, double 
dP1, double newprofit, double CEquip, double tDemand, double 
newprofit1, double newv, double unewprofit1, double unewv, double 
combou) 
 { 
  try 
  { 
   out.write("\n"); 
   out.write("dV3 = " + dV3 + "  dV2 = " + dV2 + "  dP1 
= " + dP1 + "  dV1 = " + dV1); 
   out.write("\n"); 
   out.write("profit = " + newprofit1 + "variance = " + 
newv); 
   out.write("\n"); 
   out.write("Normalized Profit = " + unewprofit1); 
   out.write("\n"); 
   out.write("Normalized Variance = " + unewv); 
   out.write("\n"); 
   out.write("Deviation = " + combou); 
   out.write("\n"); 
  } 
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  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end updateD() 
  
  
 public void close() 
 { 
  try 
  { 
   out.close(); 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end close() 
  
 }//end of cResultsOP 
 
 
 
 
 
 
 
ccmPV 
 
/////////////ccmPV Class Changing Markets Pressure 
Vessel/////////////// 
  
public class ccmPV { 
 
 ////////Initialization///////// 
 double dP1compr = 0.0; 
 double dV2compr = 0.0; 
 double dV1compr = 0.0; 
 double dV3compr = 0.0; 
 double Profitcompr = 0.0; 
 double Varcompr = 0.0; 
 double Dev= 0.0;  
 
 /////////Bounds//////////// 
 double Tl = 6.35; //max possible thickness 
 double Tu = 76.2; //min possible thickness (multiples of 6.35) 
 double Lu = 7.0; //max possible length  
 double Ru = 4.0; //min possible radius  
 double pi = java.lang.Math.PI;  
 
 public static void main (String[] args) 
 { 
  new ccmPV(); 
 } 
 
  
 //---- Creates new clsPressureVessel ----// 
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 public ccmPV() 
 { 
  double averageprofit = 0.0; 
  double averagev=1E30; 
  double averageu=100000.0;//temperory variable to find best 
platform 
  double totalDemand2 = 0; 
 
  ////Market space bounds and inner resolution 
  double res = 0.5; //resolution of discretization   
  double vor = 10.0; //origin of v-axis - x dimension 
  double vlen = 20; //v-length of market 
  double por = 10.0; //origin of v-axis - x dimension 
  double plen = 20; //p-length of market 
 
  double plen2 = 30; 
 
  //call MS class constructor to create node array 
   
  cMS MS = new cMS(res, vor, vlen, por, plen); 
  double narray[][] = MS.getnarray(); 
  cMS MS2 = new cMS(res, vor, vlen, por, plen2); 
  double narray2[][] = MS2.getnarray(); 
 
  int P1element2=0; 
  int P1element=0; 
 
  //call cDetailsOP and cResultsOP class constructor for 
output   
  cDetailsOP DetailsOP = new cDetailsOP(res); 
  cResultsOP ResultsOP = new cResultsOP(res); 
   
  /*Start with dP1, go through different values of dP1, 
each node is assigned the max pressure according to the discretization 
of P-axis. From value of max pressure, find minimum thicknesses for 
each node. Then start iterating different values of dV2 which is for 
finding out the radius. Then by iterating values of dV1 the length is 
determined. In the end, dV3 is also iterated to find out the cutoff 
point for combination. From the different values obtained, find the 
profit of each node. Go on storing profits larger than previous 
iteration and print and send to output file. 
  */ 
 
   double dP1; //size of first-stage pressure element 
   double P2;  //largest pressure of the considered 
space 
    
   double P22; 
   double dP12; 
   //iterate through dP1 
   for (int i=1; i<((MS2.YDim()/2)+1) ; i++) 
   {  
   P2 = narray[i*MS.XDim()][2]; 
   dP1 = P2 - narray[0][2]; 
 
   P22 = narray2[i*MS.XDim()][2]; 
   dP12 = P22 - narray2[0][2]; 
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   //check to see if dP1 is a multiple of dP2 
   int dP1factor = fCheck(plen, dP1); 
   int dP1factor2 = fCheck(plen2, dP12); 
 
   if ((dP1factor > 0)||(dP1factor2 > 0)) 
   {;} 
   else //iterate 
   { 
   if (dP1factor <= 0) 
   { 
   int dP1node = i; //number of nodes in dP1 
   //number of elements in P direction 
   P1element = (MS.YDim()-1)/dP1node; 
   //Assign each node its max pressure 
   narray[0][6] = P2; 
   narray[0][10] = 1.0;  
   //assign nodes the pressure below Pmax line 
   double Pmax; 
   for (int a=0; a<P1element; a++) 
   { 
   int PmaxNode = MS.XDim()*dP1node + 
a*dP1node*MS.XDim(); 
   Pmax = narray[PmaxNode][2]; 
   narray[PmaxNode][6] = Pmax; 
   narray[PmaxNode][10] = 1.0; 
   //assign nodes the pressure below Pmax line 
   int d = PmaxNode; 
   while (d > 0) 
   { 
   d = d - MS.XDim(); 
   if (narray[d][10] < 1.0) 
   { 
   narray[d][6] = Pmax; 
   narray[d][10] = 1.0; 
   } 
   else {;} 
   } 
   }//end of Pmax loop 
   //assign nodes on horizontal line with Pmax 
   int b = 0; 
   while (b < (MS.NodeDim() - MS.XDim())+1) 
   { 
   for(int e=1; e<MS.XDim() ; e++) 
   { 
   narray[b+e][6] = narray[b][6]; 
   narray[b+e][10] = 1.0; 
   } 
   b = b + MS.XDim(); 
   } 
    
   } 
   else{;} 
   
 
   if (dP1factor2 <= 0) 
   { 
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   int dP1node2 = i; //number of nodes in dP1 
   //number of elements in P direction 
   P1element2 = (MS2.YDim()-1)/dP1node2; 
   //Assign each node its max pressure 
   narray2[0][6] = P22; 
   narray2[0][10] = 1.0;  
   double Pmax2; 
   for (int a=0; a<P1element2; a++) 
   { 
   int PmaxNode2 = MS2.XDim()*dP1node2 + 
a*dP1node2*MS2.XDim(); 
   Pmax2 = narray2[PmaxNode2][2]; 
   narray2[PmaxNode2][6] = Pmax2; 
   narray2[PmaxNode2][10] = 1.0; 
   //assign nodes the pressure below Pmax2 line 
   int d2 = PmaxNode2; 
   while (d2 > 0) 
   { 
   d2 = d2 - MS2.XDim(); 
   if (narray2[d2][10] < 1.0) 
   { 
   narray2[d2][6] = Pmax2; 
   narray2[d2][10] = 1.0; 
   } 
   else {;} 
   } 
   }//end of Pmax loop 
   //assign nodes on horizontal line with Pmax 
   int b2 = 0; 
   while (b2 < (MS2.NodeDim() - MS2.XDim())+1) 
   { 
   for(int e=1; e<MS2.XDim() ; e++) 
   { 
   narray2[b2+e][6] = narray2[b2][6]; 
   narray2[b2+e][10] = 1.0; 
   } 
   b2 = b2 + MS2.XDim(); 
   } 
 
   } 
   else{;} 
 
  double dV2; 
  double V2h; 
 
 
  for (int h=1; h<((MS.XDim()/2)+1); h++) 
  { 
   V2h = narray[h][1]; 
   dV2 = V2h - narray[0][1]; 
   int dVnodeh = h; //number of nodes in dV1 
 
   //check to see if dV is a multiple of x dimension 
   int Vflagh = fCheck(vlen, dV2); 
   if (Vflagh > 0) 
   {;} 
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   else //if it is a multiple start iterating 
   { 
   //number of elements in V direction 
   int Velementh = (MS.XDim()-1)/dVnodeh; 
 
   //assign each node its maximum Volume 
   double Vmaxh; 
   double Rminh;        
   for (int m=1; m<Velementh+1; m++) 
   { 
   Vmaxh = narray[m*dVnodeh][1]; 
   Rminh = Rmin(Vmaxh); 
   //assign nodes with max volume 
   for (int n=0; n<((m*dVnodeh)+1); n++) 
   { 
   if(narray[n][9]<1.0) 
   { 
   narray[n][7] = Rminh; 
   narray[n][9] = 1.0; 
   } 
   else {;} 
   //assign nodes above 1st line  
   if(narray2[n][9]<1.0) 
   { 
   narray2[n][7] = Rminh; 
   narray2[n][9] = 1.0; 
   } 
   else {;} 
 
   //assign nodes above 1st line  
   for(int p=1; p<MS.YDim(); p++) 
   { 
   if(narray[n+p*MS.XDim()][9]<1.0) 
   { 
   narray[n+p*MS.XDim()][7] = Rminh; 
   narray[n+p*MS.XDim()][9] = 1.0; 
   } 
   else{;} 
   } 
 
 
   for(int p2=1; p2<MS2.YDim(); p2++) 
   { 
   if(narray2[n+p2*MS2.XDim()][9]<1.0) 
   { 
   narray2[n+p2*MS2.XDim()][5] = Vmaxh; 
   narray2[n+p2*MS2.XDim()][7] = Rminh; 
   narray2[n+p2*MS2.XDim()][9] = 1.0; 
   } 
   else{;} 
   } 
 
   } 
   }//end of Vmax loop 
 
///////////////////////////////////////////////////////////////////////
/////////// 
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  MS.initVflag(); 
   
  double dV1; //size of first-stage volume element 
  double V2s; //largest volume of the considered space 
   
  MS2.initVflag();   
 
 
  //go through dV1s 
  for (int j=1; j<((MS.XDim()/2)+1); j++) 
  { 
   V2s = narray[j][1]; 
   dV1 = V2s - narray[0][1]; 
   int dVnode = j; //number of nodes in dV1 
 
   //check to see if dV is a multiple of the v-dimension  
   int Vflag = fCheck(dV2, dV1); 
   if (Vflag > 0) 
   {;} 
   else //if it is a multiple iterate 
   { 
   //number of elements in V direction 
   int Velement = (MS.XDim()-1)/dVnode; 
 
   ///assign each node its max Volume 
   double Vmax; 
   double Rmin;        
   for (int z=1; z<Velement+1; z++) 
   { 
   Vmax = narray[z*dVnode][1]; 
   Rmin = Rmin(Vmax); 
   //assign nodes with Vmax  
   for (int y=0; y<((z*dVnode)+1); y++) 
   { 
   if(narray[y][9]<1.0) 
   { 
   narray[y][5] = Vmax; 
   narray[y][9] = 1.0; 
   } 
   else {;} 
   //assign nodes above v axis line  
   if(narray2[y][9]<1.0) 
   { 
   narray2[y][5] = Vmax; 
   narray2[y][9] = 1.0;    
   } 
   else {;} 
 
    
   for(int x=1; x<MS.YDim(); x++) 
   { 
   if(narray[y+x*MS.XDim()][9]<1.0) 
   { 
   narray[y+x*MS.XDim()][5] = Vmax; 
   narray[y+x*MS.XDim()][9] = 1.0; 
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   } 
   else{;} 
   } 
 
   for(int x2=1; x2<MS2.YDim(); x2++) 
   { 
   if(narray2[y+x2*MS2.XDim()][9]<1.0) 
   { 
   narray2[y+x2*MS.XDim()][5] = Vmax; 
   narray2[y+x2*MS.XDim()][9] = 1.0; 
   } 
   else{;} 
   } 
 
