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ABSTRACT

Several approaches to robust design have been proposed
in the past.  Only few acknowledged the paradigm shift from
performance based design to design for cost.  The incorporation
of economics in the design process, however, makes a
probabilistic approach to design necessary, due to the inherent
ambiguity of assumptions and requirements as well as the
operating environment of future aircraft.  The approach
previously proposed by the authors, linking Response Surface
Methodology with Monte Carlo Simulations, has revealed
itself to be cumbersome and at times impractical for multi-
constraint, multi-objective problems.  In addition, prediction
accuracy problems were observed for certain scenarios that
could not easily be resolved.  Hence, this paper proposes an
alternate approach to probabilistic design, which is based on a
Fast Probability Integration technique.  The paper critically
reviews the combined Response Surface Equation/ Monte
Carlo Simulation methodology and compares it against the
Advanced Mean Value (AMV) method, one of several Fast
Probability Integration techniques.  Both methods are used to
generate cumulative distribution functions, which are being
compared in an example case study, employing a High Speed
Civil Transport concept.  Based on the outcome of this study,
an assessment and comparison of the analysis effort and time
necessary for both methods is performed.  The Advanced Mean
Value method shows significant time savings over the
Response Surface Equation/Monte Carlo Simulation method,
and generally yields more accurate CDF distributions.  The
paper also illustrates how by using the AMV method for
distribution generation, robust design solutions to multivariate
constrained problems may be obtained.  These robust solutions
are optimizing the objective function for a given level of risk
the decision maker is willing to take.

INTRODUCTION

Systems design, in particular as applied to aerospace
vehicles, has experienced a paradigm shift from emphasizing
performance to maximizing affordability.[1, 2]  The resulting
new ‘design for affordability’ requires the addition of cost
estimation as a new discipline to systems design.  But since
most of the economic assumptions and ground rules, such as
number of paying passengers, fluctuations in fuel price, travel
distance, etc.[1, 3], are inherently uncertain, more emphasis
has been put on replacing "point" by probabilistic estimates

that quantify the uncertainty of the predicted outcome.  This
new way of thinking has shifted the design focus from
optimizing to ‘compromising’, where compromising describes
a decision process that yields a robust solution[2, 4], i.e. a
design that is insensitive to the variation of those economic
parameters that are difficult or impossible to control.  Such a
design might be preferable to a true optimum which exhibits
low confidence of achieving that optimum consistently.  In
order to quantify and minimize the uncertainty of a design
outcome, a methodology called Robust Design Simulation
(RDS) has been introduced.[5, 6, 7, 8]  It is based on a
Concurrent Engineering (CE)/Integrated Product and Process
Development (IPPD) approach and opens up the traditional
deterministic to a probabilistic approach to systems design.
The methodology treats the cost parameters as random
variables and models their variation with probability
distributions.  The paper critically reviews two approaches to
probabilistic robust systems design, that allow for random
changes in the assumptions made in the design process and
aircraft operating environment.

ROBUST DESIGN SIMULATION

An aircraft synthesis and sizing process, utilizing
appropriate analytical tools, evaluates the system value to the
customer for each aircraft configuration through selected
objectives such as performance, cost, profit, quality, or
reliability.  Regardless of the defined objective, customer
satisfaction can be achieved only if all system design and
environmental constraints are met. This algorithm is displayed
in Figure 1, depicting the dependence of the objective on
economic and discipline uncertainties as well as technological
and schedule risk.
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Figure 1: Robust Design Simulation[6]
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The uncertainties in the design assumptions are usually
accounted for in the form of variability distributions for
system inherent random variables.  These random variables
introduce a variability in the objective that can be modeled as a
probability distribution.  So far, most robust design
methodologies[4, 8, 9] strived to reduce the variability of the
objective, assuming that one can reach a higher customer
satisfaction with such reduction.  In contrast, an alternate
approach is proposed here where customer satisfaction is
achieved by enabling him or her to chose the level of risk at
which decisions are made.  The proposed approach transforms
the objective function from being dependent on design/control
and noise/random variables into being dependent on
design/control variables and level of risk.  Given the level of
risk the objective function can then be optimized by varying
the controllable parameters, while concurrently satisfying all
imposed design and environmental constraints.

