
On the Use of Directory
Services to Support

Multi-Protocol Inter-operability
�

Russell J. Clark
Kenneth L. Calvert
Mostafa H. Ammar

GIT-CC-93/56

September 20, 1993

Abstract

Multi-protocol systems are a vital tool for achieving inter-operability in to-
day’s heterogeneous communication networks. An important aspect of these
systems is the need to determine which of the multiple available protocols
will be used to carry out a given communication task; an uninformed choice
can result in failure to communicate when communication should be possible.
In this paper we consider ways to make information about hosts’ supported
protocol configurations available through directory services. We discuss var-
ious representation approaches, and describe a working implementation of a
multi-protocol application exemplifying our approach.

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
rjc@cc.gatech.edu

� This research is supported by a grant from the National Science Foundation (NCR-9305115) and
the TRANSOPEN project of the Army Research Lab (formerly AIRMICS) under contract number
DAKF11-91-D-0004.

1 Introduction

The past decade has seen the development and deployment of many different
protocol architectures, including TCP/IP, SNA, DECNET, and IPX. Radical growth
in the number of interconnected systems has accompanied this proliferation of
protocol suites. As a result of these two facts, there is an ever-increasing need to
interconnect systems that do not currently use the same communication protocols.
In a previous paper [3] we discussed support for multiple protocol suites as a
method of achieving inter-operability in current and future networks. Such an
approach is based upon the observation that universal support for any single
architecture or even protocol is unlikely. The basic idea is to embrace heterogeneity
by developing frameworks for dealing with it. This paper presents one element of
such a framework, namely a method enabling hosts to obtain information about
the protocols supported by other hosts.

Multi-protocol networking has sparked research in several areas. Cypser [4] de-
scribes three main locations for protocol switching in systems supporting multiple
protocols. Ogle et al. [11] are developing a TCP/IP and SNA system that performs
protocol selection below the socket level interface. Janson et al. [5] consider options
for inter-operability between OSI and SNA networks, and analyze the addressing
issues arising when these protocols are combined in a single network. Instead of
an architecture-specific solution, however, we seek an approach general enough
for problems involving future architectures as well as today’s. Among others con-
sidering the general inter-operability problem, Tschudin has described a “generic
protocol” [18] allowing communicating systems to exchange descriptions of arbi-
trary protocols before using them to communicate. Similar in philosophy is the
“meta-protocol” concept proposed by Meandzija [8]. In contrast, one of the explicit
goals of our work is to minimize the number of things (including protocols) that
must be universally agreed upon or supported.

This paper considers the use of directory services to provide information about the
various protocols that hosts support. Such information is useful in a multi-protocol
context because there may be more than one protocol configuration supporting a
given communication service, and choosing the wrong configuration can lead to
a failure to communicate. Using directory services to provide this information
at runtime is a natural extension of the primary use of these services today, i.e.
mapping names to address information. We describe a generic approach, along
with a working implementation based on a widely-used directory service, the
Internet Domain Name System [9, 10].

The paper proceeds as follows. In the next section, we describe the problem in
more detail, along with the basic idea of the solution. In Section 3, we consider
possible methods of encoding the required information in a directory database.
General features of a directory service supporting this function are discussed in
Section 4. In Section 5 we consider ways to implement these features using the

2

existing Internet Domain Name System. A working multi-protocol application,
incorporating an implementation of the proposed features, is described in Section 6.
Finally, Section 7 contains some concluding remarks.

2 The Problem

We consider an environment consisting of hosts connected by communication net-
works. The communication subsystem in each host supports some set of network
protocols; different services are implemented by different combinations of these
protocols. Protocols are grouped in suites or architectures; those in the same suite
were designed to work together to provide certain services, while those in different
suites may or may not work together. Note that two hosts need not support the
same set of protocols, even if they both support the same (one) protocol suite. For
example, in the OSI suite, some hosts provide connection-oriented network service
via X.25, while others support only the Connectionless Network Protocol (CLNP).

2.1 Access to Communication Services

We assume that the communication subsystem provides services to users via an ab-
straction that hides details of the protocols from the user and serves as an endpoint
for one communication instance, such as a connection. For lack of a better name,
we shall refer to this abstraction as a session. The session contains information that
determines which protocols process outgoing messages sent by a user, and that
enables incoming messages from the network to be routed to the user. In addition,
it may contain (pointers to) local state information required by the protocols.

A protocol entity (PE) is an abstract representation of a part of the communication
subsystem that implements a particular protocol. A convenient description of a
protocol entity is: “a component that adds a header to outgoing messages, and
thus affects inter-operability with other systems”. Each session has associated with
it a sequence of protocol entities, namely the protocol “stack” implementing the
communication (Note that in practice, the session does not have associated with it
complete, separate protocol implementations, but rather capabilities to access the
implementations, which are shared across sessions. The distinction is immaterial
here.) The sequence of PEs associated with a session is here called a path. While in
most architectures every message associated with a session is handled by the same
path, this need not always be the case. In the architecture of [12], for example,
the PE structure associated with a user session is actually a graph, and different
messages can traverse different paths through this subgraph. Use of the term
“path” notwithstanding, our model does not exclude such architectures.

3

The general scenario by which a user obtains network services through a session
object involves the following steps:

1. Service Determination. Determine the type of service needed by the user. Note
that “service” here may include such aspects as the format of the address by
which the destination host is identified.

