
Securing Context-Aware Applications
Using Environment Roles �

Michael J. Covington
�

Wende Long Srividhya Srinivasan Anind Dey
Mustaque Ahamad Gregory Abowd

College of Computing
Georgia Institute of Technology

Atlanta, Georgia USA

November 17, 2000

Abstract

In the future, a largely invisible and ubiquitous computing
infrastructure will assist people with a variety of activities
in the home and at work. The applications that will be de-
ployed in such systems will create and manipulate private
information and will provide access to a variety of other
resources. Securing such applications is challenging for
a number of reasons. Unlike traditional systems where
access control has been explored, access decisions may
depend on the context in which requests are made. We
show how the well-developed notion of roles can be used
to capture security-relevant context of the environment in
which access requests are made. By introducing environ-
ment roles, we create a uniform access control framework
that can be used to secure context-aware applications. We
also present a security architecture that supports security
policies that make use of environment roles to control ac-
cess to resources.

1 Introduction

As computers become more pervasive in the home and
community, new applications will emerge that will make
daily life easier for people. Such applications, which will
be enabled by a ubiquitous computing and communica-
tion infrastructure, will provide unobtrusive access to im-
portant information, resources and services. Clearly, suc-
cessful deployment of such applications will depend on

�
This work was supported in part by National Science Foundation

grant CCR-9988212 and the members of the Industrial Advisory Board
of the Georgia Tech Broadband Institute.
�
Contact Author: mc@MichaelCovington.com

our ability to secure them. In particular, we will have to
ensure that access to information and services is granted
only to authorized users, without requiring them to deal
with complex security policies or burdensome access con-
trol mechanisms.

The Aware Home initiative at the Georgia Institute of
Technology is exploring several applications [11] in the
home environment that have novel security needs. We
have built a home with a rich computation and commu-
nication infrastructure. Sensors in the home can cap-
ture, process and store a variety of information about the
home’s residents and their activities. Such information
could be sensitive and the residents certainly would want
to control who has access to it. The applications could
also allow users to control and manage resources in the
home from a variety of locations. Access control will be
important in environments like the Aware Home to protect
the privacy concerns of the home’s residents as well as to
prevent unauthorized access to the resources in the home.
The fact that attacks on an always connected home can be
mounted from anywhere and at anytime further motivates
the need for secure access to resources in the home.

Many of the applications in the Aware Home are context-
aware [14] and can be customized based on the environ-
ment in which an access request is made. For example,
access to certain appliances may only be granted when the
request is made from a certain location or at a certain time.
In the smart intercom application that is being explored
in the Aware Home [13], permission to talk to a resident
in another room may depend on the activity in which the
resident is currently involved. Access requests can also
be triggered when the request is not explicitly made by a
resident. One of the applications being explored aims to
allow elderly residents to remain in their homes, instead
of moving to assisted living facilities. If such a resident



Securing Context-Aware Applications Using Environment Roles

falls and injures himself, the Aware Home could detect the
emergency and respond by requesting medical assistance.
This access request would be automatically generated and
approved based on the context of the situation. Other en-
vironmental conditions such as temperature in the home,
the time of day, or location from which a request is made
could also affect whether an access request is granted or
denied.

In this paper, we explore an access control model for se-
curing context-aware applications. Such a model should
be flexible enough to support policies that make use of
security-relevant environmental data to control access to
resources or information manipulated by the applications.
We show how a generalization of the role-based access
control (RBAC) model [18, 7] provides an elegant means
of capturing and using a user’s context in access con-
trol. In particular, similar to subject roles of RBAC, we
define environment roles, which can be used to capture
security-relevant aspects of the environment in which an
application executes. By using the uniform notion of a
role to capture both user and environmental attributes, we
develop an access control model that is easy to use and
understand.

We precisely define environment roles and show that they
share many properties with subject roles that have been
explored in great detail. In particular, there could be
a hierarchical structure between environment roles, and
their activation and revocation leads to interesting prob-
lems. We also present an architecture based on the Con-
text Toolkit that has been developed at Georgia Tech [5].
This toolkit provides abstractions for assessing environ-
mental state which could be used to manage environment
roles. This architecture addresses issues such as role acti-
vation and authorization based on environment roles. We
also illustrate how context-aware applications can be se-
cured when environment roles are used.

The remainder of this paper proceeds as follows: sec-
tion 2 motivates why environmental state is important
in defining access control for applications in the Aware
Home. Section 3 presents details of environment roles,
and is followed by a more precise description of an ac-
cess model using such roles in section 4. The security
architecture based on environment roles is discussed in
section 5. Then, we present several applications and show
how they can be secured in section 6. We discuss the ben-
efits of environment roles in section 7 and compare them
with related work in section 8. The paper is concluded in
section 9.

2 Security Challenges
in the Aware Home

The Aware Home applications alluded to in the previous
section present new and interesting security challenges.
Given the sensitivity of information that is generated and
stored in such an environment, as well as the many com-
plex interactions that will take place both within and out-
side of the Aware Home, security policies can potentially
be quite complex. A policy can restrict access to infor-
mation or resources based on several factors, including
attributes about the subject, the resource or the environ-
ment. For example, subjects can be classified as “resi-
dent” or “guest”, “adult” or “child,” or even as “pet.” Ac-
cess rights then can depend on the subject’s classification
(e.g., “resident”), as well as on his or her identity. Access
also may be restricted based on the subject’s location, or
based on environmental factors such as the temperature or
the time of day. For example, a policy might say that a
repairman has access to the refrigerator only while he is
inside the home on January 17, 2000, between 8:00 a.m.
and 1:00 p.m.

While time and location are natural examples of environ-
mental state that could be used in access control, richer
contextual information could also impact the result of an
access request. For example, consider a smart intercom
application that is configured to permit a child in one lo-
cation of the house to request an intercom connection with
the mother who is in the kitchen. The request for this may
only be granted if the mother is not busy at the time (e.g.,
not involved in another conversation or activity). Also,
unlike traditional access control models where requests
are made explicitly by subjects, requests in the Aware
Home may be generated based solely on the environmen-
tal conditions. For example, if the Aware Home detects
that a resident has fallen and injured himself, a request
for medical help can be generated and should be granted
based on this context of the resident.