PROBABILISTIC METHODS FOR ROBUST
DESIGN

One of the major obstacles in applying probabilistic
design methods is accommodating the large variety of existing
deterministic computer codes used in modern systems design.
It is impractical for all of them to be modified to enable a
probabilistic problem formulation.  Hence, a more generic
methodology is proposed, which calls on some kind of
‘wrapper’ that, when linked to the selected analyses codes,
drives the program and yields the desired results.  Based on this
formulation, probability functions can be assigned to each of
those input variables which are considered to be uncertain and a
cumulative probability distribution function (CDF) for each of
the desired objectives may subsequently be obtained.  Most
probabilistic analyses, e.g. Monte Carlo Simulation [10],
estimate their probability distribution functions based on a
large number of samples generated over the design space,
defined by the random variable ranges.  While the usage of
computer models allows for an easy perturbation of input
values, as design problems increase in complexity,
computerized analysis tools increase in complexity
accordingly, often dramatically increasing run-time.  Fox[11]
lists three methods that incorporate such complex computer
programs in a probabilistic systems design approach.  Method
#1 directly links a time consuming, due to a large number of
repetitions needed, thus inefficient probabilistic method, such
as the Monte Carlo Simulation, to the traditional systems
design codes used by the traditional deterministic approach.
Although computer speed has significantly increased in recent
years, the extreme complexity of some design codes yields
computation times that may prohibit a large number of
program evaluations within the allotted time frame for the
design process.  Thus, Method #1 may not be a feasible option
for a probabilistic design approach.  
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Figure 2:  Probabilistic Method #2[11]

Method #2, displayed in Figure 2,  proposes the use of
a metamodel which approximates the design codes.  The
advantage of creating such a metamodel is a significantly
reduced execution time, allowing a Monte Carlo Simulation to
be applied to the metamodel rather than on the actual computer
code.  Several different metamodels have been proposed and
applied.  Some of the more common regression models are
based on experimental designs [12], artificial neural networks
[13], or Fuzzy Graph based metamodeling.[14]
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Figure 3:  Probabilistic Method #3[11]

Method #3, displayed in Figure 3,  takes a different
approach, approximating the probability distribution function
rather than the design code.  This is based on the notion that in
order to obtain the cumulative distribution function (CDF) not
all probability levels need to be identified.  The method selects
several percentile levels and calculates the according objective
value.  Note that this calculation is based on the exact
computer code, not on an approximating metamodel.  These
objective values and their probabilities can than be used to fit
the typical S-shape of a CDF.  The details of this method are
described in [15] and in later sections of this paper.

Method #2 has found the widest application and has
also been used in the past by the authors.[6, 8, 16]  In
particular, the use of statistical regression models, based on
Taylor series expansions, in combination with experimental
designs is very popular.[5, 11, 17, 18, 19, 20, 21]  The two
main reasons for its popularity are its easy application to
numerous computer simulation problems, e.g. aircraft
synthesis, and the large number of statistical analysis tools
commercially available.  Nonetheless, there are two major
problems in metamodeling of complex computer codes with a
high number of inputs.  First, the number of input variables
handled by this approach is typically limited to eight or nine.
This problem can often be solved through a screening process
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[22] that identifies the major contributors to variation in the
model output.  However, the metamodel created based on the
screened parameters can never capture the variation of any of
the other, ‘less important’ input parameters.  

