
1

Bootstrapping in Gnutella: A Preliminary
Measurement Study

Pradnya Karbhari, Mostafa Ammar, Amogh Dhamdhere, Himanshu Raj, George Riley, Ellen Zegura
E-mail: �pradnya@cc, ammar@cc, amogh@cc, rhim@cc, riley@ece, ewz@cc�.gatech.edu

College of Computing Tech Report Number GIT-CC-03-35
Georgia Institute of Technology, Atlanta, GA-30332

May 2003

Abstract—
To join an unstructured peer-to-peer network like Gnutella,

peers have to execute abootstrapping function in which they dis-
cover other on-line peers and connect to them. Until this boot-
strapping step is complete, a peer cannot participate in file sharing
activities. Once bootstrapping is complete, a peer’s experience is
strongly influenced by the choice of neighbor peers resulting from
the bootstrapping step. Despite its importance, there has been very
little attention devoted to understanding the behavior of this boot-
strapping function. In this paper, we study the bootstrapping pro-
cess of a peer in the Gnutella network. This is a preliminary in-
vestigation, consisting of 1) an analysis and performance compar-
ison of bootstrapping algorithms of four Gnutella servent imple-
mentations, 2) a measurement-based characterization of the global
Gnutella Web Caching System (GWebCaches), a primary compo-
nent of the current bootstrapping functions, and 3) a study of the
behavior and experience of a single GWebCache that was setup
locally and made part of the global caching infrastructure. Our
study highlights the importance of understanding the performance
of the bootstrapping function as an integral part of a peer-to-peer
system. We find that 1) there is considerable variation among vari-
ous servent implementations that correlates to their bootstrapping
performance, 2) even though the GWebCache system is designed
to operate as a truly distributed system in keeping with the peer-to-
peer system philosophy, it actually operates more like a centralized
infrastructure function, and 3) the GWebCache system is subject
to misreporting of peer and cache availability due to stale data and
absence of validity checks.

I. I NTRODUCTION

To join an unstructured peer-to-peer network like Gnutella,
peers have to execute abootstrapping function in which they
discover other on-line peers and connect to them. These initial
neighbor peers determine the new peer’s location in the overall
Gnutella topology, and ultimately its search and download per-
formance. Also, from the user perspective, the time spent by the
peer in bootstrapping is critical because until the bootstrapping
step is complete, a peer cannot participate in file sharing activ-
ities such as searching and downloading. From our experience,
this time can vary significantly for different Gnutella servents1.

This work was supported by NSF grant ANI-9973115 and the Georgia Tech
Broadband Institute.
�The implementations of Gnutella peers are referred to asservents because

they function asservers and as clients. We use the termspeers and servents
interchangably.

Despite the significance of the bootstrapping process in un-
structured peer-to-peer networks, it has received very little at-
tention to date. There have been various studies[1], [2] aimed
at characterization of peers based on their uptimes, bottleneck
bandwidths, latencies and other factors, and trying to improve a
peer’s search and download experience[3]. None of these how-
ever have studied the bootstrapping function.

Initially Gnutella users relied on word of mouth to determine
the address of an on-line peer that would allow newly joining
peers to tap into the network. The use of automated caching
servers as well as caching in the Gnutella servent itself, was
introduced at a later time. As Gnutella gained in popularity
after Napster was shut down, the caches ultimately became the
pre-dominant bootstrapping technique [4]. Anecdotally, it has
been observed that the switch from the use of word of mouth
to the use of automated caches resulted in a signifcant change
to the structure of the Gnutella network and a worsening of its
performance[4].

In this paper we undertake a measurement study of the cur-
rent bootstrapping process in the Gnutella network. Our inves-
tigation consists of three parts—

1) An analysis and performance comparison of the boot-
strapping algorithms of four Gnutella servent implemen-
tations: LimeWire[5], Mutella[6], Gtk-Gnutella[7] and
Gnucleus[8].

2) A measurement-based characterization of the global
Gnutella Web Caching System[9] (GWebCaches), a pri-
mary component of these bootstrapping algorithms. The
GWebCache system is a network of caches, each of which
maintains a list of other caches in the system and a list
of online hosts that are accepting incoming connections.
Peers that want to join the network can send a request to
one of these caches and retrieve the host list.

3) A study of the behavior and experience of a single GWeb-
Cache that was set up locally and made part of the global
caching infrastructure.

Based on our analysis of the data collected, we highlight be-
low our three main findings about the current Gnutella boot-
strapping system. These are just preliminary results, and we
intend to continue the analysis based on more current data.