Although we have used the Aware Home to motivate how
environmental state can be used in authorization, there are
many other real-world instances in which an access con-
trol decision depends on the state of the environment at
the time of the request. For example, many organizations
restrict access to their facilities during nights and week-
ends. In the military, secure computer systems are often
restricted only to personnel in designated physical areas,
such as a highly secure computer room. In the home, par-
ents might restrict their children’s access to the television,
allowing the kids to watch TV only after they have done
their homework, and only until 9:00 p.m. In each of these
instances, the access control policy depends on informa-
tion from the environment. Any security-relevant infor-

2



Securing Context-Aware Applications Using Environment Roles

mation in the environment that can be accurately captured
by the system can be used to restrict access to system re-
sources.

An access control language can be developed that allows
environmental state to be considered when access deci-
sions are made. However, this could be complex because
it must address what state is security-relevant and how it
should be captured and used. This could also impact the
ease with which security policies that used environmental
state in access control can be defined and understood. We
take another approach which makes use of the well-known
notion of roles to capture security-relevant state. In par-
ticular, we define environment roles based on the context
or state of the environment.

3 Environment Roles

Traditional RBAC offers an elegant solution to the prob-
lem of managing complex access control rule sets. The
basis of RBAC is the concept of a role. Fundamentally,
a role is a grouping mechanism that is used to categorize
subjects based on various properties. Such properties in-
clude job title, user functions or responsibilities. Much of
the RBAC model is based on the mathematics of set the-
ory; thus many of the constructs of the RBAC model are
based on the notion of set membership. Individual users
in an RBAC system are called subjects. Each subject has
an authorized role set, which consists of all the roles that
the subject has been authorized to use. Although RBAC
is very useful to model access control for a variety of ap-
plications, its roles are inherently subject-centric. Thus, it
cannot be used to capture security-relevant context of the
environment which could have an impact on access de-
cisions. We have proposed a generalization of the basic
RBAC model that allows policy designers to specify such
environmental context through a new type of roles that we
call environment roles [4, 15]. In this paper, we focus on
environment roles and explore how they can be used and
implemented to enable context-aware applications.

An environment role can be based on any system state
that the system can accurately collect. For example, we
can define a role corresponding to each day of the week,
or each month of the year. A policy rule such as “man-
agers may edit salary data for their employees only on the
first Monday of each month” is easy to implement using
environment roles. Similarly, environment roles may be
used to describe rules that relate access permissions to the
locations of subjects. In the home, we can define location
roles such as “upstairs,” “downstairs,” “master bedroom,”
etc. We can then use these roles in policy rules; for exam-
ple: “children may only use the intercom while they are

in the kitchen.” In many homes and organizations, access
control is dependent on the pattern of user activity within
the organization. In other words, users must be granted
access privileges only for the time periods in which they
are expected to request access to a resource. As an exam-
ple of such periodic access control, consider a part-time
babysitter who should be authorized to have access to re-
sources within the home only each working day during the
hours that she is scheduled to work, between 3 p.m. and
6:30 p.m.

Environment roles share many characteristics with sub-
ject roles. For example, user Alice must provide some
authentication information for the system to ascertain her
identity which is then used to allow her to assume one or
more roles. For environment roles, role activation is based
on conditions in the environment where a request is made.
These could include time, location or other contextual in-
formation that is relevant to access control. The state of
the environmental conditions must be captured via sen-
sors that are embedded in the environment. For example,
currently the Aware Home makes use of active badges to
track user locations. Clearly, the context information must
be collected securely, in a manner similar to credential
collection in user or subject role authentication.

RBAC also addresses many other issues such as role acti-
vation, revocation, role hierarchies and separation of duty
constraints. These issues apply to environment roles as
well and are discussed below.

3.1 Environment Role Activation

Environment roles generalize traditional RBAC roles by
allowing the concept of a role to be applied to system
states. A request in RBAC comes from a certain user or
subject � who has a set of roles associated with her. This
association is achieved via a two stage procedure. First,
the security administrator in the system must define what
roles � is allowed to take on based on the responsibilities
and functions of � . Second, the user must provide evi-
dence to prove her identity. Once this occurs, the set of
roles that were defined by the security administrator are
transferred to � and can subsequently be used during ac-
cess requests. This is called role activation in RBAC.

A similar role activation problem exists for environment
roles. First, the system administrator must define environ-
ment roles. For each role, she must define the associated
environmental variables and conditions that must hold on
the values of the variables. Unlike a user whose functions
in an organization, and hence her roles, are well under-
stood and relatively static, it may not be clear what envi-
ronmental roles are active in the processing of an access

3



Securing Context-Aware Applications Using Environment Roles

request. In fact, there may be a very large number of en-
vironment roles defined in the system; at access time, the
system must determine which of those roles are “active.”
For example, suppose an access request is made at 3:30
p.m. on Monday, January 1, 2001, under a CPU load of
74% and a network load of 31%. To mediate the access
request, the system must gather information about which
environment roles are currently active. There may be an
environment role called “high CPU load (over 70%)”, as
well as roles for “Wednesday afternoons”, “weekdays”
and “business hours.” All of these roles are active at the
time of the request; however, it is likely that not all of
them are relevant to the access control decision that must
be made. Testing every environment role on every ac-
cess control mediation would be prohibitively expensive,
so the system should employ an efficient means of role en-
try testing for environment roles. We explore such meth-
ods further in section 5.

3.2 Environment Role Revocation

Roles in RBAC can be revoked (e.g., no longer be as-
sumed by the subject) either when the subject’s duties
no longer require the privileges associated with the role’s
functions or when the role may conflict with some other
roles that are to be activated (see “Separation of Duty” in
section 3.4).

Role revocation for environment roles differs fundamen-
tally because the conditions that lead to their activation
can change dynamically and rapidly. Clearly, time and
location of a mobile user are two conditions that change
constantly. Other context of a resident in the Aware Home
(e.g., if they are busy) could also change unpredictably.
Thus, an environment role can be activated based on some
system conditions at the time of a user’s request and the
request may be granted. However, at the time of the next
request from the user, the system conditions may change
and the environment role may no longer be active. In other
words, an environment role is not necessarily active for an
entire session.

