
Efficient Computation of Parameterized Pointer
Information for Interprocedural Analyses

Donglin Liang and Mary Jean Harrold
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA
{dliang,harrold}@cc.gatech.edu

Abstract
Pointer information that is provided by many algorithms
identifies a memory location using the same name through-
out a program. Such pointer information is inappropriate
for use in analyzing C programs because, using such infor-
mation, a program analysis may propagate a large amount of
spurious information across procedure boundaries. This pa-
per presents a modular algorithm that efficiently computes
parameterized pointer information in which symbolic names
are introduced to identify memory locations whose addresses
may be passed into a procedure. Because a symbolic name
may identify different memory locations when the proce-
dure is invoked under different callsites, using parameterized
pointer information can help a program analysis reduce the
spurious information that is propagated across procedure
boundaries. The paper also presents a set of empirical stud-
ies, that demonstrate (a) the efficiency of the algorithm, and
(b) the benefits of using parameterized pointer information
over using non-parameterized pointer information in pro-
gram analyses. The studies show that using parameterized
pointer information may significantly improve the precision
and the efficiency of many program analyses.

1. INTRODUCTION
Various pointer analysis techniques have been developed

to facilitate program analyses of C programs. To support
these program analyses, a pointer analysis must associate
names with memory locations. A pointer analysis also must
provide information that helps program analyses determine
the memory locations that may be accessed through pointer
dereferences. With this information, a program analysis can
first replace the pointer dereferences in a C program with
the memory locations accessed through such dereferences,
and then analyze the program in the usual way [2, 14].

Pointer analysis algorithms can differ in the way in which

p

nv

p

x,y

9 }

5 main() {
6 int y;
7 foo(&x);
8 foo(&y);

2 foo(int *p) {
3 *p=*p+1;
4 }

1 int x;

"nv" bound to "x" at 7
"nv" bound to "y" at 8

(a) (c)

**

(b)

Program 1

Figure 1: (a) Program 1, (b) non-parameterized
points-to graph, (c) parameterized points-to graph.

they assign names to memory locations. Such differences can
significantly impact the precision and the efficiency of the
program analyses that use the pointer information. Many
existing pointer analysis algorithms (e.g., [1, 3, 5, 6, 10, 12,
13, 16, 17]) use the same name to identify a memory loca-
tion throughout the program. These algorithms use variable
names to identify memory locations allocated on the stack,
and use an artificial name to identify the memory locations
allocated on the heap at a specific statement. Because a
memory location may be accessed throughout the program,
its name can appear in several procedures. Therefore, a
program analysis that uses this pointer information usually
treats such name as if it were a global variable.

Only a few existing pointer analysis algorithms [7, 19]
assign different names for a memory location in different
procedures. When the address of a memory location can be
passed into a procedure through formal parameters or global
pointers, these algorithms use a symbolic name to identify
the memory location within the procedure. If the pointer
information computed for the procedure is used under more
than one calling context, the symbolic name can be used to
identify different memory locations under different calling
contexts. For example, the algorithms can use a symbolic
name nv to identify the memory locations whose addresses
are passed into procedure foo() (Figure 1(a)) through p.
When the pointer information computed for foo() is used
under the context of statement 7, nv identifies x. When this
pointer information is used under the context of statement
8, nv identifies y. The symbolic names introduced by these
algorithms act like reference parameters. Thus, we refer to
such symbolic names as auxiliary parameters, and we refer
to pointer information that contains auxiliary parameters as
parameterized pointer information.

1

For supporting program analyses of C programs, parame-
terized pointer information has several advantages over non-
parameterized pointer information. First, parameterized
pointer information for a procedure is more compact than
non-parameterized pointer information. In a procedure, pa-
rameterized pointer information can use an auxiliary pa-
rameter to represent a set of memory locations. In con-
trast, non-parameterized pointer information may require
several names for the same set of memory locations. Thus,
when a program analysis analyzes a procedure using param-
eterized pointer information, it creates and propagates less
information than using non-parameterized pointer informa-
tion. For example, using parameterized pointer informa-
tion, a program analysis would propagate information for
nv in procedure foo() in Figure 1(a). In contrast, using
non-parameterized pointer information, the program analy-
sis would propagate information for x or y in foo(). Second,
without special consideration, a program analysis algorithm
that uses non-parameterized pointer information may propa-
gate spurious information across procedure boundaries. For
example, using non-parameterized pointer information, a
program analysis finds that x or y may be modified at state-
ment 3 in Figure 1 and propagates this information back to
statement 7. Thus, it reports that foo() may modify x and
y at statement 7. In contrast, using parameterized pointer
information, a program analysis finds that nv is modified
at statement 3. When this information is propagated back
to statement 7, because nv identifies the memory location
for x under the context of statement 7, the program anal-
ysis reports that only x is modified by foo() at statement
7. Therefore, using parameterized pointer information, the
program analysis can reduce the amount of spurious infor-
mation propagated across procedure boundaries.

One major problem with existing algorithms that compute
parameterized pointer information is efficiency. First, exist-
ing algorithms use a flow-sensitive approach. Empirical re-
sults suggest that flow-sensitive pointer analysis algorithms
may not scale to large programs [7, 12, 19]. Second, existing
algorithms may analyze a procedure more than once [7, 19].
This additional analysis increases the expense of these algo-
rithms. Third, existing algorithms might compute several
versions of pointer information for each procedure. Using
these different versions of pointer information may increase
the complexity of program analyses.

To efficiently compute parameterized pointer information,
we developed a modular parameterized pointer analysis al-
gorithm (MoPPA). MoPPA efficiently computes pointer in-
formation for a program following a framework similar to the
flow-insensitive, context-sensitive pointer analysis algorithm
(FICS) [13], which we previously developed. Like FICS,
MoPPA computes, in three phases, points-to graphs that
represent the pointer information for a program. Unlike
FICS, which identifies a memory location using the same
name throughout a program, MoPPA uses, when possible,
auxiliary parameters to identify memory locations whose
addresses are passed into a procedure. MoPPA also distin-
guishes the memory locations that are dynamically allocated
in a procedure when the procedure is invoked under different
calling contexts.

Compared to FICS and other algorithms (e.g., [1, 6, 17])
that are intended to handle large programs, a major benefit
of MoPPA is that it provides parameterized pointer informa-
tion. The parameterized pointer information lets a program

analysis reduce the spurious information propagated across
procedure boundaries. Such reduction may significantly im-
prove both the efficiency and the precision of program anal-
yses. Another benefit of MoPPA over these algorithms is
that MoPPA can distinguish the memory locations dynam-
ically allocated in a procedure under different calling con-
texts. Therefore, MoPPA may provide more precise pointer
information than these algorithms.

Compared to other existing algorithms that compute pa-
rameterized pointer information, a major benefit of MoPPA
is its efficiency. MoPPA processes each pointer assignment
only once. In the second and the third phases, MoPPA prop-
agates, from one procedure to another, only a small amount
of information that is related to parameters. Therefore,
MoPPA can efficiently compute the points-to graphs. An-
other benefit of MoPPA over existing algorithms is its mod-
ularity — only the information for the procedures within a
strongly connected component on the call graph must be in
memory simultaneously. Therefore, compared to existing al-
gorithms that compute parameterized pointer information,
MoPPA requires less memory.

