
Scheduling Uplink Bandwidth in Application-layer
Multicast Trees

Sridhar Srinivasan and Ellen Zegura

Networking and Telecommunications Group
College of Computing, Georgia Institute of Technology

Atlanta, GA 30332, USA�
sridhar,ewz � @cc.gatech.edu

Abstract. Many applications can benefit from the use of multicast to distribute
content efficiently. Due to the limited deployment of network-layer multicast,
several application-layer multicast schemes have been proposed. In these schemes,
the nodes in the multicast tree are end systems which are typically connected to
the network by a single access link. Transmissions to the children of a node in the
multicast tree have to share this single uplink, a factor largely ignored by previous
work.In this work, we examine the effect of access link scheduling on the latency
of content delivery in a multicast tree. Specifically, we examine the general case
where multiple packets (comprising a block of data) are sent to each child in turn.
We provide an analytical relation to compute the latency at a node in the multicast
tree and show the relationship to the packet size and block size used to transfer
data. We propose heuristics for tree construction which take link serialization into
account. We evaluate this effect using simulations and experiments on the Planet-
Lab network and show that using larger block sizes to transfer data can reduce
the average finish time of the nodes in the multicast tree at the expense of slightly
increased variance.
Keywords: Peer-to-peer networks, Multicast

1 Introduction
Application-layer multicast [1–5] has been proposed as a viable method for deploying
large-scale multicast on the Internet. Unlike network-layer multicast, in most proposals
for application-layer multicast, the nodes that form the multicast tree are end hosts.
These end hosts are responsible for creating and maintaining the multicast tree and also
forwarding the data to their children in the tree. Applications that benefit from the use of
application-layer multicast include media streaming, multi-player games, conferencing
and file or content distribution.

Important metrics for these applications are the delay and jitter experienced during
data transfer. In the case of file distribution applications, the average time to obtain the
file is also an important requirement. For this reason most application-layer multicast
schemes concentrate on creating multicast trees with low latency paths.

The end hosts that form the multicast tree are often connected to the rest of the
Internet using a single access link such as a DSL or cable modem line [6]. The single
access link is a shared resource that must be scheduled among the children of the node.
This scheduling can affect the time taken to transfer data to the child nodes. As a simple
example, consider a case in which a source node � with a single access link to the

rest of the network, transfers a block of data to its � children. Let us further assume
that this block is composed of several packets. Consider two different simple means of
scheduling access to the link: in the first scheme, the block is sent a packet-at-a-time to
each child in turn and in the second, the entire block is sent to a single child at a time.
The methods of delivery are illustrated in Figures 1 and 2 respectively. The figures show
the delivery of a block of data composed of four packets from a source node to its �
child nodes. In the packet-at-a-time case, the finish times of all the children are nearly
equal, while in the block-at-a-time method, the � st child has a finish time of � , the
second a finish time of ���	� and so on. From the figures, we see that in the packet-at-a-
time case, all children get the block at almost the same time while in the block-at-a-time
case, some of the children get the block much earlier. It can be shown that the average
finish time in the latter case is lower.

To the best of our knowledge, there has been no work examining the effect of this
link sharing on the data delivery of application-layer multicast trees.1 In this work, we
analyze the effect of this link sharing and we demonstrate a simple technique, called
Time Division Streaming, to exploit this sharing to reduce the average time to transfer
data. We provide analysis of TDS using a simple network model. We then show how
the construction of multicast trees can take advantage of TDS and propose heuristics for
tree construction.Our results show that sending larger blocks of data in multicast trees
constructed using our heuristic can provide a substantial improvement in the average
finish time of the nodes at the expense of some increase in the maximum finish times of
some nodes. We examine the tradeoff in our evaluation of TDS.

The rest of the paper is organized as follows: In Section 2, we describe the link
sharing in detail. In Section 3, we develop the relation that allows us to compute the
latency to any host in an end-system multicast tree. We then present algorithms and
heuristics to create TDS trees in Section 4. We evaluate these TDS trees in Section 5
and discuss related work in Section 6. We conclude with some discussion of the results
in Section 7.

2 Time Division Streaming
We present our work in the context of a data delivery application such as an audio or
video stream that requires a minimum data rate or bandwidth of
 bits per second (bps).
We note that this data rate can be achieved either by small packets delivered at regular
intervals or by sending a larger block of data at the beginning of a time period such
that the effective data rate over the time period is greater than or equal to
 . Thus, in
our discussion, we use the term “block” of data to imply the transfer of one or more
back-to-back packets of data between nodes in the multicast tree.

