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Abstract

The DYNAMO project is concerned with assembling high-assurance systems from compo-
nents, and, specifically, with guaranteeing correct interaction of sets of large, heteroge-
neous components. Several problems must be overcome to provide such guarantees: 1) 
dealing with the sheer complexity of the individual components and their interoperation; 
2) maintaining design integrity and information hiding in the individual components; 3) 
providing the desired guarantees; and 4) not compromising efficiency while accomplish-
ing the other goals. DYNAMO addresses these problems with several techniques: 1) a lay-
ered, implicit-invocation architecture limits complexity by reducing the quantity and 
nature of allowed interactions; 2) a declarative specification mechanism abstracts away 
low-level details such as event dispatch and handling and variable updates; and 3) com-
pile-time component wrapper generation removes expensive, inter-layer procedure calls.
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Executive Summary
The DYNAMO project is concerned with the high-assurance assembly of software components. 

A component1 is a self-contained unit of computation capable of interacting with its environment 
by reacting to events, providing requested services, and managing its state. High-assurance is pro-
vided when a set of components, each of which acts according to its specification, results in a sys-
tem that conforms to its specification. Specifications are expressed using the Object Constraint 
Language (OCL) a part of the industry-standard Unified Modeling Language (UML).

DYNAMO specifications describe invariant relationships among the states of an assembly’s 
components. An invariant is a system property expressed in terms of the externally visible ele-
ments of its components’ states. When an assembly receives an event from its environment, the 
state of one or more component can be altered. If that element of state is part of an invariant with 
other components, then it is necessary for those other components to be informed so that they 
might take steps to reestablish the invariant. This process is called invariant maintenance.

Invariant maintenance is difficult due to the sheer complexity of the components and their 
interactions. Moreover, invariant maintenance typically introduces costly run-time mechanisms 
for alerting components of changes. Even when invariant maintenance is achieved, confidence in 
system behavior remains low unless there is a convincing argument that invariants are properly 
maintained. Complex and voluminous code often makes such an argument difficult.

DYNAMO addresses the invariant maintenance problem with several techniques:
• Model-based specification: Invariants are specified in DYNAMO at a high level of abstraction 

by using the industry standard Object Constraint Language (OCL) a part of the familiar and 
well-supported Unified Modeling Language (UML).

• Three-phased design: DYNAMO supports high assurance via a design process that converts 
model-based specifications into a layered, implicit-invocation design guaranteed to main-
tained specified invariants. The design process consists of three phases that successively 
establish system context within its environment, decompose the system into components, and 
layer the components so as to provide high-assurance invariant maintenance.

• Wrapper generation: Confidence in expected system behavior is provided by the automatic 
generation of code supporting invariant maintenance. Generated code wraps existing compo-
nents in a way that requires minimal intrusion into the components, thereby reducing the risk 
of introducing bugs.

• Tool support: The DYNAMO project has developed and adapted a variety of tools to support 
the specification, design, implementation and validation of high-assurance systems. Tools 
include a graphical UML modeling tool, an XML-based design extraction tool, an OCL 
parser, a code generator library, and a model checker.
The current status of the DYNAMO project is that the design process is well established and has 

been applied to a variety of small-scale problems including a text browser, a mail-spooler, and file 
version-control (briefcase) mechanism. The invariant maintenance architecture, including a num-
ber of variants is well-defined. And the tools exist in prototype form at various levels of maturity. 
Finally, a variety of interesting follow-up questions have been collected for future work.

1. Terms in italics are defined in the glossary at the end of this report.
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Introduction and Problem Description
Software components are units of computation. They may exist in libraries or be specially 

constructed. Components can be assembled into systems. However, there is no guarantee that 
even correct components, when combined, result in correct systems. Invariants are desirable sys-
tem properties. As a system executes and its state changes, the system must react to reestablish its 
invariants. This process is called invariant maintenance. A change of state may invalidate one or 
more invariants. For each such invariant, corrective actions must be located and verified. Unfortu-
nately, this approach is error prone and expensive. 

Invariant maintenance is difficult due to the sheer complexity of the components themselves 
and their interactions with each other. In addition to guaranteeing that system invariants hold, a 
solution to the invariant maintenance problem should satisfy the following additional properties. 
First, it must refrain, to the extent possible, from intruding into the components themselves. This 
property, sometimes called transparency, has several advantages. It separates reasoning about 
overall system properties from consideration of the individual components. Also, it reduces the 
need to modify the code of the components, thereby lessening the risk of introducing bugs.

The second property is flexibility. There are a variety of architectural mechanisms that support 
invariant maintenance. Flexibility enables the architectural approach to be selected by the 
designer based on other desirable system properties. Moreover, flexibility supports reuse, 
enabling components to be packaged in various ways.

The third property is low overhead. In particular, it should be the goal of any invariant mainte-
nance mechanism to cause no additional run-time costs over an ad hoc implementation. As a gen-
eral rule, the more encapsulated and self-contained components are, the more complex is the 
collaboration mechanism required to support them. With complexity comes run-time overhead. A 
low-overhead solution supports collaboration without any additional run-time cost.

The fourth property is intentionality. That is, in order to reason about system behavior, it 
should be possible to relate the behavioral specification of an invariant to its implementation in a 
direct way. In particular, each invariant should be traceable to the code mechanism responsible for 
maintaining it. Intentionality also supports maintainability—changes to system requirements 
often mean changes to the system’s invariants. Intentionally implemented invariants are easier to 
alter.

The final property is abstraction. Confidence in system behavior is reduced when code must 
be examined to determine the effects of intricate combinations of events. Such efforts are labor 
intensive and error prone. DYNAMO uses the Object Constraint Language (OCL) [15] to specify 
system invariants at a high level of abstraction. Wrapper code is generated to ensure that invari-
ants are appropriately updated.

The remainder of this section describes the assumptions DYNAMO makes about the problem 
space and work done by others that relates to component assembly problem.

