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SUMMARY & CONCLUSIONS 
 

A method is demonstrated that utilizes covariate 
theory to generate a multi-response component failure 
distribution as a function of pertinent operational parameters.  
Where traditional covariate theory uses actual measured life 
data, a modified approach is used herein to utilize life values 
generated by computer simulation models.  The result is a 
simulation-based component life distribution function in terms 
of time and covariate parameters for each failure response.  A 
multivariate joint probability covariate model is proposed by 
combining the covariate marginal failure distributions with 
the Nataf transformation approach.  Evaluation of the joint 
probability model produced significant improvement in joint 
probability predictions as compared to the independent series 
event approach.  The proposed methods are executed for a 
nominal aircraft engine system to demonstrate the assessment 
of multi-response system reliability driven by a dual mode 
turbine blade component failure scenario as a function of 
operational parameters. 

 
1. INTRODUCTION 

 
Traditional system reliability is highly concerned 

with the failure structure rather than the actual individual 
reliability values of the system constituents.  Typically, due to 
difficulties and limitations in running full system reliability 
tests for large multi-component systems the individual 
component reliability values are either specified as a constant, 
an uncertain probability value modeled via an assumed 
probability distribution [Ref. 1], or explicitly known for a 
specified operating condition.  Often, the individual 
component reliability values are generated from test data in a 
way that is off-line from that actual system conditions.  In 
each of these cases, component reliability values are assumed 
to be independent of their position as well as the system 
operating conditions and component design parameters.   

Although accelerated life testing methods using 
covariate theory have been successfully executed to model 
component reliability as a function of explanatory variables, 
these models are still limited in that non-normality and 
statistical dependence of local input variables are not 
appropriately modeled. The approach demonstrated within 
this study is to create a covariate model of a component’s 
failure distribution(s) using a modeling and simulation 

environment of the entire system.  In doing so, statistical 
properties of the local input variables are inherently accounted 
for and a reliability model as a direct function of system 
operating conditions is produced.  Modeling the component 
reliability vector as a function of system and component 
parameters is the focus of this work. 

 
2.  APPROACH 

 
2.1 Covariate Models 
 

Covariate models are used to represent the effect of 
suspect treatments in a lifetime model.  A covariate is defined 
as a treatment or explanatory variable that influences the 
failure time of the component.  A vector of covariates, z, is 
chosen where each entry of the vector represents a unique 
explanatory variable.  Typical covariates include those that 
represent mechanical forces, material properties, and 
environmental factors.  There are two rather popular 
approaches for linking these covariates to the probability 
function.  The first method, known as Accelerated Life 
Testing (ALT), is based on modifying the time axis of the 
survivor function. The original application of ALT was to 
reduce the time to test of production components by 
increasing, or accelerating, the primary explanatory factors 
and using the resulting model to predict component lifetimes 
under standard in-service conditions.  The premise of the 
second approach, called Proportional Hazard Model (PHM), 
is to modify the hazard rate function to include the covariates.   

In either method, the covariates, represented by the 
vector z, are modeled by augmenting the random variable with 
a ‘link’ function, ψ(z), which is a function of the covariates.  
A popular link function found in the literature [Ref 2] is the 
log-linear link function given as  

( ) zez βψ ′=               (1) 
where β is an n by 1 vector of regression coefficients 
corresponding to each of the n covariates in the vector, z.  The 
appealing characteristic of this link function compared to 
others that have been proposed is that the exponential form is 
highly compatible with most traditional parametric 
distributions.  Also, the log-linear function is asymptotically 
stable across large ranges of the regression coefficients.   

The resulting survivor function in the ALT approach 
becomes 



 
 2004RM-111:   page 2  

( ) ( )( )ztStS o ψ=              (2) 
where So is the baseline survivor function1 determined at the 
nominal values of each of the potential covariates (i.e. zi=0).  
This formulation imposes certain requirements on the link 
function.  Namely, the function must be equal to unity at the 
nominal covariate setting, z=0, and must be positive for any 
and all values of z.  The form of the log-linear link function 
used in both of the two approaches allows for the use of the 
familiar applied statistical model theory to determine the 
respective covariate regression coefficients, βi.  Rather rather 
than use least squares regression, as is typical for statistical 
linear models and response surface equations, maximum 
likelihood estimation (MLE) is often used to estimate the 
covariate coefficients.  The coefficients are treated as 
parameters of a multivariate distribution to be estimated using 
MLE.  Consequently, statistical significance tests of each 
coefficient in addition to whole model tests are readily 
computed resulting in a rapid importance ranking and error 
estimation of each coefficient and hence its corresponding 
covariate variable. 
 