We now present a scheme to exploit the serialization of packets at the access link.
We call this mode of transfer of data Time Division Streaming or TDS. The idea behind
this mode of data transfer is essentially to use the available upload bandwidth of a
node in a manner similar to Time Division Multiplexing (TDM) of a communication
channel, hence the name. In this mode, a node will send a block of data, composed of

1 The authors in [7] point out that the single access link imposes the constraint that the data
intended for children of this node must be serialized at the link though they do not consider
the problem of scheduling the access to the link.

k

1

2

3

4

kT

Time

C
hi

ld
 In

de
x

kT/4 3kT/4

�������������������������
�����

�
�

�
�

�
�

�
�

�
�

�
�

���������������
���
���������������
���
���������������
���
���������������
���
���������������
���
���������������
���
���������������
���
���������������
���

Fig. 1. A block comprising of four packets be-
ing sent to � children a packet at a time

C
hi

ld
 In

de
x

Time
2T 3T 4T (k−1)T kTT

4

3

2

1

k

���������������
���
���������������
���
���������������
���
���������������
���

���������������
���
���������������
���
���������������
���
���������������
���

�������������������������
�����
 � � � � �
 �
!�!�!!�!�!!�!�!!�!�!!�!�!
!�!�!
"�"�""�"�""�"�""�"�""�"�"
"�"�"

#�##�##�##�##�#
#�#
$�$$�$$�$$�$$�$
$�$
%�%�%%�%�%%�%�%%�%�%%�%�%
%�%�%
&�&�&&�&�&&�&�&&�&�&&�&�&
&�&�&

'�''�''�''�''�'
'�'
(�((�((�((�((�(
(�(
)�))�))�))�))�)
)�)
*�**�**�**�**�*
�

Fig. 2. A block comprising of four packets be-
ing sent to � children a block at a time

several packets, to only one of its children, utilizing all of its upload bandwidth for that
transfer2. Once the transfer is complete, the node sends the block to the next child in
order and so on.

Effect of TDS on a single node To illustrate the effect of link scheduling, we revisit our
initial example shown in Figures 1 and 2. The figures show a scenario in which we do
not consider the propagation delay to the nodes. Figure 1 illustrates the case where the
block of four packets is sent as a packet to each child in turn. The average time to finish
receiving the entire block for the children is +-,/.103254768.1032/9:6;,<4>=?9@0BA . Figure 2 shows
the case in which the entire block is sent to each child. The average finish time in this
case is .C6;,D4E=?9@0BA . The gain in the average finish time for this works out to 6F,�GH=39I+B.10?J
which is greater than zero for more than one child, i.e., ,LKM= . More generally, if we
let N be the number of packets in a block, O be the size of a packet in bits and P be
the uplink bandwidth at the node Q , the average finish time, while sending a packet to
each child in turn, is 68NRGS=?9I,TOB0?PU4V6FOB0?PW9:6F,W4S=?9@0BA whereas it is 6XNYOB0?PZ9[6F,Z4\=?9@0�A
when sending a block at a time. The gain in average finish time over all the nodes is
6FOB0?PW9:68N]GS=39[6F,HGS=39@0BA . It is simple to conclude from this analysis that larger blocks
are better at reducing the average finish time.

If we incorporate the propagation delay of the links connecting the nodes, the anal-
ysis remains unaffected as the propagation delay remains unchanged in both cases with
only the transmission delay changing due to the use of larger blocks.

Effect of TDS in a multicast tree To evaluate the effect of using TDS in a multicast
tree, consider an interior node Q in the tree. If the node has , children, each the root
of a subtree, and the children are numbered from = to , , consider the finish time of
the first child. If this child is the first to receive a block from Q , its finish time is NYO�0�P
when N packets are sent as a block as opposed to 68N^G_=39I,`O�0�PU4aOB0�P when a single
packet is sent to each child in turn. Irrespective of the scheduling in any other node in
this subtree, the finish times of the nodes in this subtree are reduced by this factor of
68NCG]=39[6F,1Gb=39cOB0?P . The finish time of the last child child remain unaffected by this and
hence, the nodes in its subtree remain unaffected.

2 For this work, we assume that the transport protocol used by the application allows for blocks
of data to be sent in packets that are back-to-back on the connection.

Symbol Definitiondfe
Upload bandwidth of node gh Number of packets in a blocki Size of a packet in bitsj

Bandwidth required by data streamk Packet index in a stream of packetsl
Index of node in a global numbering schemem�n lpo Parent index of node

lqcn lro Number of child nodes of node
ls n lpo Index of node

l
in its parent’s TDS schedulet n lro Maximum degree bound of node

l
Table 1. Summary of Notation used

In this technique, we are delaying the beginning of transmission to the children that
come later in the TDS order to finish transmission of data to the children earlier in the
TDS order much sooner than otherwise. This observation shows that if the subtrees of
node � are all of equal size, the nodes in child � ’s subtree would finish much earlier
than nodes in child � ’s subtree. This can be mitigated if the subtrees of the child nodes
were distributed unequally, i.e., if the subtree of the first child were larger than that of
the � th child. We build on this intuition in Section 4 where we propose tree construction
algorithms that take TDS into account.

3 Analysis of TDS
Until now we have been considering the effect of using TDS to deliver data from a node
to its children. We now develop a relation to calculate the finish time of an arbitrary
packet in a data stream at any node in a TDS tree. For our model, we assume that the
data to be transfered is composed of packets of size u . Several packets are aggregated
to form blocks. We denote the number of packets in a block by v . Let w be the packet
index in a stream of data that is being transfered to the clients.

