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ABSTRACT

Affordable, reliable endo- and exoatmospheric transporta-
tion, for both the military and commercial sectors, grows in
importance as the world grows smaller and space explo-
ration and exploitation increasingly impact our daily lives.
However, the impact of disciplinary, operational, and tech-
nological uncertainties inhibit the design of the requisite
hypersonic vehicles, an inherently multidisciplinary and
non-deterministic process. Without investigation, these
components of design uncertainty undermine the design-
ers’ decision-making confidence.

In this paper, the authors propose a new probabilistic de-
sign method, using Bayesian Statistics techniques, which
allows assessment of the impact of disciplinary uncer-
tainty on the confidence in the design solution. The pro-
posed development of a two-stage reusable launch vehi-
cle configuration highlights the means to first quantify the
fidelity of the disciplinary analysis tools utilized, then prop-
agate such to the vehicle system level.

BACKGROUND

For the second time since its inception, the United States
Air Force (USAF) Scientific Advisory Board (SAB) re-
searched the future needs and present shortcomings
in the USAF's overall mission effectiveness. This as-
sessment includes definitions of and requirements for
future mission areas. The SAB compiled their find-
ings in a series of volumes, collectively known as the
New World Vistas, describing aerospace systems con-
cepts with the potential to provide the greatest mission ca-
pabilities to the future Air Force [1]. For many cases, the
United States needs to develop and field hypersonic sys-
tems to best equip its Air Force for its missions. In fact, the
SAB considers hypersonic vehicles one of seven top-level
system categories to answer the challenges facing tomor-
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row's Air Force. Specifically, its members envision hy-
personics taking operational form as tactical and strategic
missiles, global-reach spaceplanes, and reusable launch
vehicles. These systems could fulfill the strike, bombing,
mobility, reconaissance, and space access roles more
effectively than other candidates, owing to their higher
speeds and lethality.

Market forecasts reveal strong growth in worldwide pas-
senger travel. This growing demand, and the desire for
shorter trip times, point to a hypersonic commercial trans-
port to satisfy passenger's needs. A correspondingly
stronger world air cargo market, and the desire for faster
route travel, indicate a possible freighter role for the hy-
personic transport as well.

Growing opportunities exist for commercial vehicles for
access to space as well. Taking the form of reusable
launch vehicles (RLVS), commercial hypersonic systems
would fulfill the missions of rapid intercontinental trans-
port, satellite delivery and on-orbit maintenance, and civil
space missions including manned spaceflight and the In-
ternational Space Station [2].

Cost drives the desire to shift the world’s space launch
burden off of its fleet of expendable launchers. The ex-
pense of operating the Space Shuttle, and expendable
launchers such as the Titan IV, constrains commercial
and government efforts in space, especially with today’s
declining budgets [3]. Reusable launch vehicles (RLV'’s)
potentially offer more reliable and affordable access to
space. However, NASA cannot retire the veteran Shut-
tle until commercial RLVs not only become available, but
have demonstrated safe and reliable operation [2].

MOTIVATION

DISCIPLINARY UNCERTAINTY The lack of a credible
multidisciplinary simulation capability for hypersonic vehi-
cles stands between those vehicles in service today and
those needed tomorrow. Any aircraft design process re-



quires a multidisciplinary approach to vehicle synthesis
and sizing to best evaluate the compromises between the
various disciplines. Hypersonic vehicle design takes this
“necessary evil” to the extreme, for it exhibits an excep-
tionally tight coupling of disciplines [4], as shown in Figure
1. The more stringent requirements and constraints of the
design force this close coupling, with greater sensitivity to
changes.
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Figure 1. Coupling of disciplines in hypersonic vehicle
design [4]

A synthesis and sizing capability takes form as an au-
tomated computational environment of integrated disci-
plinary analysis tools [5]. The term “disciplines” implies
both those in the classic engineering sense, such as
aerodynamics and propulsion, and the product life-cycle
sense, including manufacturing and operations. Analysis
tools may run the gamut from simple regression equa-
tions, to physics- and process-based analyses (e.g., com-
putational fluid dynamics), to experimental databases.

The fidelity of the synthesis and sizing environment'’s con-
stituent analyses comes into question [6], as do their al-
gorithmic accuracy. The use of lower-fidelity tools results
from trading accuracy for computational speed, or from
the utter lack of tools of higher analytical fidelity. Lower-
fidelity tools implement first-order analyses in the form of
regression of historical data or oversimplifications of the
physics involved. As such, they utilize only a minimal in-
put vehicle configuration, and in turn, require a minimum
of time for problem setup and execution. These tools thus
run quickly, yet provide dubious results. The inability to
analytically predict the exact value of parameters defines
disciplinary uncertainty, the uncertainty ultimately man-
ifest in the use of lower-fidelity tools.

Other than accounting for the impact of uncertainty, only
the use of higher-fidelity tools mitigates this problem.
However, their physics-based analyses require detailed
input and long setup and execution times, rendering their
use at each design iteration impractical. Also, higher-
fidelity codes don’t completely mitigate the problem of de-
sign uncertainty. For example, such codes include calibra-
tion factors to finely adjust the values of the outputs; these

factors exist to circumvent the uncertainty in calculations
of the given values.