The second problem with Method #2 is in the
mathematical background of such regression methods as
Response Surface Methodology (RSM) and Design Of
Experiments (DOE), which are based on random rather than
deterministic variables (see [10], [12], [22], [23]).  Therefore,
the authors would like to stress here the use of caution in the
straightforward application of these methods.  Fundamental
statistical knowledge is critical for obtaining reasonable
approximations of the computer model.  Many of the
statistical analysis results the commercial packages offer are
based on random error (ε) estimation and do not reflect the
accuracy of the metamodel, since random error does not exist
in deterministic computer simulation.  A discussion on
accuracy and behavior of statistical regression metamodels in
computer simulations can be found in [12], [24], [25], and
[26]. In general, the best validation of the accuracy of the
metamodel is an extensive test at randomly distributed points
over the design space to compare predicted values with the
exact computer simulation values.  Unfortunately, this test
increases the computational effort put into the generation and
validation of the metamodel.  As shown in a previous
paper[27], variation of only a subset of the variables in the
metamodel can cause an additional prediction error not
accounted for by testing the whole model.

COMBINED RESPONSE SURFACE/MONTE
CARLO SIMULATION APPROACH

Despite the aforementioned problems of the Response
Surface Methodology (RSM), it can, if applied correctly,
provide some valuable insight into the systems design code
behavior.  Hence, it has been used by the authors as a
metamodel generator to facilitate probabilistic aerospace
systems design methods.[8]  In order to compare that approach
(Method #2) with the one introduced in this paper (Method
#3), a very brief overview of the combined Response Surface
Equation/Monte Carlo Simulation (RSE/MCS) method is
provided here.  For more detailed information refer to [6], [8],
[22], and [23].

RSM is based on a statistical approach to build and
rapidly assess empirical metamodels.[22, 23]  By carefully
designing and analyzing experiments or simulations, the
methodology seeks to relate and identify the relative
contributions of various input variables to the system
response.  However, aerospace systems are extremely complex,
and the responses of interest could be a function of hundreds of
design variables.  The first step in constructing a Response
Surface Equation (RSE) as a metamodel is to conduct a
screening test to identify the variables which make the greatest
contribution to the response of the system.  The screening test
is a two level fractional factorial Design of Experiments
(DOE) that accounts for main effects of variables only (i.e. no

interactions).[23]  It allows the rapid investigation of many
variables to gain a first understanding of the problem.

After identifying the variables which will form the
RSE, an experimental Design of Experiments has to be
selected.  For the purposes of this study, a face-centered central
composite design was used as a scheme for the input variable
levels to be tested.  This experimental design is a three level
composite design formed by combining a two-level full
factorial with a star design.[22]  Typically, a second order
model in k-variables is assumed to exist.  This second order
polynomial for a response, R, can be written as:

Refer to [22] and [23] for a detailed description of a
response surface generation.  After the RSE is developed, the
effect of uncertain variables can be incorporated into a systems
level design through the use of a Monte Carlo Simulation
(MCS).  A Monte Carlo Simulation is effectively a random
number generator that selects values for each random variable
with a frequency proportional to the shape of the corresponding
probability distribution.  Usually 5,000 to 10,000 trials are
needed for a good representation of the response probability
distribution.  Without the aid of the RSE, this task would be
computationally excessive and in many cases impractical
considering that MCS would have to execute the design
simulation code each time (Method #1, Figure 1).

FAST PROBABILITY INTEGRATION
APPROACH

To avoid the often difficult generation of a metamodel
(Method #2), this paper suggest, the use of a fast probability
integration technique as an approach to Method #3.  This
technique is reviewed here in greater detail.  The Fast
Probability Integration (FPI) computer program[15], developed
by researchers at the Southwest Research Institute (SwRI) for
the NASA Lewis Research Center, is a probability analysis
code based on the Most Probable Point (MPP) analysis
frequently used in structural reliability analysis.  The MPP
analysis utilizes a response function Z(X) that depends on
several random variables Xi (see Figure 4 for a 2-D example).
Each point in the design space spanned by the X’s has a
specific probability of occurrence according to their joint
probability distribution function (see Figure 5).  However,
each point in the design space also corresponds to one specific
response value Z(X).  Hence, each response value has the same
probability of occurrence as the corresponding point in the
design space.  

