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Abstract
We study a fundamental class of infinite-state stochastic processes and stochastic

games, namely Branching Processes, under the properties of (single-target) reachabil-

ity and multi-objective reachability.

In particular, we study Branching Concurrent Stochastic Games (BCSGs), which

are an imperfect-information game extension to the classical Branching Processes, and

show that these games are determined, i.e., have a value, under the fundamental ob-

jective of reachability, building on and generalizing prior work on Branching Simple

Stochastic Games and finite-state Concurrent Stochastic Games. We show that, unlike

in the turn-based branching games, in the concurrent setting the almost-sure and limit-

sure reachability problems do not coincide and we give polynomial time algorithms

for deciding both almost-sure and limit-sure reachability. We also provide a discussion

on the complexity of quantitative reachability questions for BCSGs.

Furthermore, we introduce a new model, namely Ordered Branching Processes

(OBPs), which is a hybrid model between classical Branching Processes and Stochas-

tic Context-Free Grammars. Under the reachability objective, this model is equivalent

to the classical Branching Processes. We study qualitative multi-objective reachability

questions for Ordered Branching Markov Decision Processes (OBMDPs), or equiva-

lently context-free MDPs with simultaneous derivation. We provide algorithmic re-

sults for efficiently checking certain Boolean combinations of qualitative reachability

and non-reachability queries with respect to different given target non-terminals.

Among the more interesting multi-objective reachability results, we provide two

separate algorithms for almost-sure and limit-sure multi-target reachability for OB-

MDPs. Specifically, given an OBMDP, given a starting non-terminal, and given a set

of target non-terminals, our first algorithm decides whether the supremum probability,

of generating a tree that contains every target non-terminal in the set, is 1. Our sec-

ond algorithm decides whether there is a strategy for the player to almost-surely (with

probability 1) generate a tree that contains every target non-terminal in the set. The

two separate algorithms are needed: we show that indeed, in this context, almost-sure

and limit-sure multi-target reachability do not coincide. Both algorithms run in time

polynomial in the size of the OBMDP and exponential in the number of targets. Hence,

they run in polynomial time when the number of targets is fixed. The algorithms are

fixed-parameter tractable with respect to this number. Moreover, we show that the

qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in

general NP-hard, when the size of the set of target non-terminals is not fixed.
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Lay Summary

The field of stochastic processes and stochastic games has been widely studied ever

since the early to mid-twentieth century, with a wide range of applications across mul-

tiple disciplines. In the thesis, we investigate a well-known model, called Branching

Processes, in this field and some specific extensions of it, and we ask questions that are

fundamental and common to inquire about when a model in this field is investigated.

Branching Processes are a classical class of stochastic processes, modelling the evo-

lution of populations dependent on given probabilistic rules. Along with their specific

extensions that we study, they are utilized as a modelling tool in areas, such as bioin-

formatics, biology, population genetics, physics and chemistry (e.g., chemical chain

reactions), medicine (e.g., cancer growth), marketing and others.

In many cases, the process is not purely stochastic but there is the possibility of

taking actions (e.g., adjusting the conditions of reactions, applying drug treatments in

medicine, advertising in marketing, etc.) which can influence the probabilistic evo-

lution of the process to bias it towards achieving desirable objectives. Some of the

factors that affect the process may be controllable (to some extent) while others may

not be sufficiently well-understood and thus it may be more appropriate to consider

their affect in a probabilistic or in an adversarial manner. Some states in these pro-

cesses are designated as (un)desirable (e.g., malignant cancer cells) and we may want

to maximize or minimize the probability of reaching such states, where such a goal is

generally referred to as the (single-target) reachability objective.

In the first half of the thesis, we study this (single-target) reachability objective

for a specific extension of the model, where there are two players who simultaneously

and independently of each other chose their actions and who have opposing goals, i.e.,

one aims to maximize the probability of reaching the specified state and the other to

minimize it. In the second half of the thesis, we study another form of extensions to

the model and an objective, which is certainly a natural extension to the (single-target)

reachability objective.
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Chapter 1

Introduction

The field of stochastic games is an extremely rich field, dating back to the 1950s with

the introduction of finite-state zero-sum Concurrent (imperfect-information) Stochas-

tic Games (CSGs) with discounted rewards by Shapley ([Sha53]). CSGs and their

restricted subclasses of finite-state Simple (turn-based) Stochastic Games (SSGs) and

Markov Decision Processes (MDPs) have been widely investigated through the years.

The reason is the vast number of applications of these models in many disciplines, such

as model verification, decision-theoretic planning, reinforcement learning, decision-

making systems in the area of artificial intelligence and many others. The questions of

the existence and type of (near-)optimal strategies, and the computational complexity

of these models over various objectives have been well-studied, providing some nice

techniques for solving them.

To name a few classical results, Shapley showed in [Sha53, Theorem 1] that com-

puting the values (one for each start state) of a CSG can be represented as a fixed-point

search problem over a specific system of equations (therefore, the same holds for the

restricted subclasses). For the restricted subclass of SSGs, it has been shown that the

decision problem of whether the reachability value is ≥ 1/2 is in NP∩coNP ([Con92,

Theorem 1]), with both players having deterministic memoryless optimal strategies,

and it is the well-known long-standing Condon’s open problem of whether it is de-

cidable in P-time. Moreover, both the search problem of computing an exact value in

Condon’s SSGs and the search problem of computing an approximated value in Shap-

ley’s games are in PLS ∩ PPAD. Many problems in the field of stochastic games can

be reduced to the Condon’s problem, or vice versa. Thus, its importance in the field is

significant. In contrast, computing the reachability values in finite-state non-stochastic

games is in P-time, based on graph-theoretic approach analysis ([Con92, Theorem 2]).

1



2 Chapter 1. Introduction

Computing the optimal reachability probabilities and the optimal deterministic

memoryless strategy in (both maximizing and minimizing) finite-state 1-player MDPs

can be done efficiently in P-time, by reducing the problem to solving Linear Programs.

For more information, please refer to Puterman’s book [Put94] on standard facts and

theory for MDPs. Moreover, for a brief survey of well-known algorithms and tech-

niques for solving MDPs and SSGs, please see, for instance, [Con93, Som05, LDK95].

As mentioned, one such technique is casting the solving of a MDP as a Linear Pro-

gramming problem, where the latter is shown to be solvable in polynomial time in the

size of the LP (and hence, in the size of the MDP) via the ellipsoid method approach by

Khachiyan ([Kha79]) and latter via the more practical interior-point method approach

by Karmarkar ([Kar84]). Another well-known technique is the policy iteration or im-

provement, often referred to as Hoffman-Karp algorithm ([HK66]), which involves

improving players’ strategies in an iterative manner and requires solving a LP at each

iteration (applicable for solving SSGs as well). A third technique, also applicable for

solving SSGs and widely-adapted to many other models including those studied in this

thesis, is the value iteration, often referred to as successive approximation, introduced

first in [Sha53], which is efficient within iterations but generally can take exponentially

many rounds to achieve a constant factor approximation of the values (see [BKN+19]

for recent complexity analysis on value iteration). It involves the procedure of, starting

in an initial feasible vector of values, repeatedly updating the values using a system of

equations until the values vector converge to the optimal values vector in the limit.

In this thesis, we study fundamental objectives (properties) for certain infinite-

state (but finitely represented) extensions of the aforementioned stochastic processes,

namely we look at branching processes (and natural extensions of them) and dis-

cuss the properties of extinction/termination, (single-target) reachability and multi-

objective reachability. In particular, we focus on the concurrent game generalization

of Branching Processes and on the MDP (i.e., the 1-player) variant of Ordered Branch-

ing Processes, where the latter are stochastic processes that we have introduced in

[EM20] (a paper that is incorporated in this thesis).

1.1 Branching Processes

Branching Processes (BPs) are a class of infinite-state stochastic processes that model

the stochastic evolution of a population of objects of distinct types. In each generation,

every object of each type, T , produces a multi-set of objects of various types in the
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next generation according to a given probability distribution on offsprings for the type

T . BPs are a fundamental stochastic model that have been used to model phenomena

in many fields, including bioinformatics and biology (see, e.g., [KA02]), population

genetics ([HJV05]), physics and chemistry (e.g., particle systems, chemical chain re-

actions), medicine (e.g., cancer growth [Bea13, RBCN13]), marketing, and others. In

many cases, the process is not purely stochastic but there is the possibility of taking

actions (for example, adjusting the conditions of reactions, applying drug treatments

in medicine, advertising in marketing, etc.) which can influence the probabilistic evo-

lution of the process to bias it towards achieving desirable objectives. Some of the

factors that affect the reproduction may be controllable (to some extent) while others

are not and also may not be sufficiently well-understood to be modeled accurately by

specific probability distributions, and thus it may be more appropriate to consider their

effect in an adversarial (worst-case) sense. Branching Concurrent Stochastic Games

(BCSGs) are a natural model to represent such settings. There are two players, who

have a set of available actions for each type T that affect the reproduction for this type;

for each object of type T in the evolution of the process, the two players select simul-

taneously and independently of each other an action from their available sets (possibly

in a randomized manner) and their choice of actions determines the probability dis-

tribution for the offspring of the object. Therefore, BCSGs are imperfect-information

zero-sum games. The first player represents the controller that can control some of

the parameters of the reproduction and the second player represents other parameters

that are not controlled and are treated adversarially. The first player wants to select a

strategy that optimizes some objective. Some types are designated as undesirable (for

example, malignant cells), in which case we want to minimize the probability of ever

reaching any object of such a type. Or conversely, some types may be designated as

desirable, in which case we want to maximize the probability of reaching an object of

such a type. Hence, reachability is an essential objective to be studied in the model of

branching processes.

BCSGs generalize the purely stochastic Branching Processes as well as Branch-

ing Markov Decision Processes (BMDPs) and Branching Simple Stochastic Games

(BSSGs). In BMDPs there is only one player who aims to maximize or minimize the

objective. In BSSGs there are two opposing players but they control different sets of

types, i.e., the game is turn-based (perfect-information) zero-sum. These models were

studied previously under the (single-target) reachability objective, namely the opti-

mization of the probability of reaching a given target type ([ESY18]). They were also



4 Chapter 1. Introduction

studied under another fundamental objective, namely the optimization of extinction

probability, i.e., the probability that the process will eventually become extinct, that is,

that the population will become empty ([ESY17, ESY20, EY09, EY15, EY08, EY06]).

We will later (in Section 2.6) discuss in detail the prior results in these models and

compare them with the results in this paper.

BCSGs can also be seen as a generalization of finite-state concurrent stochastic

games (see [Eve57]), namely the extension of such finite games with branching. Con-

current games have been used in the verification area to model the dynamics of open

systems, where one player represents the system and the other player the environment.

Such a system moves sequentially from state to state depending on the actions of the

two players (the system and the environment). Branching concurrent games model the

more general setting in which processes can spawn new processes that proceed then

independently in parallel (e.g., new threads are created and terminated).

The other model, which is a modification of the classical branching processes, that

we introduce and study in this thesis is the model of Ordered Branching Processes

(OBPs).1 Informally, one can think of OBPs as a hybrid model between Branching

Processes and Stochastic Context-Free Grammars (SCFGs). And although it is for-

mally defined in Section 2.4, in order to be slightly more precise here about how BPs

and SCFGs are combined let us informally explain the 1-player-controlled general-

ization of OBPs, which is the main focus of Chapter 4. Ordered Branching Markov

Decision Processes (OBMDPs) can be viewed as controlled/probabilistic context-free

grammars, but without any terminal symbols, and where moreover the non-terminals

are partitioned into two sets: controlled non-terminals and probabilistic non-terminals.

Each non-terminal, N, has an associated set of grammar rules of the form N→ γ, where

γ is a (possibly empty) sequence of non-terminals. Each probabilistic non-terminal is

equipped with a given probability distribution on its associated grammar rules. For

each controlled non-terminal, M, there is an associated non-empty set of available ac-

tions, AM, which is in one-to-one correspondence with the grammar rules of M. So, for

each action, a ∈ AM, there is an associated grammar rule M a→ γ. Given an OBMDP,

given a “start” non-terminal, and given a “strategy” for the controller, these together

determine a probabilistic process that generates a (possibly infinite) random ordered

tree. The tree is formed via the usual parse tree expansion of grammar rules, proceed-

ing generation by generation, in a top-down manner. Starting with a root node labeled

by the “start” non-terminal, the ordered tree is generated based on the controller’s

1OBPs were in fact introduced in [EM20], but that paper is a major part of this thesis.
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(possibly randomized) choice of an action at each node of the tree that is labeled by

a controlled non-terminal, and based on the probabilistic choice of a grammar rule at

nodes that are labeled by a probabilistic non-terminal.

Ordered Branching Processes (OBPs) are OBMDPs without any controlled non-

terminals. As mentioned, OBPs and their MDP and game generalizations are very

similar to classical Branching Processes and their MDP and game generalizations, re-

spectively. The difference is that for OBPs the generated tree is ordered. In particular,

the rules for an OBP have an ordered sequence of non-terminals on their right hand

side, whereas there is no such ordering in BPs: each rule for a given type associates an

unordered multi-set of offsprings of various types to that given type.

In considering the functionality of OBPs, we have already covered the applications

of BPs, but SCFGs also have well-known applications in many fields, including in nat-

ural language processing and RNA modeling ([DEKM98]). Generalizing these models

to MDPs is natural, and can allow us to study, and to optimize algorithmically, settings

where such random processes can partially be controlled.

It turns out that, under the (single-target) reachability and extinction/termination

objectives, computing the (optimal) probabilities in BPs and OBPs (and similarly their

MDP and game generalizations) is equivalent. However, this is not known for multi-

objective reachability, which we focus on for OBMDPs in this thesis and leave as

future work for BMDPs. Previously, multi-objective reachability has only been studied

for the classical finite-state MDPs ([EKVY08]). We will also discuss in detail that

under the (single-target) reachability and extinction/termination objectives, the models

of BPs and OBPs (and similarly their MDP and game generalizations) are equivalent

in some circumstances to other certain probabilistic processes. All these models are

compared and contrasted in Section 2.6.

1.2 Major contributions and outline of the thesis

Chapter 2 provides all the necessary definitions and background on all the models and

objectives discussed in the thesis. It includes previous related work and provides a sur-

vey of similarities and differences with other related stochastic processes with respect

to the objectives that are the focus of the thesis. The chapter also shows that comput-

ing the (single-target) reachability probabilities and the extinction probabilities in BPs

is equivalent to computing the (single-target) reachability probabilities and the termi-

nation probabilities, respectively, in OBPs. This way, Proposition 2.4 and subsection
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2.4.1 act as a link between Chapters 3 and 4.

Chapter 3 contains the content of paper [EMSY19] and some further results not

included in that paper. The chapter shows that computing the non-reachability values,

starting at an object of any of the types, in BCSGs can be expressed as a system of

equations (which we call a minimax-PPS), where there is a variable and an equation

for each type and the right-hand side of each equation is the (von Neumann) minimax

value of a zero-sum one-shot matrix game whose dimensions are defined by the avail-

able choices of both players in the particular type and whose entries are probabilistic

polynomials. What is more, the chapter proves that the non-reachability values of the

game are exactly the coordinates of the Greatest Fixed Point of the system. Next, the

chapter shows that the qualitative almost-sure and limit-sure reachability problems do

not coincide (unlike in the case of turn-based branching stochastic games) and provides

polynomial time (in the size of the BCSG) algorithms for computing the types, starting

at an object of which, almost-sure (respectively, limit-sure) reachability is achieved for

the given target type. Here, the meaning of achieved is that the player maximizing the

reachability probability has a strategy (respectively, a family of strategies) that guar-

antees almost-sure (respectively, limit-sure) reachability, regardless of the strategy of

the player minimizing the reachability probability. The algorithms borrow techniques

from [ESY18] and [dAHK07]. The proofs demonstrate how to compute an almost-

sure strategy (respectively, a limit-sure strategy for a given error ε > 0) for the player

maximizing the reachability probability, or alternatively, a spoiling strategy for the

player minimizing the reachability probability if almost-sure (respectively, limit-sure)

reachability is not satisfied.

Additionally, we adapt analogous results from [EY08, Theorem 3.3] and [EY09,

Theorem 5.3] in order to make it clear to the reader that PSPACE is an upper bound

for both quantitative reachability decision and approximation questions for BCSGs

(this was previously known for the restricted subclass of BSSGs) and that POSSLP is

a lower bound for the quantitative reachability decision questions even for the purely

stochastic BPs (this was previously known for the extinction objective). These are the

best bounds we know so far. We also show that computing exact optimal reachability

probabilities for minimizing BMDPs is in the complexity class FIXP.

Chapter 4 contains the content of paper [EM20]. The chapter studies OBMDPs

under a natural generalization of the standard reachability objective, namely multi-

objective reachability where the player aims to optimize each of the respective proba-

bilities that the generated tree satisfies each of several given objectives over different
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given target non-terminals. Our focus is on the qualitative multi-objective reachabil-

ity decision questions, where a set of target non-terminals, K, is given and where, for

each target non-terminal Tq (q ∈ K), we are also given a probability bq ∈ {0,1} and an

inequality ∆q ∈ {<,=,>}, and where the goal is to decide, for any start non-terminal,

whether the player has a single strategy using which, for all q ∈ K the probability that

the generated tree contains the non-terminal Tq is ∆qbq. We provide efficient algo-

rithms, i.e., running in time polynomial in the size of the OBMDP and in the number

of targets, for deciding certain special cases of these problems.

But the most interesting results we provide are with respect to the qualitative multi-

target reachability, i.e., the situation where a set of target non-terminals is given and, for

a given starting non-terminal, the goal is to determine whether the player has a strategy

to generate a tree that contains all targets almost-surely (or limit-surely). First, we give

an example that demonstrates that, unlike for the standard single-target reachability

objective, in the presence of even two targets almost-sure and limit-sure multi-target

reachability do not coincide. We provide separate algorithms that compute the non-

terminals, starting at which, almost-sure (respectively, limit-sure) multi-target reacha-

bility is achieved. We also provide an algorithm that computes the non-terminals, start-

ing at which, regardless of the strategy there is a zero probability to generate a tree that

contains all targets. We show that these problems are in general NP(coNP)-hard, when

the number of given targets is unbounded. The provided algorithms for qualitative

multi-target reachability questions run in time fixed-parameter tractable with respect

to the number of targets and their proofs show how to construct the corresponding de-

sired strategy for the player, e.g., a strategy that guarantees almost-sure multi-target

reachability or a strategy that guarantees limit-sure multi-target reachability within a

given desired error ε > 0.

Finally, Chapter 5 concludes by describing some of the open problems that we

leave in this thesis, which provide interesting and promising future research.





Chapter 2

Background and Related Work

This chapter presents the necessary background and definitions for the models of

Branching Processes and Ordered Branching Processes (and their MDP and game gen-

eralizations), and for the study of the problems analysed in Chapters 3 and 4. Further-

more, we show the similarities and differences between BPs and OBPs, and also to

other closely-related stochastic processes, such as Stochastic Context-Free Grammars

and Recursive Markov Chains. We also survey previous work on all these models with

respect to the objectives studied in this thesis.

This chapter skips many standard definitions, which can be found in textbooks

literature, such as Chung’s book [Chu01] on probability theory and Puterman’s book

[Put94] on standard facts and theory for MDPs. Moreover, there is a vast amount of

research and theory on Branching Processes, which is not covered in this thesis as it is

not necessary. A good starting point is Harris’s book [Har63].

Organization of the chapter. Section 2.1 recaps some important decision problems

and complexity classes, that are referred to in the related work section and in the next

chapters, in order to provide a better idea of where in the complexity hierarchy the anal-

ysed problems in this thesis reside. Sections 2.2 and 2.4 provide background required

for the analysis of Branching Processes and Ordered Branching Processes, respec-

tively. Section 2.3 introduces Probabilistic Polynomial Systems of equations, which

are later (in Chapter 3) used to rephrase some analysed problems. Section 2.5 defines

other related stochastic models, namely Stochastic Context-Free Grammars (2.5.1) and

Recursive Markov models (2.5.2). Finally, Section 2.6 discusses past work related to

(Ordered) Branching Processes and to the more general model of Recursive Markov

chains.

9
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2.1 Complexity

This section of the background chapter discusses some decision problems and com-

plexity classes that will be referred to throughout this chapter and later chapters. We

skip the definitions of other complexity classes which are also often referred to in

the thesis as they are widely-known complexity classes. For general background on

computational complexity, please refer to Arora and Barak’s book [AB09], where es-

pecially relevant here are chapter 2 of the book on the complexity class NP and chapter

4 on space complexity (which includes the definition of PSPACE).

POSSLP and SQRT-SUM

Throughout the thesis we refer to the following two problems as important lower

bounds for decision problems discussed in the thesis. POSSLP (Positive Straight-Line

Program) is the problem of, given an arithmetic circuit C (equivalently, a straight-

line program) with inputs 0 and 1 and over the basis of gates {+,−,∗}, determining

whether the output (i.e., the value from the top-most gate) is a positive number or not.

It is a fundamental problem on arithmetic circuit complexity and it has been shown

([ABKPM09, Theorem 1.3]) to lie in the 4-th level of the Counting Hierarchy (CH)

(i.e., POSSLP ∈ PPPPPPP
), which is the analog of the Polynomial Hierarchy (PH) for

complexity classes for counting, such as #P. It is known that PH ⊆ CH ⊆ PSPACE.

The second problem, SQRT-SUM, is the problem of, given a collection of natu-

ral numbers d1, . . . ,dn ∈ N and another natural number k ∈ N, determining whether

∑
n
i=1
√

di ≥ k. It is a long-standing major open problem in the exact numerical compu-

tation complexity, not known to be in the Polynomial Hierarchy (not known to be

even in NP, which was first set as a question in 1976 in a paper ([GGJ76]) about

NP-complete geometric problems)1. It was shown in [ABKPM09, Proposition 1.1,

Corollary 1.4] that SQRT-SUM is P-time reducible to POSSLP, hence placing it in the

Counting Hierarchy.

Therefore, it is not believed that either of the two problems, POSSLP or SQRT-

SUM, is PSPACE-hard, but placing them in PH would result in a major breakthrough

on these long-standing problems.

1The version of the SQRT-SUM problem, where the comparison operator is =, is actually known to
be in P-time ([Blo91]). There is a famous conjecture (see [Mal99, Proposition 1]) that the SQRT-SUM
problem is efficiently decidable (i.e., in P-time), relying on the belief that it is enough to approximate
each number

√
di (i ∈ [n]) to polynomially many bits and then sum up the approximated numbers and

compare to the given threshold number.
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FIXP

There is a rich field of research on search problems that can be cast as fixed-point

problems, i.e., problems where for each instance I of the search problem one can con-

struct a continuous function FI mapping a compact and convex domain DI to itself,

such that the set of solutions to the instance, Sol(I), is exactly the set of fixed points

of the function, Fix(FI). In this context, FIXP is the complexity class that captures

search problems which can be rephrased as fixed-point problems for continuous func-

tions, expressed by polynomial-size algebraic circuits (equivalently, straight-line pro-

grams) over the basis {+,−,∗,/,min,max, k
√} with rational constants, over convex

polytope domains described by linear inequalities and rational coefficients, where both

the domain and the circuit can be computed in P-time in the size of the search-problem

instance. This complexity class was introduced in [EY10], providing also the first

FIXP-complete problem ([EY10, Theorem 18]), namely the computation of a Nash

Equilibrium for 3 or more players ([EY10, Theorem 4] shows that this problem is both

POSSLP-hard and SQRT-SUM-hard).

It was further shown in [EY10, Proposition 17] that, in contrast to the complex-

ity class, FIXP, of real-valued search problems (where the complexity can be stud-

ied in a model of computation over the real numbers, such as the Blum-Shub-Smale

(BSS) machine model [BSS89]), the corresponding discrete-valued complexity classes

of decision problems (FIXPd), approximation problems (FIXPa) and Partial com-

putation problems (FIXPpc) are all contained in PSPACE, by relying on the upper

bounds for decision procedures for the Existential Theory of the Reals (ETR or ∃ R)

([Ren92, Can88]). The ETR (∃R) decision problem is the problem of deciding whether

a vector x = (x1, . . . ,xn) exists that satisfies a given quantifier-free Boolean formula

φ(x1, . . . ,xn), which consists of multi-variate polynomial inequalities and equalities

with rational coefficients and over the variables x = (x1, . . . ,xn). ETR is decidable in

PSPACE ([Can88]) and in exponential time, where the exponent is a linear function of

the number of variables ([Ren92]). To paint a better picture for the FIXP class, [EY10,

Theorem 26] showed that if one is to restrict the basis for the algebraic circuits to the

operations {+,−,min,max}, then this restricted complexity class (called, LINEAR-

FIXP) is equal to the complexity class of total search problems, PPAD ([Pap94]),

which lies between P and TFNP.

PPAD and PLS

Both complexity classes, PPAD and PLS, are subclasses of TFNP, i.e., of the class



12 Chapter 2. Background and Related Work

of total function problems solvable in non-deterministic polynomial time, and both

classes have established an influential position in the complexity analysis of game the-

oretic problems. PPAD is a complexity class, introduced by Papadimitriou ([Pap94]),

that captures some fixed-point problems, where a famous PPAD-complete problem is

computing an exact Nash equilibrium for 2 players. PLS (Polynomial Local Search) is

another search problem complexity class, that captures the complexity of finding a lo-

cal optimum solution to an optimization problem. The crucial features of the PLS class

are that for any problem residing in the class: there is a polynomial time computable

function that returns the cost for each solution of an instance; and the neighbourhood

of a solution in the domain can be searched in polynomial time, or in other words, one

can verify that a solution is a local optimum or not in polynomial time.

These complexity classes also have an important place in the area of stochastic

games. The search problem of computing the exact value of a Condon’s SSG game

lies in PPAD ∩ PLS (see [EY10, Corollary 25] and [Yan90]), and so is the search

problem of computing the value of a Shapley’s discounted concurrent stochastic game

within a given desired error ε > 0, where the PPAD inclusion for the latter problem is

proved in [EY10, Theorem 27] and the PLS inclusion for the latter problem follows

from results in [EPRY20].

2.2 Branching Processes

This section introduces some definitions and background for Branching Concurrent

Stochastic Games, generalizing some definitions in [ESY18] associated with reach-

ability problems for Branching Markov Decision Processes and Branching Simple

Stochastic Games.

We begin by defining the general model of Branching Concurrent Stochastic Games

(BCSGs), as well as some important restrictions of the general model: Branching Sim-

ple Stochastic Games (BSSGs), Branching Markov Decision Processes (BMDPs), and

Branching Processes (BPs).

Definition 1. A Branching Concurrent Stochastic Game (BCSG) is a 2-player zero-

sum game that consists of a finite set V = {T1, . . .Tn} of types, two finite non-empty

sets Γi
max,Γ

i
min ⊆ Σ of actions (one for each player) for each type Ti (Σ is a finite

action alphabet), and a finite set R(Ti,amax,amin) of probabilistic rules associated with

each tuple (Ti,amax,amin), i ∈ [n], where amax ∈ Γi
max and amin ∈ Γi

min. Each rule r ∈
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R(Ti,amax,amin) is a triple (Ti, pr,αr), which we can denote by Ti
pr−→ αr, where αr ∈

Nn is a n-vector of natural numbers that denotes a finite multi-set over the set V ,

and where pr ∈ (0,1]∩Q is the probability of the rule r (which we assume to be a

rational number, for computational purposes), where we assume that for all Ti ∈ V

and amax ∈ Γi
max, amin ∈ Γi

min, the rule probabilities in R(Ti,amax,amin) sum to 1, i.e.,

∑r∈R(Ti,amax,amin) pr = 1.

If for all types Ti ∈ V , either |Γi
max| = 1 or |Γi

min| = 1, then the model is a “turn-

based” perfect-information game and is called a Branching Simple Stochastic Game
(BSSG). If for all Ti ∈V , |Γi

max|= 1 (respectively, |Γi
min|= 1), then it is called a min-

imizing Branching Markov Decision Process (BMDP) (respectively, a maximizing

BMDP). If both |Γi
min|= 1 = |Γi

max| for all i ∈ [n], then the process is a classic, purely

stochastic, multi-type Branching Process (BP) ([Har63]).

A play of a BCSG defines a (possibly infinite) node-labeled forest, whose nodes

are labeled by the type of the object they represent. A play contains a sequence of

“generations”, X0,X1,X2, . . . (one for each integer time t ≥ 0, corresponding to nodes

at depth/level t in the forest). For each t ∈ N, Xt consists of the population (a multi-set

of objects of given types), at time t. X0 is the initial population at generation 0 (these are

the roots of the forest). Xk+1 is obtained from Xk in the following way: for each object

e in the population Xk, assuming e has type Ti, both players select simultaneously and

independently actions amax ∈ Γi
max, and amin ∈ Γi

min (or distributions on such actions),

according to their strategies; thereafter a rule r ∈ R(Ti,amax,amin) is chosen randomly

and independently (for object e) with probability pr; each such object e in Xk is then

replaced by the objects specified by the multi-set αr associated with the corresponding

randomly chosen rule r. This process is repeated in each generation, as long as the

current generation is not empty, and if for some k≥ 0, Xk = /0, then we say the process

terminates or becomes extinct.

For a BCSG, the strategies of the players can in general be arbitrary. Specifically,

at each generation, k, each player can, in principle, select actions for the objects in

Xk based on the entire past history, may use randomization (a mixed strategy), and

may make different choices for objects of the same type. The history of the pro-

cess up to time k− 1 is a forest of depth k− 1 that includes not only the populations

X0,X1, . . . ,Xk−1, but also the information regarding all the past actions and rules ap-

plied and the parent-child relationships between all the objects up to the generation of

k− 1. The history can be represented by a forest of depth k− 1, with internal nodes

labelled by rules and actions, and whose leaves at level k−1 form the population Xk−1.
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Thus, a strategy of player 1 (player 2, respectively) is a function that maps every finite

history (i.e., labelled forest of some finite depth as above) to a function that maps each

object e in the current population Xk (assuming that the history has depth k) to a proba-

bility distribution on the actions Γi
max (on the actions Γi

min, respectively), assuming that

object e has type Ti.

Let Ψ1,Ψ2 be the set of all strategies of players 1, 2, respectively. We say that

a strategy is deterministic if for every history it maps each object e in the current

population to a single action with probability 1 (in other words, it does not randomize

on actions). We say that a strategy is static if for each type Ti ∈ V , and for any object

e of type Ti, the player always chooses the same distribution on actions, irrespective of

the history. That is, a static strategy is not only memoryless (i.e., does not depend on

past history), but also uses the same distribution on actions for any two objects of the

same type that reside in the same generation.

Different objectives can be considered for the BCSG game model. To name two,

that are fundamental and are discussed in this thesis:

• extinction objective, where the aim of the players is to maximize/minimize the

extinction probability, i.e., the probability of reaching a generation Xk = /0, k≥ 0.

• (single-target) reachability objective (the focus of Chapter 3), where the aim of

the players is to maximize/minimize the probability of reaching a generation Xk,

k ≥ 0, that contains at least one object of a given target type Tf ∗ .

Let us note right away that there is a natural “duality” between the objectives of

optimizing reachability probability and that of optimizing extinction probability for

branching processes. This duality was previously detailed in [ESY18] for BSSGs.

The objective of optimizing the extinction probability of a BCSG, starting with an

object of a given type, can equivalently be rephrased as a “universal reachability”

objective (on a slightly modified BCSG), where the goal is to optimize the probability

of eventually reaching the target type on all paths starting at the root of the tree. To see

this, consider a modified BCSG with a target type, called death, and where for every

type Ti, every rule Ti
pr−→ /0 in the original BCSG is replaced with rule Ti

pr−→ death in the

modified BCSG. Likewise, the “universal reachability” objective can be rephrased as

the objective of optimizing the extinction probability (on a slightly modified BCSG).

To be more specific, consider a modified BCSG where for every type Ti, every rule

Ti
pr−→ αr, αr 6= /0, in the original BCSG is replaced by the rule Ti

pr−→ α′r in the modified

BCSG such that α′r is the same as αr but instead all copies of the target type are
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removed. Also, a new probabilistic type dead is introduced with a single rule dead 1−→
dead, and for every non-target type Ti and every rule Ti

pr−→ /0 in the original BCSG is

replaced by Ti
pr−→ dead in the modified BCSG.

By contrast, the reachability objective that we study in Chapter 3 is the “existential

reachability” objective of optimizing the probability of reaching the target type on

some path in the generated tree.

Despite this natural duality between the objectives of reachability and extinction,

there is a wide disparity between them, both in terms of the nature and existence of

optimal strategies, and in terms of computational complexity. For detailed past related

work on these objectives with respect to BPs and related models, see Section 2.6.

The BCSG reachability game can of course also be viewed as a “non-reachability”

game (by just reversing the roles of the players). It turns out this is useful to do, and

we will exploit it in crucial ways (and this was also exploited in [ESY18] for BMDPs

and BSSGs). So we provide some notation for this purpose.

Given an initial population µ ∈ Nn, with µ f ∗ = 0, and given an integer k ≥ 0, and

strategies σ ∈Ψ1,τ ∈Ψ2, let gk
σ,τ(µ) be the probability that the process does not reach

a generation with an object of type Tf ∗ in at most k steps, under strategies σ,τ and

starting from the initial population µ. To be more formal, this is the probability that

(Xl) f ∗ = 0 for all 0 ≤ l ≤ k. Similarly, let g∗σ,τ(µ) be the probability that (Xl) f ∗ = 0

for all l ≥ 0. We define gk(µ) = supσ∈Ψ1
infτ∈Ψ2 gk

σ,τ(µ) to be the value of the k-step

non-reachability game for the initial population µ, and g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ)

to be the value of the game under the non-reachability objective and for the initial

population µ. Section 3.1 demonstrates that these games are determined, meaning they

have a value where g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ(µ). This

implies that for every ε > 0, the player maximizing (minimizing) the non-reachability

probability has a strategy to guarantee probability≥ g∗(µ)−ε (respectively,≤ g∗(µ)+

ε), regardless of what the other player does. Similarly, for gk(µ).

In the case where the initial population µ is a single object of some given start type

Ti
2, then for the value of the game we write g∗i (or similarly, gk

i ), and when strategies

σ and τ are fixed, we write (g∗σ,τ)i. The collection of these values, namely the vector

g∗ of g∗i ’s, is called the vector of the non-reachability values of the game. We will

see that, having the vector of g∗i ’s, the non-reachability value for a starting population

2We can assume w.l.o.g. that the initial population consists of a single object of some given type Ti,
because for any initial population µ ∈ Nn of multiple objects, we can always add an auxiliary type Tj to

the set V , where Γ
j
max = {a}= Γ

j
min and the set R(Tj,a,a) consists of a single probabilistic rule Tj

1−→ µ.



16 Chapter 2. Background and Related Work

µ can be computed simply as g∗(µ) = f (g∗,µ) := ∏i(g∗i )
(µ)i (see Section 3.1). So

given a BCSG, the aim is to compute the vector of non-reachability values. As our

original objective is reachability, we point out that the vector of reachability values is

r∗ = 1−g∗ (where 1 is the all-1 vector), and hence the reachability game value r∗(µ),

starting with population µ, is r∗(µ) = 1−g∗(µ).

We study both qualitative and quantitative problems for the (non-)reachability ob-

jective in BCSGs. Let us define the problems in terms of the provided notation for non-

reachability probabilities and values. The qualitative almost-sure reachability problem

is the question of deciding, starting with an object of some given type Ti, whether there

exists a strategy τ∗ ∈ Ψ2 for the player minimizing the non-reachability probability

(i.e., maximizing the reachability probability) such that (g∗∗,τ∗)i = 0. The qualitative

limit-sure reachability problem is the question of deciding, starting with an object of

some given type Ti, whether g∗i = 0, or in other words, whether for every ε > 0 there

is a strategy τε ∈ Ψ2 such that ∀σ ∈ Ψ1 : (g∗σ,τε
)i ≤ ε. The quantitative problems di-

vide into decision and approximation problems. The quantitative reachability decision

problem is the question of deciding, starting with an object of some given type Ti and

given some rational value p ∈ [0,1], whether g∗i4p, where4∈ {<,≤,=,>,≥}. The

quantitative reachability approximation problem is the problem of, starting with an

object of some given type Ti and given a desired error ε > 0, computing a value v such

that |g∗i − v| ≤ ε.

Finally, note that any Branching Process, A , defines a global infinite-state Markov

chain, MA = (Q,∆), where the global states Q are labeled finite trees, T (i.e., each

global state is a finite sequence of generations X0,X1, . . . ,Xt , t ≥ 0), and a transition

(T , pT ,T ′,T ′)∈∆ exists for global states T ,T ′ ∈Q if and only if there is a sequence of

rules, β = 〈r1, . . . ,rz〉, such that tree T ′ can be obtained from tree T in one generation

step using β (i.e., such that T is a prefix of T ′ and, if the last generation in tree T
consists of objects of types 〈Ti1,Ti2, . . . ,Tiz〉, then the last generation in tree T ′ consists

of the objects of the types given by the collection of multi-sets αr1,αr2, . . . ,αrz , where

for every j∈ [z]: there exists a rule r j ∈R(Ti j) that satisfies Ti j

pr j−−→αr j). The probability

of the transition is pT ,T ′ := ∏ j∈[z] pr j .

2.3 Systems of Probabilistic Polynomial Equations

We will later (in Section 3.1) show how to associate with any given BCSG a system

of minimax probabilistic polynomial equations (minimax-PPS), x = P(x), for the non-
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reachability objective. This system will be constructed to have one variable xi and one

equation xi = Pi(x) for each type Ti other than the target type Tf ∗ .

In order to define these systems of equations, some shorthand notation will be

useful. We use xv to denote the monomial xv1
1 ∗ xv2

2 · · · ∗ xvn
n for an n-vector of variables

x = (x1, · · · ,xn) and a vector v ∈ Nn. Considering a multi-variate polynomial Pi(x) =

∑r∈R prxαr for some rational coefficients pr,r ∈ R, we will call Pi(x) a probabilistic
polynomial, if pr ≥ 0 for all r ∈ R and ∑r∈R pr ≤ 1.

Definition 2. A probabilistic polynomial system of equations (PPS), x = P(x), is a

system of n equations, xi = Pi(x), in n variables where for all i ∈ {1, . . . ,n}, Pi(x) is a

probabilistic polynomial.

A minimax probabilistic polynomial system of equations (minimax-PPS), x =

P(x), is a system of n equations in n variables x = (x1, . . . ,xn), where for each i ∈
{1, . . . ,n}, there is an associated MINIMAX-PROBABILISTIC-POLYNOMIAL Pi(x) :=

Val(Ai(x)). By this we mean that Pi(x) is defined to be, for each x ∈ Rn, the minimax

value of the two-player zero-sum matrix game given by a finite game payoff matrix

Ai(x) whose rows are indexed by the actions Γi
max, and whose columns are indexed by

the actions Γi
min, where, for each pair amax ∈ Γi

max and amin ∈ Γi
min, the matrix entry

Ai(x)(amax,amin) is given by a probabilistic polynomial qi,amax,amin(x). Thus, if ni = |Γi
max|

and mi = |Γi
min|, and if we assume w.l.o.g. that Γi

max = {1, . . . ,ni} and that Γi
min =

{1, . . . ,mi}, then Val(Ai(x)) is defined as the minimax value of the zero-sum matrix

game, given by the following payoff matrix:

Ai(x) =


qi,1,1(x) qi,1,2(x) . . . qi,1,mi(x)

qi,2,1(x) . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...

qi,ni,1(x) . . . . . . . . . . . qi,ni,mi(x)


with each qi, j,k(x) := ∑r∈R(Ti, j,k) prxαr being a probabilistic polynomial for the actions

pair j,k.

If for all i ∈ {1, . . . ,n}, either |Γi
min|= 1 or |Γi

max|= 1, then we call such a system

min-max-PPS. If for all i ∈ {1, . . . ,n}, |Γi
min|= 1 (respectively, if |Γi

max|= 1 for all i)

then we will call such a system a maxPPS (respectively, a minPPS). Finally, a PPS is

a minimax-PPS with both |Γi
min|= 1 = |Γi

max| for every i ∈ {1, · · · ,n}.

For computational purposes, we assume that all coefficients are rational and that

there are no zero terms in the probabilistic polynomials, and we assume the coefficients



18 Chapter 2. Background and Related Work

and non-zero exponents of each term are given in binary. We denote by |P| the total bit

encoding length of a system, x = P(x), under this representation.

As it will be later discussed, since P(·) defines a monotone function P : [0,1]n→
[0,1]n, it follows by Tarski’s theorem ([Tar55, Theorem 1]) that any such system

has both a Least Fixed Point (LFP) solution, q∗ ∈ [0,1]n, and a Greatest Fixed
Point(GFP) solution, g∗ ∈ [0,1]n. In other words, q∗ = P(q∗) and g∗ = P(g∗) and

moreover, for any s∗ ∈ [0,1]n such that s∗ = P(s∗), we have q∗ ≤ s∗ ≤ g∗ (coordinate-

wise inequality).

Definition 3. A (possibly randomized) policy for the max (min) player in a minimax-

PPS, x = P(x), is a function that assigns a probability distribution to each variable xi

such that the support of the distribution is a subset of Γi
max (Γi

min, respectively), where

these now denote the possible actions (i.e., choices of rows and columns) available for

the respective player in the matrix game Ai(x) that defines Pi(x).

Intuitively, a policy is the same as a static strategy in the corresponding BCSG.

Definition 4. For a minimax-PPS, x = P(x), and policies σ and τ for the max and

min players, respectively, we write x = Pσ,τ(x) for the PPS obtained by fixing both

these policies. We write x = Pσ,∗(x) for the minPPS obtained by fixing σ for the max

player, and x = P∗,τ(x) for the maxPPS obtained by fixing τ for the min player. More

specifically, for policy σ for the max player, we define the minPPS, x = Pσ,∗(x), as

follows: for all i ∈ [n], (Pσ,∗(x))i := min{sk : k ∈ Γi
min}, where sk := ∑ j∈Γi

max
σ(xi, j)∗

qi, j,k(x), where σ(xi, j) is the probability that the fixed policy σ assigns to action j ∈
Γi

max in variable xi. We similarly define x = P∗,τ(x) and x = Pσ,τ(x).

For a minimax-PPS, x = P(x), and a (possibly randomized) policy σ for the max

player, we use q∗σ,∗ and g∗σ,∗ to denote the LFP and GFP solution vectors of the cor-

responding minPPS, x = Pσ,∗(x), respectively. Likewise we use q∗∗,τ and g∗∗,τ to denote

the LFP and GFP solution vectors of the maxPPS, x = P∗,τ(x), and we use q∗σ,τ and

g∗σ,τ to denote the LFP and GFP solution vectors of the PPS, x = Pσ,τ(x).

Note: we overload notations such as (g∗σ,∗)i and (g∗∗,τ)i to mean slightly different

things, depending on whether σ and τ are static strategies (policies), or are more gen-

eral non-static strategies. Specifically, let Ei ∈ Nn denote the unit vector which is 1

in the i-th coordinate and 0 elsewhere. When τ ∈ Ψ2 is a general non-static strategy

we use the notation (g∗∗,τ)i := g∗∗,τ(Ei) = supσ∈Ψ1
g∗σ,τ(Ei), i.e., (g∗∗,τ)i will denote the

optimal non-reachability probability starting with one object of type Ti and under fixed

strategy τ for the min player. We likewise define (g∗σ,∗)i.
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If, however, τ is a static strategy (policy), then (g∗∗,τ)i will denote both the afore-

mentioned and the i-th coordinate in the GFP of maxPPS, x = P∗,τ(x), which as later

discussed happen to be the same thing. Similarly, if σ is static. It will typically be clear

from the context which interpretation of (g∗∗,τ)i is intended.

Definition 5. For a minimax-PPS, x = P(x), a policy σ∗ is called optimal for the max

player for the LFP (respectively, the GFP) if q∗
σ∗,∗ = q∗ (respectively, g∗

σ∗,∗ = g∗).

An optimal policy τ∗ for the min player for the LFP and GFP, respectively, is de-

fined similarly.

For ε > 0, a policy σ′ for the max player is called ε-optimal for the LFP (respec-

tively, the GFP), if ||q∗
σ′,∗− q∗||∞ ≤ ε (respectively, ||g∗

σ′,∗− g∗||∞ ≤ ε). An ε-optimal

policy τ′ for the min player is defined similarly.

For convenience in proofs throughout the thesis and to simplify the structure of the

matrices involved in the minimax-probabilistic-polynomials, Pi(x), we shall observe

that minimax-PPSs can always be cast in the following normal form.

Definition 6. A minimax-PPS in simple normal form (SNF), x = P(x), is a system of

n equations in n variables {x1, · · · ,xn}, where each Pi(x) for i = 1,2, . . . ,n is one of

three forms:

• FORM L: Pi(x) = ai,0 +∑
n
j=1 ai, jx j, where for all j, ai, j ≥ 0, and ∑

n
j=0 ai, j ≤ 1.

• FORM Q: Pi(x) = x jxk for some j,k.

• FORM M: Pi(x) =Val(Ai(x)), where Ai(x) is a (ni×mi) matrix, such that for all

amax ∈ [ni] and amin ∈ [mi], the entry Ai(x)(amax,amin) ∈ {x1, . . . ,xn}∪{1}.

(The reason we also allow “1” as an entry in the matrices Ai(x) will become

clear later in the context of the algorithms.)

We shall often assume a minimax-PPS in its SNF form, and say that a variable xi

is “of form/type” L, Q, or M, meaning that Pi(x) has the corresponding form. The

following proposition shows that we can efficiently convert any minimax-PPS into its

SNF-form.

Proposition 2.1 (cf. [EY09, ESY18]). Every minimax-PPS, x = P(x), can be trans-

formed in P-time to an “equivalent” minimax-PPS, y = Q(y), in SNF form, such that

|Q| ∈ O(|P|). More precisely, the variables x are a subset of the variables y, and both
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the LFP and GFP of x = P(x) are, respectively, the projection of the LFP and GFP of

y = Q(y), onto the variables x, and furthermore an optimal (respectively, ε-optimal)

policy for the LFP (respectively, GFP) of x = P(x) can be obtained in P-time from an

optimal (respectively, ε-optimal) policy for the LFP (respectively, GFP) of y = Q(y).

Proof. We can easily convert, in P-time, any minimax-PPS into SNF form, using the

following procedure.

• For each equation xi = Pi(x) := Val(Ai(x)), for each probabilistic polynomial

qi, j,k(x) on the right-hand side that is not a variable, add a new variable xd , re-

place qi, j,k(x) with xd in Pi(x), and add the new equation xd = qi, j,k(x).

• For each equation xi = Pi(x) = ∑
m
j=1 p jxα j , where Pi(x) is a probabilistic polyno-

mial that is not just a constant or a single monomial, replace every (non-constant)

monomial xα j on the right-hand side that is not a single variable by a new vari-

able xi j and add the equation xi j = xα j .

• For each variable xi that occurs in some polynomial with exponent higher than

1, introduce new variables xi1, . . . ,xik where k is the logarithm of the highest

exponent of xi that occurs in P(x), and add equations xi1 = x2
i , xi2 = x2

i1, . . . ,xik =

x2
ik−1

. For every occurrence of a higher power xl
i, l > 1, of xi in P(x), if the binary

representation of the exponent l is ak . . .a2a1a0, then we replace xl
i by the product

of the variables xi j such that the corresponding bit a j is 1, and xi if a0 = 1. After

we perform this replacement for all the higher powers of all the variables, every

polynomial of total degree > 2 is just a product of different variables.

• If a polynomial Pi(x) = x j1 . . .x jm in the current system is the product of m > 2

variables, then add m−2 new variables xi1, . . . ,xim−2 , set Pi(x) = x j1xi1 , and add

the equations xi1 = x j2xi2, xi2 = x j3xi3, . . . ,xim−2 = x jm−1x jm .

Now all equations are of the form L, Q, or M.

The above procedure allows us to convert any minimax-PPS, x = P(x), into one

in SNF-form by introducing O(|P|) new variables and blowing up the size of P by a

constant factor O(1). It is clear that both the LFP and the GFP of x = P(x) arise as

the projections of the LFP and GFP of y = Q(y) onto the x variables. Furthermore,

there is an obvious (and easy to compute) bijection between policies for the resulting

SNF-form minimax-PPS and the original minimax-PPS.
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Thus from now on, and for the rest of this thesis unless explicitly specified, we may

assume if needed, without loss of generality, that all minimax-PPSs are in SNF normal

form.

Definition 7. The dependency graph of a minimax-PPS, x = P(x), is a directed graph

that has one node xi for each variable xi, and contains an edge (xi,x j) if x j appears in

Pi(x). The dependency graph of a BCSG has one node Ti for each type Ti, and contains

an edge (Ti,Tj) if there is a pair of actions amax ∈ Γi
max,amin ∈ Γi

min and a rule Ti
pr−→ αr

in R(Ti,amax,amin) such that (αr) j ≥ 1.

2.4 Ordered Branching Processes

This section introduces background and definitions for Ordered Branching Markov De-

cision Processes (OBMDPs) and the restricted model of Ordered Branching Processes

(OBPs), and for the analysis of multi-objective reachability in these models. First, we

define OBMDPs in a general way that combines both control and probabilistic rules

at each non-terminal, and that allows rules to have an arbitrarily-long string of non-

terminals on their right-hand side. Then we show that any OBMDP can be converted

efficiently to an “equivalent”3 one in “normal” form.

Definition 8. An Ordered Branching Markov Decision Process (OBMDP), A , is a

1-player controlled stochastic process, represented by a tuple A = (V,Σ,Γ,R), where

V = {T1, . . . ,Tn} is a finite set of non-terminals, and Σ is a finite non-empty action

alphabet. For each i ∈ [n], Γi ⊆ Σ is a finite non-empty set of actions for non-terminal

Ti ∈V , and for each a ∈ Γi, R(Ti,a) is a finite set of probabilistic rules associated with

the pair (Ti,a). Each rule r ∈ R(Ti,a) is a triple, denoted by Ti
pr−→ sr, where sr ∈ V ∗

is a (possibly empty) ordered sequence (string) of non-terminals and pr ∈ (0,1]∩Q
is the positive probability of the rule r (which we assume to be a rational number

for computational purposes). We assume that for each non-terminal Ti ∈ V and each

a ∈ Γi, the rule probabilities in R(Ti,a) sum to 1, i.e., ∑r∈R(Ti,a) pr = 1.

We denote by |A | the total bit encoding length of the OBMDP. If |Γi| = 1 for

all non-terminals Ti ∈ V , then the model is called an Ordered Branching Process
(OBP). Adding a second player (as an adversary), similarly to Section 2.2, we ob-

tain an Ordered Branching Simple (i.e., turn-based) Stochastic Game (OBSSG)

3Equivalent w.r.t. all (multi-objective) reachability objectives we consider.



22 Chapter 2. Background and Related Work

or an Ordered Branching Concurrent Stochastic Game (OBCSG), depending on

whether, respectively, the two players control disjoint sets of non-terminals or they

both simultaneously and independently control each non-terminal.