Also, particularly in the hypersonic flight regime, high-
fidelity disciplinary analysis tools elude use by vehicle
designers. The hypersonic flight literature documents a
number of efforts to develop such analyses, including
those for aerodynamics (References [7,8]) and propul-
sion (References [9,10]). Meanwhile, several more ef-
forts seek experimental solutions, as described in Refer-
ences [11-14]. Yet Blankson et al. discuss the “inabil-
ity of ground facilities to generate hypersonic test data at
real flight conditions for validating design tools” [15]. The
tendency of flight test data “to raise more questions than
answers” compounds the problem [16].

Until recent efforts come to fruition, disciplinary uncer-
tainty will hamper conceptual and preliminary hyper-
sonic vehicle design. The inadequacies of test facili-
ties contribute to the lack of knowledge of the hyper-
sonic aerothermodynamic environment, resulting in ex-
treme limitations of current multidisciplinary simulation ca-
pability [15].

ACCOUNTING FOR UNCERTAINTY NASA Adminis-
trator Daniel Goldin states that [17]

...the hypersonic and space environments are
filled with uncertainty, so traditional numerical
approaches will not work. .. In order to account
for the uncertainty and to quantify the risk level,
we need to move from the traditional determinis-
tic methods to non-deterministic methods. . .

Deterministically derived, single-value solutions fail to
capture the effects of uncertainty, a random phenomenon
by definition. Thus, probability distributions must serve
to represent uncertain quantities, for “probabilities are the
language of uncertainty; probability laws are the grammar
of that language” [18]. Past research by the Aerospace
Systems Design Laboratory asserts and demonstrates
this point in modeling disciplinary, operational, and tech-
nological uncertainty [19-21].

Figure 2, based on Reference [22] and professional expe-
rience, depicts a representative design space exploration
process for probabilistic system design. From a given
mission, and a “baseline” vehicle sized to that mission,
the process starts with the definition of a design space.
The design variables of interest, and ranges of values for
those variables, define the design space. Inclusion of op-
erational uncertainty requires further definition by way of
relevant noise factors, and ranges of possible values for
them. Probability distributions further define each vari-
able. Control factors receive uniform distributions, for they
lie within the designer’'s control and thus may take any
value in the range with equal likelihood. Noise factors re-
ceive such probability distributions as Normal or Beta to
represent their randomness. Commencement of the pro-



‘T_ baseline vehicle
" — design space I, P, N,
environment L_A_J L.A_A L.A_J

ﬂaemdynamics
= fidelity} —'—LE

codes or metamodels
disciplinary CDFs

application

robust design
change I

invest resources

improve 5

metrics g
objectives, constraints ﬁl“

! probabilstic |
wrapper !

| synthesis o
& sizing e
0 ?)

\ probabilistic |

economics & 4

manufacturing ?

infuse technologies

,

oPlOY, —

v

wrapper !

technical feasibility
economic viability

Figure 2: Generic probabilistic design environment

Current process, no uncertainty accounting

.

design space

JEN, N,

design space

Figure 3: Madification for design uncertainty quantifica-
tion

cess includes metric identification, by defining objectives
and constraints for the system.

The vehicle simulation capability comprises a series of
disciplinary analysis codes, linked to a synthesis and siz-
ing tool (e.g., a trajectory analysis code), and further
linked to an economics (with manufacturing) code for life-
cycle cost analysis. The linking of codes in this manner
creates an automated multidisciplinary simulation envi-
ronment, an integral part of any probabilistic design ef-
fort [5, 6]. The disciplinary and economic analysis tools in
Figure 2 need not be actual computer programs or exper-
imental databases. These may take the form of analysis
and cost modules internal to a monolithic design code,

integrated with synthesis and sizing routines. Or, they
may be metamodels, like Response Surface Equations
(RSE’s), linked with a synthesis and sizing tool, a proce-
dure well-documented in the ASDL literature (e.g. Refer-
ences [23-25]).

Notice the interim step between the disciplinary analyses
and the synthesis and sizing tool. The probability distri-
butions following each analysis in Figure 2 represent the
effects of design uncertainty. Instead of “point” values for
disciplinary outputs, one set per set of input values, there
exist distributions borne of fidelity and model fit error ac-
counting. These distributions then proceed to the synthe-
sis and sizing code. This detailed process of quantifying
and propagating disciplinary uncertainty provide the foun-
dation of the proposed work.

