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ABSTRACT

Several approaches to robust design have pesgosed
in the past. Onlyfew acknowledgedhe paradigmshift from

performance based design to design for cost. The incorporation

of economics in thedesign process, however, makes a
probabilistic approach to design necessdug tothe inherent
ambiguity of assumptiongnd requirements awell as the
operating environment of future aircraft.  Thapproach
previously proposed by the authors, linking Respdsdace
Methodology with Monte CarldSimulations, hasrevealed
itself to be cumbersomand attimes impracticalfor multi-
constraint, multi-objective problems. buddition, prediction
accuracyproblemswere observedor certain scenarios that
could not easily beesolved. Hencethis paperproposes an
alternate approach to probabilistic design, whicb&dsed on a
Fast Probability Integratiotechnique. Thepaper critically
reviews the combined ResponseSurface Equation/ Monte
Carlo Simulationmethodologyand compares itagainst the
AdvancedMean Value (AMV) method, one ofeveral Fast
Probability Integratiortechniques. Both methodse used to
generatecumulative distribution functions, whichre being
compared in amxamplecasestudy, employing a Higispeed
Civil Transport concept. Based on the outcome of this study,
an assessmendcomparison of the analyseffort and time
necessary for both methods is performed. AtieancedMean
Value method shows significant time saving®ver the
ResponsesurfaceEquation/Monte Carldsimulation method,
and generally yields moreccurateCDF distributions. The
paperalso illustrates how by using the AMYhethod for
distribution generation, robust design solutions to multivariate
constrained problems may be obtained. These ramlstions
are optimizing the objective function for a given level of risk
the decision maker is willing to take.

INTRODUCTION

Systems design, iparticular as applied t@erospace
vehicles, hagxperienced a paradigshift from emphasizing
performance tanaximizing affordability.[1, 2] The resulting
new ‘design for affordability’requiresthe addition of cost
estimation as a new discipline to systems design. sBuke
most of theeconomic assumptiorendgroundrules, such as
number of paying passengers, fluctuations in fuel ptiegel
distance,etc.[1, 3], areinherently uncertain, more emphasis
has beerput on replacing"point" by probabilistic estimates
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that quantify the uncertainty of theredictedoutcome. This
new way of thinking has shifted the design focusfrom
optimizing to ‘compromising’ wherecompromisingdescribes
a decision procesthat yields a robussolution[2, 4], i.e. a
designthat is insensitive to the variation of thoseonomic
parameters thare difficult or impossible to control. Such a
designmight bepreferable to drue optimum which exhibits
low confidence ofachieving thatoptimum consistently. In
order to quantify and minimize the uncertainty of aesign
outcome, a methodologgalled Robust DesignSimulation
(RDS) hasbeen introduced.[5, 6, 7, 8] It ibased on a
Concurrent EngineeringCE)/Integrated Producand Process
Development (IPPDppproachand opens up theraditional
deterministic to a probabilistiapproach tosystemsdesign.
The methodology treats the cogtarameters asrandom
variables and models their variation with probability
distributions. Thepapercritically reviewstwo approaches to
probabilistic robust systems design, that allow fandom
changes inthe assumptionsnade inthe design process and
aircraft operating environment.

ROBUST DESIGN SIMULATION

An aircraft synthesis and sizing process, utilizing
appropriate analyticabols, evaluates thaystem value to the
customer for each aircraft configuration through selected
objectives such agerformance, cost, profit, quality, or
reliability. Regardless ofthe defined objective, customer
satisfactioncan beachievedonly if all systemdesign and
environmental constraints are met. This algorithndigplayed
in Figure 1, depicting thedependence ofhe objective on
economicanddiscipline uncertainties as well as technological
and schedule risk.
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Figure 1: Robust Design Simulation[6]



The uncertainties in thdesignassumptionsare usually
accountedfor in the form of variability distributions for
system inherentandomvariables. Thes@andom variables
introduce a variability in the objective that can be modeled as a
probability distribution. So far, most robustlesign
methodologies[4, 8, 9] strived teducethe variability of the
objective, assuming that ongan reach ahigher customer
satisfaction with suchreduction. In contrast, amlternate
approach is proposed here wherestomer satisfaction is
achieved byenabling him oter to chosehe level of risk at
which decisionsaare made. The proposed approach transforms
the objective function from beindependent omlesign/control
and noise/random variablesinto being dependent on
design/control variableandlevel of risk. Given the level of
risk the objective functiomanthen be optimized byarying
the controllable parameters, whit®ncurrentlysatisfying all
imposed design and environmental constraints.