(1)R = b0 + bixi
i=1

k

∑ + biixi
2

i=1

k

∑ + bijxix j
i< j

k

∑∑
where: bi are regression coefficients for linear terms

bii  are coefficients for pure quadratic terms

bij  are coefficients for cross-product terms

xi, xj are the design variables of interest
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Figure 4 : Objective Function Contours
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Figure 5 : Joint Probability Distribution

In cost analysis and other disciplines involving random
variables, it is often desired to find the probability of achieving
response values below a critical value of interest z0.  This
critical value can be used to form a limit-state function (LSF):

where values of g(X) ≥ 0 are undesirable.  The MPP analysis
calculates the cumulative probability of all points that yield
g(X) ≤ 0 for the given z0 (see Figure 6).  Since the LSF ‘cuts
off’ a section of the joint probability distribution (see Figure
7) a point with maximal probability of occurrence can be
identified on that LSF.  This point is called the Most Probable
Point.  It is found most conveniently in a transformed space
(see Figure 7), in which all random variables are normally
distributed.  Once the MPP and the cumulative probability are
identified, the process can be repeated for several values of z0,
mapping each probability to the corresponding value of z0.
The resulting cumulative probability distribution for Z(X) can
then be differentiated to obtain the probability density function
of the response.

MPP
g(x)=0

x1

x2 g(x)<0

g(x)>0

Figure 6:  Most Probable Point (MPP) Location

g(u)

Figure 7: Visualization of MPP [9]

The FPI code offers several techniques to find the MPP
and the probability of a given LSF value z0 for the response
function.  Some of these techniques are very efficient and
eliminate the need for an expensive Monte Carlo Simulation.
An additional advantage of FPI is the fact that it is directly
linked to the analysis code, eliminating the need for a
metamodel and its limit in the number of variables.  However,
all Fast Probability Integration techniques approximate the
LSF locally at the Most Probable Point.

ADVANCED MEAN VALUE METHOD

The Advanced Mean Value (AMV) method is one of the
twelve analysis methods included in the FPI code.  It combines
a simple Mean Value method with the MPP analysis and
determines the CDF for the response function Z(X).  The
Mean Value (MV) method is based on a simple Taylor series
expansion of the response function Z(X) (Equation 3),
assuming Z(X) to be smooth and the expansion to exist at the
mean:  
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The derivatives are evaluated at the mean values and
ZMV(X) represents the sum of the first order terms and H(X)
represent higher order terms.  For n random variables, the ai’s
can be estimated with n+1 function evaluations and a
numerical differentiation method.  Based on this linear
approximation the CDF for ZMV(X) can be obtained directly,
since the distributions for the random variables Xi are fully
defined and ZMV(X) is explicit.  For nonlinear Z-functions the
MV solution for the CDF is not sufficiently accurate.  One
possible means for improving accuracy is increasing the order
of the Taylor series expansion, which becomes difficult and
inefficient for implicit response functions and a large number
of random variables (n).

A more efficient approach is proposed through the
AMV method:  

H(ZMV) is defined as the difference between Z and ZMV at
the Most Probable Point Locus (MPPL) of ZMV,  where the

g(X) = Z(X) - z0

(4)ZAMV=ZMV+H(ZMV)

(2)
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MPPL combines the MPP’s for several values of z0.[28]  In
other words, H(ZMV) in Equation 4 approximates H(X) in
Equation 3.  ZAMV would be exact if the MPPL was known and
exact, i.e. MPPL(ZMV(X)) = MPPL(Z(X)).  Since the MPPL is
not known, the AMV method approximates the locus based on
ZMV, which is for smooth response functions a good
approximation.[15]  Again, to avoid confusion with Method
#2, the AMV method does not approximate the response
function to obtain the CDF but rather the MPP (MV method).
This approximation, however, is corrected by the ‘move’ in
the AMV method, as depicted in Figure 8.  The steps for a
CDF generation with the AMV method are summarized in
Figure 8.