Assumptions
DYNAMO is concerned with the high-assurance assembly of components. As a research 

project, we made several assumptions that limit the scope of the problems that we addressed.
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• First of all, we are concerned with the assembly of interactive systems. Interactive systems are 
characterized by user-generated stimuli that produce visible responses. The complexity of 
such systems derives from the extensive state spaces that arise. We chose this area because of 
our experience with the MASTERMIND project in which we also used model-based code 
generation [22]. Interactive systems should be contrasted with data-intensive systems where 
the bulk of the complexity concerns the manipulation of fairly regular data. Although we did 
not experiment in this area, we believe that the DYNAMO approach could also be applied to 
reactive systems in which stimuli arise from sensors rather than users.

• DYNAMO is concerned with the assembly of systems with guaranteed execution properties. 
The primary type of property we investigated was behavioral properties. Such properties con-
cern correct execution; that is, execution that produces expected output. We did some investi-
gation of synchronization properties as well. Synchronization properties indicate how 
components collaborate to produce results. We did not explore quality-of-service properties.

• The applications that we looked at were primarily single threaded. That is, control was 
sequential within a single address space. We did one experiment with single process, multi-
threaded applications. We did not look at multi-process applications.

• The design scenario we addressed is system assembly from components. The components 
may exist in a library or they may be built from scratch. We are not concerned with monolithic 
systems.

• Finally, we have concentrated on systems written in the C++ programming language. C++ 
features a powerful generic facility (called templates) that supports metaprogramming and 
efficient compilation, two features we wanted to exploit. We believe that DYNAMO’s concep-
tual contributions could be applied to any language with these features.

Related Work

Context. There are a variety of design strategies for maintaining invariants among an assembly of 
components. At one extreme, an invariant can be implemented as an explicit integration compo-
nent, distinct from the components it integrates (hereafter referred to as integrands). Under this 
approach, the integration component might be a peer of its integrands, as is the case with media-
tors[23], or it might encapsulate its integrands, as with GenVoca layers [2] and facades and adapt-
ers [8]. Some designs even employ a hybrid of these approaches. For example, Java AWT 
programmers define containers, which (like layers) encapsulate GUI components but which (like 
mediators) listen for events from these components [11]. At the other extreme, an invariant can be 
implemented as a collaboration [24][17], which distribute the responsibilities for maintaining the 
invariants among the integrands. The choice of integration strategy is subject to numerous trade-
offs. If we choose to use an integration component, encapsulation can usually be implemented 
more efficiently. Integration components have the advantage of not requiring integrands to be 
modified with invariant-specific code; however, collaborations, by virtue of being within the inte-
grands, can use knowledge of an integrand's internal state to implement a more efficient update 
protocol. These trade-offs can only be assessed once the invariants are known, i.e., at assembly 
time.
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In practice, it is difficult to exploit this trade-off at assembly time because integration strate-
gies largely depend upon the mechanisms that integrand components use to communicate with 
other components in the assembly. The collaboration approach uses explicit invocation, which (in 
an OO implementation) requires an integrand to store a reference to the other integrands and to 
directly invoke operations through these references. By contrast, the mediator approach relies on 
implicit invocation, which requires the changed component to announce an event whenever its 
state changes in a way that might trigger the reestablishment of an (as yet unknown) invariant. 
Finally, under encapsulation, an integrand should not initiate communication with other compo-
nents at all! The key problem then is how to design components so that the choice of mechanism 
for communicating with other components can be delayed until assembly time. This problem, 
which is also called the flexible packaging problem [6] requires a two-fold solution. First, a com-
ponent must be designed to communicate with its environment using a mechanism that is more 
abstract than the traditional procedure call. Second, a component must be packaged prior to inser-
tion into an assembly. Packaging involves replacing the abstract communication primitives in a 
component's source code with actual code that implements these primitives.

Beugnard et al. Beugnard et al. [4] are concerned with high assurance component interactions. 
Component interactions are described by contracts clearly specifying expected interactions. Of 
particular interest to the DYNAMO project was the authors’ breakdown of contracts into four cate-
gories.
• Basic (or syntactic) contracts provide names for operations, parameters, and exceptions. 

Basic contracts are what are specified by interface description languages, such as IDL [12], a 
part of CORBA.

• Behavioral contracts assign responsibilities to components. Behavioral contracts are what 
are normally specified by pre and post conditions expressed in predicate logic.

• Synchronization contracts describe allowable coordination policies between components. 
Path expressions [5] are a common notation for expressing synchronization contracts.

• Quality of service contracts describe how non-functional requirements, such as resource 
consumption and performance are handled by a set of components.
Most of the DYNAMO work has been concerned with behavioral contracts. We have used the 

Object Constraint Language [15][25] (an extension to UML) to express these contracts. We have 
also done some work investigating synchronization contracts. For this we have developed a pow-
erful model of synchronization contracts called the Universe Model [3]. We have also used CCS 
[14], Milner’s notation for specifying intercomponent synchronization behaviors to formalize our 
approaches to invariant maintenance.

Shaw and Garlan. Shaw and Garlan, in their book on software architecture [21] describe a 
design space for implementations of implicit invocation mechanisms. Implicit invocation pro-
vides one solution to the invariant maintenance problem in which components whose status 
changes notify dependent components which have expressed their interest. The notifying compo-
nent is not explicitly aware of the identity of the notified component. This design space is also dis-
cussed in the article [9]. Among the factors the Shaw and Garlan consider are the following.
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1. Fixed or dynamic vocabulary for events: Whether the set of notification events is fixed in 
advance. For DYNAMO, the set of events is determined by the set of status variables, which is 
determined for the assembly specification at compile time.

2. Built in or user defined: Whether the set of events is fixed by the implementation or user 
defined. For DYNAMO, the set of events is fixed by the set of status variable being monitored. 
Changes to the status variables trigger a notification event to dependent components.

3. Explicitly declared or not: Whether the set of events must be explicitly declared or is 
dynamically determined. For DYNAMO, the set of events is inferred, at compile time, from the 
set of status variables being monitored.