A probabilistic tool (e.g., the Southwest Research Insti-
tute’s Fast Probability Integrator, or FPI) integrates dis-
ciplinary uncertainty information, obtained a priori, into
the disciplinary outputs. Likewise, the probabilistic tool
inputs this information to the synthesis and sizing, and
economics codes, ultimately providing the distributions on
the system-level responses, i.e., the previously defined
objectives and constraints. “Technical feasibility” assess-
ment entails comparison of performance objectives with
imposed constraints [26]. For a launch vehicle, one such
objective might be gross lift-off weight (GLOW), subject to
the constraint of a maximum of 5 million pounds. “Eco-
nomic viability” assessment likewise compares life-cycle
cost objectives to constraints. Again for the launch ve-
hicle, an example is cost per pound of payload to low
Earth orbit, constrained to under $1000/lb. The CDF's



generated for each assessment indicate the probability
of “success,” or the percentage of the design space de-
fined in the design variable ranges that, subject to uncer-
tainty, satisfies the imposed constraints on the objectives
considered. From another perspective, the designer may
view the system-level CDF'’s as a measure of design con-
fidence; for the point on the CDF curve intersected by the
constraint, the corresponding probability value equals the
level of confidence in the design achieving that value. In
the $/lb example, if the constraint, say $1000/Ib, meets the
curve at the 30% probability level, then the designer may
state he/she believes “the design can meet the target of
$1000/Ib to LEO with 30% confidence.”

PROBLEM STATEMENT “Zoom in” on any one of the
disciplinary analysis codes (and its probabilistic output)
from Figure 2, and Figure 3 results. The upper half de-
picts the treatment of disciplinary analyses in existing de-
sign methods. The probabilistic tool employed accepts the
uniformly distributed control factors of the design space,
executes the code (or evaluates the metamodel) accord-
ingly, and outputs the resulting distribution for the subsys-
tem metric. Existing methods, without accounting for the
uncertainty in the analysis, treat the output canonically;
the point values defining the probability density function
(PDF) curve are truly discrete points.

The lower half of Figure 3 shows the effect of design
uncertainty accounting. Application of the knowledge of
the nature of the design uncertainty in question, obtained
beforehand, alters the output PDF of the analysis. Each
point on the PDF, accounting for uncertainty, becomes a
distribution of its own. The output PDF, now a collection
of distributions instead of discrete points, takes on a new
form.

Three questions result from the above consideration; it is
these questions that ultimately motivate this work.

1. How does a designer systematically quantify de-
sign uncertainty for a disciplinary analysis?

2. By what process does one measure the uncer-
tainty, and then recompute the analysis results in
light of the uncertainty?

3. Upon quantifying design uncertainty, how does
the designer propagate the results to the vehi-
cle/system level?

Through this paper, the authors present the future frame-
work for systematically answering these questions.

THEORY: BAYESIAN STATISTICS

OVERVIEW Bernardo and Smith state that “Bayesian
Statistics offers a rationalist theory of personalistic beliefs
in contexts of uncertainty. .. The goal, in effect, is to estab-
lish rules and procedures for disciplined uncertainty ac-
counting” [27]. From this scholarly assurance, the authors

confidently assert Bayesian Statistics’ ability to answer the
research questions posed.

Over its long history, the statistics community derived
several well-known probability distribution function (PDF)
types. This work concerns itself only with the Uni-
form, Normal, and Beta distributions. Past work in
aerospace systems design indicates that the Normal and
Beta distributions adequately model uncertainty parame-
ters, whereas the Uniform distribution represents control
factors [24—26]. Also, Phillips reveals that in general prac-
tice, the Uniform, Normal, and Beta PDF’s suffice to solve
any problem in Bayesian Statistics [18].

Equation 1 states Bayes’ Theorem in terms of discrete
events, e.g., rolling dice or drawing cards. A; and A;
represent n discrete events partitioning a given sample
space. These events are partitions because they are as-
sumed to be mutually exclusive, i.e., they have no out-
comes in common. B represents a further event, and
P(B|A;) equals the probability that event B occurs when
it is known that event 4; has occurred, also known as the
conditional probability of B, conditional on the occur-
rence of A;.

P(Ai) - P(B|A:)

P(4|B) = Y, P(4;) - P(BJ4;)

@)

The above formulation of Bayes’ Theorem represents but
one specific perspective on the theory. In general, “opin-
ions are expressed in probabilities, data are collected, and
these data change the prior probabilities, through the op-
eration of Bayes’ Theorem, to yield posterior probabilities”
[18]. In these more general terms, P(A4;), the prior prob-
ability, represents one’s hypothesis about the outcome
of event A;. P(B|A;) represents the data collected or
observations made when testing the hypothesis. Finally,
P(A;|B), the posterior probability, equals the new hy-
pothesis, or the original hypothesis now “corrected” in light
of the new information provided by P(B|A;).

QUESTIONS 1 & 2 - QUANTIFYING UNCERTAINTY
Past work [24,25] indicate that consideration of disci-
plinary uncertainty typically rests with so-called expert
opinion of that uncertainty. Expert opinion regarding a
code’s fidelity typically stems from observation of a few
cases, and thus omits the effects of dissimilar vehicle
types and geometries, and flight conditions. In other
words, the fidelity uncertainty varies with the specifics of
the problem, so “blanket statements” about the fidelity be-
come suspect. Therefore, the belief regarding the nature
of the uncertainty requires revision based on data, col-
lected for the purpose of testing the belief. This task is the
raison d’'étre of Bayesian Statistics. In addition, proper ac-
counting for fidelity uncertainty requires observations on
multiple data sources which, together with expert opinion,
will derive a more representative probability distribution to
model disciplinary uncertainty.