PROBABILISTIC METHODS FOR ROBUST
DESIGN

One of the major obstacles in applying probabilistic
design methods is accommodating the large variegxidting
deterministic computetodes used in modesystemsdesign.

It is impractical for all of them to benodified to enable a
probabilistic problem formulation. Hence, a moregeneric
methodology is proposed, which calls on some kind of
‘wrapper’ that, when linked to theselectedanalysescodes,
drives the program and yields the desired results. Basédi®n
formulation, probability functiongan be assigned to each of
those input variables which are considered to be uncertain and a
cumulative probability distribution function (CDF) feach of
the desiredobjectives may subsequently be obtainellost
probabilistic analyses, e.g. Monte Carlo Simulatifi®],
estimate their probability distribution functiorizased on a
large number ofsamplesgeneratedover the design space,
defined bythe random variableanges. While the usage of
computer models allows for an easy perturbationingfut
values, as design problems increase in complexity,
computerized analysis tools increase in complexity
accordingly, ofterdramatically increasingun-time. Fox[11]
lists three methodghat incorporate such complegomputer
programs in a probabilistic systerdssign approachMethod

#1 directlylinks a time consuminggue to alarge number of
repetitionsneededthus inefficient probabilistic methodsuch

as the Monte Carlo Simulation, to theaditional systems
designcodes used bythe traditional deterministi@pproach.
Although computespeedhas significantlyincreased in recent
years, theextremecomplexity of somedesign codes yields
computation times that may prohibit large number of
program evaluationsvithin the allotted time frame for the
design process. Thus, Method #1 may not be a feasible option
for a probabilistic design approach.
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Figure 2: Probabilistic Method #2[11]

Method #2, displayed in Figure 2, proposes the use of
a metamodel which approximatdhe design codes. The
advantage ofcreating such anetamodel is a significantly
reduced execution time, allowing a Monte Carlo Simulation to
be applied to the metamodel rather than on the actual computer
code. Severaldifferent metamodels have been proposed and
applied. Some of the more commeoegression models are
based orexperimental designs [12], artificial neunagtworks
[13], or Fuzzy Graph based metamodeling.[14]
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Figure 3: Probabilistic Method #3[11]

Method #3, displayed inFigure 3, takes dalifferent
approach, approximating the probability distribution function
rather than the design code. This is based on the notion that in
order to obtain the cumulative distribution function (CDF) not
all probability levels need to be identified. The metketbcts
several percentiléevels and calculatesghe accordingobjective
value. Note that this calculation ibased onthe exact
computercode,not on an approximating metamodelThese
objective values and their probabilitieanthan beused to fit
the typical S-shape of a CDFThe details othis method are
described in [15] and in later sections of this paper.

Method #2 has found the widest applicationand has
also beenused inthe past by the authors.[6, 8, 16]
particular, the use of statistical regression modedsed on
Taylor series expansions, in combination wikperimental
designs is very popular.[3,1, 17, 18, 19, 20, 21] The two
main reasons forits popularity are its easy application to
numerous computer simulation problems.g. aircraft
synthesis,and the large number ofstatistical analysidools
commercially available. Nonethelegfiere are two major
problems in metamodeling of complex computedeswith a
high number of inputs. First, the number of inpatriables
handled by this approach fgpically limited to eight or nine.
This problem can often beolvedthrough ascreening process
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[22] thatidentifies the major contributors to variation in the
modeloutput. However, themetamodekreated based on the
screenegarameters can never capttine variation of any of
the other, ‘less important’ input parameters.

