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ABSTRACT

     In today’s atmosphere of lower U.S. defense spending and
reduced research budgets, determining how to allocate
resources for research and design has become a critical and
challenging task.  In the area of aircraft design there are many
promising technologies to be explored, yet limited funds with
which to explore them.  In addition, issues concerning
uncertainty in technology readiness as well as the
quantification of the impact of a technology (or combinations
of technologies), are of key importance during the design
process.  The methodology presented in this paper details a
comprehensive and structured process in which to explore the
effects of technology for a given baseline aircraft.  This
process, called Technology Impact Forecasting (TIF), involves
the creation of a forecasting environment for use in
conjunction with defined technology scenarios. The
advantages and limitations of the method will be discussed, as
well its place in an overall methodology used for technology
infusion.  In addition, the example TIF application used in this
paper, that of an Uninhabited Combat Aerial Vehicle, serves
to illustrate the applicability of this methodology to a military
system.

MOTIVATION

In the past, military aircraft design has been characterized
by an emphasis to design for optimum performance.  Aircraft
success was defined in terms of the aircraft’s ability to
perform at least as well as the requirements to which it was
designed, including adaptability to rapidly changing threat
environments.  Recent imperatives, however, have shifted the
emphasis from performance to overall system effectiveness as
a key measure of merit for the aircraft.  Design for
affordability is defined as the design and evaluation of a
system that is no longer dictated solely by mission capability

or selected product characteristics.  It is instead a robust
decision-making process that balances the benefits and costs
of these design decisions while reducing and mitigating the
risk associated with them.

     Furthermore, in traditional aircraft design, most design
decisions are made relatively early in the process, when the
designer (or design team) has the least available knowledge
about the proposed new aircraft.  Design decisions lock in
financial commitments, so the bulk of the cost is committed
early in the design process.  As these decisions are made,
design freedom falls off rapidly. A paradigm shift, founded on
the notion of Integrated Product and Process Design (IPPD), is
now widely accepted.  IPPD seeks to bring more knowledge
about the system life cycle to an earlier stage of the design
process, in an attempt to delay cost commitments and also
keep design freedom open [1].  In other words, the designer
needs to understand and quantify the implications of his/her
decisions earlier in the design process in order to effectively
reduce cost.

     This need for more information earlier in the design
process implies the need for a comprehensive and robust
forecasting environment.  This environment must be able to
predict the technical feasibility and economic viability of the
aircraft for a given probability of success.  But since this
economic viability is a direct result of design decisions made
early in the design process, and because these design decisions
increasingly involve the addition of a new technology or
combinations of technologies, this forecasting environment
must necessarily include the ability to quantify the impact of
technology infusion decisions.

     The difficulty in creating such an environment lies with the
modeling of the technologies being considered.  A new
technology or improvement concept may or may not be
completely defined, and is often identified in the context of
some constraint that is being violated or an objective to be
satisfied.   In addition, it is often more desirable to understand
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the impact of a new technology long before committing to the
expense and risk of its full development.  Thus, a way to
assess new or proposed technologies is to model them as the
changes they cause to key disciplinary metrics.  These metrics
are then linked, through the physics of the problem, to all
pertinent system responses.

     In this paper the authors present a methodology called
Technology Impact Forecasting (TIF) that allows the
preliminary aircraft designer to quantify the effects and
impacts of new technologies on a given baseline aircraft.  TIF
is described in a step-by-step fashion and includes an
overview of the tools and concepts necessary to create the TIF
environment.  The definition and use of technology scenarios
are explained, as well as the benefits and limitations to the
method.  Finally, although some civil aircraft examples of TIF
have been demonstrated [2,3,4,5]  the method is also
applicable to military systems, and is demonstrated here for an
Uninhabited Combat Air Vehicle (UCAV) concept provided
by Lockheed Martin Tactical Aircraft Systems.

OVERALL METHODOLOGY

     In order to discuss the TIF methodology, it is first
necessary to describe the overall technology infusion
methodology.  Developed at the Aerospace Systems Design
Lab at Georgia Institute of Technology, this methodology is a
process that enables the designer to identify, evaluate the
impact of, and select technologies to be applied to a given
aircraft or system.  This robust process outlines the steps that
need to be taken, yet allows for a variety of analytical
procedures to be used.  TIF, then, becomes one specific path
taken through a part of the overall process, and begins with the
assumption of a realistic baseline, which may or may not be
feasible or economically viable, and that generic technologies
are to be explored.  The complete flowchart is shown in Figure
1, with the TIF component clearly labeled.  For a more
complete explanation of other components of the process, the
reader is referred to References [3,6,7].

Figure 1- Technology Assessment Process
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CONCEPTS AND TOOLS

     The TIF methodology links together several tools and
concepts to produce a cohesive process.  A basic knowledge of
these tools is helpful in understanding the overall process, and
thus brief summaries of these tools are presented here.  For
more detailed explanations and examples of these tools the
reader is referred to References [8,9,10,11,12].

DESIGN OF EXPERIMENTS AND RESPONSE
SURFACE METHODOLOGY

      The Response Surface Methodology (RSM) is an efficient,
multivariate approach to modeling that defines clear cause-
and-effect relationships between design variables and system
responses.  It is based on a statistical approach to building and
rapidly assessing empirical models [8,9].  In general, in order
to thoroughly establish a cause-and-effect relationship
between given system variables and system responses, there
must exist a complete set of knowledge about the system.
Because this complete knowledge is difficult (and often
impossible) to obtain and identify, this knowledge can be
approximated with an empirically-generated deterministic
relationship.  The RSM methodology, employing a Design of
Experiments (DOE) strategy, aids in this by selecting a subset
of combinations of variables to run which will guarantee
orthogonality (i.e. the independence of the various design
variables) and will allow for the creation of a statistically
representative model.  This technique allows the maximum
amount of information to be gained from the fewest number of
experiment executions, and thus provide trade study results in
a more cost-effective manner.