This paper first discusses the approach used by MoPPA to
assign names to memory locations. The paper then presents
the details of the MoPPA algorithm. The paper also presents
a set of empirical studies that demonstrate (a) the effi-
ciency of MoPPA and (b) the benefits of using parame-
terized pointer information provided by MoPPA over using
non-parameterized pointer information provided by FICS
in program analyses. To the best of our knowledge, these
studies are the first that compare the results of program
analyses computed using parameterized pointer information
with that computed using non-parameterized pointer infor-
mation. The studies show that using parameterized pointer
information can significantly improve the precision and the
efficiency of many program analyses.

2. PARAMETERIZED POINTS-TO GRAPHS
This section first briefly introduces the points-to graphs

constructed by MoPPA, and then discusses the approach
used by MoPPA to assign names to memory locations.

2.1 Points-to Graphs
MoPPA uses points-to graphs to represent pointer infor-

mation. In a points-to graph, a node represents a set of
memory locations, whose names are associated with the
node. A field access edge, labeled with a field name, con-
nects a node representing structures to a node representing a
specific field of the structures. A points-to edge, labeled with
“*”, represents points-to relations. For example, the points-
to graph in Figure 1(b) represents the fact that p may point
to x or y. For efficiency, MoPPA imposes two constraints
on a points-to graph: (1) each memory location can be rep-
resented by only one node; (2) labels are unique among the
edges leaving a node. Similar constraints are also used to
implement Steensgaard’s algorithm [17] and FICS [13].

For a given program, MoPPA computes a global points-
to graph that represents the pointer information related to
global pointers. For each procedure in the program, MoPPA
computes a procedural points-to graph that represents the
pointer information related to the local pointers in the pro-
cedure. The separation of global pointer information from
local pointer information lets MoPPA reduce the amount of
information that it propagates across procedure boundaries.

2

For example, suppose that a statement in a procedure forces
a global pointer g to point to a heap-allocated memory lo-
cation. Without the separation, this pointer information
would have to be propagated to every procedure in the pro-
gram, even if g is irrelevant to the computation of the pointer
information for the procedure. MoPPA avoids such propa-
gation by making this information available in the global
points-to graph. When a program analysis analyzes a pro-
gram, it resolves the dereferences of global pointers using
the global points-to graph.

2.2 Naming Memory Locations
Unlike FICS, which uses the same name to identify each

memory location throughout a program, MoPPA uses an
auxiliary parameter, when possible, to identify a memory
location in the points-to graph for a procedure P . To sup-
port program analyses, MoPPA also provides binding infor-
mation that maps an auxiliary parameter in P to the names
that identify the same memory locations at the callsites to
P . For example, MoPPA uses auxiliary parameter nv to
identify memory locations for x and y in the points-to graph
(Figure 1(c)) for foo() in program 1 (Figure 1(a)). It also
provides information to map nv to x at statement 7 and
to y at statement 8. Unlike FICS, which uses one artificial
name to identify all the memory locations allocated on the
heap at a statement s in a procedure P , MoPPA attempts
to distinguish the memory locations allocated at s when P
is invoked from different callsites. Unlike other algorithms
(e.g., [5]) that blindly distinguish these memory locations
by extending their names with call strings, MoPPA makes
such distinction only if the distinction may help the program
analysis compute more precise information.

To handle heap-allocated memory locations and global
variables effectively, MoPPA introduces quasi-global names.
A quasi-global name is a name whose scope may include sev-
eral procedures, but does not necessarily include all proce-
dures in a program. MoPPA can identify a memory location
loc using a quasi-global name in some procedures, and iden-
tify loc using auxiliary parameters in the other procedures
that access loc. Such a naming scheme is more flexible than
that used in existing algorithms, in which a memory location
must be identified either using a global name whose scope in-
cludes all the procedures or using a set of local names whose
scopes include only individual procedures.

MoPPA uses information collected from a program to de-
termine the kind of name that it uses to identify a memory
location in a procedure. We consider global variables, local
variables, and heap-allocated memory locations. For each
global variable g accessed within a procedure P , MoPPA
determines whether g is only accessed using its address that
is passed into P through formal parameters. If this is the
case, MoPPA uses an auxiliary parameter to identify g in
P . For example, MoPPA uses auxiliary parameter nv to
identify x in foo() in Figure 1(a). However, if g is accessed
using its variable name or using an address that is passed
into P through global pointers, then MoPPA uses g’s vari-
able name as the quasi-global name to identify g in P (e.g.,
x in main() in Figure 1(a)). This quasi-global name is also
used to identify g in P ’s direct or indirect callers.

For a local variable l that is declared in P , if l cannot
be accessed through dereferences of global pointers in the
program, MoPPA uses l’s variable name as a local name
to identify l in P . In any other procedure where l may be

accessed, MoPPA uses an auxiliary parameter to identify l.
However, if l can be accessed through dereferences of global
pointers in the program, then MoPPA identifies l using a
technique that is similar to the one used to identify a global
variable. In P or in a procedure where l’s address may be
passed into the procedure through global pointers or deref-
erences of global pointers, MoPPA uses l’s variable name
as a quasi-global name to identify l. In a procedure where
l’s address is passed into the procedure only through formal
parameters or dereferences of formal parameters, MoPPA
uses an auxiliary parameter to identify l.

In general, MoPPA uses the following rules to determine
the scope of a quasi-global name N :

• Rule 1. If N is the variable name of a global variable
and N syntactically appears in a procedure P , then
N ’s scope includes P .
• Rule 2. If the memory location identified by N is

pointed to by the memory location identified by an-
other quasi-global name N1 according to the global
points-to graph, and N1’s scope includes a procedure
P , then N ’s scope includes P .
• Rule 3. If N ’s scope includes a procedure P , then
N ’s scope includes all the procedures that call P .

Rule 1 considers global variables. Rule 2 determines whether
the address of a memory location can be passed into a proce-
dure through global pointers or dereferences of global point-
ers. Rule 3 accounts for the fact that P is a part of its
callers. These rules can be efficiently evaluated by MoPPA.

MoPPA uses a local name, an auxiliary parameter, or a
quasi-global name to identify a memory location that is al-
located on the heap within a procedure P . Suppose that a
statement s in P allocates memory locations on the heap.
We consider three cases. In the first case, the addresses
of these memory locations are not returned to P ’s callers.
In this case, these memory locations can be accessed only
within P . MoPPA identifies these memory locations using
an auxiliary local name whose scope includes only P . In
the second case, the addresses of these memory locations
may be returned to P ’s callers through the return value or
dereferences of formal parameters, but not through global
pointers or dereferences of global pointers. MoPPA uses an
auxiliary parameter to identify these memory locations in
P . MoPPA also creates names, using similar rules, to iden-
tify these memory locations in P ’s callers. Because different
names may be created to identify the memory locations re-
turned by P at different callsites, MoPPA can distinguish, in
P ’s callers, the memory locations allocated at s under differ-
ent calling contexts. In the third case, the addresses of these
memory locations may be returned to P ’s callers through
global pointers or dereferences of global pointers. MoPPA
introduces a quasi-global name to identify these memory lo-
cations. According to Rule 3, this name will be used in
all callers of P . Therefore, in this case, MoPPA does not
distinguish memory locations allocated at s under different
calling contexts.

