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SUMMARY 

 

Data distribution management (DDM) is a mechanism to interconnect data producers and 

data consumers in a distributed application. Data producers provide useful data to 

consumers in the form of messages. For each message produced, DDM determines the set 

of data consumers interested in receiving the message and delivers it to those consumers. 

The DDM system should minimize the total number of messages that must be sent to link 

producers and consumers, particularly as the system scales to large number of producers 

and consumers. 

We are particularly interested in DDM techniques for parallel and distributed discrete 

event simulations. Thus far, researchers have treated synchronization of events (i.e. time 

management) and DDM independent of each other. This research focuses on how to 

realize time managed DDM mechanisms. The main reason for time-managed DDM is to 

ensure that changes in the routing of messages from producers to consumers occur in a 

correct sequence. Also time managed DDM avoids non-determinism in the federation 

execution, which may result in non-repeatable executions. In this research we show how 

to efficiently synchronize DDM. 

An “optimistic” approach to time managed DDM is proposed where one allows DDM 

events to be processed out of time stamp order, but a detection and recovery procedure is 

used to recover from such errors. These mechanisms are tailored to the semantics of the 
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DDM operations to ensure an efficient realization. A correctness proof is presented to 

verify the algorithm correctly synchronizes DDM events. 

We propose an approach to DDM that maintains low computational and message 

overheads even for large scale systems. At the core of this problem is the means of 

matching producers and consumers of data, while keeping the number of messages that 

are generated at a minimum. A hybrid approach is proposed that addresses this issue for 

time managed as well as non-time managed DDM systems. 

We have developed a fully distributed implementation of the algorithm within the 

framework of the Georgia Tech Federated Simulation Development Kit (FDK) software. 

This implementation is used to evaluate the approach. A performance evaluation of the 

synchronized DDM mechanism has been completed in a loosely coupled distributed 

system consisting of a network of workstations connected over a local area network 

(LAN). We compare time-managed versus unsynchronized DDM for two applications 

that exercise different mobility patterns: one based on a military simulation and a second 

utilizing a synthetic workload.  

The experiments and analysis illustrate that synchronized DDM performance depends 

on several factors: the simulation’s model (e.g. lookahead), application’s mobility 

patterns and the network hardware (e.g. size of network buffers). Under certain mobility 

patterns, time-managed DDM is as efficient as unsynchronized DDM. There are also 

mobility patterns where time-managed DDM overheads become significant, and we show 

how they can be reduced. 
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CHAPTER 1 

INTRODUCTION

1.1 Discrete Event Simulation 

Simulating a system involves reproducing the behavior of a system over time. In 

particular, we are concerned with software simulations where the state of a system is 

stored in computer memory, and computation is used to change this state as time 

advances. At the end of a simulation, one can generate various statistics concerning the 

system without actually building it. 

Simulation has long been an approach for analyzing systems, especially when it 

comes to systems where mathematical models are too complex to be solved. For 

example, consider an engineer who wants to design a more efficient communication 

network. In order to evaluate different aspects of that network, simulation can be used to 

find answers about network performance where classical mathematical modeling 

approaches are intractable. Simulations can include necessary information about the 

network such as topology, delay and bandwidth characteristics of the links, protocol 

processing performed at network nodes, etc. For a given network load, simulation can 

give precise information about the state of the network over time. This information can 
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be used to identify congestion and to improve performance, e.g., by increasing the 

bandwidth of certain network links or processing power of nodes.  

Network simulations often utilize a discrete event simulation paradigm. State changes 

in such systems are modeled by events that occur at discrete points in time. In the 

previous example, events might correspond to sending or receiving a message, beginning 

the processing of a message, etc. By contrast, in continuous simulations state changes are 

viewed as occurring continuously over time. For example, simulations used for weather 

forecasting typically use continuous simulation methods. The behavior of such systems 

are typically described with a set of differential equations. This research will focus on 

discrete event simulations. 

A network can be modeled by a state vector characterizing the set of processing nodes 

that are connected via communication links. When an event representing a message 

arrival occurs, the state of a node is modified by changing the values of its variables. In 

our example a message arrival event might cause the state of the node that received the 

message to change to include the queuing of the message in the node’s memory buffer. It 

might also generate a process message event for the time when the message is removed 

from the buffer. Processing this event may cause other events to be generated. 

1.2 Parallel and Distributed Discrete Event Simulation 

The previous example demonstrates that one can view a physical system as a system of 

interacting physical processes. Each physical process has a state that is modified when 
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certain actions occur. When the state changes, new actions either for itself or for other 

physical processes may occur. These actions will happen at specific points in time. 

A discrete event simulation can simulate such a physical system by assigning a 

logical process (LP) to model each physical process. The state of an LP is the set of 

variables that represent the state of the physical process. Each LP includes software that 

models the effect of the corresponding actions in the physical system. Events are 

represented in the simulation by exchanging messages between LPs. Events occur at 

distinct points in time, and thus, messages are time-stamped accordingly. Ideally, in order 

to properly model the physical system, the simulation must process all events in time-

stamped order. Otherwise, undesirable causality errors may occur where future events 

affect those in the past. Synchronization of events is needed to ensure such causality 

errors do not occur. 

Parallel and distributed discrete event simulation refers to the execution of a discrete 

event simulation program over multiple processors. Parallel discrete event simulations 

execute on tightly coupled computer systems such as shared memory multiprocessors. All 

processors are interconnected via high-speed switches, and hence, communication 

latencies are low. On the other hand, distributed discrete event simulations are executed 

on loosely coupled computer platforms, such as workstations interconnected via 

commercial local or wide area networks (LANs and WANs). Communication latencies 

are substantially higher than those for tightly coupled systems, and are usually at least an 

order of magnitude higher on distributed computing platforms. 
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Depending on their use, parallel and distributed discrete event simulations can be 

classified into two categories: 

• Analytical Simulations. Simulations used to analyze systems must mimic the 

causal relationships (i.e. before and after relationships) of a physical system 

precisely or as closely as possible. They are typically used to obtain accurate 

statistics about the behavior of the physical system being modeled. Hence, one of 

the key characteristics of analytical simulations is repeatability, that is, the 

simulation should always yield the same outputs if the same input parameters and 

initial LPs’ states are used. Also, these simulations typically run in an as-fast-as-

possible manner, in order to complete the simulation run as quickly as possible. 

Finally, analytical simulations often run without any user interactions, except for 

the fact that a user is allowed to observe the outputs and state of the modeled 

physical system during the simulation execution. An example of such a simulation 

is modeling a telecommunication network. A designer uses the simulation in an 

iterative manner to evaluate and verify a network design. She/he may be 

interested in understanding how the network performs under different conditions, 

and revise the network design to maximize the performance or reliability. 

• Distributed Virtual Environment Simulations. This is a second category of 

simulation applications. These simulations are used to create a virtual world, e.g., 

for training or entertainment applications, that appear realistic to its participants, 

to meet the objective of the exercise. Before and after relationship may not always 

be perceptible by human participants, so casual relationships can sometimes be 
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relaxed. Typically, these simulations run in real-time since humans are actively 

participating, e.g. controlling the behavior of entities in the model. The required 

degree of realism depends on the purpose of the simulation. 

Analytical and distributed virtual environment simulations often require different 

levels of accuracy, as was seen from the above examples. This leads to different 

requirements with respect to the ordering of events in a parallel or distributed discrete 

event simulation. Consequently, different synchronization mechanisms are typically used 

for these categories of simulations. Synchronization algorithms for analytical simulations 

will be discussed later. 

This research focuses on two aspects of parallel and distributed discrete event 

simulations: 

1. Every simulation can be viewed as a collection of LPs exchanging messages. The 

idea behind data distribution is to interconnect LPs which produce data with LPs 

that need this data in a simulation. For each message produced at an LP, the 

simulation executive must determine the set of data consumer LPs interested in 

receiving the message and deliver it to those consumers. This topic is known as 

Data Distribution Management. 

2. Data distribution events, like all other events must be synchronized for analytical 

simulations. In other words, all events, including data distribution events must be 

processed in time stamp order at each LP. Synchronization of data distribution 

events is referred to as Time-Managed Data Distribution. 
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1.3 Time Management 

The execution of a distributed simulation involves at least three distinct notions of time 

[4]: 

1. Physical time. This time refers to time in the physical system, i.e. the actual 

system being modeled. Recall that the physical system can be viewed as a 

collection of interacting physical processes, where the state of the system evolves 

over physical time. 

2. Simulation time. This time is the representation of the physical time in the 

simulation. We use simulation time to assign time-stamps to events during the 

execution of the simulation. In a discrete event simulation state changes occur at 

discrete points in simulation time. 

3. Wallclock time. This time refers to the time during which the simulation is 

executing on a computer platform. It is the time obtained by reading the 

computer’s real-time clock. 

 

In simulations executing in as fast as possible mode, there is usually no direct 

relationship between wallclock time and simulation time. On the other hand, advances in 

wallclock and simulation time are typically paced in distributed virtual environment 

simulations. 

Processing events from all LPs in time-stamp order guarantees that no causality errors 

occur. This is easily accomplished in a sequential simulation. One need only maintain a 

list of all unprocessed events in the system, and process them in non-decreasing time-
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stamp order. The simulator removes the event with the smallest time stamp from the list, 

and processes that event. Processing an event includes performing a computation that 

models the behavior of the corresponding physical process when that event occurs. Thus, 

processing an event typically results in changing the state of the LP. As a result, one or 

more new events may be generated for other LPs. These new events are inserted into the 

event list. 

In a parallel or distributed simulation the execution of the LPs may be distributed 

across different CPUs. At first glance, the original simulation paradigm where LPs 

exchange messages fits this mode of execution very well. Events are processed in time-

stamp order in each LP, and events generated for other LPs are sent to CPUs containing 

those LPs. If all events, i.e. both local events and those received from other LPs, are 

processed at each LP in non-decreasing time stamp order, then this mode of execution 

yields the same result as the sequential simulation. 

1.3.1 The Synchronization Problem 

Some mechanism is required to ensure that each LP processes events in non-decreasing 

time-stamp order. Without such a mechanism, nothing prevents a situation where an LP 

processes an event from the event list, and later receives an event with a time-stamp 

smaller than the one it has already processed. Events need to be synchronized to ensure 

this does not happen. In particular, this research focuses on the synchronization of data 

distribution events. Data distribution is presented in section 1.4. 
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But, which events need to be synchronized and which events can be processed 

concurrently? If two events affect the same state, they must be synchronized. For 

example, two events on the same LP that modify the same portion of the LP’s state 

cannot be executed concurrently. Events on different LPs may also have to be 

synchronized, since processing an event at an LP may generate an event for another LP, 

and hence indirectly affect the state of another LP. Generally, it is difficult to know the 

events that will be generated during the simulation execution and what LPs’ states they 

will affect. However, it suffices for each LP to process events in time-stamp order, in 

order to guarantee the same results are produced as in the sequential execution. 

Clearly, the partitioning of the physical system into physical processes which are 

mapped to logical processes determines how much concurrent execution can be achieved. 

This is an important task in modeling the system, but will not be discussed here. Rather, 

we concentrate on synchronization of the system once the LPs have been defined. 

Generally, there are two approaches to synchronization termed conservative and 

optimistic discrete event simulation. 

A conservative simulation ensures no event will be processed by an LP until it can 

guarantee that no event with a smaller time stamp will later be received by that LP. 

Because an event could cause a message to be sent to every other LP with the same time 

stamp, this could lead to very poor performance. To overcome this problem, the 

lookahead is introduced. One approach is to assign a lookahead value to each LP. When 

an event is being processed, all new events generated as the result of processing that 

event must be at least that LP’s lookahead value in the future. For example, processing an 
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event with time-stamp T at an LP with lookahead L can only result in new events with a 

time-stamp greater than or equal to T + L. 

How does lookahead help in the concurrent processing of events? Consider a situation 

where all LPs have the same lookahead. If T is the smallest time-stamped event in the 

entire system, then we can safely process events with time stamps less than T + L and 

guarantee no LP processes events out of time stamp order. 

Optimistic simulation is an alternative approach to synchronization. While lookahead 

is a straightforward concept for concurrent processing, it sometimes imposes difficult 

constraints on the model. In addition, the lookahead may be too small to achieve 

acceptable levels of parallelism for some systems. For these reasons, many have 

examined optimistic synchronization methods, where an event may be processed despite 

the fact that later an event with smaller time-stamp may arrive. To insure the simulation’s 

final state is the same as that obtained in a sequential simulation, state saving and 

rollbacks are introduced. When an LP receives an event in its past, it must roll back to a 

previously saved state. In addition, if there were any events or messages generated for 

other LPs by rolled back events, they also must be cancelled. This is accomplished using 

an anti-message mechanism [37]. When an LP receives an anti-message, it will also have 

to roll back to one of its previously saved states, and generate anti-messages if the 

cancelled event has already been processed.  

One issue in optimistic simulation is to know how optimistically LPs can execute, or 

in other words, how far LPs can advance ahead of each others during the execution. It 

may happen that advancing too far ahead results in too many rollbacks, resulting in much 
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wasted computation. Secondly, there is a need for efficient state saving and rollback 

techniques. 

1.3.2 Related Work 

A detailed overview and discussion of both conservative and optimistic techniques can be 

found in [4]. The null messages algorithm by Chandy and Misra [38] is one of the first 

conservative approaches. Null messages are used to provide other LPs with a lower 

bound on the time stamp (LBTS) of future messages sent from one LP to another. Too 

many null messages may degrade the performance of such systems, and later approaches 

addressed this issue. They compute the LBTS by taking into account the time of the next 

unprocessed event and its lookahead, allowing LPs to advance simulation time faster [40, 

47, 48].  

The first optimistic synchronization approach based on rollback and anti-messages 

was Jefferson’s Time Warp mechanism [37]. Later approaches focus on optimizing Time 

Warp’s aggressive optimistic execution. For example, lazy cancellation [49] delays 

sending anti-messages until the reexecution of the computation caused by a rollback 

determines the reexecution did not generate the original messages again. On the other 

hand, lazy reevaluation [50] avoids rolling back events when a message in the past does 

not change the LP’s state. Other techniques, such as [51] attempt to constrain the amount 

of optimistic computation, that is computations that may later need to be rolled back. [52] 

explores further how to add optimism to existing conservative simulation mechanisms. 

Several other mechanisms limiting optimism have been proposed in the literature [4]. 
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1.4 Data Distribution Management 

Consider a simulated virtual battlefield where objects represent entities such as tanks, 

airplanes, artillery, infantry, etc. At any time during the exercise, each of these objects 

can only “see” a subset of all the other objects in the simulated battlefield. Tanks may, for 

example, see other objects within the range of its sensors, while infantry units may 

interact with other units that are tuned to the same radio frequency. The exercise 

progresses as objects modify their current state according to the other objects with which 

they may interact. 

1.4.1 The Data Distribution Problem 

The simulated game scenario presents a problem known as Data Distribution 

Management (DDM). As mentioned above, an object can interact with other objects 

based on some criteria. Consumer objects must subscribe to receive messages from 

objects they must track, e.g., a tank object might subscribe to the position attribute of 

other tanks in the range of its sensors. Data must be routed between data producers and 

data consumers. Data producers provide useful data to consumers in the form of 

messages. For each message produced, DDM must determine the set of data consumers 

interested in receiving the message and deliver it to those consumers. 

In order for DDM to determine the routing of data between producers and interested 

consumers, there must be an agreement between producers and consumers concerning 

how consumers express their interest in data, and how producers label messages that are 

being sent. There must be a language for expressing interests and labeling messages. The 
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next chapter will provide a general framework for such a language. This framework is 

applicable not only in the simulation domain, but also in other application domains using 

data producers and data consumers. 

Data Distribution Management is important for simulation applications in order to: 

• Achieve smaller communication latencies by reducing the amount of required 

communication; reduced communications also reduces computational 

requirements for sending and receiving messages. 

• Speed up a simulation execution by reducing the overhead necessary to 

implement synchronization algorithms. 

The benefit of achieving smaller communication latencies is particularly important in 

Distributed Virtual Environment applications. An efficient DDM mechanism is essential 

to realize scalable systems. 

DDM helps in achieving smaller communication latencies between LPs as well as in 

reducing computational requirements. However, an efficient implementation must be 

realized. Broadcast is one example of a simple, but inefficient DDM implementation. We 

may experience two problems. One is the amount of unnecessary messages flowing 

between data producers and data consumers, making the network bandwidth 

requirements excessively large. Second, unnecessary messages cause processing delays 

because data consumers must filter these unwanted messages. 
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1.4.2 Related Work 

DDM has appeared in the literature in different domains. We will describe work in the 

context of two different domains: distributed simulation and content-based routing 

systems. 

In order for DDM to determine the set of data consumers interested in receiving the 

message, there must be a common vocabulary for expressing interests and labeling 

messages between data consumers and data producers. This vocabulary can be viewed as 

a set of values, and expressing interest or labeling a message always specifies a subset of 

the vocabulary. DDM systems can be categorized based on the cardinality (i.e. size) of 

the vocabulary and the complexity in expressing interests and labeling messages. 

First generation DDM systems used a finite vocabulary. Elements of the vocabulary 

can be viewed as the subjects or groups, usually statically defined, in which consumers 

may express their interest. For example, in a newsgroup application, we have a finite 

number of newsgroup names to which participants are allowed to subscribe (i.e. express 

an interest), or post messages (i.e. label a message). The DDM vocabulary consists of the 

newsgroup names, while expressing an interest or labeling a message is done by 

specifying a subset of newsgroup names. Hence the name subject-based DDM systems. 

Second generation DDM systems use an infinite vocabulary. These systems are 

commonly known as the value-based or content-based DDM systems. The idea behind 

value-based DDM is to have the ability to express interest not only in one or even a few 

predefined subjects, but also in the range or multiple ranges of subjects (or values) that 

can be uncountable. Therefore, the vocabulary also has an infinite set of values. For 
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example, in a stock-trading application the vocabulary may consist of (stock name, price) 

tuples, where stock name is a string and price a real number. Expressing an interest such 

as (wheat, (price < 100.00)) specifies an uncountable range, since the price is a real 

number. In other words, we want to be able to express interests based on the values 

computed during the execution. 

1.4.3 Distributed Simulation Systems 

1.4.3.1 Distributed Interactive Simulation Systems 

Distributed Interactive Simulation (DIS) is a set of standards for creating realistic and 

highly complex distributed virtual environments that may include different simulators 

such as (1) human-in-the-loop simulators for modeling individual platforms (e.g. tank 

simulators), (2) aggregate simulators for modeling groups of units (e.g. war gaming 

simulators), and (3) live elements that model embedded physical components (e.g. 

instrumented missiles). DIS seeks to provide interoperability between different 

simulators. 

Data distribution management mechanisms must provide efficient, scalable support 

for large-scale distributed simulations. They have been extensively studied in distributed 

simulations for training. Work in distributed simulation environments in the SIMNET 

(SIMulator NETworking) project [21] and many DIS systems broadcast each state update 

(event) to all simulators in the exercise. It is well known that this approach does not scale 

because the amount of communications is O(N2) where N is the number of processors. 

CPUs become overloaded processing incoming messages, most of which are discarded 



 15

(for large N) because they are not relevant to the entities simulated within the processor. 

Further, communication bandwidth requirements become excessively large as N 

increases. It has been estimated that 375 MBits per second per platform would be 

required for a simulation exercise including 100,000 players [22]. 

Several approaches to attacking this problem have been proposed (see [23] for a 

survey on this subject). Virtually all use some mechanism to send messages only to the 

destinations that have a need for the information rather than broadcast it to everyone. For 

example, in the Joint Precision Strike Demonstration (JPSD)[24], federates (e.g. LPs) 

indicate what information they wish to receive by specifying predicates on entity 

attributes. Many simulators, e.g., ModSAF[25], CCTT[26], and NPSNET[22] use grid 

cells to filter information. A two-level hierarchical filtering scheme used in an optimistic 

parallel simulation is described in [27], and a generalization of grid cells using a 

construct called routing spaces is used in STOW[28].  

The focus of the work described here is on the routing space approach that has been 

incorporated into the baseline definition of the High Level Architecture (HLA), though 

many of the techniques and mechanisms are applicable in other contexts. HLA is in fact a 

successor of DIS, and it is an architecture intended to provide integration of both 

distributed virtual environment simulations and analytical simulations. Chapter 2 

describes HLA and the routing space concept in detail. 
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1.4.4 Content-Based Routing Systems 

Work in the Gryphon project at IBM [12] is one example of a content-based distribution 

system. In a simple stock trading application the vocabulary may consist of a tuple (issue, 

price, volume), where issue is an enumerated type with 100 choices, one of which is 

IBM, while price and volume are real numbers ranging from 0 to 1000. A valid tuple is 

thus (IBM, 100, 500). Expressing an interest may take the form: (issue = IBM) ∩ (price < 

100). The system ensures the timely delivery of published events to all interested 

subscribers over a logical network of brokers. The assumption is that brokers know the 

topology of the network. A centralized matching algorithm is transformed into a 

distributed version, where each broker, upon receiving a message, sends a point-to-point 

message only to brokers along a path to interested subscribers. Multicast services at the 

network level are not exploited. A similar approach is employed in SIENA [14]. 

More recent work in the Gryphon project [13] introduced several ways to define 

multicast groups. One of the proposed approaches requires a large number of groups in 

large-scale systems. An alternate approach using heuristics to form groups was developed 

to solve this problem, at the expense of introducing additional computation overheads. 