2. Path Determination. Determine the combination of protocols required to
provide the needed service.

3. Path Configuration. Create a session object with the required protocol path,
and pass it to the user.

4. Communication. The user performs the appropriate operations (open con-
nections, send, receive, etc.) via the session.

Note that service determination may be performed by the user, or by some com-
bination of user and communication subsystem. For example, the user may know
the name of a desired destination, but not its address (or even its address format).
To obtain the required information, either the user or the communication subsys-
tem may make use of a directory service, which maps names to network addresses.
Such a directory service may be a simple file local to the host, or a separate remote
service, accessed via the network itself.

The protocol determination step is typically performed by the communication
subsystem; however, it could be handled by the user if the subsystem allows the
user to request a session object with any arbitrary protocol path.

A well-known example of an environment following this model is the Berkeley
UNIX socket interface. The socket abstraction provides users with uniform access
to network protocol (and other IPC) services, while the socket data structure itself
contains the information that determines the path used for communications via
the socket. When requesting allocation of a socket, the user must specify both a
socket type (e.g. stream, sequence of packets) and an address family (e.g. Internet,
OSI, etc.). The former generally determines the transport-level protocol used (e.g.
TCP for streams, ISO TP4 for sequence of packets); while the latter determines the
network-level protocol used (e.g. IP).

The fact that different services require different combinations of protocols implies
that the binding between (at least some) layers is delayed until the time of the
user request. That is, some switching mechanism is required to enable a layer �
protocol entity to be configured to use different layer ��� 1 protocols for different
sessions. Within a single protocol suite, typically only one path corresponds to any
given combination of service and network address; thus the need for switching
is minimal, and the mapping from services to paths may be fixed in advance
by the communication subsystem. This is not necessarily true in multi-protocol
environments.

4

2.2 Multi-protocol Complications

In general it does not make sense to combine protocols in arbitrary ways. There
are at least two possible reasons why a PE � , at layer � , would be precluded from
making use of another PE � at layer ��� 1.

One reason is architectural: if � does not provide the service required by � for
correctness, then it simply makes no sense for � to be configured to run on top of � .
For example, it is not sensible to run the OSI Class 0 Transport Protocol on top of
CLNP, because the former requires a reliable, connection-oriented network service,
while the latter provides a datagram service.

The other possible reason is that a particular implementation may not support the
configuration of � atop � . In earlier versions of Berkeley UNIX, for example, the
use of IP as a network protocol was hardwired into the TCP implementation; such
implementations do not support the use of CLNP by TCP, even though conventions
for such use have been defined [2]. In some cases, this constraint can be overcome
by the addition of a switching capability to the implementation, in the form of a
“pseudo PE” that binds references to the actual lower-level PEs, and hides minor
differences between their interfaces.

For a given set of PEs, the possible configurations that might be supported in a host
can be represented by a directed graph with PEs as nodes, in which the presence of
an edge from � to � means that � can be configured to run on top of � . In this case
we say � uses � .

Note. We are assuming here that selection of a lower-level PE is con-
strained only by the next higher-level PE. For example, if the paths
��� 	
��� and ���	���� are both possible, then the path ����	���� is
also possible. This is tantamount to assuming that the service provided
by a PE is independent of which lower-level PEs it uses, so long as it uses
one with adequate functionality. One consequence of this is that the ser-
vice provided to the user by a protocol path is fully determined by the
topmost PE of the path. This assumption appears to be reasonable for
existing protocols.

The graph representing the maximal uses relation consistent with the architectural
constraints for a given set of PEs is called the architecture graph. That is, in the
architecture graph there is an edge from � to � if and only if it is “sensible” for � to
be used at some layer � with � as the layer ��� 1 protocol. An example architecture
graph is shown in Figure 1, which indicates that FTAM can use either TP0 or TP4.

For a given host that supports a particular set of PEs, the installation graph is
the subgraph of the architecture graph representing the uses relations actually
supported in the local implementation. That is, the installation graph says what

5

protocol paths are available to users on a given host. Given that the service provided
by a protocol path is a function of the stack’s topmost PE, and given a mapping
from services to top-level PEs, the installation graph indicates which paths can be
used to provide a given service.

It was noted above that a single protocol suite generally has a unique path for a
given service–address combination. This ensures that two hosts supporting the
same suite can inter-operate and offer the service to their users, provided they both
support the required protocols; if one host does not implement some required pro-
tocol, the service cannot be provided in any case. In an environment where protocol
suites are mixed in some hosts, the situation is more complicated. The architecture
and installation graphs may contain multiple paths for the same service–address
combination, and thus the Path Determination step involves selection of one of
these paths. Moreover, installation graphs may differ from host to host; selection
of the wrong path can prevent inter-operability even in the case where the hosts
support some other common path.

2.3 Path Determination Approaches

We have identified two possible approaches to the problem of Path Determination
in a multi-protocol environment. The directory-based approach makes use of a
database of information about the installation graph supported by hosts on the
network. The path discovery approach tries to establish communication using all of
the possible paths, and monitors the results. This paper focuses on the directory-
based approach.

Network directory services such as the Internet Domain Name System (DNS) or
the OSI directory service (X.500) provide a distributed database of information
about hosts, their addresses, and the applications they support. In current archi-
tectures this database is typically consulted to map host and service names to their
respective network and application addresses during path determination. Adding
information about a host’s protocol paths to this database is thus a rather natural
way to support path determination in a multi-protocol environment.