4. Central or distributed declaration: Whether the event declarations are collected in one 
place or distributed throughout the assembly. From the point of view of the designer, events 
are associated with status variables, and are therefore distributed throughout the assembly.

5. Parameters: Events are atomic notifications, but it is often useful to supply values with 
events as parameters. For DYNAMO, event parameters may be requested from notifying com-
ponents via service requests (method calls).

6. Registration required: Whether or not a priori event registration is required. For DYNAMO, 
the set of events to be handled is collected from the specification at compile time, as are the 
sending (independent) and receiving (dependent) components. Registration is effected by the 
dependent component providing a notification method to be invoked by the independent com-
ponent when a status change occurs.

7. Translation of event parameter to method parameter: Most programming languages do 
not have an event primitive. So event notifications must be translated into method calls. More-
over, event parameters must be made available in the method call. For DYNAMO, this is done at 
compile time.

8. Announcement mechanism: How are event notifications implemented? For DYNAMO, each 
notifying component aggregates a set of status variables, the values of which other component 
depend on. For each status variable, a list of notification methods in maintained. Changes in 
the values of status variables, cause these methods to be invoked, thereby notifying dependent 
components.

9. Component implementation: What programming language element is used to implement a 
component? For DYNAMO, a class is used to implement a component. However, a collection of 
components that reside in the same layer in the architecture can be implemented as nested 
classes within a master class for that layer.

10. Concurrency: Whether components and events are treated concurrently or in a single thread. 
Most of the DYNAMO work has been concerned with a single thread of execution. However, 
we have conducted some experiments in which multiple threads in a single process were used. 

11. Delivery policy: Under what circumstances and in what order are dependents notified? For 
DYNAMO, all dependents are notified; the order is fixed at compile time. Shaw and Garlan call 
this full delivery.

Dingel, Garlan, Jha, and Notkin. Components in DYNAMO assemblies inform each other of 
state changes using implicit invocation. Implicit invocation is an architectural style in which state 
changes in one component are announced to other, dependent components, implicitly. That is, the 
announcing component is not aware of who it is notifying. Dingel et al. have provided a formal-
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ization of this process using process algebra and trace semantics [7]. Their approach is composi-
tional—it supports reasoning about composed systems by combing the reasoning about the 
components. Although DYNAMO is primarily concerned with implementation approaches for 
implicit invocation systems, we have experimented with formalization, using Milner’s Calculus 
for Communicating Systems [14].

Riehle. DYNAMO uses C++ templates to implement implicit invocation. Riehle has also designed 
a C++-based template solution to this problem [18]. His approach is called the Event Notification 
Pattern, related to the Observer design pattern in the design patterns book [8]. In particular, Rie-
hle makes the same, asymmetric design choice as DYNAMO, supporting implicit notifications from 
lower-layer components to upper-layer components, but requiring notifications in the other direc-
tion to be explicit. One major difference between Riehle’s approach and that of DYNAMO is that 
with the former, components must explicitly indicate relevant state changes, whereas, with 
DYNAMO, state changes are automatically detected and communicated.

VanHilst and Notkin. A collaboration is a protocol of interaction among multiple objects (called 
roles) to achieve some purpose or goal or to implement some invariant [24]. Here, a role is not an 
actual object, but rather a fragment that comprises the subset of an actual object’s characteristics 
that are required for the object to participate in a particular collaboration [17]. Moreover, a role 
might be abstract, which is to say that it merely declares some operations without providing meth-
ods to implement them. In fact, the most reusable collaborations are those for which one or more 
of their roles is abstract. We can think of a collaboration as a collection of roles that interact 
according to a protocol of message exchange, and we can visualize this behavior using a UML 
sequence diagram, each of whose columns is labeled by a role.

Because roles correspond to fragments rather than actual objects, role types are difficult to 
express as first-class entities in many programming languages. VanHilst and Notkin [24] describe 
how to represent roles in C++ using mixin classes, which are class templates in which the tem-
plate parameter is used to define the base class from which the (instantiated) mixin class derives. 
By defining roles in this manner, a designer can extend a class to play a new role by instantiating 
the mixin class that implements the role with the class to be extended.

For example, suppose we have a class C that we want to adapt to play role (R1) in a new col-
laboration. If roleR1 is the mixin class that implements R1, then we can adapt C to play this role 
by defining a new class:

C’= roleR1<C>

In addition, if we want C to play roles R2 and R3, we would declare C’ as follows:

C’ = roleR3< roleR2< roleR1< C > > >

In fact, using this technique, one can essentially derive a custom class just by identifying the roles 
its objects will need to play in various collaborations.

DYNAMO is concerned with the assembly of systems from interactive components and declar-
ative specifications of assembly guarantees, which govern component interaction. Ultimately, 
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these declarative specifications must be translated to code that interfaces with the components 
being integrated. Because an assembly guarantee is an invariant, it can be thought of as a collabo-
ration, each role of which is played by one or more of the components being assembled. We have 
thus explored how to implement assembly by generating mixin classes for each role in the collab-
oration denoted by an invariant and then extending each component to play the appropriate role 
using mixin-class instantiation.

Batory and Smaragdakis. Mixin classes allow the explicit definition of roles in languages that 
support parameterized inheritance. Smaragdakis and Batory [20] extended this idea to represent 
collaborations using a structure called a mixin layer, which defines a collaboration to be a tem-
plate class with one or more nested classes, each of which is a mixin class that defines a different 
role in the collaboration. Unlike mixin classes, the nested classes in a mixin layer do not assign a 
new name to the role being defined, but instead refer to the class that is being refined to play the 
new role. A mixin layer has the following form (in C++):

template <typename PARENT> {
class CollaborationC1 : public PARENT
    class A : public typename PARENT::A {
    ...
    };
    class B : public typename PARENT::B {
    ...
    };
    ...
}

Notice that each nested class (e.g., CollaborationC1::A) refines a given class (e.g., A) 
to play a role in C1. Using mixin layers, one can synthesize a collection of classes by composing 
the collaborations in which the objects of those classes will play a role.

