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SUMMARY

The objective of this thesis is to tighten worst-case timing estimation technology for

real-time systems executing on uniprocessors with caches. Such technology includes both

custom cache design as well as novel analysis techniques. Specifically, we focus on analyz-

ing the impact of cache behavior with respect to preemptions and interrupts. In conjunction

with formal analysis, we design a prioritized cache in order to reduce the unpredictability

in Worst Case Response Time (WCRT) analysis introduced by caches.

Real-time systems are widely used in Digital Signal Processing (DSP) applications,

telecommunication devices, automobiles and robotics. In a conventional embedded real-

time system, digital hardware used typically includes a processor core, several customized

hardware units and memory. Software running on the processor communicates and coop-

erates with customized hardware units which provide fast and precise response times. With

the quick development of technology, embedded processors become more and more pow-

erful by exploiting advanced features, such as pipelining and caching, that earlier belonged

to high-end processors. As a result, more complicated software can be implemented and

executed on an embedded processor. For example, multiple tasks supported by a Real-Time

Operating System (RTOS) can run on a uniprocessor to provide more versatile functionali-

ties. As compared to customized hardware, software is more flexible and easier to develop,

which can dramatically reduce design time and cost; however, a penalty is always paid in

that software is typically an order of magnitude or more slower than a custom hardware

implementation or the same application/algorithm.

For a real-time system, the most important feature is satisfaction of timing constraints.

Especially in a hard real-time system, missing deadlines might cause disastrous results.

Thus, designers must analyze the timing properties of software and customized hardware

xiii



in the system and guarantee that all tasks can be completed before their deadlines. Usually,

customized hardware units have more strict timing characteristics. For software running on

a processor, timing analysis is complicated, especially when advanced features in modern

processors, such as caching and pipelining, are present.

The execution time of a software task relates to many factors. For example, a software

task may execute along different paths because of branches. The branches can possibly de-

pend on input data which cannot be determined in advance. Furthermore, memory access

time may be non-deterministic if caches are used. Therefore, although implementing func-

tionalities with software in an embedded system shortens development cycles, it worsens

the timing analysis for the system.

In this thesis, we propose a novel worst case timing analysis approach for a preemp-

tive multi-tasking uniprocessor real-time system. We focus on preemption related cache

behavior analysis. In a multi-tasking system, multiple tasks, which are scheduled by an

RTOS, are allowed to run concurrently. We address the typical case where each task is

assigned a priority. A low priority task can possibly be preempted by tasks with higher

priorities. During preemptions, the cache lines used by the low priority task may be evicted

by cache lines used by high priority tasks. Thus, the low priority task has to reload such

evicted cache lines if the lower priority task needs to use those cache lines after recovering

from preemption. Such cache reload cost caused by preemptions is called Cache Related

Preemption Delay (CRPD). CRPD increases the WCRT of low priority tasks. As a result,

the schedulability of the entire system may also be affected.

We propose a new method to analyze CRPD by integrating inter- and intra-task cache

eviction analysis techniques. It turns out that the address trace of a task induces a set

of possible cache locations to which the addresses can be mapped; we refer to such a

set as a Cache Index Induced Partition (CIIP). A novel approach based on CIIP is used

for analyzing inter-task cache interference. CIIP is proposed in this thesis for the first

time. Path analysis is also applied in our approach to tighten WCRT estimate. We develop

xiv



several applications to test the performance of our approach. The experiments show that

our approach can achieve a reduction of up to 32% in WCRT estimate as compared to prior

approaches.

Inter-task cache interference brings unpredictability in timing analysis because addi-

tional cache reload cost is introduced by preemptions. We can customize cache allocation

policy in order to reduce inter-task cache interference. A prioritized cache is proposed in

this thesis. WCRT analysis is simplified by using a prioritized cache. The experimental

results show that task WCRT can be reduced up to 26% as compared to conventional set

associative caches.
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CHAPTER I

INTRODUCTION

In this thesis, we present a novel cache-related worst-case timing analysis approach for a

preemptive multi-tasking uniprocessor real-time system. Specifically, we focus on preemption-

related cache behavior analysis. The worst case timing estimate is tightened significantly

in our approach as compared to prior approaches.

Furthermore, we design a prioritized cache to reduce inter-task cache interference for

high priority tasks. We apply our worst-case timing analysis approach to the prioritized

cache. By using a prioritized cache, cache behavior analysis in a preemptive multi-tasking

system is simplified; thus, the worst-case timing estimation of tasks can be tightened.

In this chapter, we elaborate our motivation, formally state the problem we address and

give a brief introduction to the thesis.

1.1 Motivation

The research presented in this thesis is motivated by the importance of timing analysis for

software tasks in a real-time system. A software task can be a process or a thread. In this

section, we first give an overview of characteristics in a embedded real-time system. Then,

we explain the necessity and difficulty of timing analysis for software tasks in a preemptive

multi-tasking real-time system.

A typical embedded real-time system usually consists of software and hardware. Digital

hardware includes memory, a processor core, reconfigurable logic and custom logic. The

processor provides a facility for executing software. Figure 1 gives a hardware platform ex-

ample for an embedded real-time system. In this example, some digital signal processing

functions such as Fast Fourier Transform (FFT), Moving Picture Experts Group (MPEG)

1



[45] standard video/audio decoding and Inverse Discrete Cosine Transform (IDCT) are im-

plemented with customized hardware. A Digital Signal Processor (DSP) is also provided

for additional digital signal processing ability. Reconfigurable logic can be used to im-

plement other hardware such as Input/Output (I/O) functions. A Direct Memory Access

(DMA) unit is provided for communication between memory and external devices. A pro-

cessor with a Level 1 (L1) cache and a Level 2 (L2) cache is used to run software. Such

a hardware platform can be integrated in a System-on-a-Chip (SoC) or a Printed Circuit

Board (PCB).

CPU L2 Cache
L1

FFT

IDCT

MPEG

Reconfigurable Logic

DSP DMA

Analog Components

Figure 1: A hardware platform in an embedded system

Real-time systems are distinguished from other systems by the fact that typically most

tasks in a real-time system have to meet some timing constraints. In some real-time sys-

tems, missing task deadlines can possibly cause disastrous consequences. Therefore, it is

critical to guarantee that all timing constraints can be satisfied. Some real-time systems

allow deadlines to be missed under some circumstances; however, meeting all deadlines in

a tight schedule can possibly enhance Quality of Service (QoS) and improve utilization of

resources. Performance and correctness of a real-time system rely on timing. This requires

designers to analyze the behavior of tasks and acquire safe upper bounds on task execution

time.

In a real-time system, hardware units such as custom logic and reconfigurable logic as

2



shown in Figure 1 have strict timing properties. Once designed, their behaviors are straight-

forward and predictable. Therefore, to improve real-time behavior, we can implement in

hardware some functions that are traditionally implemented in software. For example, [44]

gives a hardware-software real-time operating system framework in which some Operat-

ing System (OS) functionality such as spin locks [1], memory management [48, 49] and

deadlock detection [24, 25, 50] are implemented in hardware. Some RTOS schedulers in

hardware are presented in [26]. By transitioning OS functionality into hardware, time over-

heads spent on system services such as memory management, lock variables (semaphores)

and deadlock detection can be reduced dramatically. The behavior of these hardware units

has strict timing properties which are critical to real-time design and analysis. Besides

OS components, applications such as MPEG encoding/decoding [62] and wavelet trans-

forms [3] can also be implemented with hardware; indeed, the field of hardware/software

codesign is composed of the general study of tradeoffs between implementing any set of

applications in hardware, software or some judicious mix.

However, hardware is usually difficult to design, debug and upgrade. Also, it is usu-

ally impractical to transition all software to hardware. Thus, a typical real-time system

possesses a processor to run software. The processor provides a very flexible platform for

integrating software with custom hardware. Software is much easier to develop and thus

has a short time-to-market period (as compared to hardware).

Software design is more flexible in terms of design changes and product evolution.

However, as compared to hardware, the execution time of software is much more difficult

to predict, especially when the architecture of the processor used becomes more and more

complicated as a result of introducing out-of-order execution, caching, pipelining and dy-

namic branch prediction techniques. These advanced features initially only existed in high-

end processors, but have been migrating to embedded processors in the past decade or so.

In this thesis, we focus on cache-related timing analysis for a real-time system executing

on a pipelined uniprocessor with an L1 cache.
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Software applications can be accelerated significantly by using caches. Cache use has

become a major factor to bridge the bottleneck between the relatively slow access time to

main memory and the ever increasing clock rate of today’s processors. A cache exploits

temporal and spacial locality in memory access patterns of software applications. Cache

performance is degraded when multiple memory reference streams with different locality

compete for the same cache resource. For instance, when there are multiple tasks in a

system and preemption is allowed, tasks can interfere with each other in the cache. Cache

interference brings uncertainty to memory access time. It is possible to simply assume that

the cache is always empty (i.e., the cache is “cold”) when each task starts to run. With this

assumption, one can obtain an upper bound on memory access time. However, this cold

cache assumption is too pessimistic. A schedule of tasks based on pessimistic estimates

wastes processing resources. Therefore, we aim to analyze cache behavior and estimate

the timing properties of tasks more precisely. The cache-related timing analysis problem

addressed in the thesis is formally stated in the next section.

1.2 Problem Statement

In a typical embedded real-time system, multiple software tasks supported by a Real-Time

Operating System (RTOS) run on a processor. In this thesis, we only consider uniprocessor,

multi-tasking real-time systems. In the rest of this thesis, any “system” uses only a single

processor to execute real-time tasks. Figure 2 shows such a system. In this example, three

tasks, an image processing task, a communication task and a robot behavior control task

are scheduled by an RTOS. Tasks and the RTOS run on a processor. Additional hardware

units are provided for controlling I/O, networking and graphics.

In order to guarantee safety of a real-time system, we need to analyze if a feasible

schedule exists for the real-time system under consideration. A feasible schedule is defined

as below.
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Figure 2: An example of a uniprocessor, multi-tasking real-time system

Definition 1. Feasible Schedule: If a schedule of tasks in a multi-tasking real-time sys-

tem exists such that we can guarantee (prove) that all tasks always complete before their

deadlines (excluding situations of hardware failure, e.g., a transistor malfunction), such a

schedule is a feasible schedule. If a feasible schedule can be found for a real-time system,

such a real-time system is said to be schedulable.
�

Based on the definition of a feasible schedule, we can define schedulability analysis for

a real-time system as below.

Definition 2. Schedulability Analysis: Schedulability analysis is any procedure performed

to analyze if a feasible schedule exists for a particular real-time system under consideration.
�

Schedulability analysis is possible only when the timing properties of tasks are pre-

dictable. In a single task system or a non-preemptive multi-tasking system, we can use the

Worst Case Execution Time (WCET) of tasks to evaluate schedulability. The WCET of a

task is defined as follows.

Definition 3. Worst Case Execution Time (WCET): The WCET is the time taken by a task
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to complete its computations in the worst case. The WCET of task Ti is denoted by Ci.
�

The WCET of a task does not include the time when the task is suspended because of

preemptions or interrupts. Thus, in a preemptive multi-tasking system, only knowing the

WCET of a task is not sufficient because a task can be preempted even before its execution

is completed. Instead, we need to know the Worst Case Response Time (WCRT). We first

define response time as follows.

Definition 4. Response Time: The response time is the time taken by a task from its arrival

to its completion of computations.
�

Based on the definition of response time, we define WCRT in Definition 5.

Definition 5. Worst Case Response Time (WCRT): The WCRT is the response time of a task

in the worst case. The WCRT of task Ti is denoted by Ri.
�

After estimating the WCRT of each task, we can perform schedulability analysis for a

multi-tasking real-time system.

The response time of a task is affected by many factors such as pipelining, caching

and speculative execution. In this thesis, we focus on how the execution time of a task

is affected by caches. We assume a uniprocessor system with an L1 cache. An RTOS

is provided to support multi-tasking. Each task has a unique priority. Preemptions are

allowed. In such a system, a lower priority task can be preempted by higher priority tasks.

During preemptions, cache lines used by a low priority task may be evicted by cache lines

used by higher priority tasks. When a low priority task resumes after being preempted,

it may access cache lines which had been loaded into the cache already but were evicted

during the preemption. Thus, the low priority task has to reload such cache lines. Such

cache reload increases the delay in the response time of the low priority task. We call

this delay Cache-Related Preemption Delay (CRPD). CRPD is defined in Definition 6 and

explained in Example 1.

Definition 6. Cache-Related Preemption Delay (CRPD): CRPD is the delay caused by
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inter-task cache interference during preemptions. CRPD increases the WCRT of the pre-

empted task.
�

T0,1

T1,1

T2,1 T2,1

T1,2

T0,2 T0,3

T1,2

T2,1

T0,1 T0,2 T0,3
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(B). WCRT of T   with considering cache eviction

CRPD

CRPD(T    ,T    )2 0

CRPD(T   ,T   )1 0

R

R

2

2

2

2

(A). WCRT of T   without considering cache eviction

Figure 3: A WCRT example

Example 1: We have three tasks T0, T1 and T2. T0 is an Inverse Discrete Cosine

Transform (IDCT) extracted from an MPEG2 decoder. T0 is invoked every 4.5ms.

T1 is an Adaptive Differential Pulse Code Modulation Decoder (ADPCMD). T2 is an

ADPCM Coder (ADPCMC). ADPCMC and ADPCMD are taken from MediaBench

[23, 39]. ADPCMC has a period of 50ms. ADPCMD has a period of 10ms. Rate

Monotonic Scheduling (RMS) is used for scheduling. T0 has the highest priority

and T2 has the lowest priority. Figure 3 shows this example. In this example,

each task has a fixed period. In Figure 3, Ti � j represents the jth run of Task Ti;

e.g., T1 � 2 represents the second execution of task T1. All three tasks arrive at time

instant 0. However, T2 is not executed until there are no instances of T0 or T1 ready

to run. During the execution of T2, T2 could be preempted by T0 or T1 as shown

in Figure 3. The response time of T2 is the time from 0 to the time when T2 is
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completed. We need to estimate the response time of such a task in the worst

case. If we do not consider inter-task cache evictions, the WCRT of T2 is shown

in Figure 3(A). However, because of inter-task cache evictions, T2 has to reload

some cache lines after preemption which imposes an overhead on the WCRT of

the preempted task. This overhead is CRPD. Figure 3(B) shows the execution

of three tasks when CRPD is considered. CRPD is indicated by black boxes in

Figure 3(B). By comparing the response time of Task T2 in Figure 3(A) with the

response time of Task T2 in Figure 3(B), we find that the WCRT of T2 is increased

in Figure 3(B). Such an increase in WCRT is caused by CRPD. Note that non-zero

CRPD occurs only when some memory blocks evicted from the cache during the

preemption are required again by the preempted task, which does not necessarily

happen for every preemption.
�

As shown in Example 1, CRPD affects task WCRT. In order to include CRPD in WCRT

analysis for a multi-tasking preemptive system running on a single processor, we need to

estimate the number of cache lines that need to be reloaded by the preempted task after

each preemption. The number of cache lines to be reloaded determines the CRPD for each

preemption. Actual CRPD relates to the memory access patterns and the program structures

of both the preempted and preempting task.

In this thesis, we address three problems related to WCRT analysis. First, we aim to

analyze CRPD in a preemptive multi-tasking real-time system because CRPD can poten-

tially increase the WCRT of a task. Ignoring CRPD in WCRT analysis may result in the

inability to acquire a safe design for a real-time system because schedulability of a system

is directly determined by task WCRT.

Second, we want to provide a computationally efficient WCRT analysis approach. As

compared to previous work, our WCRT analysis approach should be either more realistic

due to incorporating CRPD or less complex in computation (or both).
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Third, we want to simplify WCRT analysis in a preemptive multi-tasking real-time sys-

tem by customizing the cache. The CRPD in our customized cache should be significantly

reduced (or even eliminated) as compared to conventional caches. We will adapt our WCRT

analysis approach to a particular customized cache (the “prioritized” cache, invented by the

author of this thesis) in order to formally analyze the behavior of our customized cache in

terms of impact on WCRT.

1.3 Thesis Contributions

This thesis proposes both a new approach to estimate task WCRT in a preemptive multi-

tasking real-time system as well as a novel “prioritized” cache to reduce inter-task cache

interference. Cache-related preemption delay incorporated in our WCRT estimate is tight-

ened by integrating inter- and intra-task cache eviction analysis. We also apply our WCRT

analysis approach to the prioritized cache. The following items are contributions of this

thesis.

Contribution 1: A novel approach is proposed to analyze inter-task cache inter-

ference. We propose a new algorithm based on Cache Index Introduced Partition (CIIP)

to analyze inter-task cache interference. As best we can tell, we are the first to ever define

and use CIIP and the concepts inherent therein. CIIP abstracts the mapping relations be-

tween memory and cache without requiring knowledge of replacement algorithms used in

the cache. By applying this CIIP based algorithm, we can quantitatively analyze inter-task

cache interference.

Contribution 2: Inter-task cache eviction analysis is integrated with intra-task

cache eviction analysis. We integrate our inter-task cache eviction analysis approach with

the intra-task cache eviction analysis approach of Lee et al.[19, 20, 21, 22] in order to

improve the estimate precision. The approach of Lee et al. focuses on analyzing CRPD by

exploiting the program structure of the preempted task. They do not give a formal analysis

for inter-task cache interference analysis, for which we utilize CIIP in our analysis.
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Contribution 3: Path analysis is used to improve cache interference analysis. CRPD

is related to the program structures of both the preempting task and the preempted task.

Inter-task cache interference analysis can be refined by considering the control flow of

tasks. We apply path analysis to the preempting task in order to achieve better performance

of our WCRT estimation algorithm.

Contribution 4: A new WCRT estimate formula is proposed. Based on CRPD anal-

ysis, we propose a new iterative formula to estimate task WCRT. After deriving the WCRT

of each task, we can also analyze the schedulability of the whole system. Our approach

has a polynomial computational complexity, as compared to the exponential computational

complexity of Lee’s approach [19, 20, 21, 22].

Contribution 5: A novel “prioritized cache” design is presented to reduce CRPD.

We design a prioritized cache in which inter-task cache interference is reduced. As a result,

CRPD decreases significantly. We also adapt our WCRT estimate approach to analyze the

behavior of our prioritized cache.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 1 introduces the motivation and briefly states

the problem addressed in the thesis. Chapter 2 defines some terminology used throughout

the thesis. In Chapter 3, we give the background of the research and investigate related

previous work. Chapter 4 is an overview of the approach proposed in this thesis. Chapter 5

illustrates the approach to analyze Cache Related Preemption Delay (CRPD). Intra- and

inter-task cache eviction analysis are discussed. Path analysis techniques used to tighten the

estimate result are also given in Chapter 5. Chapter 6 gives a new WCRT estimate equation

based on CRPD analysis. In addition, in Chapter 6, CRPD, which represents the inter-task

cache interference caused by preemptions, is incorporated in our WCRT estimate approach.

Chapter 7 presents a prioritized cache which can reduce inter-task cache interference by

partitioning caches and assigning cache partitions to tasks exclusively. Chapter 8 explains

10



our experimental setup. Experimental results are given in Chapter 9. The last chapter,

Chapter 10, concludes the thesis.
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CHAPTER II

TERMINOLOGY

For clarity, in this chapter we define some terminology we will use throughout the thesis.

First, we give notation for task periods, priorities and execution time. Then, we intro-

duce a method to represent the program structure of a task. We also explain the mapping

relationship between memory and a set associative L1 cache.

2.1 Task Representation and Properties

In this section, we give notation used to represent tasks and task properties such as periods,

priorities and execution times.

We assume that a multi-tasking real-time system contains n tasks represented with

T0 � T1 ��������� Tn � 1. We focus on a case where a Fixed Priority Scheduling (FPS) algorithm

(e.g., the Rate Monotonic Algorithm (RMA)[28] or statically assigned by designers) is

used in the system. Each task Ti has a fixed and unique priority pi. If pa
� pb, Ta has a

higher priority than Tb. We assume that the tasks are sorted in the descending order of their

priorities so that we have p0
� p1

�
�����

� pn � 1. Tasks are executed periodically. Each task

Ti has a fixed period Pi. Ti arrives at the beginning of its period and must be completed by

the end of its period. The Worst Case Execution Time (WCET) of task Ti is denoted with

Ci. Ci can be estimated with existing analysis tools such as Cinderella [30] or SYMTA [68].

We use SYMTA to derive Ci. We use Ti � j to represent the jth run of Task Ti. The WCET of

a task is the execution time of the task in the worst case, assuming there are no preemptions

or interruptions. In a preemptive multi-tasking system, WCET alone cannot determine

the schedulability (see Definition 1 and Definition 2 in Chapter 1 for what it means to be

“schedulable”) of tasks in the system because of the existence of preemptions. Thus, our
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goal is to provide an approach to estimate the Worst Case Response Time (WCRT), which

is defined as Definition 5 in Chapter 1, for every task in a uniprocessor system. The WCRT

of task Ti is denoted by Ri.

2.2 CPU Utilization

In a real-time system, CPU utilization as defined in Definition 7 (see below) can help

measure how efficiently a processor is being exploited. The CPU utilization of a task can

be estimated by using the task’s WCET.

Definition 7. CPU Utilization: During a certain time period P, if a task occupies the CPU

for a time C in total, the CPU utilization of this task is defined as C
�
P. The total CPU

utilization of a task set is the sum of the CPU utilization of each task in the task set.
�

For a periodic task Ti as described in Section 2.1, the CPU utilization of Ti can be

estimated with Ci
�
Pi, where Ci and Pi are the WCET and the period of task Ti, respectively.

When there are branches in a task, task WCET and WCRT are related to the execution

path. Thus, in order to find the path or paths along which the task has the WCET, we need

to analyze the program structure of the task under consideration. In the next section, we

explain the method used in this thesis to represent the program structure of a task.

2.3 Program Control Flow Graph

In this thesis, we perform path analysis on both the preempted task and the preempting task.

The path analysis is based on a Program Control Flow Graph (PCFG) which we define here

in order to describe the control structure of a program. A PCFG is defined on the basis of

basic blocks. A basic block is defined as below.

Definition 8. Basic Block: A basic block is a sequence of assembly instructions with a

single entry point, single exit point, and no internal branches.
�

Definition 9. Program Control Flow Graph (PCFG): A PCFG is an abstract data structure

to represent control dependency among basic blocks in a procedure or a program. A PCFG

13



is represented with a graph G � � V � E � , where V ��� v1 � v2 � ������� vm � is the set of nodes and

E ��� e1 � e2 � ������� en � is the set of directed edges. Each node in a PCFG is a basic block or

program segment (Definition 10) in the procedure or the program. Each edge ei � � vk � v j �
represents a control dependence between two nodes, vk and v j. A node may have up to two

outgoing edges and any number of incoming edges. If a node has more than one outgoing

edge, there is a branch in this node.
�

As defined above, a node with two outgoing edges contains a branch. Depending on the

branch condition, the program can take different paths after this node. We give an example

below to explain this situation.

Example 2: Let us consider the PCFG shown in Figure 4(A). Each node is a basic

block. Node v2 has two outgoing edges e2 and e3. This means the program has two

possible paths following node v2. The last instruction in v2 is a branch instruction.

According to the branch condition, the program can take either the path with edge

e2 or the path with edge e3.
�

if(avg_type==0){

}
else{

}

for(int j=0;j<10;j++)
sum+=a[j];

sum/=10;

for(int j=0;j<10;j++)
sum+=1/a[j];

sum=10/sum;

e 1

e 2
sum+=a[j];
j++;

e 3e 4

v1

v3

v4

v2

(A)

MFP

SFP

SFP

(B)

j<10

sum/=10;

j=0;

Figure 4: A program segment example

Conventionally, each node vi in a PCFG represents a basic block in a program. Wolf and

Ernst extend the basic block concept to Program Segment (PrS) in [68]. A PrS is defined

as follows.
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Definition 10. Program Segment (PrS): A Program Segment is a sequence of basic blocks

(perhaps non-contiguous) with exactly one entry and one exit.
�

Example 3: Suppose we have a program as shown in Figure 4(A). This program

consists of a few basic blocks. But the program has only one entry and one exit.

Thus, the program in Figure 4(A) is a program segment.
�

A program segment may contain other program segments. In the program segment in

Example 3, each basic block can be viewed as a program segment because a basic block

has only one entry and one exit.

Loops and conditional control structures (e.g., an if-else block) can be contained in

a program segment. According to the number of feasible execution paths in a program

segment, the program segment can be a Single Feasible Path Program Segment (SFP-PrS)

or a Multiple Feasible Path Program Segment (MFP-PrS).

Definition 11. Single Feasible Path Program Segment (SFP-PrS): SFP-PrS is defined as a

program segment with exactly one path[68].
�

If all loops have constant loop bounds and conditions of all control structures are fixed

inside a program segment, there is only one feasible path in a program segment.

Example 4: The program segment in Figure 4(A) contains a loop. The loop bound

is fixed. Thus, this program segment only has one path, which means this program

segment in is an SFP-PrS.
�

Program segments that are not SFP-PrS are MFP-PrS. MFP-PrS is defined as below.

Definition 12. Multiple Feasible Path Program Segment (MFP-PrS): MFP-PrS is defined

as a program segment with more than one feasible path[68].
�

Figure 4(B) gives an example of MFP-PrS.

Example 5: In the program shown in Figure 4(B), both for loops have a fixed num-

ber of iterations. The execution path of the for loops are always the same. There-

fore, each of the for loops is an SFP-PrS. However, the execution path of the overall

control structure in Figure 4(B) depends on the input value of avg type. Thus, the
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control structure is an MFP-PrS.
�

From Example 4, we can see that an SFP-PrS can contain more than one basic block,

but shows the same property as a basic block in term of the number of execution paths.

Program analysis can be simplified by using SFP-PrS instead of basic blocks. MFP-PrS

consists of multiple SFP-PrS instances and thus can be analyzed on the basis of SFP-PrS.

In this thesis, each node in a PCFG corresponds to an SFP-PrS. The SFP-PrS repre-

sented by node v j in the PCFG of task Ti is denoted by SFP PrS
�
Ti � v j � .