There are several options to consider when revoking envi-
ronment roles. In one extreme case, such roles may be ac-
tivated only when a request needs to be authorized and can
be implicitly revoked after the request is processed. How-
ever, the overhead of environment role activation must be
incurred on each access. A better solution may be to as-
sociate a lifetime with an activated environment role. The
role will no longer be active after the lifetime expires. For
example, if a “business hours” role is activated at 1 p.m.,
it can be given a lifetime of 4 hours (assuming business
hours end at 5 p.m.). In other cases, it may not be easy to
associate a lifetime with an activated role. For example, a

certain user may be expected to be at home during certain
times. If she leaves the home unexpectedly, the system
must detect the change in location condition and the role
should be revoked, as with subject roles in RBAC, even if
its lifetime is still not expired. We explore several of these
options in the implementation section.

3.3 Role Hierarchies

One useful construct provided by RBAC is the role hier-
archy. Role hierarchies can help manage role complexity
through structure to exploit commonality not only among
subjects but among roles as well. For example, in an orga-
nization all managers may have a certain set of core “man-
agement privileges” even though they all work in different
departments. This commonality can be exploited through
a role hierarchy that makes each department manager role
a sub-role of a generic “managers” role. Role hierarchies
allow a policy implementor to write generic access rules
just once, rather than for every role to which the rules ap-
ply. Hierarchies also can serve as a tool for cleaner pol-
icy design, thereby eliminating some cases in which role
precedence conflicts might otherwise have occurred. As a
result, our model for environment roles incorporates sup-
port for role hierarchies.

To illustrate the power that hierarchical environment roles
add to an access control mechanism, we begin by creat-
ing a subject role hierarchy1, such as the one displayed
in figure 1. This role hierarchy presents a graphical view
of the sample household that we will consider in the fol-
lowing scenario. Specifically, it shows the relationships
that exist between the various users and the roles that are
present in the system. The figure shows that users Mom
and Dad have each been assigned to the Parent role. In
addition, users Alice and Bobby have been assigned to the
Child role.

In addition, we define a simple environment role hierarchy
in figure 2. This role hierarchy presents a view of some
basic environment roles that could be found in a home
environment. In figure 2, we are concerned with time-
related environment roles. Other environment roles could
also define such a hierarchy. For example, a location envi-
ronment could be inside or outside of a home. Inside the
home, one could have upstairs or downstairs locations.

Assume that Mom and Dad have granted the children per-
mission to use the smart intercom service [13] – a context-
aware intercom application that supports audio connec-

1In RBAC, by convention, senior roles appear at the top of the tree
and junior roles are at the bottom. If we chose that representation, the
tree shown in the figure would be inverted. Instead, we provide the
shown representation to enhance clarity in this example.

4



Securing Context-Aware Applications Using Environment Roles

Family Member

Parent

Mom

�
�
�
� ���
�
�
� �

Dad

�
�
�
� � 	

	
	
	 	

Child

Alice








 
��

�
�
� �

Bobby

Figure 1: An Example Subject Role Hierarchy for the Home

Days of the Week

Weekends

Saturday








 
�

�
�
� �

Sunday

�
�
�
�
� � �

�
�
�
� �

Weekdays

Monday, �����

�
�
�
� � �

�
�
� �

����� , Friday

Figure 2: An Example Environment Role Hierarchy

tions between residents – on weekdays, but only during
their free time after dinner, before going to bed. To en-
force this policy, the system must be configured to iden-
tify the various entities in the system and classify them
into the particular roles that are relevant to the access de-
cision being processed. In addition, the security services
must be able to identify the various environmental states
(e.g, weekdays, “dinner time” and “bed time”) that are
important components of this access rule.

In this particular example, we use hierarchies for both the
traditional subject roles of RBAC, as well as for environ-
ment roles. First, the users must be classified so that a
specific user identity can be mapped to a role, such as
Parent or Child. By mapping a set of users to roles, the
home administrator can specify an access control policy
for a group of users, rather than for each individual user.
For example, once a user is identified as the father in the
family, the “Family Member,” “Parent” and “Dad” subject
roles can all be activated for the user. In addition to sub-

ject roles, the system in this example uses an environment
role named weekdays. Weekdays are defined by the sys-
tem as the time from 12:01 a.m. on Monday to 11:59 p.m.
on Friday. Also, since dinner usually is over by 7:00 p.m.,
and since the children have a bed time of 10:00 p.m., the
environment role free time is defined to be from 7:00 p.m.
to 10:00 p.m.

After defining all the necessary roles, the administrator
needs to establish just one rule to specify the policy.
The rule in this case is “any child can use the intercom
on weekdays during free time.” This example illustrates
how environment roles can significantly enhance an ac-
cess control system, making it easy to take a fairly com-
plex access policy and state it cleanly and efficiently. In
addition, an access control policy using environment roles
offers significant flexibility over one that simply sets ac-
cess control based on resource and subject identity.

5



Securing Context-Aware Applications Using Environment Roles

3.4 Separation of Duty

An attractive feature offered by RBAC is its ability to pre-
vent a user from assuming conflicting roles. This mecha-
nism can be used to enforce separation of duty require-
ments that ensure that a single user cannot acquire too
much authority. For example, a single individual may be
able to assume both “instructor” and “student” roles at dif-
ferent times but not both simultaneously. Similar separa-
tion of duty requirements are also useful for environment
roles. For example, if non-employees are not allowed ac-
cess to a building outside of working hours, the “inside-
building” and “non-working-hours” roles should not both
be active at the same time.

There is an important distinction between user roles and
environment roles when it comes to separation of duty.
Although we may want to prevent the activation of two en-
vironment roles at the same time, role activation is driven
by the system state. This should be compared to user roles
where the system determines what roles are activated for
the user. If the system state is such that it implies that two
conflicting environment roles are both active at the same
time, the system is not in a safe state. In this case, sepa-
ration of duty constraints help the system determine when
it may be in a potentially unsafe state so it can attempt to
resolve the conflict.

4 Environment Role-Based
Access Control Model

Based on the formalization of the RBAC model in [17],
we present a precise description of an access model that
includes environment roles. As discussed in the previous
section, both role hierarchies and separation of duty are
meaningful in the context of environment roles, though
they are omitted here in our description. Thus, we only
consider flat user and environment roles. This formaliza-
tion can be extended to hierarchies and constraints similar
to the ��������� and ��������� models of [17].

Our model has the following components:

� From �������! , we keep " , # , $ and � . These cap-
ture users, roles, permissions and sessions respec-
tively.