Mixin layers were originally developed to implement GenVoca layers and layered composi-
tion without requiring the development of a program generator. In the original GenVoca paper [2], 
a component is defined to be a highly-cohesive collection of classes. Layered composition then 
causes the simultaneous refinement of multiple classes. In DYNAMO, we use mixin layers and lay-
ered composition as a means to represent a specially designed component called a mode compo-
nent, which is like GenVoca layers that also announce events. Most assembly invariants can be 
implemented directly using one or more mixin layers, which are then used to simultaneously 
refine a collection of components to play roles in the assembly.

Sullivan and Notkin. A mediator is a software component that reifies integration relationships 
into a component that is separate from the components being integrated [23]. Communication 
between a mediator and its integrands is asymmetric in that integrands communicate with the 
mediator indirectly, using implicit invocation, whereas the mediator communicates directly with 
integrands using explicit invocation. This asymmetry is motivated by the desire to maintain com-
ponent independence in order to simplify evolution. Consequently, each integrand must announce 
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an event whenever any potentially important change in state occurs. A mediator integrates a col-
lection of integrands by registering for events in each integrand and then, upon receiving events, 
alerting dependent integrands to update their state accordingly. Integration via mediators is the 
most general and most flexible strategy for component assembly; however, this generality and 
flexibility is achieved via a heavy use of indirection, which may incur unacceptable performance 
penalties when the technique is used to integrate more fine grained components. In DYNAMO, we 
use mediators to implement a system of assembly invariants that incurs a dependency cycle, and 
we use them in conjunction with encapsulation to construct mode components.

De Line. A major inhibitor to the reusability of software components concerns the communica-
tion mechanisms a component uses to interact with its dependents. Suppose, for example, that 
component C1 uses a service of another component C2. If these components are to reside in the 
same address space, then C1 will communicate with C2 using a method call; whereas if they 
reside in different address spaces, C1 must use a remote procedure call. Unfortunately, in most 
programming languages, the choice of communication mechanism is bound at component devel-
opment time, when in fact we would often prefer to defer the decision to assembly time. Flexible 
packaging is concerned with how to design software so that the choice of communication mecha-
nism can be delayed until assembly time. DeLine proposes a solution in which components com-
municate indirectly using channels via Linda-like [10] coordination primitives [6]. In the Ciao 
integration language, channel communication can be replaced with procedure calls, remote-proce-
dure calls, and relational-database queries, thus allowing the packaging decisions to be deferred to 
assembly time. DYNAMO uses a more restricted form of flexible packaging, based on C++ tem-
plate instantiation, which allows the choice of integration strategy to be deferred to assembly 
time.
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Results

Model-based specification
DYNAMO supports model-based specification of component assemblies. What this means is 

that a designer specifies an assembly in a high-level, declarative notation rather than operationally 
in a programming language. The notation we have used is UML (the Unified Modeling Lan-
guage) including the Object Constraint Language (OCL). In particular, we have interpreted UML 

class model constructs in terms of the vocabu-
lary of software architecture. The interpretation 
is presented in Table 1. Annotations to the class 
model, in the form of OCL constraints, provide 
semantics. In particular, external system events 
(stimuli) are ultimately modeled as methods in a 
component. OCL pre and post condition con-
straints specify the effect of an event on the sys-
tem. Invariants, initially indicated with natural 
language annotations, are first translated by the 
designer into OCL associations. As the architec-
ture is refined, associations are subsumed by 
DYNAMO’s layered architecture. At this point, the 
constraints are assigned to the component 
responsible for maintaining them.

There are several benefits that derive from using a declarative notation. Because OCL is high-
level and declarative, designers can concentrate on system properties rather than worrying about 
details. Because it is abstract, it is more concise than code, reducing the maintenance burden. 
Because it is declarative, error-prone procedural details are elided. Finally, because OCL is for-
mally defined, it supports reasoning. That is, OCL constraints can be used to check system prop-
erties using various existing tools.

Three-phased design method

The DYNAMO design method1 starts with a declarative model of an assembly expressed as an 
annotated UML class diagram using a graphical CASE tool. The diagram is refined, first into 
loosely coupled components that are then organized into a layered architecture. From the resulting 
UML model, C++ wrapper classes can be generated that assemble the components. To support 
efficiency and reuse, components are assembled using a layered, implicit-invocation architecture 
called a mode-component architecture. A mode component is a specialized component that alerts 
its clients when its state changes. Additionally, the correctness of these generated assemblies can 
be verified either statically, using tools such as theorem provers or model checkers, or dynami-
cally, by run-time assertion checking.

1. Details of the DYNAMO design method can be found in reference [13].

Table 1: DYNAMO UML Interpretation

UML 
Concept

DYNAMO 
Interpretation

System Assembly

Package Layer

Class Component

Attribute Percept

Association Invariant

Dependency Event



13

The DYNAMO design method comprises three phases that refine a conceptual model of a pro-
posed assembly into interrelated components organized as layered mode components. In Phase 0, 
the environment in which the assembly executes is described in terms of external actors, the 
assembly itself, the communication among them, and the behavioral properties (invariants) that 
the assembly must guarantee. Phase 1 asks the designer to partition the assembly into its constitu-
ent components and their relationships, assigning responsibility for external actions and invariant-
maintenance to the components appropriately. Finally, Phase 2 asks the designer to layer the con-
stituents as mode components, where lower-level components communicate status changes 
upward, and higher-level components make specific service requests of lower-level components. 
Phase 0, 1 and 2 diagrams for a simple text browser assembly are presented in, respectively, Fig-
ure 1, Figure 2, and Figure 3.

In Figure 1, the assembly is denoted by the TextBrowser icon. Two other actors comprise 
its environment—the user and the document to be viewed. User interactions are denoted with 
dependency arrows, and guarantees are provided within annotation icons.