2.2 Covariate Model Generation 
 

Traditional data used to generate covariate models is 
usually provided by actual physical experiments or even 
extracted from operational databases.  However, with the 
advent of more sophisticated modeling capabilities, failure 
data can be generated using models of the system and 
components operating within such system.  Yet, for 
computational efficiency an intelligent choice of the variable 
value combinations and replications is still required.  Planning 
the simulation-based covariate model generation is now 
discussed. 

As with any exercise of determining an appropriate 
model, a sample set which is indicative of the space to be 
modeling should be pursued.  Determining the appropriate 
sample set or test matrix, however, can be challenging.  
Meeker and Escobar recommend several considerations when 
designing the test matrix [Ref. 4].  The considerations relevant 
to this problem are now discussed.  First, one can estimate the 
ALT regression coefficients and even baseline distribution 
parameters using expert knowledge and/or existing data.  An 
appropriate test matrix could then be devised quickly by 
assessing the quality of the MLE fit under variations of the 
test parameters.  Such an initial estimate can be used to 
evaluate different test schemes such as the spacing of 
covariate vector values as well as the number of simulations 
allocated to each of the the various cases.  Equal spacing and 
allocation of test points is the typical starting point.  The 

                                                 
1 The baseline survivor function is assumed to be known.  If 
the survivor function is not known then existing or generated 
data could be used with EDF based statistical hypothesis 
methods such as Kolomogorov-Smirnoff and Anderson-
Darling to statistically justify the most appropriate distribution 
(see Stephens 1974 for a complete comparison between the 
primary EDF methods used [Ref. 3]) 

authors of this paper also feel that under a limit of the number 
of experiments to run, one should allocate the number of 
experiments appropriately to each design of experiments case 
so that the variation of the maximum likelihood parameter 
estimates are minimized.  For instance, if certain combinations 
of the covariates produce a lower probability level then one 
should allocate more experiments to these cases so that the 
accuracy at this probability level is improved.  Alternatively, 
one could use the classical power of test method to 
statistically determine the required number of total 
experiments (see Sethuraman 1982 [Ref. 5]). 

The example of covariate modeling given in the 
subsequent chapter utilizes the design of experiments method 
to sample the available failure space.  Should there be a small 
number of candidate variables and variable levels, a full-
factorial design could be utilized.  However, if a larger 
number of variables and levels are to be pursued, a fractional 
factorial DOE, such as the popular Box-Benkin or Central 
Composite Design, is recommended.  The levels selected 
should be the smallest possible that would be reflective of the 
linearity of the problem.  For instance, a known linear 
problem would only require two levels for each variable while 
a quadratic response would require at least three levels. 
 
2.3 Joint Probability Model 
 
 Often, independent statistical behavior is assumed for 
components within a system failure structure.  This greatly 
simplifies the mathematics involved with computing the 
system reliability but at the expense of significant inaccuracy 
should should joint randomness exist.  Fortunately, there are 
several methods available to model such a condition.  One 
such method, often found in structural reliability, is that of 
Nataf [Ref. 6].  The proposition made by Nataf is that joint 
randomness can be approximated by multiplying the products 
of the individual marginal distributions with a separate weight 
function that captures joint randomness through a 
transformation of the joint, non-normal space into an 
approximate joint, normal space.  The joint randomness term 
is generated using a function of standard normal variates, 

( )nzzz ,,, 21 K=Z , which are determined through a marginal 
transformation of the random variables, ( )nxxx ,,, 21 K=X , 
given by ( )[ ]iiXi xFZ 1−Φ=  where Φ is the standard 
cumulative normal function. Assuming that Z is standard 
normal, then by the principle of inverse probability 
transformation the joint probability density function is given 
by 