� We add %&# and %(' , where %&# refers to Environ-
ment Roles and %(' captures the Environment Con-
ditions that are used to define such roles. To some
degree, %(' is analogous to " because the creden-
tials associated with a user allow her to assume roles

in # . Similarly, values of variables in %(' allow cer-
tain roles in %&# to be activated.

We have three relations "*) , $*) and %&) that define the
associations between subject roles, users, permission as-
signments and environment roles. These relations are as
follows:

� "+)-,."0/1#
This comes from RBAC and defines what roles in #
a user from " is allowed to assume.

� $*)-,2$�/3#0/146587
This captures permissions that are assigned to a user
role when a given set of environment roles is active.
Thus, $*) not only associates a permission with a
subject role but makes it conditional on a set of active
environment roles. Clearly, permissions may change
for a single subject role accessing a resource if the
environmental conditions vary between requests.

The following functions define what user or environment
roles can be activated:

� User: �29;:<4=7
In a given session � , a set of roles can be activated
for a user.

� Request: %>'?9;:<4 587
Although some environment roles can be activated
for the duration of a session, changing conditions
will require other roles to be evaluated every time.
Thus, based on the environmental conditions, a set
of environment roles are activated at the time of a
request.

In our system, a request that requires permission p can be
granted if (1) @ p, r, e-set ACB�$*) , (2) the subject role
D is in the active role set of the user making the request,
and (3) the environment roles active in the current envi-
ronmental conditions EC contain the roles in e-set.

5 Implementing Environment Roles

This section presents our architectural design and the cur-
rent implementation of a security infrastructure to support
environment roles in the Aware Home. As noted earlier,
the system administrator is responsible for defining envi-
ronment roles. For each role, the administrator must de-
fine a set of environmental variables that are to be moni-
tored and the conditions, EC, that must hold for activation.

6



Securing Context-Aware Applications Using Environment Roles

While the specification of environmental conditions is
trivial, the secure and accurate capture of variable values
from the environment is not an easy task. For example,
in traditional RBAC, a user must provide some authen-
tication information to prove her identity which is then
used to allow her to assume one or more roles. Similarly,
sensors capturing security-relevant environment context
must provide some authentication information; also, the
integrity of the information provided to the security sub-
system must be guaranteed.

Below, we discuss issues concerning the collection of con-
textual information from the environment and the relation
of this context to environment roles.

5.1 Collecting Environment State

To facilitate the collection of environment variables and
their associated values, we make use of the Context
Toolkit [5, 6]. The Context Toolkit is a software in-
frastructure that provides useful abstractions for collect-
ing and organizing environmental state information; it al-
lows for the seamless incorporation of sensed context into
“aware” applications. The overall organization of the soft-
ware is shown in figure 3.

Context widgets represent abstractions over sensors that
hide details of how sensing and interpretation of the envi-
ronment occurs. As an example, the intercom application
presented in [13] provides two types of widgets – loca-
tion and speech recognition. These widgets are essentially
wrappers around an underlying local positioning system
and speech recognition software; they provide interfaces
that automatically deliver information to interested com-
ponents or services in the system.

Aggregators collect information for relevant entities of an
application. In the home, there could be aggregators for
rooms in the house (Room Aggregators) and residents of
the household (Person Aggregators). For example, the
Living Room Aggregator may know that both Dad and
Bobby are in the living room. A Room Aggregator can
also maintain additional information about the room, such
as appliance status, ambient noise level, or even an inter-
pretation or prediction of a high-level activity (e.g., party
preparation or medical emergency). Person Aggregators
currently hold information about a person’s whereabouts
in the house and may also store information about a cur-
rent activity.

Interpreters are responsible for abstracting low-level con-
text to higher-level information. This has traditionally
been performed by applications, however, it has been sep-
arated here to allow reuse of interpreters by multiple ap-

plications. An interpreter can convert state information to
another format or meaning. For example, an interpreter
can convert a room location into a building location (e.g.,
Room 123 maps to Building A). A more complex exam-
ple is an interpreter that takes location, identity and sound
information and determines that a meeting is underway.
Context interpreters can be as simple or as complex as the
designers want.

In the Context Toolkit, every software component de-
scribed above can be shared simultaneously by multiple
context-aware applications. Application components sub-
scribe to aggregators and are notified when interesting
events take place. In the smart intercom example, the ap-
plication itself is responsible for managing subscriptions
and responding properly to events in the system.

5.2 Secure Acquisition
of Environment State

The Context Toolkit, as described above, was designed
to support applications in a trusted research environment.
As this toolkit is deployed and used to support security-
relevant services, it is critical that mechanisms be pro-
vided to secure both the internal exchange of information
(e.g., between the components listed above) and the exter-
nal communication that takes place with applications.

We have built a “trusted” version of the Context Toolkit
that will allow us to collect environment information in
a manner that is both secure and reliable. The first stage
in securing the toolkit involved a minor redesign of the
internal components and the underlying communication
mechanisms. A fundamental concern in building a secure
networked system is authentication of both local and re-
mote entities. Once obtained, authentication information
provides the foundation for controlling access and enforc-
ing policy in the network. Our redesign involved the dis-
tribution of authentication information (e.g., keys and cer-
tificates) to all components in the toolkit. Such tokens are
necessary to guarantee the authenticity and privacy of in-
formation exchanged. We also have enabled all toolkit
components to perform data encryption and to use this
feature to protect the confidentiality of contextual infor-
mation that is generated within the home.

The Context Toolkit is, by design, a distributed system. It
is reasonable for us to assume that the individual compo-
nents of the toolkit are secure as stand-alone services. For
example, we assume that sensors and widgets are securely
bound together in such a way that information from a sen-
sor (e.g., an RF transmitter) can be securely transmitted to
its associated widget. Also, we assume that all software
components are “secure” as individual entities on the net-

7



Securing Context-Aware Applications Using Environment Roles

Context
Toolkit
Architecture

Application

Aggregators

Widget Widget

Sensor Sensor

InterpreterInterpreter

Figure 3: The Context Toolkit

work; in other words, they are designed to properly im-
plement interfaces. Moreover, malicious parties should
not be able to subvert any access control mechanisms that
may restrict access to the component.