Theoretical Background Lee presents Bayes’ Theorem
reformulated in a form more suited to engineering and de-
sign, i.e., in terms of probability density functions (PDF’s)
rather than discrete events [28]:

p(0) -p(z]6) _ p(6) - p(=|0)
p(]z) = [,p0) -p(z|0)dd —  p(x)

@)
or more simply,

p(Blz) o p(6) - p(z|6) @)

In this formulation, p(f) equals the prior density, p(z|9)
represents the data observed when testing the prior, and
p(8]z) is the resulting posterior density.

Bayes’ Theorem applies with equal validity for single or
multiple observations. That is, x may be a single set of ob-
served data z, or a vector of multiple, independent obser-
vations Z. The theorem conveniently allows for sequential
application of the method in the latter case, as shown in
Figure 4. Taking n as the number of observations such
that # = {x1, s, ...,2,}, One applies Bayes’ Theorem us-
ing the prior density, p(#), and the first data set, p(x;|6).
The resulting posterior density, p(6|z; ), becomes the prior
density in a subsequent calculation, using the data set
p(z2]6), and so on. Furthermore, the same final poste-
rior density results regardless of the order of introduction
of the data sets; “shuffling” the p(z;) values won't affect
p(8)7).
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Figure 4: Sequential use of Bayes’ Theorem

Implementation: Prior Density For a new design prob-
lem, the designer’s initial estimation of disciplinary uncer-
tainty stems from “expert” opinion. Intuitively, then, the
prior density of Bayes’ Theorem represents this estima-
tion.

The developer(s) and/or expert user(s) of a given disci-

plinary analysis code typically refer to the code’s output(s)

as “good to within plus or minus 8 percent,” with 6 stated

as some small integer value. Implicit in such a statement

is the belief that the code’s fidelity errors are Gaussian

(defined by a Normal PDF), with mean p = the output
1

value, and standard deviation o = 7 x [upper limit —

lower limit] [24]. For example, £3% translates to a stan-
dard deviation of 0 = § x [3 — =3] = 1. (99.7% of the
Normal PDF curve lies within +3¢ of the mean [29]; for
all practical purposes, this “6¢” spectrum captures the en-
tire range of values under the PDF curve.) Note that this
description follows for the case of the standard Normal
distribution, with u = 0; for other values, p scales o. In the
Bayesian sense, the stated fidelity uncertainty of a code
forms the prior density, normally distributed with parame-
ters u (mean) and o2 (variance, the square of the standard
deviation); symbolically,

6 ~N(u,0%), 0= (UL% x M)ﬁ—O(LL% X 1)

(4)

Note that this calculation follows for each disciplinary met-
ric output from each analysis code.

Implementation: Observations As for the Bayesian prior
density and initial uncertainty estimation, “observations”
and “data” translate to test cases for the code in question,
i.e., comparisons of the code’s outputs to physical data of
the same disciplinary metrics. To truly test a disciplinary
analysis requires modeling existing vehicles in the code,
vehicles similar to the design in question and for which
physical test data exist. For example, one could test the
disciplinary analyses in the design of a re-entry vehicle
using the Space Shuttle and the Apollo capsules as vali-
dation cases; for a spaceplane design, NASA’s X-15 and
XB-70 research vehicles (see Reference [30]) could pro-
vide these cases.

For each disciplinary metric utilized from a given code’s
output, cross-plotting the code’s results with the physical
data for the system illustrates the distribution (Normal or
Beta) derived to model the uncertainty for the given case
[25], as in Figures 5 and 6. Figure 5 provides a Stability
and Controls example of the difference between analytical
results and test data for a particular disciplinary metric -
here, moment coefficient versus angle of attack. Figure
6 shows these differences on the vertical axis, versus the
analytical results on the horizontal axis.

In fact, Figure 6 is a histogram, a key statistical tool indi-
cating the nature of the PDF governing an “experiment’s”
behavior [29]. Observation of this histogram leads to iden-
tification of the PDF type and parameters. In this par-
ticular example, the histogram shape clearly indicates a
Beta distribution. The parameters “a” and “b,” the lower (-
0.0525) and upper (0.0025) bounds, are obvious directly
from the histogram. The shaping parameters “q” and “r
require study of Beta PDF shapes, such as the gallery
thereof in Reference [28]; in this case, one concludes
g=3.0andr = 1.5.

The above process leads to a PDF modeling fidelity of one
disciplinary metric from one disciplinary analysis code, for
one test case. A fair and accurate uncertainty assess-
ment, again for each metric, requires repetition of the pro-
cess for each vehicle data set. The result is a series of
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PDF's representing the “observations” in Bayes’ Theorem.