Systems such as Yeast [15] and Elvin [16] are other examples of systems supporting 

rich ways to express interests. In Elvin, the vocabulary consists of some number of 

enumerated and typed data elements (e.g. integer, floating point, string data types, etc.). 

To label a message a set of such enumerated and typed data elements is defined. 

Expressing an interest is in fact a boolean expression over the elements of the vocabulary. 

Multicast is not utilized in these systems. These systems use a client server architecture 



 17

where there is a single server to which all events are first sent, and the events are then 

forwarded to subscribers of only those events for which the client has expressed interest. 

In Elvin, using “quench” function, some events are not sent to the server at all if it is 

determined there are no subscribers for those events. Yeast is a general-purpose platform 

for building distributed applications in an event-based architectural style. It is tightly 

integrated to the UNIX system, allowing the monitoring and definition of rules in terms 

of operating system events related to the file system, groups and users. 

There are other algorithms that exploit IP multicast, which are not based on the 

producer-consumer paradigm, but are informative due to the way groups are formed. 

Web caching systems such as LSAM [17] and Adaptive Web Caching [18] use IP 

multicast, however they do not consider multicast groups to be a limited resource. The 

idea in LSAM is to reduce the first-hit cost of page retrieval throughout the system by 

using multicast to distribute web pages to a set of proxy caches emulating a single, 

central shared proxy cache. Groups are formed based on predictions concerning likely 

interest in particular pages. Adaptive Web Caching maintains a mesh of overlapping 

multicast groups, over which cache trees are implicitly formed. Overlaps allow frequently 

visited pages to propagate closer to end clients over time. Only a few caches near the 

origin server, on the other hand, will see pages with infrequent requests. 

1.5 Research Contributions 

The research described here is concerned with the realization of efficient data distribution 

mechanisms for distributed simulation applications. The specific contributions of this 



 18

research are concerned with Time managed DDM. Previously, most research has treated 

time management and DDM independent of each other. This research focuses on how to 

realize time managed DDM mechanisms. 

• Time managed DDM algorithm. Our time managed DDM algorithm is optimistic in 

that it allows events to be processed out of time stamp order, and an error detection 

and recovery procedure is used rather than strictly avoiding errors. Furthermore, it is 

tailored to the semantics of the DDM services, thereby avoiding the use of general 

rollback mechanisms, which are more complex and require large runtime overheads. 

• Correctness proof. Besides proving the correctness of the time managed DDM 

algorithm, our proofs also highlight the important properties of the algorithm. 

• Distributed implementation. We have developed a fully distributed implementation of 

the algorithm within the framework of the Georgia Tech’s FDK software. FDK is 

designed to facilitate building efficient run-time infrastructures that are necessary to 

federate simulations. 

• Performance evaluation of time managed DDM overheads. A performance evaluation 

of synchronized DDM has been completed in a loosely coupled distributed system 

consisting of a network of workstations connected over a 100 Mbps LAN. 

Experiments indicate that the synchronized DDM system can perform as efficiently 

as an unsynchronized DDM system in this computing environment for some, but not 

all situations. 

• Reduction of DDM overheads. An initial DDM implementations had large 

computational overheads and/or generated large number of messages. Hence, the 
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simulations using DDM couldn’t scale very well. We present an approach that 

reduces computational and message overheads at the same time. The hybrid approach 

proposed here reduces DDM overheads effectively for time managed as well as non-

time managed DDM systems. 

1.6 Roadmap to This Document 

The rest of the document is organized as follows. Chapter 2 describes the DDM problem 

and the issues in realizing efficient DDM systems. This is followed by explaining the 

routing space framework for DDM that has been incorporated into the baseline definition 

of the High Level Architecture (HLA), intended for federating simulation systems. The 

merits and drawbacks of other DDM approaches are then discussed. 

Chapter 3 describes our optimistic approach to time managed DDM. First we describe 

the problem, followed by the synchronization issues that must be addressed. Then we 

explain the optimistic approach to synchronization in section 3.3.1, and the hybrid 

approach to reduce DDM overheads in section 3.3.2. Section 3.4 presents our time 

managed DDM algorithm and correctness proofs. 

Chapter 4 describes the implementation within the framework of Georgia Tech’s 

FDK software and performance results. Finally, Chapter 5 summarizes the contributions 

of this thesis along with the directions for future work.  
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CHAPTER 2 

DATA DISTRIBUTION MANAGEMENT

2.1 Problem Description 

Data distribution management (DDM) is an approach to interconnect applications in a 

distributed computing environment. In this section we first present the basic framework 

common to any DDM system, followed by a formal problem description. Then the issues 

in realizing an efficient DDM system are explained. 

The objective of the DDM system is to interconnect data producers and data 

consumers in a distributed application. Data producers provide useful data to consumers 

in the form of messages. For each message produced, the DDM system must determine 

the set of data consumers interested in the message and deliver it to those consumers. To 

be able to do this, producers and consumers must agree on how to describe information 

contained in the messages that are being produced and how to express interest in 

messages based on their content. 

In general, a DDM system can be viewed within a basic framework that includes a 

name space and a language to specify expressions to delineate portions of the name space 

[4]. Producers specify information they are generating via description expressions, while 

consumers specify information they wish to receive via interest expressions. When the 
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description expression associated with a message overlaps with an interest expression 

associated with a consumer, the message is sent to that consumer. To illustrate this, 

consider a newsgroup system with three newsgroups: cooking, travel and sports. The set 

of newsgroup names defines a name space, while description and interest expressions of 

the language are subsets of this name space. For example, a message associated with a 

description expression containing cooking will be sent to a user whose interest expression 

contains cooking and travel, but not to one whose interest expression only contains travel 

and sports. 

More formally, the basic DDM framework consists of the following elements: 

 

Name space. The name space is the set of all possible values to which interest and 

description expressions may map. The name space is a set of tuples V = (V1, V2, …, VN), 

where each Vi is a value of some basic type, called an attribute, or another tuple. For 

example, in a simple stock trading application the name space may consist of a tuple 

(issue, price, volume), where issue is an enumerated type from 100 choices, one of which 

is IBM, while price and volume are real numbers ranging from 0 to 1000. A valid tuple is 

thus (IBM, 100, 500). 

 

Language and Expressions. The language consists of all possible expressions to 

specify a portion of the name space. An expression is a single test or a conjunction of 

tests of an arbitrarily complex function with some or all of its arguments in the name 

space: 
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Expression  E  :=  ρ1( F1( v),  v1)  ∩  ρ2( F2( v),  v2)  ∩ … ∩  ρK( FK( v),  vK) 

That is, it is a single relation or an intersection of relations of type ρ( F( v),  vT) for a 

given test point in the name space vT ∈ V, where F( V) → V is an arbitrary function with 

its codomain being the name space, while F’s domain can, in general, include arguments 

not related to the name space (e.g. state variables of the simulation, etc.). ρ( F( V),  V) is 

an arbitrary binary relation used to test the value of function F. Note that vT may be 

specified by not listing the values for all the attributes in the name space. In case one 

attribute is missing it represents a line segment in the name space, or when two or three 

attributes are missing it represents an area or a volume in the name space respectively, 

etc. Hence, we say vT represents a hyper-point in the name space. 

 

The expression evaluation V(E) is defined as { v | v ∈ V and ρ1( F1( v),  v1)  and  ρ2( 

F2( v),  v2)  and… and  ρK( FK( v),  vK) }, that is, the expression evaluates to a set of 

points in the name space where each tuple satisfies all of the binary relations. 

 

Interest expressions. When consumers use expressions they are called interest 

expressions. They are used to specify what information is of interest to be received. 

Using the previous example, an interest expression for a language for the name space 

may be: (issue = IBM) ∩ (price < 100). The first relation is the “=” relation and the 

second is the “<” relation. The functions used are identity functions, i.e. F1 (x) = x and F2 

(x) = x, while IBM and 100 are hyper-points in the name space. This expression maps to 
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a portion of the name space, which can visually be represented as a rectangular area in 

this 3-dimensional name space. 

 

Description expressions. When used by information producers expressions are called 

description expressions. A description expression is associated with each message. For 

example, the description expression (issue = IBM) ∩ (price = 90) should cause a message 

to be sent to a consumer whose interest expression is given above. However, a message 

associated with a description expression (issue = COCA COLA) should not be sent to 

this consumer. 

2.1.1 Formal Problem Statement 

Definitions 

• Let P represent a set of all processes in a distributed application: P = { P1, P2, … , 

PNp} where Np is the total number of processes 

• Let E represent a set of all expressions in a distributed application: E = { e1, e2, … , 

eNe} where Ne is the total number of expressions 

• Let D be a set of all description expressions such that D ⊆ E 

• Let I be a set of all interest expressions such that I ⊆ E 

• Let p be a mapping p: E → P designating a process that produced an expression. For 

example, if process Pj produced expression ei we can write p(ei) = Pj 

• Let r be a mapping r: D → P designating all consumer processes (i.e. recipients) 

whose interest expressions overlap a description expression. That is, for a description 
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expression d ∈ D, P ∈ r (d) if and only if ∃ i ∈ I such that p(i) = P and  

V(d) ∩ V(i) ≠ ∅ 

• Let a multicast group Gi be a subset of all processes, that is Gi ⊆ P. Three operations 

can be performed on a multicast group: 

1. The Mcast_join_group(Gi, Pj) operation adds process Pj ∈ P to the multicast 

group Gi. 

2. The Mcast_leave_group (Gi, Pj) operation removes process Pj ∈ P from the 

multicast group Gi. 

3. The Mcast_message (Gi, msg_content) operation sends a message with 

content msg_content to all processes in Gi. This is also referred to as 

multicasting a message to the group. msg_content contains all the necessary 

information about the message content, e.g., the memory location where the 

message content starts and the length of the message. 
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DDM problem statement 

For a given number of multicast groups Ng and P, E, D, I, p and r find: 

1. A set of multicast groups G = { G1, G2, … , GNg} where Gi ⊆ P 

and 

2. A mapping m: D → G such that ∀ d ∈ D,  r (d) ⊆    ∪ Gi 
                                                                                ∀ Gi ∈ m(d) 
 

2.2 Issues in Realizing an Efficient DDM System 

Here, a multicast group refers to a set of destination processes. We do not consider how 

group communications are implemented, which may have a large effect on performance 

and memory requirements. For example a multicast group may be implemented with a 

native multicast group communication facility provided by network services, or it may be 

implemented using point-to-point communications. The latter is clearly a less efficient 

implementation. We assume reliable communication, i.e., every message sent to a group 

is eventually delivered to each process that is a member of the group when the message is 

sent. 

As the previous section indicates, a central problem in realizing DDM concerns the 

definition and composition of the multicast groups. Interest expressions must be mapped 

to groups to which the consumers must join. Description expressions associated with a 

message are mapped to one or more groups to which the message must be sent. 

The mapping of description expressions to groups must be such that each message 

will be routed to all interested consumers. Ideally, a consumer should only receive 

messages for which it has expressed an interest. This is, unfortunately, not always 
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practical due to limitations in the number of multicast groups that the network may 

support and the computational complexity necessary to determine optimal mappings that 

produce the minimal number of messages. Hence, several issues concerning the 

definition of multicast groups and the mapping of expressions to the groups must be 

addressed by DDM. 

 

Duplicate messages may occur. For example, if a description expression is mapped to 

two groups that both include the same consumer, two identical copies of the message will 

be sent to the consumer over these groups. This must be addressed, e.g., by filtering the 

extra message at the consumer. 

 

Extra messages may occur. When a multicast group mapped to a description 

expression contains a consumer not interested in messages associated with this 

description expression, the consumer will receive each such message. These extra 

messages must be avoided, e.g., by filtering the message at the consumer. 

 

Control messages may be needed. These are messages exchanged during group 

modifications (e.g. join and leave operations on a multicast group). One can envision an 

implementation where interest and description expressions are provided at the application 

initialization phase and never change. In this case no additional control messages are 

required after the multicast groups are formed. Another implementation involves 

changing the expressions during application execution. The number of control messages 
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necessary to reconfigure multicast groups varies depending upon the chosen mapping and 

implementation of groups. 

 

One way to realize DDM is using point-to-point communication (i.e. unicast). In 

other words, all consumers for each description expression must be determined, and then 

messages associated with that expression must be sent to each consumer via a point-to-

point message send. This causes delays at the producer, and may cause more network 

congestion than is necessary. This implementation can avoid duplicate, extra and control 

messages, however. It is worth noting that this approach works well if groups are small. 

At the other extreme, broadcast communication may be used. Broadcast involves 

sending each message only once, which is then received by all consumers regardless of 

their interest. Filtering of such extra, uninteresting messages must be performed at the 

consumers. A situation may result where the consumers are filtering and discarding most 

of the messages they receive. Furthermore, the amount of communication becomes 

excessive as the number of participants increases. For N participants (e.g. processors) the 

amount of communication is O(N2), so this approach does not scale. 

Multicast network services are an attractive alternative to realizing efficient DDM, 

which promises better scalability. Ideally, an efficient DDM system would easily be 

realized if there were enough multicast groups available (e.g. at least as many as 

description expressions). A multicast group could be assigned to each description 

expression. Changes in description or interest expressions may cause group membership 

modifications. The advantage of this approach is that sending a message to an appropriate 
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multicast group uses less of the network bandwidth than broadcasting the message. 

However, control messages that occur during join and leave operations introduce 

overheads, which must be balanced with the benefits of using multicast groups for 

message sends. 

2.3 High Level Architecture 

The focus on this research is on the routing space approach that has been incorporated 

into the baseline definition of the High Level Architecture (HLA), though many of the 

techniques and mechanisms are applicable in other contexts. HLA is in fact a successor 

of DIS, and it is an architecture intended to provide integration of both distributed virtual 

environment and analytical simulations. 

DDM takes on a somewhat different flavor in distributed simulations constructed by 

“federating” existing simulators compared to a traditional parallel discrete event 

simulation (PDES) program. PDES programs typically assume each logical process (LP) 

is responsible for determining which other LPs should receive the messages it generates. 

By contrast, federated simulation systems typically implement this functionality in the 

underlying distributed simulation software, referred to as the Run-Time Infrastructure 

(RTI) in High Level Architecture (HLA) terminology, rather than within the simulation 

model. Each simulator (federate) specifies via interest expressions what messages are of 

interest. 

An example of this approach is class-based subscription used in the HLA. The name 

space consists of (class, attribute) tuples where the class hierarchy is known prior to 
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execution. Besides defining its own attributes, a class inherits all the attributes from its 

parent class. For instance, a class called vehicle may be defined, with subclasses aircraft, 

tank and truck. An attribute position is defined in the vehicle class, and inherited by all 

three subclasses mentioned. Thus the name space consists of the tuples (vehicle, 

position), (aircraft, position), (tank, position), (truck, position). Expressing interest in an 

attribute in the class hierarchy tree causes a corresponding interest expression’s 

evaluation to include name space tuples with the same attribute of all the classes in the 

subtree rooted at that class. A federate’s (i.e. a simulation’s) interest expression may be 

(F1 (class, attribute) = (vehicle, position)), where the relation “=”, function F1 and test 

point (vehicle, position) are used to construct an expression. Function F1 is more complex 

than in the newsgroup example from the beginning of this chapter, where it is a simple 

identity function F (x) = x. For a given test point (vehicle, position) in the name space this 

expression results in carving the portion of the name space so that it will include all 

tuples (class, position), with class being an original class (vehicle in this case) and all the 

classes in the subtree rooted at the original. Thus, the resulting portion of the routing 

space described by this interest expression is (vehicle, position), (aircraft, position), 

(tank, position), (truck, position). Description expressions, on the other hand use only the 

identity function F2. For instance, (F2 (class, attribute) = (tank, position)) is a description 

expression evaluating to a single tuple (tank, position). A federate interested in position 

updates for all vehicles, or a tanks’ position update only, will receive messages associated 

with this description expression. Those with test points (aircraft, position) and (truck, 

position) will not receive such messages.  
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DDM using the routing spaces concept for distributed simulations is an example of 

value-based DDM. Data Distribution Management services in the HLA are used to 

specify the routing of data among federates. In the HLA, value-based DDM is based on 

an n-dimensional coordinate system called a routing space. For example, a two-

dimensional routing space might represent the play box in a virtual environment. A 

rectangular update region can be associated with each update message generated by a 

federate. Federates express interests via rectangular subscription extents. Multiple extents 

form a region. If the update region associated with a message overlaps with a federate's 

subscription region, the message is routed to the subscribing federate. For example, in 

Figure 1 updates using update region U are routed to federates subscribing to region S1 

but not to federates subscribing to region S2. 

Figure 1  Two-dimensional routing space with subscription regions S1 and S2 and update 
region U. 

 
The name space for an n-dimensional routing space is a tuple (X1, X2, … XN) with 

XMIN ≤ Xi ≤ XMAX, where XMIN and XMAX are federation-defined values. For example, 

Figure 1 shows a two-dimensional routing space with axis values ranging from 0.0 to 1.0. 
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Update regions are in fact description expressions, while subscription regions are interest 

expressions. As mentioned earlier, regions are collections of rectangular extents, which in 

turn are intervals along appropriate dimensions of the routing space. For example, 

subscription region S1 consists of one extent with two intervals: {[0.1,0.7), [0.1, 0.5)}. 

Intervals, and consequently interest and description expressions, are easy to capture in 

our model with the relations “≥” and “<”, and identity function F (x) = x. For instance, an 

interest expression for subscription region S1 may be expressed as (X1 ≥ 0.1) ∩ (X1 < 0.7) 

∩ (X2 ≥ 0.1) ∩ (X2 < 0.5). 

2.4 Approaches 

Two well-known approaches to realizing DDM are to form groups based on (1) grids [4, 

5, 10] and (2) update regions [1]. As will be described next, the grid-based approach 

provides a simple means to match update and subscription regions, but tends to utilize a 

large number of multicast groups, and can result in duplicate or extra messages that must 

be filtered at the receiver. The update region approach avoids these drawbacks, but at the 

cost of greater complexity (and runtime overhead) to match update and subscription 

regions. Each of these is described in turn. 

2.4.1 Region-Based Groups 

In the regions based approach, a multicast group is defined for each update region [1]. 

Updates are simply sent to the group associated with the update region. A federate 
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subscribes to the group if one or more of its subscription regions overlap with the update 

region. 

When a subscription region changes, the new subscription region must be matched 

against all other update regions in order to determine those that overlap with the new 

subscription region. The federate must then join the groups with overlapping update 

regions. Similarly, when an update region changes, the new update region must be 

matched against all subscription regions to determine the new composition of the update 

region's group. This requires examining all subscription/update regions in use by the 

federation. Thus it does not scale well as the number of regions becomes large. On the 

positive side, duplicate or extra messages cannot occur with this approach. 

2.4.2 Grid-Based Groups 

In the grid-based approach the routing space is partitioned into non-overlapping grid 

cells, and a multicast group is defined for each cell [4, 5, 10]. A federate subscribes to the 

group associated with each cell that partially or fully overlaps with its subscription 

regions. An update operation is realized by sending an update message to the groups 

corresponding to the cells that partially or fully overlap with the associated update region. 

A federate may have multiple subscription regions overlapping a specific grid cell. To 

avoid multiple subscriptions to the group, each grid cell can maintain a subscription count 

array with an entry for each federate that indicates the number of subscription regions for 

that federate that overlap this cell. The federate leaves the group if this count becomes 
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zero during a subscription region change. Similarly, the federate will join the group if its 

count becomes non-zero. 

The grid-based approach eliminates the need to explicitly match update and 

subscription regions. While grid partitioning eliminates the matching overhead, a large 

number of groups are needed if a fine grid structure is defined. A coarse grid leads to 

imprecise filtering, negating some of the benefits of DDM. In addition, the grid scheme 

has other shortcomings:  

• Duplicate messages may occur. For example, if a subscription and update region both 

overlap with the same two cells, two identical copies of the message will be sent to 

the subscribing federate over different multicast groups. These must be filtered at the 

receiver, incurring additional overhead.  

• Extra messages may occur. This is a direct result of discretizing the routing space into 

grid cells. Subscription and update regions may overlap with the same grid cell, but 

may not overlap with each other. In this case, a message will be sent to the 

subscribing federate, even though its subscription region does not overlap with the 

update region. These unwanted messages will also have to be filtered at the 

destination. 

There is a tradeoff between the number of duplicate and extra messages as the grid 

cell size changes. Smaller grid cells will generally result in fewer extra messages, but 

more duplicates, and vice versa. Any number of groups other than the one corresponding 

to an optimal grid cell size will produce more messages. [19] compares the cost of cell-

based and entity based grouping strategies, but does not propose a solution to calculate 
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the cell size. INRIA [20], on the other hand does propose a solution to dynamically 

calculate an optimal cell size for real-time simulations - large-scale virtual environments, 

based on the density of participants and their velocity. 

Finally, in [8] multicast groups are defined for multiple update regions. Update 

regions are selected for inclusion in a group according to certain criteria up to the point 

where total message latency does not exceed maximum tolerable latency tmax. A chosen 

update region is included in the current group by having the update region’s recipients 

(i.e. subscribing federates) added to the group. This process stops when we run out of 

multicast groups or cover all update regions, whichever occurs first. For the remaining 

update regions that were not covered, we may have to use point-to-point communication. 

This approach is well suited for the real-time federations, since groups are being formed 

in a way not to exceed the total allowable latency for message delivery. Duplicate 

messages cannot happen, but extra messages may occur due to the bundling of multiple 

update regions’ recipients. 