� Although similar in the basic structure of the algorithm
and the data structures used, the servent implementations



2

differ in the details, with significant impact on their boot-
strapping times, as seen in our measurements.

� An analysis of the request rates at different caches points
to the disparity in traffic volume handled by these caches–
some caches are very busy, and their host and cache lists
evolve much faster than some others. The load balancing
goal of any distributed system is not really achieved in this
system, thus making the system operate more as a central-
ized infrastructure.

� The GWebCache system is subject to misreporting of peer
and cache availability. This is because the data reported in
the updates to these caches is not subjected to any validity
checks by the caches. Peers might thus waste time trying
to connect to off-line hosts returned by the GWebCaches.

The rest of the paper is structured as follows. In Section II,
we give an overview of the bootstrapping process in different
Gnutella servents, with special focus on the GWebCache sys-
tem. In Section III we discuss the performance of the different
servents with respect to their bootstrapping times. In Section
IV we discuss the performance of the GWebCache system. In
Section V, we summarize our findings and discuss future work.

II. GNUTELLA BOOTSTRAPPING

A peer intending to join the Gnutella network needs to know
the addresses of online peers in the network. Currently, the
GWebCache system functions as a distributed repository for
maintaining this information. Peers can query the caches in
this system to get a list of online peers, and try connecting to
them. In the first run of a particular Gnutella servent, the GWe-
bCache system is the only means available to the servent to
locate other online peers. In successive runs, individual ser-
vent implementations might try other approaches (apart from
the GWebCaches), such as maintaining local lists of hosts seen
during their earlier runs. We first discuss the GWebCache sys-
tem, as it is an important component of the bootstrapping func-
tionality, and is essential in the understanding of the servent
bootstrapping algorithms.

A. Gnutella Web Caching System

The GWebCache system[9] is a network of caches that main-
tain a list of online peers accepting incoming connections.
When a new peer wants to join the Gnutella network, it can re-
trieve the host list from one or more of these GWebCaches. The
GWebCaches also maintain a list of other caches in the system.

The GWebCaches are voluntarily operated. When a new
cache wants to join the system, a servent needs to explicitly ad-
vertise the address of the cache to other caches. These caches
then include this new cache in their cache list. Typically each
cache maintains a list of 10 other caches and 20 hosts which are
currently accepting incoming connections.

The peers in the Gnutella network are responsible for keep-
ing the information in these caches up-to-date; the caches do not
communicate with each other at any time. A host accepting in-
coming connections is supposed to update the caches with its IP
address and port number. As a security feature, a cache accepts
update requests from the same IP address a maximum of once
every hour. The host and cache lists maintained at the caches

are first-in-first-out lists. Hence, as new hosts update a cache
with their addresses, old hosts are removed from the list. When
a host updates a cache with its IP address, it is supposed to also
update the cache with information about some other cache that
it believes is alive. Again, the cache list gets updated with more
recent information about live caches.

TABLE I
GWEBCACHE MESSAGES

argument cache response
����=1 ���� message to servent
���	��
=1 list of caches
���
	��
=1 list of online hosts
��=�IPaddress� host list is updated with IP address
���=�URL of cache� cache list is updated with URL
�
�
	��
=1 access statistics over last hour

Table I lists the messages sent by a client using the GWe-
bCache protocol. A simple HTTP request, in the form–
“URL?�����
�
” is sent to the webserver at which the cache
is located. The caches respond as shown in the table. Note that
the GWebCaches do not maintain any information about the on-
line hosts, other than their IP addresses and port numbers.

B. Servent Bootstrapping Algorithms

In this section, we discuss the bootstrapping algorithms of
the Gnutella servents that we compared, and point out the
differences between them. We analyzed Limewire v2.9[5],
Gtk-Gnutella v0.91.1[7], Mutella v0.4.3[6] and Gnucleus
v1.8.6.0[8]. All these versions support retrieval from and up-
dates to the GWebCache system. The bootstrapping processes
in the four servents are similar in their use of the GWebCache
system and the local caching of hosts.

The data structures maintained by these servents include
a list of known caches which is periodically populated with
the addresses of new caches. Servents also maintain lists of
known hosts andpermanent hosts, the definitions of which dif-
fer slightly in different servents. Informally, permanent hosts
are hosts that the servent managed to contact in current and
previous runs. Some servents also maintain a list of ultrapeers2.