( ) ( )
( ) ( ) ( )n

n

i
iX zzz

xff
i ϕϕϕ

ϕ
L211

',)( Czx ⋅=∏
=

           (3) 

where ( )'Cz,ϕ  is the n-dimensional standard normal PDF of 
the standard normal variates, Z, and C’ is the correlation 
coefficient matrix of the transformed space with elements ρ’ij. 
The general solution of ρ’ij must be found iteratively through 
numerical integration.  Fortunately, Der Kiureghian and Liu 
[Ref. 7] have determined several empirical formulas that 
provide ρ’ij as a function of ρij for several combinations of 
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random variable distribution pairs. Finally, the integration of 
the joint normal space produced by the transformation in the 
second term of equation (3) can be found using existing 
approximation techniques for the multi-normal integral [Ref. 
8]. 
 
2.4 Joint Covariate Model 
 
 An interesting modification to Nataf’s proposition is 
to replace the marginal distribution functions of equation (3) 
with covariate lifetime models.  Assuming that the correlation 
coefficient matrix remains constant over the space of 
covariate values under consideration, the modified model 
would therefore provide a unique and straightforward means 
of modeling both the parametric lifetime distribution behavior 
of the components as well as joint randomness between their 
failure distributions.  Furthermore, since system simulation 
data already would exist if a set of component lifetime 
covariate models have been generated (section 2.2) a 
correlation matrix between the component failure distributions 
could easily be quantified using such data.   

The resulting generalized covariate joint probability 
function is found by combining equations (2) and (3) given as 

( ) ( )
( ) ( ) ( )n

n

i
iX zzz

xff
i ϕϕϕ

ϕ
L211

,),(, C'zzzx ⋅= ∏
=

          (5) 

where ( ) ( )zz ,, iiX xSxf
i

′−=  which is the marginal covariate 

probability density function of the xi
th variable.  Then for a 

series event system of dependent component lifetimes the 
covariate system reliability function using probability event 
theory is given as 

( ) ( ) ( )+−= ∑∑
< ji

jiXX
i

iX xxSxSS
jii

zzzxX ,,,,    

( ) ( ) ( )zx,z XSxxxS n

kji
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1
, 1,, +

<<

−+−∑ L       (6) 

where ( )z,iX xS
i

 is the marginal covariate survivor function 

of the xi
th variable and ( )z,, jiXX xxS

ji
 is the bivariate 

covariate survivor function of the xi
th and xj

th  variables and so 
on.  For a parallel event system the system reliability function 
is given as 

( ) ( ) nx x x
dxdxdxfS LL 21,, ∫ ∫ ∫

∞ ∞ ∞
= zxzx           (7) 

which is the overlapping event space (intersection) between 
the x variables.  The multivariate joint probability terms in 
either equation (6) or (7) can then be solved for the limiting 
values of the random variables, or failure modes, using multi-
normal integration techniques such as that of Gollwitzer and 
Rackwitz [Ref. 8]. 

 
3.  APPLICATION: TURBINE BLADE RELIABILITY 

 
A nominal aircraft engine system was chosen as an 

example of the reliability assessment approach discussed in 
this study.  The propulsion system selected is the CFM56 
separate flow turbofan engine which powers the B737-400 

medium size transport aircraft.  The vehicle mission used in 
this study is typical of a B737 aircraft; although, it has been 
simplified to facilitate the demonstration of the proposed 
method.  Only the cruise condition is considered for this 
study.  The take-off and landing segments are modeled as 
discontinuous jumps in engine rotor speed between the shut-
down and cruise segments of the operating profile.  The cruise 
segment occurs at an altitude of 35,000 feet and a speed of 
Mach 0.745 as is typical for the B737-400.  Mission 
parameters, or system operating conditions, identified for this 
study are the cruise Altitude and Mach number.  