   } 
   }//end of Vmax loop 
 
   double de2[]; 
   double pr2[]; 
   de2=new double[5]; 
   pr2=new double[5]; 
   double v2=0.0; 
   double unewv2=0.0; 
   double unewprofit12=0.0; 
   double combou1=0.0; 
   double dunewv2=0.0; 
   double dunewprofit12=0.0;    
 
   double CEquip2 = 0; 
   double newprofit12=0; 
 
   double newprofit1=0; 
   double newv22 = 0; 
   double newv2f = 0; 
   double Locost2 = 0; 
 
 
   totalDemand2 = 0; 
   double newprofit2 = 0; 
   /*Start iterating through dV3. Assume cutoff point 
and recalculate 
   profit considering that many vessels. Find the best 
combination of 
   different parameters 
   */ 
 
 
   double dV3; //size of third space element 
   double V3; //cutoff point 
   //first try when there is no dV3 - no cutoff 
   dV3 = vlen; 
   //calculate cost for each node 
   for (int n=0; n<MS.NodeDim(); n++) 
   { 
   double V = narray[n][1]; 
   double R = narray[n][7]; 
   double maxV = narray[n][5]; 
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   double maxP = narray[n][6]; 
   double Lo = (maxV / (pi*R*R)) - ((4.0/3.0)*R); 
   double L = (V / (pi*R*R)) - ((4.0/3.0)*R); 
   double cost = Cost(maxP, V, R, L, Lo); 
   narray[n][4] = cost; 
 
   } 
 
  
   //find avg profit of entire space 
   double newprofit = 0; 
   double totalDemand = 0; 
 
 
   double de[]; 
   double pr[]; 
   double newv=0.0; 
   de=new double[5]; 
   pr=new double[5]; 
   double v=0.0; 
   double unewv=0.0; 
   double unewprofit1=0.0; 
   double combou=0.0; 
   double dunewv=0.0; 
   double dunewprofit1=0.0; 
 
   for (int q = 0; q<MS.NodeDim(); q++) 
   { 
   //demand * (selling price - cost) 
 
   de[0]=narray[q][3];    
   de[1]=0.8*narray[q][3]; 
   de[2]=0.9*narray[q][3]; 
   de[3]=1.1*narray[q][3]; 
   de[4]=1.2*narray[q][3]; 
 
   pr[0]=de[0]*(narray[q][8] - narray[q][4]); 
  
    
   for(int g=1; g<5; g++) 
   { 
    pr[g]=de[g]*(narray[q][8] - narray[q][4]);  
    v=v+((pr[g]-pr[0])*(pr[g]-pr[0]))/3; 
 
   } 
 
   newv=newv+v; 
 
    
   newprofit = newprofit + (narray[q][3]*(narray[q][8] - 
narray[q][4])); 
   totalDemand = narray[q][3] + totalDemand; 
   } 
   // CEquip for each dV1 
   double CEquip = 0;       
   for (int p=1; p<(Velementh+1); p++) 
   { 
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   double rad = narray[p*dVnodeh][7]; 
   CEquip = CEquip + (500000 + (50000*rad)); 
   } 
         
   //Cost of each Lo and each dP1 
   double Locost = 250*Velement+100*P1element; 
   newprofit1 = newprofit - CEquip - Locost; 
      
   //divide by total demand of space to take average 
 
   unewprofit1=newprofit1/1.7E9; 
  
  
   unewv=1E16/newv;    
  
   if((unewprofit1<0)||(unewprofit1>1)) 
    unewprofit1=0; 
 
   if((unewv<0)||(unewv>1)) 
    unewv=0; 
 
   dunewprofit1=1-unewprofit1; 
   dunewv=1-unewv; 
 
 
   dV3 = vlen; 
   //calculate cost for each node 
   for (int n=0; n<MS2.NodeDim(); n++) 
   { 
   double V2 = narray2[n][1]; 
   double R2 = narray2[n][7]; 
   double maxV2 = narray2[n][5]; 
   double maxP2 = narray2[n][6]; 
   double Lo2 = (maxV2 / (pi*R2*R2)) - ((4.0/3.0)*R2); 
   double L2 = (V2 / (pi*R2*R2)) - ((4.0/3.0)*R2); 
   double cost2 = Cost(maxP2, V2, R2, L2, Lo2); 
   narray2[n][4] = cost2; 
   } 
   //find avg profit of entire space 
   double newv2 = 0; 
   v2=0.0; 
   for (int q = 0; q<MS2.NodeDim(); q++) 
   { 
   //demand * (selling price - cost) 
    
   if (q>1680) 
    narray2[q][3] = 2+narray2[q][3]; 
 
   de2[0]=narray2[q][3];    
   de2[1]=0.8*narray2[q][3]; 
   de2[2]=0.9*narray2[q][3]; 
   de2[3]=1.1*narray2[q][3]; 
   de2[4]=1.2*narray2[q][3]; 
 
   pr2[0]=de2[0]*(narray2[q][8] - narray2[q][4]); 
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   for(int g=1; g<5; g++) 
   { 
    pr2[g]=de2[g]*(narray2[q][8] - narray2[q][4]);  
    v2=v2+((pr2[g]-pr2[0])*(pr2[g]-pr2[0]))/3; 
 
   } 
 
   newv2=newv2+v2; 
 
   newprofit2 = newprofit2 + 
(narray2[q][3]*(narray2[q][8] - narray2[q][4])); 
   totalDemand2 = narray2[q][3] + totalDemand2; 
   } 
   
          
   for (int p=1; p<(Velementh+1); p++) 
   { 
   double rad2 = narray2[p*dVnodeh][7]; 
   CEquip2 = CEquip2 + (500000 + (50000*rad2)); 
   } 
         
   Locost2 = 250*Velement+100*P1element2; 
   newprofit12 = newprofit2 - CEquip2 - Locost2; 
      
   unewprofit12=newprofit12/1E10;   
  
 
   unewv2=1E16/newv2; 
  
  
    
   dunewprofit12=1-unewprofit12; 
   dunewv2=1-unewv2; 
 
 
   combou1=0.5*dunewv2+0.5*dunewprofit12; 
 
 
   combou=0.008*dunewv+0.012*dunewprofit1+0.98*combou1; 
//   combou=0.5*dunewv+0.5*dunewprofit1+0*combou1; 
 
   
   if (combou < averageu) 
   { 
   averageu = combou; 
   dP1compr = dP1; 
   dV2compr = dV2; 
   dV1compr = dV1; 
   dV3compr = vlen; 
   Profitcompr = newprofit1; 
   Varcompr = newv;  
   Dev= averageu; 
   //System.out.println("dP1"+dP1+" dV2"+dV2+" 
dV1"+dV1+" dV3"+dV3+" combou"+combou); 
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   DetailsOP.updateD(dV3, dV2, dV1, dP1, narray, 
MS.NodeDim()); 
   DetailsOP.updateDp(newprofit1, newv, averageu); 
   } 
         
   ResultsOP.updateD(dV3, dV2, dV1, dP1, newprofit, 
CEquip, totalDemand, newprofit1, newv, dunewprofit1, dunewv, combou); 
 
   //iterate through dV3s 
   for (int c=((MS.XDim()/2)+1); c<MS.XDim(); c++) 
   { 
   int dV3node = c; 
   V3 = narray[dV3node-1][1]; 
   dV3 = V3 - narray[0][1]; 
          
   //check to see if dV3 is a multiple of dV1 
   int dV3flag = fCheck(dV3, dV2); 
   if (dV3flag > 0) 
   {;} 
   else //if it is a multiple iterate 
   {  
        
   //calculate cost for each node 
   //need R, Pmax, Lo, and V(node) 
   for (int n=0; n<MS.NodeDim(); n++) 
   { 
   double V = narray[n][1]; 
   double R = narray[n][7]; 
   double maxV = narray[n][5]; 
   double maxP = narray[n][6]; 
   double Lo = (maxV / (pi*R*R)) - ((4.0/3.0)*R); 
   double L = (V / (pi*R*R)) - ((4.0/3.0)*R); 
   double cost = Cost(maxP, V, R, L, Lo); 
   narray[n][4] = cost; 
  
   } 
 
 
   for (int n=0; n<MS2.NodeDim(); n++) 
   { 
   double V2 = narray2[n][1]; 
   double R2 = narray2[n][7]; 
   double maxV2 = narray2[n][5]; 
   double maxP2 = narray2[n][6]; 
   double Lo2 = (maxV2 / (pi*R2*R2)) - ((4.0/3.0)*R2); 
   double L2 = (V2 / (pi*R2*R2)) - ((4.0/3.0)*R2); 
   double cost2 = Cost(maxP2, V2, R2, L2, Lo2); 
   narray2[n][4] = cost2; 
   } 
 
 
   for (int d = dV3node; d<MS.XDim(); d++) 
   { 
   for (int e=0; e<MS.YDim(); e++) 
   { 
    int node = d/2 + (e*MS.XDim());  
   //location of half of current node 
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   narray[(d+(e*MS.XDim()))][4] = 2 * narray[node][4]; 
    } 
   } 
     
   //find avg profit  
   
   newprofit = 0; 
   totalDemand = 0; 
   v=0; 
   newv=0; 
   for (int q = 0; q<MS.NodeDim(); q++) 
   { 
 
   de[0]=narray[q][3];    
   de[1]=0.8*narray[q][3]; 
   de[2]=0.9*narray[q][3]; 
   de[3]=1.1*narray[q][3]; 
   de[4]=1.2*narray[q][3]; 
 
   pr[0]=de[0]*(narray[q][8] - narray[q][4]); 
 
    
   for(int g=1; g<5; g++) 
   { 
    pr[g]=de[g]*(narray[q][8] - narray[q][4]);  
    v=v+((pr[g]-pr[0])*(pr[g]-pr[0]))/3; 
   } 
 
   newv=newv+v; 
  
   //demand * (selling price - cost) 
   newprofit = newprofit + (narray[q][3]*(narray[q][8] - 
narray[q][4])); 
   totalDemand = narray[q][3] + totalDemand; 
   } 
 
   newprofit2 = 0; 
   totalDemand2 = 0; 
 
   newv2=0; 
   newv2f=0; 
 
   v2=0.0; 
   for (int q = 0; q<MS2.NodeDim(); q++) 
   { 
   //demand * (selling price - cost) 
 
   if (q>1680) 
    narray2[q][3] = 2+narray2[q][3]; 
 
   de2[0]=narray2[q][3];    
   de2[1]=0.8*narray2[q][3]; 
   de2[2]=0.9*narray2[q][3]; 
   de2[3]=1.1*narray2[q][3]; 
   de2[4]=1.2*narray2[q][3]; 
 
   pr2[0]=de2[0]*(narray2[q][8] - narray2[q][4]); 
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   for(int g=1; g<5; g++) 
   { 
    pr2[g]=de2[g]*(narray2[q][8] - narray2[q][4]);  
    v2=v2+((pr2[g]-pr2[0])*(pr2[g]-pr2[0]))/3; 
 
   } 
 
   newv2=newv2+v2; 
   newprofit2 = newprofit2 + 
(narray2[q][3]*(narray2[q][8] - narray2[q][4])); 
   totalDemand2 = narray2[q][3] + totalDemand2; 
   } 
       
 
   CEquip = 0; 
   int o = 1; 
   int onode = dVnode; 
   while (onode < dV3node) 
   {         
   double rad = narray[onode][7]; 
   CEquip = CEquip + (500000 + (50000*rad)); 
   o++; 
   onode = o*dVnode; 
   } 
         
   newprofit1 = newprofit - CEquip - Locost; 
       
   unewprofit1 = newprofit1/1.7E9; 
 
   newprofit12 = newprofit2 - CEquip - Locost2; 
 
//   newprofit12 = newprofit12 / totalDemand2; 
 
   unewprofit12 = newprofit12/5E9; 
  
   unewv = 1E16/newv; 
   unewv2 = 1E16/newv2; 
  
  
   if((unewprofit1<0)||(unewprofit1>1)) 
    unewprofit1=0; 
 
   if((unewprofit12<0)||(unewprofit12>1)) 
    unewprofit12=0; 
 
   if((unewv<0)||(unewv>1)) 
    unewv=0; 
 
   dunewprofit1=1-unewprofit1; 
   dunewv=1-unewv; 
    
 
   if((unewv2<0)||(unewv2>1)) 
    unewv2=0; 
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   dunewprofit12=1-unewprofit12; 
   dunewv2=1-unewv2; 
 
    
   combou1=0.5*dunewv2+0.5*dunewprofit12; 
 
   combou=0.008*dunewv+0.012*dunewprofit1+0.98*combou1;  
 //  combou=0.5*dunewv+0.5*dunewprofit1+0*combou1; 
   
   if (combou < averageu) 
   { 
   averageu = combou; 
   dP1compr = dP1; 
   dV2compr = dV2; 
   dV1compr = dV1; 
   dV3compr = vlen; 
   Profitcompr = newprofit12; 
   Varcompr = newv;  
   Dev= averageu; 
   //System.out.println("dP1"+dP1+" dV2"+dV2+" 
dV1"+dV1+" dV3"+dV3+" combou"+combou); 
    