The second problem with Method #2 is in the
mathematical background of such regression methods as
Response Surface Methodology (RSM) and Design Of
Experiments (DOE), whiclare based on randomather than
deterministic variables (sd&0], [12], [22], [23]). Therefore,
the authors would like to strekgrethe use of caution in the
straightforwardapplication of these methods.Fundamental
statistical knowledge is critical for obtaining reasonable
approximations of the computer model. Many of the
statistical analysis results the commer@atkages offer are
based on random errog)(estimationand donot reflect the
accuracy ofthe metamodel, sinaendom error doegsot exist
in deterministic computessimulation. A discussion on
accuracy andbehavior of statistical regressianetamodels in
computer simulationgan be found in[12], [24], [25], and
[26]. In general, the best validation of tlaecuracy of the
metamodel is an extensitest atrandomly distributecboints
over thedesign space to compapeedictedvalues with the
exact computesimulation values. Unfortunately, this test
increaseghe computationagffort put into thegeneration and
validation of the metamodel. As shown in a previous
paper[27], variation obnly a subset of theariables in the
metamodel can cause an additional prediction error not
accounted for by testing the whole model.

COMBINED RESPONSE SURFACE/MONTE
CARLO SIMULATION APPROACH

Despite theaforementionedproblems of the Response
Surface Methodology (RSM), it can, if applied correctly,
provide some valuablénsight into the systemsdesigncode
behavior. Hence, it has bearsed by the authors as a
metamodel generator to facilitatprobabilistic aerospace
systems design methods.[8] In order to complaatapproach
(Method #2) with the oneintroduced inthis paper (Method
#3), avery brief overview ofthe combinedResponseSurface
Equation/Monte CarloSimulation (RSE/MCS)method is
provided here.For moredetailedinformation refer to [6], [8],
[22], and [23].

RSM is based on eastatistical approach tobuild and
rapidly assess empirical metamodels.[22, 23] &efully
designing and analyzing experiments osimulations, the
methodology seeks to relatand identify the relative
contributions of various inputvariables to the system

response. However, aerospace systems are extremely complex,

and the responses of interest could be a functidmuodreds of
design variables. Thérst step in constructing a Response
Surface EquatiofRSE) as ametamodel is to conduct a
screening test to identify the variables which makegiteatest
contribution to the response of the system. 3dreeningest
is a two level fractional factorial Design of Experiments
(DOE) that accounts for main effects of variabdedy (i.e. no

interactions).[23] It allows theapid investigation ofmany
variables to gain a first understanding of the problem.

After identifying the variables whichwill form the
RSE, anexperimental Design of Experiments has to be
selected. For the purposes of this studfaca-centeredentral
composite design wassed as acheme for thénput variable
levels to be tested. Thiexperimental design is a three level
composite design formed by combining a two-level full
factorial with a stardesign.[22] Typically, asecondorder
model in k-variables is assumed ¢éxist. This secondorder
polynomial for a response, R, can be written as:

R=b0+ibixi +£b“xi2+zibijxixj 1)
=1 =1

<7
where: b are regression coefficients for linear terms
bjj are coefficients for pure quadratic terms
bjj are coefficients for cross-product terms
Xi, Xj are the design variables of interest

Refer to [22]and [23] for a detailed description of a
responsesurfacegeneration. Aftethe RSE isdeveloped, the
effect of uncertain variables can be incorporateéd a systems
level designthrough the use of a Monte CarBimulation
(MCS). A Monte Carlo Simulation igffectively arandom
numbergeneratotthat selects values faach random variable
with a frequency proportional to the shape of theresponding
probability distribution. Usually 5,000 to 10,000 trials are
neededfor a good representation d¢iie response probability
distribution. Without theaid of the RSE, this taskvould be
computationally excessiveand in many cases impractical
consideringthat MCS would have to executéhe design
simulation code each time (Method #1, Figure 1).