The end hosts that are the targeted by application-layer multicast trees have diverse
access links connecting them to the Internet [6], varying from dial-up links and cable
and DSL modems to Ethernet. A characteristic of most of these types of access links
is that they offer much larger download bandwidth to the node than upload bandwidth
from the node (a factor of 10 with some ISPs using cable modems). Let the upload band-
width available to each node x participating in the application-layer multicast tree be
denoted by y g . The bandwidth requirements of the application creates an upper bound
on the number of children that a node can support. This upper bound can be given in
terms of the number of children that a node x can support in an application-layer multi-
cast tree and is given by z|{Xx~}��M�8y gB�
�� . We make the assumption that in the tree, nodes
with higher upload bandwidth are closer to the source, specifically for a node x with �
children �:�-�@���?���[�[�[�c�[�3�f� , y g�� w�x-�D{Xy q�� �[���[���cy q������ } . This assumption is reasonable
as it has been shown in [8] that to obtain short trees with minimum propagation delay,
the nodes with largest degrees should be closest to the source. Given our interest in
improving the average latency to transfer data to the clients, any tree considered would
have this property.

We begin by considering the simple case with a single source node � with � chil-
dren. If ����w���v and node � is the �¡X¢ child of the source, the finish time £ l8¤ k of
packet w at node � can be written as £ lX¤ k �\v` |{Fu � y¦¥[}~§¨{XwV§��3}[{Fu � y¦¥�} where the first
term represents the time to send the block to the children before � and the second term
represents the time to send the w packets to node � . In general, for wª©«� , the finish

time a packet can be broken up into three parts,
– time to transmit the packets of all previous blocks,
– time to transmit current block to the {p ­¬7�3} children preceding � ,
– time required to transmit the packets of the current block to child � .

This can be represented by £ lX¤ k �«{8w � vY}c�®{Fu � y¦¥[}Y§¨v` |{Fu � y¦¥[}f§_{8w�§S�3}:{;u � y¦¥�}¯�
For a general application-layer multicast tree, we begin by making the observation

that once the first packet of a block arrives at a node, the subsequent packets of that
block arrive back-to-back. From our previous assumption about the upload bandwidth
of a node being greater than or equal to that of its children, we know that the time to
transfer a block to a node is less than or equal to the time that node takes to transfer the
block to a child. In other words, once a node begins receiving a block from its parent,
it can retransmit the block to its child without waiting for a packet to arrive. Therefore,
the time a packet arrives at a node depends on the packet’s arrival at the node’s parent.
We assume that once a node receives the first packet of a block, it immediately begins
transmitting the packet to its children. We ignore the propagation delay of links in this
analysis to make the exposition clearer but incorporating the delays is straightforward.

Let ° represent the block index, i.e., the integer value w � v and let ° � be the first
packet of block ° . Let the function ±	{X��} denote the parent of node � and the function² {X��} , the index of � in its parent’s TDS schedule.

The time of arrival of a packet w at a node � can be computed as follows:

£ lX¤ k �S£ m�n lro�¤ ³ � § ² {X��}´v�{Fu � y m�n lro }Y§_{8w¶µ�·~¸Wv¹§\�3}[{Fu � y m�n lpo }¯�
From the above relations, we note that the latency to any node is dependent on the

size of the packet and the number of packets in a block. We evaluate the effect of these
factors in Section 5.

4 Tree Construction
We now consider the problem of constructing trees that take into account TDS. Cur-
rent algorithms for constructing application-layer multicast trees optimize for delay or
bandwidth without considering the transmission delay at interior nodes. We wish to
create trees that not only take into account the transmission delay but also optimize
for the block size being used in TDS. We begin by stating the objective for our tree
construction algorithm.

The optimization problem can be stated as follows: Let º»�»{8���@¼R�c½Z} be a com-
plete graph with a source node � and end hosts ¼ . Let the degree constraints of the
nodes be given by the function z . Let ½ be the set of edges between the nodes. Our
objective is to find the tree � with minimum average finish time to transfer the block
y and satisfies the degree constraints. We first consider the case where the end-to-end
delay between any pair of nodes to be the same (in this case zero), i.e., we ignore the
propagation delay but not the transmission delay caused by the link scheduling. We
present a centralized algorithm in Figure 3 that constructs an optimal tree for this case.
The algorithm is run by a designated node such as the source in the following manner:
First, the nodes are sorted in non-increasing order of their degree constraints. In the
main loop, the next node from the sorted list is selected and attached to the tree at the

Tree T = createTree(Nodes ¾ , Source ¿ , DegreeConstraints À ,
Blocksize Á)

Sort the nodes of N in non-increasing order of degree
constraints into ÂfÃ , ÂÅÄ ,..., ÂfÆ Ç�Æ .

T = { ¿ }
Compute È�ÉX¿:Ê as the time to transmit Á to first available

child of ¿ .
Insert ¿ into MinHeap with value È�ÉX¿:Ê .ËÍÌ Î
while

ËÐÏ Ñ ¾ Ñ
Get next node Ò from MinHeap.
Attach Â`Ó as child of Ò .
T = T Ô { Â Ó }
if Õ3ÉÖÒ-ÊØ×ÙÀ~ÉÖÒ�Ê

Recompute È@ÉÖÒ�Ê and insert Ò into MinHeap with
value È@ÉÖÒ�Ê .