      A Design of Experiments is chosen that is suitable for the
problem being analyzed.  This DOE is expressed as a table of
experimental cases, specifying the values of the variables to be
used for each case.  These values are usually normalized to a
low, high, or midpoint value of the variable (represented by a
–1, 1, and 0 to aid in the statistical analysis).  An example
DOE table is shown in Table 1.  Typically, the response is first
modeled using a second order quadratic equation of the form:

R is the desired response term
b0 is the intercept term
bi are regression coefficients for the first order terms
bii are coefficients for the pure quadratic terms
bij are the coefficients for the cross-product terms
xi and xj are the independent variables
k is the total number of variables considered

Other forms of the equation may be used.  If the non-
linearities of the problem are not sufficiently captured using
this form of the equation, then transformations of the variables
and/or the responses need to be found which improve the
fidelity/accuracy of the model.

     These Response Surface Equations (RSEs) are created by
running the variable combinations as defined by the DOE
table.  The resulting responses for each run are then added to
the table (the blank columns in Table 1).  A statistical analysis
package (in this case, JMP [13]) provides the ability to take
this data and perform a regression analysis to create these
polynomial representations (Analysis of Variance or ANOVA)
to determine these sensitivities, relative importance, fidelity,
etc.  JMP also aids in providing the experimental setup, as
well as facilitating visualization of the results.  The resulting
RSEs, thus, are in actuality meta-models of the synthesis code
used in their creation.  The equations represent a quick,
accurate way of determining a response for given values of
variables (as long as these values are within the range of
variables for which the RSE is defined).

Table 1- Example Design of Experiments Table

CASE Wing Area Sweep Engine
Scale Factor

Response 1
(R1)

…Response n
(Rn)

1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 1 -1 -1
6 1 -1 -1
7 1 1 -1
8 1 1 1
9 -1 0 0
10 1 0 0
11 0 -1 0
12 0 1 0
13 0 0 -1
14 0 0 1
15 0 0 0

     The Response Surface Methodology is comprised of two
basic steps, facilitated by the program JMP.  The first is
referred to as the effect screening.  It creates a linear model
which is used to determine the sensitivity of a response to
various inputs and to screen out, using a Pareto analysis, those
variables that do not contribute significantly to the response.
The second step is called surface fitting, and yields a
polynomial representation that gives the response as a function
of the most important input parameters.  These steps are
illustrated in Figure 2.

Figure 2-Basic Steps of Response Surface
Methodology
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      The benefit of RSM is that it provides an almost
instantaneous evaluation time.  The equations are portable and
can be run in a spreadsheet, a computer code, or even by hand.
Within the variable ranges given, the results can be highly
accurate.  Caution should be exercised as to the ranges of
applicability of these equations since they do not, as all
polynomials,  extrapolate well.  If variable values are needed
outside the range of the RSEs generated, a new DOE
experiment must be created and run.  In addition, the
equations are continuous, and thus cannot account for
discontinuities or higher order effects.

PREDICTION PROFILES

     Once the RSEs are created, JMP can then be used to create
prediction profiles.  These profiles allow the designer to see
graphically how the responses vary with respect to changes in
each of the variables.  Figure 3 shows a sample prediction
profile.  The lines in Figure 3 denote the sensitivity of the
response with respect to each variable.  So, in essence, they
are the partial derivatives of the response with respect to the
variable with all other variables set at a given value.  A flat or
barely sloped line indicates that the variable does not have
much impact on that response.

Figure 3- Example of a Prediction Profile

     When using the prediction profile tool while in JMP (as
opposed to a hard copy printout of the graph), the program
allows the designer to change the value of the variables by
using a click and drag technique.  Using the RSEs, the graph is
then updated in real time to show the new values of the
responses.  In this way the designer can manipulate the
equations to gain insight into the problem and also to seek
optimal configurations.

PROBABILISTIC ANALYSIS

Technology Mappings and K_factors

     A new technology concept is characterized by ambiguity
and uncertainty with regards to its performance, cost, etc.
This uncertainty is directly proportional to its development
status and the uncertainty is at its greatest in the early phases
of the technology’s development.  In order to introduce these
uncertainties into the model, variability must be added to each
input variable. When applied to new technologies, the
variability is introduced through the use of technology factors
(in other words, a disciplinarian metric multiplier) referred to
here as K_factors.  A technology is mapped against a vector of

K_factors representing primary and secondary effects.  For
example, Figure 4 shows an example shape distribution for the
K_factor associated with wing weight.  This particular shape
distribution would be appropriate for a technology that is
expected to give a 7.5% decrease in wing weight, yet
recognizes, through the use of a skewed distribution, that there
is some chance of achieving either a greater or lesser change
in wing weight.  Other distribution shapes that may be used
include a uniform distribution, used for when each value is as
likely as another value, or a normal distribution which is used
when there is an equal uncertainty around a particular value.

     Once defined, the K_factors become the variables used in
the DOE table and subsequent RSE generation.  The
responses, in the form of the response surface equations, are
functions of the individual K_factors.  Each technology
concept then, becomes a vector of these variables.  In essence,
a K_factor becomes a “technology dial”.  The methodology
establishes a direct relationship between the technology dials
and the responses of interest.  By examining the prediction
profile, created by varying the K_factors in the DOE instead
of design variables, the designer can identify their sensitivities
to the responses.  Remembering that the K_factors directly
represent parts of technology concepts, the designer can
clearly identify those factors which have a significant impact
on the responses.  Later, these sectional technology concepts,
represented by their K_factors, can be grouped together (to
create a vector) to form “technology scenarios”, with each
scenario representing a complete technology concept. In this
way, the designer can analyze both the benefits and the risks
associated with a technology concept.

     A final advantage to use the K_factors is that they represent
a smooth relationship between the K_factors and the system
responses, based on the shape distributions given.  This allows
the designer to select not only the endpoints of the technology
(in other words, having the technology “on” or “off”) but also
lets him/her select an intermediate value of a technology
improvement and assess its impact on the design.  For
example, if a K_factor represents a technology that impacts
aircraft L/D ratio, the designer could “dial” in a maximum
value of, say, 15% improvement and quantify this impact.
However, the designer could also explore a 10%
improvement, a 5% improvement, or any other value that is
contained in the range of the K_factor that was used to
produce its RSE.