FAST PROBABILITY
APPROACH

INTEGRATION

To avoidthe often difficult generation of enetamodel
(Method#2), this papersuggest, the use of a fast probability
integrationtechnique as an approach to Meth#8. This
technique isreviewed here in greatedetail. The Fast
Probability Integration (FPI) computer program[18¢veloped
by researchers d@he SouthwesResearchnstitute (SwRI) for
the NASA LewisResearchCenter, is a probability analysis
code based orthe Most Probable Point (MPPanalysis
frequently used instructural reliability analysis. The MPP
analysis utilizes a response functi@(X) that depends on
several random variables, XseeFigure 4 for a 2-Dexample).
Eachpoint in the design space spanned ltye X's has a
specific probability of occurrence according taheir joint
probability distribution function(see Figure 5). However,
each point in the design space ateoresponds tmne specific
response value Z(X). Hence, each response value hasutre
probability of occurrence ashe correspondingpoint in the
design space.
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Figure 4 : Objective Function Contours
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Figure 5 : Joint Probability Distribution

In cost analysisndother disciplines involvingandom
variables, it is often desired to find the probabilityashieving
response values below a critical value of intergst ZThis
critical value can be used to form a limit-state function (LSF):

9(X) =Z(X) - % )
where values of g(X¢ 0 areundesirable. Th& PP analysis
calculateghe cumulative probability of all points thateld
g(X) < 0 for the given gz(see Figure 6). Since the LSguts
off’ a section of the joint probability distributiofsee Figure
7) a point with maximal probability obccurrencecan be
identified on that LSF. This point is called the Mé&sbbable
Point. It isfound most conveniently in @ransformedspace
(seeFigure 7), in which allrandom variablesare normally
distributed. Once the MP&dthe cumulative probability are
identified, the process can bepeatedor severalvalues of g,
mapping eachprobability to thecorresponding value of,.z
The resulting cumulative probability distribution fA¢X) can
then be differentiated to obtain the probability density function
of the response.
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Figure 6: Most Probable Point (MPP) Location

Figure 7: Visualization of MPP [9]

The FPI code offers several techniques to fimel MPP
andthe probability of a given LSkalue z for the response
function. Some of these&echniquesare very efficient and
eliminate theneedfor an expensive Monte CarBimulation.
An additional advantage dfPI is thefact that it is directly
linked to the analysiscode, eliminating the need for a
metamodel and its limit in the number of variablddowever,
all Fast Probability Integratiotechniques approximate the
LSF locally at the Most Probable Point.

ADVANCED MEAN VALUE METHOD

The Advanced Mean Value (AMV) method is one of the
twelve analysis methods included in the FPI code. It combines
a simple Mean Value methodvith the MPP analysis and
determinesthe CDF for the response function Z(X). The
Mean Value (MV) method ibased on aimple Taylorseries
expansion of the response functiaf(X) (Equation 3),
assuming Z(X) to be smooth and the expansion to exist at the
mean:

Z(X) = Z(k) +§ ﬁ%ﬁmx — 1)+ H(X)

=a,+ aX +H() €
= 2,,(X) +H(X)

The derivativesare evaluated athe mean values and
Zw(X) representgshe sum of the firsorder terms and H(X)
represent higher ordéerms. For rnrandomvariables, the ;s
can be estimatedvith n+1 function evaluationsand a
numerical differentiationmethod. Based on this linear
approximation the CDFor Z,,,(X) can be obtained directly,
since the distributions for theandom variables Xare fully
defined and 4,(X) is explicit. For nonlinear Z-functions the
MV solution for the CDF is not sufficientlyaccurate. One
possible means for improvingccuracy isincreasing theorder
of the Taylor series expansion, which becomes difficult and
inefficient for implicit response functionand alarge number
of random variables (n).