2.4 Memory versus Cache

We also need to clarify some definitions regrading caches and memory. A set associative

cache is defined by three parameters: the number of cache sets, the number of cache lines

in each set (i.e., the number of ways) and the number of bytes/words in a cache line [11].

A direct mapped cache can be viewed as a special set associative cache which has only one

way. The sets in a cache are indexed sequentially, starting from 0. All the cache lines in

a cache set have the same index. A cache set with an index of i is represented with cs
�
i � .

Accordingly, a memory address is divided into three parts: the tag, the index and the offset.

We use idx
�
a � to denote the index of a memory address a.

When a task runs, the task needs to access memory locations where the instructions

and data for this task are saved. We assume that there is no dynamic memory allocation

in tasks used in this thesis. All memory addresses accessed by a task are fixed. With

this assumption, we can use simulation techniques as used in SYMTA [68] to derive the

memory footprint of a task. The memory footprint of a task is defined as below.

Definition 13. Memory Footprint: The memory footprint of a task is the set of all mem-

ory blocks that can possibly be accessed by the task; the memory footprint is calculated

considering all possible execution paths of the task.
�

Example 6: Suppose we have a task with a PCFG as shown in Figure 5. Depending
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Figure 5: A memory footprint example

on the branch condition in v1, v2 or v3 may be executed. However, the memory foot-

print of this task covers all the memory blocks that can potentially be accessed by

the task when the task runs along all possible paths. In this example, the memory

footprint of this task is � 0x0010 � 0x0020 � 0x0030 � 0x0040 � 0x0100 � 0x0110 � 0x0120 � 0x0130 � .
�

When a memory address is accessed, it is possible that only one byte or one word at

this address is actually used by the program. However, when the byte/word at this address

is loaded into the cache, the whole memory block that contains the byte/word requested is

loaded into the cache instead of a single byte/word. A memory block has the same size as

a cache line. Example 7 shows the relationship between cache and memory.

Example 7: Suppose we have a 4-way set associative cache with each line in the

cache having 16 bytes. The size of the cache is 1KB. Thus, the maximum index of

the cache is 15. If a memory address has 32 bits, we can derive each part (i.e.,

offset, index and tag) of the address for this cache as shown in Figure 6. When a

memory address, 0x00000011, is accessed and the byte at this address is not in the

cache, the whole memory block that contains the byte at 0x00000011 is loaded. The

size of the memory block is also 16 bytes, starting from the address with an offset

of 0. Because each cache line has 16 bytes, the lowest four bits in the address are
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used for the offset. The index is determined by bit 4 to bit 7 in the address, which

is 1. Thus, this memory is loaded to a cache line in the cache set with an index 1.
�
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Figure 6: Cache vs. Memory

In the rest of this thesis, when we refer to a cache operation such as a cache load or

a cache eviction, we always imply that the operation is performed on a unit of a memory

block by default. We do not distinguish “byte/word at a memory address” and “memory

block” explicitly; in any case occurring in this thesis, they have exactly the same meaning.

When a memory block with an address a is loaded into a set associative cache, it can

only occupy a cache line in the set with an index of idx
�
a � . In this thesis, we assume

that a Least Recently Used (LRU) algorithm is used for cache line replacement. As will

be explained in Section 5.1, our approach can also be applied to caches with any other

replacement algorithm (e.g., a Round-Robin algorithm).

2.5 Cache Partitioning

In this thesis and in prior work, customized cache hardware is typically designed via cache

partitioning. In this section, we define what we mean by cache partitioning.

In a multi-tasking real-time system, cache interference among tasks may degrade cache

performance and complicate timing analysis. Cache partitioning defined as below is a

technique widely used to reduce such cache interference.
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Definition 14. Cache Partitioning: Cache partitioning is a technique in which a cache is

divided into several parts. Each part is called a partition. The size of a cache partition must

be a multiple of the size of a cache line.
�

When a cache is partitioned, a task can be assigned one or more cache partitions ex-

clusively. Different tasks use different cache partitions. By this means, cache interference

among tasks are reduced. However, additional hardware support is needed to implement

cache partitioning. The cache controller has to be customized. Figure 7 gives an example

of a partitioned cache.
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Partition 3

Customized Controller

TAG SF

Figure 7: A cache partitioning example

Example 8: Suppose we have a direct mapped cache with 16 cache lines. Each

cache line has 16 bytes. We also assume a memory address of size 16 bits. As

explained in Section 2.4, we can find that in an address, bit 3 to bit 0 is the offset,

bit 7 to bit 4 is the index and the most significant eight bits constitute the tag. If

the cache is divided into three partitions as shown in Figure 7, additional hardware

overhead is inevitable. For example, Partition 1 in Figure 7 only has one cache line,

which is the only possible location when a memory block is mapped to this partition.

Thus, we do not need an index to find the cache location. In other words, except

for bit 3 to bit 0 which are used for the offset, all the other bits are used as a tag. As

a result, the tag size is 12 bits. In Partition 2 in Figure 7, there are only two cache

lines. Thus, we only need 1 bit in the memory address to distinguish different cache
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lines in this partition. The rest of the bits are used as a tag. Therefore, the tag size

in Partition 2 is 11 bits. In order to accommodate reconfigurability of partitions and

associated sizes, the tag for each cache line must be able to accommodate the

case in which the cache line is alone in a partition. Thus, the tag for each cache

line must have the maximum size, which is 12 bits in this example. In addition to

the customized tag bit length, this partitioned cache needs a customized cache

controller. Most cache partitioning methods allow a portion of cache partitions to

be shared by tasks (as opposed to being exclusive to one particular task only).

Thus, a Sharing Flag (SF) bit for each cache line may be necessary as shown in

Figure 7. Note that some other bits for each line, such as the valid bit and the LRU

bits (if LRU is used for cache replacement), are not shown in this example, but they

may also be necessary in the cache.
�

2.6 CRPD

When a multi-tasking real-time system running with a cache allows preemptions, CRPD

as explained in Section 1.2 is added to the response time of tasks as a result of cache

interference among tasks. We use CRPD
�
Ti � Tj � to represent the CRPD generated by Task

Tj preempting Task Ti, where Tj has a higher priority than Ti. CRPD
�
Ti � Tj � is related to

many factors such as the memory used by task Ti and Tj, cache size, cache management

policy and cache miss penalty.

Example 9: Let us consider the tasks in Example 1. CRPD is represented with black

boxes in Figure 3, repeated here as Figure 8 with extra information added regarding CRPD.

CRPD occurring at time instant t1 is CRPD
�
T2 � T0 � . CRPD occurring at time instant t2 is

CRPD
�
T1 � T0 � . �
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(A). WCRT of T   without considering cache eviction

Figure 8: A CRPD example

2.7 Summary

In this chapter, we introduce some of the key terminology used in the thesis. Tasks and task

properties are represented formally. A representation method based on PCFG is given to

describe task structures. We also explain the mapping relationship between memory and a

cache. Then, we give a notation for CRPD.

In the next chapter, we investigate previous work in cache design and timing analysis.

We also compare our research with previous work.
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CHAPTER III

PREVIOUS WORK

.

Worst case timing estimation is critical in a real-time system. However, use of a cache

necessarily results in uncertainty in memory access time, which in turn complicates timing

analysis. In order to predict the execution time of each software task in a system, three cat-

egories of approaches are widely used. First, one can customize caches, compilers and/or

operating systems to make task behavior more predictable. For example, diverse cache

partitioning schemes are proposed to reduce the unpredictability caused by cache usage.

Second, we can also apply formal analysis approaches to analyze the execution times of

software tasks by considering cache behavior and exploiting program structures of tasks.

Typically, path analysis using Integer Linear Programming and other techniques are per-

formed in order to find the longest path in a task’s assembly code, which helps determine

the worst case execution time of tasks. The third category is monitoring. One can at-

tach some hardware monitoring units to the processor to assist timing analysis in software.

Monitoring is out-of-scope for this thesis. Thus, we only investigate the first two categories

of approaches in this Chapter.

In this chapter, we survey various approaches that help predict the timing properties of

real-time systems. We further compare and contrast prior work with the research approach

and results of this thesis.
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3.1 Customizing Caches, Compilers and/or Operating Sys-
tems

Correctness in real-time computing depends on not only the logical result but also the time

when the computing result is available. The timing behavior of each application has to be

known in advance in order to ensure correct real-time system results. Thus, predictability

in the underlying hardware operation is required. Unfortunately, standard cache manage-

ment policies in embedded processors are designed for excellent average performance but

lack predictability, especially in a multi-tasking environment. The lack of predictability

may lead to an overly pessimistic estimate of the execution time of a task by an order of

magnitude or more [7]. Moreover, in a multi-tasking system, cache performance may be

degraded because of inter-task cache interference. Inter-task cache interference breaks the

locality in memory access patterns of tasks.

Cache interference among tasks in a multi-tasking system can be reduced or even elim-

inated by customizing cache management policies. Cache management customization can

be achieved by partitioning a cache in hardware as introduced in Section 3.1.1 or by soft-

ware approaches as investigated in Section 3.1.2.

3.1.1 Hardware Cache Partitioning

In this section, we introduce various approaches to cache partitioning via hardware cus-

tomization. In hardware cache partitioning approaches, a cache is divided into partitions.

Some cache partitions are assigned to tasks. Some partitions are shared. Except for shared

partitions, tasks use the assigned partitions exclusively. By this means, cache interference

among tasks can be reduced.

Kirk presents Strategic Memory Allocation for Real-Time (SMART) cache design in

[17, 18]. Each task is assigned to a cache partition the size of which is proportional to

the CPU utilization of the task. Some cache partitions are set as shared. Shared cache

location can be used by all tasks. The cache controller has to be customized in a SMART
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cache. In the SMART cache, cache memory is allocated to each task exclusively based on

its CPU utilization. However, only the CPU utilizations of tasks are considered in the cache

allocation algorithms, no matter which scheduling algorithm is actually used by the system

outside of the cache. Especially, priorities of tasks, which may determine the criticality

of tasks in using resources such as processors and caches, are not considered. (Note: a

detailed comparison of the SMART cache with the work presented in thesis is available at

the end of this Section 3.1.1.)

In [36], Maki et al. propose a data-replace-controlled cache, in which users can control

every cache line by setting a cache line in a status of lock or release. Only when a cache

line is in the release status can it be replaced. Cache lines in a data cache can be locked

in order to prevent replacement. As presented in [36], application programmers have to

use additional instructions to specify the data that needs to be locked/released in the cache.

Implementing cache lock/release at the level of each individual data element brings one

major shortcoming. It is not easy to automate cache lock/release by simply modifying the

OS or the compiler because users have to indicate each data to be locked/released in any

case. OS or compilers have no knowledge about what data should be locked/released. As

a matter of fact, as best this author can tell, no one has published any ideas regarding an

automation tool that can help in using the data-replace-controlled cache. This disadvantage

increases the work of software development. In [63], Vera et al. propose a cache locking

approach to assist static timing analysis. Similar to the approach in [36], in the approach

of Vera et al., as presented in [63], each data to be locked has to be known in advance, and

furthermore the approach is only applied to data caches while instruction caches are not

considered.

Cache lock techniques have been widely adopted in commercial processors. For ex-

ample, in the Intel XScale processor, cache lines in the instruction cache can be locked

if needed [12]. Intel provides special instructions to lock/unlock cache lines. Motorola

PowerPC 7400 and Intel 960 also offer similar ability in locking cache lines.

24



Rudolph et al. [5, 13, 52] propose a column cache. In this design, caches are partitioned

at the granularity of “columns.” Here, a cache column is the same as a “way” in a set

associative cache. Columns in a set associative cache can be assigned to a task exclusively

so that the cache lines in these columns are not kicked out. As presented in [5, 13, 52],

proper utilization of a column cache requires users to partition the cache statically. The

Translation Look-aside Buffer (TLB) has to be modified in order to assign memory used

by data in each task to the corresponding columns in the cache. This technique has been

targeted only to data caches. This thesis author is not aware of any published work applying

this column cache approach to instruction caches.

Juan et al. design a “split” cache in [15]. A split cache can be dynamically split into

partitions. Each partition has cache lines of any number that is a power of two. A program

can choose a cache partition into which to save the program’s data. By carefully choosing

the cache partitions, cache misses caused by conflicts can be reduced. Some help from

the compiler is required in this design. This technique partitions the cache at a very fine

granularity (a cache partition can be as small as one cache line). In a partition of small size,

the tag size increases. As explained in Example 8 in Section 2.5, the tag for each cache

line must have the maximum size which can accommodate the case where a cache line is a

partition. Therefore, as compared to a conventional set associative cache of the same size,

a split cache has a larger tag hardware cost because of the increased tag size. A customized

cache controller is also needed.

Comparison with prior work in hardware cache partitioning

In this thesis, we present a prioritized cache by applying cache partitioning techniques.

In our prioritized cache, cache partitions are allocated to tasks based on their priorities. As

compared to previous work, the prioritized cache has the following advantages. First, in our

work, cache partitions are allocated to tasks dynamically. Unlike any known prior work,

in our approach, task priorities are explicitly considered in cache partition allocation. This

strategy conforms to the fact that high priority tasks in a real-time system usually are more
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critical and thus require priority in using resources such as the processor and cache. As a

comparison, SMART cache [17, 18] does not consider task priority in cache partitioning

allocation. A low priority task with a high CPU utilization may consume a large cache

partition, which does not benefit highly time critical tasks that may have relatively short

run times.

Second, we provide WCRT analysis for our prioritized cache, which allows us to use

the prioritized cache in a real-time system safely. This thesis author has been unable to

find any prior published approach to estimate task WCET/WCRT using any customized

caches. Without WCET/WCRT estimation, it is nearly impossible to analyze schedulability

correctly.

Finally, it is easy to use a prioritized cache. We can modify the scheduler in an OS

slightly to support a prioritized cache transparently (see Section 7.2.2). In the case when an

OS cannot be modified by users, we provide APIs to control a prioritized cache directly by

tasks (for details, please see Section 7.2.1). As a comparison, in the cache lock technique of

Maki et al. in [36], special instructions are required to be inserted into a program for every

cache lock operation, which may impose a heavy burden on designers. As a comparison

with a column cache [5, 13, 52], there is no need to customize the TLB in our prioritized

cache (please see associated discussion in Section 7.1.2).

3.1.2 Customizing Cache Management with Software Approaches

Apart from customizing cache hardware, one can also reduce or even avoid inter-task

cache interference by optimizing memory mapping of software. Memory mapping can

be changed by using specific compilers or operating systems.

Wolfe proposes a software-based cache partitioning approach in [73, 74]. The address

space of each task is restricted to a certain portion of locations. These portions are scattered

over the entire address space for the real-time system. As a result, the address space of

each task is mapped to a certain partition of the cache. Cache conflicts among tasks are
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avoided by carefully allocating portions of address space to different tasks. Based on this

approach, Mueller [46] customizes a compiler to support software cache partitioning with

automatic code transformations. After compilation, additional instructions are introduced

to the software tasks in order to scatter data/instructions used by each task in the address

space intentionally. As a result, cache conflicts are reduced when memory blocks used by

each task (including instructions and data) are loaded to the cache. Since memory blocks

used by a task are scattered in the entire address space intentionally, this approach can

potentially cause memory fragmentation.

Wagner [64] designs some memory-to-cache mapping rules in order to avoid cache

conflicts among different data streams. Additional instructions are introduced to help re-

map memory. The compiler is customized to automate memory remapping.

Liedtke et al. propose an application-transparent cache partitioning technique in [33].

Cache partitioning is achieved by using a particular memory mapping strategy which is

supported by the operating system. The resulting cache partitions can be transparently

assigned to tasks for their exclusive use. Löser et al. [35] apply this approach to real-time

network applications and demonstrate a significant reduction of cache miss rate by using

this OS-controlled cache partitioning technique.

Software cache partitioning techniques can be combined with hardware cache parti-

tioning. May et al. give a caching method for multi-tasking processors [37] by combing

a customized cache and a modified compiler[38]. A cache architecture where the cache

can be divided into partitions is proposed. Each task is assigned a set of partitions. Such

a hardware partitioning approach is combined with a software approach by completely au-

tomating partition assignment in the compiler.

Comparison with prior work in software cache usage customization approaches

As compared to software cache usage customization approaches, our prioritized cache

is more friendly for users because no custom compilers are required. We also do not need to
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be explicitly concerned about the mapping from memory to caches; in other words, assign-

ment of and explicit knowledge of memory addresses do not require special control, which

in any case can become quite complicated, e.g., when linking in pre-compiled libraries. As

will explained in Chapter 7, we only need to change the scheduler in the OS slightly to

transparently support a prioritized cache. Another advantage is that the cache behavior is

simplified (and thus easier to analyze) in a prioritized cache, which is favorable for formal

timing analysis.

As stated by Dropso in [8], none of the cache management policies (including cache

management policies for conventional caches and for customized caches) are superior to

any of the others when considering a large variety of general purpose computing scenarios

such as scientific computing and real-time control applications. The effectiveness of each

policy depends on the target applications. Our prioritized cache targets real-time applica-

tions. As shown in our experiments in Chapter 9 in which a robot application and a DSP

application are used, our prioritized cache outperforms a conventional set associative cache

in terms of WCRT estimate. Chapter 9 shows a reduction of up to 26% in WCRT estimate

can be achieved by using a prioritized cache versus using a conventional set-associative

cache.

3.1.3 Summary

In this section, Section 3.1, we introduced various approaches to reducing cache interfer-

ence in a multi-tasking system by customizing cache usage via software (Section 3.1.2)

or hardware (Section 3.1.1) methods. Cache interference can be reduced by partitioning

caches in hardware or customizing the OS or the compiler to change to a more favorable

memory-to-cache mapping.

As compared to prior work, our prioritized cache has the following advantages. First,

task priorities are considered in cache allocation, which no prior work of which we are

aware does. Second, a prioritized cache only needs minor OS modifications. Third, a
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formal timing analysis approach can be easily adapted for our prioritized cache. As a

comparison, this author has been unable to find WCET or WCRT analysis approaches for

any of the prior customized cache hardware approaches described in Section 3.1.1.

In the next two sections, we investigate previous work in static timing analysis.

3.2 WCET Static Analysis Approaches

Cache behavior can be simplified by customizing cache management polices. However,

in order to provide a safe design for a real-time system, we have to know the worst case

timing properties of tasks. We can use static timing analysis methods to predict program

execution time on a specific processor with a cache. Such methods analyze cache behavior

and make restrictive assumptions in order to predict Worst Case Execution Time (WCET)

or Worst Case Response Time (WCRT) of tasks in a real-time system. Usually WCET is

used for a single task or tasks in a non-preemptive multi-tasking system. In a preemptive

multi-tasking system, we have to estimate WCRT for all tasks.

Our research focuses on WCRT analysis. However, we need to estimate the WCET

of each task first. Some techniques used in WCET analysis are applied in WCRT analy-

sis as well. For example, cache behavior analysis and Integer Linear Programming (ILP)

techniques are important in both WCET [30, 31, 32] and WCRT [19, 20, 21, 22] anal-

ysis. In our research, we choose SYMTA [68] to estimate WCET. But as explained in

Section 6.2.3, we can use other WCET analysis approaches by simply replacing the WCET

estimate derived with SYMTA with the WCET estimate derived with other WCET analysis

approaches in our WCRT estimate formula. Various WCET analysis approaches can be

found in [2, 9, 10, 30, 31, 32, 58, 65, 67].

Since we choose to build upon SYMTA, we here give an overview of SYMTA. Wolf

and Ernst extend the concept of basic blocks to program segments and developed a frame-

work for timing analysis, SYMTA [68, 70, 71, 72]. SYMTA performs WCET analysis by

following the steps below.
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Step 1. The source code of a task is analyzed to identify SFP-PrS and obtain the PCFG.

Each node in the PCFG is an SFP-PrS.

Step 2. Every SFP-PrS is simulated individually by carefully setting the conditions for

control structures in a task. The WCET of each SFP-PrS is derived based on the simulation

results.

Step 3. ILP equations and an objective function are built by using the PCFG and the WCET

of each SFP-PrS.

Step 4. ILP equations are solved to find the maximum value for the objective function. The

maximum value of the objective function is the WCET of the task.

We give an example below to explain how to use SYMTA to derive the WCET of a

task.

X   <=103
X   +3 X   =4 X 2

X   =1

X 0

X   =1 X 0

Subject to:
      =1;

X 1 X 2 X 3

V0

V3

V4

V2

V1

START

s=0;
i=0;

s=s+a[i];

END

(A)

(B)

X 2X   +3

MAX: C=10     +5     +10   

i<N?

Figure 9: An example of SYMTA flow

Example 10: Figure 9(A) shows a PCFG of a program. Each node, which is rep-

resented with Vi, in this PCFG, is an SFP-PrS. The overall program is an MFP-PrS

because the loop bound in the program is determined by an input parameter N.
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In order to estimate the WCET of this program, we first simulate each node in the

PCFG to obtain the WCET of each node. For simplicity, we assume the WCETs

of V0 and V4 are zero (there may be cost in starting and ending a program in prac-

tice, so this assumption may not always be valid). We also assume the WCETs

of V1, V2 and V3 are 10, 5 and 10 clock cycles respectively. Notice that we need

to obtain an upper bound for each loop in the program; otherwise, it is impossible

to estimate the WCET. Here we assume that N is always less than or equal to 10.

Based on the PCFG and the WCET of each SFP-PrS derived with simulation as

stated in Step 2 above, we can build ILP equations as shown in Figure 9(B), where

Xi represents how many times Vi is executed. The objective is to find the maximum

value of function C � 10X1 � 5X2 � 10X3, which is the WCET of this program, while

Xi �
�
i � 0 � 1 � 2 � 3 � 4 � subject to the constraints listed in Figure 9(B). These constraints

are defined by the PCFG. For example, X3 � X4 � X2 means the number of times

that V2 is executed is equal to the number of times that V3 is executed plus the

number of times that V4 is executed. By solving this ILP equation, we can find that

in the worst case, V1, V2 and V3 are executed once, eleven times and ten times

respectively (i.e., X1 � 1, X2 � 11 and X3 � 10), which results in a WCET of 165

clock cycles.
�

In this thesis, we always apply SYMTA to derive WCET for each task. WCET is then

used in our WCRT analysis approach. Since in this thesis we make no contributions to

WCET analysis per se, we do not review the multitude of prior work in WCET analysis.

Instead, in the next section, we survey previous work in WCRT analysis and compare with

our work in WCRT analysis.

3.3 WCRT Analysis

In this section, we introduce key prior state-of-the-art in WCRT analysis. WCRT analysis

is useful in preemptive multi-tasking real-time systems. By using WCRT, we can verify the
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schedulability of a system. In Section 3.3.1, we first introduce some basic WCRT analysis

approaches in which cache influence is not considered. Then, we survey the prior work of

cache related WCRT analysis in Section 3.3.2. In Section 3.3.3, we point out the necessity

of performing formal timing analysis for customized caches.

3.3.1 Basic WCRT Analysis

In this section, we introduce important prior research in WCRT analysis. In the works

presented in this section, Section 3.3.1, cache influence and context switch cost are not

considered. Although these assumptions are not practical, the WCRT analysis approaches

listed in this section provide a base for later research presented in this thesis.

Joseph and Pandya [14] give an iterative approach to estimate WCRT for tasks in pre-

emptive multi-tasking systems. The iterative calculation procedure starts with an initial

value of WCRT of each task which is set as its WCET. If the iteration converges, the

WCRT estimate is derived. If the WCRT estimate of at least one task is greater the dead-

line or the iteration diverges, a feasible schedule of tasks cannot be found with this method.

This approach provides a generic framework for WCRT estimation. In this work, tasks

are assumed to have static priorities. Deadlines of tasks cannot be later than their periods.

However, some real-time systems are not so stringent and can accept task deadlines greater

than task periods. Lehoczky [29] gives an approach to analyze WCRT of tasks in a real-time

systems where a given task can have arbitrary deadlines. Tindell et al. [60] extend WCRT

analysis by relaxing constraints on deadlines, arrival and release time of tasks. A real-time

system with jitters is considered in Tindell’s approach. Approaches in [14, 29, 60] simply

assume that the WCET of each task is already known and fixed. The impact of cache on

WCET/WCRT is not considered in any of the work cited in this section.

Comparison with basic WCRT analysis approaches

All WCRT analysis approaches introduced in this section do not consider the influence

of underlying hardware architectures such as pipelining, speculative execution, memory
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hierarchy and context switch cost. A feasible schedule based on these WCRT analysis

approaches may fail in reality. In our WCRT analysis presented in this thesis, we focus on

analyzing the impact of cache interference on WCRT of tasks. Our WCRT analysis gives a

more realistic and safe WCRT estimate. In the next section, we introduce key prior WCRT

analysis approaches that also consider cache behavior.

3.3.2 Cache Related WCRT Analysis

WCRT analysis approaches in Section 3.3.1 can be extended by considering cache behav-

ior. In this section, we introduce some cache-related WCRT analysis approaches.

Busquests-Mataix et al. propose an approach to estimate WCRT by considering cache

behavior in a uniprocessor multi-tasking system [4]. The iterative equation of Tindell et al.

in [60] is modified to include Cache-Related Preemption Delay (CRPD) in the approach of

Busquests-Mataix et al. [4]. They conservatively assume that all the cache lines used by

the preempting task need to be reloaded by the preempted task when the preempted task is

resumed. Obviously, this assumption is very pessimistic.

Tomiyama et al. give an approach to calculate CRPD by using ILP [61]. However, they

only consider a direct mapped instruction cache and do not address data caches at all.

Lee et al. also give an approach for cache analysis in preemptions [19, 20]; their ap-

proach counts the number of “useful” memory blocks by performing path analysis on the

preempted task. However, they assume that all “useful” memory blocks of the preempted

task are evicted from the cache by the preempting task, which might not be true. For ex-

ample, if there is no dynamic data allocation in any task and the cache lines used by the

preempted task are disjoint with the cache lines used by the preempting task, the cache

reload cost induced by preemption will be zero. In the approach of Lee et al., the cache

reload cost is still the same as the cost to reload all “useful” memory blocks in the pre-

empted task. Lee et al. enhance their approach in [21, 22]. In [21, 22], all preemption

scenarios are explored to find the cache reload cost. The number of preemption scenarios
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increases exponentially with the number of tasks. Thus, calculating the cache reload cost

for each preemption scenario separately is not efficient to compute. Moreover, although

Lee et al. mention that the cache reload cost is calculated based on the intersection of cache

lines used by the preempting task and the preempted task, no method is given to show how

the intersection is calculated. In the approach of Lee et al. , for each preemption, the pro-

gram structure of the preempted task is used to calculate useful memory blocks. However,

the program structure of the preempting task is not considered at all. As shown in Chap-

ter 5 in this thesis, overestimation may occur if we do not analyze execution paths in the

preempting task.