   //write results to file 
   DetailsOP.updateD(dV3, dV2, dV1, dP1, narray, 
MS.NodeDim()); 
   DetailsOP.updateDp(newprofit1, newv, combou); 
   } 
  
   ResultsOP.updateD(dV3, dV2, dV1, dP1, newprofit, 
CEquip, totalDemand, newprofit1, newv, dunewprofit1, dunewv, combou); 
 
   MS.initCost(); 
 
   MS2.initCost(); 
   }//end of else in dV3 iteration 
 
   }//end of dV3 iteration 
 
 
   //initialize flags for next iteration 
    
   MS.initVmax(); 
   MS.initVflag(); 
 
   MS2.initVmax(); 
   MS2.initVflag(); 
  
  } //end of else of dV1 
  }//end of dV1  
 
   
  MS.initVflag(); 
   
  MS2.initVflag(); 
   
  }//end of else of dV2 
  } //end of dV2 
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  MS.initPmax();    
  MS.initPflag(); 
 
  MS2.initPmax();    
  MS2.initPflag(); 
 
  }//end of else of dP1 
  }//end of dP1 
 
  //final results 
  DetailsOP.updateR(dV3compr, dV2compr, dV1compr, dP1compr, 
Profitcompr, Varcompr, Dev); 
   
  //close output files 
  DetailsOP.close(); 
  ResultsOP.close(); 
  
 } //end of ccmPV() constructor 
  
  
 //fCheck()// 
 public int fCheck(double n, double m) 
 { 
  Double x = new Double(n/m); 
  int y = x.intValue(); 
  double z = y+0.0; 
  double fractioncheck = (n/m) - z; 
  //System.out.println("fractioncheck = " + fractioncheck); 
  int flag = 0; 
  if (fractioncheck < 0 || fractioncheck > 0) 
  { 
   flag = 1; 
  } 
  return flag; 
 }//end of fCheck() 
  
 ///Cost()//  
 public double Cost(double xP, double xV, double xR, double xL, 
double xLo) 
 { 
  double P = xP; //Pressure, MPa 
  double V = xV; //Volume, m^3 
  double R = xR; //Radius, m 
  double L = xL; //Length, m 
  double Lo = xLo; //Raw Length, m 
   
  //---- Constants ----// 
  double sigy = 1077; //Yield strength, MPa 
  double dens = 7800; //density, kg/m^3 
  double Cs = 0.8; //processed shell stell cost, $/kg 
  double Ch = 2.0; //cost of forged steel for head, $/kg 
  double Cp = 0.3; //cost of raw steel plate, $/kg 
  double Cw = 15; //cost of welding material, $/kg 
 
  double Ts = (R*1000)* (P / (sigy - (0.6*P))); //shell 
thickness, mm 
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  double Th = (R*1000)* (P / ( (2*sigy) - (0.2*P) )); //head 
thickness, mm 
 
  double CWaste = 2 * pi * dens * Cp * (Ts/1000) * R * (Lo - 
L); //cost of wasted material, $ 
  double CMat = 2 * pi * dens * ( (Cs*R*(Ts/1000)*L) + 
(Ch*R*R*(Th/1000)) ) + CWaste; //material cost, $  
  double VLWeld = (4.0/9.0) * pi * (Ts/1000) * (Ts/1000) * L; 
//volume of long weld, m^3 
  double CLongWeld = VLWeld * dens * Cw; //cost of long weld 
  double VCWeld = (8.0/9.0) * pi * pi * (Ts/1000) * (Ts/1000) 
* R; //volume of circ. weld, m^3 
  double CCircWeld = VCWeld * dens * Cw; //cost of circular 
weld, $ 
  double CWeld = CLongWeld + CCircWeld; //total cost of weld 
 
  double CTotal = CMat + CWeld; //total cost excluding 
equipment cost, $ 
  return CTotal; 
 } //end of Cost 
  
  
 public double Rmin(double xV) 
 { 
  //find the minimum feasible radius for a vessel 
  //with given Volume 
  double V = xV; 
  double Verr = 0.0; //used to compare with given V 
  double R1 = 0.0; 
  double R2 = Ru; 
  double Rmin = 0.0; //minimum radius 
  double error = 1.0; //error used for testing convergence 
  //iterate through volume quation with bisection method 
  for(int i=0; i<30; i++) 
  { 
   Rmin = (R1+R2)/2; 
   Verr = (4/3)*pi*(Rmin*Rmin*Rmin) + pi*Rmin*Rmin*Lu; 
   error = java.lang.Math.abs(Verr - V); 
   if (error < 0.01) { break; } 
   if (Verr < V) 
   { 
    R1 = Rmin; 
   } 
   else 
   { 
    R2 = Rmin; 
   } 
  } 
  return Rmin; 
 }//end of Rmin 
  
} //end of ccmPV 
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APPENDIX B 
 

PRODUCT PLATFORM SPECIFICATIONS OF THE 
PRESSURE VESSEL EXAMPLE 

 
 The results of the product platform for the different scenarios are discussed in 

Section 4.1.4 and Section 5.3. A section of the platform specifications are presented in 

these sections. The complete mapping of the product platform specifications in the space 

of customization is presented in this appendix. In the first part, the specifications of the 

scenarios of Chapter 4 having uncertain distribution of demand is listed while in the latter 

the specifications of the scenarios of Chapter 5 having changing extent of market spaces 

is listed. 

Chapter 4 Pressure Vessel Scenarios 

A section of the results are presented in Table 4.2, Table 4.4 and Table 4.5. 

Scenario 1 - Certain Distribution of Demand 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
15 10 0.783 7.311 3.638 6.744 

 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 3.638  
 16  11.737 3.821  
 16.5  12.107 4.003  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 17  12.478 4.185  
 17.5  12.848 4.367  
 18  13.219 4.549  
 18.5  13.590 4.731  
 19  13.961 4.914  
 19.5  14.333 5.096  
 20  14.704 7.284  
 20.5  15.076 5.460  
 21  15.448 5.643  
 21.5  15.820 5.825  
 22  16.193 6.007  
 22.5  16.566 6.189  
 23  16.938 6.372  
 23.5  17.312 6.554  
 24  17.685 6.737  
 24.5  18.058 6.919  
 25  18.432 9.109  
 25.5  18.806 7.284  
 26  19.180 7.466  
 26.5  19.555 7.649  
 27  19.929 7.831  
 27.5  20.304 8.014  
 28  20.679 8.196  
 28.5  21.054 8.379  
 29  21.430 10.570  
 29.5  21.805 8.744  
 30  22.181 10.936  

20 10 0.898 8.385 4.173 6.697 
 10.5  8.806 4.382  
 11  9.228 4.591  
 11.5  9.650 4.799  
 12  10.073 5.008  
 12.5  10.496 5.217  
 13  10.918 5.426  
 13.5  11.342 5.635  
 14  11.765 5.844  
 14.5  12.189 6.053  
 15  12.612 6.262  
 15.5  13.036 6.471  
 16  13.461 6.680  
 16.5  13.885 6.889  
 17  14.310 7.098  
 17.5  14.735 7.308  
 18  15.160 7.517  
 18.5  15.586 7.726  
 19  16.012 7.935  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 19.5  16.438 8.144  
 20  16.864 8.353  
 20.5  17.290 8.563  
 21  17.717 8.772  
 21.5  18.144 8.981  
 22  18.571 9.191  
 22.5  18.999 9.400  
 23  19.426 9.609  
 23.5  19.854 9.819  
 24  20.282 10.028  
 24.5  20.711 10.237  
 25  21.139 10.447  
 25.5  21.568 10.656  
 26  21.997 10.866  
 26.5  22.427 11.075  
 27  22.856 11.285  
 27.5  23.286 11.494  
 28  23.716 11.704  
 28.5  24.147 11.913  
 29  24.577 12.123  
 29.5  25.008 12.332  
 30  25.439 12.542  

25 10 0.998 9.318 4.638 6.659 
 10.5  9.787 4.870  
 11  10.256 5.102  
 11.5  10.725 5.334  
 12  11.195 5.566  
 12.5  11.664 5.798  
 13  12.134 6.030  
 13.5  12.605 6.263  
 14  13.075 6.495  
 14.5  13.546 6.727  
 15  14.017 6.960  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
 24.5  23.017 11.377  
 25  23.493 11.610  
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  

30 10 1.087 7.313 3.639 14.523 
 10.5  7.681 3.822  
 11  8.049 4.004  
 11.5  8.417 4.186  
 12  8.785 4.368  
 12.5  9.154 4.550  
 13  9.523 4.733  
 13.5  9.892 4.915  
 14  10.261 5.097  
 14.5  10.630 5.279  
 15  11.000 5.462  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
 24.5  23.017 11.377  
 25  23.493 11.610  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  

 

Scenario 2 – Uncertain Distribution of Demand 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
10 10 0.718 6.701 3.335 5.223 

 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
 30  20.331 10.024  

10.5 10  6.701 3.335 5.532 
 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
 30  20.331 10.024  

11 10  6.701 3.335 5.841 
 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 30  20.331 10.024  

11.5 10  6.701 3.335 6.150 
 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
 30  20.331 10.024  

12 10  6.701 3.335 6.459 
 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
 30  20.331 10.024  

12.5 10  6.701 3.335 6.768 
 12  8.050 4.003  
 14  9.403 4.671  
 16  10.758 5.339  
 18  12.116 6.008  
 20  13.478 6.676  
 22  14.842 7.345  
 24  16.210 8.015  
 26  17.581 8.684  
 28  18.955 9.354  
 30  20.331 10.024  

13 10 0.783 7.311 3.638 5.705 
 12  8.783 4.367  
 14  10.258 5.096  
 16  11.737 5.825  
 18  13.219 6.554  
 20  14.704 7.284  
 22  16.193 8.014  
 24  17.685 8.744  
 26  19.180 9.474  
 28  20.679 10.205  
 30  22.181 10.936  

13.5 10  7.311 3.638 5.965 
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 12  8.783 4.367  
 14  10.258 5.096  
 16  11.737 5.825  
 18  13.219 6.554  
 20  14.704 7.284  
 22  16.193 8.014  
 24  17.685 8.744  
 26  19.180 9.474  
 28  20.679 10.205  
 30  22.181 10.936  

14 10  7.311 3.638 6.225 
 12  8.783 4.367  
 14  10.258 5.096  
 16  11.737 5.825  
 18  13.219 6.554  
 20  14.704 7.284  
 22  16.193 8.014  
 24  17.685 8.744  
 26  19.180 9.474  
 28  20.679 10.205  
 30  22.181 10.936  

14.5 10  7.311 3.638 6.484 
 12  8.783 4.367  
 14  10.258 5.096  
 16  11.737 5.825  
 18  13.219 6.554  
 20  14.704 7.284  
 22  16.193 8.014  
 24  17.685 8.744  
 26  19.180 9.474  
 28  20.679 10.205  
 30  22.181 10.936  

15 10  7.311 3.638 6.744 
 12  8.783 4.367  
 14  10.258 5.096  
 16  11.737 5.825  
 18  13.219 6.554  
 20  14.704 7.284  
 22  16.193 8.014  
 24  17.685 8.744  
 26  19.180 9.474  
 28  20.679 10.205  
 30  22.181 10.936  

15.5 10 0.843 7.868 3.916 5.824 
 12  9.453 4.700  
 14  11.040 5.484  
 16  12.632 6.269  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 18  14.227 7.054  
 20  15.825 7.839  
 22  17.428 8.625  
 24  19.033 9.410  
 26  20.643 10.196  
 28  22.256 10.983  
 30  23.873 11.770  