Figure 4- Notional Shape Function for a Wing
Weight Reduction Technology Dial
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Monte Carlo Simulation

     After determining shape distributions for all of the
variables, a Monte Carlo simulation, utilizing the Crystal Ball
[14] software, is run.  The program achieves this by randomly
choosing variable values based on the shape distributions
given.  The responses are then calculated through the use of
the RSEs.  The results are probability distributions that
indicate the likeliness of achieving a certain result. Figure 5
shows examples of the two ways that the probabilistic results
can be presented.  The first is the probability density function
(PDF), which depicts the frequency that a certain value is
observed in the simulation. The second is the integral of the
PDF, called the cumulative distribution function (CDF), which
shows the probability or confidence of achieving a certain
value.  By examining the CDF in Figure 5, the designer can
see that there is about a 10% chance of achieving a takeoff
gross weight of 33,475 pounds or less, but a 100% chance of
achieving a takeoff gross weight of less than 33,850 pounds
(find 33,475 on the horizontal axis, follow it up to where it
hits the curve, and read the corresponding probability from the
vertical axis).

     The designer can interpret information from the probability
distributions in a number of ways.  If the distribution has quite
a bit of variability, but some or most of it fulfills the
requirement being examined, this would suggest the benefit of
investing more resources into that technology concept.  This
addition of resources could have the effect of narrowing the
uncertainty associated with the technology.  On the other
hand, if the distribution indicates that the probability of
meeting the requirement is low, then it might be more
provident to examine other technology options before
investing money into a technology that might not be sufficient
to solve the problem.  This kind of system-level investigation
can also show how much the detrimental effects of the
technology are penalizing the system.  This information,
shared with the disciplinary experts that engage in the
development of the technologies, could be investigated to see
how resources need to be allocated towards reducing the
penalties, as opposed to improving benefits.

Figure 5- Examples of a Probability Density
Function and a Cumulative Probability Function

TIF METHODOLOGY

     The Technology Impact Forecasting method is a technique
that generates an environment that allows the quantitative
exploration, including sensitivities, of aircraft goals and
constraints (such as weight, performance, and economics) of
new technology concepts.  The overall methodology is
represented by Figure 6.  The following steps and tools are
linked together to create the TIF process and are described
below.

      In order to start the TIF process, it is assumed that a
baseline aircraft is given, and that this aircraft is realistic but
not necessarily feasible (i.e. satisfying all design constraints)
or economically viable (i.e. satisfying all economic targets).
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related constraints (i.e. sizing points).  An economics
package must be included or linked to provide the
necessary economic analysis.  Ideally the code will be
user-friendly and lend itself to quickly changing inputs
and multiple runs.  Normally a shell script is created to
facilitate the multiple runs and changing variables.

2) Define the Baseline- in order to quantify the effects of
changing variables or added technologies, a baseline
configuration must be generated.  This baseline should be
a representative configuration usually before any
candidate advanced technologies are added.  It must have
the ability to be easily modified, and care should be taken
that the aircraft can still be sized with reasonable accuracy
at the extremes of the variable ranges.

3) Define Variables and Responses- variables need to be
selected that can model changes in technology and are
also represented in the synthesis code.  For example, an
improvement in aerodynamic technology would most
probably impact aircraft L/D.  If there exists in the
synthesis code a way to increment or decrement L/D, then
L/D is a viable variable. If, however, the code does not
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have an explicit variable for L/D but does allow the user
to change total aircraft drag, then drag becomes the
variable.  Once the variables have been selected, ranges
need to be defined for which the RSEs will be created.
Using the aerodynamic example, the designer may wish
to explore a technology that could theoretically provide
up to a 15% improvement in L/D.  But other technologies
under consideration may have a detrimental effect on
L/D, say, 5%.  In order to capture technologies
representing both an improvement to L/D and a
decrement, the range for the K_factor associated with L/D
would be, in this case, -15% to +5%.  Finally, responses
need to be selected that provide useful information to the
designer.  Usually these are measures of aircraft size
(takeoff gross weight, fuel weight), performance (load
factors, excess power), and economics (first unit
acquisition cost, life cycle cost).

4) Create a Design of Experiments- utilizing the statistical
analysis package JMP, the variables and their ranges are
entered and a design of experiments is selected that
represents a compromise between model accuracy and
number of code executions.  The DOE table generated
will provide the settings of the variables and the number
of cases that will be run experimentally in the synthesis
code.  The table generated will be an orthogonal array,
guaranteeing that each variable can be varied
independently.  While the actual values of the K_factors
may be used, statistically it is more accurate to convert
the table into -1, 0, and 1s (in other words, normalizing
the variables) to reflect the lowest, midpoint, and highest
values of the variables.

5) Run the Cases- using the generated DOE table, multiple
runs of the synthesis code are conducted, corresponding
to one execution for each DOE case.  Often a shell script
is useful at this step for substituting in different values of
the variables, running the cases, and parsing out the
responses.  The scripts are simply used to automate the
process.

6) Create the Response Surface Equations- after all of the
runs have been completed, the results are imported back
into JMP.  A screening test can be conducted, which is a
lower level design of experiments, designed to identify
only first order effects. Next, Pareto plots can be created,
which show the rankings of variables according to how
much they contribute to the variability of a specific
response.  This tool is useful in identifying the most
significant contributing variables.  This is a useful step if
the designer has too many variables before starting the
TIF process and needs to eliminate the variables that
contribute less to the overall response.  Next, the response
surface equations are generated and saved for use in the
next few steps. Several analysis options exist at this point,
all providing useful information to the designer.  The first
is the generation of the prediction profile.  This tool is a
graphical aid showing the designer which variables affect
which responses and to what degree.

7) Examine the TIF Environment- The TIF environment is
comprised of the prediction profile generated in JMP that
relates the technology K_factors to the system responses.
Examination and analysis of this environment provides
the designer with information concerning the nature of the
relationships between the K_factors and the responses.
This environment also allows the designer to select
different values of the K_factors and see their immediate
effects on the values of the responses.  The TIF
environment is also useful in conducting sensitivity
analyses.  It allows the identification of those disciplinary
metrics that have the most significant effect on the
various responses and constraints.  Finally, the
environment is used to quantify the impact of the
K_factors, set targets for each of them, and identify which
areas need improvement.