Safe, reliable operation of the entire aircraft is highly 
dependent on the propulsion system utilized.  One of the most 
critical components affecting the safety and reliability of 
turbine engines is the turbine blade.  Failure of a turbine 
airfoil could cause a high-energy part to be released from the 
rotor system destroying the entire engine through a cascade of 
subsequent events.  Such a situation could cause a 
catastrophic condition for the entire vehicle.  Therefore, the 
propulsion system reliability is determined, within this study, 
by conducting a reliability assessment of a single turbine 
airfoil.  The airfoil is assumed to be limited by two failure 
modes, fatigue and overstress.  

The blade fatigue and overstress behavior is analyzed 
using a first-principle, integrated turbine blade multi-physics 
environment.  The physical analysis structure begins with 
system operational and ambient conditions providing input to 
a thermo-dynamic cycle model.  This cycle model is used to 
solve for the engine station thermodynamic state conditions as 
well as the mechanical speed of the rotors.  A thermo-
mechanical analysis is then conducted at the part level to 
determine the thermal and mechanical state of the part as 
required for the failure analysis. 

The mechanical analysis for determining the bulk 
radial stress can be accomplished using Newton’s second law 
applied to a rotating body.  The centrifugal force produced 
anywhere in the airfoil can be determining by calculating the 
product of the mass of the supported material at the radius of 
interest and the square of the component rotational speed.  
Dividing this quantity by the airfoil cross-sectional area gives 
the bulk centrifugal stress at this radius.  The rotor speed is 
calculated using the cycle model described earlier.  With the 
thermo-mechanical conditions solved for, a failure analysis 
can then be conducted.  

The overstress failure mode is simply determined by 
defining a limit state which is the limit at which the yield 
strength of the material, modeled as a function of temperature, 
is exceeded by the centrifugal stress of the component.  Here 
the material temperature is provided as an input to the 
temperature dependent strength of the material.  The material 
temperature is computed using the cooling flow temperature 
and core gas flow temperature which are output from the 
thermodynamic cycle model. 

The fatigue failure mode is modeled as follows.  
Assuming that linear-elastic conditions exist, the 
straightforward stress-life, S-N, approach can be utilized to 
estimate the number of cycles to failure given completely 
reversed, constant stress cycle amplitude.  Morrow [Ref. 9] 
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suggests a variation to the S-N approach to compensate for 
non-zero mean stress, which is given as 
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where σa, σm, σf’, and b, are the stress amplitude, mean stress, 
fatigue strength coefficient, and fatigue exponent of the blade 
material.  The Morrow fatigue function assumes that the stress 
cycle amplitude is constant. The stress cycle generated within 
the context of this problem is defined as the centrifugal stress 
cycling between the zero stress condition before starting the 
engine and the stress state at the cruise condition.   
 

4.  RESULTS 
 

4.1 Identification of Baseline Distribution 
 

Data from 10,000 simulations was used to determine 
appropriate parametric distributions for the overstress and 
fatigue life failure modes.  The Anderson-Darling Test 
statistic is used to compare how well each distribution fits the 
given data [Ref. 3].  The baseline distribution appropriate to 
the fatigue failure data is the lognormal distribution with 
location and scale equal to 14.49 and 1.71, respectively.  A 
similar exercise showed that the overstress failure condition 
follows a normal distribution with a location and scale equal 
to 22.32 and 12.75, respectively.  These results were validated 
using the A-D goodness-of-fit test provided earlier.  The 
critical A-D value for both failure mode distributions can be 
found using Tables published by Stephens (1974) for a 
normal distribution.  
 
4.2 Covariate Model of Component Failure Distributions: 
Fatigue and Overstress 
 

As discussed earlier, one can use either the PHM or 
ALT methods to parameterize the failure distribution(s) to 
include multiple explanatory (covariate) variables.  The PHM 
method is advantageous because it can be used in a semi-
parametric sense to prevent erroneously specifying an 
incorrect baseline distribution.  However, our baseline 
analysis and subsequent A-D goodness-of-fit hypothesis tests 
revealed that the two failure modes follow standard 
parametric distributions.  Therefore, the ALT method was 
selected. 
 The log-quadratic link function is used to account for 
the covariate parameters in the ALT model.  A quadratic, 
polynomial function is assumed for the exponential 
component of the link function given as 

( ) ( ) 2
25

2
142132211 zzzzzzg ee βββββψ ++++== βzz          (10) 

The ALT survivor function then becomes 
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for the lognormal fatigue failure distribution and  

( ) ( )









 −
Φ−=

2

11,,,
o

o
o

x
xS

θ
θψ z

zβθ oo          (12) 

for the overstress failure mode. The objective then is to 
acquire samples of the life at various values of the covariate 
vector, z, and use the maximum likelihood method to estimate 
the coefficient vectors βf and βo as well as the baseline 
distribution parameter vectors, θf and θo. 
 