16 10  7.868 3.916 6.048 
 12  9.453 4.700  
 14  11.040 5.484  
 16  12.632 6.269  
 18  14.227 7.054  
 20  15.825 7.839  
 22  17.428 8.625  
 24  19.033 9.410  
 26  20.643 10.196  
 28  22.256 10.983  
 30  23.873 11.770  

16.5 10  7.868 3.916 6.272 
 12  9.453 4.700  
 14  11.040 5.484  
 16  12.632 6.269  
 18  14.227 7.054  
 20  15.825 7.839  
 22  17.428 8.625  
 24  19.033 9.410  
 26  20.643 10.196  
 28  22.256 10.983  
 30  23.873 11.770 

17 10  7.868 3.916 6.496 
 12  9.453 4.700  
 14  11.040 5.484  
 16  12.632 6.269  
 18  14.227 7.054  
 20  15.825 7.839  
 22  17.428 8.625  
 24  19.033 9.410  
 26  20.643 10.196  
 28  22.256 10.983  
 30  23.873 11.770  

17.5 10  7.868 3.916 6.720 
 12  9.453 4.700  
 14  11.040 5.484  
 16  12.632 6.269  
 18  14.227 7.054  
 20  15.825 7.839  
 22  17.428 8.625  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 24  19.033 9.410  
 26  20.643 10.196  
 28  22.256 10.983  
 30  23.873 11.770  

18 10 0.898 8.384 4.172 5.909 
 12  10.072 5.008  
 14  11.764 5.844  
 16  13.459 6.680  
 18  15.159 7.516  
 20  16.862 8.353  
 22  18.569 9.190  
 24  20.280 10.027  
 26  21.995 10.864  
 28  23.714 11.702  
 30  25.436 12.541  

18.5 10  8.384 4.172 6.107 
 12  10.072 5.008  
 14  11.764 5.844  
 16  13.459 6.680  
 18  15.159 7.516  
 20  16.862 8.353  
 22  18.569 9.190  
 24  20.280 10.027  
 26  21.995 10.864  
 28  23.714 11.702  
 30  25.436 12.541  

19 10  8.384 4.172 6.304 
 12  10.072 5.008  
 14  11.764 5.844  
 16  13.459 6.680  
 18  15.159 7.516  
 20  16.862 8.353  
 22  18.569 9.190  
 24  20.280 10.027  
 26  21.995 10.864  
 28  23.714 11.702  
 30  25.436 12.541  

19.5 10  8.384 4.172 6.502 
 12  10.072 5.008  
 14  11.764 5.844  
 16  13.459 6.680  
 18  15.159 7.516  
 20  16.862 8.353  
 22  18.569 9.190  
 24  20.280 10.027  
 26  21.995 10.864  
 28  23.714 11.702  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 30  25.436 12.541  

20 10  8.384 4.172 6.699 
 12  10.072 5.008  
 14  11.764 5.844  
 16  13.459 6.680  
 18  15.159 7.516  
 20  16.862 8.353  
 22  18.569 9.190  
 24  20.280 10.027  
 26  21.995 10.864  
 28  23.714 11.702  
 30  25.436 12.541  

20.5 10 0.949 8.861 4.410 5.980 
 12  10.645 5.293  
 14  12.433 6.176  
 16  14.225 7.060  
 18  16.021 7.944  
 20  17.822 8.828  
 22  19.626 9.713  
 24  21.434 10.597  
 26  23.247 11.483  
 28  25.063 12.368  
 30  26.884 13.254  

21 10  8.861 4.410 6.157 
 12  10.645 5.293  
 14  12.433 6.176  
 16  14.225 7.060  
 18  16.021 7.944  
 20  17.822 8.828  
 22  19.626 9.713  
 24  21.434 10.597  
 26  23.247 11.483  
 28  25.063 12.368  
 30  26.884 13.254  

21.5 10  8.861 4.410 6.334 
 12  10.645 5.293  
 14  12.433 6.176  
 16  14.225 7.060  
 18  16.021 7.944  
 20  17.822 8.828  
 22  19.626 9.713  
 24  21.434 10.597  
 26  23.247 11.483  
 28  25.063 12.368  
 30  26.884 13.254  

22 10  8.861 4.410 6.510 
 12  10.645 5.293  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 14  12.433 6.176  
 16  14.225 7.060  
 18  16.021 7.944  
 20  17.822 8.828  
 22  19.626 9.713  
 24  21.434 10.597  
 26  23.247 11.483  
 28  25.063 12.368  
 30  26.884 13.254  

22.5 10  8.861 4.410 6.687 
 12  10.645 5.293  
 14  12.433 6.176  
 16  14.225 7.060  
 18  16.021 7.944  
 20  17.822 8.828  
 22  19.626 9.713  
 24  21.434 10.597  
 26  23.247 11.483  
 28  25.063 12.368  
 30  26.884 13.254  

23 10 0.997 9.309 4.633 6.036 
 12  11.183 5.561  
 14  13.062 6.488  
 16  14.945 7.417  
 18  16.832 8.345  
 20  18.723 9.274  
 22  20.619 10.204  
 24  22.518 11.133  
 26  24.422 12.063  
 28  26.331 12.994  
 30  28.244 13.925  

23.5 10  9.309 4.633 6.196 
 12  11.183 5.561  
 14  13.062 6.488  
 16  14.945 7.417  
 18  16.832 8.345  
 20  18.723 9.274  
 22  20.619 10.204  
 24  22.518 11.133  
 26  24.422 12.063  
 28  26.331 12.994  
 30  28.244 13.925  

24 10  9.309 4.633 6.356 
 12  11.183 5.561  
 14  13.062 6.488  
 16  14.945 7.417  
 18  16.832 8.345  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 20  18.723 9.274  
 22  20.619 10.204  
 24  22.518 11.133  
 26  24.422 12.063  
 28  26.331 12.994  
 30  28.244 13.925  

24.5 10  9.309 4.633 6.516 
 12  11.183 5.561  
 14  13.062 6.488  
 16  14.945 7.417  
 18  16.832 8.345  
 20  18.723 9.274  
 22  20.619 10.204  
 24  22.518 11.133  
 26  24.422 12.063  
 28  26.331 12.994  
 30  28.244 13.925  

25 10  9.309 4.633 6.676 
 12  11.183 5.561  
 14  13.062 6.488  
 16  14.945 7.417  
 18  16.832 8.345  
 20  18.723 9.274  
 22  20.619 10.204  
 24  22.518 11.133  
 26  24.422 12.063  
 28  26.331 12.994  
 30  28.244 13.925  

25.5 10 1.043 9.739 4.847 6.071 
 12  11.699 5.817  
 14  13.665 6.788  
 16  15.634 7.759  
 18  17.608 8.730  
 20  19.587 9.702  
 22  21.570 10.675  
 24  23.557 11.647  
 26  25.549 12.620  
 28  27.546 13.593  
 30  29.547 14.567  

26 10  9.739 4.847 6.217 
 12  11.699 5.817  
 14  13.665 6.788  
 16  15.634 7.759  
 18  17.608 8.730  
 20  19.587 9.702  
 22  21.570 10.675  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 24  23.557 11.647  
 26  25.549 12.620  
 28  27.546 13.593  
 30  29.547 14.567  

26.5 10  9.739 4.847 6.363 
 12  11.699 5.817  
 14  13.665 6.788  
 16  15.634 7.759  
 18  17.608 8.730  
 20  19.587 9.702  
 22  21.570 10.675  
 24  23.557 11.647  
 26  25.549 12.620  
 28  27.546 13.593  
 30  29.547 14.567  

27 10  9.739 4.847 6.510 
 12  11.699 5.817  
 14  13.665 6.788  
 16  15.634 7.759  
 18  17.608 8.730  
 20  19.587 9.702  
 22  21.570 10.675  
 24  23.557 11.647  
 26  25.549 12.620  
 28  27.546 13.593  
 30  29.547 14.567  

27.5 10  9.739 4.847 6.656 
 12  11.699 5.817  
 14  13.665 6.788  
 16  15.634 7.759  
 18  17.608 8.730  
 20  19.587 9.702  
 22  21.570 10.675  
 24  23.557 11.647  
 26  25.549 12.620  
 28  27.546 13.593  
 30  29.547 14.567  

28 10 1.086 10.140 5.046 6.109 
 12  12.182 6.057  
 14  14.228 7.068  
 16  16.279 8.079  
 18  18.334 9.090  
 20  20.394 10.102  
 22  22.459 11.115  
 24  24.529 12.127  
 26  26.603 13.140  



 

 357 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 28  28.681 14.154  
 30  30.765 15.168  

28.5 10  10.140 5.046 6.244 
 12  12.182 6.057  
 14  14.228 7.068  
 16  16.279 8.079  
 18  18.334 9.090  
 20  20.394 10.102  
 22  22.459 11.115  
 24  24.529 12.127  
 26  26.603 13.140  
 28  28.681 14.154  
 30  30.765 15.168  

29 10  10.140 5.046 6.379 
 12  12.182 6.057  
 14  14.228 7.068  
 16  16.279 8.079  
 18  18.334 9.090  
 20  20.394 10.102  
 22  22.459 11.115  
 24  24.529 12.127  
 26  26.603 13.140  
 28  28.681 14.154  
 30  30.765 15.168  

29.5 10  10.140 5.046 6.514 
 12  12.182 6.057  
 14  14.228 7.068  
 16  16.279 8.079  
 18  18.334 9.090  
 20  20.394 10.102  
 22  22.459 11.115  
 24  24.529 12.127  
 26  26.603 13.140  
 28  28.681 14.154  
 30  30.765 15.168  

30 10  10.140 5.046 6.649 
 12  12.182 6.057 
 14  14.228 7.068 
 16  16.279 8.079 
 18  18.334 9.090 
 20  20.394 10.102 
 22  22.459 11.115 
 24  24.529 12.127 
 26  26.603 13.140 
 28  28.681 14.154 
 30  30.765 15.168 
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Chapter 5 

A section of the results are presented in Table 5.1, Table 5.3 and Table 5.4. 

Scenario 1 - Design considering present markets 

(V 10-15m3) 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
10 10 0.718 6.701 3.335 5.223 

 10.5  7.038 3.502  
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  10.419 5.172  
 16  10.758 5.339  
 16.5  11.097 5.506  
 17  11.437 5.673  
 17.5  11.777 5.840  
 18  12.116 6.008  
 18.5  12.457 6.175  
 19  12.797 6.342  
 19.5  13.137 6.509  
 20  13.478 6.676  
 20.5  13.819 6.844  
 21  14.160 7.011  
 21.5  14.501 7.178  
 22  14.842 7.345  
 22.5  15.184 7.513  
 23  15.526 7.680  
 23.5  15.868 7.847  
 24  16.210 8.015  
 24.5  16.552 8.182  
 25  16.895 8.349  
 25.5  17.238 8.517  
 26  17.581 8.684  
 26.5  17.924 8.851  
 27  18.267 9.019  
 27.5  18.611 9.186  
 28  18.955 9.354  



 

 359 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 28.5  19.298 9.521  
 29  19.643 9.689  
 29.5  19.987 9.856  
 30  20.331 10.024  

10.5 10  6.701 3.335 5.532 
 10.5  7.038 3.502  
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  10.419 5.172  
 16  10.758 5.339  
 16.5  11.097 5.506  
 17  11.437 5.673  
 17.5  11.777 5.840  
 18  12.116 6.008  
 18.5  12.457 6.175  
 19  12.797 6.342  
 19.5  13.137 6.509  
 20  13.478 6.676  
 20.5  13.819 6.844  
 21  14.160 7.011  
 21.5  14.501 7.178  
 22  14.842 7.345  
 22.5  15.184 7.513  
 23  15.526 7.680  
 23.5  15.868 7.847  
 24  16.210 8.015  
 24.5  16.552 8.182  
 25  16.895 8.349  
 25.5  17.238 8.517  
 26  17.581 8.684  
 26.5  17.924 8.851  
 27  18.267 9.019  
 27.5  18.611 9.186  
 28  18.955 9.354  
 28.5  19.298 9.521  
 29  19.643 9.689  
 29.5  19.987 9.856  
 30  20.331 10.024  