8) Define the Technology Scenarios- A technology scenario
is created as follows.  For each candidate technology,
identify the key disciplinary metrics (represented by
K_factors) that will be affected by that technology and
decide by what amounts they will be affected.  For
example, an advanced aerodynamics scenario might
affect, either positively or negatively (representing both
benefits and drawbacks), the following variables: overall
aircraft drag (an improvement), engine specific fuel
consumption (a degradation due to possible increased
engine bleed to power, say, a blown wing), and the
systems learning curve (increased due to increased system
complexity).  Together, this group of variables represents
one technology scenario.  (Realize that each of the
variables selected must have been used as a variable in the
creation of the RSEs.)  This step will be based on data
provided by the discipline experts, empirical or historical
databases, and the configuration designer’s own
knowledge and intuition.

9) Create the Analysis Environment- the next step is to
import the RSEs into the Monte Carlo analysis package
called Crystal Ball in order to conduct the analysis. Excel
spreadsheet templates were created to allow the user to
easily import the RSEs in the format they are provided by
JMP.  A new input file is created for each technology
scenario to be explored, based on the above technology
scenarios.  A shape function must be assigned to each
variable affected by the scenario.  These shape functions
will determine the probability of achieving certain values
of variables.  Because the actual shape functions are
subjectively selected and can heavily influence the results,
it is up to the designer to use his/her database of
knowledge and expertise to ensure the shape distributions
are appropriate and reasonable.  Variables that are not
affected by the technology scenario are set at their most
probable, or baseline, values.

10) Run the Monte Carlo Simulation-  Crystal Ball is called to
run the simulations.  After shape distributions have been
determined for each variable, the program will randomly
select variable values based on the shape distributions
defined earlier.  The RSEs will then be utilized for each
response, and the probability distributions of the
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responses determined.  In order to get a good statistical
analysis, it is suggested that the number of runs be on the
order of 10,000 cases.  This will provide an approximate
1% confidence level of accuracy.  Because the RSEs are
fairly straightforward equations, they require little
computational power, and running thousands of cases is a
timely and feasible task.  (Compare this to running the
same number of cases through the synthesis code and the
computational beauty of the RSEs becomes apparent.)

11) Analyze the Cumulative Probability Distribution
Functions- the final products of the methodology are the
CDFs for each response.  These functions will give the
probability of achieving a certain response given a certain
confidence level.  By examining these graphs, the
designer can quantify the confidence of risk associated
with these new technologies, represented by the defined
technology scenarios, upon the system responses chosen.

     At this point the environment is complete and the tool is
ready for further analysis and use.  If a response represents a
design constraint and the CDFs show a low probability of
achieving that response, the designer has a few options.  One
is to manipulate the shape functions to give a better
probability of success.  Realize, however, that this represents a
potentially higher level of technology that must be achieved.
For example, if an advanced aerodynamics scenario is created
and the designer, based on information from his/her  discipline
experts, can expect a 10% improvement in L/D, but the CDF
shows a low probability of success, the designer can rerun the
simulation and see how much a 15% improvement will do.  If
it is determined that there is a high probability of success with
the 15% improvement, the designer will need to go back to
his/her discipline experts and have them determine whether
such levels are realizable or even possible.  Other options
include redefining or reducing the constraint, or continuing to
look at alternative technologies.  Either way, the designer has
gained valuable knowledge concerning the effect of
integrating a  technology on a vehicle system.

     The environment that has been created represents a specific
class of aircraft with a specific range of variables.  The tool,
therefore, may be used to conduct studies on similar aircraft
without having to recreate a new environment.

ADVANTAGES AND CAUTIONS

     The TIF environment was created to explore the infusion of
new technologies on a baseline aircraft.  This implies that the
new technologies under consideration have been theorized and
may, in fact, exist at a certain technology readiness level.  The
method, however, may also be used to help define
requirements for technologies that have not yet been identified
or developed.  Remember that the key to the method is
modeling the technologies as K_factors, or “technology dials”.
One can go straight to selecting K_factors even if a specific
technology is not in mind.  For example, a general
improvement in the discipline of structures may be explored.
To do this, the designer merely assigns K_factors to associated
structural variables, such as component weights,
manufacturing learning curves, and materials, and then runs an

analysis.  By examining the results, the designer may optimize
the improvements needed in order to achieve a certain overall
improvement in life cycle cost.  For example, the designer
may conclude that a 5% decrease in life cycle cost could be
obtained with an 80% confidence if wing weight could be
decreased by 10% and manufacturing learning curves could be
increases by 2%.  These then become requirements for the
discipline experts as they explore potential technology
improvements.

     Because the CDFs are entirely dependant on the shape
distributions assigned and the technology scenarios defined,
care needs to be taken that the shape functions are not
inadvertently used to determine specific desired results.  It is
entirely possible to manipulate the data in such a way as to
produce very favorable results.  Like all tools, the designer
needs to be aware of how the tool works and how his/her
inputs affect the output in order to produce meaningful and
insightful results.  To this end, it is imperative that the
designer be able to justify all assumptions based on empirical
data, expert opinion and justification from disciplinarians, and
the designer’s own experience and common sense.

     Finally, the designer needs to be aware of the capabilities
and limitations of the synthesis code used in the creation of the
RSEs.  In order to gain meaningful results, variables and
modeling must exist in the synthesis code that adequately
capture both the advantages and the disadvantages of a
particular technology.  For example, if the designer wishes to
explore increasing engine thrust, and the synthesis code
contains a variable that allows the thrust to be scaled, but does
not correspondingly increase engine weight, then only the
beneficial effect of the increased thrust could be assessed,
without the penalty and associated risk of this new technology.
An example of this limitation is presented in the UCAV
example below.