Negi et al. [47] refine the CRPD estimate method used by Lee et al. in [21, 22]. Negi

et al. apply path analysis to tighten the CRPD estimate. However, inter-task cache eviction

is not considered in their CRPD analysis. Also, WCRT analysis is not mentioned in [47].

This CRPD analysis approach can be applied in a cache related WCRT analysis approach

(e.g., the approach of Lee et al. [19, 20, 21]) for a direct mapped cache because the CRPD

analysis approach presented in [47] targets direct mapped caches. This CRPD analysis

approach may be difficult to use for a set associative cache because cache lines that are

deemed conflicting in a direct mapped cache in the approach of Negi et al. may in fact not

conflict in a set associative cache. In short, no method for analyzing cache conflicts in a set

associative cache is given in their approach, and there seem to be difficulties in modifying

their approach to handle caches which are not direct mapped.

Comparison with prior work in cache-related WCRT analysis

In this thesis, we propose an approach for inter-task cache eviction analysis in Sec-

tion 5.1. A Cache Index Induced Partition (CIIP) estimates the number of cache lines

evicted during a preemption (see Section 5.1.1 for details). By using CIIP, we provide a

formal method to calculate the intersection of cache lines used by two tasks. This method

can be uniformly applied to direct mapped caches and set associative caches. Also, path
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analysis is applied to the preempted task in order to tighten the estimate. We furtherer en-

hance our approach by incorporating “useful” memory block analysis of Lee et al. [19, 20]

(see Section 6.2 for details of how we enhance our approach). We integrate inter- and intra-

task cache eviction analysis in order to tighten the WCRT estimate. A new WCRT analysis

formula is proposed based on cache behavior analysis.

As compared with previous work, our WCRT analysis approach presented in this thesis

has the following merits. First, a novel approach using CIIP is proposed to analyze inter-

task cache evictions. Inter-task cache eviction analysis is not addressed in the work of

Lee et al. nor in any other publication of which we are aware. Second, we propose a new

WCRT estimation formula which has a polynomial computational complexity in term of

the number of tasks (proved in Section 6.3.2). As a comparison, the approach of Lee et al.

has an exponential computational complexity.

All cache related WCRT analysis approaches introduced in this section only consider

conventional set associative caches or conventional direct mapped cache; as best we are

aware, no extensions of WCRT analysis to customized caches have been published by

the authors covered in this section, Section 3.3.2. In the next section, we investigate the

problem of WCRT analysis for customized caches.

3.3.3 WCRT Analysis for Customized Caches

Customized caches show benefits in accelerating executions of applications in multi-tasking

environments. However, a connection between customized caches and formal WCET/WCRT

analysis is still missing. We find no prior WCET/ WCRT analysis approaches for cus-

tomized caches published. Instead, usually, the effectiveness of cache partitioning methods

as mentioned above in Section 3.1.1 are evaluated with experiments. Some typical bench-

mark applications are executed with cache partitioning approaches. The average execution

time or the cache miss rate is used to measure the performance. In [51], Suh et al. give an

analytical cache model to analyze the cache miss rate of a partitioned cache. This model
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predicts the overall cache miss rate of general applications. The worst case is not consid-

ered. Dropso [8] compares some existing customized caches by using an analytical cache

model. Again, the analysis targets the average performance of general applications.

Comparison with prior work

We appear to be the first to publish WCRT analysis for a customized cache. As com-

pared to using benchmarks to evaluate the average performance of customized caches, a

formal WCRT analysis provides a safe base for applying customized caches in real-time

systems. On the contrary, benchmarking cannot guarantee deriving the worst timing prop-

erties of a real-time system with a customized cache. Without a knowledge of the worst

case timing properties, a system may fail in practice because of violating timing constraints.

3.3.4 Summary of Prior WCRT Analysis Approaches

WCRT analysis provides a safe base for designing preemptive multi-tasking real-time sys-

tems. When the underlying hardware architecture is simple (e.g., no cache(s) and no

pipelining), estimating WCRT without considering hardware features [14, 29, 60] is ac-

ceptable. However, as illustrated in [19, 20, 21, 22, 47, 61], cache effects cannot be ignored

in WCRT analysis in modern processors.

As compared to previous work in cache related WCRT analysis, our approach have

the following advantages. First, our approach gives a formal method to analyze inter-task

cache eviction behavior. Second, we integrate inter- and intra-task cache eviction analysis

to tighten the WCRT estimate. Third, a novel WCRT estimate formula is proposed. As

compared to WCRT analysis of Lee et al. [19, 20, 21, 22] (the best known approach in

prior work), our approach can tighten the WCRT estimate by 32%. The complexity of our

approach is O
�
n2 � where n is the number of tasks, while the approach of Lee et al. has an

exponential complexity in terms of the number of tasks.
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3.4 Schedulability Analysis

Timing analysis in a multi-tasking system is tightly related to scheduling. By using WCRT

estimates, one can analyze schedulability of tasks in a real-time system. In this section,

we give references to some previous work in schedulability analysis and then place our

approach in context.

Some theoretical work have been presented in schedulability analysis for real-time sys-

tems [27, 28, 34]. In this thesis, however, we do not make any new contribution in schedu-

lability analysis. Instead, we simply use Worst Case Response Time (WCRT) to analyze

schedulability. We assume that a Fixed Priority Scheduling (FPS) algorithm is used in the

system. Each task has a unique priority. Task priorities can be derived by using an ex-

isting algorithm such as the Rate Monotonic Algorithm (RMA)[28] or can be assigned by

designers directly. We further assume a single processor with a set associative L1 cache

and secondary memory (the secondary memory can be either on- or off-chip). We do not

consider the problem of handling the problem of missing deadlines. If the WCRT of a task

is greater that its deadline, we simply deem that a feasible schedule is not found.

The schedulability analysis in this thesis results from the WCRT estimate derived with

our WCRT analysis approach. Because cache influence is considered in our WCRT esti-

mate, the conclusion of schedulability derived with our approach is more realistic and safer

as compared to known prior approaches in [28, 34, 47, 60, 61] all of which ignore possi-

ble cache effects. As compared with the approach of Lee et al. [19, 20, 21, 22], a better

schedule can be derived with our approach because we have a tighter WCRT estimate for

each task. A tighter schedule allows utilizing computing resources more efficiently. Fur-

thermore, we may derive a feasible schedule for a system which is deemed not schedulable

by the approach of Lee et al.
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3.5 Summary of Previous Work

In this chapter, we introduce previous work in WCET/WCRT analysis and customized

cache usage design. Cache usage can be customized by partitioning a cache in hardware

or manipulating memory-to-cache mapping in software (e.g., via compiler and/or OS mod-

ifications). By customizing caches, compilers or OS, inter-task cache interference can be

reduced in a multi-tasking system. Thus, the cache behavior becomes more predictable.

Cache behavior can also be predicted by using formal timing analysis approaches. By con-

sidering cache effects in WCET/WCRT analysis, one can predict timing properties of tasks

more precisely. Both of these methods can help design a safe real-time system.

As compared to previous WCRT analysis approaches, our WCRT analysis method pre-

sented in this thesis gives a tighter WCRT estimate because both inter- and intra-task cache

eviction are included in cache behavior analysis in our approach. Furthermore, our WCRT

analysis has a polynomial computational complexity, which is an advantage over the expo-

nential computational complexity in what is, in our opinion, the best prior work in WCRT

analysis, the approach of Lee et al. [19, 20, 21, 22].

As compared to previous work in reducing cache interference by customizing caches,

compilers and operating systems, our customized cache has the following two advantages.

First, a prioritized cache allocates cache partitions according to task priority, which is not

considered in previous customized cache methods. Second, a prioritized cache only needs

slight modifications in the OS to transparently support a prioritized cache (i.e., without

requiring the writing of special user-level code or significant efforts to modify a compiler

and/or OS).

As best we can tell, we are also the first to apply a WCRT analysis approach to formally

analyze the performance of a customized cache. By formally analyzing the behavior of

our prioritized cache, we demonstrate that a tighter WCRT can be achieved by using the

prioritized cache as result of reducing cache interference among tasks.

In the next chapter, Chapter 4, we give a big picture of the research presented in this
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paper. The main idea behind a prioritized cache and the major steps in our WCRT analysis

approach are briefly introduced.
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CHAPTER IV

OVERALL APPROACH

In this chapter, we give an overview of the research presented in this thesis. We address

two problems related to timing analysis for preemptive multi-tasking real-time systems.

First, we propose a novel cache-related WCRT analysis approach for preemptive multi-

tasking systems. Our WCRT analysis approach is an extension of the basic WCRT analysis

approach introduced in Section 3.3.1. Especially, we focus on incorporating CRPD into

WCRT of tasks. Second, the CRPD is caused by inter-task cache interference in essence.

We can customize the cache management policy to reduce or eliminate inter-task cache

interference. A prioritized cache is proposed for this purpose.

We first give the steps in our WCRT approach in Section 4.1. The main idea underlying

our proposed prioritized cache is explained in Section 4.2. Section 4.3 explains the rela-

tionship among main chapters in the thesis. Finally, Section 4.4 summarizes this chapter.

4.1 WCRT Analysis

In this section, we give a big picture of the WCRT analysis approach presented in this thesis.

Our research focuses on the impact of cache behavior on WCRT estimation. Inter-task

cache interference causes CRPD in preemptive multi-tasking systems. CRPD is determined

by the number of cache lines to be reloaded after preemptions. Intuitively, we know that

the cache lines causing reload overhead after preemption(s) need to satisfy two conditions.

Condition 1. These cache lines are used by both the preempted and the preempting task.

Condition 2. The memory blocks mapped to these cache lines are accessed by the

preempted task before the preemption and are also required by the preempted task after the

preemption (i.e., when the preempted task is resumed).
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Condition 1 implies that memory blocks accessed by the preempting task conflict in

the cache with memory blocks accessed by the preempted task. Thus, some of the memory

blocks loaded to the cache by the preempted task before the preemption are evicted from the

cache by the preempting task during the preemption. This cache eviction involves memory

access patterns of both the preempted task and the preempting task. Thus, we call this type

of cache eviction an inter-task cache eviction. We use Example 11 to explain Condition 1.

Example 11: Suppose we have a direct mapped cache with 16 cache lines. Each

cache line has 16 bytes. As explained in Section 2.4, we use cs
�
i � to represent a

cache set of index i. In a direct mapped cache, there is only one cache line in a

cache set. Thus, we use cs
�
i � here to indicate the cache line with an index of i.

We assume that a memory address has 16 bits. Now, we have two tasks, T1 and

T2. T1 has a lower priority than T2 and thus can be preempted by T2. Figure 10(A)

shows a few memory blocks that are accessed by T1 and T2. T1 uses memory

blocks at 0x0010 and 0x0020 which are mapped to cs
�
1 � and cs

�
2 � respectively. T2

uses memory blocks at 0x0120 and 0x0110 which are mapped to cs
�
2 � and cs

�
1 �

respectively. If T1 is preempted by T2 after 0x0020 is accessed (where the arrow S

points as shown in Figure 10), cs
�
1 � and cs

�
2 � may be reloaded when T1 is resumed

because cs
�
1 � and cs

�
2 � satisfy Condition 1. Such as a cache reload extends the
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Figure 10: An example of Condition 1
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response time of the preempting task, T1, as shown in Figure 10(B).
�

Note that Condition 1 is only a necessary condition for cache eviction. If cache lines

evicted by the preempting task during the preemption are not requested by the preempted

task after the preemption, these cache lines do not cause cache reload cost. In other words,

all cache lines to be reloaded have to satisfy Condition 1, but not all cache lines that satisfy

Condition 1 need to be reloaded in reality. If we only apply Condition 1 to look for cache

lines that can be possibly reloaded, we can obtain a safe upper bound on cache reload cost.

However, this cache reload cost may be overestimated.

Condition 2 reveals that memory blocks causing cache reload cost must have been

present in the cache prior to the preemption. Furthermore, these memory blocks must

be accessed again by the preempted task after the preemption, thus requiring reload to

the cache. These memory blocks are called “useful memory blocks” in the work of Lee

et al.[19, 20]. Only cache lines mapped from useful memory blocks potentially need to be

reloaded. We can use the algorithm of Lee et al. to find useful memory blocks. Example 12

shows a case in which we can use both Condition 1 and Condition 2 to analyze cache

interference between two tasks.

Example 12: Suppose we have two tasks, T1 and T2, the memory footprints of which

are shown in the context of associated PCFGs as shown in Figure 11. T2 has a

higher priority than T1. We have a direct mapped cache which has 16 lines with

each line of size 16 bytes. As explained in Section 2.4, we use cs
�
i � to represent

a cache set of index i. In a direct mapped cache, there is only one cache line in

each cache set. Thus, we use cs
�
i � here to indicate the cache line with an index

of i. T1 can possibly access memory blocks 0x0110, 0x0120 and 0x00F8, which are

mapped to cs
�
0x1 � , cs

�
0x2 � and cs

�
0xF � respectively. T2 accesses memory blocks

0x10F0, 0x1110 and 0x1120, which are also mapped to cs
�
0x1 � , cs

�
0x2 � and cs

�
0xF � ,

respectively. By using Condition 1 only, we can conclude that cs
�
0x1 � , cs

�
0x2 � and

cs
�
0xF � can possibly cause cache reload cost. Now, let us assume T1 is preempted
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Figure 11: An example of cache interference analysis

by T2 at the execution point s as shown in Figure 11. By analyzing the memory

footprint of T1, we can find that only memory blocks 0x0110 and 0x0120 are loaded

to the cache before the preemption and requested by T1 after the preemption. In

other words, only cs
�
0x1 � and cs

�
0x2 � mapped from memory blocks 0x0110 and

0x0120 satisfy Condition 2. By combining Condition 1 and Condition 2, we can

conclude that only cs
�
0x01 � and cs

�
0x02 � may possibly need to be reloaded in this

example.
�

Based on the two facts explained, Condition 1 and Condition 2, we can give an overview

of our approach presented in this thesis. Our approach has five steps which are shown in

Figure 12.

Step 1. In the first step, we derive the memory footprint of each task with the simulation

method as used in SYMTA[68]. Here, we assume that there is no dynamic data allocation

in any task and that addresses of all data structures are fixed [68]. We also assume a two

level memory hierarchy which consists of an L1 cache and a single main memory.

Step 2. In the second step, we perform intra-task cache access analysis (due to Condition 2)

on the preempted task to find useful memory blocks accessed by the preempted task. Only
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useful memory blocks can possibly cause cache reload delay. Useful memory blocks are

calculated on the basis of path analysis for the preempted task.

Step 3. In the third step, we analyze inter-task cache conflicts (due to Condition 1) between

the preempted task and the preempting tasks (i.e., all the tasks that have higher priorities

than the preempted task). A low priority task might be preempted more than once by a

higher priority task, depending on the period of the low priority task as compared to the

period of the high priority task. By integrating intra- and inter-task cache eviction analysis,

we can estimate CRPD.

Step 4. In the fourth step, in order to tighten the estimate of the number of cache lines to

be reloaded, we apply path analysis to the preempting task using its PCFG. By using path

analysis, we can refine the CRPD estimate derived in Step 3.

Step 5. In the last step, we preform WCRT analysis for all tasks based on the results from

the fourth step. An iterative WCRT estimation formula is proposed. If the WCRT of a

task converges to a value less than the deadline of this task, the task can meet its deadline.

Otherwise, we are not able to schedule this task successfully via utilization of the proposed

task priorities and WCRT estimation formula.

Example 13: Let us consider the case in Example 12. In order to estimate the WCRT

of tasks T1 and T2, we use SYMTA to obtain the program structure, the WCET and the

memory footprint (as defined in Definition 13) of each task. Next, we apply Condition 2 to

find the useful memory blocks in the preempted task. In this example, T1 is preempted and
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the useful memory blocks are 0x0110 and 0x0120. Then, we use Condition 2 to perform

inter-task cache eviction analysis. As shown in Example 12, we find that that cs
�
1 � and

cs
�
2 � can possibly cause CRPD. Based on this result, we can estimate CRPD caused by T2

preempting T1. CRPD can be further tightened by applying path analysis techniques on the

preempting task. In this example, path analysis is not necessary because the preempting

task T2 only has one path. Section 5.5 will explain the steps of CRPD estimation in detail.

After deriving a CRPD estimate, we incorporate CRPD into WCRT analysis and use our

WCRT estimate for each task to analyze the schedulability of such a system. Section 6.2

will explain how these WCRT estimates were derived.
�

In our WCRT analysis, cache interference among tasks adds CRPD to the response

time of the preempted task. On one hand, CRPD increases the complexity of timing anal-

ysis because of increased unpredictability in cache access patterns. On the other hand,

CRPD extends the response time of a task, which can possibly result in a task missing its

deadline. By manipulating cache replacement policy, cache interference can be reduced

or eliminated. In the next section, we introduce a customized cache that can help reduce

cache interference.

4.2 Customized Cache Design

In this section, we briefly explain the rationale behind our “prioritized” cache and introduce

a prototype of the proposed prioritized cache.

In real-time systems, high priority tasks are usually more critical and thus should be

granted priority in using processor, memory, cache and other resources. Based on this intu-

ition, we propose a prioritized cache. The prioritized cache is evolved from a conventional

set associative cache. We also borrow the notation of “column” from the column cache

[13, 52]. A “way” in a set associative cache is viewed as a column in a prioritized cache.

Our prioritized cache is partitioned at the granularity of columns. Some cache partitions

are then allocated to tasks according to task priorities. Cache partitions used by low priority
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tasks can be used by high priority tasks. Cache partitions used by high priority tasks cannot

be used by low priority tasks. In this way, high priority tasks are granted higher priority in

using cache resources. In order to prevent the situation where some tasks do not have cache

partitions to use, some partitions can be set to be “shared.” Shared cache columns can be

accessed by any task.

Data Bus

Address Bus

To Processor

Col. 0 Col. 1 Col. L−1

Address Bus

Data Bus

To Memory

...

Set 0

Set 1

. . .

Set N−1

Control Logic

State Registers

Figure 13: A prototype of a prioritized cache

Figure 13 shows a prototype of a prioritized cache. As compared to a conventional set

associative cache, some state registers are added and minor changes are needed in the cache

replacement control logic of a prioritized cache. Software support for a prioritized cache

can be provided in two ways. First, APIs for accessing the registers in a prioritized cache

are provided. By setting values in these registers, users can manipulate a prioritized cache

directly. On the other hand, we can modify the scheduler in an operating system slightly in

order to support a prioritized cache. With the modified scheduler in an operating system,

application developers do not need any APIs explicitly. Instead, they can use a prioritized

cache transparently.

We extend our WCRT approach to analyze the behavior of a prioritized cache. WCRT

estimation derived from a formal analysis provides a solid base for safely applying a pri-

oritized cache to a real-time system. Example 14 shows the main idea of applying WCRT

analysis to a prioritized cache.
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Figure 14: An example of using the prioritized cache

Example 14: Suppose we have three tasks, T1, T2 and T3. T1 is a Mobile Robot

control application (MR). T2 is an Edge Detection (ED) application. T3 is an OFDM

transmitter application. MR updates the behavior of a robot periodically. ED pro-

cesses images detected by the robot and OFDM is used to communicate among

robots. MR has the highest priority and OFDM has the lowest priority. Also, we

assume that a 4-way prioritized cache is used in the system, and one column of

the cache is set as shared.

Consider the scenario in Figure 14(A). OFDM runs first. Then, ED arrives and pre-

empts OFDM. ED is then itself preempted by MR.

When OFDM runs, it uses all columns. Column 0, Column 1 and Column 2 are

owned by OFDM as shown in Figure 14(B). Column 3 is shared and cannot be

owned by any task. After OFDM is preempted by ED, ED uses Column 0 and

Column 1 because ED has a higher priority than OFDM. Now, Column 0 and Col-

umn 1 are owned by ED as shown in Figure 14(C). OFDM cannot load memory
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blocks to cache lines in Column 0 and Column 1. However, OFDM can still read

cache lines in Column 0 and Column 1 in the case of cache hit. Similarly, after ED

is preempted by MR, MR owns Column 0 as shown in Figure 14(D). It turns out

that all cache lines required by MR fit into Column 0.
�

In this section, we have given a brief overview of the design ideas underlying our pri-

oritized cache. In the next section, we explain the flow of the main chapters in the thesis.

4.3 Research Overview of Chapter Flow

Let us give an overview of how the main chapters in this thesis present the research accom-

plished. Figure 15 shows the main steps in our approach and the relationship among the

central chapters in this thesis. SYMTA is used for WCET estimation in our approach as

explained briefly in Chapter 3. By using SYMTA, we can derive the WCET estimate, mem-

ory footprint and program structure for each task. Important cache parameters are specified

such as associativity and size. The cache could be a customized cache such as a prioritized

cache presented in Chapter 7. Based on the memory footprint, the cache specification and

the program structure of each task, we perform CRPD analysis as explained in Chapter 5 in
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detail. We then incorporate CRPD into WCRT analysis which is elaborated in Chapter 6.

By using the WCRT analysis approach presented in Chapter 6, we can estimate the WCRT

for each task and evaluate the schedulability for the system.

4.4 Summary

In this chapter, we give an overview of the research presented in this thesis. First, we

explain the flow of our WCRT analysis approach in Section 4.1. Then, we introduce the

main design ideas behind the prioritized cache in Section 4.2. We also use a graph as shown

in Figure 15 to show in Section 4.3 the relationship among main chapters in this thesis.

In the next chapter, we elaborate the CRPD analysis approach used in this thesis.
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CHAPTER V

CACHE RELATED PREEMPTION DELAY ANALYSIS

In this chapter, we present a new approach to analyze the CRPD caused by cache interfer-

ence among tasks. We first give a method to formally analyze inter-task cache interference

by using the concept of a Cache Index Induced Partition (CIIP). Then, we combine the

intra-task cache eviction analysis approach of Lee et al. [19, 20] with our inter-task cache

interference analysis. Next, we use path analysis to refine the cache interference analysis.

Finally, we illustrate our method of CRPD estimation based on cache interference analysis.

5.1 Inter-task Cache Eviction Analysis

In this section, we explain our inter-task cache eviction analysis approach in detail. We

first propose a technique, CIIP, which abstracts memory-to-cache mapping regardless of

the replacement policy used in the cache. Then, based on this technique, we estimate the

number of cache lines that cause conflicts between two tasks.

5.1.1 Cache Index Induced Partition

In this section, we elaborate the concept of CIIP and a way of deriving the CIIP based on a

memory footprint.

When a task first accesses instructions or data, those instructions and data are loaded

to the cache from the memory. In a direct mapped cache, the cache location to which a

memory block is loaded is determined uniquely by the index of the memory address. In

a set associative cache, the index of a memory address determines the cache set in which

the memory block is located. Then, a cache line in that set is selected by a particular cache

replacement algorithm such as the Least Recently Used (LRU) algorithm. In any case,
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the index of a memory address plays an important role in selecting a cache line for the

corresponding memory block.

An obvious observation about caches is that memory blocks mapped to different cache

sets will never conflict in the cache. In other words, only memory blocks that have the

same index can possibly evict each other because these memory blocks are loaded to the

same cache set. Intuitively, we can divide memory blocks into different subsets according

to their index.

Suppose we have a set of q memory block addresses, M ��� m0 � m1 ��������� mq � 1 � , and an

L-way set associative cache. The index of the cache ranges from 0 to N � 1. We can derive

N subsets of M as follows.

�
mi � � mk

� M
�
idx
�
mk � � i � � � 0 � i � N � (1)

We give an example below.

Example 15: Suppose we have a memory block set M � � 0x0010 � 0x0210 � 0x1100 � and a

direct mapped cache. We have 16-bit memory addresses. The cache has 16 lines with each

line of size 16 bytes, thus, as explained in Example 7, bit 3 to bit 0 is the offset and bit 15

to bit 4 is the tag. In this case, we have
�
m0 ��� 0x1100 � and

�
m1 � � 0x0010 � 0x0210 � . All

the memory blocks in
�
m0 have the same index of 0. All the memory blocks in

�
m1 have the

same index of 1. Note that in this example,
�
mi � /0 for all i such that 1 � i � 16.

�

When the memory blocks in the same subset
�
mi are accessed, these memory blocks

are loaded into the same set in the cache because the memory blocks have the same index.

Thus, cache evictions can happen among these memory blocks (i.e., with the same index).

We denote
�

M � � �
mi

� �
mi �� /0 � 0 � i � N � , where /0 is the empty set and

�
mi is defined as

Equation 1, An example of
�

M is given in Example 16.

Example 16: Considering the memory block M in Example 15, we have
�

M � � �
m0 �

�
m1 � �

� � 0x1100 � � � 0x0010 � 0x0210 � � . �

By using
�

M, we can define the CIIP of a memory block set M. The definition of CIIP
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is given in Definition 15. As best this thesis author can tell, this author is the first to ever

define and use CIIP and the concepts inherent therein.

Definition 15. Cache Index Induced Partition (CIIP) of a memory block address set: Sup-

pose we have a set of memory block addresses, M � � m0 � m1 � ������� mq � 1 � , and an L-way

set associative cache. The index of the cache ranges from 0 to N � 1. We define the

CIIP of M based on the mapping from memory blocks to cache sets, which is denoted by
�

M � � �
mi

� �
mi �� /0 � 0 � i � N � . Each

�
mi � � mk

� M
�
idx
�
mk � � i � is a subset of M.

�

The CIIP of a memory address set categorizes the memory block addresses according

to their indices in the cache. Cache evictions can only happen among memory blocks that

are in the same subset
�
mi in

�
M, the CIIP of memory address set M. We first defined and

introduced CIIP in [57].