if À~ÉÖÂ Ó ÊØÚÜÛ
Compute È@ÉÖÂÅÓXÊ and insert ÂÅÓ into MinHeap with
value È@ÉÖÂÅÓXÊ .Ë~ÝbÝ

done
return T

Fig. 3. Tree Construction Algorithm for TDS ignoring propagation delays

position with the minimum finish time until all nodes are attached. If no attachment
points exist due to the degree constraints of the nodes, the tree returned is empty.
Theorem 1. The algorithm createTree generates a tree such that the nodes have the
minimum finish times given the degree constraints z .
The proof relies on the following lemmas.
Lemma 1. For any node in the optimal tree, the size of its childrens’ subtrees are in
the order in which data is sent to the children, i.e., if data is sent to child � before child
 , the size of � ’s subtree is greater than or equal to ’s subtree.
Lemma 2. For any node in the optimal tree, the child with the larger degree bound is
sent data before a child with a lesser degree bound.
A corollary to lemma 2 is that for any node, the child with the largest degree bound is
the first to which data is sent.
Lemma 3. Given a set of ¼ nodes with degree constraints, the optimal tree has the
node with the maximum degree constraint as the root.
The sketch of the proof of the lemma is as follows: We assume, for contradiction, that
the optimal tree does not have the node with the maximum degree constraint at the root.
It follows that for some subtree in the optimal tree, the node x with the maximum degree
constraint is the child of a node with a smaller degree constraint. By lemma 2, x is the
first child to be sent data by its parent. We show that exchanging x with its parent and
rearranging the subtrees of x and the subtrees of the parent such that the larger subtrees
are attached to x leads to a tree with a lower finish time, violating our assumption that
this tree was optimal.

The complete proofs of the lemmas can be found in the Appendix.

Proof (Theorem 1). We prove this by induction on � , the number of nodes attached to
the tree. If �5�¶� , then there is only one node in the tree, the source u and it is clearly
optimal. Assume that the algorithm creates an optimal tree for � nodes. By the algorithm,
the degree constraint of the �Å§a� st node is less than or equal to the degree constraint of
any node in the tree uptil now. By lemma 3, node �®§V� can only be attached as a leaf,
and the position that minimizes the finish time of �B§b� is the position with the minimum
transmission delay from the source to �f§\� which is node x from the algorithm. Thus,
the tree with �®§S� nodes is also optimal. Þß
The general problem of constructing optimal trees with non-uniform propagation delays
between nodes has been shown to be NP-Hard in [9]. To handle tree construction for
TDS taking propagation delays into account, we propose the following TDS heuristic
that attempts to balance the degree bound of a node and its propagation delay to the
tree. The heuristic iteratively adds nodes to the tree in the following manner: Initially,
three sets of nodes are created, ¼Wà consisting of nodes that are attached to the tree, ¼Wà®á
consisting of nodes that are attached and can accept more children and ¼Hâ consisting
of nodes that are unattached. Let ãI{Xäå} be the latency of node ä to the source along the
tree. In the beginning, ¼ à and ¼ à®á contain only the source node and ¼ â contains all
other nodes. At each iteration, the algorithm computes a cost for each æèç�¼ â as

é<ê u�£:{8æ~}��ëwì��ví-îðïòñðóåô ãI{Xäå} � ã k g¯õ §¨ö	zÅ{Xæ/} � z k g:õ §_{´�÷¬øö	}´ù~{Xä	�cæ/} � ù k g¯õ
where ã k g¯õ �\wEx�� íðîðï ñ-ó ãc{8ä®} , z k g¯õ �Sw�x�� í-îðïûú zÅ{Xäå} and ù k g¯õ �\w�x-� í-îðïòú ¤ ü îðï ñ-ó ù~{Xä	�cýþ}
are normalization constants.

The variables ô and ö control the weight of the different factors in the computing
the cost of each unattached node. The value of ô controls the extent to which the la-
tency in the tree to the attachment point affects the cost, while ö determines the relative
importance of the degree constraints and the propagation delay of the unattached nodes.
From our evaluation, we observed that the heuristic is relatively unaffected by the value
of ô and so we fixed the value of ô to be 1. We explore the effect of the ö parameter on
the average latency in the next section.

5 Evaluation
In our evaluation, we attempt to quantify the effect of the block size and packet size on
the latency of end-system multicast trees. We evaluate TDS on both simulated topolo-
gies as well as on the Planetlab test-bed.

5.1 Simulation
Methodology We used libraries provided by the p-sim simulator [10] to write our sim-
ulation. For our simulations, we begin by creating a representative Internet topology
using GT-ITM [11] comprising of 4050 nodes. We then randomly choose some of the
nodes to be the hosts participating in the application-layer multicast tree. We randomly
select one of the nodes to be the source of the end-system multicast. The degree con-
straints for the nodes are assigned from a uniform distribution with the source node be-
ing assigned the maximum degree constraint. The link latencies are drawn from uniform
distributions with [50ms, 200ms] for the transit links, [25ms, 100ms] for the transit-stub
links and [5ms, 50ms] for the stub-stub links. The stream bandwidth requirements are

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20

Ti
m

e
(s

)

Max. Degree Constraint

1000 nodes, 5k blk
1000 nodes, 50k blk

500 nodes, 5k blk
500 nodes, 50k blk

Fig. 4. Varying the maximum degree constraint of the nodes participating in the multicast tree

Max. Degree Constraint Block size (kB) Percentage of nodes in first two subtrees Depth
10 50 66 8

5 39 5
8 50 66 8

5 39 6
5 50 75 9

5 67 7
Table 2. Node distribution of TDS trees for different block sizes.

set at 8kBps per child in the multicast tree. We construct the application-layer TDS
multicast tree using the algorithm detailed above. For all the experiments we report the
average finish time as the time to transfer 50 kB of data from the source to all the nodes
in the tree. We chose block sizes of 50kB and 5kB as reasonable bounds on the size of an
application’s data unit. The packet size used is usually 500 bytes. We also experimented
with 1500 byte packets but the results were similar with the 1500 byte packets having
a slightly larger average finish time. We begin by investigating the different parameters
that affect the TDS scheme.