A more efficient approach is proposethrough the
AMV method:

Zpw=Zuw+H(Zw) 4)

H(Z,y) is defined as the difference betweeraitl 7, at
the Most Probable Point Locus (MPPL) of,Z where the



MPPL combines the MPP'for severalvalues of z[28] In
other words, H(g,) in Equation 4 approximatesi(X) in
Equation 3. %, would be exact if the MPPL was known and
exact, i.e. MPPL(4,(X)) = MPPL(Z(X)). Since the MPPL is
not known, the AMV method approximates the lotiased on
Zw, Which is for smooth response functions ajood
approximation.[15] Again, taavoid confusion with Method
#2, the AMV method does not approximate theresponse
function to obtain the CDF but rather the MRV method).
This approximation, however, isorrected bythe ‘move’ in
the AMV method, aglepicted inFigure 8. The steps for a
CDF generationwith the AMV method are summarized in
Figure 8.
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Figure 8: AMV Method [9]

One of the dominant advantages of the AMV method is
the small number of function callsecessary, since n+1
analysis code executions are sufficient for the linear
approximation of the response functiog,Zandten additional
program evaluationare needed toobtain theupdated %, for
ten selectedevels of z.[15] This translates into significant
time savingsover the RSE/MCS method which usually
requires several hundred function evaluationgtiergeneration
of the RSE.[22] Additionally, the AMV is principally not
limited to a small number of variables. Tlearrent limit
within the FPI code of 100 variables is due to vector
formatting and not the fast probability integratiotechnique
itself. Nonetheless, there is additionalgain associatedvith
the extendedeffort in the RSEgeneration. Itcan serve as a
valuabletool to gain understanding ofthe behavior of the
underlying model. The AMV method, on the otlmand,will
only return a probability distributionvithout providing any
further insight into the analysis code.

APPLICATION EXAMPLE: A HIGH SPEED
CIVIL TRANSPORT

To further comparghe two approaches t@robabilistic
robust design, anaerospacesystems design example is
examined insomedetail here. The aircraft baselineused for
this example is a High Speed Civil Transport (HS@&picted
for review in Figure 9. The vehicle has ama-ruleduselage
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(maximumdiameter of 12ft.), a double deltaplanform, and
four nacelles belowthe wing, housingmixed flow turbofan
(MFTF) power plants. The values for some of the important
design parameteregiven in Table I. Theanission profile

for this aircraft is depicted inFigure 10,wherethe length of
the subsonic cruise segmentdssumed to bd5% of the
design range. This split subsonic/supersonic mission is a
result of the restriction for supersonic flight over land.
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Figure 9: HSCT Example

Table I: Description of the Baseline HSCT

Parameter Baseline

Range 5000 nm

Payload 300 Passengers
Fuselage length 310 ft.

Span 77.5 1t

Inboard Sweep 74 deg.
Outboard Sweep 45 deg.
Reference Area 9,000 #

Mach Number 2.4

Cruise Altitude ~63,000 ft
Sustained Load 250

Supersonic Cruise
M=24

Subsonic Cruise
Opt. Altitude M=09

Descent

———————— 10%

750 Reserve
nm Fuel
[t |

|< = =1

[ Sized for 5,000 nm + FAA imposed added range Tl

Figure 10: Baseline Mission Profile

Finding an optimal configuratiorfor a supersonic
transport vehicle is a multidisciplinaandvery difficult task.
Choosing a wing planform shapfar example, isdriven by
the needfor efficient performance aboth sub-andsupersonic
cruise conditions, a conflictindesign objective initself.[5,
29] Furthermore, the trades involved in planform selection are
being complicated by differendiscipline considerations for
aerodynamics, structuregtopulsion, etc.andthe presence of
designand performanceconstraints at the system lewshich
are directly related tthe wing. Thdimit on approachspeed,
for example, ismostly a function of wing loading. Fuel
volume requirementsmpact the wing sizeand shape. Both
become sizing criteria and are treated as constridiatéend to
increasethe wing in size. On the othéand,increasedving
area yields higher induced andskin friction drag, thus



increasing fuelconsumption. Based onthe way the sizing
code models an aircraft and its mission, a feguirement, Rf,
can be constructed ithe form of a ratio of available fuel to
requiredfuel for completing themission. Hence, Rf has to
have a valugreaterthan one to satisfy the fuetquirement.
Additional design challengesre presented byakeoff and
landing fieldlength limitations (less than 10,000 ft) that are
also modeled asdesignconstraints forthis study. Table I
summarizes thealesign objective, required averageyield per
revenue passenger mile, ¢/RPahdall constraintsconsidered
for this study thanheed to besatisfied during amptimization.
¢/RPM was chosen as an objective function fois study,
because it capturémplicitly the interests of botlpassengers
and airline, reflecting theaverageticket price given a fixed
return on investment for the airline.