Example 17: Suppose we have a set of memory block addresses M � � 0x000 � 0x100 �

0x010 � 0x110 � 0x210 � . Also, we have a set associative cache as defined in Exam-

ple 7. Therefore, 0x000 and 0x100 have the same index 0. 0x010, 0x110 and

0x210 have the same index 1. So, the CIIP of this memory block address set

is
�

M � � �
m0 �

�
m1 � , where

�
m0 � � 0x000 � 0x100 � and

�
m1 � � 0x010 � 0x110 � 0x210 � . Any

block in
�
m0 will be loaded into the cache set with index 0 when the memory block

is accessed. Any block in
�
m1 will be loaded into the cache set with index 1 when

the memory block is accessed. Cache eviction can only happen among memory

blocks in
�
m0 or among memory blocks in

�
m1. A memory block in

�
m0 can never be

replaced by a memory block in
�
m1 and vice versa because the memory blocks in

�
m0 and the memory blocks in

�
m1 are loaded into different sets in the cache.

�

CIIP connects memory blocks and cache lines by using indices in memory addresses

without considering the cache replacement policy. This approach can be applied to any

type of set associative cache. CIIP can be used to analyze inter-task cache conflicts.

One important CIIP property is that
�

M is a “proper partition” of M, where we define

proper partition as follows according to the definition of partition in [6, 16]. This property
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is important to show exact, unduplicated distribution of memory addresses with
�

M (i.e.,

within a CIIP).

Definition 16. Partition: If
�

M � � �
mi

� �
mi �� /0 � 0 � i � N � is a partition of M, the following

three conditions have to be satisfied [6, 16].

(1). For all
�
mi in

�
M,

�
mi �� /0, which means no subset in

�
M is empty.

(2). For all
�
mi,

�
m j in

�
M,

�
mi �

�
m j � /0, which means all subsets in

�
M are disjoint.

(3). � �
mi � M, which means all subsets in

�
M exactly cover the original set M.

�

We can prove
�

M is a partition of M as below.

Proof: The first condition is trivial.
� �

mi �
�
m j

� �
M � i �� j, if ma

� �
mi, mb

� �
m j, we have idx

�
ma � � i and idx

�
mb � � j. Thus,

ma
�� �

m j according to the definition in Equation 1. For the same reason, we have mb
�� �

mi.

Therefore,
�
mi �

�
m j � /0. Condition (2) is thus also satisfied.

According to the definition in Equation 1, if
�
mi

� �
M �

�
0 � i � N � , we have

�
mk

�
�
mi, mk

� M. In other words, any element mk in any
�
mi

� �
M is also in the set M, thus,

���mi � �M
�
mi � M. On the other hand,

�
mi

� M, mi
� �

midx � i � , where
�
midx � i � � �

M. Thus,
�

mi
�

M, mi
� � �mi � �M

�
mi. Therefore, we have M � � �mi � �M

�
mi . Because both � �mi � �M

�
mi � M and

M � � �mi � �M
�
mi are true, we have M �	� �mi � �M

�
mi. Thus, Condition (3) is also satisfied.

Therefore, we can conclude that
�

M � � �
mi

� �
mi �� /0 � 0 � i � N � is a partition of M.

�

We have introduced CIIP, with examples, in this section. In the next section, we explain

how to apply CIIP to CRPD estimation.

5.1.2 Applying CIIP to Estimate CRPD

The definition of CIIP provides us a formal representation to analyze inter-task cache evic-

tions. By using CIIP, we can estimate CRPD. This section gives a way of using CIIP to

estimate CRPD.

As explained in Section 5.1.1, we use a set of q memory block addresses, M � � m0 � m1 �

������� mq � 1 � to represent all the memory addresses that can possibly be accessed by a task.
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Such a memory block set can be obtained by using simulation as used in SYMTA [68].

Then, we can derive the CIIP of M, which is represented with
�

M as given in Definition 15.

The memory block addresses in the same subset
�
mi of a task’s CIIP have the same

index. Therefore, when these memory blocks are loaded into the cache, they might conflict

with each other. Memory blocks in different subsets
�
mi, �m j, i �� j, of the CIIP can never

conflict in the cache.

Let us go back to Condition 1 in Section 4.1. Condition 1 states that the cache lines to be

reloaded are used by both the preempted and preempting task. This requires that memory

blocks accessed by the preempted task and memory blocks accessed by the preempting task

are mapped to the same set in the cache.

Suppose we have two tasks Ta and Tb. All the memory blocks accessed by Ta and

Tb are in the set Ma � � ma � 0 � ma � 1 � ������� ma � ka � and Mb ��� mb � 0 � mb � 1 ��������� mb � kb � respectively,

where ma � i
�
0 � i � ka � are memory blocks accessed by Ta and mb � j

�
0 � j � kb � are memory

blocks accessed by Tb. Tb has a higher priority than Ta. An L-way set associative cache

with a maximum index of N � 1 is used in the system. In the case Ta is preempted by Tb,

the cache lines to be reloaded when Ta resumes are used by both the preempting task (Tb)

and the preempted task (Ta). Example 18 explains this point.

Example 18: Suppose we have a cache as defined in Example 15. Two tasks T1

and T2 run with this cache. T1 has a lower priority than T2. The memory block

addresses accessed by T1 and T2 are contained in M1 � � 0x000 � 0x110 � 0x210 � and

M2 � � 0x200 � 0x310 � , respectively. Both tasks use cache lines cs
�
0 � and cs

�
1 � . Thus,

these two cache lines can potentially need to be reloaded after T2 finishes preempt-

ing T1.
�

We can look for the conflicting memory blocks accessed by the preempting task and

the preempted task in order to estimate the number of cache lines to be reloaded. We use

the CIIPs of Ma and Mb to solve this problem.

We use
�

Ma � � �
ma � 0 �

�
ma � 1 ���������

�
ma � N � 1 � to represent the CIIP of Ma and �Mb � � �

mb � 0 �

�
mb � 1 �
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�������

�
mb � N � 1 � to represent the CIIP of Mb. For

�
ma � k1

� �
Ma and

�
mb � k2

� �
Mb, only when k1 � k2

can memory blocks in
�
ma � k1 possibly conflict with memory blocks in

�
mb � k2 in the cache.

Also, when the memory blocks in
�
ma � k1 and

�
mb � k2 are loaded into the cache, the number of

cache lines conflicting in one set of the cache can neither exceed the number of memory

blocks that mapped to this set nor exceed the total number of cache lines in this set. In

other words, the maximum number of cache lines conflicting in the set with index k1 (or

k2 because k1 � k2) in the cache is min
� � �

ma � k1

�
�

� �
mb � k2

�
� L � , where L is the number of ways

of the cache. Therefore, we can conclude that the following formula gives an upper bound

for the number of cache lines that could be reloaded after Task Ta resumes following a

preemption by Task Tb:

S
�
Ma � Mb � �

N � 1

∑
r � 0

min � � �
ma � r

�
�

� �
mb � r

�
� L � (2)

where
�
ma � r

� �Ma and
�
mb � r

� �Mb.

S
�
Ma � Mb � denotes an upper bound on the number of cache lines that may conflict when

the memory blocks in Ma and Mb are loaded into the cache. This number can be used to

estimate the cache lines to be reloaded due to Tb preempting Ta.
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Figure 16: Conflicts of cache lines in a set associative cache

Example 19: Suppose we have a cache as defined in Example 7. Two tasks T1 and

T2 run with this cache. The memory block addresses accessed by T1 and T2 are

contained in M1 � � 0x000 � 0x100 � 0x010 � 0x110 � 0x210 � and M2 � � 0x200 � 0x310 � 0x410 �

0x510 � , respectively. The CIIPs of M1 and M2 are
�

M1 � � � 0x000 � 0x100 � � � 0x010 � 0x110 �
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0x210 � � and
�

M2 � � � 0x200 � � � 0x310 � 0x410 � 0x510 � � , respectively. If we map the

memory blocks in M1 and M2 to the cache as shown in Figure 16(a), we find that

the maximum number of overlapped cache lines, which is 4, is the same as the

result derived from Equation 2. Note that the memory blocks can be mapped to

cache lines in other ways (e.g., 0x100 can possibly be mapped to line 0 instead of

line 1, but in this case 0x100 would kick out 0x200 or vice versa). In any case, the

mapping given in Figure 16(a) gives a case in which the largest amount of cache

line overlaps occurs. Let us consider another case. If we map the memory blocks

in M1 and M2 to the cache as shown in the Figure 16(b), only two cache lines

overlap. Obviously, the actual number of overlapped cache lines is related to the

cache replacement policy and memory access pattern of the preempted task and

the preempting task. However, Equation 2 gives an upper bound of the number of

overlapped cache lines.
�

In this section, we use CIIP to estimate the number of cache lines to be reloaded after

the preempted task resumes from a preemption. Based on this estimate, we can obtain

CRPD.

5.1.3 Summary

In this section, we first give the definition of CIIP and elaborate CIIP with some examples.

We also explain the method of analyzing inter-task cache interference by using CIIP, which

is a major contribution as we claimed in Section 1.3, Contribution 1: A novel approach

is proposed to analyze inter-task cache interference.

However, only Condition 1 in Section 4.1 is used for cache interference analysis in this

section. In the next section, we discuss how to apply Condition 2 in Section 4.1 to tighten

the estimate of CRPD.
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5.2 Intra-task Cache Eviction Analysis

In this section, we introduce briefly the intra-task cache eviction analysis approach pro-

posed by Lee et al. [19, 20].

According to Condition 2 (Section 4.1), the memory blocks of the preempted task that

can possibly cause cache reload cost must be present in the cache before the preemption

and must be accessed by the preempted task again after the preemption. These memory

blocks are called “useful memory blocks” by Lee et al., who give an approach to calculate

the maximum set of useful memory blocks [19, 20, 21]. The useful memory blocks are

only related to the memory access pattern and the program structure of the preempted task.

Thus, we call this analysis intra-task cache analysis.

As we mentioned in Chapter 2, a task can be represented with a PCFG. Each node in a

task PCFG is an SFP-PrS. A task can be preempted at any point in any SFP-PrS of the task.

We call such a point an execution point. When a preemption happens, a task can be viewed

as two parts, one part before the preemption and the other part after the preemption. The

pre-preemption part (the part before the preemption) of the preempted task loaded memory

blocks to the cache. Some of these memory blocks might be accessed again by the post-

preemption part of the preempted task. These memory blocks are useful memory blocks.

Only useful memory blocks of the preempted task can possibly cause cache reload after

preemption(s).

For a formal description, we use the notation of Reaching Memory Blocks (RMB) and

Living Memory Blocks (LMB) as defined in [19]. The set of Reaching Memory Blocks of

a cache set cs
�
i � at an execution point s of task Ta is denoted by RMBa

�
s � i � . RMBa

�
s � i �

contains all possible memory blocks that may reside in cache set cs
�
i � when task Ta reaches

execution point s. Suppose a cache set has L cache lines (i.e., a L-way set associative

cache). If a memory block can reside in cs
�
i � , this memory block must have an index of

i. Moreover, in order to be contained in RMBa
�
s � i � , this memory block must be one of the

last L distinct references to the cache set cs
�
i � when the task runs along some execution
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Figure 17: Example of RMB and LMB

path reaching execution point s. Otherwise, this memory would have been evicted from

the cache by other memory blocks. Similarly, the set of Living Memory Blocks of cache

set cs
�
i � at execution point s, denoted by LMBa

�
s � i � , contains all possible memory blocks

that may be one of the first L distinct references to cache set cs
�
i � after execution point

s. By using LMB and RMB, we can calculate the Useful Memory Blocks (UMB) for task

Ta. We use UMBa
�
s � to represent the UMBs at the execution point s of task Ta. We have

UMBa
�
s � � � N � 1

i � 0 � RMBa
�
s � i � � LMBa

�
s � i � � , where N is the number of cache lines in the

cache. Example 20 uses the task shown in Figure 17 to explain RMB and LMB.

Example 20: Suppose we have a 2-way set associative cache with each line in the

cache having 16 bytes. The maximum index of the cache is 15. Hence, the size of

the cache is 512 bytes. We assume that a memory address has 16 bits. Thus, as

in Example 7, bit 4 to bit 7 in a memory address determine the cache set to which

the memory block in this address will be loaded. For example, the memory block

with an address of 0x0010 will be loaded into cache set 1.

In this example, a task with the PCFG shown in Figure 17 is executed. Each node

in the PCFG is an SFP-PrS. The memory addresses accessed by each SFP-PrS
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are given in Figure 17. Note that we do not distinguish instruction versus mem-

ory addresses. The cache is empty before the task runs. Suppose a preemption

happens at the execution point s after the first memory block in SFP3 is accessed.

Now, let us consider the RMB of cache set 1 at the execution point s where the

preemption happens as indicated in the figure. The memory block of SFP3 that

may reside in cache set 1 is only 0x0410. Thus, 0x0410 is included in RMB
�
s � 1 � .

However, SFP3 has two predecessors, SFP1 and SFP2, which implies the task

can take a path of � SFP1,SFP3 � or � SFP2,SFP3 � to reach the execution point s.

If the task takes the path � SFP1,SFP3 � , 0x0010 may reside in cache set 1. If the

task takes the path � SFP2,SFP3 � , 0x0310 may reside in cache set 1. Although

0x0210 and 0x0110 in SFP2 were also loaded to cache set 1, they are evicted be-

fore execution point s because in this example there are only two lines in each

cache set and the LRU replacement algorithm is used. Now, considering all possi-

ble paths reaching execution point s, RMB
�
s � 1 � should be � 0x0010 � 0x0310 � 0x0410 � .

After the preemption, if the task takes the path � SFP3,SFP4 � , � 0x0310 � 0x0410 �
are the first two memory blocks that are loaded into cache set 1. If the task takes

the path � SFP3,SFP5 � , � 0x0410 � 0x0110 � are the first two memory blocks that are

loaded into cache set 1. Thus, we have LMB
�
s � 1 � ��� 0x0310 � 0x0410 � 0x0110 � . The

intersection of LMB
�
s � 1 � and RMB

�
s � 1 � is � 0x0310 � 0x0410 � . If there is no preemp-

tion, when the task accesses the memory block in 0x0410 in SFP5, this memory

block does not need to be loaded from the memory because it is already loaded

into the cache in SFP3. However, due to the preemption, the preempting task may

evict this cache line. So, the memory block 0x0410 may potentially cause a cache

line reload. Similar reasoning can be used to show that the memory block 0x0310

can also possibly cause a cache line reload after preemption. Of course, whether

a cache line reload is really needed is also dependent on the actual path the task

takes and the exact cache lines used by the preempting task.
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The intersection of LMB and RMB provides a superset of all memory blocks that

may cause cache line reload(s).
�

In [19], Lee et al. demonstrate that the intersection of RMB and LMB can give a su-

perset of memory blocks in the preempted task that can potentially cause cache line reload

overhead after preemption. The details of their algorithm can be found in [19, 20, 21]. Of

course, whether those memory blocks will really cause cache line reloading still depends

on the actual path the preempted task takes and the cache lines used by the preempting task.

In the approach of Lee et al.[19, 20, 21], they conservatively assume that all the memory

blocks in the intersection of RMB and LMB will be reloaded. Consider an extreme counter

example for this assumption: if the cache lines used by the preempted task and the pre-

empting task are completely disjoint based on cache index, the preempting task will not

evict any cache lines used by the preempted task. In this case, there is no cache reload

overhead imposed on the preempted task even there are preemptions, yet the approach of

Lee et al. would indicate significant reload overhead (due to the fact that the approach of

Lee et al. does not distinguish cache lines based on indices, i.e., the approach of Lee et al.

does not utilize CIIP at all).

In the next section, we show how to improve the accuracy of the estimate of cache

interference among tasks by combining inter- and intra-task cache eviction analysis.

5.3 Integrate Inter- and Intra-task Cache Eviction Analysis

In this section, we discuss our method for combining inter- and intra-task cache eviction

analysis in order to tighten CRPD estimation.

In Section 5.1, the memory footprint used to calculate CIIP for a task covers all the

memory blocks that can be possibly accessed by the task. However, for a task which is

preempted, only the useful memory blocks of the preempted task can possibly cause cache

reload. Lee et al. provide an approach to find the useful memory blocks of a task [19]. Now,

we can calculate the intersection of useful memory blocks of the preempted task as derived
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from the approach of Lee et al. and the memory blocks used by the preempting task in order

to refine the CRPD estimate. By replacing the memory block set of the preempted task that

is used in Equation 2 (Section 5.1.2) with the set of useful memory blocks, we can expect

to reduce the estimate of the number of cache lines to be reloaded after a preemption.

Suppose we have two tasks, Ta and Tb. Suppose further that Tb has a higher priority

than Ta; thus, Tb can preempt Ta. In the case that Tb preempts Ta, we want to know a tight

upper bound on the number of cache lines that need to be reloaded by Ta after Ta resumes

from the preemption. To help calculate such an upper bound, we define the Maximum

Useful Memory Blocks Set on the basis of Useful Memory Blocks (UMB) as introduced in

Section 5.2.

Definition 17. The Maximum Useful Memory Blocks Set (MUMBS): The maximum useful

memory blocks set is the union of all useful memory blocks sets defined by all possible

execution points of a task. We represent the maximum useful memory blocks set of task Ta

with M̃a.
�
M̃a is the CIIP of M̃a. We have M̃a � � sUMBa

�
s � . M̃a is a subset of Ma.

�

We use the approach of Lee et al. to derive the useful memory blocks at each execution

point of the preempted task. Then, we calculate the union of useful memory blocks over

all the execution points to obtain the MUMBS of the preempted task. Only the memory

blocks in this MUMBS set can possibly be reloaded by the preempted task. Example 21

explains the method of calculating MUMBS.

Example 21: Suppose we have a task with the PCFG shown in Figure 18. The

memory blocks accessed by the task is also shown in Figure 18. Let us consider

the execution point s. Memory block 0x0020 is accessed by the task before the

execution point s as well as after the execution point s. By using the useful mem-

ory block analysis approach in [19], we can find that 0x0020 is a useful memory

block. The useful memory block set at the execution point s is � 0x0020 � . We per-

form the same analysis overall the execution points in the task and calculate the

union of all useful memory block to obtain MUMBS. In this example, the MUMBS
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Figure 18: An example of MUMBS

is � 0x0020 � 0x0030 � . �

The simulation method in SYMTA [68] is used to obtain all the memory blocks that

can possibly accessed by the preempting task Tb. All these memory blocks are contained

in a set Mb.
�

Mb is the CIIP of Mb. Only the memory blocks in Mb can possibly evict the

cache lines used by the preempted task.

Then, we apply Equation 2 to calculate the intersection of memory block set M̃a and

Mb, which is shown in Equation 3. This result gives an upper bound on the number of

cache lines that can possibly need to be reloaded after Tb preempts Ta.

S
�
M̃a � Mb � �

N � 1

∑
r � 0

min � � �
m̃a � r

�
�

� �
mb � r

�
� L � (3)

In Equation 3, N is the number of cache sets, r is the index of a CIIP element,
�
m̃a � r

� �M̃a

and
�
mb � r

� �Mb.

Example 22: Suppose we have two tasks T1 and T2. T1 is shown in Example 21.

Memory blocks accessed by T2 are in the set M2 � � 0x0110 � 0x0120 � 0x0020 � . We

have a two way set associative cache with 16 cache sets; thus, we have L � 2.

Each cache line has 16 bytes. The MUMBS of M1, M̃1, is � 0x0020 � 0x0030 � as

shown in Example 21. By using the definition of CIIP, we can obtain the CIIP of

M̃1,
�
M̃1 � �

�
m̃12 �

�
m̃13 � , where

�
m̃12 � � 0x0020 � and

�
m̃13 � � 0x0030 � . We can also

calculate the CIIP of M2, which is
�

M2 � � �
m21 �

�
m22 � , where

�
m21 � � 0x0110 � and

�
m22 ��� 0x0120 � 0x0020 � . Now, we can use Equation 3 to estimate cache conflicts.
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Since M̃1 does not have memory blocks mapped in the cache line with an index

of 1 and M2 does not have memory blocks mapped in the cache line with an

index of 3, cache conflicts can only occur in the cache line with an index of 2.

min � � �
m̃12

�
�

� �
m22

�
� L � � min � 1 � 2 � 2 � � 1. Thus, S

�
M̃1 � M2 � � 1.

�

Notice that in Equation 3, M̃a is a subset of Ma. Thus, the result derived from Equation 3

is definitely smaller than or equal to the result derived from Equation 2. In other words,

the estimate of the number of cache lines to be reloaded can only be tightened by integrat-

ing intra- and inter-task cache eviction analysis. Therefore, the CRPD estimate is more

precise. In this section, we present the second major contribution claimed in Section 1.3,

Contribution 2: Inter-task cache eviction analysis is integrated with intra-task cache

eviction analysis.

CRPD overestimation can be further reduced by applying a path analysis technique as

explained in the next section.

5.4 Path Analysis

In this section, we show that CRPD can be tightened by exploiting path analysis of the

preempting task. Note that for the preempted task, as explained in Section 5.2, path analysis

is already performed in order to calculate the useful memory blocks[19, 20, 21]. Thus, we

do not consider path analysis for the preempted task in this section.

Suppose we have two tasks, Ta and Tb, and Ta has a lower priority than Tb. Thus, Ta

can be preempted by Tb. Here, we do not consider nested preemptions. Nest preemptions

are discussed in Section 6.2.2. We assume Mb is the memory block set which contains all

the memory blocks that can possibly be accessed by the preempting task Tb. If we do not

use any path analysis methods, the CRPD caused by Tb preempting Ta can be estimated

with Equation 3. However, since the preempting task might have multiple feasible paths

only one of which is executed, some memory blocks included in Mb may in fact not be

accessed; thus, there is no need to reload the cache lines mapped from these memory blocks
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Figure 19: PCFG of ED

not accessed. Example 23 gives such a case.

Example 23: Figure 19 shows the PCFG of ED (ED was explained in Example 14).

Let us consider the three nodes v2, v3 and v4 shown in Figure 19(A) – please note

that nodes v3 and v4 are defined by the dashed lines shown in Figure 19(A). When

the image size is fixed (i.e., the number of pixels to be processed is fixed), the loop

bounds in the dashed-line rectangles of v3 and v4 are fixed. Other than the loop

bounds in v3 and v4, there are no other branches depending on input data in v3 and

v4. Thus, nodes v3 and v4 can be viewed as SFP-PrS. The PCFG of ED can be

simplified as the graph shown in Figure 19 (B). Each node in this graph represents

an SFP-PrS in the ED program. According to an input parameter selected by the

user, the program can only take either the path
�
v1 � e1 � v2 � e2 � v3 � e4 � v5 � or the path

�
v1 � e1 � v2 � e3 � v4 � e5 � v5 � ; thus, only one of v3 or v4 can be accessed in one run. In

this case, the potentially evicted cache lines used by v3 and the potentially evicted

cache lines used by v4 never both need to be reloaded at the same time after one

solitary execution of ED.
�

The issue presented in Example 23 can be described more generally. Suppose we have
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two tasks, Ta and Tb, in a system with an L-way set associative cache. The largest in-

dex of any cache line in the cache is N � 1. Tb has a higher priority than Ta. Thus, Tb

can preempt Ta. We use Ma to represent the set of all memory block addresses that can

be possibly accessed by Ta. M̃a is the MUMBS of the preempted task (MUMBS was

defined in Section 5.2). We define the PCFG of Tb to be Gb � � Vb � Eb � , where Vb �
� vb � 1 � vb � 2 � ������� vb � n � and Eb � � eb � 1 � eb � 2 � ������� eb � m � . A path in Gb can be represented with

Pak
b � � vb � i1 � eb � i1 � vb � i2 � eb � i2 ��������� vb � ip � . We use Mk

b to denote the set of memory block ad-

dresses accessed by the task Tb when Tb runs along the path Pak
b. The CIIP of Mk

b is
�

Mk
b � �

�
mk

b � 0 �

�
mk

b � 1 � �������

�
mk

b � N � 1 � . When Pak
b is determined, Mb � k can be derived from sim-

ulation with the method used in SYMTA [68] as outlined in Section 4.1.
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Figure 20: PCFG of Tb in Example 24

Example 24: Suppose we have a task, Tb, with a corresponding PCFG shown in

Figure 18 (repeated here as Figure 20 for convenience). This task has two feasi-

ble paths, Pa1
b ��� v1 � e1 � v2 � e3 � v4 � and Pa2

b � � v1 � e2 � v3 � e4 � v4 � . When Tb runs along

Pa1
b, the memory blocks accessed by Tb are M1

b � � 0x0010 � 0x0020 � 0x0120 � 0x0030 � .
When Tb runs along Pa2

b, the memory blocks accessed by Tb are M2
b � � 0x0010 � 0x0020 �

0x0100 � 0x0110 � 0x0030 � . We assume a cache as described in Example 22. Thus,

we have the CIIP of M1
b,

�
M1

b � �
�
m1

b � 1 �

�
m1

b � 2 �

�
m1

b � 3 � , where
�
m1

b � 1 � � 0x0010 � , �
m1

b � 2 �
� 0x0020 � 0x0120 � and

�
m1

b � 3 � � 0x0030 � . The CIIP of M2
b is

�
M2

b � �
�
m2

b � 0 �

�
m2

b � 1 �

�
m2

b � 2 �

�
m2

b � 3 � ,
where

�
m2

b � 0 � � 0x0100 � , �
m2

b � 1 � � 0x0010 � 0x0110 � , �
m2

b � 2 � � 0x0020 � and
�
m2

b � 3 � � 0x0030 � .
�
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Note that Pak
b is generic notation for any path in Tb. Among all the paths in Tb, there

exists a particular path in Tb which, when Tb takes this path, the memory blocks loaded

to the cache have the largest overlap with the cache lines used by memory blocks in the

MUMBS of the preempted task Ta. In other words, when Tb takes this path, the number

of cache lines evicted by Tb and also used by Ta is the largest. This problem can be trans-

formed to a problem of finding the “worst MUMBS path” in a graph. We describe this

transformation in the following paragraphs. Note that there may be more than one “worst

MUMBS path” because different paths may cause the same largest estimate of the number

of cache conflicts. However, we only need to find one “worst MUMBS path” because we

are only interested in the upper bound on the estimate of the number of cache conflicts, not

the exact path itself.