Effect of TDS parameters In Figure 4, we plot the average3 finish time of the nodes
in the TDS tree on the y-axis against the maximum degree constraints allowed for the
nodes on the x-axis. Each line represents different size trees with varying block sizes.
From the graph, we see that for smaller degree constraints, the smaller block sizes are
better for TDS. The small degree constraint results in trees that are tall and narrow,
resulting in poor performance of TDS as the difference between the finish times of the
first and last child at a node are not significant enough to offset the longer transmission
delays. As the maximum degree constraint is increased, the trees created are wider
and the larger block size has significantly better performance. The trees for the larger
block size are more unbalanced with the subtrees of the children that are earlier in
the TDS order being much larger that the subtrees of those later in the TDS order.
This can be seen in the table in Table 2 in which we show the size of the subtrees in
terms of the percentage of the total nodes that the subtree contains. Although the degree
bounds for the nodes are assigned from a uniform distribution, the distribution of the
degrees of nodes in the final tree is similar to the distribution of degrees observed by
Sripanidkulchai et al [6].

3 In all cases, the median was less than the average. We omit plotting the medians for clarity.

4

6

8

10

12

14

16

18

20

22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
(s

)

Beta value

Deg 5
Deg 8

Deg 10
Deg 5 (90 percentile)
Deg 8 (90 percentile)

Deg 10 (90 percentile)

Fig. 5. Varying ÿ with block size of 50kB

6.5

7

7.5

8

8.5

9

9.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
(s

)

Beta value

Deg 5
Deg 8

Deg 10
Deg 5 (90 percentile)
Deg 8 (90 percentile)

Deg 10 (90 percentile)

Fig. 6. Varying ÿ with block size of 5kB

6.5

7

7.5

8

8.5

9

0 0.2 0.4 0.6 0.8 1

Ti
m

e
(s

)

Beta value

Deg 5, CT
Deg 10, CT
Deg 20, CT
Deg 5, TDS

Deg 10 TDS
Deg 20 TDS

Fig. 7. Varying ÿ with block size of 5kB using
CT and TDS heuristics for 1000 nodes

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1

Ti
m

e
(s

)

Beta value

Deg 5, CT
Deg 10, CT
Deg 20, CT
Deg 5, TDS

Deg 10 TDS
Deg 20 TDS

Fig. 8. Varying ÿ with block size of 50kB using
CT and TDS heuristics for 1000 nodes

Effect of � parameter on the TDS heuristic In Figure 5, we plot the average finish
time of the nodes in the TDS tree on the y-axis against various values of ö on the x-axis.
Each line represents trees constructed with a particular maximum degree constraint and
each point is the average of five runs of the simulator with different seeds. We observe
that the average finish time is only marginally affected for values of ö up to 0.5. Actually
the average finish time is reducing in this interval, but as the value of ö increases above
0.5, the average finish time increases quickly. This is also seen in Figure 6, in which
the curves are plotted for a block size of 5kB. These plots show that selecting the nodes
primarily on the basis of the propagation delay to construct TDS trees results in poor
performance. The best balance seems to be to equally weight the degree constraints of
the nodes and their propagation delay when considering the next node to add to the tree.

We also plot the �ð�ð¡X¢ percentile value of node finish times for each of the degree
constraints. We observe that the �ð�-¡X¢ percentile value of the 50kB block with a degree
constraint of 10 has a smaller finish time than the average finish time using 5kB blocks.
This indicates that most of the nodes benefit when we use larger blocks. Another ob-
servation we can make from the graph is that the �-� ¡X¢ percentile value is closer to the
average finish time for the 5kB block size than for the 50kB block size, indicating the
increased variance due to the larger block size.

Performance relative to existing heuristics There have been other heuristics pro-
posed to construct degree-bounded trees for application-layer multicast. The heuristics

proposed are for minimizing the maximum latency to clients [12] (which we call Com-
pact Tree) and for minimizing the cost of using proxies [8] (which we call Min Cost).
The Compact Tree heuristic incrementally constructs a minimum spanning tree from
the source u . For each node æ not in the tree, it finds the minimum cost edge {8äD�Iæ~} from
a node ä in the MST. The cost that is minimized is the overlay delay ù~{Fu-�cæ/} from the
source to the node æ . The Min Cost heuristic is quite similar except for the cost func-
tion used to select the next node. The Min Cost heuristic considers the minimum latency
edge {8äD�Iæ~} as well as the degree constraint z of the nodes while selecting the best node
to attach to the tree. The cost function is ���f{Xæ/}�� ô zÅ{Xæ/} � z k g:õ §>{´� ¬ ô }Iù k l h � ù~{;uð�cæ/} .
The ô parameter plays the same role as the ö parameter in the TDS heuristic and z k g:õ
and ù k l h are normalization constants. Both heuristics do not consider the cost of trans-
mission of data while constructing the trees.