4.3 Model Generation 
 

As with any exercise of determining an appropriate 
model, a sample set which is indicative of the space to be 
modeling should be pursued.  Determining the appropriate 
sample set, however, can be challenging.  Consequently, the 
design of experiments method is employed here.  To be able 
to model quadratic behavior, a 3-level full-factorial design is 
created using the two covariate variables, Altitude (z1) and 
Mach number (z2).  The tri-level design is chosen here to be 
able to capture quadratic behavior, should it exist.  Also, the 
small number of candidate variables permits a full-factorial 
design to be utilized.  However, should a larger number of 
variables and levels be pursued a fractional factorial DOE, 
such as the popular Box-Benkin or Central Composite Design, 
is recommended.   

The ranges of the two covariates are given in Table 
1.  Nine different DOE cases each with a unique and 
orthogonal value of Altitude and Mach number are required 
for the full-factorial design.  The number of simulations to be 
executed for each combination of covariate variable values is 
somewhat subjective.  Within this study the number of 
simulations for each case was 10,000. 

The results of the MLE fit of the covariate 
coefficients to 90,000 Monte Carlo simulations, 10,000 per 
case, are given in Table 2.  The whole model tests of these 
two failure mode data sets verify that the covariates 
considered provide an exceptional model for representing the 
failure distribution while the standard error for each of the 
covariate coefficient estimates is minimal.   However, the 
likelihood ratio tests for each vector of coefficients suggests 
that the interaction and quadratic terms can be neglected in the 
final ALT model.  Based on the model statistics produced by 
the maximum likelihood estimation approach, the number of 
case simulations was deemed to be sufficient.   
 

Table 1:  Covariate Variable Ranges 
 

Covariate Minimum (-1) Centerpoint (0) Maximum (+1)
Altitude 34000 35000 36000

Mach 0.725 0.745 0.765  
 

Table 2: Covariate Coefficient Vectors 
 

 

Intercept ( β 0) Scale β 1 β 2 
Fatigue e 14.49 e1.71 0.803 -0.333

Overstress 22.32 12.76 3.332 -2.071 
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4.4 Validation of Covariate Model 
 
 As with any model, one should determine whether it 
is an adequate representation of the actual physical 
phenomena.  However, with a probabilistic response this 
quickly becomes prohibitive for physical validation and thus 
ideal using computational simulation.  Large simulation 
Monte Carlo analyses or alternative probabilistic methods 
such as variance reduction techniques and sensitivity-based 
approaches can be used to validate the model accuracy by 
verifying the probability or life prediction at various values of 
Altitude and Mach number.  The choice of covariate value 
cases from which to evaluate the model or even how many 
cases to pursue is somewhat arbitrary.  In the interest of 
computational efficiency the minimal number of cases 
necessary to assess the accuracy of the model is ideal.  For 
this study a random sample of validation cases was generated 
numbering roughly around half of the number of original 
cases used to create the model.  The results of this validation 
step for the fatigue life ALT model are given in Table 3.  The 
metric to be used to assess the accuracy of the model is the 
predicted life at three probability levels; 0.01, 0.1, and 0.50.  
Four cases of large sample Monte Carlo probability 
calculations were randomly generated to validate the two 
covariate models. As shown in Table 3, the predicted fatigue 
life using the covariate model agrees very well with the actual 
life. The fourth case shows a few percent error between the 
actual and predicted values.  However, considering the 
lognormal behavior of the fatigue life this is considered 
acceptable.  Several techniques suggested by Meeker and 
Escobar [Ref 4] can be applied to reduce this error even 
further.  Also, future work is anticipated to explore the use of 
the semi-parametric proportional hazards model as an 
improved approach. 
 