2.4.3 Implications to Time Managed DDM 

The region based and grid based approaches presented here can be used in an 

unsynchronized DDM system. This thesis builds on these DDM approaches by adding 

the synchronization. Goal is to process all simulation events including the DDM events 

(e.g. region changes) in time stamp order at each logical process. Hence the DDM can be 

used for analytical simulations where causal relationships must be preserved between all 

simulation events including the DDM events that change the connectivity between LPs 
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during the simulation execution. Our time managed DDM approach also preserves the 

repeatability of analytical simulations. This allows DDM to be used in analytical 

simulations that are usually used to analyze complex systems, where every simulation run 

must not only preserve before-and-after causal relationships but also has to produce the 

same final simulation state and the same outputs for the same input parameters. 

Analytical simulations which use DDM typically run in an as-fast-as-possible 

manner. Thus, we need to keep the time-managed DDM overheads to a minimum. We 

also need some way to include different versions over logical time of update and 

subscription regions as well as the constructs and data structures that are used to perform 

matching, such as the grid cells described previously. 

Our time managed DDM approach addresses the issue of keeping different versions 

of data structures with the space time memory and the way that the multicast groups are 

formed. Space time memory is a two-dimensional memory system used for DDM 

computations where we need to keep time evolving data in a one-dimensional computer 

memory (characterized by a common spatial memory addressing found in most 

computers today). Additional time dimension is introduced so that both spatial and time 

coordinates are used for addressing in the space time memory. Finally, we want to utilize 

network multicast capability for as many multicast groups found by the DDM mapping as 

possible. Unsynchronized DDM mapping problem was described earlier in section 2.1, 

while the synchronized DDM mapping problem will be presented at the beginning of the 

next chapter. 
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We have seen the tradeoffs of each of the approaches described for unsynchronized 

DDM. Enhancing these approaches for time managed DDM may not only exaggerate the 

already discussed overheads, but can also produce completely new overheads. Hence, the 

tradeoffs of such approaches need to be reevaluated. Our hybrid approach to matching of 

update and subscription regions is designed to overcome the inefficiencies of the pure 

region and grid based matching skims. This approach will be discussed in detail in 

Chapter 3. 
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CHAPTER 3 

TIME MANAGED DATA DISTRIBUTION 

MANAGEMENT

This thesis is concerned with synchronizing DDM with other simulation’s events. In the 

common discrete event simulations the connectivity between logical processes is known 

apriori, since it is realized inside the simulation model. In contrast, the data distribution 

management changes this assumption. The connectivity between logical processes is 

realized outside the simulation model since LPs can declare interest changes (e.g. update 

and subscription region changes) at different instances in logical time. 

We start this chapter by discussing the problem and presenting it in a formal way by 

extending the model from the previous chapter to include logical time. Besides duplicate 

and extra messages described previously, section 3.2 talks about additional issues that 

need addressing. In particular, we identify the issue of missed messages, extra messages 

due to the synchronization, and messages in the LP’s past. 

In section 3.3, our comprehensive approach to synchronized DDM is presented. The 

optimistic approach to deal with the problems of unsynchronized DDM is presented in 

section 3.3.1. This is followed in section 3.3.2 by the approach to reduce matching 

overheads. Besides addressing the issues identified, we discuss why it compares well to 
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other approaches. Although optimistic in nature, our approach does not suffer from 

inefficiencies that are common to other optimistic techniques, since it is specifically 

tailored to the semantics of the DDM operations. 

Finally, details of the algorithm and design decisions can be found in sections 3.4 and 

3.5. The algorithm section presents our two-layered DDM architecture, describing the 

functionality and each of the layer’s operations in detail. This is followed by the pseudo-

code of the algorithm and the proof of its correctness. We then summarize the design 

decisions and discuss the design rationale and tradeoffs for dealing with missed and 

messages in the past, as well as how to represent distribution lists and how to do 

matching of update and subscriptions regions. 

3.1 Problem Description 

The distinction between non-time managed services such as those employed in real-time 

training simulations and time managed services concerns when the service takes effect, 

and the order in which the service takes effect in relation to other services invoked during 

the federation execution. Time managed services employ a logical time abstraction giving 

one explicit control over the order in which these services are observed by the 

participating federates. On the other hand, non-time managed services are based on 

wallclock time which does not provide such ordering guarantees. This may be acceptable 

to some simulations, such as real-time training simulations where different orders of 

events are not perceptible to human participants. 
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One reason for using time-managed services is to avoid non-determinism in the 

federation execution, which in turn can create non-repeatable results. Directly applying 

training simulation DDM mechanisms based on wallclock time semantics to logical time 

simulations will lead to errors, as we will see in the next section. 

The definition of time managed DDM is based on the semantics of DDM operations 

in the context of a sequential execution. A snapshot of the state, i.e., the state of all the 

LPs in the parallel/distributed execution at a certain logical time will be exactly the same 

as a snapshot of the state of a sequential simulation for that logical time. 

As explained in the introductory chapter, the sequential simulation execution is 

characterized by the execution of events in time stamp order. At each step, the event with 

the smallest time stamp is taken from the list of pending events and processed. Processing 

an event may result in modifications of the state of the system (i.e. state of an appropriate 

LP) and may generate events for this or other parts of the system (i.e. this LP or other 

LPs). These events are enqueued in the list of pending events according to their time 

stamps, leaving the list of events sorted at the end of each simulation step. DDM, in 

essence, extends this execution style by labeling each event with the list of LPs that have 

to process it. 

3.1.1 Formal Problem Statement 

Now we extend the definitions from Chapter 2 to include logical time. Recall that the 

language consists of all possible expressions to specify a portion of the name space. An 
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expression is a single test or a conjunction of tests of an arbitrarily complex function with 

some or all of its arguments in the name space for any possible logical time: 

 

Expression  e(t)  :=  (ρ1( F1( v),  v1)  ∩  ρ2( F2( v),  v2)  ∩ … ∩  ρK( FK( v),  vK)) (t) 

That is, it is a single relation or an intersection of relations of type ρ( F( v),  vT) for a 

given test point in the name space vT ∈ V and logical time t. Note that each of the 

relations, functions and test points may differ for different logical times. Hence, 

expression can evaluate to different sets of points in the name space at different logical 

times, where each tuple satisfies all of the binary relations: 

 

Expression evaluation V(e)(t) = { v | v ∈ V and ( ρ1( F1( v),  v1)  and  ρ2( F2( v),  v2)  

and… and  ρK( FK( v),  vK)) (t) } 

There are situations when we want a relation to evaluate to TRUE or FALSE 

independent of the arguments. When we need a relation ρI to evaluate to TRUE for a 

particular logical time, it can be set to the “always TRUE” relation, that is no matter what 

the function FI and test point vI are, relation ρI is always TRUE for any point in the name 

space v ∈ V. Similarly, when we need a relation ρI to evaluate to FALSE for a particular 

logical time, it can be set to the “always FALSE” relation.  

This allows us to describe expressions more concisely, that is as being active for the 

entire time line of the simulation, instead of having two or more expressions representing 

the evolution of a single expression. For example an interest expression in the routing 

spaces may be (X < 100) ∩ (Y < 90) for times [0, 10), then change to (X “always 



 41

FALSE” 100) ∩ (Y < 90) for times [10, 20) and finally (X < 200) ∩ (Y “always TRUE” 

90) for times [20, 30). Two relations are in use. Initially, two relations specify a 

rectangular portion of the routing space. The first relation changes to “always FALSE” in 

the [10, 20) time interval, practically disabling the expression for this interval (e.g., a 

radar has stopped working for this time interval). The second relation is set to “always 

TRUE” in the [20, 30) time interval, when the expression specifies a rectangular portion 

of the name space with any possible value for the Y coordinate. 

 

Definitions 

• Let P represent the set of all processes in a distributed application: P = { P1, P2, … , 

PNp} where Np is the total number of processes 

• Let E represent a set of all expressions in a distributed application: E = { e1(t), e2(t), 

… , eNe(t)} where Ne is the total number of expressions 

• Let D be a set of all description expressions such that D ⊆ E 

• Let I be a set of all interest expressions such that I ⊆ E 

• Let p be a mapping p: E → P designating a process that produced an expression. For 

example, if process Pj produced expression ei we can write p(ei) = Pj 

• Let r(t) be a mapping r(t): D → P designating all consumer processes (i.e. recipients) 

whose interest expressions overlap a description expression. That is, for any logical 

time T during the execution and description expression d(t) ∈ D, P ∈ r (d(T)) if and 

only if ∃ i(t) ∈ I such that p(i(t)) = P and V(d(T)) ∩ V(i(T)) ≠ ∅ 
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• Let a multicast group Gi(t) be a subset of all processes, that is Gi(T) ⊆ P for any 

logical time T during the execution. Three operations can be performed on a multicast 

group: 

1. The Mcast_join_group(Gi, Pj, T) operation adds process Pj ∈ P to the 

multicast group Gi at logical time T. 

2. The Mcast_leave_group (Gi, Pj, T) operation removes process Pj ∈ P from 

the multicast group Gi at logical time T. 

3. The Mcast_message (Gi, msg_content, T) operation sends a message with 

content msg_content to all processes in Gi at logical time T. This is also 

referred to as multicasting a message to the group. msg_content contains all 

the necessary information about the message content, e.g., the memory 

location where the message content begins and the length of the message. 

 

DDM problem statement 

For a given number of multicast groups Ng and P, E, D, I, p and r find: 

1. A set of multicast groups G = { G1(t), G2(t), … , GNg(t)} where Gi(T) ⊆ P for any 

logical time T during the execution 

and 

2. A mapping m(t): D → G such that for any logical time T during the execution and 

∀d(t) ∈ D,  r (d(T)) ⊆    ∪ Gi(T) 
                              ∀ Gi(T) ∈ m(d(T)) 
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The previous chapter discussed how DDM determines what data to route between 

information producers and information consumers. The problem statement says that for 

each message that is produced, DDM must determine the set of consumers interested in 

receiving that message. Note that this does not preclude a consumer from receiving 

additional messages that it had not requested to receive, but if it does, it should discard 

them.  

In simulation terms, messages are events. So DDM in essence, labels each event with 

the list of LPs that must process it. This labeling of events can also be viewed as a special 

type of event, or DDM events. These new events are generated by our DDM approach, as 

will be seen later in this chapter. 

3.2 Issues in Time Managed DDM 

Chapter 2 introduced DDM issues such as duplicate and extra messages due to the 

mapping of description expressions to multicast groups, and control messages exchanged 

during group modifications. Since duplicate and extra messages can easily be filtered 

when they are received by LPs, all three types of messages can be seen as DDM 

overhead. In addition to these overheads, synchronized DDM may raise other issues. 

Synchronization of DDM and non-DDM events is necessary, otherwise the following 

types of errors may occur: (1) missed messages, or (2) extra messages due to the 

synchronization, and (3) messages in the LP’s past. We will examine these issues now. 
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Missed messages in non-synchronized DDM. Let the mapping m(t) at logical time T 

indicate that logical process Pj is the recipient of messages from logical process Pi that 

are labeled with description expression d(t). Then, all such messages at time T should be 

sent to Pj. However, the mapping m(t) may not yet be completed when a message is sent 

due to “late” description and interest expressions that are generated with a logical time 

less than T. Such a message may “miss” LP Pj. “Late” expressions can occur since DDM 

events which are transmitted as messages between LPs can consequently be delayed due 

to network latencies. This can also happen when a message at time T is sent before the 

relevant expression at time T was even issued. 

To illustrate the situation where missed messages occur, consider two tanks T1 (red 

tank) and T2 (blue tank) as depicted in Figure 2. If T1’s sensors indicate awareness of an 

enemy tank T2 in a certain time interval, all events generated by tank T2 with time stamp 

in that interval must be received by tank T1. It may happen that tank T2 generated events 

in this interval before (in wallclock time) T1 had specified interest in receiving these 

events. This will result in missed messages that should have been received by tank T2. 

Proper synchronization must ensure these previously generated events are sent to T1.  
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logical time

LP B: blue tank

LP A: red tank

Red tank will become visible to blue 
tank at logical time 10 (via interest 
expressions@10)

Blue tank has not yet reached logical time 
10, LP A cannot know blue tank will be 
able to see it.  Red tank’s position is not 
sent to blue tank!

10

Example: lost message

logical time

LP B: blue tank

LP A: red tank

Red tank will become visible to blue 
tank at logical time 10 (via interest 
expressions@10)

Blue tank has not yet reached logical time 
10, LP A cannot know blue tank will be 
able to see it.  Red tank’s position is not 
sent to blue tank!

10

Example: lost message

 

Figure 2  Missed messages example. 

 
Extra messages in non-synchronized DDM. Let the mapping m(t) at logical time T 

indicate that logical process Pj is not the recipient of messages from logical process Pi 

that are labeled with description expression d(t). Then, all such messages at time T should 

not be sent to Pj. However, the mapping m(t) may not yet be completed when a message 

is sent due to “late” description and interest expressions, as described above, that affect 

logical time T. Such a message may actually be sent to LP Pj. Extra messages present 

only a performance burden since they can be filtered at the destination LPs. Otherwise, if 

we process all events regardless of whether they should have been received or not, 

simulation state may become corrupt, and repeatability may be lost. 

A scenario similar to the above one may be constructed to illustrate the extra message 

problem. If T1’s sensors cannot detect an enemy tank T2 in a certain time interval, all 

events generated by tank T2 with time stamp in that interval should not be received by 

tank T1. It may happen that tank T2 generated events in this interval before (in wallclock 

time) T1 had moved out “late” from its previous position when it had been specifying 
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interest in receiving these events. This will result in extra messages that should have not 

been received by tank T2. Proper synchronization must ensure that such messages are 

never delivered to tank T2. 

 

Messages in the LP’s logical time past in non-synchronized DDM. Computations that 

handle time advances in parallel and distributed simulation (also known as LBTS 

computation) determines the current simulation time by taking into account all 

connections between LPs. A common assumption in approaches to LBTS computation is 

that these connections are static, i.e., they do not change over logical time. DDM, 

however, violates this assumption by adding and ceasing connections between LPs at 

different logical times as description and interest expression change. Hence, the problem 

arises when a DDM event adds a new connection LPsrc - LPdest which was not taken into 

account by the latest LBTS computation. Now, LPsrc may send a message to LPdest in its 

logical time past, which is unacceptable. 

This issue is concerned with ensuring proper synchronization of changes in the 

connection topology among LPs. For example, suppose in the previous example T2 is at 

logical time 6. Suppose T1 advances beyond logical time 6 because there is no 

connection from T2 to T1. Suppose T2 now establishes a new connection to T1 at logical 

time 6, and sends a message with time stamp 6, in T1’s logical time past. This is depicted 

in Figure 3. Situations such as this must be prevented. 
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Logical  time
LP B: blue tank

LP A: red tank

6   10

3. The red tank becomes visible to the blue 
tank at logical time 6; Connection 
established by LP B

2. The red tank advances past logical time 6, not knowing the blue tank might 
establish a connection (i.e. send a message) at that time

4. Blue tank’s position @6 is sent in LP A’s past!

1. Initially there is no connection from LP B to LP A

Logical  time
LP B: blue tank

LP A: red tank

6   10

3. The red tank becomes visible to the blue 
tank at logical time 6; Connection 
established by LP B

2. The red tank advances past logical time 6, not knowing the blue tank might 
establish a connection (i.e. send a message) at that time

4. Blue tank’s position @6 is sent in LP A’s past!

1. Initially there is no connection from LP B to LP A

 
 
Figure 3  Example of messages in the LP’s past. 

 
In summary we may conclude that without time managed DDM, missed, extra and 

past messages may occur in addition to the duplicate, extra and control messages 

described in the previous chapter. All these situations must be avoided. Otherwise, 

parallel and distributed simulation may not produce the same results as the corresponding 

sequential execution. Furthermore, executions may not be repeatable. 

3.3 Synchronized DDM Approach 

We will now describe our approach to time managed DDM. As we have discussed so far, 

when using DDM for analytical distributed simulations an LP’s interests change 

dynamically (e.g. position of a sensor changes), and they are interleaved with generating 

events, not necessarily in time stamp order. Since these DDM changes may not arrive in 

time stamp order synchronization is required, so that the end result is that each LP 

processes all its events in time stamp order. 
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Our approach for synchronizing simulation and DDM events addresses the issues 

described in section 3.2, that is, how to deal with the missed messages, extra messages 

and messages in the past. This approach is optimistic in nature since it allows events to be 

processed out of time stamp order, and an error detection and recovery procedure is used 

rather than strictly avoiding errors. Furthermore, it is tailored to the semantics of the 

DDM services, thereby avoiding the use of general rollback mechanisms, which are more 

complex and require large runtime overheads. The optimistic approach will avoid non-

determinism for analytical simulations which use DDM, and hence will create repeatable 

simulations and the results of such simulations. 

Furthermore, our approach also addresses the issue of how to reduce DDM 

overheads. Lowering DDM overheads for both time managed and non-time managed 

distributed systems is important to improve the scalability for any such distributed 

systems. In particular, we address the problem of matching update and subscription 

regions with the hybrid approach that reduces DDM overheads. In this approach we use 

counters in the grid partitioned routing space to achieve fast transformation of multiple 

object interests into the connectivity. 

The following two sections describe our comprehensive approach to time managed 

DDM. Section 3.3.1 presents the optimistic approach for dealing with issues in 

unsynchronized DDM. Section 3.3.2 presents the hybrid approach for reducing DDM 

overheads. 
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3.3.1 An Optimistic Algorithm to Time Managed DDM 

A solution to the missed messages problem is to provide a message log to record 

messages that otherwise would be missed. Messages are logged as they are sent. When a 

new DDM event indicates that a previously generated message should have been sent to 

an LP, but in fact was not, the message is retrieved from the log and sent. 

A solution to the extra messages problem is the same as that which was discussed 

earlier. Extra messages can be avoided by performing extra filtering by the LPs receiving 

the updates. 

Finally, the solution to the problem of messages in the LP’s past is to modify the 

LBTS computation which is responsible for each of the LPs’ time advances. Recall that 

the LBTS computation determines the current simulation time to which an LP can 

advance (i.e. events with time stamps up to that time are safe to process), by taking into 

account all connections between LPs. However, some of those events may be “late” 

DDM events, which have been delayed in the network as transient messages. The 

problem is that these DDM events may generate new messages from the log with time 

stamps less than the new simulation time determined by the LBTS computation. It is 

straightforward to correct this problem by having the LBTS computation take into 

account any “late” DDM events with time stamps less than the computed LBTS value. In 

particular, each “late” DDM event with time stamp less than the new LBTS value must 

be processed immediately, out of time stamp order, and all generated update messages 

must be accounted as transient messages in the extended LBTS computation. Note that 
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the LBTS computation should not impose any additional overheads if there are no “late” 

DDM events with time stamps less than the computed LBTS value. 

To illustrate the log-based approach, consider the scenario shown in Figure 4. The red 

tank modeled by LPA issues an update position event at logical time 10. The blue tank 

modeled by another LPA is not subscribed to receive any messages from LPB at this time. 

Later in the execution, suppose the blue tank changes its position at logical time 9 and 

hence becomes subscribed to events from LPA at that logical time. The previously logged 

event from LPA is retrieved from the log, and sent to LPB. 

 

 Position update message is logged, 
but is not sent to blue tank 

Red tank becomes visible at logical  
time 10 (via interest expressions@10);  
DDM retrieves message from log and  
sends to blue tank 

logical time 

LP B: blue tank 

LP A: red tank 

10 

logical time 

LP B: blue tank 

LP A: red tank 

10 

Later in the execution: 

log 

log 

Position update message is logged, 
but is not sent to blue tank 

Red tank becomes visible at logical  
time 10 (via interest expressions@10);  
DDM retrieves message from log and  
sends to blue tank 

logical time 

LP B: blue tank 

LP A: red tank 

10 

logical time 

LP B: blue tank 

LP A: red tank 

10 

Later in the execution: 

log 

log 

 

Figure 4  Message log to prevent missed messages. 

 
This approach is optimistic in that an error detection and recovery procedure is used 

rather than strictly avoiding errors. By contrast, a conservative execution would processes 
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events, including DDM events, in time stamp order at each LP, and ensure that there will 

not be any messages in the LP’s past, nor any missed messages. Here, DDM events may 

be processed out of time stamp order. In fact these events are processed as early as 

possible. Errors such as missed messages may occur, and when detected, the log is used 

to recover. 

The advantage of this optimistic approach is it allows greater concurrent execution of 

events, and avoids the inconvenience of requiring each LP to always invoke services that 

affect the connection database ahead of time. In other words, zero lookahead interactions 

and concurrent execution are both allowed. A second advantage is that this particular 

optimistic approach to synchronizing the DDM services is tailored to the semantics of the 

DDM services, thereby avoiding the use of general rollback mechanisms, which are more 

complex and potentially require large runtime overheads. The main drawback with 

optimistic methods is the additional complexity it introduces in the simulation 

infrastructure. In the example that was just described the infrastructure must maintain 

message logs, and provide mechanisms to reclaim storage used by the log. 