For example, consider the points-to graphs (Figure 3(d))
computed by MoPPA for Program 3 in Figure 3(a). Let
loc be the memory location allocated at statement 14. In
Galloc(), the points-to graph for alloc(), MoPPA uses aux-
iliary parameter nv2 to identify loc. That loc is returned to
alloc()’s callers only through *f is the basis for this nam-
ing decision. When loc is returned to getg() at statement

3

next

*

next

* next

*

G P() G GO()

 struct L *next;
typedef struct L{

} List;

GO(List *t,int ln) {
 if(ln<0) return;
c2: P(t,ln−1);
}

P(List *tl,int ln) {
 List hd;
 hd.next=tl;
c1: GO(&hd,ln);
}

next

*

G P()

tl
*

*

Parameter binding at c2Parameter binding at c1

(a) Program 2: with
recursion

(b) without k−limiting (c) with k−limitting (k=1)

*

*
t

next

G GO()

*

nv1tl
next

*

nv2

hdhd

nv2

nv4

nv3

nv1

t

Figure 2: Problem with recursion and its solution.

10, MoPPA identifies loc using a quasi-global name gh. That
loc may be returned to getg()’s callers not only through the
return value, but also through global pointer g, is the basis
for this naming decision. When loc is returned to main() at
statement 3, MoPPA identifies loc using an auxiliary local
name lh. That loc cannot be returned to main()’s callers is
the basis for this naming decision. Compared to the points-
to graphs (Figure 3(e)) constructed by FICS, we can see
that MoPPA computes more precise pointer information.

2.3 Handing Recursion
In the presence of recursive data structures, MoPPA may

introduce an infinite number of auxiliary parameters in pro-
cedures involved in recursion. For example, MoPPA keeps
generating auxiliary parameters to identify the memory lo-
cations in a linked-list in construction of the points-to graphs
(GP(), GGO() in Figure 2(b)) for P() and GO() in Figure 2(a).
The same problem occurs with other algorithms [7, 19].

MoPPA solves this problem using a variant of k-limiting
[11]. The variant considers simple paths1 that contain sus-
picious nodes — nodes associated only with auxiliary pa-
rameters. The variant limits the number of consecutive sus-
picious nodes on a simple path to k (MoPPA ignores field
nodes when it looks for consecutive suspicious nodes). When
MoPPA processes a recursive call, if it needs to add a suspi-
cious node, it checks the restriction. If adding the new node
would create a simple path containing more than k consecu-
tive suspicious nodes, MoPPA searches, on the path, for an
existing suspicious node that represents memory locations
whose types overlap the types of the memory locations rep-
resented by the new node. If MoPPA finds such a node, it
uses this node. Otherwise, it uses a new node. For example,
when MoPPA binds nv2 to GO() at callsite c1 in P() (Fig-
ure 2(a)), it attempts to add a new suspicious node in GGO().
Adding such a node creates a simple path that contains two
consecutive suspicious nodes. Thus, if k is 1, MoPPA reuses
the node that is associated with nv1 and binds nv2 to nv1.
Figure 2(c) shows the resulting points-to graphs.

1A simple path does not contain two identical nodes.

3. COMPUTATION OF PARAMETERIZED
POINTS-TO GRAPHS

This section first introduces some definitions, and then
gives an overview of MoPPA.

3.1 Definitions
Memory locations in a program are accessed through ob-

ject names, each of which consists of a variable and a pos-
sibly empty sequence of dereferences and field accesses [12].
Object name N1 is extended from object name N2 if N1 can
be constructed by applying a possibly empty sequence of
dereferences and field accesses ω to N2; in this case, we de-
note N1 as Eω〈N2〉. For example, suppose that p is a pointer
that points to a struct with field a in a C program. Then
E∗〈p〉 is ∗p, E∗〈∗p〉 is **p, and E∗.a〈p〉 is (∗p).a.

Given an object name N , if N is of pointer type, then the
points-to node of N in a points-to graph G is the node that
represents the memory locations that may be pointed to by
N . To find N ’s points-to node in G, an algorithm first lo-
cates or creates, in G, a node n0 that represents the variable
in N . The algorithm then locates or creates a sequence of
nodes ni and edges ei, 1≤i≤k, so that n0, e1, n1, ..., ek, nk is
a path in G, the labels of e1, ..., ek−1 match the sequence of
dereferences and field accesses in N , and ek is a points-to
edge. N ’s points-to node is nk.

3.2 Overview of MoPPA
In addition to computing the points-to graphs, MoPPA

also computes, in various phases, the set of quasi-global
names whose scopes may include a procedure P according
to Rules 1–3 in Section 2. MoPPA uses this information to
determine the kind of name that it uses to identify a memory
location in P . To compute this information, MoPPA first
collects the global variable names that syntactically appear
in P or in procedures directly or indirectly called by P . Ac-
cording to Rules 1 and 3, the scopes of these names include
P . MoPPA then searches, beginning from the nodes associ-
ated with the global variable names computed for P , for all
reachable nodes in Gglob. The names associated with these
nodes identify the memory locations whose addresses may
be passed into P through global pointers or dereferences of
global pointers. According to Rule 2, the scopes of these
names include P .

MoPPA computes the points-to graphs for a program in
three phases (Figure 4). In each phase, MoPPA performs
two tasks. The first task detects each pair of object names
that may point to common memory locations. MoPPA
merges the points-to nodes of these two object names in
a points-to graph to ensure that each common memory lo-
cation pointed to by these two object names is represented
by only one node. This merging operation is a variant of
the “join” in Steensgaard’s algorithm [17]. The second task
determines the memory locations represented by each node
in the points-to graphs. MoPPA picks appropriate names
to identify these memory locations at the node. We discuss
how these two tasks are performed in each phase.

3.2.1 First phase: Lines 1–8
In the first phase, MoPPA processes each pointer assign-

ment lhs = rhs in each procedure P to build P ’s points-to
graph GP . If rhs is an object name, then MoPPA merges
the points-to nodes of lhs and rhs in GP to capture the
fact that lhs and rhs point to the same memory location

4

g

gh,a[]
Gglob Ggetg()

g

t

getg

gh

Galloc()

f

Ggetg()

g

t

getg

gh,a[]

Galloc()

f

nv1

nv2
Gmain()

pqg

gh,a[] lh

g

gh,a[]
Gglob

Gmain()

pqg

gh,a[]

g

a[]

Ggetg()

g

t

getg

h,a[]

Gmain()

pqg

h,a[]

g

h,a[]
Gglob

1 main() {
2 char *p,*q;
3 alloc(&p);
4 q =getg();
5 g=a;
6 }

8 char **t=&g;
7 char *getg() {

10 alloc(t);
9 if(g==null)

11 return *t;
12 }

Galloc()

(a)

(b) After first phase

(c) After second phase

(d) Result of MoPPA

* * *

*

* *

*

*

*

*

*

*

*

*

**

*

**

*

*

* **

*

* * * *

Binding at 10: nv1 to g, nv2 to a[] and gh.

g

t

getg

G

f

G

pq

G alloc()main() getg()

(e) Result of FICS

Program 3
13 alloc(char **f) {
14 *f=malloc(4);
15 }
16 char *g,a[4];

f

g,p

h,a[]

Binding at 3: nv1 to p, nv2 to lh.