Analysis Code:
Response Function Z(X)

ZMV= A0+A1X1+A2X2+....

CDF, MPP(X*)

Analysis Code:
Response Function Z(X)

ZAMV=Z(X*)

0

0.5

1

ZMV ZAMV

Z
H

Figure 8:  AMV Method [9]

One of the dominant advantages of the AMV method is
the small number of function calls necessary, since n+1
analysis code executions are sufficient for the linear
approximation of the response function ZMV and ten additional
program evaluations are needed to obtain the updated ZAMV for
ten selected levels of z0.[15]  This translates into significant
time savings over the RSE/MCS method which usually
requires several hundred function evaluations for the generation
of the RSE.[22]  Additionally, the AMV is principally not
limited to a small number of variables.  The current limit
within the FPI code of 100 variables is due to vector
formatting and not the fast probability integration technique
itself.  Nonetheless, there is an additional gain associated with
the extended effort in the RSE generation.  It can serve as a
valuable tool to gain understanding of the behavior of the
underlying model.  The AMV method, on the other hand, will
only return a probability distribution without providing any
further insight into the analysis code.

APPLICATION EXAMPLE: A HIGH SPEED
CIVIL TRANSPORT

To further compare the two approaches to probabilistic
robust design, an aerospace systems design example is
examined in some detail here.  The aircraft baseline used for
this example is a High Speed Civil Transport (HSCT) depicted
for review in Figure 9.  The vehicle has an area-ruled fuselage

(maximum diameter of 12 ft.), a double delta planform, and
four nacelles below the wing, housing mixed flow turbofan
(MFTF) power plants.  The values for some of the important
design parameters are given in Table I.  The mission profile
for this aircraft is depicted in Figure 10, where the length of
the subsonic cruise segment is assumed to be 15% of the
design range.  This split subsonic/supersonic mission is a
result of the restriction for supersonic flight over land.

Figure 9:  HSCT Example

Table I:  Description of the Baseline HSCT

Parameter B a s e l i n e
Range 5000 nm
Payload 300 Passengers
Fuselage length 310 ft.
Span 77.5 ft.
Inboard Sweep 74 deg.
Outboard Sweep 45 deg.
Reference Area 9,000 ft2

Mach Number 2.4
Cruise Altitude ~63,000 ft.
Sustained Load 2.5 g

Taxi

Climb

Supersonic Cruise
  M = 2.4

Opt. Altitude

Subsonic Cruise
M = 0.9

Descent

Landing

Sized for 5,000 nm + FAA imposed added range

10%
Reserve

Fuel750 nm

Figure 10:  Baseline Mission Profile

Finding an optimal configuration for a supersonic
transport vehicle is a multidisciplinary and very difficult task.
Choosing a wing planform shape, for example, is driven by
the need for efficient performance at both sub- and supersonic
cruise conditions, a conflicting design objective in itself.[5,
29]  Furthermore, the trades involved in planform selection are
being complicated by different discipline considerations for
aerodynamics, structures, propulsion, etc., and the presence of
design and performance constraints at the system level which
are directly related to the wing.  The limit on approach speed,
for example, is mostly a function of wing loading.  Fuel
volume requirements impact the wing size and shape.  Both
become sizing criteria and are treated as constraints that tend to
increase the wing in size.  On the other hand, increased wing
area yields higher induced and skin friction drag, thus
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increasing fuel consumption.  Based on the way the sizing
code models an aircraft and its mission, a fuel requirement, Rf,
can be constructed in the form of a ratio of available fuel to
required fuel for completing the mission. Hence, Rf has to
have a value greater than one to satisfy the fuel requirement.
Additional design challenges are presented by takeoff and
landing field length limitations (less than 10,000 ft) that are
also modeled as design constraints for this study.  Table II
summarizes the design objective, required average yield per
revenue passenger mile, ¢/RPM, and all constraints considered
for this study that need to be satisfied during an optimization.
¢/RPM was chosen as an objective function for this study,
because it captures implicitly the interests of both passengers
and airline, reflecting the average ticket price given a fixed
return on investment for the airline.