In order to simplify the structure of the OBMDP model and to facilitate the proofs

throughout the paper, we observe a simplified “equivalent” normal form for OBMDPs

(Proposition 2.3 later on shows that OBMDPs can always be translated efficiently into

this normal form). We extend the notation for rules in the model to adopt actions and

not only probabilities, i.e., we will be using Ti
a−→ Tj, where a ∈ Γi, to denote a rule

where a non-terminal Ti generates as a child (under player’s choice of action a ∈ Γi) a

copy of non-terminal Tj (with probability 1).

Definition 9. An OBMDP is in simple normal form (SNF) if each non-terminal Ti is

in one of three possible forms:

• L-FORM: Ti is a “probabilistic” (or “linear”) non-terminal (i.e., the player

has no choice of actions), and the associated rules for Ti are given by: Ti
pi,0−−→

∅,Ti
pi,1−−→ T1, . . . ,Ti

pi,n−−→ Tn, where for all 0≤ j ≤ n, pi, j ≥ 0 denotes the proba-

bility of each rule, and ∑
n
j=0 pi, j = 1.

• Q-FORM: Ti is a “branching” (or “quadratic”) non-terminal, with a single

associated rule (and no associated actions) of the form Ti
1−→ Tj Tr.

• M-FORM: Ti is a “controlled” non-terminal, with a non-empty set of associated

actions Γi = {a1, . . . ,ami} ⊆ Σ, and the associated rules have the form Ti
a1−→

Tj1, . . . ,Ti
ami−−→ Tjmi

.4

A derivation for an OBMDP, starting at some start non-terminal Tstart ∈ V , is a

(possibly infinite) labeled ordered tree, X = (B,s), defined as follows. The set of nodes

B ⊆ {l,r,u}∗ of the tree, X , is a prefix-closed subset of {l,r,u}∗.5 So each node in B

is a string over {l,r,u}, and if w = w′a ∈ B, where a ∈ {l,r,u}, then w′ ∈ B. As usual,

when w ∈ B and w′ = wa ∈ B, for some a ∈ {l,r,u}, we call w the parent of w′, and

we call w′ a child of w in the tree. A leaf of B is a node w ∈ B that has no children in

B. Let LB ⊆ B denote the set of all leaves in B. The root node is the empty string e

(note that B is prefix-closed, so e ∈ B). The function s : B→V ∪{∅} assigns either a

non-terminal or the empty symbol as a label to each node of the tree, and must satisfy

4We assume, without loss of generality, that for 0≤ t < t ′ ≤ mi, Tjt 6= Tjt′ .
5Here ‘l’, ‘r’, and ‘u’, stand for ‘left’, ‘right’, and ‘unique’ child, respectively.
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the following conditions: Firstly, s(e) = Tstart , in other words the root must be labeled

by the start non-terminal; Inductively, if for any non-leaf node w ∈ B \LB we have

s(w) = Ti, for some Ti ∈V , then:

• if Ti is a Q-form (branching) non-terminal, whose associated unique rule is Ti
1−→

Tj Tj′ , then w must have exactly two children in B, namely wl ∈ B and wr ∈ B,

and moreover we must have s(wl) = Tj and s(wr) = Tj′ .

• if Ti is a L-form (probabilistic) non-terminal, then w must have exactly one child

in B, namely wu, and it must be the case that either s(wu) = Tj, where there

exists some rule Ti
pi, j−−→ Tj with a positive probability pi, j > 0, or else s(wu) =∅,

where there exists a rule Ti
pi,0−−→∅, with an empty right-hand side, and a positive

probability pi,0 > 0.

• if Ti is a M-form (controlled) non-terminal, then w must have exactly one child in

B, namely wu, and it must be the case that s(wu) = Tjz , where there exists some

rule Ti
az−→ Tjz , associated with some action az ∈ Γi, having non-terminal Ti as its

left-hand side.

A derivation X = (B,s) is finite if the set B is finite. A derivation X ′ = (B′,s′) is

called a subderivation of a derivation X = (B,s), if B′ ⊆ B and s′ = s|B′ (i.e., s′ is the

function s, restricted to the domain B′). We use X ′ � X to denote the fact that X ′ is a

subderivation of X .

A complete derivation, or a play, X = (B,s), is by definition a derivation in which

for all leaves w ∈ LB, s(w) =∅. For a play X = (B,s), and a node w ∈ B, we define the

subplay of X rooted at w, to be the play Xw = (Bw,sw), where Bw = {w′ ∈ {l,r,u}∗ |
ww′ ∈ B} and sw : Bw→V ∪{∅} is given by, sw(w′) := s(ww′) for all w′ ∈ Bw.6

Consider any derivation X = (B,s), and any node w = w1 . . .wm ∈ B, where wt ∈
{l,r,u} for all t ∈ [m]. We define the ancestor history of w to be a sequence hw ∈
V ({l,r,u} × V )∗, given by hw := s(e)(w1,s(w1))(w2,s(w1w2))(w3,s(w1w2w3)) . . .

(wm,s(w1w2 . . .wm)). In other words, the ancestor history hw of node w specifies the

sequence of moves that determines each ancestor of w (starting at root node e and

including w itself), and also specifies the sequence of non-terminals that label each

ancestor of w.
6To avoid confusion, note that subderivation and subplay have very different meanings. Saying

derivation X is a “subderivation” of derivation X ′, means that in a sense X is a “prefix” of X ′, as an
ordered tree. Saying play X is a subplay of play X ′, means X is a “suffix” of X ′, more specifically X is
a subtree rooted at a specific node of X ′.
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For an OBMDP, A , a sequence h ∈V ({l,r,u}×V )∗ is called a valid ancestor his-

tory if there is some derivation X = (B′,s′) of A , and node w ∈ B′ such that h = hw.

We define the current non-terminal of such a valid ancestor history h to be s′(w). In

other words, it is the non-terminal that labels the last node of the ancestor history h.

Let current(h) denote the current non-terminal of h. Let HA ⊆ V ({l,r,u}×V )∗ de-

note the set of all valid ancestor histories of A . A valid ancestor history h ∈HA is said

to belong to the controller, if current(h) is a M-form (controlled) non-terminal. Let

HC
A denote the set of all valid ancestor histories of the OBMDP, A , that belong to the

controller.

For an OBMDP, A , a general history of the OBMDP process at time t ∈ N is a

finite derivation (i.e., a finite labeled ordered tree) of depth t, which also contains the

information regarding all the past actions and rules applied up to the “generation” of

t. A general strategy for the controller is a function that maps every finite deriva-

tion, X = (B,s), to a function that maps each leaf w ∈ LB, such that s(w) 6= ∅ and

s(w) is a M-form non-terminal, to a probability distribution on the actions Γi, assum-

ing s(w) = Ti. Note that the strategy can choose different distributions on actions at

different occurrences of the same non-terminal in the derivation tree, even when these

occurrences happen to be “siblings” in the tree. We also define another (restricted)

notion of a strategy, utilizing the (weaker) notion of an ancestor history. An ancestral

strategy for the controller is a function, σ : HC
A → ∆(Σ), from the set of valid ancestor

histories belonging to the controller, to probability distributions on actions, such that

moreover for any h ∈ HC
A , if current(h) = Ti, then σ(h) ∈ ∆(Γi). (In other words, the

probability distribution must have support only on the actions available at the current

non-terminal.)

Now is the moment to clarify something important. There is a reason why we have

the restricted definition of an ancestral strategy in the context of OBMDPs. As later

discussed in subsection 2.4.1, computing the optimal (single-target) reachability prob-

abilities in OBMDPs is equivalent to computing the optimal (single-target) reachability

probabilities in BMDPs. Same holds for the objective of extinction (called termination

in the model of OBMDPs). These equivalences hold also under the restriction to ances-

tral strategies in the context of OBMDPs (the reasons will become clear in subsection

2.4.1). Furthermore, we point out that even under the stronger and more general no-

tion of a strategy, where the history is the entire finite tree up to the current generation,

it was shown in [ESY18, Example 3.2] that there may be no optimal strategy for the

player maximizing the reachability probability.
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Later in Section 5.1, we pose some open problems related to the general notion of

a strategy in the context of OBMDPs. But for now we make the following restriction

for OBMDPs.

From now on in the rest of the thesis, every mention of a “strategy” in the context
of OBMDPs will refer to the notion of an ancestral strategy. That is, for the rest of
thesis, for OBMDPs we restrict ourselves to ancestral strategies. By contrast, in the

context of BMDPs, BSSGs and BCSGs, we assume that “strategies” have as a history

the entire finite tree up to the “current generation”, as defined in Section 2.2.

For an OBMDP, A , let Ψ be the set of all strategies (we now mean ancestral strate-

gies). We say σ ∈ Ψ is deterministic if for all h ∈ HC
A , σ(h) puts probability 1 on a

single action. We say σ ∈ Ψ is static if for each M-form (controlled) non-terminal Ti,

there is some distribution δi ∈ ∆(Γi), such that for any h ∈ HC
A with current(h) = Ti,

σ(h) = δi. In other words, a static strategy σ plays, for each M-form non-terminal Ti,

exactly the same distribution on actions at every occurrence of Ti in the tree (play),

regardless of the ancestor history.

For an OBMDP, A , fixing a start non-terminal Ti, and fixing a strategy σ for the

controller, determines a stochastic process that generates a random play, as follows.

The process generates a sequence of finite derivations, X0, X1, X2, X3, . . ., one for each

“generation”, such that for all t ∈ N, Xt � Xt+1. X0 = (B0,s0) is the initial derivation,

at generation 0, and consists of a single (root) node B0 = {e}, labeled by the start non-

terminal, s0(e) = Ti.7 Inductively, for all t ∈ N the derivation Xt+1 = (Bt+1,st+1) is

obtained from Xt = (Bt ,st) as follows. For each leaf w ∈ LBt :

• if st(w) = Ti is a Q-form (branching) non-terminal, whose associated unique rule

is Ti
1−→ Tj Tj′ , then w must have exactly two children in Bt+1, namely wl ∈ Bt+1

and wr ∈ Bt+1, and moreover we must have st+1(wl) = Tj and st+1(wr) = Tj′ .

• if st(w)= Ti is a L-form (probabilistic) non-terminal, then w has exactly one child

in Bt+1, namely wu, and for each rule Ti
pi, j−−→ Tj with pi, j > 0, the probability that

st+1(wu) = Tj is pi, j, and likewise when Ti
pi,0−−→ ∅ is a rule with pi,0 > 0, then

st+1(wu) =∅ with probability pi,0.

7We can assume, without loss of generality, that the initial generation consists of a single given
root non-terminal, because for any given collection µ ∈ V ∗ of multiple roots, we can always add an
auxiliary non-terminal Tf to the original OBMDP, where Γ f = {a} and the set R(Tf ,a) contains a single

probabilistic rule, Tf
1−→ µ.
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• if st(w) = Ti is a M-form (controlled) non-terminal, then w has exactly one child

in Bt+1, namely wu, and for each action az ∈ Γi, with probability σ(hw)(az),

st+1(wu) = Tjz , where Ti
az−→ Tjz is the rule associated with az.

There are no other nodes in Bt+1. In particular, if st(w) =∅, then in Bt+1 the node

w has no children. This defines a stochastic process, X0,X1,X2, . . ., where Xt � Xt+1,

for all t ∈ N, and such that there is a unique play, X = limt→∞ Xt , such that Xt � X for

all t ∈ N.

In this sense, the random process defines a probability space of plays. To be more

precise, let A be an OBP and, for any finite derivation (tree) X , let CA(X) := {X ′ |
X ′ is a derivation and X � X ′} be the cylinder over X , i.e., CA(X) is the set of deriva-

tions or plays X ′ such that X is a subderivation of X ′. Then A defines the probability

space (Ω,F,P), where the sample space Ω is the set of plays. The σ-algebra, F⊆ 2Ω, of

measurable events associated with plays of OBP, A , is the σ-algebra generated by the

cylinders {CA(X) | X is a finite derivation}. The probability measure, P : F→ [0,1],

is the uniquely determined measure by specifying the probabilities of the cylinders,

where each such probability, P[CA(X)], is simply the product of all rules in the finite

derivation X .

For our purposes, an objective is specified by a property (i.e., a measurable set),

F , of plays, whose probability the player wishes to optimize (maximize or minimize).

Different objectives can be considered for OBMDPs (and for OBPs and their game

extensions). Section 2.2 defined the objectives of termination (called extinction for

BPs) and (single-target) reachability, and in subsection 2.4.1 we will observe that in

fact under both objectives the models of BPs and OBPs are equivalent. In the ter-

mination objective, the aim of the player is to optimize (maximize or minimize) the

probability that the process terminates, i.e., that the generated play is finite; and in the

(single-target) reachability objective, the goal of the player is to optimize (maximize

or minimize) the probability of the play containing a given target non-terminal.

Chapter 4 analyses multi-objective reachability, which is a natural extension of the

previously studied (single-target) reachability. In the multi-objective setting:

• we have multiple given target non-terminals, and the goal is to optimize each

of the respective probabilities of achieving multiple given objectives, each one

being a Boolean combination (using union and intersection) of reachability and

non-reachability properties over different target non-terminals. Of course, there

may be tradeoffs between optimizing the probabilities of achieving the different
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objectives.

To formalize things, we need some notation. Given a target non-terminal Tq, q∈ [n],
let Reach(Tq) denote the set of plays that contain some copy (some node) of non-

terminal Tq. Respectively, let Reach{(Tq) denote the complement event, i.e., the set of

plays that do not contain a node labelled by non-terminal Tq. For any measurable set

(i.e., property) of plays, F , and for any strategy σ for the player and a given starting

non-terminal Ti, we denote by Prσ
Ti
[F ] the probability that, starting at a non-terminal Ti

and under strategy σ, the generated play is in the set F . Let Pr∗Ti
[F ] := supσ∈Ψ Prσ

Ti
[F ].

The quantitative multi-objective decision problem for OBMDPs is the following

problem. We are given an OBMDP, a starting non-terminal Ts ∈V , a collection of ob-

jectives (properties) F1, . . . ,Fk and corresponding probabilities p1, . . . , pk. The prob-

lem asks to decide whether there exists a strategy σ′ ∈Ψ such that
∧

i∈[k]Prσ′
Ts
[Fi]4i pi

holds, where 4i ∈ {<,≤,=,≥,>}. Observe that the clauses (i.e., the probability

queries Prσ′
Ts
[Fi]4i pi, for any i∈ [k]) with4i =≤ and4i =≥ inequalities can be con-

verted to ask whether either Prσ′
Ts
[Fi] = pi, or Prσ′

Ts
[Fi]< pi (respectively, Prσ′

Ts
[Fi]> pi).

Moreover, we could in general allow for any Boolean combination of clauses (not just

a conjunction). In any case, the whole query can be put into a disjunctive normal

form and the quantification over strategies can be pushed inside the disjunction. So

any multi-objective query can eventually be transformed into a disjunction of finite

number of (smaller) queries. (Note that, of course, this number can be exponential in

the size of the original multi-objective query.) Hence, we can define a multi-objective

decision problem only as a conjunction of equality and strict inequality queries.

One could also ask the limit version of this question. For instance, whether for all

ε > 0, there exists a strategy σ′ε ∈Ψ, such that
∧

i∈[k]Prσ′ε
Ts
[Fi]≥ pi− ε. Moreover, we

can also ask quantitative questions regarding computing (or approximating) the Pareto

curve for the multiple objectives, but we will not consider such questions in this thesis

(Section 5.1 leaves such questions as future work).

The qualitative almost-sure multi-objective decision problem for OBMDPs is the

special case where pi = {0,1} for each i ∈ [k]. In other words, this problem is phrased

as asking whether, starting at a given non-terminal Ts ∈ V , there exists a strategy σ ∈
Ψ such that

∧
i∈[k]Prσ

Ts
[Fi]4i{0,1} (where as mentioned 4i ∈ {<,=,>}). We can

simplify the expression by transforming clauses of the form Prσ
Ts
[Fi]> 0 and Prσ

Ts
[Fi] =

0 into Prσ
Ts
[F {i ]< 1 and Prσ

Ts
[F {i ] = 1, respectively, where each F {i is the complement

objective of Fi.

Then, for a strategy σ ∈ Ψ and a starting non-terminal Ts ∈ V , the expression
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can be rephrased as:
∧

i∈[k1]Prσ
Ts
[Fi] < 1 ∧

∧
i∈[k2]Prσ

Ts
[Fi] = 1, where k1 + k2 = k.

And by Proposition 2.2(1.) below, the qualitative (almost-sure) multi-objective de-

cision problem reduces to asking whether there exists a strategy σ′ ∈ Ψ such that∧
i∈[k1]Prσ′

Ts
[Fi]< 1∧Prσ′

Ts
[
⋂

i∈[k2]Fi] = 1.

The qualitative limit-sure multi-objective decision problem for OBMDPs asks to

decide whether, for every ε > 0, there exists a strategy σ′ε ∈Ψ for the player such that∧
i∈[k]Prσ′ε

Ts
[Fi] ≥ 1− ε. Again by Proposition 2.2(5.) below, it follows that the quali-

tative limit-sure multi-objective decision problem can be rephrased as asking whether,

for all ε > 0, there exists a strategy σ′ε ∈Ψ such that Prσ′ε
Ts
[
⋂

i∈[k]Fi]≥ 1− ε.

The following Proposition shows scenarios where the qualitative multi-objective

problem for OBMDPs can be rephrased as a qualitative single-objective problem,

where the single objective is a Boolean combination of the given multiple objectives.

Proposition 2.2. Given an OBMDP, with a starting non-terminal Ts ∈V and a collec-

tion F1, . . . ,Fk of k objectives:

(1.) ∃σ′ ∈Ψ :
∧

i∈[k]Prσ′
Ts
[Fi] = 1 if and only if ∃σ′ ∈Ψ : Prσ′

Ts
[
⋂

i∈[k]Fi] = 1.

(2.) ∃σ′ ∈Ψ :
∨

i∈[k]Prσ′
Ts
[Fi]< 1 if and only if ∃σ′ ∈Ψ : Prσ′

Ts
[
⋂

i∈[k]Fi]< 1.

(3.) ∃σ′ ∈Ψ :
∧

i∈[k]Prσ′
Ts
[Fi] = 0 if and only if ∃σ′ ∈Ψ : Prσ′

Ts
[
⋃

i∈[k]Fi] = 0.

(4.) ∃σ′ ∈Ψ :
∨

i∈[k]Prσ′
Ts
[Fi]> 0 if and only if ∃σ′ ∈Ψ : Prσ′

Ts
[
⋃

i∈[k]Fi]> 0.

Moreover, in each of the equivalence statements (1.) - (4.), a witness strategy σ′

for one of the sides is also a witness strategy for the other.

(5.) Similar equivalence holds for the qualitative limit-sure multi-objective problem:

∀ε > 0,∃σ′ε ∈ Ψ :
∧

i∈[k]Prσ′ε
Ts
[Fi] ≥ 1− ε if and only if ∀ε > 0,∃σ′ε ∈ Ψ :

Prσ′ε
Ts
[
⋂

i∈[k]Fi]≥ 1− ε.

And from a witness strategy σ′ε (for ε > 0) for one of the two sides a witness

strategy σ′′
ε′ (for a potentially different ε′ > 0) can be obtained for the other.

Proof.

(1.). For one direction of the statement, suppose there is a strategy σ′ ∈ Ψ for the

player such that Prσ′
Ts
[
⋂

i∈[k]Fi] = 1, i.e., almost-surely all objectives are satisfied in

the same generated play. It follows that Prσ′
Ts
[
⋃

i∈[k]F {i ] = 0. Clearly, for each i ∈ [k],

Prσ′
Ts
[F {i ] = 0 and hence, for each i ∈ [k] : Prσ′

Ts
[Fi] = 1.
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Showing the other direction, suppose that there exists a strategy σ′ ∈ Ψ for the

player such that
∧

i∈[k]Prσ′
Ts
[Fi] = 1. Then, ∀i ∈ [k], Prσ′

Ts
[F {i ] = 0. By the union bound,

Prσ′
Ts
[
⋃

i∈[k]F {i ] = 0 and, hence, Prσ′
Ts
[
⋂

i∈[k]Fi] = 1.

(2.). For one direction of the statement, suppose there is a strategy σ′ ∈ Ψ such that

Prσ′
Ts
[
⋂

i∈[k]Fi]< 1. Then Prσ′
Ts
[
⋃

i∈[k]F {i ]> 0. Clearly, ∃i′ ∈ [k] such that Prσ′
Ts
[F {i′ ]> 0

(otherwise, by the union bound the probability of the union of the events is 0). Hence,∨
i∈[k]Prσ′

Ts
[Fi]< 1.

As for the other direction, suppose there is a strategy σ′ ∈Ψ and some i′ ∈ [k] such

that Prσ′
Ts
[Fi′]< 1. Then Prσ′

Ts
[
⋂

i∈[k]Fi]≤ Prσ′
Ts
[Fi′]< 1.

(3.) and (4.) follow directly from (1.) and (2.), respectively.

(5.). For one direction of the statement, suppose that for every ε > 0 there is a strat-

egy σ′ε ∈ Ψ such that Prσ′ε
Ts
[
⋂

i∈[k]Fi] ≥ 1− ε, i.e., limit-surely (with probability arbi-

trarily close to 1) all objectives are satisfied in the same generated play. It follows

that Prσ′ε
Ts
[
⋃

i∈[k]F {i ] ≤ ε. Clearly, for each i ∈ [k], Prσ′ε
Ts
[F {i ] ≤ ε, and hence, for each

i ∈ [k] : Prσ′ε
Ts
[Fi]≥ 1− ε.

Showing the other direction, suppose that for every ε > 0 there exists a strategy

σ′ε ∈ Ψ such that
∧

i∈[k]Prσ′ε
Ts
[Fi] ≥ 1− ε. Then, for every i ∈ [k], Prσ′ε

Ts
[F {i ] ≤ ε. By

the union bound, Prσ′ε
Ts
[
⋃

i∈[k]F {i ]≤ kε, and hence, Prσ′ε
Ts
[
⋂

i∈[k]Fi]≥ 1− kε. So for any

ε > 0, let ε′ := ε/k and σε := σ′
ε′ , where σ′

ε′ satisfies
∧

i∈[k]Pr
σ′

ε′
Ts

[Fi]≥ 1−ε′ = 1−ε/k.

Then it follows that Prσε

Ts
[
⋂

i∈[k]Fi]≥ 1− kε′ = 1− ε.

In Chapter 4, we address certain cases of the qualitative multi-objective reachabil-

ity decision problem for OBMDPs. We are given a collection of generalized reach-

ability objectives F1, . . . ,Fk, where each such generalized reachability objective Fi,

i ∈ [k], represents a set of plays described by a Boolean combination over the sets (of

plays) Reach(Tq), Tq ∈ V , using the set operations union, intersection and comple-

mentation. That is, each generalized reachability objective Fi, i ∈ [k], is of the form⋂
t∈[zi](

⋃
t ′∈[zi,t ]Φ(Tqi,t,t′ )), where Φ ∈ {Reach,Reach{}, Tqi,t,t′ ∈V and the values zi,zi,t

are part of the objective Fi.

We will show that, even in the case of having a single objective that asks to reach

multiple target non-terminals from a given set in the same play, the almost-sure and

limit-sure questions do not coincide and we give separate algorithms for detecting

almost-sure and limit-sure multi-target reachability. (As later explained in Section



30 Chapter 2. Background and Related Work

2.6, by combining results [ESY18, Theorems 9.3,9.4] for BMDPs and Proposition 2.4,

then in the case of single-target reachability the almost-sure and limit-sure questions

for OBMDPs do coincide.)

The following example indeed illustrates that there are OBMDPs where, even

though the supremum probability of reaching all target non-terminals from a given

set in the same play is 1, there may not exist a strategy for the player that actually

achieves probability exactly 1. Recall that we have already restricted ourselves to an-

cestral strategies in the context of OBMDPs.

Example 2.1. (The qualitative almost-sure and limit-sure multi-target reachability

problems for OBMDPs do not coincide.) Consider the following OBMDP with non-

terminals set {M,A,R1,R2}, where R1 and R2 are the target non-terminals. M is the

only “controlled” non-terminal, and the rules are:

M a−→M A A
1/2−−→ R1

M b−→ R2 A
1/2−−→∅

The supremum probability, Pr∗M[Reach(R1)∩Reach(R2)], starting at a non-terminal

M, of reaching both targets is 1. To see this, for any ε> 0, let the strategy keep choosing

deterministically action a until l := dlog2(
1
ε
)e copies of non-terminal A have been cre-

ated, i.e., until the play reaches generation l. Then in the (unique) copy of non-terminal

M in generation l the strategy switches deterministically to action b. The probability

of reaching target R2 is 1. The probability of reaching target R1 is 1−2−l ≥ 1−ε. The

player can delay arbitrarily long the moment when to switch from choosing action a to

choosing action b for a non-terminal M. Hence, Pr∗M[Reach(R1)∩Reach(R2)] = 1.

However, @σ ∈ Ψ : Prσ
M[Reach(R1)∩Reach(R2)] = 1. To see this, note that if

the strategy ever puts a positive probability on action b in any “round”, then with a

positive probability target R1 will not be reached in the play. So, to reach target R1

with probability 1, the strategy must deterministically choose action a forever, from

every occurrence of non-terminal M. But if it does this, the probability of reaching

target R2 would be 0.

The following Proposition is easy to prove (similar to Proposition 2.1 and [ESY18,

Proposition 2.6]) and shows that we can always efficiently convert an OBMDP into its

SNF form (Definition 9).
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Proposition 2.3. Every OBMDP, A , can be converted in P-time to an “equivalent”

OBMDP, A ′, in SNF form, such that |A ′| ∈ O(|A |). More precisely, the non-terminals

V = {Ti | i ∈ [n]} of A are a subset of the non-terminals of A ′, and any strategy σ of

A can be converted to a strategy σ′ of A ′ (and vice versa), such that starting at any

non-terminal Ts ∈V , and for any generalized reachability objective F (with respect to

the non-terminals in A), using the strategies σ and σ′ in A and A ′, respectively, the

probability that the resulting play is in the set of plays, F , is the same in both A and

A ′.

Proof. For a rule Ti
pr−→ sr, sr ∈ V ∗, in A and a non-terminal Tj ∈ V , let mr, j := |{d |

(sr)d = Tj, 1 ≤ d ≤ |sr|}| be the number of copies of Tj in string sr. We use the

following procedure to convert, in P-time, any OBMDP, A , into its SNF-form OBMDP,

A ′.

1. Initialize A ′ by adding all the non-terminals Ti ∈V from A and their correspond-

ing action sets Γi.

2. For each non-terminal Ti, such that mr,i > 1 for some non-terminal Tj, action

a ∈ Γ j and rule r ∈ R(Tj,a) from A , create new non-terminals Ti1, . . . ,Tiz in

A ′ where z = blog2(maxr′∈R{mr′,i})c. Then add the rules Ti1
1−→ Ti Ti, Ti2

1−→
Ti1 Ti1, . . . , Tiz

1−→ Tiz−1 Tiz−1 to A ′. For every rule r in OBMDP, A , where mr,i > 1,

if the binary representation of mr,i is lz . . . l2l1l0, then we remove all copies of Ti

in string sr (i.e., the right-hand side of rule r) and add a copy of non-terminal Tit

to string sr if bit lt = 1, for every 0≤ t ≤ z. After this step, for every rule r, the

string sr consists of at most one copy of any non-terminal.

3. For each non-terminal Ti, for each action ad ∈ Γi, create a new non-terminal Td

in A ′ and add the rule Ti
ad−→ Td to A ′.

4. Next, for each such new non-terminal Td from point 3., for each rule r from set

R(Ti,ad) in A : if sr =∅ (i.e., the set of children under rule r is empty), then add

the rule Td
pr−→ ∅ to A ′; if the set of children consists of a single copy of some

non-terminal Tj, then add the rule Td
pr−→ Tj to A ′; and if the set of children is

larger and sr does not have an associated non-terminal already, then create a new

non-terminal Tdr , associated with string sr, in A ′ and add the rule Td
pr−→ Tdr to

A ′.

5. Next, for each such new non-terminal Tdr , associated with sr,r ∈R(Ti,ad), where

sr contains m ≥ 2 non-terminals Tj1, . . . ,Tjm: if m = 2, add rule Tdr
1−→ Tj1 Tj2 to
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A ′; and if m > 2, create m−2 new non-terminals Tl1, . . . ,Tlm−2 in A ′ and add the

rules Tdr
1−→ Tj1 Tl1, Tl1

1−→ Tj2 Tl2, Tl2
1−→ Tj3 Tl3 , . . . , Tlm−2

1−→ Tjm−1 Tjm to A ′.

Now all non-terminals are of form L, Q or M.

The above procedure converts any OBMDP, A , into one in SNF form by introduc-

ing O(|A |) new non-terminals and blowing up the size of A by a constant factor O(1).

Moreover, any strategy σ of the original OBMDP, A , can be converted to a strategy σ′

of the SNF-form OBMDP, A ′, (and vice versa) such that, under strategies σ and σ′ in

A and A ′, respectively, the probability that the resulting play is in the set of plays of

a given generalized reachability objective F (over the non-terminals of A) is the same

in both A and A ′.

From now on, throughout the rest of the thesis unless explicitly specified, we may

assume, without loss of generality, that any OBMDP is in SNF form.

2.4.1 Equivalence between the models of BPs and OBPs

Recall the notation so far for the models of BPs and OBPs from Sections 2.2 and 2.4.

In an OBMDP, A , Prσ
Ti
[Reach{(Tq)] denoted the probability in A of not reaching the

given target non-terminal Tq, starting at a non-terminal Ti and under strategy σ ∈ Ψ

(where Ψ is the set of all strategies for A). In an OBP, where there is only one trivial

strategy, the same probability is simply denoted as PrTi[Reach{(Tq)]. Similarly, in a BP,

B , g∗i denoted the non-reachability probability of the given target type Tq, starting at an

object of type Ti. The following proposition shows that OBPs and BPs are equivalent

with respect to the single-target (non-)reachability objective.

Proposition 2.4. Every OBP, A , can be translated in linear time to a BP, B , such that

there is a mapping from the non-terminals Ti in A to the types Ti in B such that, for a

given target non-terminal (type) Tq, PrTi[Reach{(Tq)] = g∗i .

Conversely, every BP, B , can be translated in polynomial time to an OBP, A , such

that there is a mapping from the types Ti in B to the non-terminals Ti in A such that,

for a given target type (non-terminal) Tq, g∗i = PrTi[Reach{(Tq)].

Proof. Given an OBP, A , in SNF form (as per Definition 9) one can construct a BP,

B , with the same (non-)reachability probabilities for corresponding start types in the

following way. Let B have the same set of types as the set of non-terminals in A . For

every non-terminal Ti in A , for the corresponding type Ti in B , create a set R(Ti) of

rules (recall that a BP is a BCSG where both players have only one available action in
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each type) that consists of all rules in A , where Ti is the left-hand side, and the right-

hand side is converted from a string of non-terminals to a multi-set over types. The

rules probabilities are kept consistent and if Ti is a M-form non-terminal in A then it

surely has a singleton action set Γi = {a} and has a single rule Ti
a−→ Tj. In B , this rule

will have probability 1.

Now notice that for A one can build the following PPS (in SNF-form as per Def-

inition 6), x = P(x). For any L-form non-terminal Ti in A with rules Ti
pi,0−−→ ∅,Ti

pi,1−−→
T1, . . . ,Ti

pi,n−−→ Tn, there is a variable xi and an equation xi = Pi(x) := pi,0 +∑
n
j=1 pi, jx j.

For any Q-form non-terminal Ti in A with a rule Ti
1−→ Tj Tr, there is a variable xi and

an equation xi = Pi(x) := x jxr. And for any M-form non-terminal Ti in A (which surely

has Γi = {a} and has a single rule Ti
a−→ Tj since A is an OBP), there is a variable xi

and an equation xi = Pi(x) := Val([x j]) = x j. From B one can also build a SNF-form

PPS and by obvious and trivial adjustments (e.g., substitutions and removing redundant

variables) the two PPSs are the same. All proofs and results for BPs are applicable, mu-

tatis mutandis, to OBPs with respect to the (non-)reachability objective. The greatest

fixed point of the PPS also provides the non-reachability probabilities for the OBP.

In the opposite direction, given a BP, B , first construct a PPS, x = P(x), from

B (as shown later in Section 3.1) and then convert it into SNF form in polynomial

time (see Proposition 2.1). The previous paragraph showed how from any SNF-form

OBP we can construct a SNF-form PPS whose greatest fixed point is the vector of

non-reachability probabilities for the OBP with respect to the given target. Clearly,

reversing the construction provides a corresponding OBP, A , for the PPS, which is

constructed from BP, B .

Proposition 2.4 can clearly be extended to the MDP and (concurrent) game gener-

alizations of the BPs and OBPs models. There is one important note to make here.

A careful look at the constructed (ε-)optimal strategies in the results of [ESY18]

implies that all the qualitative reachability results and the quantitative approximation

reachability results for BMDPs from [ESY18] apply, mutatis mutandis, also for reach-

ability in OBMDPs even under the restricted notion of ancestral strategies. In the

context of BMDPs we need the more general notion of a strategy due to the lack of

ordering among objects in a generation. What is more, in the qualitative almost-sure

winning strategies there is a construct, called queen-and-workers (which is also utilised

in the almost-sure winning strategies of BCSGs in Section 3.4), such that in BMDPs it

can be implemented only with the use of the more general notion of strategies. How-
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ever, in the context of OBMDPs, this queen-and-worker construct can be implemented

even with the restricted notion of ancestral strategies, due to the fact that there is an

ordering among the non-terminals.

And essentially, for single-target reachability, almost-sure and limit-sure reachabil-

ity for OBMDPs coincide also under the restriction to ancestral strategies that we have

defined in Section 2.4, i.e., where choices are based only on the ancestor history (with

ordering information) of each node in the ordered tree. The qualitative reachability

results for BSSGs and BCSGs from [ESY18] and [EMSY19] (Chapter 3) also apply

for the game generalizations of OBMDPs under the restriction to ancestral strategies,

again due to the specific nature of the constructed almost-sure winning, limit-sure win-

ning and spoiling strategies for the two players. Hence, our restriction to only ancestral

strategies in the context of OBMDPs is entirely justified. We come back later in Sec-

tion 5.1 to the different notions of a strategy in order to pose some open problems.

Let us also observe an equivalence between BPs and OBPs with respect to the

termination/extinction objective. Any OBP, A , defines a global infinite-state Markov

chain, MA = (Q,∆), where the global states Q are finite labeled ordered trees (i.e.,

finite derivations) and a transition (X , pX ,X ′,X ′) ∈ ∆ exists for global states X ,X ′ ∈ Q

if and only if X �X ′ and in fact there is a sequence of rules and actions, β= 〈r1, . . . ,rz〉,
such that X ′ can be derived from X in one generation step using β (i.e., such that the

“current” generations of X and X ′ are, respectively, Ti1Ti2 . . .Tiz and sr1sr2 . . .srz , where

for every j ∈ [z]: sr j ∈V ∗; if Ti j is of form L or Q, then r j is the rule Ti j

pr j−−→ sr j ; and if

Ti j is of M-form, then r j ∈ Γi j is an action satisfying Ti j

r j−→ sr j , and let pr j := 1). The

probability of the transition is pX ,X ′ := ∏ j∈[z] pr j .

From the very similar definitions of global infinite-state MCs for the models of BPs

and OBPs, one can observe that computing the termination probabilities in the OBPs

model is equivalent to computing the extinction probabilities in the BPs model. That is,

starting at a given non-terminal Ti, computing the probability of generating a finite play

(i.e., the termination probability) in an OBP, A , is equivalent to computing the proba-

bility of process becoming extinct (i.e., the extinction probability) in a corresponding

BP, B , starting in an object of the corresponding type Ti. The reason is that for the

objective of termination the fact that there is an ordering of the non-terminals on the

right-hand side of rules in A and an ordering of the non-terminals in each generation of

a play in A is completely irrelevant. Furthermore, the definitions of the Markov chains

MA and MB (i.e., the global denumerable MCs for A and B , respectively) preserve the

transition probabilities between the corresponding global states.
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This equivalence with respect to the termination (extinction) objective also holds

for the MDP and game generalizations of the two models. Thus, all the results for the

extinction objective for BPs (and their 1- and 2-player-controlled extensions) apply,

mutatis mutandis, to the termination objective for OBPs (and their 1- and 2-player-

controlled extensions). Again, as noted earlier, we assumed that we restrict ourselves to

ancestral strategies in the context of OBMDPs (or their game generalizations). And the

aforementioned equivalence holds under this restriction. That is due to the important

observation that, in 1- or 2-player-controlled (O)BPs under the extinction (termination)

objective, strategies having access to a history, that includes the entire finite tree up to

the current generation, is irrelevant to the goal of forcing an extinction (a termination)

for the subtree of descendants of each object of the current generation. In other words,

in each object of the current generation, it is irrelevant for the termination (extinction)

objective to have information regarding what is happening in other parts of the tree.

2.5 Further Stochastic Models

This section discusses other classes of infinite-state stochastic processes that are related

to (Ordered) Branching Processes and, in particular, we provide here definitions and

background for Stochastic Context-Free Grammars and Recursive Markov chains.

2.5.1 Stochastic Context-Free Grammars

Definition 10. A Stochastic Context-Free Grammar (SCFG), S , is a classic stochastic

process, represented by a tuple S =(Ξ,V,R), where Ξ is a finite set of terminal symbols,

V = {T1, . . . ,Tn} is a finite set of non-terminals and R is a finite set of probabilistic

rules Ti
pr−→ sr such that Ti ∈ V , pr ∈ (0,1]∩Q is the rule probability (assumed to

be a rational number for computational purposes) and sr ∈ (Ξ∪V )∗ is a (possibly

empty) ordered string of terminals and non-terminals. For every non-terminal Ti ∈V ,

∑
(Ti

pr−→sr)∈R
pr = 1.

Given a starting non-terminal, a possibly infinite (parse) tree (i.e., a derivation) is

formed via one of the following forms of rule-expansion: left-most derivation, where

at any step the left-most non-terminal in the string of terminals and non-terminals

is chosen to be expanded by a probabilistically selected rule; similarly, right-most

derivation prioritizes the right-most non-terminal; and simultaneous derivation, which
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simultaneously expands all the non-terminals in the current string of terminals and non-

terminals. The derivation process is said to terminate once a string of only terminals is

generated. For a string s ∈ Ξ∗ of terminals, the probability ps of s being generated by

the SCFG is defined as the sum of probabilities of all derivations (according to one of

the rule-expansion forms) that terminate in string s, where the probability of each such

derivation is the product of the probabilities of all the rules used in the parse tree of that

derivation. For a given non-terminal Ti, the probability p(Ti) of the language generated

by the SCFG, starting at a non-terminal Ti (or equivalently, starting at a non-terminal Ti

the probability of the SCFG stochastic process terminating), is the sum of probabilities

ps of all possible strings s ∈ Ξ∗ that can be derived from starting non-terminal Ti under

the specified form of rule-expansion.

Context-Free Markov Decision Processes (CF-MDPs), Simple Stochastic Games

(CF-SSGs) and Concurrent Stochastic Games (CF-CSGs) are the 1-player, 2-player

turn-based and 2-player concurrent generalizations of SCFGs.

SCFGs with respect to computing the probability of the generated language, re-

gardless of the rule-expansion form, are clearly equivalent to Ordered BPs with respect

to computing the termination probability. This is due to the very similar definitions of

the two stochastic models. Even though SCFGs contain terminal symbols and OBPs

do not, in both stochastic models termination is essentially defined as generating a fi-

nite tree. Furthermore, computing the probability of the generated language in SCFGs

is also equivalent to computing the extinction probability in BPs (see [EY09, The-

orems 2.3, 2.4] or, equivalently, Theorems 2.5, 2.6). However, with respect to the

(single-target) reachability objective, SCFGs without terminal symbols are equivalent

to OBPs (and hence, equivalent to BPs by Proposition 2.4) only under the simultane-

ous derivation form of rule-expansion. Section 2.6 elaborates on the differences and

similarities between all these models.

2.5.2 Recursive Markov models

Recursive Markov chains, introduced in [EY09], generalize Branching Processes, Or-

dered Branching Processes and Stochastic Context-Free Grammars.

Definition 11 (cf. [EY09]). A Recursive Markov Chain (RMC), R , is a tuple R =

(A1, . . . ,An), where each component graph Ai = (Ni,Bi,Yi,Eni,Exi,δi) consists of:

• A set Ni of nodes.
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• A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.

• A set Bi of boxes, and a mapping Yi : Bi→ [n] that assigns to every box (the index

of) one of the components, A1, . . . ,An. To each box b ∈ Bi, we associate a set of

call ports, Callb = {(b,en) | en ∈ EnYi(b)}, corresponding to the entries of the

corresponding component, and a set of return ports, Returnb = {(b,ex) | ex ∈
ExYi(b)}, corresponding to the exits of the corresponding component.

• A transition relation δi, where transitions are of the form (u, pu,v,v) where:

1. u (the source) is either a non-exit node u ∈ Ni−Exi, or a return port u =

(b,ex) of some box b ∈ Bi,

2. v (the destination) is either a non-entry node v ∈ Ni−Eni, or a call port

u = (b,en) of some box b ∈ Bi,

3. pu,v ∈ R>0 is the transition probability from u to v,

4. For each u, ∑{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or an exit

node, neither of which have outgoing transitions, in which case by default

∑v′ pu,v′ = 0.

As in the other models in the thesis, all transition probabilities are assumed to be

rational, for computational purposes, and the size of an instance R is measured by its

bit encoding length. For a component, Ai, the set of all nodes, call ports and return

ports in the component are collectively referred to as vertices and denoted by Vi. For

a RMC, R , let N :=
⋃

i∈[n]Ni be the set of all nodes, V :=
⋃

i∈[n]Vi be the set of all

vertices, B :=
⋃

i∈[n]Bi be the set of all boxes, Y :=
⋃

i∈[n]Yi be the mapping Y : B→ [n]

of all boxes to components, and δ =
⋃

i∈[n] δi be the set of all transitions.

Any RMC, R , defines a global infinite-state Markov chain, MR = (Q,∆), where

the global states Q⊆ B∗×V are pairs 〈β,u〉, where β is a (possibly empty) sequence of

boxes and u∈V . Informally, if one thinks of the components as functions in a program

and of the RMC as the call graph of the program, β represents the stack of recursive

calls in an execution of the program. More formally, by [EY09]:

(1.) for every u ∈V , 〈e,u〉 ∈ Q, where e is the empty string.
(2.) if 〈β,u〉 ∈ Q and (u, pu,v,v) ∈ δ, then 〈β,v〉 ∈ Q and (〈β,u〉, pu,v,〈β,v〉) ∈ ∆.
(3.) if 〈β,(b,en)〉 ∈ Q, where (b,en) ∈ Callb, then 〈βb,en〉 ∈ Q and (〈β,(b,en)〉,1,
〈βb,en〉) ∈ ∆.
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(4.) if 〈βb,ex〉 ∈ Q, where (b,ex) ∈ Returnb, then 〈β,(b,ex)〉 ∈ Q and (〈βb,ex〉,1,
〈β,(b,ex)〉) ∈ ∆.

Point (1.) depicts all possible initial states of MR ; point (2.) represents transitions

in MR that correspond to transitions within a single component in R ; point (3.) depicts

transitions in MR from call ports to their respective entries of the respective compo-

nent, i.e., that correspond to recursive calls in R ; and point (4.) depicts transitions in

MR that correspond to exits from recursive calls in R and the process returning from

the entered component to the calling component.

Now the termination and reachability objectives for RMCs can be defined. For a

vertex v ∈ Vi and an exit node ex ∈ Exi in the same component Ai, q∗(v,ex) denotes the

probability of the global Markov chain reaching state 〈e,ex〉, starting in state 〈e,v〉.
Then, let q∗v = ∑ex∈Exi q∗(v,ex) be the probability of termination for vertex v, i.e., starting

at initial state 〈e,v〉 the probability of the process reaching any exit node in the same

component (with empty call stack). The reachability probability of vertex v′ from

vertex v is defined in one of two possible ways:

• either as the probability in the global Markov chain, starting from state 〈e,v〉, of

reaching state 〈e,v′〉 (i.e., the probability of reaching vertex v′ belonging to the

same component, with an empty call stack),

• or as the probability in the global Markov chain, starting from state 〈e,v〉, of

reaching state 〈β,v′〉 (i.e., the probability of reaching vertex v′ belonging to any

component, with some call stack β ∈ B∗).

According to [EY09, Proposition 2.1], for any given RMC, either of the two definitions

of reachability probability can be expressed in terms of termination probability in a

modified RMC, which can be constructed in linear time.

The following are some special subclasses of RMCs: 1-exit RMCs, where each

component has exactly one exit node (but still an arbitrary number of entry nodes)8;

1-box RMCs, where each component contains at most one box inside (1-box RMCs are

equivalent to one-counter probabilistic automata); bounded RMCs, where the number

of components and the number of entry and exit nodes in each of the components are

8The restriction of each component having only one entry node is not as interesting, since any multi-
entry RMC can be efficiently transformed to an equivalent 1-entry RMC. Hence, one can assume that
each component has a single entry. However, the restriction to 1-exit is crucial (e.g., both qualitative
and quantitative termination problems have been studied for 1-exit RMCs (and their game generaliza-
tions), showing complexity upper bounds, but for multi-exit RMCs even the 1-player generalization is
undecidable for these problems [EY15]).
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all bounded; Hierarchical RMCs, where there can be no cycle of recursive calls among

the components.

Recursive Markov Decision Processes (RMDPs), Simple Stochastic Games (RSSGs)

and Concurrent Stochastic Games (RCSGs) are the 1-player, 2-player turn-based and

2-player concurrent generalizations of RMCs.

The following two theorems are cited from [EY09], as they bear importance in

showing some equivalences between the models defined in this thesis. In particular,

the theorems show equivalences between the models with respect to the termination

(extinction) objective.

Theorem 2.5 (cf. [EY09], Theorem 2.3).

1. Every SCFG, S , can be transformed in linear time to a 1-exit RMC, R , such that

|R | ∈ O(|S |), and there is a bijection from non-terminals Tj in S to components

A j of R , each with a single entry en j and a single exit ex j, such that p(Tj) =

q∗(en j,ex j)
, for all j.

2. Conversely, every 1-exit RMC, R , can be transformed in linear time to a SCFG,

S , of size O(|R |), such that there is a map from every vertex u in R to every

non-terminal Tu in S , such that q∗u = p(Tu).

Theorem 2.6 (cf. [EY09], Theorem 2.4).

1. Every BP, B , (even when the BP’s rules are presented by giving the multi-sets in

a binary representation) can be transformed in polynomial time to a 1-exit RMC,

R , such that there is a mapping from types Tj in B to components A j of R , each

with a single entry en j and a single exit ex j, such that the probability, starting at

an object of type Tj, of extinction in B is indeed = q∗(en j,ex j)
, for all j.

2. Conversely, every 1-exit RMC, R , can be transformed in linear time to a BP, B ,

of size O(|R |), such that there is a map from vertices u in R to types Tu in B ,

such that q∗u is indeed equal to the probability of extinction in B , starting at an

object of type Tu.

Theorems 2.5 and 2.6 above connect the model of RMCs to the models defined in

the previous sections in this chapter. In particular, computing the termination prob-

abilities of a 1-exit RMC is equivalent to computing the extinction probabilities of a
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corresponding BP (see Theorem 2.6) and is also equivalent to computing the probabil-

ities of the generated language (i.e., the termination probabilities) of a corresponding

SCFG (see Theorem 2.5). And, as already shown in subsection 2.4.1, computing the

extinction probabilities of a BP is equivalent to computing the termination probabilities

of a corresponding OBP.

2.6 Related work

This section provides a survey discussion of past work on the models defined in the

previous sections, related to the objectives analysed in the thesis. It also discusses

similarities and differences between all these models with respect to the properties of

(single-target) reachability, extinction/termination and multi-objective reachability.

2.6.1 Single-target reachability objective

As mentioned before, BCSGs is a class of infinite-state imperfect-information stochas-

tic games, that generalize both finite-state concurrent stochastic games and branching

simple (turn-based) stochastic games.

The finite-state CSG model was studied in [dAHK07], giving P-time (more pre-

cisely, quadratic time) algorithms for the qualitative (single-target) reachability analy-

sis, both for the almost-sure and the limit-sure reachability problems. It was shown that

when almost-sure reachability is achieved, the winning player has a randomized mem-

oryless winning strategy, and otherwise the adversary has a “spoiling” randomized

strategy that forces reachability probability < 1 against any maximizer strategy (i.e.,

any strategy for the player maximizing the reachability probability) and that depends

only on the number of steps in the game so far. In the case when limit-sure reachabil-

ity is achieved, the winning player has a family of randomized memoryless winning

strategies (one for each ε > 0), and otherwise the adversary has a spoiling random-

ized memoryless strategy that ensures the reachability probability is upper bounded by

some constant. All strategies were shown to be computable in quadratic time in the

size of the game and cannot be deterministic in general. In fact, Figure 1 in [dAHK07]

shows a simple example that act as an explanation to why deterministic strategies are

no longer sufficient for concurrent games. In the concurrent setting, randomization is

needed in order to postpone a player’s move being revealed (to the other player) until

after it is played. Another important observation regarding even finite-state concur-
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rent game settings is that probabilistic states do not contribute to the hardness of the

model and can be “simulated” by controlled concurrent states, so the stochastic and

non-stochastic variants of the concurrent game model are equivalent, both with respect

to computing the game value and to constructing (ε-)optimal strategies for the players

(see [EY08, Proposition 2.1]).

Next, BMDPs and BSSGs with (single-target) reachability objective were studied

in [ESY18]. It was shown that in a BSSG the player minimizing the reachability

probability always has a deterministic static optimal strategy, whereas (unlike for the

extinction objective) in general there need not exist any optimal strategy for the player

maximizing the reachability probability even in a BMDP (and hence also in a BSSG

and a BCSG). On the other hand, it was shown in [ESY18] that for BMDPs and BSSGs,

if the reachability game value is = 1, then there is in fact an optimal strategy (but not in

general a static one, even when randomization is allowed) for the player maximizing

the reachability probability that forces the value 1 (irrespective of the strategy of the

player minimizing the reachability probability). In other words, almost-sure and limit-

sure reachability problems coincide for BSSGs (which, as shown later in Chapter 3, is

not the case for the more general model of BCSGs). It was also shown that whether the

value = 1 for BSSG reachability games can be decided in P-time, and if the answer is

“yes” then an optimal (non-static, but deterministic) strategy that achieves reachability

value 1 for the maximizer can be computed in P-time, whereas if the answer is “no” a

deterministic static strategy that forces value < 1 can be computed for the minimizer

in P-time.