The generic bootstrapping algorithm for the servents is as
follows:

1) Initialize the following data structures in memory by
reading the corresponding files from disk—
� list of caches
� list of known hosts
� list of permanent hosts
� list of ultrapeer hosts (not in Gtk-Gnutella)

2) Depending on mode (ultrapeer/normal), determine the
minimum number of connections to be maintained.

3) Try to establish the minimum number of connections to
peers in the following order:
� In LimeWire and Gnucleus, try to connect to ultra-

peers.

�Ultrapeers[10] are hosts which have higher bandwidth and CPU power, suf-
ficiently long uptime and are not firewalled. Normal or leaf nodes have low
CPU and bandwidth capabilities and typically connect to ultrapeers.



3

TABLE II
SERVENT IMPLEMENTATION DIFFERENCES

Characteristic LimeWire Mutella Gtk-Gnutella Gnucleus
Maintains ultrapeers list? Yes Yes No Yes
Priority to ultrapeers when connecting? Yes No No Yes
Host and cache lists prioritized by age? Yes No Yes No
Updates to GWebCaches Ultrapeer mode Ultrapeer mode Any mode Any mode
Number of hardcoded caches 181 3 3 2

� Try to connect to any host in the known hosts and
permanent hosts lists.

� If the servent is still not connected, request the host
list from a GWebCache (multiple GWebCaches in
case of LimeWire) and try to connect to these hosts.

4) Periodically, a connection watchdog checks whether the
minimum number of connections (from step 2) are alive.
If not, try to establish a new connection as stated above.

5) Periodically update a cache with its own IP address and
URL of another cache (for LimeWire and Mutella, this is
done only if in ultrapeer mode)

6) On shutdown, write the different files to disk, for retrieval
on next startup.

We now highlight the differences in the four servent imple-
mentations, shown in Table II.

� Limewire and Gnucleus maintain a separate list for ultra-
peers and give priority to hosts in this list during connec-
tion initiation. Since ultrapeers have relatively long upti-
mes and the capability to support more incoming connec-
tions, prioritizing these peers during connection initiation
increases the chances of successfully connecting to a peer.
Although Mutella maintains a list of ultrapeers separately,
this information is not used during bootstrapping. When
establishing a connection, it randomly picks a host from
the lists of ultrapeers, known hosts and permanent hosts.
Gtk-Gnutella does not distinguish between ultrapeers and
normal peers, thus performing relatively poorly in terms
of its bootstrapping time.

� LimeWire and Gtk-Gnutella prioritize their host and cache
lists by age. This enables them to act on more recent in-
formation.

� Although all four servents we examined support the GWe-
bCache system for retrieving information, LimeWire and
Mutella support updates only in the ultrapeer mode. This
is better for the system because the probability of ultra-
peers accepting incoming connections is higher. Gtk-
Gnutella and Gnucleus update the GWebCaches even in
the leaf mode (when their limit on number of connections
is low), and hence might not be accepting incoming con-
nections by the time a peer tries to connect to them.

� The Gnutella servents have a set of hardcoded caches,
which are used during the very first run of the servent, be-
fore any other information about caches or hosts is known.
The number of hardcoded caches in the servents are shown
in the table. LimeWire has a surprisingly high number of
hardcoded caches (181), out of which 135 caches were ac-
tive when we tried to ping them at the Gnutella level.

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 r
ea

di
ng

s

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)
Gnucleus (univ)

Fig. 1. CDF of bootstrapping times of servents at university

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23
Time of day

0

25

50

75

100

125

150

175

200

M
ea

n 
bo

ot
st

ra
pp

in
g 

tim
e 

(s
ec

on
ds

)

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)

Fig. 2. Mean bootstrapping times at different times of the day

In the next section, we will discuss the effects of these differ-
ences on the performance of different servent implementations.

III. B OOTSTRAPPINGMEASUREMENT AT SERVENT

In this section, we compare the performance of the servents
considered in our study, based on theirbootstrapping times. We
define the bootstrapping time of a servent as the time between
the start of the servent and the establishment of the firststable
Gnutella-level connection3. We say that a connection isstable
if it is maintained for at least
��
����� seconds.

A. Measurement Methodology

We modified the source code of the three Linux-based ser-
vents (LimeWire, Gtk-Gnutella and Mutella) to log the times
at which the application was started and shut down. We also

�A “Gnutella-level” connection is established after the Gnutella handshake
messages are exchanged between the two connecting peers.



4

logged the time when a Gnutella-level connection was estab-
lished and terminated. For the Windows-based servent (Gnu-
cleus), we used Windump[11] to collect packet traces and then
determined the connection times by analyzing the traces.