Table Il: Summary of Objective and Constraints

Response Requirement

¢/RPM minimize
Fuel Requirement Rf >1
Approach Speed < 154 kts
Takeoff Field Length < 10,000 ft
Landing Field Length < 10,000 ft

The Flight Optimization System (FLOP3$30] code
was selected for this study as the design simulation vaduile
the Aircraft Life CycleCost Analysis (ALCCA)[31] program
was selected aghe economics model. Based onprevious
screening tests performed by the authors [6, 8] an incluisitve
of designandeconomic variablesvere identifiedand ardisted
in Tablelll as the main contributors to the resporeesrage
required yield per revenue passenger mile (¢/RPM).

Note the distinctionmade betweenthe Economic and
the Design Range. THermer representthe average distance
an airplane will fly from one airport to anotheuringits life,

while the latterdepictsthe maximumdistancethe aircraft is
designed to fly. All nine parameters have bebaracterized as
either design or uncertainty variableghere the uncertainty
variablesare associatediith normal probability distributions.
The design variableare not randombut rather assumed to be
under the control of the designer. Note thatrafidomness in
this study is inherent to the economic uncertainty.

Table Ill: Control and Noise Variable Descriptions and Ranges

Variable | Type Name | Range Mean | Std.Dev.|

Thrust to Weight Ratio] Contrdl TWR 0.28 - 0.32

Wing Area Control |WingAred 8.5 - 9.5+ 10°ft

Longitudinal Kink Control x1 1.54-1.62

Location

Spanwise Kink Control yl 0.5-0.58

Location

Turbine Inlet Control TIT 3-3.25 10 °F

Temperature

Fan Pressure Ratio Control FPR 3.5-45

Fuel Cost Noise $-Fuel | 0.55-1.1 $/g4l 0.75 0.07
Load Factor Noise LF 0.55 - 0.75 0.65 0.04
Economic Range Noisg Ec-Rangg 3 -5 10° nm 4000 350

As part of the ResponssurfaceMethodology, aface

centered Central Composite Design (CCF) [22] is identified for

the nine variables in Table Ill. The typicallssumedsecond
order regression model, Equation 1, ised to estimate the
relationshipbetween desigmnd economic variableand the
responses. Using thebtained RSEs, prediction profiles,
depicted inFigure 11,canshow theindividual dependency or
sensitivity of theresponse to thedesign and economic
variables. All sensitivitiesare displayedfor the baseline
aircraft as the variable settings indicate. Téedom variables
are set at their mean values. It should alsonbationed that
throughout the study all actual values f/RPM have been
reduced by a constant to protect any sensitive data.

R? values for the regressidn991 to 0.999ndicate a
successfufit of the data generated bihe CCFdesign to the
model in Equation 1. Thesealues, however, doot reflect
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Figure 11:

Response Surface Prediction Profiles

6



the prediction performance ofhe equations at ‘offdesign’
points, i.e. points noselected inthe DOE. To verify the
prediction accuracy ofthe RSEs, 500data points randomly
distributed ovetthe design spacevere generatedhoth for the
actual desigrcode andthe RSEs. Withthese data points
correlationplots can begeneratedhat comparethe synthesis
coderesults with the valuepredicted bythe RSE. These
plots, Figures 12 to 16and correlation values, R ranging
between0.9965 for ¢/RPM and 0.864 for Approach Speed
indicate a good prediction performance of RBEs. Aperfect
correspondence dfoth data setswould beindicated by a 45
degree line through all datmints from the bottom left to the
top right cornerand by acorrelation value ofl00%. The
differences in prediction performance between the responses can
be explained bythe way theyare simulated. = Economics
calculations are usuallgomprised of regression equatidhat
are well behaved (e.g. no discontinuities), while the estimation
of gross weight embodieseveralnonmonotonicequations and
table look upprocedureghat are not beingapproximated well
by secondorder polynomials. Theprediction ellipse, also
depicted inthe graphsrepresents aonfidenceinterval that
encloses 95% of the data generated.