The study ([ESY18]) also gave polynomial time algorithms for the approximate

quantitative reachability analysis of BMDPs, i.e., for computing for a given ε > 0

the ε−optimal reachability probability for maximizing and minimizing BMDPs (to-

gether with deterministic static ε-optimal strategies in the case of minimizing BMDPs

and randomized static ε-optimal strategies in the case of maximizing BMDPs), and

showed that this problem for BSSGs is in TFNP. Note that the problem of exactly

computing the reachability value of the BSSG game is at least as hard as the problem

of exactly computing the reachability value for finite-state simple stochastic games,

where the latter problem is in PLS ∩ PPAD and its decision version is the well-known

long-standing open problem (called Condon’s problem) of whether it can be done effi-

ciently in polynomial time [Con92] (it is only known to be in NP ∩ coNP)9. It was also

9It is well-known that the reachability probabilities in finite-state simple stochastic games are ob-
tained as the least fixed point of a system of corresponding Bellman optimality equations ([Con92]).
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shown in [ESY18] that the optimal non-reachability probabilities of maximizing or

minimizing BMDPs and BSSGs are captured by the greatest fixed point of a system of

equations, x = P(x), where the right-hand side Pi(x) of each equation is the maximum

or minimum of a set of probabilistic polynomials in x (note that these types of equa-

tion systems are special cases of the minimax-PPS, and correspond to the case where

in each one-shot matrix game on the right-hand side of the minimax-PPS equations

only one of the two players has a choice of actions).

As shown in Proposition 2.4, OBPs are equivalent to BPs with respect to the

(single-target) reachability objective (similarly for the MDP and game generalizations

of the two models). So all reachability results for BPs (and their 1- and 2-player-

controlled extensions) apply, mutatis mutandis, to OBPs (and their 1- and 2-player-

controlled extensions). It was shown in [BBFK08] that almost-sure single-target reach-

ability in 1-exit RMDPs, or equivalently in Context-Free MDPs with left-most deriva-

tion, can be decided in polynomial time. However, Context-Free MDPs with left-most

derivation are very different than (O)BMDPs, which allow simultaneous derivation of

the tree from all unexpanded non-terminals in each generation (not just the left-most

one). Indeed, unlike single-target reachability for OBMDPs (equivalently, Context-

Free MDPs with simultaneous derivation), even for single-target reachability for 1-exit

RMDPs (equivalently, Context-Free MDPs with left-most derivation), almost-sure 6=
limit-sure (i.e., almost-sure and limit-sure problems do not coincide) and the decid-

ability of limit-sure reachability of a given target remains an open question (despite

the fact that there is a polynomial time algorithm for almost-sure reachability).

The quantitative problem for finite-state CSG reachability games, i.e., computing

or approximating the value of the game, has been studied previously and seems to be

considerably harder than the qualitative problem. The problem of determining whether

the value exceeds a given rational number, for example 1/2, is at least as hard as the

long-standing SQRT-SUM problem ([EY08, Theorem 5.1]), mentioned in Section 2.1.

The problem of approximating the value within a given desired precision can be solved

however in the polynomial hierarchy, specifically in TFNP[NP] ([FM13, Theorem 1]).

It is open whether the approximation problem is in NP (or moreover in P). It was shown

in [HIJM14] that the standard algorithms for (approximately) solving these games,

The results in [Con92] are formulated in terms of finite-state stopping (i.e., halting with probability 1)
SSGs, but the reachability problem for general finite-state SSGs can be in P-time reduced to the reach-
ability problem for finite-state stopping SSGs (showed in [Con92]). In fact, for a stopping SSG the
corresponding system of reachability optimality equations has a unique fixed point. Furthermore, such
systems of equations are special restricted versions of the systems of equations related to the reachability
problem in finite-state concurrent stochastic games (shown how to construct in [Sha53]).
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value iteration and policy iteration, can take in the worst case a doubly-exponential

number of iterations to obtain any nontrivial approximation, even when the reacha-

bility value is 1. Note also that there are finite-state CSGs, with reachability value

= 1, for which (near-)optimal strategies for minimizer (maximizer, respectively) need

to have some action probabilities that are doubly-exponentially small (see [CHIJ17]

and the finite-state CSG reachability game Purgatory in [HKM09]); thus a fixed point

representation of the probabilities would need an exponential number of bits, and one

must use a suitable compact representation to ensure polynomial space.

2.6.2 Termination (Extinction) objective

Another important objective, namely the probability of termination (extinction), has

been studied previously for all these models. The models of BPs and OBPs (and

their MDP and game generalizations) under the extinction and termination, respec-

tively, objective are equivalent to corresponding subclasses of Recursive Markov mod-

els, called 1-exit Markov Chains (1-RMCs), Markov Decision Processes (1-RMDPs),

Simple Stochastic Games (1-RSSGs), and Recursive Concurrent Stochastic Games (1-

RCSGs), and related subclasses of probabilistic pushdown processes, under the termi-

nation objective [ESY17, ESY20, EY09, EY15, EY08, EKM06]. The models of BPs

and OBPs under the extinction (respectively, termination) objective are also equivalent

to corresponding models of Stochastic Context-Free Grammars (SCFGs) under the

objective of computing the probability of the generated language (see subsection 2.5.1

for more details). More precisely, there are pairwise reductions between the following

problems and, hence, they are equivalent: (1) computing the termination probabilities

of a 1-exit RMC; (2) computing the extinction probabilities of a BP; (3) computing the

probabilities of the generated language of a SCFG; and (4) computing the termination

probabilities of a OBP (similarly, for the MDP and game generalizations of all these

models). Theorems 2.5 and 2.6 (cited from study [EY09]) showed the equivalences (1)

↔ (2), (1)↔ (3) and (2)↔ (3) with respect to the purely probabilistic setting, but it is

not difficult to generalize the theorems to the MDP and game variants. And although

it is easy to see, for completeness subsection 2.4.1 gave the equivalence (2)↔ (4).

The extinction (or termination) probabilities for all these models are captured by

the least fixed point (LFP) solutions of similar systems of probabilistic polynomial

equations. For example, the extinction values of a BCSG (equivalently, the termination

values of an 1-RCSG, an OBCSG and a CF-CSG) are given by the LFP of a minimax-
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PPS (though not the exactly the same minimax-PPS as for the (non)-reachability ob-

jective). This was shown in [EY08].

Polynomial time-algorithms for the qualitative analysis, as well as for the ap-

proximate computation of the extinction probabilities for BPs (equivalently, termi-

nation probabilities for 1-RMCs, SCFGs and OBPs) were given in [EY09, ESY17,

EGK10]. For optimal extinction probabilities in BMDPs (equivalently, optimal termi-

nation probabilities in 1-RMDPs, CF-MDPs and OBMDPs), P-time algorithms for the

qualitative decision problems and for the quantitative approximation problems (both

for a maximizing and minimizing player), for both computing the ε-optimal probabili-

ties and an ε-optimal static strategy, were shown in [EY06, EY15, ESY20]. However,

negative results were shown which indicate that the problem is much harder for branch-

ing concurrent (or even simple) stochastic games, even for the qualitative extinction

problem. Specifically, it was shown in [EY06, EY15] that the qualitative extinction

problem for BSSGs (equivalently, the qualitative termination problem for 1-RSSGs,

CF-SSGs and OBSSGs) is in NP∩coNP and is at least as hard as the well-known

Condon’s quantitative open problem for the value of a finite-state simple stochastic

game ([Con92]). Also, [EY15] showed that both the maximizer and minimizer of the

extinction (termination) probability always (not only when the value is 1) have an op-

timal static deterministic strategy. Furthermore, it was shown in [EY08] that (both the

almost-sure and limit-sure) qualitative extinction problems for BCSGs (equivalently,

qualitative termination problems for 1-RCSGs, CF-CSGs and OBCSGs) are at least

as hard as the SQRT-SUM problem (which is not known to be even in the Polynomial

Hierarchy, for more details on the SQRT-SUM problem refer to Section 2.1).10 It was

also shown in [EY08], using a strategy iteration method, that the player minimizing the

extinction (termination) probability always has an optimal randomized static strategy,

whereas the player maximizing the extinction (termination) probability in general may

only have ε-optimal randomized static strategies, for all ε > 0.

For the quantitative extinction problems for BPs (equivalently, the quantitative ter-

mination problems for 1-RMCs, SCFGs and OBPs) and their MDPs and game gener-

10The results in [EY08] were phrased in terms of the limit-sure problem, where it was shown that (a)
deciding whether the value of a finite-state CSG reachability game is at least a given value p ∈ (0,1)
is SQRT-SUM-hard, and (b) that the former problem is reducible to the limit-sure decision problem for
BCSG extinction games. But the hardness proofs of (b) and (a) in [EY08] apply mutatis mutandis to
(b) the almost-sure decision problem for BCSG extinction, and to (a) the corresponding problem of
deciding, given a finite-state CSG and a value p ∈ (0,1), whether the maximizing player has a strategy
that achieves at least value p, regardless of the strategy of the minimizer. Thus, both the almost-sure
and limit-sure extinction problems for BCSGs are SQRT-SUM-hard, and also both are at least as hard as
Condon’s problem of computing the exact value of a finite-state SSG reachability game.
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alizations, all decision problems (and thus, all approximation problems where a P-time

algorithm has not been shown yet) have PSPACE as upper bound, relying on the upper

bounds for the decision procedures for ETR (∃ R). Moreover, such decision problems

are POSSLP-hard (and thus, SQRT-SUM-hard) ([EY09, Theorem 5.1, 5.3]).

The equivalence between the models of BPs and OBPs (and their MDP and game

generalizations) and the model of 1-RMCs (and their MDP and game generalizations)

with respect to extinction (termination) does not hold for the (single-target) reacha-

bility objective. For example, almost-sure and limit-sure reachability problems co-

incide for (O)BMDPs, i.e., if the supremum probability of reaching the target is 1

then there exists a strategy that ensures reachability with probability exactly 1. How-

ever, this is not the case for 1-RMDPs. Furthermore, as mentioned in 2.6.1, it is

known that almost-sure reachability for 1-RMDPs can be decided in polynomial time

([BBFK08, BBKO11]), but limit-sure reachability for 1-RMDPs is not even known to

be decidable. The qualitative reachability problem for 1-RMDPs and 1-RSSGs (and

equivalent probabilistic pushdown models) was studied in [BBKO11, BKL14]. These

results do not apply to the corresponding models of (O)BMDPs and (O)BSSGs. For

an extensive survey on questions, such as extinction/termination and reachability, on

probabilistic pushdown automata (which under specific restrictions can be equivalent

to SCFGs, BPs and RMCs), please see [BEKK13].

2.6.3 Multi-objective reachability

Multi-objective reachability and model checking (with respect to omega-regular prop-

erties) have been studied for finite-state MDPs in [EKVY08], both with respect to

qualitative and quantitative problems. In particular, it was shown in [EKVY08] that

for multi-objective reachability in finite-state MDPs, memoryless (but randomized)

strategies are sufficient, that both qualitative and quantitative multi-objective reach-

ability queries can be decided in P-time, and that the Pareto curve for them can be

approximated within a desired error ε > 0 in P-time in the size of the MDP and 1/ε.

As pointed out in the next subsection, model checking for the infinite-state model

of Branching Processes has been studied before. However, to the best of our knowl-

edge, there are no previous results on multi-objective reachability for BMDPs (and

also OBMDPs, which is a model that has been only recently defined in [EM20], which

is one of the core papers that this thesis is written on), neither for the qualitative nor for

the quantitative multi-objective reachability questions that are defined in Section 2.4.
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2.6.4 Richer objectives

Another objective considered in prior work is the expected total reward objective for

1-RSSGs ([EWY19]) and 1-RCSGs ([Woj13]) with positive rewards. In particular,

[Woj13] shows that the “qualitative” problem of determining whether the game value

for a 1-RCSG total reward game is = ∞ is in PSPACE. None of these prior results

have any implications for BCSGs with reachability objectives.

For richer objectives beyond reachability or extinction, [CDK12] studied model

checking of purely stochastic BPs with respect to properties expressed by a determin-

istic parity tree automaton (DPTA). That is, [CDK12] studied problems of, given a BP

and a DPTA, computing the probability that the generated tree in the BP is accepted

by the DPTA. It showed that the qualitative problem is in P-time (hence this holds

in particular for reachability probability in BPs), and that the quantitative problem of

comparing the probability with a rational is in PSPACE (by similarly expressing the

problem in terms of a system of non-linear probabilistic polynomial equations and

relying on the upper bounds for decision procedures of ETR (∃ R)). Then [MM15]

extended this to properties of BPs expressed by “game automata”, a subclass of al-

ternating parity tree automata. More recently, [PS16] considered determinacy (i.e.,

existence of game values) and complexity of decision problems for ordered branching

simple (i.e., turn-based) stochastic games, with regular objectives, where the two play-

ers aim to maximize/minimize the probability that the generated labeled tree belongs

to a regular language (given by a finite tree automaton). They showed that (unlike

the case of games with a simpler objective like reachability) already for some basic

regular properties these games are not even determined, meaning they do not have

a value. They furthermore showed that for what amounts to OBMDPs with a regu-

lar tree objective it is undecidable to compare the optimal probability to a threshold

value; whereas for deterministic turn-based branching games they showed it is decid-

able and 2-EXPTIME-complete (respectively, EXPTIME-complete), to determine

whether the player aiming to satisfy (respectively, falsify) a given regular tree objective

has a pure winning strategy. Other past research includes work in operations research

on Branching MDPs (see e.g. [Pli76, RW82, DR05]). None of these prior works on

richer objectives bear on any of the results established in this thesis.



Chapter 3

Branching Concurrent Stochastic

Games

In this chapter we focus on the BCSG game model with respect to the (single-target)

reachability objectives, a basic and natural class of objectives. Some types are desig-

nated as undesirable (for example, malignant cells in cancer), in which case we want

to minimize the probability of ever reaching any object of such a type. Or conversely,

some types may be designated as desirable, in which case we want to maximize the

probability of reaching an object of such a type.

First, a summary of the main results of this chapter. We first show that a BCSG

with a reachability objective has a well-defined value, i.e., given an initial (finite)

population µ of objects of various types and a target type Tf ∗ , if the sets of (mixed)

strategies of the two players are respectively Ψ1, Ψ2, and if ϒσ,τ(µ,Tf ∗) denotes the

probability of reaching eventually an object of type Tf ∗ when starting from popu-

lation µ under strategy σ ∈ Ψ1 for player 1 and strategy τ ∈ Ψ2 for player 2, then

infσ∈Ψ1 supτ∈Ψ2
ϒσ,τ(µ,Tf ∗) = supτ∈Ψ2

infσ∈Ψ1 ϒσ,τ(µ,Tf ∗), which is the value v∗ of the

game. Furthermore, we show that the player who wants to minimize the reachability

probability always has an optimal (mixed) static strategy that achieves the value, i.e., a

strategy σ∗ which uses for all objects of each type T generated over the whole history

of the game the same probability distribution on the available actions, independent of

the past history, and which has the property that v∗ = supτ∈Ψ2
ϒσ∗,τ(µ,Tf ∗). The opti-

mal strategy in general has to be mixed (randomized), since this was known to be the

case even for finite-state concurrent games (see [dAHK07, Figure 1]). On the other

hand, the player that wants to maximize the reachability probability of a BCSG may

not have an optimal strategy (whether static or not), and it was known that this holds

47
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even for BMDPs, i.e., even when there is only one player (see [ESY18, Example 3.2]).

This also holds for finite-state CSGs: the player aiming to maximize the reachability

probability does not necessarily have any optimal strategy (shown in [dAHK07, Figure

2] to be true even when the reachability value is 1).

As mentioned in the previous chapter, to analyze BCSGs with respect to the reach-

ability objective, we model them by a system of equations x = P(x), called a minimax

Probabilistic Polynomial System (minimax-PPS for short), where x is a tuple of vari-

ables corresponding to the types of the BCSG. There is one equation, xi = Pi(x), for

each type Ti, where Pi(x) is the minimax value of a (one-shot) two-player zero-sum

matrix game, whose payoff for every pair of actions is given by a polynomial in x

whose coefficients are positive and sum to at most 1 (a probabilistic polynomial). The

function P(x) defines a monotone operator from [0,1]n to itself, and thus it has, in

particular, a greatest fixed point (GFP) g∗ in [0,1]n. We show that the coordinates g∗i
of the GFP give the non-reachability values for the BCSG game when started with a

population that consists of a single object of type Ti.1 The value of the game for any

initial population µ can be derived easily from the GFP, g∗, of the minimax-PPS. This

generalizes the result in [ESY18, Theorem 3.1], which established an analogous result

for the special case of BSSGs. It also follows from our minimax-PPS equational char-

acterization that quantitative decision problems for BCSGs, such as deciding whether

the reachability game value is ≥ p for a given p ∈ (0,1) are all solvable in PSPACE.

Our main algorithmic results in this chapter concern the qualitative analysis of the

reachability problem, that is, the problem of determining whether one of the players

can win the game with probability 1, i.e., if the value of the game is 0 or 1. We

provide the first polynomial time algorithms for qualitative reachability analysis for

BCSGs. For the value = 0 problem, the algorithm and its analysis are rather simple.

If the value is 0, the algorithm computes an optimal strategy σ∗ for the player that

wants to minimize the reachability probability; the constructed strategy σ∗ is in fact

static and deterministic, i.e., it selects for each type deterministically a single available

action, and guarantees ϒσ∗,τ(µ,Tf ∗) = 0 for all τ ∈ Ψ2. If the value is positive then

the algorithm computes a static randomized strategy τ for the player maximizing the

reachability probability that guarantees infσ∈Ψ1 ϒσ,τ(µ,Tf ∗)> 0.

1As a comparison for a more complete picture, if there were no variables (types) of Q-form, the
equations would be precisely the Bellman optimality equations for finite-state CSGs with the objective
of non-reachability. It is a well-known fact that for finite-state CSGs the reachability values are obtained
from the least fixed point of a system of Bellman optimality equations. In other words, the equations in
the minimax-PPSs can be seen as a generalized version of Shapley’s optimality equations for finite-state
CSGs.
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The value = 1 problem is much more complicated. There are two versions of the

value = 1 problem, because it is possible that the value of the game is 1 but there

is no strategy for the maximizing player that guarantees reachability with probability

exactly 1 (see Example 3.1). The critical reason for this is the concurrency in the

moves of the two players: for BMDPs and BSSGs, it is known that if the value is 1

then there is a strategy τ that achieves it ([ESY18, Theorem 9.4])2; on the other hand,

this is not the case even for finite-state CSGs ([dAHK07, Figure 2]). Thus, we have two

versions of the problem. In the first version, called the almost-sure problem, we want to

determine whether there exists a strategy τ∗ for player 2 that guarantees that the target

type Tf ∗ is reached with probability 1 regardless of the strategy of player 1, i.e., such

that ϒσ,τ∗(µ,Tf ∗) = 1 for all σ ∈ Ψ1. In the second version of the problem, called the

limit-sure problem, we want to determine if the value v∗ = supτ∈Ψ2
infσ∈Ψ1 ϒσ,τ(µ,Tf ∗)

is 1, i.e., if for every ε > 0 there is a strategy τε for player 2 that guarantees that the

probability of reaching the target type is at least 1− ε regardless of the strategy σ for

player 1; such a strategy τε is called ε−optimal. The main results of the chapter are to

provide polynomial time algorithms for both versions of the problem. The algorithms

are nontrivial, building upon the algorithms of both [dAHK07] and [ESY18] which

both address different special subcases of qualitative BCSG reachability.

In the almost-sure problem, if the answer is positive, our algorithm constructs (a

compact description of) a strategy τ∗ for player 2 that achieves value 1; the strategy is

a randomized non-static strategy, and this is inherent (i.e., there may not exist a static

strategy that achieves value 1). If the answer is negative, then our algorithm constructs

a randomized non-static strategy σ for the opposing player 1 such that ϒσ,τ(µ,Tf ∗)< 1

for all strategies τ of player 2. In the limit-sure problem, if the answer is positive,

i.e., the value is 1, our algorithm constructs for any given ε > 0, a randomized static

ε-optimal strategy, i.e., a strategy τε ∈Ψ2 such that ϒσ,τε
(µ,Tf ∗)≥ 1−ε for all σ∈Ψ1.

If the answer is negative, i.e., the value is < 1, our algorithm constructs a randomized

static strategy σ′ for player 1 such that supτ∈Ψ2
ϒσ′,τ(µ,Tf ∗)< 1.

Finally, we discuss the complexity of BPs (and their MDP and game generaliza-

tions) with respect to the reachability objective. By adapting analogous results from

previous papers on the model of Recursive Markov chains (namely, [EY08, Theo-

rem 3.3] and [EY09, Theorem 5.3]), we provide for completeness the PSPACE upper

bound for both quantitative reachability decision and approximation questions, and the

2When the value is positive and not equal to 1, even for BMDPs there need not exist an optimal
strategy for the player maximizing the reachability probability (see [ESY18, Example 3.2]).
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POSSLP lower bound for the decision questions. We also show that computing the

optimal reachability probabilities for minimizing BMDPs, equivalently computing the

GFP in a maxPPS, is in FIXP.

Organization of the chapter. Section 3.1 shows the relationship between the non-

reachability values of a BCSG game and the greatest fixed point of a minimax-PPS.

Section 3.2 presents the algorithm for determining if the reachability value of a BCSG

is 0. Section 3.3 shows some preliminary results for (minimax-)PPSs needed for the

discussion of the value = 1 case. Section 3.4 presents the algorithm for almost-sure

reachability, and Section 3.5 for limit-sure reachability. Finally, Section 3.6 finishes

with upper and lower bounds discussion for reachability in BPs and their MDPs and

(concurrent) game variants.

3.1 Non-reachability values for BCSGs and the Great-

est Fixed Point

This section will show that for a given BCSG with a target type Tf ∗ , a minimax-PPS,

x = P(x), can be constructed such that its Greatest Fixed Point (GFP), g∗ ∈ [0,1]n, is

precisely the vector g∗ of non-reachability values for the BCSG.

For simplicity, from now on let us call a maximizer (respectively, a minimizer) the

player that aims to maximize (respectively, minimize) the probability of not reaching

the target type. That is, we swap the roles of the players for the benefit of less confusion

in analysing the minimax-PPS. While the players’ goals in the game are related to

the objective of reachability, the equations we construct will capture the optimal non-

reachability values in the GFP of the minimax-PPS.

For each type Ti 6= Tf ∗ , the minimax-PPS will have an associated variable xi and an

equation xi = Pi(x), and the MINIMAX-PROBABILISTIC-POLYNOMIAL Pi(x) is built

in the following way. For each action amax ∈ Γi
max of the maximizer (i.e., the player

aiming to maximize the probability of not reaching the target) and action amin ∈ Γi
min

of the minimizer in Ti, let R′(Ti,amax,amin) = {r ∈ R(Ti,amax,amin) | (αr) f ∗ = 0} be the

set of probabilistic rules r for type Ti and players’ action pair (amax,amin) that generate

a multi-set αr which does not contain an object of the target type. For each actions

pair for Ti, there is a probabilistic polynomial qi,amax,amin(x) := ∑r∈R′(Ti,amax,amin) prxαr .

Observe that there is no need to include rules where αr contains an object of type
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Tf ∗ , because then the term with monomial xαr will be 0. Now after a polynomial is

constructed for each pair of players’ moves, we construct Pi(x) as the minimax value

of a zero-sum matrix game Ai(x) (i.e., Pi(x) := Val(Ai(x))), where the matrix is con-

structed as follows: (1) rows belong to the max player in the minimax-PPS (i.e., the

player trying to maximize the non-reachability probability), and columns belong to the

min player; (2) for each row and column (i.e., pair of actions (amax,amin)) there is a cor-

responding probabilistic polynomial qi,amax,amin(x) in the matrix entry Ai(x)(amax,amin).

The following theorem captures the fact that the optimal non-reachability values

g∗ in the BCSG correspond to the Greatest Fixed Point (GFP) of the minimax-PPS.

Theorem 3.1. The non-reachability game values g∗ ∈ [0,1]n of a BCSG reachability

game exist, and correspond to the Greatest Fixed Point (GFP) of the minimax-PPS,

x = P(x), in [0,1]n. That is, g∗ = P(g∗), and for all other fixed points g′ = P(g′)

in [0,1]n, it holds that g′ ≤ g∗. Moreover, for an initial population µ, the optimal

non-reachability value is g∗(µ) = ∏i(g∗i )
(µ)i and the game is determined, i.e., g∗(µ) =

supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ(µ). Finally, the player maximizing non-

reachability probability in the BCSG has a (mixed) static optimal strategy.

Proof. Note that P : [0,1]n → [0,1]n is a monotone operator, since all coefficients in

all the polynomials Pi(x) are non-negative, and for x ≤ y, where x,y ∈ [0,1]n, it holds

that Ai(x) ≤ Ai(y) (entry-wise inequality) and thus Val(Ai(x)) ≤ Val(Ai(y)), where

recall Val() is the minimax value operator. Thus, Pi(x) ≤ Pi(y). Let x0 = 1 and xk =

P(xk−1) = Pk(1), k > 0 be the k-fold application of P on the vector 1 (i.e., the all-

1 vector). By induction on k the sequence xk is monotonically non-increasing, i.e.,

xk+1 ≤ xk ≤ 1 for all k > 0.

By Tarski’s theorem ([Tar55, Theorem 1]), P(·) has a Greatest Fixed Point (GFP)

x∗ ∈ [0,1]n. The GFP is the limit of the monotone the sequence xk, i.e., x∗ = limk→∞ xk.

To continue the proof, we need the following lemma.

Lemma 3.2. For any initial non-empty population µ, assuming it does not contain

the target type Tf ∗ , and for any k ≥ 0, the value of not reaching Tf ∗ in k steps is

gk(µ) = f (xk,µ) :=∏
n
i=1(x

k
i )

(µ)i . Also, there are strategies for the players, σk ∈Ψ1 and

τk ∈Ψ2, that achieve this value, that is gk(µ) = supσ∈Ψ1
gk

σ,τk(µ) = infτ∈Ψ2 gk
σk,τ

(µ).

Proof. Before we begin the proof, let us make a quick observation. For a fixed vector

x ∈ [0,1]n, consider the zero-sum matrix game defined by the payoff matrix Ai(x) for

player 1 (the row player). Consider fixed mixed strategies si and ti for the row and
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column players in this matrix game. Thus, si(amax) (ti(amin), respectively) defines the

probability placed on action amax ∈ Γi
max (on action amin ∈ Γi

min, respectively) in si (in

ti, respectively). The expected payoff to player 1 (the maximizing player), under these

mixed strategies is:

∑
amax∈Γi

max,amin∈Γi
min

si(amax)ti(amin)qi,amax,amin(x)

= ∑
amax,amin

[
si(amax)ti(amin) ∑

r∈R′(Ti,amax,amin)

prxαr
]

= ∑
amax,amin

∑
r∈R′(Ti,amax,amin)

si(amax)ti(amin)prxαr = ∑
r∈R′(Ti)

p′rx
αr (3.1)

where R′(Ti) is the set of all probabilistic rules for type Ti; the newly defined probability

p′r of a rule r is equal to si(amax)∗ti(amin)∗ pr for the pair (amax,amin) for which the rule

r is in R′(Ti,amax,amin), and where αr is the population that rule r generates, meaning

rule r is defined by Ti
pr→ αr.

Now let us prove the Lemma by induction on k. For the basis step, clearly g0(µ) =

1, since the initial population does not contain any objects of the target type. Moreover,

x0 = 1 and so f (1,µ) = 1.

For the inductive step, first we demonstrate that gk(µ)≥ f (xk,µ). Consider a strat-

egy σk := (ŝ,σk−1) for the max player (i.e., the player aiming to maximize the non-

reachability probability), constructed in the following way. For all i, and for every

object of type Ti in the initial population µ = X0, the max player chooses as a first

step the minimax-optimal mixed strategy ŝi in the zero-sum matrix game Ai(xk−1)

(which exists, due to the minimax theorem). The min player (player 2), as part of

its strategy, chooses some distributions on actions for all objects in the population X0

(independently of player 1), and then the rules are chosen according to the resulting

probabilities, forming the next generation X1 at time 1. Thereafter, the max player acts

according to an optimal (k−1)-step strategy σk−1, starting from population X1 (σk−1

exists by the inductive assumption, and we will indeed prove by induction that the thus

defined k-step strategy σk is optimal in the k-step game). Note that σk can be mixed,

and can also be non-static since the action probabilities can depend on the generation

and history.

Now let τ be any strategy for the min player. In the first step, τ chooses some dis-

tributions on actions for each object in X0 = µ. After the choices of σk and τ are made

in the first step, rules are picked probabilistically and the population X1 is generated.

By the inductive assumption, gk−1(X1) = f (xk−1,X1), i.e., the value of not reaching
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the target type in next k− 1 steps, starting in population X1, is precisely f (xk−1,X1).

Therefore, the k-step probability of not reaching the target, starting in µ, using strate-

gies σk and τ, is gk
σk,τ

(µ) = ∑X1 p(X1)gk−1
σk−1,τ

(X1) ≥ ∑X1 p(X1) f (xk−1,X1), where the

sum is over all possible next-step populations X1, and in each term f (xk−1,X1) is mul-

tiplied by the probability p(X1) of generating that particular population X1. The reason

for the inequality is because, by optimality of σk−1 for the max player in the (k− 1)-

step game, we know that gk−1
σk−1,τ

(X1)≥ infπ∈Ψ2 gk−1
σk−1,π

(X1) = gk−1
σk−1,∗(X1) = gk−1(X1) =

f (xk−1,X1).

The sum ∑X1 p(X1) f (xk−1,X1) can be rewritten as a product of |µ| terms, one for

each object in the initial population X0, where for a n-vector µ ∈ Nn, let |µ| denote the

L1-norm of vector µ, i.e., |µ| := ∑
n
i=1(µ)i. Specifically, given X0, let LX0,X1 denote the

set of all possible tuples of rules (r1, . . . ,r|X0|), which associate to each object e j in the

population X0, a rule r j such that if e j has type Ti, then r j ∈ R′(Ti) is a rule for type Ti,

and furthermore such that if we apply the rules (r1, . . . ,r|X0|), they generate multi-sets

α1, . . . ,α|X0|, such that we obtain the population X1 =
⋃

αi from them.

Then for X0 = µ, we can rewrite ∑X1 p(X1) f (xk−1,X1) as:

∑
X1

p(X1) f (xk−1,X1) = ∑
X1

∑
(r1,...,r|X0|)∈LX0,X1

(
|µ|

∏
j=1

p′r j
) · (

|µ|

∏
j=1

f (xk−1,αr j))

=
|µ|

∏
j=1

∑
r j

p′r j
f (xk−1,αr j)

where r j ranges over all rules that can be generated by the type of object e j, and p′r j

is the probability of generating rule r j for object e j in the first step, under strategies

σk and τ. αr j is the population produced from e j under rule r j. Note that the term

∑r j p′r j
f (xk−1,αr j) for an object e j of type Ti has the same form as equation (3.1)

above. This observation implies that, since the mixed strategy ŝi is minimax-optimal

in the zero-sum matrix game with matrix Ai(xk−1), the term ∑r j p′r j
f (xk−1,αr j) cor-

responding to each object e j of type Ti is ≥ Val(Ai(xk−1)) = Pi(xk−1) = xk
i . Hence,

for any strategy τ chosen the min player, starting with the objects in µ = X0, the

probability of not reaching the target type in next k steps under strategies σk and

τ is gk
σk,τ

(µ) ≥ ∏
|µ|
i=1 xk

i = f (xk,µ). Therefore, the k-step non-reachability value is

gk(µ) = supσ∈Ψ1
infτ∈Ψ2 gk

σ,τ(µ)≥ infτ∈Ψ2 gk
σk,τ

(µ)≥ f (xk,µ).

Symmetrically we can prove the reverse inequality by using the other player as

an argument. That is, similarly let τk select as a first step for each object of type

Ti in the initial population µ = X0 the (mixed) optimal strategy in the corresponding
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zero-sum matrix game Ai(xk−1) (exists by the minimax theorem). Simultaneously and

independently the max player chooses moves for the objects, and then rules are picked

in order to generate population X1. Afterwards, the min player acts according to an

optimal k−1-step strategy τk−1 (which exists by the inductive hypothesis). As before,

gk(µ) can be written as a product of |µ| terms, where each term is ∑r j p′r j
f (xk−1,αr j).

Again, by the choice of τk, it follows that the term for each object e j of type Ti is at

most Val(Ai(xk−1)) = Pi(xk−1) = xk
i . Thus, showing that supσ∈Ψ1

gk
σ,τk(µ) ≤ f (xk,µ),

and gk(µ) ≤ f (xk,µ). So, at the end gk(µ) = supσ∈Ψ1
gk

σ,τk(µ) = infτ∈Ψ2 gk
σk,τ

(µ) =

f (xk,µ) = ∏
n
i=1(x

k
i )

(µ)i . Note that the constructed strategy σk (and τk) is thus optimal

for the player maximizing (respectively, minimizing), the probability of not reaching

the target type in k steps. If the initial population consists of a single object of type

Ti 6= Tf ∗ , then the Lemma states that gk
i = xk

i for all k ≥ 0.

Now we continue the proof of Theorem 3.1. We show that the game is determined,

i.e., g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ(µ), and that the game value

for the objective of not reaching Tf ∗ is precisely f (x∗,µ), where x∗= limk→∞ xk ∈ [0,1]n

is the GFP of the system x = P(x), which exists by Tarski’s theorem. As a special case,

if the initial population µ is just a single object of type Ti 6= Tf ∗ , we have g∗i = x∗i .

Since the sequence xk converges to x∗ monotonically from above (recall x0 = 1
and the sequence is monotonically non-increasing), then f (xk,µ) converges to f (x∗,µ)

from above, i.e., for any ε> 0 there is a k(ε) where f (x∗,µ)≤ f (xk(ε),µ)< f (x∗,µ)+ε.

By Lemma 3.2, the min player strategy τk(ε) (as described in the Lemma) achieves the

k(ε)-step value of the game, i.e., supσ∈Ψ1
gk(ε)

σ,τk(ε)(µ) = f (xk(ε),µ) < f (x∗,µ)+ ε. But

for any strategy σ, g∗
σ,τk(ε)(µ) ≤ gk(ε)

σ,τk(ε)(µ), since the more steps the game takes, the

lower the probability of non-reachability is. So it follows that supσ∈Ψ1
g∗

σ,τk(ε)(µ) ≤

supσ∈Ψ1
gk(ε)

σ,τk(ε)(µ) < f (x∗,µ) + ε. And since it holds for every ε > 0, then infτ∈Ψ2

supσ∈Ψ1
g∗σ,τ(µ)≤ f (x∗,µ). Thus, by standard facts, g∗(µ) = supσ∈Ψ1

infτ∈Ψ2 g∗σ,τ(µ)≤
infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ(µ)≤ f (x∗,µ).

To show the reverse inequality, namely g∗(µ)≥ f (x∗,µ), let σ∗ be the (mixed) static

strategy for the max player (i.e., the player aiming to maximize the probability of not

reaching the target type), that for each object of type Ti always selects the (mixed)

optimal strategy in the zero-sum matrix game Ai(x∗) (which exists by the minimax

theorem). Fixing σ∗, the BCSG becomes a minimizing BMDP and the minimax-PPS,

x=P(x), becomes a minPPS, x=P′(x) =Pσ∗,∗(x). In this new system of equations, for

every type Ti (i.e., variable xi), the function on the right-hand side changes from Pi(x)=
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Val(Ai(x)) to P′i (x) = min{mb : b ∈ Γi
min}, where mb := ∑ j∈Γi

max
σ∗(xi, j) ∗ qi, j,b(x).

Hence, P′(x) ≤ P(x) for all x ∈ [0,1]n. Thus, if we denote by yk,k ≥ 0 the vectors

obtained from the k-fold application of P′(x) on the vector 1 (i.e., the all-1 vector),

then yk ≤ xk for all k ≥ 0. So it follows that y∗ ≤ x∗, with y∗ and x∗ being the GFP

of x = P′(x) and x = P(x), respectively. But since the fixed strategy σ∗ is the optimal

strategy for the max player with respect to vector x∗ and achieves the value Pi(x∗) =

Val(Ai(x∗)) for all variables, x∗ must also be a fixed point of x = P′(x) and hence

x∗ = y∗.

Now consider any strategy τ for the min player in the minimizing BMDP. Recall

that a minimizing BMDP is a BCSG where in every type the max player has a single

available action. Then by the induction step in the proof of Lemma 3.2 it holds that for

every k≥ 0, starting in the initial population µ, the probability of not reaching the target

type Tf ∗ in k steps under strategy τ is at least f (yk,µ). Hence, the infimum probability

of not reaching the target type (in any number of steps) is at least limk→∞ f (yk,µ) =

f (y∗,µ) = f (x∗,µ). Therefore, infτ∈Ψ2 g∗
σ∗,τ(µ) ≥ f (x∗,µ). However, we know that

g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ)≥ infτ∈Ψ2 g∗

σ∗,τ(µ), which shows the reverse inequality.

We can deduce that g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g∗σ,τ(µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ(µ) =

f (x∗,µ) = infτ∈Ψ2 g∗
σ∗,τ(µ) and σ∗ is an optimal (mixed) static strategy for the max

player under the non-reachability objective.

Note that the player minimizing the non-reachability probability need not have

any optimal strategy, even for a BMDP (see [ESY18, Example 3.2]). However, in

[ESY18, Theorem 9.4] it was shown that for BMDPs and BSSGs, such player always

has a winning strategy in the case when the non-reachability value is 0 (i.e., when the

reachability value is 1). But the following example shows that this is not the case for

the more general model of BCSGs.

Example 3.1. The qualitative almost-sure and limit-sure reachability problems for

BCSGs do not coincide.

C
a, c−−→C A

1/2−−→ /0

C
a, d−−→C A A

1/2−−→ Tf ∗

C
b, c−−→C A

C
b, d−−→ A
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In the BCSG above, the player minimizing the non-reachability probability has

actions a,b in type C, and the other player has actions c,d in type C. The target type is

Tf ∗ . We show that, starting at an object of type C, the non-reachability value is 0, but

there is no winning strategy for the player minimizing the non-reachability probability

(i.e., maximizing the reachability probability) that achieves value exactly 0.

First, construct a corresponding minimax-PPS using Theorem 3.1. For type A,

there is a variable xA and the equation xA = 1/2. For type C, there is a variable xC and

the equation xC =Val

([
xC xC · xA

xC · xA xA

])
. Clearly, x∗A = 1/2, x∗C = 0 is a fixed point

for the system. To see that it is indeed the GFP (and in fact the only fixed point), if for

any 0 < v≤ 1 we take xC = v, it is not a fixed point. That is because the minimax value

of the matrix game

[
v v/2

v/2 1/2

]
is strictly less than v.

There is a sequence of static randomized strategies for the player minimizing the

non-reachability that achieve non-reachability values arbitrarily close to 0. Namely, for

any ε > 0, let strategy τε assign probability 1−ε to action a and probability ε to action

b. Fixing strategy τε for the min player, from the minimax-PPS we get a maxPPS with

equations xA = 1/2 and xC = max{xC · (1−ε)+xC ·ε/2, xC · (1−ε)/2+ε/2}, whose

GFP and hence, the optimal non-reachability probabilities vector in the minimax-PPS

under strategy τε is xA = 1/2, xC = ε/(1+ ε)≤ ε.

However, there is no strategy (static or not) for the min player that achieves non-

reachability value exactly 0. To see this, observe that if the min player never puts

a positive probability on action b, then the max player can deterministically always

choose action c and the game never reaches the target. The very first time that the

min player puts any positive probability on action b, then by selecting action d the

max player ensures that with a positive probability the game becomes extinct without

reaching the target.

Let us also give a BCSG example that contains types satisfying almost-sure reach-

ability.

Example 3.2. BCSG example demonstrating almost-sure reachability.

C
a, c−−→C′ A C′

a′, c′−−→C′ A
1/2−−→ /0

C
a, d−−→ A C′

a′, d′−−−→ A A
1/2−−→ Tf ∗

C′
b′, c′−−→C′ A

C′
b′, d′−−−→C′ A
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In the BCSG above: the target type is Tf ∗; the player minimizing the non-reachability

probability has actions a′,b′ in type C′ and an action a in type C; and the other player

has actions c′,d′ in type C′ and actions c,d in type C. We show that, starting at an

object of type C′, the non-reachability value is 0 and there is a strategy for the min

player that achieves exactly value 0.

Let us again first construct a corresponding minimax-PPS using Theorem 3.1. For

type A, there is a variable xA and the equation xA = 1/2. For type C′, there is a variable

xC′ and the equation xC′ = Val

([
xC′ xA · xC′

xA xA · xC′

])
. And for type C, there is a variable

xC and the equation xC =Val

([
xA · xC′

xA

])
= max[xA ·xC′,xA]. One can check that the

GFP of the system is xA = xC = 1/2, xC′ = 0.

Furthermore, there is in fact a winning strategy τ for the min player such that,

starting at an object of type C′, the non-reachability value is 0 (i.e., the reachability

value is 1). Namely, at every object of type C′, let τ choose deterministically action b′.

Then, regardless of the strategy of the max player, with probability 1 infinitely often an

independent object of type A will be generated and, hence, infinitely often there will be

an independent probability of 1/2 of hitting the target type. So the overall probability

of hitting the target type, starting at an object of type C′, is 1.

As for type C, the min player has only one available action and the spoiling strategy

for the max player will deterministically select action d. Then, regardless of the min

player strategy, it will be guaranteed that the target type is not reached with probability

1/2. Otherwise, if the max player chooses action c in type C, then an object of type

C′ will be immediately generated and, therefore, as previously observed the target type

will be reached with probability 1, which is in contradiction with the objective of the

max player.

3.2 P-time algorithm for deciding reachability value = 0

for BCSGs

In this section we show that there is a P-time algorithm for computing the variables

xi with value g∗i = 1 for the GFP in a given minimax-PPS, or in other words, for a

given BCSG, deciding whether the value for reaching the target type, starting with an
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object of a given type Ti, is 0. The algorithm does not take into consideration the actual

probabilities on the transitions in the game (i.e., the coefficients of the polynomials),

but rather depends only on the structure of the game (respectively, the dependency

graph structure of the minimax-PPS) and performs an AND-OR graph reachability

analysis. The algorithm is easy and generalizes the algorithm given for deciding g∗i = 1

for BSSGs in [ESY18, Proposition 4.1].

Algorithm 3.1 Simple P-time algorithm for computing the set of types with reachabil-

ity value 0 in a given BCSG, or equivalently the set of variables {xi | g∗i = 1} of the

associated minimax-PPS.
1. Initialize S := Z.

2. Repeat until no change has occurred:

(a) if there is a variable xi 6∈ S of form L or Q such that Pi(x) contains a variable

already in S, then add xi to S.

(b) if there is a variable xi 6∈ S of form M such that for every action amax ∈ Γi
max, there

exists an action amin ∈ Γi
min, such that Ai(x)(amax,amin) ∈ S, then add xi to S.

3. Output the set S̄ :=W −S.

Proposition 3.3. Algorithm 3.1 decides, given a BCSG or equivalently a correspond-

ing minimax-PPS, x = P(x), with n variables and GFP g∗ ∈ [0,1]n, for any i ∈ [n],

whether g∗i = 1 or g∗i < 1. Equivalently, for a given BCSG with non-reachability ob-

jective and a starting object of type Ti, it decides whether the non-reachability game

value is 1. In the case of g∗i = 1, the algorithm produces a deterministic policy (or

deterministic static strategy in the BCSG case) σ for the max player (maximizing non-

reachability) that forces g∗i = 1. Otherwise, if g∗i < 1, the algorithm produces a mixed

policy τ (a mixed static strategy) for the min player (minimizing non-reachability) that

guarantees g∗i < 1.

Proof. Let W = {x1, . . . ,xn} denote the set of all variables in the minimax-PPS, x =

P(x). Recall that the dependency graph of x = P(x) has a directed edge (xi,x j) if and

only if variable xi depends on variable x j, i.e., x j occurs in Pi(x). Let us call a variable

xi deficient if Pi(x) is of form L and Pi(1) < 1. Let Z ⊆ {x1, . . . ,xn} be the set of

deficient variables. The remaining variables X = W −Z are partitioned, according to

their SNF-form equations: X = L∪Q∪M (refer to Definition 6 for the SNF-form of a

minimax-PPS).
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The intuition behind the algorithm is as follows: notice that in step 2.(b) no matter

what strategy the max player chooses in the particular variable (i.e., type in the game),

the min player can ensure with a positive probability to end up in a successor variable

that already is bad for the max player. The resulting winning strategies for the players’

corresponding winning sets (it is irrelevant to define strategies in the losing nodes) are:

(i) for xi ∈ S, the min player’s strategy (mixed static) τ selects uniformly at random

among the “witness” moves from step 2.(b), and (ii) for xi ∈ S the max player’s strategy

(deterministic static) σ chooses an action amax ∈ Γi
max that ensures staying within S no

matter what the minimizer’s action is (which must exist, otherwise xi would have been

added to set S).

We need to prove that g∗i < 1 iff xi ∈ S. First, we show that xi ∈ S implies g∗i < 1.

Assume xi ∈ S (and therefore τ is defined). We analyse by induction, based on the time

(iteration) in which variable xi was added to set S in the iterative algorithm. For the

base case, if xi was added at the initial step (i.e., xi ∈ Z), then g∗i ≤ Pi(1)< 1. For the

induction step, if variable xi is of form L or Q, then g∗i = Pi(g∗) is a linear combination

(with positive coefficients whose sum is ≤ 1) or a quadratic term, containing at least

one variable x j that was already in set S prior to xi, and hence, by induction, g∗j < 1.

Hence, g∗i < 1. If xi is of form M, then for ∀amax ∈ Γi
max, ∃amin ∈ Γi

min such that

the corresponding variable x(amax,amin) ∈ S (i.e., g∗(amax,amin)
< 1), and τ gives positive

probability (in fact, probability ≥ 1
|Γi

min|
) to all such witnesses amin. For any strategy

σ that the maximizer picks, let σ1 be the part of σ for just the first initial step of the

game. In other words, if the game starts in an object of type Ti (variable xi), then σ1(xi)

denotes the probability distribution on actions Γi
max that σ assigns in the very first step

of the play. Then the reachability probability under the described randomized static

strategy τ for the min player and an arbitrary strategy σ for the max player is:

∑
amin,amax

σ
1(xi)(amax) · τ(xi)(amin) · (1−g∗(amax,amin)

)

= ∑
amax

σ
1(xi)(amax) ∑

amin

τ(xi)(amin) · (1−g∗(amax,amin)
)

≥∑
amax

σ
1(xi)(amax) ·

1
|Γi

min|
· c = c

|Γi
min|

where c := min{1−g∗(amax,amin)
| amax ∈ Γi

max, amin ∈ Γi
min s.t. 1−g∗(amax,amin)

> 0} (note

that c > 0). It follows that for any strategy σ ∈ Ψ1, (g∗σ,τ)i ≤ 1− c
|Γi

min|
, or in other

words (g∗∗,τ)i < 1. Thus, g∗i ≤ (g∗∗,τ)i < 1.

Next, to show that if g∗i < 1 then xi ∈ S, we prove the contrapositive statement.

Assume xi ∈ S (and therefore σ is defined). All variables of form L∪Q depend only
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on variables in S (otherwise they would have been added to set S). Moreover, for every

xi of form M, there is a maximizer action amax such that, all variables in row amax of

the matrix of Ai(x) are in S. If no such action exists, then xi would have been added

to set S in step 2.(b). Let σ(xi) choose such an action amax deterministically (i.e., with

probability 1). In the dependency graph of the resulting (after fixing the defined policy

σ) minPPS, x = Pσ,∗(x), there are no edges from S̄ to S: all variables of form L, Q, or M

depend only on S̄ variables, otherwise they would have been added to set S. Moreover,

S does not contain any deficient variables. So, Pi(1) = 1 for every xi ∈ S, and the all-1

vector is a fixed point for the subsystem of the minPPS, x = Pσ,∗(x), induced by the

variables S̄. In other words, (g∗σ,∗)i = 1 (thus g∗i = 1) for all xi ∈ S̄.

3.3 minimax-PPS preliminary results

Following the definitions introduced in ([ESY18], Section 5), a linear degenerate

(LD)-PPS is a PPS where every polynomial, Pi(x), is linear and contains no constant

term (i.e., Pi(x) = ∑
n
j=1 pi jx j) and where the coefficients pi j ∈ [0,1] sum to 1. Hence, a

LD-PPS has for LFP (q∗) and GFP (g∗) the all-0 and the all-1 vectors, respectively. Fur-

thermore, a PPS that does not contain a linear degenerate bottom strongly-connected

component (i.e., a component in the dependency graph that is strongly connected and

has no edges going out of it), is called a linear degenerate free(LDF)-PPS. In other

words, a LDF-PPS is a PPS that satisfies the conditions of Lemma 3.4(ii) below. Given

a minimax-PPS, x = P(x), a policy τ for the min player is called LDF if the resulting

PPS for all max player policies σ, namely x = Pσ,τ(x), is a LDF-PPS. Having intro-

duced this, now we can reference some known results from [ESY18].

Lemma 3.4 (cf. [ESY18], Lemma 5.1). For any PPS, x = P(x), exactly one of the

following two cases holds:

(i) x = P(x) contains a linear degenerate bottom strongly-connected component

(BSCC), S, i.e., xS = PS(xS) is a LD-PPS, and PS(xS) ≡ BSxS, for a stochastic

matrix BS.

(ii) every variable xi either is, or depends (directly or indirectly) on, a variable x j

where Pj(x) has one of the following properties:

1. Pj(x) has a term of degree 2 or more,

2. Pj(x) has a non-zero constant term, i.e., Pj(0)> 0 or



3.3. minimax-PPS preliminary results 61

3. Pj(1)< 1.

Lemma 3.5 (cf. [ESY18], Lemma 5.2). If a PPS, x = P(x), has either GFP g∗ < 1, or

LFP q∗ > 0, then x = P(x) is a LDF-PPS.

Lemma 3.6 (cf. [ESY18], Lemma 5.5). For any LDF-PPS, x = P(x), and y < 1, if

P(y) ≤ y then y ≥ q∗ and if P(y) ≥ y, then y ≤ q∗. In particular, if q∗ < 1, then q∗ is

the only fixed-point q of x = P(x) with q < 1.

The following is a generalized version (for concurrent games) of [ESY18, Lemma

9.1]. In particular, statement (3.) is more involved to prove.

Lemma 3.7. For a minimax-PPS, x = P(x), if the GFP g∗ < 1, then:

1. there exists a (mixed) LDF policy τ for the min player such that g∗∗,τ < 1.

2. for any LDF min player’s policy τ′, it holds that g∗ ≤ q∗∗,τ′ .

3. there is a sequence of (mixed) LDF policies (τ(i))i∈N for the min player such

that for every ε > 0, there is i ≥ 0 where for all j ≥ i, τ( j) has the property

g∗ ≤ q∗∗,τ( j) ≤ g∗+ ε.

Proof. For point (1.), recall that since g∗ < 1, the algorithm from the previous Section

3.2 will return a mixed static strategy (policy) τ for the min player such that g∗∗,τ < 1.