Figure 3: Program 3 and its points-to graphs.

after this assignment (line 3). If rhs is an address-taking
expression “&x”, then MoPPA adds variable name x to the
points-to node of lhs in GP to indicate that lhs points to
the memory location for x after the assignment (line 4). If
rhs is a call to a memory allocation function, MoPPA sets
a boolean flag HasHeap for the points-to node of lhs in GP
(line 5). HasHeap of a node is used to indicate that the node
represents a heap-allocated memory location whose name
has not yet been determined by MoPPA. In various phases
of the algorithm, when two nodes N1 and N2 are merged,
if HasHeap of N1 or N2 is set, then HasHeap of the resulting
node will be set.

In the first phase, MoPPA introduces a variable to rep-
resent the return value of each function and treats a return
statement as an assignment. For example, MoPPA intro-
duces getg to represent the return value of function getg()

in Figure 3(a), and treats return statement 11 as assignment
getg=*t. In the first phase, MoPPA also collects the global
variable names that syntactically appear in P (line 8).

Figure 3(b) shows the points-to graphs constructed by
MoPPA during this phase for Program 3 in Figure 3(a). A
solid node in the graphs indicates that HasHeap of this node
is set.

3.2.2 Second phase: Lines 9–30
In the second phase, MoPPA processes the callsites in each

procedure P to consider the effects, on GP , of the procedures

Algorithm MoPPA

input P: the program to be analyzed
output a set of points-to graphs
declare GV ars[P]: global variable names collected for P
function Ac(f): return the actual parameter bound to f at c

globals(G): return the global variable names in G

begin MoPPA
/* First phase (lines 1–8) */

1. foreach pointer assignment lhs = rhs in each procedure P do
2. case rhs do
3. object name: merge points-to nodes of lhs and rhs in GP
4. “&x”: add x to the points-to node of lhs in GP
5. malloc(): set HasHeap of lhs’s points-to node in GP
6. endcase
7. endfor
8. add global variable names in each procedure P to GVars[P]

/* Second phase (lines 9–30) */
9. add all procedures in P to worklists W1 and W2

10. while W1 6=φ do /* W1: sorted in reversed topological order*/
11. remove P from the head of W1

12. foreach callsite c to Q in P do
13. BindFromCallee(GQ ,globals(GQ),GP ,c)
14. foreach points-to node N of Eω〈f〉 in GQ

where f is a formal parameter do
15. copy names from N to Eω 〈Ac(f)〉’s points-to node in GP
16. if HasHeap of N is set then
17. set HasHeap of Eω〈Ac(f)〉’s points-to node in GP
18. endfor
19. endfor
20. BindToGlobal(GP ,globals (GP),Gglob)
21. foreach points-to node N of Eω〈g〉 in GP , g is global do
22. copy names from N to points-to node of Eω〈g〉 in Gglob
23. if HasHeap of N is set then
24. reset HasHeap of N add a new name to N
25. add the new name to Eω〈g〉’s points-to node in Gglob
26. endif
27. endfor
28. add procedures calling P to W1 if GP is updated
29. endwhile
30. compute GV ars[P] for each procedure P from P ’s callees
/* Third phase (lines 31–55) */
31. foreach procedure P do
32. compute the quasi-global names whose scopes include P
33. while W2 6= φ do /* W2: sorted in topological order */
34. remove P from the head of W2

35. foreach callsite c to P in P ′ do
36. BindFromCaller(GP ′ ,c,GP)
37. foreach name n in points-to node of Eω〈a〉 in GP ′

and a is actual parameter bound to f at c do
38. if n is quasi-global name whose scope includes P then
39. add n to Eω〈f〉’s points-to node in GP
40. elseif no auxil parameter at Eω〈f〉’s points-to node in GP
41. create a auxil parameter at Eω〈f〉’s points-to node in GP
42. endif
43. endfor
44. endfor
45. BindFromGlobal(Gglob ,globals (GP),GP)
46. foreach name n in Eω〈g〉’s points-to node in Gglob

where g is global pointer appeared in GP do
47. add n to Eω〈g〉’s points-to node in GP
48. foreach node N whose HasHeap is set in GP do
49. reset HasHeap

50. if no auxiliary parameter associated with N then
51. add a new local name to N
52. endfor
53. add the procedures called by P to W2 if GP is updated
54. endwhile
55. foreach callsite c do compute binding information endfor

end MoPPA

Figure 4: MoPPA algorithm.

called by P . Let c be a callsite in P and Q be the procedure
that c invokes. MoPPA first calls BindFromCallee() to de-
tect pairs of parameter-related object names that may point
to the same memory locations (line 13). BindFromCallee()
searches in GQ for object names Eω1〈p〉 and Eω2〈q〉 that
point to the same node. If p and q are formal parameters
bound to a1 and a2 respectively at c, then after c is executed,

5

Eω1〈a1〉 and Eω2〈a2〉 may point to common memory loca-
tions. Thus, BindFromCallee() merges the points-to nodes
of Eω1〈a1〉 and Eω2〈a2〉 in GP . If p is a formal parameter
bound to a at c and q is a global variable, then after c is
executed, Eω1〈a〉 and Eω2〈q〉 may point to common mem-
ory locations. Thus, BindFromCallee() merges the points-
to nodes of Eω1〈a〉 and Eω2〈q〉 in GP . For example, when
MoPPA processes statement 4 in Figure 3(a), it merges the
points-to nodes of q and g in Gmain() because Ggetg() shows
that getg and g point to the same node (MoPPA treats
return value getg as a formal parameter).

MoPPA also determines the memory locations whose ad-
dresses may be returned to P at callsite c (lines 14–18). If
GQ shows that a name x is associated with the points-to
node of Eω〈f〉, in which f is a formal parameter bound to a
at c, then, after c is executed, Eω〈a〉 may point to the mem-
ory locations identified by x. MoPPA adds x to the points-to
node of Eω〈a〉 in GP (line 15). If HasHeap of the points-to
node of Eω〈f〉 is set, then after c is executed, Eω〈a〉 may
point to memory locations that are allocated from the heap
in Q. Thus, MoPPA sets HasHeap of the points-to node of
Eω〈a〉 (line 17). For example, when MoPPA processes state-
ment 3 in Figure 3(a), it sets HasHeap of the points-to node
of p in Gmain() because Galloc() shows that HasHeap of the
points-to node of *f is set.