11 10  6.701 3.335 5.841 
 10.5  7.038 3.502  



 

 360 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  10.419 5.172  
 16  10.758 5.339  
 16.5  11.097 5.506  
 17  11.437 5.673  
 17.5  11.777 5.840  
 18  12.116 6.008  
 18.5  12.457 6.175  
 19  12.797 6.342  
 19.5  13.137 6.509  
 20  13.478 6.676  
 20.5  13.819 6.844  
 21  14.160 7.011  
 21.5  14.501 7.178  
 22  14.842 7.345  
 22.5  15.184 7.513  
 23  15.526 7.680  
 23.5  15.868 7.847  
 24  16.210 8.015  
 24.5  16.552 8.182  
 25  16.895 8.349  
 25.5  17.238 8.517  
 26  17.581 8.684  
 26.5  17.924 8.851  
 27  18.267 9.019  
 27.5  18.611 9.186  
 28  18.955 9.354  
 28.5  19.298 9.521  
 29  19.643 9.689  
 29.5  19.987 9.856  
 30  20.331 10.024  

11.5 10  6.701 3.335 6.150 
 10.5  7.038 3.502  
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  



 

 361 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  6.701 3.335  
 16  7.038 3.502  
 16.5  7.375 3.669  
 17  7.713 3.836  
 17.5  8.050 4.003  
 18  8.388 4.170  
 18.5  8.726 4.337  
 19  9.064 4.504  
 19.5  9.403 4.671  
 20  9.741 4.838  
 20.5  10.080 5.005  
 21  10.419 5.172  
 21.5  10.758 5.339  
 22  11.097 5.506  
 22.5  11.437 5.673  
 23  11.777 5.840  
 23.5  12.116 6.008  
 24  12.457 6.175  
 24.5  12.797 6.342  
 25  13.137 6.509  
 25.5  13.478 6.676  
 26  13.819 6.844  
 26.5  14.160 7.011  
 27  14.501 7.178  
 27.5  14.842 7.345  
 28  15.184 7.513  
 28.5  15.526 7.680  
 29  15.868 7.847  
 29.5  16.210 8.015  
 30  16.552 8.182  

12 10  6.701 3.335 6.459 
 10.5  7.038 3.502  
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  10.419 5.172  
 16  10.758 5.339  
 16.5  11.097 5.506  



 

 362 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 17  11.437 5.673  
 17.5  11.777 5.840  
 18  12.116 6.008  
 18.5  12.457 6.175  
 19  12.797 6.342  
 19.5  13.137 6.509  
 20  13.478 6.676  
 20.5  13.819 6.844  
 21  14.160 7.011  
 21.5  14.501 7.178  
 22  14.842 7.345  
 22.5  15.184 7.513  
 23  15.526 7.680  
 23.5  15.868 7.847  
 24  16.210 8.015  
 24.5  16.552 8.182  
 25  16.895 8.349  
 25.5  17.238 8.517  
 26  17.581 8.684  
 26.5  17.924 8.851  
 27  18.267 9.019  
 27.5  18.611 9.186  
 28  18.955 9.354  
 28.5  19.298 9.521  
 29  19.643 9.689  
 29.5  19.987 9.856  
 30  20.331 10.024  

12.5 10  6.701 3.335 6.768 
 10.5  7.038 3.502  
 11  7.375 3.669  
 11.5  7.713 3.836  
 12  8.050 4.003  
 12.5  8.388 4.170  
 13  8.726 4.337  
 13.5  9.064 4.504  
 14  9.403 4.671  
 14.5  9.741 4.838  
 15  10.080 5.005  
 15.5  10.419 5.172  
 16  10.758 5.339  
 16.5  11.097 5.506  
 17  11.437 5.673  
 17.5  11.777 5.840  
 18  12.116 6.008  
 18.5  12.457 6.175  
 19  12.797 6.342  
 19.5  13.137 6.509  



 

 363 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 20  13.478 6.676  
 20.5  13.819 6.844  
 21  14.160 7.011  
 21.5  14.501 7.178  
 22  14.842 7.345  
 22.5  15.184 7.513  
 23  15.526 7.680  
 23.5  15.868 7.847  
 24  16.210 8.015  
 24.5  16.552 8.182  
 25  16.895 8.349  
 25.5  17.238 8.517  
 26  17.581 8.684  
 26.5  17.924 8.851  
 27  18.267 9.019  
 27.5  18.611 9.186  
 28  18.955 9.354  
 28.5  19.298 9.521  
 29  19.643 9.689  
 29.5  19.987 9.856  
 30  20.331 10.024  

13 10 0.783 7.311 3.638 5.705474 
 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 5.643  
 16  11.737 5.825  
 16.5  12.107 6.007  
 17  12.478 6.189  
 17.5  12.848 6.372  
 18  13.219 6.554  
 18.5  13.590 6.737  
 19  13.961 6.919  
 19.5  14.333 7.101  
 20  14.704 7.284  
 20.5  15.076 7.466  
 21  15.448 7.649  
 21.5  15.820 7.831  
 22  16.193 8.014  
 22.5  16.566 8.196  



 

 364 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 23  16.938 8.379  
 23.5  17.312 8.561  
 24  17.685 8.744  
 24.5  18.058 8.926  
 25  18.432 9.109  
 25.5  18.806 9.291  
 26  19.180 9.474  
 26.5  19.555 9.657  
 27  19.929 9.839  
 27.5  20.304 10.022  
 28  20.679 10.205  
 28.5  21.054 10.388  
 29  21.430 10.570  
 29.5  21.805 10.753  
 30  22.181 10.936  

13.5 10  7.311 3.638 5.96507 
 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 5.643  
 16  11.737 5.825  
 16.5  12.107 6.007  
 17  12.478 6.189  
 17.5  12.848 6.372  
 18  13.219 6.554  
 18.5  13.590 6.737  
 19  13.961 6.919  
 19.5  14.333 7.101  
 20  14.704 7.284  
 20.5  15.076 7.466  
 21  15.448 7.649  
 21.5  15.820 7.831  
 22  16.193 8.014  
 22.5  16.566 8.196  
 23  16.938 8.379  
 23.5  17.312 8.561  
 24  17.685 8.744  
 24.5  18.058 8.926  
 25  18.432 9.109  
 25.5  18.806 9.291  



 

 365 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 26  19.180 9.474  
 26.5  19.555 9.657  
 27  19.929 9.839  
 27.5  20.304 10.022  
 28  20.679 10.205  
 28.5  21.054 10.388  
 29  21.430 10.570  
 29.5  21.805 10.753  
 30  22.181 10.936  

14 10  7.311 3.638 6.224665 
 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 5.643  
 16  11.737 5.825  
 16.5  12.107 6.007  
 17  12.478 6.189  
 17.5  12.848 6.372  
 18  13.219 6.554  
 18.5  13.590 6.737  
 19  13.961 6.919  
 19.5  14.333 7.101  
 20  14.704 7.284  
 20.5  15.076 7.466  
 21  15.448 7.649  
 21.5  15.820 7.831  
 22  16.193 8.014  
 22.5  16.566 8.196  
 23  16.938 8.379  
 23.5  17.312 8.561  
 24  17.685 8.744  
 24.5  18.058 8.926  
 25  18.432 9.109  
 25.5  18.806 9.291  
 26  19.180 9.474  
 26.5  19.555 9.657  
 27  19.929 9.839  
 27.5  20.304 10.022  
 28  20.679 10.205  
 28.5  21.054 10.388  



 

 366 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 29  21.430 10.570  
 29.5  21.805 10.753  
 30  22.181 10.936  

14.5 10  7.311 3.638 6.48426 
 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 5.643  
 16  11.737 5.825  
 16.5  12.107 6.007  
 17  12.478 6.189  
 17.5  12.848 6.372  
 18  13.219 6.554  
 18.5  13.590 6.737  
 19  13.961 6.919  
 19.5  14.333 7.101  
 20  14.704 7.284  
 20.5  15.076 7.466  
 21  15.448 7.649  
 21.5  15.820 7.831  
 22  16.193 8.014  
 22.5  16.566 8.196  
 23  16.938 8.379  
 23.5  17.312 8.561  
 24  17.685 8.744  
 24.5  18.058 8.926  
 25  18.432 9.109  
 25.5  18.806 9.291  
 26  19.180 9.474  
 26.5  19.555 9.657  
 27  19.929 9.839  
 27.5  20.304 10.022  
 28  20.679 10.205  
 28.5  21.054 10.388  
 29  21.430 10.570  
 29.5  21.805 10.753  
 30  22.181 10.936  

15 10  7.311 3.638 6.743855 
 10.5  7.679 3.821  
 11  8.047 4.003  



 

 367 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 5.643  
 16  11.737 5.825  
 16.5  12.107 6.007  
 17  12.478 6.189  
 17.5  12.848 6.372  
 18  13.219 6.554  
 18.5  13.590 6.737  
 19  13.961 6.919  
 19.5  14.333 7.101  
 20  14.704 7.284  
 20.5  15.076 7.466  
 21  15.448 7.649  
 21.5  15.820 7.831  
 22  16.193 8.014  
 22.5  16.566 8.196  
 23  16.938 8.379  
 23.5  17.312 8.561  
 24  17.685 8.744  
 24.5  18.058 8.926  
 25  18.432 9.109  
 25.5  18.806 9.291  
 26  19.180 9.474  
 26.5  19.555 9.657  
 27  19.929 9.839  
 27.5  20.304 10.022  
 28  20.679 10.205  
 28.5  21.054 10.388  
 29  21.430 10.570  
 29.5  21.805 10.753  
 30  22.181 10.936  
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Scenario 2 - Design considering present AND future markets 
 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
15 10 0.783 7.311 3.638 6.744 

 10.5  7.679 3.821  
 11  8.047 4.003  
 11.5  8.415 4.185  
 12  8.783 4.367  
 12.5  9.151 4.549  
 13  9.520 4.731  
 13.5  9.889 4.914  
 14  10.258 5.096  
 14.5  10.628 5.278  
 15  10.997 5.460  
 15.5  11.367 3.638  
 16  11.737 3.821  
 16.5  12.107 4.003  
 17  12.478 4.185  
 17.5  12.848 4.367  
 18  13.219 4.549  
 18.5  13.590 4.731  
 19  13.961 4.914  
 19.5  14.333 5.096  
 20  14.704 7.284  
 20.5  15.076 5.460  
 21  15.448 5.643  
 21.5  15.820 5.825  
 22  16.193 6.007  
 22.5  16.566 6.189  
 23  16.938 6.372  
 23.5  17.312 6.554  
 24  17.685 6.737  
 24.5  18.058 6.919  
 25  18.432 9.109  
 25.5  18.806 7.284  
 26  19.180 7.466  
 26.5  19.555 7.649  
 27  19.929 7.831  
 27.5  20.304 8.014  
 28  20.679 8.196  
 28.5  21.054 8.379  
 29  21.430 10.570  
 29.5  21.805 8.744  



 

 369 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 30  22.181 10.936  

20 10 0.898 8.385 4.173 6.697 
 10.5  8.806 4.382  
 11  9.228 4.591  
 11.5  9.650 4.799  
 12  10.073 5.008  
 12.5  10.496 5.217  
 13  10.918 5.426  
 13.5  11.342 5.635  
 14  11.765 5.844  
 14.5  12.189 6.053  
 15  12.612 6.262  
 15.5  13.036 6.471  
 16  13.461 6.680  
 16.5  13.885 6.889  
 17  14.310 7.098  
 17.5  14.735 7.308  
 18  15.160 7.517  
 18.5  15.586 7.726  
 19  16.012 7.935  
 19.5  16.438 8.144  
 20  16.864 8.353  
 20.5  17.290 8.563  
 21  17.717 8.772  
 21.5  18.144 8.981  
 22  18.571 9.191  
 22.5  18.999 9.400  
 23  19.426 9.609  
 23.5  19.854 9.819  
 24  20.282 10.028  
 24.5  20.711 10.237  
 25  21.139 10.447  
 25.5  21.568 10.656  
 26  21.997 10.866  
 26.5  22.427 11.075  
 27  22.856 11.285  
 27.5  23.286 11.494  
 28  23.716 11.704  
 28.5  24.147 11.913  
 29  24.577 12.123  
 29.5  25.008 12.332  
 30  25.439 12.542  