We started the Linux-based servents once every hour, syn-
chronously at two locations— at a university campus on a Fast
Ethernet Link and at home on a DSL link to a local ISP. We
started Gnucleus once every three hours at the university loca-
tion only. Each servent was allowed to run for 15 minutes, after
which it was shut down. In the following section we analyze the
bootstrapping times measured during an 11-day experiment.

A limitation of our study is that both the locations in our
experiments are high bandwidth links. We did not run any ex-
periments at a slower access link.

B. Performance Measurements

Figure 1 shows the cummulative distribution function of
the bootstrapping times of the four servents at the university
location. In this graph we set
��
����� to 120 seconds.
We analyzed the bootstrapping times with different values for

��
����� and observed similar results. The graphs for the
bootstrapping times of servents on the DSL link are also similar.

The most striking observation is that Gtk-Gnutella performs
much worse than Mutella and LimeWire. We conjecture that
this is due to the fact that Gtk-Gnutella does not differentiate
between ultrapeers and normal peers. Also, once it selects a
particular cache to contact for retrieving the host list, it sticks
to it for 8 consecutive updates or retrievals. In Section IV,
we will see that cache quality varies, hence maintaining a poor
choice of cache can have a significant effect. Gnucleus also per-
forms worse than Mutella and LimeWire, but better than Gtk-
Gnutella. This is probably because the GWebCache list and the
different host lists are not prioritized by age in the Gnucleus
implementation.

Figure 2 shows the mean bootstrapping times for the three
Linux-based servents at the university location for different
times of the day. LimeWire and Mutella perform almost the
same throughout the day. Gtk-Gnutella, which does not dif-
ferentiate between ultrapeers and normal peers performs simi-
lar to LimeWire and Mutella when there is a large number of
normal peers online in the system (around noon or late after-
noon). When there are very few normal peers around (early in
the morning), Gtk-Gnutella shows a higher mean bootstrapping
time. This highlights the importance of ultrapeer awareness on
the part of a Gnutella servent.

Since we started multiple instances of Gnutella servents on
the same local area network, we observed how many of the ex-
periments discovered and connected to our own servents. In
spite of our expectations to the contrary, not a single experi-
ment out of 264 experiments over 11 days was able to discover
the nearby peers. This highlights the lack of Internet location
awareness in the GWebCache system and in the local host list
of the servents. We were expecting Gtk-Gnutella to show some
local network connections. This is because in its connection
setup algorithm, when it discovers a peer on the local network
(through a���� message), it prefers to connect to that peer and
disconnect from some other existing peer. The absence of such
connections indicates that the Gtk-Gnutella servent either did

not find the other three servents on the Gnutella network, or it
found one of them, but was unable to establish a connection
with it, as the other servent was not accepting any incoming
connections.

The performance of the GWebCache system has a significant
impact on the bootstrapping times of servents seen above. We
therefore analyze the performance of this system in the next
section.

IV. GWEBCACHE PERFORMANCE

In order to gain a better understanding of the GWebCache
system, we performed a measurement study of the system at
two levels We conducted a global study by periodically crawl-
ing all the caches in the GWebCache system and retrieving in-
formation from them. We conducted a local study by setting up
our own cache and analyzing its access patterns.

A. Global GWebCache System Performance

Through analysis of the GWebCache system, our goal is to
answer the following questions:

1) How many caches are active in the system at any time?
What does the evolution of the cache list at a single cache
and at all caches look like?

2) What are the access patterns for different requests (cache
list, host list, and updates) at different caches? What are
the differences in access patterns across different caches
and in the whole system?

3) What does the evolution of the host list at a single cache
and at all caches look like? What percentage of the new
hosts added to the caches at any time are unique hosts?

4) In the host list returned by the caches, how many hosts are
actually alive, how many of them are accepting Gnutella-
level connections, and how many of them are ultrapeers?

1) Measurement Methodology: We studied the system by
polling the caches at regular intervals. Requests in the format
shown in Table I were sent to each of the caches, according to
the information required. We collected multiple traces over a
one month period.

In order to answer the first question, we retrieved thecache
list every 30 minutes starting with a seed cache and crawled
the caches returned, until we had polled all the caches in the
system. We also determined the number of active caches in the
system by sending Gnutella���� messages to these caches.

To answer the second question, we retrieved thestatistics file
every hour from each active cache. The statistics file gives the
number of update requests and total requests the cache received
within the last hour. The total requests include the requests for
the cache list, the host list and update requests for both lists.