Related to this optimistic approach is the one described in [29]. The “optimistic 

publications” mechanism is proposed that allows publishers to go ahead of subscribers 

more freely. This is similar to our approach since publishers keep history of sent 

messages. However, rollbacks are utilized to handle delayed subscriptions at the 

publishers. Furthermore, subscribers wait for “catch-up” messages and handshake with 

publisher during subscription events, while in our approach there is no wait on 

subscription events, until possibly during the LBTS computation. Even then, the LBTS 
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computation does not impose any additional overheads such as handshakes with 

publishers, unless there are “late” DDM events with time stamps less than the computed 

LBTS value. 

Another related approach is described in [27]. It differs from our approach since it is 

based on an optimistic simulation, and thus has the complexity and performance burden 

inherent to the optimistic style of execution. 

In conclusion, our approach to time managed DDM consists of two parts. One part is 

the optimistic approach to synchronization between DDM and non-DDM events. The 

second part is the hybrid approach to DDM, which deals with the issue of reducing 

computational (i.e. matching) overheads necessary for DDM to determine subscribers for 

each update region. This approach is applicable to both time managed and non-time 

managed DDM systems, and will be described in the following section. 

3.3.2 Hybrid Approach to Reduce DDM Overheads: Region-

Based Groups with Grids 

The time managed DDM algorithm described here uses a hybrid approach to DDM. This 

hybrid approach uses a variation on the region-based approach described in Chapter 2 

that uses grid cells to reduce the matching overhead. A multicast group is defined for 

each update region, eliminating the duplicate and extra message problem of the grid 

scheme (for non-time managed DDM). However, grid partitioning is used to match 

update and subscription regions, improving the scalability of the pure update-region 

based approach. 
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Grids can be used to improve the efficiency of region changes. Logically, when a 

subscription region changes, one need only consider those update regions overlapping the 

grid cells covering the old and new subscription regions to determine the new 

composition of multicast groups. Similarly, when an update region changes, one need 

only consider those subscription regions that overlap the grid cells of the old/new update 

region to determine the new composition of the group. 

We use a variation on this approach to manage group membership. Recall the pure 

grid-based approach used subscription counts to track the number of times a logical 

process is subscribed to a grid cell. The hybrid approach uses a similar concept, but for 

update regions, to trigger group join and leave requests. Specifically, a subscription 

strength array is defined for each update region, with one entry per LP. The entry for a 

LP indicates the "strength" of that LP's subscription to the update region (group). One 

unit of strength corresponds to one subscription region for the LP overlapping with the 

update region in exactly one grid cell. The strength of a subscription region is the number 

of grid cells in which the subscription region overlaps with the update region. The total 

strength of the LP's subscription to an update region is the sum of the strengths of each of 

the LP's subscription regions. For example, if the LP has two subscription regions, and 

one overlaps the update region in one cell, and the second overlaps it in two cells, the 

strength of the LP's subscription to the update region is three. The LP remains joined to 

the update region's multicast group so long as it has a subscription strength of at least 

one. The DDM software maintains the strength arrays as regions come and go and are 
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modified. It issues a join request if the LP's subscription strength becomes non-zero, and 

issues a leave request if the strength becomes zero.  

This approach is easily extended to consider classes and attributes, as required in the 

HLA DDM services. It was first described in [6], which coincided with a similar idea 

described in [7]. Our hybrid approach differs in that it does not require a centralized 

coordinator for matching update and subscription regions. Another difference is that our 

approach is more general since it allows multiple subscription regions to be treated as a 

single interest expression per LP, as oppose to having each subscription region as an 

interest expression. On the other hand, it is less precise since there may be extra messages 

generated due to the granularity of grid cells. This may happen when regions do not 

overlap grid cells fully, but only partially. 

3.4 Algorithm 

As discussed in Chapter 2, the fundamental concept underlying interest expressions is the 

routing space. A routing space is a normalized multidimensional coordinate system in 

which LPs indicate interest in receiving or providing updates via subscription and update 

regions, respectively. Regions are rectangular (in N dimensions) and are specified by 

indicating extents, with one extent for each dimension. Each extent indicates the portion 

of that dimension covered by the region. A federate (i.e. an LP) may issue 

Modify_Region for changing region extents and Update_Attribute_Value to send 

messages (see [30] for complete reference to HLA services). When an attribute is 
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updated, a message is sent only to those federates whose subscription region overlaps 

with the update region. 

Here, we describe one approach to implementing the time managed DDM algorithm 

based on partitioning the routing space into fixed non-overlapping cells and creating a 

distribution list for each update region by combining the information from cells which are 

overlapped by that region. The core of this approach was described in sections 3.3.1 and 

3.3.2. Here, we will assume identical cells to simplify the presentation. 

3.4.1 DDM Architecture 

It is convenient to view the DDM system as logically being composed of two layers (see 

Figure 5). The upper layer provides the interface to the federate for specifying its interest 

and description expressions (portions of the routing space). This interest management 

layer receives and processes these expressions and generates for the lower layer Add and 

Delete operations to change the database indicating which federates receive attribute 

updates and interactions. At this lower layer, distribution list software performs changes 

to the database and ensures that these changes are properly synchronized with attribute 

updates and interactions so that each federate receives all of the messages it is supposed 

to receive, and no others. 
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Figure 5  DDM Organization. 

3.4.2 Interest Management Layer 

The current HLA Interface Specification [30] does not include a time stamp parameter 

for services that modify subscription and update regions. It is clear that such a 

specification is necessary for logical time federations to indicate when the changes should 

take effect, so here, a time stamp parameter has been added for this purpose. 

The interest management layer provides the following data distribution services to the 

federate: 

• region_handle* Create_Region  ( space_handle theSpace, ULong number of 

extents): A region is created by this service. The space_handle parameter must be 

one of the already defined routing spaces, and the other parameter is the number of 
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extents (i.e. rectangular portions of the routing space). The region handle is passed to 

the federate when the region is created. 

• void Delete_Region  ( region_handle H, time_stamp T): A region H is deleted by 

this service at logical time T. 

• void AssociateRegionForUpdates ( region_handle H, object_handle theObject, 

AttributeHandleSet theAttributes, time_stamp T): This service associates the 

region H to be used for updates with instance attributes theAttributes of a specific 

object instance theObject at the specified logical time T. In essence, this service 

makes the update region H active (i.e. to be considered for data distribution) at logical 

time T. 

• void UnassociateRegionForUpdates ( region_handle H, object_handle theObject, 

time_stamp T): Removes the association between the region H and all instance 

attributes from object theObject associated with that region at time T. 

• void SubscribeObjectClassAttributesWithRegion ( ObjectClassHandle theClass, 

region_handle H, AttributeHandleSet attributeList, time_stamp T): Makes an 

association between the object class theClass with attributes theAttributes and region 

H. Basically, this service makes the subscription region H active (i.e. to be considered 

for data distribution) at logical time T. 

• void Unsubscribe ObjectClassAttributes WithRegion ( ObjectClassHandle 

theClass, region_handle H, time_stamp T): Removes the association between the 

object class theClass and the region H at time T. 
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• void Modify_Region ( region_handle H, time_stamp T): Informs the RTI that the 

region H has been changed to a new set of extents pointed to by the region_handle H 

as of logical time T. 

• void Update_Attribute_Values ( object_handle theObject, AttributeHandle 

ValuePairSet theAttributes, time_stamp T): Informs the RTI of a new attribute 

values contained in the theAttributes at logical time T. 

 

For the sake of completeness, federates may also issue declaration management 

operations (Publish and Subscribe). These operations are processed in the interest 

management layer, but are not discussed further. 

Now, we describe in more detail our hybrid approach to implementing the interest 

management layer based on partitioning the routing space into non-overlapping cells. In 

general, the cells need not be the same size, but we will assume identical cells here to 

simplify the presentation. 

As discussed in section 3.3.2, grid partitioning is used to match update and 

subscription regions, and a multicast group is defined for each update region. A federate 

may be subscribed to a cell multiple times, e.g., if more than one entity within the 

federate has indicated subscriptions to regions overlapping the same cell. For this reason, 

counters are used to indicate the strength of a federate’s subscription to the cell. 

To explain how the interest management layer works, we first define two types of 

counters: 
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• Def C1. (Cell counter) Grid cell’s subscription strength per federate, denoted 

Csbsc[F]: strength@t. This counter keeps track of how many subscription regions of a 

federate overlap a cell. Csbsc refers to a grid cell, F is a federate subscriber and t is a 

logical time. 

• Def C2. (Region counter) Cumulative subscription strength per update region, 

denoted Ucumulative[UR][F]: strength@t. This counter is what we were referring to as 

subscription strength for an update region in our hybrid approach. In other words, the 

cumulative subscription strength at a logical time t is a sum of subscription strengths 

for this region of the grid cells overlapping an update region. UR is an update region, 

F is a federate subscriber and t is a logical time. In other words: 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells by region UR at time t 

 

Essentially, the algorithm updates these two types of counters as regions change, and 

generates time-stamped Add/Delete operations for the Distribution List Layer. During 

this process, when Ucumulative counter’s value increases to 1, an Add operation is 

generated, and when it drops to 0, a Delete operation is generated. 

The ModifyRegion service for an update region must compute a new value of the 

Ucumulative counter for that region. Instead of using the above formula, optimizations to 

improve performance are possible. When an update region changes, it is not necessary to 

recompute the sum of Csbsc for all cells that were covered by a previous instance of this 

region and remain covered by the region after the change. The same result can be 

obtained by adding to the Ucumulative counter Csbsc for the cells not previously covered (i.e. 
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new cells) and subtracting Csbsc for the left cells (i.e. old cells). So, we use the following 

formula to improve performance: 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 

= ∑ Csbsc[F]: strength@t    // speed up with incremental update 
     ∀ overlapping cells from previous instance of UR 

+ ∑ Csbsc[F]: strength@t   -   ∑ Csbsc[F]: strength@t 
                     ∀ new cells                          ∀ old cells 

 

The ModifyRegion service for a subscription region has to update Csbsc counters only 

for the affected cells. That is, counters for newly overlapped cells (i.e. new cells) need to 

be incremented by 1, while counters for left cells (i.e. old cells) need to be decremented 

by 1. Then, we need to compute new values of the Ucumulative counters for all update 

regions covering any of the new or old cells. Instead of using the original formula, an 

optimization to improve performance is again possible. When an update region changes, 

it is not necessary to recompute the sum of Csbsc for all cells that are covered by the 

region. The same result can be obtained by adding to the Ucumulative counter the number of 

new overlapping cells and subtracting the number of old overlapping cells in the 

subscription region. So, we use the following formula to improve performance: 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 

= Ucumulative[UR][F]: strength@t    // speed up with incremental update 

+ number of new overlapping cells –  number of old overlapping cells 
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Finally, when the UpdateAttributeValue service is invoked, it causes an invocation of 

the Update service in the distribution list layer for the corresponding update region. 

3.4.3 Distribution List Management Layer 

Logically, the distribution list management layer can be viewed as maintaining a 

collection of distribution lists indicating which federates should receive which attribute 

updates. The distribution lists collectively form the database mentioned earlier. The 

distribution lists may not be explicitly represented within the RTI, i.e., they could be 

realized by the composition of multicast groups in the underlying network. Each change 

to a distribution list has a logical time associated with it indicating when that change 

takes effect. Thus, one may conceptually view each distribution list as evolving, one 

change at a time, over successive logical times. 

Let D(id,T) denote a distribution list (the id field specifies a particular list) 

corresponding to federate time T. When an update to an attribute occurs with time stamp 

T, the interest management layer will map this attribute to one or more distribution lists, 

and the RTI will send a message to each federate in D(id,T) of all selected lists. The 

following distribution management layer operations are needed (see Figure 5): 

• Add(F,id,T): add federate F to the distribution list identified by id to take effect at 

logical time T. 

• Delete(F,id,T): remove federate F from the distribution list identified by id as of 

logical time T. 
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• Update(id, V, T): send a message to each federate that belongs to the distribution list 

id at logical time T. V indicates the value of the message. This primitive would be 

invoked when the federate invokes the Update Attributed Values (or Send 

Interaction) service. 

 

These operations are invoked within the RTI by the interest manager. They may be 

invoked when a change in regions occur that changes the set of federates that should 

receive messages, when an object becomes “discovered” (or removed), when a new 

object is instantiated (or removed), or when an attribute is updated or an interaction is 

sent. The semantics of these operations are defined as follows: 

• Composing the operations Add(F,id,T) and Delete(F,id,T) with the same parameter 

values has the same effect as if neither operation were performed. In this case, the 

two operations are said to be canceled. 

• Add (F,id,T): let TD be the smallest time stamped Delete operation (ignoring 

canceled operations) by federate F on distribution list id such that TD > T. F will 

receive a message for every update to this distribution list with time stamp in the 

interval [T, TD). 

• Delete (F, id, T): let TA be the smallest time stamped Add operation (ignoring 

canceled operations) by federate F on distribution list id such that TA > T. F will not 

receive any messages for updates to this distribution list with time stamp in the 

interval [T, TA). 
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• The “effect” of an Add(F,id,T) or Delete(F,id,T) operation spans the interval [T, 

TAD], where TAD is the time stamp of the smallest Add or Delete operation such that 

TAD > T. Outside this interval, the operation has no effect. Note that this interval may 

change (be shortened) during the simulation, as the new Add and Delete operations 

are issued. In other words, there is no cumulative effect of these operations on a 

distribution list membership of federate F for any particular logical time. 

 

The distribution list for cell id corresponding to time T is constructed by determining 

which federates have subscribed via the Add operation to receive updates with time 

stamp T. Specifically, define the “subscription function” as follows: 

 

S(F, id, T) 

= TRUE if an uncanceled operation Add (F, id, TA) exists such that TA ≤ T and no 

uncanceled operation Delete (F, id, TD) exists such that TA < TD < T. 

= FALSE otherwise 

 

D(id,T) is defined as the set of federates Fi such that S(Fi, id, T) is true. 

 

As discussed earlier, update attribute messages are logged by the RTI so they can be 

sent to “late” subscribers. A log L(id) for distribution list id is defined for this purpose. 

This log is defined as a sequence of tuples <Vi, Ti> where Vi is the new value contained 

in the update message sent for an attribute update with time stamp Ti. 
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Example. It is convenient to view the history of Add/Delete operations to an attribute by 

a federate according to a diagram such as that shown in Figure 6. Consider a new Add or 

Delete operation with time stamp T. The status of the federate (subscribed or 

unsubscribed) at time T only depends on the largest time stamped uncanceled Add or 

Delete operation with time stamp smaller than T. For example, in Figure 6 consider a 

Delete operation with time stamp 20. The Add operation at time 15 indicates the federate 

is subscribed to the attribute at time 20, independent of what other Add or Delete 

operations occurred with time stamps less than 15. Similarly, the effect of the new 

operation at time 20 only persists until the next higher time stamped uncanceled Add or 

Delete operation. In Figure 6, the effect of the new operation at time stamp 20 only 

persists until time 25. No operation with time stamp larger than 25 is affected by this new 

operation. 
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Figure 6  Snapshot of Add and Delete operations by a single federate. The federate is 
subscribed to receive updates in the intervals [5,10) and [15,35). 

 

3.4.4 Basic Algorithm 

Data Structures at glance. 

• Cell Layer’s counters: 

Csbsc[F]: strength@t - grid cell’s subscription strength for federate F at time t 

 

• Region Layer’s counters: 

Ucumulative[UR][F]: strength@t - cumulative subscription strength for update 

region UR and for federate F at time t 

 

Without loss of generality, we keep cell and region counters for every update and 

subscription region change. Counters for other logical times can be deduced from 

existing counters as necessary. In essence, the pseudo-code below shows the underlying 

principles behind the algorithm in a concise way. Full description of our time-managed 
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DDM algorithm with all the details of how to update cell and region counters in certain 

logical time intervals can be found in the appendix. 

 

Assumptions. 

• Update and subscription regions always completely overlap a routing space’s grid cell 

or not at all. There is never a grid cell overlapped partially by a region. 

• Neither an update nor a subscription region change of extents may be cancelled or 

changed at a particular logical time where such change occurred previously. 

However, change is allowed to occur in between and around already issued extent 

changes. In other words, only one Modify subscription region or Modify update 

region for a region and federate may be issued for a particular logical time. 

 

Notational abbreviations. 

• For the sake of clarity, we describe region modifications for update and subscription 

regions separately and with slightly modified arguments. These two operations 

represent the Modify_Region service introduced previously. Furthermore, the 

subscription region SR or update region UR parameter of the Modify Region 

operations is in fact a region handle or a data structure that also points to, or contains, 

a new region’s extents. 

• The federate parameter F of Modify Region operations represents a federate which 

owns a particular subscription or update region. Federate F is responsible for issuing 

Modify Region operations for this region. 
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Algorithm. 

Modify subscription region( subscription region SR, federate F, logical time T){ 

1. Phase 1: Update Cell Layer counter 

• Determine all new/old cells C for SR   // from SR(T) and previous instance in 

time of SR 

• Determine Tend; Tstart= T 

• ∀ new cells: 

++ Csbsc[F]: strength@t ; t ∈ [Tstart, Tend) 

• ∀ old cells: 

-- Csbsc[F]: strength@t ; t ∈ [Tstart, Tend) 

 

2. Phase 2: Update Region Layer counter 

• ∀ UR overlapping any of the new/old cells C in t ∈ [Tstart, Tend):   // limits 

search of URs 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 

= Ucumulative[UR][F]: strength@t    // speed up with incremental update 

+ number of new overlapping cells –  number of old overlapping cells 

 

3. Phase 3: Issue Add/Delete operations according to change in Region Layer counter 

• ∀ UR where Ucumulative[UR][F]: strength@t changes its value from 0 to 

greater than 0 in t ∈ [Tstart, Tend): 



 68

issue Add( F, UR, t) 

• ∀ UR where Ucumulative[UR][F]: strength@t changes its value from greater 

than 0 to 0 in t ∈ [Tstart, Tend): 

issue Delete( F, UR, t) 

} 

 

Modify update region( update region UR, logical time T){ 

1. Phase 1: Update Region Layer counter 

• Determine all new/old cells C for UR 

• Determine Tend; Tstart= T 

• ∀ F in t ∈ [Tstart, Tend): 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 

= ∑ Csbsc[F]: strength@t    // speed up with incremental update 
     ∀ overlapping cells from previous instance of UR 

+ ∑ Csbsc[F]: strength@t   -   ∑ Csbsc[F]: strength@t 
                      ∀ new cells                          ∀ old cells 
 

2. Phase 2: Issue Add/Delete operations according to change in Region Layer counter 

• ∀ F where Ucumulative[UR][F]: strength@t changes its value from 0 to greater 

than 0 in t ∈ [Tstart, Tend): 

issue Add( F, UR, t) 
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• ∀ F where Ucumulative[UR][F]: strength@t changes its value from greater than 

0 to 0 in t ∈ [Tstart, Tend): 

issue Delete( F, UR, t) 

} 

 

Distribution List Layer (DL) operations – Unicast realization: 

 

DL::Update( UR, V, T){ 

• send V to all federates in D(UR,T) 

• record <V,T> in L(UR) 

} 

DL::Add( F, UR, T){ 

• record F has been added to D(UR) at time T 

• message = empty 

• if not S(F,UR,T) then 

• let AD be the smallest time stamped uncanceled Add or Delete operation 

for F on UR with time stamp greater than T, and let T2 be the time stamp 

of AD. 

• for each tupple <V,Tv> in L(UR) where T ≤ Tv < T2, add V to message 

• send message to F 

} 
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DL::Delete( F, UR, T){ 

• record F has been deleted from D(UR) at time T 

• message = empty 

• if S(F,UR,T) then 

• let AD be the smallest time stamped Add or Delete operation for F on A 

with time stamp greater than T, and let T2 be the time stamp of AD. 

• for each tupple <V,Tv> in L(UR) where T ≤ Tv < T2, add a retraction of V 

to message // retracting a tuple <V,Tv> effectively cancels it at the 

receiving federate F, as the tupple was never issued in the first place 

• send message to F 

} 

 

Distribution List Layer (DL) operations – Multicast realization: 

DL::Update( UR, V, T){ 

• message = empty 

• message.values = V; message.destination = all federates in D(UR,T) 

• send message to MG(UR) 

• record <V,T> in L(UR) 

} 

DL::Add( F, UR, T){ 

• record F has been added to D(UR) at time T 

• message = empty 
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• if not S(F,UR,T) then 

• let AD be the smallest time stamped uncanceled Add or Delete operation 

for F on UR with time stamp greater than T, and let T2 be the time stamp 

of AD. 

• for each tupple <V,Tv> in L(UR) where T ≤ Tv < T2, add V to 

message.values 

• Message.destination = F  

• send message via unicast to F 

• if( F ∉ MG(UR)) 

issue JOIN_MCAST_GROUP( MG(UR), F) 

} 

 

 

DL::Delete( F, UR, T){ 

• record F has been deleted from D(UR) at time T 

• message = empty 

•  if S(F,UR,T) then 

•  let AD be the smallest time stamped Add or Delete operation for F on A 

with time stamp greater than T, and let T2 be the time stamp of AD. 