25 10 0.998 9.318 4.638 6.659 
 10.5  9.787 4.870  
 11  10.256 5.102  
 11.5  10.725 5.334  
 12  11.195 5.566  



 

 370 

V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 12.5  11.664 5.798  
 13  12.134 6.030  
 13.5  12.605 6.263  
 14  13.075 6.495  
 14.5  13.546 6.727  
 15  14.017 6.960  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
 24.5  23.017 11.377  
 25  23.493 11.610  
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  

30 10 1.087 7.313 3.639 14.523 
 10.5  7.681 3.822  
 11  8.049 4.004  
 11.5  8.417 4.186  
 12  8.785 4.368  
 12.5  9.154 4.550  
 13  9.523 4.733  
 13.5  9.892 4.915  
 14  10.261 5.097  
 14.5  10.630 5.279  
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V (m3) P (MPa) R (m) Ts (mm) Th (mm) Lo (m) 
 15  11.000 5.462  
 15.5  14.488 7.192  
 16  14.960 7.424  
 16.5  15.432 7.657  
 17  15.904 7.889  
 17.5  16.376 8.121  
 18  16.849 8.354  
 18.5  17.322 8.586  
 19  17.795 8.819  
 19.5  18.268 9.051  
 20  18.742 9.284  
 20.5  19.216 9.516  
 21  19.690 9.749  
 21.5  20.164 9.981  
 22  20.639 10.214  
 22.5  21.114 10.447  
 23  21.590 10.679  
 23.5  22.065 10.912  
 24  22.541 11.145  
 24.5  23.017 11.377  
 25  23.493 11.610  
 25.5  23.970 11.843  
 26  24.447 12.076  
 26.5  24.924 12.308  
 27  25.402 12.541  
 27.5  25.879 12.774  
 28  26.357 13.007  
 28.5  26.836 13.240  
 29  27.314 13.473  
 29.5  27.793 13.706  
 30  28.272 13.939  
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APPENDIX C 
 

JAVA CODE FOR THE HAND EXERCISER EXAMPLE 
PROBLEM 

 

In this appendix, the computer program for the hand exerciser example is 

presented. The program is written in Java. A brief description of the classes and functions 

written is followed by the actual code. The latter part of the code is the program used in 

iSIGHT for results using optimization techniques. 

 The solution algorithm used for this example is as explained in Section 4.3.2. A 

brief description of the classes and functions are as follows: 

Classes 

handexerciser                 This is the main class of the program for uncertain demand. 

From this class different functions are called. The solution 

algorithm is implemented in this class. 

cDetailsOPv4 This class helps to write the output. i.e., detailed specifications of 

the product families into a file. 

 

Functions 

handexerciser This constructor is comprised of the main solution algorithm 

getwire To get the cost, diameter and strength of different standard wires 

demand To define the forces demanded in the market space 

initarray3 To initialize the flag 

normCost To calculate the normalized cost for the entire market space 
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normVar To calculate the normalized variance for the entire market space 

fCheck To check if one number is a multiple of other 

zc To calculate the deviation function helping to make compromise 

info1 To print the detailed specifications of platforms in the file 

summary  To print the key factors of each platform such as cost, variance. 

initCost To initialize the cost 

initVar To initialize variables such as count 

 

HandExerciser 
 
import java.io.*; 
import java.math.*; 
 
public class handexerciser { 
 public static void main (String[] args) 
 { 
  new handexerciser(); 
 } 
 
 double narray[][];  
 double f=10; 
 
 public handexerciser() 
 { 
 
  double w=90; //width 
  double h=100;//height 
   
  double E=200000.0; 
  double rho=7860.0*1E-9; 
 
  //To display output 
  cResult4 Results3 = new cResult4();  
  cDetailsOPv4 Details = new cDetailsOPv4();   
 
 
// 1 Force 
// 2 d 
// 3 Flag 
// 4 k 
// 5 D 
// 6 Demand 
// 7 mt 
// 8 N 
// 9 H 
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// 10L 
 
  int dflag=0; //to check if all springs satisfy constraints 
  int bestcount=0; 
 
  narray = new double[101][12]; //storage of all springs 
  double wire[][];   
  wire = new double[16][5]; //storage of all wire information 
  
  double ztemp=100; 
 
//Demand 
 for (int i=0; i<101; i++) 
 { 
  narray[i][6]=5000.0; 
 }  
 
    
  demand(); 
      
getwire(); 
 
//Initialize variables 
double maxf=100.0;  
 
 
double CmatTotal=0.0; 
double Cmat =0.0; 
double dF2=0.0; 
double F2=0; 
double F1=0; 
double dF1=0.0; 
double Fmax; 
double R=100.0; 
double Cpack=0.0; 
 
int count=0; 
int countTotal=0; 
//initCost(); 
//initvar(); 
 
double pd=0; 
double dem[]; 
 
//array used to calculate cost of mandrels 
dem = new double[101]; 
for (int i=0; i<101; i++) 
{ 
 dem[i]=0.0; 
} 
 
double ctool[]; 
ctool = new double[101]; 
int md=0; 
double ctd=0.0; 
double cto=0.0; 
double cmand=500.0;//cost of mandrel 
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int nw=1; 
double Cinv=0; 
double d=0.0; 
double cw=0.0; 
double mt=0.0; 
double N=0.0; 
double H=0.0; 
double L=0.0; 
double sy=0.0; 
double su=0.0; 
double se=0.0; 
 
 
double Ctemp=100000000.0; 
double Cgrand=0.0; 
double fdF1=0.0; 
double fdF2=0.0; 
double CtoolTotal=0.0; 
 
double vd[]; 
vd = new double[5]; 
double vsqg[]; 
vsqg = new double[5]; 
double vsgrand=0.0; 
double vcmat[]; 
vcmat = new double[5]; 
double vCgrand[]; 
vCgrand = new double[5]; 
double varCgrand=0.0; 
double vde=0.0; 
double cd=0.0; 
double varn=0.0; 
double Cgrandn=0.0; 
double z=0.0; 
 
int tp2=0; 
 
 
for(int n=0; n<101; n++) 
{ 
 narray[n][3]=0.0; 
} 
 
 for(int j=1; j<15; j++) 
 {  
 for(int p=1; p<15; p++) 
 { 
 for(int q=1; q<15; q++) 
 {    
  for(int r=1; r<15; r++) 
  { 
  
  //cost of inventory depending on number of wires 
  if ((j==p)&&(j==q)&&(j==r)) Cinv=0; 
  if ((j!=p)&&(j!=q)&&(j!=r)) Cinv=6000; 
  if ((j==p)&&(j==q)&&(j!=r)) Cinv=2000; 
  if ((j==p)&&(j!=q)&&(j==r)) Cinv=2000; 
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  if ((j!=p)&&(j==q)&&(j==r)) Cinv=2000; 
  if ((j==p)&&(j!=q)&&(j!=r)&&(q==r)) Cinv=2000; 
  if ((j==p)&&(j!=q)&&(j!=r)&&(q!=r)) Cinv=4000; 
 
  if ((j!=p)&&(j==q)&&(j!=r)&&(p==r)) Cinv=2000; 
  if ((j!=p)&&(j==q)&&(j!=r)&&(p!=r)) Cinv=4000; 
 
  if ((j!=p)&&(j!=q)&&(j==r)&&(p==q)) Cinv=2000; 
  if ((j!=p)&&(j!=q)&&(j==r)&&(p!=q)) Cinv=4000; 
 
  for (int l=1; l<51; l++) 
  { 
  initarray3();  
  demand(); //Force initialization 
  F2 = narray[l][1]; 
  dF2 = F2 - narray[0][1]; 
  int dFnode = l; //number of nodes in dF1 
 
  //Check if dF2 is a multiple of maxf 
  int fc = fCheck(maxf, dF2); 
  
  if (fc > 0) 
  {;} 
  else  
  { 
  //number of elements  
  int Felement = (100)/dFnode; 
  //loop through elements and assign each node  
  for (int g=0; g<101; g++) 
  { 
  ctool[g]=0.0; 
  }  
   
  int di=0; 
   
  for (int m=1; m<Felement+1; m++) 
  { 
  di=0; 
  for (int g=0; g<101; g++) 
  { 
  dem[g]=0.0; 
  } 
  Fmax = narray[m*dFnode][1]; 
  //fill previous nodes  
  for (int n=1; n<((m*dFnode)+1); n++) 
  { 
  if(narray[n][3]<1.0) 
  { 
  narray[n][1] = Fmax; 
  narray[n][3] = 1.0; 
  dem[di] = dem[di]+narray[n][6]; 
  } 
  else {;} 
  } 
       
  //calculatation of cost of mandrels 
  md = (int)(dem[di]/58400)+1; 
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  pd = dem[di]/md; 
  ctd = cmand*pd*md/50000; 
  //System.out.println(pd*md/50000); 
 
  cto = 0.1*cmand*md*(1-(pd/58400)); 
  ctool[di] = ctool[di]  + ctd + cto; 
  di++; 
       
  } 
 
  CtoolTotal = ctool[di-1]; 
  count=0; 
  dflag=0; 
    
  for(int s=0; s<101; s++) 
  { 
  d=wire[j][1]; 
  narray[s][2] = d; 
  sy=wire[j][2]; 
  //assignment of wires to nodes 
  if((s>25)&&(s<=50)) 
  { 
  d=wire[p][1]; 
  narray[s][2] = d; 
  sy=wire[p][2]; 
  } 
  if((s>50)&&(s<=75)) 
  { 
  d=wire[q][1]; 
  narray[s][2] = d; 
  sy=wire[q][2]; 
  } 
  if(s>75) 
  { 
  d=wire[r][1]; 
  narray[s][2] = d; 
  sy=wire[r][2]; 
  } 
  R=100.0; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); //K 
  if ((narray[s][4]>1.7)&&(narray[s][4]<2)) sy=sy-600; 
  if (narray[s][4]>2) sy=sy-1000; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); 
  if ((narray[s][4]<1.00001)&&(narray[s][4]>0.7)) 
   R=R-35; 
  if ((narray[s][4]<0.7)) 
    R=R-60; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); 
  if ((narray[s][4]>1.0)&&(narray[s][4]<1.6)) count++; 
   double a=4*narray[s][4]-4; 
  double b=-4*d*narray[s][4]-d; 
  double c=d*d; 
  
  narray[s][5]=(-b+Math.sqrt(b*b-4*a*c))/(2*a); //D 
  //variance given to D      
  vd[2]=narray[s][5]*0.8; 
  vd[1]=narray[s][5]*0.9; 
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  vd[0]=narray[s][5]; 
  vd[3]=narray[s][5]*1.1; 
  vd[4]=narray[s][5]*1.2; 
 
  } 
  countTotal = countTotal + count; 
  if (count==100) dflag=1; 
  for (int b=1; b<51; b++) 
  { 
   initarray3();  
   demand();  
   F1 = narray[b][1]; 
   dF1 = F1 - narray[0][1]; 
   int dFnode1 = b; //number of nodes in dF1 
   //check if dF1 is a multiple of dF2 
   int fc1 = fCheck(dF2, dF1); 
   if (fc1 > 0) 
   {;} 
   else  
   { 
   
   int Felement1 = (100)/dFnode1; //number of nodes 
    
   for (int b1=1; b1<Felement1+1; b1++) 
   { 
   Fmax = narray[b1*dFnode1][1]; 
   //fill previous nodes with Fmax if they haven't been 
filled  
   for (int n=0; n<((b1*dFnode1)+1); n++) 
   { 
   if(narray[n][3]<1.0) 
   { 
   narray[n][1] = Fmax; 
   narray[n][3] = 1.0; 
   } 
   else {;} 
   } 
   }  
  