In order to answer the third question, we retrieved thehost list
from the active caches every 5 minutes, and studied its evolution
at a particular cache and in the whole system.

To answer the fourth question, we sent Gnutella-level con-
nect messages to the hosts in the host lists returned by the
caches. If we managed to establish a TCP connection, we de-
termined that the host was alive. If we established a Gnutella-
level connection, we determined that the host was accepting
incoming connections. Out of the hosts that responded with the



5

0 10 20 30 40 50
Mean cache list update rate of a single cache (updates/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 c
ac

he
s

Fig. 3. CDF of mean cache list update rate at a single cache

0 1000 2000 3000 4000 5000
Total cache list update rate in all caches (updates/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e

Fig. 4. CDF of total cache list update rate in all caches

proper���� response, we determined whether the host was an
ultrapeer or not, using a fieldX-Ultrapeer: True/False in the
response.

These methods have several limitations. Since we polled the
caches starting with a seed cache, we will miss caches in any
disconnected components of the GWebCache system. Also, be-
tween the time we retrieved the list and the time we actually
tried to connect to the peer, the peer could have gone offline.
We assume that the information returned by the caches during
any of our polls is valid (i.e., the caches are not misconfigured
or misbehaving).

2) Analysis of the cache list: Although we located 523
caches over the period of the study (15 days), fewer than half
of them–222– responded to our requests. During any particular
polling period, at most 150 caches were active. The others were
either unreachable or did not respond with the correct data. This
is a surprisingly low number of reachable caches, considering
the dependance on these caches for bootstrapping purposes.

Figure 3 shows the CDF of the mean cache list update rate at
a single cache. Notice that some of the caches are very active,
with update rates of about one cache per minute, whereas other
caches have very low update rates. About 40% of the caches
have an update rate of about 15 per hour, and about 80% have an
update rate of 15 per hour or less. This indicates that the system
is not as distributed as we would expect it to be. The fact that all
the servents we studied have some hardcoded caches, indicates
that the request rates to these caches could be very high.

Figure 4 shows the CDF of the cache list update rate seen by
all caches in the entire system during a particular poll. Most

0 100 200 300 400 500 600 700
Mean update rate at a single cache (updates/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 c
ac

he
s

Fig. 5. CDF of mean update rate at a single cache

0 5000 10000 15000 20000
Mean request rate at a single cache (requests/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 c
ac

he
s

Fig. 6. CDF of mean request rate at a single cache

of the update rates (about 90%) are between 1300 and 2800
updates per hour, with two noticeable modes at about 1350 and
2800 updates per hour.

3) Analysis of access patterns: An analysis of the request
rates and the evolution of the host and cache lists points to the
disparity in the type of caches in the system. Some caches are
very busy, and their lists evolve much faster than some others,
as we will see in the discussion below.

Figure 5 shows the CDF of the mean (host and cache) update
rates at a single cache. About 40% of the caches receive update
rates of 50 per hour or less, about 80% of the caches get update
rates of 200 per hour or less, and there are a few caches with
very high update rates. Similarly, Figure 6 shows the CDF of
the mean total request rates at a single cache. These include re-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Update rate to all caches(hosts/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e

Hosts at all caches
Unique hosts at each cache
Unique hosts at all caches

Fig. 7. Host update rates in all caches



6

quests for the host and cache lists and updates to both lists from
peers. About 50% of the caches receive a request load of 1000
per hour, whereas there are some caches that receive extremely
high loads— on the order of 10000 requests per hour. This
shows that some caches can potentially be extremely stressed.

4) Evolution of the host list in caches: As expected, the host
list evolves much faster than the cache list in any cache. During
a 15-day period in our study, we saw over 300000 unique IP
address:port combinations in all caches.

Figure 7 shows the CDF of the host update rates at all caches
in the system. The rightmost line shows the CDF of the host
updates received at all caches in the system. The dotted line at
the center shows the CDF of the host updates with unique IP ad-
dress:port combination at each cache. The leftmost curve with
the dashed line shows the CDF of the unique IP address:port
combination seen in the whole system. The average rate for
unique IP address:port updates is significantly lower than the
actual update rate. Thus, the same hosts (presumably ultra-
peers) keep updating the caches frequently with their IP ad-
dresses.

5) Analysis of host behavior in host lists: When we tried
connecting to the hosts in the host lists retrieved, on an aver-
age we found 50% peers online, 16% peers accepting incoming
Gnutella-level connections, and 14% ultrapeers. This shows
that a surprisingly low number of peers indicated in the caches
are actually accepting incoming connections. This might be be-
cause of the high timeout enforced (55 minutes) by the caches.
During this period, a peer might have either established its min-
imum number of connections or might have gone offline.