 72

• for each tupple <V,Tv> in L(UR) where T ≤ Tv < T2, add a retraction of V 

to message.values message // retracting a tuple <V,Tv> effectively 

cancels it at the receiving federate F, as the tupple was never issued in 

the first place 

• send message via unicast to F 

• if(⎤∃ t ∈ [Current logical time, ∞) such that  S(F, UR, t))  

issue LEAVE_MCAST_GROUP( MG(UR), F) 

} 

 

DL::Time advance( T){ 

• ∀ F: 

if( ( F ∈ MG(UR)) and (⎤∃ t ∈ [T, ∞) such that  S(F, UR, t)))  

issue LEAVE_MCAST_GROUP( MG(UR), F) 

} 

3.4.5 Correctness Proof 

We will now verify the correctness of the algorithm. First we provide the definitions for 

interest and description expressions. This is followed by a definition of the subscription 

function obtained by the algorithm and the correct subscription function which is 

equivalent to r(t) defined earlier. r(t) maps a description expression to a set of consumer 

processes, designating all consumer processes whose interest expressions overlap a 

description expression. Theorem 1 showing the correctness for the DDM algorithm 
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follows from its supporting lemmas. Essentially, it proves that a subscription function 

obtained by our algorithm is the same as the correct subscription function at the end of 

the simulation execution. 

 
Def 1. (Expressions) Let MR be a set of region modifications over time. An element of 

MR is a tuple < region R, extents E, logical time T> indicating new extents E of a region 

R at time T. 

 

Def 2. (Interest Expressions) Let MSR be a MR set of subscription region modifications 

over time. This set is equivalent to I, the set of interest expressions from the general 

DDM model.  

 

Furthermore, let MSRfinal be a MR set of all subscription region modifications over time 

during the simulation execution. 

 

Def 3. (Description Expressions) Let MUR be a MR set of update region modifications 

over time. This set is equivalent to D, the set of description expressions from the general 

DDM model.  

 

Furthermore, let MURfinal be a MR set of all update region modifications over time 

during the simulation execution. 
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Def 4. (Subscription function obtained by a DDM algorithm) Let a subscription 

region modification set be MSR and update region modification set be MUR. After 

executing all Modify subscription region operations corresponding to elements in MSR 

set, and all Modify update region operations corresponding to elements in MUR set, the 

“subscription function” S is defined as: 

 S( federate F, update region UR, logical time T) 

= TRUE if an uncanceled operation Add( F, UR, TA) exists such that TA ≤ T and no 

uncanceled operation Delete( F, UR, TD) exists such that TA < TD < T. 

= FALSE otherwise 

 

Furthermore, let Sfinal denote a subscription function S after all update and subscription 

region modifications over time during the simulation execution, that is for MURfinal and 

MSRfinal. 

 

Def 5. (Correct subscription function – equivalent to mapping r from the general 

DDM model) Let a subscription region modification set be MSR and update region 

modification set be MUR. The “correct subscription function” Scorrect is defined as: 

 Scorrect( federate F, update region UR, logical time T) 

= TRUE if ∃ UR ∈ MUR and ∃ SR ∈ MSR at time T such that SR is produced by 

federate F and UR ∩ SR ≠ ∅ 

= FALSE otherwise 
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Furthermore, let Scorrect final denote a subscription function Scorrect after all update and 

subscription region modifications over time during the simulation execution, that is for 

MURfinal and MSRfinal. 

 

Lemma 1. (Correct generation of message sends and retractions in each step of 

DDM algorithm) Let ADfinal be a sequence of Add and Delete operations issued by the 

algorithm for a particular region UR and federate F, and U be an Update operation at time 

TU. Now, consider an Add or Delete operation that is defining the value of Sfinal ( F, UR, 

TU) to be either TRUE or FALSE. Such an operation has the largest time-stamp of all the 

Add and Delete operations from ADfinal with time-stamps not greater than TU. Consider 

the case when final Add or Delete operation appears after this Update. For this particular 

Update, algorithm generates sequence of send and retraction messages US = <U1, U2… 

Ufinal> which satisfies the following properties: 

 

1) If federate F is subscribed to receive updates from update region UR at time TU, that 

is, if Sfinal ( F, UR, TU) = TRUE, then: 

• US is non-empty. 

• U1 = Ufinal = message send for this Update. 

• Each message send except Ufinal from the sequence is followed with a 

retraction of the same message. 
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2) Otherwise, if federate F is not subscribed to receive updates from update region UR at 

time TU, that is, if Sfinal ( F, UR, TU) = FALSE, then: 

• US may be empty. 

• If U is non-empty, then U1 = message send and Ufinal = message retraction for 

this Update. 

• Each message send from the sequence is followed with a retraction of the 

same message. 

 

Proof. Proof is by induction. Essentially, we will prove that U1 must be a message send 

for this Update, and that each message send from the sequence is followed with a 

retraction of the same message. Depending on the value of Sfinal ( F, UR, TU), Ufinal will 

either be a message send or a message retraction for this Update. 

Initially, when the Update is issued, the AD sequence will be non-empty with any 

number of Add and Delete operations (note that the initialization sets a Delete operation 

at time -∞). A message send will occur if S( F, UR, TU) = TRUE, setting the sequence of 

send and retraction messages US to contain only this message send. Otherwise, no action 

will occur, leaving the sequence US empty. Thus, the lemma holds. 
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Figure 7  Possible cases when a new Add or Delete operation arrives. 

 
Now we discuss an induction step. By definition, the “effect” of an Add or Delete 

operation only spans the interval from its time stamp to the time stamp of the 

immediately following Add or Delete operation. This is clearly implemented in our 

algorithm. If the time of an Update T we are considering is outside this interval, a new 

Add or Delete operation will not affect S( F, UR, TU) after the operation has completed, 

nor it will change sequence of send and retraction messages US. Consequently, the 

induction step preserves the lemma in this case. 

Next we consider the case where the time of an Update TU is inside the interval 

affected by a new Add or Delete operation. Let us consider an Update with time stamp in 
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the interval [T, T2), where T2 is the time stamp of the following Add / Delete operation, 

while T1 is the time stamp of the preceding Add / Delete operation. Since the behavior of 

our algorithm depends on the new Add or Delete operation and the preceding Add / 

Delete operation, there are four possible cases depicted in Figure 7 which can be 

executed by the algorithm. 

Let us first consider the situation where Add is a new operation from sequence AD 

defining the value of S to be TRUE. Case 1 corresponds to a new Add operation where 

the federate is already subscribed, that is S at time TU is TRUE. This situation of two 

consecutive (in federate time) Add operations could arise if the Delete operation for the 

earlier Add operation had been delayed. Therefore, no further action is required other 

than noting that the Add operation has occurred. Case 2 corresponds to the situation 

where the federate is not subscribed, that is S at time TU is FALSE. The federate should, 

but has not yet received any Updates with time stamp in the interval [T, T2), where T2 is 

the time stamp of the following Add / Delete operation, so messages for these updates, 

including the one for Update at TU, must be sent to the federate. Updates with time stamp 

larger than T2 have already been correctly processed by the operation at time T2. 

Now consider Delete operations. Case 3 corresponds to a Delete operation when the 

federate is subscribed. In this case, the federate has been sent messages with time stamp 

in the interval [T, T2), where T2 is the time stamp of the following Add / Delete operation, 

so these messages, including the one for Update at TU, must be retracted (canceled). Case 

4 corresponds to a Delete operation occurring when the federate is not subscribed to 
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receive updates. Like case 1 for the Add operation, no additional messages (or 

retractions) need to be sent. 

In all four cases, the induction step preserves the stipulations of the lemma, and hence 

the lemma is proven. 

 

Def 6. (DDM Algorithm Correctness) Let MSRfinal and MURfinal be the MR sets of all 

subscription and update region modifications respectively over time during the simulation 

execution. The DDM algorithm is correct if the following is satisfied. 

 

1) If federate F is subscribed to receive updates from update region UR at time T, that is, 

if Sfinal correct( F, UR, T) = TRUE, then: 

• Update @ T should be delivered once and only once to federate F. 

 

2) Otherwise, if federate F is not subscribed to receive updates from update region UR at 

time T, that is, if Sfinal correct( F, UR, T) = FALSE, then: 

• Update @ T should not be delivered to federate F. 

 

Theorem 1. (DDM Algorithm Correctness) The time managed DDM algorithm 2 is 

correct according to Definition 6. 

 

Proof. According to Theorem 2, the algorithm yields a subscription function Sfinal which 

satisfies Sfinal = Sfinal correct. According to Def. 4 of Sfinal this means that the final Add and 
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Delete operations were also correctly issued. Depending on the value of Sfinal, two 

situations are possible. 

Let us first consider the situation where Sfinal is TRUE. Now, consider an Add or 

Delete operation that is defining the value of Sfinal to be either TRUE or FALSE. Such an 

operation has the largest time-stamp of all the Add and Delete operations with time-

stamps not greater than T. In our case, since Sfinal is TRUE, such an operation is Add. 

Now we consider two sub-cases depending on the ordering of this Add operation and 

Update at time T. When the Add appears before the Update, the distribution list for 

update region UR is adjusted to include federate F. Changing a distribution list occurs 

only at the beginning of an Add or Delete operation and since this Add operation defines 

Sfinal at time T, no additional Add or Delete operations can remove federate F from the 

distribution list at time T. Thus, when the Update is issued, it will be sent to federate F, 

and no duplicates of this Update will ever be sent again. 

The second sub-case is when the Add appears after the Update. However, before a 

final Add, there may be a sequence of Add and Delete operations which can cause state S 

to alternate between TRUE and FALSE at time T. This is apparent from the first line of 

Add and Delete operations, which either adds or deletes federate F from a distribution list 

D(UR) at time T. According to Lemma 1, an Update at time T may be sent and retracted 

multiple times until the final Add occurs. Furthermore, message sends for the same 

Update at time T will never follow each other, and retraction can only follow an Update 

send. Lemma 1 shows that after the final Add, there is only one sent and non-retracted 

Update at time T, while other possible sends of this Update have been retracted. As we 
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discussed before, since this Add operation defines Sfinal at time T, no additional Add or 

Delete operations can remove federate F from the distribution list at time T, and 

consequently cause another retraction. Also, no duplicates of this Update will ever be 

sent again. 

We explain in a similar manner the situation where Sfinal is FALSE. Now, consider an 

Add or Delete operation that is defining the value of Sfinal to be either TRUE or FALSE. 

Such an operation has the largest time-stamp of all the Add and Delete operations with 

time-stamps not greater than T. In our case, since Sfinal is FALSE, such an operation is 

Delete. Now we consider two sub-cases depending on the ordering of this Delete 

operation and Update at time T. When the Delete appears before the Update, the 

distribution list for update region UR is adjusted if necessary not to include federate F. 

The changing of a distribution list occurs only at the beginning of an Add or Delete 

operation and since this Delete operation defines Sfinal at time T, no additional Add or 

Delete operations can add federate F to the distribution list at time T. Thus, when the 

Update is issued, it will not be sent to federate F, nor it will ever be sent later during the 

simulation execution. 

The second sub-case is when the Delete appears after the Update. As we already 

noted before, before a final Delete, there may be a sequence of Add and Delete operations 

which can cause state S to alternate between TRUE and FALSE at time T. This is 

apparent from the first line of Add and Delete operations, which either adds or deletes 

federate F from a distribution list D(UR) at time T. According to Lemma 1, the Update at 

time T may be sent and retracted multiple times until the final Delete occurs. Message 
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sends for the same Update at time T will never follow each other, and retraction can only 

follow an Update send. Lemma 1 shows that after the final Delete, either each Update 

message sent at time T has its corresponding retraction, or that this Update has never 

been sent. As we discussed before, since this Delete operation defines Sfinal at time T, no 

additional Add or Delete operations can add federate F to the distribution list at time T, 

and consequently cause another message send. Hence, the Update will never be delivered 

to the federate F. This concludes the proof of Theorem 1. 

 

Before giving the proof of Theorem 2, that is, that our algorithm produces a unique 

subscription function Sfinal which satisfies Sfinal = Sfinal correct, we present three lemmas 

which show invariant properties of the time-managed DDM algorithm. 

 

Lemma 2. (Counter Csbsc[F]: strength@t holds the grid cell’s subscription strength 

per federate) The algorithm’s counter Csbsc always holds a value equal to the number of 

subscription regions of a federate overlapping the cell represented by this counter, that is, 

according to Def. C1. 

 

Proof. Proof is by induction. Initially, before issuing any MSR or MUR operations, Csbsc 

is initialized by the algorithm to zero, which is the correct value, since there are no 

subscription regions covering any of the cells.  

Now we discuss an induction step. Csbsc is correct and we want to prove that after an 

MSR or MUR operation Csbsc‘ is still correct. Clearly, the only operation affecting Csbsc is 
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MSR, and hence MUR does not have to be considered. According to semantics of MSR 

and MUR operations region change takes effect in a time interval [Tstart, Tend), where Tstart 

is modify region’s parameter indicating when the change occurs, and Tend is time of this 

region’s next change in logical time or infinity, if such change does not exist. Hence, the 

correctness of Csbsc is trivial for any logical time outside this interval since the MSR 

operation affects only Csbsc values in the interval. 

We focus now on proving by contradiction that Csbsc is correct in the interval [Tstart, 

Tend). Suppose Csbsc‘ is not correct for a certain cell C, that is, after MSR operation Csbsc‘ 

is not equal to the number of subscription regions from federate F overlapping cell C. 

There are four possible cases depending on whether or not a particular cell is overlapped 

by a subscription region SR and its next logical time change at Tend, that is SR’. 

 

1. Case 1: SR does not overlap cell C and SR’ does not overlap cell C. Clearly, the 

number of subscription regions from federate F overlapping cell C does not change. 

Cell C is neither a new nor an old cell. According to the MSR operation, only Csbsc of 

the new and old cells are updated, leaving Csbsc’ unchanged, and hence still equal to 

the number of subscription regions. This is a contradiction. 

 

2. Case 2: SR does not overlap cell C and SR’ overlaps cell C. Clearly, the number of 

subscription regions from federate F overlapping cell C is increased by 1. According 

to the MSR operation, cell C is a new cell and Csbsc is incremented by 1. Hence, Csbsc‘ 

is equal to the number of subscription regions. This is a contradiction. 
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3. Case 3: SR overlaps cell C and SR’ does not overlap cell C. Clearly, the number of 

subscription regions from federate F overlapping cell C is decreased by 1. According 

to the MSR operation, cell C is an old cell and Csbsc is decreased by 1. Hence, Csbsc‘ is 

equal to the number of subscription regions. This is a contradiction. 

 

4. Case 4: SR overlaps cell C and SR’ overlaps cell C. Clearly, the number of 

subscription regions from federate F overlapping cell C remains the same. Cell C is 

neither a new nor an old cell. According to the MSR operation, only Csbsc of the new 

and old cells are updated, leaving Csbsc’ unchanged, and hence still equal to the 

number of subscription regions. This is a contradiction. 

 

After exhausting all the possible cases we can conclude that Csbsc‘ is indeed correct for 

every cell. This concludes the proof of this lemma. 

 

Lemma 3. (Counter Ucumulative[UR][F]: strength@t holds the cumulative subscription 

strength per update region) The algorithm’s counter Ucumulative always holds a value 

equal to a sum of subscription strengths for this region of the grid cells overlapping an 

update region, that is, according to Def. C2. 

 

Proof. Proof is by induction. Initially, before issuing any MSR or MUR operations, 

Ucumulative is initialized by the algorithm to zero, which is the correct value, since this 
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update region doesn’t have any instance yet, or in other words it does not cover any of the 

cells.  

Now we discuss an induction step. Ucumulative is correct and we want to prove that after 

an MSR or MUR operation Ucumulative‘ is still correct. According to the semantics of the 

MSR and MUR operations, region changes take effect in a time interval [Tstart, Tend), 

where Tstart is modify region’s parameter indicating when the change occurs, and Tend is 

time of this region’s next change in logical time or infinity, if such change does not exist. 

Hence, correctness of Ucumulative is trivial for any logical time outside this interval since 

MSR and MUR operations affect only Ucumulative values in the interval. 

MUR operation clearly updates Ucumulative according to Def. C2. First assignment in 

Phase 1: 

 Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 
 

represents Def. C2 itself. The second assignment which is actually used by the algorithm 

is intended to achieve speedup of this update by considering only new and old cells: 

Ucumulative[UR][F]: strength@t  

= ∑ Csbsc[F]: strength@t    // speed up with incremental update 
     ∀ overlapping cells from previous instance of SR 

+ ∑ Csbsc[F]: strength@t   -   ∑ Csbsc[F]: strength@t 
                      ∀ new cells                          ∀ old cells 
 
Note that the first sum is the previous value of Ucumulative and as such it does not need to 

be recomputed. Clearly this is correct since all overlapping cells of the new region’s 

change are all the cells from the region’s previous instance excluding those cells that are 
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no longer overlapped (i.e. old cells) and including newly covered cells (i.e. new cells). 

This proves the correctness of updating Ucumulative. 

Similarly, the MSR operation clearly updates Ucumulative according to Def. C2. This is 

evident from Phase 2 : 

Ucumulative[UR][F]: strength@t = ∑ Csbsc[F]: strength@t 
∀ overlapping cells at time t 

= ∑ Csbsc[F]: strength@t    // speed up with incremental update 
     ∀ overlapping cells from previous instance of SR 

+ ∑ Csbsc[F]: strength@t   -   ∑ Csbsc[F]: strength@t 
             ∀ new overlapping cells          ∀ old overlapping cells 
 

Lemma 4. (Equivalence of the cumulative subscription strength per update region 

Ucumulative[UR][F]: strength@t and the subscription function S) The algorithm updates 

Ucumulative in such a way that the following two properties are satisfied: 

1. Ucumulative = 0   ⇔   S = FALSE  

2. Ucumulative ≠ 0   ⇔   S = TRUE 

 

Proof. This can also be proved by induction. Initially, before issuing any MSR or MUR 

operations, Ucumulative is initialized by the algorithm to zero, which is the correct value, 

since this update region doesn’t yet have any instance, or in other words it does not cover 

any of the cells. Function S is FALSE initially, so that properties 1 and 2 are satisfied. 

Now we discuss the induction step. Function S can only be changed by generating 

new Add and Delete operations. The only places in the algorithm where this happens are 

phases Phase 3 and Phase 2 of MSR and MUR operations, respectively. It is clear that 
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generating Add and Delete operations happens only for update regions for which 

Ucumulative has changed. Furthermore, for each of these update regions, an Add is 

generated only if Ucumulative changes its value from 0 to greater than 0, implying that S 

becomes TRUE. Similarly, a Delete is generated only if Ucumulative changes its value 

greater than 0 to 0, implying that S becomes FALSE. For all logical times not affected, 

properties 1 and 2 stand by the assumption of the induction step. 

 

Theorem 2. (Equality of subscription functions: Sfinal = Sfinal correct) For given sets MSR 

⊆ MSRfinal and MUR ⊆ MURfinal of subscription and update region modifications 

respectively over time during the simulation execution, the algorithm produces S which 

satisfies the following properties: 

• The value of S is always the same as Scorrect, that is S = Scorrect. 

• Consequently, final values are also the same, that is Sfinal = Sfinal correct. 

 

Proof. This theorem can be proved by induction. Initially, before issuing any subscription 

or update region modifications S = Scorrect = FALSE. According to Theorem 3, 

subscription function S is updated correctly in each iteration of the algorithm, resulting in 

S = Scorrect. By induction over all subscription or update region modifications this will be 

the case at the end of the simulation as well. So we have Sfinal = Sfinal correct, which proves 

the theorem. 
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Observation. Subscription function Scorrect, and hence S never depends on the order in 

which subscription and update region modifications are issued. This follows directly from 

the definition of correct subscription function Scorrect and Theorem 2. 

 

Theorem 3. (Subscription function S is updated correctly in each iteration of the 

algorithm) Let MSR ⊆ MSRfinal and MUR ⊆ MURfinal be sets of subscription and update 

region modifications respectively over time during the simulation execution. Also let m 

be the next modification, that is m ∈ MSRfinal \ (MSR ∪ MUR). If the current state of the 

algorithm satisfies S = Scorrect for every update region, then the next iteration of the 

algorithm that processes modification m produces subscription function S which still 

satisfies property S = Scorrect. 

 

Proof. Proof is by contradiction. Suppose S’ ≠ Scorrect’ for particular update region. There 

are four possible cases depending on the values before an MSR or MUR operations S and 

Scorrect, and values after these operations S’ and Scorrect’ for this update region. 

 

1. Case 1:  S = FALSE    Scorrect = FALSE   

S’ = TRUE   Scorrect’ = FALSE  

By Lemma 4, S’ = TRUE implies that Ucumulative‘ ≠ 0.  

 

On the other hand, by Lemma 3, Ucumulative holds the cumulative subscription strength per 

update region, according to Def. C2, that is: 
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 Ucumulative‘ = ∑ Csbsc‘ 
    ∀ overlapping cells at time t 
 
By Lemma 2, Csbsc holds a grid cell’s subscription strength per federate, that is, according 

to Def. C1. Thus, the same holds for Csbsc‘. Considering an assumption that Scorrect’ = 

FALSE for update region, this further implies that Csbsc‘ = 0 for all cells overlapped by 

the region. Hence, Ucumulative‘ = 0, which is a contradiction. 

 

2. Case 2:  S = FALSE    Scorrect = FALSE   

S’ = FALSE Scorrect’ = TRUE 

By Lemma 4, S’ = FALSE implies that Ucumulative‘ = 0.  

 

On the other hand, by Lemma 3, Ucumulative holds the cumulative subscription strength per 

update region, according to Def. C2, that is: 

 Ucumulative‘ = ∑ Csbsc‘ 
    ∀ overlapping cells at time t 
 
By Lemma 2, Csbsc holds a grid cell’s subscription strength per federate, that is, according 

to Def. C1. Thus, the same holds for Csbsc‘. Considering an assumption that Scorrect’ = 

TRUE for update region, this further implies that Csbsc‘ ≠ 0 for at least one cell 

overlapped by the region. Hence, Ucumulative‘ ≠ 0, which is a contradiction. 