An important feature of the directory-based approach is that it does not require all
hosts to make use of the directory service. For example, a host supporting only a
single protocol suite need not refer to the directory’s protocol path information at
all, because its path determination problem is simple. To aid other multi-protocol
hosts in establishing communication with the single-protocol host, information
describing the protocol(s) it supports should be stored in the directory service, but
no modification of its communication subsystem—or the way it uses the directory
service, if any—is required. Note also that universal agreement on a single directory
service is not required: it is only necessary that each multi-protocol host have
access to a distributed database that contains some encoding of the protocol path

6

information for the hosts with which it communicates. Nor is it necessary for
every directory service to use the same encoding; different encodings might be
used in different parts of the network. The only requirement is that users of
a particular directory service agree on a standard method of encoding protocol
path information. In the next section we consider some possibilities for such an
encoding.

3 Encoding Protocol Path Information

We would like to encode information about a host’s supported protocol graph in a
form that enables another host to determine — at a minimum — whether a common
path exists. Information about a host’s supported protocol graph can be stored in
a directory service in any of several forms. Such an encoding scheme requires
that globally-understood identifiers be assigned to some parts of graph structure.
There are at least three levels at which such identifiers might be assigned: Protocol
Entity, Protocol Path, Protocol Graph.

To compare these approaches, we consider a host with the installation graph of
Figure 1. This host includes four different application PEs, three different transport
PEs, two network PEs and one physical PE1. The Figure also depicts the addition
of a protocol switching function in three places: the Application Switch provides
switching between the two OSI transport protocols, the TCP Switch provides TCP
with the capability to select between IP and CLNP as a network service, and
the TP Switch provides a similar function for TP4. These “pseudo-PEs” do not
themselves implement protocols and do not add or modify message headers; they
are included in the figure to emphasize that the protocols involved are designed to
use a particular lower-level protocol, and do not support the switching function.

This graph supports ten different protocol paths: two for each TCP application and
three for each OSI application. Let us consider the three protocol representation
options as they would represent this particular example.

� Protocol Entity: The first option involves assigning identifiers to the PEs
themselves. The installation graph structure can then be represented in any of
several ways, e.g. by giving for each PE, a list of the PEs to which it has edges
(its uses-list). The graph of Figure 1 would thus have an entry for “TCP” with
a uses-list containing “IP” and “CLNP”. The global identifiers are “TCP”,
“IP”, etc. This approach can easily handle novel paths and configuration
changes, and allows for partial matches when a complete matching path

1A more precise depiction of this graph would include OSI Presentation and Session layers be-
tween the FTAM and VT applications and the Application Switch. For simplicity in this discussion,
we omit these here.

7

 TCP

 FTP

 User

 TP0

FTAM

 TP4

 App Sw

 IP CLNP

 TP Sw

 TELNET VT

 TCP Sw

Figure 1: A multi-protocol graph.

cannot be found. Partial matches might be useful in establishing a minimal
level of communication with an unknown system.
Another way to assign identifiers at the PE level is to encode the PE’s uses-list
(i.e. its outgoing edges) in the identifier. Thus an implementation of TCP
that can use both IP and CLNP would have a different identifier than one
that can only use IP. The graph could then be represented as a simple list of
PEs. This would generally yield a smaller representation, at the expense of a
larger number of agreed-upon identifiers.
� Path: The second representation option is to assign a standard identifier to

every protocol path, and store a list of the paths supported, (rather than the
installation graph itself). This approach simplifies path determination by pro-
viding a representation at the exact level where a match is sought. However,
prior agreement on an identifier for every possible supported path is required;
this may be a problem when new protocols and paths are introduced. This
approach also provides a significant degree of redundant information because
an application that uses multiple protocols will have a separate entry for each
set of protocols it can use. For example, both the FTAM and VT applications
in Figure 1 would be incorporated into three path entries.
Note that if the set of paths cannot be characterized by the uses-list relations
of the PEs involved, i.e. the assumption of Section 2.2 is not valid, then this
option may be preferable.
� Installation Graph: In this option, the installation graph (or set of paths)

itself is assigned a standard identifier. A significant problem with this rep-
resentation approach is that it requires every existing protocol configuration
to be known a priori so that a standard identifier can be assigned to it. This

8

is infeasible given the diversity in the installed configurations of even single
protocol suite systems.

From the above discussion, the protocol entity and path options appear to have
the most potential. In order to more carefully compare the feasibility of the two
approaches we examine the number of data items required to represent various
protocol graphs. For the graph in Figure 1, assuming that a node’s uses-list is
encoded in its identifier, both options require the same number of stored items: ten
PEs vs. ten protocol paths. When a new application is added using TCP, the PE
approach requires the addition of a single PE entry. The path approach however,
requires two additional path entries. If a new network layer PE were added, the
PE approach would require the addition of one PE plus the addition or update of
the transport PE that used this network PE. The path approach would require a
new path entry for each application using this new protocol.

In general, the PE approach is more efficient whenever a host includes applications
that can operate over multiple different protocols. Since multi-protocol systems
are becoming more common, and indeed this is precisely the kind of system we are
interested in supporting, the PE representation approach appears to be the most
appropriate. As systems add more applications, the benefits of the PE approach
are further realized.

4 An Ideal Directory Service

In this section we present the design requirements for a directory service that most
effectively supports the path determination task. Our objective is to describe the
necessary directory service features in a context which is free from the constraints
of any current directory service products. Later we discuss how most of these
features can be provided in a production directory service.