B. View of a local cache

In this section, we look at the view of a single cache in the
GWebCache system. We set up a cache locally using a PHP
script for the GWebCache v0.7.5 and advertised it to the global
caching infrastructure.

We introduced the cache into the system using a feature in the
Gnucleus servent. The servent first sends a Gnutella ping to the
cache to ensure that it is alive. If the cache returns a valid����

message, then the Gnucleus servent iterates through its list of
known caches, and sends an update request to each cache, with
the URL of the new cache. The servent then adds the new cache
to its local list of caches. We found that 17 caches pointed to our
cache, immediately after the cache advertisement, after which
the number stabilized to about 4 or 5 caches pointing to ours
every hour.

Figure 8 shows the CDF of requests for the host and cache
lists at the local cache. Our cache gets a request rate of about
15-20 per hour for the host list and about 5-10 per hour for
the cache list. Figure 9 shows the updates received at the local
cache every hour for a 7-day period. The black portion shows
the number of cache updates, and the white portion shows the
number of host updates at the cache in that hour. Comparing
these request rates to the request rates of other caches, seen
earlier in the section, we can see that our local cache is used
less frequently than the other caches.

0 10 20 30 40 50 60
Request rate per hour

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e

Host list requests
Cache list requests

Fig. 8. CDF of requests for host and cache lists at local cache

1 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 103 111 119 127 135 143 151 159 167

time (hours)

up
da

te
 r

eq
ue

st
s 

pe
r 

ho
ur

0
2

4
6

8
10

updates to cache list
updates to host list

Fig. 9. Updates to host and cache lists at local cache

V. CONCLUSIONS

In this paper, we examined the bootstrapping function in un-
structured peer-to-peer networks like Gnutella, wherein peers
that want to join the network try to locate online hosts to peer
with. These initial neighbors, determined by the bootstrapping
function, strongly influence the search and download experi-
ence of a peer. Our study highlights the importance of under-
standing the performance of the bootstrapping function as an
integral part of a peer-to-peer system.

Our examination of bootstrapping implementations in
Gnutella servents shows considerable variation that correlates
with their bootstrapping performance. We also investigated the
GWebCache system which reveals its lack of true distributed-
ness as well as its susceptibility to misreporting of peer and
cache availability.

Our goal in performing this measurement study was to ana-
lyze and understand the functioning of the current bootstrap-
ping system. In this study, we have done some preliminary
analysis of the effect of the current bootstrapping system on
the bootstrapping time of the peer. We further aim to ana-
lyze the effect of bootstrapping on the search and download
experience of peers, and on the evolution of the Gnutella topol-
ogy. These studies will lead to our ultimate goal of improving
the bootstrapping process in unstructured peer-to-peer networks
like Gnutella, by either suggesting improvements to the GWeb-
Cache system or proposing a new distributed bootstrapping sys-
tem that will overcome the shortcomings of the current system.
Bootstrapping is also an important function in structured peer-
to-peer networks such as Chord[12] and CAN[13]. We plan to



7

investigate these in the future, although the concerns in these
systems will be different.

REFERENCES

[1] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of peer-
to-peer file sharing systems,” inProceedings of Multimedia Computing
and Networking, 2002.

[2] J. Chu, K. Labonte, and B. Levine, “Availability and locality measure-
ments of peer-to-peer file systems,” 2002.

[3] T.S. Eugene Ng, Y. Chu, S. Rao, K. Sripanidkulchai, and H. Zhang,
“Measurement-based optimization techniques for bandwidth-demanding
peer-to-peer systems,” inProceedings of IEEE Infocom 2003.

[4] Andy Oram,Peer-To-Peer, O’Reilly, 2001.
[5] “LimeWire,” http://www.limewire.com.
[6] “Mutella,” http://mutella.sourceforge.net/.
[7] “Gtk-Gnutella,” http://gtk-gnutella.sourceforge.net/.
[8] “Gnucleus,” http://www.gnucleus.net/.
[9] “Gnutella Web Caching System,” http://www.gnucleus.net/gwebcache/.

[10] “Ultrapeer Specifications,” http://www.limewire.com/developer/Ultrapeers.html.
[11] “Windump,” http://windump.polito.it/.
[12] I. Stoica, Robert M., D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM Sigcomm, 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content addressable network,” inProceedings of ACM Sigcomm,
2001.