User

{The moveHandle event
changes the position
of the handle in the
scrollbar tray}

{The resizeWindow event
changes the height of
viewport}

+contents : sequence(line)
Document

{The viewport presents the
maximum consecutive
subsequence of whole lines
from the document that fit}

{The position of the top of the
scrollbar handle with respect
to the scrollbar tray reflects
the position in the document
of the top line currently visible
in the viewport}

{The size of the scrollbar handle
with respect to the size of the
scrollbar tray indicates the
portion of the document's lines
visible in the viewport}

+height : int
+viewContents : sequence(line)
+handleSize : float
+handlePosition : int

TextBrowserresizeWindow(newSize : int)

moveHandle(newPosition : int)

Figure 1: Phase 0 Diagram for Text Browser Example
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In Figure 2, the TextBrowser has been decomposed into three components: a viewport, a 

resize(in newSize : int) : void

height : int
contents : sequence(String)

ViewPort

moveHandle(in newPosition : int) : void

handleSize : float
handlePosition : int

ScrollBar

document : sequence(String)
FileManager

Displays

HandleProportion

{context ViewPort::resize(newSize:int):void
  pre: newSize > 0
  post: height = newSize}

{context LinesVisible
inv: ViewPort::viewContents->size()=
  ViewPort::height.min(FileManager::
  document->size())}

{context Displays
inv: ViewPort::contents =
  FileManager::document->
  subsequence(ScrollBar::handlePosition,
  ScrollBar::handlePosition + ViewPort::height - 1)}

{context ScrollBar::moveHandle(newPosition:int):void
   post:handlePosition = newPosition}

{context HandleProportion
inv: ScrollBar::handleSize =
  ViewPort::height /
      FileManager::document->size()}

Lines
Visible

resizeWindow moveHandlePosition

Figure 2: Phase 1 Diagram for the Text Browser Example

FileManager

+document : sequence(lines)

ViewPort

+resizeWindow(newSize : int) : void

+height : int
+viewContents : sequence(lines)

{context ViewPort
inv: viewContents =
    FileManage.document->
    subseqence(ScrollBar::handlePosition,
    ScrollBar::handlePosition + height - 1)}

{context ViewPort
inv: viewContents->size()=
min(height, FileManager::document->size())

+moveHandle(in newPosition : int) : void
+updateHandleSize(in s : int) : void

+handleSize : float
+handlePosition : int

ScrollBar
{context ScrollBar::updateHandleSize
pre: s > 0
post: handleSize = s}

{context ViewPort
inv: ScrollBar::handleSize = height /
  FileManager::document->size()}

Figure 3: Phase 2 Diagram for the Text Browser Example
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scrollbar and a file manager. Three associations have been included to indicate the collaborations 
required to enforce the TextBrowser’s guarantees. The associations have been annotated with 
OCL constraints denoting the invariants the assembly must maintain. The two user events have 
been delegated to components as have the four assembly percepts.

Figure 3 presents the layered, implicit-invocation architecture used to effect invariant mainte-
nance. The three components have been organized into a stack, and the OCL constraints have 
been assigned to the respective dependent attributes. Ultimately, the components will be realized 
as wrapped and nested template classes.

Tool support
A variety of prototype tools were built or adapted to support the investigation into invariant 

maintenance. The DYNAMO tools architecture is shown in Figure 4. The designer using DYNAMO 

tools might begin with a UML class model drawing tool such as ArgoUML to construct a 
DYNAMO design. ArgoUML is able to export such designs using XMI, an industry standard XML 
schema for UML CASE tool design descriptions. We have built a tool called ParaGen for extract-

Figure 4: DYNAMO Tools Architecture

Designer

ArgoUML
Mode

Component
Specification

XMI File

ParaGen

Para Intermediate
Representation

Para2SMVC++ Wrapper
Generator

SMV Input
File

SMV Model
Checker

Static
Guarantee

Report

C++ Mode
Components

SpecC
Wrapper

Generator

SpecC
Simulator

Other Static
Analyzers

Analyzer
Generator

Designer-Specified
Guarantees (CTL)
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ing design information from an XMI file. Two version were constructed. The first was a stand-
alone C++ program. It made use of the Xerces XML parser from Apache. The second used XSLT. 
XSLT is a language for manipulating XML data. XSLT programs describe transforms that can be 
applied to XML to construct output files in either XML, HTML or text. We used the Xalan tool 
from IBM to process the XSLT transformations. For both the C++ program and the XSLT pro-
gram, we produced output in a format called Para, which is the DYNAMO intermediate representa-
tion.

The intent of the Para intermediate representation is to make it easy to apply a variety of tools 
to a DYNAMO design. We tried two specific applications. First, in order to do static analysis of 
UML designs, we applied the SMV model checker (from Carnegie Mellon and Berkeley) to them. 
In this case, the designer augments the class model diagram with a statechart and generated XMI 
from the diagrams. Then, Paragen is used to convert the design into Para format. 

We built a tool called Para2SMV for converting designs in Para format into the input language 
for SMV. The designer must add a CTL (Computational Tree Logic) description of the property to 
be checked. Then SMV can be run to see whether the property holds for the design. To support 
this generation process, we built a C++ library, called SmvModel. These classes are used within 
Para2SMV to construct the SMV input file, but they are written in such a way that they can be 
used in any application that needs to construct SMV.

The other tool that we built was the COGITO mode-component compiler, illustrated in the 
lower left hand corner of Figure 4. If the designer has included OCL constraints in the UML class 
model diagram, these will be included in the generated XMI file and conveyed to the Para repre-
sentation. COGITO parses the OCL and produces a parse tree internal representation. We have 
constructed a C++ library, similar to SmvModel, called C++Visitor that can generate C++ 
mode component wrappers for components described in the UML class model diagram. The 
wrappers, when linked with the original components maintain specified system invariants, hence 
providing assured behavior.

The other components in Figure 4 have not been built. They are shown in the diagram to illus-
trate how the tools architecture might be extended to support other languages and other static 
checkers.