Integration: Constructing the Uncertainty Model The
PDF's computed for Bayesian prior and observed den-
sities, combined via Bayes’ Theorem, result in the
posterior density - the probabilistic model of disciplinary
uncertainty, as Figure 4 illustrates. The initial hypothesis
p(0) at the upper-left of the figure represents the prior
distribution, the disciplinary uncertainty model assumed
initially. Modeling existing vehicles in analysis codes, and
comparing the results for a given metric to the data for
the vehicles, result in PDF’s representing observations in
support of the hypothesis - the data, p(x;|6), down the
right side of Figure 4. Sequential application of Bayes’
Theorem with these elements yields the PDF quantifying
disciplinary uncertainty.

The literature unanimously concludes the necessity
of representing prior and observed distributions with
specifically-paired PDF types. Failure to adhere to this
conclusion in applying Bayes’ Theorem results in uncate-
gorizable posterior distributions. Such cases greatly com-
plicate the propagation of computed disciplinary uncer-

tainty information. For the two distributions considered in
this work, the combination of a Normal prior distribution
and Normal observations yields a Normal posterior distri-
bution [28], while a Beta prior yields a Beta posterior if the
observed data take the form of the Binomial distribution
[18]. The Binomial, one of several PDF's for modeling dis-
crete random variables, works well for problems in count-
ing the number of “successes” resulting from a series of
discrete events [29]. Such a PDF therefore finds no use
in this work, given that continuous functions, not discrete
events, describe disciplinary metrics in aerospace engi-
neering problems. Of course, the counterpoint regarding
the nature of observed data immediately arises: Refer-
ences [19, 25] show this data to be distributed either as
Normal or Beta.

Nevertheless, the literature points out several means to
circumvent this difficulty, and still provide satisfactory re-
sults. Phillips describes the most viable option, and rec-
ommends its use in applications of Bayesian Statistics.
Since the Beta PDF often resembles that of the Normal
distribution, one may use the Normal PDF to approximate
a Beta distribution. By equating the expectation and vari-
ance of the two distributions, calculations on the parame-
ters of the Beta PDF yield the parameters of the approxi-
mate Normal PDF. Thus,

T R
E(X)_MN_[H“T b a)]ﬁ (5)
pu— y - q./,‘

Var(X) = o*ly = [(q+r)2-(q+r+1) '(b_aﬂﬁ ©

As a result, the authors propose this method for all cal-
culations in this work. The task of working with arbitrary
PDF’s, without resorting to transformations, thus remains
as one item of future work. Another is the introduction of
the error due to this approximation as a source of model
fit error.

The literature provides several calculations of Bayes’ The-
orem for each prior-observed pair of PDF’s, such as in
the case of a Normal prior and Normal observation(s).
Consider the first calculation step in Figure 4. Suppose
prior opinion defines a given output from a given code as
0 ~ N (6, o), that is, Gaussian with output value p = 6q
and error bounds resulting in 02 = ¢o. Further suppose
that for the first test case, comparison of the output and
physical data yield a distribution of x ~ N(6,,¢,). Lee
shows that the posterior distribution, 8|z ~ N (61, ¢1) [28],
where

1
N T o
(P e
61 =¢1 (¢0+¢m> (8)

If the observed distribution represents the sole test case,
then the disciplinary uncertainty is quantified, as defined



by the distribution, 8|z ~ N(61,¢1). If other test cases
exist, then this distribution represents only the first step
in the Bayesian calculation, the posterior density of which
becomes the prior density for the next test case and cal-
culation step.

QUESTION 3 - PROPAGATING UNCERTAINTY The
implementation of Bayesian Statistics for disciplinary un-
certainty propagation spans a subset of the implementa-
tion for uncertainty quantification. The difference lies with
the use of the quantified disciplinary uncertainty, previ-
ously a Bayesian posterior density, now as the “observed”
density.

Consider again Equation 3, Lee’s formulation of Bayes’
Theorem [28]. Canonical treatment of the output distribu-
tion from a disciplinary code, for an input design space
(the upper half of Figure 3), forms the designer’s ini-
tial “hypothesis.” The term p(6) in Bayes’ Theorem rep-
resents this hypothesis, expressed as a PDF. Quantifica-
tion of disciplinary uncertainty, as described above, leads
to the PDF modeling “observations” in support of the hy-
pothesis, as represented by p(z|8). The posterior distribu-
tion, p(8|z), thus equals the PDF for the disciplinary met-
ric, resulting from the probabilistic treatment of the design
space and the inclusion of uncertainty effects.
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Figure 7: Application of Bayes' Theorem to uncertainty
propagation

The mathematical formulation for this approach follows
Lee’s derivation, as summarized in Figure 7. With no
uncertainty quantification, probabilistic execution of a de-
sign code with an input design space results in a PDF for
the output disciplinary metric; by the Central Limit Theo-
rem [29], the PDF is Normal, with some mean 6, and vari-
ance ¢q. That is, the output value 8 ~ N (6, ¢o); but the
above quantification approach reveals that each point on
the PDF curve, z ~ N(6,¢). This likewise embodies the
spirit of Bayesian Statistics: measurement of a random
variable, the parameters of which are themselves random

variables. Knowledge of disciplinary uncertainty, in effect,
provides error bounds on analytical results, as modeled
by the PDF defining z. This provides the similar result
as for uncertainty quantification: 6|z ~ N (61, ¢1), with 6;
and ¢, as given by Equations 7, 8. This PDF thus mod-
els the output from a disciplinary analysis code, executed
probabilistically, with full accounting of the disciplinary un-
certainty it introduces.