MILITARY APPLICATION OF TIF: UNINHABITED
COMBAT AIR VEHICLE (UCAV)

      In order to validate the TIF methodology for a military
system, the authors collaborated with Lockheed Martin
Tactical Aircraft Systems (LMTAS) in Ft. Worth, Texas.  The
baseline aircraft and synthesis code were provided by
LMTAS, allowing the method to be applied using a new and
different synthesis environment.  The baseline aircraft selected
by LMTAS for the study was an Uninhabited Combat Aerial
Vehicle (UCAV).  Because of its unique configuration,
unpiloted status, and revolutionary concept, this baseline
aircraft became an ideal testbed for investigating technology
infusion.

SYNTHESIS ENVIRONMENT

Adaptable Design Synthesis Tool (ADST)

     The in-house aircraft synthesis tool used by Lockheed
Martin is called the Adaptable Design Synthesis Tool (ADST).
In this code, a baseline aircraft is defined by specifying
geometry, propulsion, aerodynamics, and a mission.  The
aircraft design may then be perturbed by changing any of the
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inputs and the aircraft is then fuel sized to meet the design
mission.  Results are presented in the form of an output file of
varying degrees of detail (depending on the input flags) from
which specific data of interest may be parsed.

     In other synthesis codes, it is most common that the sizing
routine will scale the baseline aircraft by holding thrust to
weight and wing loading constant.  In the ADST code,
however, sizing of the aircraft may be accomplished by adding
both fuselage length and volume to accommodate fuel volume
needed due to a change in other input parameters.  The
fuselage size may be limited to a minimum or maximum size.
This allowed for a unique opportunity to track thrust and
weight and wing loading as sizing results, rather than inputs.

MALCCA

     An ASDL in-house military aircraft economics tool was
developed at Georgia Tech and is called Military Aircraft Life
Cycle Cost Analysis (MALCCA).  The cost estimating
relationships used in MALCCA are weight-based regressions
of a military life cycle cost historical database.  Inputs include
component weights (provided directly by the aircraft synthesis
code), learning curves, production rates, complexity and
technology factors, and crew salaries and training.  Outputs
are in the form of detailed cost breakdowns, including life
cycle cost, RDT&E cost, production and operation, and
support costs.

Overall Environment

     The overall synthesis environment used for this study is
shown in Figure 7.  The ADST aircraft synthesis tool has as its
inputs the baseline aircraft geometry, aerodynamics,
propulsion, and mission.  The aircraft is then sized and the
outputs include detailed weights, performance, and the sizing
parameters of the aircraft.

Figure 7- Synthesis and Economic Analysis
Environment Used for the UCAV Study

     Since ADST was not yet linked to a detailed economics
code,  the Georgia Tech military economics tool MALCCA

was used in the analysis.  Because this tool was located at
Georgia Tech, a manual link between the two codes was
created.  In other words, the necessary output data are saved to
a file, transported electronically to Georgia Tech, where it
became the input file for MALCCA.  The outputs from
MALCCA were then combined with the necessary outputs
from ADST and the analysis conducted.  Several shell scripts
were created around ADST and MALCCA for the purpose of
defining, running, and parsing the output of the cases needed
to create the TIF environment.  This serves to illustrate the
flexibility of the method; as long as a cohesive analysis path
exists that can relate the inputs to the outputs, the TIF
methodology can be employed.

BASELINE AIRCRAFT

     The reference UCAV baseline, as developed by LMTAS, is
a unique configuration that emphasizes payload/sensor
modularity and flexibility combined in a survivable design.
The aircraft, as shown in Figure 8, is distinguished by a
blended wing-body and highly swept V-tail.  The payload-
carrying sections are podded and interchangeable, each with
the ability to be configured for weapons, sensors, or additional
fuel.  The modular nose sections of each pod allow them to be
independently configured for radar, infrared, or other
capabilities [15].

     Another unique feature of this LMTAS UCAV concept is
its ability to host a manned version.  This is accomplished
through utilization of the extra volume afforded by the
diverterless inlet compression surface.  A manned version
could perform several missions, including air-to-air combat,
airborne battle management, and “on-the-scene” control of
unmanned versions.  Note that only the unmanned version was
modeled for this study.

     The UCAV has a wing span of 34 ft, and an overall length
of 45 feet.  The TOGW is in the 30,000 lb. class.  There are 3
possible weapons loadings listed for each payload module,
either:

(1)   2000lb JDAM  or
(2)   AMRAAM or
(10) 250lb Small Smart Bombs

Instead of the weapons loads, the sensors-configured -payload
module can include a Side-Looking Aperture Radar (SLAR).
The baseline engine used in the concept is an afterburning
F414-GE-400.

     A typical mission profile for the aircraft is shown in Figure
9.  This was the mission modeled and used for the study.
Because of the proprietary nature of the aircraft, performance
capabilities are not shown, but were modeled adequately.
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Figure 8- LMTAS UCAV Baseline

Figure 9- Mission Profile Used to Size LMTAS
UCAV

     The baseline ADST aircraft file for the UCAV was
provided by LMTAS.  The MALCCA economics baseline file
was created with the aid of data provided by LMTAS and was
created starting with defaults based on the military aircraft
assumptions, which themselves were determined using data
sourced from the F-15 and F-16 fighter aircraft.  All variables
associated with crew and cockpit were set to zero, including
ejection seat weights, display complexity factors, and crew-
associated weights.  All ground testing complexity factors
were increased by 10% and the flight test complexity factors
increased by 20%.  This was to account for the unique
unmanned capabilities of the aircraft and recognizes the heavy
ground support needed for the system.  The model assumes a
low radar cross-section treatment.

VARIABLES AND RESPONSES

Technology Scenarios and Variable Selection

     There were four technology scenarios of interest in this
study: advanced structures, advanced aerodynamics, advanced
propulsion, and advanced stability and control.  An advanced
structures scenario implies technological advances in materials
and manufacturing processes which primarily result in
reductions of component weights.  Because of the unique
blended wing body of the notional UCAV baseline, both
changes in wing weight and fuselage weight were considered
important variables.  The empennage consists of a canted
combination horizontal/vertical stabilizer and was modeled as
a single horizontal tail.  Change in empennage weight was also
considered a variable.  Materials selection was modeled as

percentage of composites for both wing and fuselage.  Finally,
a complexity factor was used to model increased complexity
in structures technology.  This was an economics factor.