Therefore, our goal was to provide an authentication
framework for the Context Toolkit that would enable the
various “principles” to accurately identify one another
and communicate with confidence. The principles in this
model include sensors, widgets, aggregators and inter-
preters. Authentication schemes ultimately enable each
principal to obtain or possess some information identify-
ing the other [3]. In the Context Toolkit, this information
is difficult to bootstrap (e.g., aggregators may be dynam-
ically generated to handle a particular component of the
environment). In order to facilitate the free exchange of
information within the toolkit, pairwise shared secrets are
not an option for us. Instead, we decided to use public
key encryption and established a certificate authority to
aid with the distribution of keys between components.

While we begin with an assumption that the individual
components of the toolkit are secure, we make no such
assumption regarding the network over which they com-
municate. Interactions between secure components in the
toolkit pass through a “chain” of intermediaries. First,
the sensors must be trusted to accurately transmit data to
the widgets. Second, the widget must be trusted to either
properly execute a series of commands (e.g., a filter) or to
securely forward information to an Aggregator. In some
scenarios, interaction with an interpreter may be required.
The chain of components and services that is constructed
during a distributed transaction must be secured so com-
munication channels between the involved systems can be
trusted. This trust provides assurance that the commands
and responses are safe from alteration, forgery and disclo-
sure [8].

Rivest and Lampson [16] have devised a method of au-

thentication support for distributed systems that do not
contain a global hierarchy. Their egalitarian model al-
lows for each principal to make (signed) statements and
requests on the same basis as any other principal. Es-
sentially, this allows each principal in the system to act
as a certificate authority (CA). The policies and proce-
dures adhered to by a principal are self-determined, mak-
ing the model extremely flexible and non-limiting. Al-
though their proposal allowed for some principals to act
as “special roots”, they did not require or rely upon the
presence of a global name space. This work has since
been incorporated into the Simple Public Key Infrastruc-
ture (SPKI), a technology that we make use of in our im-
plementation. We view the egalitarian design of SPKI as
an ideal environment for key management in the Aware
Home – it allows home owners to localize their control
of certificates and does not require the involvement of a
“trusted third-party” to obtain signed certificates for their
networks.

5.3 Environment Role Activation Service

The activation of environment roles involves several dif-
ferent issues that previously have been mentioned. First,
environment roles need to be defined based on environ-
mental conditions that are relevant to access control. Sec-
ond, the appropriate set of roles must be active when a
request is processed. This is done by an environment role
activation service that we discuss in this section. We also
discuss an authorization service which determines if a re-
quest should be granted or denied based on the active roles
and the access rules that are defined to control access to
resources.

8



Securing Context-Aware Applications Using Environment Roles

5.3.1 Defining Environment Roles

In traditional RBAC, subject roles and their associated hi-
erarchies are maintained by a security administrator who
is familiar with the security requirements and objectives
of the organization. As with subject roles, environment
roles require similar administrative care in order to ensure
that appropriate sets of environment roles exist for policy
definition and enforcement.

We have chosen to define our environment roles using a
prolog-style logical language for expressing policies. Our
policy definition language consists of statements, each ter-
minated by a period. As with the Generalized Policy Def-
inition Language (GPDL) presented in [15], statements
are used to define roles, sub-role relationships, transac-
tions, and policy rules. The syntax for role definition is
described below:

erole(role_name).

In the above role definition, role_name denotes the
name of the role. The following examples show how to
use this definition. The meanings of the roles should be
obvious from the role names.

erole(weekends).
erole(business_hours).

5.3.2 Role Relationship Definitions

Environment roles are useless without a precise descrip-
tion of how they are activated and of the conditions that
must be met. We accomplish this via the role relationship
definitions. These definitions could be entry conditions
that have to be satisfied for a particular role to be active,
or it could be some logical combination of conditions that
have to be satisfied in order to enter that role.

role_rel(erole_name, entry_condition).
role_rel(parent_role, child_role).

In the above definition, erole_name denotes an envi-
ronment role, and the entry_condition represents a
boolean statement about the conditions that the current en-
vironmental state must satisfy before it can enter that role.
The specific syntax of these entry conditions depends on
the type of environmental state that is being tested. For
example, the policy administrator could use a statement
such as 08:00 < time_of_day < 17:00 and use
it as an entry condition for the business_hours en-
vironment role. The second statement is used to define

higher-order relationships in a role hierarchy. It specifies
a parent-child relationship where child_role is a child
of parent_role .

Below, we present examples of the syntactical forms de-
scribed above.

role_rel(business_hours,
08:00 < time_of_day < 17:00).
role_rel(sunday, day_of_week=SUNDAY).

The first statement says that the business hours are from
8:00 a.m. to 5:00 p.m. The second statement says that
the environment role sunday may be entered when the
system variable day_of_week is equal to “SUNDAY”.
The policy administrator would have to define both the
day_of_week variable and the constants corresponding
to each day. The activation of these roles is done by the
environment role activation service by collecting informa-
tion about the environment states from Aggregators and
Interpreters in the Context Toolkit.

In order to keep track of errors due to conflicting defini-
tions in the rule base, it is necessary to have error rules.

error(erole1, erole2).

This above rule states that given two environmental rules
erole1 and erole2 , the system cannot simultaneously
activate both of the rules. For example, it would be erro-
neous to have the roles weekend and weekday active at the
same time. This is a mechanism to preserve the integrity
of the rule base.

5.4 Activation of Environment Roles

The activation of environment roles depends on the envi-
ronmental conditions. These conditions change dynami-
cally and hence the active role set also changes. In our
system, we plan to implement an environment role acti-
vation service that keeps track of all the active roles at a
given time. This can be done easily with the facilities that
are available. For example, such a service can read the
current sensor state from widgets and/or aggregators. It
can also place callbacks at the aggregators which will re-
sult in a notification if any of the values provided to the
activation service change. Thus, the service can have a
consistent view of the environmental conditions. Based
on these, it can maintain the list of currently active roles,
updating the list when any condition change notifications
are received. When a request is made, the requester can
request the set of needed active roles before the request

9



Securing Context-Aware Applications Using Environment Roles

is sent to the authorization service. The authorization ser-
vice can also “pull” the needed active roles when it han-
dles a request. Our design of the environment role activa-
tion service permits these different approaches for dealing
with the activation of environment roles.