APPROACH AND EXAMPLE

OBJECTIVE Much like aircraft design, spaceplane and
launch vehicle design entails “closure” of the design con-
cept on fuel weight and volume. The designer calculates
the weight and volume of fuel required for the vehicle to fly
the given mission, then contrasts this with the fuel avail-
able aboard the current iteration of the vehicle [31]. Clo-
sure, by matching required and available fuel, requires
modifications to the design through changes in geometry
and assumed technology level, to effect needed improve-
ments in key disciplinary metrics.

The difference between air and space vehicles lies in the
additional consideration of the hypersonic or launch vehi-
cle, the weight growth margin. Given the less advanced
state of the art in spaceplane / launch vehicle design (rel-
ative to aircraft design), a great deal of uncertainty in all
its forms arises. Thus, conceptual design for these types
follows a safety factor approach by adding additional “pay-
load” capacity beyond that required for the mission [32].
The quotation marks denote how this added capacity is
not intended for true “payload.” Rather, designing for the
additional capacity masks the impact of uncertainty, the
realization of which (through procession of the design to
the hardware development phase) leads to added vehi-
cle empty weight and propellant weight. Note that weight
growth margin, through long-standing use in launch ve-
hicle design, becomes one of the system-level metrics of
any such design, examples of which appear in References
[33, 34].

The proposed application of Bayesian Statistics seeks to
guantify disciplinary uncertainty and forecast its effects on
system-level metrics. Successfully doing so endeavors to
replace the traditional method of desensitizing the vehi-
cle to the impact of disciplinary uncertainties, the weight
growth margin approach. However, differences between
initial estimates of disciplinary parameters and “real” val-
ues determined later yield an overdesigned vehicle; the
classic examples of the Concorde and Space Shuttle
show that this form of design robustness reduces both
performance and profitability. Furthermore, gross inac-
curacies in the estimates, such that the vehicle weight
“grows” beyond the allowed margin, force performance
trade-offs or even a complete redesign.

VALIDATION A meaningful validation effort entails an
“apples to apples” comparison of the Bayesian and tra-
ditional approaches. To that end, part of this research will
seek to design the same vehicle to the same mission, us-



ing the same design tool(s). However, even under these
conditions, the comparison must be largely qualitative.
Different design approaches entail different assumptions
and solution methods, leading to differences in the values
for design metrics. This precludes meaningful quantitative
comparisons.

Qualitative comparisons call for assessments of the re-
sults of each method. Rather than weigh the specific, nu-
meric values resulting from one design against the other,
it is important to ascertain the means by which the val-
ues were obtained, and thus, the basis for and validity
of the values. Obviously, the results of the Bayesian de-
sign are grounded in the theory of Bayesian Statistics.
Those for the traditional design may result from engineer-
ing “guesstimates” and other expert opinion. The latter
point, of course, remains to be seen in the course of this
work.

PRELIMINARIES

Computer Tools Two programs form the computational
design environment; FPI, the probabilistic “wrapper” pre-
viously described (Reference [35] provides more detail),
links with HAVOC, the Hypersonic Aircraft Vehicle Opti-
mization Code. HAVOC, a monolithic design code de-
veloped and provided by the Systems Analysis Branch
of the NASA-Ames Research Center, aids in conceptual-
level synthesis and sizing of hypersonic vehicles [36].
With its internal aerothermodynamics, propulsion, mass
properties, and trajectory modules, HAVOC handles sev-
eral vehicle types, including transatmospheric aircraft,
SSTO launch vehicles, conventional rockets, and hybrids
thereof. A third program, commercially-available Microsoft
Excel, aids in the quantification of disciplinary uncertainty
as described previously. Shell scripts, written and exe-
cuted as part of the research, handle Bayesian calcula-
tions and data manipulation. An integration environment,
such as Engineous Software’s iSIGHT or Phoenix Integra-
tion’s Model Center, links the tools together to automate
computational tasks.

Validation Case The information required includes vehi-
cle data and metrics. Definition of key disciplinary and
system-level metrics leads the information needed for the
design process. The disciplinary metrics are the instru-
ment by which to quantify and propagate disciplinary un-
certainty. Additionally, the quantification of disciplinary un-
certainty requires ascertaining expert opinion regarding
HAVOC's fidelity and accuracy in computing these val-
ues. System-level metrics, measurements of the perfor-
mance and effectiveness of the vehicle system, provide
the means by which to compare design methods.