We define a cost function for a path Pak
b in the preempting task Tb.

C
�
Pak

b � � S
�
M̃a � M

k
b � �

N � 1

∑
r � 0

min � � �
m̃a � r

�
�

� �
mk

b � r

�
� L � (4)

The cost of a path Pak
b in the preempting task Tb is defined as the maximum number of

cache lines that can possibly overlap the cache lines mapped by useful memory blocks of

the preempted task Ta, when the preempting task Tb runs along the path Pak
b.

Definition 18. The Worst MUMBS Path (WMP): The worst MUMBS path is an execu-

tion path of a task such that when the task runs along this path, the objective function in

Equation 4 has the largest value. We use PaW MP
b to represent the WMP of a task Tb.

�

Example 25: Suppose we have two tasks Ta and Tb. Ta has a lower priority than

Tb. The MUMBS of Ta is M̃a � � 0x1100 � 0x1110 � 0x1120 � 0x1130 � . We assume a

cache as described in Example 22. The CIIP of M̃a is
�
M̃a ���

�
m̃a � 0 �

�
m̃a � 1 �

�
m̃a � 2 �

�
m̃a � 3 � ,

where
�
m̃a � 0 � � 0x1100 � ,

�
m̃a � 1 ��� 0x1110 � ,

�
m̃a � 2 ��� 0x1120 � and

�
m̃a � 3 ��� 0x1130 � . Tb

is described in Example 24. The PCFG is shown in Figure 21(A). Figure 21(B)

shows possible cache conflicts between Ta and Tb when Tb run along the path

Pa1
b. In this case, C

�
Pa1

b � � S
�
M̃a � M1

b � � min � � �
m̃a � 1

�
�

� �
m1

b � 1

�
� 2 � � min � � �

m̃a � 2
�
�

� �
m1

b � 2

�
� 2 � �
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min � � �
m̃a � 3

�
�

� �
m1

b � 3

�
� 2 � � 1 � 1 � 1 � 3. Figure 21(C) shows possible cache conflicts

between Ta and Tb when Tb run along the path Pa2
b. Similarly, we have C

�
Pa2

b � � 4.

Thus, C
�
PaWMP

b � � C
�
Pa2

b � � 4.
�

By using the cost function of Equation 4, we search all the paths of the preempting task

to find the worst MUMBS path in the PCFG of Tb. Suppose the worst MUMBS path in

task Tb is represented with PaW MP
b ; then, the cache lines to be reloaded in the worst case

is bounded by the cost of PaWMP
b as defined by Equation 4. Potentially we need to search

all paths to find PaWMP
b in the preempting task. We use an example to explain this path

searching procedure.

v1

v3v2

e1 e2

e3

v4

v6v5

v7

e5 e6

e7 e8

e4

Figure 22: An example of path analysis

67



Example 26: Suppose we have a task, the PCFG of which is shown in Figure 22.

There are two nodes, v1 and v4, that have more than one outgoing edge. We have

to consider four paths � v1 � e1 � v2 � e3 � v4 � e5 � v5 � e7 � v7 � , � v1 � e1 � v2 � e3 � v4 � e6 � v6 � e8 � v7 � ,
� v1 � e2 � v3 � e4 � v4 � e5 � v5 � e7 � v7 � , � v1 � e2 � v3 � e4 � v4 � e6 � v6 � e8 � v7 � in order to find the WMP for

this task. Thus, in the worst case, the number of paths we search is exponential in

the number of nodes that have more than one outgoing edge.
�

Path analysis performed on the preempting task may be exponential in the number of

nodes that have more than one outgoing edge in the PCFG of the preempting task. However,

in practice, many embedded programs have PCFGs with a reasonably small number of

paths. Thus, our approach can still apply to many such systems. In our approach, users have

an option to select path analysis or not. Usually, path analysis can be used to refine CRPD

estimates when the control structure in the preempting task is not complex or computation

time is not a major concern in the design phase. Otherwise, we can simply not use path

analysis in order to avoid time consuming computation.

Compared to Equation 3, the estimate given by Equation 4, if there is a change, can

only be further reduced; this is true because only a subset of the memory blocks in Mb are

considered in the calculation of Equation 4.

In this section, we introduce a method to use path analysis to improve cache interference

analysis, which is the third contribution claimed in Section 1.3, Contribution 3: Path

analysis is used to improve cache interference analysis.

In Sections 5.1, 5.2, 5.3 and 5.4, we discuss how to estimate the number of cache lines

to be reloaded after preemptions. Equation 4 gives a method to combine intra-task eviction,

inter-task cache eviction analysis and path analysis in order to obtain a tight estimate of the

number of cache conflicts between the preempted and preempting task. In the next section,

we discuss how to use the estimate of cache conflicts to analyze CRPD.
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5.5 CRPD Estimation

In this section, we give our improved method to estimate CRPD. CRPD relates to two

factors: (i) the number of cache lines to be reloaded and (ii) the cache miss penalty. We use

CRPD
�
Ta � Tb � to represent the CRPD imposed on task Ta when Ta is preempted by task Tb.

Suppose the penalty for a cache miss is a constant, Cmiss (see Section 4.1 for a discussion

of our system-level assumptions including memory hierarchy). Then, CRPD
�
Ta � Tb � can be

calculated with the following equation:

CRPD
�
Ta � Tb � � C

�
PaWMP

b � � Cmiss � S
�
M̃a � M

W MP
b � � Cmiss (5)

Example 27: Let us consider two tasks, Ta and Tb, as described in Example 25. We

assume a fixed cache miss penalty, Cmiss � 10 clock cycles. In this case, we have

CRPD
�
Ta � Tb � � C

�
PaWMP

b � � Cmiss � 4 � 10 � 40 clock cycles.
�

Equation 5 gives an estimate of the CRPD induced by Tb preempting Ta. By incor-

porating CRPD, we can derive a new approach to estimate the WCRT of each task in a

preemptive multi-tasking system.

Note that the cache miss penalty in practice may not always be constant. For example,

in a wrap-around-fill cache [11], a cache line is not filled completely at one time. Instead,

the CPU starts to run as soon as the requested memory contents are fetched from the mem-

ory to the cache. The rest of the cache line is filled while the CPU continues execution. In

this type of cache, the cache miss penalty varies. An cache miss delay analysis approach

is presented in [66] for the wrap-around-fill cache. Our approach can be easily extended to

handle the wrap-around-fill cache by replacing the constant Cmiss with a cache miss penalty

function Cmiss
�
mi � , where mi is in the intersection set of the memory blocks used by the

preempting task and the preempted task, as found by the approach presented in [66].
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5.6 Summary

In this chapter, we introduce our new approach to analyze and estimate an upper bound

for CRPD. A new concept, CIIP, is proposed to estimate the inter-task cache interference

based on the memory footprints of tasks. We also apply path analysis to refine the CRPD

result derived with CIIP. In the next chapter, we incorporate CRPD into WCRT analysis. A

novel WCRT analysis formula is proposed. Nested preemptions are also considered.
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CHAPTER VI

WCRT ANALYSIS

In this chapter, we first introduce a simple WCRT analysis approach provided by Joseph and

Pandya [14]. Cache behavior is not considered in this prior approach. Next, we incorporate

CRPD into WCRT analysis. Finally, system schedulability is evaluated based on this new

WCRT analysis approach.

6.1 Basic WCRT Analysis Method

This section introduces a basic WCRT analysis method which does not consider cache

interference and context switch costs.

A simple WCRT analysis approach is proposed in [14] to find the WCRT of a task Ti.

The minimum arrival interval and the Worst Case Execution Time are assumed to be known

in advance. Also, a critical instant where all tasks are released together gives the worst case

scenario for tasks. The following iterative equation gives the WCRT of Task Ti assuming

that all tasks are released as soon as they arrive.

Rk
i � Ci � ∑

j � hp � i �
� Rk � 1

i

Pj

�
� C j (6)

In Equation 6, hp
�
i � is the set of tasks whose priorities are higher than Ti. Rk

i is the

WCRT of Ti in the kth iteration. Recall that C j is the WCET of Tj and Pj is the period of

Task Tj as defined in Section 2.1. The deadline of Ti is at the end of period Pi of Ti. We

set the initial WCRT of Ti, R0
i , to be the same as the WCET of Ti. Because we assume

that all tasks are sorted in the descending order of their priorities in this paper, we have

hp
�
i � � � k �

0 � k � i � . In Equation 6, the term ∑ j � hp � i �
� Ri

Pj

�
� C j reflects the worst case

interference of preempting tasks during the time Ti is either executing or is interrupted
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(preempted). This equation can be calculated iteratively. The iteration terminates when Ri

converges or Ri is greater than the deadline of Ti. If Ri exceeds the deadline associated with

Ti, then we are not able to schedule task Ti successfully using this approach. A theorem is

given to evaluate if Equation 6 converges.

Theorem. If the CPU utilization (see Definition 7) of the i highest priority tasks is less

than 1, the sequence of Ri calculations (Equation 6) converges in a finite number of steps.
�

The proof of this theorem is given in [14] and [59].

Task Ti meets its deadline if and only if Ri converges to a value less than Pi. If Ri

diverges or converges to a value greater than the deadline of Ti, we simply conclude that

a feasible schedule is not found for this task. This WCRT analysis approach does not

consider cache effects but does provide a basis for our work presented in this thesis.

The WCRT analysis approach given in Equation 6 does not consider the cache inter-

ference and context switch cost. These additional costs related to preemptions extend task

WCRT and can potentially make tasks miss their deadlines. Thus, for the sake of safety

in a real-time system, we need to include these costs in WCRT analysis. The next section

explains how to accomplish this goal of adding cache interference and context switch costs

to WCRT analysis.

6.2 Enhancement of WCRT Analysis

In this section, we enhance the basic WCRT analysis approach presented in Section 6.1.

Our enhancement consists in incorporating the context switch cost and the CRPD.

6.2.1 Context Switch

In this section, we discuss how context switch cost caused by preemptions may affect

WCRT.

In multi-tasking systems, when a task switch takes place, the context of the old task is
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stored in the kernel stack and the context of the new task is loaded from the kernel stack.

A context switch can be as simple as changing the value of the program counter and stack

pointer or may be more complicated, e.g., involving resetting the MMU to make a different

set of memory pages available. Some processors provide special context switch instructions

in order to accelerate the context switch operation. Preemptions invoke context switches as

shown in Example 28.

Example 28: Figure 23 shows two periodic tasks in a preemptive multi-tasking

system. Task A has a higher priority than Task B. Thus, Task B can be preempted

by Task A. We use TA � 1 and TB � 1 to represent the first run of Task A and Task B

respectively. In each preemption, two context switches happen. The first context

switch occurring at time instant t1 loads the preempting task. The second context

switch occurring at time instant t2 resumes the preempted task. The response time

of the preempted task is extended due to context switch cost as shown with black

boxes in Figure 23. We assume a constant upper bound for a context switch cost,

Cmiss. In this example, we use 2Cmiss to estimate the context switch cost in one

preemption.
�

TA,1

TB,1 TB,1

t1 t2

Task A

Task B

Context Switch caused by preemptions

Time

Figure 23: A context switch example

As compared to the execution time of a task, the context switch cost is typically small.

We assume that the context switch function cannot be preempted. Thus, the context switch

cost is not affected by inter-task cache eviction. Therefore, it is reasonable to assume the

context switch cost has a constant upper bound. In this thesis, we assume the context

73



switch has a constant upper bound Ccs, which is equal to the WCET of a context switch.

As shown in Example 28, each preemption adds an additional context switch cost of 2Ccs

to the WCRT of the preempted task. Example 29 gives an example of context switch cost,

which is derived from a realistic commercial simulation platform which we use for the

experiments in this thesis.

Example 29: An ARM9TDMI processor with two levels of memory, a 32KB 4-way

set associative L1 cache and 256MB of SRAM main memory, is used in our ex-

periment. The cache miss penalty is 20 cycles. The Atalanta RTOS developed

at Georgia Tech [53] is used for task management. We use SYMTA to obtain the

WCET of a context switch, which implies that the instructions of the context switch

function and the memory blocks where contexts of the preempted and the pre-

empting tasks are saved are not in the L1 cache when the context switch function

is called. In this case, the WCET of a single context switch estimated with SYMTA

is 1049 cycles.
�

6.2.2 CRPD and Nested Preemptions

CRPD as discussed in Chapter 5 only considers a preemption “base case” in which only

one level of preemption occurs. However, in a realistic multi-tasking systems, preemptions

can be nested. In other words, during a preemption, the preempting task can be preempted

further by another task. This section gives a way to estimate CRPD in nested preemptions.

First, we use an example, Example 30, to show a case of nested preemptions.

Table 1: Tasks in Example 30
Task WCET(us) Period(us) Preemptions Cache reload cost (us)
T0 5 20 T0 preempting T1 5
T1 11 30 T0 preempting T2 2
T2 12 100 T1 preempting T2 2

Example 30: Consider the tasks in Example 1. We assume that WCET, period

and cache reload cost for each task are listed in Table 1. Task T2 has the has the
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Figure 24: An example of nested preemptions

lowest priority and Task T0 has the highest priority. Here we ignore the context

switch cost. At time instant 1 (measured in ms), T2 is preempted by T1 directly.

Then, at time instant 2, T1 is preempted by T0. The second preemption is nested

in the first preemption. Thus, T2 is also preempted by T0, albeit indirectly, at time

instant 2. We call this type of preemption an indirect preemption.

Note that at time instant 27 in Figure 24(B), T2 is preempted again as soon as

cache lines are reloaded. This only happens in the worst case where all cache

lines to be reloaded have to be reloaded at the beginning of T2 resuming from a

preemption before T2 starts to run. We use this case which may rarely occur in

order to show the impact of cache reload cost in the worst case.

Note that another indirect preemption similar to what happened at time instant 2

occurs at time instant 42. In this case, the CRPD caused by T0 indirectly preempt-

ing T2 consists of two parts, cache reload cost due to cache interference between
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T2 and T0 and cache reload cost due to cache interference between T1 and T0 as

shown in Figure 24(B). However, by using Equations 4 and 5, only cache reload

cost due to cache interference between T2 and T0 is included in CRPD caused by T0

indirectly preempting T2, which is shown in Figure 24(A). Comparing Figure 24(A)

with Figure 24(B), we find that cache reload cost due to cache interference be-

tween T1 and T0 can possibly extend the response time of T2. Notice that when

the cache reload cost due to cache interference between T0 and T1 is considered,

the WCRT of T2 is 70 (instead of 59). Thus, we need to include this factor in our

WCRT analysis; in this specific case, while T0 can arrive at most three times in

59 time units, in fact T0 can arrive up to four times in 70 time units – as shown in

Figure 24(B).
�

Example 30 shows the effect of nested preemptions on WCRT. Note that in this ex-

ample, we explain the difference between an indirect preemption and a direct preemption.

When we estimate the WCRT of a task Ta, we need to consider all possible preemptions

caused by each task, Tb � 0 � b � a, which has a higher priority than Ta. Tb can preempt Ta

directly, which brings a cache reload cost of CRPD
�
Ta � Tb � to the WCRT of Ta. Ta can also

potentially be preempted by Tb indirectly if there exists a task Tl with a priority lower than

Tb, but higher than Ta. In this case, when an instance of Tb arrives while Ta is preempted by

Tl , Tl is further preempted by Tb. This indirect preemption introduces a cache reload cost

of CRPD
�
Tl � Tb � to the WCRT of Ta. In the worst case, Ta � 1 preempts Ta first, then Ta � 1

is preempted by Ta � 2, ..., until finally Tb � 1 is then preempted by Tb. Thus, there are a � b

nested preemptions in the worst case.

In Equation 4 (Section 5.4), repeated below as Equation 7 for convenience, the number

of cache conflicts between Ta and Tb results from a calculation using M̃a, the MUMBS of

Ta, and Mk
b, the memory blocks that are accessed by Tb when Tb runs along a particular

path.
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Figure 25: Cache conflicts in Example 31

C
�
Pak

b � � S
�
M̃a � M

k
b � �

N � 1

∑
r � 0

min � � �
m̃a � r

�
�

� �
mk

b � r
�
� L � (7)

However, when nested preemptions exist, Tb may evict cache lines used by useful mem-

ory blocks of all tasks that have higher priorities than Ta but lower priorities than Tb. In

order to include nested preemptions, Equation 4 (Equation 7) is extended as follows:

C
�
Pak

b � � S
� a�

l � b � 1

M̃l � M
k
b � �

N � 1

∑
r � 0

min � � a�

l � b � 1

�
m̃l � r

�
�

� �
mk

b � r
�
� L � (8)

Example 31: Suppose we have three tasks, Ta, Tb and Tc. Ta has the lowest pri-

ority and Tc has the highest priority. The PCFG of Tc is shown in Figure 25(A).

The MUMBS of Ta is M̃a � � 0x1100 � 0x1110 � 0x1120 � 0x1130 � as in Example 25. The

MUMBS of Tb is M̃b � � 0x2120 � 0x2130 � . We assume a unified cache as described

in Example 22. When estimating CRPD caused by Tc preempting Ta (directly or

indirectly), if we do not consider cache reload cost that can possibly be caused by

cache interference between Ta and Tb, we have C
�
PaWMP

c � � 4 as explained in Ex-

ample 25. (Note that Tc in this example is the same as Tb in Example 25; thus, we

can use the same calculation.) However, we have to consider the possible cache
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reload cost caused by cache interference between Tb and Tc in the case of Ta indi-

rectly preempting Tc. In this example, we have M̃a � M̃b � � 0x1100 � 0x1110 � 0x1120 �

0x1130 � 0x2120 � 0x2130 � . We use
�
M̃ab to represent the CIIP of the union set M̃a � M̃b.

We have
�
M̃ab � �

�
m̃0 �

�
m̃1 �

�
m̃2 �

�
m̃3 � , where

�
m̃0 � � 0x1100 � ,

�
m̃1 � � 0x1110 � ,

�
m̃2 � � 0x1120 �

2120 � and
�
m̃3 � � 0x1130 � 2130 � . Now, we can use Equation 8 to estimate the num-

ber of cache conflicts when Tc runs along different paths. Figure 25(B) shows pos-

sible cache conflicts when Tc runs along the path Pa1
c. Figure 25(C) shows possible

cache conflicts when Tc runs along the path Pa2
c . Similar to Example 25, we can find

that when Tc runs along the path Pa2
c � � v1 � e2 � v3 � e4 � v4 � , we find the largest num-

ber of possible cache conflicts. Thus, Pa2
c is the WMP, PaWMP

c . When Tc runs along

PaWMP
c , the memory blocks accessed by Tc are MW MP

c � � 0x0010 � 0x0020 � 0x0100 � 0x0110 �

0x0120 � 0x0030 � . We have the CIIP of MW MP
c ,

�
MWMP

c � � �
mWMP

c � 0 �

�
mWMP

c � 1 �

�
mWMP

c � 2 �

�
mWMP

c � 3 � ,
where

�
mW MP

c � 0 � � 0x0100 � , �
mW MP

c � 1 ��� 0x0110 � 0x0010 � , �
mW MP

c � 2 ��� 0x0020 � 0x0120 � and
�
mW MP

c � 3 � � 0x0030 � . By applying CIIP calculation as shown in Example 25, we have

C
�
PaWMP

c � � S
� �
M̃ab � MW MP

c � � min
� � �

mWMP
c � 0

�
�

� �
m̃0

�
� 2 � � min

� � �
mWMP

c � 1

�
�

� �
m̃1

�
� 2 �

� min
� � �

mWMP
c � 2

�
�

� �
m̃2

�
� 2 � � min

� � �
mWMP

c � 3

�
�

� �
m̃3

�
� 2 � � 1 � 1 � 2 � 1 � 5.

�

In Equation 9, we show the combination of Equation 8 with Equation 5 to estimate the

cache reload cost caused by Tb preempting Ta, where Tb has a higher priority than Ta and

there may be additional tasks with priorities higher than Ta but lower than Tb.

CRPD
�
Ta � Tb � � Cmiss

� S
� a�

l � b � 1

M̃l � M
WMP
b � � Cmiss

�
N � 1

∑
r � 0

min � � a�

l � b � 1

�
m̃l � r

�
�

� �
mWMP

b � r
�
� L �

(9)

In Equation 9, M̃l is the MUMBS of task Tl and MW MP
b is the set of memory blocks

accessed by task Tb when task Tb runs along the worst MUMBS path.

Example 32: We use the same tasks, Ta, Tb and Tc and the same cache as pre-

sented in Example 31. From Example 31, we know that the largest number of
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cache lines that possibly ever need to be reloaded after Ta resumes from a pre-

emption caused by Tc (indirectly or directly) is C
�
PaWMP

c � � S
�
M̃a � M̃b � MWMP

c � �
S
�
M̃ab � MWMP

c � � 5. With this number, we can estimate the CRPD caused by Tc

preempting Ta by using Equation 9. Assuming the cache miss penalty is 10 clock

cycles, we have CRPD
�
Ta � Tc � � 5 � 10 � 50 clock cycles.

�

In this section, we give a method to estimate CRPD where the estimation includes

all effects due to any possible nested preemptions. In the next section, we show how to

incorporate CRPD into WCRT analysis.

6.2.3 Enhanced WCRT Analysis Approach

The simple WCRT analysis given in Equation 6 does not include additional costs invoked

by preemptions such as context switch cost and CRPD. By simply ignoring these additional

costs, a theoretically schedulable system may fail in practice and miss a critical deadline.

In this section, we discuss a way to overcome this problem.

An improved WCRT analysis is given by Busquests-Mataix et al. [4]. Inter-task cache

interference is considered. The WCRT estimation equation is updated correspondingly as

follows:

Rk
i � Ci � ∑

j � hp � i �
� Rk � 1

i

Pj

�
�
�
C j � γ j � (10)

In Equation 10, γ j is the additional overhead caused by inter-task cache interference.

In the approach of Busquests-Mataix et al. [4], the authors assume that all cache lines used

by the preempting task need to be reloaded after the preemption. As we pointed out in

Chapter 5, this assumption exaggerates the cache reload cost for each preemption. We can

apply the inter-task and intra-task cache eviction analysis techniques described earlier in

Sections 5.1, 5.2 and 5.3 to reduce the overestimation in Equation 10. By incorporating the

CRPD estimate given in Equation 8 and the context switch cost as given in Section 6.2.1

into Equation 10, we develop the following equation.
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γ j � 2Ccs � CRPD
�
Ti � Tj � � 2Ccs � C

�
PaWMP

j � � Cmiss

� 2Ccs � Cmiss
� ∑N � 1

r � 0 min � � �
m̃i � r

�
�

� �
mWMP

j � r

�
� L �

(11)

The WCRT estimation equation can be updated correspondingly as below.

Rk
i � Ci � ∑ j � hp � i �

� Rk � 1
i
Pj

�
�
�
C j � CRPD

�
Ti � Tj � � 2Ccs �

� Ci � ∑ j � hp � i �
� Rk � 1

i
Pj

�
�
�
C j � C

�
PaWMP

j � � Cmiss � 2Ccs �
(12)

We use Example 33 to help explain this equation.

Example 33: Suppose we have two tasks, T1 and T2. T1 has a higher priority than T2.

The WCETs of T1 and T2 are 5 ms and 49 ms respectively. In other words, we have

C1 � 5 ms and C2 � 49 ms. The period of T1, P1, is 30 ms. The period of T2, P2, is

100 ms. The CRPD caused by T1 preempting T2, CRPD
�
T2 � T1 � , is 3 ms. The context

switch cost, Ccs, is 1 ms. Initially, we have the WCRT of T2 be the same as its WCET,

thus, R0
2 � 49. By using Equation 12, we have R1

2 � 49 �
� 49

30

�
�
�
5 � 3 � 2 � � 69.

Continuing this way, we find R2
2 � 79 and R3

2 � 79. Since R2
2 � R3

2, we deem R2

converges at 79. Thus, the WCRT estimate of T2 is 79 ms.
�

In this section, we elaborate our WCRT analysis approach, which incorporates CRPD.

A new WCRT estimate formula is given. The new WCRT analysis approach can accommo-

date nested preemptions. In the next section, we summarize our WCRT analysis approach.

6.3 Overall WCRT Analysis and Schedulability Analysis

We call our WCRT analysis approach WCRT Integrating Inter- and Intra-task cache timing

analysis approach, WI3 for short. In this section, we summarize the steps performed by

WI3. We also discuss the computational complexity of WI3.

6.3.1 Overall Approach of WI3

To sum up, we follow the steps below to estimate the WCRT of each task in preemptive

multi-tasking real-time system where each task is assigned a unique priority (for a full list
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of assumptions, please see Section 2.1). The cache related preemption delay is included in

our WCRT analysis.

Step 1. Derive the memory footprint of each SFP-PrS in each task by using the simulation

method as proposed in SYMTA.

Step 2. Derive a WCET estimate for each task using SYMTA.

Step 3. Apply intra-task cache eviction analysis as given in Section 5.2 of Chapter 5 to

obtain the MUMBS for every task except the task with the highest priority. The task with

the highest priority cannot be preempted. Thus, its WCRT is the same as its WCET. Recall

that MUMBS is the union of useful memory blocks over all execution points (see Defini-

tion 17). For a task Ta, the MUMBS of Ta, M̃a, can be calculated as M̃a � � sUMBa
�
s � ,

where UMBa
�
s � is the useful memory block set of Ta at the execution point s.

Step 4. Apply path analysis and inter-task cache eviction analysis as proposed in Section 5.1

and Section 5.4 of Chapter 5 to estimate the CRPD CRPD
�
Ti � Tj � for each pair of tasks Ti

and Tj where Ti has a lower priority than Tj. In this step, we follow the procedure below to

estimate CRPD.

(i). Calculate CIIP for each memory block set. For preempted tasks, we calculate the

CIIP for the MUMBS of this task. For each preempting task, we calculate the CIIP of the

memory block set which contains all memory blocks that can possibly be accessed by the

preempting task. Supposing we have a memory block set M, the CIIP of M,
�

M, can be

calculated with the following equation, as also given in Definition 15 in Section 5.1.1.