Efficient implementation of guaranteed behavior
A wrapper is a code fragment that can be used to adapt an existing component for a variety of 

purposes such as providing a different interface or enhanced functionality. DYNAMO mode-com-
ponent wrappers detect alterations to component status and inform dependent components. If the 
mode component is itself dependent on other components, then the wrapper also provides the 
code that reestablishes invariants to reflect the changes to status.

Mode component wrappers are implemented using several features of the C++ programming 
language1. One feature of interest is operator overloading. That is, programmers can provide new 
interpretations for built-in C++ operators. In the case of DYNAMO, the assignment operator is 
overloaded. When an assignment is made to an element of component status, a DYNAMO-gener-

1. Details of mode component implementation can be found in reference [19].
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ated method is invoked that, besides performing the assignment, notifies dependent components. 
This additional ability is provided without altering the source code that performed the assignment.

Alternative invariant maintenance mechanisms
Besides mode components, we have explored a variety of alternative mechanisms for imple-

menting invariant maintenance. There are two goals for this exploration: 1) to apply DYNAMO 
code generation techniques to these mechanism and judge the extent to which their implementa-
tions can benefit from them; and 2) to better understand the design space of invariant maintenance 
mechanisms and, ultimately, to produce a policy-based implementation [1]. In the remainder of 
this subsection, we present three alternative invariant maintenance mechanisms with which we 
have experimented.

Encapsulated collaborations. To compare the different invariant maintenance strategies, con-
sider a running example in which three components, a, b, and c collaborate to maintain the 
invariant a = b + c.

Figure 5 depicts a collaboration that maintains this invariant when the components are assembled 
using encapsulation. Notice, because a encapsulates b and c, all external accesses to b and c 
must go through a. Moreover, a is responsible for maintaining the invariant. Specifically, when a 
receives the message setValueOfB(3), it sends the message setValue(3)to update the 
value of b, then retrieves the current value of c, and sets its own value to the sum. This approach 
does not require any modification to the aggregated components (i.e., b and c), but it requires sig-
nificant modification to the aggregator (a). In the worst case, the interface of the aggregator could 
swell to include the union of services over the interfaces of all of the aggregated components. 

Figure 5: Encapsulated Invariant Maintenance
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Moreover, every invocation of a service that might modify one of the aggregated components 
incurs the cost of an invocation of all of the other aggregated component in order to retrieve val-
ues necessary to re-establish the invariant.

Mediated collaboration. \Figure 6 depicts a collaboration that maintains the same invariant 
using a mediator.

In contrast to Figure 5, collaborating components are peers, and each is visible to other clients 
who might use its services. In Figure 6, such a client sends the message setValue(3) to com-
ponent b. In response, b sends the message updateOfB(3) to the mediator, which is responsi-
ble for maintaining the invariant. The mediator handles this message by first retrieving the value 
of component c and then setting the value of component a to be the sum. As with encapsulation, 
one component (the mediator) knows about all of the other components, but the mediator is a new 
component that does nothing but maintain the invariant. Consequently, the mediator must provide 
an update operation for each component; whereas with encapsulation, these operations are part 
of component a (as is the invariant-maintenance logic). Also like encapsulation, any update of 
any component incurs messages to all of the other components in order to retrieve values needed 
to reestablish the invariant. Unlike encapsulation, each of the components must know about the 
mediator.

Figure 6: Mediated Invariant Maintenance
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Distributed collaboration. \Figure 7 depicts a collaboration that maintains the same invariant 
when the components are assembled using a many-to-many distributed collaboration. 

In this case, components b and c contain direct references to component a. Notice, however, that 
the responsibility for invariant maintenance is now distributed rather than localized. For example, 
when b receives the message setValue(3), rather than announcing its new value to a, it 
announces the difference between the new and old values, and a's implementation of the modi-
fyValueBy(-5) message adds this delta to its current value. Such a distribution has the advan-
tage of optimizing the number of messages, but it does so at the expense of distributing 
knowledge of the invariant among the collaborators.

Implementation of alternative invariant maintenance mechanisms
The three different composition strategies are supported by a hierarchy of classes, some of 

which are assembly dependent. Our implementation library provides the following six reusable 
classes:
• StatusVariable is a parameterized and abstract class that generalizes all status variable 

objects in a system. The class provides a polymorphic getValue operation but no facility 
for setting the value, as some values will be computed on demand or set implicitly.

• StatusVariablePrimitive is a parameterized concrete class that extends Status-
Variable with an explicit setValue operation.

• StatusVariableUpdate extends StatusVariablePrimitive with facilities for 
registering and announcing updates to one or more listeners. Objects of this class respond to 
setValue(v) messages by updating their value and then sending the message 
update(v, this) to all registered listeners, where this is the object that received the 
setValue message.

• StatusVariableDelta extends StatusVariablePrimitive with facilities for 
registering and announcing changes (i.e., the difference between the old and new value) to one 
or more listeners. Objects of this class respond to setValue(v) messages by (1) computing 
the difference delta = v - val where val is the old value, (2) setting val to v, and (3) 

Figure 7: Distributed Invariant Maintenance
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sending the message modifyBy(delta, this) to all registered listeners, where this is 
the object being updated.

• StatusVariableListener is an interface class that declares the update message. 
Objects that implement this interface can register as listeners to StatusVariableUpdate 
objects.

• StatusVariableDeltaListener is an interface class that declares the modifyBy 
message. Objects that implement this interface can register as listeners to StatusVari-
ableDelta objects.

Encapsulated Invariant Maintenance. Figure 8 depicts the classes used to implement encapsu-
lated collaboration. Notice there is only one assembly-specific class, StatusVariableA, 
which aggregates two primitive status variables and provides setter operations setValueOfB 
and setValueOfC. Instances of StatusVariableA handle the messages of the form set-
ValueOfB(v) by invoking b.setValue(v)and then updating the local value in accordance 
with the invariant. setValueOfC messages are handled similarly. By virtue of encapsulation, 
clients can only access instances of StatusVariableA.