The process also requires vehicle data, starting with a
baseline launch vehicle. The Space Launch Initiative
(SLI), part of NASA's Integrated Space Transportation
Plan, seeks to develop a second generation RLV capable
of a 10-fold reduction in costs, and a 100-fold increase in
reliability, in the 2010 timeframe [37]. The Marshall Space

Flight Center, leading the SLI effort, envisions this RLV as
a part airbreathing, part rocket-based two-stage-to-orbit
(TSTO) system. The authors thus propose validation via
a NASA-developed reusable TSTO system concept, avail-
able in the public domain. This requires the collection of
data on the system’s mission and performance, in terms
of both disciplinary and system metrics, as ascertained by
traditional design methods. Furthermore, the end steps of
the validation process require knowledge of the basis for
the data, e.g., physics-based analyses, approximations,
expert opinion.

“Test Data” Cases The disciplinary uncertainty quantifi-
cation task, as described previously, utilizes Bayesian ob-
servations originating in existing vehicles that each share
some traits with the design under consideration. For a
reusable TSTO, the NASA X-15 and XB-70 research ve-
hicles, and the Space Shuttle, provide excellent test cases
(see Figure 8) for implementing the design method. The
X-15 provides the database for high dynamic pressure,
sustained atmospheric hypersonic flight. The XB-70 in-
dicates the design drivers for low-drag, lifting high-speed
flight utilizing airbreathing propulsion. The Shuttle, with
its long operational history as the world’'s sole reusable
Space Transportation System, offers volumes of data re-
garding the disciplinary and operations issues associated
with access to space and reentry from orbit. Data related
to the disciplinary metrics of interest for these vehicles are
essential to the uncertainty quantification process.

Figure 8: Counterclockwise from upper left: X-15, XB-70,
Space Shuttle [30]

CONCEPTUAL EXAMPLE The example considers, for
a notional TSTO, the disciplinary metrics of lift-to-drag ra-
tio (L/D) for aerodynamics, thrust specific impulse (I;p)
for propulsion, and wing weight (W,;,,) for mass proper-
ties. The system-level metrics include gross lift-off weight
(GLOW), representing technical feasibility, and cost per
pound of payload to low-Earth orbit ($/1b) for economic
viability.
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Figure 9: Proposed design method implementing Bayesian Statistics

Quantifying Uncertainty In the Bayesian approach, the
combination of expert opinion and observations yield the
PDF which quantifies disciplinary uncertainty for a partic-
ular disciplinary metric. In this specific case, quantifying
uncertainty begins with modeling each of the test vehicles
in HAVOC and tabulating each of the disciplinary metrics
of interest for each case. Following the previously out-
lined procedure, HAVOC outputs for the vehicles are each
cross-plotted with the data obtained for the vehicles. “Ob-
servations” in the Bayesian sense are concluded from the
resulting plot, in the form of PDF’s. Equations 3, 7, and
8 then calculate, from these PDF's and the PDF defin-
ing expert opinion of HAVOC, the probability distribution
guantifying uncertainty in each discipline.

Upon modeling the supplied TSTO concept (after creation
and execution of an input file for the baseline vehicle as
given), suppose HAVOC's developers and expert users
agree that the accuracy of the disciplinary analyses fol-
lows that shown in Table 1. With that information, and af-
ter modeling the TSTO concept in HAVOC (as provided),
the last column of Table 1 reveals the resulting Bayesian
prior distribution established for each metric, calculated
from Equation 4.

After establishing prior PDF’s, Bayesian observations take
place by modeling the X-15, XB-70, and Shuttle in HAVOC
and tabulating the L/D vs. Mach number, I, vs. altitude,
and Wyine versus wing geometry outputs for each vehi-
cle. These results, cross-plotted with the physical data for

the actual systems, lead to graphs like those of Figures 5
and 6. Following this process, the Bayesian “observed”
PDF’s listed in Table 2 result. Notice the presence of two
Beta distributions; Equations 5 and 6 easily provide the
transformations of these PDF's to the Normal type. Ta-
ble 3 shows these results, and thus lists the distributions
representing the Bayesian “observations.”

With prior and observed distributions now defined, the
sequential use of Bayes’ Theorem shown in Figure 4
computes the quantified disciplinary uncertainty, given in
Equation 9 for this example.

L/D ~ N(2.589,0.0971%)
I,, ~ N(874.5,5.923%) 9)
Wauwing ~ N(19007.,120.97%)

Propagating Uncertainty ~ With HAVOC's disciplinary un-
certainty quantified, propagation of the uncertainty begins
with definition of a design space: selecting design vari-
ables of interest, and assigning a range of values to each.
Through FPI, this design space is input as a series of
Uniform PDF’s to HAVOC for probabilistic execution, from
which only PDF’s for the disciplinary metrics are recorded.
The Bayesian approach, via Equations 3, 7, and 8, as
well as the uncertainty PDF’s obtained in the prior step,
reshape the outputs to produce new disciplinary PDF’s.
FPI/HAVOC is then re-executed, this time not only with
the design space input as before, but also with the new
disciplinary PDF’s just obtained, now as inputs for disci-




Error Distribution
Metric Type | Accuracy | Bayesian Prior
L/D | Gaussian 5% | 01,0 ~ N(5.000,0.0500%)
I, Gaussian +2% O1sp ~ N(1250.,8.333%)
Wwing || Gaussian +1% | 0w ~ N(20,000.,133.33%)