 

3. Case 3:  S = TRUE Scorrect = TRUE 

S’ = FALSE Scorrect’ = TRUE 
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By Lemma 4, S’ = FALSE implies that Ucumulative‘ = 0.  

 

On the other hand, by Lemma 3, Ucumulative holds the cumulative subscription strength per 

update region, according to Def. C2, that is: 

 Ucumulative‘ = ∑ Csbsc‘ 
    ∀ overlapping cells at time t 

By Lemma 2, Csbsc holds a grid cell’s subscription strength per federate, that is, according 

to Def. C1. Thus, the same holds for Csbsc‘. Considering an assumption that Scorrect’ = 

TRUE for update region, this further implies that Csbsc‘ ≠ 0 for at least one cell 

overlapped by the region. Hence, Ucumulative‘ ≠ 0, which is a contradiction. 

 

4. Case 4:  S = TRUE Scorrect = TRUE 

S’ = TRUE Scorrect’ = FALSE 

By Lemma 4, S’ = TRUE implies that Ucumulative‘ ≠ 0.  

 

On the other hand, by Lemma 3, Ucumulative holds the cumulative subscription strength per 

update region, according to Def. C2, that is: 

 Ucumulative‘ = ∑ Csbsc‘ 
    ∀ overlapping cells at time t 

By Lemma 2, Csbsc holds a grid cell’s subscription strength per federate, that is, according 

to Def. C1. Thus, the same holds for Csbsc‘. Considering an assumption that Scorrect’ = 
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FALSE for update region, this further implies that Csbsc‘ = 0 for all cells overlapped by 

the region. Hence, Ucumulative‘ = 0, which is a contradiction. 

Consequently, S’ ≠ Scorrect’. 

3.5 Design Rationale 

We now summarize the design decisions that were made in the time-managed DDM 

algorithm. The following sections cover the design rationale and tradeoffs for dealing 

with missed messages and messages in the past, as well as how to represent distribution 

lists and how to match update and subscriptions regions. 

3.5.1 Dealing with Missed Messages and Messages in the Past 

The log-based approach described earlier, in section 3.3, solves the problem of missed 

messages and messages in the past. Update messages are logged as they are issued. When 

late subscriptions change connectivity between logical processes and indicate that some 

updates haven’t been sent to certain LPs, messages are retrieved from the log and resent 

to those LPs. To avoid messages in the LP’s past, time advance operations (e.g. LBTS) 

need to be modified to account for the messages that are resent from the logs after such 

operations have been initiated. For example, late subscriptions that cause messages to be 

resent from the log after an LBTS computation has been initiated will not result in these 

messages being received in the LP’s past. Such late messages will properly be accounted 

for in the modified LBTS computation. 
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An alternative to dealing with the missed messages and messages in the past is to 

have an optimistic technique with general state saving and rollback and recovery 

mechanisms. When the system detects missed messages or messages in the past, it rolls 

back its state to a previously saved safe state, and sends anti-messages for the messages 

that need to be canceled. Two optimistic techniques are described in section 3.3. 

Optimistic techniques have an advantage of being readily available and optimized for 

different types of simulations. However, there is a substantial performance cost 

associated with the general purpose rollback mechanisms: state saving and message 

cancellation. Our log-based approach doesn’t have such costs, since it is able to recover 

from errors by exploring the semantics of DDM operations. The second benefit is that 

optimistic techniques are not applicable to all types of simulation. For example, in a 

training simulation with human participants, rolling back to a previously saved state is 

inappropriate. State of the simulated world can only be seen as advancing forward in time 

when human participants are involved. 

3.5.2 Distribution List Representation 

Distribution lists are at the core of the distribution lists layer (Figure 5). They keep track 

of LPs that are subscribed to receive updates at different logical times, and this 

information evolves over the simulation execution. Multiple versions of distribution lists 

are needed corresponding to different logical times. 

One way to realize distribution lists is to use space-time memory and unicast network 

communication. An abstraction called space-time memory can be used to keep time 
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evolving data such as our distribution lists [31, 45]. Space-time memory is similar to 

ordinary memory except a time stamp is specified each time the data structure is read or 

modified. A read operation returns the most recent version of the data structure as of the 

time stamp of the read, providing a convenient means for accessing the correct version. 

Thus, when an LP issues an update at logical time T, the space-time memory is read to 

determine a distribution list at time T, followed by sending (i.e. unicasting) an update 

message to all LPs in the list. The drawback of this approach is that it does not utilize the 

network multicast capability that can reduce message delays in the network and allow for 

more messages until the network reaches its capacity and becomes the bottleneck. 

Another way to realize distribution lists is completely within the network. A multicast 

group is assigned for a distribution list at every logical time when the list changes to 

include a new LP or exclude an LP which is currently a member of the distribution list. 

This approach is viable only for simulations with small number of distribution lists, and 

where the lists evolve infrequently. Otherwise, the problem arises when there are not 

enough multicast groups to handle all the different versions of distribution lists. 

Currently, networking hardware capabilities are still limited so that the physical multicast 

groups can be viewed as a scarce resource. Furthermore, there is a significant overhead in 

using a physical multicast group. This overhead is manifested as the delay from the time 

when multicast operation is issued (e.g. JOIN or LEAVE), until the network changes its 

state to reflect this operation. 

The multicast realization of our algorithm is based on the space-time memory and 

limited number of multicast groups, one for each update region. Multiple versions of the 
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distribution list cannot be easily used because the lists are represented within the network 

infrastructure by membership to multicast groups. This problem can be solved by 

including in the multicast groups the union of all distribution lists that are currently 

active. Add operations result in immediate joins to the multicast group, if an LP is not 

already joined to the group. Delete operations are delayed until the memory reclamation 

mechanism advances to the time of the operation, and no other Add operations exist in 

the future. 

The advantage of this approach is that the number of multicast groups that are 

required depends only on the number of update regions for all the LPs in the simulation. 

The required number of groups does not depend on how frequently the distribution lists 

evolve, as was the case when the lists were realized entirely within the network. Hence, 

our approach is not limited to simulations with only infrequent multicast group 

membership changes. On the other hand, the drawback is that there will be extra 

messages due to the one multicast group per update region’s time line design. It was 

explained that an LP may be joined to a multicast group even if that LP is not subscribed 

(i.e. deleted) at some logical time intervals from its current time into the future. This 

could result in extra update messages that have to be discarded at the destination LPs. 

Our approach can be enhanced with more multicast groups per update regions’ timeline, 

by dedicating a multicast group per a distinct portion of the timeline. This topic can be 

explored further as future research. 
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3.5.3 Matching of Update and Subscriptions Regions 

The interest management layer (Figure 5) is responsible for matching of update and 

subscription regions in order to determine Add and Delete operations for the Distribution 

list layer. Our hybrid approach described in detail in sections 3.3.2 and 3.4 partitions the 

routing space into grid cells, which are used to determine update and subscription 

regions’ overlaps. Two counters are defined for this purpose, and space-time memory is 

used to capture counter changes over time. A cell counter keeps track of how many 

subscription regions of an LP overlap a cell at a particular logical time. A region counter 

is a sum of cell counters for all grid cells overlapped by an update region. The interest 

management layer generates an Add operation when region counter changes its value 

from zero to a value greater or equal to 1. Conversely, a Delete operation is generated 

when the region counter decreases its value to zero. 

This approach is faster than the pure region-based approach, where every region 

change entails comparing that region with every other region to determine possible 

overlaps. In our approach, we limit searching only to grid cells overlapped by a region, 

and hence only the regions overlapping those grid cells need to be considered. More 

precisely, when a region moves over logical time, we don’t need to update cell counters 

for common cells (i.e. cells overlapped by old and new region’s instance), nor do we have 

to consider common cells for updating region counters. This implies that when regions 

move gradually over the routing space, only the outermost cells that define region’s 

circumference have to be checked for updating cell and region counters. 
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On the other hand, the region-based approach yields a perfect matching, while the 

preciseness of the hybrid approach depends on the chosen cell size relative to the region 

sizes. In fact, the hybrid approach also yields a perfect matching when regions always 

overlap grid cells fully. In general, the hybrid approach is less efficient but more precise 

as the cell size decreases since there are more cells to consider, and vice versa. Section 

2.4.2 discussed the research that compares the cost of region and grid-based approaches 

and how to determine the optimal grid cell size. Our approach can easily be extended to 

cover the perfect matching, by defining two additional cell and region counters to account 

for cells that are not fully overlapped. This is one of the paths to explore in the future 

synchronized DDM implementations. 

The pure grid-based approach, where a unique multicast group is assigned to all grid 

cells, has a few shortcomings in comparison to the hybrid approach. Distribution lists are 

represented implicitly as multicast groups within the network, and there is no 

computational overhead to determine region overlaps. A JOIN operation is issued for 

cells that region overlaps, while a LEAVE operation is issued when a cell is not 

overlapped after an object moves to a new portion of the routing space. The problem is 

that during an update operation, an update message has to be sent to all the multicast 

groups overlapped by the corresponding update region. This will generate multiple copies 

of the same message destined for an LP, unless an update region covers only one grid 

cell. Considering that update operations are more frequent than region changes, a pure 

grid-based approach is very inefficient. Furthermore, it is limited to the case when 

regions overlap grid cells fully. 



 97

Finally, matching approaches with varied cell sizes and different levels of accuracy 

have been proposed. For example, an approach that uses multidimensional binary trees 

[46] is well suited for matching in unsynchronized DDM systems. Different portions of 

the routing space may in effect be assigned varied cell sizes, which is beneficial for the 

matching speed when region sizes vary largely. Larger cells are assigned to a portion of 

the routing space with larger regions, and vice versa. This research direction for 

synchronized DDM systems is open for future investigation. 
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CHAPTER 4 

PERFORMANCE EVALUATION

4.1 Implementation 

4.1.1 Simplified Space-Time Memory 

Multiple versions of different data structures corresponding to different logical times are 

needed. As discussed in the previous chapter, our approach to realizing distribution lists 

is by using the space-time memory mechanism for time evolving data and multicast 

groups for each update region. Space-time memory is a two dimensional memory system 

that is addressed using both spatial and temporal coordinates. Space-time memory has 

been proposed as an efficient implementation of Virtual Time Memory (VTM) 

architecture [31]. VTM is an advanced computer architecture that detects data 

dependency violations at runtime, and automatically recovers by using rollbacks. Another 

use of space-time memory is as a high level data sharing abstraction for threads in the 

Stampede project [45]. It has a complex design that subsumes buffer management, inter-

task synchronization, meeting soft real-time constraints, etc. 

In our simplified implementation we are using doubly linked lists, sorted by version 

time stamps. The data structures each federate must maintain are shown in Figure 8. 
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There is a multiple version data structure for each of the regions (“u/s” denotes 

update/subscription regions) defined by the federate. Each element represents a set of 

extents for the region at a time given by the time stamp. Each of the cells in the routing 

space has a counter with its associated versions, as well as logs for Add/Delete 

operations, received from other federates. Instead of having one log, we have a log for 

every federate. This will speed up recording a new Add/Delete entry from a federate by 

not having to traverse log elements of other federates. More importantly, it will speed up 

finding a distribution list at a given time t, by not having to traverse irrelevant elements 

from some federates (i.e. elements whose time stamps are less than t). This is illustrated 

in the following example. 

R2 - s

R1 - s

R0 - u

{{.1,.2}{.1,.5}}@10 {{.2,.4}{.2,.6}}@15

{{.1,.2}{.1,.5}}@6

{{.2,.3}{.1,.4}}@1 {{.2,.3}{.2,.5}}@10 {{.3,.5}{.3,.6}}@14

Regions and corresponding versions of extents.

1@6 2@10 1@15

F4

F3

F2

F1

ADD@0

ADD@2

DELETE@3

ADD@0 ADD@2 DELETE@5

ADD@9

DELETE@5 DELETE@8

Data structures for every cell in each of the routing space.

Versions of a counter, used by the IM2 sublayer.

Federates and corresponding versions of ADD/DELETE operations, used 
by the DL layer.

 

Figure 8  Data structures for federate:F0. 
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An UpdateAttributeValue@7 issued for an attribute associated with an update region 

that is equal to a cell depicted above causes a backward search through the Add/Delete 

logs. Traversed elements are: F4:8,5;F3:9,2;F2:3;F1:5. The distribution list for this 

update is {F3}, and a message containing the update is being sent to F3. Note that in 

general, we could have many log elements for F4 between simulation times 2 and 5 that 

would have to be searched in the case of a unique log, but this is not the case for this 

example. 

4.1.2 Distributing the DDM Algorithm’s Data Structures 

The various data structures that are required to implement DDM may be centralized, or 

distributed among the processors participating in the federation execution.  

In our implementation we realize matching of update and subscription regions by 

distributing data. Conversely, matching can also be realized by a centralized coordinator 

[6], which can be seen as keeping the connection information database between LPs [9]. 

However, this approach is not efficient as will be illustrated in the following. To simplify 

the discussion, let us assume the connection database is mapped to a single logical 

process, called the connection database logical process (CDLP). Each service invocation 

that must access connectivity information must send a message to the CDLP with time 

stamp equal to that used in the service invocation. When the CDLP processes this 

message, it reads and/or modifies the database according to the type of operation that is 

required, and completes the realization of the operation. 
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The problem with the centralized coordinator is that even when region changes and 

update operations have non-zero lookaheads, receiving such events at the CDLP may 

generate resend and retraction events with the same time-stamp, that are in effect zero-

lookahead events. Thus, the centralized coordinator becomes the bottleneck since it 

enforces sequential execution of the DDM events. Our optimistic algorithm to time-

managed DDM doesn’t have such a problem. 

In a distributed implementation, the data structures may be replicated to enable fast 

lookup, at the expense of additional communication to keep the multiple copies 

consistent. Our implementation of DDM uses a replicated copy of the data structures in 

each processor. This is justified by an assumption that region changes are less frequent 

operations than updates. 

In particular, each subscription region change associated with attributes is sent to 

every federate doing updates for any of these attributes. When region change information 

is received, grid and cumulative data structures are being updated according to our 

algorithm. Optimizations are possible to avoid sending information concerning every 

subscription region change. If a subscription region covers cells already covered by other 

subscription regions in a time interval that is active, the subscribing federate doesn’t need 

to send this information since there will not be any change in distribution lists or group 

memberships. However, after other subscription region changes, it may turn out that this 

information was relevant, and appropriate data will be sent to publishers at that time. 
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4.1.3 Implementing Message Resends and Retracts 

Late subscriptions (i.e. late subscription region changes) or late update region changes 

can cause changes in Add / Delete logs. In the worst case, each Add operation that was 

previously issued starting at an LP’s current time will be cancelled (e.g. replaced) with a 

Delete operation, and vice versa. Canceling an operation causes update messages to be 

resent from the logs, as was discussed in the previous chapter. 

Our implementation treats canceling operations resulting from a single region change 

independent from each other. Hence, instead of resending or retracting an update only 

once, it may be resent or retracted multiple times, up to the maximum number of times 

which equals the number of Add / Delete operations that need canceling. Optimized 

implementation, on the other hand, would resend or retract updates only once per region 

change. The impact on performance is that our implementation may generate more 

message resends and retracts sooner (e.g. for lower lookahead values) than the 

corresponding optimized implementation. The difference in implementation efficiency is 

analyzed later in section 4.5. 

4.1.4 Georgia Tech’s FDK Overview 

Georgia Tech’s FDK software [43] is being used for our experiments, which is designed 

to facilitate building efficient run-time infrastructures (RTIs) that can be used to federate 

simulations. Federated simulations, in which different simulators interoperate with each 

other in executing a single simulation are increasingly becoming important in many 
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areas, such as battlefield simulation (e.g. SIMNET[21], JPSD[24]) and distributed multi-

user games (e.g. DIVE[44]). 

FDK stands for the Federated Simulations Development Kit package. It is being used 

in a variety of educational and research projects such as research in DDM, use of high 

bandwidth and active networks for distributed simulations, and federated simulations for 

modeling telecommunication networks (e.g. Parallel and Distributed NS (PDNS)[41] and 

the Georgia Tech Network Simulator (GTNetS)[42]). RTI-Kit is the simulation engine 

component of the FDK. 

RTI-Kit is a collection of libraries designed to support development of Run-Time 

Infrastructures (RTIs) for parallel and distributed simulation systems. Each library can be 

used separately, or together with other RTI-Kit libraries, depending on what functionality 

is required. These libraries can be embedded into existing RTIs, e.g., to add new 

functionality or to enhance performance by exploiting the capabilities of a high 

performance interconnect. The RTI-Kit software was successfully embedded into an 

HLA RTI developed in the United Kingdom [32, 33]. Alternatively, the libraries can be 

used in the development of new RTIs. 

This "library-of-libraries" approach to RTI development offers several important 

advantages. First, it enhances the modularity of the RTI software because each library 

within RTI-Kit is designed as a stand alone component that can be used in isolation of 

other modules. Modularity enhances maintainability of the software, and facilitates 

optimization of specific components (e.g., time management algorithms) while 

minimizing the impact of these changes on other parts of the RTI. This design approach 
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facilitates technology transfer to other RTI development projects because utilizing RTI-

Kit software is not an "all or nothing" proposition; one can extract modules such as the 

time management while ignoring other libraries. 

Multiple implementations of the RTI-Kit software have been realized targeting 

different platforms. Specifically, the current implementation can be configured to execute 

over shared memory multiprocessors such as the SGI Origin, cluster computers such as 

workstations interconnected via a low latency Myrinet switch [34], to workstations 

interconnected over local or wide area networks using standard network protocols such as 

IP. 

The architecture for RTI software constructed using RTI-Kit is shown in Figure 9. At 

the lowest level is the communication layer that provides basic message passing 

primitives. Communication services are defined in a module called FM-Lib. This 

communication layer software acts as a multiplexer to route messages to the appropriate 

module. The current implementation of FM-Lib implements reliable point-to-point 

communication. It uses an API based on the Illinois Fast Messages (FM) software [35] 

for its basic communication services, and provides only slightly enhanced services 

beyond those of FM. 

Above the communication layer are modules that implement key functions required 

by the RTI. These modules form the heart of the RTI-Kit software. Specifically, TM-Kit 

is a library that implements distributed algorithms for realizing time management 

services. Similarly, DDM-Kit implements functionality required for data distribution 

management services. MCAST is a library that implements group communication 
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services. Other libraries, not shown in Figure 9, provide utilities such as software for 

buffer and queue management. 

Finally, the interface layer utilizes the primitive operations defined by these modules 

to implement a specific Application Program Interface (API) such as the HLA Interface 

Specification. The current RTI-Kit distribution includes an implementation of a subset of 

the HLA IFSpec (version 1.3). 

 

Interface Layer

TM-Kit DDM-Kit MCAST

Communication layer

RTI

Federate

Interface Layer

TM-Kit DDM-Kit MCAST

Communication layer

RTI

Federate

 

Figure 9  RTI architecture using RTI-Kit. 

4.1.5 Hardware 

All of the experiments were performed on a network of 8 Dell PowerEdge 2650 servers. 

These servers have dual Pentium 4 Xeon processors running at 2.8 GHz, and with 4 

gigabytes of physical memory. The network used was a 100 Mbps Fast Ethernet. 
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4.2 Cost of Synchronization 

Before presenting the performance results, we will characterize the costs of our time-

managed DDM implementation. 

• Message resends / retracts due to the late region changes. Late subscriptions (i.e. 

late subscription region changes) or late update region changes can cause messages 

to be resent or retracted from Add / Delete logs. The exact number of such 

messages depends on the simulation model’s lookahead value and the benchmark 

application’s characteristics such as the frequency of region changes and 

frequency of update operations (section 4.5). As will be seen shortly, this is one of 

the major contributing factors to the overall cost of the time-managed DDM. 

• Extra messages during update operations due to the limited number of multicast 

groups. In order to represent multiple versions of a distribution list per update 

region with a single multicast group, we include the union of all versions of the 

distribution list that are currently active in that multicast group. Add operations 

result in immediate joins to the multicast group, if an LP is not already joined to 

the group. Delete operations are delayed until the memory reclamation mechanism 

advances to the time of the operation, and no other Add operations exist in the 

future. Hence, extra messages can occur when an update operation is issued at a 

logical time when an LP is joined but not really subscribed to receive updates, 

which is indicated by a Delete operation at that or an earlier logical time. These 

messages can simply be filtered out at the destination LPs. We will show that 

smaller lookahead values limit the amount of extra messages during the update 



 107

operations by limiting the concurrency. Furthermore, the number of these 

messages is much less than the number of message resends / retracts, and hence, 

such extra messages have less effect on performance. 

• Extra messages due to the granularity of the grid partitioning. Grid cell size 

determines the level of accuracy for matching of update and subscription regions. 

Smaller grid cells result in better matching accuracy and fewer extra messages, but 

greater computational overhead to perform matching and larger memory 

requirements to keep time evolving data for more cells in the routing space. If grid 

cells are much larger than the regions, it is obvious that the extra message 

overhead will become more pronounce. At an extreme, when we have a single cell 

in the routing space, synchronized or unsynchronized DDM will in effect 

deteriorate into broadcast. In general, the cell size should not be larger than the 

smallest region’s size in order to limit this kind of extra messages. Approaches 

exist [20] to determine optimal cell sizes for some applications. Our matching 

algorithm can easily be enhanced to completely avoid this problem, and the idea 

will be revisited in the last chapter. 