In the second phase, MoPPA also constructs the global
points-to graph Gglob using information in GP (lines 20–
27). MoPPA calls BindToGlobal() to search in GP for object
names Eω1〈g1〉 and Eω2〈g2〉, where g1 and g2 are global vari-
ables that point to the same node. BindToGlobal() merges
the points-to nodes of Eω1〈g1〉 and Eω2〈g2〉 in Gglob to in-
dicate that Eω1〈g1〉 and Eω2〈g2〉 point to the same memory
locations.

MoPPA also determines the memory locations that may
be pointed to by object names extended from global vari-
ables (lines 21–27). Let g be a global variable. If GP shows
that x is associated with the points-to node of Eω〈g〉, then
when P is executed, Eω〈g〉 may point to the memory loca-
tion identified by x. MoPPA adds x to the points-to node
of Eω〈g〉 in Gglob to capture this information (line 22). If
GP shows that HasHeap of the points-to node of Eω〈g〉 is
set, then when P is executed, Eω〈g〉 may point to a mem-
ory location allocated in P . MoPPA creates a new quasi-
global name to identify this memory location, and adds this
name to the points-to node of Eω〈g〉 in both GP and Gglob.
MoPPA also resets HasHeap of the points-to node of Eω〈g〉
in GP to indicate that the heap-allocated memory location
has been assigned a name. For example, when MoPPA pro-
cesses getg() in Figure 3(a) in the second phase, it finds
that HasHeap of the points-to node of g is set. Thus, the
algorithm creates a name gh, and adds this name to the
points-to node of g both in Ggetg() and in Gglob. The algo-
rithm also resets HasHeap of g’s points-to node in Ggetg().

In the second phase, MoPPA further computes the set of
global variable names that appear syntactically in procedure
P (line 30). In this phase, MoPPA processes the procedures
in a reverse topological (bottom-up) order on the strongly-
connected components of the call graph. Within a strongly-
connected component, MoPPA iterates over the procedures
until the points-to graph computed for each procedure sta-
bilizes. Figure 3(c) shows the points-to graphs constructed
for Program 3 in Figure 3(a) after this phase.

3.2.3 Third phase: Lines 31–55
In the third phase, MoPPA processes each procedure P to

determine the memory locations represented by each node in
GP and assigns appropriate names to identify these memory
locations. MoPPA completes this task in four steps. First,
MoPPA computes, by using Gglob and the set of global vari-
able names computed for P in the first two phases, the set
of quasi-global names whose scopes include P (lines 31–32).

Second, MoPPA processes each callsite c that calls P to
capture the pointer information introduced by parameter
bindings. Let P ′ be the procedure that contains c. MoPPA
first calls BindFromCaller() to detect pairs of object names
that are extended from actual parameters at c and may point
to the same node in GP ′ (line 36). If BindFromCaller() finds
that Eω1〈a1〉 and Eω2〈a2〉, in which a1 and a2 are bound to
f1 and f2 respectively at c, may point to the same node in
GP ′ , it merges the points-to nodes of Eω1〈f1〉 and Eω2〈f2〉
in GP . MoPPA also determines the memory locations that
may be pointed to by object names extended from formal
parameters (lines 37–43). Let a be an actual parameter that
is bound to formal parameter f at c. If GP ′ shows that name
n is associated with the points to node of Eω〈a〉, then when
P is invoked at c, Eω〈f〉 may point to the memory locations
identified by n at P ’s entry. If n is a quasi-global name
whose scope includes P , then MoPPA adds n to the points-
to node of Eω〈f〉 in GP . Otherwise, MoPPA checks to see if
there is an auxiliary parameter associated with the points-
to node of Eω〈f〉 in GP . If no auxiliary parameter exists,
then MoPPA creates a new auxiliary parameter and adds
this auxiliary parameter to this node. For example, when
MoPPA processes the callsite to alloc() at statement 10 in
Figure 3(a), it finds that t may point to g. Because g’s scope
does not include alloc(), MoPPA introduces auxiliary pa-
rameter nv1 to identify this memory location and adds nv1

to the points-to node of f in Galloc(). Note that in the third
phase, if two nodes N1 and N2 are merged, at most one
auxiliary parameter is kept in the resulting node.

Third, MoPPA further determines, by examining Gglob,
the memory locations that may be represented by each node
in GP (lines 45–47). Let g1 and g2 be global variables that
appear in GP (i.e., g1, g2 ∈ globals(GP)). MoPPA calls
BindFromGlobal() to search, in Gglob, object names Eω1〈g1〉
and Eω1〈g1〉 that point to the same node. BindFromGlobal()
merges the points-to nodes of Eω1〈g1〉 and Eω1〈g1〉 in GP .
Let g be a global variable that appear in GP . If Gglob shows
that name n is associated with the points-to node of Eω〈g〉,
then MoPPA adds n to the points-to node of Eω〈g〉 in GP .

Fourth, MoPPA assigns names for the unnamed heap-
allocated memory locations represented by nodes inGP (lines
48–52). MoPPA examines, inGP , each node N whose HasHeap
is set. If an auxiliary parameter aux is associated with N ,
then N is pointed to by an object name extended from for-
mal parameters. Therefore, the heap-allocated memory lo-
cations represented by N may be returned to P ’s callers.
MoPPA reuses aux to identify these memory locations. How-
ever, if no auxiliary parameter is associated with N , then
these heap-allocated memory locations are not returned to
P ’s callers. MoPPA creates a new local name and add this
name to N to identify these heap-allocated memory loca-
tions. In both cases, MoPPA resets HasHeap of N . For ex-
ample, when MoPPA examines Galloc(), the points-to graph
for alloc() in Figure 3(a), it discovers that HasHeap of the
points-to node of *f is set and an auxiliary parameter nv2 is

6

associated with this node. Therefore, it reuses nv2 to iden-
tify the heap-allocated memory locations represented by this
node. However, when MoPPA examines Gmain(), it discovers
that HasHeap of the points-to node of p is set but no aux-
iliary parameter is associated with this node. Therefore, it
creates a local name lh to identify the heap-allocated mem-
ory locations represented by this node (Figure 3(d)).

In the third phase, MoPPA processes the procedures in
a topological (top-down) order on the strongly-connected
components of the call graph. Within a strongly-connected
component, MoPPA iterates over the procedures until the
points-to graph for each procedure stabilizes. After all the
points-to graphs stabilize, MoPPA processes each callsite c
to compute the binding information between the names in
the procedure containing c and the auxiliary parameters in
the called procedure (line 55). This step can be done on-
demand when the pointer information is used.

Figure 3(d) shows the points-to graphs that MoPPA com-
putes for Program 3. Compared to the points-to graphs
(Figure 3(e)) constructed by FICS for this program, we can
see that MoPPA computes more compact and more precise
pointer information than FICS.