Thus for all max’s strategies σ : g∗σ,τ ≤ supπ∈Ψ1
g∗π,τ = g∗∗,τ < 1. By Lemma 3.5, all

PPSs, x = Pσ,τ(x), are LDF, which results in the policy τ being LDF as well.

Showing claim (2.), let us fix any LDF policy τ′ for the min player. Notice that

g∗ = P(g∗) = infπ P∗,π(g∗) ≤ P∗,τ′(g∗). In the resulting maxPPS, there exist a policy

σ for the max player such that g∗ ≤ P∗,τ′(g∗) = Pσ,τ′(g∗). For every variable xi with

g∗i = max{g∗1, . . . ,g∗di
} in the maxPPS, the strategy itself chooses the successor in the

dependency graph that maximizes g∗i . Now using Lemma 3.6 with LDF-PPS x =

Pσ,τ′(x) and y := g∗ < 1, it follows that g∗ ≤ q∗
σ,τ′ ≤ supπ∈Ψ1

q∗
π,τ′ = q∗∗,τ′ .

Proof of (3.). By statement (1.), there is a mixed LDF policy τ where q∗∗,τ≤ g∗∗,τ < 1.

Let us start a policy improvement iterative process with τ(1) := τ. By statement (2.), we

know that g∗ ≤ q∗∗,τ(1) and clearly there exists some ε(1) > 0 such that q∗∗,τ(1) ≤ g∗+ε(1).

Suppose that at i-th iteration of the technique, we have a mixed LDF policy τ(i) with

the property g∗ ≤ q∗∗,τ(i) ≤ g∗+ ε(i) (the policy improvement process assumption). If
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P(q∗∗,τ(i)) = q∗∗,τ(i) , stop the process (we will show that in this case actually q∗∗,τ(i) = g∗).

Otherwise, since P(q∗∗,τ(i)) = infτ′∈Ψ2 P∗,τ′(q∗∗,τ(i))≤ P∗,τ(i)(q
∗
∗,τ(i)) = q∗∗,τ(i) , then there is

a variable x j where Pj(q∗∗,τ(i)) = Val(A j(q∗∗,τ(i))) < (q∗∗,τ(i)) j. Note that x j is indeed of

form M, otherwise Pj(q∗∗,τ(i)) = (P∗,τ(i)(q
∗
∗,τ(i))) j, since for L-form and Q-form variables

policy τ(i) does not have a choice to make. Let the new policy τ(i+1) be the static

strategy that adopts the optimal mixed strategy for the min player in the zero-sum

matrix game A j(q∗∗,τ(i)) (exists by the minimax theorem) in variable x j (type Tj), and

stays the same as τ(i) in all other variables (types). Before moving on with the proof,

we will first demonstrate that τ(i+1) is also LDF.

Claim 3.8. Policy τ(i+1) is LDF.

Proof. Assume τ(i+1) is not LDF. Then, by Lemma 3.4(i), there is a policy σ for the

max player such that in the PPS, x = P
σ,τ(i+1)(x), there is a linear degenerate bottom

strongly-connected component C. It should contain x j and all variables that x j depend

directly on in the PPS, i.e., appearing in (P
σ,τ(i+1)(x)) j. Otherwise C would have also

been a linear degenerate BSCC of x = P
σ,τ(i)(x) and τ(i) would not have been LDF.

Due to the construction of the new policy and by standard facts from zero-sum

games, we have P∗,τ(i+1)(q∗∗,τ(i)) ≤ q∗∗,τ(i) with strict inequality in variable x j ∈ C, i.e.,

(P∗,τ(i+1)(q∗∗,τ(i))) j ≤ Val(A j(q∗∗,τ(i))) < (q∗∗,τ(i)) j. Let j′′ = argmin j′∈C(q∗∗,τ(i)) j′ be the

coordinate in (q∗∗,τ(i))C with the minimum value. We already know that (P∗,τ(i+1)(q∗∗,τ(i))) j′′

≤ (q∗∗,τ(i)) j′′ .

And we also claim that any x j′ ∈ C satisfies (q∗∗,τ(i)) j′′ = (q∗∗,τ(i)) j′ . That is, in the

vector (q∗∗,τ(i))C, any variable x j′ ∈ C has the same minimum value. To show this,

consider the form of (P
σ,τ(i+1)(x)) j′′ . It can not be of Q-form type, due to component C

being at the same time bottom SCC and linear degenerate in P
σ,τ(i+1)(x) (refer to Lemma

3.4). Then it is surely of L-form, and so (P
σ,τ(i+1)(q∗∗,τ(i))) j′′ is a convex combination

of some values in (q∗∗,τ(i))C. If any of these values is bigger than the minimum value

(namely, (q∗∗,τ(i)) j′′), then (P
σ,τ(i+1)(q∗∗,τ(i))) j′′ > (q∗∗,τ(i)) j′′ , which is not true, because

(P
σ,τ(i+1)(q∗∗,τ(i))) j′′ ≤ (P∗,τ(i+1)(q∗∗,τ(i))) j′′ ≤ (q∗∗,τ(i)) j′′ . So for any xv (∈C), appearing in

(P
σ,τ(i+1)(x)) j′′ , we have (q∗∗,τ(i)) j′′ = (q∗∗,τ(i))v, i.e., xv has the same minimum value. But

applying this argument inductively (i.e., for variables appearing in (P
σ,τ(i+1)(x))v and

so on) in the closed recurrent set C, we actually get the claim that any x j′ ∈C satisfies

(q∗∗,τ(i)) j′′ = (q∗∗,τ(i)) j′ .

Due to component C being bottom strongly-connected in x = P
σ,τ(i+1)(x), it follows

that (q∗∗,τ(i)) j = (q∗∗,τ(i)) j′′ and (q∗∗,τ(i))k = (q∗∗,τ(i)) j′′ for every variable xk, appearing in
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(P
σ,τ(i+1)(x)) j. Then it means that (q∗∗,τ(i)) j = (q∗∗,τ(i))k for every such variable xk, or

in other words (q∗∗,τ(i)) j = (P
σ,τ(i+1)(q∗∗,τ(i))) j. But we know that (P

σ,τ(i+1)(q∗∗,τ(i))) j ≤
(P∗,τ(i+1)(q∗∗,τ(i))) j < (q∗∗,τ(i)) j. This is a contradiction. Therefore, the initial assumption

of the claim is false and τ(i+1) is indeed LDF.

Going back to the proof of statement (3.) from Lemma 3.7, to recap, P∗,τ(i+1)(q∗∗,τ(i))

≤ q∗∗,τ(i) with strict inequality for variable x j, because of the construction of τ(i+1).

There is a max player’s policy σ such that q∗
σ,τ(i+1) = q∗∗,τ(i+1) and P

σ,τ(i+1)(q∗∗,τ(i)) ≤
P∗,τ(i+1)(q∗∗,τ(i)) ≤ q∗∗,τ(i) with strict inequality for variable x j. Applying Lemma 3.6 to

the LDF-PPS, x = P
σ,τ(i+1)(x), and y := q∗∗,τ(i) , it follows that q∗∗,τ(i+1) = q∗

σ,τ(i+1) ≤ q∗∗,τ(i) .

What is more, as P∗,τ(i+1)(q∗∗,τ(i)) 6= q∗∗,τ(i) , then it can not be an equality. So the policy

improvement algorithm does not visit the same min player policy twice, and q∗∗,τ(i+1) <

q∗∗,τ(i) . And by the assumption of the policy improvement process, q∗∗,τ(i) ≤ g∗+ε(i). So

there exists 0 < ε(i+1) < ε(i) where q∗∗,τ(i+1) ≤ g∗+ ε(i+1). Also by statement (2.) of the

Lemma, g∗ ≤ q∗∗,τ(i+1) and g∗ ≤ q∗∗,τ(i) , since both policies (τ(i) and τ(i+1)) are LDF.

That shows that the policy improvement process constructs a sequence (τ(i))i∈N of

mixed LDF policies that bring value q∗∗,τ(i) closer and closer to g∗ as i→∞. So for every

ε > 0, there exists i≥ 0 such that for all j≥ i, τ( j) has the property g∗≤ q∗∗,τ( j) ≤ g∗+ε.

Say that by some chance the process has stopped (say at iteration t) with a mixed

LDF policy τ(t), i.e., q∗∗,τ(t) = P(q∗∗,τ(t)) and q∗∗,τ(t) is a fixed point of the minimax-PPS.

By statement (2.) of the Lemma, since τ(t) is LDF, then g∗ ≤ q∗∗,τ(t) . But also because

g∗ is the GFP, then g∗ ≥ q∗∗,τ(t) . Hence, g∗ = q∗∗,τ(t) .

Lemma 3.9 (cf. [ESY18], Lemma 6.1). For any maxPPS, x = P(x), if GFP g∗ < 1
then g∗ is the unique fixed point of x = P(x) in [0,1]n. In other words, g∗ = q∗, where

q∗ is the LFP of x = P(x).

Lemma 3.10 (cf. [ESY20], Lemma 3.20). If 0 < q∗ < 1 is the LFP of a max/minPPS,

x = P(x), in n variables, then for all i ∈ {1, . . . ,n}:

1−q∗i ≥ 2−4|P|

In other words, 0 < q∗i ≤ 1−2−4|P|, for all i ∈ {1, . . . ,n}.

Proposition 3.11. For a minimax-PPS, x = P(x), with GFP g∗ < 1, for all i ∈ [n]:

1−g∗i ≥ 2−4|P|
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Proof. Since g∗ < 1, by Lemma 3.7(1. and 2.) there is a LDF policy τ′ for the

minimizer such that g∗ ≤ q∗∗,τ′ ≤ g∗∗,τ′ < 1. Moreover, fixing τ′ in the minimax-PPS,

we get a maxPPS, x = P∗,τ′(x), where by Lemma 3.9, there is a unique fixed point

q∗∗,τ′ = g∗∗,τ′ . Hence, for all i ∈ [n], 1−g∗i ≥ 1− (g∗∗,τ′)i = 1− (q∗∗,τ′)i. And by Lemma

3.10, 1−(q∗∗,τ′)i≥ 2−4|P∗,τ′ |≥ 2−4|P|, where the last inequality holds due to |P∗,τ′| ≤ |P|.
This is because to encode xi = max{x1,x2, · · · x|Γi

max|} from maxPPS, x = P∗,τ′(x), there

cannot be any more bits needed than to encode xi = Val(Ai(x)) from minimax-PPS,

x = P(x), where the dimensions of the matrix are |Γi
max|× |Γi

min|.

Claim 3.12. In a LD-PPS, x = P(x):

1. in every fixed point, all variables have equal values.

2. there are infinitely many fixed points.

Proof. Recall that in a linear degenerate PPS, x=P(x), every polynomial is linear, with

no constant terms, of the form Pi(x) = ∑
n
j=1 pi jx j, where pi j ∈ [0,1] and ∑

n
j=1 pi j = 1

for all i ∈ [n]. Clearly for any 0 ≤ x ≤ 1 where all values in x are the same, P(x) = x

and so x is a fixed point for the PPS. This shows the second statement.

And in order to show the even stronger statement (1.), take some other fixed point

x ∈ [0,1]n and let j′′ = argmini∈[n] xi be the index of the variable with the minimum

value. Since Pj′′(x) is a convex combination of some subset of variables {x j | j ∈ [n]},
if any of them is larger than the minimum value, then Pj′′(x) > x j′′ , contradicting that

x is a fixed point for P(·). So for any such variable x j, appearing in Pj′′(x), x j = x j′′ .

Applying this inductively, the statement follows, since the dependency graph of the

PPS, x = P(x), is strongly connected.

3.4 P-time algorithm for deciding almost-sure reacha-

bility for BCSGs

In this section the focus is on the qualitative almost-sure reachability problem for BC-

SGs, i.e., given a BCSG and starting with an object of a given type Ti, decide whether

the reachability value is 1 and there exists an optimal strategy to achieve this value

for the player aiming to maximize the reachability probability. That is, the algorithm

presented here computes a set F of variables (types), such that for any variable xi ∈ F ,

starting from one object of corresponding type Ti there is a strategy τ ∈ Ψ2 for the
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player aiming to reach the target type Tf ∗ , such that no matter what the other player

does, almost-surely an object of type Tf ∗ will be reached. We of course also wish to

compute such a strategy if it exists.

Algorithm 3.2 P-time algorithm for computing the types that satisfy almost-sure

reachability in a given BCSG, i.e., the set of variables {xi | ∃τ ∈ Ψ2 (g∗∗,τ)i = 0} in

the associated minimax-PPS.
1. Initialize S := {xi ∈ X | Pi(0)> 0, that is Pi(x) has a constant term }.

Let γi
0 := Γi

min for every variable xi ∈ X−S. Let t := 1.

2. Repeat until no change has occurred to S:

(a) if there is a variable xi ∈ X −S of form L where Pi(x) contains a variable already

in S, then add xi to S.

(b) if there is a variable xi ∈ X−S of form Q where both variables in Pi(x) are already

in S, then add xi to S.

(c) if there is a variable xi ∈ X −S of form M and if for all amin ∈ Γi
min, there exists a

amax ∈ Γi
max such that Ai(x)(amax,amin) ∈ S∪{1}, then add xi to S.

3. For each xi ∈ X−S of form M, let:

γi
t := {amin ∈ γi

t−1 | ∀amax ∈ Γi
max, Ai(x)(amax,amin) 6∈ S∪{1}}. (Note that γi

t ⊆ γi
t−1.)

4. Let F := {xi ∈ X−S | Pi(1)< 1, or Pi(x) is of form Q }

5. Repeat until no change has occurred to F :

(a) if there is a variable xi ∈ X − (S∪F) of form L where Pi(x) contains a variable

already in F , then add xi to F .

(b) if there is a variable xi ∈ X − (S∪F) of form M such that for ∀amax ∈ Γi
max, there

is a min player’s action amin ∈ γi
t such that Ai(x)(amax,amin) ∈ F , then add xi to F .

6. If X = S∪F , return F , and halt.

7. Else, let S := X−F , t := t +1, and go to step 2.

We now present the algorithm. First, as a preprocessing step, we apply Algorithm

3.1, which identifies in P-time all the variables xi where g∗i = 1. We then remove these

variables from the system, substituting the value 1 in their place. We then simplify and

reduce the resulting SNF-form minimax-PPS into a reduced form, with GFP g∗ < 1.

Note that the resulting reduced SNF-form minimax-PPS may contain some variables x j
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of form M, whose corresponding matrix A j(x) has some entries that contain the value

1 rather than a variable (because we substituted 1 for removed variables x j, where

g∗j = 1). Note also that in the reduced SNF-form minimax-PPS each variable xi of

form Q has an associated quadratic equation xi = x jxk, because if one of the variables

(say xk) on the right-hand side was set to 1 during the preprocessing step, the resulting

equation (xi = x j) would have been declared to have form L in the reduced minimax-

PPS. We henceforth assume that the minimax-PPS is in SNF-form, with g∗< 1, and we

let X be its set of (remaining) variables. We apply now Algorithm 3.2 to the minimax-

PPS with g∗ < 1, which identifies the variables xi in the minimax-PPS (equivalently,

the types in the BCSG), from which we can almost-surely reach the target type Tf ∗

(i.e., g∗i = 0 and there is a strategy τ∗ for the player minimizing the non-reachability

probability that achieves this value, no matter what the other player does).

Theorem 3.13. Given a BCSG with minimax-PPS, x=P(x), such that the GFP g∗< 1,

Algorithm 3.2 terminates in polynomial time and returns the following set of variables:

{xi ∈ X | ∃τ ∈Ψ2 (g∗∗,τ)i = 0}.

Proof. First, let us provide some notation and terminology for analyzing the algorithm.

The integer t ≥ 1 represents the number of iterations of the main loop of the algorithm,

i.e., the number of executions of steps (2.) through (7.) (inclusive; note that some

of these steps are themselves loops). Let St denote the set S inside iteration t of the

algorithm and just before we reach step (3.) of the algorithm (in other words, just

after the loop in step (2.) has finished). Similarly, let Ft denote the set F just before

step (6.) in iteration t of the algorithm. We also define a new set, Kt , which doesn’t

appear explicitly in the algorithm. Let Kt := X − (St ∪Ft), for every iteration t ≥ 1.

The set γi
t in the algorithm denotes a set of moves/actions of the min player at variable

xi (i.e., type Ti). We shall later show that γi
t , for t ≥ 1, is a set of actions such that if the

minimizer’s strategy only chooses a distribution on actions contained in γi
t , for each

variable xi, then starting at any variable x j ∈ X−St , the play will always stay out of St .

We now start the proof of correctness for the algorithm. Clearly, the algorithm

terminates, i.e., step (6.) eventually gets executed. This is because (due to step (7.))

each extra iteration of the main loop must add at least one variable to the set S ⊆ X ,

and variables are never removed from the set S. It also follows easily that the algorithm

runs in P-time, since the main loop executes for at most |X | iterations, and during each

such iteration, each nested loop within it also executes at most |X | iterations. So, the

proof of correctness requires us to show that when the algorithm halts, the set F is
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indeed the winning set for the minimizer (i.e., the player that aims to minimize the

non-reachability probability). That is, we need to show that for all xi ∈ F there exists

a (not-necessarily static) strategy τ for the minimizing player such that (g∗∗,τ)i = 0,

i.e., regardless of what strategy σ the maximizer plays again τ the probability of not

reaching the target is 0. On the other hand, if xi ∈ S, we need to show that there is no

such strategy τ for the minimizer that forces (g∗∗,τ)i = 0. In fact, we will show that for

all xi ∈ S the following stronger property (∗∗)i holds:

(∗∗)i: There is a strategy σ for the maximizing player, such that for any strategy τ of the

minimizing player (g∗σ,τ)i > 0; in other words, starting with one object of type

Ti, using strategy pair σ and τ, there is a positive probability of never reaching

the target type.

Note that property (∗∗)i does not rule out that g∗i = 0, because even if (∗∗)i holds it is

possible that infτ∈Ψ2(g
∗
σ,τ)i = 0. In such a case, it would mean that starting in an object

of type Ti, almost-sure reachability cannot be achieved but limit-sure reachability can.

That is discussed later in Section 3.5.

First, let us show that if variable xi ∈ S when the algorithm terminates, then (∗∗)i

holds.

Lemma 3.14. For every xi ∈ S, property (∗∗)i is satisfied.

Proof. To show this, we use an induction on the “time” when a variables is added to

set S. That is, if all variables x j added to set S in previous steps and previous iterations

satisfy (∗∗) j, then if a new variable xi is added to set S, it must also satisfy (∗∗)i. In

the process of proving this, we shall in fact construct a single non-static randomized

strategy σ for the max player that ensures that for all xi ∈ S, regardless what strategy τ

the min player plays against σ, the probability of not reaching the target starting at one

object of type Ti is positive.

Consider the initial set S of variables {xi ∈ X | Pi(0) > 0} that S is initialized to

in step (1.) of the algorithm. Clearly all these variables satisfy g∗i ≥ Pi(0) > 0. Thus,

for these variables assertion (∗∗)i holds using any strategy σ for the maximizer. Next

consider a variable xi added to set S inside the loop in step (2.) of the algorithm, during

some iteration.

(i) If xi = Pi(x) is of form L, then Pi(x) contains a variable x j (with a positive coef-

ficient), that was added previously to set S, and hence (∗∗) j holds. Thus there is
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a positive probability that one object of type Ti will produce one object of type

Tj in the next generation. It thus follows that (∗∗)i holds, by using the same

strategy σ ∈Ψ1 that witnesses the fact that (∗∗) j holds.

(ii) If xi = Pi(x) is of form Q (i.e., xi = x j · xr), then Pi(x) has both variables already

added to set S, i.e., (∗∗) j and (∗∗)r both hold. Then (∗∗)i also holds, because

starting from any object of type Ti, the next generation necessarily contains one

object of type Tj and one object of type Tr, and thus by combining the two

witness strategies for (∗∗) j and (∗∗)r, we have a strategy σ ∈ Ψ1 that, starting

from one object of type Ti, will ensure a positive probability of not reaching the

target, regardless of the strategy τ ∈Ψ2 of the minimizer.

(iii) If xi =Pi(x) is of form M, then ∀amin ∈Γi
min, ∃amax ∈Γi

max such that Ai(x)(amax,amin)

∈ S∪{1}. In this case, let us define the strategy σ to behave as follows at any

object of type Ti. For each amin ∈ Γi
min, we designate one “witness” amax[amin] ∈

Γi
max, which witnesses that Ai(x)(amax[amin],amin) ∈ S∪{1}. Then, at any object of

type Ti, σ chooses uniformly at random among the witnesses amax[amin] for all

amin ∈ Γi
min. So, starting with one object of type Ti, no matter what strategy the

min player chooses, there is a positive probability that in the next step that object

will either not produce any offspring (in the case where Ai(x)(amax[amin],amin) = 1)

and hence not reach the target, or else will generate a single successor object of a

type Tj, associated with variable x j = Ai(x)(amax[amin],amin) that already belongs to

set S, and hence such that (∗∗) j holds. Hence, by combining with the strategies

that witness such (∗∗) j with the local (static) behavior of σ described for any

object of type Ti, we obtain a strategy σ that witnesses the fact that (∗∗)i holds.

Now consider any variable xi that is added to set S in step (7.) of some iteration t, in

other words any variable xi ∈ Kt := X− (St ∪Ft). Since all variables in set Kt were not

added to sets St or Ft during iteration t, we must have that: (A.) xi satisfies Pi(1) = 1

and Pi(0) = 0; (B.) xi is not of form Q; (C.) if xi is of form L, then it depends directly

only on variables in Kt ; and (D.) if xi is of form M, then:

∃amax ∈ Γ
i
max such that ∀amin ∈ γ

i
t , Ai(x)(amax,amin) 6∈ (Ft ∪St ∪{1}). (3.2)

Let (qh)
∞
h=0, h ∈ N be the infinite sequence of increasing probabilities defined by:

qh = 2−(1/2h). Note that as h→ ∞, the probability qh approaches 1 from below.

Given a finite history H of height h (meaning the depth of the forest that the history

represents is h), for any object e in the current generation (the leaves) of H, if the
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object e has type Ti such that the associated variable xi ∈ Kt is of form M, we shall

construct the strategy σ to behave as follows starting at the object e. The strategy σ

will choose one action amax that “witnesses” the statement (3.2) above, and will place

probability qh on that action, and it will distribute the remaining probability 1− qh

uniformly among all actions in Γi
max. We claim that this strategy σ ensures that for

any object e of type Ti such that xi ∈ Kt , irrespective of the strategy of the minimizing

player, the probability of not reaching the target type Tf ∗ starting with e (at any point

in history) is positive. This clearly implies that ∀τ ∈ Ψ2 : (g∗σ,τ)Kt > 0. To prove this,

there are two cases here:

1. First, suppose that during the entire play of the game, at all objects e whose

type Ti such that xi ∈ Kt has form M, the min player only uses actions belonging

to γi
t . Then in the resulting history of play there can not be any such object e

who does not generate a child or whose child in the history (a necessarily unique

child, since e has form M) is an object e′ of a type (variable) in set St (this is

because step (3.) of the algorithm, which defines γi
t , ensures that actions for the

min player in γi
t can not possibly produce a child in set St or no child at all, no

matter what the max player does). Furthermore, such an object e, occurring at

depth h in history, must with positive probability ≥ qh, produce a child e′ with

a type in Kt (because of point (D.) above, and because of the fact that the max

player plays at e a witness amax to the statement (3.2) with probability ≥ qh).

So consider an object e of some type (variable) in set Kt , that occurs in a history

H at height h≥ 0, and consider the tree of descendants of e. Recall that by point

(B.) above, this tree of descendants does not contain objects of Q-form types.

What is the probability, under the strategy σ, and under any strategy τ for the

min player whose moves are confined to the sets specified by γt , that the “tree”

of descendants of e is just a “line” consisting of an infinite sequence of objects

e0 = e, e1, e2, . . ., all of which have types (variables) contained in set Kt? This

probability is clearly at least
∞

∏
d=h

qd =
∞

∏
d=h

2−(1/2d) ≥
∞

∏
d=0

2−(1/2d) = 2−∑
∞
d=0(1/2d) = 2−2 =

1
4

That is, irrespective of what strategy τ is played by the minimizer, there is a

positive probability bounded away from 0 (indeed, ≥ 1/4) of staying forever

confined in objects having types (variables) in set Kt . In such a case, clearly,

there will be positive probability of not reaching the target type (since the types

(variables) in set Kt are not the target type).
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2. Next suppose that, on the other hand, there is a history H of some height h and

a leaf e of H that has type Ti where M-form xi ∈ Kt , such that the min player’s

strategy τ plays at object e some action(s) outside of the set γi
t with a positive

probability. Note that for all actions a′min 6∈ γi
t , there is a max player’s action

amax ∈ Γi
max such that Ai(x)(amax,a′min)

∈ St ∪{1}. Note moreover that the strategy

σ assigns positive probability, at least (1− qh)/|Γi
max| to every action in Γi

max.

Thus, if the min player’s strategy τ puts a positive probability τ(H,e,amin)> 0 on

some action amin 6∈ γt
i, then with probability ≥

(
maxamin 6∈γi

t
τ(H,e,amin)

)
· (1−qh)
|Γi

max|
,

either the object e will have no child (since we can have Ai(x)(amax,amin) = 1), or

the only child of object e in the history will be an object e′ whose type is in the

set St , from which we already know that the target type Tf ∗ is not reached with a

positive probability. So in either case, with a positive probability the target type

T ∗f ∗ will not be reached from descendants of e.

Now, let us assume the max player uses this strategy σ, and suppose we start play

at one object e′ of type Ti such that xi ∈Kt . Suppose, first, that during the entire history

of play the min player’s strategy τ uses only actions in γi
t for all variables xi ∈ Kt of

form M. In this case, with a positive probability bounded away from 0 (in fact ≥ 1/4),

the play tree after k rounds (i.e., depth k), for any positive k ≥ 1, consists of simply a

linear sequence of objects having types (variables) in set Kt . Thus in this case, with

probability ≥ 1/4, the play will forever stay in set Kt , and will never reach target type

Tf ∗ . On the other hand, suppose the min player’s strategy τ does at some point in some

history consisting entirely of a linear sequence of objects of types (variables) in set Kt ,

namely at some specific object e of type in set Kt at depth h, plays an action outside

of γi
t with a positive probability. Then σ ensures that with a positive probability (albeit

a probability depending on h and thus not bounded away from 0) either e will have

no child or the unique child of e will be an object of type Tj such that x j ∈ St , i.e.,

there is a positive probability of not reaching the target Tf ∗ from the descendants of e,

and thus also from the start of the game (because we assumed the play staring from e′

and up to e consists of a linear sequence of objects all having types (variables) in set

Kt). Thus, for all strategies τ ∈Ψ2, and all xi ∈ Kt , (g∗σ,τ)i > 0. Note however, that in

general it may be the case that infτ(g∗σ,τ)i = 0, because in the case when τ does play

outside of γi
t , the probability of not hitting the target type is not bounded away from

0 (it depends both on the depth h at which τ first moves outside of γi
t with a positive

probability, and it also depends on the probability of that move, and for both reasons

it can be arbitrarily close to 0). This establishes the first part of the proof of Theorem
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3.13, i.e., that for every xi ∈ S the property (∗∗)i holds.

Now we proceed to the second part of the proof. Suppose F is the set of variables

output by the algorithm when it halts (and that therefore S = X −F). Suppose the

algorithm executed exactly t∗ iterations of the main loop before halting (so that the

value of t just before halting is t∗). We will show that there is a (randomized non-

static) strategy τ of the minimizing player such that, for all xi ∈ F , regardless what

strategy σ the maximizer employs, starting with an object of type Ti, the probability

of not reaching the target type is 0. In other words, that (g∗∗,τ)i = 0, which is what we

want to prove.

Lemma 3.15. There is a randomized non-static strategy τ ∈ Ψ2 such that, for every

xi ∈ F, (g∗∗,τ)i = 0.

Proof. Before describing τ, we first describe a static randomized strategy (i.e., a mixed

policy) τ∗ for the minimizing player, that will eventually lead us toward a definition of

τ.

Specifically, we define the mixed policy (randomized static strategy) τ∗ as follows.

Let τ′ be any LDF policy such that g∗∗,τ′ < 1. Such an LDF policy τ′ must exist, by

Lemma 3.7(1.). For all variables xi ∈ S, let τ∗(xi) := τ′(xi). In other words, at all

variables xi ∈ S, let τ∗ behave according to the exact same distribution on actions as

the LDF policy τ′. For every variable xi ∈ F of form M, define τ∗ as follows: note

that xi must have entered set F in some iteration of the inner loop in step (5.)(b) of

the algorithm, during the final iteration t∗ of the main loop. Therefore, for all amax ∈
Γi

max, there exists a “witness” action amin[amax] ∈ γi
t∗ such that the associated variable

Ai(x)(amax,amin[amax]) was already in set F , before xi was added to set F . For xi ∈ F

we define the policy τ∗ at variable xi, i.e., the distribution τ∗(xi), to be the uniform

distribution over the set {amin[amax] ∈ γi
t∗ | amax ∈ Γi

max} of such “witnesses”.

We now wish to show that τ∗, as defined, is itself an LDF policy. Consider any

fixed policy (i.e., static randomized strategy) σ for the max player, and consider the

resulting system of polynomial equations x = Pσ,τ∗(x). For every variable xi ∈ F , con-

sider the variables xi depends on directly in the equation xi = (Pσ,τ∗(x))i. Let’s consider

separately the cases, based on the form of equation xi = Pi(x): (1) if xi = Pi(x) is of

form L, then in xi = (Pσ,τ∗(x))i the variable xi depends directly only on variables in set

F , because otherwise it would have been added to set S; (2) if xi is of form M, then

again it depends directly only on variables in set F , because τ∗(xi) only puts positive

probability on actions in γi
t∗; (3) if xi is of form Q, then xi depends directly on at least
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one variable in set F , because otherwise it would have been added to set S. Since there

is a clear order in which variables were added to set F and due to the initialization of F

(step (4.)), in the dependency graph of x = Pσ,τ∗(x) every variable in F satisfies one of

the three conditions in Lemma 3.4(ii) (namely, 1. or 3.). So for every variable xi ∈ X ,

consider the paths in the dependency graph of x = Pσ,τ∗(x) starting at xi:

• either there exists a path from xi in this dependency graph to variable x j ∈ F ,

which in turn must have a path to a variable x j′ such that either Pj′(1)< 1, or x j′

has form Q. In either case, this means that xi satisfies one of the conditions of

Lemma 3.4(ii) (namely, either condition (1.) or condition (3.)); Or

• all paths from xi only contain variables in set S. But for all variables xk ∈ S,

τ∗(xk) is exactly the same distribution as τ′(xk), and since the LDF policy τ′ was

chosen so that g∗∗,τ′ < 1, this means that there is a path from xi to a variable x j

satisfying one of the three conditions in Lemma 3.4(ii) (specifically, condition

(3.)).

Therefore, x = Pσ,τ∗(x) is a LDF-PPS. But since the fixed policy σ was arbitrary,

this implies that strategy τ∗ is indeed an LDF policy. Since τ∗ is LDF, by Lemma

3.7(2.), it holds that g∗ ≤ q∗∗,τ∗ .

We now construct a non-static strategy τ, which combines the behavior of the two

policies (i.e., two static strategies) τ′ and τ∗ in a suitable way, such that for all xi ∈ F ,

(g∗∗,τ)i = 0. In other words, τ will be a strategy for the minimizer such that, no matter

what strategy σ the maximizer uses starting with one object of type Ti, the probability

of not reaching the target type is 0.

The non-static strategy τ is defined as follows. The strategy τ will, in each gener-

ation, declare one object in the current generation to be the “queen” (and this object

will always have a type (variable) in set F). Other objects in each generation will be

“workers”. Assume play starts at a single object e of some type Ti such that xi ∈ F . We

declare this object the “queen” in the initial population. If the queen e has associated

variable xi of form M, then τ plays at e according to distribution τ∗(xi). This results,

(with probability 1), regardless of the strategy of the maximizer, in some successor ob-

ject e′ in the next generation of type Tj such that x j ∈ F . In this case, we declare e′ the

queen in the next generation, and we apply the same strategy τ starting at the queen e′

of the next generation, as if the game is starting at this single object e′ of type Tj. If the

variable xi associated with the queen e is of form L, then in the next generation either

we hit the target (with probability (1−Pi(1)), or (with probability Pi(1)) we generate

a single successor object e′ of some type Tj such that x j ∈ F . In this latter case again,
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we declare e′ the queen of the next generation, and we use the same strategy τ that is

being defined, and apply it to e′ as if the game is starting with the single object e′. If

the queen e has associated variable xi of form Q, then in the next generation there are

two successor objects, e′ and e′′ of types Tj and Tk respectively (these may be the same

type), such that either x j ∈ F or xk ∈ F , or both are in set F . In this case, we choose

one of the two successors whose type (variable) is in set F , say w.l.o.g. that this is e′,

and we declare e′ the queen of the next generation, we proceed from e′ using the same

strategy τ that is being defined, as if the game starts with the single object e′. However,

we declare the other object e′′ a “worker”, and starting with e′′ and thereafter (in the

entire subtree of play rooted at e′′) we use the static strategy (i.e., the LDF policy) τ′.

This completes the definition of the non-static strategy τ.

We now show that indeed τ satisfies that, no matter what strategy σ the maximizer

uses against it, for any xi ∈ F , starting with one object of type Ti, the probability of not

reaching the target type is 0. In other words, we show that using τ the probability of

reaching the target type is 1, no matter what the opponent does.

To see this, first note that the LDF policy τ′ was chosen so that g∗∗,τ′ < 1. Thus,

since in the resulting max-PPS, x = P∗,τ′(x), the player maximizing non-reachability

probability always has a static optimal strategy (by Theorem 3.1), it follows that the

subtree of the play rooted at any “worker” object e′′ starting at which strategy τ′ is

applied by the min player, has a positive probability (1−g∗∗,τ′)i > 0 (in fact, ≥ 2−4|P|

by Proposition 3.11) of eventually reaching the target type.

Next note that the sequence of queens is finite if and only if we have hit the target.

Next, we establish that if the sequence of queens is infinite, then, with probability 1,

infinitely often the queen is of form Q and thus in the next generation it generates both

a queen and a worker. Thus, because of the infinite sequence of workers generated

by queens, there will be infinitely many independent chances of hitting the target with

probability at least mini(1− g∗∗,τ′)i (in fact, ≥ 2−4|P|). Hence, we will hit the target

(somewhere in the entire tree of play) with probability 1.

It remains to show that, if the sequence of queens is infinite, then, with probability

1, infinitely often a queen is of form Q. We in fact claim that with a positive probability

bounded away from 0, in the next n = |X | generations either we reach a queen of form

Q, or the queen has the target as a child. To see this, we note that each variable xi ∈ F

has entered set F in some iteration of the loop in step (5.) of the algorithm (in the last

iteration of the main loop). We can thus define inductively, for each variable xi ∈ F ,

a finite tree Ri, rooted at xi, which shows “why” xi was added to set F . Specifically,
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if Pi(1) < 1 or xi has form Q, then Ri consists of just a single node (leaf) labeled by

xi. If xi has form L, then it was added in step (5.) because Pi(x) has a variable x j

that was already in set F . In this case, the tree Ri has an edge from the root, labeled

by xi, to a single child labeled by x j, such that this child is the root of a subtree R j.

If xi has form M then Ri has a root labeled by xi and has a child labeled by variable

x j = Ai(x)(amax,amin[amax]) ∈ F and has R j as a subtree, for each amax ∈ Γi
max and where

amin[amax] ∈ γi
t∗ is the “witness” for amax, in the condition that allows step 5.(b) of the

algorithm to add xi to set F .

Clearly the tree Ri is finite and has depth at most n (since there are only n variables,

and there is a strict order in which the variables entered the set F).

Now we argue that starting at a queen of type Ti, using strategy τ for the minimizing

player, with a positive probability bounded away from 0 in the next n steps the sequence

of queens will follow a root-to-leaf path in Ri, regardless of the strategy of the max

player. To see this, note that if a node is labeled by x j is of form L, then the play will

in the next step, with probability associated with the transition in the BCSG move to

the unique child (the new queen) x j′ that is the immediate child of the root in R j, and

thus next will be at the root of the subtree R j′ . If the node is labeled by x j of form

M, then irrespective of the distribution on actions played by the max player, in the

next step with a positive probability bounded away from 0, we will move to a child

x j′ = Ai(x)(amax,amin[amax]) ∈ F which is a child of the root in R j, itself rooted at a subtree

R j′ , because at queen objects we are using policy τ∗ for the minimizer. Thus, starting

at a queen xi, with a positive probability bounded away from 0, within n steps the play

arrives a leaf of the tree Ri. If the leaf corresponds to a variable x j with Pj(1) < 1,

then the process will reach in the next step the target type with a positive probability

bounded away from 0. If, on the other hand, the leaf corresponds to a variable x j

of form Q, then the queen generates two children. The probability that the queen

reaches infinitely often a leaf of form L with Pj(1) < 1 but does not reach the target

is 0. Thus, if the queen never reaches the target throughout the play, then the queen

will generate more than one child infinitely often with probability 1, and hence will

generate infinitely many independent workers with probability 1. By the choice of the

policy τ′ followed by workers, the subtree rooted at each worker will hit the target with

a positive probability bounded away from 0. Hence, the probability of hitting the target

type is 1.

This completes the proof of Theorem 3.13.



3.5. P-time algorithm for deciding limit-sure reachability for BCSGs 75

Corollary 3.16. Let F be the set of variables output by Algorithm 3.2.

1. Let S := X −F. There is a randomized non-static strategy σ for the max player

(maximizing non-reachability) such that for all xi ∈ S, and for all strategies τ of

the min player (minimizing non-reachability), starting with one object of type Ti,

the probability of reaching the target type is < 1.

2. There is a randomized non-static strategy τ for the min player (minimizing non-

reachability), such that for all strategies σ of the max player (maximizing non-

reachability), and for all xi ∈ F, starting at one object of type Ti the probability

of reaching the target type is 1.

Proof. 1. The strategy σ constructed in the proof of Theorem 3.13 for all variables

xi ∈ S achieves precisely this.

2. The strategy τ constructed in the proof of Theorem 3.13 for all variables xi ∈ F

achieves precisely this.

Remark: Both the strategy σ from Corollary 3.16(1) and the strategy τ from 3.16(2)

are non-static strategies. However, we note that both of these non-static randomized

strategies have suitable compact descriptions (as functions that map finite histories to

distributions over actions for objects in the current populations), and that both these

strategies can be constructed and described compactly in polynomial time, as a func-

tion of the encoding size of the input BCSG.3

3.5 P-time algorithm for deciding limit-sure reachabil-

ity for BCSGs

In this section, we focus on the qualitative limit-sure reachability problem for BCSGs,

i.e., given a BCSG and starting with one object of a given type Ti, decide whether the

reachability value is 1. Recall that there may not exist an optimal strategy for the player

aiming to reach the target Tf ∗ , which was the question in the previous section (almost-

sure reachability). However, there may nevertheless be a sequence of strategies that

achieve values arbitrarily close to 1 (limit-sure reachability), and the question of the

3However, it is worth pointing out that the functions that these strategies compute, i.e., functions from
histories to distributions, need not themselves be polynomial-time as a function of the encoding size of
the history: this is because the probabilities on actions that are involved can be double-exponentially
small (and double-exponentially close to 1), as a function of the size of the history.
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existence of such a sequence is what we address in this section. Since we translate

reachability into non-reachability when analysing the corresponding minimax-PPS, we

are asking whether there exists a sequence of strategies 〈τ∗ε j
| j ∈N〉 for the min player,

such that ∀ j ∈ N, ε j > ε j+1 > 0, and where lim j→∞ ε j = 0, such that the strategy τ∗ε j

forces the non-reachability probability to be at most ε j, regardless of the strategy σ

used by the max player. In other words, for a given starting object of type Ti, we ask

whether infτ∈Ψ2(g
∗
∗,τ)i = 0.

Again, as in the almost-sure case, we first, as a preprocessing step, use the P-time

algorithm from Proposition 3.3 (i.e., Algorithm 3.1) to remove all variables xi such that

g∗i = 1, and we substitute 1 for these variables in the remaining equations. We hence

obtain a reduced SNF-form minimax-PPS, for which we can assume g∗ < 1. The

set of all remaining variables in the SNF-form minimax-PPS is again denoted by X .

Thereafter, we apply Algorithm 3.3, which computes the set of variables, xi, such that

g∗i = 0. In other words, we compute the set of types, such that starting from one object

of that type the value of the reachability game is 1. Before considering Algorithm 3.3

in detail, we provide some preliminary results that will be used to prove its correctness.

More precisely, we first examine the nested loop in step (4.)(b) of the algorithm. This

inner loop is derived directly from a closely related “limit-escape” construction used

by de Alfaro, Henzinger, and Kupferman in [dAHK07] (see Algorithm 4 and section

4.4.2 in the cited paper). Proofs are provided here for the facts needed about this

construction.

3.5.1 Limit-escape

For a variable xi of form M, for 1-step local strategies σ(xi) and τ(xi) at xi for the two

players (i.e., σ(xi) and τ(xi) are distributions on Γi
max and Γi

min, respectively), and for

a set W ⊆ X ∪{1} which can include both variables and possibly also the constant 1,

let us define:

p(xi→W,σ(xi),τ(xi)) = ∑
{(amax,amin)∈Γi

max×Γi
min|Ai(x)(amax,amin)

∈W}
σ(xi)(amax) · τ(xi)(amin)

Thus p(xi →W,σ(xi),τ(xi)) denotes the probability that, starting with one object of

type Ti, and using the 1-step strategies specified by σ(xi) and τ(xi), we will either

generate a child object of type Tj such that x j ∈W , or (only if 1∈W ) generate no child

object (i.e., go extinct in the next generation).
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Algorithm 3.3 P-time algorithm for computing the types that satisfy limit-sure reacha-

bility in a given BCSG, i.e., the set of variables {xi | g∗i = 0} in the associated minimax-

PPS.
1. Initialize S := {xi ∈ X | Pi(0)> 0, that is Pi(x) has a constant term }.

2. Repeat until no change has occurred to S:

(a) if there is a variable xi ∈ X −S of form L where Pi(x) contains a variable already

in S, then add xi to S.

(b) if there is a variable xi ∈ X−S of form Q where both variables in Pi(x) are already

in S, then add xi to S.

(c) if there is a variable xi ∈ X − S of form M and if for all amin ∈ Γi
min, there exists

amax ∈ Γi
max such that Ai(x)(amax,amin) ∈ S∪{1}, then add xi to S.

3. Let F := {xi ∈ X−S | Pi(1)< 1, or Pi(x) is of form Q }

4. Repeat until no change has occurred to F :

(a) if there is a variable xi ∈ X − (S∪F) of form L where Pi(x) contains a variable

already in F , then add xi to F .

(b) if there is a variable xi ∈ X − (S∪F) of form M and if the following procedure

returns “Yes”, then add xi to F .

i. Set L0 := /0, B0 := /0, k := 0. Let O := X− (S∪F).

ii. Repeat:

• k := k+1.

• Lk := {amin ∈ Γi
min−

⋃k−1
j=0 L j | ∀amax ∈ Γi

max−Bk−1, Ai(x)(amax,amin) ∈ F∪
O}.

• Bk := Bk−1∪{amax ∈ Γi
max−Bk−1 | ∃amin ∈ Lk s.t. Ai(x)(amax,amin) ∈ F}.

Until Bk = Bk−1.

iii. Return: “Yes” if Bk = Γi
max, and “No” otherwise.

5. If X = S∪F , return F , and halt.

6. Else, let S := X−F , and go to step 2.

Informally, the following is the high-level intuition behind the limit-escape tech-

nique. Recall from the almost-sure algorithm section that when we were computing

the set of variables (types) that almost-surely reach the target (starting with one object
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of the type), we were looking for those ones that the min player can force in the next

round with a positive probability to stay within set F without any risk of immediate

extinction or entering set S (since entering set S would mean a positive probability of

not reaching the target type). That is, informally, in the almost-sure algorithm section,

we were keeping track of variables x j (types Tj) for which there exists an 1-step local

strategy τ′(x j) for the min player such that:

inf
σ(x j)∈D(Γ

j
max)

p(x j→ F,σ(x j),τ
′(x j))> 0

sup
σ(x j)∈D(Γ

j
max)

p(x j→ S∪{1},σ(x j),τ
′(x j)) = 0

where D(Γ
j
max) denotes the set of distributions on the set of actions Γ

j
max. However,

in the limit-sure reachability case, the aim is to reach the target type with probability

arbitrarily close to 1. So a small chance to enter set S∪{1} can be permitted, as long

as the ratio of the 1-step probability between entering set F and set S∪ {1} can be

made arbitrarily high. That is, in addition to the aforementioned variables x j, we also

want to keep track of variables xi for which: regardless of the min player’s 1-step local

strategy, there is a positive probability to enter set S∪{1} in the next step; but there is

a family of 1-step local strategies τe(xi), e→ 0, for the min player such that:

lim
e→0

inf
σ(xi)∈D(Γi

max)

p(xi→ F,σ(xi),τe(xi))

p(xi→ S∪{1},σ(xi),τe(xi))
= ∞

More formally, consider step (4.)(b) of Algorithm 3.3 and assume that for a vari-

able xi the answer is “Yes”. Let N := maxi |Γi
min|. Given some 0 ≤ e ≤ 1

2N , consider

the following static distribution, sa f e(xi,e), on actions for the min player at xi (i.e.,

distribution on Γi
min):

safe(xi,e)(amin) :=


(
e2) j−1 ·

(
1− e2)
|L j|

if amin ∈ L j, for some j ∈ {1, . . . ,k−1}

(
e2)k−1 ·

1

|Γi
min−

⋃k−1
q=0 Lq|

otherwise

(3.3)

Lemma 3.17. Suppose that for a variable xi ∈ X − (S∪F) the answer in step (4.)(b)

of the algorithm is “Yes”, and for any e such that 0≤ e≤ 1
2N , let τe(xi) = sa f e(xi,e).

Then for every 1-step local strategy (i.e., distribution on actions in Γi
max), σ(xi), for the
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max player, the following inequality holds:

p(xi→ F,σ(xi),τe(xi))>
1
e
· p(xi→ S∪{1},σ(xi),τe(xi))

Proof. Since the answer is “Yes” for xi, when the loop in step (4.)(b) stops at some it-

eration m, we must have Bm = Bm−1 = Γi
max. Suppose σ(xi) is any 1-step local strategy

for the max player at xi. Let q j denote the probability that the max player distributes

among all its actions in the set B j−B j−1. Since Bm−1 =Γi
max, then clearly ∑

m−1
j=1 q j = 1.

Since each action a∈Γi
max was added at some point to set Bm =Bm−1, there is some

1≤ ja ≤m−1, such that there exists a′min ∈ L ja , such that Ai(x)(a,a′min)
∈ F . Moreover,

τe(xi)(a′min) =
(
e2) ja−1 ·

(
1− e2)
|L ja|

. And furthermore, we know from the definitions of

the L and B sets, that for all amin ∈
⋃ ja−1

q=0 Lq, Ai(x)(a,amin) ∈ O. With this information,

we can give bounds on the 1-step probabilities of visiting sets F and S∪{1} under

τe(xi) and σ(xi):

p(xi→ F,σ(xi),τe(xi))≥
m−1

∑
j=1

q j ·
(
e2) j−1 ·

(
1− e2)
|L ja|

≥
m−1

∑
j=1

q j ·
(
e2) j−1 ·

(
1− e2)

N

p(xi→ S∪{1},σ(xi),τe(xi))≤
m−1

∑
j=1

q j ·
(
e2) j

The second inequality in the first row follows from the fact that L ja ⊆ Γi
min (i.e.,

|L ja| ≤ |Γi
min| ≤ N). The inequality in the second row follows from the fact that the

maximum probability of ending up in set S∪{1} in the next round occurs when for all

maximizer actions amax in each segment B j−B j−1, all remaining minimizer actions

amin ∈ Γi
min−

⋃ j
q=0 Lq satisfy Ai(x)(amax,amin) ∈ S∪{1}. To all these minimizer actions,

the distribution τe(xi) assigns a total probability of
(
e2) j.

Then in order to prove the inequality from the Lemma we need to show that:

m−1

∑
j=1

q j ·
(
e2) j−1 ·

(
1− e2)

N
>

1

e
·

m−1

∑
j=1

q j ·
(
e2) j

First, note that for all 1≤ j ≤ m−1, since 0≤ e≤ 1
2N , then e2 < 1

2 and we have:

q j ·
(
e2) j−1 ·

(
1− e2)

N
q j ·
(
e2
) j =

1− e2

e2 ·N
≥

1− e2

(e/2)
>

1

e
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Thus, for all 1≤ j ≤ m−1, q j ·
(
e2) j−1 ·

(
1− e2)

N
>

1

e
·q j ·

(
e2) j. And summing over

all 1≤ j ≤ m−1, we get what we wanted to prove.

Notice that, as a consequence to this Lemma, there is a sequence of 1-step local

strategies for the min player such that the ratio of the 1-step probability between enter-

ing sets F and S∪{1} diverges over the limit as e→ 0.

Assume the opposite, that in step (4.)(b) for a variable xi the loop stops at some

iteration m (i.e., Bm−1 = Bm), but Bm
⊂
6= Γi

max, and hence step (4.)(b) answers “No”, and

xi is not added to set F . In such a case, let us define the following 1-step local strategy,

σ(xi) for the max player which will be used in the next lemma. Let Di
max := Γi

max−Bm.