5.5 Authorization Service

Our model for providing security in the Aware Home sep-
arates out the function of access control and makes this
a distributed core service, which performs authorization
on behalf of the resources in the system. A client or sub-
ject desiring service from a resource must first contact an
authorization server to obtain the credentials necessary to
access the resource. Ubiquitous computing environments
such as the Aware Home consist of many devices and ser-
vices which will be centrally administered. The authoriza-
tion service ensures that access rules are consistent across
all resources and allows for all resources – regardless of
processing capabilities – to enforce security policies. This
section will provide a detailed description of how a cen-
tralized policy is defined using environment roles.

Both subject roles and environment roles provide pow-
erful tools for capturing and organizing security-relevant
information about various users and system states. In tra-
ditional RBAC, transactions are used to mediate access
control. A transaction specifies a particular action to be
performed in the system. Specifically, a transaction is a
tuple in the form:

@ srole, object, erole-set, op A ,

where srole specifies a subject role, object specifies the
object or resource for which access has been requested,
erole-set specifies environment roles that must be active
for the request to be granted, and op specifies the oper-
ation (e.g., read, write, execute, etc.) to be performed
in the transaction. Semantically, the tuple represents an
operation in which a subject acting in subject role srole
performs operation op on a resource object under envi-
ronmental conditions specified by the environment roles
in erole-set. A policy database would consist of a transac-
tion listing, paired with a permission bit for each transac-
tion. The permission bit indicates whether the associated
transaction is allowed or prohibited. Each @ transaction,
permission bit A is called a policy rule.

In cases where one or more components of the policy rule
are not required (e.g., a rule that applies to all subjects),
we maintain constructs that apply to all roles in the partic-
ular “class”. Consider an example that forbids access to
resource E8FHG during working hours. The policy rule cor-
responding to this requirement would be represented as

follows:

@ all-subjects, abc, working-hours, all-ops A

By defining general roles for subjects and environment
conditions, a policy administrator can create broad pol-
icy statements that remain in effect for a variety of active
roles. In the example provided above, one policy rule re-
places a handful of rules that were applied for each indi-
vidual subject and environment role.

6 Secure Application Scenario

Environment roles are a powerful and elegant concept for
specifying access control rules in a computationally rich
environment. This section shows how environment roles
can be applied in practice to the home environment. It
also illustrates some of the additional security benefits that
such roles can provide in a system.

6.1 Securing the Smart Intercom

To illustrate the power and elegance of environment roles,
we begin by creating a simple environment role hierarchy
such as the one provided in figure 2. This role hierarchy
presents a graphical view of some basic time-related en-
vironment roles. Specifically, it shows the relationships
that exist between the various roles that are defined in the
system. The figure shows that environment roles Monday,
Tuesday, ����� , Friday inherit traits (e.g., permissions) from
the role Weekdays, which in turn inherits traits from the
role Days of the Week.

Using our policy definition language, we can generate the
following statements to define roles and sub-role relation-
ships:

erole(monday).
...
erole(friday).

erole(weekdays).
erole(weekends).
erole(days of the week).

role_rel(monday, day_of_week=MONDAY).
role_rel(weekdays, monday).
...
role_rel(weekdays, friday).

In addition to defining a set of roles and their relation-

10



Securing Context-Aware Applications Using Environment Roles

View Active
Environment Roles

Aggregators
Subscribe to Event

Notification

Environment Monitoring via Sensors

Support for Environment Roles in Access Control

Request Access
to Resource

Access Rights

Environment Role Activation Service

Context Toolkit

Authorization Service

User Authentication Service

Subject Role Activation Service

Present User Credentials

ACK User Identity

ACK Role Activation

Request Role Activation

Subject/
Request

Concepts from Traditional RBAC

Policy Definition Language

Figure 4: Transactions with Environment Roles

ships, we have described the conditions that must be met
in order for a role to be activated. In this example, the en-
vironment role monday may be entered when the system
variable day_of_week is equal to “MONDAY”.

Assume we want to create an access policy that states:
“children may only use the intercom during weekdays,
while they are in the kitchen.” This rule is defined in the
form of a transaction, as specified in section 5.5. Specifi-
cally, our transaction would appear in the form:

@ child, intercom, (weekdays, in kitchen), allow A

To illustrate the access request from beginning to end, we
refer to figure 4.

Suppose that Alice, classified as a child by the home pol-
icy administrator, wants to use the intercom service on a
Wednesday afternoon. Whether done implicitly via sen-
sors or explicitly, Alice presents credentials to the system
and is provided with a set of active subject roles. Ul-
timately, these subject roles will help determine the re-
sources she is allowed to access. These transactions are
fundamentally consistent with those found in traditional
RBAC.

With her set of active roles, Alice is now able to request
access to a particular resource in the home. Knowing
the policy limitations in advance, Alice proceeds to the
kitchen and turns on the intercom service. Her request is

forwarded to the centralized authorization service where
the current home security policy is defined. As indicated
above, a policy exists to grant access to Alice under cer-
tain conditions. In order to verify those (environmental)
conditions, the authorization service contacts the environ-
ment role activation service. The environment role acti-
vation service, which interacts securely with the context
toolkit, has already received notification from the Kitchen
Aggregator that Alice is in the room. It also knows that
it is currently Wednesday (also a weekday). This set of
active roles is returned to the authorization service. The
environment’s active role set, along with the subject role
and resource request, provides a match to the rule spec-
ified in the security policy. Access rights are therefore
granted to Alice and her intercom session is established.

6.2 Enhancing a System
with Environment Roles

The scenario above presents some sample environment
roles and illustrates how role relationships can be used
to establish security policies for the home. As previously
stressed, ease of security policy definition and implemen-
tation is a key requirement for applications in this domain,
since the typical homeowner cannot be expected to under-
stand information security. In addition, we have stated
that the system and related security mechanisms must be

11



Securing Context-Aware Applications Using Environment Roles

non-intrusive and easy to use. In this section, we briefly
explore how environment roles can be used to enhance a
system and also fulfill these requirements.

As already mentioned, a system should make access deci-
sions without placing any undue burden on the users. One
example of this would be a system in which an access re-
quest is triggered by a change in an environment role or
condition. That is, the access request could be generated
without explicit input from the user.

Consider a specific application example from the Aware
Home. One research group is exploring how the Aware
Home concept can help elderly residents remain in their
homes as opposed to moving into assisted living commu-
nities. This application uses the home’s sensors to enable
important interactions with relatives outside of the home
and with care specialists, effectively providing the same
level of care and supervision that today can be found only
in nursing homes and hospitals. It is important to note that
access control policies are especially important in this ex-
ample, as it involves a home that must be “opened” to al-
low regular access by many outside entities. For example,
doctors, nurses, family members, lawyers and care groups
may each require separate access rights in the home, de-
pending on their primary function or responsibilities.