A problem in current directory service usage is the assumption that the availability
of a particular network address for a host implies that the host supports a network
protocol which utilizes that address. This assumption causes problems, for exam-
ple, when translating gateways are used to provide transparent communication
between two distinct protocols. In this scenario, the originating host must obtain
an address for the destination that is compatible with the originating host’s net-
work protocol. For example, a host � which only supports IP cannot use a NSAP
address to refer to another host � even if � can communicate with � through an
IP/CLNP gateway. Host � will need an IP address to identify � .

To address some of these issues � no pun � , our multi-protocol directory service
maintains network address information independent of protocol graph informa-
tion. While it is true that before using a given network layer protocol it is necessary

9

to obtain a network address for that protocol, the existence of a certain type of
address for a system does not necessarily imply that the system directly supports
any protocols which use that address.

Graph information is represented in the directory service as a collection of PEs and
their uses-lists. The name of the PE is stored as a single string entry. The uses-
list is stored as a string describing the set of PEs this PE can use. Conjunction and
disjunction are indicated by the characters “&” and “ � ” respectively. Conjunction in
a uses-list indicates that a PE requires the services of both underlying PEs to operate;
e.g. OSI Presentation may require several Session Functional Units. Disjunction
indicates that a PE can operate on any of the underlying PEs; e.g. the Transport
Switch can select either IP or CLNP.

Table 1 presents the information desired in a directory service entry for the protocol
graph shown in Figure 1. PEs with an empty uses-list are known as base PEs. These
indicate that no lower layer matching information is available for paths that include
this PE. In general, the network layer protocols will serve as base PEs.

PE Name Uses-list
FTAM TP0 � TP4
FTP TCP
IP
CLNP
TP0 TCP
TP4 IP � CLNP
TCP IP � CLNP
TELNET TCP
VT TP0 � TP4

Table 1: Protocol Graph Entry for a Multi-Protocol Host.

PE Name Uses-list
FTP TCP
IP
TCP IP
TELNET TCP

Table 2: Protocol Graph Entry for a Single-Protocol Host.

The two main functions of a directory service for multi-protocol systems are:

� LookupHost(input: Hostname, output: AddressInfo, GraphInfo) This function
retrieves the addressing and protocol graph information for the specified
host from the directory service. The addressing information is returned as a

10

collection of network addresses of various types. The graph information is
returned as a collection of PEs with their uses-lists. The initiating host will
invoke this routine once for the remote host and again to obtain its own local
graph information.
� MatchPath(input: GraphInfo, LocalGraphInfo, output: Path) This routine com-

pares the two graphs and returns one or more common paths. The overall
goal is to find a protocol path that is common to both graphs and will pro-
vide communication between the user application and a base PE. The exact
return value and algorithm used is dependent upon the ultimate goal of the
multi-protocol system. Achieving each of the goals we consider is equiv-
alent in complexity to solving the subgraph-isomorphism problem. While
the only known solutions to this problem are intractable for large graphs,
the limited size of the protocol graphs coupled with the focused goals out-
lined below makes it feasible to solve this problem as part of communication
establishment. The three possible path matching goals are:

– Succeed or Fail:
If the user is only interested in obtaining communication or finding out if
communication is possible then a function that simply finds and returns
the first successful match would suffice. This algorithm should start by
matching a single PE and then try to build a single matching path.

– All Matches:
If a user wishes to be able to choose from multiple possible paths then it
is necessary for the function to find all matches between the two graphs
and return them. This function would be useful when there are several
protocols supported by both hosts but one may be more appropriate
for the given application. It is also possible that one or more of the
valid paths may be temporarily unavailable due to a network failure. In
this case the multiple paths would allow the user (or application) to try
several different paths until one succeeds.

– Partial Matches:
In some cases there may not be a complete match found from the appli-
cation all the way down to the base PE. In this case it may be appropriate
to return partial match information about the PEs that did match. This
would allow the system either to obtain a degraded level of communica-
tion or provide meaningful diagnostics to indicate exactly which compo-
nents of the protocol architecture are missing. Partial matches might also
be used as an aid in determining which gateway or translating bridge
services might be useful in obtaining the desired communication. The
algorithm for finding partial matches should be able to start anywhere in
the protocol graph and find all PEs that match between the two graphs.
We will be exploring the use of partial matches for discovering gateway
services as part of our future research.

11

Each of these preceding path matching goals focus on finding paths that allow
hosts to communicate. These goals could be further qualified to find paths
that provide a particular service. This limits the matching algorithm to a
specific PE or set of PEs with which to start the search and for which a path
is considered valid.

5 A DNS-Compatible Implementation

The Internet Domain Name Service (DNS) is a popular example of the type of
directory service that could provide protocol graph information. In this section we
present an approach to using DNS to provide this extended service. In Section 6
we describe our implementation of this approach.

Our primary objective in this design is to develop a mechanism for delivering
multi-protocol information that provides as many of the features identified in
Section 4 as possible while minimizing the impact on current directory service
implementations. Our approach requires that additional DNS support be provided
only in multi-protocol systems that will take advantage of the new DNS features.
The changes we propose have no impact on systems that currently use the DNS
directory services. An alternative approach to using DNS would be to extend an
X.500 implementation such as QUIPU, which is available with the ISO Development
Environment (ISODE) [14]. While this approach would give us more flexibility to
define new host information records, the ubiquity of DNS in the current Internet
makes it more suitable for providing a system which could be deployed today.