�
M � � �

mi
� �
mi �� /0 � 0 � i � N � (13)

where,
�
mi � � mk

� M
�
idx
�
mk � � i � .

(ii). Use CIIPs to estimate the number of cache conflicts between the memory blocks

accessed by the preempted task and the preempting task. Note that we need to perform

such a calculation for every pair of tasks. Suppose we have two memory block sets Ma and

Mb. The CIIPs of Ma and Mb are
�

Ma and
�

Mb respectively. We use the following equation

to estimate the number of cache conflicts between Ma and Mb. This equation was given in
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Equation 2 in Section 5.1.2.

S
�
Ma � Mb � �

N � 1

∑
r � 0

min � � �
ma � r

�
�

� �
mb � r

�
� L � (14)

where N is the number of cache sets in a cache,
�
ma � r

� �Ma and
�
mb � r

� �Mb.

To properly consider nested preemptions, we replace Equation 14 with the following

equations, as explained in Section 6.2.2.

S
� a�

l � b � 1

M̃l � Mb � �
N � 1

∑
r � 0

min � � a�

l � b � 1

�
m̃l � r

�
�

� �
mb � r

�
� L � (15)

where M̃l is the MUMBS of task Tl . Tl is a task which has a priority higher than the priority

of Ta but lower than the priority of Tb.

(iii). We perform path analysis on the preempting task. This step is optional as dis-

cussed in Section 5.4. When path analysis is performed, we have to search all paths in the

preempting task. Thus, Equation 15 is updated correspondingly as follows.

S
� a�

l � b � 1

M̃l � M
k
b � �

N � 1

∑
r � 0

min � � a�

l � b � 1

�
m̃l � r

�
�

� �
mk

b � r

�
� L � (16)

where Mk
b is the memory block set which contains all memory blocks accessed by Tb when

Tb runs along a particular path.

Step 5. Use the following iteration to calculate the WCRT for each task except the highest

priority task. This iteration is a version of Equation 12.

R0
i � Ci;

R1
i � Ci � ∑i � 1

j � 0

� R0
i

Pj

�
�
�
C j � CRPD

�
Ti � Tj � � 2Ccs �

...

Rk
i � Ci � ∑i � 1

j � 0

� Rk � 1
i
Pj

�
�
�
C j � CRPD

�
Ti � Tj � � 2Ccs �

This iteration terminates when Ri converges or Ri is greater than the deadline of Ti. If

the iteration converges, Ti can be scheduled. Otherwise, we cannot find a feasible schedule.

In short, using the iterative WCRT calculation approach presented above, we can analyze

the schedulability of the system based on the WCRT estimate of each task. In a system
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where there are jitters, we assume that Pi is the minimum arrival interval of Task Ti [14].

With this assumption, our formula can handle jitters [14].

6.3.2 Computational Complexity

In this section, we discuss the computational complexity of the WI3 approach. As in-

troduced in Section 6.3.1, there are five steps in our WCRT analysis. We analyze the

computational complexity of these five steps in this section.

Computational Complexity of Step 1.

In Step 1, we simulate each SFP-PrS to find the WCET of each SFP-PrS. We assume

the WCETs of SFP-PrSes have a constant upper bound. This assumption is reasonable if

we assume that the number of instructions in an SFP-PrS has a constant upper bound and

all loops in a task have a constant upper bound as well. Because the number of instructions

in an embedded application is limited, it is reasonable to assume a constant upper bound

for the number of instructions in a SFP-PrS. Also, in order to analyze the WCET/WCRT

of a task, we have to know the upper bounds of all loops in the task. Thus, the assumption

of a constant loop upper bound is a requirement. Suppose we have a task T with a PCFG

G � � V � E � , where V is the set of SFP-PrS nodes and E is the set of edges in the PCFG. We

need to simulate all SFP-PrS nodes, which implies the computational complexity in this

step is O
� �

V
� � .

Please note that we could not find computational complexity analysis for this portion

of SYMTA in [68, 70, 71, 72].

Computational Complexity of Step 2.

In Step 2, we build ILPs based on the task PCFG and the WCET of each individual

SFP-PrS in the PCFG. The number of variables in the ILP equations is the same as the

number of SFP-PrS nodes in the PCFG. The computational complexity of ILP in the worst

case is exponential. In other words, the worst case computational complexity in this step

is O
�
2

�
V

� � . However, as stated by Wolf in [69], “As the numbers of equations for both the
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granularity of basic blocks and program segments are far below the computation capabili-

ties of efficient ILP solvers, the computation times are very low.”

Computational Complexity of Step 3.

In Step 3, we calculate MUMBS for each task. MUMBS of a task is the union of useful

memory blocks over all execution points of the task. For a given task T with PCFG= � V � E � ,
we calculate the set M of memory blocks that can possibly be accessed by T . According to

the result given by Lee et al. [19, 20], the computational complexity of calculating useful

memory blocks at one execution point in T is bounded by O
� �

V
� �
E

� �
M

� � . Let the number of

execution points in T be W . Thus, the computational complexity of MUMBS calculation

is O
� �

V
� �
E

� �
M

�
W � . Let the number of nodes in any task PCFG be bounded by Γ. Similarly,

let the number of edges in any task PCFG be bounded by Θ. Furthermore, let the number

of memory blocks accessed by any task be bounded by Ω. Then, we can conclude that

the computational complexity of MUMBS for any task is O
�
ΓΘΩW � . These bounds are

reasonable because for a limited number of tasks, we can always find the task with the

largest number of nodes in the PCFG, the task with the largest number of edges in the

PCFG and the task with a largest number of memory blocks to be potentially accessed.

Computational Complexity of Step 4.

In Step 4, we first use Equation 13 in Step 4 in Section 6.3 to calculate the CIIP asso-

ciated with the MUMBS of each preempted task and to calculate the CIIP of the memory

block set that contains all memory blocks possibly accessed by a preempting task. In order

to calculate CIIP of a memory block set M, we only need to find the index of each memory

block in M and put each memory block into the corresponding element in CIIP. Thus, the

computational complexity of CIIP calculation for a single memory block set M is O
� �

M
� � .

CIIP is applied in Equation 15 in Step 4 in Section 6.3 to estimate the number of cache

conflicts. In Equation 15, we have to calculate the CIIP for � a
l � b � 1 M̃l and Mk

b in the case

task Ta is preempted by Tb. Here, M̃l is the MUMBS of task Tl. Mk
b is the set of memory

blocks when task Tb runs along a particular path. We assume there are n tasks. In the case
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a � n and b � 0, � a
l � b � 1 M̃l is the union of n � 1 MUMBSes. n � 1 is the largest number of

MUMBSes that can appear in this union. Because the number of memory blocks in each

M̃l is bounded by Ω, the number of memory blocks in � a
l � b � 1 M̃l is bounded by nΩ. The

number of memory blocks in Mk
b is bounded by Ω. Thus, the computational complexity of

CIIP calculation in Equation 15 is O
�
nΩ � .

Further, we use the CIIP of two memory block sets, � a
l � b � 1 M̃l and Mk

b, to calcu-

late the number of cache conflicts between these two memory block sets as shown in

Equation 15. The computational complexity problem for this calculation is generalized

as follows. Suppose we have two memory block sets M1 and M2. The CIIP of M1 is
�

M1 � � �
m10 � �������

�
m1 � N � 1 � , where N is the number of cache sets/lines in a cache. The CIIP of

M2 is
�
M2 � � �

m20 � �������

�
m2 � N � 1 � . The number of cache conflicts between M1 and M2 is given

by S
�
M1 � M2 � � ∑N � 1

i � 0 � min
� � �

m1i
�
�

� �
m2i

�
� L � � , where L is the number of ways in a cache.

For each individual calculation min
� � �

m1i
�
�

� �
m2i

�
� L � , the computation time is constant. Usu-

ally in a system, the cache size is already known before performing cache-related timing

analysis. In other words, N is a constant. Thus, the computational complexity of calculat-

ing S
�
M1 � M2 � is a constant. In other words, after CIIPs are calculated, the computational

complexity of Equation 15 is constant. Thus, assuming each memory block set is already

known, the total computational complexity of Equation 15 is determined by CIIP calcula-

tion, which is O
�
nΩ � .

If we perform path analysis on the preempting task, Equation 16 shown in Step 4 in

Section 6.3 is used. In Equation 16, Mk
b is the set of memory blocks accessed by Tb when

Tb runs along a particular path. In order to find the Worst MUMBS Path (WMP), we have

to perform path analysis on Tb. For path analysis performed on a task, the computational

complexity is exponential in the number of nodes that have two outgoing edges (i.e., the

nodes that contain branches) in the PCFG of the task (note that a node in a PCFG can

only have up to two outgoing edges according to Definition 9). We assume the number

of the nodes with two outgoing edges in a PCFG is bounded by Γb. The computational
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complexity of path analysis on a task is O
�
2Γb � .

In summary, suppose we have n tasks, in order to estimate CRPD, we follow the steps

below.

(i). We calculate MUMBS for every task except the task with the highest priority.

Each MUMBS has a computational complexity of O
�
ΓΘΩW � as given above. The total

computational complexity for MUMBS calculation is O
�
nΓΘΩW � .

(ii). We calculate CRPD for every pair of tasks. If we have n tasks, we need to calculate

n2 CRPDs. For each CRPD, if we do not perform path analysis, the computational com-

plexity is O
�
nΩ � . If we perform path analysis, the computational complexity is O

�
nΩ2Γb � .

Thus, the computational complexity of total CRPD calculation is O
�
n3Ω � if path analysis

is not performed and O
�
n3Ω2Γb � if path analysis is performed.

Therefore, the computational complexity for CRPD calculation is O
�
nΓΘΩW � n3Ω �

if path analysis is not performed. the computational complexity for CRPD calculation is

O
�
nΓΘΩW � n3Ω2Γb � if path analysis is performed.

Path analysis can reduce the CRPD estimate, however, increases computational com-

plexity. Therefore, as discussed in Section 5.4, we can choose to use path analysis or not.

If the control structure of a task is not complicated, in other words, the number of nodes

with two edges in a task PCFG is not large, we can perform path analysis in order to refine

CRPD.

Computational Complexity of Step 5.

In Step 5, WCRT is estimated by using CRPD calculations. We here analyze the com-

putational complexity of our WCRT analysis approach. Here, we assume that all CRPD

values have already been calculated. In short, we assume here that Steps 1 through 4 have

already completed and thus are not part of computational complexity analysis for Step 5.

The computational complexity of our WCRT analysis approach is is given in a theorem.

Then, we give a proof of this theorem.

86



Theorem 1: Assuming the CRPD of each type of preemption is already known (calcu-

lated), the computational complexity of our WCRT analysis by using the iterative equation,

Equation 12, is O
�
n � , where n is the number of tasks.

Proof: From Equation 12, we can find the following:

Rk
i � Rk � 1

i � 0 and Rk
i � Rk � 1

i � ∑i � 1
j � 0

� � Rk � 1
i
Pj

� � � Rk � 2
i
Pj

� � �
�
C j � CRPD

�
Ti � Tj � � 2Ccs �

If for all j, where 0 � j � i � 1,
� Rk � 1

i
Pj

� � � Rk � 2
i
Pj

� � 0, we have Rk
i � Rk � 1

i . In this case, we

conclude that Ri converges and Ri � Rk
i . Otherwise, if there exists a j, where 0 � j � i � 1,

such that
� Rk � 1

i
Pj

� � � Rk � 2
i
Pj

�
�� 0, we have

� Rk � 1
i
Pj

� � � Rk � 2
i
Pj

�
� 1 (due to the fact that

�
x

�
yields

only integer values). In this case, we have the following,

i � 1

∑
j � 0

� � Rk � 1
i

Pj

� � � Rk � 2
i

Pj

� � �
�
C j � CRPD

�
Ti � Tj � � 2Ccs � � min j � i � 1

j � 0

�
C j �

In other words, Rk
i � Rk � 1

i � min j � i � 1
j � 0

�
C j � . Therefore, Ri has to increase monotonically

before the iteration terminates. Ri has to be increased by at least min j � i � 1
j � 0

�
C j � in each

iteration. On the other hand, Ri cannot exceed Pi. Thus, the number of iterations is limited

by Pi

min j � i � 1
j � 0 � C j � . This implies that the number of iterations has a constant upper bound when

the periods and the WCET of tasks are determined. In other words, WCRT estimate for

one task by using this iteration method has a constant time complexity. We need to perform

such WCRT estimate for all tasks except the task with the highest priority. Thus, the total

computational complexity is O
�
n � . �

Overall Computational Complexity of WI3 approach.

Based on the computational analysis above, we can analyze the overall computational

complexity of our WI3 approach.

The overall computational complexity in our approach consists of two parts, the compu-

tational complexity of SYMTA and the computational complexity of our WCRT analysis

approach. We have already given the computational complexity of SYMTA above. In

SYMTA, the computational complexity of deriving WCETs for all SFP-PrSes is O
� �

V
� � .

The computational complexity of solving ILP equations is O
�
2

�
V

� � in the worst case. Thus,
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the total computational complexity of SYMTA is O
� �

V
�

� 2
�
V

� � � O
�
2

�
V

� � in the worst case.

Excluding the first two steps calculated by SYMTA, WI3 approach consists of CRPD

estimation and WCRT estimation. By combining these two parts, we can conclude that

our WCRT analysis approach has a computational complexity of O
�
nΓΘΩW � n3Ω � n � �

O
�
nΓΘΩW � n3Ω � , if we do not perform path analysis on the preempting task. In other

words, our WCRT analysis approach, excluding SYMTA, has a polynomial computational

complexity if we do not perform path analysis on the preempting task. If we perform

path analysis on the preempting task, the computational complexity of the overall CRPD

and WCRT analysis approach is O
�
nΓΘΩW � n3Ω2Γb � n � � O

�
nΓΘΩW � n3Ω2Γb � . We

keep path analysis as an option that can be selected by users depending on the complexity

of control structures in preempting tasks. Usually embedded applications have relatively

simple control structures; thus, we can search the worst MUMBS path without requiring

much computation time. By using path analysis, we can reduce CRPD and WCRT estimate

significantly.

Note that in [21, 22], in order to estimate the WCRT for one task, all the preemption

scenarios have to be investigated. The total number of preemption scenarios are exponen-

tial in the number of tasks; thus, the approach of [21, 22] has exponential complexity in

WCRT estimation. Therefore, our overall CRPD and WCRT analysis approach without

using path analysis and excluding computation time taken by SYMTA has only polynomial

complexity and thus is more feasible and scalable than Lee et al. [21, 22] when there are a

large amount of tasks in the system. (Please note that WI3 without path analysis is equiva-

lent to Lee et al. [19, 20] since Lee et al. do not perform path analysis on the preempting

task.)

Finally, the overall complexity of WI3 including computation time taken by SYMTA

is O
�
nΓΘΩW � n3Ω � 2

�
V

� � if path analysis is not performed. If path analysis is per-

formed, the overall complexity of WI3 including computation time taken by SYMTA is

O
�
nΓΘΩW � n3Ω2Γb � 2

�
V

� � . However, please note that in practice, SYMTA requires little
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computation time since, as claimed by Wolf [69], the ILP equations of SYMTA can be

solved efficiently by ILP solvers for most practical real-time applications.

6.4 Summary

In this chapter, we incorporate CRPD into WCRT analysis. We propose a new WCRT

analysis formula, which is the fourth contribution claimed in Section 1.3, Contribution

4: A new WCRT estimate formula is proposed. This formula can accommodate nested

preemptions. As discussed in Section 6.3.2, with respect to the number of tasks n, our

approach without using path analysis has a computational complexity as compared to the

exponential complexity of the approach of Lee et al. In the next chapter, we illustrate pri-

oritized cache design. A prioritized cache can reduce inter-task cache interference. We

will also modify our WCRT analysis approach in this chapter to analyze the behavior of a

prioritized cache.
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CHAPTER VII

PRIORITIZED CACHE

The difficulties in estimating WCET/WCRT of a real-time task in a multi-tasking environ-

ment with caches lie in cache interference among tasks. Because cache resources are shared

among tasks, cache lines used by one task may be evicted by another task when the former

is suspended. Disabling cache sharing among tasks may help reduce cache interference.

An intuitive way to solve this problem is to divide the cache into several partitions. Each

task is assigned one or more partitions exclusively so that interference among tasks is elim-

inated. Now, we need to design the partitioning algorithm and determine how the partitions

are assigned to tasks. Here, we propose a prioritized cache based on cache partitioning.

7.1 Hardware Design

A prioritized cache is a variant of a conventional set associative cache. In a multi-way

set associative cache, each way is called a column [5, 13, 52]. For example, a 4-way set

associative cache has four columns. The cache is partitioned at the granularity of columns

in a prioritized cache. Cache partitions are then used by tasks according to their priorities.

Inter-task cache conflicts are reduced. A prioritized cache is different from a conventional

set associative cache in the cache replacement algorithm. We can control a prioritized

cache directly by accessing control registers in the prioritized cache. Alternatively, we can

slightly modify the scheduler function of an Operating System (OS) in order to support the

prioritized cache. The prioritized cache is transparent to applications that run with an OS

supporting a prioritized cache.
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7.1.1 Cache Replacement Algorithm in a Prioritized Cache

A prioritized cache is partitioned at the granularity of columns. A column may be assigned

to a particular task. When a column in the cache is assigned to a task, that task is called

the owner of the column and the column is owned by the task. Not all columns need to be

assigned to tasks. We can also set a column to the status of “shared” so that the column can

be shared by tasks. Shared columns avoid the situation where some low priority tasks do

not have any cache columns to use.

The basic idea behind the prioritized cache is to assign cache partitions to tasks accord-

ing to their priorities. Priorities are widely used in task scheduling of real-time systems.

Depending on the scheduling algorithm chosen, priorities of tasks may be fixed – e.g., Rate

Monotonic Scheduling (RMS) – or dynamic – e.g., Earliest Deadline First (EDF) or Priority

Ceiling Protocol (PCP). Usually, those tasks with strict timing constraints have higher pri-

orities in using CPU resources. We need to notice that these existing scheduling algorithms

(e.g., RMS, EDF and PCP as mentioned above) are almost always only used to allocate

CPU resources. The priorities of tasks are not taken into account in conventional cache al-

location. However, tasks with strict timing constraints should also have higher priorities in

using other resources such as caches. With this intuition, we divide a cache into partitions

and assign partitions to each task according to its priority. In this thesis, we do not address

the problem of choosing priorities for tasks, but assume that each task has been assigned a

unique priority (not assigned to any other task) with an existing priority-based scheduling

algorithm such as RMS or EDF. We focus instead on how to assign cache partitions to tasks

according to their priorities.

Now, we assume that priorities of tasks range from 0 to pl � 1. 0 is the highest priority

and pl is the lowest priority. We also give each column a priority. At the beginning, the

priority of every column in the cache is the lowest one (pl � 1). When a task needs to use

the cache, the cache controller compares the priority of the task with the priority of each

column. To accomplish this, we add a special register to the cache controller as described
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in the next section. Only when the priority of a task is equal to or higher than the priority

of a column can the task use the column. In other words, a task with a higher priority can

use all columns owned by tasks with lower priorities. When a column is used by a task,

the priority of the column is upgraded to be equal to the priority of the task. After a task

completes, it notifies the cache controller to release all columns the task owns. The cache

controller does this by setting priorities of those columns to the lowest priority again. Let

us consider an example as below.

Is_At_Goal()

START

Avoid_Obstacles()

Detect_Obstacles()

Move_to()

NO

YES

OVER

YES NO

Figure 26: PCFG of MR

Example 34: Suppose we have two tasks, an MPEG decoder (MPEG for short)

and a Mobile Robot Control program (MR for short). The MR application is derived

from Missionlab, which is a mobile robot control software developed by the Georgia

Tech Mobile Robot Lab [43]. The PCFG of MR is shown in Figure 26.

MPEG and MR are two different kinds of applications. MPEG is a data-processing

application with soft real-time constraints. MR controls the behavior of a robot

based on a small set of data such as the coordinates of the robot and the coordi-

nates of obstacles. However, MR has a more strict timing requirement than MPEG.

92



ARM9TDMI
Processor Core

MemoryPrioritized 
L1 Cache

Figure 27: Architecture for Executing MPEG and MR

Thus, a tight WCET analysis for MR is needed. According to the PCFG shown in

Figure 26, we can see that the worst case control path in MR is the path from

Is At Goal( ) to Move To( ) via Detect Obstacles( ) and Avoid Obstacles( ).

We assume that MR has a higher priority than MPEG. In this example, there are

4 priorities, where 3 is the lowest and 0 is the highest priority. MR is given a priority

of 1 and MPEG is given a priority of 2. We use a 4-way 16K set associative L1

cache for all instructions and data. Each column has 256 lines. The processor used

in this example is ARM9TDMI. Figure 27 shows the architecture for the example.

At the very beginning, all columns in the cache are empty and thus have the lowest

priority of 3. When MPEG runs, it uses all four columns. The priorities of these four

columns are upgraded to the priority of MPEG, i.e., to 2 as shown in Figure 28(b).

Then, MPEG is suspended and MR begins to run. When there is a cache miss,

a cache line is chosen to be replaced. If the priority of the column in which the

cache line locates is lower than the priority of the task, the priority of this column is

upgraded to the priority of the task. In this example, two columns used by MPEG

are replaced by MR and the priorities of these two columns are upgraded to 1 as

shown in Figure 28(c). So, next time when MPEG is executed, MPEG can only use

the other two columns that still have priority 2. From this example, we can see that

if there is no other task with an equal or higher priority than MR, MR can use the

first two columns exclusively. In this manner, we can guarantee the usage of the

cache by high priority tasks at a cost, however, of degrading the performance of

lower priority tasks.

When a task is completely over, it releases all columns it owns. The cache

controller sets the priorities of these columns to the lowest priority. In the example
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above, we assume that MR is completed earlier than MPEG. When MR is over,

it releases the first and the second column and sets the priorities of these two

columns to 3, which is shown in Figure 28(d). Therefore, when MPEG is executed

next time, it can use all four columns again, as shown in Figure 28(e).
�
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Figure 28: An Example of the Assignment Strategy in a Prioritized Cache

In this section, we explain the cache replacement algorithm in a prioritized cache. In the

next section, we give details about implementation of such a cache replacement algorithm.

7.1.2 Cache Controller and Status Registers

The prioritized cache is a variant of a set associative cache. Figure 29 shows a prototype of

a prioritized cache. The parts that are different from a conventional cache are enclosed by

a square composed of a dashed line. The cache controller is modified and some registers

are added to save and control the status of each column.

The prioritized cache uses a replacement algorithm different from any used by a con-

ventional set associative cache. The replacement algorithm is implemented in the cache

controller. We add two tables, the Column Priority Table (CPT) and the Column Owner

Table (COT), and three registers, Current Task Register (CTR), Current Task Priority Reg-

ister (CTPR) and Column Status Register (CSR), to the cache controller. Each column has
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Data Bus

Address Bus

To Processor

Col. 0 Col. 1 Col. L−1

Address Bus

Data Bus

To Memory

...

Set 0

Set 1

. . .

CPT

COT

CSR

Control Logic

Set N−1

CTPR

Figure 29: A prototype of a prioritized cache

an entry in CPT and COT. An entry records the priority and the owner of the column. CTR

and CTPR are used to save the ID and the priority of the task which is currently running on

the processor. CSR indicates if a column is shared. Setting a column as shared allows all

tasks to use this column. Note that a shared column differs from a column with the lowest

priority in that a shared column always has the lowest priority with this priority never being

upgraded even if the column is used by a high priority task. Each column has one “share”

bit in the CSR. If the bit is set, the corresponding column is shared.

A prioritized cache uses only a task’s priority to allocate a column. The prioritized

cache does not limit the number of tasks and priorities directly, except for the limitation

imposed by the length of the CPT and COT registers. For example, if the CPT and COT

entries each have 16 bits, up to 216 tasks and 216 different priorities can be supported, which

is sufficient for many real-time systems. Suppose we have an L-way set associative cache,

a maximum of 2N tasks and a maximum of 2K different priorities. Clearly, then, we have L

entries each in the COT and CPT tables (i.e., L columns or ways). Each COT entry needs N

bits, for a total usage of L � N bits. Each CPT entry needs K bits, for a total usage of L � K

bits. The CTR register has N bits, while CTPR has K bits. Additionally, the CSR register

needs L bits. Therefore, in total, we need L � N � L � K � N � K � L � � L � 1 � � K � N � � L
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bits for the CPT and COT tables and the CTR, CTPR and CSR registers. Example 35

shows these extra tables and registers in a 4-way set associative prioritized cache. The

prioritized cache does not require much more area than a normal cache. For a prioritized

16K 4-way cache which supports 64 tasks and 64 priorities, the area increases by less than

5% compared with a set-associative cache of the same size and associativity.

Example 35: Suppose we have a 16KB cache with 4 columns as shown in Fig-

ure 29. The lengths of the specialized registers in the cache – CPT, COT, CSR and

CTR – are 16 bits each. Since the CPT and COT registers are each 16 bits long,

this cache supports up to 216 tasks and 216 priorities. In this example, K=the num-

ber of bits in the CPT register=16, N=the number of bits in the COT register=6,

L=the number of columns=4; thus, we need (L+1)(K+N)+L=(4+1)(16+16)+4=164

extra bits for the prioritized 16KB cache.
�

In Example 35, the prioritized cache needs to be initialized before it is used (as shown

in Figure 28(a)). We notice that most Operating Systems have an IDLE task which controls

the CPU when there is no other tasks running. The IDLE task has the lowest priority.

Therefore, we can assign the ID and the priority of the IDLE task to the corresponding

registers in the prioritized cache for initialization. We assume that the IDLE task has an

ID of 0 and a priority of 0xFFFF which is the lowest priority. Therefore, all of the CPT

entries in Figure 30 are 0xFFFF , and all of the COT entries are zero. Also, in order to

allow low priority tasks to use the cache, we set the fourth column as shared by default.

The initial settings of the registers are listed in Figure 30.