¢/RPM

Pred Formula ¢/RPM

Figure 12: Correlation of Actual with Predicted Values for
¢/RPM
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Figure 13: Correlation of Actual with Predicted Values for Rf
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Figure 14: Correlation of Actual with Predicted Values for
Approach Speed
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Figure 15: Correlation of Actual with Predicted Values for
Takeoff Field Length
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Figure 16: Correlation of Actual with Predicted Values for
Landing Field Length

COMPARISON OF CDFS FOR RSE/MCS AND
AMV APPROACH

It has beerdemonstrated in previous studyperformed
by the authors[27] that the AMV method clearly yieldbedter
estimate of the CDF. However, to confirm tipieference for
the present case study, a Monte Carlo Simulatiopeiformed
with the actual design code at a randomly selected dpsigrt.
The CDF of this simulatiortan becompared inFigure 17
against the CDFs from both methods, AMXd RSE/MCS.

Inspection of this figure indicates that the CDF from the AMV

methodand the actual Monte Carl&imulation are almost
identical, while the CDF from the RSE/MQ8ethodshows a
clear distinction.
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Figure 17: CDF Comparison for a Random Point

It is not

noticeable difference of the CDFs
prediction error ofthe RSE, which is rather small

necessarily intuitive to contribute the
in Figure 17 to the
as

demonstrated before. However, the design variabiedeemed

to be responsible for therediction error, since fothe same
random variable distributions th@DF differs with the setting

of the design variables. This phenomenon was thoroughly
discussed in [27], and is briefly examined here in Figures 18 to

20 again.

The two CDFs ieachfigure are generatetbr the

same design point by the two methoR§E/MCS andAMV,

while the design poinvaries from figure to figure.

Itan be

concludedfrom these figures alone that tH@DF prediction
error depends orthe design variablesetting, since thesrror
changes with varying design variables.
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Figure 18: CDF Comparison for Design Point 1
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Figure 19: CDF Comparison for Design Point 2
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Figure 20: CDF Comparison for Design Point 3

CONSTRAINED ROBUST DESIGN OF AN HSCT

After having established AMV as the moreliable
CDF prediction method, a constrained robust design
methodology can belemonstratedusing the HSCTexample
case. The first step in a probabilistic robussign is to
identify the different probability levels, or risk, at which the
objective function is being investigated. Femch of these
levels an RSE is created employing a CCF design for only the
design variables. The noise variables are not part of this DOE,
since it is them thageneratethe variability that isunder
investigation. Thuseach ofthe cases othe DOE generates
one CDF for ¢/RPM (see also [8hd[16]). From this CDF
the probability level of interesindits correspondingt/RPM
value are determined. Thedatacomprise the sample for the
regression problem. Since the distributions of the noise
variables are held constant, all variation in the ¢/RPM value at
a particularprobability level has to beontributed to the
variation of the design variables frorase tocase. Hence, an
RSE for ¢/RPM dependent ondesign variables can be
generatedfor each probability level. For this studyhree
levels, 82%, 50%, and 14%, as well as the meare selected
to be displayed irFigure 21. The constraints, on tobéer
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Figure 21: Prediction Profiles for the Robust QestExanple



hand, are dependent dine samedesign variables, adisplayed
in Figure 21. Hence, a constrainedptimization can be
executedminimizing ¢/RPM at garticularprobability level
without violating any constraints under consideration.