5.1 An Overview of DNS

The DNS, described in [9] and [10], provides a hierarchically distributed database
of network host information. It is used primarily to provide hostname to network
address resolution. The two main components of the DNS are the domain server and
the resolver. The domain server provides name service within a DNS domain. A
domain corresponds to an administrative group such as a company or university.
The resolver generally runs on the client host and provides the lookup service
by successively querying domain servers. The actual data is stored on the server
hosts in text files known as master files. The basic unit of information stored in the
DNS is a resource record (RR). Each RR includes, among other things, a NAME field
representing the node to which this entry pertains, a TYPE field representing the
type of information stored, and an RDATA field representing the actual data for
this entry.

Some important types of RRs are: A — the host address, MX — mail exchange
information, WKS — the supported well known services, and TXT — a free-format

12

Address

 Protocol

Bit-Map

0 8 16 24 31

Figure 2: The WKS data format description.

text field. The WKS record format is described in Figure 2. This record has a 32-bit
address entry indicating the IP address, an 8-bit entry indicating a protocol, and a
variable length bitmap indicating which services use that protocol. The protocol
field contains the identifier of a protocol that uses IP such as TCP or UDP. The
bitmap indicates which of the well known services are supported on the host: if
a service is supported then the appropriate bit is set. These well known service
numbers are used as port identifiers in the TCP and UDP protocols. For example,
if FTP is supported then bit 21 is set since FTP uses port 21 of TCP. The protocol
and well known service numbers are defined in the Internet Assigned Numbers
document [13].

The standard interpretation of the protocol field in the WKS record is that it repre-
sents a transport layer protocol such as TCP. The service bitmap represents direct
users of the transport layer. This interpretation is consistent with the TCP/IP net-
work model where application services sit directly on top of the transport protocol
and the well known service number is used as the port identifier in the transport
protocol. The organization of this record implies that any service listed will use the
transport protocol listed for this record; an application using TCP should be listed
in a separate resource record from an application using UDP.

5.2 A Multi-protocol Usage of DNS

While the DNS was developed primarily for the TCP/IP environment, it has
evolved to accommodate heterogeneous networks. For diversity at the network
layer, a number of address formats have been defined. These address formats
include an X.25 format, ISDN format, and an OSI style NSAP format. These are
stored as RRs of TYPE X25 , ISDN , and NSAP respectively. The RR type A is used
for 32-bit IP addresses only.

An interesting aspect of the original design of DNS is the inclusion of a CLASS
field in each resource record. This attribute is reserved for specifying information

13

about the “supported protocol family” of a host [9]. The most natural extension
of DNS to the multi-protocol environment is to use the CLASS field to designate
which protocol architectures are supported. For instance, a class could be defined
to indicate use of the OSI protocols. Unfortunately, this field has become largely
meaningless in the current usage as only one value, “CLASS=IN” for Internet, has
been widely used. Instead of designating different classes, each of the previously
mentioned address type records has been created within the Internet class.

As we mentioned earlier, we are interested in developing a multi-protocol DNS
that is compatible with most current DNS implementations. Our experience with
current name server implementations, such as the BSD named program, is that they
are largely hard coded for use with RR entries of class Internet. This means that the
addition of a new CLASS value would require that current servers be modified to
support the new classes and their associated types. We have decided not to pursue
this approach since this change would conflict with our goal of not requiring the
replacement of current systems.

We have identified three possible approaches to using the current DNS architecture
for distributing multi-protocol host information. All of these approaches use the
alternative described in Section 4 where identifiers are assigned to PEs. They all
use the currently defined IN class resource records. The first two are based on
the WKS RR and the third is based on the TXT RR. In the remainder of this section
we compare these options and present our proposed solution. Each of the sample
DNS entries presented in this section depict the master file format used by the DNS
server to store the domain information.

5.2.1 A WKS Resource Record Approach

The first proposal involves extending the semantics of the WKS entries to allow any
PE in a protocol graph to be represented in the protocol or service fields. Figure 3
shows a DNS master file entry for the host shown in Figure 1. Each line in this
example corresponds to a separate RR. All of these RRs are associated with the
host “mphost”. The second field in each record indicates that the entry is of class
IN for Internet. The third field indicates the type of RR data stored in this entry.
The remaining fields contain the actual RR data. The first line in this example
is the standard Internet address entry containing the IP address. The second line
contains a host information entry describing the type of system associated with this
host. In this case it is a Sun Microsystems Sparc 1 workstation running the SunOS
operating system version 4.1. The third line is an NSAP type record providing an
OSI-format address. This format is described in [6] and is currently being updated
[7].

The remaining five lines of the sample DNS data are the WKS entries used to describe
this host’s protocol graph. Each entry specifies a PE and the set of PEs that use it.

14

; Name Class RR-Type RR-Data
;------------------------------- --------- --------- ----
mphost IN A 127.1.1.1
mphost IN HINFO "Sparc 1" "SunOS 4.1"
mphost IN NSAP 49.5100bd5a00
mphost IN WKS 127.1.1.1 ip tcp iso-tp4
mphost IN WKS 127.1.1.1 clnp tcp iso-tp4
mphost IN WKS 127.1.1.1 tcp ftp telnet iso-tp0
mphost IN WKS 127.1.1.1 iso-tp4 ftam vt
mphost IN WKS 127.1.1.1 iso-tp0 ftam vt

Figure 3: A multi-protocol DNS entry using WKS .