4.3 Benchmark Applications 

We utilize two applications that exercise different mobility patterns to test time-managed 

DDM, termed the Future Combat Systems (FCS) and the synthetic benchmark 

applications. 
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Both FCS and the synthetic benchmark application can be viewed as distributed 

simulations of moving entities across a simulated world, but with different mobility 

patterns. The entities are scattered over a grid of approximately 50 km by 50 km. Entities 

are simulated by federates that reside on different processors. Each entity is associated 

with a unique update and a subscription region. Update and subscription region size is 

varied, as described later in section 4.4.2. An entity’s position changes and the logical 

time when the changes occur are specified in the mobility data file, which differ for each 

mobility pattern. Events are executed when the corresponding wall clock time (logical 

time + constant) is reached, with time-stamps assigned as the current logical time + 

lookahead. 

Mobility data, that is how and when entities change their positions, is specific for 

each application and is contained in two files: nodes.in and mobility.in. These files 

specify mobility data for all the nodes. Furthermore, some entities move frequently, and 

others move rarely. The nodes.in gives the initial position of each entity. The format of 

the data is: nodenum 0 (x, y, z), i.e., object nodenum is at position (x, y, z) at logical time 

0. The mobility.in describes all the entities’ motion. The format of the data is: nodenum T 

(x, y, z), i.e. at logical time T, object nodenum moves to the new position (x, y, z). The 

timestamp units are in seconds. 
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Now we describe some unique characteristics of both benchmark applications. 

• Real World Benchmark Application - Future Combat Systems 

Future Combat Systems (FCS) is one of the benchmark applications for our 

synchronized DDM system. In this application, mobility data and logical time stamps 

are taken from a simulated demonstration exercise using the Joint Semi-Automated 

Forces (JSAF) simulation program. 

The Future Combat Systems program (FCS) uses ad hoc wireless communications 

technology with the goal of bringing significant improvements in synchronization, 

data exchange, mobility and effectiveness of future military forces. It is envisioned as 

a scalable networked system of mobile systems comprised of both manned and 

unmanned platforms, involving land-based (e.g. troops, mobile equipment, robots), 

airborne (e.g. UAVs, satellites) and naval (e.g. ships, ground stations) assets. The 

movement of these units was scripted to model an engagement of mobile units with 

backup naval support to evaluate the effectiveness of wireless networking protocols 

in a typical FCS deployment. Traces of the movements of vehicles were collected and 

used to drive the distributed simulation experiments described here. 

• Synthetic Benchmark Application 

Our second benchmark application is also a distributed simulation of moving entities 

such as tanks or aircraft across a simulated world (routing space(s)). The path of each 

entity follows a random walk, with each entity equally likely to move in any new 

direction at each time. The distance between points as objects move is taken from an 
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exponential distribution with the following means for each coordinate: ∆x = 100 m 

and ∆y = 100 m. 

Logical time stamps for each object’s new position (entries in nodes.in and 

mobility.in files) are also taken from an exponential distribution with mean of 200 

seconds. 

4.4 Experiments 

Common parameters for all experiments include: 

• The simulation consists of 8 logical processes (HLA federates), one per processor 

• Each LP simulates 20 objects with distinct update and subscription regions, which 

totals 160 objects in the simulation 

• An update is generated every 30 seconds of logical time 

• Region changes and corresponding logical times happen according to the mobility 

patterns in FCS and synthetic applications 

• Logical end time is 10000 seconds (or 2.8 hours of simulated time) 

 

In order to understand what affects the performance of time-managed DDM, we vary 

these parameters for both types of mobility patterns (FCS and synthetic applications): 

• Lookahead 

• Region size 

• Network buffer size, i.e. size of send and receive buffers 
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Performance data is shown as a function of lookahead for each set of experiments. 

The impact of varying the region size is presented in section 4.4.2, where we show what 

happens when regions are large so that they almost always overlap (section 4.4.2.1) as 

well as when they are of smaller sizes (section 4.4.2.2). On the other hand, the impact of 

network buffers is presented in section 4.4.3. 

For each set of experiments we show the following measurements for both 

synchronized and unsynchronized DDM: 

• Run time in seconds 

• Run time confidence interval (95%) for time-managed DDM 

• Number of message sends during Update operations 

• Number of message resends / retracts due to interleaved Modify Region 

operations from different logical processes 

• Number of multicast operations, that is, number of multicast joins and leaves 

 

Presented measurements are obtained from a set of 100 experiments (except 50 

experiments in section 4.4.3), each having the same input and run-time parameters. 

Measurements from all runs are taken at one logical process in the simulation, and then 

statistically analyzed. Gathered statistics such as mean values, etc. are shown for run 

time, number of message sends during Update operations, number of message resends 

and retracts, and number of issued multicast operations. 
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4.4.1 Impact of Lookahead on Performance 

All of the performance measurements in this chapter are presented as a function of varied 

lookahead. Very small lookahead values (such as 1 second in these experiments) limit 

concurrency, and in effect cause all events, including DDM region change events to be 

serialized. In other words, region change events from different LPs are seen as occurring 

in time-stamp order at each logical process. Hence, for small enough lookaheads, 

synchronized and unsynchronized DDM are identical, and at the same time correct 

information about subscriptions at any particular logical time (assuming update and 

region change events are issued in time stamp order at every LP). This further implies 

that synchronized DDM does not need to resend or retract any messages. All of our 

experiments confirm that performance is essentially the same for time-managed and 

unsynchronized DDM for small lookahead values (such as 1 second). 

Larger lookaheads, on the other hand, increase concurrency while reducing overall 

simulation execution overheads by requiring fewer LBTS computations to advance time. 

This can be seen in each set of experiments when run-time makes a dip around relatively 

small lookahead values. However, the trade-off is that there are an increasing number of 

messages that have to be resent and/or retracted from update logs due to out of time-

stamp order receipt of region changes from different or even the same logical processes. 

This will be seen in the following sections. 
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4.4.2 Impact of Region Size on Performance 

Each simulated entity is assigned a unique update and subscription region. Subscription 

region size is varied to span both “large” and “medium” regions, while update regions 

remain the same size. We choose two parameters to define update and subscription region 

size: update region diagonal distance and visibility range, respectively. Table 1 shows 

these parameters in meter units for large and medium size regions.  

 

Table 1  Large and medium region size parameters 

 
Update region diagonal 

distance (meters) 
Visibility range (meters) 

Large region size 1000 40000 

Medium region size 1000 10000 

 

 

Like a geometric rectangle, an update region can be defined by an object’s current 

position, the region’s diagonal distance and a direction angle. An object’s current position 

(e.g. x and y coordinates) and direction angle from which the object moves are always 

known during the execution from the mobility data. We just need the update region’s 

diagonal distance to define the update region as a rectangular portion of the routing 

space. 
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On the other hand, we can define the subscription region by the lower left and upper 

right hand coordinate positions. Those two positions can easily be computed when the 

visibility range that defines how far the object can see is known. A subscription region’s 

lower left position is simply 2 ½ * visibility distance away from the update region’s lower 

left position, in a direction directly opposite to the object’s movement. Similarly, a 

subscription region’s upper right position is 2 ½ * visibility distance away from the update 

region’s upper right position, in the direction of an object’s movement. 

The impact of region size on performance can be seen in the following two figures. 

Figure 10 shows side by side comparison of the run time of synchronized DDM for 

medium and large region sizes. Furthermore, the run time with the medium region sizes is 

shown for the FCS and synthetic mobility patterns, while the run time for the large region 

size is shown for the FCS mobility pattern. All three graphs depict similar initial behavior 

when performance improves due to increases in lookahead, as was explained in previous 

section. Increasing lookahead after a certain lookahead value has a negative impact on 

performance for medium region cases. This is due to the increases in the number of 

messages that need to be resent or retracted in order to fix errors (e.g. missed messages) 

that would otherwise occur in an unsynchronized DDM. Further increases in lookahead 

increase the run time even more, since greater lookahead allows more concurrency in the 

execution, which in turn causes more messages to be resent or retracted. Unsynchronized 

DDM, on the other hand, doesn’t fix any DDM out of time stamp ordering errors. Hence, 

performance generally improves with larger lookahead values as shown in Figure 11. 

These effects will be discussed in detail in the following sections. 
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Figure 10  Run time when varying region size for SDDM. 

 

 

Figure 11  Run time when varying region size for UDDM. 
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When compared to unsynchronized DDM, it can be seen that the time managed DDM 

performs the same for all lookahead values when regions are large. The reason for this is 

that large regions cause connections between logical processes to be established when the 

simulation starts (i.e. all LPs are joined to every multicast group), and they never change 

during the simulation execution. On the other hand, the performance is the same only 

until a certain lookahead value for medium size regions. Specifically, performance of 

synchronized and unsynchronized DDM is similar until the lookahead reaches 150 

seconds for the FCS mobility scenario, or 200 seconds for the synthetic scenario. The 

benefit of increasing lookahead outweighs the overhead of message resends and retracts 

until these lookahead values are reached. Further lookahead increases change this 

balance, when the run time of the time managed DDM increases an order of magnitude in 

comparison to the unsynchronized DDM case. Implementation optimizations are possible 

to reduce this difference in run time, as will be seen later in section 4.5. 

4.4.2.1 Large Region Size 

Large region size parameters (also shown earlier in Table 1) are: 

• Update region diagonal distance = 1000 meters 

• Visibility range = 40000 meters 

 

Time-managed DDM services can be as efficient as unsynchronized DDM services 

when the mobility patterns cause infrequent group membership changes. This can be seen 

in the following experiments where region sizes are large, so they do not cause frequent 
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group membership changes. Mobility patterns used are those from the FCS application. 

The same performance is expected from a random mobility patterns such as our synthetic 

application in this case. 

As regions become larger in size, they cover larger portions of the routing space, and 

hence the probability increases that an object’s update region overlaps another object’s 

subscription region. At an extreme, regions that always cover the routing space 

completely cause both synchronized and unsynchronized DDM to behave like broadcast, 

and hence, perform the same as illustrated in Figure 12. Each update is sent to every 

logical process. The improvement in performance as lookahead is being increased from 1 

second to 50 seconds was discussed in section 4.4.1. Furthermore, performance does not 

deteriorate for synchronized DDM, since there are no message resends / retracts, as will 

be explained below. 

The difference in performance of unsynchronized and synchronized DDM in this case 

can be explained by the two implementation factors, that is by (1) different overheads 

during the matching phase of Modify Region operations and (2) different overheads 

during the multicast joins and leaves needed to complete these operations. 

The first difference in overhead during the matching phase is a result of how time 

evolving data such as distribution list entries and region changes are stored. In the 

unsynchronized case, new data overwrites the old data. On the other hand, the 

synchronized implementation uses linked lists to capture changes instead of overwriting 

data. This results in a slight difference in performance during the matching phase which 

favors time managed DDM for the large regions in our implementation. This in turn 
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causes a more noticeable difference during the multicast group changes that follow the 

matching phase. 

Multicast join and leave operations have a major influence on timing of Modify 

Region operations for large regions. Cached copies of the distribution lists are kept at all 

processors, and this requires communication with all of them. A slight difference in 

overhead during the matching phase causes the timing of these multicast communication 

messages to be different, which ultimately results in more noticeable communication 

overheads, favoring the synchronized DDM in our implementation. 

This broadcast-like behavior is apparent from the following figures. As expected, 

Figure 13 shows that each update is sent to every other LP. However, when the 

lookahead value is equal to 1 second, the number of message sends during the simulation 

for all updates is 46,760. This implies that each update is being broadcast (and received 

by other 7 logical processes), since there are 334 = upper bound (10000 seconds / 30 

seconds) updates per object, and hence the total number of updates is 46,760 = 334 x 20 

objects x 7 LPs. As for the lookahead value of 1 second, all updates are still sent to every 

other LP. The difference in the actual number of message sends is that the number of 

updates is just one less from all the other lookahead values (i.e. there are 333 updates per 

LP instead of 334, leading to 140 less total number of messages, or 46,620 total 

messages). 

The number of multicast operations is constant for both time managed and 

unsynchronized DDM. Every LP is joined to the multicast group at the beginning. In our 
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case, there are 20 multicast groups per LP that correspond to each of its own objects, and 

7 other LPs, and consequently 140 = 20 x 7 multicast join operations are being issued. 

Finally, since all multicast join and leave operations occur at the beginning of the 

simulation, there is no need to resend or retract any of the previously issued updates 

during the execution. Thus, the number of message resends and retracts equals zero for 

the synchronized DDM. 

 

 

Figure 12  Run time for UDDM vs. SDDM. 
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Table 2  Run time confidence interval (95%) for SDDM 

Lookahead 1 50 100 150 200 400 600 800 1000 

95% Conf. 0.2164 0.0383 0.0282 0.0283 0.0278 0.0277 0.0257 0.0250 0.0232

 

 

 

Figure 13  Number of message sends during Updates for UDDM vs. SDDM. 

 

The next two figures show the overhead of DDM Update and Modify Region 

operations and where this overhead stands in comparison to the total simulation execution 

time. The total time for DDM operations is relatively constant over all lookahead values, 

and hence, a 50-fold increase in lookahead is the only reason that there is significant 

improvement in run time initially. It can be seen that the Update operations take less time 

than the Modify Region operations. The reason for this is that a region change involves 
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computation and communication with other LPs, as well as adjusting the multicast groups 

by issuing multicast group join and leave operations. It can also be seen that DDM 

operations take no more than 50% of the total run time. The rest of the execution time is 

taken by waiting for time advances (i.e. for the LBTS computations to finish) and for 

receiving events and delivering updates. 

 

Figure 14  DDM operations overhead for UDDM. 
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Figure 15  DDM operations overhead for SDDM. 

4.4.2.2 Medium Region Size 

Now we discuss what happens when regions are of medium size. Experiments for both 

FCS and the synthetic mobility patterns are presented in Figure 16 to Figure 27. 

 

Medium region size parameters (also shown earlier in Table 1) are: 

• Update region diagonal distance = 1000 meters 

• Visibility range = 10000 meters 

 

As can be seen (Figure 16 and Figure 17), synchronized DDM overheads become 

dominant after a certain lookahead value (i.e. for lookahead of 400 seconds). The number 
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of message resends and retracts becomes greater with increasing lookahead and 

dominates all the other overheads starting at that specific lookahead value. This occurs 

when network send and receive buffers start to overflow from these messages, causing 

LPs to block. Greater lookahead values cause more resends / retracts which in turn cause 

more blockings in order to free up some buffers. An analysis of what affects this number 

of resends / retracts is presented later, in section 4.5. It can also be seen that the change in 

the number of messages sent during updates is much less profound than the change in the 

number of messages resent / retracted as lookahead increases (Figure 18 to Figure 21).  

Finally, the number of multicast operations steadily decreases for time-managed 

DDM (Figure 22 and Figure 23), reducing the dominant overhead of message resends / 

retracts. 
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Figure 16  Run time for UDDM vs. SDDM - FCS. 

 

Table 3  Run time confidence interval (95%) for SDDM - FCS 

Look-

ahead 
1 50 100 150 200 400 600 800 1000 

95% 

Conf. 
0.2280 0.0367 0.0354 0.2831 0.9999 3.5119 8.5556 13.4968 16.7883
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Figure 17  Run time for UDDM vs. SDDM - Synthetic. 

 

Table 4  Run time confidence interval (95%) for SDDM - Synthetic 

Lookahead 1 50 100 150 200 400 600 800 1000 

95% Conf. 0.0495 0.0353 0.0262 0.0264 0.0224 1.3413 2.3265 6.7558 6.6581
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Figure 18  Number of message sends during Updates for UDDM vs. SDDM - FCS. 

 

 

Figure 19  Number of message sends during Updates for UDDM vs. SDDM - Synthetic. 
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Figure 20  Number of message resends / retracts for UDDM vs. SDDM - FCS. 

 

 

Figure 21  Number of message resends / retracts for UDDM vs. SDDM - Synthetic. 
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Figure 22  Number of multicast operations (Joins/Leaves) for UDDM vs. SDDM - FCS. 

 

 

Figure 23  Number of multicast operations (Joins/Leaves) for UDDM vs. SDDM - 
Synthetic. 
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The overheads of each of the DDM operations are shown in Figure 24 and Figure 25. 

As expected, the Modify Region operation is the dominant DDM operation in the 

synchronized case because of the increasing number of message resends and retracts. At 

the same time, these extra messages increase the non-DDM time for time advances (i.e. 

LBTS computations) and for receiving events and delivering updates. 

 
 

 

Figure 24  DDM operations overhead for UDDM - FCS. 
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Figure 25  DDM operations overhead for SDDM - FCS. 

 

Figure 26 and Figure 27 depict DDM operations overheads for the synthetic mobility 

pattern. It can be seen that they resemble the overheads for the FCS mobility patterns.  
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Figure 26  DDM operations overhead for UDDM - Synthetic. 

 

 
 

Figure 27  DDM operations overhead for SDDM - Synthetic. 
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4.4.3 Impact of Network Buffers on Performance 

In this section we examine the effect of network buffers on performance. All the previous 

experiments from section 4.4.2 had the following buffer sizes: 

• recvbuff = 127680 bytes 

• sendbuff = 127680 bytes 

 

More blocking and hence worse performance is expected by reducing the network 

buffers as illustrated in Figure 28. This is discussed next. 

 

 

Figure 28  Run time when varying size of network buffers for SDDM. 
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4.4.3.1 Smaller Network Buffers 

In this section we examine the effect of smaller network buffers for FCS mobility 

patterns. Buffers are reduced from 127680 bytes to these values:  

• recvbuff = 27680 bytes 

• sendbuff = 27680 bytes 

 

As can be seen from the measurements (Figure 29 to Figure 34), performance starts 

to deteriorate much sooner than before, when network buffers were larger. This is 

because there is more blocking, since smaller buffers overflow sooner. 

We can conclude that time-managed DDM performance is similar to unsynchronized 

DDM for small lookahead values. SDDM performance remains comparable to UDDM 

for somewhat larger lookahead values with larger network send and receive buffers for a 

particular mobility pattern. Performance is good so long as the number of network buffers 

are large enough to accommodate all message resends / retracts. To compensate for 

message overheads as lookahead is being increased, network buffers have to be increased 

at the same time to avoid or reduce the chance of blocking due to buffer overflows. 
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Figure 29  Run time for UDDM vs. SDDM. 

 

Table 5  Run time confidence interval (95%) for SDDM 

Look-

ahead 
1 50 100 150 200 400 600 800 1000 

95% 

Conf. 
0.0452 1.5242 3.4358 6.4778 7.6771 30.9987 57.4148 75.8584 106.4069
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Figure 30  Number of message sends during Updates for UDDM vs. SDDM. 

 

 

Figure 31  Number of message resends / retracts for UDDM vs. SDDM. 
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Figure 32  Number of multicast operations (Joins/Leaves) for UDDM vs. SDDM. 

 
The effects of smaller network buffers on each of the DDM operations can be seen in 

Figure 33 and Figure 34. Although the run time overhead is significantly larger, the DDM 

operations affect performance similarly over lookahead as with the original buffer sizes. 
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Figure 33  DDM operations overhead for UDDM. 
 

 
 

Figure 34  DDM operations overhead for SDDM. 
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4.5 Analysis 

The previous section showed that message resends and retracts are the major factors that 

affect the performance of synchronized DDM. In this section, we will give an upper 

bound estimate on the number of message resends / retracts, and show how this number 

grows in terms of other application specific and execution parameters such as the 

frequency of region changes, frequency of updates and lookahead. 

 

We will use the following parameters in our analysis to compute upper bounds of resend / 

retract messages: 

 L, fL= 1 / L – lookahead, and corresponding frequency defined as 1 / L 

 fMR – frequency of  Modify Region operations 

 fU – frequency of Update operations 

∆T – simulation execution duration 

#URR - number of resend/retract update messages (upper bound) 

 

We can express the total number of resends / retracts in terms of the effective frequency 

of update resends / retracts (fURReffective) that we will compute next: 

#URR = ∆T * fURReffective 

 



 139

The total number of updates resent / retracted can be computed as the number of updates 

resent / retracted for each modify region operation (#URR_∀MR ) during the execution, that 

is: 

  #URR = #URR_∀MR * #MRin_∆T 

where: 

 #MRin_∆T is the number of modify region operations during the execution duration ∆T. 

 

The upper number of resends / retracts per modify region is simply the maximum number 

of updates that can fit into a lookahead interval, that is: 

#URR_∀MR = fU * L. 

 

The number of modify regions during the execution is: 

 # MRin_∆T = fMR * ∆T. 

 

Thus, we can rewrite the total number of updates resent / retracted and corresponding 

effective frequency as: 

#URR = (fU * L) * (fMR * ∆T) 

 

#URR = ∆T * [ fU * ( fMR / fL )] = ∆T * fURReffective 

 

fURReffective = fU * ( fMR / fL ) 
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In our implementation, effective frequency of updates resent / retracted grows more 

rapidly: 

fURReffective = fU * ( fMR / fL )2 

 

Although less efficient than the upper bound we computed previously, we are able to 

see the effects of modify region frequency (fMR) and lookahead (L or fL) sooner with our 

implementation, since effective resent/retract frequency grows quadratically in respect to 

the fMR / fL ratio. 