     The advanced aerodynamics scenario was modeled through
changes in overall aircraft drag coefficient (thus affecting the
lift-to-drag ratio).  Advanced propulsion has as its variables
changes in overall aircraft thrust, changes in the fuel flow, the
percent of new engine development (an economic factor
modeling engine complexity) and a technological factor on
engine installation.

     Due to limitations on the synthesis tool, advanced stability
and control could not be modeled as explicitly as the other
scenarios.  A change in empennage size (modeled as weight)
was used, and several economic factors utilized, such as a
change in the complexity factor for flight software and
technological factor for avionics.

     Finally, for each of the four scenarios, economics were
modeled primarily as changes in learning curves: engine
learning curve, systems learning curve, assembly learning
curve, and structures learning curve.  Table 2 compiles all the
variables used in this study, as well as indicating the range of
the variables used.  It must also be noted that there is some
crossover in variables, even though they are grouped by
disciplines for convenience.  For example, the economic
variable assembly learning curve was used to model
“touchless” robotic manufacture for the advanced structures
scenario.

Table 2- UCAV Technology Variables and
Ranges of Variability Examined

Percent Deviation
from Baseline

Lower Upper

∆ Wing Weight -15% +5%

∆ Fuselage Weight -15% +5%

∆ Empennage Weight -15% +5%

% Wing Composites 75% 95%

% Fuselage Composites 45% 80%

Structures

∆ Tech Factor Fuselage -5% +15%
Aerodynamics ∆ Drag Coefficient -13% +5%

∆ Thrust -5% +15%

∆ Fuel Flow -15% +5%

% New Engine Development 0% 30%

Propulsion

∆ Tech Factor Engine
Installation

-5% +15%

∆ Tech Factor Flight Software -5% +15%Stability and
Control

∆ Tech Factor Avionics -5% +15%

∆ Engine Learning Curve -5% +5%

∆ Systems Learning Curve -5% +10%

∆ Assembly Learning Curve -5% +15%

Economics

∆ Structures Learning Curve -5% +10%

Responses of Interest



10

     Just as variables needed to be identified to model the
system level effects of certain technologies, responses
likewise need to be selected such that changes in the system
level metrics produce useful changes in the responses.  By
quantifying the changes in the responses, the designer can
identify the potential benefits and risks associated with a
technology scenario.  Table 3 lists the responses chosen.  In
the area of sizing, key weights were identified.

     Thrust to weight and wing loading, while not commonly
used as responses for studies of this nature, were tracked here
specifically due to the unique sizing routine in ADST.  Most
aircraft synthesis codes will scale a baseline aircraft by
keeping a fixed thrust to weight ratio and wing loading.
ADST, however, grows the aircraft fuselage to accommodate
needed fuel.  Thus, thrust to weight and wing loading change
and are therefore tracked as sizing responses.

Table 3- Tracked UCAV Responses

Takeoff Gross Weight

Empty Weight

Fuel Weight

Thrust to Weight Ratio (T/W)

Vehicle Size

Wing Loading (W/S)

Acceleration: 200 ft, M=0.45 to 0.76, Max A/B

Acceleration: 15k ft, M=0.6 to 0.90, Max A/B

Turn Load Factor, 15k, M=0.8, Max A/B

Excess Power, 15k ft, M=0.8, Mil PowerVehicle
Performance

Excess Power, 15k ft, M=0.8, Max A/B

RDTE Cost

First Unit Acquisition Cost

Operation and Support CostVehicle Cost

Life Cycle Cost

     Performance responses were selected to show changes in
certain acceleration capabilities of the aircraft, as well as turn
load factor and excess power changes.  Economic changes
were identified through top-level responses such as Research,
Development, Testing and Evaluation (RDTE), First Unit
Acquisition Cost, Operation and Support Cost, and Life Cycle
Cost.

     Note that for top-level system work, the TIF methodology
often employs these four economic responses also as system
level variables. This is the case when the designer wishes to
simply assess the changes influenced by the technology
scenario at a system level.  For example, for this particular
study it was desired to know the effect of “touchless” robotic
manufacturing on the economics for the advanced structures
scenario.  Another designer may not wish to go into such
detail and simply model the changes for the advanced
structures scenario as changes in RDTE or First Unit
Acquisition Cost.  The level of detail the designer wishes to
use is dependant on study requirements and synthesis tools
available.

SYSTEM LEVEL SCREENING TESTS

     Screening tests were performed in order to identify primary
drivers of vehicle size, performance, and cost.  The screening
tests are shown in the form of Pareto plots, which identify,
through the use of bar charts, which variables contribute to
each response, and by how much.  An example screening test
for aircraft size responses is shown in Figure 11. Table 4 lists
the three primary variables that affect the responses.  As can
be seen, for those responses corresponding to aircraft size,
dominant variables are fuel flow, drag, thrust, and fuselage
weight.  Fuselage weight is considered a major player because
of the unique configuration of the vehicle.  For most vehicles,
wing weight is the significant structural weight.  But the
blended wing-body design of the UCAV necessitated
modeling a large portion of the lifting surface as fuselage.  In
this design, a majority of the wing actually is the fuselage.