   CmatTotal=0;  
   for(int g=0; g<5; g++) 
   { 
   vcmat[g]=0.0; 
   } 
   for(int m=0; m<5; m++) //number of levels for 
variance    
   { 
   for(int t=0; t<101; t++) //loop for all springs  
   { 
   H=h+vd[m]; 
   //System.out.println("H"+H+"D"+narray[t][5]);  
   mt=Math.atan(2*H/narray[t][5]); 
   double d4 = ((int)d)*((int)d)*((int)d)*((int)d); 
  
   N=d4*E*(3.142-2*mt)/(68*vd[m]*100*narray[t][1]); 
   double tp = (68*vd[m]*vd[m]*100*N/(d4*E)); 
   H=(vd[m]/2)*Math.tan(0.5*(3.142-tp)); 
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   //System.out.println("H"+H);   
   L=1.2*(3.142*vd[m]*N+2*Math.sqrt(((w-vd[m])/2)*((w-
vd[m])/2)+H*H)); 
   cw = wire[j][3]; //cost of wire 
   Cmat = narray[t][6]*cw*rho*3.142*d*d*L/4; //cost of 
material of a spring 
   CmatTotal = CmatTotal + Cmat; //total cost of 
material 
   narray[t][7] = mt; 
   narray[t][8] = N; 
   narray[t][9] = H; 
   narray[t][10] = L; 
   }// t loop 
   vcmat[m]=CmatTotal; 
     
   }//m loop 
   //cost of packing   
   Cpack=350*Felement1; 
   //total cost 
   Cgrand=vcmat[0] + CtoolTotal + Cinv+Cpack; 
  
   //calculation of variance 
   vsgrand=0.0; 
   for(int g=0; g<5; g++) 
   { 
   vCgrand[g]=0.0; 
   } 
 
   vCgrand[0]=Cgrand; 
   for(int g=1; g<5; g++) 
   { 
   vCgrand[g]=vcmat[g] + CtoolTotal + Cinv;  
   vsgrand=vsgrand+((vCgrand[g]-vCgrand[0])*(vCgrand[g]-
vCgrand[0]))/3; 
   } 
 
   //normalize 
   //varn = normCost(Cgrand, Cgrandn); 
   //Cgrandn = normVar(vsgrand, varn); 
   varn=5E8/vsgrand; 
 
   Cgrandn=29000/Cgrand; 
   vde=1-varn; 
   cd=1-Cgrandn; 
 
   //zc = z(0.5, 0.5, cd, vde) 
   z=1*vde+0*cd; 
   if (dflag==1) 
   { 
   //Details.info1(j, p, q, r, dF2, dF1, narray); 
   tp2=tp2+1; 
   Details.summary(j, p, q, r, dF2, dF1, vcmat[0], 
CtoolTotal, Cgrand, Cinv, Cpack, vde, z); 
   } 
    
   //System.out.println(Cgrand); 
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   if ((z<ztemp)&&(dflag==1))  
//&&(dF1!=1))&&(CmatTotal>20000)) 
   {  
   //Ctemp=Cgrand; 
   ztemp=z; 
   fdF1=dF1;       
   fdF2=dF2; 
   Results3.confile(fdF2, fdF1, vcmat[0], CtoolTotal, 
Cgrand, varn, Cgrandn, z); 
   Results3.confile(j, p, fdF2, fdF1, vcmat[0], 
CtoolTotal, Cgrand, vsgrand, varn, Cgrandn, z); 
   Results3.confile(dF2, dF1, 0, 0,0,0,0,0,0); 
   Details.info1(j, p, q, r, dF2, dF1, narray); 
   Details.summary(j, p, q, r, dF2, dF1, vcmat[0], 
CtoolTotal, Cgrand, Cinv, Cpack, vde, z); 
   bestcount++; 
   } 
   }//else 
 
   }//b loop 
   }//else 
   }//l loop 
   
  }//r 
  }//q 
  }//p 
  }//j 
 
 }//end of exerciser1  
 
 
 public int fCheck(double n, double m) 
 { 
  Double x = new Double(n/m); 
  int y = x.intValue(); 
  double z = y+0.0; 
  double fractioncheck = (n/m) - z; 
  int flag = 0; 
  if (fractioncheck < 0 || fractioncheck > 0) 
  { 
   flag = 1; 
  } 
  return flag; 
 }//end of fCheck() 
 
 public void initarray3() 
 { 
  for (int i=0; i<101; i++) 
  { 
   narray[i][3]=0.0; 
  }  
 } 
 
 
 public double normCost(double Cgrand, double Cgrandn) 
 { 
  Cgrandn=29000/Cgrand; 
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  return Cgrandn; 
 } 
 
 public double normVar(double vsgrand, double varn) 
 { 
  varn=5E8/vsgrand; 
  return varn; 
 } 
 
 public double z(double w1, double w2, double cd, double vde) 
 { 
  double zc=0.0; 
  zc = w1*cd + w2*vde; 
  return zc; 
 } 
 
 
 //Force initialization 
 public void demand() 
 {  
  f=10; 
  for (int i=0; i<101; i++) 
  {    
  narray[i][1]=f;  
  f=f+1;   
  } 
 } 
 
 public void initcost() 
 { 
  CmatTotal=0.0; 
  Cmat =0.0; 
  Cpack = 0.0; 
 } 
 
 public void initvar() 
 { 
  Count=0; 
  countTotal=0; 
  F1=0; 
  F2=0; 
 }  
 
public double[][] getwire() 
{ 
wire[1][1]=0.79; wire[1][2]=1978; 
wire[2][1]=1.30; wire[2][2]=1816; 
wire[3][1]=1.60; wire[3][2]=1756; 
wire[4][1]=1.91; wire[4][2]=1702; 
wire[5][1]=2.59; wire[5][2]=1618; 
wire[6][1]=3.18; wire[6][2]=1565; 
wire[7][1]=4.11; wire[7][2]=1493; 
wire[8][1]=0.89; wire[8][2]=1678; 
wire[9][1]=1.22; wire[9][2]=1559; 
wire[10][1]=1.60; wire[10][2]=1499; 
wire[11][1]=2.69; wire[11][2]=1349; 
wire[12][1]=3.18; wire[12][2]=1319; 
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wire[13][1]=4.17; wire[13][2]=1139; 
wire[14][1]=4.88; wire[14][2]=1330; 
wire[15][1]=5.26; wire[15][2]=1310; 
 
wire[1][3]=3.53; 
wire[2][3]=2.48; 
wire[3][3]=2.39; 
wire[4][3]=2.37; 
wire[5][3]=2.22; 
wire[6][3]=2.18; 
wire[7][3]=2.16; 
wire[8][3]=2.42; 
wire[9][3]=2.26; 
wire[10][3]=2.15; 
wire[11][3]=1.36; 
wire[12][3]=0.91; 
wire[13][3]=0.89; 
wire[14][3]=1.25; 
wire[15][3]=1.15; 
} 
 
} 
 
cDetailsOPv4 
 
 import java.io.*; 
  
 public class cDetailsOPv4 
 { 
  BufferedWriter out; 
   public cDetailsOPv4() 
 { 
  try 
  { 
   out = new BufferedWriter(new 
FileWriter("Details.txt")); 
   out.write("\n");    
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end of cDetailsOPv4 
   
//puts detailed info in file 
public void info1(int j, int p, int q, int r, double fdF2, double fdF1, 
double[][] narray) 
 { 
  try 
  { 
 
   out.write("\n"); 
    
   out.write("j: " + j); 
 
   out.write("   ");    
   out.write("p: " + p); 
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   out.write("   ");    
   out.write("q: " + q);  
   out.write("   ");    
   out.write("r: " + r);   
   out.write("   "); 
   out.write("fdF2: " + fdF2); 
   //out.write(fdF2); 
   out.write("   "); 
   out.write("fdF1:  " + fdF1); 
   //out.write(fdF1); 
   out.write("\n"); 
 
out.write("Node      Force                   d               Flag                   
k                              D                   Demand                 
mt                     N                        H                          
L"); 
   out.write("\n");  
 
   for (int i=0; i<101; i++) 
   { 
    Integer h = new Integer(i); 
    String sh = h.toString(); 
    out.write(sh); 
    out.write("        "); 
      
    for (int g= 1; g<11; g++) 
    { 
     Double d = new Double(narray[i][g]); 
     String s = d.toString(); 
     out.write(s); 
     out.write("     "); 
    }   
    out.write("\n"); 
   } 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end info1() 
  
 //summary of a run 
 public void summary(int j, int p, int q, int r, double dF2, 
double dF1, double CmatTotal, double CtoolTotal, double Cgrand, double 
Cinv, double Cpack, double vsgrand, double z) 
 { 
  try 
  { 
   out.write("j = " + j + " p = " + p + " q = " + q + " 
r = " + r + " dF2 = " + dF2 + " dF1 = " + dF1); 
   out.write("\n"); 
 
    
   out.write("CmatTotal = $" + CmatTotal); 
   out.write("\n"); 
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   out.write("CtoolTotal = $" + CtoolTotal); 
   out.write("\n"); 
 
   out.write("Cpack = $" + Cpack); 
   out.write("\n"); 
 
   out.write("Cinv = $" + Cinv); 
   out.write("\n"); 
   
   out.write("Cgrand = $" + Cgrand); 
   out.write("\n"); 
 
   out.write("vsgrand = " + vsgrand); 
   out.write("\n"); 
 
   out.write("z = " + z); 
   out.write("\n"); 
 
   out.write("\n"); 
       
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 } 
  
 //close file 
 public void close() 
 { 
  try 
  { 
   out.close(); 
  } 
  catch (IOException e) 
  { 
   System.err.println("FileStream error " + e); 
  } 
 }//end close() 
  
 }//end of cDetailsOPv4 
 
iSIGHT 
 
import java.io.*; 
import java.math.*; 
 
public class handexisight { 
 public static void main (String[] args) 
 { 
  new handexisight(); 
 } 
 
 double narray[][];  
 double f=10; 
 
 public handexisight() 
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 { 
 try 
 { 
   
  double idf1; 
  String idf1s;    
  double idf2; 
  String idf2s;  
  
  double ij; 
  String ijs; 
  double ip; 
  String ips; 
  double iq; 
  String iqs; 
  double ir; 
  String irs; 
 
                //read input file 
  FileReader ss = new FileReader("subspace.txt");                         
  BufferedReader in = new BufferedReader (ss);                         
  idf2s = in.readLine();                         
  idf2 = Double.valueOf(idf2s).doubleValue();  
  System.out.println(idf2); 
   
  idf1s = in.readLine();                         
  idf1 = Double.valueOf(idf1s).doubleValue();  
  System.out.println(idf1); 
 
  ijs = in.readLine();                         
  ij = Double.valueOf(ijs).doubleValue();  
  System.out.println(ij); 
   
  ips = in.readLine();                         
  ip = Double.valueOf(ips).doubleValue();  
  System.out.println(ip); 
 
  iqs = in.readLine();                         
  iq = Double.valueOf(iqs).doubleValue();  
  System.out.println(iq); 
 
  irs = in.readLine();                         
  ir = Double.valueOf(irs).doubleValue();  
  System.out.println(ir); 
   
 
  double w=90; 
  double h=100; 
   
  double E=200000.0; 
  double rho=7860.0*1E-9; 
 
  double F=55.0; 
  cResult3 Results3 = new cResult3();  
  cDetailsOP Details = new cDetailsOP();   
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// 1 Force 
// 2 d 
// 3 Flag 
// 4 k 
// 5 D 
// 6 Demand 
// 7 mt 
// 8 N 
// 9 H 
// 10L 
 
  int dflag=0; 
  int bestcount=0; 
 
  narray = new double[101][12];  
  double wire[][];   
  wire = new double[16][5]; 
  double ztemp=100; 
 