The fourth field indicates the IP address for this WKS entry. The fifth field specifies
a PE and the remaining fields indicate the users of that PE. If a PE � uses a PE� then � will appear in an entry where � is in the fifth field. The only PEs that
must appear in field five of a WKS entry are those that themselves are used by other
PEs in the protocol graph. While this arrangement is natural for the traditional
case where hosts have one or two transport protocols and multiple applications, it
is exactly the reverse from what is needed in multi-protocol hosts where a single
application may use multiple protocols.

The presence of the address field in the WKS entries causes some problems when
using them with multiple protocols. One such problem can be seen in the second
WKS entry where the IP address is given but a CLNP network protocol is listed as the
PE. Because the address field has a fixed length of 32-bits, it is not possible to vary
the address given to agree with the protocol specified. In general, our use of the
DNS in this approach ignores the address in the WKS entries. Note also that we have
provided explicit entries indicating the presence of the network layer protocols IP
and CLNP. This is consistent with our goal outlined in Section 4 of keeping the
protocol graph information separate from the addressing information. We do not
assume that CLNP is available based on the presence of the NSAP address.

The overloading of the WKS semantics in this approach could be a problem for
any current users of the WKS field and current server implementations. One server
implementation, the BSD named program, makes explicit use of the getprotobyname()
and getservbyname() routines to resolve the protocol and service fields as it reads the
WKS entries from a master file. In UNIX systems these routines traditionally use the
/etc/protocols and /etc/services data files to obtain assigned numbers for
protocol and service names. Using additional PEs like CLNP in the protocols field
(field five) will either cause problems in maintaining these data files or require that
the name server be re-written to use an alternate data source.

15

5.2.2 A WKS Resource Record Approach With External Data

In order to avoid this overload of the protocol field in WKS entries we consider an
alternate proposal using WKS RRs. In this approach, only PEs above the transport
layer will appear in the bitmap portion (fields six and above) of the WKS entry.
This alternative is characterized by the use of an external data source that provides
additional meaning to the DNS entries. This data source could be maintained
locally on the host or distributed by some other directory mechanism. We use this
external information to map the PE entries in the fifth field to their uses-list. This
maintains more consistency with the standard WKS usage by alleviating the need
to store network layer PEs in the fifth field. A sample entry of this type is found in
Figure 4. As in the previous approach, only those PEs that are used by another PE
will appear in field five of a WKS entry.

; Name Class RR-Type RR-Data
;------------------------------- --------- --------- -
mphost IN A 127.1.1.1
mphost IN HINFO "Sparc 1" "SunOS 4.1"
mphost IN NSAP 49.5100bd5a00
mphost IN WKS 127.1.1.1 tcp ftp telnet
mphost IN WKS 127.1.1.1 iso-tp4 ftam vt
mphost IN WKS 127.1.1.1 iso-tp0 ftam vt

Figure 4: A multi-protocol DNS entry using WKS and external data.

The external definitions of the protocol and service identifiers from the WKS entry
are given in Table 3. This is the additional data that must be provided to indicate
the uses-lists of the WKS PEs. We assume that the “tcp” implementation supports
either “ip” or “clnp” [2]. We also assume that the TP4 protocol “iso-tp4” uses either
CLNP or IP. If this is not the case, another entry could be added with an assigned
name such as “in-tp4” to identify a TP4 implementation that uses only IP. The entry
“iso-tp0” represents the RFC-1006 mechanism for implementing TP0 over TCP [15].
Since TP0 and TP4 provide a similar interface, we assume that FTAM and VT can
use either one. The identifiers “ftam” and “vt” are the only assigned names in this
example not currently defined in [13].

Using both the WKS entry and PE definitions, a communication subsystem can
build a protocol graph describing the available paths on the host of interest. The
capabilities of this approach are the same as for the previous approach. The
principle advantage of this approach is that it maintains greater compatibility
with current WKS semantics for the protocol specifiers. This compatibility comes
at the expense of requiring an additional data source and additional agreement on
the meanings of the assigned names provided by that source.

16

Assigned Name PE Name Uses-list
ftam FTAM TP0, TP4
ftp FTP TCP
iso-tp0 TP0 w/RFC-1006 TCP
iso-tp4 TP4 IP, CLNP
tcp TCP IP, CLNP
telnet TELNET TCP
vt VT TP0, TP4

Table 3: Definitions of protocol and service identifiers.

5.2.3 A TXT Resource Record Approach

The final alternative we present uses the DNS TXT entries to encode protocol graph
information. Currently, there is no standard describing the format of a TXT entry2.
We propose that the TXT field be used to store a description of the PEs available on
a host as well as the uses-lists of those PEs. The general format of the PE entries
is “ � PE � / � uses-list � ”. Figure 5 shows a grammar for parsing these TXT entries.
We use the leading string “PEInfo” to distinguish these protocol descriptions from
other TXT fields in use.

<TXT Entry> ::= "PEInfo:"<protolist>
<protolist> ::= <proto>";"<protolist>
<protolist> ::= <proto>
<proto> ::= <type>"/"<useslist>
<proto> ::= <type>
<useslist> ::= <uses>"|"<useslist>
<useslist> ::= <uses>
<uses> ::= <type>"&"<uses>
<uses> ::= <type>
<type> ::= [a-zA-Z0-9-]<type>
<type> ::=

Figure 5: A sample grammar for parsing PEInfo TXT entries.