Mediated Invariant Maintenance. Figure 9 depicts the classes used to implement mediated col-
laboration. In this configuration, status variable a is an instance of class StatusVariableP-
rimitive. By contrast, b and c are instances of class StatusVariableUpdate, which 
means they announce all updates to any registered listeners. The invariant is implemented by an 
instance of the (assembly-specific) class Mediator. By implementing the StatusVaria-
bleListener, instances of class Mediator can register for and receive updates from the b 
and c objects. Notice also that class Mediator contains references to each of a, b, and c, which 
allows it to get and set values as appropriate to maintain the invariant. Moreover, upon receiving a 

Figure 8: Implementation of Encapsulated Invariant Maintenance
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message of the form update(v, o), a mediator can compare o with b and c to decide which 
object sent the message.

Distributed Invariant Maintenance. Figure 10 depicts the classes used to implement distributed 
collaboration. In this configuration, the status variable a is an instance of an assembly-specific 
class StatusVariableA, which references two status variables (b and c) and implements the 
StatusVariableDeltaListener interface in order to receive modifyBy messages from 

Figure 9: Implementation of Mediated Invariant Maintenance
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the objects that implement b and c. Variables b and c are instances of the class StatusVari-
ableDelta.

Future Work

CCS formalization of alternative invariant maintenance mechanisms
A software component defines services in its interface and implements these services by 

requesting services from other components. In addition to providing and using services, an inter-
active component announces events to communicate changes in state to interested observers. Ser-
vice requests and event notifications are ultimately realized by inter-object collaborations, but 
there are many different ways to implement these collaborations. In a large assembly, the designer 
should be allowed to choose among different strategies in a disciplined manner. We designed 
DYNAMO components to be adaptable in this fashion, so that one can make these packaging and 
coordination decisions at assembly time, when one is better able to balance the costs and benefits 
of these decisions.

The flexibility afforded by this design allows us to compose components using a variety of 
higher-level' assembly operators—such as encapsulation, peer-to-peer (distributed) communica-
tion, and mediated communication—and, in fact, we anticipate that designers will be able to spec-
ify assemblies by selecting a group of components, selecting an assembly strategy, and then 
pushing a button to generate the code that implements the assembly. To make these ideas precise, 
we formalize DYNAMO components and these higher-level operators by modeling them in the 
CCS notation [14]. In this formalization, DYNAMO components are CCS agents, and the assembly 
operators are idiomatic combinations of CCS operations applied to these agents. Moreover, we 
define a transparent implementation of these CCS composition idioms, thereby allowing an 

Figure 10: Implementation of Distributed Invariant Maintenance



23

assembly designer to manipulate components in a formal calculus and have correct code gener-
ated from these specifications.

Finite differencing optimizations
DYNAMO uses invariants to generate assembly-specific code from which to compose multiple, 

collaborating components. Because these invariants are not known until assembly time (i.e., after 
the design and implementation of the individual components), this invariant-maintenance respon-
sibility must be discharged by introducing new code somewhere in the assembly implementation. 
Often many of the collaborating components must be extended, and the nature of the extension 
may depend upon the particular invariant. For example, suppose a distributed collaboration main-
tains an attribute (e.g., a) in one component as the sum of attributes (e.g., b and c) in other com-
ponents. Then any change to the value of b or c requires notifying a of the change, and a then 
recomputes the invariant expression. Because recomputing the invariant expression may incur 
multiple messages among these distributed components, we may instead wish for b to include, in 
the notification, the difference between the old and new values for b. This way, a can update its 
value without reevaluating the invariant expression.

Finite differencing is a program optimization that systematically replaces expensive computa-
tions of an applicative expression E = f(x1, x2, ... , xn) with an explicit variable that 
maintains the value of f and additional code that updates the variable (without recomputing f) 
when one of the dependent variables (i.e., x1, x2, ... , xn) changes [16]. We borrow ideas 
from this approach to generate invariant-maintenance code in the components that contain spoil-
ing attribute updates (i.e., components that update attributes that appear on the right-hand side of 
an assembly invariant). Specifically, we use finite differencing to govern the generation of update 
methods (e.g., the method that updates the value of a given the change in value of b) that update a 
dependent variable when one of the independent variables is modified. Notice that if the invariant 
expression E references k different independent variables, then we generate k different update 
methods, each of which re-establishes the invariant in response to a spoiling update of one of the 
k variables.

Data transformers
In our experience generating invariant-maintenance code from applicative invariants, we 

noticed that constraints over aggregate data types, such as sets and sequences, often require the 
use of intermediate state to enable efficient updates. Suppose, for example, that a viewport object 
is used to display a portion of a sequence of text lines. Then some updates to the sequence will not 
cause any change to the viewport, and it would be nice to eliminate the generation of viewport 
notifications when they will not cause any change. A data transformer is an object that reifies the 
application of a function over an aggregate data type, such as the derivation of a sub-sequence 
bounded by two indices, the selection of a maximal element, or a reduction operation over all of 
the elements in a set or sequence. Data transformers compute and maintain these functions in the 
face of updates to the subject collection. Moreover, a data transformer can be attached to a subject 
collection in the object that contains the collection, and thus can be used to minimize the number 
of notifications required to maintain an invariant. Data transformers are reusable and are a power-
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ful abstraction for trading the placement of computation in collaborating components so as to 
optimize message flow.

Conclusion
A high-assurance system behaves as you expect it to and, most importantly, you know that it 

does so. The enemy of assurance is complexity, and the main weapons in fighting complexity are 
abstraction, transparency and intentionality. DYNAMO uses model-based specifications written in 
OCL to express system properties at a high level of abstraction. Wrapper code is then generated in 
such a way that each of the specified guarantees are mapped transparently and intentionally into 
self-contained classes without compromising existing code. Two additional benefits accrue from 
the DYNAMO approach: flexibility and economy. The code generation architecture and the design 
of the wrapper code is such that the choice of collaboration mechanism can be made flexibly at 
assembly time. And the generated code avoids much of the costly indirection common in alterna-
tive invariant-maintenance mechanisms.