CPT
COT

CTR

CSR

CTPR

0XFFFF 0XFFFF 0XFFFF 0XFFFF
0X0000 0X0000 0X00000X0000

0X0000 0XFFFF

0001

Figure 30: Initialization of Registers in the Prioritized Cache

We give memory mapped addresses to the tables and the registers so that users can

set the values in the tables and registers as needed. Alternatively, specialized assembly

96



instructions for accessing these tables and registers can be defined if the target instruction

set has a sufficient number of undefined assembly instructions and if the processor can be

redesigned to support the new specialized assembly instructions. Usually, we only need to

set the value of CTR and CTPR. Every time when the task is switched, we write to the CTR

and CTPR the task ID and the priority of the task to be executed, respectively.

When the cache hits, the prioritized cache works the same as a conventional cache.

When there is a cache miss, a cache line has to be selected to hold the data/instructions

loaded from the memory. We select the cache line from a cache column in the following

order.

(1). An invalid cache line in a column owned by the current task.

(2). A cache line in a column that is not owned by any task (not the shared columns but

columns that have not yet been allocated, i.e., whose owner is the IDLE task).

(3). A cache line in a column that is owned by a lower priority task (other than the IDLE

task, which falls under (2) above).

(4). A cache line in a shared column.

If the cache line to be replaced is located in a column that is not owned by the current

task and this column is not a shared column, the priority and the owner of the column are

updated, that is, the values in CTR and CTPR are copied to the corresponding entries in

COT and CPT. When a column is released, the priority of the released column is set to the

lowest priority and the corresponding entry in COT is set to the ID – i.e., “0” – of the IDLE

task. Example 36 shows how the registers in a prioritized cache are updated.

Example 36: Suppose we have two tasks, MR and MPEG, as described in Exam-

ple 34 and Figure 28. We assume MPEG has an ID of 2 and MR has an ID of

7. The priority of MPEG is 2, while the priority of MR is 1. Column 3 is set as

shared by default in order to allow low priority tasks to use the cache in the worst

case that all other columns are allocated to high priority tasks. After MPEG runs,

Columns 0, 1 and 2 are owned by MPEG as shown in Figure 28(B). MPEG also
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Table 2: An Example of Cache Replacement in a Prioritized Cache

0001

0001

0001

Priority of Columns

(CPT) (CPT)

Owner of Columns

0 0

0

0

0

1 2

1

1

1

1 1

2

2

1

2

2

2

2

2

2 7

7

2 2

2

2

2

2

2

2

2 7 7

2

3

3

3

3

3

3

CTR CSRLine CTPR

uses the shared column, Column 3. The status of registers in the prioritized cache

is shown in Line 1 of Table 2. Then, MR begins to run for the first time. MR writes

its ID and priority to the CTR and CTPR registers, respectively, as shown in Line 2

of Table 2. MR needs to use cache lines to save its instructions and data in the

cache. Since MPEG has a lower priority than MR, the first column, which is owned

by MPEG, is selected and assigned to MR. For the same reason, the second col-

umn is also assigned to MR, as shown in Figure 28(c). The values in registers are

changed as shown in Line 3 of Table 2.
�

As presented in this section, additional registers are introduced in the cache controller

of a prioritized cache. The cache replacement algorithm depends on the values in those

registers. Each register in a prioritized cache is mapped to a memory address. By read-

ing/writing these registers, users can control a prioritized cache using software. Notice

that users of a prioritized cache do not need to handle memory-to-cache mapping directly.

Thus, there is no need to customize TLB design in a system using our prioritized cache.

Software interface details for a prioritized cache are introduced in the next section.

7.2 Software Interface

Registers in a prioritized cache are mapped to the memory address space. We provide some

APIs to access these registers in order to provide users with control of a prioritized cache.

However, application developers do not need to deal with the prioritized cache directly if

the OS is modified to support the prioritized cache. Only the context switch function and
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the task destruction function in an OS are required to be modified slightly.

7.2.1 APIs for Controlling a Prioritized Cache

The prioritized cache is software controllable. We provide APIs for users to configure the

cache. API functions can change the values in COT, CPT, CTR, CSR and CTPR to assign

or release the columns. We provide four APIs. Set tid pri(tid,pri) writes the priority and

ID of the current task into CTR and CPTR, respectively. Set column pri(col,pri) sets the

priority of a column. Release column(tid) releases all columns owned by the task with an

ID of tid. Set column shared(col) sets a column to a status of shared. These APIs can

be implemented as system calls in an OS. We give an example below to show how we use

these APIs in the MPEG and MR applications.

1. Set_column_shared(3);
2. while(!MPEG_over()&&!MR_over()){

4.      MPEG_decode_one_slice();
5.      Set_tid_pri(MR_ID,1);
6.      MR_move_one_step();
7.     if(MPEG_over())
8.           Release_column(MPEG_ID);
9.      if(MR_over())

11. }

3.      Set_tid_pri(MPEG_ID,2);

10.         Release_column(MR_ID);

Figure 31: Code Example Using APIs

Example 37: Consider the example shown in Figure 28. If we set Column 3 to be

shared and execute MPEG and MR alternatively, we can implement this example

with the C code shown in Figure 31. Notice that, in order to explain the APIs with

a simple example, we do not use an RTOS to schedule the tasks. Instead, the

MPEG function and the MR function are switched manually. Table 3 shows how

the CTR, CTPR, CSR, the priority and the owner of each column changes after

each line of code in Figure 31 is executed. We give MPEG an ID of 2 and MR an
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Table 3: Values in registers of the prioritized cache

0

0

0

0

0 0

0

0

0

0 0 0
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0 0 0

0

0

0

0

0

0

001

1

1
1

1

1

1 1

11

2

1

2

2

2 2

2

2 2

2

2

2

2 7

3

3

3

3

3

3

3

3

3

3

3

33 3

3

3

3 3 3

3

33
3

3

Initial

4

5

6

8

10

0000

0001

0001

0001

0001

0001

0001

0001

Line CTR CTPR CSR
Priority of Columns Owner of Columns

0

2 2

2 2

2

2

7 7

7

7

7

7

7

2

2

ID of 7. After line 1 of Figure 31 is executed, Column 3 is set to be shared: thus,

the value in CSR is changed to 0001 as can be seen in the second row of Table 3.

Set tid pri( ) is called in line 5 of Figure 31 in order to write the ID and priority of

MR to CTR and CTPR. Thus, the values in CTR and CTPR are changed to 7 and

2 respectively as can be seen in the fifth row of Table 3. Then, MR starts to run.

As described in Example 36, the first two columns of MPEG are assigned to MR.

Thus, the register values are changed as shown in the sixth row of Table 3. In

Line 8 of Figure 31, MPEG releases all of its columns if MPEG is over, which is

the case in this example. Thus, the register values indicating column priorities and

owners change as shown in the seventh row of Table 3. When MR is over, it also

releases all of its columns. The last row of Table 3 gives the status of registers

after MR is over.
�

7.2.2 Embedding Prioritized Cache APIs in an OS Kernel

We provide APIs for users to configure the prioritized cache. However, users do not need

to call these APIs directly; instead, the APIs can be embedded into the OS system calls.

For example, we can insert Set tid pri() into the scheduling function so that every time a

task is switched, the priority and the ID of the current task is written into CTR and CTPR,

respectively, in the prioritized cache. We can also embed Release Column() into the task

destruction function so that when a task is completed, all the columns it owns are released.
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Obviously, the changes needed to be made in the OS are minor. By embedding prioritized

cache control APIs into the OS kernel, the details of the prioritized cache can be made

transparent to users. Thus, users can focus on application development at a higher level

of abstraction. Figure 32 shows the pseudo-code of the updated scheduling function in

Atalanta RTOS [53]. The line in bold is added to support the prioritized cache.

void reschedule(void)
{

disable_interrupt()
...

old_stack=task[current_task].stack;

new_stack=task[next_task].stack;

contextswtich();

current_task=next_task;

Set_tid_pri(task[current_task].tid,task[current_task].pri);
...

enable_interreupt();

}

Figure 32: The updated scheduling function in Atalanta RTOS

In this section, we introduce software support for a prioritized cache. We can use a

prioritized cache by using APIs directly or by modifying OS. In the next section, we adapt

our WCRT analysis approach for a prioritized cache.

7.3 WCRT Analysis for a Prioritized Cache

Customized caches can be demonstrated to be effective in eliminating inter-task cache con-

flicts by running benchmarks or evaluating average performance (e.g., cache miss rate).

However, lack of worst case analysis is not acceptable in a real-time system. Benchmark

applications may not cover all situations. Average performance cannot guarantee worst-

case performance. Thus, in order to apply a customized cache in a real-time system safely,

we need to analyze the WCET/WCRT formally.

We divide prioritized cache usage into two stages. In the first stage, the cache columns

are allocated to tasks. Cache evictions may happen if columns used by low priority tasks

are allocated to high priority tasks. In this stage, tasks run with a cold cache. Because a
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task may have multiple feasible paths, the task may not execute all SFP-PrSes in one run.

In other words, a task may request more cache columns after the first run. Thus, the cache

columns owed by a task may change dynamically. A high priority task may acquire more

cache columns and a lower priority task may lose cache columns subsequently. However,

after all SFP-PrSes of a task are executed at least once, cache columns allocated to this

task become stable. Therefore, for the purpose of WCRT analysis, we run each task one or

more times with carefully selected input data so that every SFP-PrS in the task is executed

at least once in the first stage. Tasks are executed in this way in the descending order of

task priorities. After this stage, cache allocation is completed. So, in the second stage, all

tasks are allocated a portion of columns. The prioritized cache works in the second stage

for the rest of time. Thus, we call the first stage transit stage and the second stage stable

stage.

We assume that we can use the behavior of a prioritized cache in the stable stage to

determine the timing properties of tasks. Otherwise, to analyze the transit stage, the as-

sumption of a cold cache can be used. In the stable stage, cache eviction only happens in

the shared columns. Notice that we assume each task has a unique priority (see Section 2.1

for a full list of all of our assumptions).

Usually, WCET/WCRT analysis assumes a cold cache when a task starts to run. This

assumption is reasonable in a system where the cache is shared by all tasks because the

cache lines used by one task may be evicted by other tasks. In the worst case, a task has to

reload all data and instructions from the memory to the cache after a context switch. This

cache reload cost due to the cold cache assumption applies to all multi-tasking systems,

either preemptive or non-preemptive. Thus, we call this type of cache reload cost non-

preemption related cache reload cost. Non-preemption related cache reload cost is included

in the WCET estimate for each task. Non-preemption related cache reload cost affects both

WCET and WCRT of tasks. An example is given as below.

Example 38: Figure 33 shows a scenario in a preemptive multi-tasking system. A
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Figure 33: An example of inter-task cache eviction

low priority task, Task A, is preempted by a high priority task, Task B, at time t1.

During the preemption, Task B uses some cache lines that were used by Task A

before the preemption. The memory blocks loaded to these cache lines by Task A

are thus evicted. After Task A resumes at time t2, it again needs to access some of

the memory blocks evicted by Task B. Task A has to reload those memory blocks to

the cache. Furthermore, after Task A resumes, Task A may evict some cache lines

used earlier by Task B as well. When Task B is executed for the second time at time

instant t3, Task B also needs to reload some cache lines. Cache reload caused by

inter-task interference extends the response times of Task A and Task B, as shown

in Figure 33(B).
�

Notice that, in a system where the cache is used by a task exclusively, the assumption of

a cold cache is too conservative. After the first run of the task, the cache is filled with some

data and instructions used by the task. Since the cache is not shared, no inter-task cache

conflicts exist. When the task runs again later, the cache is already warmed up. In SYMTA

[68], an iterative method is provided to calculate the minimum set of memory blocks that

have resided in the cache because of previous executions.

As discussed earlier in the thesis, in a preemptive multi-tasking system, preemptions
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can cause additional cache reload cost, which is called CRPD. This CRPD only happens

in preemptive multi-tasking systems. Thus, we also call this type of cache reload cost

preemption-related cache reload cost. Preemption-related cache reload cost (i.e., CRPD)

of conventional caches are analyzed in Chapter 5. Now, we apply this approach to analyze

the CRPD for the prioritized cache.

In a prioritized cache in the stable stage, tasks only conflict in the shared columns. The

tasks that do not use shared columns do not have cache interference with other tasks (since

we are in the stable stage). Thus, all preemptions related to these tasks do not incur CRPD.

Since cache columns are allocated to tasks according to task priorities, high priority tasks

have higher priority in using cache columns. Suppose we have a set of tasks Ti �
�
0 � i � n � ,

sorted in the descending order of their priorities. Here, n is the number of tasks. In other

words, if i � j, Ti has a higher priority than Tj. In this case, if Tj can use some non-shared

cache columns in the stable stage, Ti must own some non-shared cache columns as well.

(Otherwise, Ti will occupy cache columns used by Tj since Tj has a lower priority.) Thus,

in the stable stage, we divide tasks into two groups. In the first group, we have tasks T0,

T1, ..., Tq, where 0 � q � n. We use ψ1 ��� Tl
�
0 � l � q � to represent this group of tasks.

All the tasks in this group do not use any shared columns. Thus, each task in ψ1 does not

conflict with any other task. In the second group, we have tasks Tq � 1, ...,Tn � 1. We use

ψ2 � � Tl
�
q � l � n � to represent this second group of tasks. The tasks in ψ2 use shared

cache columns; thus, each task in ψ2 may conflict with other tasks in ψ2.

Suppose we have two tasks, Ta and Tb. Tb has a higher priority than Ta. In the stable

stage, there are only two possibilities for CRPD
�
Ta � Tb � as follows:

1. Tb is in the task group set ψ1. In this case, Tb owns cache columns exclusively. As

a result, the cache lines used by Tb do not overlap with the cache lines used by Ta; thus,

CRPD
�
Ta � Tb � � 0.

Note that Ta has a lower priority than Tb. If Ta is in ψ1, Tb must be also in ψ1. Thus,

we do not need to consider the case where Ta is in ψ1, since the case of Ta
� ψ1 is already
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covered by Case 1 above.

2. Neither Ta nor Tb is in ψ1. In other words, both Ta and Tb use shared columns. In

this case, cache eviction only happens in the shared columns. We can modify the CRPD

analysis equation, Equation 5 in Section 5.5, to estimate the CRPD after Ta resumes from a

preemption. The necessary modifications are shown in Equation 17 below, which is based

on Equation 5.

CRPD
�
Ta � Tb � �

��� �� 0 Tb
� ψ1

S
� � a

l � b � 1 M̃l � MWMP
b � � Cmiss Tb

� ψ2

(17)

We use Example 39 to explain how a prioritized cache can affect cache interference

among tasks.

Example 39: Suppose we have three tasks: MR, ED and OFDM (these three tasks

were explained in Example 14. Suppose further we have a 32KB 8-way prioritized

cache. Each cache line has 16 bytes. Thus, each column has 256 cache lines.

MR uses Column 0 to Column 4 and ED uses the rest of columns. The last two

columns are set as shared. Thus, OFDM can only use the last two columns. OFDM

has no conflicts with MR, but OFDM and ED may conflict in the shared columns in

the prioritized cache. We can derive the memory footprints of ED and OFDM first,

then use the CIIP based approach as given in Equation 4 to estimate the number

of conflicts between OFDM and ED in the shared columns. In this example, the

estimate of an upper bound on the number of cache conflicts between OFDM and

ED is 160.

If we use a conventional cache, all three tasks, MR, ED and OFDM conflict with

each other in the cache. Again, by using our CIIP based approach, we can derive

the estimate of cache conflicts between MR and OFDM, which is 88. The estimate

of the number of cache conflicts between ED and OFDM is 98.

Assuming cache miss penalty is 10 clock cycles, the CRPD caused MR preempting
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OFDM is zero in a prioritized cache. As a comparison, the CRPD caused MR

preempting OFDM is 880 clock cycles in a conventional set-associative cache.

Therefore, a prioritized cache can be quite effective in preventing high priority tasks

conflicting with low priority tasks.
�

In Example 39, although the number of cache conflicts between ED, MR and OFDM

is reduced, OFDM cannot use the full cache. Thus, the WCET of OFDM is expected to

increase. We examine this impact in our experiments.

Now, let us consider how to adapt our WCRT analysis approach to a prioritized cache.

Based on the CRPD given in Equation 17, we can modify our WCRT analysis approach for

the prioritized cache as explained next.

For each task Ti, if Ti
� ψ1, Ti does not conflict with any other tasks in the cache. For

each preemption, we only need to consider the context switch cost and the WCETs of pre-

empting tasks. Thus, the WCRT analysis formula introduced in Section 5.5 can be modified

as follows.

R0
i � Ci;

R1
i � Ci

�
∑i � 1

j � 0

� R0
i

Pj ���	� C j
�

2Ccs 

...

Rk
i � Ci

�
∑i � 1

j � 0

� Rk � 1
i
Pj ���� C j

�
2Ccs 


On the other hand, if Ti
� ψ2, Ti may conflict with any other task in the task group ψ2.

But Ti does not conflict with any task in ψ1. Thus, if Ti is preempted by a task Tj in ψ1, for

overhead (i.e., over and above actual worst-case task execution time C j of Tj) we need only

consider the context switch costs. If Ti is preempted by a task in ψ2, we need to consider

both CRPD and the context switch costs. Therefore, we use the formula below to estimate

the WCRT of Ti.
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R0
i � Ci;

R1
i � Ci

�
∑q

j � 0

� R0
i

Pj ���	� C j
�

2Ccs 
 � ∑i � 1
j � q � 1

� R0
i

Pj ���� C j
�

CRPD � Ti � Tj 
 � 2Ccs 

...

Rk
i � Ci

�
∑q

j � 0

� R0
i

Pj ���� C j
�

2Ccs 
 � ∑i � 1
j � q � 1

� Rk � 1
i
Pj ���� C j

�
CRPD � Ti � Tj 
 � 2Ccs 


In this section, we adapt our WCRT analysis approach to a prioritized cache. By using

WCRT analysis, we can predict the worst case timing properties of a prioritized cache,

which allows us to use a prioritized cache in a real-time system safely.

7.4 Summary

In this chapter, we present a prioritized cache, which is the fifth contribution claimed in

Section 1.3, Contribution 5: A novel “prioritized cache” design is presented to reduce

CRPD. By using a prioritized cache, we can reduce inter-task cache interference. As a

result, WCRTs of tasks are tightened. The WCRT analysis approach in Chapter 6 is adapted

to analyzed the behavior of a prioritized cache. Such a formal analysis allows us to use a

prioritized cache safely in real-time systems. In the next chapter, we use some application

to evaluate the performance of our WCRT analysis approach and the prioritized cache.
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CHAPTER VIII

EXPERIMENT SETUP

In this thesis, we propose a WCRT analysis approach for preemptive multi-tasking systems.

In order to tighten task WCRT by reducing cache interference among tasks, we design a

prioritized cache. We further develop some real-time applications to evaluate the perfor-

mance of our WCRT analysis and the prioritized cache. In this chapter, we explain the

environment and the flow of experiments in detail; however, actual experimental results (as

opposed to tools and methods) are reserved for the chapter after this one.

8.1 Experiment Flow

The flow of experiments performed in this thesis is shown in Figure 34. The flow consists of

three main parts: (i) simulation, (ii) WCET analysis and (iii) WCRT analysis. The research

presented in this thesis focuses on WCRT analysis, as shown in the shadowed block on the

right-hand-side of Figure 34. In this section, we explain each part in the flow.

WCET of SFP−PrS

Simulation Platform

real−time applications

SYMTA

WCRT
&

Schedulability

WCET

WCRT AnalysisSimulation

WCET Analysis

Cache Spec.

memory trace

Path Analysis

Intra−task analysis

Inter−task analysis

Schedulability Analysis

WCRT Estimation

Figure 34: Experiment flow
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8.1.1 Simulation

The objectives of simulation are (i) finding all memory addresses that can possibly accessed

by a task and (ii) finding the WCET for each SFP-PrS in a task.

As mentioned in Section 2.3, a task consists of SFP-PrS nodes in a PCFG. An SFP-PrS

behaves as a basic block. Since there is only one feasible path in an SFP-PrS, we can use

simulation to find the memory footprint and the WCET of an SFP-PrS. Note that we assume

that there are no dynamic memory allocations and that addresses of all data structures are

fixed. Because branches exist in a task, we need to use different input data sets to make

sure all SFP-PrSes are simulated. This is explained in Example 40.

if(avg_type==0){

}
else{

}

for(int j=0;j<10;j++)
sum+=a[j];

sum/=10;

for(int j=0;j<10;j++)
sum+=1/a[j];

sum=10/sum;

START

avg_type==0?

OVER

v1

v2

v3
v4

v5

MFP
(A)

SFP1

SFP2

SFP1 SFP2

(B)

Figure 35: A Example of Simulation

Example 40: Consider the program shown in Figure 35. The value of avg type

determines which SFP-PrS to execute next. In order to find the WCET and memory

footprint of SFP-PrS v3, we first simulate the program with avg type equal to 0. Then

we simulate the program once again with avg type equal to 1 to find the WCET and

memory footprint of SFP-PrS v4. Therefore, we need to simulate the program at

lease twice in this case.
�

Usually, a task has to be simulated more than once to collect WCETs and memory
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footprints of all SFP-PrSes. WCETs of all SFP-PrSes in the task under consideration are

then fed to SYMTA for WCET analysis.

8.1.2 WCET Analysis (SYMTA)

WCETs of tasks are required in our WCRT analysis. We use SYMTA for WCET analysis.

SYMTA takes as input the program structure of a task and the WCETs of each SFP-PrS

in the task. Based on these inputs, SYMTA builds ILP equations, which are then solved

to find the WCET of the task. We introduced SYMTA briefly in Section 3.2. A detailed

description of SYMTA can be found in [68, 70, 71, 72]. Note that we can also use other

WCET analysis approaches to obtain WCETs of tasks. We only need to replace the WCET

estimates in our WCRT analysis approach.

8.1.3 WCRT Analysis

Our WCRT analysis requires four inputs: (i) program structures of tasks, (ii) cache specifi-

cation, (iii) WCETs of tasks and (iv) memory footprints of tasks. Cache specification gives

the parameters of a cache which consists of cache size, the number of ways, the number of

bytes in each cache line and the type (i.e., set-associative or prioritized).

First, we apply our intra-task cache analysis approach to calculate the MUMBS for ev-

ery task except the task with the highest priority. Second, we use inter-task cache eviction

analysis approach as proposed in this thesis to analyze cache interference between every

pair of tasks with different priorities. Path analysis is exploited to tighten the analysis

results. After these two steps, we can derive the CRPD estimate for every type of preemp-

tion. Next, we export the CRPD estimates to our WCRT analysis equation as shown in

Section 6.3.1 to find the WCRT for each task. Based on the WCRT estimates, we can find

if a feasible schedule can be found or not.
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8.2 Experiment Environment

We develop some real-time applications to evaluate the performance of our WCRT analysis

algorithm and our prioritized cache. The experiments are performed on a uniprocessor

system with a unified L1 cache. The experimental environment is shown in Figure 36.

(VCS)

Processor
Hardware

Software

L1 Cache Memory

Task 0 Task 1 Task 2

Atalanta RTOS

Seamless CVE

(XRAY)

(ARM9TDMI)

Figure 36: Simulation Architecture

The experiments require support of both software and hardware. Software and hardware

setup are illustrated in this chapter respectively.

8.2.1 Software Setup

Our experiments are based on three groups of tasks. The first group of tasks, OFDM, ED

and MR, are derived from a Mobile Robot application as described in Example 1. The tasks

in the second group are Adaptive Differential Pulse Code Modulation Coder (ADPCMC),

ADPCM Decoder (ADPCMD) and Inverse Discrete Cosine Transform (IDCT). ADPCMC

and ADPCMD are taken from MediaBench [23, 39]. IDCT is extracted from an MPEG2

decoder. The third group of tasks are obtained from a paper of Lee et al. [19] including

four tasks, FFT, LU Decomposition (LUD), Least Mean Square (LMS) and Finite Impulse

Response filter (FIR).

An RTOS, Atalanta, developed at Georgia Tech, runs on the processor [53]. Atalanta

provides multi-tasking supports with a Fixed Priority Scheduling algorithm. We assign task
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priorities statically. Each task has a unique priority.

All software including the RTOS and applications are supported by XRAY [42], which

is a debugger and an Instruction Set Simulator (ISS) provided by Mentor Graphics [40].

8.2.2 Hardware Setup

We build a simulation platform by using an ARM9TDMI processor core with a unified

L1 cache. The L1 cache can be a set associative cache or a prioritized cache. The cache

size is 32KB. The main memory size is 256MB. It turns out that none of our examples

require more than 256MB, so we use only this simple two-level memory hierarchy. The

ARM9 processor is simulated with ARM9 Processor Simulation Package (PSP) developed

by Mentor Graphics. The caches (i.e., the set associative and the prioritized cache) are

modeled with the Verilog Hardware Description Language (HDL). All hardware units in-

cluding the processor, the cache and the memory are simulated with VCS [55], a Verilog

simulator developed by Synopsys [54].

Hardware and software are co-simulated with Seamless CVE [41], which is a hard-

ware/software co-simulation tool from Mentor Graphics [40].

8.3 Summary

In this chapter, we first illustrate the flow for experiments in Section 8.1. Then we explain

the simulation environment used in experiments in Section 8.2. In Section 8.2, we also

briefly introduce the tasks used in our experiments.

In the next chapter, Chapter 9, we elaborate our experiments and give experimental

results plus analysis of those results.
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CHAPTER IX

EXPERIMENTAL RESULTS

In this chapter, we develop some real-time applications to evaluate the performance our

WCRT analysis approach and our prioritized cache. The experiments for the WCRT anal-

ysis approach are shown in Section 9.1. The experiments for the prioritized cache are

explained in Section 9.2. Finally, Section 9.3 summarizes this experimental results chapter.

9.1 Experiments for the WCRT Analysis

We use three applications as described in Section 8.2.1 to evaluate the performance of our

WCRT estimate approach. In addition, we use a fourth application provided in several

publications by Lee et al. [19, 20, 21, 22]. In the experiments, we compare five approaches

to estimate WCRT. All approaches take CRPD into consideration.

Approach 1 (A1): This is the approach proposed by Busquests-Mataix [4]. In this

approach, all cache lines used by preempting tasks are assumed to be reloaded for a pre-

emption.