For our simulations, we implement both heuristics using the same routine. The value
of the parameter ö>��� creates trees based on the Compact Tree heuristic while other
values of ö create trees based on the Min Cost heuristic. We plot the average finish times
for delivering 50kB of data using trees with 1000 nodes constructed by the different
heuristics in figures 7 and 8 for block sizes of 5kB and 50kB respectively. In general, the
graphs show that the TDS heuristic performs much better for every degree bound that
is used as it considers the transmission delays incurred at each node. The magnitude of
the improvement of the TDS heuristic is larger with block sizes of 50kB than with 5kB.
The trees created by the TDS heuristic for the 5kB blocks are not very different from
the trees created by the other heuristics and so the improvement seen is on the order of a
second in the average finish times. On the other hand, the trees for the 50kB block size
created by the TDS heuristic exploit the larger block size to create trees that are very
different from those created by the other heuristics resulting in significant improvement
over the other heuristics. When the value of ö is in the range of 0.5 to 0.7, the Min
Cost and Compact Tree heuristics perform the best as they consider a combination of
the degree constraints of the nodes along with the propagation delay to the nodes in the
tree.

5.2 Planet-Lab Experiments
To evaluate the effects of TDS in a real-world scenario, we developed a small applica-
tion to run on the PlanetLab network [13]. The application running on different nodes
forms an application-layer multicast tree. The source at the root of the tree transmits
data to its children using UDP with a specific block and packet size. We measure the
finish times of the different nodes in the tree and compute the average finish time of the
tree. In a limited experiment using 16 nodes, block sizes of 50kB and 5kB, a packet size
of 1000 bytes, we observed that the average finish time of the 50kB block size was 6.32
seconds while for the 5kB block was 8.41 seconds which agrees well with our analysis.
We plan to conduct more extensive experiments with existing multimedia applications
as part of future work.

6 Related Work
In related work we discuss some of the tree construction schemes that have been pro-
posed in the context of creating degree bounded trees for application-layer multicast.

In [12], the authors describe the problem of creating minimum diameter degree
bounded spanning trees and show that it is NP-Hard. They propose a greedy heuristic

to create trees based on this objective. In [8], the authors define the cost of a tree as
the number of special proxy nodes used to create multicast trees. Based on this they
propose to create trees which satisfy a maximum delay bound while minimizing cost.
They provide an optimal solution for graphs with uniform edges and show that this
problem is NP-Hard in the general case with non-uniform edges.

In [9], the minimum average-latency degree-bounded directed spanning tree prob-
lem is introduced in context of a two-tier infrastructure for implementing large-scale
media-streaming applications. The infrastructure, called OMNI (Overlay Multicast Net-
work Infrastructure) consists of a set of Multicast Service Nodes (MSNs) to which
end-hosts connect to form the multicast tree. The objective of this work is to reduce the
average latency to the end-hosts. This is achieved by arranging the MSNs to create min-
imum latency trees where each MSN is weighted by the number of clients connected
to it. The authors impose a degree bound on each MSN in the overlay network but do
not account for the transmission delays during data delivery at the MSNs which we
consider in this work. Also, we focus on application-layer multicast trees without any
explicit infrastructure in the network.

In [7], the authors point out that the models used currently to construct these trees
neglect to consider the fact that the most nodes in an end-system multicast tree have a
single network connection and this connection has to be shared between all the children
of the node. In their work, the authors propose an overlay network model to account
for these costs and propose heuristic algorithms to construct multicast trees based on
their overlay model that consider the transmission and computation delays at each of
the nodes in the multicast tree. The overlay model proposed does not explicitly consider
the degree constraints at nodes. The construction of the tree is based on minimizing the
delay to hosts but does not consider the effect of the degree constraints imposed by the
access link bandwidth of the nodes or the effect of the access link scheduling on the
average delay of the nodes in the tree.

7 Discussion and Future Work
Our results show that nodes sending large blocks of data to each child in turn can reduce
the average finish time of nodes in the multicast tree. The tradeoff involved in this gain
is the increased variance of the actual finish times of nodes. Based on this tradeoff, the
block size and packet size for TDS can be specified to match application requirements.
For example, the larger variance with larger block sizes can be used as an incentive
mechanism to encourage nodes to dedicate more uplink bandwidth to the application.
This in turn would place those nodes in positions where their finish times are earlier.

In this work, we examine the effect of the single access link that many end hosts that
participate in application-layer multicast have. We show that the average finish times of
nodes in the tree are affected by the way in which this link is used to transfer data to
a node’s children. We proposed a technique called Time Division Streaming to share
this access link such that the average finish times are reduced as compared to previous
work. We also provide analytical results based on a limited model of this technique and
propose heuristics that take this serialization into account when constructing the tree.

Using the TDS heuristic to construct multicast trees, we show significant reduc-
tion in the average finish times of nodes. The heuristic exploits the effect of TDS by
creating trees such that the interior nodes have unequal subtrees with the subtrees of

children earlier in the TDS schedule being larger. In future work, we plan to create
distributed version of the TDS heuristic that can be used to add nodes to trees as they
arrive. Another direction of work is to vary the TDS parameters to tailor them for spe-
cific applications and to study the effect of these customizations.