Figure 6 shows a possible DNS entry for a host with the installation graph given
in Figure 1. Multiple PE entries in one TXT record are separated by a “;”. If no
uses-list is present, the entry is assumed to be a base PE. The entries are grouped
by the protocol layer described. This grouping has no semantic meaning for the
system and is strictly for the convenience of the person reading the file.

2Rosenbaum has proposed a new mechanism for using TXT fields for arbitrary string attributes
[16]. At the time of this writing, this proposal had not advanced to the status of an Internet standard.

17

; Name Class RR-Type RR-Data
;------------------------------- --------- --------- ---
mphost IN A 127.1.1.1
mphost IN HINFO "Sparc 1" "SunOS 4.1"
mphost IN NSAP 49.5100bd5a00
mphost IN TXT "PEInfo:IP;CLNP"
mphost IN TXT "PEInfo:TCP/IP|CLNP"
mphost IN TXT "PEInfo:TP4/IP|CLNP;TP0/TCP"
mphost IN TXT "PEInfo:FTP/TCP;TELNET/TCP"
mphost IN TXT "PEInfo:FTAM/TP0|TP4;VT/TP0|T P4"

Figure 6: A multi-protocol DNS entry.

For our current implementation we have elected to pursue the use of the TXT fields
to describe protocol graph information. This approach provides the most flexibility
in encoding and presents the least danger of conflicting with current implemen-
tation and usage. One issue to note is that while the TXT RRs are defined in the
specification [10] from 1987, they are not supported by all DNS implementations.
The version of named found in the 4.3 Reno release of BSD UNIX includes support
for TXT but the older BSD version that provides the basis for Sun OS 4.1.3 does not.
This means that the WKS -based alternatives described above may indeed be more
compatible with existing servers. However, since the use of newer address types
like NSAP and X25 will require updating of name servers anyway, we expect that
most Internet name servers will include support for TXT fields.

6 A Sample Implementation

As a proof of concept, we will now describe a working multi-protocol FTAM
implementation capable of carrying out a file transfer with hosts supporting one
of several different protocol architectures. The three protocol paths supported by
this implementation are shown in Figure 7. The three paths are FTAM using: TP4
over CLNP, TP4 over IP, and TP0 using RFC-1006 over TCP/IP. These paths are also
present in the host described in the DNS examples presented in the previous section.
The basic steps carried out by the multi-protocol communication subsystem when
attempting to provide the FTAM service are:

1. The user initiates a file transfer with the remote host by invoking FTAM with
the remote host’s name.

2. The communication subsystem obtains address and graph information by
calling the DNS using the LookupHost() routine for both the remote and local

18

 TCP

 User

 TP0

FTAM

 TP4

 App Sw

 IP CLNP

 TP Sw

Figure 7: Multi-Protocol FTAM Architecture.

hosts.

3. The communication subsystem calls the MatchPath() routine to obtain a subset
of the two installation graphs that includes the FTAM service.

4. The communication subsystem configures the local host’s installation graph
to use the selected path for this session3.

5. Control is passed back to the user application (FTAM) which continues nor-
mally by establishing a connection using the routines configured by the com-
munication subsystem.

Suppose that a user of this multi-protocol host wishes to perform a file transfer with
the system “tcphost” described in Figure 8. This system only supports the single
protocol path FTAM over TCP/IP using the RFC-1006 implementation of TP0. In
this case, the only match found for performing file transfer is the “FTAM” entry.
After matching the application, the next PE to match is “TP0”, the only member
of the “FTAM” uses-list for the host “tcphost”. Next, “TCP” is matched and then
“IP”. Finally, once IP is selected, the A address entry is included for carrying out
the communication.

To implement this system we developed a set of extensions to the BSD DNS re-
solver library and the ISODE 8.0 FTAM implementation. To the resolver we added
the LookupHost() and MatchPath() functions discussed in Section 4. These exten-
sions implement the path selection portion of the communication subsystem. The
LookupHost() function retrieves the various address RRs and retrieves and parses
the TXT fields to build the protocol graph information. MatchPath() compares the
two protocol graphs and returns the first path found that supports the required
service, which is FTAM in this case.

3Here we use our definition of session from Section 2 rather than the OSI Session.

19

; Name Class RR-Type RR-Data
;------------------------------- --------- -------
tcphost IN A 127.1.1.2
tcphost IN HINFO "Sparc 1" "SunOS 4.1"
tcphost IN TXT "PEInfo:IP;TCP/IP;TP0/TCP"
tcphost IN TXT "PEInfo:FTAM/TP0"

Figure 8: A single protocol DNS entry.

Once the path is selected, the system performs path configuration by creating a
session for the user which instantiates this path. In our implementation, this task
is performed by the Transport Switch mechanism provided by the ISODE [14].
The Transport Switch provides a mechanism to select among protocol stacks based
on address information. For each transport connection, it associates a separate
structure of function pointers to transport layer functions. In turn, these particular
transport functions invoke specific network layer functions. The ISODE implemen-
tation of the Transport Switch performs protocol selection based on the network
address format of the destination host. If a CLNP style NSAP is found then the
functions for implementing TP4 over CLNP are selected. If an IP style address is
found then the functions for implementing the RFC-1006 TP0 over TCP are chosen.