Approach 2 (A2): Only lines in the intersection set of lines used by the preempting task

and the preempted task are assumed to be reloaded after a preemption. Our inter-task cache

eviction method proposed in 5.1 is used here.

Approach 3 (A3): Only useful memory blocks in the preempted task are used to esti-

mate the CRPD. Intra-task cache access analysis for the preempted task proposed by Lee

et al. in [19, 20] is used here.

Approach 4 (A4): Both inter-task cache eviction analysis and intra-task cache access

analysis are used to estimate the cache reload cost. Path analysis is not used in this ap-

proach. Note that this approach is used by Lee et al. in [21, 22] to estimate the CRPD for
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each preemption. ILPs as proposed in Lee’s approach are constructed to estimate to WCRT

in Approach 4.

Approach 5 (A5): Both inter-task cache eviction analysis and intra-task cache access

analysis are used to estimate the cache reload cost. Also, path analysis proposed in Sec-

tion 5.4 is applied to the preempting task. This approach – Approach 5 – is the WI3 ap-

proach described in this thesis and summarized in Section 6.3.

9.1.1 Experiment I: a Mobile Robot Application

The tasks in the first experiment, OFDM, ED and MR, are described in Example 1. Table 4

lists the WCET estimate, period/deadline and priority for each task.

Table 4: Tasks
Task WCET(us) Period(us) Priority
T1(MR) 842 3,500 2
T2(ED) 1892 6,500 3
T3(OFDM) 2830 40,000 4

As shown in Table 4, MR has the highest priority and OFDM has the lowest prior-

ity. Three types of preemptions can happen in this application, MR preempting ED, ED

preempting OFDM and MR preempting OFDM.

The estimates of the number of cache lines to be reloaded in each type of preemption

derived with these five approaches are listed in Table 5.

Table 5: Number of cache lines to be reloaded
Preemptions A1 A2 A3 A4 A5

OFDM by MR 245 134 187 118 88
OFDM by ED 254 172 187 135 98

ED by MR 245 87 106 85 81

Approach 1 assumes that all cache lines used by the preempting task will be accessed

by the preempted task after the preempted task is resumed. Obviously, this may not be

true. Some cache lines will never be used by the preempted task no matter which path

the preempted task takes. Thus, by calculating the set of cache lines that can possibly be
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accessed by both the preempting and the preempted task, we can further reduce the estimate

of the number of cache lines to be reloaded by the preempted task, as shown in Approach 2.

Approach 3 calculates the maximum set of memory blocks in the preempted task that

can potentially cause cache reload. This approach only relates to the memory access pattern

of the preempted task. Thus, for a certain preempted task, the estimate of cache reload cost

is always the same. Obviously, this approach ignores the differences among preempting

tasks and only assumes that all “useful” memory blocks in the preempted task will be

evicted by the preempting task, which might not be true.

Both inter- and intra-task cache eviction are considered in Approach 4. By considering

the preempting tasks and incorporating inter-task cache eviction analysis, the estimate of

the number of cache lines that need to be reloaded is significantly reduced, as shown in

Table 5.

In Approach 5, we further use path analysis to tighten CRPD estimates. As shown in

Table 5, the estimates of the number of cache conflicts are reduced the most in Approach 5.

The WCRT of OFDM and ED can be calculated based on the results shown in Table 5.

Notice that MR has the highest priority so that it can never be preempted. So, the WCRT of

MR is just equal to its WCET. We also vary Cmiss from 10 cycles to 40 cycles to investigate

the influence of cache miss penalty on the WCRT. The estimate results (Approach 1 thor-

ough Approach 5) and the Actual Response Times (ART) which is the WCRT as observed

in simulations are listed in Table 6. To calculate ART via simulation, we instrumented data

values to maximize execution time (e.g., by iterating over maximum numbers of loops).

However, please note that we did not instrument worst-case task arrivals (e.g., to maximize

nested preemptions) in our ART calculation.

Approach 4 is the best approach, in this thesis author’s opinion, of all prior work known

to the thesis author. As we can see from Table 6, when the cache penalty is small (we vary

from 10 to 80 cycles), CRPD does not have a large impact task WCRT. Thus, our WI3 ap-

proach (A5) does not show much difference from the approach of Lee et al. (A4). However,
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Table 6: Comparison of WCRT estimate in Experiment I
Cmiss Task A1 A2 A3 A4 A5 ART

OFDM 9847 9771 9789 9764 9684 6113
10 ED 2567 2409 2428 2407 2403 2382

OFDM 12510 12242 12378 10424 10264 6211
20 ED 2812 2496 2534 2492 2484 2400

OFDM 23501 19249 17244 12468 12258 6255
30 ED 3057 2583 2640 2577 2565 2426

OFDM 45216 31284 30532 16952 12966 6362
40 ED 3302 2670 2746 2662 2646 2525

when the cache miss penalty is large enough, CRPD cannot be ignored in WCRT estima-

tion. In this case, a tighter CRPD estimate can reduce the WCRT estimate significantly. For

example, when the cache miss penalty is 40, our approach tightens the WCRT of OFDM

by 24%.

In order to investigate the impact of CRPD on the WCRT estimate, we change the cache

miss penalty from 10 cycles to 80 cycles and compare the WCRT estimates of OFDM

derived with A4 and A5 respectively. The result is shown in Figure 37.

Figure 37: Comparison of the WCRT estimates derived with Approach 4 and Approach 5

As shown in Figure 37, when the cache miss penalty is small, there is not much differ-

ence between Approach 5 and Approach 4. However, when the cache miss penalty becomes

116



larger, our approach (Approach 5) performs better than Approach 4. When the cache miss

penalty is 80 clock cycles, the WCRT estimate derived with Approach 5 is 28% less than

the WCRT estimate derived from Approach 4.

Another reason that our approach (A5) outperforms the approach of Lee et al. is that

our approach has a tighter estimate of the number of preemptions. We tie each preemption

to an invocation of a preempting task. Instead, Lee et al. use ILP to estimate the number

of preemptions. Without exploiting all constraints to build ILP equations, there may be

overestimate in the number of preemptions. For example, when the cache penalty is 80

cycles, OFDM is preempted by MR 29 times as estimated with Approach 4. However, the

number of times MR preempts OFDM is only 21 if estimated with Approach 5. The WCRT

estimate is tightened in our approach due to reduction in the upper bound estimate of the

number of preemptions.

9.1.2 Experiment II: a DSP Application

The tasks in the second experiment are Adaptive Differential Pulse Code Modulation Coder

(ADPCMC), ADPCM Decoder (ADPCMD) and Inverse Discrete Cosine Transform (IDCT).

ADPCMC and ADPCMD are taken from MediaBench [23, 39]. IDCT is extracted from

MPEG2 decoder. The periods, priorities and WCETs of tasks in each experiment are listed

in Table 7.

Table 7: Tasks
Task WCET(us) Period(us) Priority
T1(IDCT) 1580 4,500 2
T2(ADPCMD) 2839 10,000 3
T3(ADPCMC) 7675 50,000 4

Similar to Experiment I, there are three types of preemptions, IDCT preempting AD-

PCMD, IDCT preempting ADPCMC and ADPCMD preempting ADPCMC. The estimates

of the number of cache lines to be reloaded in each type of preemption derived with these

five approaches are listed in Table 8.
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Table 8: Number of cache lines to be reloaded for each preemption in Experiment II
Preemptions A1 A2 A3 A4 A5

ADPCMC by IDCT 249 68 98 64 56
ADPCMC by ADPCMD 220 114 98 92 64

ADPCMD by IDCT 183 58 89 55 46

Based on Table 8, we can estimate CRPD and use CRPD to derive WCRT estimate for

each task. The WCRT estimates of the second experiment are listed in Table 9.

Table 9: Comparison of WCRT estimates for tasks in Experiment II
Cmiss Task A1 A2 A3 A4 A5 ART

ADPCMC 35743 35701 35071 35027 34676 23512
10 ADPCMD 6565 6315 6377 6309 6291 6190

ADPCMC 48528 38687 37987 35983 34967 23867
20 ADPCMD 6931 6431 6555 6419 6383 6223

ADPCMC 88606 39555 39055 38911 38779 24101
30 ADPCMD 7297 6547 6733 6529 6475 6278

ADPCMC 359239 48714 47722 39931 39755 24353
40 ADPCMD 7663 6663 6911 6639 6567 6354

Because the number of cache lines to be reloaded for each preemption in this appli-

cation is small, the CRPD is not large enough to affect the WCRT when the cache miss

penalty is small. As shown in Table 9, although our approach (A5) shows a slightly better

performance than the approach of Lee et al., the difference is not large. However, if the

cache miss penalty increases, our approach significantly outperforms the approach of Lee

et al. in estimating the WCRT of ADPCMC, as shown in Figure 38. The cache miss penalty

is changed from 10 cycles to 80 cycles.

9.1.3 Experiment III: a Task Set with Six Tasks

Each application in Experiment I and Experiment II has only three tasks. The preemption

scenarios are relatively simple. In this experiment, we use a lager number of tasks to

investigate the performance of our WCRT analysis approach.

The third experiment contains six tasks, OFDM, ADPCMC, ADPCMD, IDCT, ED and

MR. The priority and period of each task is listed in Table 10. Note that, in order to
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Figure 38: Comparison of the WCRT estimates of ADPCMC derived with Approach 4
and Approach 5

satisfy the necessary condition of schedulability of a real-time system (i.e., the total CPU

utilization of all tasks must be less than 100% [28, 34]), we increase the periods of some

tasks as compared to the same tasks in Experiment I and II. ADPCMC has the lowest

priority and MR has the highest prority. The WCET of each task remains the same.

Table 10: Tasks in Experiment III
T1(MR) T2(IDCT) T3(ED) T4(ADPCMD) T5(OFDM) T6(ADPCMC)

Period(us) 7,000 9,000 13,000 20,000 40,000 50,000
Priority 2 3 4 5 6 7
WCET(us) 830 1580 1392 2839 2830 7675

We use the five different approaches described earlier to estimate the WCRT of the

two tasks with the lowest priorities, OFDM and ADPCMC, which may be preempted more

frequently than other tasks. Table 11 gives the WCRT estimates of OFDM and ADPCMC

with different approaches.

Approach 5 and Approach 4 are compared in Table 12. By applying path analysis, the

WCRT estimate is reduced by up to 32%. Thus, we demonstrate that our approach can

tighten WCRT estimation results significantly by using path analysis technique, which is

missing in the enhanced approach of Lee et al.[20]. Also, our WI3 approach (A5) achieves
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Table 11: WCRT estimates in Experiment III
WCRT estimates of ADPCMC

Cmiss A1 A2 A3 A4 A5
10 51434 34163 34591 33893 33507
20 75201 51452 57850 38431 34685
30 232903 59482 74020 58099 38905
40 4070285 75073 114209 69495 58142

WCRT estimates of OFDM
Cmiss A1 A2 A3 A4 A5
10 16901 16551 17050 16496 16330
20 25904 17199 17242 17001 16757
30 50831 17847 17750 17699 17184
40 116464 34694 27718 25615 17611

Table 12: Comparison of Approach 4 and Approach 5 for WCRT estimates
Cmiss

Task 10 20 30 40
ADPCMC 1% 10% 32% 16%
OFDM 18% 3% 4% 31%

a tighter WCRT estimate because the estimate of the number of preemptions is tightened.

Our WCRT estimate approach (Approach 5) binds each preemption with an invocation

of a preempting task. As a comparison, Lee et al. use ILP to estimate of the number of

preemptions. As we point out earlier, incomplete ILP constraints may cause overestimate

in the number of preemptions, which increases the WCRT estimate.

We also run this experiment on caches with different sizes. Figure 39(A) and Fig-

ure 39(B) show the WCRT of ADPCMC and OFDM, respectively, when cache size changes

from 8KB to 64KB. The cache miss penalty is 30 clock cycles here.

Usually, when the cache size is small, task WCRT is more sensitive to cache interfer-

ence among tasks. In this case, the difference between our approach and Lee’s approach is

larger. For example, as we can see in Figure 39, when the cache size is 8KB, the WCRT

of ADPCMC is reduced by 68% when comparing Approach 5 with Approach 4. How-

ever, when the cache size increases, the cache conflicts among tasks lessen; thus, for large

caches, WCRT may not be heavily affected by cache interference. The difference between
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(A) (B)

Figure 39: Comparison of WCRT with Different Cache Size

our approach and the approach of Lee et al. (Approach 4) also becomes smaller as cache

size becomes larger. For example, when the cache size is 64KB, WCRT is deduced by only

4% as comparing Approach 5 with Approach 4.

From the comparison results as shown in Figure 39, our WCRT approach can reduce

the WCRT estimates by from 4% to 68%, as compared to the approach of Lee et al. When

the cache size increases, the conflicts among tasks occured in the cache become less. Thus,

WCRT is not affected heavily by cache interference. The difference between our approach

and Lee’s approach also becomes smaller as cache size becomes larger.

9.1.4 Experiment IV: a Task Set Used in the Work of Lee et al.

Two factors affect the accuracy of WCRT estimates: (i) the estimate of the number of pre-

emptions and (ii) the estimate of cache reload cost for each preemption. The approach

of Lee et al. explores all preemption scenarios in order to tight the cache reload cost esti-

mate for each preemption. They use ILP equations to estimate the number of preemptions.

However, the estimate of the number of preemptions by using ILP depends on the con-

straints exploited in ILP equations. ILP equations without complete constraints may give

an overestimate of the number of preemptions. As a comparison, we tie every CRPD to an

invocation of a preempting task directly. Thus, each preemption is actually invoked by a

preempting task. We can expect a tight estimate of the number of preemptions.

121



We execute one more experiment to show the effect of the estimate of the number

of preemptions. For example, consider the following scenario based on the incomplete

description of task specification of the experiment in Lee et al. [21] (the description is

incomplete because we do not know have any information about the program structures

and memory footprints of these tasks).

Four tasks as listed in Table 13 are used in the experiment in [21]. When the cache

reload penalty is 100 cycles, the WCRT of FIR (i.e., the task with the lowest priority)

given by the approach of Lee et al. is 5,323,620 cycles. However, the WCRT estimate

resulting from the iteration we proposed in Section 6.2.3 is 3,778,075 cycles, which shows

a reduction of 29%. Note that we use the preemption related cache reload cost as reported

in [21]. Since we use the same cache reload cost for each preemption, the difference in

WCRT estimate is caused by the the number of preemptions used in WCRT estimation.

Apparently, the approach of Lee et al. overestimates the number of preemptions. Also, note

that the cache reload cost here is derived without applying path analysis on the preempting

task. We can expect additional reduction in WCRT estimation results if the path analysis

technique proposed in our approach were to be used.

Table 13: Tasks in the paper of Lee et al. [20]
Task Period WCET
FFT 320 � 000 60 � 234 � 280 � Cmiss

LUD 1 � 120 � 000 255 � 998 � 364 � Cmiss

LMS 1 � 920 � 000 365 � 893 � 474 � Cmiss

FIR 25 � 600 � 000 557 � 589 � 405 � Cmiss

9.2 Experiments for a Prioritized Cache

We present a prioritized cache in this thesis. Our prioritized cache is a variant of a set

associative cache. The cache is partitioned at the granularity of columns. After the cache

partitions are allocated to tasks, the prioritized cache behaves as a group of small size

set associative caches. Thus, the WCRT analysis approach designed for conventional set
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associative caches can be adapted easily to analyze the behavior of the prioritized cache. In

this section, we estimate the WCRT of tasks in three applications running with a prioritized

cache. The results are compared with a set associative cache of the same size.

9.2.1 Experiment I: a Mobile Robot Application

In this experiment, we use the same tasks as in Experiment I in Section 9.1. As stated in

Chapter 7, the prioritized cache usage is divided into two stages, the transit stage and the

stable stage. For many real-time applications, the performance of the prioritized cache is

mainly determined by the stable stage. Thus, in our experiments, we only investigate the

performance of the prioritized cache in the stable stage.

Table 14 compares the WCET of each task in the set associative cache and the priori-

tized cache.

Table 14: WCET with different caches
Tasks MR ED OFDM
WCET in SA 842 1892 2830
WCET in PC 626 1676 4210

Three types of preemptions can happen in this system, MR preempting ED, MR pre-

empting OFDM and ED preempting OFDM. The number of cache lines to be reloaded in

these three preemptions are estimated in Table 15. Table 15 shows that no cache conflicts

occur between ED and MR in the prioritized cache. This is also true for OFDM and MR.

This means MR is assigned a partition of the prioritized cache exclusively. Because MR

has the highest priority, OFDM and ED cannot use the cache assigned to MR. Thus, there

are no cache conflicts among MR and other tasks (i.e., ED and OFDM). In this experiment,

three columns are assigned to MR exclusively. It turns out that all cache lines required

by MR fit into these columns. MR uses 80% of the SRAM available in these three cache

columns. The other three non-shared columns are assigned to ED exclusively. ED also uses

the two shared columns, which are also used by OFDM. Thus, there are cache conflicts be-

tween ED and OFDM. ED uses over 90% of the cache columns which ED can access (i.e.,
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the three columns owned by ED and the two shared columns). OFDM uses 100% of the

shared columns.

Table 15: Estimate of cache lines to be reloaded
Preemptions ED by MR OFDM by MR OFDM by ED
In SA 81 88 98
In PC 0 0 160

Based on the WCET and the number of cache lines to be reloaded, we can apply the

WCRT approach as proposed in [57, 56]. Because the impact of cache on the WCRT

depends on not only the number of cache conflicts but also the cache miss penalty, we

change the cache miss penalty from 10 cycles to 40 cycles. The comparison of WCRT

of OFDM running with the set associative cache and the prioritized cache is shown in

Table 16.

Table 16: WCRT of OFDM with different caches
Cmiss 10 20 30 40
WCRT in PC 10260 11306 11626 11946
WCRT in SA 9684 10264 12558 12966

Two facts in these experimental results show the advantages of the prioritized cache as

compared to the conventional cache. First, non-preemption related cache reload costs in

high priority tasks are reduced. High priority tasks such as MR do not share any cache

resources with other tasks; thus, we do not need to assume a cold cache for WCET analysis

of these tasks after the first execution of the task upon startup/reboot. As a result, the

WCET estimates of high priority tasks are tightened. For example, the WCET of MR –

which is never preempted since MR has the highest priority – is reduced by 26% according

to the WCET estimate results in Table 14. In short, by using the prioritized cache, non-

preemption related cache reload costs of high priority tasks are reduced. However, as we

notice, the WCET of the low priority task, OFDM, is extended significantly because OFDM

is restricted to use a limited portion of the cache; in our case, OFDM can only use the shared

columns of the hot cache (i.e., after initial runs of tasks due to startup/reboot).
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Second, the prioritized cache can also tighten the WCRT estimates of tasks because

preemption-related cache reload overhead is minimized. As we can see from Table 15,

there are no cache conflicts between ED and MR; neither are there any cache conflicts

between OFDM and MR. Thus, CRPD caused by MR preempting ED and CRPD caused

by MR preempting OFDM are both zero. However, both ED and OFDM use the shared

columns. Thus, there is still CRPD caused by ED preempting OFDM.

9.2.2 Experiment II: a DSP Application

The same tasks in Experiment II of Section 9.1 are used in this experiment. The WCETs of

tasks running with the prioritized cache and the set associative are compared in Table 17.

Table 17: Tasks in Experiment II
Tasks IDCT ADPCMD ADPCMC
Periods(us) 4500 10000 50000
Priority 2 3 4
WCET in SA 1580 2839 7675
WCET in PC 1498 2830 11182

As shown in Table 17, the WCET of high priority task is reduced as well, as a result

of eliminating cache sharing. For instance, the WCET of IDCT is reduced by 5%. The

number of cache lines to be reloaded in each cache is listed in Table 18.

Table 18: Estimate of cache lines to be reloaded
Preemptions ADPCMD ADPCMC ADPCMC

by IDCT by ADPCMD by IDCT
In SA 46 64 56
In PC 0 0 0

Table 19: WCRT of ADPCMC with different caches
Cmiss 10 20 30 40
WCRT in PC 35686 35873 36001 36349
WCRT in SA 34676 34967 38779 39775

The number of cache lines to be reloaded in each cache is listed in Table 18. Recall, as

stated earlier, that we use caches with eight “ways” or “columns.” In this experiment, IDCT
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uses two columns. ADPCMD uses three columns and ADPCMC uses the remaining three

columns available, two of which the user preset as shared. IDCT uses 70% of the available

memory in the two cache columns used by IDCT. ADPCMD and ADPCMC use 90% of the

memory available in the cache columns each uses. In this application, there are no cache

conflicts among tasks in the prioritized cache. This means both IDCT and ADPCMD use

cache columns exclusively and do not require any shared columns. Only ADPCMC uses

shared columns. The overall result is that there are no cache conflicts among these three

tasks. The WCRT estimate of ADPCMC is shown in Table 19.

In this application, because all inter-task cache conflicts in the prioritized are elimi-

nated, the preemption-related cache reload cost is zero. Thus, the WCRT of ADPCMC is

not affected by cache miss penalty. As it turns out, when the cache miss penalty is big

enough so that the preemption-related cache reload cost cannot be ignored in the conven-

tional cache, the prioritized cache shows better performance in the WCRT even of low

priority tasks. For example, when the cache miss penalty is 40, the WCRT of ADPCMC

with the prioritized cache is reduced by 8% as compared to an equivalent set-associative

cache.

9.2.3 Experiment III: a Task Set with Six Tasks

The third experiment contains six tasks, OFDM, ADPCMC, ADPCMD, IDCT, ED and

MR, which are the same as tasks in Experiment III in Section 9.1. The priority and period

of each task is listed in Table 10. ADPCMC has the lowest priority and MR has the highest

priority.

In this experiment, we set the cache miss penalty to 30 clock cycles. Figure 40 compares

the WCRT of each task with a set associative cache and a prioritized cache.

Apparently, by using a prioritized cache, the WCRT of high priority tasks can be re-

duced because high priority tasks are allocated cache columns exclusively. On the contrary,

126



Figure 40: Comparison of task WCRT with a SA and a PC

low priority tasks have to use shared columns. Thus, a prioritized cache improves the per-

formance of high priority tasks at the cost of the performance of low priority tasks. As

shown in Figure 40, the WCRTs of MR, IDCT and ED are reduced by between 7% and

26%. However, the WCRT of ADPCMC is increased by nearly 70%.

9.3 Summary

In this chapter, we use some applications to verify the performance of our WCRT analysis

approach and the prioritized cache. The experimental results demonstrate that the WCRT

estimate can be tightened significantly by using our WCRT analysis approach. When using

a 32KB, four way set-associative cache, we can achieve a reduction up to 32% in WCRT

estimate in our experiments. When the cache size is small – say, 8KB – WCRT estimates

can be reduced by up to 68%. Furthermore, the prioritized cache reduce or eliminate inter-

task cache interference. A reduction up to 26% can be achieved in WCRT estimates by

using a prioritized cache in our experiments. The next chapter concludes this thesis.
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CHAPTER X

CONCLUSION

This thesis presents our work in cache related WCRT analysis for preemptive multi-tasking

real-time systems. A novel WCRT analysis approach is proposed. The impact of cache

behavior is considered in our approach. In order to reduce cache interference among tasks,

we design a prioritized cache. A prioritized cache has a more predictable cache behavior

in multi-tasking systems.

First, we propose a cache-related WCRT analysis approach. Cache Relate Preemption

Delay (CRPD) is considered in our approach. A new algorithm based on Cache Index

Induced Partition (CIIP) is presented to calculate the interference among tasks in the cache.

CIIP gives an abstract mapping from the memory to the cache without requiring knowledge

of the replacement algorithms used in the cache. The method can be uniformly applied to

the all types of caches (e.g., direct-mapped, set associative and full associative caches),

although we focus our efforts on unified, set associative caches. Inter-task cache eviction

analysis is then combined with useful memory block analysis of the preempted task as

proposed by Lee et al. [19, 20, 21, 22]. By calculating the intersection of cache lines used by

the preempting task and the preempted task, the estimate of CRPD is tightened. Moreover,

we apply path analysis to the preempting task. Path analysis reduces the CRPD estimate

further. Based on the CRPD analysis, we propose a new WCRT estimate formula. We call

our overall analysis approach WCRT Integrating Inter- and Intra-task cache timing analysis

approach or WI3 for short. WI3 utilizes significant portions of SYMTA [68, 70, 71, 72] and

Lee et al. [19, 20, 21, 22]. The WI3 analysis approach can be used to analyze task WCRT

in a multi-tasking preemptive real-time system and give a tighter WCRT estimate because

of exploiting new techniques such as CIIP and exploiting known techniques such as path
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analysis in a novel way.

We use four groups of tasks to evaluate the performance of our WCRT analysis ap-

proach. The tasks are derived from typical embedded systems such as mobile robot control

systems and DSP applications. The experiment shows that for a 32KB four way set associa-

tive cache, our approach can reduce the estimate of WCRT by up to 32% when compared

with prior approaches.

The formal WCRT analysis allows designers to evaluate trade-offs in cache design

when designers are focused on the effect of cache type selection on WCET/WCRT esti-

mation. For example, in multi-tasking systems, WCRT is worsened by inter-task cache

interference. In order to reduce inter-task cache interference, we design a prioritized cache.

In a prioritized cache, the cache is partitioned at the granularity of columns. Cache parti-

tions are then assigned to tasks according to the task priorities. Inter-task cache interference

is avoided except in the shared columns. We also apply our WCRT analysis approach to

analyze the behavior of the prioritized cache. A formal WCRT analysis for the prioritized

cache enables the prioritized cache to be used safely in a real-time system. Two applica-

tions are used to compare the performance of the prioritized cache and the set associative

cache. The experimental results demonstrate a reduction of up to 26% in WCRT estimate

by using our prioritized cache versus a set-associative cache of equal size and associativity.

In conclusion, we make five major contributions in this thesis, which are listed as below.

Contribution 1: A novel approach is proposed to analyze inter-task cache interfer-

ence.

Contribution 2: Inter-task cache eviction analysis is integrated with intra-task cache

eviction analysis.

Contribution 3: Path analysis is used to improve cache interference analysis.

Contribution 4: A new WCRT estimate formula is proposed.

Contribution 5: A novel “prioritized cache” design is presented to reduce CRPD.
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