References

1. Chu, Y., Rao, S.G., Seshan, S., Zhang, H.: A case for end system multicast. In: IEEE Journal
on Selected Areas in Communication. (2001)

2. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: Almi: An application level multicast
infrastructure. In: USITS. (2001)

3. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
Sigcomm. (2002)

4. Padmanabhan, V., Wang, H., Chou, P.: Resilient peer-to-peer streaming. In: ICNP. (2003)
5. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: Splitstream:

High-bandwidth multicast in cooperative environments. In: SOSP. (2003)
6. Sripanidkulchai, K., Ganjam, A., Maggs, B., Zhang, H.: The feasibility of supporting large-

scale live streaming applications with dynamic application end-points. In: Sigcomm. (2004)
7. Brosh, E., Shavitt, Y.: Approximation and heuristic algorithms for minimum-delay applica-

tion layer multicast trees. In: Infocom. (2004)
8. Malouch, N.M., Liu, Z., Rubenstein, D., Sahu, S.: A graph theoretic approach to bounding

delay in proxy-assisted, end-system multicast. In: IWQoS. (2002)
9. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, S., Khuller, S.: Construction of an

efficient overlay multicast infrastructure for real-time applications. In: Infocom. (2003)
10. Merugu, S., Srinivasan, S., Zegura, E.: p-sim: A simulator for peer-to-peer networks. In:

MASCOTS. (2003)
11. Calvert, K., Zegura, E., Bhattacharjee, S.: How to model an internetwork. In: Infocomm.

(1996)
12. Shi, S., Turner, J., Waldvogel, M.: Dimensioning server access bandwidth and multicast

routing in overlay network. In: NOSSDAV. (2001)
13. PlanetLab: http://www.planet-lab.org/ (2004)

Appendix A

We first outline some notation for the subtrees of nodes that will be used in the following
proofs. We use � lõ to denote the �Å¡X¢ subtree of node � and ¼��	�
 to denote the number of
nodes in the subtree. As in the previous sections, we use �B{X�´} to denote the number of
children of node � and z|{8�´} to denote the maximum degree bound of � .
Proof (Lemma 1). Assume, for the sake of contradiction, that the optimal TDS tree has
a node ± which has adjacent child nodes � and , such that node � is sent data before
node but � ’s subtree is smaller than ’s subtree. Consider the change in finish times
if we instead send data to node before � . The finish times of the node � and its entire
subtree will be increased by a factor of vYu � y m while the finish times of node and its
entire subtree are reduced by vYu � y m . Since the number of nodes whose finish times
are reduced is greater than the number of nodes whose finish times are increased, the
overall average finish time of the entire tree is reduced. Þß

r

i j.

.
1 x c(i) 1 x c(j)

Fig. 9. TDS tree before swapping positions of nodes
Ë

and �

Proof (Lemma 2). Assume, for the sake of contradiction, that the TDS multicast tree in
Figure 9 is an optimal tree with nodes � and , such that z|{8�´}¦�UzÅ{r /} but � is sent data
before . We show that a tree with a smaller average finish time can be constructed in
which node is sent data before node � . Without loss of generality, we assume that the
time at the parent node � before sending the block of data vYu to node � is zero. From
our analysis of TDS, we know that the finish time of a non-root node is dependent
on the finish time of its parent. Therefore, if the finish time of the root of a subtree
changes, the finish time of all other nodes in the subtree change correspondingly, and
hence the average finish times. In the following construction, we exchange complete
subtrees between the affected nodes which results in the finish times of the root nodes
of the subtrees changing.

The new tree is constructed in the following manner. The nodes � and are ex-
changed and the subtrees of nodes � and are assigned as follows:

– If the number of children of , �B{r �} is greater than that of � , i.e., �B{r /}W© �B{8�´} , the
�B{p /} ¬ �B{X�´} subtrees remain attached to node at their original positions. Clearly,
the finish times of the nodes in these subtrees are improved by vYu � y­¥ from the
original tree and so the average finish time is also lower for these subtrees.

– If �B{p /}b� �B{8�´} , then the �B{X��}5¬\�B{p /} subtrees are moved from node � to node .
Note that this is always possible as z|{p /} ©azÅ{X�´} . In this case, the finish times of the
nodes in these subtrees changes by a factor of vYu�ãc{Xy
�þ¬>y l } � y l y�� from vYu3ã � y l
to vYu3ã � y�� where ã5ç��r{X�ð{8�´} ¬ �B{p /}û§U�-�[���[�:�@�B{8�´}�� . Since zÅ{r /} © z|{8�´} implies that
y���©�y l , the finish times and hence the average finish times of these subtrees is
earlier.

For �^ç�� �-�IwE��v�{X�B{X��}:�c�B{r /}I}�� , the subtrees � lõ and � �õ are assigned to the nodes � and
 based on their respective sizes.

If ¼ ���
 ©�¼�� �
 , � �õ is assigned to node and � lõ is assigned to node � . The finish
time of subtree � �õ in the original tree is

��vYu � y m §>u � y � §_{8�H¬>�?}�vYu � y �
while the finish time in the new tree is

vYu � y m § u � y�� §\{X�è¬a�3}´vYu � y��B�
The change from the original to the new tree is vYu � y m . Similarly, the finish time of � lõ
in the original tree is

vYu � y m § u � y l §_{8�è¬7�3}´vYu � y l
and in new tree is

�BvYu � y m § u � y l §_{8�è¬7�3}´vYu � y l �
The change in this case is ¬÷vYu � y m but since the size of this subtree is smaller, the net
gain in finish times is positive.