3.3 Complexity of MoPPA
Let p be the number of procedures in a program P, c be

the number of callsites in P, and S be the worst-case ac-
tual size of the points-to graph for a procedure. Without
considering the cost of line 8 and lines 30–32, the time com-
plexity of MoPPA is the same as the time complexity of
FICS, which is O(N ∗ S ∗ α(N ∗ S, p ∗ S)) [13], given that
α is the inverse Ackermann function, N is (c + p) in the
absence of recursion, and N is (c + p) ∗ S in the presence
of recursion. The steps taken at lines 8 and 30 are very
similar to those taken in the computation of modification
side-effects for the procedures. Therefore, the time taken
by these two lines is O(n2). Line 32 can be done by first
mapping the names in GV ars[P] to the nodes in Gglob, and
then searching in Gglob beginning from these nodes. There-
fore, the time taken by this line is O(n+ Sglob), where Sglob
is the size Gglob. Thus, the time complexity of MoPPA is
O(p ∗ (n + Sglob) + n2 + N ∗ S ∗ α(N ∗ S, p ∗ S)). With the
assumption that Sglob is O(n), the time complexity can be
simplified to O(n2 + N ∗ S ∗ α(N ∗ S, p ∗ S)).

3.4 Handling Indirect Calls
Because the complete call graph for a program that con-

tains indirect calls through function pointers is not directly
available, MoPPA may encounter difficulties in analyzing
such a program. There are two possible solutions. The
first solution uses the call graph computed by another al-
gorithm. For example, we can construct the call graph for
a program by resolving indirect calls using pointer informa-
tion provided by Steensgaard’s algorithm. We can further
refine the result using function prototypes [2].

The second solution begins the analysis with a partial
call graph, and computes the complete call graph during
the analysis. This approach requires iterations between the
bottom-up phase and the top-down phase [4]. To use the
second approach, MoPPA keeps an extra shadow points-to

graph
�

GP for each procedure P .2 MoPPA uses
�

GP to sep-
arate the summary information about P from the pointer

2
�

GP may be eliminated if MoPPA can determine the proce-
dures that are directly or indirectly called by P .

Subject Size Time
program LOC Nodes Procs TM TF
dixie 2100 1357 52 0.30 0.19
learn 1600 1596 50 0.31 0.17
diff 1730 1932 44 0.34 0.18
assembler 2510 1993 58 0.67 0.44
smail 3212 2430 59 0.43 0.30
lharc 3235 2539 89 0.51 0.25
simulator 3558 2992 114 0.50 0.27
flex 6902 3762 93 0.89 0.32
rolo 4748 3874 142 0.90 0.54
space 11474 5601 137 1.75 1.36
bison 7893 6533 134 1.10 0.62
spim 24322 11352 263 3.43 2.49
mpgplay 17263 11864 135 3.68 2.36
espresso 12864 15351 306 6.01 4.61
moria 25002 20316 482 7.70 3.34
twmc 23922 22167 247 3.92 4.24

Table 1: Left: Sizes of the subject programs. Right:
Time in seconds for MoPPA (TM) and FICS (TF).

information computed for P . In the first phase, MoPPA
computes the pointer information and puts the information

in both
�

GP and GP . In the second phase when MoPPA pro-

cesses a callsite c to Q in P , it uses
�

GQ to update both
�

GP
and GP . In the second phase when MoPPA computes the
global points-to graph, it uses the shadow points-to graphs.
In the third phase, MoPPA uses only the normal points-to
graphs for the procedures. Before computing the binding in-
formation for each callsite at the end of this phase, MoPPA
first examines each indirect call. If MoPPA discovers new
callees, it expands the call graph and repeats the second and
third phases starting only from the procedures that might
be affected. Otherwise, the algorithm computes the binding
information and terminates.

4. EMPIRICAL STUDIES
We have implemented a prototype of MoPPA using the

PROLANGS Analysis Framework (PAF) [9]. Our prototype
handles function pointers using the first approach discussed
in Section 3.3. We have also performed several empirical
studies to evaluate the performance of MoPPA and the ef-
fectiveness of using the parameterized pointer information
provided by MoPPA in program analyses. We collected the
data for the studies on a Sun Ultra 30 workstation with
640MB of physical memory. To allow the algorithm to cap-
ture the pointer information introduced by calls to library
functions, we created a set of stubs that simulate these func-
tions. A similar approach using stubs has been used in other
prototypes (e.g. [12, 13]).

The left side of Table 1 shows the subject programs we
used. Column LOC shows the number of lines of code, col-
umn Nodes shows the number of control flow graph nodes
created to represent each program, and column Procs shows
the number of procedures. These subject programs have
also been used in many other studies [12, 13, 15].

4.1 Study 1
The goal of this study is to evaluate the performance of

MoPPA. To investigate the time efficiency of MoPPA, we
compare the time required to run MoPPA and the time re-
quired to run FICS on each subject program. The right side

7

of heap # of flow dependences
program Mo FI Mo FI Reduce
dixie 10 7 5.10 6.19 17.7%
learn 4 4 3.30 3.64 9.4%
diff 20 7 3.40 3.57 4.8%
assembler 17 15 2.68 3.62 25.8%
smail 12 7 2.60 3.20 19.0%
lharc 3 3 2.47 2.52 2.0%
simulator 3 3 2.49 2.58 3.4%
flex 39 7 5.85 6.57 11.0%
rolo 27 10 3.96 4.41 10.3%
space 11 11 2.83 3.03 6.5%
bison 83 81 7.88 7.89 0.0%
spim 131 17 26.6† 42.8† 37.9%
mpgplay 64 58 6.94 6.97 0.4%
espresso 238 111 4.10 4.31 4.8%
moria 1 1 9.17 11.66 21.3%
twmc 144 113 4.26 4.51 5.6%

† spim contains two large procedures with over 1000 nodes.

Without considering these two procedures, the result for

MoPPA is 2.83, and the result for FICS is 2.95.

Table 2: Left: Number of distinct heap-allocated
memory locations. Right: Average number of flow
dependences for a statement.

(TM , TF) of Table 1 shows the comparison. The table shows
that, on the programs we studied, although MoPPA can be
2 to 3 times slower than FICS, it is still very efficient for
all programs. This results suggest that MoPPA will scale to
large programs as well as FICS.

In the study, we also investigate the effectiveness of MoPPA
in distinguishing memory locations allocated on the heap in
a procedure when the procedure is invoked under different
callsites. The left side of table 2 compares the number of
distinguishable heap-allocated memory locations when the
pointer information is computed by MoPPA or FICS. Two
memory locations are not distinguishable if they are are al-
ways used in the same way in a program. Column Mo shows
the results for MoPPA and column FI shows the results for
FICS. The table shows that, for several programs, MoPPA
identifies many more distinguishable heap-allocated mem-
ory locations than FICS. These results suggest that using
pointer information provided by MoPPA may help a pro-
gram analysis compute more precise information.

4.2 Study 2
The goal of this study is to evaluate the impact of using

pointer information provided by MoPPA and FICS on the
computation of flow dependence, one variety of data depen-
dence, within a procedure. A statement s1 is flow-dependent
on another statement s2 if s1 may use the value set by s2.
Flow dependence has been used in important tasks such as
program optimization and program understanding.