Assume we want to create a policy that states: “dial emer-
gency contact if resident falls and injures himself.” This
rule could easily be defined in the form of a transaction:

@ none, dial emergency, (resident, injured), allow A

In this example, the Context Toolkit would create a Per-
son Aggregator that maintains an activity trait for the res-
ident. Should the resident be injured or incapacitated, the
toolkit would recognize the change in activity status via
a callback. The injured role would then be activated for
the resident and propagated to the appropriate services.
The request to dial the emergency contact would be im-
mediately granted. This is done without the presence of a
specific subject role in the transaction.

7 Discussion

We have introduced environment roles and describe why
we believe they can be useful for securing “aware” appli-
cations in a ubiquitous computing environment. In addi-
tion, we have provided both a model and implementation
details for an access control mechanism that makes use of
environment roles in policy definition. In the following,
we discuss some noteworthy aspects of environment roles
that did not receive sufficient review in previous sections.

7.1 Environment Roles and Sessions

In [17], a session is created in order to enforce the prin-
ciple of least privilege – a user should be allowed to lo-
gin to the system with only those roles appropriate for a
given occasion. Unlike subject roles, however, environ-
ment roles are dynamic in nature and it may not be possi-
ble to assign a set of active environment roles to a session.
With traditional RBAC, a session allows constraints to be
established and enforced that limit user-controlled role ac-
tivation.

It is important to realize that many environment roles may
be active at the time of a request; however, it is likely that
not all of them are relevant to the access control decision
being processed. Testing every environment role on ev-
ery access control mediation would be very expensive, so
the system should employ an efficient means of role entry
testing for environment roles.

There are several strategies that may be employed to prop-
erly manage environment role testing. In our framework,
we use the environment role activation service to automat-
ically activate and deactivate roles when appropriate. By
maintaining an internal data structure of all active roles,
the environment role activation service can interact ef-
ficiently with the authorization service to aid in making
prompt access control decisions.

Regardless of how environment role activation is imple-
mented, sessions are simply inappropriate for this type
of role. Additional research is necessary to determine
more efficient strategies for environment role activation
in context-aware environments.

7.2 Manipulation of Environment State

One subtle, though potentially dangerous security issue
that may arise with the use of environment state in access
control decisions is the possibility that a user can affect
access rights through his activities in the system. For ex-
ample, if a user knows that the system prohibits users from
playing MPEG video files when the CPU load is high,
he may intentionally run several CPU-intensive processes
to mount a selective denial-of-service attack against other
users who are accessing MPEG files. This type of vul-
nerability is very hard to eliminate; perhaps the best way
to minimize exposure to it is to keep the access control
policy secret. Of course, any user who is willing to ex-
periment with the system can gather significant informa-
tion about the current access control policy, such as what
objects he can access, under what conditions he can and
cannot access them, etc. It is unclear whether such vulner-
abilities present a significant risk to the system; however,

12



Securing Context-Aware Applications Using Environment Roles

these vulnerabilities are common to all current “real-life”
computer systems. Certain environmental data, such as
CPU load, are inherently user-related; in contrast, envi-
ronmental data such as the current time are not affected
by any (legitimate) user activity. To solve the problem
described above, we could simply ensure that all “impor-
tant” access control rules are not dependent on any envi-
ronmental data that malicious users can affect.

7.3 Policy Definition

The policy definition language described in section 5.5 is
sufficient for defining policies, but in practice could be
frustrating and clumsy for a policy administrator to man-
age, especially when editing large, complex policy files.
Roles are inherently visual, so it would be useful to have a
graphical policy editor that displays available roles, their
relationships, and policy rules in an easy-to-understand
manner. We have built a prototype graphical editor and
are currently exploring how it can help to define and un-
derstand complex security policies. Such an interface is
necessary as our access model is deployed in the Aware
Home.

8 Related Work

In this section, we briefly highlight several existing access
models that have influenced our work with environment
roles and context-aware access control models. We dis-
cuss traditional RBAC, time-based authorization, system-
load-based authorization, and several other notable mod-
els.

We have discussed traditional RBAC [7, 18] and acknowl-
edge the tremendous influence it has had on our research
efforts. Our work expands the RBAC model by provid-
ing a more versatile and more expressive framework that
incorporates the use of environment roles. By using the
uniform notion of a role to capture both user and environ-
mental attributes, our model allows for the definition of
context-aware security policies. In addition, roles make it
easy to define and understand complex security policies;
adding environment roles to the model was necessary to
support the advanced access control requirements that we
are faced with in pervasive computing environments such
as the Aware Home.

Environment roles are really one component in a General-
ized Role-Based Access Control Model (GRBAC) [4, 15].
GRBAC is highly expressive, and easy-to-use access con-
trol model and was designed with two major goals in
mind: flexibility and simplicity. GRBAC is flexible be-

cause it gives a policy administrator the freedom to struc-
ture an access control policy around subjects, objects,
environmental conditions, or even a combination of all
three. In addition, GRBAC is a very simple model; it
achieves its goal of flexibility in policy design by using
only one general grouping primitive: the role. In GR-
BAC, access policies are defined with subject roles, envi-
ronment roles and object roles.

Bertino et al. [1, 2] have investigated support for tempo-
ral authorizations in database systems. They have exam-
ined both periodic and non-periodic authorizations. Their
access control model is discretionary, whereas RBAC is
mandatory. But in principle, their notion of temporal au-
thorization is similar to our notion of time-based environ-
ment roles. We believe our model is better in terms of
its usability and flexibility. Through environment roles,
access policies can be simplified by defining temporal ac-
cess rules that are assigned human-understandable names
to various periods of time (e.g., “Monday,” “Weekends,”
or even “Weekday mornings in July”). In contrast, their
authorization language is very technical, which inherently
limits its usefulness to the small set of people who have
the background necessary to understand it.

Similarly, in their Generalized Access Control Language
(GACL), Woo and Lam [20] use the notion of system load
as a determining factor in certain access control scenar-
ios, so that, for example, certain programs only can be
executed when there is enough system capacity available
to handle them adequately. Given appropriate support
for monitoring and reporting changes in system state, our
model can also support such state-based authorization de-
cisions using environment roles. In fact, the scope of en-
vironment roles is limited only by the level of support that
the system provides for accurately reporting environmen-
tal information. As illustrated in section 5, we are im-
plementing a toolkit that will allow for the accurate and
secure capture of contextual information from the envi-
ronment.