Table 4- Identification of Most Significant
Contributors

Primary Effect Secondary

Effect

Tertiary

Effect

Takeoff Gross

Weight

∆ Fuel Flow ∆ Drag Coefficient ∆ Fuselage Weight

Empty Weight ∆ Fuselage Weight ∆ Thrust ∆ Fuel Flow

Fuel Weight ∆ Fuel Flow ∆ Drag Coefficient ∆ Thrust

Thrust to Weight ∆ Thrust ∆ Drag Coefficient

Wing Loading ∆ Fuel Flow ∆ Drag Coefficient ∆ Fuselage Weight

Acceleration: 200 ft,

M=0.45 to 0.76, Max

A/B

∆ Thrust ∆ Fuel Flow ∆ Drag Coefficient

Acceleration: 15k ft,

M=0.6 to 0.90, Max

A/B

∆ Thrust ∆ Drag Coefficient ∆ Fuel Flow

Turn Load Factor,
15k, M=0.8, Max A/B

∆ Drag Coefficient ∆ Fuel Flow ∆ Fuselage Weight

Excess Power, 15k

ft, M=0.8, Mil Power

∆ Thrust ∆ Drag Coefficient ∆ Fuel Flow

Excess Power, 15k

ft, M=0.8, Max A/B

∆ Thrust ∆ Drag Coefficient ∆ Fuel Flow

RDTE Cost % New Engine % Fuselage

Composites

∆ Fuselage Weight

First Unit Acquisition
Cost

Structures Learning

Curve

Assembly Learning

Curve

∆ Fuselage Weight

Operation and Support
Cost

∆ Fuel Flow Structures Learning

Curve

∆ Fuselage Weight

Life Cycle Cost Structures Learning

Curve

Assembly Learning

Curve

∆ Fuselage Weight

     It is no surprise that the key variables contributing to the
performance responses are fuel flow, thrust, and drag.  The
tertiary effect for turn load factor is fuselage weight, which is
appropriate.  Finally, the key effects on cost are seen to be
those variables that are associated with the manufacturing
process (learning curves) of the vehicle, as well as materials
themselves and weights.



11

Figure 11- Typical Sample of the Pareto Plots
Generated for UCAV Size

RESULTS

     With the four technology scenarios defined and the
variables and responses selected, the Design of Experiments
was conducted, creating the Response Surface Equations.
Figure 12 contains the entire prediction profile (technology
impact environment), linking the variables, in the form of
K_factors, to the responses.  By examination of Figure 12, the
designer can immediately identify the sensitivities of the
responses to each K_factor.  For example, it can be seen that
the 1st Unit Acquisition Cost has the highest degree of
sensitivity to the K_factor for the structures learning curve.
The prediction profile is also useful in seeing the sensitivities
of the responses to all of the K_factors in a single chart (i.e. it
is easy to see the “big picture”).  Note that the prediction
profile is another way of presenting the information seen in
Figure 11.

Figure 12- Technology Impact Environment (Deterministic) for LMTAS UCAV

Takeoff  Gross Weight Empty Weight

Fuel Weight

Term
∆ Fuselage Weight
∆ Thrust
∆ Fuel Flow
∆ Drag Coefficient
∆ Wing Weight
∆ Empennage Weight

.2 .4 .6 .8Term
∆ Fuel Flow
∆ Drag Coefficient
∆ Fuselage Weight
∆ Thrust
∆ Wing Weight
∆ Empennage Weight

.2 .4 .6 .8

Term
∆ Fuel Flow
∆ Drag Coefficient
∆ Thrust
∆ Fuselage Weight
∆ Wing Weight
∆ Empennage Weight

.2 .4 .6 .8

Thrust to Weight Wing Loading
Term
∆ Thrust
∆ Fuel Flow
∆ Drag Coefficient
∆ Fuselage Weight
∆ Wing Weight
∆ Empennage Weight

.2 .4 .6 .8 Term
∆ Fuel Flow
∆ Drag Coefficient
∆ Fuselage Weight
∆ Thrust
∆ Wing Weight
∆ Empennage Weight

.2 .4 .6 .8

∆ Wing
Weight

∆ Fuselage
Weight

∆ Empennage
Weight

∆ Drag
Coefficient

∆ Thrust ∆ Fuel
Flow

∆ Engine
Learning 

Curve

∆ Systems
Learning 

curve

∆ Assembly
and Integration
Learning Curve

∆ Structures
Learning 

Curve

∆ Tech Factor
Operational 

Software

∆ Tech Factor
Avionics

% Composites
Fuselage

 % New Engine
Development

 % Composites
Wing

∆ Tech Factor
Engine 

Installation

∆ Tech Factor
Fuselage
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      The RSEs, created with the K_factors as the variables,
were then imported into Crystal Ball and the Technology
Impact Forecast (probabilistic) Environment created.  For each
technology concept scenario, shape functions were selected
(based on input from LMTAS and previous information) and
defined in the environment.  It is again emphasized that in the
TIF process, specific technologies are not identified and
modeled.  Rather, general (or generic) technology concepts are
considered, with the goal being the identification of the
technology area that would most benefit the baseline concept,
aiding in resource allocation for further study.  An advanced
technology scenario is created by selecting and grouping
together several K_factors that could represent the benefits
and risks associated with that concept.

     Figure 13 gives an example of the shape functions used for
the advanced structures scenario (for proprietary reasons, the
actual values have been removed).  A Monte Carlo simulation
was then conducted, based on the shape functions given.  An
example of the resulting cumulative probability distributions
for aircraft performance in the structures scenario is found in
Figure 14.

      Table 5 shows the results for the advanced structures
scenario.  Each column gives the probability of achieving at
least the value given, stated as percentages of change from the
baseline.  For example, the table shows that there is a 50%
chance of achieving a reduction of takeoff gross weight of
5.3% or higher.  The designer can thus use this information to
decide what level of risk is associated with a specific goal or
payoff.  Normally, an 80% confidence level is assumed to be a
reasonable expectation level.  For this confidence level, and
given the assumptions made, the UCAV shows a decrease in
key weights, both performance benefits and drawbacks, and an
increase in economic responses.  While this at first may seem
counterintuitive, the trend is attributed to the high use of
composites and the associated modeled cost of their use.
Clearly, at least in the model, this cost dominates any benefit
gained from increased composite use.  Realize, however, that
this conclusion can only come from a user that is intimately
familiar with both the modeling code used and the
assumptions made.