The explanation for this behavior follows. Late subscription region change can cause 

a sequence of group membership changes (i.e. join and leave operations) in the lookahead 

interval, starting at the LP’s current logical time. As described previously, it suffices to 

retract and resend updates in the lookahead interval (formula #URR_∀MR = fU * L above) 

all at once. In our implementation, however, we process these group membership changes 

separately, so they are causing more updates to be resent / retracted. This has the same 

effect, since after all retractions and message resends, exactly the same updates will be 

delivered to the LP. On the other hand it results in more messages.  

In the worst case, when a late subscription region change has a time stamp very close 

to the current time, we have to resend / retract all updates in this lookahead interval first. 

This change will cause the group membership to change at a time stamp of the previously 

issued update region change, which is 1 / fMR away in the future, which in turn, causes 

resend / retracts from that logical time to the end of lookahead interval. Similarly, this 

process continues at every previous update region change, that is 1 / fMR away in the 
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future. The number of updates that have to be resent / retracted decreases at each step by 

the number of updates found in 1 / fMR, that is by fU / fMR. The total number of updates 

resent / retracted can be written as an arithmetic sum: 

#URR_∀MR = fU / fMR * ( 1 + 2 + … + k) 

       = fU / fMR * ( k * ( k + 1) / 2) 

       ≈ fU / fMR * k2 

 

where k is the number of modify regions in a lookahead interval: 

 k = fMR / fL 

 

Thus, the upper number of resends / retracts per modify region is: 

#URR_∀MR ≈ fU / fMR * ( fMR / fL ) 2 

       ≈ fU * fMR * / fL
2 

 

Finally, total number of resends / retracts and corresponding effective frequency during 

the execution is: 

#URR = #URR_∀MR * #MRin_∆T 

         ≈ fU * fMR * / fL
2 * fMR * ∆T 

 

#URR ≈ ∆T * [ fU * ( fMR / fL ) 2] = ∆T * fURReffective 

 

fURReffective ≈ fU * ( fMR / fL ) 2 
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Observations: 

1) fMR << fL implies fMR / fL → 0 

That is, there is an insignificant number of message resend/retracts if lookahead 

frequency dominates, or in other words if lookahead is much larger than the average 

distance between region changes. 

2) fMR = fL implies fMR / fL = 1 

That is, the number of message resends / retracts equals the number of updates originally 

issued (with fU frequency) when lookahead equals average distance between modify 

region operations. 

3) fMR >> fL implies fMR / fL → ∞ 

That is, a significant number of resends / retracts lookahead is much smaller than the 

average distance between modify region operations. 

4.6 Performance Summary 

The experiments and analysis in this chapter show that synchronized DDM performance 

depends on the lookahead, the application’s mobility patterns and the network hardware. 

Time-managed DDM services can be made as efficient as unsynchronized DDM services 

in the workstation cluster environment as long as we can compensate for increases in 

lookahead with larger network buffers. 

Time-managed DDM services are as efficient as unsynchronized DDM services when 

the mobility patterns cause infrequent group membership changes. This can be seen in 
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section 4.4.2.1 where region sizes are large, so that they do not cause frequent group 

membership changes. 

However, synchronized and unsynchronized DDM performance can be quite different 

with general mobility patterns. This is the case for both FCS and synthetic applications 

when network buffers are not large enough to be able to handle all resend / retract 

messages without blocking. Section 4.4.2.2 shows that for the medium region size and 

typical size of the network buffers, SDDM performance is similar to UDDM up to a 

certain lookahead value. This lookahead value is greater with larger network send and 

receive buffers for a particular mobility pattern. Section 4.4.3 confirms this by decreasing 

network buffer size when performance overhead of time-managed DDM becomes 

significant sooner than for typical size of network buffers from section 4.4.2.2. 

Furthermore, synchronized DDM overheads become dominant after a specific 

lookahead value which depends on the size of network buffers, as was just explained. The 

number of message resends / retracts becomes greater with lookahead (and mobility 

patterns according to formula for frequency of message resends / retracts from section 

4.5: fURReffective = fU * ( fMR / fL )), and hence network send and receive buffers get filled 

up sooner, causing more blockings. 

Solely having larger lookaheads for time-managed DDM does not necessarily 

translate into better performance. On one hand, increasing lookahead for unsynchronized 

DDM improves performance, since more concurrent events can be executed until the next 

LBTS (lower bound time stamp) value has to be computed. However, the number of 

message resends / retracts grows with the lookahead and the application’s mobility 



 144

patterns for synchronized DDM according to the analysis from previous section. To 

compensate for this message overhead, network buffers have to be increased at the same 

time to avoid or reduce the chance of blocking due to buffer overflows.  

Thus, we conclude that time-managed DDM services are as efficient as 

unsynchronized DDM services in the workstation cluster environment as long as we can 

compensate for increases in lookahead with larger network buffers. How much increase 

in network buffers is needed depends on the application’s mobility patterns. When 

mobility patterns cause infrequent group membership changes, there is no need for a 

significant buffer increase. On the other hand, frequent group membership changes entail 

buffer increases to accommodate for the increase in message resends / retracts. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

Data distribution management (DDM) is a mechanism to interconnect data producers and 

data consumers in a distributed application. Data must be routed between producers and 

consumers. For each message produced, DDM determines the set of consumers interested 

in receiving the message and delivers it to those consumers.  

An efficient DDM implementation must be realized. Broadcast is one example of a 

simple, but inefficient DDM implementation. Two issues must be addressed when 

realizing DDM. The amount of unnecessary messages flowing between data producers 

and data consumers makes the network bandwidth requirements excessively large. 

Second, unnecessary messages cause processing delays because data consumers must 

filter unwanted messages. Hence, the DDM system should minimize the total number of 

messages that must be sent to link producers and consumers in order to realize scalable 

distributed applications. 

We are particularly interested in DDM techniques for parallel and distributed discrete 

event simulations. Thus far, researchers have treated synchronization of events (i.e. time 

management) and DDM independent of each other. Time managed services employ a 
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logical time abstraction giving one explicit control over the order in which these services 

are observed by the participating logical processes. This is the case in analytical 

simulations which are used to analyze systems by mimicking the causal relationships (i.e. 

before and after relationships) of a physical system precisely or as closely as possible. 

They are typically used to obtain accurate statistics about the behavior of the physical 

system being modeled (e.g. modeling of a telecommunication network). On the other 

hand, non-time managed services are based on wallclock time which does not provide 

such ordering guarantees. This may be acceptable to some simulations, such as real-time 

training simulations where before and after relationship may not always be perceptible by 

human participant, so casual relationships can sometimes be relaxed. 

This research focuses on how to realize time managed DDM mechanisms. The main 

reason for time-managed DDM is to ensure that changes in the routing of messages from 

producers to consumers occur in a correct sequence (e.g. before and after relationships in 

analytical simulations). Also time managed DDM avoids non-determinism in the 

federation execution, which may result in non-repeatable executions. Directly applying 

training simulation DDM mechanisms based on wallclock time semantics to logical time 

simulations will lead to errors. In this research we show how to efficiently synchronize 

DDM. 

An “optimistic” approach to time managed DDM is proposed where one allows 

events to be processed out of time stamp order, and an error detection and recovery 

procedure is used rather than strictly avoiding errors. Furthermore, it is tailored to the 
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semantics of the DDM services, thereby avoiding the use of general rollback 

mechanisms, which are more complex and require large runtime overheads. 

At the core of our optimistic approach is avoiding missed messages, which may occur 

due to late subscription region changes. We utilize a message log which records messages 

as they are sent. When a new DDM event indicates that a previously generated message 

should have been sent to an LP, but in fact was not, the message is retrieved from the log 

and sent. Thus, missed messages are avoided. 

We also address the problem of matching producers and consumers of data, while 

keeping the number of messages that are generated at a minimum. A hybrid approach is 

developed that deals with this issue for time managed as well as non-time managed DDM 

systems while maintaining low computational and message overheads. To achieve this, a 

multicast group is defined for each update region, eliminating the duplicate and extra 

message problem of the grid scheme. Furthermore, grid partitioning is used to speed up 

matching of update and subscription regions by considering only a subset of all the 

regions that overlap the grid cells recently covered. This improves the scalability of the 

pure update-region based approach. 

We have developed a fully distributed implementation of the algorithm within the 

framework of the Georgia Tech Federated Simulation Development Kit (FDK) software. 

This implementation is used to evaluate the approach. A performance evaluation of the 

synchronized DDM mechanism has been completed in a loosely coupled distributed 

system consisting of a network of workstations connected over a LAN. We compare 
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time-managed versus unsynchronized DDM for two applications that exercise different 

mobility patterns: Future Combat Systems and synthetic benchmark application.  

The experiments and analysis show the trade-offs on performance along the following 

three dimensions:  

• the simulation’s model (e.g. lookahead) 

• application’s mobility patterns 

• network hardware and software (e.g. size of network buffers) 

 

It was shown that larger lookaheads are not always sufficient for better performance 

of time-managed DDM. On one hand, larger lookahead helps in increasing the number of 

events that can be executed in parallel on different logical processes, and hence, it helps 

achieve better performance for unsynchronized DDM. However, depending on the 

mobility patterns, it can also cause significant growth in the number of message resends / 

retracts for synchronized DDM. This message overhead needs to be compensated by 

larger network buffers that will be able to accommodate all the message resend / retracts, 

and hence, reduce the chance of blocking due to buffer overflows.  

Under certain mobility patterns, time-managed DDM is as efficient as 

unsynchronized DDM. This is the case when the mobility patterns cause infrequent group 

membership changes. For example, large regions do not cause frequent group 

membership changes. Even if group membership changes are more frequent, there is not 

much difference in performance when network buffers are large enough to be able to 

handle all resend / retract messages without blocking. 
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On the other hand, there are also mobility patterns where time-managed DDM 

overheads become significant. Synchronized DDM overheads become dominant after a 

specific lookahead value which depends on the size of network buffers. The number of 

message resends / retracts becomes greater with lookahead, and hence network send and 

receive buffers get filled up sooner, causing more blockings. It was shown that the 

number of message resends / retracts grows linearly or even quadratically in respect to 

fMR / fL ratio (i.e. modify region frequency / lookahead frequency ratio), depending on the 

implementation. To overcome this problem, increase in lookahead has to be compensated 

with larger network buffers. 

Thus, we conclude that time-managed DDM services are as efficient as 

unsynchronized DDM services in the workstation cluster environment as long as we can 

compensate increases in lookahead with larger network buffers. Network buffers need to 

be increased depending on the application’s mobility patterns. While infrequent group 

membership changes do not require a significant buffer increase, frequent group 

membership changes entail appropriate buffer increases to accommodate for the rise in 

message resends / retracts. 

5.2 Future Work 

There are several open issues with respect to the time managed DDM approach, some of 

which are listed in the following sections. 
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5.2.1 Precise Filtering 

Precise filtering is one of the paths to explore in future synchronized DDM 

implementations. The preciseness of our hybrid approach which performs matching of 

update and subscription regions depends on the chosen cell size relative to the region 

sizes. In fact, the hybrid approach also yields a perfect matching when regions always 

fully overlap grid cells. In general, the hybrid approach is less efficient but more precise 

as the cell size decreases since there are more cells to consider, and vice versa. 

Our approach can easily be extended to produce a perfect matching, by defining two 

additional cell and region counters. One pair of cell and region counters can be used for 

cells that are fully overlapped, while the other pair of counters can be used for partially 

overlapped cells. When there is at least one cell fully overlapped by both update and 

subscription regions at every logical time, the extended hybrid algorithm mimics the 

execution of the original hybrid algorithm. Only counters for the fully overlapped cells 

are used to perform the matching and generate multicast group join and leave operations, 

while the other set of counters are only being updated. The second set of counters 

assigned for partially overlapped cells is used to perform matching when the original 

region counter’s value is zero at some logical time. In these situations the extended 

hybrid algorithm checks if there is at least one non-zero cell counter for partially 

overlapped cells. If that is the case, further comparison of an update region and 

subscription region’s partially overlapping cells of interest is necessary in order to 

determine possible distribution list changes (i.e. new Add or Delete operations from the 

Distribution List layer) and to make required multicast group membership changes. 
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The extended hybrid approach to matching is not expected to add significant 

overhead to the existing hybrid algorithm. Most of the time it is expected to perform just 

the same as the original counterpart, since partial cell and region counters will need to be 

considered only when regions start to overlap as objects move into each other’s visibility 

range, or as they leave each other’s visibility range. 

5.2.2 Utilizing Additional Multicast Groups 

Our synchronized DDM approach assigns a multicast group to each update region, and 

hence the total number of multicast groups required depends only on the number of 

update regions for all the LPs in the simulation. However, this can cause extra messages 

since one multicast group cannot capture all the distribution list changes from an LP’s 

current logical time into the future. It was explained that an LP may be joined to a 

multicast group even if that LP is not subscribed (i.e. deleted) at some logical time 

intervals from its current time into the future. This could result in extra update messages 

that have to be discarded at the destination LPs. 

Our approach can be enhanced with more multicast groups per update regions’ 

timeline, by dedicating a multicast group per a distinct portion of the timeline. For 

example, with K > 1 multicast groups available per update region, we can divide a 

timeline segment [ T + L, ∞) where T is LP’s current time, into K smaller non-

overlapping segments, and assign a multicast group for  each of the segments. This will 

reduce or even completely eliminate extra messages that may occur in situations 

described above. If there were enough multicast groups available to be assigned for every 
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distribution list’s Add / Delete operation, extra messages would have been completely 

eliminated. Unfortunately, one must take into account the overheads and delays when 

using the multicast group communication. There is a tradeoff between how many and 

how frequently multicast groups are used and the number of extra messages. Using more 

groups per update region’s time line will be beneficial only up to a certain point. This and 

other tradeoffs when utilizing additional network multicast resources remain to be 

explored in the future. 

5.2.3 Automatic Self-adjusting DDM Mechanism for Improved 

Performance 

Time managed DDM algorithms which automatically identify and adjust the optimal 

lookahead value are important for keeping the number of message resends and retracts 

from being too high. As we have seen from the experiments and the analysis, the number 

of such messages grows linearly or quadratically with lookahead, depending on the 

implementation. On the other hand, larger lookaheads allow more concurrency and faster 

time advances during the simulation executions. Thus, for a given model’s lookahead, 

DDM mechanism could observe the simulation speed and the number of message resends 

and retracts over a time period, and then would make adjustments to the lookahead as 

necessary. Lookahead can always be decreased or increased safely throughout the 

simulation execution as long as it does not exceed the maximum amount provided for the 

model. 
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APPENDIX A 

FULL IMPLEMENTATION OF THE 

ALGORITHM 

 

Modify subscription region( subscription region SR, federate F, logical time T){ 

1. Phase 1: Update Cell Layer counter 

• Determine all new/old cells C for SR    // from SR(T) and previous instance in 

time of SR 

• Determine Tend; Tstart= T 

• ∀ new cells issue the following CL::subscribe( C, F, Tstart, Tend) operation: 

CL::subscribe( C, F, Tstart, Tend){ 

// >>> If no entry at Tstart create one 

find closest counter Csbsc[F]: strength@t such that t <= Tstart; 

if( t < Tstart) create new counter Csbsc[F]: strength@Tstart = Csbsc[F]: 

strength@t; 

 

// >>> If no entry at Tend create one 

find closest counter Csbsc[F]: strength@t such that t <= Tend; 
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if( t < Tend) create new counter Csbsc[F]: strength@Tend = Csbsc[F]: 

strength@t; 

 

∀ counter in  t ∈ [Tstart, Tend): 

++ Csbsc[F]: strength@t ; 

 

} 

 

• ∀ old cells issue the following CL::unsubscribe( C, F, Tstart, Tend) operation: 

CL::unsubscribe( C, F, Tstart, Tend){ 

// >>> If no entry at Tstart create one 

find closest counter Csbsc[F]: strength@t such that t <= Tstart; 

if( t < Tstart) create new counter Csbsc[F]: strength@Tstart = Csbsc[F]: 

strength@t; 

 

∀ counter in  t ∈ [Tstart, Tend): 

-- Csbsc[F]: strength@t ; 

 

} 

 

2. Phase 2: Update Region Layer counter 

• ∀ new cells C 
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∀ UR overlapping cell C in t ∈ [Tstart, Tend) 

∀ overlapping time intervals  [Tso, Teo)∈ [Tstart, Tend): 

 // >>> If no entry at Tstart create one 

if( Tso = Tstart){ 

find closest counter Ucumulative[UR][F]: strength@t such that t 

<= Tstart; 

if( t < Tstart) create new counter Ucumulative[UR][F]: 

strength@Tstart = Ucumulative[UR][F]: strength@t; 

 

} 

 

∀ counter Ucumulative[UR][F]: strength@t where t ∈ [Tso, Teo): 

++ Ucumulative[UR][F]: strength@t ; 

 

• ∀ old cells C 

∀ UR overlapping cell C in t ∈ [Tstart, Tend) 

∀ overlapping time intervals  [Tso, Teo)∈ [Tstart, Tend): 

 // >>> If no entry at Tstart create one 

if( Tso = Tstart){ 

find closest counter Ucumulative[UR][F]: strength@t such that t 

<= Tstart; 



 156

if( t < Tstart) create new counter Ucumulative[UR][F]: 

strength@Tstart = Ucumulative[UR][F]: strength@t; 

 

} 

 

∀ counter Ucumulative[UR][F]: strength@t where t ∈ [Tso, Teo): 

-- Ucumulative[UR][F]: strength@t ; 

 

3. Phase 3: Issue Add/Delete operations according to change in Region Layer counter 

• ∀ UR where Ucumulative[UR][F]: strength@t changes its value from 0 to 

greater than 0 in t ∈ [Tstart, Tend): 

issue Add( F, UR, t) 

• ∀ UR where Ucumulative[UR][F]: strength@t changes its value from greater 

than 0 to 0 in t ∈ [Tstart, Tend): 

issue Delete( F, UR, t) 

} 

 

 

Modify update region( update region UR, logical time T){ 

1. Phase 1: Update Region Layer counter 

• Determine all new/old cells C for UR 

• Determine Tend; Tstart= T 
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• ∀ F in t ∈ [Tstart, Tend): 

• ∀ new cells C 

// >>> If no entry at Tstart create one 

find closest counter Ucumulative[UR][F]: strength@t such that t <= Tstart; 

if( t < Tstart) create new counter Ucumulative[UR][F]: strength@Tstart = 

Ucumulative[UR][F]: strength@t; 

 

// >>> If no entry at Tend create one 

find closest counter Ucumulative[UR][F]: strength@t such that t <= Tend; 

if( t < Tend) create new counter Ucumulative[UR][F]: strength@Tend = 

Ucumulative[UR][F]: strength@t; 

 

issue the following merge( merge type: +, C, F, Tstart, Tend) operation that 

will update Ucumulative[UR][F]: strength@t in the positive (+) direction: 

merge( merge type: +/-, C, F, Tstart, Tend){ 

  Ucumulative_next_time = Tstart; // entry at Tstart exists 

  Csbsc_next_time = 1) time of the closest Csbsc[F]: strength@t entry such 

that t >= Tstart, or 2) ∞ if such an entry does not exist 

     time = min(Ucumulative_next_time, Csbsc_ next_time); 

    while( time < Tend){ 

      if( time = Ucumulative_next_time){ 

    // Ucumulative_previous_strength is strength before merge operation 
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   Ucumulative_previous_strength = Ucumulative[UR][F]: strength@time; 

Ucumulative_next_time = 1) time of the next Ucumulative[UR][F]: 

strength@t entry, or 2) ∞ if such an entry does not exist 

if( Csbsc_next_time = time) 

  Csbsc_next_time = 1) time of the next Csbsc[F]: strength@t entry, or 2) 

∞ if such an entry does not exist 

    } 

      else{   // time = Csbsc_next_time < Ucumulative_next_time 

   // >>> create Ucumulative[UR][F] entry @ time = Ucumulative_previous_strength; 

Ucumulative[UR][F]: strength@ time = Ucumulative_previous_strength; 

Csbsc_next_time = time of the next Csbsc[F]: strength@t entry; 

    } 

   Ucumulative[UR][F]: strength@time    // this is now defined in both cases 

+/- = Csbsc[F]: strength@ time; 

          time = min(Ucumulative_next_time, Csbsc_ next_time); 

 } 

       } 

 

• ∀ old cells C 

// >>> If no entry at Tstart create one 

find closest counter Ucumulative[UR][F]: strength@t such that t <= Tstart; 
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if( t < Tstart) create new counter Ucumulative[UR][F]: strength@Tstart = 

Ucumulative[UR][F]: strength@t; 

// >>> If no entry at Tend create one 

find closest counter Ucumulative[UR][F]: strength@t such that t <= Tend; 

if( t < Tend) create new counter Ucumulative[UR][F]: strength@Tend = 

Ucumulative[UR][F]: strength@t; 

 

// issue merge operation that will update Ucumulative[UR][F]: strength@t in 

the negative (-) direction 

issue merge( merge type: -, C, F, Tstart, Tend) operation 

 

2. Phase 2: Issue Add/Delete operations according to change in Region Layer counter 

• ∀ F where Ucumulative[UR][F]: strength@t changes its value from 0 to greater 

than 0 in t ∈ [Tstart, Tend): 

issue Add( F, UR, t) 

• ∀ F where Ucumulative[UR][F]: strength@t changes its value from greater than 

0 to 0 in t ∈ [Tstart, Tend): 

issue Delete( F, UR, t) 

} 
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