Access control languages that allow role-based security
policies to be defined have been proposed recently. For
example, a role definition language (RDL) is defined in
[9] which allows roles to be activated (via role certifi-
cates) by services; credentials are supplied by the user
making the access request and the RDL program manages
access to individual service resources. A novel aspect of
this scheme is that change in security-relevant state re-
sults in the revocation of such role certificates. A trust
policy language (TPL) is presented in [10] which allows
role activation to be based on certificates that are avail-
able to a requester. The FAM/CAM language presented
in [12] provides support for both negative and positive ac-
cess rights. It seeks to separate access policy from access

13



Securing Context-Aware Applications Using Environment Roles

mechanism by providing the policy designer with a lan-
guage that is provably capable of expressing any access
policy.

There are several other access control models that are
worth noting due to their influence on our work with envi-
ronment roles; we briefly mention them here. The first
related model was proposed by Jajodia et al. [12]. It
seeks to separate access policy from access mechanism
by providing the policy designer with a language that is
provably capable of expressing any access policy. We
also note the work of Shen and Dewan [19]. They have
developed a flexible, powerful role-based model for ac-
cess control in collaborative environments, where policies
must account for concurrent operations on shared objects
and other complex access issues.

9 Conclusion

In this paper we have extended traditional role-based
access control to include the notion of an environment
role. We are focused on solving the problem of secur-
ing context-aware applications in a ubiquitous computing
environment. Our work shows how the well developed
concept of a role can be used to capture security-relevant
context of the environment in which access requests are
made. The resulting access control framework is highly
versatile, yet the underlying constructs (roles) remain con-
sistent with traditional RBAC. We have presented our ex-
tended access control model as well as an initial imple-
mentation. This work is currently being used to build
an authorization framework to secure applications in the
home and community, such as those being explored by the
Aware Home Initiative at Georgia Tech.

References

[1] Elisa Bertino, Claudio Bettini, Elena Ferrari, and
Pierangela Samarati. Supporting periodic authoriza-
tions and temporal reasoning in database access con-
trol. In 22nd VLDB Conference, 1996.

[2] Elisa Bertino, Claudio Bettini, Elena Ferrari, and
Pierangela Samarati. A temporal access control
mechanism for database systems. In IEEE Trans-
actions on Knowledge and Data Engineering, vol-
ume 8, 1996.

[3] Andrew D. Birrell, Butler W. Lampson, Roger M.
Needham, and Michael D. Schroeder. A global au-
thentication service without global trust. In Proceed-

ings of the IEEE Symposium on Security and Pri-
vacy, pages 223–230, 1986.

[4] Michael J. Covington, Matthew J. Moyer, and Mus-
taque Ahamad. Generalized role-based access con-
trol for securing future applications. In Proceedings
of the National Information Systems Security Con-
ference (NISSC), October 2000. Also appeared as
technical report GIT-CC-00-02, available from the
Georgia Tech College of Computing.

[5] Anind K. Dey and Gregory D. Abowd. The context
toolkit: Aiding the development of context-aware
applications. In Workshop on Software Engineering
for Wearable and Pervasive Computing, June 2000.

[6] Anind K. Dey, Daniel Salber, and Gregory D.
Abowd. A context-based infrastructure for smart en-
vironments. In Proceedings of the 1st International
Workshop on Managing Interactions in Smart Envi-
ronments (MANSE ’99), Dublin, Ireland, pages 114–
128, December 1999.

[7] David F. Ferraiolo, John F. Barkley, and D. Richard
Kuhn. A role based access control model and refer-
ence implementation within a corporate intranet. In
ACM Transactions on Information Systems Security,
volume 1, February 1999.

[8] Morrie Gasser, Andy Goldstein, Charlie Kaufman,
and Butler Lampson. The digital distributed sys-
tem security architecture. In Proceedings of the Na-
tional Computer Security Conference, pages 305–
319. NIST/NCSC, October 1989.

[9] R. J. Hayton, J. M. Bacon, and K. Moody. Access
control in an open distributed environment. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy, pages 3–14, 1998.

[10] Amir Herzberg, Yosi Mass, and Joris Mihaeli. Ac-
cess control meets public key infrastructure, or: As-
signing roles to strangers. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 2–
14, 2000.

[11] Georgia Tech Broadband Institute. The Aware Home
Research Initiative. Research Initiative Web Page,
2000. http://www.cc.gatech.edu/fce/ahri/.

[12] Sushil Jajodia, Pierangela Samarati, V. S. Subrahma-
nian, and Elisa Bertino. A unified framework for en-
forcing multiple access control policies. In Proc. of
the 1997 ACM International SIGMOD Conference
on Management of Data, May 1997.

14



Securing Context-Aware Applications Using Environment Roles

[13] Cory D. Kidd, Thomas O’Connell, Kris Nagel,
Sameer Patil, and Gregory D. Abowd. Building a
better intercom: Context-mediated communication
within the home. In [Anonymized version submitted
for review to CHI 2001], 2000.

[14] D. Moore, I. Essa, and M. Hayes. Exploiting human
actions and object context for recognition tasks. In
IEEE International Conference on Computer Vision,
1999.

[15] Matthew J. Moyer and Mustaque Ahamad. Gener-
alized role based access control. Technical Report
GIT-CC-00-16, College of Computing, Georgia In-
stitute of Technology, September 2000.

[16] Ronald L. Rivest and Butler Lampson. Sdsi - a sim-
ple distributed security infrastructure. SDSI Version
1.1, October 1996.

[17] Ravi S. Sandhu. Role based access control. In Ad-
vances in Computers, volume 46. Academic Press,
1998.

[18] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role based access con-
trol models. In IEEE Computer, volume 2, February
1996.

[19] Honghai Shen and Prasun Dewan. Access control
for collaborative environments. In Proceedings of
the ACM Conference on Computer Supported Coop-
erative Work, pages 51–58, November 1992.

[20] Thomas Y. C. Woo and Simon S. Lam. Designing a
distributed authorization service. In Proceedings of
IEEE INFOCOM, March 1998.

15