Let

σ(xi)(amax) :=


1

|Di
max|

for every amax ∈ Di
max

0 otherwise

(3.4)

Lemma 3.18. Suppose that for a variable xi ∈ X − (S∪F) the answer in step (4.)(b)

of the algorithm is “No”, and let σ(xi) be defined as in (3.4). Then, there is a con-

stant ci > 0 such that for every 1-step local strategy τ(xi) for the min player at xi, the

following inequality holds:

p(xi→ S∪{1},σ(xi),τ(xi))≥ ci ∗ p(xi→ (F ∪S∪{1}),σ(xi),τ(xi))

Proof. Suppose the loop from step (4.)(b) stops at iteration m, such that Bm−1 = Bm ⊂
Γi

max. There are two possibilities:

1. Lm = /0: That is, for every amin ∈ Γi
min−

⋃m−1
q=0 Lq, there exists amax ∈ Di

max =

Γi
max−Bm−1 such that Ai(x)(amax,amin) ∈ S∪{1}. Let τ(xi) be an arbitrary 1-step

local strategy for the min player and let σ(xi) be as defined in (3.4). Also let

Di
min := Γi

min−
⋃m−1

q=0 Lq. Then it follows that:

p(xi→ S∪{1},σ(xi),τ(xi))≥ ∑
amin∈Di

min

1
|Di

max|
τ(xi)(amin)

=
1

|Di
max|

∑
amin∈Di

min

τ(xi)(amin) (3.5)
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Note that, by construction, for all amax ∈Di
max and amin ∈

⋃m−1
q=0 Lq, Ai(x)(amax,amin)

∈ O. Hence, since the support of distribution σ(xi) is Di
max, and since Di

min =

Γi
min−

⋃m−1
q=0 Lq, we have:

p(xi→ (F ∪S∪{1}),σ(xi),τ(xi))≤ ∑
amin∈Di

min

τ(xi)(amin) (3.6)

Combining these bounds, we get:

p(xi→ S∪{1},σ(xi),τ(xi)) ≥
1

|Di
max|

∑
amin∈Di

min

τ(xi)(amin)

≥ 1
|Di

max|
p(xi→ (F ∪S∪{1}),σ(xi),τ(xi))

2. Lm 6= /0, but {amax ∈ Γi
max − Bm−1 | ∃amin ∈ Lm s.t. Ai(x)(amax,amin) ∈ F} = /0.

Therefore for all amax ∈ Γi
max−Bm−1 = Γi

max−Bm = Di
max, and for all amin ∈ Lm,

Ai(x)(amax,amin) ∈ O. Let τ(xi) be any 1-step local strategy for the min player, and

let σ(xi) be as defined in (3.4). Let Di
min := Γi

min−
⋃m

q=0 Lq. Note that if Di
min =

/0, then p(xi → S∪ {1},σ(xi),τ(xi)) = 0 = p(xi → (F ∪ S∪ {1}),σ(xi),τ(xi)),

since support for σ(xi) is Di
max and, by construction, for all amax ∈ Di

max and

amin ∈ Γi
min−Di

min, Ai(x)(amax,amin) ∈O. So, in this case, the lemma holds for any

constant ci > 0. If Di
min 6= /0, then both the inequalities (3.5) and (3.6) hold again,

with the minor modification that now we have Di
min = Γi

min−
⋃m

q=0 Lq instead of

Di
min = Γi

min−
⋃m−1

q=0 Lq.

Therefore, in both cases the lemma is satisfied with ci := 1
|Di

max|
= 1
|Γi

max−Bm|
.

3.5.2 Limit-sure algorithm

We are now ready to prove correctness for Algorithm 3.3.

Theorem 3.19. Given a BCSG with minimax-PPS, x = P(x), with GFP g∗ < 1, Algo-

rithm 3.3 terminates in polynomial time, and returns the set of variables {xi ∈ X | g∗i =
0}.

Proof. The fact that the algorithm terminates and runs in polynomial time is again

evident, as in case of the almost-sure algorithm. (The only new fact to note is that the

new inner loop in step (4.)(b), can iterate at most maxi |Γi
max| times because with each

new iteration, k, at least one action is added to the set Bk−1, or else the algorithm halts.)
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We need to show that when the algorithm terminates, for all xi ∈ F , g∗i = 0, and for

all xi ∈ S = X−F , g∗i > 0.

Let us first show that for all x ∈ S, g∗i > 0. In fact, we will show that there is a

strategy σ ∈Ψ1, and a vector b > 0 of values, such that for all xi ∈ S, (g∗σ,∗)i ≥ bi > 0.

Lemma 3.20. There is a strategy σ∈Ψ1 and a vector b > 0 such that, for every xi ∈ S,

(g∗σ,∗)i ≥ bi > 0.

Proof. We use an induction for this proof. For the base case, since any variable xi

contained in set S at the initialization step has g∗i ≥Pi(0)> 0, we have (g∗σ,∗)i >Pi(0)>
0 for any strategy σ ∈ Ψ1, so let bi := Pi(0). For the inductive step, first consider

any variable xi added to set S in step (2.), in some iteration of the main loop of the

algorithm.

(i) If xi = Pi(x) is of form L, then Pi(x) has a variable x j already in set S, and by

induction (g∗σ,∗) j ≥ b j > 0. Since Pi(x) is linear, with a term pi j · x j, such that

pi j > 0, we see that (g∗σ,∗)i ≥ pi j ·b j > 0, so let bi := pi j ·b j.

(ii) If xi = Pi(x) is of form Q (i.e., xi = x j · xr), then Pi(x) has both variables previ-

ously added to set S, i.e., (g∗σ,∗) j ≥ b j > 0 and (g∗σ,∗)r ≥ br > 0. Then clearly

(g∗σ,∗)i ≥ b j ·br > 0. So let bi := b j ·br.

(iii) If xi =Pi(x) is of form M, then ∀amin ∈Γi
min, ∃amax ∈Γi

max such that Ai(x)(amax,amin) ∈
S∪{1}. For each amin ∈ Γi

min, let us use amax[amin] ∈ Γi
max, to denote a “witness”

to this fact, i.e., such that Ai(x)(amax[amin],amin) ∈ S∪{1}. Let strategy σ do as fol-

lows: in any object of type Ti corresponding to xi, σ selects uniformly at random

an action from the set {amax[amin] ∈ Γi
max | amin ∈ Γi

min} of all such witnesses.

Clearly then, for any amin ∈ Γi
min, the probability that σ at an object of type Ti

will choose the witness action amax[amin] is at least 1
|Γi

max|
(and in fact is also at

least 1
|Γi

min|
). So, using σ, starting with one object of type Ti, no matter what strat-

egy the min player chooses, there is a positive probability ≥ 1
|Γi

max|
that either

the object will have no child or the object will generate a single child object of

a type Tj, associated with variable x j = Ai(x)(amax,amin) ∈ S, and hence such that

(g∗σ,∗) j ≥ b j > 0. So no matter what strategy the min player picks, there is at

least 1
|Γi

max|
probability that the unique child object belongs to set S, or that there

is no child object. Hence, (g∗σ,∗)i ≥ 1
|Γi

max|
·min{b j | x j ∈ S}> 0, and again we let

bi := 1
|Γi

max|
·min{b j | x j ∈ S}.
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Now consider any variable xi added to set S in step (6.) at some iteration of the

algorithm (i.e., xi ∈ K := X − (S∪F)). Because xi was not previously added to sets S

or F , then:

(A.) xi satisfies Pi(0) = 0 and Pi(1) = 1;

(B.) xi is not of form Q;

(C.) if xi is of form L, then it depends directly only on variables in set K; and

(D.) if xi is of form M, then the answer for xi in step (4.)(b) (during the latest iteration

of the main loop) was “No”.

For each xi ∈K of form M, let σ(xi) be a probability distribution on actions in Γi
max

defined in (3.4). Let strategy σ use the 1-step local strategy σ(xi) at every object of

type Ti encountered during history. We show that, for every xi ∈ K, (g∗σ,∗)i ≥ bi for

some bi > 0.

By Lemma 3.18, for each variable xi ∈ K of form M, and for any arbitrary 1-step

local strategy τ(xi) for the min player at xi, there exists ci > 0 such that:

p(xi→ S∪{1},σ(xi),τ(xi))≥ ci ∗ p(xi→ (F ∪S∪{1}),σ(xi),τ(xi))

For r ≥ 1, let Prσ,τ
xi (KU=r(S∪{1})) denote the probability that, starting with one

object of type Ti, where xi ∈ K, using strategy σ as defined above and an arbitrary

(not necessarily static) strategy τ, the history of play will stay in the set K for r− 1

rounds, and in the r-th will either transition to an object whose type is in the set S, or

will die (i.e., produce no children). Define Prσ,τ
xi (KU=r(F ∪ S∪{1})) similarly. The

following claim is a simple corollary of Lemma 3.18. Let c := min{ci | xi ∈ K}. (Note

that 0 < c≤ 1.)

Claim 3.21. For any integer r ≥ 1, and for any (not necessarily static) strategy τ for

the min player, Prσ,τ
xi (KU=r(S∪{1}))≥ c∗Prσ,τ

xi (KU=r(F ∪S∪{1})).

Proof. Let H(xi,K,r−1) denote the set of all sequences of types (variables) in set K

of length r−1, starting with a type corresponding to variable xi ∈ K. Recall by point

(B.) above that there are no Q-form variables (types) in set K. For a history (sequence)

h∈H(xi,K,r−1), let l(h) denote the index of the variable associated with the last type

in h, i.e., the one occurring at round r− 1. For each h ∈ H(xi,K,r− 1) there is some

probability qh ≥ 0 that, starting at an object of type corresponding to variable xi ∈ K,

the population follows the history h for r−1 rounds. So
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Prσ,τ
xi

(KU=r(S∪{1})) = ∑
h∈H(xi,K,r−1)

qh · p(xl(h)→ S∪{1},σ(xl(h)),τ(xl(h)))

≥ ∑
h∈H(xi,K,r−1)

qh · cl(h) · p(xl(h)→ (F ∪S∪{1}),σ(xl(h)),τ(xl(h)))

≥ c · ∑
h∈H(xi,K,r−1)

qh · p(xl(h)→ (F ∪S∪{1}),σ(xl(h)),τ(xl(h)))

= c ·Prσ,τ
xi

(KU=r(F ∪S∪{1}))

where the first inequality follows from Lemma 3.18.

We now argue that for all xi ∈ K, there exists bi > 0 such that for any strategy τ for

the min player, (g∗σ,τ)i ≥ bi > 0.

Consider any strategy τ for the min player. For xi ∈ K, let Prσ,τ
xi (�K) denote the

probability that the history stays forever in set K, starting at one object of type Ti.

Let Prσ,τ
xi (KU(S∪{1})) denote the probability that the history stays in set K until it

eventually either dies (has no children) or transitions to an object with type in set S.

Note that:

(g∗σ,τ)i ≥ Prσ,τ
xi

(�K)+Prσ,τ
xi

(KU(S∪{1})) ·min{(g∗σ,∗) j | x j ∈ S}

≥ Prσ,τ
xi

(�K)+Prσ,τ
xi

(KU(S∪{1})) ·min{b j | x j ∈ S}

We will show that, regardless of the strategy τ for the min player, this probability

must be at least:

bi :=
c
2
·min{b j | x j ∈ S}

where c := min{ci | xi ∈ K}. Recall that 0 < c≤ 1. Let p = Prσ,τ
xi (�K). If p≥ c

2 , then

we are done, since the inequalities above imply (g∗σ,τ)i ≥ c
2 ≥ bi. So, suppose p < c

2 .

Observe that:

Prσ,τ
xi

(KU(S∪{1})) = Prσ,τ
xi

((KU(S∪{1}))∩¬�K)

= Prσ,τ
xi

(KU(S∪{1}) | ¬�K) ·Prσ,τ
xi

(¬�K)

= Prσ,τ
xi

(KU(S∪{1}) | ¬�K) · (1− p)

≥ Prσ,τ
xi

(KU(S∪{1}) | ¬�K) · 1
2

So it only remains to show that Prσ,τ
xi (KU(S∪{1}) | ¬�K)≥ c. Note that the event

¬�K is equivalent to the event KU(F∪S∪{1}). The event KU(S∪{1}) is equivalent
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to the disjoint union
⋃

∞
r=1 KU=r(S∪{1}). Likewise for the event KU(F ∪ S∪{1}).

Therefore:

Prσ,τ
xi

(KU(S∪{1}) | ¬�K) =
Prσ,τ

xi (KU(S∪{1}))
Prσ,τ

xi (¬�K)

=
∑

∞
r=1 Prσ,τ

xi (KU=r(S∪{1}))
∑

∞
r=1 Prσ,τ

xi (KU=r(F ∪S∪{1}))
(3.7)

But by Claim 3.21, for all r ≥ 1, Prσ,τ
xi (KU=r(S∪ {1})) ≥ c ·Prσ,τ

xi (KU=r(F ∪ S∪
{1})). Hence, summing over all r, we have ∑

∞
r=1 Prσ,τ

xi (KU=r(S∪{1})) ≥ c ·∑∞
r=1

Prσ,τ
xi (KU=r(F ∪S∪{1})). Hence, dividing out (note that the division is well-defined

as we have assumed a positive probability for eventually exiting K, i.e., Prσ,τ
xi (¬�K) =

1− p≥ 1
2 ) and using (3.7), we have Prσ,τ

xi (KU(S∪{1}) | ¬�K)≥ c.

Thus, (g∗σ,τ)i≥ bi, and since this holds for an arbitrary strategy τ for the min player,

we have (g∗σ,∗)i ≥ bi > 0.

We next want to show that if F is the set of variables output by the algorithm when

it halts, then for all variables xi ∈ F , g∗i = 0, or in other words, that the following holds:

∀ε > 0, ∃τε ∈Ψ2 s.t. ∀σ ∈Ψ1, (g∗σ,τε
)i ≤ ε (3.8)

Let N := maxi |Γi
min|. Given some 0≤ e≤ 1

2N , recall from (3.3) the static distribu-

tion, safe(xi,e), on actions Γi
min for the min player at xi.

Given an ε > 0, we define a (static) strategy τε as follows. If a variable xi of form

M is in set S, then we let τε(xi) be the uniform distribution on the corresponding action

set Γi
min. For variables in set F , we define τε as follows. Consider the last execution

of the main loop of the algorithm. Let F0 = {xi ∈ X − S | Pi(1) < 1, or Pi(x) is of

form Q } be the set of variables assigned to set F in step (3.), and let xi1,xi2, . . . ,xik∗

be the variables in set F−F0 ordered according to the time at which they were added

to set F in the iterations of step (4.). For each variable xit ∈ F of form M we let

τε(xit ) = sa f e(xit ,et) where the parameters et are set as follows. Let n be the number

of variables, and N :=maxi |Γi
min| be the maximum number of actions of the min player

for any variable of form M. Let κ be the minimum of (1) 1/N, (2) the minimum (non-

negative) coefficient of a monomial in Pi(x) over all variables xi of form L, and (3)

the minimum of 1− Pi(1) over all xi of form L such that Pi(1) < 1. Let λ = κn.

Clearly, λ is a rational number that depends on the given minimax-PPS x = P(x) (and

the corresponding BCSG) and it has polynomial number of bits in the size of P. Let

d0 = dlog( n
ελ
)e and let dt = d0 · (2N)t for t ≥ 1. We set et = 2−dt for all t ≥ 0. The
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numbers et can be doubly-exponentially small, but they can be represented compactly

in floating point, i.e., in polynomial size in the size of P and of ε. Note from the

definitions that e0 ≤ ελ/n, and et = (et−1)
2N for all t ≥ 1.

Consider the maxPPS, x = P∗,τε
(x), obtained from the given minimax-PPS, x =

P(x), by fixing the strategy of the min player to policy τε. For every variable xi of

form L or Q, the corresponding equation xi = Pi(x) stays the same, and for every

variable xi of form M the equation becomes xi = maxamax∈Γi
max
{∑amin∈Γi

min
τε(xi)(amin) ·

Ai(x)(amax,amin)}. Let f ∗ = g∗∗,τε
be the greatest fixed point of the maxPPS x = P∗,τε

(x),

and let M = max{ f ∗i |xi ∈ F}. We will show that M ≤ ε, i.e., f ∗i ≤ ε for all xi ∈ F .

First, we show that all variables of X have value strictly less than 1 in f ∗, and we

also bound the value of the variables of set S in terms of M.

Claim 3.22.
(1) For all xi ∈ X, f ∗i < 1.

(2) For all xi ∈ X, f ∗i ≤ λM+(1−λ).

Proof. The algorithm of Proposition 3.3 (see Algorithm 3.1) computes the set X of

variables xi of the minimax-PPS such that g∗i < 1 (this set is denoted S in Algorithm

3.1, but to avoid confusion with the set S of the limit-sure reachability Algorithm 3.3,

we refer to it as X in the following). It is the same set X as the one used in Algorithm

3.3. We use induction on the time that a variable xi was added to set X in Algorithm

3.1 to show the claim. For part (2), our induction hypothesis is that if a variable xi is

added to set X at time t (where the initialization is time 1) then f ∗i ≤ κtM +(1−κt).

This inequality implies (2) since t ≤ n and λ = κn.

For the basis case (t = 1), xi is a deficient variable, i.e. Pi(1) < 1, hence f ∗i ≤
Pi(1)≤ 1−κ < 1.

For the induction step, if xi is of form L or Q, then Pi(x) contains a variable x j

that was added earlier to set X , hence f ∗i < 1 follows from f ∗j < 1 by the induction

hypothesis. For part (2), if xi is of form L, then the coefficient of x j in Pi(x) is at least

κ and f ∗j ≤ κt−1M +(1−κt−1) by the induction hypothesis, hence f ∗i ≤ κ(κt−1M +

(1−κt−1))+1−κ = κtM+(1−κt). If xi is of form Q, then f ∗i ≤ f ∗j ≤ κt−1M+(1−
κt−1)≤ κtM+(1−κt).

If xi is of form M then for every action amax ∈ Γi
max, there exists an action amin ∈

Γi
min such that the variable x j = Ai(x)(amax,amin) was added previously to set X , and

hence its value in f ∗ is < 1 by the induction hypothesis. Since τε(xi) plays all the

actions of Γi
min with nonzero probability, both when xi ∈ S and when xi ∈ F , it follows
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that f ∗i < 1. This shows part (1). For part (2), if xi ∈ F , then f ∗i ≤M ≤ κtM+(1−κt),

where the first inequality follows from the definition of M. Suppose xi ∈ S and let amax

be an action in Γi
max that yields the greatest fixed point f ∗i in the maxPPS equation

xi = (P∗,τε
(x))i. The right-hand side for this action is a linear expression that contains

a variable x j = Ai(x)(amax,amin) that was added previously to set X , and the coefficient

of this term is 1/|Γi
min| ≥ 1/N ≥ κ, since τε(xi) is the uniform distribution for xi ∈ S.

Therefore, f ∗i ≤ κ f ∗j +(1−κ)≤ κ(κt−1M+(1−κt−1))+1−κ = κtM+(1−κt).

We can show the key lemma now.

Lemma 3.23. For all xi ∈ F, f ∗i ≤ ε.

Proof. Recall that F = F0∪{xi1,xi2, . . . ,xik∗}. Let M0 = max{ f ∗i |xi ∈ F0} and let Mt =

f ∗it for t ≥ 1 be the value of xit in the greatest fixed point f ∗ of the maxPPS, x=P∗,τε
(x).

Thus, M = max{Mt | t ≥ 0}. Let rt = (et)
2N−1. Note that for every xit ∈ F of form M,

the probability with which τε(xit ) = sa f e(xit ,et) plays any action in a set L j is at least

(e2
t )

N−1(1− e2
t )/N which is > (et)

2N−1 = rt because et < 1/(2N). Let st = Πt
j=1r j;

by convention, s0 = 1.

We will show first that for all t ≥ 0, there exist at ,gt ≥ 0 that satisfy at ≥ λ · st and

gt ≤ t ·e0 ·at/λ, and such that Mt ≤ atM2 +(1−at−gt)M+gt . We will use induction

on t.

Basis: t = 0. Then M0 = f ∗i for a variable xi ∈ F0 which is either a deficient

variable of form L or a variable of form Q. If xi is of form L, then note that (1) Pi does

not contain a constant term (because otherwise xi would have been added to set S in

step (1.)), (2) all the variables of Pi(x) are not in set S (because otherwise xi would have

been added to set S in step (2.)), hence they are all eventually added to set F and thus

their value in f ∗ is at most M, and (3) the coefficients sum to at most 1−κ because

Pi(1) < 1. Therefore, M0 = f ∗i ≤ (1−κ)M ≤ λM2 +(1−λ)M. If xi is of form Q, at

least one of the variables of Pi(x) must belong to set F (because otherwise xi would

have been added to set S in step (2.)), hence its value in f ∗ is at most M, and the value

of the other variable is at most λM +(1−λ) by Claim 3.22. Therefore, M0 = f ∗i ≤
M(λM + 1−λ) = λM2 +(1−λ)M. Thus in both cases, M0 ≤ λM2 +(1−λ)M. We

can take a0 = λ, g0 = 0.

Induction step: We have Mt = f ∗it . If xit is of form L, then Pit (x) contains a variable

x j that was added earlier to set F ; its coefficient, say p, is at least κ. Note again that

Pit (x) does not contain a constant term, all the other variables of Pit (x) are not in set S,

hence they are all eventually added to set F and their value in f ∗ is at most M, and the
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sum of their coefficients is 1− p. Since the variable x j was added earlier to set F , by

the induction hypothesis we have f ∗j ≤ auM2+(1−au−gu)M+gu for some u≤ t−1.

Therefore, Mt ≤ p(auM2+(1−au−gu)M+gu)+(1− p)M = atM2+(1−at−gt)M+

gt , with at = pau and gt = pgu. Since u≤ t−1, we have au ≥ λ ·su ≥ λ ·st−1, and since

p≥ κ≥ rt it follows that at = pau ≥ λ · st−1 · rt = λ · st . Also, gt = pgu ≤ pue0au/λ≤
te0at/λ.

Suppose xit is of form M, and let amax ∈ Γit
max be an action of the max player

that yields the greatest fixed point f ∗it in the maxPPS equation xit = (P∗,τε
(x))it . Then

amax belongs to some B j in step (4.) of Algorithm 3.3, and thus there is a amin ∈ L j

such that the variable Ait (x)(amax,amin) was added earlier to set F , i.e., it is variable

xiu for some u ≤ t − 1 or it belongs to F0. The probability p = τε(xit )(amin) of this

action in strategy τε is p = (e2
t )

j−1 · (1− e2
t )/|L j|. All the variables Ait (x)(amax,a) for

a ∈ ∪ j
q=1Lq are not in set S, hence they are all eventually assigned to set F . The total

probability that strategy τε gives to the actions a ∈ ∪ j
q=1Lq is 1− (e2

t )
j, hence the

remaining probability assigned to the other actions a∈ Γ
it
min−∪

j
q=1Lq is (e2

t )
j which is

≤ pet since et ≤ 1/(2N). Therefore, Mt ≤ pMu +(1− p− pet)M+ pet for some u ≤
t−1. By the induction hypothesis, Mu ≤ auM2+(1−au−gu)M+gu, where au ≥ λsu

and gu≤ ue0au/λ. Hence, Mt ≤ p(auM2+(1−au−gu)M+gu)+(1− p− pet)M+ pet

= atM2 +(1− at − gt)M + gt , where at = pau and gt = pgu + pet . Since p ≥ rt and

au ≥ λsu ≥ λst−1, we have at ≥ λst . It is easy to check from the definitions that et ≤
e0st−1. Indeed, loget = −d0(2N)t , while log(e0st−1) = loge0 +(2N− 1)∑

t−1
j=1 loge j

= −d0((2N)t − 2N + 1). Since gu ≤ ue0au/λ and et ≤ e0st−1 ≤ e0su ≤ e0au/λ, we

have gt = pgu + pet ≤ p(u+1)e0au/λ≤ te0at/λ.

Therefore, for all t we have Mt ≤ atM2 +(1− at − gt)M + gt , where at ≥ λst and

gt ≤ te0at/λ. Let t be an index with the maximum Mt , i.e., M = Mt . Then M ≤ atM2+

(1−at−gt)M+gt , hence atM2−(at +gt)M+gt ≥ 0. That is, (atM−gt)(M−1)≥ 0.

From Claim 3.22, M < 1. Therefore, atM ≤ gt . Thus, M ≤ gt/at ≤ te0/λ≤ ε.

This concludes the proof of Theorem 3.19.

From the constructions in the proof of the theorem we have the following:

Corollary 3.24. Suppose Algorithm 3.3 outputs the set F when it terminates. Let

S := X−F.

1. There is a randomized static strategy σ for the max player (maximizing non-

reachability) such that for all variables xi ∈ S, we have (g∗σ,∗)i > 0.
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2. For all ε > 0, there is a randomized static strategy τε, for the min player (mini-

mizing non-reachability), such that for all variables xi ∈ F, (g∗∗,τε
)i ≤ ε.

Proof. This follows directly from the strategies σ, and τε (for any given ε > 0), con-

structed in the proof of Theorem 3.19.

Remark. The static strategies τε from Corollary 3.24(2) can involve probabilities

doubly-exponentially small, as a function of the encoding size of the history. How-

ever, these probabilities can be encoded in a suitable succinct notation and, hence, τε

can be described in a suitable compact form in time polynomial in the encoding size

of the input BCSG.

3.6 On the complexity of quantitative problems for BPs

All quantitative decision (e.g., deciding whether the BCSG game value is at least a

given probability p ∈ (0,1)) and approximation (i.e., approximating the BCSG game

value within a given desired error ε > 0) problems for BCSG reachability games are in

PSPACE. This was already known for the reachability objective in the special cases

of BPs, BMDPs and BSSGs, and also for the extinction objective in BPs and all their

MDPs and (concurrent) game variants.

This upper bound follows, as a corollary from Theorem 3.1, by exploiting the

minimax-PPS equations whose greatest (and least) fixed point solution captures the

non-reachability (and extinction) values of these games, and by then appealing to

PSPACE upper bounds for deciding the Existential Theory of the Reals ([Ren92,

Can88], also see Section 2.1 in the Background chapter), in order to decide questions

about, and to approximate, the LFP and GFP of such systems of equations. The proof

is directly analogous to the proof from [EY08, Theorem 3.3] for the PSPACE upper

bound for BCSG extinction games. Given it is an important upper bound for BCSG

reachability games, the following is an adapted version of that proof.

Theorem 3.25 (cf. [EY08], Theorem 3.3). Given a BCSG with minimax-PPS, x =

P(x), a type Tv and a rational probability p ∈ (0,1), there is a PSPACE procedure to

decide whether g∗v4p (i.e., whether the non-reachability value, starting with an object

of type Tv, is 4p), where 4 := {<,≤,=,≥,>}. Furthermore, the vector g∗ of non-

reachability values can be approximated to within a given number of bits j of precision

( j is given in unary) in PSPACE and in time O( j · |P|O(n)).
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Proof. First, it needs to be shown that any of the equations in the minimax-PPS, x =

P(x), can be expressed in the ETR. For any Pi(x), i ∈ [n], of form L or Q, it is clear

that the equation xi = Pi(x) is a multi-variate polynomial equation. As for equations

of form M, i.e., xi = Pi(x) = Val(Ai(x)), by the Linear Programming encoding of the

minimax theorem for the one-step matrix game Ai(x), the equation can be expressed

via the following conjunction of constraints with additional existentially quantified

variables si(amax), amax ∈ Γi
max, and ti(amin), amin ∈ Γi

min, denoting the probabilities for

the actions of the two players in the one-step matrix game Ai(x):

∀amax ∈ Γ
i
max : si(amax)≥ 0; ∑

amax∈Γi
max

si(amax) = 1;

∀amin ∈ Γ
i
min : ti(amin)≥ 0; ∑

amin∈Γi
min

ti(amin) = 1;

∀amin ∈ Γ
i
min : ∑

amax∈Γi
max

si(amax) ·Ai(x)(amax,amin) ≥ xi;

∀amax ∈ Γ
i
max : ∑

amin∈Γi
min

ti(amin) ·Ai(x)(amax,amin) ≤ xi

Now that the minimax-PPS is expressed in the ETR, one can also encode any ques-

tion g∗v4p in the ETR. For instance, g∗v ≥ p can be translated into the ETR formula:

∃x1, . . . ,xn
∧

i∈[n](xi = Pi(x))∧
∧

i∈[n](0≤ xi ≤ 1)∧ (xv ≥ p). The formula is satisfied if

and only if there is a fixed point g′ = P(g′), g′ ∈ [0,1]n, such that g′v ≥ p. But as g∗ is

the greatest fixed point in x = P(x), then the formula holds if and only if g∗v ≥ p.

Another possible decision question can be to determine whether g∗v = p. Consider

the ETR formula: ϕ1 ≡ ∃x1, . . . ,xn
∧

i∈[n](xi = Pi(x))∧
∧

i∈[n](0 ≤ xi ≤ 1)∧ (xv = p).

Clearly ϕ1 is satisfied if and only if there is a fixed point g′ = P(g′), g′ ∈ [0,1]n, such

that g′v = p. But in order to guarantee that p is the value for the v-th coordinate in the

GFP g∗, the following additional ETR formula: ϕ2 ≡ ∃x1, . . . ,xn
∧

i∈[n](xi = Pi(x))∧∧
i∈[n](0 ≤ xi ≤ 1)∧

∧
i∈[n](xi ≥ g′i)∧ (xv > p), needs to be checked. ϕ2 is false if and

only if there is no fixed point y ∈ [0,1]n to system x = P(x) such that y≥ g′ and yv > p.

That is, to decide whether g∗v = p one needs to make two queries to the ETR decision

procedure.

Since the ETR provides a way to decide whether, for some a,b ∈ [0,1] and for any

v ∈ [n], a≤ g∗v ≤ b, a binary search can be performed to achieve approximation of the

value g∗v in the following way. Start with the information that 0 ≤ g∗v ≤ 1. Then at

any point if it is known that for some a,b ∈ [0,1], a ≤ g∗v ≤ b, perform another ETR
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query to decide whether a≤ g∗v ≤ (a+b)/2. If yes, then continue the binary search in

the interval [a,(a+ b)/2], otherwise in the interval [(a+ b)/2,b]. So if the aim is to

compute g∗v within a precision of j bits, then one needs to perform j number of ETR

queries in order to find some a,b ∈ [0,1] such that b−a = 1/2 j and g∗v ∈ [a,b].

As for lower bounds, it indirectly follows from [EY09, Theorem 5.3] that the quan-

titative reachability decision problems, even for the special purely probabilistic case of

BPs (i.e., no players), are at least as hard as a fundamental problem on arithmetic deci-

sion circuits, namely POSSLP. And since the long-standing open problem SQRT-SUM

is P-time reducible to the POSSLP problem (see Section 2.1 for descriptions of and

relation between the two problems), then quantitative reachability decision problems

for BPs are also hard for this major problem in exact numerical computation complex-

ity. This implies that any substantial improvement on PSPACE for such quantitative

decision problems and, in fact, even placing these decision problems in the Polynomial

Hierarchy would require a major breakthrough on exact numerical computation.

With the purpose of complexity analysis being self-contained here, we provide a

proof for this lower bound. This proof is an adaption of [EY09, Theorem 5.3], which

showed a reduction from POSSLP to the quantitative termination decision problems

for 1-exit RMCs (more precisely, to the special case of hierarchical 1-exit RMCs).

But it is not immediate to see the consequence for reachability in BPs. In [ESY18],

footnote 2 gave a good argument of how the result from [EY09, Theorem 5.3] implies

POSSLP-hardness for reachability in BPs. 4

Theorem 3.26 (cf. [EY09], Theorem 5.3). The decision problem of determining whether

the non-reachability probability is≥ p (or > p, etc.) for BPs, for a given rational prob-

ability p ∈ (0,1), is POSSLP-hard (and, therefore, SQRT-SUM-hard).

Proof. Let us discuss the reduction from POSSLP. An arithmetic circuit C with inputs

0,1 and over basis {+,∗,−} is given. Notice that we can assume w.l.o.g. that there is at

most one subtraction gate that can occur as the top gate of the circuit. So the POSSLP

problem can be rephrased as the problem of, given two monotone arithmetic circuits

S1,S2 with inputs 0,1 and over basis {+,∗}, determine whether val(S1) > val(S2),

4To summarize the argument from footnote 2 in [ESY18], recall that computing termination proba-
bilities in 1-exit RMCs is equivalent to computing extinction probabilities in BPs, which in turn corre-
sponds to computing the LFP of a PPS, associated with the given BP. So, in the end, [EY09, Theorem
5.3] shows that the problem of, given a start type Ti and a probability p∈ (0,1), deciding whether q∗i ≥ p
is POSSLP-hard, where q∗ is the LFP of the PPS. But since the PPS of the constructed BP in [EY09,
Theorem 5.3] has a unique fixed point (i.e., q∗ = g∗), then the hardness result also applies for the GFP,
i.e., the non-reachability probabilities of the BP.
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where we denote by val(X) and val(a) the output value of a circuit X and a gate a,

respectively. Moreover, w.l.o.g. it can be assumed that the two circuits S1,S2 have the

same depth, that each level of each of the two circuits consists of either +-gates or

∗-gates with inputs from the gates at only the previous level, and that the levels of +-

and ∗-gates alternate.

Let c be any rational constant in the range (0,1). Analogous to the proof of [EY09,

Theorem 5.3], let us construct bottom-up a BP, A , with two types Ti,T ′i for each gate ai

in the circuits S1 and S2 such that the non-reachability probabilities gi and g′i, starting

correspondingly at an object of type Ti or T ′i , are θr · val(ai) and c− gi, respectively,

where θr is a value that depends on the level r of the gate ai.

First, in the circuits S1 and S2, the inputs 0 and 1 can be treated as level-0 gates

a0 and a−1, respectively. Let θ0 = c. In the BP, A , create the following types and

rules (note that, for readers convenience, the right-hand sides of rules are not given as

multi-sets), where Tf ∗ is the target type:

T0
1−→ Tf ∗ T ′0

c−→ /0 T−1
c−→ /0

T ′−1
1−→ Tf ∗ T ′0

1−c−−→ Tf ∗ T−1
1−c−−→ Tf ∗

Hence, the non-reachability probabilities for these types are: g0 = g′−1 = 0 and g′0 =

g−1 = c.

Now consider level r≥ 1 of +-gates and let θr =
θr−1

2 . For any +-gate ai = a j +ak,

create two types Ti,T ′i with the rules:

Ti
1/2−−→ Tj T ′i

1/2−−→ T ′j

Ti
1/2−−→ Tk T ′i

1/2−−→ T ′k

Then the non-reachability probability of type Ti is gi =
1
2(g j + gk) =

θr−1
2 (val(a j)+

val(ak)) = θrval(ai), and the non-reachability probability of type T ′i is g′i =
1
2(g
′
j +

g′k) =
1
2(c−g j + c−gk) = c−gi.

Considering level r≥ 1 of ∗-gates, let ρ = 1−c
2−c2 and θr = ρ(θr−1)

2 and for any gate

ai = a j ∗ak, create two types Ti,T ′i with the rules:

Ti
1−ρ−−→ Tf ∗ T ′i

1−2ρ−−−→ /0 H j
(1−c)/2−−−−→ Tf ∗ Hk

(1−c)/2−−−−→ Tf ∗

Ti
ρ−→ Tj Tk T ′i

ρ−→ T ′j Hk H j
c/2−−→ /0 Hk

c/2−−→ /0

T ′i
ρ−→ T ′k H j H j

1/2−−→ Tj Hk
1/2−−→ Tk
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The non-reachability probability of type Ti is gi = ρg jgk = ρ(θr−1)
2val(a j)val(ak) =

θrval(ai). The non-reachability probability of type T ′i is:

g′i = 1−2ρ+ρg′j
(c

2
+

1
2

gk

)
+ρg′k

(c
2
+

1
2

g j

)
= 1−2ρ+

ρ

2

(
(c−g j)(c+gk)+(c−gk)(c+g j)

)
= 1−2ρ+ρ(c2−g jgk)

= 1−2ρ+ρc2−ρg jgk = 1− 2−2c
2− c2 +

(1− c)c2

2− c2 −gi = c−gi

For the final part of the construction of the BP, A , let am1 and am2 be the output

gates of S1 and S2, respectively, both at the same depth k. Add type TC to A with

rules: TC
1/2−−→ Tm1 and TC

1/2−−→ T ′m2
. The non-reachability probability of type TC is gC =

1
2(gm1 + g′m2

) = 1
2(gm1 + c− gm2) =

c
2 +

θk
2 (val(am1)− val(am2)) =

c
2 +

θk
2 (val(S1)−

val(S2)). Hence, gC > c
2 if and only if val(S1)> val(S2).

An interesting question is how much the PSPACE upper bounds can be improved

for the approximation problems. It was shown in [HIJM14] that even for finite-state

CSG reachability games, using the standard algorithms for (approximately) solving

these games, value iteration and policy iteration, can be extremely slow in the worst-

case: they can take a doubly-exponential number of iterations to obtain any nontrivial

approximation, even when the reachability value is 1. Since we know that the prob-

lem of computing the reachability values in a BCSG can be rephrased as the problem

of computing the greatest fixed point of an associated minimax-PPS, x = P(x), then

the above result implies that if we start with the all 1-vector and continuously apply

the operator P(·) it can take doubly-exponentially many iterations until the sequence

Pk(1), k≥ 1 converges within a desired error ε> 0. Furthermore, Frederiksen and Mil-

tersen have shown in [FM13, Theorem 1] that for finite-state CSG reachability games,

the game value can be approximated to a desired precision in TFNP[NP]. We do

not know an analogous complexity result for quantitative approximation problems for

BCSG reachability (or extinction) games, nor do we know POSSLP-hardness (or even

SQRT-SUM-hardness) for these approximation problems. These interesting questions

are left open.

Finally, the next proposition shows the complexity class FIXP as an upper bound

for the problem of computing exact (optimal) reachability probabilities for a BP (and

for a minimizing BMDP) (equivalently, computing the greatest fixed point in the asso-

ciated (max)PPS). It has already been shown in [EY10, Theorem 27] that computing

the game values in finite-state CSGs is in FIXP; and in [EY10, Theorem 28] that com-
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puting the extinction probabilities in BPs (equivalently, the termination probabilities in

1-exit RMCs, SCFGs and OBPs) is in FIXP.

Proposition 3.27. The problem of computing the optimal reachability probabilities for

a minimizing BMDP, i.e., computing the GFP of a maxPPS, is in FIXP.

Proof. Recall that in order for a search problem to be shown that it belongs in the com-

plexity class FIXP, it needs to be expressible as a fixed point problem for a continuous

function over algebraic circuits with basis {+,−,∗,/,min,max, k
√} and with rational

constants, such that the set of solutions to the given problem is precisely the set of fixed

points of the function.

By Theorem 3.1, given a minimizing BMDP with the reachability objective, one

can construct a corresponding maxPPS, x = F(x), such that the greatest fixed point

captures the vector of optimal non-reachability probabilities. F(·) is a monotone func-

tion over the unit n-cube, satisfying the FIXP class requirements for the function and

domain. However, the issue here is that there may be multiple fixed points, but only

the GFP is a solution to our problem. So if one can show that this system, x = F(x),

can be modified in such a way that the GFP is the unique fixed point, then the inclusion

in the complexity class FIXP follows immediately.

Let us remove all variables xi such that the optimal non-reachability probability,

starting at an object of corresponding type Ti, is 1. This is done in P-time using Al-

gorithm 3.1. Let us denote by x = P(x) the reduced maxPPS system on the remaining

variables. Note that the GFP, g∗, of x = P(x) satisfies g∗ < 1. By Lemma 3.9 we know

that, since GFP g∗ < 1, then g∗ is in fact the unique fixed point of x = P(x) in [0,1]n.

That concludes the proof.

As pointed in Section 2.1, computing (respectively, approximating) Nash Equilib-

rium for 3 or more players is FIXP-complete (respectively, FIXPa-complete). There-

fore, the decision and approximation questions for the reachability objective for mini-

mizing BMDPs (equivalently, the decision and approximation questions for the GFP of

a maxPPS) reduce to the decision and approximation questions for the Nash Equilibria

problem for 3 or more players. However, for the approximation questions, there is al-

ready a P-time procedure to approximate (within a given desired error ε > 0) the GFP

of a maxPPS and provide a deterministic static ε-optimal strategy (see [ESY18, The-

orem 6.3]). Same holds for minPPSs, i.e., there is a P-time procedure to approximate

(within a given desired error ε > 0) the GFP of a minPPS (equivalently, approximate
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the optimal reachability probabilities for a maximizing BMDP) and provide a random-

ized static ε-optimal stategy (see [ESY18, Theorems 7.1, 8.8]). It is an open question

whether approximating the GFP of a minimax-PPS (equivalently, approximating the

reachability values for a BCSG) is in FIXPa. On the other hand, it has been shown

in an unpublished manuscript ([ESY14]) that approximating the LFP of a minimax-

PPS (equivalently, approximating the extinction values for a BCSG or the termination

values for an 1-exit RCSG, a CF-CSG and an OBCSG) is in FIXPa.





Chapter 4

Multi-Objective Reachability for

Ordered Branching MDPs

In this chapter we focus on multi-objective reachability questions in the context of the

Ordered Branching MDP model.

The single-target reachability objective for OBMDPs amounts to optimizing (max-

imizing or minimizing) the probability that, starting at a given starting (root) non-

terminal, the generated tree contains some given target non-terminal. As mentioned

in the related work (see subsection 2.6.1), this objective has already been thoroughly

studied for BMDPs, as well as for BPs and for the (concurrent) stochastic game gener-

alizations of BMDPs (Chapter 3 and [ESY18]). Moreover, as it turned out (in Propo-

sition 2.4), there is really no difference between BMDPs and OBMDPs when it comes

to the single-target reachability objective: all the algorithmic results from [ESY18]

and Chapter 3 ([EMSY19]) carry over, mutatis mutandis, for OBMDPs, and for their

purely probabilistic OBP version and stochastic game generalizations.

A natural generalization of single-target reachability is multi-objective reachability,

where the goal is to optimize each of the respective probabilities that the generated tree

satisfies each of several given generalized reachability objectives over different target

non-terminals. Of course, there may be trade-offs between these different objectives.

Our main concern in this chapter is the specific qualitative multi-objective reach-

ability questions, where the aim is to determine whether there is a strategy that guar-

antees that each of a given set of target non-terminals is almost-surely (respectively,

limit-surely) contained in the generated tree, i.e., with probability 1 (respectively, with

probability arbitrarily close to 1). In fact, we show that in this context the almost-sure

and limit-sure problems do not coincide. That is, there are OBMDPs for which there is

97
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no single strategy that achieves probability exactly 1 for reaching all targets, but where

nevertheless, for every ε > 0, there is a strategy that guarantees a probability ≥ 1− ε

of reaching all targets.

By contrast, for both BMDPs and OBMDPs, for single-target reachability, the

qualitative almost-sure and limit-sure problems do coincide: there is a strategy that

guarantees reaching the target non-terminal with probability 1 if and only if there is a

sequence of strategies that guarantees reaching the target with probabilities arbitrarily

close to 1 ([ESY18]).

We give two separate algorithms for almost-sure and limit-sure multi-target reach-

ability. For the almost-sure problem, we are given an OBMDP, a start non-terminal,

and a set of target non-terminals, and we must decide whether there exists a strategy

using which the process generates, with probability 1, a tree that contains all the given

target non-terminals. If the answer is “yes”, the algorithm can also be easily aug-

mented to construct (proof shows how) a randomized witness strategy that achieves

this.1 The algorithm for the limit-sure problem decides whether the supremum prob-

ability of generating a tree that contains all the given target non-terminals is 1. If the

answer is “yes”, the algorithm can also be easily augmented to construct (proof shows

how), given any ε > 0, a randomized non-static strategy that guarantees probability

≥ 1− ε.

Both algorithms run in time 2O(k) · |A |O(1), where |A | is the total bit encoding

length of the given OBMDP, A , and k = |K| is the size of the given set K of target

non-terminals. Hence, they run in polynomial time when k is fixed and also are fixed-

parameter tractable (FPT) with respect to k. Moreover, we show that the qualitative

almost-sure (and limit-sure) multi-target reachability decision problem is in general

NP-hard, when k is not fixed.

Going beyond the goal of assuring probability 1 of reaching each of a set of target

non-terminals, we also consider more general qualitative multi-objective reachability

problems, where we are given a set of target non-terminals, K, and where, for each

target non-terminal Tq (q ∈ K), we are also given a 0/1 probability bq ∈ {0,1}, and

an inequality ∆q ∈ {<,=,>}, and where we wish to decide whether the controller

has a single strategy using which, for all q ∈ K the probability that the generated tree

contains the non-terminal Tq is ∆qbq. We show that in some special cases these prob-

lems are efficiently decidable. However, we leave open the decidability of the most

1This strategy is, however, necessarily not “static”, meaning it must actually use the ancestor history:
the action distribution cannot be defined solely based on which non-terminal is being expanded.
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general case of arbitrary Boolean combinations of such qualitative reachability and

non-reachability queries over different target non-terminals. Furthermore, we leave

open all (both decision and approximation) quantitative multi-objective reachability

questions, including when the goal is to approximate the tradeoff pareto curve of op-

timal probabilities for different reachability objectives. These are intriguing questions

for future research and we come back to them in Chapter 5.

Before we move on with the chapter, we would like to briefly and informally recap

the differences between BMDPs and OBMDPs. Although both models are similar,

the seemingly small differences between them are crucial. In BMDPs, the children

that each rule generates is a multi-set over the types and there is no ordering among

the children. However, in OBMDPs, there is an ordering among the non-terminals

generated by a rule and this turns out to be beneficial.

As already pointed in subsection 2.4.1 computing the optimal (single-target) reach-

ability probabilities in OBMDPs is equivalent to computing the optimal (single-target)

reachability probabilities in BMDPs. And the same holds for the objective of extinc-

tion/termination. And here is where the key differences between these two models

manifests. In the context of BMDPs, we need the more general notion of a strategy

(i.e., strategy having the information of the entire finite tree up to the current gener-

ation) in order to obtain even the qualitative almost-sure winning strategies, due to

the lack of ordering among objects in a generation. However, in the context of OB-

MDPs, such strategies can be implemented even with the restricted notion of ancestral

strategies, due to the fact that there is indeed an ordering among the non-terminals.

There is no “suitable” definition of a strategy or a history for the models of branch-

ing processes (also discussed in Section 5.1). But it is quite interesting that we show

that, when ordering in the tree is introduced, the more general notion of a history is not

more powerful than an ancestor history for the objectives of single-target reachability

and termination. The latter definition of a history may reveal less information, but at

the same time it is less computationally expensive to implement.

This motivated us to introduce the OBMDP model. This model carries with it the

idea that, for each object of the current generation, it is irrelevant for the player to have

information regarding what is happening in other parts of the tree. And there may be

other objectives, where such a property facilitates the analysis.

Organization of the chapter. Section 4.1 shows NP-hardness for qualitative multi-

target reachability decision problems. Section 4.2 gives an algorithm for determining
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the non-terminals starting from which, regardless of the strategy, there is a zero prob-

ability that all of the given target non-terminals are in the generated tree. Sections 4.3

and 4.4 provide, respectively, the algorithms for the limit-sure and almost-sure multi-

target reachability problems. Section 4.5 considers other certain cases of qualitative

multi-objective reachability.

4.1 On the complexity of multi-target reachability for

OBMDPs

Before we continue with the algorithmic results, let us observe that the qualitative (both

almost-sure and limit-sure) multi-target reachability problems are in general NP-hard

(coNP-hard), if the size of the set K of target non-terminals is not bounded by a fixed

constant.

Proposition 4.1.

(1.) The following two problems are both NP-hard: given an OBMDP, a set K ⊆ [n]

of target non-terminals and a starting non-terminal Ti ∈ V , decide whether: (i)

∃σ ∈Ψ : Prσ
Ti
[
⋂

q∈K Reach(Tq)] = 1, and (ii) Pr∗Ti
[
⋂

q∈K Reach(Tq)] = 1.

(2.) The following problem is coNP-hard: given an OBP (i.e., an OBMDP with no

controlled non-terminals, and hence with only one trivial strategy σ), a set K ⊆
[n] of target non-terminals and a starting non-terminal Ti ∈ V , decide whether

Prσ
Ti
[
⋂

q∈K Reach(Tq)] = 0.

Proof. For (1.) we reduce from 3-SAT, and for (2.) from the complement problem (i.e.,

deciding unsatisfiability of a 3-CNF formula). The reductions are nearly identical, so

we describe them both together. Consider a 3-CNF formula over variables {x1, . . . ,xn}:∧
q∈[m]

(lq,1∨ lq,2∨ lq,3)

where every lq, j is either xr or ¬xr for some r ∈ [n]. We construct an OBMDP as

follows: to each clause q ∈ [m] we associate a target non-terminal Rq with a single as-

sociated rule Rq
1−→∅; for each variable xr,r∈ [n], we associate two purely probabilistic

non-terminals Tra,Trb , and

• for (1.), a controlled non-terminal Cr with rules Cr
a−→ Tra and Cr

b−→ Trb , or
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• for (2.), a probabilistic non-terminal Cr with rules Cr
1/2−−→ Tra and Cr

1/2−−→ Trb .

For each non-terminal Tra , r ∈ [n], we would in principle like to create a single rule,

with probability 1, whose right-hand side consists of the following non-terminals (in

any order): {Rq | ∃ j ∈ {1,2,3} s.t. lq, j = xr}, as well as the non-terminal Cr+1 if r < n;

likewise, for each non-terminal Trb , r ∈ [n], we would like to create a single rule, with

probability 1, whose right-hand side consists of {Rq | ∃ j ∈ {1,2,3} s.t. lq, j = ¬xr}, as

well as Cr+1 if r < n.

However, due to the simple normal form we have adopted in our definition of OB-

MDPs, such rules need to be “expanded” (as shown in Proposition 2.3) into a sequence

of rules whose right-hand side has length ≤ 2, using auxiliary non-terminals. So,

for example, instead of a single rule of the form T1b
1−→ R2R3R4C2, we will have the

following rules (using auxiliary non-terminals T j
1b

): T1b
1−→ R2 T 1

1b
, T 1

1b

1−→ R3 T 2
1b

, and

T 2
1b

1−→ R4 C2. See Figure 4.1 for an example.

C1
a−→ T1a T1a

1−→ R1 C2 C2
a−→ T2a T2a

1−→ R2 T 1
2a

C3
a−→ T3a T3a

1−→ R1 R3

C1
b−→ T1b T1b

1−→ R2 T 1
1b

C2
b−→ T2b T 1

2a

1−→ R3 C3 C3
b−→ T3b T3b

1−→ R2 R4

T 1
1b

1−→ R3 T 2
1b

T2b
1−→ R1 T 1

2b

T 2
1b

1−→ R4 C2 T 1
2b

1−→ R4 C3

Figure 4.1: Reduction example: an OBMDP obtained from the 3-SAT formula (x1 ∨
¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨¬x3). This construction

is for the problems in (1.); the construction for the problem in (2.) is very similar, with

the controlled non-terminals Cr,r ∈ [n] changed to purely probabilistic non-terminals

instead (with 1/2 probability on each of their two rules).

This reduction closely resembles a well-known reduction ([SC85, Theorem 3.5])

for NP-hardness of model checking eventuality formulas in linear temporal logic. The

immediate children of the branching non-terminals Tra and Trb keep track of which

clauses are satisfied under each of the two truth assignments to the variable xr (‘true’

corresponds to Tra , and ‘false’ corresponds to Trb). In fact, for the OBMDP obtained for

the problems in (1.), there is a one-to-one correspondence between truth assignments

to all variables of the formula and deterministic static strategies.

It follows that, for the OBMDP in statement (1.), if there exists a satisfying truth
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assignment for the formula, then starting at a non-terminal C1, there exists a (determin-

istic and static) strategy σ′ for the player such that Prσ′
C1
[
⋂

q∈[m]Reach(Rq)] = 1.

Otherwise, if the formula is unsatisfiable, then the claim is that for every σ ∈ Ψ:

Prσ
C1
[
⋂

q∈[m]Reach(Rq)] = 0. (And hence, that Pr∗C1
[
⋂

q∈[m]Reach(Rq)] = 0< 1.) To see

this, note that an arbitrary (possibly randomized, and not necessarily static) strategy in

the constructed OBMDP corresponds to a (possibly correlated) probability distribution

on assignments of truth values to the variables in the corresponding formula. (The

distribution may be correlated, because the strategy may be non-static, but this doesn’t

matter.) So if the formula is unsatisfiable, then under any strategy for the player (i.e.,

any probability distribution on assignments of truth values), there is probability 0 that

the generated play (tree) contains all target non-terminals (respectively, that the random

truth assignment satisfies all clauses in the formula).