Table 3: Fatigue Model Validation Results 
 

Altitude Mach P= 0.01 0.10 0.50 0.01 0.10 0.50
0.208 0.494 37,725 223,681 1,985,131 37,495 222,647 1,979,569
-0.456 -0.110 26,404 158,532 1,428,802 26,911 159,801 1,420,801
-0.602 0.864 16,337 99,497 912,551 16,987 100,868 896,820
-0.970 -0.068 16,670 101,517 930,941 17,459 103,671 921,748

Actual Life Predicted Life

 
 
4.5 Joint Randomness Evaluation 
 
 As stated earlier, the strong assumption of 
independence of reliability responses is commonly made.  
However, whether or not the responses are truly independent 
is seldom verified.  For this study, the correlation coefficient, 
a measure of linear statistical dependence, was computed 
between the fatigue and overstress random variables for each 
DOE case.  For the DOE cases explored, moderate correlation 
existed between the two variables as the correlation 
coefficient fluctuated around a mean of 0.272 with a 
maximum and minimum value of 0.287 and 0.240, 
respectively.  Further, the error in computing the probability 
of fatigue failure (P[Life<5E4]) using the independence 

assumption varied between 20% and 30% across the nine 
DOE cases.  Thus, even the moderate joint randomness 
should be accounted for in the final bivariate covariate 
reliability model. 
 The Nataf joint probability model, given by equation 
(3), is employed to account for the joint randomness between 
the two variables.  The transformed space correlation 
coefficient can be found using an available correction factor 
[Ref. 7] for the lognormal-normal variable pair case and is 
given as 

( ) ( ) ρ
δ

δρδρ
2

'

1ln +
== F          (13) 

where δ is the coefficient of variation of the lognormal 
variable.  The transformed correlation coefficient would then 
need to be recomputed each time the covariate model 
prediction value changes as the coefficient of variation is 
dependent upon the covariate model.   

Using the Nataf covariate model with equation (6) 
for a series event failure scenario, the predicted failure 
probability was improved by at least 20% compared to the 
actual joint probability solution across the four validation 
cases given in Table 3.  Further inspection of the results 
between the independence calculation and dependence model 
reveals that the second term of equation (6) is significantly 
underpredicted when assuming independence between the 
two failure functions.  Therefore, for this bivariate falure 
scenario the Nataf joint probability model provides a 
considerable advantage in accuracy over the common 
independence assumption.  The drawback, which is common 
for most joint probability calculations, is that numerical 
integration is required to solve for the joint probability of 
failure. 
 
4.6 Parametric Reliability Assessment 
 

Now that the joint covariate ALT model has been 
created, several exercises are possible.  For instance, the life 
corresponding to a certain probability of failure can be 
predicted for any combination of Altitude and Mach number 
within the specified ranges.  Thus, an optimal setting of the 
two flight condition parameters that would maximize the life 
for a given acceptable probability of failure can be searched 
and quantified probabilistically.  The probability of fatigue 
failure as a function of Altitude and Mach number is shown 
by Figure 1.  Interestingly, the covariate model results suggest 
that for an improved system life the aircraft should be 
operated at the higher altitude and at the lower flight speed.  
The thinner air and reduced speed would result in less thrust, 
a lower rotor speed, and therefore a slower consumption of 
the fatigue life of the part.  Intuitive as this result might be, 
the usefulness of the method is that a predicted failure 
probability is permissible across the entire space of interest.  
The overstress probability contour as a function of Mach and 
Altitude is shown by Figure 2.  As expected, the trend of the 
overstress failure probability contour is similar to that of the 
fatigue failure probability, although it is more linear.  As 
fatigue is a function of stress, and both fatigue and stress are 
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functions of the Altitude and Mach number, a similar behavior 
is intuitive. 
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Figure 1: Covariate Model of Fatigue Failure Probability 

(Nfatigue=5,000 cycles). 
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Figure 2: Covariate Model of Overstress Failure Probability 

(Pfailure=P[Stress>Strength]). 
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