Table II:  Summary of Objective and Constraints

Response Requirement
¢/RPM minimize
Fuel Requirement Rf > 1
Approach Speed < 154 kts
Takeoff Field Length < 10,000 ft
Landing Field Length < 10,000 ft

The Flight Optimization System (FLOPS) [30] code
was selected for this study as the design simulation tool, while
the Aircraft Life Cycle Cost Analysis (ALCCA) [31] program
was selected as the economics model.  Based on previous
screening tests performed by the authors [6, 8] an inclusive list
of design and economic variables were identified and are listed
in Table III as the main contributors to the response average
required yield per revenue passenger mile (¢/RPM).  

Note the distinction made between the Economic and
the Design Range.  The former represents the average distance
an airplane will fly from one airport to another during its life,

while the latter depicts the maximum distance the aircraft is
designed to fly.  All nine parameters have been characterized as
either design or uncertainty variables, where the uncertainty
variables are associated with normal probability distributions.
The design variables are not random but rather assumed to be
under the control of the designer.  Note that all randomness in
this study is inherent to the economic uncertainty.

As part of the Response Surface Methodology, a face
centered Central Composite Design (CCF) [22] is identified for
the nine variables in Table III.  The typically assumed second
order regression model, Equation 1, is used to estimate the
relationship between design and economic variables and the
responses.  Using the obtained RSEs, prediction profiles,
depicted in Figure 11, can show the individual dependency or
sensitivity of the response to the design and economic
variables.  All sensitivities are displayed for the baseline
aircraft as the variable settings indicate.  The random variables
are set at their mean values.  It should also be mentioned that
throughout the study all actual values for ¢/RPM have been
reduced by a constant to protect any sensitive data.

R2 values for the regression 0.991 to 0.999 indicate a
successful fit of the data generated by the CCF design to the
model in Equation 1.  These values, however, do not reflect

Variable Type Name Range Mean Std.Dev.
Thrust to Weight Ratio Control TWR 0.28 - 0.32
Wing Area Control WingArea 8.5 - 9.5 *  103 ft2

Longitudinal Kink
Location

Control x1 1.54 - 1.62

Spanwise Kink
Location

Control y1 0.5 - 0.58

Turbine Inlet
Temperature

Control TIT 3 - 3.25 * 103 ˚F

Fan Pressure Ratio Control FPR 3.5 - 4.5
Fuel Cost Noise $-Fuel 0.55 - 1.1 $/gal 0.75 0.07
Load Factor Noise LF 0.55 - 0.75 0.65 0.04
Economic Range Noise Ec-Range 3 - 5 * 103 nm 4000 350

Table III:  Control and Noise Variable Descriptions and Ranges
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Figure 11:  Response Surface Prediction Profiles
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the prediction performance of the equations at ‘off design’
points, i.e. points not selected in the DOE.  To verify the
prediction accuracy of the RSEs, 500 data points randomly
distributed over the design space were generated, both for the
actual design code and the RSEs.  With these data points
correlation plots can be generated that compare the synthesis
code results with the values predicted by the RSE.  These
plots, Figures 12 to 16, and correlation values, R2, ranging
between 0.9965 for ¢/RPM and 0.864 for Approach Speed
indicate a good prediction performance of the RSEs.  A perfect
correspondence of both data sets would be indicated by a 45
degree line through all data points from the bottom left to the
top right corner and by a correlation value of 100%.  The
differences in prediction performance between the responses can
be explained by the way they are simulated.  Economics
calculations are usually comprised of regression equations that
are well behaved (e.g. no discontinuities), while the estimation
of gross weight embodies several nonmonotonic equations and
table look up procedures that are not being approximated well
by second order polynomials.  The prediction ellipse, also
depicted in the graphs, represents a confidence interval that
encloses 95% of the data generated.