For the case in which ¼ � �
 � ¼�� �
 , � �õ is assigned to node � and � lõ is assigned to
node . The finish time of subtree � �õ in the original tree is

��vYu � y m §>u � y���§_{8�H¬>�?}�vYu � y��
while in the new tree, it is

�BvYu � y m § u � y l §_{8�è¬7�3}´vYu � y l �
The change from the original to the new tree is thus

u�{Xy l ¬�y � } � y l y � §\{X�è¬>�?}�vYu�{Xy l ¬�y � } � y l y � �
For the subtree � lõ , the original finish time is

vYu � y m § u � y l §_{8�è¬7�3}´vYu � y l
and the new finish time is

vYu � y m §>u � y � §_{8�è¬7�3}´vYu � y �
leading to a change in finish time of

u�{Xy��÷¬øy l } � y l y�� §\{X�è¬>�?}�vYu�{Xy��÷¬øy l } � y l y��ð�
Again, due to ¼ ���
 �M¼��	�
 , the gain in the finish time of the nodes in � lõ outweighs
the increase in finish time of the nodes in � �õ . If the subtrees are of the same size, the
change in finish times of the subtrees equalize and the net change is zero.

Thus, in all cases, the new tree has a lesser average finish time than the original tree
showing that the original tree could not be an optimal tree. Þß

c(i)x

. . .

i

c(j)x1

. . .

j

Fig. 10. TDS tree before swapping positions of nodes
Ë

and �

Proof (Lemma 3). Assume, for sake of contradiction, that the node with the maximum
degree constraint is not the root of the optimal TDS tree. By Lemma 2, this node is
the first in order to receive data from its immediate parent. Consider the section of this
optimal TDS tree shown in Figure 10 where z|{p /} ©azÅ{X��} . We show by construction that
exchanging the positions of nodes � and in the tree will result in a TDS tree with lower
average finish time. This construction can be applied as many times as required to move
the node to the root of the TDS tree, establishing the contradiction.

In Figure 10, to show that exchanging the positions of nodes � and results in a
lower average finish time for the tree, we proceed in a manner similar to the proof for
Lemma 2. WLOG, we assume that the time at the root of the given tree just before the
first block is sent is zero. The nodes � and are exchanged and the subtrees are assigned
in the following manner: Let ãòç��p{F�B{8�´}ò¬��B{p /}Y§\�ð���[���:�c�B{X�´}�� .

– If the number of children of , �B{p /} is greater than that of � , i.e., �B{p /}¨© �B{X�´} ,
the �B{p /}Å¬ì�ð{8�´} subtrees remain attached to node at their original positions and are
moved along with the node . Clearly, the finish times of the nodes in these subtrees
are changed from vYu � y l § u � y�� §S{Fãå¬>�?}�vYu � y�� to vYu3ã � y�� . The improvement in
the finish times is u � y�� §LvYu-{Fy��5¬�y l } � y l y�� .

– If �B{p /}b� �B{8�´} , then the �B{X��}5¬\�B{p /} subtrees are moved from node � to node .
Note that this is always possible as z|{p /}è©¶z|{8�´} . In this case, the finish times of
the nodes in these subtrees changes from vYu3ã � y l to vYu3ã � y�� for an improvement of
vYu3ãI{Xy��÷¬øy l } � y l y�� .
For �^ç�� �-�IwE��v�{X�B{X��}:�c�B{r /}I}�� , the subtrees � lõ and � �õ are assigned to the nodes � and

 based on their respective sizes.

If ¼ ���
 ©�¼�� �
 , � �õ is assigned to node and � lõ is assigned to node � . The finish
time of subtree � �õ in the original tree is

vYu � y l §>u � y � §_{8�H¬7�3}´vYu � y �
while the finish time in the new tree is vYu�� � y�� . The change in finish times is u � y�� §vYu-{Fy��5¬�y l } � y l y�� . Similarly, the finish time of � lõ in the original tree is vYu�� � y l and
in the new tree is

vYu � y�� §>u � y l §\{X�è¬>�?}�vYu � y l �
The change in finish times is ¬1u � y l §>vYu�{Xy l ¬Ly � } � y l y � . Due to the differential in
the size of the subtrees, the net gain is positive.

For the case in which ¼ � �
 � ¼��	�
 , � �õ is assigned to node � and � lõ is assigned to
node . The finish time of subtree � �õ in the original tree is

vYu � y l §>u � y���§_{8�H¬7�3}´vYu � y��
and in the new tree is

vYu � y � §>u � y l §\{X�è¬>�?}�vYu � y l �
The change in finish times is

¬ {I{8�ì¬��-}�vYu § u?}:{Fy��÷¬�y l } � y l y��ð�
For the subtree � lõ , the original finish time is vYu�� � y l and the new finish time is vYu�� � y �
giving a change in finish time of vYu[�D{Xy � ¬­y l } � y l y � . Thus, the overall change in finish
times is positive, showing that exchanging the positions of nodes � and reduces the
average finish time. Þß