To the ISODE switching architecture we added the ability to use the DNS routines to
select which protocols should be used without reliance on the address type. In addition,
we have added the ability to select TP4 over IP as one of the available paths. The
use of this path is made possible by utilizing the protocol graph information from
the directory service to select between two different paths, both of which use the
IP network layer.

The ISODE includes an implementation of the Association Control Service in the
form of the acsap library. This module provides the support for establishing a
connection between the various Association Control Service Elements used by an
application. It is within this library, specifically in the implementation of the routine
str2aeinfo(), that we have added the multi-protocol DNS support. This routine
takes a set of string descriptors, including a host name and service qualifier, and
returns an application-entity information structure for this communication task.
Included in this information is the address and protocol information utilized by
the Transport Switch. An important result of this implementation approach is that
it provides multi-protocol system support, not just to the FTAM application, but
to all applications which utilize the acsap routines. In fact, there was no need to
modify any of the actual FTAM application code itself. Furthermore, the current
code architecture remains intact so that the regular ISODE databases can be used
to resolve these entities if the information is not available from the DNS or the local
administrator wishes to override the DNS information.

20

7 Concluding Remarks

In order to effectively use multi-protocol systems for communication in hetero-
geneous networks we must develop mechanisms for efficiently combining the
protocol architectures and managing their use. Managing the use of these systems
involves both determining which protocols should be used and then specifying
that usage to the systems. This paper describes our work in using a directory
service to aid in the determination task. We discussed techniques for extending
current single protocol architectures to operate in a multi-protocol environment.
We described a practical extension of the current DNS for multi-protocol systems
that involves no modification to the currently deployed DNS server software. We
also presented a successful implementation of a multi-protocol application capable
of using these extensions.

It should be noted that the examples used in this paper deal with protocols and
implementations that exist today. However, we expect that new architectures
will be developed, and that the problems considered here will become even more
important as the next generation of architectures are deployed. Current proposals
for the next generation Internet protocols all involve some sort of transition strategy
where both current and future protocols will need to co-exist [17]. Our proposed
architecture is an appropriate solution to this multi-protocol co-existence problem.

The use of a directory service to solve this problem has some potential drawbacks
that should be addressed. The usefulness of the directory service is limited by
the accuracy of the directory information. If a host changes protocol graphs, by
updating or replacing software, and the directory entries for that host are not
correctly updated, other hosts will be unable to establish communication with
that host. While current network hosts change protocol architectures no more
frequently than they change addresses, recent research suggests that this may not
always be the case in the future [12, 18].

The question of accuracy of the DNS entries has been raised in the Internet commu-
nity. Indeed the Internet host requirements document [1] specifically warns that a
host should not rely on the WKS entries to provide accurate information regarding
the services available from another host. These concerns over accuracy lead to the
likelihood that the directory service itself may not be enough to provide up-to-date
information about a network host. Our future work will look at ways to combine
the directory service with a more dynamic discovery system that determines the
supported protocols from the host itself when the directory service information is
incomplete.

21

References

[1] R. Braden. Requirements for internet hosts - application and support. RFC
1123, October 1989.

[2] R. W. Callon. TCP and UDP with bigger addresses (TUBA), a simple proposal
for internet addressing and routing. RFC 1347, June 1992.

[3] R. J. Clark, M. H. Ammar, and K. L. Calvert. Multi-protocol architectures as
a paradigm for achieving inter-operability. In Proceedings of IEEE INFOCOM,
April 1993.

[4] R. J. Cypser. Evolution of an open communications architecture. IBM Systems
Journal, 31(2):161–188, 1992.

[5] P. Janson, R. Molva, and S. Zatti. Architectural directions for opening IBM
networks: The case of OSI. IBM Systems Journal, 31(2):313–335, 1992.

[6] B. Manning. DNS NSAP RRs. RFC 1348, July 1992.

[7] B. Manning and R. Colella. DNS NSAP Resource Records. Internet Draft, May
1993.

[8] B. Meandzija. Integration through meta-communication. In Proceedings of
IEEE INFOCOM, pages 702–709, June 1990.

[9] P. Mockapetris. Domain names - concepts and facilities. RFC 1034, November
1987.

[10] P. Mockapetris. Domain names - implementation and specification. RFC 1035,
November 1987.

[11] D. M. Ogle, K. M. Tracey, R. A. Floyd, and G. Bollella. Dynamically selecting
protocols for socket applications. IEEE Network, 7(3):48–57, May 1993.

[12] S. W. O’Malley and L. L. Peterson. A dynamic network architecture. ACM
Transactions on Computer Systems, 10(2):110–143, May 1992.

[13] J. Reynolds and J. Postel. Assigned numbers. RFC 1340, July 1992.

[14] M. T. Rose. The ISO Development Environment User’s Manual - Version 7.0.
Performance Systems International, July 1991.

[15] M. T. Rose and D. E. Cass. ISO Transport Services on top of the TCP. RFC
1006, May 1987.

[16] R. Rosenbaum. Using the domain name system to store arbitrary string at-
tributes. Internet Draft, April 1993.

22

[17] IEEE Communications Society. Special issue: The future of the Internet Pro-
tocol. IEEE Network, 7(3), May 1993.

[18] C. Tschudin. Flexible protocol stacks. In Computer Communication Review,
pages 197–205. ACM Press, September 1991.

23