//Demand 
 for (int i=0; i<101; i++) 
 { 
  narray[i][6]=5000.0; 
 }  
   
  initarray1(); 
      
wire[1][1]=0.79; wire[1][2]=1978; 
wire[2][1]=1.30; wire[2][2]=1816; 
wire[3][1]=1.60; wire[3][2]=1756; 
wire[4][1]=1.91; wire[4][2]=1702; 
wire[5][1]=2.59; wire[5][2]=1618; 
wire[6][1]=3.18; wire[6][2]=1565; 
wire[7][1]=4.11; wire[7][2]=1493; 
wire[8][1]=0.89; wire[8][2]=1678; 
wire[9][1]=1.22; wire[9][2]=1559; 
wire[10][1]=1.60; wire[10][2]=1499; 
wire[11][1]=2.69; wire[11][2]=1349; 
wire[12][1]=3.18; wire[12][2]=1319; 
wire[13][1]=4.17; wire[13][2]=1139; 
wire[14][1]=4.88; wire[14][2]=1330; 
wire[15][1]=5.26; wire[15][2]=1310; 
 
wire[1][3]=3.53; 
wire[2][3]=2.48; 
wire[3][3]=2.39; 
wire[4][3]=2.37; 
wire[5][3]=2.22; 
wire[6][3]=2.18; 
wire[7][3]=2.16; 
wire[8][3]=2.42; 
wire[9][3]=2.26; 
wire[10][3]=2.15; 
wire[11][3]=1.36; 
wire[12][3]=0.91; 
wire[13][3]=0.89; 
wire[14][3]=1.25; 
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wire[15][3]=1.15; 
 
double maxf=100.0; 
double CmatTotal=0.0; 
double Cmat =0.0; 
double dF2=0.0; 
double F2=0; 
double F1=0; 
double dF1=0.0; 
double Fmax; 
double R=100.0; 
double Cpack=0.0; 
 
int count=0; 
int countTotal=0; 
 
 
double pd=0; 
double dem[]; 
dem = new double[101]; 
 
for (int i=0; i<101; i++) 
{ 
 dem[i]=0.0; 
} 
 
double ctool[]; 
ctool = new double[101]; 
int md=0; 
double ctd=0.0; 
double cto=0.0; 
double cmand=500.0; 
int nw=1; 
double Cinv=0; 
double d=0.0; 
double cw=0.0; 
double mt=0.0; 
double N=0.0; 
double H=0.0; 
double L=0.0; 
double sy=0.0; 
double su=0.0; 
double se=0.0; 
 
 
double Ctemp=10000000.0; 
double Cgrand=0.0; 
double fdF1=0.0; 
double fdF2=0.0; 
double CtoolTotal=0.0; 
 
double vd[]; 
vd = new double[5]; 
double vsqg[]; 
vsqg = new double[5]; 
double vsgrand=0.0; 
double vcmat[]; 
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vcmat = new double[5]; 
double vCgrand[]; 
vCgrand = new double[5]; 
double varCgrand=0.0; 
double vde=0.0; 
double cd=0.0; 
double varn=0.0; 
double Cgrandn=0.0; 
double z=0.0; 
 
 for(int n=0; n<101; n++) 
 { 
 narray[n][3]=0.0; 
 } 
 
 int j= (int) ij; 
 int p= (int) ip; 
 int q= (int) iq; 
 int r= (int) ir; 
    
 d=wire[j][1];  
 
 initarray3();  
 initarray1(); //Force initialization 
 dF2=idf2; 
 int dFnode = (int) idf2; //number of nodes in dF1 
 
 int fc = factorCheck(maxf, dF2); 
 if (fc > 0) 
 {;} 
 else  
 { 
    
 //number of elements  
 int Felement = (100)/dFnode; 
 //loop through elements and assign each node  
 for (int g=0; g<101; g++) 
 { 
 ctool[g]=0.0; 
 }  
      
 int di=0; 
  
 for (int m=1; m<Felement+1; m++) 
 { 
  di=0; 
  for (int g=0; g<101; g++) 
  { 
  dem[g]=0.0; 
  } 
  Fmax = narray[m*dFnode][1]; 
  //fill previous nodes  
  for (int n=1; n<((m*dFnode)+1); n++) 
  { 
  if(narray[n][3]<1.0) 
  { 
  narray[n][1] = Fmax; 
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  narray[n][3] = 1.0; 
  dem[di] = dem[di]+narray[n][6]; 
  } 
  else {;} 
  } 
  md = (int)(dem[di]/58400)+1; 
 
  pd = dem[di]/md; 
  ctd = cmand*pd*md/50000; 
  cto = 0.1*cmand*md*(1-(pd/58400)); 
  ctool[di] = ctool[di]  + ctd + cto; 
  di++; 
      
  } 
  CtoolTotal = ctool[di-1]; 
 
  count=0; 
  dflag=0; 
  
  for(int s=0; s<101; s++) 
  { 
  d=wire[j][1]; 
  narray[s][2] = d; 
  sy=wire[j][2]; 
  if((s>25)&&(s<=50)) 
  { 
  d=wire[p][1]; 
  narray[s][2] = d; 
  sy=wire[p][2]; 
  } 
 
  if((s>50)&&(s<=75)) 
  { 
  d=wire[q][1]; 
  narray[s][2] = d; 
  sy=wire[q][2]; 
  } 
  if(s>75) 
  { 
  d=wire[r][1]; 
  narray[s][2] = d; 
  sy=wire[r][2]; 
  } 
  R=100.0; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); //K 
  if ((narray[s][4]>1.7)&&(narray[s][4]<2)) sy=sy-600; 
  if (narray[s][4]>2) sy=sy-1000; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); 
  if ((narray[s][4]<1.00001)&&(narray[s][4]>0.7)) 
    R=R-35; 
  if ((narray[s][4]<0.7)) 
    R=R-60; 
  narray[s][4]=(sy*3.142*d*d*d)/(32*narray[s][1]*R); 
  if ((narray[s][4]>1.0)&&(narray[s][4]<1.6)) count++; 
 
  double a=4*narray[s][4]-4; 
  double b=-4*d*narray[s][4]-d; 
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  double c=d*d; 
  narray[s][5]=(-b+Math.sqrt(b*b-4*a*c))/(2*a); //D 
       
  vd[2]=narray[s][5]*0.8; 
  vd[1]=narray[s][5]*0.9; 
  vd[0]=narray[s][5]*1.2; 
  vd[3]=narray[s][5]*1.1; 
  vd[4]=narray[s][5]*1.2; 
  
  } 
  countTotal = countTotal + count; 
  if (count==100) dflag=1; 
 
  dF1=idf1; 
  
  initarray3();  
  initarray1();  
  int dFnode1 = (int) idf1; //number of nodes in dF1 
     
  int fc1 = factorCheck(dF2, dF1); 
  if (fc1 > 0) 
  {;} 
  else  
  { 
       
  int Felement1 = (100)/dFnode1; 
    
  for (int b1=1; b1<Felement1+1; b1++) 
  { 
  Fmax = narray[b1*dFnode1][1]; 
  //fill previous nodes with Vmax if they haven't been filled 
yet 
  for (int n=0; n<((b1*dFnode1)+1); n++) 
  { 
  if(narray[n][3]<1.0) 
  { 
  narray[n][1] = Fmax; 
  narray[n][3] = 1.0; 
  } 
  else {;} 
 
  } 
  }   
  CmatTotal=0;  
  for(int g=0; g<5; g++) 
  { 
  vcmat[g]=0.0; 
  } 
  for(int m=0; m<5; m++)     
  { 
  for(int t=0; t<101; t++) 
  { 
  H=h+vd[m]; 
  //System.out.println("H"+H+"D"+narray[t][5]);  
  mt=Math.atan(2*H/narray[t][5]); 
        double d4 = 
((int)d)*((int)d)*((int)d)*((int)d); 
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        if (d4==0) d4=1; 
  N=d4*E*(3.142-2*mt)/(68*vd[m]*100*narray[t][1]); 
  double tp = (68*vd[m]*vd[m]*100*N/(d4*E)); 
       
 H=(vd[m]/2)*Math.tan(0.5*(3.142-tp)); 
  //System.out.println("H"+H);   
  L=1.2*(3.142*vd[m]*N+2*Math.sqrt(((w-vd[m])/2)*((w-
vd[m])/2)+H*H)); 
  cw = wire[j][3]; 
  Cmat = narray[t][6]*cw*rho*3.142*d*d*L/4; 
  CmatTotal = CmatTotal + Cmat; 
    
  narray[t][7] = mt; 
  narray[t][8] = N; 
  narray[t][9] = H; 
  narray[t][10] = L; 
  }// t loop 
  vcmat[m]=CmatTotal; 
 }//m loop 
 
  Cpack=350*Felement1; 
  Cgrand=vcmat[0] + CtoolTotal + Cinv+Cpack; 
  
  vsgrand=0.0; 
  for(int g=0; g<5; g++) 
  { 
  vCgrand[g]=0.0; 
   
  } 
  vCgrand[0]=Cgrand; 
  for(int g=1; g<5; g++) 
  { 
  vCgrand[g]=vcmat[g] + CtoolTotal + Cinv;  
  vsgrand=vsgrand+((vCgrand[g]-vCgrand[0])*(vCgrand[g]-
vCgrand[0]))/3; 
  } 
 
  varn=5E8/vsgrand; 
  Cgrandn=29000/Cgrand; 
  vde=1-varn; 
  cd=1-Cgrandn; 
  z=0.5*vde+0.5*cd; 
  ztemp=z; 
  fdF1=dF1;       
  fdF2=dF2; 
 
  bestcount++; 
 }//else 
 }//else 
 } 
 catch (IOException e) 
 { 
  System.err.println("FileStream error " + e); 
 } 
 
 }//end of handexisight  
} 
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APPENDIX D 
 

OPTIMIZATION RESULTS OF THE HAND EXERCISER 
EXAMPLE 

 

 

The results of the exhaustive search method for the hand exerciser example are 

compared with some optimization techniques. The combination of optimization 

techniques used as discussed in Section 4.2.4 are as follows: 

- Genetic Algorithms and Simulated Annealing 

 

First Case: 

Start End
Genetic Algorithms ∆f3=100(15 15 15 15) ∆f3=50(11 11 13 13)

∆f2=10 ∆f2=50 
∆f1=5 ∆f1=2
Ζ=1 Ζ=0.796466

Simulated Annealing ∆f3=50(11 11 13 13) ∆f3=50(11 11 6 6)
∆f2=50 ∆f2=50 
∆f1=2 ∆f1=25
Ζ=0.796466 Ζ=0.583595
∆f3=50(11 11 6 6) ∆f3=50(15 15 6 6)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.583595 Ζ=0.512011  

Genetic Algorithms-Simulated Annealing Results 1 
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Genetic Algorithms - Simulated Annealing
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Deviation vs Run Counter Results 1 

Second Case (Different Starting Point): 

Start End
Genetic Algorithms ∆f3=100(1 1 1 1) ∆f3=50(4 4 2 2)

∆f2=25 ∆f2=25 
∆f1=1 ∆f1=25
Ζ=1 Ζ=0.730344

Simulated Annealing ∆f3=50(4 4 2 2) ∆f3=50(7 7 2 2)
∆f2=25 ∆f2=50 
∆f1=25 ∆f1=10
Ζ=0.730344 Ζ=0.659194  

Genetic Algorithms-Simulated Annealing Results 2 

Genetic Algorithms-Simulated Annealing
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Deviation vs Run Counter Results 2 
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- Mixed Integer Programming and Genetic Algorithms 

Start End
∆f3=100(15 15 15 15) ∆f3=50(15 15 13 13)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.891936 Ζ=0.717896
∆f3=50(15 15 13 13) ∆f3=50(15 15 6 6)
∆f2=50 ∆f2=50 
∆f1=25 ∆f1=25
Ζ=0.717896 Ζ=0.51201

Mixed Integer 
Programming-
Genetic 
Algorithms

 

Mixed Integer Programming-Genetic Algorithms Results 
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Deviation vs Run Counter  

 

- Sequential Quadratic Programming 

 
Max. Number of Iterations 40
Relative Gradient Step 0.0001
Abs. Obj. Convergence 0.0001  
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Start End
SQP ∆f3=50(15 15 6 6) ∆f3=50(15 15 6 6)

∆f2=50 ∆f2=50 
∆f1=2 ∆f1=10
Ζ=0.584478 Ζ=0.503384  

 
Sequential Quadratic Programming Results 

Sequential Quadratic Programming
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