In this study, we computed the average number of state-
ments on which a statement is flow-dependent. For each
callsite, we use its side-effects to compute the flow depen-
dences. The right side of table 2 shows the results of this
study when the pointer information is provided by MoPPA
(Mo) or FICS (FI). The table also shows the percentage of
spurious flow dependences (Reduce) that can be eliminated
by using pointer information provided by MoPPA. The table
shows that, for several programs (e.g., smail), using pointer
information provided by MoPPA can significantly (> 10%)

Size Time
program Mo FI Reduce Mo FI
dixie 94.3 139.4 32.3% 0.3 3.2
learn 21.8 25.0 12.8% 0.2 0.7
diff 30.3 34.3 11.7% 0.1 0.1
assembler 121.2 174.5 30.6% 0.6 11.7
smail 52.7 123.3 57.3% 0.2 42.1
lharc 64.6 113.7 43.2% 0.3 1.6
simulator 264.4 317.6 16.8% 0.4 2.4
flex 138.0 223.9 38.4% 2.1 4.4
rolo 68.2 95.6 28.6% 0.5 3.1
space 128.6 136.7 5.9% 0.5 47.4
bison† 1120 1164 3.8% 5.1 10.0
spim† 2107 ? – 742.7 ?
mpgplay† 2054 2170 5.3% 19.4 23.8
espresso† 2888 3321 13.0% 35.9 6209
moria† 3146 ? – 621.3 ?
twmc† 1152 2387 51.7% 11.4 598.4
† Data are collected on one data slice.

? Data are unavailable because the system does not terminate

within the time limit (10 hours) we set.

Table 3: Left: average size of a data slice, Right:
average time in seconds to compute a data slice.

reduce the spurious flow dependences. Thus, on these pro-
grams, using pointer information provided by MoPPA may
significantly improve the precision of the program analyses
that require data-flow information. Note that, for other pro-
grams (e.g., lharc) on which the reduction in flow depen-
dences is insignificant, using pointer information provided
by MoPPA may still improve the precision of program anal-
yses on these programs by reducing the spurious information
propagated across procedure boundaries.

4.3 Study 3
The goal of this study is to evaluate the impact of us-

ing pointer information provided by MoPPA or FICS on
the precision and the efficiency of program analyses that re-
quire transitive interprocedural flow dependence. The study
consists of two parts. The first part of the study consid-
ers the impact on the computation of transitive flow depen-
dence. We measure the average number of statements that
can transitively affect a specific statement s through flow
dependence. For convenience, we refer to these set of state-
ment as the data slice with respect to s. We also measure
the average time to compute a data slice. These measure-
ments can serve as an indicator to the impact of using such
pointer information on program analyses that require tran-
sitive interprocedural flow dependence.

Table 3 shows these two measurements we obtain when
the pointer information is provided by MoPPA (Mo) or
FICS (FI). The table also shows the reduction in the size
of a data slice (Reduce) when the pointer information is
provided by MoPPA instead of FICS. We obtain the data
by running a modified version of our reuse-driven slicer [14]
on each subject. The table shows that, for many programs
we studied (e.g., smail), using pointer information provided
by MoPPA can significantly improve the precision and the
efficiency of the computation of transitive flow dependence.

The second part of the study considers the impact of us-
ing pointer information provided by MoPPA or FICS on
program slicing [18], a program analysis that requires tran-
sitive flow dependences. We measure the average size of a

8

Size Time
program Mo FI Reduce Mo FI
dixie 612.4 653.3 6.3% 4.2 20.3
learn 469.1 489.4 4.1% 8.9 24.6
diff 283.1 293.6 3.6% 0.9 1.6
assembler 640.6 753.0 14.9% 6.0 79.1
smail 675.5 824.7 18.1% 5.6 205.3
lharc 560.5 697.6 19.6% 6.7 47.4
simulator 1172 1176 0.3% 5.1 18.6
flex† 602 1088 44.6% 16.9 22.9
rolo† 1131 1283 11.8% 19.7 97.4
space† 2249 2504 10.2% 9.5 539.8
bison† 2823 2824 0.0% 21.1 48.5
spim† 3443 ? – 4085 ?
mpgplay† 3950 4140 4.6% 91.3 127.0
espresso† 5125 5744 10.8% 187.2 13560
moria† ? ? – ? ?
twmc† 12884 12897 0.1% 851.1 19379
† Data are collected on one program slice.

? Data are unavailable because the system does not terminate

within the time limit (10 hours) we set.

Table 4: Left: Average size of a program slice,
Right: Average time in seconds to compute a pro-
gram slice.

program slice and the average time to compute a program
slice. Table 4 shows these two measurements obtained in the
study when the pointer information is provided by MoPPA
(Mo) or (FI). The table also shows the reduction in the size
of a program slice (Reduce) when the pointer information
is provided by MoPPA instead of FICS. We obtain the data
by running our reuse-driven program slicer on each subject.
The table shows that, for many programs that we studied
(e.g., smail), using pointer information provided by MoPPA
can significantly improve the precision and the efficiency.

By considering the results of both parts of the study, we
can conclude that using parameterized pointer information
provided by MoPPA may significantly improve the precision
and efficiency of many program analyses.

5. RELATED WORK
Several other existing pointer analysis algorithms use a

modular approach for computing pointer information. One
such algorithm is Chatterjee, Ryder, and Landi’s Relevant
Context Inference (RCI) [3]. Like FICS and MoPPA, RCI
first uses a bottom-up phase to consider the effect of a pro-
cedure on each callsite that calls this procedure. RCI then
uses a top-down phase to compute the memory locations
whose addresses may be passed into a procedure.

RCI differs from MoPPA in two ways. First, RCI com-
putes non-parameterized pointer information. RCI uses un-
known initial values for parameters and globals at the en-
try of a procedure. At first glance, these unknown initial
values seem to serve the same purpose as auxiliary param-
eters. However, because unknown initial values are created
before the pointer information is computed at the callsites,
two unknown initial values may represent the address of the
same memory location under a calling context. Therefore, in
the final pointer solution, these unknown initial values must
be replaced with concrete values.3 Second, RCI computes

3The same argument applies to non-visible variables used in
Landi and Ryder’s algorithm [12].

pointer information using a flow-sensitive approach. Be-
cause propagating information using flow-sensitive approach
is expensive, RCI may not scale to large programs.

Another modular pointer analysis algorithm is Cheng and
Hwu’s algorithm [4]. Like MoPPA, Cheng and Hwu’s algo-
rithm is flow-insensitive. Unlike MoPPA and many other
algorithms that use exactly one name to identify each mem-
ory location at a statement, Cheng and Hwu’s algorithm
uses access paths4 to identify each memory location.

One way that MoPPA distinguishes itself from Cheng and
Hwu’s algorithm is efficiency. We compare these two algo-
rithms in three aspects. First, Cheng and Hwu’s algorithm
must propagate pointer information for global pointers from
procedure to procedure. In contrast, MoPPA uses a global
points-to graph to capture the pointer information for the
global pointers. Therefore, MoPPA propagates less infor-
mation across procedure boundaries than Cheng and Hwu’s
algorithm. Second, in the intraprocedural phase, Cheng and
Hwu’s algorithm must iterate over the pointer assignments
within a procedure in a way similar to that used in An-
dersen’s algorithm [1]. In contrast, MoPPA processes each
procedure in the intraprocedural phase using an approach
similar to Steensgaard’s algorithm [17], which processes each
pointer assignment only once. Third, in the interprocedu-
ral phases, Cheng and Hwu’s algorithm must iterate over
the points-to relations computed for a procedure when the
algorithm discovers a new points-to relation. In contrast,
MoPPA may merge two nodes or add a name to a node when
it discovers a new points-to relation. Therefore, MoPPA is
more efficient than Cheng and Hwu’s algorithm.