Table 1: Code fidelity based on expert opinion (example)

Vehicle
Metric || X-15 | XB-70 | Shuttle
L/D zx 150L/p zxB-70|0L/D zsts|0L/p
~ N (2.500,0.1000%) ~ 3(1.750,2.250, | ~ N(2.500,0.10002)
1.500, 3.000)
Isp mX—15|01§p xXB—70|01§p xSTSWIsp
~ N(200.0,20.00%) ~ N(1200.,25.00%) ~ N (400.0,10.00%)
Wwing Tx—_15|0w xxB-70|0W xsTs|fw
~ B(3450.,5100., | ~ N(75,000.,2000.2) | ~ N(30,000.,500.02)
2.500, 1.500)
Table 2: Code fidelity for test-case vehicles (example)
Vehicle
Metric || X-15 | XB-70 | Shuttle
L/D rx_1501/D Z'XB—70|0L/AD rsts|0L/p
~ N(2.500, 0.10002) ~ N(1.917, 0.10052) ~ N(2.500, 0.10002)
I, Tx—15|01sp TxB—70|01sp zs75|01sp
~ N(200.0,20.002) | ~ N(1200.,25.00%) | ~ N(400.0,10.002)
Wwing Tx_150w TxB—70/0w zsTs|0w
~ N(4481.3,357.242) | ~ N(75,000.,2000.2) | ~ N(30,000.,500.02)

Table 3: Transformed code fidelity for test-case vehicles (example)

Metric || Prior | Observed | Posterior

L/D ~ N(4.575,0.0510%) | ~ N(2.589,0.0071%) | ~ N(4.146,0.0452°)
T, ~ N(904.2,7.463%) | ~ N(874.5,5.923%) | ~ N(884.4,4.3177)
Waing | ~ N(21,050.,99.576%) | ~ N(19,007.,120.07%) | ~ N(20,225.,76.880°)

Table 4: Propagated disciplinary uncertainty for TSTO (example)

plinary data. CDF's for the system metrics are output as
the final result of the Bayesian approach.

In this example, the design space takes the simple form of
varying wing area (Sw) between 4500 and 7500 square
feet, and nose radius (R) between 30 and 45 inches.
Definition of this design space precedes formation of
the link between FPI and HAVOC. HAVOC is then exe-
cuted probabilistically, treating the two design variables
as Uniform random variables bound by the defined limits:
Sw ~ U(4500.,7500.) and R ~ U(30.0,45.0). This first
run of HAVOC focuses on disciplinary metrics, and with
this probabilistic input, FPI/HAVOC outputs Normal PDF’s
for L/D, I,,, and Wyng, as given in the first column of
Table 4. The single-step use of Bayes’ Theorem takes
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the PDF's in Equation 9, the Bayesian prior distributions
(the second column of Table 4), and combines them with
the Bayesian observations. Table 4 presents these cal-
culation elements and the results (the third column), the
posterior distributions instrumental to propagation of dis-
ciplinary uncertainty.

The next step again executes FPI/HAVOC, with an ex-
panded set of inputs. After disabling HAVOC's internal
analysis routines for calculating L/D, I;,, and Wying,
the PDF’s from Table 4 are input via FPI, along with
the design space defined earlier (S ~ U(4500.,7500.),
R ~ U(30.0,45.0)). The results of interest now are the
system-level CDF's for TOGW and $/1b.



Validation If the TSTO utilizes existing Shuttle launch
facilities, then its GLOW must be less than or equal to
4.5 million pounds [38]. Furthermore, in order to compete
with existing launch vehicles and meet NASA targets, $/1b
must be less than or equal to $1000/Ib. Plotting these
constraint lines on the CDF plots for GLOW and $/1b al-
lows measurement of the probability of “success,” i.e., the
portion of the design space satisfying the imposed con-
straints, with inclusion of disciplinary uncertainty.

Comparison of these results with those for the “tradition-
ally” sized TSTO measures the worth of this new design
approach, in relation to the traditional approach. The com-
parison spans less the values for all metrics in each case,
and more the confidence computed in those values. Of
particular interest is the source of the confidence esti-
mates resulting from the traditional design approach.

SUMMARY  Figure 9 illustrates the overall process de-
scribed in the aforementioned example. The authors pro-
pose this method, embodying Bayesian Statistics princi-
ples, for quantifying and propagating disciplinary uncer-
tainty.

CONCLUSION

The authors confidently propose the utilization of
Bayesian Statistics theory to quantify and propagate dis-
ciplinary uncertainty. Of the three sources of uncertainty
defined by the ASDL literature, disciplinary uncertainty
receives the least attention, yet most undermines the
decision-making confidence of the hypersonic vehicle de-
signer. The proposed design methods, relying on prob-
abilistic techniques, shall provide the means to ascertain
the impact of disciplinary uncertainty on this confidence.
The specified tools and data will merge to create the envi-
ronment and example to seek to prove the method’s utility
to hypersonic vehicle design. In so doing, the authors en-
deavor to demonstrate the method’s superiority over tra-
ditional uncertainty accounting methods.
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