For the problem in (2.), it follows from the same arguments that the formula is un-

satisfiable if and only if Prσ
C1
[
⋂

q∈[m]Reach(Rq)] = 0 (where σ is just the trivial strategy,

since there are no controlled non-terminals in the OBP obtained for (2.)).

Throughout the next three sections we will provide algorithms for the problems

of Proposition 4.1. As a consequence from the running time of these algorithms, it

follows that there is an EXPTIME upper bound on the problems. We leave open the

question of whether this upper bound can be improved.

Before we continue with these algorithms, we provide some more notation in the

context of OBMDPs, needed for this chapter. We shall hereafter use the notation Ti→
Tj (respectively, Ti 6→ Tj), to denote that for non-terminal Ti there exists (respectively,

there does not exist) either an associated (controlled) rule Ti
a−→ Tj, where a ∈ Γi, or an

associated probabilistic rule Ti
pi, j−−→ Tj with a positive probability pi, j > 0. Similarly, let

Ti→∅ (respectively, Ti 6→∅) denote that the rule Ti
pi,0−−→∅ has a positive probability

pi,0 > 0 (respectively, has a probability pi,0 = 0).

Definition 12. The dependency graph of a SNF-form OBMDP, A , is a directed graph

that has a node Ti for each non-terminal Ti, and contains an edge (Ti,Tj) if and only

if: either Ti→ Tj or there is a rule Ti
1−→ Tj Tr or a rule Ti

1−→ Tr Tj in A .

Throughout this paper, for (SNF-form) OBMDP, A , with non-terminals set V , we

let G = (U,E), with U =V , denote the dependency graph of A and let G[C] denote the

subgraph of G induced by the subset C ⊆U of nodes (non-terminals).

Sometimes when the specific OBMDP, A , is not clear from the context, we use

A as a superscript to specify the OBMDP in our notations. So, for instance, ΨA is
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the set of all strategies for A ; GA is the dependency graph of A ; and Prσ,A
Ti

[F ] is the

probability of event F , starting at a non-terminal Ti, under strategy σ, in A .

We also extend the notation regarding probabilities of properties to “start” at a

given ancestor history. That is, for an ancestor history h, we use Prσ,A
h [F ] to denote

the conditional probability that, using σ ∈ΨA , conditioned on the event that there is a

node in the play whose ancestor history is h, the subplay rooted at current(h), is in the

set F . Whenever we use the notation Prσ,A
h [F ], the underlying conditional probability

will be well defined. Again, the superscript A will be omitted when clear from context.

Note that one ancestor history h can be a prefix of another ancestor history. We use

the notation h′ := h(x,Ti), for some x ∈ {l,r,u}, to denote that h is the immediately

prior ancestor history to h′, which is obtained by concatenating the pair (x,Ti) at the

end of h.

Definition 13. For a directed graph G = (U,E), and a partition of its vertices U =

(U1,UP), an end-component is a set of vertices C ⊆U such that G[C]: (1) is strongly

connected; (2) for all u ∈UP∩C and all (u,u′) ∈ E, u′ ∈C; (3) and if C = {u} (i.e.,

|C|= 1), then (u,u) ∈ E. A maximal end-component (MEC) is an end-component not

contained in any larger end-component. A MEC-decomposition is a partition of the

graph into MECs and nodes that do not belong to any MEC.

MECs are disjoint and the unique MEC-decomposition of such a directed graph

G (with partitioned nodes) can be computed in P-time ([CY98]).2 More recent work

provides more efficient algorithms for MEC-decomposition (see [CH14]). We will also

be using the notion of a strongly connected component (SCC), which can be defined

as a MEC where condition (2) from Definition 13 above is not required. It is also

well-known that a SCC-decomposition of a directed graph can be done in linear time.

For our setting here, given a SNF-form OBMDP with its dependency graph G =

(U,E), U =V , the partition of U that we will use is the following: UP := {Ti ∈U | Ti

is of L-form} and U1 := {Ti ∈U | Ti is of M-form or Q-form}.

Before we move on with the algorithmic sections let us provide an OBMDP exam-

ple where almost-sure multi-target reachability is satisfied. Example 2.1 demonstrated

an OBMDP example where almost-sure multi-target reachability is not satisfied, but

limit-sure multi-target reachability is satisfied. Both of these examples give a rough

idea of the properties non-terminals have and the type of strategies the player utilizes

for almost-sure or limit-sure multi-target reachability in OBMDPs. The proofs of the
2In [CY98], maximal end-components are referred to as closed components.
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algorithms in the next sections will provide a clear picture of how to compute the win-

ning non-terminals and how to construct the necessary strategies.

Example 4.1. OBMDP example demonstrating almost-sure multi-target reachability.

C c−→M T 1−→C M M a−→ A A
1/2−−→ R1 B

1/2−−→ R2

C d−→ T T ′ 1−→ R1 R2 M b−→ B A
1/2−−→∅ B

1/2−−→∅

Consider the OBMDP above with non-terminals set {C,T,T ′,M,A,B,R1,R2}, where

R1 and R2 are the target non-terminals and C and M are the “controlled” non-terminals.

Clearly, starting at a non-terminal T ′, both targets are immediately reached in the next

step. There is a strategy σ for the player such that, starting at a non-terminal C, it fol-

lows that Prσ
C[Reach(R1)∩Reach(R2)] = 1. The same strategy σ also satisfies almost-

sure multi-target reachability for non-terminal T .

To see this, consider the following strategy σ: in every copy of non-terminal C, let

σ choose deterministically action d; and in every copy of non-terminal M, let σ choose

uniformly at random between actions a and b. Note that starting at a non-terminal C,

under σ, infinitely often a copy of non-terminal T is generated and each such copy

generates an independent copy of non-terminal M, which has a positive probability

bounded away from zero to reach any of the two targets. Hence, with probability 1

both target non-terminals are reached.

4.2 Algorithm for deciding maxσ Prσ
Ti
[
⋂

q∈K Reach(Tq)]
?
=

0

In this section we present an algorithm that, given an OBMDP and a set K ⊆ [n] of

k = |K| target non-terminals, computes, for every subset of target non-terminals K′ ⊆
K, the set ZK′ ⊆ V of non-terminals such that, starting at a non-terminal Ti ∈ ZK′ ,

using any strategy σ, the probability that the generated play contains a copy of every

non-terminal in set K′ is 0. In other words, Algorithm 4.1 computes, ∀K′ ⊆ K, the

set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0}. The algorithm uses as a

preprocessing step an algorithm from [ESY18, Proposition 4.1], which is a special case

version of Algorithm 3.1. Namely, let us denote by Wq the set {Tq}∪{Ti ∈V | ∃σ∈Ψ :

Prσ
Ti
[Reach(Tq)]> 0}. We can compute, for each q ∈ K, the set Wq in P-time using the
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algorithm from [ESY18, Proposition 4.1], together with a single deterministic static

witness strategy for every non-terminal in set Wq. Let K′−i denote the set K′−{i}.

Algorithm 4.1 Algorithm for computing the set {Ti ∈ V | ∀σ ∈ Ψ :

Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0} for every subset of target non-terminals K′ ⊆ K in a

given OBMDP.
I. Initialize Z̄{q} :=Wq and Z{q} :=V −Wq, for each q ∈ K. Let Z̄ /0 :=V and Z /0 := /0.

II. For l = 2 . . .k:

For every subset of target non-terminals K′ ⊆ K of size |K′|= l:

1. Initialize Z̄K′ :=
{

Ti ∈V | one of the following holds:

- Ti is of L-form where i ∈ K′ and Ti→ Tj, Tj ∈ Z̄K′−i
.

- Ti is of M-form where i ∈ K′ and ∃a′ ∈ Γi : Ti
a′−→ Tj, Tj ∈ Z̄K′−i

.

- Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and ∃KL ⊆ K′−i : Tj ∈ Z̄KL ∧Tr ∈ Z̄K′−i−KL

.

- Ti is of Q-form (Ti
1−→ Tj Tr) and ∃KL ⊂ K′ (KL 6= /0) : Tj ∈ Z̄KL ∧Tr ∈ Z̄K′−KL .}

2. Repeat until no change has occurred to Z̄K′ :

(a) add Ti 6∈ Z̄K′ to Z̄K′ , if of L-form and Ti→ Tj, Tj ∈ Z̄K′ .

(b) add Ti 6∈ Z̄K′ to Z̄K′ , if of M-form and ∃a′ ∈ Γi : Ti
a′−→ Tj, Tj ∈ Z̄K′ .

(c) add Ti 6∈ Z̄K′ to Z̄K′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ Z̄K′ ∨Tr ∈ Z̄K′ .

3. ZK′ :=V − Z̄K′ .

Proposition 4.2. Algorithm 4.1 computes, given an OBMDP, A , and a set K ⊆ [n]

of k = |K| target non-terminals, for every subset of target non-terminals K′ ⊆ K, the

set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0}. The algorithm runs in

time 4k · |A |O(1). The algorithm can also be augmented to compute a determinis-

tic (non-static) strategy σ′K′ and a rational value bK′ > 0, such that for all Ti 6∈ ZK′ ,

Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ bK′ > 0.

Proof. The running time of the algorithm follows from the facts that step II. executes

for 2k iterations and inside each iteration, step II.1. requires time at most 2k · |A |O(1)

and the loop at step II.2. executes in time at most |A |O(1).

We need to prove that for every K′ ⊆ K : Ti ∈ ZK′ if and only if ∀σ ∈ Ψ:

Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0⇔ Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)] = 1 (or equivalently, that Ti ∈

Z̄K′ if and only if ∃σ′K′ ∈ Ψ : Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] > 0). We in fact show that

there is a value bK′ > 0 and a strategy σ′K′ ∈ Ψ such that Ti ∈ Z̄K′ if and only if
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Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] ≥ bK′ . We analyse this by a double induction with the top-

layer induction based on the size of set K′, or in other words the time of construct-

ing set Z̄K′ . Clearly for the base case (step I.) of a single target non-terminal Tq,q ∈
K, by the P-time algorithm from [ESY18, Proposition 4.1], there is a (deterministic

static) strategy σ′{q} for the player and a value b{q} > 0 where Ti ∈ Z̄{q} if and only if

Pr
σ′{q}
Ti

[Reach{(Tq)]≤ 1−b{q} < 1⇔ Pr
σ′{q}
Ti

[Reach(Tq)]≥ b{q} > 0. Now, constructing

set Z̄K′ for a subset K′ ⊆ K of target non-terminals of size l, assume that for each K′′ ⊂
K′ of size ≤ l−1, there is a strategy σ′K′′ for the player and a value bK′′ > 0 such that

for all Tj ∈ Z̄K′′ , Pr
σ′K′′
Tj

[
⋃

q∈K′′ Reach{(Tq)]≤ 1−bK′′ < 1⇔Pr
σ′K′′
Tj

[
⋂

q∈K′′ Reach(Tq)]≥
bK′′ > 0. And for all Tj ∈ ZK′′ , it holds that ∀σ ∈Ψ : Prσ

Tj
[
⋂

q∈K′′ Reach(Tq)] = 0.

First, let us prove the direction where there exists σ′K′ ∈ Ψ such that, if Ti ∈ Z̄K′ ,

then Pr
σ′K′
Ti

[
⋃

q∈K′ Reach{(Tq)]≤ 1−bK′ < 1⇔ Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ bK′ > 0, for

some value bK′ > 0. We use a second (nested) induction, based on the iteration in

which non-terminal Ti was added to set Z̄K′ . Consider the base case where Ti is a

non-terminal added to set Z̄K′ at the initialization step II.1.

(i) Suppose Ti is of L-form where i∈K′ (i.e., Ti is a target non-terminal in set K′) and

Ti→ Tj, Tj ∈ Z̄K′−i
, where by induction ∃σ′K′−i

∈Ψ : Pr
σ′

K′−i
Tj

[
⋂

q∈K′−i
Reach(Tq)]≥

bK′−i
, for some value bK′−i

> 0. Due to the fact that the play up to (and including)

a copy of non-terminal Ti, i ∈ K′ has already reached the target Ti and using

strategy σ′K′−i
from the next generation as if the play starts in it, it follows that

there exists a strategy σ′K′ such that, for an ancestor history h := Ti(u,Tj):

Pr
σ′K′
Ti

[ ⋂
q∈K′

Reach(Tq)
]
= Pr

σ′K′
Ti

[ ⋂
q∈K′−i

Reach(Tq)
∣∣∣ Reach(Ti)

]
·Pr

σ′K′
Ti

[
Reach(Ti)

]
= Pr

σ′K′
Ti

[ ⋂
q∈K′−i

Reach(Tq)
]
≥ pi, j ·Pr

σ′K′
h

[ ⋂
q∈K′−i

Reach(Tq)
]

= pi, j ·Pr
σ′

K′−i
Tj

[ ⋂
q∈K′−i

Reach(Tq)
]
≥ pi, j ·bK′−i

> 0

where pi, j > 0 is the probability of the rule Ti
pi, j−−→ Tj. So let bi

K′ := pi, j ·bK′−i
.

(ii) Suppose Ti is of M-form where i ∈ K′ and ∃a′ ∈ Γi : Ti
a′−→ Tj, Tj ∈ Z̄K′−i

. Again

let h := Ti(u,Tj). By combining the witness strategy σ′K′−i
from the induction

assumption for a starting non-terminal Tj with the initial local choice of choos-

ing deterministically action a′ starting at a non-terminal Ti, we obtain a com-

bined strategy σ′K′ , such that starting at a (target) non-terminal Ti, we satisfy
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Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] = Pr
σ′K′
h [

⋂
q∈K′−i

Reach(Tq)] = Pr
σ′

K′−i
Tj

[
⋂

q∈K′−i
Reach(Tq)]

≥ bK′−i
> 0. So let bi

K′ := bK′−i
.

(iii) Suppose Ti is of Q-form (i.e., Ti
1−→ Tj Tr) and there exists a proper split of

the target non-terminals from set K′, implied by KL ⊂ K′ (where KL 6= /0) and

K′−KL, such that Tj ∈ Z̄KL ∧Tr ∈ Z̄K′−KL . So, by the inductive assumption, for

some values bKL ,bK′−KL > 0, ∃σ′KL
∈Ψ : Pr

σ′KL
Tj

[
⋂

q∈KL
Reach(Tq)]≥ bKL > 0 and

∃σ′K′−KL
∈ Ψ : Pr

σ′K′−KL
Tr

[
⋂

q∈K′−KL
Reach(Tq)] ≥ bK′−KL > 0. Let hl := Ti(l,Tj)

and hr := Ti(r,Tr). Hence, by combining the two strategies σ′KL
and σ′K′−KL

to

be used from the next generation from the left and right child, respectively, as

if the play starts in them, it follows that ∃σ′K′ ∈ Ψ : Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] ≥

Pr
σ′K′
hl

[
⋂

q∈KL
Reach(Tq)]·Pr

σ′K′
hr

[
⋂

q∈K′−KL
Reach(Tq)]=Pr

σ′KL
Tj

[
⋂

q∈KL
Reach(Tq)]·

Pr
σ′K′−KL
Tr

[
⋂

q∈K′−KL
Reach(Tq)]≥ bKL ·bK′−KL > 0, and so let bi

K′ := bKL ·bK′−KL .

(iv) Suppose Ti is of Q-form (i.e., Ti
1−→ Tj Tr) where i ∈ K′ and there exists a split of

the target non-terminals from set K′−i, implied by KL ⊆ K′−i and K′−i−KL, such

that Tj ∈ Z̄KL ∧Tr ∈ Z̄K′−i−KL . Combining in the same way as in (iii) above the

two witness strategies σ′KL
and σ′K′−i−KL

from the induction assumption for non-

terminals Tj and Tr, and the fact that the play starts in the target non-terminal Ti

(i ∈ K′), it follows that there exists σ′K′ ∈Ψ such that Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] =

Pr
σ′K′
Ti

[
⋂

q∈K′−i
Reach(Tq)] ≥ Pr

σ′KL
Tj

[
⋂

q∈KL
Reach(Tq)] · Pr

σ′
K′−i−KL

Tr
[
⋂

q∈K′−i−KL

Reach(Tq)]≥ bKL ·bK′−i−KL > 0, and so let bi
K′ := bKL ·bK′−i−KL .

Now consider the inductive step of the nested induction, i.e., non-terminals Ti

added to set Z̄K′ at step II.2. If Ti is of L-form, then for a non-terminal Ti there

is a positive probability of generating a child of a non-terminal Tj ∈ Z̄K′ , for which

we already know that ∃σ′K′ ∈ Ψ : Pr
σ′K′
Tj

[
⋂

q∈K′ Reach(Tq)] ≥ b j
K′ > 0, for some value

b j
K′ > 0. Let h := Ti(u,Tj). Using the strategy σ′K′ in the next generation as if the play

starts in it, we get an augmented strategy σ′K′ , such that Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ pi, j ·

Pr
σ′K′
h [

⋂
q∈K′ Reach(Tq)] = pi, j ·Pr

σ′K′
Tj

[
⋂

q∈K′ Reach(Tq)]≥ pi, j ·b j
K′ > 0, where pi, j > 0

is the probability of the rule Ti
pi, j−−→ Tj. Let bi

K′ := pi, j ·b j
K′ .

If Ti is of M-form, then ∃a′ ∈ Γi : Ti
a′−→ Tj, Tj ∈ Z̄K′ , where ∃σ′K′ ∈ Ψ such that

Pr
σ′K′
Tj

[
⋂

q∈K′ Reach(Tq)] ≥ b j
K′ > 0, for some value b j

K′ > 0. Again let h := Ti(u,Tj).

Hence, by combining the witness strategy σ′K′ for a starting non-terminal Tj (from the
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nested induction assumption) with the initial local choice of choosing deterministi-

cally action a′ starting at a non-terminal Ti, we obtain an augmented strategy σ′K′ for a

starting non-terminal Ti, such that Pr
σ′K′
Ti

[
⋂

q∈K′ Reach(Tq)] =Pr
σ′K′
h [

⋂
q∈K′ Reach(Tq)] =

Pr
σ′K′
Tj

[
⋂

q∈K′ Reach(Tq)]≥ bi
K′ > 0, where let bi

K′ := b j
K′ .

If Ti is of Q-form (i.e., Ti
1−→ Tj Tr), then Tj ∈ Z̄K′ ∨ Tr ∈ Z̄K′ , and so ∃σ′K′ ∈ Ψ :

Pr
σ′K′
Ty

[
⋃

q∈K′ Reach{(Tq)]≤ 1−by
K′ < 1, for some value by

K′ > 0, where y ∈ { j,r}. Let

hy := Ti(x,Ty) and hȳ := Ti(x̄,Tȳ), where ȳ∈ { j,r}−{y}, x∈ {l,r} and x̄∈ {l,r}−{x}.
By augmenting this σ′K′ to be used from the next generation from the child of non-

terminal Ty as if the play starts in it and using an arbitrary strategy from the child

of non-terminal Tȳ, it holds that Pr
σ′K′
Ti

[
⋃

q∈K′ Reach{(Tq)] ≤ Pr
σ′K′
hy

[
⋃

q∈K′ Reach{(Tq)] ·

Pr
σ′K′
hȳ

[
⋃

q∈K′ Reach{(Tq)] ≤ Pr
σ′K′
Ty

[
⋃

q∈K′ Reach{(Tq)] ≤ 1− bi
K′ < 1, where let bi

K′ :=

by
K′ .

Finally, let bK′ := minTi∈Z̄K′
{bi

K′}.

Clearly, the constructed non-static strategy σ′K′ can be described in time 4k · |A |O(1).

Secondly, let us show the opposite direction, i.e., where if non-terminal Ti ∈ ZK′ ,

then ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0. For all non-terminals Ti ∈ ZK′ , for a copy

of non-terminal Ti in the play, it holds that: if Ti is of L-form, only a child of a non-

terminal in set ZK′ can be generated; if Ti is of M-form, regardless of player’s choice

on actions Γi, similarly only a child of a non-terminal in set ZK′ is generated as an

offspring; if Ti is of Q-form, both children have non-terminals belonging to set ZK′ .

This is due to non-terminals Ti ∈ ZK′ not being added to set Z̄K′ at step II.2.

Fix an arbitrary strategy σ for the player. Then starting at a non-terminal Ti ∈ ZK′

and under σ, the generated play can contain only copies of non-terminals in set ZK′ , i.e.,

the play stays confined to non-terminals from set ZK′ (note that the play may terminate).

What is more, there is no Q-form non-terminal Ti in ZK′ (whether Ti is a target from set

K′ or not) such that non-terminal Ti splits the job, of reaching the target non-terminals

from set K′, amongst its two children. In other words, for each Q-form non-terminal

Ti ∈ ZK′ (i.e., Ti
1−→ Tj Tr), ∀KL ⊂ K′ (where KL 6= /0): Tj ∈ ZKL ∨Tr ∈ ZK′−KL ; and if Ti

happens to be a target non-terminal itself from set K′ (i.e., i ∈ K′), then ∀KL ⊆ K′−i :

Tj ∈ ZKL∨Tr ∈ ZK′−i−KL (this is due to non-terminal Ti not added to set Z̄K′ at step II.1.).

So the only possibility, under σ and starting at some non-terminal Ti ∈ ZK′ , to generate

with a positive probability a tree (play) that contains copies of all targets from set K′, is

(1) if all target non-terminals from set K′ were never added to set Z̄K′ and, thus, belong

to set ZK′ , and (2) if it is, in fact, some path w (starting at the root) in the generated tree
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that contains copies of all the target non-terminals from set K′. Consider such a path

w and the very first copy o of any of the target non-terminals Tq (q ∈ K′) along path

w. Let o be of a L-form target non-terminal Tv, let o′ be the successor child of o along

the path w (say of some non-terminal Tj), and let h be the ancestor history that follows

along path w up until (and including) o′ and ends in o′ (i.e., current(h) = Tj). Then it

follows that Prσ

h [
⋂

q∈K′−v
Reach(Tq)]> 0. But it is easy to see that from σ one can easily

construct a strategy σ′K′−v
such that Pr

σ′
K′−v

Tj
[
⋂

q∈K′−v
Reach(Tq)]> 0, i.e., Tj ∈ Z̄K′−v

. But

this contradicts the fact that the L-form non-terminal Tv hasn’t been added to set Z̄K′ at

step II.1. Similarly follows the argument for if Tv is of M-form or Q-form.

So for all non-terminals Ti ∈ ZK′ , regardless of strategy σ for the player, there is a

zero probability of generating a play that contains all target non-terminals from set K′

(i.e., ∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0). That concludes the proof.

4.3 Algorithm for deciding Pr∗Ti
[
⋂

q∈K Reach(Tq)]
?
= 1

In this section we present an algorithm for deciding, given an OBMDP, A , given a set

K ⊆ [n] of k = |K| target non-terminals and given a starting non-terminal Ti, whether

Pr∗Ti
[
⋂

q∈K Reach(Tq)] = supσ∈Ψ Prσ
Ti
[
⋂

q∈K Reach(Tq)] = 1, i.e., the optimal probability

of generating a play (tree) that contains all target non-terminals from set K is = 1.

Recall, from Example 2.1, that there need not be a strategy for the player that achieves

probability exactly 1, which is the question in the next section (almost-sure multi-

target reachability). However, there may nevertheless be a sequence of strategies that

achieve probabilities arbitrarily close to 1 (limit-sure multi-target reachability), and the

question of the existence of such a sequence is what we address in this section. In other

words, we are asking whether there exists a sequence of strategies 〈σ∗ε j
| j ∈ N〉 such

that ∀ j ∈ N, ε j > ε j+1 > 0 (i.e., lim j→∞ ε j = 0), and Pr
σ∗ε j
Ti

[
⋂

q∈K Reach(Tq)]≥ 1− ε j.

The algorithm runs in time 4k · |A |O(1), and hence is fixed-parameter tractable with

respect to k.

First, as a preprocessing step, for each subset of target non-terminals K′ ⊆ K, we

compute the set ZK′ := {Ti ∈ V | ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0}, using Algo-

rithm 4.1. Let us also denote by ASq, for every q ∈ K, the set of non-terminals Tj

(including the target non-terminal Tq itself) for which Pr∗Tj
[Reach(Tq)] = 1. Due to the

equivalence between OBMDPs and BMDPs with respect to single-target reachability

(see subsection 2.4.1), these sets can be computed in P-time by applying the algorithm
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Algorithm 4.2 Algorithm for limit-sure multi-target reachability in a given OBMDP.

The output is the set FK = {Ti ∈V | Pr∗Ti
[
⋂

q∈K Reach(Tq)] = 1}.
I. Let F{q} := ASq and S{q} :=V −F{q}−Z{q}, for each q ∈ K. Let F/0 :=V and S /0 := /0.

II. For l = 2 . . .k:

For every subset of target non-terminals K′ ⊆ K of size |K′|= l:

1. DK′ := {Ti ∈V −ZK′ | one of the following holds:

- Ti is of L-form where i ∈ K′, Ti 6→∅ and ∀Tj ∈V : if Ti→ Tj, then Tj ∈ FK′−i
.

- Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′−i

.

- Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and ∃KL ⊆ K′−i : Tj ∈ FKL ∧Tr ∈ FK′−i−KL

.

- Ti is of Q-form (Ti
1−→ Tj Tr) where ∃KL ⊂ K′ (KL 6= /0) : Tj ∈ FKL ∧Tr ∈ FK′−KL .}

2. Repeat until no change has occurred to DK′ :

(a) add Ti 6∈ DK′ to DK′ , if of L-form, Ti 6→∅ and ∀Tj ∈V : if Ti→ Tj, then Tj ∈ DK′ .

(b) add Ti 6∈ DK′ to DK′ , if of M-form and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ DK′ .

(c) add Ti 6∈ DK′ to DK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ DK′ ∨Tr ∈ DK′ .

3. Let X :=V − (DK′ ∪ZK′).

4. Initialize SK′ := {Ti ∈ X | either i ∈ K′, or Ti is of L-form and Ti → ∅∨ Ti → Tj, Tj ∈
ZK′}∪

⋃
/0⊂K′′⊂K′(X ∩SK′′).

5. Repeat until no change has occurred to SK′ :

(a) add Ti ∈ X−SK′ to SK′ , if of L-form and Ti→ Tj, Tj ∈ SK′ ∪ZK′ .

(b) add Ti ∈ X−SK′ to SK′ , if of M-form and ∀a ∈ Γi : Ti
a−→ Tj, Tj ∈ SK′ ∪ZK′ .

(c) add Ti ∈ X−SK′ to SK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ SK′ ∪ZK′ ∧ Tr ∈ SK′ ∪ZK′ .

6. C ←MEC decomposition of G[X−SK′ ].

7. For every q ∈ K′, let Hq := {Ti ∈ X − SK′ | Ti is of Q-form (Ti
1−→ Tj Tr) and ((Tj ∈ X −

SK′ ∧Tr ∈ Z̄{q})∨ (Tj ∈ Z̄{q}∧Tr ∈ X−SK′))}.

8. Let FK′ :=
⋃
{C ∈ C | PC = K′ ∨ (PC 6= /0∧PC 6= K′ ∧∃Ti ∈ C,∃a ∈ Γi : Ti

a−→ Tj, Tj ∈
FK′−PC)}, where PC = {q ∈ K′ |C∩Hq 6= /0}.

9. Repeat until no change has occurred to FK′ :

(a) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of L-form and Ti→ Tj, Tj ∈ FK′ ∪DK′ .

(b) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of M-form and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ .

(c) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ FK′ ∨Tr ∈ FK′ .

10. If X 6= SK′ ∪FK′ , let SK′ := X−FK′ and go to step 5.

11. Else, i.e., if X = SK′ ∪FK′ , let FK′ := FK′ ∪DK′ .

III. Output FK .
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from [ESY18, Theorem 9.3] to each target non-terminal Tq, q ∈ K. Recall that it was

shown in [ESY18, Theorem 9.4] that for (O)BMDPs with a single target the almost-

sure and limit-sure reachability problems coincide. So in fact, for every q ∈ K, there

exists a strategy τq such that for every Tj ∈ ASq : Prτq
Tj
[Reach(Tq)] = 1.

After this preprocessing step, we apply Algorithm 4.2 to identify the non-terminals

Ti for which Pr∗Ti
[
⋂

q∈K Reach(Tq)] = 1. Again let K′−i denote the set K′−{i}. Also, to

recall what notation Ti→ Tj or Ti→∅ means, refer to the paragraph before Definition

12. And for the definition of MEC and MEC-decomposition, refer to Definition 13,

where recall that in our setting the partition of the dependency graph nodes, U = V ,

that we use is UP := {Ti ∈U | Ti is of L-form} and U1 := {Ti ∈U | Ti is of M-form or

Q-form}.

Theorem 4.3. Algorithm 4.2 computes, given an OBMDP, A , and a set K ⊆ [n] of k =

|K| target non-terminals, for each subset K′ ⊆ K, the set of non-terminals FK′ := {Ti ∈
V | Pr∗Ti

[
⋂

q∈K′ Reach(Tq)] = 1}. The algorithm runs in time 4k · |A |O(1). Moreover,

for each K′ ⊆ K, given ε > 0, the algorithm can also be augmented to compute a

randomized non-static strategy σε

K′ such that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)] ≥ 1− ε for all

non-terminals Ti ∈ FK′ .

Proof. We will refer to the loop executing steps II.5. through II.10. for a specific subset

K′ ⊆ K as the “inner” loop and the iteration through all subsets of K as the “outer”

loop. Clearly the inner loop terminates, due to step II.10. always adding at least one

non-terminal to set SK′ and step II.11. eventually executing. The running time of the

algorithm follows from the facts that the outer loop executes for 2k iterations and inside

each iteration of the outer loop, steps II.1. and II.4. require time at most 2k · |A |O(1)

and the inner loop executes for at most |V | iterations, where during each inner loop

iteration the steps in it execute in time at most |A |O(1).

For the proof of correctness, we show that for every subset of target non-terminals

K′ ⊆ K, FK′ (from the decomposition V = FK′ ∪ SK′ ∪ZK′) is the set of non-terminals

Ti for which the following property holds:

(A)i
K′: supσ∈Ψ Prσ

Ti
[
⋂

q∈K′ Reach(Tq)] = Pr∗Ti
[
⋂

q∈K′ Reach(Tq)] = 1, i.e.,

∀ε > 0, ∃σε

K′ ∈Ψ such that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε.

Otherwise, if Ti ∈ SK′ , then we show that the following property holds:

(B)i
K′: supσ∈Ψ Prσ

Ti
[
⋂

q∈K′ Reach(Tq)]< 1, i.e., there exists a value g > 0 such that

∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]≤ 1−g.
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Clearly, for non-terminals Ti ∈ ZK′ , property (B)i
K′ is satisfied, since it holds that

supσ∈Ψ Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0 < 1 (by Proposition 4.2). Finally, the answer for

the full set of targets is F := FK .

We base this proof on an induction on the size of subset K′, i.e., on the time of

computing sets SK′ and FK′ for K′ ⊆ K. And in the process, for each subset K′ ⊆ K of

target non-terminals, we show how to construct a randomized non-static strategy σε

K′

(for any given ε> 0) that ensures Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ 1−ε for each non-terminal

Ti ∈ FK′ .

Clearly for any subset of target non-terminals, K′ := {q} ⊆ K, of size l = 1, each

non-terminal Ti ∈ F{q} (respectively, Ti ∈ V −F{q}) satisfies property (A)i
{q} (respec-

tively, (B)i
{q}), due to step I. and the definition of the ASq,q ∈ K sets. Furthermore,

for each such subset {q} ⊆ K, there is in fact a strategy σ{q} such that ∀Ti ∈ F{q} :

Pr
σ{q}
Ti

[Reach(Tq)] = 1. Moreover, by [ESY18, Theorem 9.4], this strategy σ{q} is non-

static and deterministic. Analysing subset K′ of target non-terminals of size l as part

of step II., assume that, for every K′′ ⊂ K′ of size ≤ l− 1, sets SK′′ and FK′′ have al-

ready been computed, and for each non-terminal Tj belonging to set FK′′ (respectively,

set SK′′) property (A) j
K′′ (respectively, (B) j

K′′) holds. That is, by induction assumption,

for each K′′ ⊂ K′, for every ε > 0 there is a randomized non-static strategy σε

K′′ such

that for any Tj ∈ FK′′: Pr
σε

K′′
Tj

[
⋂

q∈K′′ Reach(Tq)] ≥ 1− ε, and also for any Tj ∈ SK′′:

supσ∈Ψ Prσ
Tj
[
⋂

q∈K′′ Reach(Tq)]< 1. We now need to show that at end of the inner loop

analysis of subset K′, property (A)i
K′ (respectively, (B)i

K′) holds for every non-terminal

Ti ∈ FK′ (respectively, Ti ∈ SK′).

First we show that property (A)i
K′ holds for each non-terminal Ti belonging to set

DK′ (⊆ FK′), precomputed prior to the execution of the inner loop for K′.

Lemma 4.4. Every non-terminal Ti ∈ DK′ satisfies property (A)i
K′ .

Proof. The lemma is proved via a nested induction based on the time when a non-

terminal is added to set DK′ . Consider the base case where Ti ∈ DK′ is a non-terminal,

added at the initialization step II.1.

(i) Suppose Ti is of L-form where i ∈ K′ and for all associated rules a child is gen-

erated that is of a non-terminal Tj ∈ FK′−i
, where property (A) j

K′−i
holds. Then,

for every ε > 0, using the witness strategy σε

K′−i
from the induction assumption

for all such non-terminals Tj in the next generation, as if the play starts in it, we
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obtain a strategy σε

K′ for a starting (target) non-terminal Ti such that:

Pr
σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
]
= Pr

σε

K′
Ti

[ ⋂
q∈K′−i

Reach(Tq)
∣∣∣ Reach(Ti)

]
·Pr

σε

K′
Ti

[
Reach(Ti)

]
=Pr

σε

K′
Ti

[ ⋂
q∈K′−i

Reach(Tq)
]
= ∑

j
pi, j ·Pr

σε

K′
Ti(u,Tj)

[ ⋂
q∈K′−i

Reach(Tq)
]

=∑
j

pi, j ·Pr
σε

K′−i
Tj

[ ⋂
q∈K′−i

Reach(Tq)
]
≥∑

j
pi, j · (1− ε) = 1− ε

where pi, j > 0 is the probability of rule Ti
pi, j−−→ Tj.

(ii) Suppose Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γi such that Ti
a∗−→ Tj, Tj ∈ FK′−i

,

where property (A) j
K′−i

holds. Let h := Ti(u,Tj). By combining the witness strate-

gies σε

K′−i
, for every ε > 0, from property (A) j

K′−i
from the induction assump-

tion for non-terminal Tj, as if the play starts in it, with the initial local choice

of choosing action a∗ deterministically starting at a non-terminal Ti, we obtain

for every ε > 0 a combined strategy σε

K′ such that starting at a (target) non-

terminal Ti, it follows that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)] = Pr
σε

K′
h [

⋂
q∈K′−i

Reach(Tq)] =

Pr
σε

K′−i
Tj

[
⋂

q∈K′−i
Reach(Tq)]≥ 1− ε.

(iii) Suppose Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and there exists a split of the

rest of the target non-terminals, implied by KL ⊆ K′−i and K′−i−KL, such that

Tj ∈ FKL ∧Tr ∈ FK′−i−KL . Let hl := Ti(l,Tj) and hr := Ti(r,Tr). For every ε > 0,

if we let ε′ := 1−
√

1− ε, then by combining the two witness strategies σε′
KL

and

σε′

K′−i−KL
from the induction assumption for non-terminals Tj and Tr, respectively,

to be used in the next generation as if the play starts in it, we obtain a strategy

σε

K′ for a starting (target) non-terminal Ti such that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)] =

Pr
σε

K′
Ti

[
⋂

q∈K′−i
Reach(Tq)]≥Pr

σε

K′
hl

[
⋂

q∈KL
Reach(Tq)]·Pr

σε

K′
hr

[
⋂

q∈K′−i−KL
Reach(Tq)]

= Pr
σε′

KL
Tj

[
⋂

q∈KL
Reach(Tq)] · Pr

σε′
K′−i−KL

Tr
[
⋂

q∈K′−i−KL
Reach(Tq)] ≥ (1 − ε′)2

= (
√

1− ε)2 = 1− ε.

(iv) Suppose Ti is of Q-form (Ti
1−→ Tj Tr) where there exists a proper split of the tar-

get non-terminals from set K′, implied by KL ⊂ K′ (where KL 6= /0) and K′−KL,

such that Tj ∈ FKL ∧Tr ∈ FK′−KL . Similarly, for every ε > 0, let ε′ := 1−
√

1− ε

and combine the two witness strategies σε′
KL

and σε′
K′−KL

from the induction as-

sumption for non-terminals Tj and Tr in the same way as in (iii). It follows that

property (A)i
K′ is satisfied.
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Now consider non-terminals Ti added to set DK′ at step II.2. If Ti is of L-form, then

all associated rules generate children of non-terminals Tj already in set DK′ , where

(A) j
K′ holds by the (nested) induction. So using, for every ε > 0, the strategy σε

K′ from

the nested induction assumption for all such non-terminal Tj in the next generation, as

if the play starts in it, and applying the same argument as in (i), then property (A)i
K′ is

also satisfied.

If Ti is of M-form, then ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ DK′ . Again let h := Ti(u,Tj).

By combining, for every ε > 0, the witness strategy σε

K′ for non-terminal Tj (from the

nested induction assumption), as if the play starts in it, with the initial local choice of

choosing action a∗ deterministically starting at a non-terminal Ti, we obtain an aug-

mented strategy σε

K′ for a starting non-terminal Ti such that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)] =

Pr
σε

K′
h [

⋂
q∈K′ Reach(Tq)] = Pr

σε

K′
Tj

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε.

If Ti is of Q-form (Ti
1−→ Tj Tr), then Tj ∈ DK′ ∨ Tr ∈ DK′ , i.e., for every ε > 0,

∃σε

K′ ∈ Ψ such that Pr
σε

K′
Ty

[
⋂

q∈K′ Reach(Tq)] ≥ 1− ε⇔ Pr
σε

K′
Ty

[
⋃

q∈K′ Reach{(Tq)] ≤ ε,

where y∈{ j,r}. Let hy := Ti(x,Ty) and hȳ := Ti(x̄,Tȳ), where ȳ∈{ j,r}−{y}, x∈{l,r}
and x̄ ∈ {l,r}−{x}. By augmenting strategy σε

K′ to be used from the next generation

from the child of non-terminal Ty, as if the play starts in it, and using an arbitrary

strategy from the child of non-terminal Tȳ, it follows that Pr
σε

K′
Ti

[
⋃

q∈K′ Reach{(Tq)] ≤

Pr
σε

K′
hy

[
⋃

q∈K′ Reach{(Tq)] ·Pr
σε

K′
hȳ

[
⋃

q∈K′ Reach{(Tq)] ≤ Pr
σε

K′
Ty

[
⋃

q∈K′ Reach{(Tq)] ≤ ε⇔

Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε, i.e., property (A)i
K′ holds.

Next, we show that if Ti ∈ SK′ , then property (B)i
K′ is satisfied.

Lemma 4.5. Every non-terminal Ti ∈ SK′ satisfies property (B)i
K′ .

Proof. Again this is proved via a nested induction based on the time a non-terminal

is added to set SK′ . Assuming that all non-terminals Tj, added already to set SK′ in

previous steps and iterations of the inner loop, satisfy (B) j
K′ , then we need to show that

for a new addition Ti to set SK′ , property (B)i
K′ also holds.

Consider the non-terminals Ti added to set SK′ at the initialization step II.4.

If Ti is of L-form where Ti→ ∅∨Ti→ Tj, Tj ∈ ZK′ , then with a constant positive

probability non-terminal Ti immediately either does not generate any offspring at all

or generates a child of non-terminal Tj ∈ ZK′ , for which we already know that (B) j
K′

holds. It is clear that property (B)i
K′ is also satisfied.

If, for some subset K′′ ⊂ K′, Ti ∈ SK′′ , i.e., property (B)i
K′′ holds, then there is a

value g> 0 such that ∀σ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]≤Prσ
Ti
[
⋂

q∈K′′ Reach(Tq)]≤ 1−g
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and so property (B)i
K′ is also satisfied. Note that if, for some subset K′′ ⊂ K′, Ti ∈ ZK′′ ,

then similarly Ti ∈ ZK′ and so already Ti 6∈ X .

If Ti is a target non-terminal in set K′ (i.e., i ∈ K′), then since it has not been

added to set DK′ in step II.1: (1) if of L-form, it generates with a constant positive

probability a child of non-terminal Tj ∈ SK′−i
∪ZK′−i

, where (B) j
K′−i

holds; (2) if of M-

form, irrespective of the strategy it generates a child of non-terminal Tj ∈ SK′−i
∪ZK′−i

,

where again (B) j
K′−i

holds; (3) and if of Q-form, it generates two children of non-

terminals Tj,Tr, for which no matter how we split the rest of the target non-terminals

from set K′−i (into subsets KL ⊆ K′−i and K′−i−KL), either (B) j
KL

holds or (B)r
K′−i−KL

holds. In other words, for a target non-terminal Ti in the initial set SK′ there is no

sequence of strategies to ensure that the rest of the target non-terminals are reached

with probability arbitrarily close to 1 (the reasoning behind this last statement is the

same as the arguments in (i) - (iii) below, since for a starting (target) non-terminal Ti:

∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = Prσ
Ti
[
⋂

q∈K′−i
Reach(Tq)]).

Observe that by the end of step II.4. all target non-terminals Tq (q ∈ K′) belong

either to set DK′ or set SK′ . Now consider a non-terminal Ti added to set SK′ in step

II.5. during some iteration of the inner loop.

(i) Suppose Ti is of L-form. Then Ti → Tj, Tj ∈ SK′ ∪ZK′ , where (B) j
K′ holds. So

irrespective of the strategy there is a constant positive probability to generate a

child of the above non-terminal Tj such that Pr∗Tj
[
⋂

q∈K′ Reach(Tq)] < 1, or in

other words, ∃g > 0 such that ∀σ ∈Ψ : Prσ
Tj
[
⋂

q∈K′ Reach(Tq)]≤ 1−g. Let h :=

Ti(u,Tj). But there is a value g > 0 such that ∀σ∈Ψ : Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)]≥
pi, j · Prσ

h [
⋃

q∈K′ Reach{(Tq)] ≥ pi, j · g if and only if ∀σ ∈ Ψ : Prσ
Tj
[
⋃

q∈K′

Reach{(Tq)] ≥ g, where pi, j > 0 is the probability of the rule Ti
pi, j−−→ Tj. And

since the latter part of the statement holds, then the former, showing property

(B)i
K′ , also holds.

(ii) Suppose Ti is of M-form. Then ∀a ∈ Γi : Ti
a−→ Tj, Tj ∈ SK′ ∪ZK′ . So irrelevant

of strategy σ, starting in a non-terminal Ti the next generation surely consists

of some non-terminal Tj satisfying property supσ∈Ψ Prσ
Tj
[
⋂

q∈K′ Reach(Tq)] < 1,

i.e., ∀σ ∈ Ψ : Prσ
Tj
[
⋂

q∈K′ Reach(Tq)] ≤ 1− g, for some value g > 0. Clearly,

for some value g > 0, ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] ≤ max{Tj∈SK′∪ZK′ |Ti→Tj}

Prσ

Ti(u,Tj)
[
⋂

q∈K′ Reach(Tq)] ≤ 1−g (i.e., property (B)i
K′) if and only if ∀σ ∈Ψ :

max{Tj∈SK′∪ZK′ |Ti→Tj}Prσ
Tj
[
⋂

q∈K′ Reach(Tq)]≤ 1−g, where the latter is satisfied.
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(iii) Suppose Ti is of Q-form (i.e., Ti
1−→ Tj Tr), then Tj,Tr ∈ SK′ ∪ZK′ , i.e., both (B) j

K′

and (B)r
K′ are satisfied. We know that:

1) Neither of the two children can single-handedly reach all target non-terminals

from set K′ with probability arbitrarily close to 1. That is, for some value

g> 0, ∀σ∈Ψ: Prσ
Tj
[
⋂

q∈K′ Reach(Tq)]≤ 1−g and Prσ
Tr
[
⋂

q∈K′ Reach(Tq)]≤
1−g.

2) Moreover, since Ti was not added to set DK′ in step II.1., then ∀KL ⊂ K′

(where KL 6= /0) either (B) j
KL

holds (i.e., Tj 6∈ FKL) or (B)r
K′−KL

holds (i.e.,

Tr 6∈ FK′−KL), i.e., there is some value g > 0 such that either ∀σ ∈ Ψ :

Prσ
Tj
[
⋂

q∈KL
Reach(Tq)] ≤ 1− g or ∀σ ∈ Ψ : Prσ

Tr
[
⋂

q∈K′−KL
Reach(Tq)] ≤

1−g.

(Statements 1) and 2) hold for the same value g > 0, since there are only

finitely many subsets of K′, so we can take g to be the minimum of all such

values from all the properties (B) j/r
K′′ (K′′ ⊆ K′).)

Let hl := Ti(l,Tj) and hr := Ti(r,Tr). Notice that for any strategy σ ∈Ψ and for

any q′ ∈ K′, Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)] ≥ Prσ
Ti
[Reach{(Tq′)] = Prσ

hl
[Reach{(Tq′)] ·

Prσ

hr
[Reach{(Tq′)].

We claim that there is a value gi > 0 such that ∀σ∈Ψ :
∨

q∈K′ Prσ
Tj
[Reach{(Tq)] ·

Prσ
Tr
[Reach{(Tq)] ≥ gi. But for any q ∈ K′ and for any σ ∈ Ψ one can ob-

viously construct σ′ ∈ Ψ such that Prσ
Tj
[Reach{(Tq)] = Prσ′

hl
[Reach{(Tq)] and

similarly for non-terminal Tr. Therefore, it follows from the claim that ∀σ ∈
Ψ :

∨
q∈K′ Prσ

hl
[Reach{(Tq)] ·Prσ

hr
[Reach{(Tq)]≥ gi and, therefore, it follows that

∀σ ∈Ψ : Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)]≥ gi⇔ Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]≤ 1−gi.

Suppose the opposite, i.e., assume (P ) that ∀g′ > 0, ∃σg′ ∈ Ψ such that∧
q∈K′ Pr

σg′
Tj

[Reach{(Tq)] ·Pr
σg′
Tr

[Reach{(Tq)]< g′. Now for any q ∈ K′, by state-

ment 2) above, we know that Tj 6∈ F{q} ∨ Tr 6∈ FK′−q
and Tj 6∈ FK′−q

∨ Tr 6∈ F{q}.

First, suppose that in fact for some q′ ∈K′ it is the case that Tj 6∈ F{q′}∧Tr 6∈ F{q′}
(i.e., Tj ∈ S{q′} ∪ Z{q′} ∧ Tr ∈ S{q′} ∪ Z{q′}). That is, for some value g > 0,

∀σ ∈ Ψ : Prσ
Tj
[Reach{(Tq′)] ≥ g and Prσ

Tr
[Reach{(Tq′)] ≥ g, where our claim

follows directly by letting gi := g2 (hence, contradiction to (P )). Second, sup-

pose that for some q′ ∈ K′ it is the case that Tj 6∈ FK′−q′
∧ Tr 6∈ FK′−q′

(i.e., Tj ∈
SK′−q′

∪ ZK′−q′
∧ Tr ∈ SK′−q′

∪ ZK′−q′
). But then Ti would have been added to set

SK′−q′
at step II.5.(c) when constructing the answer for subset of targets K′−q′ .
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However, we already know that Ti ∈
⋂

K′′⊂K′ FK′′ (following from steps II.3. and

II.4. that Ti 6∈
⋃

K′′⊂K′(SK′′ ∪ZK′′)). Hence, again a contradiction.

Therefore, it follows that for every q ∈ K′, either Tj 6∈ F{q} ∧Tj 6∈ FK′−q
or Tr 6∈

F{q} ∧ Tr 6∈ FK′−q
. And in particular, the essential part is that ∀q ∈ K′, either

Tj 6∈ F{q} or Tr 6∈ F{q}. That is, for every q ∈ K′, for some value g > 0 either

∀σ ∈ Ψ : Prσ
Tj
[Reach{(Tq)] ≥ g, or ∀σ ∈ Ψ : Prσ

Tr
[Reach{(Tq)] ≥ g. But then,

combined with assumption (P ), it actually follows that there exists a subset

K′′ ⊆ K′ such that ∀ε > 0, ∃σε ∈ Ψ such that
∧

q∈K′′ Prσε

Tr
[Reach{(Tq)] ≤ ε ∧∧

q∈K′−K′′ Prσε

Tj
[Reach{(Tq)]≤ ε. And by Proposition 2.2(5.), it follows that ∀ε >

0, ∃σ′ε ∈ Ψ : Prσ′ε
Tr
[
⋂

q∈K′′ Reach(Tq)] ≥ 1− ε ∧ Prσ′ε
Tj
[
⋂

q∈K′−K′′ Reach(Tq)] ≥
1−ε, i.e., Tj ∈FK′−K′′∧Tr ∈FK′′ , contradicting the known facts 1) and 2). Hence,

assumption (P ) is wrong and our claim is satisfied.

Now consider non-terminals Ti added to set SK′ in step II.10. at some iteration of

the inner loop, i.e., Ti ∈ YK′ := X − (SK′ ∪FK′) ⊆ Z̄K′ . Due to the fact that Ti has not

been added previously to sets DK′ , SK′ or FK′ , then all of the following hold:

(1.) i 6∈ K′;

(2.) if Ti is of L-form, then a non-terminal Ti generates with probability 1 a non-

terminal which belongs to set YK′ (otherwise Ti would have been added to sets

SK′ or FK′ in step II.4., II.5. or step II.9., respectively);

(3.) if Ti is of M-form, then ∀a ∈ Γi : Ti
a−→ Td, Td 6∈ FK′ ∪DK′ (otherwise Ti would

have been added to sets FK′ or DK′ in step II.2. or step II.9., respectively), and

∃′a ∈ Γi : Ti
a′−→ Tj, Tj 6∈ SK′ ∪ZK′ , i.e., Tj ∈ YK′ (otherwise Ti would have been

added to set SK′ in step II.5.); and

(4.) if Ti is of Q-form (Ti
1−→ Tj Tr), then w.l.o.g. Tj ∈ YK′ and Tr ∈ YK′ ∪ SK′ ∪ ZK′

(since Ti has not been added to the other sets in steps II.2., II.5., or II.9.).

Observe that any MEC in subgraph G[X − SK′ ], that contains a node from set YK′ ,

is in fact entirely contained in subgraph G[YK′], and also that there is at least one MEC

in G[YK′]. This is due to statements (2.) - (4.) and the two key facts that all nodes in

G[YK′] have at least one outgoing edge and there is only a finite number of nodes.