The DYNAMO approach is one of invariant maintenance. That is, system properties concerning 
which assurance is desired are expressed as assembly invariants. An assembly invariant relates 
aspects of one component with those of others. When the state of the former component changes 
in such a way that the invariant aspect is altered, dependent components must be notified and the 
invariant reestablished.

A variety of approaches have been developed for invariant maintenance, and DYNAMO intro-
duces another, called a mode component. Mode components are wrapped components organized 
into a layered, implicit invocation architecture. The wrapping is such that changes to the state of 
the underlying component are detected and notification made to dependent components without 
explicit coupling to those components.

The DYNAMO project has also explored alternative, existing invariant-maintenance mecha-
nisms including encapsulated components, mediators, and distributed, peer-to-peer components. 
These mechanisms, and mode components, share enough structure that common code-generation 
approaches can be applied to them, thereby enabling assembly-time configuration. This approach 
to flexible packaging of components promotes reuse.

DYNAMO code generation makes use of the metaprogramming capabilities of the C++ lan-
guage and compiler. Specifically, DYNAMO expresses the various invariant maintenance mecha-
nisms as templates that are processed at compile time, rather than run-time. Moreover, the 
templates are organized as mixin layers thereby reducing the need for expensive dynamic binding. 
The resulting code provides a low-overhead approach to solving the invariant-maintenance prob-
lem.

The DYNAMO project has been primarily concerned with a class of system properties called 
correctness guarantees. These guarantees provide assurance that the results produced by a system 
are correct. There are, however, other types of properties that must be explored. To this end, we 
have done some investigation of synchronization guarantees that determine whether a system col-
laborates in an intended fashion. To this must be added work on quality-of-service guarantees that 
describes performance and resource-consumption properties of assemblies of components. 
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Glossary
• actor: A participant in the environment is which an assembly lives. Actors can be passive 

repositories of data or can proactively communicate with the assembly.
• assembly: A collection of software components that comprise a system.
• collaboration: A protocol of interaction among multiple objects (called roles) to achieve some 

purpose or goal or to implement some invariant.
• component: A unit of software assembled with other components to create a larger system.
• data transformer: An object that reifies the application of a function over an aggregate data 

type.
• distributed integration: Invariant maintenance accomplished by distributing responsibility 

amongst collaborating components.
• encapsulated integration: Invariant maintenance provided by a single encompassing compo-

nent that aggregates the other collaborating components.
• event: An atomic unit of communications, which may carry data.
• explicit invocation: A collaboration mechanism in which (in an OO implementation) an inte-

grand stores references to other integrands and directly invokes operations through these ref-
erences.

• finite differencing: A program optimization that systematically replaces expensive computa-
tions of an applicative expression with an explicit variable that maintains the value of the 
expression and additional code that updates the variable (without recomputing the expression) 
when one of the dependent variables changes.

• flexibility: The property of a system or component that reflects the extent to which the system 
or component can be used in a variety of configurations.

• flexible packaging: A design strategy in which the choice of component collaboration mecha-
nism is delayed until assembly time.

• guarantee: A description of expected assembly behavior.
• implicit invocation: An architectural style in which components whose status change notify 

dependent components that have expressed their interest. The notifying component is not 
explicitly aware of the identity of the notified component.

• integrand: a component of a collaboration.
• intentionality: The property of a feature that reflects the extent to which the correctness of the 

feature is readily apparent from the implementation of a system incorporating it.
• invariant: A property of an assembly or a component that holds between event occurrences. 

Invariants are expressed in terms of relationships among the assembly's percepts or status 
variables.

• invariant maintenance: The process by which a system responds to a change in one compo-
nent in order to reestablish its invariants.

• mediated integration: Invariant maintenance provided by a mediator.
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• mediator: A software component that reifies integration relationships into a component differ-
ent from the components being integrated.

• metaprogramming: An implementation technique for specifying software properties to a com-
piler and allowing it to generate source code rather than coding the properties directly.

• mixin class: Class templates in which the template parameter is used to define the base class 
from which the (instantiated) mixin class derives.

• mixin layer: A collaboration implemented by a template class with one or more nested classes, 
each of which is a mixin class that defines a different role in the collaboration.

• mode component: A hierarchical software component whose interface provides a continu-
ously updated view of its current status.

• mode component architecture: A layered, implicit-invocation architecture where all associ-
ated components are mode components.

• mode component constraint: A single-assignment OCL expression where the left-hand side 
contains a single status variable and the right hand side is a formula dependent upon status 
variables of mode components in an adjacent layer.

• OCL: The Object Constraint Language. A notation for expressing invariants and pre and post 
condition information in UML diagrams.

• OCL constraint: An OCL expression attached to either a UML class or an association.
• overhead: The property of a feature that reflects the performance penalty paid by a system 

when the feature is added.
• packaging: The replacement of abstract communication primitives in a component's source 

code with actual code that implements the primitives.
• percept: Visual feedback; generally an attribute of the assembly that is visible to the user.
• pre/post conditions: A specific type of OCL expressions that specify the behavior of compo-

nent services.
• response: A property of an assembly or a component that holds as the result of the assembly 

or component processing an event. Responses are expressed in terms of relationships among 
the elements of the assembly's or component's state.

• role: A fragment that comprises the subset of an actual object’s characteristics that are 
required for the object to participate in a particular collaboration.

• service: An explicitly invoked operation used by a component in an adjacent layer to alter a 
component's state.

• status: That part of a component’s state that is visible to other components.
• status variable: A component attribute that provides automatic notification when its state 

changes to client components in an adjacent layer.
• transparency: The property of a feature of a system or component that reflects the extent the 

feature can be added to the system or component without requiring alterations to them.
• wrapper: A code fragment that can be used to adapt an existing component for a variety of 

purposes such as providing a different interface or enhancing functionality.
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