Another way that MoPPA distinguishes itself from Cheng
and Hwu’s algorithm is the support for interprocedural pro-
gram analyses that use the pointer information. Similar to
auxiliary parameters, access paths used in Cheng and Hwu’s
algorithm can identify different memory locations in a pro-
cedure when the procedure is invoked at different callsites.
However, because one memory location might be identified
by several access paths in pointer information provided by
Cheng and Hwu’s algorithm, a program analysis using this
pointer information may have to propagate more informa-
tion across procedure boundaries than using pointer infor-
mation provided by MoPPA. In addition, mapping an access
path from a called procedure to a calling procedure is more
expensive than mapping an auxiliary parameter. Therefore,
using the information provided by Cheng and Hwu’s algo-
rithm in program analyses may be less efficient than using
the information provided by MoPPA.

Foster, Fahndrich, and Aiken proposed a polymorphic flow-
insensitive points-to analysis framework that computes pointer
information by solving a set of constraints [8]. This frame-
work also consists of a bottom-up phase and a top-down
phase to propagate information. When this framework uses
term constraint, the resulting algorithm is very similar to
FICS. This framework differs from MoPPA in that it com-
putes non-parameterized pointer information. Studies show
that their current implementation of the framework may not
scale to large programs [8].

Some existing pointer analysis algorithms [3, 12] provide
conditional pointer information, in which a points-to rela-
tion may be associated with a condition that specifies the
calling contexts under which this relation may hold. Al-

4An access path is similar to an object name defined in this
paper.

9

though such conditions may help a program analysis reduce
the amount of spurious information propagated across pro-
cedure boundaries [15], adding conditions to the points-to
relations may increase the complexity of the pointer analy-
sis. Studies show that existing algorithms that provide con-
ditional pointer information may not scale to large programs
[3, 12].

6. CONCLUSION
This paper presents MoPPA, a modular algorithm that

computes parameterized pointer information for C programs.
The paper also presents a set of empirical studies that com-
pare MoPPA with FICS. The empirical results show that
both MoPPA and FICS can efficiently compute pointer in-
formation for programs. The empirical results also show
that using pointer information provided by MoPPA can sig-
nificantly improve both the precision and the efficiency of
many program analyses.

Due to space limitation, this paper does not present the
details of handling memory accesses using knowledge of the
physical layout of a structure. Several existing approaches
(e.g., [20]) can be incorporated into MoPPA to handle such
accesses. Our future work will include investigation of the
impact of different approaches on MoPPA.

In future work, we will also conduct more empirical studies
on larger programs to investigate the effectiveness of using
the pointer information provided by MoPPA in various pro-
gram analyses. In addition, we will compare the effective-
ness of using different approaches to handle function point-
ers in MoPPA.

Acknowledgments
This work was supported in part by NSF under NYI Award
CCR-0096321 and ESS Award CCR-9707792 to Ohio State
University, by funds from to Georgia Tech through the Ya-
macraw Mission, and by a grant from Boeing Aerospace Cor-
poration. Alessandro Orso made many helpful suggestions
that improved the presentation of the paper.

REFERENCES
[1] L. Andersen. Program analysis and specialization for

the C programming language. Technical Report 94-19,
University of Copenhagen, 1994.

[2] D. C. Atkinson and W. G. Griswold. Effective whole-
program analysis in the presence of pointers. In 6th In-
ternational Symposium on the Foundations of Software
Engineering (FSE-98), pages 46–55, Nov. 1998.

[3] R. Chatterjee, B. G. Ryder, and W. A. Landi. Rele-
vant context inference. In Proceedings of the 26th Sym-
posium on Principles of programming languages, pages
133–146, 1999.

[4] B. Cheng and W. Hwu. Modular interprocedural
pointer analysis using access paths: design, implemen-
tation, and evaluation. In Proceedings of 2000 Confer-
ence on Programming Language Design and Implemen-
tation, pages 57–69, June 2000.

[5] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In Conference record of
the Twentieth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages

232–245, 1993.

[6] M. Das. Unification-based pointer analysis with direc-
tional assignments. In Proceedings of 2000 Conference
on Programming Language Design and Implementation,
June 2000.

[7] M. Emami, R. Ghiya, and L. J. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of 1994 Con-
ference on Programming Language Design and Imple-
mentation, pages 242–256, June 1994.

[8] J. S. Foster, M. Fahndrich, and A. Aiken. Polymorphic
verus monomorphic flow-insensitive points-to analysis
for c. In Proceedings of 7th International Static Analysis
Symposium, June 2000.

[9] P. L. R. Group. PROLANGS Analysis Framework.
http://www.prolangs.rutgers.edu/, Rutgers University,
1998.

[10] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Inter-
procedural pointer alias analysis. ACM Transactions on
Programming Languages and Systems, 21(4):848–894,
July 1999.

[11] N. Jones and S. Muchnick. Flow analysis and optimiza-
tion of lisp-like structures. In S. Muchnick and N. Jones,
editors, Program Flow Analysis: Theory and Applica-
tions, pages 102–131. 1979.

[12] W. Landi and B. G. Ryder. A safe approximate algo-
rithm for interprocedural pointer aliasing. In Proceed-
ings of the ACM SIGPLAN ’92 Conference on Pro-
gramming Language Design and Implementation, pages
235–248, July 1992.

[13] D. Liang and M. J. Harrold. Efficient points-to analy-
sis for whole-program analysis. In Joint 7th European
Software Engineering Conference and 7th ACM Sym-
posium on Foundations of Software Engineering, pages
199–215, Sept. 1999.

[14] D. Liang and M. J. Harrold. Reuse-driven interproce-
dural slicing in the presence of pointers and recursion.
In International Conference on Software Maintenance,
pages 421–430, Sept. 1999.

[15] H. D. Pande, W. A. Landi, and B. G. Ryder. Interpro-
cedural def-use associations for C systems with single
level pointers. IEEE Transactions on Software Engi-
neering, 20(5):385–403, May 1994.

[16] E. Ruf. Context-insensitive alias analysis reconsidered.
In Proceedings of SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, pages
13–23, June 1995.

[17] B. Steensgaard. Points-to analysis in almost linear time.
In Conference Record of the 23rd ACM Symposium
on Principles of Programming Languages, pages 32–41,
Jan. 1996.

[18] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[19] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of SIG-
PLAN ’95 Conference on Programming Language De-
sign and Implementation, pages 1–12, 1995.

[20] S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis
for programs with structures and casting. ACM SIG-
PLAN Notices, 34(5):91–103, May 1999.

10