Figure 13- Assumed Shape Functions for the
Advanced Structures Scenario

Figure 14- Performance Cumulative Distribution
Functions for Advanced Structures Scenario

Table 5- Results for Advanced Structures
Scenario

Advanced Structures
Scenario

20%
Probability

50%
Probability

80%
Probability

100%
Probability

Takeoff Gross Weight -5.62% -5.30% -4.89% -4.00%

Empty Weight -8.02% -7.58% -7.00% -5.78%

Fuel Weight -4.28% -4.02% -5.30% -2.93%

Thrust to Weight 6.67% 8.00% 8.00% 8.00%

Wing Loading -5.62% -5.29% -4.88% -3.99%

Acceleration: 200 ft,

M=0.45 to 0.76, Max A/B
-6.73% -6.35% -5.90% -4.69%

Acceleration: 15k ft,

M=0.6 to 0.90, Max A/B
-6.86% -6.47% -5.98% -4.77%

Turn Load Factor, 15k,
M=0.8, Max A/B

1.79% 2.24% 2.54% 2.99%

Excess Power, 15k ft,

M=0.8, Mil Power
9.67% 9.86% 10.35% 10.98%

Excess Power, 15k ft,

M=0.8, Max A/B
8.42% 9.02% 9.48% 10.05%

RDTE Cost 5.11% 6.23% 7.30% 10.30%

First Unit Acquisition Cost 20.72% 23.62% 26.27% 34.76%

Operation and Support
Cost

-0.67% -0.52% -0.33% 0.20%

Life Cycle Cost 2.71% 3.27% 3.80% 5.50%

      After all of the technology scenarios were run and
analyzed, the results were tabulated into Table 6.  This table
shows not only the examination of a single technology, but
allows the technologies to be compared in a side-by-side
manner.  It is clear from the table that the structures scenario
has the lowest takeoff gross weight, yet has the highest life
cycle cost.  This is due to the extensive use of composites and
the associated high cost, as discussed earlier.  The

Cumulative Chart

 (s)

.000

.250

.500

.750

1.000

10,000 Trials

Forecast: Accelerate, 200 ft, M=0.45 to 0.76, Max A/B

Cumulative Chart

 (ft/s)

.000

.250

.500

.750

1.000

10,000 Trials

Forecast: Excess Power, 15k ft, M=0.8, Max A/B

Cumulative Chart

 (g’s)

.000

.250

.500

.750

1.000

10,000 Trials

Forecast: Turn Load Factor, 15k ft, M=0.8, Max A/B

Cumulative Chart

 (ft/s)

.000

.250

.500

.750

1.000

10,000 Trials

Forecast: Excess Power, 15k ft, M=0.8, Military Power

Cumulative Chart

 (s)

.000

.250

.500

.750

1.000

10,000 Trials

Forecast: Accelerate, 15k ft, M=0.6 to 0.9, Max A/B

Aircraft Performance



13

aerodynamics scenario has the lowest life cycle cost, with
corresponding decreases in weight.  The economics program is
heavily weight-driven, but contains few variables that allow
for modeling of the increased complexity of an advanced
aerodynamics technology.  In other words, it is possible in this
case that the benefits have been captured by the model, but not
necessarily the penalties.  A similar effect was seen in the
stability and control scenario.  Economic variables existed that
allowed the scenario to be penalized for extensive complexity,
including software and avionics modeling. Traditional
synthesis and sizing codes, however, do not often contain
modeling routines for aircraft agility.  In this particular case, it
was difficult to model the agility and maneuverability benefits
of an advanced stability and control scenario with the given
synthesis environment.  The results, therefore, showed that
there was very little benefit and to an advanced stability and
control scenario.  Overall, it is seen that the propulsion
scenario gives the best performance results for roughly the
baseline acquisition cost.  This is due to the higher thrust and
lower takeoff gross weight.  Operations and support cost were
also low.

Table 6- Comparison of all Technology
Scenarios

Advanced
Aerodynamics

Advanced
Structures

Advanced
Propulsion

Advanced
Stability/Control

Scenario 80%
Probability

80%
Probability

80%
Probability

80%
Probability

Takeoff Gross

Weight

-4.11% -4.89% -1.72% -0.75%

Empty Weight -1.93% -7.00% 1.37% -0.88%

Fuel Weight -9.05% -5.30% -7.02% -0.84%

Thrust to Weight 6.67% 8.00% 14.67% 0.00%

Wing Loading -4.10% -4.88% -1.71% -0.73%

Acceleration: 200 ft,

M=0.45 to 0.76, Max

A/B

-5.37% -5.90% -10.51% 3.10%

Acceleration: 15k ft,

M=0.6 to 0.90, Max

A/B

-5.92% -5.98% -10.92% 3.24%

Turn Load Factor, 15k,
M=0.8, Max A/B

7.77% 2.54% 4.04% -0.75%

Excess Power, 15k

ft, M=0.8, Mil Power

12.95% 10.35% 19.27% -1.96%

Excess Power, 15k

ft, M=0.8, Max A/B

8.55% 9.48% 15.92% -1.49%

RDTE Cost -1.63% 7.30% 18.34% 1.20%

First Unit Acquisition
Cost

-9.65% 26.27% 0.53% 1.62%

Operation and Support
Cost

-1.73% -0.33% -0.55% -0.16%

Life Cycle Cost -2.94% 3.80% -0.10% 0.10%

CONCLUSION

     A comprehensive and structured process for determining
the impact of generic technologies on a given baseline aircraft
has been presented.  This process, called Technology Impact
Forecasting, is a part of a more robust methodology that
allows for complete technology identification, evaluation, and

selection.  The TIF process is a probabilistic method that
allows the designer to quantify the effects of technologies
represented by multiplicative factors of design variables.
Results are compared by selecting a desired confidence
interval and assessing the changes to the baseline aircraft.
Advantages of the method include the ability to model both
generic and specific technologies, as well as make decisions
concerning resource allocations for promising technologies.
The designer is cautioned against using the shape factors in
order to manipulate specific results, as well as to be cognizant
of the limitations of the synthesis environment.

     In collaboration with Lockheed Martin Tactical Air
Systems, the TIF methodology was applied to an Uninhabited
Combat Aerial Vehicle concept.  The results yielded valuable
insights, which could have the effect of reducing cycle-time
for decision-making for this or other concepts to which the
methodology is applied.  Once the TIF environment is created,
it further allows the analysis of “what if” scenarios without
having to recreate the problem or run further synthesis cases.
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