¢/RPM

Pred Formula ¢/RPM

Figure 12: Correlation of Actual with Predicted Values for
¢/RPM

0.8

0.9

Rf

.8 .9 1.0

Pred Formula Rf

Figure 13: Correlation of Actual with Predicted Values for Rf

154

155

156

157

158

159

160

161

162
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164

165

166
Vapp

Pred Formula Vapp

154 156 158 160 162 164 166

Figure 14: Correlation of Actual with Predicted Values for
Approach Speed

8500
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Fieldlen-TO

8500 9000 9500 10000 10500 11000

Pred Formula Fieldlen-TO

Figure 15: Correlation of Actual with Predicted Values for
Takeoff Field Length

9500
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9700
9800
9900
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10100

10200
10300
10400
10500
10600

10700
10800
10900

Fieldlen-Land

Pred Formula Fieldlen-Land

9500 9700 10000 10300 10600 10900

Figure 16: Correlation of Actual with Predicted Values for
Landing Field Length

COMPARISON OF CDFS FOR RSE/MCS AND
AMV APPROACH

It has been demonstrated in a previous study performed
by the authors[27] that the AMV method clearly yields a better
estimate of the CDF.  However, to confirm this preference for
the present case study, a Monte Carlo Simulation is performed
with the actual design code at a randomly selected design point.
The CDF of this simulation can be compared in Figure 17
against the CDFs from both methods, AMV and RSE/MCS.
Inspection of this figure indicates that the CDF from the AMV
method and the actual Monte Carlo Simulation are almost
identical, while the CDF from the RSE/MCS method shows a
clear distinction.  
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Figure 17:  CDF Comparison for a Random Point

It is not necessarily intuitive to contribute the
noticeable difference of the CDFs in Figure 17 to the
prediction error of the RSE, which is rather small as
demonstrated before.  However, the design variables are deemed
to be responsible for the prediction error, since for the same
random variable distributions the CDF differs with the setting
of the design variables.  This phenomenon was thoroughly
discussed in [27], and is briefly examined here in Figures 18 to
20 again.  The two CDFs in each figure are generated for the
same design point by the two methods, RSE/MCS and AMV,
while the design point varies from figure to figure.  It can be
concluded from these figures alone that the CDF prediction
error depends on the design variables setting, since the error
changes with varying design variables.
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Figure 18:  CDF Comparison for Design Point 1
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Figure 19:  CDF Comparison for Design Point 2
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Figure 20:  CDF Comparison for Design Point 3

CONSTRAINED ROBUST DESIGN OF AN HSCT

After having established AMV as the more reliable
CDF prediction method, a constrained robust design
methodology can be demonstrated using the HSCT example
case.  The first step in a probabilistic robust design is to
identify the different probability levels, or risk, at which the
objective function is being investigated.  For each of these
levels an RSE is created employing a CCF design for only the
design variables.  The noise variables are not part of this DOE,
since it is them that generate the variability that is under
investigation.  Thus, each of the cases of the DOE generates
one CDF for ¢/RPM (see also [8] and [16]).  From this CDF
the probability level of interest and its corresponding ¢/RPM
value are determined.  These data comprise the sample for the
regression problem.  Since the distributions of the noise
variables are held constant, all variation in the ¢/RPM value at
a particular probability level has to be contributed to the
variation of the design variables from case to case.  Hence, an
RSE for ¢/RPM dependent on design variables can be
generated for each probability level.  For this study three
levels, 82%, 50%, and 14%, as well as the mean were selected
to be displayed in Figure 21.  The constraints, on the other
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Figure 21:  Prediction Profiles for the Robust Design Example
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hand, are dependent on the same design variables, as displayed
in Figure 21.  Hence, a constrained optimization can be
executed, minimizing ¢/RPM at a particular probability level
without violating any constraints under consideration.