However, consider any MEC, C, in G[YK′] (YK′ ⊆X−SK′). As C has not been added

to set FK′ at step II.8., then PC 6= K′ (where PC = {q ∈ K′ |C∩Hq 6= /0}) and:
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• either PC = /0,

• or PC 6= /0 and for every Tu ∈C of M-form it holds that ∀b ∈ Γu : Tu
b−→ Tv, Tv 6∈

FK′−PC .

First, let us focus on the second point. Note that for any non-terminal Tj ∈ C,

clearly Tj ∈ FPC , and in fact, ∃σPC ∈Ψ : Pr
σPC
Tj

[
⋂

q∈PC
Reach(Tq)] = 1. That is because,

starting at a non-terminal Tj ∈C, due to C being a MEC in G[YK′], such a strategy σPC

can ensure that, for each q ∈ PC, infinitely often a copy of a Q-form non-terminal in set

Hq∩C is generated, which in turn spawns an independent copy of some non-terminal

in set Z̄{q} and thus infinitely often provides a positive probability bounded away from

zero (by Proposition 4.2) to reach target non-terminal Tq.

(*) We claim that for any Q-form non-terminal Ti ∈C (i.e., Ti
1−→ Tj Tr where w.l.o.g.

Tj ∈C⊆YK′), it is guaranteed that Tr 6∈ FK′−PC . To see this, if it was the case that

Tr ∈ FK′−PC , then, since Tj ∈ FPC , it would follow that Ti would have been added

to set DK′ in step II.1., leading to a contradiction.

(**) What is more, due to the definition of set PC, it follows that for any Q-form non-

terminal Ti ∈C (i.e., Ti
1−→ Tj Tr where w.l.o.g. Tj ∈C), Tr ∈

⋂
q′∈K′−PC

Z{q′}, i.e.,

supσ∈Ψ Prσ
Tr
[Reach(Tq′)] = 0, for each q′ ∈ K′−PC. Note also that Tr 6∈C, since

C ⊆ YK′ ⊆ Z̄K′ ⊆ Z̄{q}, ∀q ∈ K′ (so if Tr ∈ C, then PC = K′ and C would have

been added to set FK′ in step II.8.).

Note that property (**) implies property (*), because by the definition of the F

and Z sets, if Tr ∈
⋂

q′∈K′−PC
Z{q′}, then surely Tr 6∈ FK′−PC .

(***) Furthermore, as stated in the second bullet point above, for every non-terminal

Tu ∈C of M-form and ∀b ∈ Γu : Tu
b−→ Tv, Tv 6∈ FK′−PC .

And as we know, for every Tv ∈ SK′−PC ∪ZK′−PC , property (B)v
K′−PC

holds. In other

words, there exists a value g > 0 such that regardless of strategy σ, for any Tv 6∈ FK′−PC ,

Prσ
Tv
[
⋂

q∈K′−PC
Reach(Tq)]≤ 1−g.

Now let σ be an arbitrary strategy fixed for the player. Denote by w the path (in the

play), where w begins at a starting non-terminal Ti ∈ C and evolves in the following

way. If the current copy o on the path w is of a L-form or a M-form non-terminal Tj ∈C,

then w follows along the unique successor of o in the play. And if the current copy o

on path w is of a Q-form non-terminal Tj ∈C (Tj
1−→ Tj′ Tr where w.l.o.g. Tj′ ∈C), then

w follows along the child of non-terminal Tj′ . If the current copy o on path w is of a

non-terminal not belonging in C, then the path w terminates. Denote by �C the event
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that path w is infinite, i.e., all non-terminals observed along path w are in C and path w

never leaves C and never terminates. Then for any starting non-terminal Ti ∈C:

Prσ
Ti

[ ⋂
q∈K′

Reach(Tq)
]
= Prσ

Ti

[( ⋂
q∈PC

Reach(Tq)
)
∩
( ⋂

q∈K′−PC

Reach(Tq)
)]

≤ Prσ
Ti

[ ⋂
q∈K′−PC

Reach(Tq)
]
= Prσ

Ti

[( ⋂
q∈K′−PC

Reach(Tq)
)
∩�C

]
+

Prσ
Ti

[( ⋂
q∈K′−PC

Reach(Tq)
)
∩¬�C

]
= Prσ

Ti

[( ⋂
q∈K′−PC

Reach(Tq)
)
∩¬�C

]
≤ max

Tv 6∈FK′−PC

sup
τ∈Ψ

Prτ
Tv

[ ⋂
q∈K′−PC

Reach(Tq)
]
≤ 1−g

The event of reaching all target non-terminals from set K′−PC can be split into the

event of reaching all targets non-terminals from set K′−PC and path w being infinite

union with the event of reaching all targets non-terminals from set K′−PC and path

w being finite. Moreover, Prσ
Ti
[(
⋂

q∈K′−PC
Reach(Tq))∩�C] = 0, due to statements

(1.) and (**). The second to last inequality follows: because of statements (1.) and

(**) there is zero probability from any non-terminal along path w to reach the targets

from set K′− PC before event ¬�C occurs; and also due to statement (***), once

event ¬�C occurs and path w leaves MEC, C, it terminates immediately in some non-

terminal Tv 6∈C which also satisfies that Tv 6∈ FK′−PC . And the last inequality follows

from property (B)v
K′−PC

for any such non-terminal Tv 6∈ FK′−PC .

And since σ was an arbitrary strategy for the player, then it follows that for any

such MEC, C, in G[YK′] (where PC 6= /0) and for any Ti ∈C: Pr∗Ti
[
⋂

q∈K′ Reach(Tq)]< 1,

i.e., property (B)i
K′ holds.

Analysing MECs, C, where PC = /0, the argument is similar. Property (**) holds

by definition of set PC. And by property (3.), for every M-form non-terminal Tu ∈ C

and for every b ∈ Γu : Tu
b−→ Tu′ , Tu′ ∈ (YK′ ∪ SK′ ∪ ZK′). Then because of properties

(1.), (3.) and (**), it follows that for any Ti ∈ C, ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] ≤
maxTu′∈(YK′∪SK′∪ZK′)

Prσ
Tu′
[
⋂

q∈K′ Reach(Tq)].

For non-terminals Tu′ in sets SK′ and ZK′ , we already know by induction that prop-

erty (B)u′
K′ is satisfied. Moreover, from standard algorithms for MEC-decomposition,

one can see that there is an ordering of the MECs in G[YK′] where the bottom level

(level 0) consists of MECs, C′′, that in the induced subgraph G[YK′] have no out-going

edges from the MEC at all and for which PC′′ 6= K′, and for further “levels” of MECs

in the ordering the following is true: MECs or nodes that do not belong to any MEC,

at level t ≥ 1, have directed paths out of them leading to MECs (or nodes not in any
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MEC) at levels < t. If we rank the MECs and the independent nodes (not belonging

to any MEC) in G[YK′], using this ordering, and use an inductive argument, it can be

shown that, in the case when the above mentioned non-terminal Tu′ belongs to YK′ and

MEC, C, has rank t ≥ 1 in the ordering, then Tu′ belongs to a lower rank < t, and thus

by the inductive argument, has been shown to have property (B)u′
K′ .

Therefore, for any non-terminal Ti in any MEC, C, in G[YK′], (B)i
K′ holds. And also

by the inductive argument above for the ordering of nodes in G[YK′], same holds for

any non-terminal Ti ∈ YK′ not belonging to a MEC.

Now we show that for non-terminals Ti ∈FK′ , when the inner loop for subset K′⊆K

terminates, the property (A)i
K′ is satisfied. That is:

∀ε > 0, ∃σε

K′ ∈Ψ : Pr
σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
]
≥ 1− ε

We will also show how to construct such a strategy σε

K′ , for a given ε > 0. Since we

have already proved it for non-terminals in set DK′ , in the following Lemma we refer

to the part of set FK′ not containing set DK′ , i.e., to set FK′ = X−SK′ .

Lemma 4.6. Every non-terminal Ti ∈ FK′ satisfies property (A)i
K′ .

Proof. Denote by F0
K′ the initialized set of non-terminals from step II.8. Let us first

observe the properties for non-terminals Ti ∈ FK′ = X −SK′ . None of them is a target

non-terminal from set K′, i.e., i 6∈ K′. If Ti is of L-form, then:

(L.0) if Ti belongs to a MEC, C ⊆ F0
K′ , then a non-terminal Ti generates with prob-

ability 1 as offspring some non-terminal either in set C or in set DK′ (since

L-form non-terminals in X −SK′ do not have associated probabilistic rules to

non-terminals in SK′ ∪ZK′).

(L) otherwise, a non-terminal Ti generates with probability 1 as offspring some

non-terminal either in set FK′ or in set DK′ .

If Ti is of M-form, then ∀a ∈ Γi : Ti
a−→ Td, Td 6∈ DK′ and:

(M.0) if Ti belongs to a MEC, C ⊆ F0
K′ , then ∃a∗ ∈ Γi : Ti

a∗−→ Tj, Tj ∈C.

(M) otherwise, ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ .

If Ti is of Q-form (i.e., Ti
1−→ Tj Tr), then Tj,Tr 6∈ DK′ . Moreover, if Q-form Ti belongs

to a MEC, C ⊆ F0
K′ , then:
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(Q.0) either, w.l.o.g., Tj ∈C and there exists some q ∈ K′ such that Tr ∈ Z̄{q},

(Q.1) or, w.l.o.g., Tj ∈C and there is no q ∈ K′ such that Tr ∈ Z̄{q}.

Otherwise, if Q-form Ti does not belong to a MEC, C ⊆ F0
K′ (i.e., Ti 6∈ F0

K′), then:

(Q) w.l.o.g., Tj ∈ FK′ .

(P) Let us recall that for every q ∈ K′, there is a deterministic static strategy σ′{q}
for the player and a value b{q} > 0 such that, for each non-terminal Tr ∈ Z̄{q},

Pr
σ′{q}
Tr

[Reach(Tq)]≥ b{q}. Let b := minq∈K′{b{q}}> 0.

Given ε > 0, let ε′ := (1−
√

1− ε)/k (where k = |K|) and let us prove the Lemma

and construct the randomized non-static strategy σε

K′ inductively.

Consider the non-terminals added to set FK′ at the initialization step II.8. during

the last iteration of the inner loop. And, in particular, consider every MEC, C, added

at step II.8. There is one of two reasons for why C was added to set F0
K′ .

For the first reason, suppose that 1≤ |PC|< l = |K′| and that there is a non-terminal

Tu ∈C of M-form where ∃b ∈ Γu : Tu
b−→ Tu′, Tu′ ∈ FK′−PC .

Consider any finite ancestor history h of height t (meaning the length of the se-

quence of ancestors that the history represents is t) such that h starts at a non-terminal

Tv ∈C and all non-terminals in h belong to the MEC, C. Let o denote the non-terminal

copy at the end of the ancestor history h.

If o is a copy of the non-terminal Tu ∈ C (from above), let strategy σε

K′ choose

uniformly at random among actions from statement (M.0) if it is not the case that, for

each q ∈ PC, at least d := dlog(1− b
k )

ε′e copies of the Q-form non-terminals Tj ∈C∩Hq

have been encountered along the ancestor history h. Otherwise, σε

K′ chooses deter-

ministically action b, and therefore generates immediately a child o′′ of non-terminal

Tu′ (from above). In the entire subtree (subplay), rooted at o′′, strategy τ is employed

as if the play starts in o′′, where Prτ
Tu′
[
⋂

q′∈K′−PC
Reach(Tq′)] ≥

√
1− ε (exist by the

induction assumption due to Tu′ ∈ FK′−PC).

If o is of another M-form non-terminal Ti ∈C, let σε

K′ choose uniformly at random

among actions from statement (M.0) and so in the next generation the single generated

successor o′ is of a non-terminal Tj ∈C, where we proceed to use strategy σε

K′ (that is

being described).

If o is of a non-terminal Ti ∈C of L-form, from statement (L.0) we know that in the

next generation the single generated successor o′ is of some non-terminal Tj ∈C∪DK′ .
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If Tj ∈ DK′ , then we use at o′ and its subtree of descendants the randomized non-static

strategy from property (A) j
K′ , that guarantees probability≥ 1−ε of reaching all targets

in set K′, as if the play starts in o′. If Tj ∈ C, then we proceed by using the same

strategy σε

K′ (that is currently being described) at o′.

And if o is of a non-terminal Ti ∈C of Q-form (Ti
1−→ Tj Tr), there are two cases for

the two successor children o′ (of non-terminal Tj) and o′′ (of non-terminal Tr):

• either property (Q.0) is satisfied, i.e., Tj ∈ C and Tr ∈ Z̄{q}, for some q ∈ K′.

Then, in the next generation, we continue using the same strategy σε

K′ (that is

currently being described) at o′ and for the entire subtree of play, rooted at o′′,

strategy σε

K′ chooses uniformly at random a target non-terminal Tq,q ∈ K′, such

that Tr ∈ Z̄{q}, and employs the strategy σ′{q} from statement (P) as if the play

starts at o′′. Note that Pr
σε

K′
h(r,Tr)

[Reach(Tq)] ≥ b
|PC| ≥

b
k > 0, where h(r,Tr) refers

to the ancestor history for the right child o′′ and where |PC|< l = |K′| ≤ k = |K|.

• or property (Q.1) is satisfied. Then, in the next generation, we continue using

strategy σε

K′ for o′, whereas for o′′ the strategy is irrelevant and an arbitrary one

is chosen for o′′ and thereafter in o′′’s tree of descendants.

That concludes the description of the randomized non-static strategy σε

K′ for non-

terminals in MEC, C. Now we need to show that, indeed, that for any Ti ∈ C :

Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε.

Denote by w the path (in the play) that begins at a starting non-terminal Ti ∈ C

and is defined as follows. If the current copy o on the path w is of a L-form or a M-

form non-terminal Tj ∈C, then w follows along the unique successor of o in the play.

And if the current copy o on path w is of a Q-form non-terminal Tj ∈ C (Tj
1−→ Tj′ Tr

where w.l.o.g. Tj′ ∈ C), then w follows along the child of non-terminal Tj′ . If the

current copy o on path w is: either of a non-terminal not belonging in C; or of the

non-terminal Tu′ ∈ FK′−PC (from above) and, for each q∈ PC, at least d copies of the Q-

form non-terminals in set C∩Hq have already been encountered along w - then the path

w terminates. Denote by �C the event that path w (as defined) is infinite, i.e., path w

never terminates, and by ¬�DC (respectively, ¬�u′C) the event that path w is finite and

terminates (according to the above definition of when it can terminate) in a copy of a

non-terminal in set DK′ (respectively, in a copy of non-terminal Tu′ ∈ FK′−PC). Observe

that under strategy σε

K′ for any starting non-terminal Ti ∈ C, P
σε

K′
Ti

[�C] = 0. This is

because strategy σε

K′ guarantees that inside the MEC, C, there is a positive probability

of reaching any non-terminal from any non-terminal. So, unless a L-form non-terminal



4.3. Algorithm for deciding Pr∗Ti
[
⋂

q∈K Reach(Tq)]
?
= 1 123

along path w generates a non-terminal in DK′ , then the player is guaranteed to force

the path to “stay” within C until, for each q ∈ PC, at least d copies of the Q-form

non-terminals in set C∩Hq have been encountered, at which point in the next copy

of non-terminal Tu the player generates deterministically non-terminal Tu′ . Let p :=

P
σε

K′
Ti

[¬�DC] (note that P
σε

K′
Ti

[¬�u′C] = 1− p).

Now under strategy σε

K′ and starting at any non-terminal Ti ∈C, with probability 1:

(i) either path w terminates in a copy o of a non-terminal in set DK′ , for which we

already know that there is a strategy to reach all target non-terminals from set K′

with probability ≥ 1− ε (and according to σε

K′ such a strategy is employed at o

and its subtree of descendants). Hence, in the event of ¬�DC, with probability

≥ 1− ε all target non-terminals from set K′ are contained in the generated play,

i.e., Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq) | ¬�DC]≥ 1− ε.

(ii) or, path w terminates in a copy of a non-terminal Tu′ ∈ FK′−PC . Then, for each

q ∈ PC, with probability 1 (due to C being a MEC and due to the description

of strategy σε

K′) at least d = dlog(1− b
k )

ε′e copies o of the Q-form non-terminals

Tj ∈C∩Hq were generated along the path w. And each such copy o generates

two children, o′ of some non-terminal Tj′ ∈C (the successor on path w) and o′′ of

some non-terminal Tr ∈ Z̄{q}, where o′′ has independently a positive probability

bounded away from zero (in fact, ≥ b
k due to the uniformly at random choice

over strategies from statement (P), where, by Proposition 4.2, the value b > 0

does not depend on the history or the time when o′′ is generated) to reach the

respective target non-terminal Tq in a finite number of generations.

So suppose event ¬�u′C occurs and let, for each q ∈ PC, Pr
σε

K′
Ti

[♦≤mTq | ¬�u′C]

denote the conditional probability, starting at a non-terminal Ti ∈C and under the de-

scribed strategy σε

K′ , to reach target Tq with at most m generated copies of the Q-form

non-terminals in set C∩Hq along the path w in the play, conditioned on event ¬�u′C

occurring. Note that ∀q ∈ PC : Pr
σε

K′
Ti

[♦≤1Tq | ¬�u′C]≥ b
|PC| ≥

b
k . That is, because with

probability 1 under strategy σε

K′ , starting at a non-terminal Ti ∈C, a copy o of a Q-form

non-terminal in set C∩Hq is generated along path w and then there is a probability≥ b
k

to reach target Tq from the right child of o. It follows that for any Ti ∈C and any q∈PC:

Pr
σε

K′
Ti

[¬♦≤dTq | ¬�u′C]≤
(

1− b
k

)d
⇔ Pr

σε

K′
Ti

[♦≤dTq | ¬�u′C]≥ 1−
(

1− b
k

)d

Since d ≥ log(1− b
k )

ε′, then Pr
σε

K′
Ti

[♦≤dTq | ¬�u′C]≥ 1−ε′. Then for any Ti ∈C and
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any q ∈ PC:

Pr
σε

K′
Ti

[Reach(Tq) | ¬�u′C]≥ Pr
σε

K′
Ti

[♦≤dTq | ¬�u′C]≥ 1− ε
′⇔

Pr
σε

K′
Ti

[Reach{(Tq) | ¬�u′C]≤ ε
′

So, by the union bound:

Pr
σε

K′
Ti

[ ⋃
q∈PC

Reach{(Tq)
∣∣∣ ¬�u′C

]
≤ |PC| · ε′ ≤ k · ε′ = 1−

√
1− ε

⇔ Pr
σε

K′
Ti

[ ⋂
q∈PC

Reach(Tq)
∣∣∣ ¬�u′C

]
≥
√

1− ε (4.1)

And in some finite number of generations, in a copy of the non-terminal Tu along

path w action b ∈ Γu is chosen deterministically, where Tu
b−→ Tu′, Tu′ ∈ FK′−PC . There

exists σ
1−
√

1−ε

K′−PC
∈Ψ such that Pr

σ
1−
√

1−ε

K′−PC
Tu′

[
⋂

q′∈K′−PC
Reach(Tq′)]≥

√
1− ε. Then for any

starting non-terminal Ti ∈C:

Pr
σε

K′
Ti

[ ⋂
q′∈K′−PC

Reach(Tq′)
∣∣∣ ¬�u′C

]
= Pr

σ
1−
√

1−ε

K′−PC
Tu′

[ ⋂
q′∈K′−PC

Reach(Tq′)
]
≥
√

1− ε

(4.2)

The equality follows from the fact that there is zero probability to reach targets from

set K′−PC before path w terminates and also from the fact that strategy σε

K′ utilizes

strategy σ
1−
√

1−ε

K′−PC
from the occurrence of Tu′ (when event ¬�u′C happens) as if the play

starts in it.

Using (4.1) and (4.2), it follows that for any starting non-terminal Ti ∈C:

Pr
σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
∣∣∣ ¬�u′C

]
= Pr

σε

K′
Ti

[ ⋂
q∈PC

Reach(Tq)
∣∣∣ ¬�u′C

]
·PrσK′

Ti

[ ⋂
q′∈K′−PC

Reach(Tq′)
∣∣∣ ¬�u′C

]
= Pr

σε

K′
Ti

[ ⋂
q∈PC

Reach(Tq)
∣∣∣ ¬�u′C

]
·Pr

σ
1−
√

1−ε

K′−PC
Tu′

[ ⋂
q′∈K′−PC

Reach(Tq′)
]
≥ (
√

1− ε)2

= 1− ε
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And putting it all together, it follows that for any starting non-terminal Ti ∈C:

Pr
σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
]
= Pr

σε

K′
Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩�C

]
+Pr

σε

K′
Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩¬�DC

]
+Pr

σε

K′
Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩¬�u′C

]
= Pr

σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
∣∣∣ ¬�DC

]
·Pr

σε

K′
Ti

[
¬�DC

]
+

Pr
σε

K′
Ti

[ ⋂
q∈K′

Reach(Tq)
∣∣∣ ¬�u′C

]
·Pr

σε

K′
Ti

[
¬�u′C

]
≥ (1− ε) · p+(1− ε) · (1− p) = 1− ε

Now the second reason, why a MEC, C, in G[FK′] was added to F0
K′ at step II.8., is

if PC = K′. Consider any finite ancestor history h, that starts at a non-terminal Tv ∈C

and that all non-terminals in h belong to the MEC, C. Let o denote the non-terminal

copy at the end of the ancestor history h. If o is of a L-form or Q-form non-terminal

in C, let σε

K′ behave the same way as was described before. And if o is of a M-form

non-terminal Ti ∈C, let σε

K′ choose uniformly at random among actions from statement

(M.0). So with probability 1: either a copy of a L-form non-terminal in C generates

a child o′ of some non-terminal in set DK′ , where σε

K′ employs a strategy at o′ and

its subtree of descendants such that all targets in set K′ are reached with probability

≥ 1− ε (such a strategy exists by the induction assumption); or, for each q ∈ PC = K′,

infinitely often copies of the Q-form non-terminals Tj ∈ C∩Hq are observed. In the

latter case, it follows that, for each q ∈ PC = K′, infinitely many independent copies o′

of non-terminals Tr ∈ Z̄{q} are generated, each of which has independently a positive

probability bounded away from zero (again, ≥ b
k where, by Proposition 4.2, the value

b > 0 does not depend on the history or the time when copy o′ is generated) to reach

the corresponding target non-terminal Tq in a finite number of generations. Hence for

any Tv ∈C, it is satisfied that Pr
σε

K′
Tv

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε.

Therefore, for each type Ti in some MEC, C ⊆ F0
K′ , property (A)i

K′ is satisfied.

Now consider the non-terminals Ti added to set FK′ in step II.9. during the last

iteration of the inner loop.

(i) If Ti is of L-form, then by statement (L) we know that with probability 1 non-

terminal Ti in the next generation produces a single successor o′ of some non-

terminal Tj ∈ FK′ ∪DK′ , where by induction (A) j
K′ holds. So using, for any given

ε> 0, the strategy σε

K′ from the induction assumption for each such non-terminal
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Tj in the next generation as if the play starts in it, then property (A)i
K′ is also

satisfied.

(ii) If Ti is of M-form, then by statement (M), ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ . Let

h := Ti(u,Tj). So, for every ε > 0, combining the already described strategy

σε

K′ for non-terminal Tj (from the induction assumption), as if the play starts

in it, with the initial local choice of choosing deterministically action a∗, start-

ing at a non-terminal Ti, we obtain an augmented strategy σε

K′ for a starting

non-terminal Ti such that Pr
σε

K′
Ti

[
⋂

q∈K′ Reach(Tq)] = Pr
σε

K′
h [

⋂
q∈K′ Reach(Tq)] =

Pr
σε

K′
Tj

[
⋂

q∈K′ Reach(Tq)]≥ 1− ε, i.e., (A)i
K′ holds.

(iii) If Ti is of Q-form (i.e., Ti
1−→ Tj Tr), then, by statement (Q), w.l.o.g. Tj ∈ FK′ ,

where we already know that, for every ε > 0, there is a strategy σε

K′ such that

Pr
σε

K′
Tj

[
⋂

q∈K′ Reach(Tq)] ≥ 1− ε. Let hl := Ti(l,Tj) and hr := Ti(r,Tr). Aug-

menting strategy σε

K′ to be used from the next generation from the child of

non-terminal Tj as if the play starts in it and using an arbitrary strategy from

the child of non-terminal Tr, then it follows that Pr
σε

K′
Ti

[
⋃

q∈K′ Reach{(Tq)] ≤

Pr
σε

K′
hl

[
⋃

q∈K′ Reach{(Tq)]·Pr
σε

K′
hr

[
⋃

q∈K′ Reach{(Tq)]≤Pr
σε

K′
Tj

[
⋃

q∈K′ Reach{(Tq)]≤
ε, resulting in property (A)i

K′ also being satisfied.

This completes the proof of Theorem 4.3 and the analysis of the limit-sure algo-

rithm. The proof of Lemma 4.6 describes how to construct, for any subset K′ ⊆ K

and any given ε > 0, the witness strategy σε

K′ for the non-terminals in set FK′ . These

non-static strategies σε

K′ are described as functions that map finite ancestor histo-

ries belonging to the controller to distributions over actions available for the current

non-terminal in the ancestor history, and can be described in such a form in time

(log 1
ε
)O(1) ·4k · |A |O(1).

4.4 Algorithm for deciding
?
∃σ∈Ψ : Prσ

Ti
[
⋂

q∈K Reach(Tq)]

= 1

In this section we present an algorithm for solving the qualitative almost-sure multi-

target reachability problem for an OBMDP, A , i.e., given a set K ⊆ [n] of k = |K| target

non-terminals and given a starting non-terminal Ti, deciding whether there is a strategy

for the player under which the probability of generating a play (tree) that contains all
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the target non-terminals from set K is 1. The algorithm runs in time 4k · |A |O(1), and

hence is fixed-parameter tractable with respect to k.

As in the previous section, first as a preprocessing step, for each subset of targets

K′ ⊆ K, we compute the set ZK′ := {Ti ∈V | ∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0}, us-

ing Algorithm 4.1. Let us also denote by ASq, for every q ∈ K, the set of non-terminals

Tj (including the target non-terminal Tq itself) for which there exists a strategy τ such

that Prτ
Tj
[Reach(Tq)] = 1. Due to the equivalence between OBMDPs and BMDPs with

respect to single-target reachability (see subsection 2.4.1), these sets can be computed

in P-time by applying the algorithm from [ESY18, Theorem 9.3] to each target non-

terminal Tq, q ∈ K.

After this preprocessing step, we apply Algorithm 4.3 to identify the non-terminals

Ti for which there exists a strategy σ∗ ∈Ψ such that Prσ∗
Ti
[
⋂

q∈K Reach(Tq)] = 1. Again

K′−i denotes the set K′−{i}. Also, to recall what notation Ti→ Tj or Ti→ ∅ means,

refer to the paragraph before Definition 12.

Before moving on with the proof of correctness of the algorithm, we would like

to briefly and informally discuss the differences between Algorithms 4.2 and 4.3. Al-

though the two algorithms look very similar, they differ in some crucial details.

First, the interpretation of the various sets being accumulated in the two algorithms

differs, in order to correspond to the appropriate meaning in the context of almost-sure

or limit-sure multi-target reachability. So even in the steps that look identical, different

properties need to be proved for the accumulated sets and, hence, there are important

differences in the proofs.

Furthermore, we can notice that the two algorithms differ in steps II.6. and II.8.

Here is an informal intuition about this essential difference.

In Algorithm 4.2 (limit-sure multi-target reachability algorithm), step II.6. builds

a MEC-decomposition of the dependency graph G[X−SK′], induced by the remaining

non-terminals in set X − SK′; step II.8. identifies those MECs, C, where starting at

a non-terminal in C the following is observed: the branching (Q-form) non-terminals

in C spawn two children each, at least one of which belongs to C, and other spawned

children of the branching non-terminals in C can collectively reach a non-empty subset

PC of (or in the best case, all of) the target set K′ with a positive probability (bounded

away from zero); the player can choose to delay arbitrarily long the moment to select an

action that “exits” C and, thus, can choose to reach the targets in set PC with probability

arbitrarily close to 1; and once the player chooses to “exit” C, it does so in a non-

terminal that can limit-surely reach the rest of the targets in set K′−PC.
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Algorithm 4.3 Algorithm for almost-sure multi-target reachability in a given OBMDP.

The output is the set FK = {Ti ∈V | ∃σ ∈Ψ : Prσ
Ti
[
⋂

q∈K Reach(Tq)] = 1}.
I. Let F{q} := ASq and S{q} :=V −F{q}−Z{q}, for each q ∈ K. Let F/0 :=V and S /0 := /0.

II. For l = 2 . . .k:

For every subset of target non-terminals K′ ⊆ K of size |K′|= l:

1. DK′ := {Ti ∈V −ZK′ | one of the following holds:

- Ti is of L-form where i ∈ K′, Ti 6→∅ and ∀Tj ∈V : if Ti→ Tj, then Tj ∈ FK′−i
.

- Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′−i

.

- Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and ∃KL ⊆ K′−i : Tj ∈ FKL ∧Tr ∈ FK′−i−KL

.

- Ti is of Q-form (Ti
1−→ Tj Tr) where ∃KL ⊂ K′ (KL 6= /0) : Tj ∈ FKL ∧Tr ∈ FK′−KL .}

2. Repeat until no change has occurred to DK′ :

(a) add Ti 6∈ DK′ to DK′ , if of L-form, Ti 6→∅ and ∀Tj ∈V : if Ti→ Tj, then Tj ∈ DK′ .

(b) add Ti 6∈ DK′ to DK′ , if of M-form and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ DK′ .

(c) add Ti 6∈ DK′ to DK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ DK′ ∨Tr ∈ DK′ .

3. Let X :=V − (DK′ ∪ZK′).

4. Initialize SK′ := {Ti ∈ X | either i ∈ K′, or Ti is of L-form and Ti → ∅∨ Ti → Tj, Tj ∈
ZK′} ∪

⋃
/0⊂K′′⊂K′(X ∩SK′′).

5. Repeat until no change has occurred to SK′ :

(a) add Ti ∈ X−SK′ to SK′ , if of L-form and Ti→ Tj, Tj ∈ SK′ ∪ZK′ .

(b) add Ti ∈ X−SK′ to SK′ , if of M-form and ∀a ∈ Γi : Ti
a−→ Tj, Tj ∈ SK′ ∪ZK′ .

(c) add Ti ∈ X−SK′ to SK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ SK′ ∪ZK′ ∧ Tr ∈ SK′ ∪ZK′ .

6. C ← SCC decomposition of G[X−SK′ ].

7. For every q ∈ K′, let Hq := {Ti ∈ X − SK′ | Ti is of Q-form (Ti
1−→ Tj Tr) and ((Tj ∈ X −

SK′ ∧Tr ∈ Z̄{q})∨ (Tj ∈ Z̄{q}∧Tr ∈ X−SK′))}.

8. Let FK′ :=
⋃
{∪q∈K′(Hq∩C) |C ∈ C s.t. ∀q′ ∈ K′ : Hq′ ∩C 6= /0}.

9. Repeat until no change has occurred to FK′ :

(a) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of L-form and Ti→ Tj, Tj ∈ FK′ ∪DK′ .

(b) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of M-form and ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ .

(c) add Ti ∈ X− (SK′ ∪FK′) to FK′ , if of Q-form (Ti
1−→ Tj Tr) and Tj ∈ FK′ ∨Tr ∈ FK′ .

10. If X 6= SK′ ∪FK′ , let SK′ := X−FK′ and go to step 5.

11. Else, i.e., if X = SK′ ∪FK′ , let FK′ := FK′ ∪DK′ .

III. Output FK .
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On the other hand, in Algorithm 4.3 (almost-sure multi-target reachability algo-

rithm), step II.6. builds a SCC-decomposition of the dependency graph G[X−SK′], in-

duced by the remaining non-terminals in set X−SK′; step II.8. identifies those branch-

ing (Q-form) non-terminals that belong to SCCs, C, where the following is true for

each such C: the Q-form non-terminals in C (that have been identified in step II.8.)

spawn two children each, at least one of which belongs to C, and the other spawned

children of these same branching non-terminals can collectively reach all the targets in

set K′ with a positive probability (bounded away from zero).

Now let us continue with the proof of correctness of Algorithm 4.3 and the theorem

behind it.

Theorem 4.7. Algorithm 4.3 computes, given an OBMDP, A , and a set K ⊆ [n] of

k = |K| target non-terminals, for each subset K′ ⊆ K, the set of non-terminals FK′ :=

{Ti ∈V | ∃σ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 1}. The algorithm runs in time 4k · |A |O(1).

Moreover, for each K′⊆K, the algorithm can also be augmented to compute a random-

ized non-static strategy σ∗K′ such that Pr
σ∗K′
Ti

[
⋂

q∈K′ Reach(Tq)] = 1 for all non-terminals

Ti ∈ FK′ .

Proof. We will refer to the loop executing steps II.5. through II.10. for a specific subset

K′ ⊆ K as the “inner” loop and the iteration through all subsets of K as the “outer”

loop. Clearly the inner loop terminates, due to step II.10. always adding at least one

non-terminal to set SK′ and step II.11. eventually executing. The running time of the

algorithm follows from the facts that the outer loop executes for 2k iterations and inside

each iteration of the outer loop, steps II.1. and II.4. require time at most 2k · |A |O(1)

and the inner loop executes for at most |V | iterations, where during each inner loop

iteration the steps in it execute in time at most |A |O(1).

For the proof of correctness, we show that for every subset of target non-terminals

K′ ⊆ K, FK′ (from the decomposition V = FK′ ∪ SK′ ∪ZK′) is the set of non-terminals

Ti for which the following property holds:

(A)i
K′: ∃σK′ ∈Ψ such that PrσK′

Ti
[
⋂

q∈K′ Reach(Tq)] = 1.

Otherwise, if Ti ∈ SK′ , then we show that the following property holds:

(B)i
K′: ∀σ ∈Ψ : Prσ

Ti
[
⋂

q∈K′ Reach(Tq)]< 1⇔ Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)]> 0, i.e., the

probability of generating a play that contains at least one copy for each of the Tq

(q ∈ K′) target non-terminals, is < 1.
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Clearly, for non-terminals Ti ∈ ZK′ , property (B)i
K′ holds because, by Proposition 4.2,

∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 0 < 1. Finally, the answer for the full set of targets

is F := FK .

As in the proof from the previous section, we base this proof on an induction on

the size of subset K′, i.e. on the time of computing sets SK′ and FK′ for K′ ⊆ K. And in

the process, for each subset K′ ⊆K of target non-terminals, we construct a randomized

non-static strategy σK′ for the player that ensures PrσK′
Ti

[
⋂

q∈K′ Reach(Tq)] = 1 for each

non-terminal Ti ∈ FK′ . In the end, σ := σK is the strategy that guarantees almost-sure

reachability of all given targets in the same play.

To begin with, observe that clearly for any subset of target non-terminals, K′ :=

{q} ⊆ K, of size l = 1, each non-terminal Ti ∈ F{q} (respectively, Ti ∈ V −F{q}) sat-

isfies property (A)i
{q} (respectively, (B)i

{q}), due to step I. and the definition of the

ASq,q ∈ K sets. Hence, for each such subset {q} ⊆ K, there is a strategy σ{q} such that

∀Ti ∈ F{q} : Pr
σ{q}
Ti

[Reach(Tq)] = 1. Moreover, by [ESY18, Theorem 9.4] this strat-

egy σ{q} is non-static and deterministic. Analysing subset K′ of target non-terminals

of size l as part of step II., assume that, for every K′′ ⊂ K′ of size ≤ l− 1, sets SK′′

and FK′′ have already been computed, and for each non-terminal Tj belonging to set

FK′′ (respectively, set SK′′) property (A) j
K′′ (respectively, (B) j

K′′) holds. That is, by in-

duction assumption, for each K′′ ⊂ K′, there is a randomized non-static strategy σK′′

such that for any Tj ∈ FK′′: PrσK′′
Tj

[
⋂

q∈K′′ Reach(Tq)] = 1, and also for any Tj ∈ SK′′:

∀σ ∈ Ψ, Prσ
Tj
[
⋂

q∈K′′ Reach(Tq)] < 1. We now need to show that at end of the inner

loop analysis of subset K′, property (A)i
K′ (respectively, (B)i

K′) holds for every non-

terminal Ti ∈ FK′ (respectively, Ti ∈ SK′).

First we show that property (A)i
K′ holds for each non-terminal Ti belonging to set

DK′ (⊆ FK′), precomputed prior to the execution of the inner loop for subset K′.

Lemma 4.8. Every non-terminal Ti ∈ DK′ satisfies property (A)i
K′ .

Proof. The lemma is proved via a nested induction based on the time of a non-terminal

being added to set DK′ . Consider the base case where Ti ∈DK′ is a non-terminal, added

at the initialization step II.1.

(i) Suppose Ti is of L-form where i ∈ K′ and for all associated rules a child is gen-

erated that is of a non-terminal Tj ∈ FK′−i
, where property (A) j

K′−i
holds. Then

using the witness strategy from property (A) j
K′−i

, that almost-surely reaches all

remaining targets from set K′−i, for all such non-terminals Tj in the next gen-
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eration as if the play starts in it and, since the starting target non-terminal Ti is

already reached, clearly property (A)i
K′ holds.

(ii) Suppose Ti is of M-form where i ∈ K′ and ∃a∗ ∈ Γi such that Ti
a∗−→ Tj, Tj ∈ FK′−i

,

where property (A) j
K′−i

holds by induction. Let h := Ti(u,Tj). Then, by com-

bining the witness strategy σK′−i
from the induction assumption for non-terminal

Tj, as if the play starts in it, with the initial local choice of choosing determin-

istically action a∗ starting at a non-terminal Ti, we obtain a combined strategy

σK′ such that starting at a (target) non-terminal Ti, PrσK′
Ti

[
⋂

q∈K′ Reach(Tq)] =

PrσK′
Ti

[
⋂

q∈K′−i
Reach(Tq) | Reach(Ti)] · PrσK′

Ti
[Reach(Ti)] = PrσK′

Ti
[
⋂

q∈K′−i

Reach(Tq)] = PrσK′
h [

⋂
q∈K′−i

Reach(Tq)] = Pr
σK′−i
Tj

[
⋂

q∈K′−i
Reach(Tq)] = 1.

(iii) Suppose Ti is of Q-form (Ti
1−→ Tj Tr) where i ∈ K′ and there exists a split of

the rest of the target non-terminals, implied by KL ⊆ K′−i and K′−i−KL, such

that Tj ∈ FKL ∧Tr ∈ FK′−i−KL . Let hl := Ti(l,Tj) and hr := Ti(r,Tr). By combin-

ing the two witness strategies σKL and σK′−i−KL from the induction assumption

for non-terminals Tj and Tr, respectively, to be used from the next generation

as if the play starts in it, and the fact that target Ti is reached (since Ti is the

starting non-terminal), it follows that there exists a strategy σK′ ∈ Ψ such that

PrσK′
Ti

[
⋂

q∈K′ Reach(Tq)] = PrσK′
Ti

[
⋂

q∈K′−i
Reach(Tq)] ≥ PrσK′

hl
[
⋂

q∈KL
Reach(Tq)] ·

PrσK′
hr

[
⋂

q∈K′−i−KL
Reach(Tq)] = Pr

σKL
Tj

[
⋂

q∈KL
Reach(Tq)] · Pr

σK′−i−KL
Tr

[
⋂

q∈K′−i−KL

Reach(Tq)] = 1.

(iv) Suppose Ti is of Q-form (Ti
1−→ Tj Tr) where there exists a proper split of the target

non-terminals from set K′, implied by KL ⊂ K′ (where KL 6= /0) and K′−KL,

such that Tj ∈ FKL ∧Tr ∈ FK′−KL . Combining the two witness strategies σKL and

σK′−KL from the induction assumption for non-terminals Tj,Tr in the same way

as in (iii), it follows that there exists a strategy σK′ ∈Ψ such that property (A)i
K′

holds.

Now consider non-terminals Ti added to set DK′ at step II.2., i.e., the inductive step.

If non-terminal Ti is of L-form, then all rules, associated with it, generate children of

non-terminals Tj already in set DK′ , for which (A) j
K′ holds by the (nested) induction.

Hence, (A)i
K′ clearly also holds for the same reason as in (i) above.

If non-terminal Ti is of M-form, then ∃a∗ ∈ Γi : Ti
a∗−→ Tj,Tj ∈ DK′ . Again let

h := Ti(u,Tj). By combining the witness strategy σK′ for non-terminal Tj (from the

nested induction assumption), as if the play starts in it, with the initial local choice of
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choosing deterministically action a∗ starting at a non-terminal Ti, we obtain an aug-

mented strategy σK′ for a starting non-terminal Ti such that PrσK′
Ti

[
⋂

q∈K′ Reach(Tq)] =

PrσK′
h [

⋂
q∈K′ Reach(Tq)] = PrσK′

Tj
[
⋂

q∈K′ Reach(Tq)] = 1.

If Ti is of Q-form (Ti
1−→ Tj Tr), then either Tj ∈DK′ or Tr ∈DK′ , i.e., ∃σK′ ∈Ψ such

that PrσK′
Ty

[
⋂

q∈K′ Reach(Tq)] = 1⇔ PrσK′
Ty

[
⋃

q∈K′ Reach{(Tq)] = 0, where y∈ { j,r}. Let

hy := Ti(x,Ty) and hȳ := Ti(x̄,Tȳ), where ȳ∈ { j,r}−{y}, x∈ {l,r} and x̄∈ {l,r}−{x}.
By augmenting this σK′ to be used from the next generation from the child of non-

terminal Ty, as if the play starts in it, and using an arbitrary strategy from the child of

non-terminal Tȳ, it follows that PrσK′
Ti

[
⋃

q∈K′ Reach{(Tq)] ≤ PrσK′
hy

[
⋃

q∈K′ Reach{(Tq)] ·
PrσK′

hȳ
[
⋃

q∈K′ Reach{(Tq)] ≤ PrσK′
Ty

[
⋃

q∈K′ Reach{(Tq)] = 0, i.e., property (A)i
K′ is satis-

fied.

Next we show that if Ti ∈ SK′ , then property (B)i
K′ holds.

Lemma 4.9. Every non-terminal Ti ∈ SK′ satisfies property (B)i
K′ .

Proof. This can be done again via another (nested) induction, based on the time a non-

terminal is added to set SK′ . That is, assuming all non-terminals Tj, added already to

set SK′ in previous steps and iterations of the inner loop, satisfy property (B) j
K′ , then

we show that for a new addition Ti to set SK′ , property (B)i
K′ is also satisfied.

Consider the initialized set SK′ of non-terminals Ti constructed at step II.4.

If Ti is of L-form, where Ti→∅∨Ti→ Tj, Tj ∈ ZK′ , then with a positive probability

non-terminal Ti immediately either does not generate a child at all or generates a child

of non-terminal Tj ∈ ZK′ , for which we already know that (B) j
K′ holds. Clearly, this

also results in (B)i
K′ being satisfied.

If, for some subset K′′ ⊂ K′, Ti ∈ SK′′ , then ∀σ ∈ Ψ : Prσ
Ti
[
⋃

q∈K′′ Reach{(Tq)] > 0

(i.e., property (B)i
K′′). But, ∀σ∈Ψ : Prσ

Ti
[
⋃

q∈K′ Reach{(Tq)]≥Prσ
Ti
[
⋃

q∈K′′ Reach{(Tq)]

> 0, so property (B)i
K′ also holds. Note that if, for some subset K′′ ⊂K′, Ti ∈ ZK′′ , then

Ti ∈ ZK′ and so already Ti 6∈ X .

And if Ti is a target non-terminal in set K′, then due to not being added to set DK′ in

step II.1. it follows that: (1) if of L-form, it generates with a positive probability a child

of a non-terminal Tj ∈ SK′−i
∪ZK′−i

, for which (B) j
K′−i

holds; (2) if of M-form, irrespective

of the strategy it generates a child of a non-terminal Tj ∈ SK′−i
∪ZK′−i

, for which again

(B) j
K′−i

holds; (3) and if of Q-form, it generates two children of non-terminals Tj,Tr,

for which no matter how we split the rest of the target non-terminals in set K′−i (into

subsets KL⊆K′−i and K′−i−KL), either (B) j
KL

holds or (B)r
K′−i−KL

holds. In other words,
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a target non-terminal Ti in the initial set SK′ has no strategy to ensure that the rest of

the target non-terminals are reached with probability 1 (the reasoning behind this last

statement is the same as the arguments in (i) - (iii) below, since for a starting (target)

non-terminal Ti: ∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = Prσ
Ti
[
⋂

q∈K′−i
Reach(Tq)]).

Observe that by the end of step II.4. all target non-terminals Tq,q ∈ K′ belong

either to set DK′ or set SK′ . Now consider a non-terminal Ti added to set SK′ in step

II.5. during some iteration of the inner loop.

(i) Suppose Ti is of L-form. Then Ti → Tj, Tj ∈ SK′ ∪ ZK′ , where property (B) j
K′

holds. So regardless of the strategy σ for the player, there is a positive probability

to generate a child of the above non-terminal Tj, where Prσ
Tj
[
⋃

q∈K′ Reach{(Tq)]

> 0. Let h := Ti(u,Tj). But note that, ∀σ ∈ Ψ: Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)] ≥ pi, j ·
Prσ

h [
⋃

q∈K′ Reach{(Tq)]> 0 if and only if ∀σ ∈Ψ : pi, j ·Prσ
Tj
[
⋃

q∈K′ Reach{(Tq)]

> 0, where pi, j > 0 is the probability of the rule Ti
pi, j−−→ Tj. And since the latter

part of the statement holds, then the former (i.e., property (B)i
K′) is satisfied.

(ii) Suppose Ti is of M-form. Then ∀a ∈ Γi : Ti
a−→ Tj, Tj ∈ SK′ ∪ ZK′ . So irrele-

vant of strategy σ, starting in a non-terminal Ti, the next generation surely con-

sists of some non-terminal Tj such that ∀σ ∈ Ψ : Prσ
Tj
[
⋂

q∈K′ Reach(Tq)] < 1.

Clearly, ∀σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] ≤ max{Tj∈SK′∪ZK′ |Ti→Tj}

Prσ

Ti(u,Tj)
[
⋂

q∈K′ Reach(Tq)] < 1 (i.e., property (B)i
K′) if and only if ∀σ ∈ Ψ :

max{Tj∈SK′∪ZK′ |Ti→Tj}Prσ
Tj
[
⋂

q∈K′ Reach(Tq)]< 1, where the latter is satisfied.

(iii) Suppose Ti is of Q-form (i.e., Ti
1−→ Tj Tr). Then Tj,Tr ∈ SK′∪ZK′ , i.e., both (B) j

K′

and (B)r
K′ are satisfied. We know that:

1) Neither of the children can single-handedly reach all target non-terminals

from set K′ with probability 1. That is, ∀σ ∈Ψ, Prσ
Tj
[
⋂

q∈K′ Reach(Tq)]< 1

and Prσ
Tr
[
⋂

q∈K′ Reach(Tq)]< 1.

2) Moreover, since Ti was not added to set DK′ in step II.1., then ∀KL ⊂ K′

(where KL 6= /0) either (B) j
KL

holds (i.e., Tj 6∈ FKL) or (B)r
K′−KL

holds (i.e.,

Tr 6∈ FK′−KL), i.e., either ∀σ ∈Ψ : Prσ
Tj
[
⋂

q∈KL
Reach(Tq)] < 1 or ∀σ ∈Ψ :

Prσ
Tr
[
⋂

q∈K′−KL
Reach(Tq)]< 1.

Let hl := Ti(l,Tj) and hr := Ti(r,Tr). Notice that for any strategy σ ∈Ψ and for

any q′ ∈ K′, Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)] ≥ Prσ
Ti
[Reach{(Tq′)] = Prσ

hl
[Reach{(Tq′)] ·

Prσ

hr
[Reach{(Tq′)].
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We claim that ∀σ ∈ Ψ :
∨

q∈K′ Prσ
Tj
[Reach{(Tq)] · Prσ

Tr
[Reach{(Tq)] > 0. But

for any q ∈ K′ and for any σ ∈ Ψ one can easily construct σ′ ∈ Ψ such that

Prσ
Tj
[Reach{(Tq)] =Prσ′

hl
[Reach{(Tq)] and similarly for non-terminal Tr. So it fol-

lows from the claim that ∀σ∈Ψ :
∨

q∈K′ Prσ

hl
[Reach{(Tq)] ·Prσ

hr
[Reach{(Tq)]> 0

and, so that ∀σ ∈Ψ : Prσ
Ti
[
⋃

q∈K′ Reach{(Tq)]> 0⇔ Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]< 1.

Suppose the opposite, i.e., assume (P ) that ∃σ′ ∈ Ψ :
∧

q∈K′ Prσ′
Tj
[Reach{(Tq)] ·

Prσ′
Tr
[Reach{(Tq)] = 0. Now for any q ∈ K′, by statement 2) above, we know

that Tj 6∈ F{q}∨Tr 6∈ FK′−q
and Tj 6∈ FK′−q

∨Tr 6∈ F{q}. First, suppose that in fact for

some q′ ∈K′ it is the case that Tj 6∈ F{q′}∧Tr 6∈ F{q′} (i.e., Tj ∈ S{q′}∪Z{q′}∧Tr ∈
S{q′}∪Z{q′}). That is, ∀σ∈Ψ : Prσ

Tj
[Reach{(Tq′)]> 0 and Prσ

Tr
[Reach{(Tq′)]> 0,

where our claims follows directly (hence, contradiction to (P )). Second, suppose

that for some q′ ∈ K′ it is the case that Tj 6∈ FK′−q′
∧Tr 6∈ FK′−q′

(i.e., Tj ∈ SK′−q′
∪

ZK′−q′
∧ Tr ∈ SK′−q′

∪ZK′−q′
). But then Ti would have been added to set SK′−q′

at

step II.5.(c) when constructing the answer for subset of targets K′−q′ . However,

we already know that Ti ∈
⋂

K′′⊂K′ FK′′ (follows from steps II.3 and II.4. that

Ti 6∈
⋃

K′′⊂K′(SK′′ ∪ZK′′)). Hence, again a contradiction.

Therefore, it follows that for every q ∈ K′, either Tj 6∈ F{q} ∧Tj 6∈ FK′−q
or Tr 6∈

F{q}∧Tr 6∈ FK′−q
. And in particular, the essential part is that ∀q ∈ K′, either Tj 6∈

F{q} or Tr 6∈ F{q}. That is, for every q ∈ K′, either ∀σ ∈Ψ : Prσ
Tj
[Reach{(Tq)]>

0, or ∀σ ∈ Ψ : Prσ
Tr
[Reach{(Tq)] > 0. But then, combined with assumption

(P ), it actually follows that there exists a subset K′′ ⊆ K′ such that ∃σ′ ∈ Ψ :∧
q∈K′′ Prσ′

Tr
[Reach{(Tq)] = 0 ∧

∧
q∈K′−K′′ Prσ′

Tj
[Reach{(Tq)] = 0. And by Proposi-

tion 2.2(1.), it follows that there exists a σ′ ∈Ψ such that Prσ′
Tr
[
⋂

q∈K′′ Reach(Tq)]=

1∧Prσ′
Tj
[
⋂

q∈K′−K′′ Reach(Tq)] = 1, i.e., Tj ∈ FK′−K′′ ∧Tr ∈ FK′′ , contradicting the

known facts 1) and 2). Hence, assumption (P ) is wrong and our claim is satis-

fied.