Also depicted in Figure 21 is the robudsgsignsolution
for the mean of ¢/RPM. This solution wdsterminedwith a
method called desirability functions, which is deature of
JMP®[32], the statisticapackage used to generdie DOES,
equations,and all graphspresented inthis paper. Thauser
assigns desirability valudsetween zerandone (last column
of Figure 21), one being mogstesirable, tothe response
function. For example, if aesponse is supposed to be
minimized, like ¢/RPM-u, lowalues of that response are
assignedhigh desirability values. By perturbing thariable
setting, each outcome of a response yields a desiramling
in the bottom row of Figure 21. If more desirability functions
arebeing assigned to differemesponses, all desirability’s are
multiplied with each other andisplayed inthe bottom row of
the graph. This method allows to transform a multipte a
single objective optimization problem which maximizes
desirability.

Thus, this feature is able to handle constraints by
assigning a desirability ofero to all constraint response
values that violate their requirement and a desirability of one to

those that satisfy it. Hence, all variable settings that violate a

constraint willcause a desirability afero inthe bottom row

of Figure 21, since thealesirability’s of all responses are
multiplied. On the othehand, if a variablesetting satisfies
the constraint, the solution will not lefluencedsince it is
multiplied by one. Refer to Rf inFigure 21 as an example,
where all values for Rf below one are assigned a desirability of
zero, while valuegreaterthan oneareassigned a desirability

of one. If a response, such as ¢/RPM-82%, should not
influence the desirability value of ttemlution, all values are
being assigned a desirability of one. Thisthod enables the
designer toobtain a solution to an optimizatioproblem
quickly andvery visibly on thescreenwithout theneedfor a
separateoptimization execution. Table IV summarizes the
obtained robust design solution and compares itwith the
baseline.

Table IV: Robust Design Solution Summary

Parameter Robust Baseline
Solution

T/W Ratio 0.3078 0.3

Wing Area 9000 ft 9000 ft

x1 1.54 x span 1.58 x span

y1l 0.58 x span 0.54 x span

TIT 3250'F 3125F

FPR 3.5 4.0

Based onthe resultspresented inTable IV the AMV
method was employedne more time irorder tocompare the
cumulative distribution for¢/RPM of this robustdesign
solution to the original one of the baseline, digplayed in
Figure 22. The robustesignsolution always yields dower
¢/RPM value for the same level ofisk. Naturally the
probability increaseswith increasing values for thé/RPM.

However, it can be seethat for “small” and “very large”

values thddifference inprobability betweenthe robustdesign

solution and the baseline is venysmall. The difference

increases, however, for valuesound the means of the
distributions.
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Figure 22: Distribution Comparison Between Baseline and
Robust Design Solution

CONCLUSION

The presenpaperreviewedthree different probabilistic
approaches torobust design, whichwere executed and
compared to eacbther. Method #1applies a Monte Carlo
Simulationdirectly to the analysiscodes used irthe design
process. Thisapproach yields armccurateestimate of the
objective probability distribution, butequires darge number
of code evaluations, which is usually too time consuming for
most modernsystemsdesigntools. Method #2requires the
generation of an approximate metamodel to facilitate a Monte
Carlo Simulation in a more time efficient mannéfethod #3
approximates the probability distribution rather thandbsign
simulation code, extracting the desired probabilistic
information based on asignificantly reduced number of
function calls. Methods #2 and #3 were compared ageatst
other on the basis of a study, using a Hi§peedCivil
Transport concept as aerospacesystemsdesign example.
An experimental design wassed as an approach to Method
#2, generating a Respons8urface Equationwhich was
employed in aMonte Carlo Simulation. Method #3 utilized
the AdvancedMean Value method, which ibased on a fast
probability integrationtechnique. Thegeneratedcumulative
distribution functions from bothmethods were compared
against each other, determining that AdvancedMean Value
method vyields the moraccurateestimate of the probability
distribution. Considering also threducednumber of function
calls necessary for the analysis and dbdity to accommodate
more variables, the authors conclude the Advanced Mehre
method to be the morefficient and effective approach to
probabilistic robust design. Thédvanced Mean Value
Method was finally used to generatethe cumulative
distribution function for the robust design example study. For
given levels of probability, or risk, robustesignsolutions
were identifiedthat yield a minimum objective functionvalue
and satisfy all imposed constraints.This solution and the
correspondingumulative distribution functiomvere presented
and compared.
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