Also depicted in Figure 21 is the robust design solution
for the mean of ¢/RPM.  This solution was determined with a
method called desirability functions, which is a feature of
JMP®[32], the statistical package used to generate the DOEs,
equations, and all graphs presented in this paper.  The user
assigns desirability values between zero and one (last column
of Figure 21), one being most desirable, to the response
function.  For example, if a response is supposed to be
minimized, like ¢/RPM-µ, low values of that response are
assigned high desirability values.  By perturbing the variable
setting, each outcome of a response yields a desirability value
in the bottom row of Figure 21.  If more desirability functions
are being assigned to different responses, all desirability’s are
multiplied with each other and displayed in the bottom row of
the graph.  This method allows to transform a multiple into a
single objective optimization problem which maximizes
desirability.  

Thus, this feature is able to handle constraints by
assigning a desirability of zero to all constraint response
values that violate their requirement and a desirability of one to
those that satisfy it.  Hence, all variable settings that violate a
constraint will cause a desirability of zero in the bottom row
of Figure 21, since the desirability’s of all responses are
multiplied.  On the other hand, if a variable setting satisfies
the constraint, the solution will not be influenced since it is
multiplied by one.  Refer to Rf in Figure 21 as an example,
where all values for Rf below one are assigned a desirability of
zero, while values greater than one are assigned a desirability
of one.  If a response, such as ¢/RPM-82%, should not
influence the desirability value of the solution, all values are
being assigned a desirability of one.  This method enables the
designer to obtain a solution to an optimization problem
quickly and very visibly on the screen without the need for a
separate optimization execution.  Table IV summarizes the
obtained robust design solution and compares it with the
baseline.  

Table IV: Robust Design Solution Summary

Parameter Robus t
S o l u t i o n

B a s e l i n e

T/W Ratio 0.3078 0.3
Wing Area 9000 ft2 9000 ft2

x1 1.54 x span 1.58 x span
y1 0.58 x span 0.54 x span
TIT 3250˚F 3125˚F
FPR 3.5 4.0

Based on the results presented in Table IV the AMV
method was employed one more time in order to compare the
cumulative distribution for ¢/RPM of this robust design
solution to the original one of the baseline, as displayed in
Figure 22.  The robust design solution always yields a lower
¢/RPM value for the same level of risk.  Naturally the
probability increases with increasing values for the ¢/RPM.

However, it can be seen that for “small” and “very large”
values the difference in probability between the robust design
solution and the baseline is very small.  The difference
increases, however, for values around the means of the
distributions.
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Figure 22: Distribution Comparison Between Baseline and
Robust Design Solution

CONCLUSION

The present paper reviewed three different probabilistic
approaches to robust design, which were executed and
compared to each other.  Method #1 applies a Monte Carlo
Simulation directly to the analysis codes used in the design
process.  This approach yields an accurate estimate of the
objective probability distribution, but requires a large number
of code evaluations, which is usually too time consuming for
most modern systems design tools.  Method #2 requires the
generation of an approximate metamodel to facilitate a Monte
Carlo Simulation in a more time efficient manner.  Method #3
approximates the probability distribution rather than the design
simulation code, extracting the desired probabilistic
information based on a significantly reduced number of
function calls.  Methods #2 and #3 were compared against each
other on the basis of a study, using a High Speed Civil
Transport concept as an aerospace systems design example.
An experimental design was used as an approach to Method
#2, generating a Response Surface Equation which was
employed in a Monte Carlo Simulation.  Method #3 utilized
the Advanced Mean Value method, which is based on a fast
probability integration technique.  The generated cumulative
distribution functions from both methods were compared
against each other, determining that the Advanced Mean Value
method yields the more accurate estimate of the probability
distribution.  Considering also the reduced number of function
calls necessary for the analysis and the ability to accommodate
more variables, the authors conclude the Advanced Mean Value
method to be the more efficient and effective approach to
probabilistic robust design.  The Advanced Mean Value
Method was finally used to generate the cumulative
distribution function for the robust design example study.  For
given levels of probability, or risk, robust design solutions
were identified that yield a minimum objective function value
and satisfy all imposed constraints.  This solution and the
corresponding cumulative distribution function were presented
and compared.
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