Now consider any non-terminal Ti that is added to set SK′ in step II.10. at some

iteration of the inner loop (i.e., Ti ∈ YK′ := X − (SK′ ∪FK′)⊆ Z̄K′). Since non-terminal

Ti has not been previously added to sets DK′ , SK′ or FK′ , then all of the following hold:

(1.) i 6∈ K′;

(2.) if Ti is of L-form, then a non-terminal Ti generates with probability 1 a non-

terminal which belongs to YK′ (otherwise Ti would have been added to sets SK′

or FK′ in step II.4, II.5. or II.9., respectively);
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(3.) if Ti is of M-form, then ∀a ∈ Γi : Ti
a−→ Td, Td 6∈ FK′ ∪DK′ (otherwise Ti would

have been added to sets DK′ or FK′ in step II.2. or step II.9., respectively), and

∃a′ ∈ Γi : Ti
a′−→ Tj, Tj 6∈ SK′ ∪ZK′ , i.e., Tj ∈ YK′ (otherwise Ti would have been

added to set SK′ in step II.5.); and

(4.) if Ti is of Q-form (Ti
1−→ Tj Tr), then w.l.o.g. Tj ∈ YK′ and Tr ∈ (YK′ ∪ SK′ ∪ZK′)

(as Ti has not been added to the other sets in steps II.2., II.5. or II.9.).

Due to the statements (2.) - (4.) above, notice that the dependency graph G does

not contain outgoing edges from set YK′ to sets DK′ and FK′ . So any SCC in subgraph

G[X −SK′], that contains a node from set YK′ , is in fact entirely contained in subgraph

G[YK′].

Furthermore, one of the following is the reason for a Q-form non-terminal Ti ∈ YK′

(Ti
1−→ Tj Tr) not having been added to set FK′ at the initialization step II.8.:

(4.1.) either Ti does not belong to any of the sets Hq,q ∈ K′. So, from step II.7., Tr ∈
Z{q} for every q ∈ K′ (recall from property (4.) that w.l.o.g. Tj ∈ YK′ ⊆ Z̄K′ ⊆
Z̄{q}, ∀q ∈ K′),

(4.2.) or Ti does belong to some set Hq′,q′ ∈K′, but if Ti belongs to a strongly connected

component C′ in G[YK′], then ∃q′′ ∈ K′ such that Hq′′ ∩C′ = /0.

We can treat the Q-form non-terminals with property (4.1.) as if they have only

one child (namely the child of non-terminal Tj), since the other child (of non-terminal

Tr) does not contribute to reaching, even with a positive probability, any of the target

non-terminals from set K′.

We need to show that for every non-terminal Ti ∈ YK′ property (B)i
K′ holds, i.e.,

∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]< 1.

From standard algorithms about SCC-decomposition, it is known that there is an

ordering of the SCCs in G[YK′ ], where the bottom level in this ordering (level 0) consists

of strongly connected components that in the induced subgraph G[YK′] have no edges

leaving the SCC at all, and for further levels in the ordering of SCCs the following is

true: SCCs or nodes not in any SCC, at level t ≥ 1, have directed paths out of them

leading to SCCs or nodes not in any SCC, at levels < t. We rank the SCCs and the

independent nodes (not belonging to any SCC) in G[YK′] according to this ordering,

denoting by Y t
K′ , t ≥ 0, the nodes (non-terminals) at levels up to and including t, and

use the following induction based on the level:
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– For the base case: for any SCC, C, at level 0 (i.e., C ⊆ Y 0
K′), clearly for any non-

terminal Ti ∈ C, ∃σ ∈ Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)] = 1 if and only if Hq ∩C 6=
/0, ∀q ∈ K′. But, by property (4.2), there is no such component C in G[YK′] that

contains a Q-form non-terminal from each of the sets Hq, q ∈ K′.

– As for the inductive step, assume that for some t ≥ 1 for any Tv ∈ Y t−1
K′ , ∀σ ∈

Ψ : Prσ
Tv
[
⋂

q∈K′ Reach(Tq)] < 1, i.e., (B)v
K′ is satisfied. Let σ be an arbitrary

strategy fixed for the player. For a SCC, C′, at level t ≥ 1, let w denote the path

(in the play), where w begins at a starting non-terminal Ti ∈ C′ and evolves in

the following way. If the current copy o on the path w is of a L-form or a M-

form non-terminal Tj ∈ C′, then w follows along the unique successor of o in

the play. And if the current copy o on the path w is of a Q-form non-terminal

Tj ∈ C′ (Tj
1−→ Tj′ Tr, where w.l.o.g. Tj′ ∈ C′), then w follows along the child

of non-terminal Tj′ . (Note that Tr 6∈ C′, since we already know from (4.) that

Tj′ ∈YK′ ⊆ Z̄K′ ⊆ Z̄{q}, ∀q ∈ K′, and so if Tr ∈C′ ⊆YK′ then property (4.2.) will

be contradicted.) If the current copy o on the path w is of a non-terminal not

belonging in C′, then the path w terminates. Denote by �C′ the event that path

w is infinite, i.e., all non-terminals observed along path w are in C′ and path w

never leaves C′ and never terminates. Then for any starting non-terminal Ti ∈C′:

Prσ
Ti

[ ⋂
q∈K′

Reach(Tq)
]
= Prσ

Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩�C′

]
+Prσ

Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩¬�C′

]
= Prσ

Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩¬�C′

]
Observe that Prσ

Ti
[(
⋂

q∈K′ Reach(Tq))∩�C′] = 0, due to statements (1.) and

(4.2.).

By property (3.) and also due to the ranking of SCCs and nodes in G[YK′], if

path w terminates, then it does in a non-terminal Tv ∈ SK′ ∪ ZK′ ∪Y t−1
K′ . Also

due to properties (1.) - (4.) and (4.2.), in the case of event ¬�C′ occurring, all

the targets in set K′ are reached with probability 1, starting in Ti ∈ C′, if and

only if they are all reached with probability 1, starting from such a non-terminal

Tv ∈ SK′ ∪ZK′ ∪Y t−1
K′ . To see this, note that for any of the Q-form non-terminals

Tj ∈C′ (Tj
1−→ Tj′ Tr, where w.l.o.g. Tj′ ∈C′), Tr 6∈ F{q} for any q∈K′ (otherwise,

if Tr ∈ F{q′} for some q′ ∈ K′, then since Tj was not added to set DK′ at step

II.1., it follows that Tj′ 6∈ FK′−q′
, i.e., Tj′ ∈ SK′−q′

∪ZK′−q′
, and hence by step (4.)

of algorithm already Tj′ ∈ SK′ ∪ZK′ , which contradicts that Tj′ ∈C′ ⊆ YK′). So
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none of the targets in set K′ is reached with probability 1 (but it is possible with

a positive probability) from a non-terminal spawned off of the path w.

It follows that for a starting non-terminal Ti ∈C′:

∃σ′ ∈Ψ : Prσ′
Ti

[( ⋂
q∈K′

Reach(Tq)
)
∩¬�C′

]
= 1 if and only if

∃σ′′ ∈Ψ : max
〈Tv∈SK′∪ZK′∪Y t−1

K′ | ∃Tj∈C′,b∈Γ j: Tj
b−→Tv〉

Prσ′′
Tv

[ ⋂
q∈K′

Reach(Tq)
]
= 1

The right-hand side of this statement is clearly not satisfied since we already

know that Tv ∈ SK′ ∪ZK′ ∪Y t−1
K′ satisfy property (B)v

K′ .

So it follows that ∀σ′ ∈Ψ : Prσ′
Ti
[
⋂

q∈K′ Reach(Tq)] = Prσ′
Ti
[(
⋂

q∈K′ Reach(Tq))∩
¬�C′]< 1.

As for nodes (non-terminals) Ti ∈ Y t
K′ at level t, that do not belong to any SCC,

using a similar argument, ∀σ ∈Ψ : Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]< 1.

By this inductive argument, it follows that for any non-terminal Ti ∈ YK′ and for any

strategy σ ∈Ψ: Prσ
Ti
[
⋂

q∈K′ Reach(Tq)]< 1, i.e., property (B)i
K′ is satisfied.

Now we show that for non-terminals Ti ∈FK′ , when the inner loop for subset K′⊆K

terminates, the property (A)i
K′ is satisfied. We will also construct a witness strategy,

under which this property holds for each non-terminal Ti ∈ FK′ . Since we have already

proved it for non-terminals in set DK′ , in the following Lemma we refer to the part of

set FK′ not containing set DK′ , i.e., to set FK′ = X−SK′ .

Lemma 4.10. Every non-terminal Ti ∈ FK′ satisfies property (A)i
K′ .

Proof. For the rest of this proof denote by F0
K′ the initialized set at step II.8. Let us

first observe the properties for the non-terminals Ti ∈ FK′ = X −SK′ . None of the non-

terminals is a target non-terminal from set K′, i.e., i 6∈ K′. If Ti is of L-form, then:

(L) a non-terminal Ti generates with probability 1 as offspring some non-terminal

belonging either to set FK′ or to set DK′ .

If Ti is of M-form, then ∀a ∈ Γi : Ti
a−→ Td, Td 6∈ DK′ and:

(M) ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ .

If Ti is of Q-form (i.e., Ti
1−→ Tj Tr), then Tj,Tr 6∈ DK′ and:

(Q.0) if Ti ∈ F0
K′ , ∃q ∈ K′ such that w.l.o.g. Tj ∈ FK′ ∧Tr ∈ Z̄{q},
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(Q.1) otherwise, w.l.o.g. Tj ∈ FK′ .

(P) Let us recall that for every q ∈ K′, there is a deterministic static strategy σ′{q} for

the player and a value b{q} > 0 such that, starting at a non-terminal Tr ∈ Z̄{q},

Pr
σ′{q}
Tr

[Reach(Tq)]≥ b{q}. Let b := minq∈K′{b{q}}> 0.

We construct now the non-static witness strategy σK′ for the player in the following

way. In each generation, there is going to be one non-terminal in the generation that is

declared to be a “queen” and the rest of the non-terminals in the generation are called

“workers” (we will see the difference between the two labels, especially in the choices

of actions). Suppose the initial population is a non-terminal Tv ∈ FK′ , declared to be

the initial queen.

Consider any finite ancestor history h, that starts at the initial non-terminal Tv ∈ FK′

and all non-terminals in h belong to set FK′ . Let o denote the non-terminal copy at the

end of the ancestor history h. If o is a queen of some L-form non-terminal Ti, then from

statement (L) we know that in the next generation the single generated successor child

o′ is of some non-terminal Tj ∈ FK′ ∪DK′ . If Tj ∈DK′ , then we use at o′ and its subtree

of descendants the randomized non-static witness strategy from property (A) j
K′ as if the

play is starting in o′. If Tj ∈ FK′ , then we label o′ as the queen in the next generation

and use the same strategy σK′ (that is currently being described) at it. If o is a queen

of some M-form non-terminal Ti, then σK′ chooses at o uniformly at random among

actions a∗ from statement (M) and, hence, in the next generation a single child o′ of

some non-terminal Tj ∈ FK′ will be generated. Again o′ is declared to be the queen in

the next generation and the same strategy σK′ (currently being described) is used at it.

If o is a queen of some Q-form non-terminal Ti (i.e., Ti
1−→ Tj Tr), then there are two

cases for the two successor children o′ and o′′ of non-terminals Tj and Tr, respectively:

• either property (Q.0) is satisfied, i.e., Ti ∈ F0
K′ , and Tj ∈ FK′∧Tr ∈ Z̄{q}, for some

target q ∈ K′. Then, in the next generation, we declare o′ to be the queen and use

the currently described strategy σK′ for it. As for the child o′′, it is declared to be

a worker and the strategy used at the entire subtree, rooted at o′′, is some strategy

σ′{q′} (from statement (P)), where q′ ∈ K′ is chosen uniformly at random among

all targets q ∈ K′ such that Tr ∈ Z̄{q}. The randomization in the strategy of the

worker is needed, since non-terminal Ti can belong to more than one set Hq, i.e.,

Tr can belong to more than one set Z̄{q}.
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• or property (Q.1) is satisfied, i.e., Ti ∈ FK′−F0
K′ and w.l.o.g. Tj ∈ FK′ . Then, in

the next generation, the child o′ is again declared to be the queen and the same

strategy σK′ is used for it, whereas the child o′′ is again labelled as a worker,

but the strategy for it is irrelevant and so an arbitrary one is chosen for its entire

subtree of descendants.

That concludes the description of strategy σK′ . Now we need to show that, indeed, the

randomized non-static strategy σK′ is an almost-sure strategy for the player, i.e., that

for any Ti ∈ FK′ : PrσK′
Ti

[
⋂

q∈K′ Reach(Tq)] = 1.

As previously stated, F0
K′ is the initial set FK′ at step II.8. Also let Tx1,Tx2, . . . ,Txt be

the non-terminals in set FK′−F0
K′ indexed with respect to the time at which they were

added to set FK′ at step II.9. Let γ := maxi∈[n] |Γi| and let λ be the minimum of 1
γ

and

the minimum rule probability in the OBMDP.

Starting at a non-terminal Tv ∈ FK′ , consider the sequence of queens. We claim that

from any queen with a positive probability ≥ λn in the next ≤ n = |V | generations we

reach a Q-form queen of a (specific) non-terminal in set F0
K′ . To show this, we define,

for each non-terminal Ti ∈FK′ , a finite “auxiliary” tree Ti, rooted at Ti, which represents

why Ti was added to set FK′ (i.e., based on steps II.8. and II.9. in the last iteration of

the inner loop before step II.11. terminates the inner loop). If Ti ∈ F0
K′ , then the tree

Ti is constructed of just a single node (leaf) labelled by Ti. If Ti is of L-form, added at

step II.9., then Ti→ Tj, Tj ∈ FK′ (otherwise Ti would have been added to set DK′) and

the tree Ti has an edge from its root (labelled by Ti) to a child labelled by Tj (the root

of the subtree T j), for each such Tj ∈ FK′ . If Ti is of M-form, added at step II.9., then

the tree Ti has an edge from its root (labelled by Ti) to a child labelled by Tj (the root

of the subtree T j), for every Tj such that ∃a∗ ∈ Γi : Ti
a∗−→ Tj, Tj ∈ FK′ . And if Ti is of

Q-form, added at step II.9., then the tree Ti has an edge from its root (labelled by Ti) to

a child labelled by Tj (from property (Q.1)), which is the root of the subtree T j.

The “auxiliary” tree, just defined, has depth of at most n, since there is a strict

order in which the non-terminals entered set FK′ . Now observe that, if we consider

any generation of the play, assuming that the current queen (in this generation) is of

some non-terminal Ti ∈ FK′ , it can be inductively shown that with a positive probability

(at least λn) in at most n generations the sequence of queens follows a specific root-

to-leaf path in Ti. That is because if we are at a queen of a L-form non-terminal Tj

(respectively, in node labelled by Tj, which is the root of tree T j), then in the next

generation with probability≥ λ the successor queen is of non-terminal Tj′ ∈FK′ , which

is a child of the root of T j and is also itself the root of T j′ . And if we are at a queen
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of a M-form non-terminal Tj, then in the next generation (due to the fixed strategy σK′)

with probability≥ 1/|Γ j| ≥ 1/γ≥ λ the successor queen is of a non-terminal Tja ∈ FK′ ,

which is a child of the root of T j and is also the root of T ja . And if we are at a queen of

a Q-form non-terminal Tj, which is not a leaf in this “auxiliary” tree, then in the next

generation with probability 1 the successor queen is of a non-terminal Tj′ , which is the

root of T j′ and the unique child of the root of T j. Since the depth of the “auxiliary”

defined tree is at most n, then with probability ≥ λn, from a current queen of some

non-terminal Ti ∈ FK′ , in the next ≤ n steps we arrive at a specific leaf Tu of the tree Ti,

i.e., a queen of non-terminal Tu ∈ F0
K′ is generated.

If somewhere along the sequence of queens, a queen of a L-form non-terminal

happens to generate a non-terminal in set DK′ , then the sequence of queens is actually

finite. Therefore, if the sequence of queens is infinite, since it has to follow root-to-leaf

paths in the defined “auxiliary” tree, then it follows that with probability 1 infinitely

often a queen of a Q-form non-terminal in set F0
K′ is observed.

Now consider any q ∈ K′ and any Q-form non-terminal Tu ∈ F0
K′ ∩Hq. Since in the

subgraph of the dependency graph, induced by X −SK′ = FK′ (i.e., G[FK′ ]), node Tu is

part of a SCC that contains at least one node (non-terminal) from each set Hq′,q′ ∈ K′,

then, along the sequence of queens, from a queen of non-terminal Tu, for any q′ ∈
K′ there is a non-terminal Tu′ ∈ F0

K′ ∩Hq′ that can be reached as a queen, under the

described strategy σK′ , in at most n generations with a positive probability bounded

away from zero (in fact, ≥ λn). Note: There is a positive probability, under strategy

σK′ , to exit the particular SCC of Tu. However, under σK′ and starting at any non-

terminal Tv ∈ FK′ , almost-surely the sequence of queens eventually reaches a queen

whose non-terminal is in a SCC, C′′, in G[FK′] which can only have an outgoing edge

to set DK′ and where, moreover, for each target in K′ there is a branching (Q-form)

node in C′′ whose “extra” child can hit that target with a positive probability (bounded

away from zero).

Hence, starting at a non-terminal Tv ∈ FK′ and under strategy σK′ , the sequence of

queens follows root-to-leaf paths in the defined “auxiliary” tree and, for each q∈K′, in-

finitely often a queen of a Q-form non-terminal from set Hq is observed. And each such

queen generates an independent worker, that reaches the respective target non-terminal

Tq in a finite expected number of generations with a positive probability bounded away

from zero (due to the uniformly at random choice over strategies from statement (P),

for each worker, and due to the fact that the value b > 0 from statement (P) does not

depend on the history or the time when the worker is generated). And, more impor-
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tantly, since the Q-form non-terminals from the sets F0
K′ ∩Hq (q ∈ K′) form SCCs in

G[FK′ ], then collectively the independent workers (under their respective strategies)

have infinitely often a positive probability bounded away from zero to reach all target

non-terminals from set K′ in a finite expected number of generations (by Claim 4.11

and by the fact that each independent worker has probability ≥ b
k to reach the respec-

tive target non-terminal in finite expected number of generations). Hence, all target

non-terminals from set K′ are reached with probability 1.

This completes the proof of Theorem 4.7 and the analysis of the almost-sure algo-

rithm. The proof of Lemma 4.10 describes how to construct, for any subset K′⊆K, the

witness strategy σK′ for the non-terminals in set FK′ . These non-static strategies σK′ are

described as functions that map finite ancestor histories belonging to the controller to

distributions over actions available for the current non-terminal of the ancestor history,

and can be described in such a form in time 4k · |A |O(1).

Recall that we denote by λ the minimum of 1
maxi∈[n] |Γi| and the minimum rule prob-

ability in the OBMDP.

Claim 4.11. If the sequence of queens is not finite, the expected number of generations,

starting at a non-terminal Tv ∈ FK′−DK′ and under the strategy σK′ constructed in the

proof of Lemma 4.10, to observe at least one queen of some non-terminal in each of

the sets Hq, q ∈ K′, is ≤ n
λn · (lnk+1).

Proof. Fix strategy σK′ , constructed in the proof of Lemma 4.10 above. As mentioned

in the proof of Lemma 4.10, from a copy of any non-terminal Ti ∈ FK′ −DK′ , any

particular Q-form non-terminal in set F0
K′ is reached with probability≥ λn in the next≤

n generations. Alternatively, for any Ti ∈ FK′−DK′ , with probability≥ λn the sequence

of queens in the next ≤ n generations of the play follows a specific root-to-leaf path in

the associated “auxiliary” tree Ti, defined in the proof of Lemma 4.10.

Let Yw be a random variable, denoting the number of such root-to-leaf paths (each

of length at most n) in the infinite sequence of queens, having already observed at

least one queen of a Q-form non-terminal from w−1 different sets 〈Hqt | qt ∈ K′, t ∈
[w− 1]〉, to observe a queen of a Q-form non-terminal of a new set Hq′, q′ ∈ K′ (i.e.,

q′ 6= qt ,∀t ∈ [w− 1]). Notice that each Yw is a geometric random variable and let pw

denote the associated parameter with random variable Yw. For l = |K′|, Y = ∑
l
w=1Yw is

the total number of root-to-leaf paths in the infinite sequence of queens to observe at

least one queen of a non-terminal from each of the sets Hq, q ∈ K′, under strategy σK′
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and starting at some non-terminal Tv ∈ FK′−DK′ . Informally, note that if we think of

the sets Hq, q ∈ K′, as l coupons that are to be collected, then this is indeed the famous

coupon collector’s problem.

Denote by p̄w the probability of observing a queen in the next ≤ n generations of

a Q-form non-terminal from any one of the w− 1 “collected” sets Hqt (qt ∈ K′, t ∈
[w−1]). Then clearly:

λ
n ≤ p̄w ⇔ pw ≤ 1−λ

n, w≥ 2

where to recall λn ∈ (0,1) is the least probability of observing a queen in the next ≤ n

generations of a particular Q-form non-terminal from a particular set Hq, q ∈ K′, i.e.,

the least probability of a specific root-to-leaf path in the “auxiliary” tree. Note that the

inequality is true only for w≥ 2 and that p1 = 1. Then E[Yw] =
1
pw
≥ 1

1−λn , for w≥ 2,

and so:

E[Y ] =
l

∑
w=1

E[Yw]≥ 1+
l

∑
w=2

1
1−λn =

l−λn

1−λn

For the upper bound on the expectation, notice that each set Hq, q ∈ K′, has

cardinality ≥ 1. Then it follows that pw ≥ (l −w + 1)λn, for w ≥ 1, and so that

E[Yw] =
1
pw
≤ 1

(l−w+1)λn . Then:

E[Y ]≤
l

∑
w=1

1
(l−w+1)λn =

1
λn

l

∑
w=1

1
w
=

Hl

λn ≤
Hk

λn <
lnk+1

λn

The claim follows from the fact that a root-to-leaf path in the “auxiliary” tree is of

length at most n.

Note that λ ≥ 2−poly(|A |). Then, assuming the sequence of queens is infinite, the

expected number of generations, starting at some non-terminal Tv ∈ FK′ −DK′ and

under the strategy σK′ constructed in the proof of Lemma 4.10, to observe at least one

queen of a Q-form non-terminal from each of the sets Hq, q ∈ K′, is ≤ 2poly(|A |) · n ·
(lnk+1), i.e., can be exponential in the size of A .

4.5 Further cases of qualitative multi-objective reacha-

bility

In this section we present algorithms for deciding some other cases of qualitative multi-

objective reachability problems for OBMDPs, involving certain kinds of Boolean com-

binations of qualitative reachability and non-reachability queries with respect to given

target non-terminals.
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4.5.1
?
∃ σ ∈Ψ :

∧
q∈K Prσ

Ti
[Reach(Tq)]< 1

Proposition 4.12. There is an algorithm that, given an OBMDP, A , and a set K⊆ [n] of

k = |K| target non-terminals, computes the set F := {Ti ∈ V | ∃σ ∈ Ψ :∧
q∈K Prσ

Ti
[Reach(Tq)] < 1}. The algorithm runs in time k · |A |O(1) and can also com-

pute a randomized static witness strategy σ for the non-terminals in set F.

Proof. First, as a preprocessing step, for each q ∈ K we compute the set Wq := {Ti ∈
V | ∃σq ∈Ψ : Prσq

Ti
[Reach(Tq)]< 1}, together with a single deterministic static strategy

σq that witnesses the property for every non-terminal in set Wq. This can be done in

time k · |A |O(1), using the algorithms from [ESY18, Proposition 4.1 and Theorem 9.3]

for each target Tq, q ∈ K.

Then the Proposition is a direct consequence from the following Claim.

Claim 4.13. F =
⋂

q∈K Wq.

Proof. In order to prove the claim, we show the following: Ti ∈
⋂

q∈K Wq if and only if

∃σ′ ∈Ψ :
∧

q∈K Prσ′
Ti
[Reach(Tq)]< 1.

(⇐.) Suppose Ti 6∈
⋂

q∈K Wq, i.e., Ti ∈
⋃

q∈K W q, where W q :=V −Wq for each q ∈ K.

Then there exists some q′ ∈ K such that Ti ∈W q′ , i.e., ∀σ ∈Ψ : Prσ
Ti
[Reach(Tq′)] = 1.

Clearly, this implies that ∀σ ∈Ψ :
∨

q∈K Prσ
Ti
[Reach(Tq)] = 1.

(⇒.) Suppose that Ti ∈
⋂

q∈K Wq. Recall that for each q ∈ K there is a deterministic

static witness strategy σq for the non-terminals in set Wq. Let σ′ be a randomized static

strategy for the player defined as follows: in every non-terminal Tj of M-form, let σ′

choose uniformly at random among the actions assigned to Tj in each of the determinis-

tic static strategies σq, q∈K. Hence, for each q∈K, there is a positive probability that

strategy σ′ imitates strategy σq. Then, for each target non-terminal Tq (q∈K), under σ′

and starting at a non-terminal Ti ∈
⋂

q∈K Wq, it follows that Prσ′
Ti
[Reach(Tq)]< 1.

The randomized static witness strategy σ for the non-terminals in set F is precisely

the strategy σ′ constructed in the proof of the Claim above.

4.5.2
?
∃ σ ∈Ψ : Prσ

Ti
[
⋂

q∈K Reach(Tq)]< 1

Proposition 4.14. There is an algorithm that, given an OBMDP, A , and a set K⊆ [n] of

k = |K| target non-terminals, computes the set F := {Ti ∈ V | ∃σ ∈ Ψ :
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Prσ
Ti
[
⋂

q∈K Reach(Tq)] < 1}. The algorithm runs in time k · |A |O(1) and can also com-

pute a deterministic static witness strategy σ for a given starting non-terminal Ti ∈ F.

Proof. First, as a preprocessing step, for each q ∈ K we compute the set Wq := {Ti ∈
V | ∃σq ∈Ψ : Prσq

Ti
[Reach(Tq)]< 1}, together with a single deterministic static strategy

σq that witnesses the property for every non-terminal in set Wq. This can be done in

time k · |A |O(1), using the algorithms from [ESY18, Proposition 4.1 and Theorem 9.3]

for each target Tq, q ∈ K.

Then the Proposition is a direct consequence from the claim that F =
⋃

q∈K Wq. To

see this claim, note that Ti ∈
⋃

q∈K Wq if and only if there exists σ′ ∈Ψ and some q ∈ K

such that Prσ′
Ti
[Reach(Tq)] < 1 (by definition of the Wq, q ∈ K sets). Then the claim

follows directly from Proposition 2.2(2.).

For each Ti ∈F , select some q∈K, such that Ti ∈Wq, and, starting at a non-terminal

Ti, let the witness strategy σ act exactly as the deterministic static strategy σq.

Consider the following two examples of OBMDPs consisting of non-terminals

{M,T,T ′,L,R1,R2} and target non-terminals R1 and R2. M is the only controlled non-

terminal. The examples provide a good idea of the difference between the objectives

in Propositions 4.12 and 4.14.

Example 4.2.

M a−→ T T 1−→ L R1 L
1/2−−→∅

M b−→ T ′ T ′ 1−→ R1 R2 L
1/2−−→ R2

There exists a deterministic static witness strategy σ′ such that Prσ′
M [Reach(R1)∩

Reach(R2)] < 1, namely, starting at a non-terminal M, let the player choose deter-

ministically action a. Thus, the probability of observing both target non-terminals

in the generated play (tree) is 1/2. However, notice that for any strategy σ, start-

ing at non-terminal M, target non-terminal R1 is reached with probability 1. That is,

∀σ ∈Ψ :
∨

q∈{1,2}Prσ
M[Reach(Rq)] = 1.

Example 4.3.

M a−→ T T 1−→ L R1 L
1/2−−→ R1

M b−→ T ′ T ′ 1−→ L R2 L
1/2−−→ R2
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There exists a static strategy σ′ such that
∧

q∈{1,2}Prσ′
M [Reach(Rq)] < 1, but the

strategy needs to randomize, otherwise a deterministic choice in non-terminal M will

generate a target non-terminal immediately in the next generation. Note that the same

strategy σ′ (although a deterministic one suffices) also guarantees Prσ′
M [Reach(R1)∩

Reach(R2)]< 1.

4.5.3
?
∃ σ ∈Ψ :

∧
q∈K Prσ

Ti
[Reach(Tq)]> 0

Proposition 4.15. There is an algorithm that, given an OBMDP, A , and a set K⊆ [n] of

k = |K| target non-terminals, computes the set F := {Ti ∈ V | ∃σ ∈ Ψ :∧
q∈K Prσ

Ti
[Reach(Tq)]> 0}. The algorithm runs in time O(k · |V |2) and can also com-

pute a randomized static witness strategy σ for the non-terminals in set F.

Proof. First, for each q∈K, we compute the attractor set of target non-terminal Tq with

respect to the dependency graph G = (U,E), U =V , of A . That is, for each q ∈ K, we

compute the set Attr(Tq) as the limit of the following sequence 〈Attrt(Tq) | t ≥ 0〉:

Attr0(Tq) = {Tq}

Attrt(Tq) = Attrt−1(Tq)∪{Ti ∈V | ∃ Tj ∈ Attrt−1(Tq) s.t. (Ti,Tj) ∈ E}

In other words, Attr(Tq) is the set of nodes in G (or equivalently, non-terminals in A)

that have a directed path to the target node (non-terminal) Tq in the dependency graph

G. For each q ∈ K, such a set can be computed in time O(|V |2). So all k attractor sets

(one for each target non-terminal Tq,q ∈ K) can be computed in time O(k · |V |2). The

Proposition is a direct consequence from the following Claim.

Claim 4.16. F =
⋂

q∈K Attr(Tq).

Proof. To prove the Claim, we need to show that Ti ∈
⋂

q∈K Attr(Tq) if and only if

∃σ′ ∈Ψ :
∧

q∈K Prσ′
Ti
[Reach(Tq)]> 0.

(⇐ .) Suppose that Ti 6∈
⋂

q∈K Attr(Tq), i.e., there exists some q′ ∈ K such that Ti 6∈
Attr(Tq′). This implies that in the dependency graph G there is even no path from Ti to

Tq′ . Therefore, regardless of strategy σ for the player, Prσ
Ti
[Reach(Tq′)] = 0 and hence,

∀σ ∈Ψ :
∨

q∈K Prσ
Ti
[Reach(Tq)] = 0.

(⇒ .) Suppose that Ti ∈
⋂

q∈K Attr(Tq). Let σ′ be the randomized static strategy such

that in every non-terminal Tj ∈V of M-form it chooses uniformly at random an action

among its set of actions Γ j. For each q ∈ K, in the dependency graph G there is a
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directed path from Ti to Tq. Then under the described strategy σ′, starting at a non-

terminal Ti, there is a positive probability to generate any of the target non-terminals

{Tq | q ∈ K}, because there is a positive probability for a path in the play (tree) to

follow the directed path in G from Ti to Tq, for any q ∈ K.

Denote by λ the minimum of 1
max j∈[n] |Γ j| and the minimum probability among the

probabilistic rules of A . Then, in fact, for each q ∈ K, under σ′ there is a probability

≥ λn to generate a copy of target non-terminal Tq in the next ≤ n generations, i.e.,∧
q∈K Prσ′

Ti
[Reach(Tq)]≥ λn > 0.

The randomized static witness strategy σ for the non-terminals in set F is the strat-

egy σ′ constructed in the proof of the Claim above.

4.5.4
?
∃ σ ∈Ψ : Prσ

Ti
[
⋂

q∈K Reach{(Tq)]4{0,1}

Now let us consider the qualitative cases of multi-objective reachability where for a

given OBMDP and a given set K ⊆ [n] of target non-terminals, the aim is to compute

those non-terminals Ti ∈ V such that ∃σ ∈Ψ : Prσ
Ti
[
⋂

q∈K Reach{(Tq)]4{0,1}, where

4 := {<,=,>}.
First, due to the fact that the complement of the set (of plays)

⋂
q∈K Reach{(Tq)

is the set (of plays)
⋃

q∈K Reach(Tq), we give the following Lemma to show that this

complement objective reduces to the objective of reachability of a single target non-

terminal in a slightly modified OBMDP.

Lemma 4.17. There is an algorithm that, given an OBMDP, A , and a set K ⊆ [n]

of k = |K| target non-terminals {Tq ∈ V A | q ∈ K}, runs in linear time O(|A |) and

outputs another OBMDP, A ′, with a single target non-terminal Tf , such that for any

Ti ∈ V A −{Tq ∈ V A | q ∈ K} = V A ′ −{Tf } and any strategy σ ∈ ΨA , there exists a

strategy σ′ ∈ΨA ′ such that Prσ,A
Ti

[
⋃

q∈K Reach(Tq)] = Prσ′,A ′
Ti

[Reach(Tf )].

Proof. Consider the OBMDP, A ′, obtained from OBMDP, A , by adding a new purely

probabilistic target non-terminal Tf with a single rule Tf
1−→∅, removing all target non-

terminals {Tq ∈V A | q∈K} and their associated rules, and replacing any occurrence of

a non-terminal Tq ∈V A , q ∈ K, on the right-hand side of some rule with non-terminal

Tf . Hence, V A ′ = (V A ∪{Tf })−{Tq ∈ V A | q ∈ K}. Clearly, for any Tq ∈ V A , with

q ∈ K and for any σ ∈ ΨA , Prσ,A
Tq

[
⋃

q′∈K Reach(Tq′)] = 1. Also, for Tf ∈ V A ′ and for

any σ′ ∈ΨA ′ , Prσ′,A ′
Tf

[Reach(Tf )] = 1.
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Observe that for any play (tree) T in A , there is a play T ′ in A ′ such that any copy

o of a non-terminal Tq ∈V A , q ∈ K, in T is replaced in T ′ by a copy of non-terminal

Tf and the subtree of descendants of o is non-existent in T ′.
Now consider any starting non-terminal Tu ∈V A−{Tq ∈V A | q∈K}=V A ′−{Tf }.
Let σ ∈ΨA be any strategy for the player in A . Define strategy σ′ ∈ΨA ′ in A ′ in

the following way: for each non-terminal Ti ∈V A ′−{Tf }, strategy σ′ behaves exactly

like σ for all ancestor histories ending in Ti, and for non-terminal Tf strategy σ′ acts

arbitrarily in all ancestor histories ending in Tf since it is irrelevant. Note that, due to

the construction of A ′ and σ′, if a play (tree) T , generated under strategy σ, belongs to

the set (objective)
⋃

q∈K Reach(Tq) in A , then in A ′ under σ′ the corresponding unique

play T ′ (as described above) belongs to the set (objective) Reach(Tf ). Furthermore, all

plays T in A with the same corresponding play T ′ in A ′ have a combined probability,

of being generated under σ, equal to the probability of T ′ being generated under σ′

in A ′. Hence, Prσ,A
Tu

[
⋃

q∈K Reach(Tq)] = Prσ′,A ′
Tu

[Reach(Tf )]. But σ was an arbitrary

strategy.

For the opposite direction, let σ′ ∈ΨA ′ be any strategy for the player in A ′. Define

σ ∈ΨA to be the strategy in A such that, for each non-terminal Ti ∈V A −{Tq ∈V A |
q ∈ K}, acts the same as σ′ in all ancestor histories ending in Ti; and for each non-

terminal Tq ∈V A , q ∈ K, the strategy σ acts arbitrarily in all ancestor histories ending

in Tq as it is irrelevant. Then, for any play T ′ ∈Reach(Tf ) in A ′ under strategy σ′, there

is at least one play T ∈
⋃

q∈K Reach(Tq) in A under strategy σ, such that for any copy

of non-terminal Tf in tree T ′ there is a copy of some non-terminal Tq ∈V A , q ∈ K, at

the corresponding position in tree T . But note that the probability of generating T ′ in

A ′ under σ′ is equal to the sum of probabilities of generating all such corresponding

plays T in A under σ. Hence, Prσ′,A ′
Tu

[Reach(Tf )] = Prσ,A
Tu

[
⋃

q∈K Reach(Tq)]. But σ′

was an arbitrary strategy.

We now present a Proposition that deals with all four qualitative questions for the

(set of plays) objective
⋂

q∈K Reach{(Tq) for a given set K⊆ [n] of target non-terminals.

Proposition 4.18. There is a P-time algorithm that, given an OBMDP, A , and a set

K ⊆ [n] of k = |K| target non-terminals, computes the set F := {Ti ∈ V | ∃σ ∈ Ψ :

Prσ
Ti
[
⋂

q∈K Reach{(Tq)]4{0,1}}, where4 := {<,=,>}. The algorithm can also com-

pute a deterministic witness strategy σ for the non-terminals in set F.

Proof. We can rephrase the question of whether ∃σ∈ΨA : Prσ,A
Ti

[
⋂

q∈K Reach{(Tq)]4x,

where x∈{0,1}, accordingly into the form ∃σ∈ΨA : Prσ,A
Ti

[
⋃

q∈K Reach(Tq)]4{1−x,
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where 4{ is <,=,> if 4 is >,=,<, respectively. And as a consequence of Lemma

4.17, there exists a modified OBMDP, A ′, with a single target non-terminal Tf such

that A ′ is computable in linear time and the following is true: ∃σ ∈ΨA : Prσ,A
Ti

[
⋃

q∈K

Reach(Tq)]4{1− x if and only if ∃σ′ ∈ΨA ′ : Prσ′,A ′
Ti

[Reach(Tf )]4{1− x.

For the case of 1− x = 0, by [ESY18, Proposition 4.1], there is a P-time algorithm

to compute the set FA ′ of non-terminals Ti in A ′ and a deterministic static witness

strategy σ′ ∈ ΨA ′ such that Ti ∈ FA ′ are precisely the non-terminals that satisfy the

property Prσ′,A ′
Ti

[Reach(Tf )]4{0.

For the case of 1− x = 1 and4{ equal to < (respectively, =), by [ESY18, Propo-

sition 4.1 and Theorems 9.3, 9.4], there is again a P-time algorithm to compute the set

FA ′ of non-terminals Ti in A ′ and a deterministic static (respectively, non-static) wit-

ness strategy σ′ ∈ ΨA ′ such that Ti ∈ FA ′ are precisely the non-terminals that satisfy

the property Prσ′,A ′
Ti

[Reach(Tf )]< 1 (respectively, Prσ′,A ′
Ti

[Reach(Tf )] = 1).

Now for the qualitative decision questions where tuple (4{,1−x) is equal to (=,0)

or (<,1), let F = FA := FA ′; and where tuple (4{,1− x) is equal to (>,0) or (=,1),

let F =FA :=(FA ′−{Tf })∪{Tq ∈V A | q∈K}. By the proof of Lemma 4.17, from the

deterministic (non-)static witness strategy σ′ ∈ΨA ′ in A ′ for the starting non-terminals

from set FA ′ we can obtain a corresponding deterministic (non-)static witness strategy

σ ∈ ΨA in A for the starting non-terminals from set F −{Tq ∈ V A | q ∈ K}. As for

each non-terminal Tq ∈V A ,q ∈ K, let strategy σ make deterministically and statically

an arbitrary choice of action from the action set Γq (in the case if Tq is of M-form),

since if Tq 6∈ F then strategy is irrelevant at Tq and if Tq ∈ F then the property holds for

any choice of the strategy in Tq.

4.5.5
?
∃ σ ∈Ψ :

∧
q∈K Prσ

Ti
[Reach(Tq)] = 0

Proposition 4.19. There is a P-time algorithm that, given an OBMDP, A , and a set

K ⊆ [n] of k = |K| target non-terminals, computes the set F := {Ti ∈ V | ∃σ ∈ Ψ :∧
q∈K Prσ

Ti
[Reach(Tq)] = 0}. The algorithm can also compute a deterministic static

witness strategy σ for the non-terminals in set F.

Proof. Note that the question of deciding whether there exists a strategy σ ∈ Ψ for

the player such that
∧

q∈K Prσ
Ti
[Reach(Tq)] = 0 can be rephrased as asking whether

there exists a strategy σ ∈ Ψ such that
∧

q∈K Prσ
Ti
[Reach{(Tq)] = 1. By Proposition

2.2(1.), we already know that it is equivalent to ask instead whether there exists a

strategy σ ∈ Ψ such that Prσ
Ti
[
⋂

q∈K Reach{(Tq)] = 1. Hence, F = {Ti ∈ V | ∃σ ∈ Ψ :
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Prσ
Ti
[
⋂

q∈K Reach{(Tq)] = 1}. And by Proposition 4.18, there is a P-time algorithm

to compute the set F and to compute a deterministic static witness strategy σ for the

non-terminals in set F .

We leave open the decidability of general Boolean combinations of arbitrary qual-

itative reachability and non-reachability queries.





Chapter 5

Conclusions and Future Work

In this thesis we have studied two models of infinite-state stochastic processes, namely

Branching Processes and Ordered Branching Processes, where one can naturally view

the latter as a crossover model between Branching Processes and Stochastic Context-

Free Grammars. In particular, OBPs borrow the simultaneous expansion of rules, gen-

eration by generation, from BPs, while also borrowing from SCFGs the fact that there

is an ordering among the children generated by any rule and, hence, an ordering of the

non-terminals in the generated tree.

To sum up the main results, this thesis included the first study of the (single-target)

reachability objective for the concurrent game generalization of BPs. We showed

that BCSGs are determined, i.e. have a value, and showed that computing the non-

reachability values for a BCSG is equivalent to computing the Greatest Fixed Point

of a corresponding system of equations (called a minimax-PPS), by extending known

results for the subclass of BSSGs. We also showed that the qualitative almost-sure

and limit-sure reachability problems do not coincide in the case of branching concur-

rent games, and gave the first polynomial time algorithms for both almost-sure and

limit-sure reachability in BCSGs. The proofs of the algorithms showed how to com-

pute an almost-sure strategy (respectively, a limit-sure strategy for a given desired error

ε> 0) for the player maximizing the reachability probability, or alternatively, a spoiling

strategy for the player minimizing the reachability probability if almost-sure (respec-

tively, limit-sure) reachability is not satisfied. Moreover, in the interest of the study

of the reachability objective for branching processes being complete in this thesis, we

showed that analogous complexity results from past papers on a related line of work

(on Recursive models) apply for reachability in BCSGs, thus showing PSPACE to be

an upper bound for both quantitative reachability decision and approximation ques-

151
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tions for BCSGs and POSSLP to be a lower bound for the quantitative reachability

decision questions for BCSGs (even for the purely probabilistic BPs). These are the

best bounds we know so far. We also showed that computing the optimal reachability

probabilities in a minimizing BMDP (equivalently, computing the GFP of a maxPPS)

is in the complexity class, FIXP, which captures search problems that can be rephrased

as fixed-point problems.

Furthermore, this thesis included the first look on multi-objective reachability on

branching processes, and to be more precise, on the OBPs model. We showed that

qualitative multi-objective reachability (particularly, the qualitative problem of multi-

target reachability) in OBMDPs is in general NP-hard, when the number of given target

non-terminals is unbounded. We also demonstrated that for OBMDPs, unlike in the

case of single-target reachability, the almost-sure and limit-sure multi-target reacha-

bility problems do not coincide and provided algorithms for both problems that are

fixed-parameter tractable with respect to the number k of target non-terminals (i.e.,

that run in time polynomial in the size of the OBMDP and exponential in k). We also

studied for OBMDPs other certain Boolean combinations of qualitative reachability

and non-reachability queries with respect to different given target non-terminals, pro-

viding efficient algorithmic results for their decidability. In the proofs of all the given

algorithms, we showed how to construct the corresponding desired witness strategy for

the player in the OBMDP.

5.1 Open problems & Future work

The following is a list of open problems that are suggested as a follow-up study to the

work presented in this thesis.

1. It remains open the question of how much the PSPACE upper bounds for the

approximation of (non)-reachability values in BCSGs, equivalently approximation of

the GFP of an associated minimax-PPS, can be improved. We do not yet know any

lower bounds for this problem.

2. Furthermore, recall that in Section 3.6 we showed that computing the optimal

reachability probabilities in minimizing BMDPs, equivalently, computing the GFP of

a maxPPS, is in FIXP. We leave open the questions of whether computing the optimal

reachability probabilities in maximizing BMDPs (equivalently, computing the GFP of

a minPPS) and computing the reachability values in BSSGs (equivalently, computing
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the GFP of a min-max-PPS) is also in FIXP, and whether approximating the reacha-

bility values in BCSGs (equivalently, approximating the GFP of a minimax-PPS) is in

FIXPa.

Note that it has been shown in an unpublished manuscript ([ESY14]) that approx-

imating the extinction values in BCSGs (equivalently, approximating the LFP of a

minimax-PPS) is in FIXPa. It is plausible that similar techniques may prove the in-

clusion in FIXPa of the problem of approximating the GFP of a minimax-PPS, but

currently this remains an open problem.

3. The decidability of arbitrary Boolean combinations of qualitative reachability and

non-reachability queries over different given target non-terminals in OBMDPs remains

open. We studied certain cases of the qualitative multi-objective reachability, with the

almost-sure and limit-sure multi-target reachability problems being the most interest-

ing to study and the more important on the journey to a complete analysis of arbitrary

qualitative questions.

Also, it would be interesting to extend the qualitative multi-objective reachability

results, that we provided for OBMDPs, to Ordered Branching Simple (turn-based)

Stochastic Games.

4. Furthermore, we leave open (both the decision and approximation) quantitative

multi-objective reachability questions for OBMDPs. The goal of the quantitative prob-

lem is to optimize each of the respective probabilities that the generated tree satisfies

each of several given reachability objectives. Clearly, there may be trade-offs between

the different objectives. That is, increasing the probability of one of the objectives

may result in decreasing the probability of another objective, or in other words, sat-

isfying one objective with a high probability may result in satisfying another with a

low probability. That is why in the presence of k objectives, one can be interested in

finding vectors of probabilities, p = (p1, p2, . . . , pk), such that there is a strategy for

the controller where, for each i ∈ [k], the i-th objective is guaranteed to be achieved

with probability ≥ pi. In other words, one may be interested in computing (or approx-

imating) the trade-off curve (also called the Pareto curve) of optimal probabilities with

which the different reachability objectives can be achieved. To be more precise, the

Pareto curve is the set of all achievable vectors p of probabilities such that there is no

vector p′ 6= p where p′ ≥ p (coordinate-wise). And since it may be computationally

expensive to construct the exact curve, often the focus is on approximating the curve.
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An ε-approximation for the Pareto curve is the set Pε of all achievable vectors such that

for each achievable vector t there is a vector p ∈ Pε where (1+ ε)p≥ t.

5. For (O)BMDPs with a single target, we have Bellman optimality equations whose

(greatest) solution captures the optimal (single-target) non-reachability probabilities

([ESY18]), but we do not yet have Bellman optimality equations for multi-objective

(non-)reachability. What is more, multi-objective reachability for finite-state MDPs

can be characterized as multi-objective linear programming ([EKVY08]). But we do

not yet know how to characterize multi-objective reachability for (O)BMDPs as multi-

objective mathematical programming, and we believe this is a very promising approach

to explore. It may also imply complexity bounds for the quantitative problems.

6. We have shown that under the objective of single-target reachability the OBMDP

and BMDP models are equivalent. However, the equivalence is not yet evident under

multi-objective reachability. The reason for this is the following. In the BMDP model

there is no ordering among the children generated by a rule (the set of offsprings in

a rule is a multi-set over the types). Nevertheless, the histories that the controller’s

strategy maps to distributions on actions are entire finite trees, not just information

about the ancestors of a node (i.e., not just what we called an ancestor history). That

is, in BMDPs the strategy has at its disposal the entire finite tree up to the “current

generation” in the process, together with all the actions chosen and probabilistic rules

applied in all previous generations.

Recall that in Section 2.4 we also defined a general strategy for OBMDPs to have

as a history the entire finite tree up to the current generation. There is no “good” or

“suitable” definition of a strategy for the models of branching processes. There are

many variations of the type of history that is provided to the strategy and each one can

bring different advantages and disadvantages to the objectives we study in this thesis.

We have utilized two natural ways to define the notion of a history for the strategy, but

for others there may be another more natural definition. What is interesting in the two

variations of a history that we have provided, is that we already showed that the more

general notion of a history (i.e., strategy having the information of the entire finite

tree up to the current generation) is not more powerful than an ancestor history for

OBMDPs for the (single-target) reachability objective, due to the advantage of having

ordering in the tree. But there is a difference, not investigated yet, for multi-objective

reachability.
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Recall that Example 2.1 showed that the almost-sure and limit-sure multi-target reach-

ability problems in OBMDPs do not coincide. However, if the example is an OBMDP

where the strategy is allowed to have the entire finite tree up to the current generation

as a history, then in that particular example both almost-sure and limit-sure multi-target

reachability is satisfied. That is, there is a strategy that, starting in a non-terminal M,

guarantees to reach both targets R1 and R2 with probability 1. To see this, consider

the following deterministic strategy σ′: in every generation t ≥ 0, if R1 has not yet oc-

curred anywhere in the history tree, then for the unique non-terminal M in the current

generation choose (deterministically) action a, yielding a child M and another child A.

(Note that each non-terminal A has a 1/2 chance of having a child R1.) If, on the other

hand, the history tree already contains R1, then (deterministically) choose action b at

the (at most one) non-terminal M in the current generation. It is easy to check that this

strategy guarantees that both targets R1 and R2 will occur in the play, with probability

1, in a finite expected number of generations.

However, observe that there is no static (not even randomized) almost-sure strategy

for reaching both target non-terminals. If a static strategy puts any positive probability

on action b, then the probability of reaching R1 is strictly less than 1. Otherwise, the

probability of reaching R2 is 0. (On the other hand, note that there is a family of

limit-sure static strategies: for each ε > 0, let σ′ε put probability 1− ε on action a and

probability ε on action b. In the limit, as ε→ 0, the probability of generating both R1

and R2 in the play approaches 1.)

We believe that almost-sure and limit-sure multi-target reachability problems do coin-

cide for (O)BMDPs with the more general notion of a history for the strategy (where

the history is the entire finite tree up to the current generation and not just information

about the ancestors of a node), and, in fact, we believe that the algorithm we gave

for the limit-sure case in Section 4.3 is sufficient to be the algorithm for qualitative

multi-target reachability in such (O)BMDPs. However, we should point out that this

is a promising hypothesis to investigate in the future and the problem of qualitative

multi-target reachability in (O)BMDPs with the more general notion of a history for

the strategy remains an open problem.

As you can see from the open problems posed above, the study contained in this

thesis spawns certainly a vast line of further research that can be investigated.
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